Science.gov

Sample records for 3d radiation dose

  1. Displaying 3D radiation dose on endoscopic video for therapeutic assessment and surgical guidance.

    PubMed

    Qiu, Jimmy; Hope, Andrew J; Cho, B C John; Sharpe, Michael B; Dickie, Colleen I; DaCosta, Ralph S; Jaffray, David A; Weersink, Robert A

    2012-10-21

    We have developed a method to register and display 3D parametric data, in particular radiation dose, on two-dimensional endoscopic images. This registration of radiation dose to endoscopic or optical imaging may be valuable in assessment of normal tissue response to radiation, and visualization of radiated tissues in patients receiving post-radiation surgery. Electromagnetic sensors embedded in a flexible endoscope were used to track the position and orientation of the endoscope allowing registration of 2D endoscopic images to CT volumetric images and radiation doses planned with respect to these images. A surface was rendered from the CT image based on the air/tissue threshold, creating a virtual endoscopic view analogous to the real endoscopic view. Radiation dose at the surface or at known depth below the surface was assigned to each segment of the virtual surface. Dose could be displayed as either a colorwash on this surface or surface isodose lines. By assigning transparency levels to each surface segment based on dose or isoline location, the virtual dose display was overlaid onto the real endoscope image. Spatial accuracy of the dose display was tested using a cylindrical phantom with a treatment plan created for the phantom that matched dose levels with grid lines on the phantom surface. The accuracy of the dose display in these phantoms was 0.8-0.99 mm. To demonstrate clinical feasibility of this approach, the dose display was also tested on clinical data of a patient with laryngeal cancer treated with radiation therapy, with estimated display accuracy of ∼2-3 mm. The utility of the dose display for registration of radiation dose information to the surgical field was further demonstrated in a mock sarcoma case using a leg phantom. With direct overlay of radiation dose on endoscopic imaging, tissue toxicities and tumor response in endoluminal organs can be directly correlated with the actual tissue dose, offering a more nuanced assessment of normal tissue

  2. Radiation dose reduction for coronary artery calcium scoring at 320-detector CT with adaptive iterative dose reduction 3D.

    PubMed

    Tatsugami, Fuminari; Higaki, Toru; Fukumoto, Wataru; Kaichi, Yoko; Fujioka, Chikako; Kiguchi, Masao; Yamamoto, Hideya; Kihara, Yasuki; Awai, Kazuo

    2015-06-01

    To assess the possibility of reducing the radiation dose for coronary artery calcium (CAC) scoring by using adaptive iterative dose reduction 3D (AIDR 3D) on a 320-detector CT scanner. Fifty-four patients underwent routine- and low-dose CT for CAC scoring. Low-dose CT was performed at one-third of the tube current used for routine-dose CT. Routine-dose CT was reconstructed with filtered back projection (FBP) and low-dose CT was reconstructed with AIDR 3D. We compared the calculated Agatston-, volume-, and mass scores of these images. The overall percentage difference in the Agatston-, volume-, and mass scores between routine- and low-dose CT studies was 15.9, 11.6, and 12.6%, respectively. There were no significant differences in the routine- and low-dose CT studies irrespective of the scoring algorithms applied. The CAC measurements of both imaging modalities were highly correlated with respect to the Agatston- (r = 0.996), volume- (r = 0.996), and mass score (r = 0.997; p < 0.001, all); the Bland-Altman limits of agreement scores were -37.4 to 51.4, -31.2 to 36.4 and -30.3 to 40.9%, respectively, suggesting that AIDR 3D was a good alternative for FBP. The mean effective radiation dose for routine- and low-dose CT was 2.2 and 0.7 mSv, respectively. The use of AIDR 3D made it possible to reduce the radiation dose by 67% for CAC scoring without impairing the quantification of coronary calcification.

  3. Radiation dose reduction for coronary artery calcium scoring at 320-detector CT with adaptive iterative dose reduction 3D.

    PubMed

    Tatsugami, Fuminari; Higaki, Toru; Fukumoto, Wataru; Kaichi, Yoko; Fujioka, Chikako; Kiguchi, Masao; Yamamoto, Hideya; Kihara, Yasuki; Awai, Kazuo

    2015-06-01

    To assess the possibility of reducing the radiation dose for coronary artery calcium (CAC) scoring by using adaptive iterative dose reduction 3D (AIDR 3D) on a 320-detector CT scanner. Fifty-four patients underwent routine- and low-dose CT for CAC scoring. Low-dose CT was performed at one-third of the tube current used for routine-dose CT. Routine-dose CT was reconstructed with filtered back projection (FBP) and low-dose CT was reconstructed with AIDR 3D. We compared the calculated Agatston-, volume-, and mass scores of these images. The overall percentage difference in the Agatston-, volume-, and mass scores between routine- and low-dose CT studies was 15.9, 11.6, and 12.6%, respectively. There were no significant differences in the routine- and low-dose CT studies irrespective of the scoring algorithms applied. The CAC measurements of both imaging modalities were highly correlated with respect to the Agatston- (r = 0.996), volume- (r = 0.996), and mass score (r = 0.997; p < 0.001, all); the Bland-Altman limits of agreement scores were -37.4 to 51.4, -31.2 to 36.4 and -30.3 to 40.9%, respectively, suggesting that AIDR 3D was a good alternative for FBP. The mean effective radiation dose for routine- and low-dose CT was 2.2 and 0.7 mSv, respectively. The use of AIDR 3D made it possible to reduce the radiation dose by 67% for CAC scoring without impairing the quantification of coronary calcification. PMID:25754302

  4. Development of a patient-specific 3D dose evaluation program for QA in radiation therapy

    NASA Astrophysics Data System (ADS)

    Lee, Suk; Chang, Kyung Hwan; Cao, Yuan Jie; Shim, Jang Bo; Yang, Dae Sik; Park, Young Je; Yoon, Won Sup; Kim, Chul Yong

    2015-03-01

    We present preliminary results for a 3-dimensional dose evaluation software system ( P DRESS, patient-specific 3-dimensional dose real evaluation system). Scanned computed tomography (CT) images obtained by using dosimetry were transferred to the radiation treatment planning system (ECLIPSE, VARIAN, Palo Alto, CA) where the intensity modulated radiation therapy (IMRT) nasopharynx plan was designed. We used a 10 MV photon beam (CLiX, VARIAN, Palo Alto, CA) to deliver the nasopharynx treatment plan. After irradiation, the TENOMAG dosimeter was scanned using a VISTA ™ scanner. The scanned data were reconstructed using VistaRecon software to obtain a 3D dose distribution of the optical density. An optical-CT scanner was used to readout the dose distribution in the gel dosimeter. Moreover, we developed the P DRESS by using Flatform, which were developed by our group, to display the 3D dose distribution by loading the DICOM RT data which are exported from the radiotherapy treatment plan (RTP) and the optical-CT reconstructed VFF file, into the independent P DRESS with an ioniz ation chamber and EBT film was used to compare the dose distribution calculated from the RTP with that measured by using a gel dosimeter. The agreement between the normalized EBT, the gel dosimeter and RTP data was evaluated using both qualitative and quantitative methods, such as the isodose distribution, dose difference, point value, and profile. The profiles showed good agreement between the RTP data and the gel dosimeter data, and the precision of the dose distribution was within ±3%. The results from this study showed significantly discrepancies between the dose distribution calculated from the treatment plan and the dose distribution measured by a TENOMAG gel and by scanning with an optical CT scanner. The 3D dose evaluation software system ( P DRESS, patient specific dose real evaluation system), which were developed in this study evaluates the accuracies of the three-dimensional dose

  5. Study of a non-diffusing radiochromic gel dosimeter for 3D radiation dose imaging

    NASA Astrophysics Data System (ADS)

    Marsden, Craig Michael

    2000-12-01

    This thesis investigates the potential of a new radiation gel dosimeter, based on nitro-blue tetrazolium (NBTZ) suspended in a gelatin mold. Unlike all Fricke based gel dosimeters this dosimeter does not suffer from diffusive loss of image stability. Images are obtained by an optical tomography method. Nitro blue tetrazolium is a common biological indicator that when irradiated in an aqueous medium undergoes reduction to a highly colored formazan, which has an absorbance maximum at 525nm. Tetrazolium is water soluble while the formazan product is insoluble. The formazan product sticks to the gelatin matrix and the dose image is maintained for three months. Methods to maximize the sensitivity of the system were evaluated. It was found that a chemical detergent, Triton X-100, in combination with sodium formate, increased the dosimeter sensitivity significantly. An initial G-value of formazan production for a dosimeter composed of 1mM NBTZ, gelatin, and water was on the order of 0.2. The addition of Triton and formate produced a G-value in excess of 5.0. The effects of NBTZ, triton, formate, and gel concentration were all investigated. All the gels provided linear dose vs. absorbance plots for doses from 0 to >100 Gy. It was determined that gel concentration had minimal if any effect on sensitivity. Sensitivity increased slightly with increasing NBTZ concentration. Triton and formate individually and together provided moderate to large increases in dosimeter sensitivity. The dosimeter described in this work can provide stable 3D radiation dose images for all modalities of radiation therapy equipment. Methods to increase sensitivity are developed and discussed.

  6. Mechanistic and quantitative studies of bystander response in 3D tissues for low-dose radiation risk estimations

    SciTech Connect

    Amundson, Sally A.

    2013-06-12

    We have used the MatTek 3-dimensional human skin model to study the gene expression response of a 3D model to low and high dose low LET radiation, and to study the radiation bystander effect as a function of distance from the site of irradiation with either alpha particles or low LET protons. We have found response pathways that appear to be specific for low dose exposures, that could not have been predicted from high dose studies. We also report the time and distance dependent expression of a large number of genes in bystander tissue. the bystander response in 3D tissues showed many similarities to that described previously in 2D cultured cells, but also showed some differences.

  7. The feasibility assessment of radiation dose of movement 3D NIPAM gel by magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Hsieh, Chih-Ming; Leung, Joseph Hang; Ng, Yu-Bun; Cheng, Chih-Wu; Sun, Jung-Chang; Lin, Ping-Chin; Hsieh, Bor-Tsung

    2015-11-01

    NIPAM dosimeter is widely accepted and recommended for its 3D distribution and accuracy in dose absorption. Up to the moment, most research works on dose measurement are based on a fixed irradiation target without the consideration of the effect from physiological motion. We present a study to construct a respiratory motion simulating patient anatomical and dosimetry model for the study of dosimetic effect of organ motion. The dose on fixed and motion targets was measured by MRI after a dose adminstration of 1, 2, 5, 8, and 10 Gy from linear accelerator. Comparison of two situations is made. The average sensitivity of fixed NIPAM was 0.1356 s-1/Gy with linearity R2=0.998. The average sensitivity of movement NIPAM was 0.1366 s-1/Gy with linearity R2=0.998 both having only 0.001 of the sensitivity difference. The difference between the two based on dose rate dependency, position and depth was not significant. There was thus no apparent impact on NIPAM dosimeter from physiological motion. The high sensitivity, linearity and stability of NIPAM dosimeter proved to be an ideal apparatus in the dose measurement in these circumstances.

  8. Incorporation of gantry angle correction for 3D dose prediction in intensity-modulated radiation therapy

    PubMed Central

    Sumida, Iori; Yamaguchi, Hajime; Kizaki, Hisao; Aboshi, Keiko; Tsujii, Mari; Yamada, Yuji; Yagi, Masashi; Ogawa, Kazuhiko

    2015-01-01

    Pretreatment dose verification with beam-by-beam analysis for intensity-modulated radiation therapy (IMRT) is commonly performed with a gantry angle of 0° using a 2D diode detector array. Any changes in multileaf collimator (MLC) position between the actual treatment gantry angle and 0° may result in deviations from the planned dose. We evaluated the effects of MLC positioning errors between the actual treatment gantry angles and nominal gantry angles. A gantry angle correction (GAC) factor was generated by performing a non-gap test at various gantry angles using an electronic portal imaging device (EPID). To convert pixel intensity to dose at the MLC abutment positions, a non-gap test was performed using an EPID and a film at 0° gantry angle. We then assessed the correlations between pixel intensities and doses. Beam-by-beam analyses for 15 prostate IMRT cases as patient-specific quality assurance were performed with a 2D diode detector array at 0° gantry angle to determine the relative dose error for each beam. The resulting relative dose error with or without GAC was added back to the original dose grid for each beam. We compared the predicted dose distributions with or without GAC for film measurements to validate GAC effects. A gamma pass rate with a tolerance of 2%/2 mm was used to evaluate these dose distributions. The gamma pass rate with GAC was higher than that without GAC (P = 0.01). The predicted dose distribution improved with GAC, although the dosimetric effect to a patient was minimal. PMID:25742866

  9. A Low-Dose Ipsilateral Lung Restriction Improves 3-D Conformal Planning for Partial Breast Radiation Therapy

    SciTech Connect

    Mitchell, Tracy; Truong, Pauline T.; Salter, Lee; Graham, Cathy; Gaffney, Helene; Beckham, Wayne; Olivotto, Ivo A.

    2011-04-01

    In trials of 3D conformal external beam partial breast radiotherapy (PBRT), the dosimetrist must balance the priorities of achieving high conformity to the target versus minimizing low-dose exposure to the normal structures. This study highlights the caveat that in the absence of a low-dose lung restriction, the use of relatively en-face fields may meet trial-defined requirements but expose the ipsilateral lung to unnecessary low-dose radiation. Adding a low-dose restriction that {<=}20% of the ipsilateral lung should receive 10% of the prescribed dose resulted in successful plans in 88% of cases. This low-dose lung limit should be used in PBRT planning.

  10. Image Quality and Radiation Dose of CT Coronary Angiography with Automatic Tube Current Modulation and Strong Adaptive Iterative Dose Reduction Three-Dimensional (AIDR3D)

    PubMed Central

    Shen, Hesong; Dai, Guochao; Luo, Mingyue; Duan, Chaijie; Cai, Wenli; Liang, Dan; Wang, Xinhua; Zhu, Dongyun; Li, Wenru; Qiu, Jianping

    2015-01-01

    Purpose To investigate image quality and radiation dose of CT coronary angiography (CTCA) scanned using automatic tube current modulation (ATCM) and reconstructed by strong adaptive iterative dose reduction three-dimensional (AIDR3D). Methods Eighty-four consecutive CTCA patients were collected for the study. All patients were scanned using ATCM and reconstructed with strong AIDR3D, standard AIDR3D and filtered back-projection (FBP) respectively. Two radiologists who were blinded to the patients' clinical data and reconstruction methods evaluated image quality. Quantitative image quality evaluation included image noise, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR). To evaluate image quality qualitatively, coronary artery is classified into 15 segments based on the modified guidelines of the American Heart Association. Qualitative image quality was evaluated using a 4-point scale. Radiation dose was calculated based on dose-length product. Results Compared with standard AIDR3D, strong AIDR3D had lower image noise, higher SNR and CNR, their differences were all statistically significant (P<0.05); compared with FBP, strong AIDR3D decreased image noise by 46.1%, increased SNR by 84.7%, and improved CNR by 82.2%, their differences were all statistically significant (P<0.05 or 0.001). Segments with diagnostic image quality for strong AIDR3D were 336 (100.0%), 486 (96.4%), and 394 (93.8%) in proximal, middle, and distal part respectively; whereas those for standard AIDR3D were 332 (98.8%), 472 (93.7%), 378 (90.0%), respectively; those for FBP were 217 (64.6%), 173 (34.3%), 114 (27.1%), respectively; total segments with diagnostic image quality in strong AIDR3D (1216, 96.5%) were higher than those of standard AIDR3D (1182, 93.8%) and FBP (504, 40.0%); the differences between strong AIDR3D and standard AIDR3D, strong AIDR3D and FBP were all statistically significant (P<0.05 or 0.001). The mean effective radiation dose was (2.55±1.21) mSv. Conclusion

  11. A Bayesian mixture model relating dose to critical organs and functional complication in 3D conformal radiation therapy.

    PubMed

    Johnson, Timothy D; Taylor, Jeremy M G; Ten Haken, Randall K; Eisbruch, Avraham

    2005-10-01

    A goal of cancer radiation therapy is to deliver maximum dose to the target tumor while minimizing complications due to irradiation of critical organs. Technological advances in 3D conformal radiation therapy has allowed great strides in realizing this goal; however, complications may still arise. Critical organs may be adjacent to tumors or in the path of the radiation beam. Several mathematical models have been proposed that describe the relationship between dose and observed functional complication; however, only a few published studies have successfully fit these models to data using modern statistical methods which make efficient use of the data. One complication following radiation therapy of head and neck cancers is the patient's inability to produce saliva. Xerostomia (dry mouth) leads to high susceptibility to oral infection and dental caries and is, in general, unpleasant and an annoyance. We present a dose-damage-injury model that subsumes any of the various mathematical models relating dose to damage. The model is a nonlinear, longitudinal mixed effects model where the outcome (saliva flow rate) is modeled as a mixture of a Dirac measure at zero and a gamma distribution whose mean is a function of time and dose. Bayesian methods are used to estimate the relationship between dose delivered to the parotid glands and the observational outcome-saliva flow rate. A summary measure of the dose-damage relationship is modeled and assessed by a Bayesian chi(2) test for goodness-of-fit. PMID:15917377

  12. Sci—Sat AM: Stereo — 01: 3D Pre-treatment Dose Verification for Stereotactic Body Radiation Therapy Patients

    SciTech Connect

    Asuni, G; Beek, T van; Van Utyven, E; McCowan, P; McCurdy, B.M.C.

    2014-08-15

    Radical treatment techniques such as stereotactic body radiation therapy (SBRT) are becoming popular and they involve delivery of large doses in fewer fractions. Due to this feature of SBRT, a high-resolution, pre-treatment dose verification method that makes use of a 3D patient representation would be appropriate. Such a technique will provide additional information about dose delivered to the target volume(s) and organs-at-risk (OARs) in the patient volume compared to 2D verification methods. In this work, we investigate an electronic portal imaging device (EPID) based pre-treatment QA method which provides an accurate reconstruction of the 3D-dose distribution in the patient model. Customized patient plans are delivered ‘in air’ and the portal images are collected using the EPID in cine mode. The images are then analysed to determine an estimate of the incident energy fluence. This is then passed to a collapsed-cone convolution dose algorithm which reconstructs a 3D patient dose estimate on the CT imaging dataset. To date, the method has been applied to 5 SBRT patient plans. Reconstructed doses were compared to those calculated by the TPS. Reconstructed mean doses were mostly within 3% of those in the TPS. DVHs of target volumes and OARs compared well. The Chi pass rates using 3%/3mm in the high dose region are greater than 97% in all cases. These initial results demonstrate clinical feasibility and utility of a robust, efficient, effective and convenient pre-treatment QA method using EPID. Research sponsored in part by Varian Medical Systems.

  13. SU-E-J-200: A Dosimetric Analysis of 3D Versus 4D Image-Based Dose Calculation for Stereotactic Body Radiation Therapy in Lung Tumors

    SciTech Connect

    Ma, M; Rouabhi, O; Flynn, R; Xia, J; Bayouth, J

    2014-06-01

    Purpose: To evaluate the dosimetric difference between 3D and 4Dweighted dose calculation using patient specific respiratory trace and deformable image registration for stereotactic body radiation therapy in lung tumors. Methods: Two dose calculation techniques, 3D and 4D-weighed dose calculation, were used for dosimetric comparison for 9 lung cancer patients. The magnitude of the tumor motion varied from 3 mm to 23 mm. Breath-hold exhale CT was used for 3D dose calculation with ITV generated from the motion observed from 4D-CT. For 4D-weighted calculation, dose of each binned CT image from the ten breathing amplitudes was first recomputed using the same planning parameters as those used in the 3D calculation. The dose distribution of each binned CT was mapped to the breath-hold CT using deformable image registration. The 4D-weighted dose was computed by summing the deformed doses with the temporal probabilities calculated from their corresponding respiratory traces. Dosimetric evaluation criteria includes lung V20, mean lung dose, and mean tumor dose. Results: Comparing with 3D calculation, lung V20, mean lung dose, and mean tumor dose using 4D-weighted dose calculation were changed by −0.67% ± 2.13%, −4.11% ± 6.94% (−0.36 Gy ± 0.87 Gy), −1.16% ± 1.36%(−0.73 Gy ± 0.85 Gy) accordingly. Conclusion: This work demonstrates that conventional 3D dose calculation method may overestimate the lung V20, MLD, and MTD. The absolute difference between 3D and 4D-weighted dose calculation in lung tumor may not be clinically significant. This research is supported by Siemens Medical Solutions USA, Inc and Iowa Center for Research By Undergraduates.

  14. Hybrid MV-kV 3D respiratory motion tracking during radiation therapy with low imaging dose

    NASA Astrophysics Data System (ADS)

    Yan, Huagang; Li, Haiyun; Liu, Zhixiang; Nath, Ravinder; Liu, Wu

    2012-12-01

    A novel real-time adaptive MV-kV imaging framework for image-guided radiation therapy is developed to reduce the thoracic and abdominal tumor targeting uncertainty caused by respiration-induced intrafraction motion with ultra-low patient imaging dose. In our method, continuous stereoscopic MV-kV imaging is used at the beginning of a radiation therapy delivery for several seconds to measure the implanted marker positions. After this stereoscopic imaging period, the kV imager is switched off except for the times when no fiducial marker is detected in the cine-MV images. The 3D time-varying marker positions are estimated by combining the MV 2D projection data and the motion correlations between directional components of marker motion established from the stereoscopic imaging period and updated afterwards; in particular, the most likely position is assumed to be the position on the projection line that has the shortest distance to the first principal component line segment constructed from previous trajectory points. An adaptive windowed auto-regressive prediction is utilized to predict the marker position a short time later (310 ms and 460 ms in this study) to allow for tracking system latency. To demonstrate the feasibility and evaluate the accuracy of the proposed method, computer simulations were performed for both arc and fixed-gantry deliveries using 66 h of retrospective tumor motion data from 42 patients treated for thoracic or abdominal cancers. The simulations reveal that using our hybrid approach, a smaller than 1.2 mm or 1.5 mm root-mean-square tracking error can be achieved at a system latency of 310 ms or 460 ms, respectively. Because the kV imaging is only used for a short period of time in our method, extra patient imaging dose can be reduced by an order of magnitude compared to continuous MV-kV imaging, while the clinical tumor targeting accuracy for thoracic or abdominal cancers is maintained. Furthermore, no additional hardware is required with the

  15. Recommendations from gynaecological (GYN) GEC ESTRO working group (II): concepts and terms in 3D image-based treatment planning in cervix cancer brachytherapy-3D dose volume parameters and aspects of 3D image-based anatomy, radiation physics, radiobiology.

    PubMed

    Pötter, Richard; Haie-Meder, Christine; Van Limbergen, Erik; Barillot, Isabelle; De Brabandere, Marisol; Dimopoulos, Johannes; Dumas, Isabelle; Erickson, Beth; Lang, Stefan; Nulens, An; Petrow, Peter; Rownd, Jason; Kirisits, Christian

    2006-01-01

    The second part of the GYN GEC ESTRO working group recommendations is focused on 3D dose-volume parameters for brachytherapy of cervical carcinoma. Methods and parameters have been developed and validated from dosimetric, imaging and clinical experience from different institutions (University of Vienna, IGR Paris, University of Leuven). Cumulative dose volume histograms (DVH) are recommended for evaluation of the complex dose heterogeneity. DVH parameters for GTV, HR CTV and IR CTV are the minimum dose delivered to 90 and 100% of the respective volume: D90, D100. The volume, which is enclosed by 150 or 200% of the prescribed dose (V150, V200), is recommended for overall assessment of high dose volumes. V100 is recommended for quality assessment only within a given treatment schedule. For Organs at Risk (OAR) the minimum dose in the most irradiated tissue volume is recommended for reporting: 0.1, 1, and 2 cm3; optional 5 and 10 cm3. Underlying assumptions are: full dose of external beam therapy in the volume of interest, identical location during fractionated brachytherapy, contiguous volumes and contouring of organ walls for >2 cm3. Dose values are reported as absorbed dose and also taking into account different dose rates. The linear-quadratic radiobiological model-equivalent dose (EQD2)-is applied for brachytherapy and is also used for calculating dose from external beam therapy. This formalism allows systematic assessment within one patient, one centre and comparison between different centres with analysis of dose volume relations for GTV, CTV, and OAR. Recommendations for the transition period from traditional to 3D image-based cervix cancer brachytherapy are formulated. Supplementary data (available in the electronic version of this paper) deals with aspects of 3D imaging, radiation physics, radiation biology, dose at reference points and dimensions and volumes for the GTV and CTV (adding to [Haie-Meder C, Pötter R, Van Limbergen E et al. Recommendations from

  16. Optical-CT imaging of complex 3D dose distributions

    NASA Astrophysics Data System (ADS)

    Oldham, Mark; Kim, Leonard; Hugo, Geoffrey

    2005-04-01

    The limitations of conventional dosimeters restrict the comprehensiveness of verification that can be performed for advanced radiation treatments presenting an immediate and substantial problem for clinics attempting to implement these techniques. In essence, the rapid advances in the technology of radiation delivery have not been paralleled by corresponding advances in the ability to verify these treatments. Optical-CT gel-dosimetry is a relatively new technique with potential to address this imbalance by providing high resolution 3D dose maps in polymer and radiochromic gel dosimeters. We have constructed a 1st generation optical-CT scanner capable of high resolution 3D dosimetry and applied it to a number of simple and increasingly complex dose distributions including intensity-modulated-radiation-therapy (IMRT). Prior to application to IMRT, the robustness of optical-CT gel dosimetry was investigated on geometry and variable attenuation phantoms. Physical techniques and image processing methods were developed to minimize deleterious effects of refraction, reflection, and scattered laser light. Here we present results of investigations into achieving accurate high-resolution 3D dosimetry with optical-CT, and show clinical examples of 3D IMRT dosimetry verification. In conclusion, optical-CT gel dosimetry can provide high resolution 3D dose maps that greatly facilitate comprehensive verification of complex 3D radiation treatments. Good agreement was observed at high dose levels (>50%) between planned and measured dose distributions. Some systematic discrepancies were observed however (rms discrepancy 3% at high dose levels) indicating further work is required to eliminate confounding factors presently compromising the accuracy of optical-CT 3D gel-dosimetry.

  17. Dose rate dependency of micelle leucodye 3D gel dosimeters

    NASA Astrophysics Data System (ADS)

    Vandecasteele, J.; Ghysel, S.; De Deene, Y.

    2010-11-01

    Recently a novel 3D radiochromic gel dosimeter was introduced which uses micelles to dissolve a leucodye in a gelatin matrix. Experimental results show that this 3D micelle gel dosimeter was found to be dose rate dependent. A maximum difference in optical dose sensitivity of 70% was found for dose rates between 50 cGy min-1 and 400 cGy min-1. A novel composition of 3D radiochromic dosimeter is proposed composed of gelatin, sodium dodecyl sulphate, chloroform, trichloroacetic acid and leucomalachite green. The novel gel dosimeter formulation exhibits comparable radio-physical properties in respect to the composition previously proposed. Nevertheless, the novel formulation was found to be still dose rate dependent. A maximum difference of 33% was found for dose rates between 50 cGy min-1 and 400 cGy min-1. On the basis of these experimental results it is concluded that the leucodye micelle gel dosimeter is still unsatisfactory for clinical radiation therapy dose verifications. Some insights in the physico-chemical mechanisms were obtained and are discussed.

  18. FlexyDos3D: a deformable anthropomorphic 3D radiation dosimeter: radiation properties

    NASA Astrophysics Data System (ADS)

    De Deene, Y.; Skyt, P. S.; Hil, R.; Booth, J. T.

    2015-02-01

    Three dimensional radiation dosimetry has received growing interest with the implementation of highly conformal radiotherapy treatments. The radiotherapy community faces new challenges with the commissioning of image guided and image gated radiotherapy treatments (IGRT) and deformable image registration software. A new three dimensional anthropomorphically shaped flexible dosimeter, further called ‘FlexyDos3D’, has been constructed and a new fast optical scanning method has been implemented that enables scanning of irregular shaped dosimeters. The FlexyDos3D phantom can be actuated and deformed during the actual treatment. FlexyDos3D offers the additional advantage that it is easy to fabricate, is non-toxic and can be molded in an arbitrary shape with high geometrical precision. The dosimeter formulation has been optimized in terms of dose sensitivity. The influence of the casting material and oxygen concentration has also been investigated. The radiophysical properties of this new dosimeter are discussed including stability, spatial integrity, temperature dependence of the dosimeter during radiation, readout and storage, dose rate dependence and tissue equivalence. The first authors Y De Deene and P S Skyt made an equivalent contribution to the experimental work presented in this paper.

  19. 3D volume visualization in remote radiation treatment planning

    NASA Astrophysics Data System (ADS)

    Yun, David Y.; Garcia, Hong-Mei C.; Mun, Seong K.; Rogers, James E.; Tohme, Walid G.; Carlson, Wayne E.; May, Stephen; Yagel, Roni

    1996-03-01

    This paper reports a novel applications of 3D visualization in an ARPA-funded remote radiation treatment planning (RTP) experiment, utilizing supercomputer 3D volumetric modeling power and NASA ACTS (Advanced Communication Technology Satellite) communication bandwidths at the Ka-band range. The objective of radiation treatment is to deliver a tumorcidal dose of radiation to a tumor volume while minimizing doses to surrounding normal tissues. High performance graphics computers are required to allow physicians to view a 3D anatomy, specify proposed radiation beams, and evaluate the dose distribution around the tumor. Supercomputing power is needed to compute and even optimize dose distribution according to pre-specified requirements. High speed communications offer possibilities for sharing scarce and expensive computing resources (e.g., hardware, software, personnel, etc.) as well as medical expertise for 3D treatment planning among hospitals. This paper provides initial technical insights into the feasibility of such resource sharing. The overall deployment of the RTP experiment, visualization procedures, and parallel volume rendering in support of remote interactive 3D volume visualization will be described.

  20. Dose fractionation theorem in 3-D reconstruction (tomography)

    SciTech Connect

    Glaeser, R.M.

    1997-02-01

    It is commonly assumed that the large number of projections for single-axis tomography precludes its application to most beam-labile specimens. However, Hegerl and Hoppe have pointed out that the total dose required to achieve statistical significance for each voxel of a computed 3-D reconstruction is the same as that required to obtain a single 2-D image of that isolated voxel, at the same level of statistical significance. Thus a statistically significant 3-D image can be computed from statistically insignificant projections, as along as the total dosage that is distributed among these projections is high enough that it would have resulted in a statistically significant projection, if applied to only one image. We have tested this critical theorem by simulating the tomographic reconstruction of a realistic 3-D model created from an electron micrograph. The simulations verify the basic conclusions of high absorption, signal-dependent noise, varying specimen contrast and missing angular range. Furthermore, the simulations demonstrate that individual projections in the series of fractionated-dose images can be aligned by cross-correlation because they contain significant information derived from the summation of features from different depths in the structure. This latter information is generally not useful for structural interpretation prior to 3-D reconstruction, owing to the complexity of most specimens investigated by single-axis tomography. These results, in combination with dose estimates for imaging single voxels and measurements of radiation damage in the electron microscope, demonstrate that it is feasible to use single-axis tomography with soft X-ray microscopy of frozen-hydrated specimens.

  1. 3D Radiative Transfer in Cloudy Atmospheres

    NASA Astrophysics Data System (ADS)

    Marshak, Alexander; Davis, Anthony

    Developments in three-dimensional cloud radiation over the past few decades are assessed and distilled into this contributed volume. Chapters are authored by subject-matter experts who address a broad audience of graduate students, researchers, and anyone interested in cloud-radiation processes in the solar and infrared spectral regions. After two introductory chapters and a section on the fundamental physics and computational techniques, the volume extensively treats two main application areas: the impact of clouds on the Earth's radiation budget, which is an essential aspect of climate modeling; and remote observation of clouds, especially with the advanced sensors on current and future satellite missions. http://www.springeronline.com/alert/article?a=3D1_1fva7w_1j826l_41z_6

  2. Systematic review of the effect of radiation dose on tumor control and morbidity in the treatment of prostate cancer by 3D-CRT

    SciTech Connect

    Tol-Geerdink, Julia J. van . E-mail: J.vanTol@rther.umcn.nl; Stalmeier, Peep F.M.; Pasker-de Jong, Pieternel C.M.; Huizenga, Henk; Lin, Emile N.J.T. van; Schimmel, Erik C.; Leer, Jan Willem; Daal, Willem A.J. van

    2006-02-01

    Purpose: A higher radiation dose is believed to result in a larger probability of tumor control and a higher risk of side effects. To make an evidence-based choice of dose, the relation between dose and outcome needs to be known. This study focuses on the dose-response relation for prostate cancer. Methods and Materials: A systematic review was carried out on the literature from 1990 to 2003. From the selected studies, the radiation dose, the associated 5-year survival, 5-year bNED (biochemical no evidence of disease), acute and late gastrointestinal (GI) and genitourinary (GU) morbidity Grade 2 or more, and sexual dysfunction were extracted. With logistic regression models, the relation between dose and outcome was described. Results: Thirty-eight studies met our criteria, describing 87 subgroups and involving up to 3000 patients per outcome measure. Between the (equivalent) dose of 70 and 80 Gy, various models estimated an increase in 5-year survival (ranging from 10% to 11%), 5-year bNED for low-risk patients (5-7%), late GI complications (12-16%), late GU complications (8-10%), and erectile dysfunction (19-24%). Only for the overall 5-year bNED, results were inconclusive (range, 0-18%). Conclusions: The data suggest a relationship between dose and outcome measures, including survival. However, the strength of these conclusions is limited by the sometimes small number of studies, the incompleteness of the data, and above all, the correlational nature of the data. Unambiguous proof for the dose-response relationships can, therefore, only be obtained by conducting randomized trials.

  3. SB3D User Manual, Santa Barbara 3D Radiative Transfer Model

    SciTech Connect

    O'Hirok, William

    1999-01-01

    SB3D is a three-dimensional atmospheric and oceanic radiative transfer model for the Solar spectrum. The microphysics employed in the model are the same as used in the model SBDART. It is assumed that the user of SB3D is familiar with SBDART and IDL. SB3D differs from SBDART in that computations are conducted on media in three-dimensions rather than a single column (i.e. plane-parallel), and a stochastic method (Monte Carlo) is employed instead of a numerical approach (Discrete Ordinates) for estimating a solution to the radiative transfer equation. Because of these two differences between SB3D and SBDART, the input and running of SB3D is more unwieldy and requires compromises between model performance and computational expense. Hence, there is no one correct method for running the model and the user must develop a sense to the proper input and configuration of the model.

  4. Cloud Property Retrieval and 3D Radiative Transfer

    NASA Technical Reports Server (NTRS)

    Cahalan, Robert F.

    2003-01-01

    Cloud thickness and photon mean-free-path together determine the scale of "radiative smoothing" of cloud fluxes and radiances. This scale is observed as a change in the spatial spectrum of cloud radiances, and also as the "halo size" seen by off beam lidar such as THOR and WAIL. Such of beam lidar returns are now being used to retrieve cloud layer thickness and vertical scattering extinction profile. We illustrate with recent measurements taken at the Oklahoma ARM site, comparing these to the-dependent 3D simulations. These and other measurements sensitive to 3D transfer in clouds, coupled with Monte Carlo and other 3D transfer methods, are providing a better understanding of the dependence of radiation on cloud inhomogeneity, and to suggest new retrieval algorithms appropriate for inhomogeneous clouds. The international "Intercomparison of 3D Radiation Codes" or I3RC, program is coordinating and evaluating the variety of 3D radiative transfer methods now available, and to make them more widely available. Information is on the Web at: http://i3rc.gsfc.nasa.gov/. Input consists of selected cloud fields derived from data sources such as radar, microwave and satellite, and from models involved in the GEWEX Cloud Systems Studies. Output is selected radiative quantities that characterize the large-scale properties of the fields of radiative fluxes and heating. Several example cloud fields will be used to illustrate. I3RC is currently implementing an "open source" 3d code capable of solving the baseline cases. Maintenance of this effort is one of the goals of a new 3DRT Working Group under the International Radiation Commission. It is hoped that the 3DRT WG will include active participation by land and ocean modelers as well, such as 3D vegetation modelers participating in RAMI.

  5. Estimating the actual dose delivered by intravascular coronary brachytherapy using geometrically correct 3D modeling

    NASA Astrophysics Data System (ADS)

    Wahle, Andreas; Lopez, John J.; Pennington, Edward C.; Meeks, Sanford L.; Braddy, Kathleen C.; Fox, James M.; Brennan, Theresa M. H.; Buatti, John M.; Rossen, James D.; Sonka, Milan

    2003-05-01

    Intravascular brachytherapy has shown to reduce re-occurrence of in-stent restenosis in coronary arteries. For beta radiation, application time is determined from source activity and the angiographically estimated vessel diameter. Conventionally used dosing models assume a straight vessel with the catheter centered and a constant-diameter circular cross section. Aim of this study was to compare the actual dose delivered during in-vivo intravascular brachytherapy with the target range determined from the patient's prescribed dose. Furthermore, differences in dose distribution between a simplified tubular model (STM) and a geometrically correct 3-D model (GCM) obtained from fusion between biplane angiography and intravascular ultrasound were quantified. The tissue enclosed by the segmented lumen/plaque and media/adventitia borders was simulated using a structured finite-element mesh. The beta-radiation sources were modeled as 3-D objects in their angiographically determined locations. The accumulated dose was estimated using a fixed distance function based on the patient-specific radiation parameters. For visualization, the data was converted to VRML with the accumulated doses represented by color encoding. The statistical comparison between STM and GCM models in 8 patients showed that the STM significantly underestimates the dose delivered and its variability. The analysis revealed substantial deviations from the target dose range in curved vessels.

  6. 3D Dose Verification Using Tomotherapy CT Detector Array

    SciTech Connect

    Sheng Ke; Jones, Ryan; Yang Wensha; Saraiya, Siddharth; Schneider, Bernard; Chen Quan; Sobering, Geoff; Olivera, Gustavo; Read, Paul

    2012-02-01

    Purpose: To evaluate a three-dimensional dose verification method based on the exit dose using the onboard detector of tomotherapy. Methods and Materials: The study included 347 treatment fractions from 24 patients, including 10 prostate, 5 head and neck (HN), and 9 spinal stereotactic body radiation therapy (SBRT) cases. Detector sonograms were retrieved and back-projected to calculate entrance fluence, which was then forward-projected on the CT images to calculate the verification dose, which was compared with ion chamber and film measurement in the QA plans and with the planning dose in patient plans. Results: Root mean square (RMS) errors of 2.0%, 2.2%, and 2.0% were observed comparing the dose verification (DV) and the ion chamber measured point dose in the phantom plans for HN, prostate, and spinal SBRT patients, respectively. When cumulative dose in the entire treatment is considered, for HN patients, the error of the mean dose to the planning target volume (PTV) varied from 1.47% to 5.62% with a RMS error of 3.55%. For prostate patients, the error of the mean dose to the prostate target volume varied from -5.11% to 3.29%, with a RMS error of 2.49%. The RMS error of maximum doses to the bladder and the rectum were 2.34% (-4.17% to 2.61%) and 2.64% (-4.54% to 3.94%), respectively. For the nine spinal SBRT patients, the RMS error of the minimum dose to the PTV was 2.43% (-5.39% to 2.48%). The RMS error of maximum dose to the spinal cord was 1.05% (-2.86% to 0.89%). Conclusions: An excellent agreement was observed between the measurement and the verification dose. In the patient treatments, the agreement in doses to the majority of PTVs and organs at risk is within 5% for the cumulative treatment course doses. The dosimetric error strongly depends on the error in multileaf collimator leaf opening time with a sensitivity correlating to the gantry rotation period.

  7. Dose distribution and mapping with 3D imaging presentation in intraoral and panoramic examinations

    NASA Astrophysics Data System (ADS)

    Chen, Hsiu-Ling; Huang, Yung-Hui; Wu, Tung-Hsin; Wang, Shih-Yuan; Lee, Jason J. S.

    2011-10-01

    In current medical imaging applications, high quality images not only provide more diagnostic value for anatomic delineation but also offer functional information for treatment direction. However, this approach would potentially subscribe higher radiation dose in dental radiographies, which has been putatively associated with low-birth-weight during pregnancy, which affects the hypothalamus-pituitary-thyroid axis or thereby directly affects the reproductive organs. The aim of this study was to apply the high resolution 3-D image mapping technique to evaluate radiation doses from the following aspects: (1) verifying operating parameters of dental X-ray units, (2) measuring the leakage radiations and (3) mapping dose with 3-D radiographic imaging to evaluate dose distribution in head and neck regions. From the study results, we found that (1) leakage radiation from X-ray units was about 21.31±15.24 mR/h (<100 mR/h), (2) error of actual tube voltage for 60 kVp setting was from 0.2% to 6.5%, with an average of 2.5% (<7%) and (3) the error of exposure time for a 0.5-1.5 s setting was within 0.7-8.5%, with an average of 7.3% (<10%) error as well. Our 3-D dose mapping demonstrated that dose values were relatively lower in soft tissues and higher in bone surfaces compared with other investigations. Multiple causes could contribute to these variations, including irradiation geometry, image equipment and type of technique applied, etc. From the results, we also observed that larger accumulated doses were presented in certain critical organs, such as salivary gland, thyroid gland and bone marrow. Potential biological affects associated with these findings warrant further investigation.

  8. 3D Data assimilation in the radiation belts

    NASA Astrophysics Data System (ADS)

    Shprits, Y.; Kellerman, A. C.; Subbotin, D.; Kondrashov, D. A.; Daae, M.; Turner, D. L.

    2013-05-01

    Significant progress has been made in recent years in application of the data assimilation tools to the radiation belt research. Previous studies concentrated on the analysis of radial profiles of phase space density using multi-satellite measurements and radial transport models. In this study we present analysis of the 3D phase space density using the VERB-3D code blended with CRRES observations by means of operator-splitting Kalman filtering. Assimilation electron fluxes at various energies and pitch-angles into the model allows us to utilize a vast amount of data including information on pitch-angle distributions and radial energy spectra. 3D data assimilation of the radiation belts allows us to differentiate between various acceleration and loss mechanisms. We present reanalysis of the radiation belts and find tell-tale signatures of various physical processes. 3D data assimilative VERB code with RBSP , THEMIS, and GOES data will significantly improve our capabilities in forecasting and now casting radiation belts' hazard.

  9. Improving Low-dose Cardiac CT Images based on 3D Sparse Representation

    NASA Astrophysics Data System (ADS)

    Shi, Luyao; Hu, Yining; Chen, Yang; Yin, Xindao; Shu, Huazhong; Luo, Limin; Coatrieux, Jean-Louis

    2016-03-01

    Cardiac computed tomography (CCT) is a reliable and accurate tool for diagnosis of coronary artery diseases and is also frequently used in surgery guidance. Low-dose scans should be considered in order to alleviate the harm to patients caused by X-ray radiation. However, low dose CT (LDCT) images tend to be degraded by quantum noise and streak artifacts. In order to improve the cardiac LDCT image quality, a 3D sparse representation-based processing (3D SR) is proposed by exploiting the sparsity and regularity of 3D anatomical features in CCT. The proposed method was evaluated by a clinical study of 14 patients. The performance of the proposed method was compared to the 2D spares representation-based processing (2D SR) and the state-of-the-art noise reduction algorithm BM4D. The visual assessment, quantitative assessment and qualitative assessment results show that the proposed approach can lead to effective noise/artifact suppression and detail preservation. Compared to the other two tested methods, 3D SR method can obtain results with image quality most close to the reference standard dose CT (SDCT) images.

  10. Improving Low-dose Cardiac CT Images based on 3D Sparse Representation

    PubMed Central

    Shi, Luyao; Hu, Yining; Chen, Yang; Yin, Xindao; Shu, Huazhong; Luo, Limin; Coatrieux, Jean-Louis

    2016-01-01

    Cardiac computed tomography (CCT) is a reliable and accurate tool for diagnosis of coronary artery diseases and is also frequently used in surgery guidance. Low-dose scans should be considered in order to alleviate the harm to patients caused by X-ray radiation. However, low dose CT (LDCT) images tend to be degraded by quantum noise and streak artifacts. In order to improve the cardiac LDCT image quality, a 3D sparse representation-based processing (3D SR) is proposed by exploiting the sparsity and regularity of 3D anatomical features in CCT. The proposed method was evaluated by a clinical study of 14 patients. The performance of the proposed method was compared to the 2D spares representation-based processing (2D SR) and the state-of-the-art noise reduction algorithm BM4D. The visual assessment, quantitative assessment and qualitative assessment results show that the proposed approach can lead to effective noise/artifact suppression and detail preservation. Compared to the other two tested methods, 3D SR method can obtain results with image quality most close to the reference standard dose CT (SDCT) images. PMID:26980176

  11. Improving Low-dose Cardiac CT Images based on 3D Sparse Representation.

    PubMed

    Shi, Luyao; Hu, Yining; Chen, Yang; Yin, Xindao; Shu, Huazhong; Luo, Limin; Coatrieux, Jean-Louis

    2016-03-16

    Cardiac computed tomography (CCT) is a reliable and accurate tool for diagnosis of coronary artery diseases and is also frequently used in surgery guidance. Low-dose scans should be considered in order to alleviate the harm to patients caused by X-ray radiation. However, low dose CT (LDCT) images tend to be degraded by quantum noise and streak artifacts. In order to improve the cardiac LDCT image quality, a 3D sparse representation-based processing (3D SR) is proposed by exploiting the sparsity and regularity of 3D anatomical features in CCT. The proposed method was evaluated by a clinical study of 14 patients. The performance of the proposed method was compared to the 2D spares representation-based processing (2D SR) and the state-of-the-art noise reduction algorithm BM4D. The visual assessment, quantitative assessment and qualitative assessment results show that the proposed approach can lead to effective noise/artifact suppression and detail preservation. Compared to the other two tested methods, 3D SR method can obtain results with image quality most close to the reference standard dose CT (SDCT) images.

  12. VISRAD, 3-D Target Design and Radiation Simulation Code

    NASA Astrophysics Data System (ADS)

    Golovkina, Viktoriya; Macfarlane, Joseph; Golovkin, Igor; Kulkarni, Subodh

    2014-10-01

    The 3-D view factor code VISRAD is widely used in designing HEDP experiments at major laser and pulsed-power facilities, including NIF, OMEGA, OMEGA-EP, ORION, LMJ, Z, and PLX. It simulates target designs by generating a 3-D grid of surface elements, utilizing a variety of 3-D primitives and surface removal algorithms, and can be used to compute the radiation flux throughout the surface element grid by computing element-to-element view factors and solving power balance equations. Target set-up and beam pointing are facilitated by allowing users to specify positions and angular orientations using a variety of coordinates systems (e.g., that of any laser beam, target component, or diagnostic port). Analytic modeling for laser beam spatial profiles for OMEGA DPPs and NIF CPPs is used to compute laser intensity profiles throughout the grid of surface elements. We will discuss recent improvements to the software package and plans for future developments.

  13. VISRAD, 3-D Target Design and Radiation Simulation Code

    NASA Astrophysics Data System (ADS)

    Li, Yingjie; Macfarlane, Joseph; Golovkin, Igor

    2015-11-01

    The 3-D view factor code VISRAD is widely used in designing HEDP experiments at major laser and pulsed-power facilities, including NIF, OMEGA, OMEGA-EP, ORION, LMJ, Z, and PLX. It simulates target designs by generating a 3-D grid of surface elements, utilizing a variety of 3-D primitives and surface removal algorithms, and can be used to compute the radiation flux throughout the surface element grid by computing element-to-element view factors and solving power balance equations. Target set-up and beam pointing are facilitated by allowing users to specify positions and angular orientations using a variety of coordinates systems (e.g., that of any laser beam, target component, or diagnostic port). Analytic modeling for laser beam spatial profiles for OMEGA DPPs and NIF CPPs is used to compute laser intensity profiles throughout the grid of surface elements. We will discuss recent improvements to the software package and plans for future developments.

  14. Independent calculation-based verification of IMRT plans using a 3D dose-calculation engine

    SciTech Connect

    Arumugam, Sankar; Xing, Aitang; Goozee, Gary; Holloway, Lois

    2013-01-01

    Independent monitor unit verification of intensity-modulated radiation therapy (IMRT) plans requires detailed 3-dimensional (3D) dose verification. The aim of this study was to investigate using a 3D dose engine in a second commercial treatment planning system (TPS) for this task, facilitated by in-house software. Our department has XiO and Pinnacle TPSs, both with IMRT planning capability and modeled for an Elekta-Synergy 6 MV photon beam. These systems allow the transfer of computed tomography (CT) data and RT structures between them but do not allow IMRT plans to be transferred. To provide this connectivity, an in-house computer programme was developed to convert radiation therapy prescription (RTP) files as generated by many planning systems into either XiO or Pinnacle IMRT file formats. Utilization of the technique and software was assessed by transferring 14 IMRT plans from XiO and Pinnacle onto the other system and performing 3D dose verification. The accuracy of the conversion process was checked by comparing the 3D dose matrices and dose volume histograms (DVHs) of structures for the recalculated plan on the same system. The developed software successfully transferred IMRT plans generated by 1 planning system into the other. Comparison of planning target volume (TV) DVHs for the original and recalculated plans showed good agreement; a maximum difference of 2% in mean dose, − 2.5% in D95, and 2.9% in V95 was observed. Similarly, a DVH comparison of organs at risk showed a maximum difference of +7.7% between the original and recalculated plans for structures in both high- and medium-dose regions. However, for structures in low-dose regions (less than 15% of prescription dose) a difference in mean dose up to +21.1% was observed between XiO and Pinnacle calculations. A dose matrix comparison of original and recalculated plans in XiO and Pinnacle TPSs was performed using gamma analysis with 3%/3 mm criteria. The mean and standard deviation of pixels passing

  15. 3D delivered dose assessment using a 4DCT-based motion model

    SciTech Connect

    Cai, Weixing; Hurwitz, Martina H.; Williams, Christopher L.; Dhou, Salam; Berbeco, Ross I.; Mishra, Pankaj E-mail: jhlewis@lroc.harvard.edu; Lewis, John H. E-mail: jhlewis@lroc.harvard.edu; Seco, Joao

    2015-06-15

    Purpose: The purpose of this work is to develop a clinically feasible method of calculating actual delivered dose distributions for patients who have significant respiratory motion during the course of stereotactic body radiation therapy (SBRT). Methods: A novel approach was proposed to calculate the actual delivered dose distribution for SBRT lung treatment. This approach can be specified in three steps. (1) At the treatment planning stage, a patient-specific motion model is created from planning 4DCT data. This model assumes that the displacement vector field (DVF) of any respiratory motion deformation can be described as a linear combination of some basis DVFs. (2) During the treatment procedure, 2D time-varying projection images (either kV or MV projections) are acquired, from which time-varying “fluoroscopic” 3D images of the patient are reconstructed using the motion model. The DVF of each timepoint in the time-varying reconstruction is an optimized linear combination of basis DVFs such that the 2D projection of the 3D volume at this timepoint matches the projection image. (3) 3D dose distribution is computed for each timepoint in the set of 3D reconstructed fluoroscopic images, from which the total effective 3D delivered dose is calculated by accumulating deformed dose distributions. This approach was first validated using two modified digital extended cardio-torso (XCAT) phantoms with lung tumors and different respiratory motions. The estimated doses were compared to the dose that would be calculated for routine 4DCT-based planning and to the actual delivered dose that was calculated using “ground truth” XCAT phantoms at all timepoints. The approach was also tested using one set of patient data, which demonstrated the application of our method in a clinical scenario. Results: For the first XCAT phantom that has a mostly regular breathing pattern, the errors in 95% volume dose (D95) are 0.11% and 0.83%, respectively for 3D fluoroscopic images

  16. 3D delivered dose assessment using a 4DCT-based motion model

    PubMed Central

    Cai, Weixing; Hurwitz, Martina H.; Williams, Christopher L.; Dhou, Salam; Berbeco, Ross I.; Seco, Joao; Mishra, Pankaj; Lewis, John H.

    2015-01-01

    Purpose: The purpose of this work is to develop a clinically feasible method of calculating actual delivered dose distributions for patients who have significant respiratory motion during the course of stereotactic body radiation therapy (SBRT). Methods: A novel approach was proposed to calculate the actual delivered dose distribution for SBRT lung treatment. This approach can be specified in three steps. (1) At the treatment planning stage, a patient-specific motion model is created from planning 4DCT data. This model assumes that the displacement vector field (DVF) of any respiratory motion deformation can be described as a linear combination of some basis DVFs. (2) During the treatment procedure, 2D time-varying projection images (either kV or MV projections) are acquired, from which time-varying “fluoroscopic” 3D images of the patient are reconstructed using the motion model. The DVF of each timepoint in the time-varying reconstruction is an optimized linear combination of basis DVFs such that the 2D projection of the 3D volume at this timepoint matches the projection image. (3) 3D dose distribution is computed for each timepoint in the set of 3D reconstructed fluoroscopic images, from which the total effective 3D delivered dose is calculated by accumulating deformed dose distributions. This approach was first validated using two modified digital extended cardio-torso (XCAT) phantoms with lung tumors and different respiratory motions. The estimated doses were compared to the dose that would be calculated for routine 4DCT-based planning and to the actual delivered dose that was calculated using “ground truth” XCAT phantoms at all timepoints. The approach was also tested using one set of patient data, which demonstrated the application of our method in a clinical scenario. Results: For the first XCAT phantom that has a mostly regular breathing pattern, the errors in 95% volume dose (D95) are 0.11% and 0.83%, respectively for 3D fluoroscopic images

  17. Calculation of Dose Deposition in 3D Voxels by Heavy Ions

    NASA Technical Reports Server (NTRS)

    Plante, Ianik; Cucinotta, Francis A.

    2010-01-01

    The biological response to high-LET radiation is very different from low-LET radiation, and can be partly attributed to the energy deposition by the radiation. Several experiments, notably detection of gamma-H2AX foci by immunofluorescence, has revealed important differences in the nature and in the spatial distribution of double-strand breaks (DSB) induced by low- and high-LET radiations. Many calculations, most of which are based on amorphous track models with radial dose, have been combined with chromosome models to calculate the number and distribution of DSB within nuclei and chromosome aberrations. In this work, the Monte-Carlo track structure simulation code RITRACKS have been used to calculate directly the energy deposition in voxels (3D pixels). A cubic volume of 5 micrometers of side was irradiated by 1) 450 (1)H+ ions of 300 MeV (LET is approximately 0.3 keV/micrometer) and 2) by 1 (56)Fe26+ ion of 1 GeV/amu (LET is approximately 150 keV/micrometer). In both cases, the dose deposited in the volume is approximately 1 Gy. All energy deposition events are recorded and dose is calculated in voxels of 20 micrometers of side. The voxels are then visualized in 3D by using a color scale to represent the intensity of the dose in a voxel. This simple approach has revealed several important points which may help understand experimental observations. In both simulations, voxels which receive low dose are the most numerous, and those corresponding to electron track ends received a dose which is in the higher range. The dose voxels are distributed randomly and scattered uniformly within the volume irradiated by low-LET radiation. The distribution of the voxels shows major differences for the (56)Fe26+ ion. The track structure can still be seen, and voxels with much higher dose are found in the region corresponding to the track "core". These high-dose voxels are not found in the low-LET irradiation simulation and may be responsible for DSB that are more difficult to

  18. Application of a 3D volumetric display for radiation therapy treatment planning I: quality assurance procedures.

    PubMed

    Gong, Xing; Kirk, Michael Collins; Napoli, Josh; Stutsman, Sandy; Zusag, Tom; Khelashvili, Gocha; Chu, James

    2009-07-17

    To design and implement a set of quality assurance tests for an innovative 3D volumetric display for radiation treatment planning applications. A genuine 3D display (Perspecta Spatial 3D, Actuality-Systems Inc., Bedford, MA) has been integrated with the Pinnacle TPS (Philips Medical Systems, Madison WI), for treatment planning. The Perspecta 3D display renders a 25 cm diameter volume that is viewable from any side, floating within a translucent dome. In addition to displaying all 3D data exported from Pinnacle, the system provides a 3D mouse to define beam angles and apertures and to measure distance. The focus of this work is the design and implementation of a quality assurance program for 3D displays and specific 3D planning issues as guided by AAPM Task Group Report 53. A series of acceptance and quality assurance tests have been designed to evaluate the accuracy of CT images, contours, beams, and dose distributions as displayed on Perspecta. Three-dimensional matrices, rulers and phantoms with known spatial dimensions were used to check Perspecta's absolute spatial accuracy. In addition, a system of tests was designed to confirm Perspecta's ability to import and display Pinnacle data consistently. CT scans of phantoms were used to confirm beam field size, divergence, and gantry and couch angular accuracy as displayed on Perspecta. Beam angles were verified through Cartesian coordinate system measurements and by CT scans of phantoms rotated at known angles. Beams designed on Perspecta were exported to Pinnacle and checked for accuracy. Dose at sampled points were checked for consistency with Pinnacle and agreed within 1% or 1 mm. All data exported from Pinnacle to Perspecta was displayed consistently. The 3D spatial display of images, contours, and dose distributions were consistent with Pinnacle display. When measured by the 3D ruler, the distances between any two points calculated using Perspecta agreed with Pinnacle within the measurement error.

  19. Improving low-dose cardiac CT images using 3D sparse representation based processing

    NASA Astrophysics Data System (ADS)

    Shi, Luyao; Chen, Yang; Luo, Limin

    2015-03-01

    Cardiac computed tomography (CCT) has been widely used in diagnoses of coronary artery diseases due to the continuously improving temporal and spatial resolution. When helical CT with a lower pitch scanning mode is used, the effective radiation dose can be significant when compared to other radiological exams. Many methods have been developed to reduce radiation dose in coronary CT exams including high pitch scans using dual source CT scanners and step-and-shot scanning mode for both single source and dual source CT scanners. Additionally, software methods have also been proposed to reduce noise in the reconstructed CT images and thus offering the opportunity to reduce radiation dose while maintaining the desired diagnostic performance of a certain imaging task. In this paper, we propose that low-dose scans should be considered in order to avoid the harm from accumulating unnecessary X-ray radiation. However, low dose CT (LDCT) images tend to be degraded by quantum noise and streak artifacts. Accordingly, in this paper, a 3D dictionary representation based image processing method is proposed to reduce CT image noise. Information on both spatial and temporal structure continuity is utilized in sparse representation to improve the performance of the image processing method. Clinical cases were used to validate the proposed method.

  20. Quantitative analysis of tomotherapy, linear-accelerator-based 3D conformal radiation therapy, intensity-modulated radiation therapy, and 4D conformal radiation therapy

    NASA Astrophysics Data System (ADS)

    Cho, Jae-Hwan; Lee, Hae-Kag; Dong, Kyung-Rae; Chung, Woon-Kwan; Lee, Jong-Woong; Park, Hoon-Hee

    2012-04-01

    This study quantified, evaluated and analyzed the radiation dose to which tumors and normal tissues were exposed in 3D conformal radiation therapy (CRT), intensity-modulated radiation therapy (IMRT) and tomotherapy by using a dose volume histogram (DVH) that represented the volume dose and the dose distribution of anatomical structures in the evaluation of treatment planning. Furthermore, a comparison was made for the dose to the gross tumor volume (GTV) and the planning target volume (PTV) of organ to be treated based on the change in field size for three- and four-dimensional computed tomography (3D-CT and 4D-CT) (gating based) and in the histogram with a view to proving the usefulness of 4D-CT therapy, which corresponds to respiration-gated radiation therapy. According to the study results, a comparison of 3D CRT, IMRT with a linear accelerator (LINAC), and tomotherapy demonstrated that the GTV of the cranium was higher for tomotherapy than for 3D CRT and IMRT with a LINAC by 5.2% and 4.6%, respectively. The GTV of the neck was higher for tomotherapy than for 3D CRT and IMRT with a LINAC by 6.5% and 2.0%, respectively. The GTV of the pelvis was higher for tomotherapy than for 3D CRT and IMRT with a LINAC by 8.6% and 3.7%, respectively. When the comparison was made for the 3D-CT and the 4D-CT (gating based) treatment equipment, the GTV and the PTV became smaller for 4D-CT treatment planning than for 3D-CT, which could reduce the area in which normal tissues in the surroundings are exposed to an unnecessary radiation dose. In addition, when 4D-CT treatment planning (gating based) was used, the radiation dose could be concentrated on the GTV, CTV or PTV, which meant that the treatment area exceeded that when 3D-CT's treatment planning was used. Moreover, the radiation dose on nearby normal tissues could be reduced. When 4D-CT treatment planning (gating based) was utilized, unnecessary areas that were exposed to a radiation dose could be reduced more than they could

  1. A new dosimeter formulation for deformable 3D dose verification

    NASA Astrophysics Data System (ADS)

    Høye, E. M.; Skyt, P. S.; Yates, E. S.; Muren, L. P.; Petersen, J. B. B.; Balling, P.

    2015-01-01

    We present the characteristics of a new silicone-based radiochromic dosimeter containing the leuco-malachite green (LMG) dye. The dose response as well as the dose-rate and photon-energy dependence of the dosimeter were characterized. To optimise the dose response, different concentrations of the chemical components were investigated. The dose response was found to decrease exponentially as a function of time after irradiation. A cylindrical dosimeter was produced and irradiated with a volumetric modulated arc therapy plan; the standard deviation between measured and calculated dose was 5% of the total dose.

  2. Computing Radiative Transfer in a 3D Medium

    NASA Technical Reports Server (NTRS)

    Von Allmen, Paul; Lee, Seungwon

    2012-01-01

    A package of software computes the time-dependent propagation of a narrow laser beam in an arbitrary three- dimensional (3D) medium with absorption and scattering, using the transient-discrete-ordinates method and a direct integration method. Unlike prior software that utilizes a Monte Carlo method, this software enables simulation at very small signal-to-noise ratios. The ability to simulate propagation of a narrow laser beam in a 3D medium is an improvement over other discrete-ordinate software. Unlike other direct-integration software, this software is not limited to simulation of propagation of thermal radiation with broad angular spread in three dimensions or of a laser pulse with narrow angular spread in two dimensions. Uses for this software include (1) computing scattering of a pulsed laser beam on a material having given elastic scattering and absorption profiles, and (2) evaluating concepts for laser-based instruments for sensing oceanic turbulence and related measurements of oceanic mixed-layer depths. With suitable augmentation, this software could be used to compute radiative transfer in ultrasound imaging in biological tissues, radiative transfer in the upper Earth crust for oil exploration, and propagation of laser pulses in telecommunication applications.

  3. Towards a 3D Space Radiation Transport Code

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Tripathl, R. K.; Cicomptta, F. A.; Heinbockel, J. H.; Tweed, J.

    2002-01-01

    High-speed computational procedures for space radiation shielding have relied on asymptotic expansions in terms of the off-axis scatter and replacement of the general geometry problem by a collection of flat plates. This type of solution was derived for application to human rated systems in which the radius of the shielded volume is large compared to the off-axis diffusion limiting leakage at lateral boundaries. Over the decades these computational codes are relatively complete and lateral diffusion effects are now being added. The analysis for developing a practical full 3D space shielding code is presented.

  4. 3D imaging of fetus vertebra by synchrotron radiation microtomography

    NASA Astrophysics Data System (ADS)

    Peyrin, Francoise; Pateyron-Salome, Murielle; Denis, Frederic; Braillon, Pierre; Laval-Jeantet, Anne-Marie; Cloetens, Peter

    1997-10-01

    A synchrotron radiation computed microtomography system allowing high resolution 3D imaging of bone samples has been developed at ESRF. The system uses a high resolution 2D detector based on a CCd camera coupled to a fluorescent screen through light optics. The spatial resolution of the device is particularly well adapted to the imaging of bone structure. In view of studying growth, vertebra samples of fetus with differential gestational ages were imaged. The first results show that fetus vertebra is quite different from adult bone both in terms of density and organization.

  5. EPID-guided 3D dose verification of lung SBRT

    SciTech Connect

    Aristophanous, M.; Rottmann, J.; Court, L. E.; Berbeco, R. I.

    2011-01-15

    Purpose: To investigate the feasibility of utilizing tumor tracks from electronic portal imaging device (EPID) images taken during treatment to verify the delivered dose. Methods: The proposed method is based on a computation of the delivered fluence by utilizing the planned fluence and the tumor motion track for each field. A phantom study was designed to assess the feasibility of the method. The CIRS dynamic thorax phantom was utilized with a realistic soft resin tumor, modeled after a real patient tumor. The dose calculated with the proposed method was compared to direct measurements taken with 15 metal oxide semiconductor field effect transistors (MOSFETs) inserted in small fissures made in the tumor model. The phantom was irradiated with the tumor static and moved with different range of motions and setup errors. EPID images were recorded throughout all deliveries and the tumor model was tracked post-treatment with in-house developed software. The planned fluence for each field was convolved with the tumor motion tracks to obtain the delivered fluence. Utilizing the delivered fluence from each field, the delivered dose was calculated. The estimated delivered dose was compared to the dose directly measured with the MOSFETs. The feasibility of the proposed method was also demonstrated on a real lung cancer patient, treated with stereotactic body radiotherapy. Results: The calculation of delivered dose with the delivered fluence method was in good agreement with the MOSFET measurements, with average differences ranging from 0.8% to 8.3% depending on the proximity of a dose gradient. For the patient treatment, the planned and delivered dose volume histograms were compared and verified the overall good coverage of the target volume. Conclusions: The delivered fluence method was applied successfully on phantom and clinical data and its accuracy was evaluated. Verifying each treatment fraction may enable correction strategies that can be applied during the course of

  6. Performance of a commercial optical CT scanner and polymer gel dosimeters for 3-D dose verification

    SciTech Connect

    Xu, Y.; Wuu, C.-S.; Maryanski, Marek J.

    2004-11-01

    Performance analysis of a commercial three-dimensional (3-D) dose mapping system based on optical CT scanning of polymer gels is presented. The system consists of BANG{sup reg}3 polymer gels (MGS Research, Inc., Madison, CT), OCTOPUS{sup TM} laser CT scanner (MGS Research, Inc., Madison, CT), and an in-house developed software for optical CT image reconstruction and 3-D dose distribution comparison between the gel, film measurements and the radiation therapy treatment plans. Various sources of image noise (digitization, electronic, optical, and mechanical) generated by the scanner as well as optical uniformity of the polymer gel are analyzed. The performance of the scanner is further evaluated in terms of the reproducibility of the data acquisition process, the uncertainties at different levels of reconstructed optical density per unit length and the effects of scanning parameters. It is demonstrated that for BANG{sup registered}3 gel phantoms held in cylindrical plastic containers, the relative dose distribution can be reproduced by the scanner with an overall uncertainty of about 3% within approximately 75% of the radius of the container. In regions located closer to the container wall, however, the scanner generates erroneous optical density values that arise from the reflection and refraction of the laser rays at the interface between the gel and the container. The analysis of the accuracy of the polymer gel dosimeter is exemplified by the comparison of the gel/OCT-derived dose distributions with those from film measurements and a commercial treatment planning system (Cadplan, Varian Corporation, Palo Alto, CA) for a 6 cmx6 cm single field of 6 MV x rays and a 3-D conformal radiotherapy (3DCRT) plan. The gel measurements agree with the treatment plans and the film measurements within the '3%-or-2 mm' criterion throughout the usable, artifact-free central region of the gel volume. Discrepancies among the three data sets are analyzed.

  7. SU-C-213-03: Custom 3D Printed Boluses for Radiation Therapy

    SciTech Connect

    Zhao, B; Yang, M; Yan, Y; Rahimi, A; Chopra, R; Jiang, S

    2015-06-15

    Purpose: To develop a clinical workflow and to commission the process of creating custom 3d printed boluses for radiation therapy. Methods: We designed a workflow to create custom boluses using a commercial 3D printer. Contours of several patients were deformably mapped to phantoms where the test bolus contours were designed. Treatment plans were created on the phantoms following our institutional planning guideline. The DICOM file of the bolus contours were then converted to stereoLithography (stl) file for the 3d printer. The boluses were printed on a commercial 3D printer using polylactic acid (PLA) material. Custom printing parameters were optimized in order to meet the requirement of bolus composition. The workflow was tested on multiple anatomical sites such as skull, nose and chest wall. The size of boluses varies from 6×9cm2 to 12×25cm2. To commission the process, basic CT and dose properties of the printing materials were measured in photon and electron beams and compared against water and soft superflab bolus. Phantoms were then scanned to confirm the placement of custom boluses. Finally dose distributions with rescanned CTs were compared with those computer-generated boluses. Results: The relative electron density(1.08±0.006) of the printed boluses resemble those of liquid tap water(1.04±0.004). The dosimetric properties resemble those of liquid tap water(1.04±0.004). The dosimetric properties were measured at dmax with an ion chamber in electron and photon open beams. Compared with solid water and soft bolus, the output difference was within 1% for the 3D printer material. The printed boluses fit well to the phantom surfaces on CT scans. The dose distribution and DVH based on the printed boluses match well with those based on TPS generated boluses. Conclusion: 3d printing provides a cost effective and convenient solution for patient-specific boluses in radiation therapy.

  8. 4D VMAT, gated VMAT, and 3D VMAT for stereotactic body radiation therapy in lung.

    PubMed

    Chin, E; Loewen, S K; Nichol, A; Otto, K

    2013-02-21

    Four-dimensional volumetric modulated arc therapy (4D VMAT) is a treatment strategy for lung cancers that aims to exploit relative target and tissue motion to improve organ at risk (OAR) sparing. The algorithm incorporates the entire patient respiratory cycle using 4D CT data into the optimization process. Resulting treatment plans synchronize the delivery of each beam aperture to a specific phase of target motion. Stereotactic body radiation therapy treatment plans for 4D VMAT, gated VMAT, and 3D VMAT were generated on three patients with non-small cell lung cancer. Tumour motion ranged from 1.4-3.4 cm. The dose and fractionation scheme was 48 Gy in four fractions. A B-spline transformation model registered the 4D CT images. 4D dose volume histograms (4D DVH) were calculated from total dose accumulated at the maximum exhalation. For the majority of OARs, gated VMAT achieved the most radiation sparing but treatment times were 77-148% longer than 3D VMAT. 4D VMAT plan qualities were comparable to gated VMAT, but treatment times were only 11-25% longer than 3D VMAT. 4D VMAT's improvement of healthy tissue sparing can allow for further dose escalation. Future study could potentially adapt 4D VMAT to irregular patient breathing patterns.

  9. 4D VMAT, gated VMAT, and 3D VMAT for stereotactic body radiation therapy in lung

    NASA Astrophysics Data System (ADS)

    Chin, E.; Loewen, S. K.; Nichol, A.; Otto, K.

    2013-02-01

    Four-dimensional volumetric modulated arc therapy (4D VMAT) is a treatment strategy for lung cancers that aims to exploit relative target and tissue motion to improve organ at risk (OAR) sparing. The algorithm incorporates the entire patient respiratory cycle using 4D CT data into the optimization process. Resulting treatment plans synchronize the delivery of each beam aperture to a specific phase of target motion. Stereotactic body radiation therapy treatment plans for 4D VMAT, gated VMAT, and 3D VMAT were generated on three patients with non-small cell lung cancer. Tumour motion ranged from 1.4-3.4 cm. The dose and fractionation scheme was 48 Gy in four fractions. A B-spline transformation model registered the 4D CT images. 4D dose volume histograms (4D DVH) were calculated from total dose accumulated at the maximum exhalation. For the majority of OARs, gated VMAT achieved the most radiation sparing but treatment times were 77-148% longer than 3D VMAT. 4D VMAT plan qualities were comparable to gated VMAT, but treatment times were only 11-25% longer than 3D VMAT. 4D VMAT's improvement of healthy tissue sparing can allow for further dose escalation. Future study could potentially adapt 4D VMAT to irregular patient breathing patterns.

  10. Analysis of Intensity-Modulated Radiation Therapy (IMRT), Proton and 3D Conformal Radiotherapy (3D-CRT) for Reducing Perioperative Cardiopulmonary Complications in Esophageal Cancer Patients

    PubMed Central

    Ling, Ted C.; Slater, Jerry M.; Nookala, Prashanth; Mifflin, Rachel; Grove, Roger; Ly, Anh M.; Patyal, Baldev; Slater, Jerry D.; Yang, Gary Y.

    2014-01-01

    Background. While neoadjuvant concurrent chemoradiotherapy has improved outcomes for esophageal cancer patients, surgical complication rates remain high. The most frequent perioperative complications after trimodality therapy were cardiopulmonary in nature. The radiation modality utilized can be a strong mitigating factor of perioperative complications given the location of the esophagus and its proximity to the heart and lungs. The purpose of this study is to make a dosimetric comparison of Intensity-Modulated Radiation Therapy (IMRT), proton and 3D conformal radiotherapy (3D-CRT) with regard to reducing perioperative cardiopulmonary complications in esophageal cancer patients. Materials. Ten patients with esophageal cancer treated between 2010 and 2013 were evaluated in this study. All patients were simulated with contrast-enhanced CT imaging. Separate treatment plans using proton radiotherapy, IMRT, and 3D-CRT modalities were created for each patient. Dose-volume histograms were calculated and analyzed to compare plans between the three modalities. The organs at risk (OAR) being evaluated in this study are the heart, lungs, and spinal cord. To determine statistical significance, ANOVA and two-tailed paired t-tests were performed for all data parameters. Results. The proton plans showed decreased dose to various volumes of the heart and lungs in comparison to both the IMRT and 3D-CRT plans. There was no difference between the IMRT and 3D-CRT plans in dose delivered to the lung or heart. This finding was seen consistently across the parameters analyzed in this study. Conclusions. In patients receiving radiation therapy for esophageal cancer, proton plans are technically feasible while achieving adequate coverage with lower doses delivered to the lungs and cardiac structures. This may result in decreased cardiopulmonary toxicity and less morbidity to esophageal cancer patients. PMID:25489937

  11. Optimizing radioimmunotherapy by matching dose distribution with tumor structure using 3D reconstructions of serial images.

    PubMed

    Flynn, A A; Pedley, R B; Green, A J; Boxer, G M; Boden, R; Begent, R H

    2001-10-01

    The biological effect of radioimmunotherapy (RIT) is most commonly assessed in terms of the absorbed radiation dose. In tumor, conventional dosimetry methods assume a uniform radionuclide and calculate a mean dose throughout the tumor. However, the vasculature of solid tumors tends to be highly irregular and the systemic delivery of antibodies is therefore heterogeneous. Tumor-specific antibodies preferentially localize in the viable, radiosensitive parts of the tumor whereas non-specific antibodies can penetrate into the necrosis where the dose is wasted. As a result, the observed biological effect can be very different to the predicted effect from conventional dose estimates. The purpose of this study is to assess the potential for optimizing the biological effect of RIT by matching the dose-distribution with tumor structure through the selection of appropriate antibodies and radionuclides. Storage phosphor plate technology was used to acquire images of the antibody distribution in serial tumor sections. Images of the distributions of a trivalent (TFM), bivalent (A5B7-IgG), monovalent (MFE-23) and a non-specific antibody (MOPC) were obtained. These images were registered with corresponding images showing tumor morphology. Serial images were reconstructed to form 3D maps of the antibody distribution and tumor structure. Convolution of the image of antibody distribution with beta dose point kernals generated dose-rate distributions for 14C, 131I and 90Y. These were statistically compared with the tumor structure. The highest correlation was obtained for the multivalent antibodies combined with 131I, due to specific retention in viable areas of tumor coupled with the fact that much of the dose was deposted locally. With decreasing avidity the correlation also decreased and with the non-specific antibody this correlation was negative, indicating higher concentrations in the necrotic regions. In conclusion, the dose distribution can be optimized in tumor by selecting

  12. A novel time dependent gamma evaluation function for dynamic 2D and 3D dose distributions

    NASA Astrophysics Data System (ADS)

    Podesta, Mark; CGG Persoon, Lucas; Verhaegen, Frank

    2014-10-01

    Modern external beam radiotherapy requires detailed verification and quality assurance so that confidence can be placed on both the delivery of a single treatment fraction and on the consistency of delivery throughout the treatment course. To verify dose distributions, a comparison between prediction and measurement must be made. Comparisons between two dose distributions are commonly performed using a Gamma evaluation which is a calculation of two quantities on a pixel by pixel basis; the dose difference, and the distance to agreement. By providing acceptance criteria (e.g. 3%, 3 mm), the function will find the most appropriate match within its two degrees of freedom. For complex dynamic treatments such as IMRT or VMAT it is important to verify the dose delivery in a time dependent manner and so a gamma evaluation that includes a degree of freedom in the time domain via a third parameter, time to agreement, is presented here. A C++ (mex) based gamma function was created that could be run on either CPU and GPU computing platforms that would allow a degree of freedom in the time domain. Simple test cases were created in both 2D and 3D comprising of simple geometrical shapes with well-defined boundaries varying over time. Changes of varying magnitude in either space or time were introduced and repeated gamma analyses were performed varying the criteria. A clinical VMAT case was also included, artificial air bubbles of varying size were introduced to a patient geometry, along with shifts of varying magnitude in treatment time. For all test cases where errors in distance, dose or time were introduced, the time dependent gamma evaluation could accurately highlight the errors. The time dependent gamma function presented here allows time to be included as a degree of freedom in gamma evaluations. The function allows for 2D and 3D data sets which are varying over time to be compared using appropriate criteria without penalising minor offsets of subsequent radiation

  13. A novel time dependent gamma evaluation function for dynamic 2D and 3D dose distributions.

    PubMed

    Podesta, Mark; Persoon, Lucas C G G; Verhaegen, Frank

    2014-10-21

    Modern external beam radiotherapy requires detailed verification and quality assurance so that confidence can be placed on both the delivery of a single treatment fraction and on the consistency of delivery throughout the treatment course. To verify dose distributions, a comparison between prediction and measurement must be made. Comparisons between two dose distributions are commonly performed using a Gamma evaluation which is a calculation of two quantities on a pixel by pixel basis; the dose difference, and the distance to agreement. By providing acceptance criteria (e.g. 3%, 3 mm), the function will find the most appropriate match within its two degrees of freedom. For complex dynamic treatments such as IMRT or VMAT it is important to verify the dose delivery in a time dependent manner and so a gamma evaluation that includes a degree of freedom in the time domain via a third parameter, time to agreement, is presented here. A C++ (mex) based gamma function was created that could be run on either CPU and GPU computing platforms that would allow a degree of freedom in the time domain. Simple test cases were created in both 2D and 3D comprising of simple geometrical shapes with well-defined boundaries varying over time. Changes of varying magnitude in either space or time were introduced and repeated gamma analyses were performed varying the criteria. A clinical VMAT case was also included, artificial air bubbles of varying size were introduced to a patient geometry, along with shifts of varying magnitude in treatment time. For all test cases where errors in distance, dose or time were introduced, the time dependent gamma evaluation could accurately highlight the errors.The time dependent gamma function presented here allows time to be included as a degree of freedom in gamma evaluations. The function allows for 2D and 3D data sets which are varying over time to be compared using appropriate criteria without penalising minor offsets of subsequent radiation fields

  14. Real-time 3D radiation risk assessment supporting simulation of work in nuclear environments.

    PubMed

    Szőke, I; Louka, M N; Bryntesen, T R; Bratteli, J; Edvardsen, S T; RøEitrheim, K K; Bodor, K

    2014-06-01

    This paper describes the latest developments at the Institute for Energy Technology (IFE) in Norway, in the field of real-time 3D (three-dimensional) radiation risk assessment for the support of work simulation in nuclear environments. 3D computer simulation can greatly facilitate efficient work planning, briefing, and training of workers. It can also support communication within and between work teams, and with advisors, regulators, the media and public, at all the stages of a nuclear installation's lifecycle. Furthermore, it is also a beneficial tool for reviewing current work practices in order to identify possible gaps in procedures, as well as to support the updating of international recommendations, dissemination of experience, and education of the current and future generation of workers.IFE has been involved in research and development into the application of 3D computer simulation and virtual reality (VR) technology to support work in radiological environments in the nuclear sector since the mid 1990s. During this process, two significant software tools have been developed, the VRdose system and the Halden Planner, and a number of publications have been produced to contribute to improving the safety culture in the nuclear industry.This paper describes the radiation risk assessment techniques applied in earlier versions of the VRdose system and the Halden Planner, for visualising radiation fields and calculating dose, and presents new developments towards implementing a flexible and up-to-date dosimetric package in these 3D software tools, based on new developments in the field of radiation protection. The latest versions of these 3D tools are capable of more accurate risk estimation, permit more flexibility via a range of user choices, and are applicable to a wider range of irradiation situations than their predecessors. PMID:24727389

  15. Feasibility of RACT for 3D dose measurement and range verification in a water phantom

    SciTech Connect

    Alsanea, Fahed; Moskvin, Vadim; Stantz, Keith M.

    2015-02-15

    Purpose: The objective of this study is to establish the feasibility of using radiation-induced acoustics to measure the range and Bragg peak dose from a pulsed proton beam. Simulation studies implementing a prototype scanner design based on computed tomographic methods were performed to investigate the sensitivity to proton range and integral dose. Methods: Derived from thermodynamic wave equation, the pressure signals generated from the dose deposited from a pulsed proton beam with a 1 cm lateral beam width and a range of 16, 20, and 27 cm in water using Monte Carlo methods were simulated. The resulting dosimetric images were reconstructed implementing a 3D filtered backprojection algorithm and the pressure signals acquired from a 71-transducer array with a cylindrical geometry (30 × 40 cm) rotated over 2π about its central axis. Dependencies on the detector bandwidth and proton beam pulse width were performed, after which, different noise levels were added to the detector signals (using 1 μs pulse width and a 0.5 MHz cutoff frequency/hydrophone) to investigate the statistical and systematic errors in the proton range (at 20 cm) and Bragg peak dose (of 1 cGy). Results: The reconstructed radioacoustic computed tomographic image intensity was shown to be linearly correlated to the dose within the Bragg peak. And, based on noise dependent studies, a detector sensitivity of 38 mPa was necessary to determine the proton range to within 1.0 mm (full-width at half-maximum) (systematic error < 150 μm) for a 1 cGy Bragg peak dose, where the integral dose within the Bragg peak was measured to within 2%. For existing hydrophone detector sensitivities, a Bragg peak dose of 1.6 cGy is possible. Conclusions: This study demonstrates that computed tomographic scanner based on ionizing radiation-induced acoustics can be used to verify dose distribution and proton range with centi-Gray sensitivity. Realizing this technology into the clinic has the potential to significantly

  16. Radiation-induced second cancers: the impact of 3D-CRT and IMRT

    NASA Technical Reports Server (NTRS)

    Hall, Eric J.; Wuu, Cheng-Shie

    2003-01-01

    Information concerning radiation-induced malignancies comes from the A-bomb survivors and from medically exposed individuals, including second cancers in radiation therapy patients. The A-bomb survivors show an excess incidence of carcinomas in tissues such as the gastrointestinal tract, breast, thyroid, and bladder, which is linear with dose up to about 2.5 Sv. There is great uncertainty concerning the dose-response relationship for radiation-induced carcinogenesis at higher doses. Some animal and human data suggest a decrease at higher doses, usually attributed to cell killing; other data suggest a plateau in dose. Radiotherapy patients also show an excess incidence of carcinomas, often in sites remote from the treatment fields; in addition there is an excess incidence of sarcomas in the heavily irradiated in-field tissues. The transition from conventional radiotherapy to three-dimensional conformal radiation therapy (3D-CRT) involves a reduction in the volume of normal tissues receiving a high dose, with an increase in dose to the target volume that includes the tumor and a limited amount of normal tissue. One might expect a decrease in the number of sarcomas induced and also (less certain) a small decrease in the number of carcinomas. All around, a good thing. By contrast, the move from 3D-CRT to intensity-modulated radiation therapy (IMRT) involves more fields, and the dose-volume histograms show that, as a consequence, a larger volume of normal tissue is exposed to lower doses. In addition, the number of monitor units is increased by a factor of 2 to 3, increasing the total body exposure, due to leakage radiation. Both factors will tend to increase the risk of second cancers. Altogether, IMRT is likely to almost double the incidence of second malignancies compared with conventional radiotherapy from about 1% to 1.75% for patients surviving 10 years. The numbers may be larger for longer survival (or for younger patients), but the ratio should remain the same.

  17. Doses from radiation exposure.

    PubMed

    Menzel, H-G; Harrison, J D

    2012-01-01

    Practical implementation of the International Commission on Radiological Protection's (ICRP) system of protection requires the availability of appropriate methods and data. The work of Committee 2 is concerned with the development of reference data and methods for the assessment of internal and external radiation exposure of workers and members of the public. This involves the development of reference biokinetic and dosimetric models, reference anatomical models of the human body, and reference anatomical and physiological data. Following ICRP's 2007 Recommendations, Committee 2 has focused on the provision of new reference dose coefficients for external and internal exposure. As well as specifying changes to the radiation and tissue weighting factors used in the calculation of protection quantities, the 2007 Recommendations introduced the use of reference anatomical phantoms based on medical imaging data, requiring explicit sex averaging of male and female organ-equivalent doses in the calculation of effective dose. In preparation for the calculation of new dose coefficients, Committee 2 and its task groups have provided updated nuclear decay data (ICRP Publication 107) and adult reference computational phantoms (ICRP Publication 110). New dose coefficients for external exposures of workers are complete (ICRP Publication 116), and work is in progress on a series of reports on internal dose coefficients to workers from inhaled and ingested radionuclides. Reference phantoms for children will also be provided and used in the calculation of dose coefficients for public exposures. Committee 2 also has task groups on exposures to radiation in space and on the use of effective dose.

  18. Dosimetry in brain tumor phantom at 15 MV 3D conformal radiation therapy

    PubMed Central

    2013-01-01

    Glioblastoma multiforme (GBM) is the most common, aggressive, highly malignant and infiltrative of all brain tumors with low rate of control. The main goal of this work was to evaluate the spatial dose distribution into a GBM simulator inside a head phantom exposed to a 15 MV 3D conformal radiation therapy in order to validate internal doses. A head and neck phantom developed by the Ionizing Radiation Research Group (NRI) was used on the experiments. Such phantom holds the following synthetic structures: brain and spinal cord, skull, cervical and thoracic vertebrae, jaw, hyoid bone, laryngeal cartilages, head and neck muscles and skin. Computer tomography (CT) of the simulator was taken, capturing a set of contrasted references. Therapy Radiation planning (TPS) was performed based on those CT images, satisfying a 200 cGy prescribed dose split in three irradiation fields. The TPS assumed 97% of prescribed dose cover the prescribed treatment volume (PTV). Radiochromic films in a solid water phantom provided dose response as a function of optical density. Spatial dosimetric distribution was generated by radiochromic film samples at coronal, sagittal-anterior and sagittal-posterior positions, inserted into tumor simulator and brain. The spatial dose profiles held 70 to 120% of the prescribed dose. In spite of the stratified profile, as opposed to the smooth dose profile from TPS, the tumor internal doses were within a 5% deviation from 214.4 cGy evaluated by TPS. 83.2% of the points with a gamma value of less than 1 (3%/3mm) for TPS and experimental values, respectively. At the tumor, measured at coronal section, a few dark spots in the film caused the appearance of outlier points in 13-15% of dose deviation percentage. And, as final conclusion, such dosimeter choice and the physical anthropomorphic and anthropometric phantom provided an efficient method for validating radiotherapy protocols. PMID:23829593

  19. The spatial accuracy of cellular dose estimates obtained from 3D reconstructed serial tissue autoradiographs.

    PubMed

    Humm, J L; Macklis, R M; Lu, X Q; Yang, Y; Bump, K; Beresford, B; Chin, L M

    1995-01-01

    In order to better predict and understand the effects of radiopharmaceuticals used for therapy, it is necessary to determine more accurately the radiation absorbed dose to cells in tissue. Using thin-section autoradiography, the spatial distribution of sources relative to the cells can be obtained from a single section with micrometre resolution. By collecting and analysing serial sections, the 3D microscopic distribution of radionuclide relative to the cellular histology, and therefore the dose rate distribution, can be established. In this paper, a method of 3D reconstruction of serial sections is proposed, and measurements are reported of (i) the accuracy and reproducibility of quantitative autoradiography and (ii) the spatial precision with which tissue features from one section can be related to adjacent sections. Uncertainties in the activity determination for the specimen result from activity losses during tissue processing (4-11%), and the variation of grain count per unit activity between batches of serial sections (6-25%). Correlation of the section activity to grain count densities showed deviations ranging from 6-34%. The spatial alignment uncertainties were assessed using nylon fibre fiduciary markers incorporated into the tissue block, and compared to those for alignment based on internal tissue landmarks. The standard deviation for the variation in nylon fibre fiduciary alignment was measured to be 41 microns cm-1, compared to 69 microns cm-1 when internal tissue histology landmarks were used. In addition, tissue shrinkage during histological processing of up to 10% was observed. The implications of these measured activity and spatial distribution uncertainties upon the estimate of cellular dose rate distribution depends upon the range of the radiation emissions. For long-range beta particles, uncertainties in both the activity and spatial distribution translate linearly to the uncertainty in dose rate of < 15%. For short-range emitters (< 100

  20. Comparison of different approaches of estimating effective dose from reported exposure data in 3D imaging with interventional fluoroscopy systems

    NASA Astrophysics Data System (ADS)

    Svalkvist, Angelica; Hansson, Jonny; Bâth, Magnus

    2014-03-01

    Three-dimensional (3D) imaging with interventional fluoroscopy systems is today a common examination. The examination includes acquisition of two-dimensional projection images, used to reconstruct section images of the patient. The aim of the present study was to investigate the difference in resulting effective dose obtained using different levels of complexity in calculations of effective doses from these examinations. In the study the Siemens Artis Zeego interventional fluoroscopy system (Siemens Medical Solutions, Erlangen, Germany) was used. Images of anthropomorphic chest and pelvis phantoms were acquired. The exposure values obtained were used to calculate the resulting effective doses from the examinations, using the computer software PCXMC (STUK, Helsinki, Finland). The dose calculations were performed using three different methods: 1. using individual exposure values for each projection image, 2. using the mean tube voltage and the total DAP value, evenly distributed over the projection images, and 3. using the mean kV and the total DAP value, evenly distributed over smaller selection of projection images. The results revealed that the difference in resulting effective dose between the first two methods was smaller than 5%. When only a selection of projection images were used in the dose calculations the difference increased to over 10%. Given the uncertainties associated with the effective dose concept, the results indicate that dose calculations based on average exposure values distributed over a smaller selection of projection angles can provide reasonably accurate estimations of the radiation doses from 3D imaging using interventional fluoroscopy systems.

  1. 3D radiative transfer in colliding wind binaries: Application of the SimpleX algorithm to 3D SPH simulations

    NASA Astrophysics Data System (ADS)

    Madura, Thomas; Clementel, Nicola; Kruip, Chael; Icke, Vincent; Gull, Theodore

    2014-09-01

    We present the first results of full 3D radiative transfer simulations of the colliding stellar winds in a massive binary system. We accomplish this by applying the SIMPLEX algorithm for 3D radiative transfer on an unstructured Delaunay grid to recent 3D smoothed particle hydrodynamics (SPH) simulations of the colliding winds in the binary system η Carinae. We use SIMPLEX to obtain detailed ionization fractions of hydrogen and helium, in 3D, at the resolution of the original SPH simulations. We show how the SIMPLEX simulations can be used to generate synthetic spectral data cubes for comparison to data obtained with the Hubble Space Telescope (HST)/Space Telescope Imaging Spectrograph as part of a multi-cycle program to map changes in η Car's extended interacting wind structures across one binary cycle. Comparison of the HST observations to the SIMPLEX models can help lead to more accurate constraints on the orbital, stellar, and wind parameters of the η Car system, such as the primary's mass-loss rate and the companion's temperature and luminosity. While we initially focus specifically on the η Car binary, the numerical methods employed can be applied to numerous other colliding wind (WR140, WR137, WR19) and dusty 'pinwheel' (WR104, WR98a) binary systems. One of the biggest remaining mysteries is how dust can form and survive in such systems that contain a hot, luminous O star. Coupled with 3D hydrodynamical simulations, SIMPLEX simulations have the potential to help determine the regions where dust can form and survive in these unique objects.

  2. 3D visualization of the scoliotic spine: longitudinal studies, data acquisition, and radiation dosage constraints

    NASA Astrophysics Data System (ADS)

    Kalvin, Alan D.; Adler, Roy L.; Margulies, Joseph Y.; Tresser, Charles P.; Wu, Chai W.

    1999-05-01

    Decision making in the treatment of scoliosis is typically based on longitudinal studies that involve the imaging and visualization the progressive degeneration of a patient's spine over a period of years. Some patients will need surgery if their spinal deformation exceeds a certain degree of severity. Currently, surgeons rely on 2D measurements, obtained from x-rays, to quantify spinal deformation. Clearly working only with 2D measurements seriously limits the surgeon's ability to infer 3D spinal pathology. Standard CT scanning is not a practical solution for obtaining 3D spinal measurements of scoliotic patients. Because it would expose the patient to a prohibitively high dose of radiation. We have developed 2 new CT-based methods of 3D spinal visualization that produce 3D models of the spine by integrating a very small number of axial CT slices with data obtained from CT scout data. In the first method the scout data are converted to sinogram data, and then processed by a tomographic image reconstruction algorithm. In the second method, the vertebral boundaries are detected in the scout data, and these edges are then used as linear constraints to determine 2D convex hulls of the vertebrae.

  3. Evaluation of low-dose limits in 3D-2D rigid registration for surgical guidance

    NASA Astrophysics Data System (ADS)

    Uneri, A.; Wang, A. S.; Otake, Y.; Kleinszig, G.; Vogt, S.; Khanna, A. J.; Gallia, G. L.; Gokaslan, Z. L.; Siewerdsen, J. H.

    2014-09-01

    An algorithm for intensity-based 3D-2D registration of CT and C-arm fluoroscopy is evaluated for use in surgical guidance, specifically considering the low-dose limits of the fluoroscopic x-ray projections. The registration method is based on a framework using the covariance matrix adaptation evolution strategy (CMA-ES) to identify the 3D patient pose that maximizes the gradient information similarity metric. Registration performance was evaluated in an anthropomorphic head phantom emulating intracranial neurosurgery, using target registration error (TRE) to characterize accuracy and robustness in terms of 95% confidence upper bound in comparison to that of an infrared surgical tracking system. Three clinical scenarios were considered: (1) single-view image + guidance, wherein a single x-ray projection is used for visualization and 3D-2D guidance; (2) dual-view image + guidance, wherein one projection is acquired for visualization, combined with a second (lower-dose) projection acquired at a different C-arm angle for 3D-2D guidance; and (3) dual-view guidance, wherein both projections are acquired at low dose for the purpose of 3D-2D guidance alone (not visualization). In each case, registration accuracy was evaluated as a function of the entrance surface dose associated with the projection view(s). Results indicate that images acquired at a dose as low as 4 μGy (approximately one-tenth the dose of a typical fluoroscopic frame) were sufficient to provide TRE comparable or superior to that of conventional surgical tracking, allowing 3D-2D guidance at a level of dose that is at most 10% greater than conventional fluoroscopy (scenario #2) and potentially reducing the dose to approximately 20% of the level in a conventional fluoroscopically guided procedure (scenario #3).

  4. Dose Verification of Stereotactic Radiosurgery Treatment for Trigeminal Neuralgia with Presage 3D Dosimetry System

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Thomas, A.; Newton, J.; Ibbott, G.; Deasy, J.; Oldham, M.

    2010-11-01

    Achieving adequate verification and quality-assurance (QA) for radiosurgery treatment of trigeminal-neuralgia (TGN) is particularly challenging because of the combination of very small fields, very high doses, and complex irradiation geometries (multiple gantry and couch combinations). TGN treatments have extreme requirements for dosimetry tools and QA techniques, to ensure adequate verification. In this work we evaluate the potential of Presage/Optical-CT dosimetry system as a tool for the verification of TGN distributions in high-resolution and in 3D. A TGN treatment was planned and delivered to a Presage 3D dosimeter positioned inside the Radiological-Physics-Center (RPC) head and neck IMRT credentialing phantom. A 6-arc treatment plan was created using the iPlan system, and a maximum dose of 80Gy was delivered with a Varian Trilogy machine. The delivered dose to Presage was determined by optical-CT scanning using the Duke Large field-of-view Optical-CT Scanner (DLOS) in 3D, with isotropic resolution of 0.7mm3. DLOS scanning and reconstruction took about 20minutes. 3D dose comparisons were made with the planning system. Good agreement was observed between the planned and measured 3D dose distributions, and this work provides strong support for the viability of Presage/Optical-CT as a highly useful new approach for verification of this complex technique.

  5. PREFACE: 8th International Conference on 3D Radiation Dosimetry (IC3DDose)

    NASA Astrophysics Data System (ADS)

    Olsson, Lars E.; Bäck, S.; Ceberg, Sofie

    2015-01-01

    IC3DDose 2014, the 8th International Conference on 3D Radiation Dosimetry was held in Ystad, Sweden, from 4-7 September 2014. This grew out of the DosGel series, which began as DosGel99, the 1st International Workshop on Radiation Therapy Gel Dosimetry in Lexington, Kentucky. Since 1999 subsequent DoSGel conferences were held in Brisbane, Australia (2001), Ghent, Belgium (2004), Sherbrooke, Canada (2006) and Crete, Greece (2008). In 2010 the conference was held on Hilton Head Island, South Carolina and underwent a name-change to IC3DDose. The 7th and last meeting was held in Sydney, Australia from 4-8 November 2012. It is worth remembering that the conference series started at the very beginning of the intensity modulated radiotherapy era and that the dosimeters being developed then were, to some extent, ahead of the clinical need of radiotherapy. However, since then the technical developments in radiation therapy have been dramatic, with dynamic treatments, including tracking, gating and volumetric modulated arc therapy, widely introduced in the clinic with the need for 3D dosimetry thus endless. This was also reflected by the contributions at the meeting in Ystad. Accordingly the scope of the meeting has also broadened to IC3DDOSE - I See Three-Dimensional Dose. A multitude of dosimetry techniques and radiation detectors are now represented, all with the common denominator: three-dimensional or 3D. Additionally, quality assurance (QA) procedures and other aspects of clinical dosimetry are represented. The implementation of new dosimetric techniques in radiotherapy is a process that needs every kind of caution, carefulness and thorough validation. Therefore, the clinical needs, reformulated as the aims for IC3DDOSE - I See Three-Dimensional Dose, are: • Enhance the quality and accuracy of radiation therapy treatments through improved clinical dosimetry. • Investigate and understand the dosimetric challenges of modern radiation treatment techniques. • Provide

  6. Efficient and reliable 3D dose quality assurance for IMRT by combining independent dose calculations with measurements

    SciTech Connect

    Visser, R.; Wauben, D. J. L.; Godart, J.; Langendijk, J. A.; Veld, A. A. van't; Korevaar, E. W.; Groot, M. de

    2013-02-15

    Purpose: Advanced radiotherapy treatments require appropriate quality assurance (QA) to verify 3D dose distributions. Moreover, increase in patient numbers demand efficient QA-methods. In this study, a time efficient method that combines model-based QA and measurement-based QA was developed; i.e., the hybrid-QA. The purpose of this study was to determine the reliability of the model-based QA and to evaluate time efficiency of the hybrid-QA method. Methods: Accuracy of the model-based QA was determined by comparison of COMPASS calculated dose with Monte Carlo calculations for heterogeneous media. In total, 330 intensity modulated radiation therapy (IMRT) treatment plans were evaluated based on the mean gamma index (GI) with criteria of 3%/3mm and classification of PASS (GI {<=} 0.4), EVAL (0.4 < GI > 0.6), and FAIL (GI {>=} 0.6). Agreement between model-based QA and measurement-based QA was determined for 48 treatment plans, and linac stability was verified for 15 months. Finally, time efficiency improvement of the hybrid-QA was quantified for four representative treatment plans. Results: COMPASS calculated dose was in agreement with Monte Carlo dose, with a maximum error of 3.2% in heterogeneous media with high density (2.4 g/cm{sup 3}). Hybrid-QA results for IMRT treatment plans showed an excellent PASS rate of 98% for all cases. Model-based QA was in agreement with measurement-based QA, as shown by a minimal difference in GI of 0.03 {+-} 0.08. Linac stability was high with an average GI of 0.28 {+-} 0.04. The hybrid-QA method resulted in a time efficiency improvement of 15 min per treatment plan QA compared to measurement-based QA. Conclusions: The hybrid-QA method is adequate for efficient and accurate 3D dose verification. It combines time efficiency of model-based QA with reliability of measurement-based QA and is suitable for implementation within any radiotherapy department.

  7. 3D Atmospheric Radiative Transfer for Cloud System-Resolving Models: Forward Modelling and Observations

    SciTech Connect

    Howard Barker; Jason Cole

    2012-05-17

    Utilization of cloud-resolving models and multi-dimensional radiative transfer models to investigate the importance of 3D radiation effects on the numerical simulation of cloud fields and their properties.

  8. Parameterization and Analysis of 3-D Solar Radiative Transfer in Clouds: Final Report

    SciTech Connect

    Jerry Y. Harrington

    2012-09-21

    This document reports on the research that we have done over the course of our two-year project. The report also covers the research done on this project during a 1 year no-cost extension of the grant. Our work has had two main, inter-related thrusts: The first thrust was to characterize the response of stratocumulus cloud structure and dynamics to systematic changes in cloud infrared radiative cooling and solar heating using one-dimensional radiative transfer models. The second was to couple a three-dimensional (3-D) solar radiative transfer model to the Large Eddy Simulation (LES) model that we use to simulate stratocumulus. The purpose of the studies with 3-D radiative transfer was to examine the possible influences of 3-D photon transport on the structure, evolution, and radiative properties of stratocumulus. While 3-D radiative transport has been examined in static cloud environments, few studies have attempted to examine whether the 3-D nature of radiative absorption and emission influence the structure and evolution of stratocumulus. We undertook this dual approach because only a small number of LES simulations with the 3-D radiative transfer model are possible due to the high computational costs. Consequently, LES simulations with a 1-D radiative transfer solver were used in order to examine the portions of stratocumulus parameter space that may be most sensitive to perturbations in the radiative fields. The goal was then to explore these sensitive regions with LES using full 3-D radiative transfer. Our overall goal was to discover whether 3-D radiative processes alter cloud structure and evolution, and whether this may have any indirect implications for cloud radiative properties. In addition, we collaborated with Dr. Tamas Varni, providing model output fields for his attempt at parameterizing 3-D radiative effects for cloud models.

  9. Clinical Outcome of Patients Treated With 3D Conformal Radiation Therapy (3D-CRT) for Prostate Cancer on RTOG 9406

    SciTech Connect

    Michalski, Jeff; Winter, Kathryn; Roach, Mack; Markoe, Arnold; Sandler, Howard M.; Ryu, Janice; Parliament, Matthew; Purdy, James A.; Valicenti, Richard K.; Cox, James D.

    2012-07-01

    Purpose: Report of clinical cancer control outcomes on Radiation Therapy Oncology Group (RTOG) 9406, a three-dimensional conformal radiation therapy (3D-CRT) dose escalation trial for localized adenocarcinoma of the prostate. Methods and Materials: RTOG 9406 is a Phase I/II multi-institutional dose escalation study of 3D-CRT for men with localized prostate cancer. Patients were registered on five sequential dose levels: 68.4 Gy, 73.8 Gy, 79.2 Gy, 74 Gy, and 78 Gy with 1.8 Gy/day (levels I-III) or 2.0 Gy/day (levels IV and V). Neoadjuvant hormone therapy (NHT) from 2 to 6 months was allowed. Protocol-specific, American Society for Therapeutic Radiation Oncology (ASTRO), and Phoenix biochemical failure definitions are reported. Results: Thirty-four institutions enrolled 1,084 patients and 1,051 patients are analyzable. Median follow-up for levels I, II, III, IV, and V was 11.7, 10.4, 11.8, 10.4, and 9.2 years, respectively. Thirty-six percent of patients received NHT. The 5-year overall survival was 90%, 87%, 88%, 89%, and 88% for dose levels I-V, respectively. The 5-year clinical disease-free survival (excluding protocol prostate-specific antigen definition) for levels I-V is 84%, 78%, 81%, 82%, and 82%, respectively. By ASTRO definition, the 5-year disease-free survivals were 57%, 59%, 52%, 64% and 75% (low risk); 46%, 52%, 54%, 56%, and 63% (intermediate risk); and 50%, 34%, 46%, 34%, and 61% (high risk) for levels I-V, respectively. By the Phoenix definition, the 5-year disease-free survivals were 68%, 73%, 67%, 84%, and 80% (low risk); 70%, 62%, 70%, 74%, and 69% (intermediate risk); and 42%, 62%, 68%, 54%, and 67% (high risk) for levels I-V, respectively. Conclusion: Dose-escalated 3D-CRT yields favorable outcomes for localized prostate cancer. This multi-institutional experience allows comparison to other experiences with modern radiation therapy.

  10. Radiation Transport in 3D Heterogeneous Materials: DNS

    SciTech Connect

    Graziani, F

    2003-07-09

    In order to develop a phenomenological approach to transport in 3D heterogeneous media, we have performed direct numerical simulation studies. Using an algorithm based on the lattice random walk to generate random media, we have performed radiographic shots of the sample and digitized both the chord length and optical depth distributions. The optical depth distribution is then used to compute an effective mean free path. As theory predicts, the atomically averaged mean free path is always a minimum value. We have also demonstrated a dependency of mean free path on the distribution of random material.

  11. High-dose radiotherapy in inoperable nonsmall cell lung cancer: comparison of volumetric modulated arc therapy, dynamic IMRT and 3D conformal radiotherapy.

    PubMed

    Bree, Ingrid de; van Hinsberg, Mariëlle G E; van Veelen, Lieneke R

    2012-01-01

    Conformal 3D radiotherapy (3D-CRT) combined with chemotherapy for inoperable non-small cell lung cancer (NSCLC) to the preferable high dose is often not achievable because of dose-limiting organs. This reduces the probability of regional tumor control. Therefore, the surplus value of using intensity-modulated radiation therapy (IMRT) techniques, specifically volumetric modulated arc therapy (RapidArc [RA]) and dynamic IMRT (d-IMRT) has been investigated. RA and d-IMRT plans were compared with 3D-CRT treatment plans for 20 patients eligible for concurrent high-dose chemoradiotherapy, in whom a dose of 60 Gy was not achievable. Comparison of dose delivery in the target volume and organs at risk was carried out by evaluating 3D dose distributions and dose-volume histograms. Quality of the dose distribution was assessed using the inhomogeneity and conformity index. For most patients, a higher dose to the target volume can be delivered using RA or d-IMRT; in 15% of the patients a dose ≥60 Gy was possible. Both IMRT techniques result in a better conformity of the dose (p < 0.001). There are no significant differences in homogeneity of dose in the target volume. IMRT techniques for NSCLC patients allow higher dose to the target volume, thus improving regional tumor control. PMID:22459649

  12. Parameterization and analysis of 3-D radiative transfer in clouds

    SciTech Connect

    Varnai, Tamas

    2012-03-16

    This report provides a summary of major accomplishments from the project. The project examines the impact of radiative interactions between neighboring atmospheric columns, for example clouds scattering extra sunlight toward nearby clear areas. While most current cloud models don't consider these interactions and instead treat sunlight in each atmospheric column separately, the resulting uncertainties have remained unknown. This project has provided the first estimates on the way average solar heating is affected by interactions between nearby columns. These estimates have been obtained by combining several years of cloud observations at three DOE Atmospheric Radiation Measurement (ARM) Climate Research Facility sites (in Alaska, Oklahoma, and Papua New Guinea) with simulations of solar radiation around the observed clouds. The importance of radiative interactions between atmospheric columns was evaluated by contrasting simulations that included the interactions with those that did not. This study provides lower-bound estimates for radiative interactions: It cannot consider interactions in cross-wind direction, because it uses two-dimensional vertical cross-sections through clouds that were observed by instruments looking straight up as clouds drifted aloft. Data from new DOE scanning radars will allow future radiative studies to consider the full three-dimensional nature of radiative processes. The results reveal that two-dimensional radiative interactions increase overall day-and-night average solar heating by about 0.3, 1.2, and 4.1 Watts per meter square at the three sites, respectively. This increase grows further if one considers that most large-domain cloud simulations have resolutions that cannot specify small-scale cloud variability. For example, the increases in solar heating mentioned above roughly double for a fairly typical model resolution of 1 km. The study also examined the factors that shape radiative interactions between atmospheric columns and

  13. An investigation of PRESAGE® 3D dosimetry for IMRT and VMAT radiation therapy treatment verification

    NASA Astrophysics Data System (ADS)

    Jackson, Jake; Juang, Titania; Adamovics, John; Oldham, Mark

    2015-03-01

    The purpose of this work was to characterize three formulations of PRESAGE® dosimeters (DEA-1, DEA-2, and DX) and to identify optimal readout timing and procedures for accurate in-house 3D dosimetry. The optimal formulation and procedure was then applied for the verification of an intensity modulated radiation therapy (IMRT) and a volumetric modulated arc therapy (VMAT) treatment technique. PRESAGE® formulations were studied for their temporal stability post-irradiation, sensitivity, and linearity of dose response. Dosimeters were read out using a high-resolution optical-CT scanner. Small volumes of PRESAGE® were irradiated to investigate possible differences in sensitivity for large and small volumes (‘volume effect’). The optimal formulation and read-out technique was applied to the verification of two patient treatments: an IMRT plan and a VMAT plan. A gradual decrease in post-irradiation optical-density was observed in all formulations with DEA-1 exhibiting the best temporal stability with less than 4% variation between 2-22 h post-irradiation. A linear dose response at the 4 h time point was observed for all formulations with an R2 value >0.99. A large volume effect was observed for DEA-1 with sensitivity of the large dosimeter being ~63% less than the sensitivity of the cuvettes. For the IMRT and VMAT treatments, the 3D gamma passing rates for 3%/3 mm criteria using absolute measured dose were 99.6 and 94.5% for the IMRT and VMAT treatments, respectively. In summary, this work shows that accurate 3D dosimetry is possible with all three PRESAGE® formulations. The optimal imaging windows post-irradiation were 3-24 h, 2-6 h, and immediately for the DEA-1, DEA-2, and DX formulations, respectively. Because of the large volume effect, small volume cuvettes are not yet a reliable method for calibration of larger dosimeters to absolute dose. Finally, PRESAGE® is observed to be a useful method of 3D verification when careful consideration is given

  14. An investigation of PRESAGE® 3D dosimetry for IMRT and VMAT radiation therapy treatment verification

    PubMed Central

    Jackson, Jake; Juang, Titania; Adamovics, John; Oldham, Mark

    2016-01-01

    The purpose of this work was to characterize three formulations of PRESAGE® dosimeters (DEA-1, DEA-2, and DX) and to identify optimal readout timing and procedures for accurate in-house 3D dosimetry. The optimal formulation and procedure was then applied for the verification of an intensity modulated radiation therapy (IMRT) and a volumetric modulated arc therapy (VMAT) treatment technique. PRESAGE® formulations were studied for their temporal stability postirradiation, sensitivity, and linearity of dose response. Dosimeters were read out using a high-resolution optical-CT scanner. Small volumes of PRESAGE® were irradiated to investigate possible differences in sensitivity for large and small volumes (‘volume effect’). The optimal formulation and read-out technique was applied to the verification of two patient treatments: an IMRT plan and a VMAT plan. A gradual decrease in post-irradiation optical-density was observed in all formulations with DEA-1 exhibiting the best temporal stability with less than 4% variation between 2–22 h post-irradiation. A linear dose response at the 4 h time point was observed for all formulations with an R2 value >0.99. A large volume effect was observed for DEA-1 with sensitivity of the large dosimeter being ~63% less than the sensitivity of the cuvettes. For the IMRT and VMAT treatments, the 3D gamma passing rates for 3%/3 mm criteria using absolute measured dose were 99.6 and 94.5% for the IMRT and VMAT treatments, respectively. In summary, this work shows that accurate 3D dosimetry is possible with all three PRESAGE® formulations. The optimal imaging windows post-irradiation were 3–24 h, 2–6 h, and immediately for the DEA-1, DEA-2, and DX formulations, respectively. Because of the large volume effect, small volume cuvettes are not yet a reliable method for calibration of larger dosimeters to absolute dose. Finally, PRESAGE® is observed to be a useful method of 3D verification when careful consideration is given to the

  15. Radiation hardness tests of highly irradiated full-3D sensors

    NASA Astrophysics Data System (ADS)

    Haughton, Iain; DaVia, Cinzia; Watts, Stephen

    2016-01-01

    Several full-3D silicon sensors (with column electrodes going fully through the bulk) were irradiated up to a fluence of (2.14±0.18)×1016 neq cm-2. An infra-red laser was used to induce a homogeneous signal within each sensor's bulk. The signal degradation, measured as a signal efficiency (signal after irradiation normalised to its value before irradiation) was determined for each fluence. The experimental set-up allowed for monitoring of the beam spot diameter, position and reflection intensity on the sensor's surface. Corrections, dependent on the measured reflection intensity, were made when calculating the signal efficiency. The sensor irradiated to the highest fluence showed a signal efficiency of (50 ± 5) %.

  16. Eliminating the dose-rate effect in a radiochromic silicone-based 3D dosimeter

    NASA Astrophysics Data System (ADS)

    Høye, E. M.; Balling, P.; Yates, E. S.; Muren, L. P.; Petersen, J. B. B.; Skyt, P. S.

    2015-07-01

    Comprehensive dose verification, such as 3D dosimetry, may be required for safe introduction and use of advanced treatment modalities in radiotherapy. A radiochromic silicone-based 3D dosimetry system has recently been suggested, though its clinical use has so far been limited by a considerable dose-rate dependency of the dose response. In this study we have investigated the dose-rate dependency with respect to the chemical composition of the dosimeter. We found that this dependency was reduced with increasing dye concentration, and the dose response was observed to be identical for dosimeters irradiated with 2 and 6 Gy min-1 at concentrations of 0.26% (w/w) dye and 1% (w/w) dye solvent. Furthermore, for the optimized dosimeter formulation, no dose-rate effect was observed due to the attenuation of the beam fluence with depth. However, the temporal stability of the dose response decreased with dye concentration; the response was reduced by (62  ±  1)% within approximately 20 h upon irradiation, at the optimal chemical composition and storage at room temperature. In conclusion, this study presents a chemical composition for a dose-rate independent silicone dosimeter which has considerably improved the clinical applicability of such dosimeters, but at the cost of a decreased stability.

  17. Experimental validation of a commercial 3D dose verification system for intensity-modulated arc therapies

    NASA Astrophysics Data System (ADS)

    Boggula, Ramesh; Lorenz, Friedlieb; Mueller, Lutz; Birkner, Mattias; Wertz, Hansjoerg; Stieler, Florian; Steil, Volker; Lohr, Frank; Wenz, Frederik

    2010-10-01

    We validate the dosimetric performance of COMPASS®, a novel 3D quality assurance system for verification of volumetric-modulated arc therapy (VMAT) treatment plans that can correlate the delivered dose to the patient's anatomy, taking into account the tissue inhomogeneity. The accuracy of treatment delivery was assessed by the COMPASS® for 12 VMAT plans, and the resulting assessments were evaluated using an ionization chamber and film measurements. Dose-volume relationships were evaluated by the COMPASS® for three additional treatment plans and these were used to verify the accuracy of treatment planning dose calculations. The results matched well between COMPASS® and measurements for the ionization chamber (<=3%) and film (73-99% for gamma(3%/3 mm) < 1 and 98-100% for gamma(5%/5 mm) < 1) for the phantom plans. Differences in dose-volume statistics for the average dose to the PTV were within 2.5% for three treatment plans. For the structures located in the low-dose region, a maximum difference of <9% was observed. In its current implementation, the system could measure the delivered dose with sufficient accuracy and could project the 3D dose distribution directly on the patient's anatomy. Slight deviations were found for large open fields. These could be minimized by improving the COMPASS® in-built beam model.

  18. 3D global estimation and augmented reality visualization of intra-operative X-ray dose.

    PubMed

    Rodas, Nicolas Loy; Padoy, Nicolas

    2014-01-01

    The growing use of image-guided minimally-invasive surgical procedures is confronting clinicians and surgical staff with new radiation exposure risks from X-ray imaging devices. The accurate estimation of intra-operative radiation exposure can increase staff awareness of radiation exposure risks and enable the implementation of well-adapted safety measures. The current surgical practice of wearing a single dosimeter at chest level to measure radiation exposure does not provide a sufficiently accurate estimation of radiation absorption throughout the body. In this paper, we propose an approach that combines data from wireless dosimeters with the simulation of radiation propagation in order to provide a global radiation risk map in the area near the X-ray device. We use a multi-camera RGBD system to obtain a 3D point cloud reconstruction of the room. The positions of the table, C-arm and clinician are then used 1) to simulate the propagation of radiation in a real-world setup and 2) to overlay the resulting 3D risk-map onto the scene in an augmented reality manner. By using real-time wireless dosimeters in our system, we can both calibrate the simulation and validate its accuracy at specific locations in real-time. We demonstrate our system in an operating room equipped with a robotised X-ray imaging device and validate the radiation simulation on several X-ray acquisition setups. PMID:25333145

  19. Modeling late rectal toxicities based on a parameterized representation of the 3D dose distribution

    NASA Astrophysics Data System (ADS)

    Buettner, Florian; Gulliford, Sarah L.; Webb, Steve; Partridge, Mike

    2011-04-01

    Many models exist for predicting toxicities based on dose-volume histograms (DVHs) or dose-surface histograms (DSHs). This approach has several drawbacks as firstly the reduction of the dose distribution to a histogram results in the loss of spatial information and secondly the bins of the histograms are highly correlated with each other. Furthermore, some of the complex nonlinear models proposed in the past lack a direct physical interpretation and the ability to predict probabilities rather than binary outcomes. We propose a parameterized representation of the 3D distribution of the dose to the rectal wall which explicitly includes geometrical information in the form of the eccentricity of the dose distribution as well as its lateral and longitudinal extent. We use a nonlinear kernel-based probabilistic model to predict late rectal toxicity based on the parameterized dose distribution and assessed its predictive power using data from the MRC RT01 trial (ISCTRN 47772397). The endpoints under consideration were rectal bleeding, loose stools, and a global toxicity score. We extract simple rules identifying 3D dose patterns related to a specifically low risk of complication. Normal tissue complication probability (NTCP) models based on parameterized representations of geometrical and volumetric measures resulted in areas under the curve (AUCs) of 0.66, 0.63 and 0.67 for predicting rectal bleeding, loose stools and global toxicity, respectively. In comparison, NTCP models based on standard DVHs performed worse and resulted in AUCs of 0.59 for all three endpoints. In conclusion, we have presented low-dimensional, interpretable and nonlinear NTCP models based on the parameterized representation of the dose to the rectal wall. These models had a higher predictive power than models based on standard DVHs and their low dimensionality allowed for the identification of 3D dose patterns related to a low risk of complication.

  20. Development and application of a 3-D geometry/mass model for LDEF satellite ionizing radiation assessments

    NASA Technical Reports Server (NTRS)

    Colborn, B. L.; Armstrong, T. W.

    1992-01-01

    A computer model of the three dimensional geometry and material distributions for the LDEF spacecraft, experiment trays, and, for selected trays, the components of experiments within a tray was developed for use in ionizing radiation assessments. The model is being applied to provide 3-D shielding distributions around radiation dosimeters to aid in data interpretation, particularly in assessing the directional properties of the radiation exposure. Also, the model has been interfaced with radiation transport codes for 3-D dosimetry response predictions and for calculations related to determining the accuracy of trapped proton and cosmic ray environment models. The methodology is described used in developing the 3-D LDEF model and the level of detail incorporated. Currently, the trays modeled in detail are F2, F8, and H12 and H3. Applications of the model which are discussed include the 3-D shielding distributions around various dosimeters, the influence of shielding on dosimetry responses, and comparisons of dose predictions based on the present 3-D model vs those from 1-D geometry model approximations used in initial estimates.

  1. Optimal angular dose distribution to acquire 3D and extra 2D images for digital breast tomosynthesis (DBT)

    NASA Astrophysics Data System (ADS)

    Park, Hye-Suk; Kim, Ye-Seul; Lee, Haeng-Hwa; Gang, Won-Suk; Kim, Hee-Joung; Choi, Young-Wook; Choi, JaeGu

    2015-08-01

    The purpose of this study is to determine the optimal non-uniform angular dose distribution to improve the quality of the 3D reconstructed images and to acquire extra 2D projection images. In this analysis, 7 acquisition sets were generated by using four different values for the number of projections (11, 15, 21, and 29) and total angular range (±14°, ±17.5°, ±21°, and ±24.5° ). For all acquisition sets, the zero-degree projection was used as the 2D image that was close to that of standard conventional mammography (CM). Exposures used were 50, 100, 150, and 200 mR for the zero-degree projection, and the remaining dose was distributed over the remaining projection angles. To quantitatively evaluate image quality, we computed the CNR (contrast-to-noise ratio) and the ASF (artifact spread function) for the same radiation dose. The results indicate that, for microcalcifications, acquisition sets with approximately 4 times higher exposure on the zero-degree projection than the average exposure for the remaining projection angles yielded higher CNR values and were 3% higher than the uniform distribution. However, very high dose concentrations toward the zero-degree projection may reduce the quality of the reconstructed images due to increasing noise in the peripheral views. The zero-degree projection of the non-uniform dose distribution offers a 2D image similar to that of standard CM, but with a significantly lower radiation dose. Therefore, we need to evaluate the diagnostic potential of extra 2D projection image when diagnose breast cancer by using 3D images with non-uniform angular dose distributions.

  2. 3D radiation hydrodynamics: Interacting photo-evaporating clumps

    NASA Astrophysics Data System (ADS)

    Lim, A. J.; Mellema, G.

    2003-07-01

    We present the results of a new radiation hydrodynamics code called Maartje. This code describes the evolution of a flow in three spatial dimensions using an adaptive mesh, and contains a combination of a ray tracer and an atomic physics module to describe the effects of ionizing radiation. The code is parallelized using a custom threadpool library. We present an application in which we follow the ionization of two dense spherical clumps which are exposed to an ionizing radiation field from a 50 000 K black body. We study various configurations in which one of the clumps shields the other from the ionizing photons. We find that relatively long-lived filamentary structures with narrow tails are formed. This raises the possibility that cometary knots (such as are found in the Helix Nebula) may be the result of the interaction of an ionizing radiation field with an ensemble of clumps, as opposed to the identification of a single knot with a single clump. Movies are available at http://www.edpsciences.org

  3. 2D AND 3D dose verification at The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital using EPIDs

    NASA Astrophysics Data System (ADS)

    Mijnheer, Ben; Mans, Anton; Olaciregui-Ruiz, Igor; Sonke, Jan-Jakob; Tielenburg, Rene; Van Herk, Marcel; Vijlbrief, Ron; Stroom, Joep

    2010-11-01

    A review is given of the clinical use of EPID dosimetry in the Department of Radiation Oncology of The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital. All curative plans (almost all IMRT or VMAT) are verified with EPID dosimetry, mostly in vivo. The 2D approach for IMRT verification and the 3D method for VMAT verification are elucidated and their clinical implementation described. It has been shown that EPID dosimetry plays an important role in the total chain of verification procedures that are implemented in our department. It provides a safety net for advanced treatments such as IMRT and VMAT, as well as a full account of the dose delivered.

  4. Deformable 3D-2D registration for CT and its application to low dose tomographic fluoroscopy

    NASA Astrophysics Data System (ADS)

    Flach, Barbara; Brehm, Marcus; Sawall, Stefan; Kachelrieß, Marc

    2014-12-01

    Many applications in medical imaging include image registration for matching of images from the same or different modalities. In the case of full data sampling, the respective reconstructed images are usually of such a good image quality that standard deformable volume-to-volume (3D-3D) registration approaches can be applied. But research in temporal-correlated image reconstruction and dose reductions increases the number of cases where rawdata are available from only few projection angles. Here, deteriorated image quality leads to non-acceptable deformable volume-to-volume registration results. Therefore a registration approach is required that is robust against a decreasing number of projections defining the target position. We propose a deformable volume-to-rawdata (3D-2D) registration method that aims at finding a displacement vector field maximizing the alignment of a CT volume and the acquired rawdata based on the sum of squared differences in rawdata domain. The registration is constrained by a regularization term in accordance with a fluid-based diffusion. Both cost function components, the rawdata fidelity and the regularization term, are optimized in an alternating manner. The matching criterion is optimized by a conjugate gradient descent for nonlinear functions, while the regularization is realized by convolution of the vector fields with Gaussian kernels. We validate the proposed method and compare it to the demons algorithm, a well-known 3D-3D registration method. The comparison is done for a range of 4-60 target projections using datasets from low dose tomographic fluoroscopy as an application example. The results show a high correlation to the ground truth target position without introducing artifacts even in the case of very few projections. In particular the matching in the rawdata domain is improved compared to the 3D-3D registration for the investigated range. The proposed volume-to-rawdata registration increases the robustness regarding sparse

  5. Deformable 3D-2D registration for CT and its application to low dose tomographic fluoroscopy.

    PubMed

    Flach, Barbara; Brehm, Marcus; Sawall, Stefan; Kachelrieß, Marc

    2014-12-21

    Many applications in medical imaging include image registration for matching of images from the same or different modalities. In the case of full data sampling, the respective reconstructed images are usually of such a good image quality that standard deformable volume-to-volume (3D-3D) registration approaches can be applied. But research in temporal-correlated image reconstruction and dose reductions increases the number of cases where rawdata are available from only few projection angles. Here, deteriorated image quality leads to non-acceptable deformable volume-to-volume registration results. Therefore a registration approach is required that is robust against a decreasing number of projections defining the target position. We propose a deformable volume-to-rawdata (3D-2D) registration method that aims at finding a displacement vector field maximizing the alignment of a CT volume and the acquired rawdata based on the sum of squared differences in rawdata domain. The registration is constrained by a regularization term in accordance with a fluid-based diffusion. Both cost function components, the rawdata fidelity and the regularization term, are optimized in an alternating manner. The matching criterion is optimized by a conjugate gradient descent for nonlinear functions, while the regularization is realized by convolution of the vector fields with Gaussian kernels. We validate the proposed method and compare it to the demons algorithm, a well-known 3D-3D registration method. The comparison is done for a range of 4-60 target projections using datasets from low dose tomographic fluoroscopy as an application example. The results show a high correlation to the ground truth target position without introducing artifacts even in the case of very few projections. In particular the matching in the rawdata domain is improved compared to the 3D-3D registration for the investigated range. The proposed volume-to-rawdata registration increases the robustness regarding sparse

  6. SU-E-T-03: 3D GPU-Accelerated Secondary Checks of Radiation Therapy Treatment Plans

    SciTech Connect

    Clemente, F; Perez, C

    2014-06-01

    Purpose: Redundant treatment verifications in conformal and intensity-modulated radiation therapy techniques are traditionally performed with single point calculations. New solutions can replace these checks with 3D treatment plan verifications. This work describes a software tool (Mobius3D, Mobius Medical Systems) that uses a GPU-accelerated collapsed cone algorithm to perform 3D independent verifications of TPS calculations. Methods: Mobius3D comes with reference beam models for common linear accelerators. The system uses an independently developed collapsed cone algorithm updated with recent enhancements. 144 isotropically-spaced cones are used for each voxel for calculations. These complex calculations can be sped up by using GPUs. Mobius3D calculate dose using DICOM information coming from TPS (CT, RT Struct, RT Plan RT Dose). DVH-metrics and 3D gamma tests can be used to compare both TPS and secondary calculations. 170 patients treated with all common techniques as 3DCFRT (including wedged), static and dynamic IMRT and VMAT have been successfully verified with this solution. Results: Calculation times are between 3–5 minutes for 3DCFRT treatments and 15–20 for most complex dMLC and VMAT plans. For all PTVs mean dose and 90% coverage differences are (1.12±0.97)% and (0.68±1.19)%, respectively. Mean dose discrepancies for all OARs is (0.64±1.00)%. 3D gamma (global, 3%/3 mm) analysis shows a mean passing rate of (97.8 ± 3.0)% for PTVs and (99.0±3.0)% for OARs. 3D gamma pasing rate for all voxels in CT has a mean value of (98.5±1.6)%. Conclusion: Mobius3D is a powerful tool to verify all modalities of radiation therapy treatments. Dose discrepancies calculated by this system are in good agreement with TPS. The use of reference beam data results in time savings and can be used to avoid the propagation of errors in original beam data into our QA system. GPU calculations permit enhanced collapsed cone calculations with reasonable calculation times.

  7. 3D Monte Carlo radiation transfer modelling of photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Campbell, C. Louise; Christison, Craig; Brown, C. Tom A.; Wood, Kenneth; Valentine, Ronan M.; Moseley, Harry

    2015-06-01

    The effects of ageing and skin type on Photodynamic Therapy (PDT) for different treatment methods have been theoretically investigated. A multilayered Monte Carlo Radiation Transfer model is presented where both daylight activated PDT and conventional PDT are compared. It was found that light penetrates deeper through older skin with a lighter complexion, which translates into a deeper effective treatment depth. The effect of ageing was found to be larger for darker skin types. The investigation further strengthens the usage of daylight as a potential light source for PDT where effective treatment depths of about 2 mm can be achieved.

  8. Prostate and seminal vesicle volume based consideration of prostate cancer patients for treatment with 3D-conformal or intensity-modulated radiation therapy

    SciTech Connect

    Reddy, Nandanuri M. S.; Nori, Dattatreyudu; Chang, Hyesook; Lange, Christopher S.; Ravi, Akkamma

    2010-07-15

    Purpose: The purpose of this article was to determine the suitability of the prostate and seminal vesicle volumes as factors to consider patients for treatment with image-guided 3D-conformal radiation therapy (3D-CRT) or intensity-modulated radiation therapy (IMRT), using common dosimetry parameters as comparison tools. Methods: Dosimetry of 3D and IMRT plans for 48 patients was compared. Volumes of prostate, SV, rectum, and bladder, and prescriptions were the same for both plans. For both 3D and IMRT plans, expansion margins to prostate+SV (CTV) and prostate were 0.5 cm posterior and superior and 1 cm in other dimensions to create PTV and CDPTV, respectively. Six-field 3D plans were prepared retrospectively. For 3D plans, an additional 0.5 cm margin was added to PTV and CDPTV. Prescription for both 3D and IMRT plans was the same: 45 Gy to CTV followed by a 36 Gy boost to prostate. Dosimetry parameters common to 3D and IMRT plans were used for comparison: Mean doses to prostate, CDPTV, SV, rectum, bladder, and femurs; percent volume of rectum and bladder receiving 30 (V30), 50 (V50), and 70 Gy (V70), dose to 30% of rectum and bladder, minimum and maximum point dose to CDPTV, and prescription dose covering 95% of CDPTV (D95). Results: When the data for all patients were combined, mean dose to prostate and CDPTV was higher with 3D than IMRT plans (P<0.01). Mean D95 to CDPTV was the same for 3D and IMRT plans (P>0.2). On average, among all cases, the minimum point dose was less for 3D-CRT plans and the maximum point dose was greater for 3D-CRT than for IMRT (P<0.01). Mean dose to 30% rectum with 3D and IMRT plans was comparable (P>0.1). V30 was less (P<0.01), V50 was the same (P>0.2), and V70 was more (P<0.01) for rectum with 3D than IMRT plans. Mean dose to bladder was less with 3D than IMRT plans (P<0.01). V30 for bladder with 3D plans was less than that of IMRT plans (P<0.01). V50 and V70 for 3D plans were the same for 3D and IMRT plans (P>0.2). Mean dose to femurs

  9. A flexible-dose dispenser for immediate and extended release 3D printed tablets.

    PubMed

    Pietrzak, Katarzyna; Isreb, Abdullah; Alhnan, Mohamed A

    2015-10-01

    The advances in personalised medicine increased the demand for a fast, accurate and reliable production method of tablets that can be digitally controlled by healthcare staff. A flexible dose tablet system is presented in this study that proved to be suitable for immediate and extended release tablets with a realistic drug loading and an easy-to-swallow tablet design. The method bridges the affordable and digitally controlled Fused Deposition Modelling (FDM) 3D printing with a standard pharmaceutical manufacturing process, Hot Melt Extrusion (HME). The reported method was compatible with three methacrylic polymers (Eudragit RL, RS and E) as well as a cellulose-based one (hydroxypropyl cellulose, HPC SSL). The use of a HME based pharmaceutical filament preserved the linear relationship between the mass and printed volume and was utilized to digitally control the dose via an input from computer software with dose accuracy in the range of 91-95%. Higher resolution printing quality doubled the printing time, but showed a little effect on in vitro release pattern of theophylline and weight accuracy. Physical characterization studies indicated that the majority of the model drug (theophylline) in the 3D printed tablet exists in a crystal form. Owing to the small size, ease of use and the highly adjustable nature of FDM 3D printers, the method holds promise for future individualised treatment.

  10. A flexible-dose dispenser for immediate and extended release 3D printed tablets.

    PubMed

    Pietrzak, Katarzyna; Isreb, Abdullah; Alhnan, Mohamed A

    2015-10-01

    The advances in personalised medicine increased the demand for a fast, accurate and reliable production method of tablets that can be digitally controlled by healthcare staff. A flexible dose tablet system is presented in this study that proved to be suitable for immediate and extended release tablets with a realistic drug loading and an easy-to-swallow tablet design. The method bridges the affordable and digitally controlled Fused Deposition Modelling (FDM) 3D printing with a standard pharmaceutical manufacturing process, Hot Melt Extrusion (HME). The reported method was compatible with three methacrylic polymers (Eudragit RL, RS and E) as well as a cellulose-based one (hydroxypropyl cellulose, HPC SSL). The use of a HME based pharmaceutical filament preserved the linear relationship between the mass and printed volume and was utilized to digitally control the dose via an input from computer software with dose accuracy in the range of 91-95%. Higher resolution printing quality doubled the printing time, but showed a little effect on in vitro release pattern of theophylline and weight accuracy. Physical characterization studies indicated that the majority of the model drug (theophylline) in the 3D printed tablet exists in a crystal form. Owing to the small size, ease of use and the highly adjustable nature of FDM 3D printers, the method holds promise for future individualised treatment. PMID:26277660

  11. A 3D dose model for low level laser / led therapy biostimulation and bioinhibition

    NASA Astrophysics Data System (ADS)

    Carroll, James D.

    2008-03-01

    There have been numerous reports describing the phenomena of biostimulation and bioinhibition using low-level laser therapy (LLLT) and other light and IR sources within the laboratory and in clinical trials. Stimulation or inhibition employed correctly has been shown clinically to reduce pain, improve tissue repair, resolve inflammation and stimulate the immune system. All these effects are sensitive to different irradiance and / or different energy (sometimes described as dose rate or fluence rate effects). The typical ranges for biostimulation and bioinhibition will be examined and a 3D Arndt Schulz style model proposed to illustrate possible 'dose sweet spots' for the intended clinical effects.

  12. The Impact of Different Levels of Adaptive Iterative Dose Reduction 3D on Image Quality of 320-Row Coronary CT Angiography: A Clinical Trial

    PubMed Central

    Feger, Sarah; Rief, Matthias; Zimmermann, Elke; Martus, Peter; Schuijf, Joanne Désirée; Blobel, Jörg; Richter, Felicitas; Dewey, Marc

    2015-01-01

    Purpose The aim of this study was the systematic image quality evaluation of coronary CT angiography (CTA), reconstructed with the 3 different levels of adaptive iterative dose reduction (AIDR 3D) and compared to filtered back projection (FBP) with quantum denoising software (QDS). Methods Standard-dose CTA raw data of 30 patients with mean radiation dose of 3.2 ± 2.6 mSv were reconstructed using AIDR 3D mild, standard, strong and compared to FBP/QDS. Objective image quality comparison (signal, noise, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), contour sharpness) was performed using 21 measurement points per patient, including measurements in each coronary artery from proximal to distal. Results Objective image quality parameters improved with increasing levels of AIDR 3D. Noise was lowest in AIDR 3D strong (p≤0.001 at 20/21 measurement points; compared with FBP/QDS). Signal and contour sharpness analysis showed no significant difference between the reconstruction algorithms for most measurement points. Best coronary SNR and CNR were achieved with AIDR 3D strong. No loss of SNR or CNR in distal segments was seen with AIDR 3D as compared to FBP. Conclusions On standard-dose coronary CTA images, AIDR 3D strong showed higher objective image quality than FBP/QDS without reducing contour sharpness. Trial Registration Clinicaltrials.gov NCT00967876 PMID:25945924

  13. Dosimetry in radiotherapy using a-Si EPIDs: Systems, methods, and applications focusing on 3D patient dose estimation

    NASA Astrophysics Data System (ADS)

    McCurdy, B. M. C.

    2013-06-01

    An overview is provided of the use of amorphous silicon electronic portal imaging devices (EPIDs) for dosimetric purposes in radiation therapy, focusing on 3D patient dose estimation. EPIDs were originally developed to provide on-treatment radiological imaging to assist with patient setup, but there has also been a natural interest in using them as dosimeters since they use the megavoltage therapy beam to form images. The current generation of clinically available EPID technology, amorphous-silicon (a-Si) flat panel imagers, possess many characteristics that make them much better suited to dosimetric applications than earlier EPID technologies. Features such as linearity with dose/dose rate, high spatial resolution, realtime capability, minimal optical glare, and digital operation combine with the convenience of a compact, retractable detector system directly mounted on the linear accelerator to provide a system that is well-suited to dosimetric applications. This review will discuss clinically available a-Si EPID systems, highlighting dosimetric characteristics and remaining limitations. Methods for using EPIDs in dosimetry applications will be discussed. Dosimetric applications using a-Si EPIDs to estimate three-dimensional dose in the patient during treatment will be overviewed. Clinics throughout the world are implementing increasingly complex treatments such as dynamic intensity modulated radiation therapy and volumetric modulated arc therapy, as well as specialized treatment techniques using large doses per fraction and short treatment courses (ie. hypofractionation and stereotactic radiosurgery). These factors drive the continued strong interest in using EPIDs as dosimeters for patient treatment verification.

  14. Do Fractal Models of Clouds Produces the Right 3D Radiative Effects?

    NASA Technical Reports Server (NTRS)

    Varnai, Tamas; Marshak, Alexander; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Stochastic fractal models of clouds are often used to study 3D radiative effects and their influence on the remote sensing of cloud properties. Since it is important that the cloud models produce a correct radiative response, some researchers require the model parameters to match observed cloud properties such as scale-independent optical thickness variability. Unfortunately, matching these properties does not necessarily imply that the cloud models will cause the right 3D radiative effects. First, the matched properties alone only influence the 3D effects but do not completely determine them. Second, in many cases the retrieved cloud properties have been already biased by 3D radiative effects, and so the models may not match the true real clouds. Finally, the matched cloud properties cannot be considered independent from the scales at which they have been retrieved. This paper proposes an approach that helps ensure that fractal cloud models are realistic and produce the right 3D effects. The technique compares the results of radiative transfer simulations for the model clouds to new direct observations of 3D radiative effects in satellite images.

  15. 3D quantification of brain microvessels exposed to heavy particle radiation

    NASA Astrophysics Data System (ADS)

    Hintermüller, C.; Coats, J. S.; Obenaus, A.; Nelson, G.; Krucker, T.; Stampanoni, M.

    2009-09-01

    Space radiation with high energy particles and cosmic rays presents a significant hazard to spaceflight crews. Recent reviews of the health risk to astronauts from ionizing radiation concluded to establish a level of risk which may indicate the possible performance decrements and decreased latency of late dysfunction syndromes (LDS) of the brain. A hierarchical imaging approach developed at ETH Zürich and PSI, which relies on synchrotron based X-ray Tomographic Microscopy (SRXTM), was used to visualize and analyze 3D vascular structures down to the capillary level in their precise anatomical context. Various morphological parameters, such as overall vessel volume, vessel thickness and spacing, are extracted to characterize the vascular structure within a region of interest. For a first quantification of the effect of high energy particles on the vasculature we scanned a set of 6 animals, all of same age. The animals were irradiated with 1 Gy, 2 Gy and 4 Gy of 600MeV 56Fe heavy particles simulating the space radiation environment. We found that with increasing dose the diameter of vessels and the overall vessel volume are decreased whereas the vessel spacing is increased. As these parameters reflect blood flow in three-dimensional space they can be used as indicators for the degree of vascular efficiency which can have an impact on the function and development of lung tissue or tumors.

  16. 3D unstructured-mesh radiation transport codes

    SciTech Connect

    Morel, J.

    1997-12-31

    Three unstructured-mesh radiation transport codes are currently being developed at Los Alamos National Laboratory. The first code is ATTILA, which uses an unstructured tetrahedral mesh in conjunction with standard Sn (discrete-ordinates) angular discretization, standard multigroup energy discretization, and linear-discontinuous spatial differencing. ATTILA solves the standard first-order form of the transport equation using source iteration in conjunction with diffusion-synthetic acceleration of the within-group source iterations. DANTE is designed to run primarily on workstations. The second code is DANTE, which uses a hybrid finite-element mesh consisting of arbitrary combinations of hexahedra, wedges, pyramids, and tetrahedra. DANTE solves several second-order self-adjoint forms of the transport equation including the even-parity equation, the odd-parity equation, and a new equation called the self-adjoint angular flux equation. DANTE also offers three angular discretization options: $S{_}n$ (discrete-ordinates), $P{_}n$ (spherical harmonics), and $SP{_}n$ (simplified spherical harmonics). DANTE is designed to run primarily on massively parallel message-passing machines, such as the ASCI-Blue machines at LANL and LLNL. The third code is PERICLES, which uses the same hybrid finite-element mesh as DANTE, but solves the standard first-order form of the transport equation rather than a second-order self-adjoint form. DANTE uses a standard $S{_}n$ discretization in angle in conjunction with trilinear-discontinuous spatial differencing, and diffusion-synthetic acceleration of the within-group source iterations. PERICLES was initially designed to run on workstations, but a version for massively parallel message-passing machines will be built. The three codes will be described in detail and computational results will be presented.

  17. Involved-Site Image-Guided Intensity Modulated Versus 3D Conformal Radiation Therapy in Early Stage Supradiaphragmatic Hodgkin Lymphoma

    SciTech Connect

    Filippi, Andrea Riccardo; Ciammella, Patrizia; Piva, Cristina; Ragona, Riccardo; Botto, Barbara; Gavarotti, Paolo; Merli, Francesco; Vitolo, Umberto; Iotti, Cinzia; Ricardi, Umberto

    2014-06-01

    Purpose: Image-guided intensity modulated radiation therapy (IG-IMRT) allows for margin reduction and highly conformal dose distribution, with consistent advantages in sparing of normal tissues. The purpose of this retrospective study was to compare involved-site IG-IMRT with involved-site 3D conformal RT (3D-CRT) in the treatment of early stage Hodgkin lymphoma (HL) involving the mediastinum, with efficacy and toxicity as primary clinical endpoints. Methods and Materials: We analyzed 90 stage IIA HL patients treated with either involved-site 3D-CRT or IG-IMRT between 2005 and 2012 in 2 different institutions. Inclusion criteria were favorable or unfavorable disease (according to European Organization for Research and Treatment of Cancer criteria), complete response after 3 to 4 cycles of an adriamycin- bleomycin-vinblastine-dacarbazine (ABVD) regimen plus 30 Gy as total radiation dose. Exclusion criteria were chemotherapy other than ABVD, partial response after ABVD, total radiation dose other than 30 Gy. Clinical endpoints were relapse-free survival (RFS) and acute toxicity. Results: Forty-nine patients were treated with 3D-CRT (54.4%) and 41 with IG-IMRT (45.6%). Median follow-up time was 54.2 months for 3D-CRT and 24.1 months for IG-IMRT. No differences in RFS were observed between the 2 groups, with 1 relapse each. Three-year RFS was 98.7% for 3D-CRT and 100% for IG-IMRT. Grade 2 toxicity events, mainly mucositis, were recorded in 32.7% of 3D-CRT patients (16 of 49) and in 9.8% of IG-IMRT patients (4 of 41). IG-IMRT was significantly associated with a lower incidence of grade 2 acute toxicity (P=.043). Conclusions: RFS rates at 3 years were extremely high in both groups, albeit the median follow-up time is different. Acute tolerance profiles were better for IG-IMRT than for 3D-CRT. Our preliminary results support the clinical safety and efficacy of advanced RT planning and delivery techniques in patients affected with early stage HL, achieving complete

  18. 3D hydrodynamical and radiative transfer modeling of η Carinae's colliding winds

    NASA Astrophysics Data System (ADS)

    Madura, T. I.; Clementel, N.; Gull, T. R.; Kruip, C. J. H.; Paardekooper, J.-P.; Icke, V.

    We present results of full 3D hydrodynamical and radiative transfer simulations of the colliding stellar winds in the massive binary system η Carinae. We accomplish this by applying the SimpleX algorithm for 3D radiative transfer on an unstructured Voronoi-Delaunay grid to recent 3D smoothed particle hydrodynamics (SPH) simulations of the binary colliding winds. We use SimpleX to obtain detailed ionization fractions of hydrogen and helium, in 3D, at the resolution of the original SPH simulations. We investigate several computational domain sizes and Luminous Blue Variable primary star mass-loss rates. We furthermore present new methods of visualizing and interacting with output from complex 3D numerical simulations, including 3D interactive graphics and 3D printing. While we initially focus on η Car, the methods employed can be applied to numerous other colliding wind (WR 140, WR 137, WR 19) and dusty `pinwheel' (WR 104, WR 98a) binary systems. Coupled with 3D hydrodynamical simulations, SimpleX simulations have the potential to help determine the regions where various observed time-variable emission and absorption lines form in these unique objects.

  19. SU-E-T-511: Do Presage 3D Dosimeters Show Dose Fractionation Sensitivity?

    SciTech Connect

    Klawikowski, S; Alqathami, M; Ibbott, G; Adamovics, J; Benning, R

    2014-06-01

    Purpose: To determine whether Presage 3D polymer dosimeter dose response is sensitive to dose delivery fractionation. Bang gels have demonstrated a dose fractionation related dependence in which a single 400 cGy irradiation would produce a different detector response than four 100 cGy irradiations even if delivered closely in time to one another. Such a fractional dependent response in Presage would be detrimental for measuring multi-beam irradiations. Methods: Two separate batches of Presage were poured into cuvettes, and a third batch was molded into cuvette shaped blocks. A total of 37 cuvettes/blocks were irradiated in a Cobalt-60 irradiator to 400 cGy within solid water phantoms in either one, eight, or sixteen fractions. Another group of 15 cuvettes were also kept unirradiated and used for background subtraction between the pre-scan and post-scan results. The times between fractional deliveries were held constant at 30 seconds and the Cobalt irradiator dose rate was 49 cGy/min. Each Presage batch has a separate dose sensitivity and therefore fractionation response comparisons were only performed within the same batch. The cuvettes were first pre-scanned the day prior to irradiation and post-scanned the day after irradiation. Other than approximately 3 hours warming time prior to each irradiation and optical density measurement the cuvettes were stored in a refrigerator. All cuvettes were stored in a lightless environment throughout manufacturing and testing. The cuvettes’ optical densities were optically measured at 632 nm with a spectrophotometer. Results: No noticeable dose fractionation dependence was detected for any of the three independent batches of Presage for either the eight or sixteen fraction irradiation schemes. Conclusion: These results indicate using Presage 3D dosimeters to measure multi-beam photon irradiations common in IMRT, Gamma Knife, and Cyberknife treatment delivery schemes. Presage dosimeters are made by and trademarked by Heuris

  20. Feasibility of reduced-dose 3D/4D-DSA using a weighted edge preserving filter

    NASA Astrophysics Data System (ADS)

    Oberstar, Erick L.; Speidel, Michael A.; Davis, Brian J.; Strother, Charles; Mistretta, Charles

    2016-03-01

    A conventional 3D/4D digital subtraction angiogram (DSA) requires two rotational acquisitions (mask and fill) to compute the log-subtracted projections that are used to reconstruct a 3D/4D volume. Since all of the vascular information is contained in the fill acquisition, it is hypothesized that it is possible to reduce the x-ray dose of the mask acquisition substantially and still obtain subtracted projections adequate to reconstruct a 3D/4D volume with noise level comparable to a full dose acquisition. A full dose mask and fill acquisition were acquired from a clinical study to provide a known full dose reference reconstruction. Gaussian noise was added to the mask acquisition to simulate a mask acquisition acquired at 10% relative dose. Noise in the low-dose mask projections was reduced with a weighted edge preserving (WEP) filter designed to preserve bony edges while suppressing noise. 2D log-subtracted projections were computed from the filtered low-dose mask and full-dose fill projections, and then 3D/4D-DSA reconstruction algorithms were applied. Additional bilateral filtering was applied to the 3D volumes. The signal-to-noise ratio measured in the filtered 3D/4D-DSA volumes was compared to the full dose case. The average ratio of filtered low-dose SNR to full-dose SNR was 1.07 for the 3D-DSA and 1.05 for the 4D-DSA, indicating the method is a feasible approach to restoring SNR in DSA scans acquired with a low-dose mask. The method was also tested in a phantom study with full dose fill and 22% dose mask.

  1. 3D dose and TCP distribution for radionuclide therapy in nuclear medicine

    SciTech Connect

    Valente, M.; Malano, F.; Perez, P.

    2010-08-04

    A common feature to any radiant therapy is that lesion and health tissue dosimetry provides relevant information for treatment optimization along with dose-efficacy and dose-complication correlation studies. Nowadays, different radionuclide therapies are commonly available, assessing both systemic and loco-regional approach and using different alfa-, beta-and gamma-emitting isotopes and binding molecules. It is well established, that specific dosimetric approaches become necessary according to each therapy modality. Sometimes, observed activity distribution can be satisfactory represented by simple geometrical models. However, Monte Carlo techniques are capable of better approaches, therefore becoming sometimes the only way to get dosimetric data since the patient-specific situation can not be adequately represented by conventional dosimetry techniques. Therefore, due to strong limitations of traditional and standard methods, this work concentrates on the development of a dedicated and novel calculation system in order to assess the dose distribution within the irradiated patient. However, physical dose may not be enough information in order to establish real deterministic biological/metabolic effects; therefore complementary radiobiological models have been suitably introduced with the aim of performing realistic 3D dose as well as corresponding Tumor Control Probability distribution calculation.

  2. The effect of CT dose on glenohumeral joint congruency measurements using 3D reconstructed patient-specific bone models

    NASA Astrophysics Data System (ADS)

    Lalone, Emily A.; Fox, Anne-Marie V.; Kedgley, Angela E.; Jenkyn, Thomas R.; King, Graham J. W.; Athwal, George S.; Johnson, James A.; Peters, Terry M.

    2011-10-01

    The study of joint congruency at the glenohumeral joint of the shoulder using computed tomography (CT) and three-dimensional (3D) reconstructions of joint surfaces is an area of significant clinical interest. However, ionizing radiation delivered to patients during CT examinations is much higher than other types of radiological imaging. The shoulder represents a significant challenge for this modality as it is adjacent to the thyroid gland and breast tissue. The objective of this study was to determine the optimal CT scanning techniques that would minimize radiation dose while accurately quantifying joint congruency of the shoulder. The results suggest that only one-tenth of the standard applied total current (mA) and a pitch ratio of 1.375:1 was necessary to produce joint congruency values consistent with that of the higher dose scans. Using the CT scanning techniques examined in this study, the effective dose applied to the shoulder to quantify joint congruency was reduced by 88.9% compared to standard clinical CT imaging techniques.

  3. 3D-printed surface mould applicator for high-dose-rate brachytherapy

    NASA Astrophysics Data System (ADS)

    Schumacher, Mark; Lasso, Andras; Cumming, Ian; Rankin, Adam; Falkson, Conrad B.; Schreiner, L. John; Joshi, Chandra; Fichtinger, Gabor

    2015-03-01

    In contemporary high-dose-rate brachytherapy treatment of superficial tumors, catheters are placed in a wax mould. The creation of current wax models is a difficult and time consuming proces.The irradiation plan can only be computed post-construction and requires a second CT scan. In case no satisfactory dose plan can be created, the mould is discarded and the process is repeated. The objective of this work was to develop an automated method to replace suboptimal wax moulding. We developed a method to design and manufacture moulds that guarantee to yield satisfactory dosimetry. A 3D-printed mould with channels for the catheters designed from the patient's CT and mounted on a patient-specific thermoplastic mesh mask. The mould planner was implemented as an open-source module in the 3D Slicer platform. Series of test moulds were created to accommodate standard brachytherapy catheters of 1.70mm diameter. A calibration object was used to conclude that tunnels with a diameter of 2.25mm, minimum 12mm radius of curvature, and 1.0mm open channel gave the best fit for this printer/catheter combination. Moulds were created from the CT scan of thermoplastic mesh masks of actual patients. The patient-specific moulds have been visually verified to fit on the thermoplastic meshes. The masks were visually shown to fit onto the thermoplastic meshes, next the resulting dosimetry will have to be compared with treatment plans and dosimetry achieved with conventional wax moulds in order to validate our 3D printed moulds.

  4. Solar Radiation Transport in the Cloudy Atmosphere: A 3D Perspective on Observations and Climate Impacts

    NASA Technical Reports Server (NTRS)

    Davis, Anthony B.; Marshak, Alexander

    2010-01-01

    The interplay of sunlight with clouds is a ubiquitous and often pleasant visual experience, but it conjures up major challenges for weather, climate, environmental science and beyond. Those engaged in the characterization of clouds (and the clear air nearby) by remote sensing methods are even more confronted. The problem comes, on the one hand, from the spatial complexity of real clouds and, on the other hand, from the dominance of multiple scattering in the radiation transport. The former ingredient contrasts sharply with the still popular representation of clouds as homogeneous plane-parallel slabs for the purposes of radiative transfer computations. In typical cloud scenes the opposite asymptotic transport regimes of diffusion and ballistic propagation coexist. We survey the three-dimensional (3D) atmospheric radiative transfer literature over the past 50 years and identify three concurrent and intertwining thrusts: first, how to assess the damage (bias) caused by 3D effects in the operational 1D radiative transfer models? Second, how to mitigate this damage? Finally, can we exploit 3D radiative transfer phenomena to innovate observation methods and technologies? We quickly realize that the smallest scale resolved computationally or observationally may be artificial but is nonetheless a key quantity that separates the 3D radiative transfer solutions into two broad and complementary classes: stochastic and deterministic. Both approaches draw on classic and contemporary statistical, mathematical and computational physics.

  5. Comparison of 2D and 3D Imaging and Treatment Planning for Postoperative Vaginal Apex High-Dose Rate Brachytherapy for Endometrial Cancer

    SciTech Connect

    Russo, James K.; Armeson, Kent E.; Richardson, Susan

    2012-05-01

    Purpose: To evaluate bladder and rectal doses using two-dimensional (2D) and 3D treatment planning for vaginal cuff high-dose rate (HDR) in endometrial cancer. Methods and Materials: Ninety-one consecutive patients treated between 2000 and 2007 were evaluated. Seventy-one and 20 patients underwent 2D and 3D planning, respectively. Each patient received six fractions prescribed at 0.5 cm to the superior 3 cm of the vagina. International Commission on Radiation Units and Measurements (ICRU) doses were calculated for 2D patients. Maximum and 2-cc doses were calculated for 3D patients. Organ doses were normalized to prescription dose. Results: Bladder maximum doses were 178% of ICRU doses (p < 0.0001). Two-cubic centimeter doses were no different than ICRU doses (p = 0.22). Two-cubic centimeter doses were 59% of maximum doses (p < 0.0001). Rectal maximum doses were 137% of ICRU doses (p < 0.0001). Two-cubic centimeter doses were 87% of ICRU doses (p < 0.0001). Two-cubic centimeter doses were 64% of maximum doses (p < 0.0001). Using the first 1, 2, 3, 4 or 5 fractions, we predicted the final bladder dose to within 10% for 44%, 59%, 83%, 82%, and 89% of patients by using the ICRU dose, and for 45%, 55%, 80%, 85%, and 85% of patients by using the maximum dose, and for 37%, 68%, 79%, 79%, and 84% of patients by using the 2-cc dose. Using the first 1, 2, 3, 4 or 5 fractions, we predicted the final rectal dose to within 10% for 100%, 100%, 100%, 100%, and 100% of patients by using the ICRU dose, and for 60%, 65%, 70%, 75%, and 75% of patients by using the maximum dose, and for 68%, 95%, 84%, 84%, and 84% of patients by using the 2-cc dose. Conclusions: Doses to organs at risk vary depending on the calculation method. In some cases, final dose accuracy appears to plateau after the third fraction, indicating that simulation and planning may not be necessary in all fractions. A clinically relevant level of accuracy should be determined and further research conducted to address

  6. A Comparison of Helical Intensity-Modulated Radiotherapy, Intensity-Modulated Radiotherapy, and 3D-Conformal Radiation Therapy for Pancreatic Cancer

    SciTech Connect

    Poppe, Matthew M.; Narra, Venkat; Yue, Ning J.; Zhou Jinghao; Nelson, Carl; Jabbour, Salma K.

    2011-01-01

    We assessed dosimetric differences in pancreatic cancer radiotherapy via helical intensity-modulated radiotherapy (HIMRT), linac-based IMRT, and 3D-conformal radiation therapy (3D-CRT) with regard to successful plan acceptance and dose to critical organs. Dosimetric analysis was performed in 16 pancreatic cases that were planned to 54 Gy; both post-pancreaticoduodenectomy (n = 8) and unresected (n = 8) cases were compared. Without volume modification, plans met constraints 75% of the time with HIMRT and IMRT and 13% with 3D-CRT. There was no statistically significantly improvement with HIMRT over conventional IMRT in reducing liver V35, stomach V45, or bowel V45. HIMRT offers improved planning target volume (PTV) dose homogeneity compared with IMRT, averaging a lower maximum dose and higher volume receiving the prescription dose (D100). HIMRT showed an increased mean dose over IMRT to bowel and liver. Both HIMRT and IMRT offer a statistically significant improvement over 3D-CRT in lowering dose to liver, stomach, and bowel. The results were similar for both unresected and resected patients. In pancreatic cancer, HIMRT offers improved dose homogeneity over conventional IMRT and several significant benefits to 3D-CRT. Factors to consider before incorporating IMRT into pancreatic cancer therapy are respiratory motion, dose inhomogeneity, and mean dose.

  7. 3D modeling of satellite spectral images, radiation budget and energy budget of urban landscapes

    NASA Astrophysics Data System (ADS)

    Gastellu-Etchegorry, J. P.

    2008-12-01

    DART EB is a model that is being developed for simulating the 3D (3 dimensional) energy budget of urban and natural scenes, possibly with topography and atmosphere. It simulates all non radiative energy mechanisms (heat conduction, turbulent momentum and heat fluxes, water reservoir evolution, etc.). It uses DART model (Discrete Anisotropic Radiative Transfer) for simulating radiative mechanisms: 3D radiative budget of 3D scenes and their remote sensing images expressed in terms of reflectance or brightness temperature values, for any atmosphere, wavelength, sun/view direction, altitude and spatial resolution. It uses an innovative multispectral approach (ray tracing, exact kernel, discrete ordinate techniques) over the whole optical domain. This paper presents two major and recent improvements of DART for adapting it to urban canopies. (1) Simulation of the geometry and optical characteristics of urban elements (houses, etc.). (2) Modeling of thermal infrared emission by vegetation and urban elements. The new DART version was used in the context of the CAPITOUL project. For that, districts of the Toulouse urban data base (Autocad format) were translated into DART scenes. This allowed us to simulate visible, near infrared and thermal infrared satellite images of Toulouse districts. Moreover, the 3D radiation budget was used by DARTEB for simulating the time evolution of a number of geophysical quantities of various surface elements (roads, walls, roofs). Results were successfully compared with ground measurements of the CAPITOUL project.

  8. A Review of 3D Radiative Transfer in Atmospheric Science: History and Outlook

    NASA Astrophysics Data System (ADS)

    Wiscombe, W. J.

    2006-12-01

    3D radiative transfer has, until recently, remained a marginal subject within atmospheric science. While some measurement techniques like lidar and radar are inherently 3D, the simplifying assumptions made in the use of such data have alleviated any need to deal with 3D radiative transfer. Cloud scenes are obviously 3D, but the crude resolution of past atmospheric models (GCMs) required clouds to be treated as 1D. Measured radiative fluxes containing 3D cloud effects were simply time-averaged until all their 3D-ness was apparently beaten out of them. The main subject which has propelled 3D radiative transfer onto center stage is, nevertheless, clouds. This is because conventional GCMs are being challenged by GCMs that have their large-scale parametrizations of cloud-related processes replaced by explicit cloud-system-resolving models. Within these new GCMs, 3D radiative transfer cannot be ignored since cloud fluctuations are resolved explicitly down to scales where 1D and 3D radiative transfer can differ markedly. This talk will attempt to identify the high points in the development of the 3D cloud radiation field. My own career interleaved with much of this history, including the strong move away from just using computers and toward field observations, and also the effort to fit the new knowledge into climate models. The 3D cloud radiation field began in the 1970s, but attracted few adherents because of severe limitations on computer time and memory, and also because of ignorance of cloud structure (beyond the qualitative classifications which had ruled for 170 years). The earliest landmarks were Monte Carlo calcuations for cubic clouds, whose main point was the drastic errors incurred by ignoring cloud 3D-ness. This line of development ramified until the early 1990s, leading finally to randomly placed cubes with sizes drawn from a probability distribution. A parallel line of development began with the landmark paper of Lovejoy in 1982, which showed that cloud

  9. IM3D: A parallel Monte Carlo code for efficient simulations of primary radiation displacements and damage in 3D geometry

    PubMed Central

    Li, Yong Gang; Yang, Yang; Short, Michael P.; Ding, Ze Jun; Zeng, Zhi; Li, Ju

    2015-01-01

    SRIM-like codes have limitations in describing general 3D geometries, for modeling radiation displacements and damage in nanostructured materials. A universal, computationally efficient and massively parallel 3D Monte Carlo code, IM3D, has been developed with excellent parallel scaling performance. IM3D is based on fast indexing of scattering integrals and the SRIM stopping power database, and allows the user a choice of Constructive Solid Geometry (CSG) or Finite Element Triangle Mesh (FETM) method for constructing 3D shapes and microstructures. For 2D films and multilayers, IM3D perfectly reproduces SRIM results, and can be ∼102 times faster in serial execution and > 104 times faster using parallel computation. For 3D problems, it provides a fast approach for analyzing the spatial distributions of primary displacements and defect generation under ion irradiation. Herein we also provide a detailed discussion of our open-source collision cascade physics engine, revealing the true meaning and limitations of the “Quick Kinchin-Pease” and “Full Cascades” options. The issues of femtosecond to picosecond timescales in defining displacement versus damage, the limitation of the displacements per atom (DPA) unit in quantifying radiation damage (such as inadequacy in quantifying degree of chemical mixing), are discussed. PMID:26658477

  10. Radiation: Doses, Effects, Risks.

    ERIC Educational Resources Information Center

    Lean, Geoffrey, Ed.

    Few scientific issues arouse as much public controversy as the effects of radiation. This booklet is an attempt to summarize what is known about radiation and provide a basis for further discussion and debate. The first four chapters of the booklet are based on the most recent reports to the United Nations' General Assembly by the United Nations…

  11. 3D Hydrodynamical and Radiative Transfer Modeling of Eta Carinae's Colliding Winds

    NASA Astrophysics Data System (ADS)

    Madura, Thomas Ignatius; Clementel, Nicola; Gull, Theodore R.; Kruip, Chael J. H.; Paardekooper, Jan-Pieter; Icke, Vincent

    2015-08-01

    We present the results of full 3D hydrodynamical and radiative transfer simulations of the colliding stellar winds in the massive binary system Eta Carinae (Clementel, Madura, et al. 2014, MNRAS, 443, 2475 and Clementel, Madura, et al. 2015, MNRAS, 447, 2445). We accomplish this by applying the SimpleX algorithm for 3D radiative transfer on an unstructured Voronoi-Delaunay grid to 3D smoothed particle hydrodynamics simulations of the binary colliding winds. We use SimpleX to obtain detailed ionization fractions of hydrogen and helium in 3D. We investigate several computational domain sizes and Luminous Blue Variable primary-star mass-loss rates. We show how the SimpleX simulations can be used to generate synthetic spectral data cubes for comparison to data obtained with the Hubble Space Telescope (HST)/Space Telescope Imaging Spectrograph as part of a multi-cycle program to map changes in Eta Carinae's spatially extended interacting wind structures across one binary cycle. Comparison of the HST observations to the SimpleX models can help lead to more accurate constraints on the orbital, stellar, and wind parameters of the Eta Carinae system, such as the LBV primary's mass-loss rate and the companion star's temperature and luminosity. We furthermore present new methods of visualizing and interacting with output from complex 3D numerical simulations, including 3D interactive graphics and 3D printing (Madura et al. 2015, arXiv:1503.00716). While we initially focus specifically on Eta Carinae, the methods employed can be applied to numerous other colliding wind (WR 140, WR 137, WR 19) and dusty ‘pinwheel’ (WR 112, WR 104, WR 98a) binary systems. Coupled with 3D hydrodynamical simulations, SimpleX simulations have the potential to help determine the regions where dust can form and survive in these unique objects.

  12. 3D Radiative Transfer in Eta Carinae: The SimpleX Radiative Transfer Algorithm Applied to 3D SPH Simulations of Eta Car's Colliding Winds

    NASA Astrophysics Data System (ADS)

    Clementel, N.; Madura, T. I.; Kruip, C. J. H.; Icke, V.; Gull, T. R.

    2014-04-01

    At the heart of the spectacular bipolar Homunculus nebula lies an extremely luminous (5*10^6 L_sun) colliding wind binary with a highly eccentric (e ~ 0.9), 5.54-year orbit and a total mass ~ 110 M_sun. Our closest (D ~ 2.3 kpc) and best example of a pre-hypernova environment, Eta Carinae is an ideal astrophysical laboratory for studying massive binary interactions, stellar wind-wind collisions, and massive star evolution. In order to improve our knowledge of the system, we need to generate synthetic observations and compare them with the already available and future HST/STIS data. We present initial results from full 3D radiative transfer post-processing of 3D SPH hydrodynamical simulations of the interacting winds of Eta Carinae. We use SimpleX algorithm to obtain the ionization fractions of hydrogen and helium, this results in ionization maps of both species that constrain the regions where these lines can form. These results will allow us to put constraints on the number of ionizing photons coming from the companion. This construction of synthetic observations allows us to obtain insight into the highly complex 3D flows in Eta, from the shape of the ionized volume and its resulting optical/spectral appearance.

  13. Evaluation of dosimetric misrepresentations from 3D conventional planning of liver SBRT using 4D deformable dose integration.

    PubMed

    Yeo, Unjin A; Taylor, Michael L; Supple, Jeremy R; Siva, Shankar; Kron, Tomas; Pham, Daniel; Franich, Rick D

    2014-11-08

    The purpose of this study is to evaluate dosimetric errors in 3D conventional plan- ning of stereotactic body radiotherapy (SBRT) by using a 4D deformable image registration (DIR)-based dose-warping and integration technique. Respiratory- correlated 4D CT image sets with 10 phases were acquired for four consecutive patients with five liver tumors. Average intensity projection (AIP) images were used to generate 3D conventional plans of SBRT. Quasi-4D path-integrated dose accumulation was performed over all 10 phases using dose-warping techniques based on DIR. This result was compared to the conventional plan in order to evalu- ate the appropriateness of 3D (static) dose calculations. In addition, we consider whether organ dose metrics derived from contours defined on the average intensity projection (AIP), or on a reference phase, provide the better approximation of the 4D values. The impact of using fewer (< 10) phases was also explored. The AIP- based 3D planning approach overestimated doses to targets by 1.4% to 8.7% (mean 4.2%) and underestimated dose to normal liver by up to 8% (mean -5.5%; range -2.3% to -8.0%), compared to the 4D methodology. The homogeneity of the dose distribution was overestimated when using conventional 3D calculations by up to 24%. OAR doses estimated by 3D planning were, on average, within 10% of the 4D calculations; however, differences of up to 100% were observed. Four-dimensional dose calculation using 3 phases gave a reasonable approximation of that calculated from the full 10 phases for all patients, which is potentially useful from a workload perspective. 4D evaluation showed that conventional 3D planning on an AIP can significantly overestimate target dose (ITV and GTV+5mm), underestimate normal liver dose, and overestimate dose homogeneity. Implementing nonadaptive quasi- 4D dose calculation can highlight the potential limitation of 3D conventional SBRT planning and the resultant misrepresentations of dose in some regions

  14. A comparative analysis of 3D conformal deep inspiratory–breath hold and free-breathing intensity-modulated radiation therapy for left-sided breast cancer

    SciTech Connect

    Reardon, Kelli A.; Read, Paul W.; Morris, Monica M.; Reardon, Michael A.; Geesey, Constance; Wijesooriya, Krishni

    2013-07-01

    Patients undergoing radiation for left-sided breast cancer have increased rates of coronary artery disease. Free-breathing intensity-modulated radiation therapy (FB-IMRT) and 3-dimensional conformal deep inspiratory–breath hold (3D-DIBH) reduce cardiac irradiation. The purpose of this study is to compare the dose to organs at risk in FB-IMRT vs 3D-DIBH for patients with left-sided breast cancer. Ten patients with left-sided breast cancer had 2 computed tomography scans: free breathing and voluntary DIBH. Optimization of the IMRT plan was performed on the free-breathing scan using 6 noncoplanar tangential beams. The 3D-DIBH plan was optimized on the DIBH scan and used standard tangents. Mean volumes of the heart, the left anterior descending coronary artery (LAD), the total lung, and the right breast receiving 5% to 95% (5% increments) of the prescription dose were calculated. Mean volumes of the heart and the LAD were lower (p<0.05) in 3D-DIBH for volumes receiving 5% to 80% of the prescription dose for the heart and 5% for the LAD. Mean dose to the LAD and heart were lower in 3D-DIBH (p≤0.01). Mean volumes of the total lung were lower in FB-IMRT for dose levels 20% to 75% (p<0.05), but mean dose was not different. Mean volumes of the right breast were not different for any dose; however, mean dose was lower for 3D-DIBH (p = 0.04). 3D-DIBH is an alternative approach to FB-IMRT that provides a clinically equivalent treatment for patients with left-sided breast cancer while sparing organs at risk with increased ease of implementation.

  15. Using the full scale 3D solid anthropometric model in radiation oncology positioning and verification.

    PubMed

    Sun, Shuh-Ping; Wu, Ching-Jung

    2004-01-01

    This paper describes the full size solid 3D Anthropometric Model using in the positioning and verification process for radiation treatment planning of the skull of cancer patients in radiotherapy. In order to obtain a full scale 3D, solid Anthropometric Model, data is first collected through computed tomography and optical scanning. Through surface reconstruction, a model is made of the patients skull, after which rapid prototyping and rapid tooling is applied to acquire a 1:1 solid model, thus, it can replace the patient for the tumor positioning and verification in radiotherapy. The 3D Anthropometric Model are not only provide a clear picture of the external appearance, but also allow insight into the internal structure of organic bodies, which is of great advantage in radiotherapy. During radiotherapy planning, 3D Anthropometric Model can be used to simulate all kinds of situations on the simulator and the linear accelerator, without the patient needing to be present, so that the medical physicist or dosimetrist will be able to design a precise treatment plan that is tailored to the patient. The 3D Anthropometric Model production system can effectively help us solve problems related to r adiotherapy positioning and verification, helping both radiotherapists and cancer patients. We expect that the application of 3D Anthropometric Model can reduce the time that needs to be spent on pretreatment procedures and enhance the quality of health care for cancer patients.

  16. Experimental pencil beam kernels derivation for 3D dose calculation in flattening filter free modulated fields.

    PubMed

    Azcona, Juan Diego; Barbés, Benigno; Wang, Lilie; Burguete, Javier

    2016-01-01

    This paper presents a method to obtain the pencil-beam kernels that characterize a megavoltage photon beam generated in a flattening filter free (FFF) linear accelerator (linac) by deconvolution from experimental measurements at different depths. The formalism is applied to perform independent dose calculations in modulated fields. In our previous work a formalism was developed for ideal flat fluences exiting the linac's head. That framework could not deal with spatially varying energy fluences, so any deviation from the ideal flat fluence was treated as a perturbation. The present work addresses the necessity of implementing an exact analysis where any spatially varying fluence can be used such as those encountered in FFF beams. A major improvement introduced here is to handle the actual fluence in the deconvolution procedure. We studied the uncertainties associated to the kernel derivation with this method. Several Kodak EDR2 radiographic films were irradiated with a 10 MV FFF photon beam from two linacs from different vendors, at the depths of 5, 10, 15, and 20cm in polystyrene (RW3 water-equivalent phantom, PTW Freiburg, Germany). The irradiation field was a 50mm diameter circular field, collimated with a lead block. The 3D kernel for a FFF beam was obtained by deconvolution using the Hankel transform. A correction on the low dose part of the kernel was performed to reproduce accurately the experimental output factors. Error uncertainty in the kernel derivation procedure was estimated to be within 0.2%. Eighteen modulated fields used clinically in different treatment localizations were irradiated at four measurement depths (total of fifty-four film measurements). Comparison through the gamma-index to their corresponding calculated absolute dose distributions showed a number of passing points (3%, 3mm) mostly above 99%. This new procedure is more reliable and robust than the previous one. Its ability to perform accurate independent dose calculations was

  17. Experimental pencil beam kernels derivation for 3D dose calculation in flattening filter free modulated fields.

    PubMed

    Azcona, Juan Diego; Barbés, Benigno; Wang, Lilie; Burguete, Javier

    2016-01-01

    This paper presents a method to obtain the pencil-beam kernels that characterize a megavoltage photon beam generated in a flattening filter free (FFF) linear accelerator (linac) by deconvolution from experimental measurements at different depths. The formalism is applied to perform independent dose calculations in modulated fields. In our previous work a formalism was developed for ideal flat fluences exiting the linac's head. That framework could not deal with spatially varying energy fluences, so any deviation from the ideal flat fluence was treated as a perturbation. The present work addresses the necessity of implementing an exact analysis where any spatially varying fluence can be used such as those encountered in FFF beams. A major improvement introduced here is to handle the actual fluence in the deconvolution procedure. We studied the uncertainties associated to the kernel derivation with this method. Several Kodak EDR2 radiographic films were irradiated with a 10 MV FFF photon beam from two linacs from different vendors, at the depths of 5, 10, 15, and 20cm in polystyrene (RW3 water-equivalent phantom, PTW Freiburg, Germany). The irradiation field was a 50mm diameter circular field, collimated with a lead block. The 3D kernel for a FFF beam was obtained by deconvolution using the Hankel transform. A correction on the low dose part of the kernel was performed to reproduce accurately the experimental output factors. Error uncertainty in the kernel derivation procedure was estimated to be within 0.2%. Eighteen modulated fields used clinically in different treatment localizations were irradiated at four measurement depths (total of fifty-four film measurements). Comparison through the gamma-index to their corresponding calculated absolute dose distributions showed a number of passing points (3%, 3mm) mostly above 99%. This new procedure is more reliable and robust than the previous one. Its ability to perform accurate independent dose calculations was

  18. Experimental pencil beam kernels derivation for 3D dose calculation in flattening filter free modulated fields

    NASA Astrophysics Data System (ADS)

    Diego Azcona, Juan; Barbés, Benigno; Wang, Lilie; Burguete, Javier

    2016-01-01

    This paper presents a method to obtain the pencil-beam kernels that characterize a megavoltage photon beam generated in a flattening filter free (FFF) linear accelerator (linac) by deconvolution from experimental measurements at different depths. The formalism is applied to perform independent dose calculations in modulated fields. In our previous work a formalism was developed for ideal flat fluences exiting the linac’s head. That framework could not deal with spatially varying energy fluences, so any deviation from the ideal flat fluence was treated as a perturbation. The present work addresses the necessity of implementing an exact analysis where any spatially varying fluence can be used such as those encountered in FFF beams. A major improvement introduced here is to handle the actual fluence in the deconvolution procedure. We studied the uncertainties associated to the kernel derivation with this method. Several Kodak EDR2 radiographic films were irradiated with a 10 MV FFF photon beam from two linacs from different vendors, at the depths of 5, 10, 15, and 20cm in polystyrene (RW3 water-equivalent phantom, PTW Freiburg, Germany). The irradiation field was a 50mm diameter circular field, collimated with a lead block. The 3D kernel for a FFF beam was obtained by deconvolution using the Hankel transform. A correction on the low dose part of the kernel was performed to reproduce accurately the experimental output factors. Error uncertainty in the kernel derivation procedure was estimated to be within 0.2%. Eighteen modulated fields used clinically in different treatment localizations were irradiated at four measurement depths (total of fifty-four film measurements). Comparison through the gamma-index to their corresponding calculated absolute dose distributions showed a number of passing points (3%, 3mm) mostly above 99%. This new procedure is more reliable and robust than the previous one. Its ability to perform accurate independent dose calculations was

  19. Radiation dose estimates for radiopharmaceuticals

    SciTech Connect

    Stabin, M.G.; Stubbs, J.B.; Toohey, R.E.

    1996-04-01

    Tables of radiation dose estimates based on the Cristy-Eckerman adult male phantom are provided for a number of radiopharmaceuticals commonly used in nuclear medicine. Radiation dose estimates are listed for all major source organs, and several other organs of interest. The dose estimates were calculated using the MIRD Technique as implemented in the MIRDOSE3 computer code, developed by the Oak Ridge Institute for Science and Education, Radiation Internal Dose Information Center. In this code, residence times for source organs are used with decay data from the MIRD Radionuclide Data and Decay Schemes to produce estimates of radiation dose to organs of standardized phantoms representing individuals of different ages. The adult male phantom of the Cristy-Eckerman phantom series is different from the MIRD 5, or Reference Man phantom in several aspects, the most important of which is the difference in the masses and absorbed fractions for the active (red) marrow. The absorbed fractions for flow energy photons striking the marrow are also different. Other minor differences exist, but are not likely to significantly affect dose estimates calculated with the two phantoms. Assumptions which support each of the dose estimates appears at the bottom of the table of estimates for a given radiopharmaceutical. In most cases, the model kinetics or organ residence times are explicitly given. The results presented here can easily be extended to include other radiopharmaceuticals or phantoms.

  20. A study of the 3D radiative transfer effect in cloudy atmospheres

    NASA Astrophysics Data System (ADS)

    Okata, M.; Teruyuki, N.; Suzuki, K.

    2015-12-01

    Evaluation of the effect of clouds in the atmosphere is a significant problem in the Earth's radiation budget study with their large uncertainties of microphysics and the optical properties. In this situation, we still need more investigations of 3D cloud radiative transer problems using not only models but also satellite observational data.For this purpose, we have developed a 3D-Monte-Carlo radiative transfer code that is implemented with various functions compatible with the OpenCLASTR R-Star radiation code for radiance and flux computation, i.e. forward and backward tracing routines, non-linear k-distribution parameterization (Sekiguchi and Nakajima, 2008) for broad band solar flux calculation, and DM-method for flux and TMS-method for upward radiance (Nakajima and Tnaka 1998). We also developed a Minimum cloud Information Deviation Profiling Method (MIDPM) as a method for a construction of 3D cloud field with MODIS/AQUA and CPR/CloudSat data. We then selected a best-matched radar reflectivity factor profile from the library for each of off-nadir pixels of MODIS where CPR profile is not available, by minimizing the deviation between library MODIS parameters and those at the pixel. In this study, we have used three cloud microphysical parameters as key parameters for the MIDPM, i.e. effective particle radius, cloud optical thickness and top of cloud temperature, and estimated 3D cloud radiation budget. We examined the discrepancies between satellite observed and mode-simulated radiances and three cloud microphysical parameter's pattern for studying the effects of cloud optical and microphysical properties on the radiation budget of the cloud-laden atmospheres.

  1. Long-term radiation belt simulation with the VERB 3-D code: Comparison with CRRES observations

    NASA Astrophysics Data System (ADS)

    Subbotin, D. A.; Shprits, Y. Y.; Ni, B.

    2011-12-01

    Highly energetic electrons in the Earth’s radiation belts are hazardous for satellite equipment. Fluxes of relativistic electrons can vary by orders of magnitude during geomagnetic storms. The evolution of relativistic electron fluxes in the radiation belts is described by the 3-D Fokker-Planck equation in terms of the radial distance, energy, and equatorial pitch angle. To better understand the mechanisms that control radiation belt acceleration and loss and particle flux dynamics, we present a long-term radiation belt simulation for 100 days from 29 July to 6 November 1990 with the 3-D Versatile Electron Radiation Belt (VERB) code and compare the results with the electron fluxes observed by the Combined Release and Radiation Effects Satellite (CRRES). We also perform a comparison of Phase Space Density with a multisatellite reanalysis obtained by using Kalman filtering of observations from CRRES, Geosynchronous (GEO), GPS, and Akebono satellites. VERB 3-D simulations include radial, energy, and pitch angle diffusion and mixed energy and pitch angle diffusion driven by electromagnetic waves inside the magnetosphere with losses to the atmosphere. Boundary conditions account for the convective source of electrons and loss to the magnetopause. The results of the simulation that include all of the above processes show a good agreement with the data. The agreement implies that these processes are important for the radiation belt electron dynamics and therefore should be accounted for in outer radiation belt simulations. We also show that the results are very sensitive to the assumed wave model. Our simulations are driven only by the variation of the Kp index and variations of the seed electron population around geosynchronous orbit, which allows the model to be used for forecasting and nowcasting.

  2. HERO - A 3D general relativistic radiative post-processor for accretion discs around black holes

    NASA Astrophysics Data System (ADS)

    Zhu, Yucong; Narayan, Ramesh; Sadowski, Aleksander; Psaltis, Dimitrios

    2015-08-01

    HERO (Hybrid Evaluator for Radiative Objects) is a 3D general relativistic radiative transfer code which has been tailored to the problem of analysing radiation from simulations of relativistic accretion discs around black holes. HERO is designed to be used as a post-processor. Given some fixed fluid structure for the disc (i.e. density and velocity as a function of position from a hydrodynamic or magnetohydrodynamic simulation), the code obtains a self-consistent solution for the radiation field and for the gas temperatures using the condition of radiative equilibrium. The novel aspect of HERO is that it combines two techniques: (1) a short-characteristics (SC) solver that quickly converges to a self-consistent disc temperature and radiation field, with (2) a long-characteristics (LC) solver that provides a more accurate solution for the radiation near the photosphere and in the optically thin regions. By combining these two techniques, we gain both the computational speed of SC and the high accuracy of LC. We present tests of HERO on a range of 1D, 2D, and 3D problems in flat space and show that the results agree well with both analytical and benchmark solutions. We also test the ability of the code to handle relativistic problems in curved space. Finally, we discuss the important topic of ray defects, a major limitation of the SC method, and describe our strategy for minimizing the induced error.

  3. Scripting in Radiation Therapy: An Automatic 3D Beam-Naming System

    SciTech Connect

    Holdsworth, Clay; Hummel-Kramer, Sharon M.; Phillips, Mark

    2011-10-01

    Scripts can be executed within the radiation treatment planning software framework to reduce human error, increase treatment planning efficiency, reduce confusion, and promote consistency within an institution or even among institutions. Scripting is versatile, and one application is an automatic 3D beam-naming system that describes the position of the beam relative to the patient in 3D space. The naming system meets the need for nomenclature that is conducive for clear and accurate communication of beam entry relative to patient anatomy. In radiation oncology in particular, where miscommunication can cause significant harm to patients, a system that minimizes error is essential. Frequent sharing of radiation treatment information occurs not only among members within a department but also between different treatment centers. Descriptions of treatment beams are perhaps the most commonly shared information about a patient's course of treatment in radiation oncology. Automating the naming system by the use of a script reduces the potential for human error, improves efficiency, enforces consistency, and would allow an institution to convert to a new naming system with greater ease. This script has been implemented in the Department of Radiation Oncology at the University of Washington Medical Center since December 2009. It is currently part of the dosimetry protocol and is accessible by medical dosimetrists, radiation oncologists, and medical physicists. This paper highlights the advantages of using an automatic 3D beam-naming script to flawlessly and quickly identify treatment beams with unique names. Scripting in radiation treatment planning software has many uses and great potential for improving clinical care.

  4. Atmospheric radiation flight dose rates

    NASA Astrophysics Data System (ADS)

    Tobiska, W. K.

    2015-12-01

    Space weather's effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun's photons, particles, and fields. Of the domains that are affected by space weather, the coupling between the solar and galactic high-energy particles, the magnetosphere, and atmospheric regions can significantly affect humans and our technology as a result of radiation exposure. Space Environment Technologies (SET) has been conducting space weather observations of the atmospheric radiation environment at aviation altitudes that will eventually be transitioned into air traffic management operations. The Automated Radiation Measurements for Aerospace Safety (ARMAS) system and Upper-atmospheric Space and Earth Weather eXperiment (USEWX) both are providing dose rate measurements. Both activities are under the ARMAS goal of providing the "weather" of the radiation environment to improve aircraft crew and passenger safety. Over 5-dozen ARMAS and USEWX flights have successfully demonstrated the operation of a micro dosimeter on commercial aviation altitude aircraft that captures the real-time radiation environment resulting from Galactic Cosmic Rays and Solar Energetic Particles. The real-time radiation exposure is computed as an effective dose rate (body-averaged over the radiative-sensitive organs and tissues in units of microsieverts per hour); total ionizing dose is captured on the aircraft, downlinked in real-time, processed on the ground into effective dose rates, compared with NASA's Langley Research Center (LaRC) most recent Nowcast of Atmospheric Ionizing Radiation System (NAIRAS) global radiation climatology model runs, and then made available to end users via the web and smart phone apps. Flight altitudes now exceed 60,000 ft. and extend above commercial aviation altitudes into the stratosphere. In this presentation we describe recent ARMAS and USEWX results.

  5. 3D printer generated thorax phantom with mobile tumor for radiation dosimetry.

    PubMed

    Mayer, Rulon; Liacouras, Peter; Thomas, Andrew; Kang, Minglei; Lin, Liyong; Simone, Charles B

    2015-07-01

    This article describes the design, construction, and properties of an anthropomorphic thorax phantom with a moving surrogate tumor. This novel phantom permits detection of dose both inside and outside a moving tumor and within the substitute lung tissue material. A 3D printer generated the thorax shell composed of a chest wall, spinal column, and posterior regions of the phantom. Images of a computed tomography scan of the thorax from a patient with lung cancer provided the template for the 3D printing. The plastic phantom is segmented into two materials representing the muscle and bones, and its geometry closely matches a patient. A surrogate spherical plastic tumor controlled by a 3D linear stage simulates a lung tumor's trajectory during normal breathing. Sawdust emulates the lung tissue in terms of average and distribution in Hounsfield numbers. The sawdust also provides a forgiving medium that permits tumor motion and sandwiching of radiochromic film inside the mobile surrogate plastic tumor for dosimetry. A custom cork casing shields the film and tumor and eliminates film bending during extended scans. The phantom, lung tissue surrogate, and radiochromic film are exposed to a seven field plan based on an ECLIPSE plan for 6 MV photons from a Trilogy machine delivering 230 cGy to the isocenter. The dose collected in a sagittal plane is compared to the calculated plan. Gamma analysis finds 8.8% and 5.5% gamma failure rates for measurements of large amplitude trajectory and static measurements relative to the large amplitude plan, respectively. These particular gamma analysis results were achieved using parameters of 3% dose and 3 mm, for regions receiving doses >150 cGy. The plan assumes a stationary detection grid unlike the moving radiochromic film and tissues. This difference was experimentally observed and motivated calculated dose distributions that incorporated the phase of the tumor periodic motion. These calculations modestly improve agreement between

  6. 3D printer generated thorax phantom with mobile tumor for radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Mayer, Rulon; Liacouras, Peter; Thomas, Andrew; Kang, Minglei; Lin, Liyong; Simone, Charles B.

    2015-07-01

    This article describes the design, construction, and properties of an anthropomorphic thorax phantom with a moving surrogate tumor. This novel phantom permits detection of dose both inside and outside a moving tumor and within the substitute lung tissue material. A 3D printer generated the thorax shell composed of a chest wall, spinal column, and posterior regions of the phantom. Images of a computed tomography scan of the thorax from a patient with lung cancer provided the template for the 3D printing. The plastic phantom is segmented into two materials representing the muscle and bones, and its geometry closely matches a patient. A surrogate spherical plastic tumor controlled by a 3D linear stage simulates a lung tumor's trajectory during normal breathing. Sawdust emulates the lung tissue in terms of average and distribution in Hounsfield numbers. The sawdust also provides a forgiving medium that permits tumor motion and sandwiching of radiochromic film inside the mobile surrogate plastic tumor for dosimetry. A custom cork casing shields the film and tumor and eliminates film bending during extended scans. The phantom, lung tissue surrogate, and radiochromic film are exposed to a seven field plan based on an ECLIPSE plan for 6 MV photons from a Trilogy machine delivering 230 cGy to the isocenter. The dose collected in a sagittal plane is compared to the calculated plan. Gamma analysis finds 8.8% and 5.5% gamma failure rates for measurements of large amplitude trajectory and static measurements relative to the large amplitude plan, respectively. These particular gamma analysis results were achieved using parameters of 3% dose and 3 mm, for regions receiving doses >150 cGy. The plan assumes a stationary detection grid unlike the moving radiochromic film and tissues. This difference was experimentally observed and motivated calculated dose distributions that incorporated the phase of the tumor periodic motion. These calculations modestly improve agreement between

  7. 3D printer generated thorax phantom with mobile tumor for radiation dosimetry

    SciTech Connect

    Mayer, Rulon; Liacouras, Peter; Thomas, Andrew; Kang, Minglei; Lin, Liyong; Simone, Charles B.

    2015-07-15

    This article describes the design, construction, and properties of an anthropomorphic thorax phantom with a moving surrogate tumor. This novel phantom permits detection of dose both inside and outside a moving tumor and within the substitute lung tissue material. A 3D printer generated the thorax shell composed of a chest wall, spinal column, and posterior regions of the phantom. Images of a computed tomography scan of the thorax from a patient with lung cancer provided the template for the 3D printing. The plastic phantom is segmented into two materials representing the muscle and bones, and its geometry closely matches a patient. A surrogate spherical plastic tumor controlled by a 3D linear stage simulates a lung tumor’s trajectory during normal breathing. Sawdust emulates the lung tissue in terms of average and distribution in Hounsfield numbers. The sawdust also provides a forgiving medium that permits tumor motion and sandwiching of radiochromic film inside the mobile surrogate plastic tumor for dosimetry. A custom cork casing shields the film and tumor and eliminates film bending during extended scans. The phantom, lung tissue surrogate, and radiochromic film are exposed to a seven field plan based on an ECLIPSE plan for 6 MV photons from a Trilogy machine delivering 230 cGy to the isocenter. The dose collected in a sagittal plane is compared to the calculated plan. Gamma analysis finds 8.8% and 5.5% gamma failure rates for measurements of large amplitude trajectory and static measurements relative to the large amplitude plan, respectively. These particular gamma analysis results were achieved using parameters of 3% dose and 3 mm, for regions receiving doses >150 cGy. The plan assumes a stationary detection grid unlike the moving radiochromic film and tissues. This difference was experimentally observed and motivated calculated dose distributions that incorporated the phase of the tumor periodic motion. These calculations modestly improve agreement between

  8. 3D radiative transfer in η Carinae: application of the SIMPLEX algorithm to 3D SPH simulations of binary colliding winds

    NASA Astrophysics Data System (ADS)

    Clementel, N.; Madura, T. I.; Kruip, C. J. H.; Icke, V.; Gull, T. R.

    2014-09-01

    Eta Carinae is an ideal astrophysical laboratory for studying massive binary interactions and evolution, and stellar wind-wind collisions. Recent three-dimensional (3D) simulations set the stage for understanding the highly complex 3D flows in η Car. Observations of different broad high- and low-ionization forbidden emission lines provide an excellent tool to constrain the orientation of the system, the primary's mass-loss rate, and the ionizing flux of the hot secondary. In this work, we present the first steps towards generating synthetic observations to compare with available and future HST/STIS data. We present initial results from full 3D radiative transfer simulations of the interacting winds in η Car. We use the SIMPLEX algorithm to post-process the output from 3D smoothed particle hydrodynamics (SPH) simulations and obtain the ionization fractions of hydrogen and helium assuming three different mass-loss rates for the primary star. The resultant ionization maps of both species constrain the regions where the observed forbidden emission lines can form. Including collisional ionization is necessary to achieve a better description of the ionization states, especially in the areas shielded from the secondary's radiation. We find that reducing the primary's mass-loss rate increases the volume of ionized gas, creating larger areas where the forbidden emission lines can form. We conclude that post-processing 3D SPH data with SIMPLEX is a viable tool to create ionization maps for η Car.

  9. 3D Radiative Transfer in Eta Carinae: Application of the SimpleX Algorithm to 3D SPH Simulations of Binary Colliding Winds

    NASA Technical Reports Server (NTRS)

    Clementel, N.; Madura, T. I.; Kruip, C. J. H.; Icke, V.; Gull, T. R.

    2014-01-01

    Eta Carinae is an ideal astrophysical laboratory for studying massive binary interactions and evolution, and stellar wind-wind collisions. Recent three-dimensional (3D) simulations set the stage for understanding the highly complex 3D flows in Eta Car. Observations of different broad high- and low-ionization forbidden emission lines provide an excellent tool to constrain the orientation of the system, the primary's mass-loss rate, and the ionizing flux of the hot secondary. In this work we present the first steps towards generating synthetic observations to compare with available and future HST/STIS data. We present initial results from full 3D radiative transfer simulations of the interacting winds in Eta Car. We use the SimpleX algorithm to post-process the output from 3D SPH simulations and obtain the ionization fractions of hydrogen and helium assuming three different mass-loss rates for the primary star. The resultant ionization maps of both species constrain the regions where the observed forbidden emission lines can form. Including collisional ionization is necessary to achieve a better description of the ionization states, especially in the areas shielded from the secondary's radiation. We find that reducing the primary's mass-loss rate increases the volume of ionized gas, creating larger areas where the forbidden emission lines can form. We conclude that post processing 3D SPH data with SimpleX is a viable tool to create ionization maps for Eta Car.

  10. 3D Radiative Transfer in Eta Carinae: Application of the SimpleX Algorithm to 3D SPH Simulations of Binary Colliding Winds

    NASA Technical Reports Server (NTRS)

    Clementel, N.; Madura, T. I.; Kruip, C.J.H.; Icke, V.; Gull, T. R.

    2014-01-01

    Eta Carinae is an ideal astrophysical laboratory for studying massive binary interactions and evolution, and stellar wind-wind collisions. Recent three-dimensional (3D) simulations set the stage for understanding the highly complex 3D flows in eta Car. Observations of different broad high- and low-ionization forbidden emission lines provide an excellent tool to constrain the orientation of the system, the primary's mass-loss rate, and the ionizing flux of the hot secondary. In this work we present the first steps towards generating synthetic observations to compare with available and future HST/STIS data. We present initial results from full 3D radiative transfer simulations of the interacting winds in eta Car.We use the SimpleX algorithm to post-process the output from 3D SPH simulations and obtain the ionization fractions of hydrogen and helium assuming three different mass-loss rates for the primary star. The resultant ionization maps of both species constrain the regions where the observed forbidden emission lines can form. Including collisional ionization is necessary to achieve a better description of the ionization states, especially in the areas shielded from the secondary's radiation. We find that reducing the primary's mass-loss rate increases the volume of ionized gas, creating larger areas where the forbidden emission lines can form.We conclude that post processing 3D SPH data with SimpleX is a viable tool to create ionization maps for eta Car.

  11. EXOMARS IRAS (DOSE) radiation measurements.

    NASA Astrophysics Data System (ADS)

    Federico, C.; Di Lellis, A. M.; Fonte, S.; Pauselli, C.; Reitz, G.; Beaujean, R.

    The characterization and the study of the radiations on their interaction with organic matter is of great interest in view of the human exploration on Mars. The Ionizing RAdiation Sensor (IRAS) selected in the frame of the ExoMars/Pasteur ESA mission is a lightweight particle spectrometer combining various techniques of radiation detection in space. It characterizes the first time the radiation environment on the Mars surface, and provide dose and dose equivalent rates as precursor information absolutely necessary to develop ways to mitigate the radiation risks for future human exploration on Mars. The Martian radiation levels are much higher than those found on Earth and they are relatively low for space. Measurements on the surface will show if they are similar or not to those seen in orbit (modified by the presence of ``albedo'' neutrons produced in the regolith and by the thin Martian atmosphere). IRAS consists of a telescope based on segmented silicon detectors of about 40\\userk\\milli\\metre\\user;k diameter and 300\\user;k\\micro\\metre\\user;k thickness, a segmented organic scintillator, and of a thermoluminescence dosimeter. The telescope will continuously monitor temporal variation of the particle count rate, the dose rate, particle and LET (Linear Energy Transfer) spectra. Tissue equivalent BC430 scintillator material will be used to measure the neutron dose. Neutrons are selected by a criteria requiring no signal in the anti-coincidence. Last, the passive thermoluminescence dosimeter, based on LiF:Mg detectors, regardless the on board operation timing, will measure the total dose accumulated during the exposure period and due to beta and gamma radiation, with a responsivity very close to that of a human tissue.

  12. Sci—Thur AM: YIS - 07: Design and production of 3D printed bolus for electron radiation therapy

    SciTech Connect

    Su, Shiqin; Moran, Kathryn; Robar, James L.

    2014-08-15

    This is a proof-of-concept study demonstrating the capacity for modulated electron radiation therapy (MERT) using 3D printed bolus. Previous reports have involved bolus design using an electron pencil beam model and fabrication using a milling machine. In this study, an in-house algorithm is presented that optimizes the dose distribution with regard to dose coverage, conformity and homogeneity within planning target volume (PTV). The algorithm uses calculated result of a commercial electron Monte Carlo dose calculation as input. Distances along ray lines from distal side of 90% isodose to distal surface of PTV are used to estimate the bolus thickness. Inhomogeneities within the calculation volume are accounted for using coefficient of equivalent thickness method. Several regional modulation operators are applied to improve dose coverage and uniformity. The process is iterated (usually twice) until an acceptable MERT plan is realized, and the final bolus is printed using solid polylactic acid. The method is evaluated with regular geometric phantoms, anthropomorphic phantoms and a clinical rhabdomyosarcoma pediatric case. In all cases the dose conformity is improved compared to that with uniform bolus. The printed boluses conform well to the surface of complex anthropomorphic phantoms. For the rhabdomyosarcoma patient, the MERT plan yields a reduction of mean dose by 38.2% in left kidney relative to uniform bolus. MERT using 3D printed bolus appears to be a practical, low cost approach to generating optimized bolus for electron therapy. The method is effective in improving conformity of prescription isodose surface and in sparing immediately adjacent normal tissues.

  13. Simulations of implosions with a 3D, parallel, unstructured-grid, radiation-hydrodynamics code

    SciTech Connect

    Kaiser, T B; Milovich, J L; Prasad, M K; Rathkopf, J; Shestakov, A I

    1998-12-28

    An unstructured-grid, radiation-hydrodynamics code is used to simulate implosions. Although most of the problems are spherically symmetric, they are run on 3D, unstructured grids in order to test the code's ability to maintain spherical symmetry of the converging waves. Three problems, of increasing complexity, are presented. In the first, a cold, spherical, ideal gas bubble is imploded by an enclosing high pressure source. For the second, we add non-linear heat conduction and drive the implosion with twelve laser beams centered on the vertices of an icosahedron. In the third problem, a NIF capsule is driven with a Planckian radiation source.

  14. 3D ultrasound Nakagami imaging for radiation-induced vaginal fibrosis

    NASA Astrophysics Data System (ADS)

    Yang, Xiaofeng; Rossi, Peter; Shelton, Joseph; Bruner, Debrorah; Tridandapani, Srini; Liu, Tian

    2014-03-01

    Radiation-induced vaginal fibrosis is a debilitating side-effect affecting up to 80% of women receiving radiotherapy for their gynecological (GYN) malignancies. Despite the significant incidence and severity, little research has been conducted to identify the pathophysiologic changes of vaginal toxicity. In a previous study, we have demonstrated that ultrasound Nakagami shape and PDF parameters can be used to quantify radiation-induced vaginal toxicity. These Nakagami parameters are derived from the statistics of ultrasound backscattered signals to capture the physical properties (e.g., arrangement and distribution) of the biological tissues. In this paper, we propose to expand this Nakagami imaging concept from 2D to 3D to fully characterize radiation-induced changes to the vaginal wall within the radiation treatment field. A pilot study with 5 post-radiotherapy GYN patients was conducted using a clinical ultrasound scanner (6 MHz) with a mechanical stepper. A serial of 2D ultrasound images, with radio-frequency (RF) signals, were acquired at 1 mm step size. The 2D Nakagami shape and PDF parameters were calculated from the RF signal envelope with a sliding window, and then 3D Nakagami parameter images were generated from the parallel 2D images. This imaging method may be useful as we try to monitor radiation-induced vaginal injury, and address vaginal toxicities and sexual dysfunction in women after radiotherapy for GYN malignancies.

  15. 3D-radiative transfer in terrestrial atmosphere: An efficient parallel numerical procedure

    NASA Astrophysics Data System (ADS)

    Bass, L. P.; Germogenova, T. A.; Nikolaeva, O. V.; Kokhanovsky, A. A.; Kuznetsov, V. S.

    2003-04-01

    Light propagation and scattering in terrestrial atmosphere is usually studied in the framework of the 1D radiative transfer theory [1]. However, in reality particles (e.g., ice crystals, solid and liquid aerosols, cloud droplets) are randomly distributed in 3D space. In particular, their concentrations vary both in vertical and horizontal directions. Therefore, 3D effects influence modern cloud and aerosol retrieval procedures, which are currently based on the 1D radiative transfer theory. It should be pointed out that the standard radiative transfer equation allows to study these more complex situations as well [2]. In recent year the parallel version of the 2D and 3D RADUGA code has been developed. This version is successfully used in gammas and neutrons transport problems [3]. Applications of this code to radiative transfer in atmosphere problems are contained in [4]. Possibilities of code RADUGA are presented in [5]. The RADUGA code system is an universal solver of radiative transfer problems for complicated models, including 2D and 3D aerosol and cloud fields with arbitrary scattering anisotropy, light absorption, inhomogeneous underlying surface and topography. Both delta type and distributed light sources can be accounted for in the framework of the algorithm developed. The accurate numerical procedure is based on the new discrete ordinate SWDD scheme [6]. The algorithm is specifically designed for parallel supercomputers. The version RADUGA 5.1(P) can run on MBC1000M [7] (768 processors with 10 Gb of hard disc memory for each processor). The peak productivity is equal 1 Tfl. Corresponding scalar version RADUGA 5.1 is working on PC. As a first example of application of the algorithm developed, we have studied the shadowing effects of clouds on neighboring cloudless atmosphere, depending on the cloud optical thickness, surface albedo, and illumination conditions. This is of importance for modern satellite aerosol retrieval algorithms development. [1] Sobolev

  16. 3D Continuum Radiative Transfer. An adaptive grid construction algorithm based on the Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Niccolini, G.; Alcolea, J.

    Solving the radiative transfer problem is a common problematic to may fields in astrophysics. With the increasing angular resolution of spatial or ground-based telescopes (VLTI, HST) but also with the next decade instruments (NGST, ALMA, ...), astrophysical objects reveal and will certainly reveal complex spatial structures. Consequently, it is necessary to develop numerical tools being able to solve the radiative transfer equation in three dimensions in order to model and interpret these observations. I present a 3D radiative transfer program, using a new method for the construction of an adaptive spatial grid, based on the Monte Claro method. With the help of this tools, one can solve the continuum radiative transfer problem (e.g. a dusty medium), computes the temperature structure of the considered medium and obtain the flux of the object (SED and images).

  17. PREFACE: 7th International Conference on 3D Radiation Dosimetry (IC3DDose)

    NASA Astrophysics Data System (ADS)

    Thwaites, David; Baldock, Clive

    2013-06-01

    IC3DDose 2013, the 7th International Conference on 3D Radiation Dosimetry held in Sydney, Australia from 4-8 November 2012, grew out of the DosGel series, which began as DosGel99, the 1st International Workshop on Radiation Therapy Gel Dosimetry in Lexington, Kentucky. Since 1999 subsequent DoSGel conferences were held in Brisbane, Australia (2001), Ghent, Belgium (2004), Sherbrooke, Canada (2006) and Crete, Greece (2008). In 2010 the conference was held on Hilton Head Island, South Carolina and underwent a name-change to IC3DDose. The aim of the first workshop was to bring together individuals, both researchers and users, with an interest in 3D radiation dosimetry techniques, with a mix of presentations from basic science to clinical applications, which has remained an objective for all of the meetings. One rationale of DosGel99 was stated as supporting the increasing clinical implementation of gel dosimetry, as the technique appeared, at that time, to be leaving the laboratories of gel dosimetry enthusiasts and entering clinical practice. Clearly by labelling the first workshop as the 1st, there was a vision of a continuing series, which has been fulfilled. On the other hand, the expectation of widespread clinical use of gel dosimetry has perhaps not been what was hoped for and anticipated. Nevertheless the rapidly increasing demand for advanced high-precision 3D radiotherapy technology and techniques has continued apace. The need for practical and accurate 3D dosimetry methods for development and quality assurance has only increased. By the 6th meeting, held in South Carolina in 2010, the Conference Scientific Committee recognised the wider developments in 3D systems and methods and decided to widen the scope, whilst keeping the same span from basic science to applications. This was signalled by a change of name from 'Dosgel' to 'IC3DDose', a name that has continued to this latest conference. The conference objectives were: to enhance the quality and accuracy of

  18. Radiation Coupling with the FUN3D Unstructured-Grid CFD Code

    NASA Technical Reports Server (NTRS)

    Wood, William A.

    2012-01-01

    The HARA radiation code is fully-coupled to the FUN3D unstructured-grid CFD code for the purpose of simulating high-energy hypersonic flows. The radiation energy source terms and surface heat transfer, under the tangent slab approximation, are included within the fluid dynamic ow solver. The Fire II flight test, at the Mach-31 1643-second trajectory point, is used as a demonstration case. Comparisons are made with an existing structured-grid capability, the LAURA/HARA coupling. The radiative surface heat transfer rates from the present approach match the benchmark values within 6%. Although radiation coupling is the focus of the present work, convective surface heat transfer rates are also reported, and are seen to vary depending upon the choice of mesh connectivity and FUN3D ux reconstruction algorithm. On a tetrahedral-element mesh the convective heating matches the benchmark at the stagnation point, but under-predicts by 15% on the Fire II shoulder. Conversely, on a mixed-element mesh the convective heating over-predicts at the stagnation point by 20%, but matches the benchmark away from the stagnation region.

  19. Mass Spectrometry of 3D-printed plastic parts under plasma and radiative heat environments

    NASA Astrophysics Data System (ADS)

    Rivera, W. F.; Romero-Talamas, C. A.; Bates, E. M.; Birmingham, W.; Takeno, J.; Knop, S.

    2015-11-01

    We present the design and preliminary results of a mass spectrometry system used to assess vacuum compatibility of 3D-printed parts, developed at the Dusty Plasma Laboratory of the University of Maryland Baltimore County (UMBC). A decrease in outgassing was observed when electroplated parts were inserted in the test chamber vs. non electroplated ones. Outgassing will also be tested under different environments such as plasma and radiative heat. Heat will be generated by a titanium getter pump placed inside a 90 degree elbow, such that titanium does not coat the part. A mirror inside the elbow will be used to throttle the heat arriving at the part. Plasma exposure of 3D printed parts will be achieved by placing the parts in a separate chamber connected to the spectrometer by a vacuum line that is differentially pumped. The signals from the mass spectrometer will be analyzed to see how the vacuum conditions fluctuate under different plasma discharges.

  20. 3D silicon sensors with variable electrode depth for radiation hard high resolution particle tracking

    NASA Astrophysics Data System (ADS)

    Da Vià, C.; Borri, M.; Dalla Betta, G.; Haughton, I.; Hasi, J.; Kenney, C.; Povoli, M.; Mendicino, R.

    2015-04-01

    3D sensors, with electrodes micro-processed inside the silicon bulk using Micro-Electro-Mechanical System (MEMS) technology, were industrialized in 2012 and were installed in the first detector upgrade at the LHC, the ATLAS IBL in 2014. They are the radiation hardest sensors ever made. A new idea is now being explored to enhance the three-dimensional nature of 3D sensors by processing collecting electrodes at different depths inside the silicon bulk. This technique uses the electric field strength to suppress the charge collection effectiveness of the regions outside the p-n electrodes' overlap. Evidence of this property is supported by test beam data of irradiated and non-irradiated devices bump-bonded with pixel readout electronics and simulations. Applications include High-Luminosity Tracking in the high multiplicity LHC forward regions. This paper will describe the technical advantages of this idea and the tracking application rationale.

  1. Tumor control probability and the utility of 4D vs 3D dose calculations for stereotactic body radiotherapy for lung cancer.

    PubMed

    Valdes, Gilmer; Robinson, Clifford; Lee, Percy; Morel, Delphine; Low, Daniel; Iwamoto, Keisuke S; Lamb, James M

    2015-01-01

    Four-dimensional (4D) dose calculations for lung cancer radiotherapy have been technically feasible for a number of years but have not become standard clinical practice. The purpose of this study was to determine if clinically significant differences in tumor control probability (TCP) exist between 3D and 4D dose calculations so as to inform the decision whether 4D dose calculations should be used routinely for treatment planning. Radiotherapy plans for Stage I-II lung cancer were created for 8 patients. Clinically acceptable treatment plans were created with dose calculated on the end-exhale 4D computed tomography (CT) phase using a Monte Carlo algorithm. Dose was then projected onto the remaining 9 phases of 4D-CT using the Monte Carlo algorithm and accumulated onto the end-exhale phase using commercially available deformable registration software. The resulting dose-volume histograms (DVH) of the gross tumor volume (GTV), planning tumor volume (PTV), and PTVsetup were compared according to target coverage and dose. The PTVsetup was defined as a volume including the GTV and a margin for setup uncertainties but not for respiratory motion. TCPs resulting from these DVHs were estimated using a wide range of alphas, betas, and tumor cell densities. Differences of up to 5Gy were observed between 3D and 4D calculations for a PTV with highly irregular shape. When the TCP was calculated using the resulting DVHs for fractionation schedules typically used in stereotactic body radiation therapy (SBRT), the TCP differed at most by 5% between 4D and 3D cases, and in most cases, it was by less than 1%. We conclude that 4D dose calculations are not necessary for most cases treated with SBRT, but they might be valuable for irregularly shaped target volumes. If 4D calculations are used, 4D DVHs should be evaluated on volumes that include margin for setup uncertainty but not respiratory motion.

  2. Tumor control probability and the utility of 4D vs 3D dose calculations for stereotactic body radiotherapy for lung cancer

    SciTech Connect

    Valdes, Gilmer; Robinson, Clifford; Lee, Percy; Morel, Delphine; Low, Daniel; Iwamoto, Keisuke S.; Lamb, James M.

    2015-04-01

    Four-dimensional (4D) dose calculations for lung cancer radiotherapy have been technically feasible for a number of years but have not become standard clinical practice. The purpose of this study was to determine if clinically significant differences in tumor control probability (TCP) exist between 3D and 4D dose calculations so as to inform the decision whether 4D dose calculations should be used routinely for treatment planning. Radiotherapy plans for Stage I-II lung cancer were created for 8 patients. Clinically acceptable treatment plans were created with dose calculated on the end-exhale 4D computed tomography (CT) phase using a Monte Carlo algorithm. Dose was then projected onto the remaining 9 phases of 4D-CT using the Monte Carlo algorithm and accumulated onto the end-exhale phase using commercially available deformable registration software. The resulting dose-volume histograms (DVH) of the gross tumor volume (GTV), planning tumor volume (PTV), and PTV{sub setup} were compared according to target coverage and dose. The PTV{sub setup} was defined as a volume including the GTV and a margin for setup uncertainties but not for respiratory motion. TCPs resulting from these DVHs were estimated using a wide range of alphas, betas, and tumor cell densities. Differences of up to 5 Gy were observed between 3D and 4D calculations for a PTV with highly irregular shape. When the TCP was calculated using the resulting DVHs for fractionation schedules typically used in stereotactic body radiation therapy (SBRT), the TCP differed at most by 5% between 4D and 3D cases, and in most cases, it was by less than 1%. We conclude that 4D dose calculations are not necessary for most cases treated with SBRT, but they might be valuable for irregularly shaped target volumes. If 4D calculations are used, 4D DVHs should be evaluated on volumes that include margin for setup uncertainty but not respiratory motion.

  3. A simulation technique for 3D MR-guided acoustic radiation force imaging

    SciTech Connect

    Payne, Allison; Bever, Josh de; Farrer, Alexis; Coats, Brittany; Parker, Dennis L.; Christensen, Douglas A.

    2015-02-15

    Purpose: In magnetic resonance-guided focused ultrasound (MRgFUS) therapies, the in situ characterization of the focal spot location and quality is critical. MR acoustic radiation force imaging (MR-ARFI) is a technique that measures the tissue displacement caused by the radiation force exerted by the ultrasound beam. This work presents a new technique to model the displacements caused by the radiation force of an ultrasound beam in a homogeneous tissue model. Methods: When a steady-state point-source force acts internally in an infinite homogeneous medium, the displacement of the material in all directions is given by the Somigliana elastostatic tensor. The radiation force field, which is caused by absorption and reflection of the incident ultrasound intensity pattern, will be spatially distributed, and the tensor formulation takes the form of a convolution of a 3D Green’s function with the force field. The dynamic accumulation of MR phase during the ultrasound pulse can be theoretically accounted for through a time-of-arrival weighting of the Green’s function. This theoretical model was evaluated experimentally in gelatin phantoms of varied stiffness (125-, 175-, and 250-bloom). The acoustic and mechanical properties of the phantoms used as parameters of the model were measured using independent techniques. Displacements at focal depths of 30- and 45-mm in the phantoms were measured by a 3D spin echo MR-ARFI segmented-EPI sequence. Results: The simulated displacements agreed with the MR-ARFI measured displacements for all bloom values and focal depths with a normalized RMS difference of 0.055 (range 0.028–0.12). The displacement magnitude decreased and the displacement pattern broadened with increased bloom value for both focal depths, as predicted by the theory. Conclusions: A new technique that models the displacements caused by the radiation force of an ultrasound beam in a homogeneous tissue model theory has been rigorously validated through comparison

  4. The Effects of Low Dose Irradiation on Inflammatory Response Proteins in a 3D Reconstituted Human Skin Tissue Model

    SciTech Connect

    Varnum, Susan M.; Springer, David L.; Chaffee, Mary E.; Lien, Katie A.; Webb-Robertson, Bobbie-Jo M.; Waters, Katrina M.; Sacksteder, Colette A.

    2012-12-01

    Skin responses to moderate and high doses of ionizing radiation include the induction of DNA repair, apoptosis, and stress response pathways. Additionally, numerous studies indicate that radiation exposure leads to inflammatory responses in skin cells and tissue. However, the inflammatory response of skin tissue to low dose radiation (<10 cGy) is poorly understood. In order to address this, we have utilized a reconstituted human skin tissue model (MatTek EpiDerm FT) and assessed changes in 23 cytokines twenty-four and forty eight hours following treatment of skin with either 3 or 10 cGy low-dose of radiation. Three cytokines, IFN-γ, IL-2, MIP-1α, were significantly altered in response to low dose radiation. In contrast, seven cytokines were significantly altered in response to a high radiation dose of 200 cGy (IL-2, IL-10, IL-13, IFN-γ, MIP-1α, TNF α, and VEGF) or the tumor promoter 12-O-tetradecanoylphorbol 13-acetate (G-CSF, GM-CSF, IL-1α, IL-8, MIP-1α, MIP-1β, RANTES). Additionally, radiation induced inflammation appears to have a distinct cytokine response relative to the non-radiation induced stressor, TPA. Overall, these results indicate that there are subtle changes in the inflammatory protein levels following exposure to low dose radiation and this response is a sub-set of what is seen following a high dose in a human skin tissue model.

  5. Characterization of a parallel beam CCD optical-CT apparatus for 3D radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Krstajić, Nikola; Doran, Simon J.

    2006-12-01

    This paper describes the initial steps we have taken in establishing CCD based optical-CT as a viable alternative for 3-D radiation dosimetry. First, we compare the optical density (OD) measurements from a high quality test target and variable neutral density filter (VNDF). A modulation transfer function (MTF) of individual projections is derived for three positions of the sinusoidal test target within the scanning tank. Our CCD is then characterized in terms of its signal-to-noise ratio (SNR). Finally, a sample reconstruction of a scan of a PRESAGETM (registered trademark of Heuris Pharma, NJ, Skillman, USA.) dosimeter is given, demonstrating the capabilities of the apparatus.

  6. Limited Advantages of Intensity-Modulated Radiotherapy Over 3D Conformal Radiation Therapy in the Adjuvant Management of Gastric Cancer

    SciTech Connect

    Alani, Shlomo; Soyfer, Viacheslav; Strauss, Natan; Schifter, Dan; Corn, Benjamin W.

    2009-06-01

    Purpose: Although chemoradiotherapy was considered the standard adjuvant treatment for gastric cancer, a recent Phase III trial (Medical Research Council Adjuvant Gastric Infusional Chemotherapy [MAGIC]) did not include radiotherapy in the randomization scheme because it was considered expendable. Given radiotherapy's potential, efforts needed to be made to optimize its use for treating gastric cancer. We assessed whether intensity-modulated radiotherapy (IMRT) could improve upon our published results in patients treated with three-dimensional (3D) conformal therapy. Methods and Materials: Fourteen patients with adenocarcinoma of the stomach were treated with adjuvant chemoradiotherapy using a noncoplanar four-field arrangement. Subsequently, a nine-field IMRT plan was designed using a CMS Xio IMRT version 4.3.3 module. Two IMRT beam arrangements were evaluated: beam arrangement 1 consisted of gantry angles of 0 deg., 53 deg., 107 deg., 158 deg., 204 deg., 255 deg., and 306 deg.. Beam arrangement 2 consisted of gantry angles of 30 deg., 90 deg., 315 deg., and 345 deg.; a gantry angle of 320 deg./couch, 30 deg.; and a gantry angle of 35{sup o}/couch, 312{sup o}. Both the target volume coverage and the dose deposition in adjacent critical organs were assessed in the plans. Dose-volume histograms were generated for the clinical target volume, kidneys, spine, and liver. Results: Comparison of the clinical target volumes revealed satisfactory coverage by the 95% isodose envelope using either IMRT or 3D conformal therapy. However, IMRT was only marginally better than 3D conformal therapy at protecting the spine and kidneys from radiation. Conclusions: IMRT confers only a marginal benefit in the adjuvant treatment of gastric cancer and should be used only in the small subset of patients with risk factors for kidney disease or those with a preexisting nephropathy.

  7. Ultraviolet radiation cataract: dose dependence

    NASA Astrophysics Data System (ADS)

    Soderberg, Per G.; Loefgren, Stefan

    1994-07-01

    Current safety limits for cataract development after acute exposure to ultraviolet radiation (UVR) are based on experiments analyzing experimental data with a quantal, effect-no effect, dose-response model. The present study showed that intensity of forward light scattering is better described with a continuous dose-response model. It was found that 3, 30 and 300 kJ/m2UVR300nm induces increased light scattering within 6 h. For all three doses the intensity of forward light scattering was constant after 6 h. The intensity of forward light scattering was proportional to the log dose of UVR300nm. There was a slight increase of the intensity of forward light scattering on the contralateral side in animals that received 300 kJ/m2. Altogether 72 Sprague-Dawley male rats were included. Half of the rats were exposed in vivo on one side to UVR300nm. The other half was kept as a control group, receiving the same treatment as exposed rats but without delivery of UVR300nm to the eye. Subgroups of the rats received either of the three doses. Rats were sacrificed at varying intervals after the exposure. The lenses were extracted and the forward light scattering was estimated. It is concluded that intensity of forward light scattering in the lens after exposure to UVR300nm should be described with a continuous dose-reponse model.

  8. Visualization of 3D osteon morphology by synchrotron radiation micro-CT

    PubMed Central

    Cooper, D M L; Erickson, B; Peele, A G; Hannah, K; Thomas, C D L; Clement, J G

    2011-01-01

    Cortical bone histology has been the subject of scientific inquiry since the advent of the earliest microscopes. Histology – literally the study of tissue – is a field nearly synonymous with 2D thin sections. That said, progressive developments in high-resolution X-ray imaging are enabling 3D visualization to reach ever smaller structures. Micro-computed tomography (micro-CT), employing conventional X-ray sources, has become the gold standard for 3D analysis of trabecular bone and is capable of detecting the structure of vascular (osteonal) porosity in cortical bone. To date, however, direct 3D visualization of secondary osteons has eluded micro-CT based upon absorption-derived contrast. Synchrotron radiation micro-CT, through greater image quality, resolution and alternative contrast mechanisms (e.g. phase contrast), holds great potential for non-destructive 3D visualization of secondary osteons. Our objective was to demonstrate this potential and to discuss areas of bone research that can be advanced through the application of this approach. We imaged human mid-femoral cortical bone specimens derived from a 20-year-old male (Melbourne Femur Collection) at the Advanced Photon Source synchrotron (Chicago, IL, USA) using the 2BM beam line. A 60-mm distance between the target and the detector was employed to enhance visualization of internal structures through propagation phase contrast. Scan times were 1 h and images were acquired with 1.4-μm nominal isotropic resolution. Computer-aided manual segmentation and volumetric 3D rendering were employed to visualize secondary osteons and porous structures, respectively. Osteonal borders were evident via two contrast mechanisms. First, relatively new (hypomineralized) osteons were evident due to differences in X-ray attenuation relative to the surrounding bone. Second, osteon boundaries (cement lines) were delineated by phase contrast. Phase contrast also enabled the detection of soft tissue remnants within the

  9. Radiation Quality Effects on Transcriptome Profiles in 3-d Cultures After Particle Irradiation

    NASA Technical Reports Server (NTRS)

    Patel, Z. S.; Kidane, Y. H.; Huff, J. L.

    2014-01-01

    In this work, we evaluate the differential effects of low- and high-LET radiation on 3-D organotypic cultures in order to investigate radiation quality impacts on gene expression and cellular responses. Reducing uncertainties in current risk models requires new knowledge on the fundamental differences in biological responses (the so-called radiation quality effects) triggered by heavy ion particle radiation versus low-LET radiation associated with Earth-based exposures. We are utilizing novel 3-D organotypic human tissue models that provide a format for study of human cells within a realistic tissue framework, thereby bridging the gap between 2-D monolayer culture and animal models for risk extrapolation to humans. To identify biological pathway signatures unique to heavy ion particle exposure, functional gene set enrichment analysis (GSEA) was used with whole transcriptome profiling. GSEA has been used extensively as a method to garner biological information in a variety of model systems but has not been commonly used to analyze radiation effects. It is a powerful approach for assessing the functional significance of radiation quality-dependent changes from datasets where the changes are subtle but broad, and where single gene based analysis using rankings of fold-change may not reveal important biological information. We identified 45 statistically significant gene sets at 0.05 q-value cutoff, including 14 gene sets common to gamma and titanium irradiation, 19 gene sets specific to gamma irradiation, and 12 titanium-specific gene sets. Common gene sets largely align with DNA damage, cell cycle, early immune response, and inflammatory cytokine pathway activation. The top gene set enriched for the gamma- and titanium-irradiated samples involved KRAS pathway activation and genes activated in TNF-treated cells, respectively. Another difference noted for the high-LET samples was an apparent enrichment in gene sets involved in cycle cycle/mitotic control. It is

  10. Dynamic Implicit 3D Adaptive Mesh Refinement for Non-Equilibrium Radiation Diffusion

    SciTech Connect

    Philip, Bobby; Wang, Zhen; Berrill, Mark A; Rodriguez Rodriguez, Manuel; Pernice, Michael

    2014-01-01

    The time dependent non-equilibrium radiation diffusion equations are important for solving the transport of energy through radiation in optically thick regimes and find applications in several fields including astrophysics and inertial confinement fusion. The associated initial boundary value problems that are encountered exhibit a wide range of scales in space and time and are extremely challenging to solve. To efficiently and accurately simulate these systems we describe our research on combining techniques that will also find use more broadly for long term time integration of nonlinear multiphysics systems: implicit time integration for efficient long term time integration of stiff multiphysics systems, local control theory based step size control to minimize the required global number of time steps while controlling accuracy, dynamic 3D adaptive mesh refinement (AMR) to minimize memory and computational costs, Jacobian Free Newton Krylov methods on AMR grids for efficient nonlinear solution, and optimal multilevel preconditioner components that provide level independent linear solver convergence.

  11. STEMS3D: An X-ray spectral model for magnetar persistent radiations

    NASA Astrophysics Data System (ADS)

    Gogus, Ersin; Weng, Shan-Shan

    2016-07-01

    Anomalous X-ray pulsars and soft gamma-ray repeaters are recognized as the most promising magnetar candidates, as indicated by their energetic bursts and rapid spin-downs. It is expected that the strong magnetic field leaves distinctive imprints on the emergent radiation both by affecting the radiative processes in atmospheres of magnetars and by scattering in the upper magnetospheres. We construct a self-consistent physical model that incorporates emission from the magnetar surface and its reprocessing in the three-dimensional twisted magnetosphere using a Monte Carlo technique. The synthetic spectra are characterized by four parameters: surface temperature kT, surface magnetic field strength B, magnetospheric twist angle Δφ, and the normalized electron velocity β. We also create a tabular model (STEMS3D) and apply it to X-ray spectra of magnetars.

  12. Radiochromic 3D Detectors

    NASA Astrophysics Data System (ADS)

    Oldham, Mark

    2015-01-01

    Radiochromic materials exhibit a colour change when exposed to ionising radiation. Radiochromic film has been used for clinical dosimetry for many years and increasingly so recently, as films of higher sensitivities have become available. The two principle advantages of radiochromic dosimetry include greater tissue equivalence (radiologically) and the lack of requirement for development of the colour change. In a radiochromic material, the colour change arises direct from ionising interactions affecting dye molecules, without requiring any latent chemical, optical or thermal development, with important implications for increased accuracy and convenience. It is only relatively recently however, that 3D radiochromic dosimetry has become possible. In this article we review recent developments and the current state-of-the-art of 3D radiochromic dosimetry, and the potential for a more comprehensive solution for the verification of complex radiation therapy treatments, and 3D dose measurement in general.

  13. Long term dose monitoring onboard the European Columbus module of the International Space Station (ISS) in the frame of the DOSIS and DOSIS 3D project

    NASA Astrophysics Data System (ADS)

    Berger, Thomas

    The radiation environment encountered in space differs in nature from that on earth, consisting mostly of high energetic ions from protons up to iron, resulting in radiation levels far exceeding the ones present on earth for occupational radiation workers. Accurate knowledge of the physical characteristics of the space radiation field in dependence on the solar activity, the orbital parameters and the different shielding configurations of the International Space Station (ISS) is therefore needed. For the investigation of the spatial and temporal distribution of the radiation field inside the European Columbus module the experiment “Dose Distribution Inside the ISS” (DOSIS), under the project and science lead of the German Aerospace Center (DLR), was launched on July 15th 2009 with STS-127 to the ISS. The DOSIS experiment consists of a combination of “Passive Detector Packages” (PDP) distributed at eleven locations inside Columbus for the measurement of the spatial variation of the radiation field and two active Dosimetry Telescopes (DOSTELs) with a Data and Power Unit (DDPU) in a dedicated nomex pouch mounted at a fixed location beneath the European Physiology Module rack (EPM) for the measurement of the temporal variation of the radiation field parameters. The DOSIS experiment suite measured during the lowest solar minimum conditions in the space age from July 2009 to June 2011. In July 2011 the active hardware was transferred to ground for refurbishment and preparation for the follow up DOSIS 3D experiment. The hardware for DOSIS 3D was launched with Soyuz 30S to the ISS on May 15th 2012. The PDPs are replaced with each even number Soyuz flight starting with Soyuz 30S. Data from the active detectors is transferred to ground via the EPM rack which is activated once a month for this action. The presentation will give an overview of the DOSIS and DOSIS 3D experiment and focus on the results from the passive radiation detectors from the DOSIS 3D experiment

  14. SU-E-T-422: Correlation Between 2D Passing Rates and 3D Dose Differences for Pretreatment VMAT QA

    SciTech Connect

    Jin, X; Xie, C

    2014-06-01

    Purpose: Volumetric modulated arc therapy (VMAT) quality assurance (QA) is typically using QA methods and action levels taken from fixedbeam intensity-modulated radiotherapy (IMRT) QA methods. However, recent studies demonstrated that there is no correlation between the percent gamma passing rate (%GP) and the magnitude of dose discrepancy between the planned dose and the actual delivered dose for IMRT. The purpose of this study is to investigate whether %GP is correlated with clinical dosimetric difference for VMAT. Methods: Twenty nasopharyngeal cancer (NPC) patients treated with dual-arc simultaneous integrated boost VMAT and 20 esophageal cancer patients treated with one-arc VMAT were enrolled in this study. Pretreatment VMAT QA was performed by a 3D diode array ArcCheck. Acceptance criteria of 2%/2mm, 3%/3mm, and 4%/4mm were applied for 2D %GP. Dose values below 10% of the per-measured normalization maximum dose were ignored.Mean DVH values obtained from 3DVH software and TPS were calculated and percentage dose differences were calculated. Statistical correlation between %GP and percent dose difference was studied by using Pearson correlation. Results: The %GP for criteria 2%/2mm, 3%/3mm, and 4%/4mm were 82.33±4.45, 93.47±2.31, 97.13±2.41, respectively. Dose differences calculated from 3DVH and TPS for beam isocenter, mean dose of PTV, maximum dose of PTV, D2 of PTV and D98 of PTV were -1.04±3.24, -0.74±1.71, 2.92±3.62, 0.89±3.29, -1.46±1.97, respectively. No correction were found between %GP and dose differences. Conclusion: There are weak correlations between the 2D %GP and dose differences calculated from 3DVH. The %GP acceptance criteria of 3%/3mm usually applied for pretreatment QA of IMRT and VMAT is not indicating strong clinical correlation with 3D dose difference. 3D dose reconstructions on patient anatomy may be necessary for physicist to predict the accuracy of delivered dose for VMAT QA.

  15. Clinical examples of 3D dose distribution reconstruction, based on the actual MLC leaves movement, for dynamic treatment techniques

    PubMed Central

    Osewski, Wojciech; Dolla, Łukasz; Radwan, Michał; Szlag, Marta; Rutkowski, Roman; Smolińska, Barbara; Ślosarek, Krzysztof

    2014-01-01

    Aim To present practical examples of our new algorithm for reconstruction of 3D dose distribution, based on the actual MLC leaf movement. Background DynaLog and RTplan files were used by DDcon software to prepare a new RTplan file for dose distribution reconstruction. Materials and methods Four different clinically relevant scenarios were used to assess the feasibility of the proposed new approach: (1) Reconstruction of whole treatment sessions for prostate cancer; (2) Reconstruction of IMRT verification treatment plan; (3) Dose reconstruction in breast cancer; (4) Reconstruction of interrupted arc and complementary plan for an interrupted VMAT treatment session of prostate cancer. The applied reconstruction method was validated by comparing reconstructed and measured fluence maps. For all statistical analysis, the U Mann–Whitney test was used. Results In the first two and the fourth cases, there were no statistically significant differences between the planned and reconstructed dose distribution (p = 0.910, p = 0.975, p = 0.893, respectively). In the third case the differences were statistically significant (p = 0.015). Treatment plan had to be reconstructed. Conclusion Developed dose distribution reconstruction algorithm presents a very useful QA tool. It provides means for 3D dose distribution verification in patient volume and allows to evaluate the influence of actual MLC leaf motion on the dose distribution. PMID:25337416

  16. Analysis of the radiative lifetime of Pr{sup 3+} d-f emission

    SciTech Connect

    Zych, Aleksander; Lange, Matthijs de; Mello Donega, Celso de; Meijerink, Andries

    2012-07-01

    The radiative lifetime of excited states is governed by Fermi's Golden Rule. For many applications, the radiative decay rate is an important parameter. For example, for scintillators materials in PET scanners, a short response time is crucial and it has been realized that the d-f emission of Pr{sup 3+} is faster than for the widely applied d-f emission from Ce{sup 3+}. In this paper, the radiative decay rate of d-f emission from Pr{sup 3+} is systematically investigated in a wide variety of host lattices, including scintillators materials. The variation in the decay rate is analyzed based on Fermi's Golden Rule. The trend observed is best described using a full cavity model to correct for local-field effects and a {lambda}{sup 3} factor to account for the energy of the transition. Still, there is a considerable scatter of the experimental data around the best fit to these data. The variation is explained by uncertainties in the refractive indices and a variation in the transition dipole moment of the d-f transition for Pr{sup 3+}. Based on the results, the shortest radiative lifetime that can be achieved for Pr{sup 3+} d-f emission is predicted to be {approx}6 ns.

  17. HEROIC: 3D general relativistic radiative post-processor with comptonization for black hole accretion discs

    NASA Astrophysics Data System (ADS)

    Narayan, Ramesh; Zhu, Yucong; Psaltis, Dimitrios; Saḑowski, Aleksander

    2016-03-01

    We describe Hybrid Evaluator for Radiative Objects Including Comptonization (HEROIC), an upgraded version of the relativistic radiative post-processor code HERO described in a previous paper, but which now Includes Comptonization. HEROIC models Comptonization via the Kompaneets equation, using a quadratic approximation for the source function in a short characteristics radiation solver. It employs a simple form of accelerated lambda iteration to handle regions of high scattering opacity. In addition to solving for the radiation field, HEROIC also solves for the gas temperature by applying the condition of radiative equilibrium. We present benchmarks and tests of the Comptonization module in HEROIC with simple 1D and 3D scattering problems. We also test the ability of the code to handle various relativistic effects using model atmospheres and accretion flows in a black hole space-time. We present two applications of HEROIC to general relativistic magnetohydrodynamics simulations of accretion discs. One application is to a thin accretion disc around a black hole. We find that the gas below the photosphere in the multidimensional HEROIC solution is nearly isothermal, quite different from previous solutions based on 1D plane parallel atmospheres. The second application is to a geometrically thick radiation-dominated accretion disc accreting at 11 times the Eddington rate. Here, the multidimensional HEROIC solution shows that, for observers who are on axis and look down the polar funnel, the isotropic equivalent luminosity could be more than 10 times the Eddington limit, even though the spectrum might still look thermal and show no signs of relativistic beaming.

  18. SU-C-213-05: Evaluation of a Composite Copper-Plastic Material for a 3D Printed Radiation Therapy Bolus

    SciTech Connect

    Vitzthum, L; Ehler, E; Sterling, D; Reynolds, T; Higgins, P; Dusenbery, K

    2015-06-15

    Purpose: To evaluate a novel 3D printed bolus fabricated from a copper-plastic composite as a thin flexible, custom fitting device that can replicate doses achieved with conventional bolus techniques. Methods: Two models of bolus were created on a 3D printer using a composite copper-PLA/PHA. Firstly, boluses were constructed at thicknesses of 0.4, 0.6 and 0.8 mm. Relative dose measurements were performed under the bolus with an Attix Chamber as well as with radiochromic film. Results were compared to superficial Attix Chamber measurements in a water equivalent material to determine the dosimetric water equivalence of the copper-PLA/PHA plastic. Secondly, CT images of a RANDO phantom were used to create a custom fitting bolus across the anterolateral scalp. Surface dose with the bolus placed on the RANDO phantom was measured with radiochromic film at tangential angles with 6, 10, 10 flattening filter free (FFF) and 18 MV photon beams. Results: Mean surface doses for 6, 10, 10FFF and 18 MV were measured as a percent of Dmax for the flat bolus devices of each thickness. The 0.4 mm thickness bolus was determined to be near equivalent to 2.5 mm depth in water for all four energies. Surface doses ranged from 59–63% without bolus and 85–90% with the custom 0.4 mm copper-plastic bolus relative to the prescribed dose for an oblique tangential beam arrangement on the RANDO phantom. Conclusion: Sub-millimeter thickness, 3D printed composite copper-PLA/PHA bolus can provide a build-up effect equivalent to conventional bolus. At this thickness, the 3D printed bolus allows a level of flexure that may provide more patient comfort than current 3D printing materials used in bolus fabrication while still retaining the CT based custom patient shape. Funding provided by an intra-department grant of the University of Minnesota Department of Radiation Oncology.

  19. Post-processing of 3D-printed parts using femtosecond and picosecond laser radiation

    NASA Astrophysics Data System (ADS)

    Mingareev, Ilya; Gehlich, Nils; Bonhoff, Tobias; Meiners, Wilhelm; Kelbassa, Ingomar; Biermann, Tim; Richardson, Martin C.

    2014-03-01

    Additive manufacturing, also known as 3D-printing, is a near-net shape manufacturing approach, delivering part geometry that can be considerably affected by various process conditions, heat-induced distortions, solidified melt droplets, partially fused powders, and surface modifications induced by the manufacturing tool motion and processing strategy. High-repetition rate femtosecond and picosecond laser radiation was utilized to improve surface quality of metal parts manufactured by laser additive techniques. Different laser scanning approaches were utilized to increase the ablation efficiency and to reduce the surface roughness while preserving the initial part geometry. We studied post-processing of 3D-shaped parts made of Nickel- and Titanium-base alloys by utilizing Selective Laser Melting (SLM) and Laser Metal Deposition (LMD) as additive manufacturing techniques. Process parameters such as the pulse energy, the number of layers and their spatial separation were varied. Surface processing in several layers was necessary to remove the excessive material, such as individual powder particles, and to reduce the average surface roughness from asdeposited 22-45 μm to a few microns. Due to the ultrafast laser-processing regime and the small heat-affected zone induced in materials, this novel integrated manufacturing approach can be used to post-process parts made of thermally and mechanically sensitive materials, and to attain complex designed shapes with micrometer precision.

  20. New Insights on Pulsating White Dwarfs from 3D Radiation-Hydrodynamical Simulations

    NASA Astrophysics Data System (ADS)

    Tremblay, Pier-Emmanuel; Fontaine, Gilles; Ludwig, Hans-Günter

    2015-08-01

    We have recently computed a grid of 3D radiation-hydrodynamical simulations for the atmosphere of 70 pure-hydrogen DA white dwarfs in the range 7.0 < log g < 9.0. This includes the full ZZ Ceti instability strip where DA white dwarfs are pulsating, by far the most common type of degenerate pulsators. We have significantly improved the theoretical framework to study these objects by removing the free parameters of 1D convection, which were previously a major modeling hurdle. We will compare our new models with the observed sample of ZZ Ceti stars and highlight the improved derived properties of these objects. In particular, the new spectroscopically determined 3D atmospheric parameters allow for an improved definition of instability strip edges. We have also made new predictions for the size of convection zones, which significantly impact the position where the pulsations are driven, and the region of the HR diagram where white dwarfs are expected to pulsate. Finally, we will present new results from non-adiabatic pulsation calculations.

  1. Migration of Earth-sized planets in 3D radiative discs

    NASA Astrophysics Data System (ADS)

    Lega, E.; Crida, A.; Bitsch, B.; Morbidelli, A.

    2014-05-01

    In this paper, we address the migration of small-mass planets in 3D radiative discs. Indeed, migration of small planets is known to be too fast inwards in locally isothermal conditions. However, thermal effects could reverse its direction, potentially saving planets in the inner, optically thick parts of the protoplanetary disc. This effect has been seen for masses larger than 5 Earth masses, but the minimum mass for this to happen has never been probed numerically, although it is of crucial importance for planet formation scenarios. We have extended the hydrodynamical code FARGO to 3D, with thermal diffusion. With this code, we perform simulations of embedded planets down to 2 Earth masses. For a set of discs' parameters for which outward migration has been shown in the range of [5, 35] Earth masses, we find that the transition to inward migration occurs for masses in the range [3, 5] Earth masses. The transition appears to be due to an unexpected phenomenon: the formation of an asymmetric cold and dense finger of gas driven by circulation and libration streamlines. We recover this phenomenon in 2D simulations where we control the cooling effects of the gas through a simple modelling of the energy equation.

  2. Radiation dose measurements in coronary CT angiography

    PubMed Central

    Sabarudin, Akmal; Sun, Zhonghua

    2013-01-01

    Coronary computed tomography (CT) angiography is associated with high radiation dose and this has raised serious concerns in the literature. Awareness of various parameters for dose estimates and measurements of coronary CT angiography plays an important role in increasing our understanding of the radiation exposure to patients, thus, contributing to the implementation of dose-saving strategies. This article provides an overview of the radiation dose quantity and its measurement during coronary CT angiography procedures. PMID:24392190

  3. 3D Dose reconstruction: Banding artefacts in cine mode EPID images during VMAT delivery

    NASA Astrophysics Data System (ADS)

    Woodruff, H. C.; Greer, P. B.

    2013-06-01

    Cine (continuous) mode images obtained during VMAT delivery are heavily degraded by banding artefacts. We have developed a method to reconstruct the pulse sequence (and hence dose deposited) from open field images. For clinical VMAT fields we have devised a frame averaging strategy that greatly improves image quality and dosimetric information for three-dimensional dose reconstruction.

  4. Genotoxic Effects of Low- and High-LET Radiation on Human Epithelial Cells Grown in 2-D Versus 3-D Culture

    NASA Technical Reports Server (NTRS)

    Patel, Z. S.; Cucinotta, F. A.; Huff, J. L.

    2011-01-01

    Risk estimation for radiation-induced cancer relies heavily on human epidemiology data obtained from terrestrial irradiation incidents from sources such as medical and occupational exposures as well as from the atomic bomb survivors. No such data exists for exposures to the types and doses of high-LET radiation that will be encountered during space travel; therefore, risk assessment for space radiation requires the use of data derived from cell culture and animal models. The use of experimental models that most accurately replicate the response of human tissues is critical for precision in risk projections. This work compares the genotoxic effects of radiation on normal human epithelial cells grown in standard 2-D monolayer culture compared to 3-D organotypic co-culture conditions. These 3-D organotypic models mimic the morphological features, differentiation markers, and growth characteristics of fully-differentiated normal human tissue and are reproducible using defined components. Cultures were irradiated with 2 Gy low-LET gamma rays or varying doses of high-LET particle radiation and genotoxic damage was measured using a modified cytokinesis block micronucleus assay. Our results revealed a 2-fold increase in residual damage in 2 Gy gamma irradiated cells grown under organotypic culture conditions compared to monolayer culture. Irradiation with high-LET particle radiation gave similar results, while background levels of damage were comparable under both scenarios. These observations may be related to the phenomenon of "multicellular resistance" where cancer cells grown as 3-D spheroids or in vivo exhibit an increased resistance to killing by chemotherapeutic agents compared to the same cells grown in 2-D culture. A variety of factors are likely involved in mediating this process, including increased cell-cell communication, microenvironment influences, and changes in cell cycle kinetics that may promote survival of damaged cells in 3-D culture that would

  5. Evaluation of Radiation Dose Effects on Rat Bones Using Synchrotron Radiation Computed Microtomography

    SciTech Connect

    Nogueira, Liebert Parreiras; Braz, Delson

    2011-12-13

    In this work, we investigated the consequences of irradiation in the femora and ribs of rats submitted to radiation doses of 5 Gy. Three different sites in femur specimens (head, distal metaphysis and distal epiphysis) and one in ribs (ventral) were imaged using synchrotron radiation microcomputed tomography to assess trabecular bone microarchitecture. Histomorphometric quantification was calculated directly from the 3D microtomographic images using synchrotron radiation. The 3D microtomographic images were obtained at the SYRMEP (SYnchrotron Radiation for MEdical Physics) beamline at the Elettra Synchrotron Laboratory in Trieste, Italy. A better understanding of the biological interactions that occur after exposure to photon radiation is needed in order to optimize therapeutic regimens and facilitate development and strategies that decrease radiation-induced side effects in humans. Results showed significant differences between irradiated and non-irradiated specimens, mostly in head and distal metaphysis bone sites.

  6. Retrieval of cloud microphysical parameters from INSAT-3D: a feasibility study using radiative transfer simulations

    NASA Astrophysics Data System (ADS)

    Jinya, John; Bipasha, Paul S.

    2016-05-01

    Clouds strongly modulate the Earths energy balance and its atmosphere through their interaction with the solar and terrestrial radiation. They interact with radiation in various ways like scattering, emission and absorption. By observing these changes in radiation at different wavelength, cloud properties can be estimated. Cloud properties are of utmost importance in studying different weather and climate phenomena. At present, no satellite provides cloud microphysical parameters over the Indian region with high temporal resolution. INSAT-3D imager observations in 6 spectral channels from geostationary platform offer opportunity to study continuous cloud properties over Indian region. Visible (0.65 μm) and shortwave-infrared (1.67 μm) channel radiances can be used to retrieve cloud microphysical parameters such as cloud optical thickness (COT) and cloud effective radius (CER). In this paper, we have carried out a feasibility study with the objective of cloud microphysics retrieval. For this, an inter-comparison of 15 globally available radiative transfer models (RTM) were carried out with the aim of generating a Look-up- Table (LUT). SBDART model was chosen for the simulations. The sensitivity of each spectral channel to different cloud properties was investigated. The inputs to the RT model were configured over our study region (50°S - 50°N and 20°E - 130°E) and a large number of simulations were carried out using random input vectors to generate the LUT. The determination of cloud optical thickness and cloud effective radius from spectral reflectance measurements constitutes the inverse problem and is typically solved by comparing the measured reflectances with entries in LUT and searching for the combination of COT and CER that gives the best fit. The products are available on the website www.mosdac.gov.in

  7. Skin Dose in Longitudinal and Transverse Linac-MRIs using Monte-Carlo and realistic 3D MRI field models

    NASA Astrophysics Data System (ADS)

    Keyvanloo Shahrestanaky, Amirmohamad

    The integration of a clinical linear accelerator (linac) with a magnetic resonance imaging (MRI) system would provide real-time tumor tracking. The magnetic fields of linac-MR systems modify the path of contaminant electrons in photon beams, which alters patient skin dose. In this work, we used Monte Carlo calculations that incorporate realistic 3D magnetic field models of longitudinal and transverse linac-MR systems to accurately quantify the changes in skin dose. The results show that fringe fields of realistic 3D B-fields decay rapidly and have a very small magnitude at the linac’s head. As a result, for longitudinal linac-MR systems only a small increase in the entrance skin dose is predicted. For transverse linac-MR systems, changes to the entrance skin dose are small for most scenarios. On the exit side, however, a fairly large increase is observed for perpendicular beams due to the electron return effect, but significantly drops for large oblique angles of incidence.

  8. Correlation of Point B and Lymph Node Dose in 3D-Planned High-Dose-Rate Cervical Cancer Brachytherapy

    SciTech Connect

    Lee, Larissa J.; Sadow, Cheryl A.; Russell, Anthony; Viswanathan, Akila N.

    2009-11-01

    Purpose: To compare high dose rate (HDR) point B to pelvic lymph node dose using three-dimensional-planned brachytherapy for cervical cancer. Methods and Materials: Patients with FIGO Stage IB-IIIB cervical cancer received 70 tandem HDR applications using CT-based treatment planning. The obturator, external, and internal iliac lymph nodes (LN) were contoured. Per fraction (PF) and combined fraction (CF) right (R), left (L), and bilateral (Bil) nodal doses were analyzed. Point B dose was compared with LN dose-volume histogram (DVH) parameters by paired t test and Pearson correlation coefficients. Results: Mean PF and CF doses to point B were R 1.40 Gy +- 0.14 (CF: 7 Gy), L 1.43 +- 0.15 (CF: 7.15 Gy), and Bil 1.41 +- 0.15 (CF: 7.05 Gy). The correlation coefficients between point B and the D100, D90, D50, D2cc, D1cc, and D0.1cc LN were all less than 0.7. Only the D2cc to the obturator and the D0.1cc to the external iliac nodes were not significantly different from the point B dose. Significant differences between R and L nodal DVHs were seen, likely related to tandem deviation from irregular tumor anatomy. Conclusions: With HDR brachytherapy for cervical cancer, per fraction nodal dose approximates a dose equivalent to teletherapy. Point B is a poor surrogate for dose to specific nodal groups. Three-dimensional defined nodal contours during brachytherapy provide a more accurate reflection of delivered dose and should be part of comprehensive planning of the total dose to the pelvic nodes, particularly when there is evidence of pathologic involvement.

  9. Dynamic implicit 3D adaptive mesh refinement for non-equilibrium radiation diffusion

    SciTech Connect

    B. Philip; Z. Wang; M.A. Berrill; M. Birke; M. Pernice

    2014-04-01

    The time dependent non-equilibrium radiation diffusion equations are important for solving the transport of energy through radiation in optically thick regimes and find applications in several fields including astrophysics and inertial confinement fusion. The associated initial boundary value problems that are encountered often exhibit a wide range of scales in space and time and are extremely challenging to solve. To efficiently and accurately simulate these systems we describe our research on combining techniques that will also find use more broadly for long term time integration of nonlinear multi-physics systems: implicit time integration for efficient long term time integration of stiff multi-physics systems, local control theory based step size control to minimize the required global number of time steps while controlling accuracy, dynamic 3D adaptive mesh refinement (AMR) to minimize memory and computational costs, Jacobian Free Newton–Krylov methods on AMR grids for efficient nonlinear solution, and optimal multilevel preconditioner components that provide level independent solver convergence.

  10. 3D Radiative MHD Modeling of Quiet-Sun Magnetic Activity

    NASA Astrophysics Data System (ADS)

    Kitiashvili, Irina

    2016-05-01

    Quiet-Sun regions that cover most of the solar surface represent a background state that plays an extremely important role in the dynamics and energetics of the solar atmosphere. A clear understanding of these regions is required for accurate interpretation of solar activity events such as emergence of magnetic flux, sunspot formation, and eruptive dynamics. Modern high-resolution observations from ground and space telescopes have revealed a complicated dynamics of turbulent magnetoconvection and its effects in the solar atmosphere and corona, showing intense interactions across different temporal and spatial scales. Interpretation of the observed complex phenomena and understanding of their origins is impossible without advanced numerical models. I will present new results of realistic-type 3D radiative MHD simulations of the upper turbulent convective layer and atmosphere of the Sun. The results reveal the mechanism of formation and properties of the Sun’s “magnetic carpet” controlled by subsurface small-scale dynamo processes, and demonstrate interaction between the subsurface layers and the atmosphere via spontaneous small-scale eruptions and wave phenomena. To link the simulations to solar data the spectro-polarimetric radiative transfer code SPINOR is used to convert the simulated data into the Stokes profiles of various spectral lines, including the SDO and Hinode observables. The results provide a detailed physical understanding of the quiet-Sun dynamics, and show potential for future observations with the DKIST and other large solar telescopes.

  11. FURN3D: A computer code for radiative heat transfer in pulverized coal furnaces

    SciTech Connect

    Ahluwalia, R.K.; Im, K.H.

    1992-08-01

    A computer code FURN3D has been developed for assessing the impact of burning different coals on heat absorption pattern in pulverized coal furnaces. The code is unique in its ability to conduct detailed spectral calculations of radiation transport in furnaces fully accounting for the size distributions of char, soot and ash particles, ash content, and ash composition. The code uses a hybrid technique of solving the three-dimensional radiation transport equation for absorbing, emitting and anisotropically scattering media. The technique achieves an optimal mix of computational speed and accuracy by combining the discrete ordinate method (S[sub 4]), modified differential approximation (MDA) and P, approximation in different range of optical thicknesses. The code uses spectroscopic data for estimating the absorption coefficients of participating gases C0[sub 2], H[sub 2]0 and CO. It invokes Mie theory for determining the extinction and scattering coefficients of combustion particulates. The optical constants of char, soot and ash are obtained from dispersion relations derived from reflectivity, transmissivity and extinction measurements. A control-volume formulation is adopted for determining the temperature field inside the furnace. A simple char burnout model is employed for estimating heat release and evolution of particle size distribution. The code is written in Fortran 77, has modular form, and is machine-independent. The computer memory required by the code depends upon the number of grid points specified and whether the transport calculations are performed on spectral or gray basis.

  12. FURN3D: A computer code for radiative heat transfer in pulverized coal furnaces

    SciTech Connect

    Ahluwalia, R.K.; Im, K.H.

    1992-08-01

    A computer code FURN3D has been developed for assessing the impact of burning different coals on heat absorption pattern in pulverized coal furnaces. The code is unique in its ability to conduct detailed spectral calculations of radiation transport in furnaces fully accounting for the size distributions of char, soot and ash particles, ash content, and ash composition. The code uses a hybrid technique of solving the three-dimensional radiation transport equation for absorbing, emitting and anisotropically scattering media. The technique achieves an optimal mix of computational speed and accuracy by combining the discrete ordinate method (S{sub 4}), modified differential approximation (MDA) and P, approximation in different range of optical thicknesses. The code uses spectroscopic data for estimating the absorption coefficients of participating gases C0{sub 2}, H{sub 2}0 and CO. It invokes Mie theory for determining the extinction and scattering coefficients of combustion particulates. The optical constants of char, soot and ash are obtained from dispersion relations derived from reflectivity, transmissivity and extinction measurements. A control-volume formulation is adopted for determining the temperature field inside the furnace. A simple char burnout model is employed for estimating heat release and evolution of particle size distribution. The code is written in Fortran 77, has modular form, and is machine-independent. The computer memory required by the code depends upon the number of grid points specified and whether the transport calculations are performed on spectral or gray basis.

  13. Use of a graphics processing unit (GPU) to facilitate real-time 3D graphic presentation of the patient skin-dose distribution during fluoroscopic interventional procedures

    NASA Astrophysics Data System (ADS)

    Rana, Vijay; Rudin, Stephen; Bednarek, Daniel R.

    2012-03-01

    We have developed a dose-tracking system (DTS) that calculates the radiation dose to the patient's skin in realtime by acquiring exposure parameters and imaging-system-geometry from the digital bus on a Toshiba Infinix C-arm unit. The cumulative dose values are then displayed as a color map on an OpenGL-based 3D graphic of the patient for immediate feedback to the interventionalist. Determination of those elements on the surface of the patient 3D-graphic that intersect the beam and calculation of the dose for these elements in real time demands fast computation. Reducing the size of the elements results in more computation load on the computer processor and therefore a tradeoff occurs between the resolution of the patient graphic and the real-time performance of the DTS. The speed of the DTS for calculating dose to the skin is limited by the central processing unit (CPU) and can be improved by using the parallel processing power of a graphics processing unit (GPU). Here, we compare the performance speed of GPU-based DTS software to that of the current CPU-based software as a function of the resolution of the patient graphics. Results show a tremendous improvement in speed using the GPU. While an increase in the spatial resolution of the patient graphics resulted in slowing down the computational speed of the DTS on the CPU, the speed of the GPU-based DTS was hardly affected. This GPU-based DTS can be a powerful tool for providing accurate, real-time feedback about patient skin-dose to physicians while performing interventional procedures.

  14. Use of a graphics processing unit (GPU) to facilitate real-time 3D graphic presentation of the patient skin-dose distribution during fluoroscopic interventional procedures.

    PubMed

    Rana, Vijay; Rudin, Stephen; Bednarek, Daniel R

    2012-02-23

    We have developed a dose-tracking system (DTS) that calculates the radiation dose to the patient's skin in real-time by acquiring exposure parameters and imaging-system-geometry from the digital bus on a Toshiba Infinix C-arm unit. The cumulative dose values are then displayed as a color map on an OpenGL-based 3D graphic of the patient for immediate feedback to the interventionalist. Determination of those elements on the surface of the patient 3D-graphic that intersect the beam and calculation of the dose for these elements in real time demands fast computation. Reducing the size of the elements results in more computation load on the computer processor and therefore a tradeoff occurs between the resolution of the patient graphic and the real-time performance of the DTS. The speed of the DTS for calculating dose to the skin is limited by the central processing unit (CPU) and can be improved by using the parallel processing power of a graphics processing unit (GPU). Here, we compare the performance speed of GPU-based DTS software to that of the current CPU-based software as a function of the resolution of the patient graphics. Results show a tremendous improvement in speed using the GPU. While an increase in the spatial resolution of the patient graphics resulted in slowing down the computational speed of the DTS on the CPU, the speed of the GPU-based DTS was hardly affected. This GPU-based DTS can be a powerful tool for providing accurate, real-time feedback about patient skin-dose to physicians while performing interventional procedures.

  15. Comparison of 3D dose distributions for HDR {sup 192}Ir brachytherapy sources with normoxic polymer gel dosimetry and treatment planning system

    SciTech Connect

    Senkesen, Oznur; Tezcanli, Evrim; Buyuksarac, Bora; Ozbay, Ismail

    2014-10-01

    Radiation fluence changes caused by the dosimeter itself and poor spatial resolution may lead to lack of 3-dimensional (3D) information depending on the features of the dosimeter and quality assurance of dose distributions for high–dose rate (HDR) iridium-192 ({sup 192}Ir) brachytherapy sources is challenging and experimental dosimetry methods used for brachytherapy sources are limited. In this study, we investigated 3D dose distributions of {sup 192}Ir brachytherapy sources for irradiation with single and multiple dwell positions using a normoxic gel dosimeter and compared them with treatment planning system (TPS) calculations. For dose calibration purposes, 100-mL gel-containing vials were irradiated at predefined doses and then scanned in an magnetic resonance (MR) imaging unit. Gel phantoms prepared in 2 spherical glasses were irradiated with {sup 192}Ir for the calculated dwell positions, and MR scans of the phantoms were obtained. The images were analyzed with MATLAB software. Dose distributions and profiles derived with 1-mm resolution were compared with TPS calculations. Linearity was observed between the delivered dose and the reciprocal of the T2 relaxation time constant of the gel. The x-, y-, and z-axes were defined as the sagittal, coronal, and axial planes, respectively, the sagittal and axial planes were defined parallel to the long axis of the source while the coronal plane was defined horizontally to the long axis of the source. The differences between measured and calculated profile widths of 3-cm source length and point source for 70%, 50%, and 30% isodose lines were evaluated at 3 dose levels using 18 profiles of comparison. The calculations for 3-cm source length revealed a difference of > 3 mm in 1 coordinate at 50% profile width on the sagittal plane and 3 coordinates at 70% profile width and 2 coordinates at 50% and 30% profile widths on the axial plane. Calculations on the coronal plane for 3-cm source length showed > 3-mm difference in 1

  16. Validation of measurement-guided 3D VMAT dose reconstruction on a heterogeneous anthropomorphic phantom.

    PubMed

    Opp, Daniel; Nelms, Benjamin E; Zhang, Geoffrey; Stevens, Craig; Feygelman, Vladimir

    2013-01-01

    3DVH software (Sun Nuclear Corp., Melbourne, FL) is capable of generating a volumetric patient VMAT dose by applying a volumetric perturbation algorithm based on comparing measurement-guided dose reconstruction and TPS-calculated dose to a cylindrical phantom. The primary purpose of this paper is to validate this dose reconstruction on an anthropomorphic heterogeneous thoracic phantom by direct comparison to independent measurements. The dosimetric insert to the phantom is novel, and thus the secondary goal is to demonstrate how it can be used for the hidden target end-to-end testing of VMAT treatments in lung. A dosimetric insert contains a 4 cm diameter unit-density spherical target located inside the right lung (0.21 g/cm(3) density). It has 26 slots arranged in two orthogonal directions, milled to hold optically stimulated luminescent dosimeters (OSLDs). Dose profiles in three cardinal orthogonal directions were obtained for five VMAT plans with varying degrees of modulation. After appropriate OSLD corrections were applied, 3DVH measurement-guided VMAT dose reconstruction agreed 100% with the measurements in the unit density target sphere at 3%/3 mm level (composite analysis) for all profile points for the four less-modulated VMAT plans, and for 96% of the points in the highly modulated C-shape plan (from TG-119). For this latter plan, while 3DVH shows acceptable agreement with independent measurements in the unit density target, in the lung disagreement with experiment is relatively high for both the TPS calculation and 3DVH reconstruction. For the four plans excluding the C-shape, 3%/3 mm overall composite analysis passing rates for 3DVH against independent measurement ranged from 93% to 100%. The C-shape plan was deliberately chosen as a stress test of the algorithm. The dosimetric spatial alignment hidden target test demonstrated the average distance to agreement between the measured and TPS profiles in the steep dose gradient area at the edge of the 2 cm

  17. New insights into photodynamic therapy treatment through the use of 3D Monte Carlo radiation transfer modelling

    NASA Astrophysics Data System (ADS)

    Campbell, C. L.; Wood, Kenneth; Brown, C. Tom A.; Moseley, Harry

    2016-02-01

    Photodynamic therapy (PDT) has been theoretically investigated using a Monte Carlo radiation transfer (MCRT) model. By including complex three dimensional (3D) tumour models a more appropriate representation of the treatment was achieved. The 3D clustered tumour model was compared to a smooth model, resulting in a significantly deeper penetration associated with the clustered model. The results from the work presented here indicates that light might penetrate deeper than suggested by 2D or simple layered models.

  18. SU-F-BRE-06: Evaluation of Patient CT Dose Reconstruction From 3D Diode Array Measurements Using Anthropomorphic Phantoms

    SciTech Connect

    Huang, M; Benhabib, S; Cardan, R; Brezovich, I; Popple, R; Faught, A; Followill, D

    2014-06-15

    Purpose: To compare 3D reconstructed dose of IMRT plans from 3D diode array measurements with measurements in anthropomorphic phantoms. Methods: Six IMRT plans were created for the IROC Houston (RPC) head and neck (H and N) and lung phantoms following IROC Houston planning protocols. The plans included flattened and unflattened beam energies ranging from 6 MV to 15 MV and both static and dynamic MLC tecH and Niques. Each plan was delivered three times to the respective anthropomorphic phantom, each of which contained thermoluminescent dosimeters (TLDs) and radiochromic films (RCFs). The plans were also delivered to a Delta4 diode array (Scandidos, Uppsala, Sweden). Irradiations were done using a TrueBeam STx (Varian Medical Systems, Palo Alto, CA). The dose in the patient was calculated by the Delta4 software, which used the diode measurements to estimate incident energy fluence and a kernel-based pencil beam algorithm to calculate dose. The 3D dose results were compared with the TLD and RCF measurements. Results: In the lung, the average difference between TLDs and Delta4 calculations was 5% (range 2%–7%). For the H and N, the average differences were 2.4% (range 0%–4.5%) and 1.1% (range 0%–2%) for the high- and low-dose targets, respectively, and 12% (range 10%-13%) for the organ-at-risk simulating the spinal cord. For the RCF and criteria of 7%/4mm, 5%/3mm, and 3%/3mm, the average gamma-index pass rates were 95.4%, 85.7%, and 76.1%, respectively for the H and N and 76.2%, 57.8%, and 49.5% for the lung. The pass-rate in the lung decreased with increasing beam energy, as expected for a pencil beam algorithm. Conclusion: The H and N phantom dose reconstruction met the IROC Houston acceptance criteria for clinical trials; however, the lung phantom dose did not, most likely due to the inaccuracy of the pencil beam algorithm in the presence of low-density inhomogeneities. Work supported by PHS grant CA10953 and CA81647 (NCI, DHHS)

  19. A study of the earth radiation budget using a 3D Monte-Carlo radiative transer code

    NASA Astrophysics Data System (ADS)

    Okata, M.; Nakajima, T.; Sato, Y.; Inoue, T.; Donovan, D. P.

    2013-12-01

    The purpose of this study is to evaluate the earth's radiation budget when data are available from satellite-borne active sensors, i.e. cloud profiling radar (CPR) and lidar, and a multi-spectral imager (MSI) in the project of the Earth Explorer/EarthCARE mission. For this purpose, we first developed forward and backward 3D Monte Carlo radiative transfer codes that can treat a broadband solar flux calculation including thermal infrared emission calculation by k-distribution parameters of Sekiguchi and Nakajima (2008). In order to construct the 3D cloud field, we tried the following three methods: 1) stochastic cloud generated by randomized optical thickness each layer distribution and regularly-distributed tilted clouds, 2) numerical simulations by a non-hydrostatic model with bin cloud microphysics model and 3) Minimum cloud Information Deviation Profiling Method (MIDPM) as explained later. As for the method-2 (numerical modeling method), we employed numerical simulation results of Californian summer stratus clouds simulated by a non-hydrostatic atmospheric model with a bin-type cloud microphysics model based on the JMA NHM model (Iguchi et al., 2008; Sato et al., 2009, 2012) with horizontal (vertical) grid spacing of 100m (20m) and 300m (20m) in a domain of 30km (x), 30km (y), 1.5km (z) and with a horizontally periodic lateral boundary condition. Two different cell systems were simulated depending on the cloud condensation nuclei (CCN) concentration. In the case of horizontal resolution of 100m, regionally averaged cloud optical thickness, , and standard deviation of COT, were 3.0 and 4.3 for pristine case and 8.5 and 7.4 for polluted case, respectively. In the MIDPM method, we first construct a library of pair of observed vertical profiles from active sensors and collocated imager products at the nadir footprint, i.e. spectral imager radiances, cloud optical thickness (COT), effective particle radius (RE) and cloud top temperature (Tc). We then select a

  20. Feasibility of a Multigroup Deterministic Solution Method for 3D Radiotherapy Dose Calculations

    PubMed Central

    Vassiliev, Oleg N.; Wareing, Todd A.; Davis, Ian M.; McGhee, John; Barnett, Douglas; Horton, John L.; Gifford, Kent; Failla, Gregory; Titt, Uwe; Mourtada, Firas

    2008-01-01

    Purpose To investigate the potential of a novel deterministic solver, Attila, for external photon beam radiotherapy dose calculations. Methods and Materials Two hypothetical cases for prostate and head and neck cancer photon beam treatment plans were calculated using Attila and EGSnrc Monte Carlo simulations. Open beams were modeled as isotropic photon point sources collimated to specified field sizes (100 cm SSD). The sources had a realistic energy spectrum calculated by Monte Carlo for a Varian Clinac 2100 operated in a 6MV photon mode. The Attila computational grids consisted of 106,000 elements, or 424,000 spatial degrees of freedom, for the prostate case, and 123,000 tetrahedral elements, or 492,000 spatial degrees of freedom, for the head and neck cases. Results For both cases, results demonstrate excellent agreement between Attila and EGSnrc in all areas, including the build-up regions, near heterogeneities, and at the beam penumbra. Dose agreement for 99% of the voxels was within 3% (relative point-wise difference) or 3mm distance-to-agreement criterion. Localized differences between the Attila and EGSnrc results were observed at bone and soft tissue interfaces, and are attributable to the effect of voxel material homogenization in calculating dose-to-medium in EGSnrc. For both cases, Attila calculation times were under 20 CPU minutes on a single 2.2 GHz AMD Opteron processor. Conclusions The methods in Attila have the potential to be the basis for an efficient dose engine for patient specific treatment planning, providing accuracy similar to that obtained by Monte Carlo. PMID:18722273

  1. A Program for Calculating Radiation Dose Rates.

    1986-01-27

    Version 00 SMART calculates radiation dose rate at the center of the outer cask surface. It can be applied to determine the radiation dose rate on each cask if source conditions, characteristic function, and material conditions in the bottle regions are given. MANYCASK calculates radiation dose rate distribution in a space surrounded by many casks. If the dose rate on each cask surface can be measured, MANYCASK can be applied to predict dose spatial dosemore » rate distribution for any case of cask configuration.« less

  2. Low-mass gas envelopes around accreting cores embedded in radiative 3D discs

    NASA Astrophysics Data System (ADS)

    Lega, Elena; Lambrechts, Michiel

    2016-10-01

    Planets with a core mass larger than few Earth masses and a gaseous envelope not exceeding about 10% of the total mass budget are common. Such planets are present in the Solar System (Uranus, Neptune) and are frequently observed around other stars.Our knowledge about the evolution of gas envelopes is mainly based on 1D models. However, such models cannot investigate the complex interaction between the forming envelope and the surrounding gas disc.In this work we perform 3D hydrodynamics simulations accounting for energy transfer and radiative cooling using the FARGOCA code (Lega et al., MNRAS 440, 2014). In addition to the usually considered heatingsources, namely viscous and compressional heating, we have modeled the energy deposited by the accretion of solids.We show that the thermal evolution of the envelope of a 5 Earth mass core is mainly dominated by compressional heating for accretion rates lower than 5 Earth masses per 105 years.Additionally, we demonstrate efficient gas circulation through the envelope. Under certain conditions, the competition between gas circulation and cooling of the envelope can efficiently delay the onset of runaway accretion. This could help in explaining the population of planets with low-mass gas envelope.

  3. Large area 3-D optical coherence tomography imaging of lumpectomy specimens for radiation treatment planning

    NASA Astrophysics Data System (ADS)

    Wang, Cuihuan; Kim, Leonard; Barnard, Nicola; Khan, Atif; Pierce, Mark C.

    2016-02-01

    Our long term goal is to develop a high-resolution imaging method for comprehensive assessment of tissue removed during lumpectomy procedures. By identifying regions of high-grade disease within the excised specimen, we aim to develop patient-specific post-operative radiation treatment regimens. We have assembled a benchtop spectral-domain optical coherence tomography (SD-OCT) system with 1320 nm center wavelength. Automated beam scanning enables "sub-volumes" spanning 5 mm x 5 mm x 2 mm (500 A-lines x 500 B-scans x 2 mm in depth) to be collected in under 15 seconds. A motorized sample positioning stage enables multiple sub-volumes to be acquired across an entire tissue specimen. Sub-volumes are rendered from individual B-scans in 3D Slicer software and en face (XY) images are extracted at specific depths. These images are then tiled together using MosaicJ software to produce a large area en face view (up to 40 mm x 25 mm). After OCT imaging, specimens were sectioned and stained with HE, allowing comparison between OCT image features and disease markers on histopathology. This manuscript describes the technical aspects of image acquisition and reconstruction, and reports initial qualitative comparison between large area en face OCT images and HE stained tissue sections. Future goals include developing image reconstruction algorithms for mapping an entire sample, and registering OCT image volumes with clinical CT and MRI images for post-operative treatment planning.

  4. Acute Toxicity After Image-Guided Intensity Modulated Radiation Therapy Compared to 3D Conformal Radiation Therapy in Prostate Cancer Patients

    SciTech Connect

    Wortel, Ruud C.; Incrocci, Luca; Pos, Floris J.; Lebesque, Joos V.; Witte, Marnix G.; Heide, Uulke A. van der; Herk, Marcel van; Heemsbergen, Wilma D.

    2015-03-15

    Purpose: Image-guided intensity modulated radiation therapy (IG-IMRT) allows significant dose reductions to organs at risk in prostate cancer patients. However, clinical data identifying the benefits of IG-IMRT in daily practice are scarce. The purpose of this study was to compare dose distributions to organs at risk and acute gastrointestinal (GI) and genitourinary (GU) toxicity levels of patients treated to 78 Gy with either IG-IMRT or 3D-CRT. Methods and Materials: Patients treated with 3D-CRT (n=215) and IG-IMRT (n=260) receiving 78 Gy in 39 fractions within 2 randomized trials were selected. Dose surface histograms of anorectum, anal canal, and bladder were calculated. Identical toxicity questionnaires were distributed at baseline, prior to fraction 20 and 30 and at 90 days after treatment. Radiation Therapy Oncology Group (RTOG) grade ≥1, ≥2, and ≥3 endpoints were derived directly from questionnaires. Univariate and multivariate binary logistic regression analyses were applied. Results: The median volumes receiving 5 to 75 Gy were significantly lower (all P<.001) with IG-IMRT for anorectum, anal canal, and bladder. The mean dose to the anorectum was 34.4 Gy versus 47.3 Gy (P<.001), 23.6 Gy versus 44.6 Gy for the anal canal (P<.001), and 33.1 Gy versus 43.2 Gy for the bladder (P<.001). Significantly lower grade ≥2 toxicity was observed for proctitis, stool frequency ≥6/day, and urinary frequency ≥12/day. IG-IMRT resulted in significantly lower overall RTOG grade ≥2 GI toxicity (29% vs 49%, respectively, P=.002) and overall GU grade ≥2 toxicity (38% vs 48%, respectively, P=.009). Conclusions: A clinically meaningful reduction in dose to organs at risk and acute toxicity levels was observed in IG-IMRT patients, as a result of improved technique and tighter margins. Therefore reduced late toxicity levels can be expected as well; additional research is needed to quantify such reductions.

  5. Investigation of Three-Dimensional (3-D) Solar Radiative Transfer Effects Using A-Train Satellite Measurements

    NASA Astrophysics Data System (ADS)

    Ham, S.; Kato, S.; Barker, H.; Rose, F. G.

    2012-12-01

    Three-dimensional (3-D) radiative effects are examined for cloudy atmosphere obtained from A-train satellite measurements. Since CloudSat and Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) only provide two-dimensional (2-D) nadir profiles along the satellite track, Moderate Resolution Imaging Spectroradiometer (MODIS) spectral radiances are used to extend the 2-D cloud profiles to the cross track direction (Barker et al., 2011). Then one-dimensional (1-D) and 3-D simulations are performed to get (SW) broad band (BB) flux and heating rate profile for constructed 3-D cloud field. In the simulation, correlated k-distribution model is employed to obtain rapid estimation of gaseous optical depths for 70 solar spectral bands. The difference between 1-D and 3-D results are interpreted as 3-D solar effects, and analyzed for different cloud types and solar zenith angle. In addition, modeled top-of-atmosphere (TOA) irradiances by the 1-D and 3-D models are compared to Clouds and the Earth's Radiant Energy System (CERES)-derived TOA irradiances. The preliminary results show that 3-D cloud absorption is larger than 1-D calculation, and thus 3-D heating rate is larger than 1-D heating rate for cloud layer. On the other hand, 3-D downward flux at surface is smaller than 1-D flux. Reference Barker, H. W., M. P. Jerg, T. Wehr, S. Kato, D. P. Donovan, and R. J. Hogan, 2011, A 3D cloud-construction algorithm for the EarthCARE mission, Q. J. R. Meteorol. Soc., 137, 1042-1058.

  6. Commissioning of a 3D image-based treatment planning system for high-dose-rate brachytherapy of cervical cancer.

    PubMed

    Kim, Yongbok; Modrick, Joseph M; Pennington, Edward C; Kim, Yusung

    2016-01-01

    The objective of this work is to present commissioning procedures to clinically implement a three-dimensional (3D), image-based, treatment-planning system (TPS) for high-dose-rate (HDR) brachytherapy (BT) for gynecological (GYN) cancer. The physical dimensions of the GYN applicators and their values in the virtual applicator library were varied by 0.4 mm of their nominal values. Reconstruction uncertainties of the titanium tandem and ovoids (T&O) were less than 0.4 mm on CT phantom studies and on average between 0.8-1.0 mm on MRI when compared with X-rays. In-house software, HDRCalculator, was developed to check HDR plan parameters such as independently verifying active tandem or cylinder probe length and ovoid or cylinder size, source calibration and treatment date, and differences between average Point A dose and prescription dose. Dose-volume histograms were validated using another independent TPS. Comprehensive procedures to commission volume optimization algorithms and process in 3D image-based planning were presented. For the difference between line and volume optimizations, the average absolute differences as a percentage were 1.4% for total reference air KERMA (TRAK) and 1.1% for Point A dose. Volume optimization consistency tests between versions resulted in average absolute differences in 0.2% for TRAK and 0.9 s (0.2%) for total treatment time. The data revealed that the optimizer should run for at least 1 min in order to avoid more than 0.6% dwell time changes. For clinical GYN T&O cases, three different volume optimization techniques (graphical optimization, pure inverse planning, and hybrid inverse optimization) were investigated by comparing them against a conventional Point A technique. End-to-end testing was performed using a T&O phantom to ensure no errors or inconsistencies occurred from imaging through to planning and delivery. The proposed commissioning procedures provide a clinically safe implementation technique for 3D image-based TPS for HDR

  7. Development of 3D ultrasound needle guidance for high-dose-rate interstitial brachytherapy of gynaecological cancers

    NASA Astrophysics Data System (ADS)

    Rodgers, J.; Tessier, D.; D'Souza, D.; Leung, E.; Hajdok, G.; Fenster, A.

    2016-04-01

    High-dose-rate (HDR) interstitial brachytherapy is often included in standard-of-care for gynaecological cancers. Needles are currently inserted through a perineal template without any standard real-time imaging modality to assist needle guidance, causing physicians to rely on pre-operative imaging, clinical examination, and experience. While two-dimensional (2D) ultrasound (US) is sometimes used for real-time guidance, visualization of needle placement and depth is difficult and subject to variability and inaccuracy in 2D images. The close proximity to critical organs, in particular the rectum and bladder, can lead to serious complications. We have developed a three-dimensional (3D) transrectal US system and are investigating its use for intra-operative visualization of needle positions used in HDR gynaecological brachytherapy. As a proof-of-concept, four patients were imaged with post-insertion 3D US and x-ray CT. Using software developed in our laboratory, manual rigid registration of the two modalities was performed based on the perineal template's vaginal cylinder. The needle tip and a second point along the needle path were identified for each needle visible in US. The difference between modalities in the needle trajectory and needle tip position was calculated for each identified needle. For the 60 needles placed, the mean trajectory difference was 3.23 +/- 1.65° across the 53 visible needle paths and the mean difference in needle tip position was 3.89 +/- 1.92 mm across the 48 visible needles tips. Based on the preliminary results, 3D transrectal US shows potential for the development of a 3D US-based needle guidance system for interstitial gynaecological brachytherapy.

  8. A global model simulation for 3-D radiative transfer impact on surface hydrology over Sierra Nevada and Rocky Mountains

    DOE PAGES

    Lee, W. -L.; Gu, Y.; Liou, K. N.; Leung, L. R.; Hsu, H. -H.

    2014-12-15

    We investigate 3-D mountain effects on solar flux distributions and their impact on surface hydrology over the Western United States, specifically the Rocky Mountains and Sierra Nevada using CCSM4 (CAM4/CLM4) global model with a 0.23° × 0.31° resolution for simulations over 6 years. In 3-D radiative transfer parameterization, we have updated surface topography data from a resolution of 1 km to 90 m to improve parameterization accuracy. In addition, we have also modified the upward-flux deviation [3-D - PP (plane-parallel)] adjustment to ensure that energy balance at the surface is conserved in global climate simulations based on 3-D radiation parameterization.more » We show that deviations of the net surface fluxes are not only affected by 3-D mountains, but also influenced by feedbacks of cloud and snow in association with the long-term simulations. Deviations in sensible heat and surface temperature generally follow the patterns of net surface solar flux. The monthly snow water equivalent (SWE) deviations show an increase in lower elevations due to reduced snowmelt, leading to a reduction in cumulative runoff. Over higher elevation areas, negative SWE deviations are found because of increased solar radiation available at the surface. Simulated precipitation increases for lower elevations, while decreases for higher elevations with a minimum in April. Liquid runoff significantly decreases in higher elevations after April due to reduced SWE and precipitation.« less

  9. Issues involved in the quantitative 3D imaging of proton doses using optical CT and chemical dosimeters.

    PubMed

    Doran, Simon; Gorjiara, Tina; Kacperek, Andrzej; Adamovics, John; Kuncic, Zdenka; Baldock, Clive

    2015-01-21

    Dosimetry of proton beams using 3D imaging of chemical dosimeters is complicated by a variation with proton linear energy transfer (LET) of the dose-response (the so-called 'quenching effect'). Simple theoretical arguments lead to the conclusion that the total absorbed dose from multiple irradiations with different LETs cannot be uniquely determined from post-irradiation imaging measurements on the dosimeter. Thus, a direct inversion of the imaging data is not possible and the proposition is made to use a forward model based on appropriate output from a planning system to predict the 3D response of the dosimeter. In addition to the quenching effect, it is well known that chemical dosimeters have a non-linear response at high doses. To the best of our knowledge it has not yet been determined how this phenomenon is affected by LET. The implications for dosimetry of a number of potential scenarios are examined.Dosimeter response as a function of depth (and hence LET) was measured for four samples of the radiochromic plastic PRESAGE(®), using an optical computed tomography readout and entrance doses of 2.0 Gy, 4.0 Gy, 7.8 Gy and 14.7 Gy, respectively. The dosimeter response was separated into two components, a single-exponential low-LET response and a LET-dependent quenching. For the particular formulation of PRESAGE(®) used, deviations from linearity of the dosimeter response became significant for doses above approximately 16 Gy. In a second experiment, three samples were each irradiated with two separate beams of 4 Gy in various different configurations. On the basis of the previous characterizations, two different models were tested for the calculation of the combined quenching effect from two contributions with different LETs. It was concluded that a linear superposition model with separate calculation of the quenching for each irradiation did not match the measured result where two beams overlapped. A second model, which used the concept of an

  10. Patient-Specific 3D Pretreatment and Potential 3D Online Dose Verification of Monte Carlo-Calculated IMRT Prostate Treatment Plans

    SciTech Connect

    Boggula, Ramesh; Jahnke, Lennart; Wertz, Hansjoerg; Lohr, Frank; Wenz, Frederik

    2011-11-15

    Purpose: Fast and reliable comprehensive quality assurance tools are required to validate the safety and accuracy of complex intensity-modulated radiotherapy (IMRT) plans for prostate treatment. In this study, we evaluated the performance of the COMPASS system for both off-line and potential online procedures for the verification of IMRT treatment plans. Methods and Materials: COMPASS has a dedicated beam model and dose engine, it can reconstruct three-dimensional dose distributions on the patient anatomy based on measured fluences using either the MatriXX two-dimensional (2D) array (offline) or a 2D transmission detector (T2D) (online). For benchmarking the COMPASS dose calculation, various dose-volume indices were compared against Monte Carlo-calculated dose distributions for five prostate patient treatment plans. Gamma index evaluation and absolute point dose measurements were also performed in an inhomogeneous pelvis phantom using extended dose range films and ion chamber for five additional treatment plans. Results: MatriXX-based dose reconstruction showed excellent agreement with the ion chamber (<0.5%, except for one treatment plan, which showed 1.5%), film ({approx}100% pixels passing gamma criteria 3%/3 mm) and mean dose-volume indices (<2%). The T2D based dose reconstruction showed good agreement as well with ion chamber (<2%), film ({approx}99% pixels passing gamma criteria 3%/3 mm), and mean dose-volume indices (<5.5%). Conclusion: The COMPASS system qualifies for routine prostate IMRT pretreatment verification with the MatriXX detector and has the potential for on-line verification of treatment delivery using T2D.

  11. SU-C-BRE-04: Microbeam-Radiation-Therapy (MRT): Characterizing a Novel MRT Device Using High Resolution 3D Dosimetry

    SciTech Connect

    Li, Q; Juang, T; Bache, S; Chang, S; Oldham, M

    2014-06-15

    Purpose: The feasibility of MRT has recently been demonstrated utilizing a new technology of Carbon-Nano-Tube(CNT) field emission x-ray sources.This approach can deliver very high dose(10's of Gy) in narrow stripes(sub-mm) of radiation which enables the study of novel radiation treatment approaches. Here we investigate the application of highresolution (50um isotropic) PRESAGE/Optical-CT 3D dosimetry techniques to characterize the radiation delivered in this extremely dosimetrically challenging scenario. Methods: The CNT field emission x-ray source irradiator comprises of a linear cathode array and a novel collimator alignment system. This allows a precise delivery of high-energy small beams up to 160 kVp. A cylindrical dosimeter (∼2.2cm in height ∼2.5cm in diameter) was irradiated by CNT MRT delivering 3 strips of radiation with a nominal entrance dose of 32 Gy.A second dosimeter was irradiated with similar entrance dose, with a regular x-ray irradiator collimated to microscopical strip-beams. 50um (isotropic) 3D dosimetry was performed using an in-house optical-CT system designed and optimized for high resolution imaging (including a stray light deconvolution correction).The percentage depth dose (PDD), peak-to-valley ratio (PVR) and beam width (FWHM) data were obtained and analyzed in both cases. Results: High resolution 3D images were successfully achieved with the prototype system, enabling extraction of PDD and dose profiles. The PDDs for the CNT irradiation showed pronounced attenuation, but less build-up effect than that from the multibeam irradiation. The beam spacing between the three strips has an average value of 0.9mm while that for the 13 strips is 1.5 mm at a depth of 16.5 mm. The stray light corrected image shows line profiles with reduced noise and consistent PVR values. Conclusion: MRT dosimetry is extremely challenging due to the ultra small fields involved.This preliminary application of a novel, ultra-high resolution, optical-CT 3D

  12. 3D measurement of the radiation distribution in a water phantom in a hadron therapy beam

    NASA Astrophysics Data System (ADS)

    Opalka, L.; Granja, C.; Hartmann, B.; Jakubek, J.; Jaekel, O.; Martisikova, M.; Pospisil, S.; Solc, J.

    2012-01-01

    Hadron therapy is a highly precise radio-therapeutic method with many advantages especially in cases when the tumour is close to sensitive organs where standard treatments cannot be used. For reliable treatment planning it is necessary to have calculation tools for maximization of the dose delivered to the targeted tissue and minimization of the dose outside of it. While the main physical processes in material irradiated by hadron beams are known, in reality the processes involved are complex so that analytical computations are impossible. Thus, the planning tools to incorporate simplified models and numerical approximations and an experimental method for high precision verification of the models within phantoms is desired. The development of sensitive, high resolution and online methods for measurement of the radiation environment inside of the irradiated object is the aim of this work. Such measurements are made possible by the resolving power of the state-of-the-art pixel detector Timepix. This quantum counting imaging device is able to record the characteristic shapes of the particle traces including their energies deposited in the detector. All these data recorded for each event allow to estimate the particle type, its energy and direction of flight. Event-by-event analysis is done using pattern recognition of the characteristic traces. The objective of the experiment is the detection and characterization of secondary radiation generated by the primary therapeutic beams in tissue equivalent material (water). Measurements were performed inside of a water phantom irradiated by a carbon beam at the Heidelberg Ion-Beam Therapy Center (HIT).

  13. 3D MR Sialography as a Tool to Investigate Radiation-Induced Xerostomia: Feasibility Study

    SciTech Connect

    Astreinidou, Eleftheria . E-mail: E.Astreinidou@umcutrecht.nl; Roesink, Judith M.; Raaijmakers, Cornelis P.J.; Bartels, Lambertus W.; Witkamp, Theo D.; Lagendijk, Jan J.W.; Terhaard, Chris H.J.

    2007-08-01

    Purpose: To evaluate whether magnetic-resonance (MR) sialography can be used to investigate radiation-induced xerostomia. Preradiotherapy (pre-RT) and postradiotherapy (post-RT) MR sialographic images of the major salivary ducts (parotid and submandibular) were compared. Methods and Materials: Magnetic-resonance sialography was performed pre-RT, and 6 weeks and 6 months post-RT on 9 patients with T1-4N0-2M0 naso- or oropharyngeal tumors, on a 1.5-T MR scanner. Patients were positioned in the scanner, using a radiotherapy immobilization mask. Image registration of the MR sialograms pre- and post-RT with each other and with the CT and consequently the dose distribution was performed. A categorical scoring system was used to compare the visibility of ducts pre-RT and post-RT. Results: Good-quality MR sialographic images were obtained, and image registration was successful in all cases. The visibility score of the parotid ducts and submandibular ducts was reduced at 6 weeks post-RT, which means that the full trajectory of the salivary ducts, from the intraglandular space to the mouth cavity, was only partially visualized. For some of the parotid ducts, the visibility score improved at 6 months post-RT, but not for the submandibular ducts. The mean dose for the parotid glands was 35 Gy (1 standard deviation [SD] 3 Gy), and for the submandibular glands it was 62 Gy (SD, 8 Gy). Conclusion: Three-dimensional MR sialography is a promising approach for investigating xerostomia, because radiation-induced changes to the saliva content of the ducts can be visualized.

  14. Study of Shortwave Spectra in Fully 3D Environment: Synergy Between Scanning Radars and Spectral Radiation Measurements

    NASA Technical Reports Server (NTRS)

    Wiscombe, Warren J.

    2012-01-01

    The main theme for our research is the understanding and closure of the surface spectral shortwave radiation problem in fully 3D cloud situations by combining the new ARM scanning radars, shortwave spectrometers, and microwave radiometers with the arsenal of radiative transfer tools developed by our group. In particular, we define first a large number of cloudy test cases spanning all 3D possibilities not just the customary uniform-overcast ones. Second, for each case, we define a "Best Estimate of Clouds That Affect Shortwave Radiation" using all relevant ARM instruments, notably the new scanning radars, and contribute this to the ARM Archive. Third, we test the ASR-signature radiative transfer model RRTMG_SW for those cases, focusing on the near-IR because of long-standing problems in this spectral region, and work with the developers to improve RRTMG_SW in order to increase its penetration into the modeling community.

  15. Dosimetric study for cervix carcinoma treatment using intensity modulated radiation therapy (IMRT) compensation based on 3D intracavitary brachytherapy technique

    PubMed Central

    Yin, Gang; Wang, Pei; Lang, Jinyi; Tian, Yin; Luo, Yangkun; Fan, Zixuan

    2016-01-01

    Purpose Intensity modulated radiation therapy (IMRT) compensation based on 3D high-dose-rate (HDR) intracavitary brachytherapy (ICBT) boost technique (ICBT + IMRT) has been used in our hospital for advanced cervix carcinoma patients. The purpose of this study was to compare the dosimetric results of the four different boost techniques (the conventional 2D HDR intracavitary brachytherapy [CICBT], 3D optimized HDR intracavitary brachytherapy [OICBT], and IMRT-alone with the applicator in situ). Material and methods For 30 patients with locally advanced cervical carcinoma, after the completion of external beam radiotherapy (EBRT) for whole pelvic irradiation 45 Gy/25 fractions, five fractions of ICBT + IMRT boost with 6 Gy/fractions for high risk clinical target volume (HRCTV), and 5 Gy/fractions for intermediate risk clinical target volume (IRCTV) were applied. Computed tomography (CT) and magnetic resonance imaging (MRI) scans were acquired using an in situ CT/MRI-compatible applicator. The gross tumor volume (GTV), the high/intermediate-risk clinical target volume (HRCTV/IRCTV), bladder, rectum, and sigmoid were contoured by CT scans. Results For ICBT + IMRT plan, values of D90, D100 of HRCTV, D90, D100, and V100 of IRCTV significantly increased (p < 0.05) in comparison to OICBT and CICBT. The D2cc values for bladder, rectum, and sigmoid were significantly lower than that of CICBT and IMRT alone. In all patients, the mean rectum V60 Gy values generated from ICBT + IMRT and OICBT techniques were very similar but for bladder and sigmoid, the V60 Gy values generated from ICBT + IMRT were higher than that of OICBT. For the ICBT + IMRT plan, the standard deviations (SD) of D90 and D2cc were found to be lower than other three treatment plans. Conclusions The ICBT + IMRT technique not only provides good target coverage but also maintains low doses (D2cc) to the OAR. ICBT + IMRT is an optional technique to boost parametrial region or tumor of large size and irregular shape

  16. [3D reconstructions in radiotherapy planning].

    PubMed

    Schlegel, W

    1991-10-01

    3D Reconstructions from tomographic images are used in the planning of radiation therapy to study important anatomical structures such as the body surface, target volumes, and organs at risk. The reconstructed anatomical models are used to define the geometry of the radiation beams. In addition, 3D voxel models are used for the calculation of the 3D dose distributions with an accuracy, previously impossible to achieve. Further uses of 3D reconstructions are in the display and evaluation of 3D therapy plans, and in the transfer of treatment planning parameters to the irradiation situation with the help of digitally reconstructed radiographs. 3D tomographic imaging with subsequent 3D reconstruction must be regarded as a completely new basis for the planning of radiation therapy, enabling tumor-tailored radiation therapy of localized target volumes with increased radiation doses and improved sparing of organs at risk. 3D treatment planning is currently being evaluated in clinical trials in connection with the new treatment techniques of conformation radiotherapy. Early experience with 3D treatment planning shows that its clinical importance in radiotherapy is growing, but will only become a standard radiotherapy tool when volumetric CT scanning, reliable and user-friendly treatment planning software, and faster and cheaper PACS-integrated medical work stations are accessible to radiotherapists.

  17. Calculation of Dose Deposition in 3D Voxels by Heavy Ions and Simulation of gamma-H2AX Experiments

    NASA Technical Reports Server (NTRS)

    Plante, I.; Ponomarev, A. L.; Wang, M.; Cucinotta, F. A.

    2011-01-01

    The biological response to high-LET radiation is different from low-LET radiation due to several factors, notably difference in energy deposition and formation of radiolytic species. Of particular importance in radiobiology is the formation of double-strand breaks (DSB), which can be detected by -H2AX foci experiments. These experiments has revealed important differences in the spatial distribution of DSB induced by low- and high-LET radiations [1,2]. To simulate -H2AX experiments, models based on amorphous track with radial dose are often combined with random walk chromosome models [3,4]. In this work, a new approach using the Monte-Carlo track structure code RITRACKS [5] and chromosome models have been used to simulate DSB formation. At first, RITRACKS have been used to simulate the irradiation of a cubic volume of 5 m by 1) 450 1H+ ions of 300 MeV (LET 0.3 keV/ m) and 2) by 1 56Fe26+ ion of 1 GeV/amu (LET 150 keV/ m). All energy deposition events are recorded to calculate dose in voxels of 20 m. The dose voxels are distributed randomly and scattered uniformly within the volume irradiated by low-LET radiation. Many differences are found in the spatial distribution of dose voxels for the 56Fe26+ ion. The track structure can be distinguished, and voxels with very high dose are found in the region corresponding to the track "core". These high-dose voxels are not found in the low-LET irradiation simulation and indicate clustered energy deposition, which may be responsible for complex DSB. In the second step, assuming that DSB will be found only in voxels where energy is deposited by the radiation, the intersection points between voxels with dose > 0 and simulated chromosomes were obtained. The spatial distribution of the intersection points is similar to -H2AX foci experiments. These preliminary results suggest that combining stochastic track structure and chromosome models could be a good approach to understand radiation-induced DSB and chromosome aberrations.

  18. Has the use of computers in radiation therapy improved the accuracy in radiation dose delivery?

    NASA Astrophysics Data System (ADS)

    Van Dyk, J.; Battista, J.

    2014-03-01

    Purpose: It is well recognized that computer technology has had a major impact on the practice of radiation oncology. This paper addresses the question as to how these computer advances have specifically impacted the accuracy of radiation dose delivery to the patient. Methods: A review was undertaken of all the key steps in the radiation treatment process ranging from machine calibration to patient treatment verification and irradiation. Using a semi-quantitative scale, each stage in the process was analysed from the point of view of gains in treatment accuracy. Results: Our critical review indicated that computerization related to digital medical imaging (ranging from target volume localization, to treatment planning, to image-guided treatment) has had the most significant impact on the accuracy of radiation treatment. Conversely, the premature adoption of intensity-modulated radiation therapy has actually degraded the accuracy of dose delivery compared to 3-D conformal radiation therapy. While computational power has improved dose calibration accuracy through Monte Carlo simulations of dosimeter response parameters, the overall impact in terms of percent improvement is relatively small compared to the improvements accrued from 3-D/4-D imaging. Conclusions: As a result of computer applications, we are better able to see and track the internal anatomy of the patient before, during and after treatment. This has yielded the most significant enhancement to the knowledge of "in vivo" dose distributions in the patient. Furthermore, a much richer set of 3-D/4-D co-registered dose-image data is thus becoming available for retrospective analysis of radiobiological and clinical responses.

  19. Potential radiation doses from 1994 Hanford Operations

    SciTech Connect

    Soldat, J.K.; Antonio, E.J.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the potential radiation doses to the public from releases originating at the Hanford Site. Members of the public are potentially exposed to low-levels of radiation from these effluents through a variety of pathways. The potential radiation doses to the public were calculated for the hypothetical MEI and for the general public residing within 80 km (50 mi) of the Hanford Site.

  20. 2D mapping of the MV photon fluence and 3D dose reconstruction in real time for quality assurance during radiotherapy treatment

    NASA Astrophysics Data System (ADS)

    Alrowaili, Z. A.; Lerch, M. L. F.; Carolan, M.; Fuduli, I.; Porumb, C.; Petasecca, M.; Metcalfe, P.; Rosenfeld, A. B.

    2015-09-01

    Summary: the photon irradiation response of a 2D solid state transmission detector array mounted in a linac block tray is used to reconstruct the projected 2D dose map in a homogenous phantom along rays that diverge from the X-ray source and pass through each of the 121 detector elements. A unique diode response-to-dose scaling factor, applied to all detectors, is utilised in the reconstruction to demonstrate that real time QA during radiotherapy treatment is feasible. Purpose: to quantitatively demonstrate reconstruction of the real time radiation dose from the irradiation response of the 11×11 silicon Magic Plate (MP) detector array operated in Transmission Mode (MPTM). Methods and Materials: in transmission mode the MP is positioned in the block tray of a linac so that the central detector of the array lies on the central axis of the radiation beam. This central detector is used to determine the conversion factor from measured irradiation response to reconstructed dose at any point on the central axis within a homogenous solid water phantom. The same unique conversion factor is used for all MP detector elements lying within the irradiation field. Using the two sets of data, the 2D or 3D dose map is able to be reconstructed in the homogenous phantom. The technique we have developed is illustrated here for different depths and irradiation field sizes, (5 × 5 cm2 to 40 × 40 cm2) as well as a highly non uniform irradiation field. Results: we find that the MPTM response is proportional to the projected 2D dose map measured at a specific phantom depth, the "sweet depth". A single factor, for several irradiation field sizes and depths, is derived to reconstruct the dose in the phantom along rays projected from the photon source through each MPTM detector element. We demonstrate that for all field sizes using the above method, the 2D reconstructed and measured doses agree to within ± 2.48% (2 standard deviation) for all in-field MP detector elements. Conclusions: a

  1. Occupational radiation doses during interventional procedures

    NASA Astrophysics Data System (ADS)

    Nuraeni, N.; Hiswara, E.; Kartikasari, D.; Waris, A.; Haryanto, F.

    2016-03-01

    Digital subtraction angiography (DSA) is a type of fluoroscopy technique used in interventional radiology to clearly visualize blood vessels in a bony or dense soft tissue environment. The use of DSA procedures has been increased quite significantly in the Radiology departments in various cities in Indonesia. Various reports showed that both patients and medical staff received a noticeable radiation dose during the course of this procedure. A study had been carried out to measure these doses among interventionalist, nurse and radiographer. The results show that the interventionalist and the nurse, who stood quite close to the X-ray beams compared with the radiographer, received radiation higher than the others. The results also showed that the radiation dose received by medical staff were var depending upon the duration and their position against the X-ray beams. Compared tothe dose limits, however, the radiation dose received by all these three medical staff were still lower than the limits.

  2. The importance of 3D dosimetry

    NASA Astrophysics Data System (ADS)

    Low, Daniel

    2015-01-01

    Radiation therapy has been getting progressively more complex for the past 20 years. Early radiation therapy techniques needed only basic dosimetry equipment; motorized water phantoms, ionization chambers, and basic radiographic film techniques. As intensity modulated radiation therapy and image guided therapy came into widespread practice, medical physicists were challenged with developing effective and efficient dose measurement techniques. The complex 3-dimensional (3D) nature of the dose distributions that were being delivered demanded the development of more quantitative and more thorough methods for dose measurement. The quality assurance vendors developed a wide array of multidetector arrays that have been enormously useful for measuring and characterizing dose distributions, and these have been made especially useful with the advent of 3D dose calculation systems based on the array measurements, as well as measurements made using film and portal imagers. Other vendors have been providing 3D calculations based on data from the linear accelerator or the record and verify system, providing thorough evaluation of the dose but lacking quality assurance (QA) of the dose delivery process, including machine calibration. The current state of 3D dosimetry is one of a state of flux. The vendors and professional associations are trying to determine the optimal balance between thorough QA, labor efficiency, and quantitation. This balance will take some time to reach, but a necessary component will be the 3D measurement and independent calculation of delivered radiation therapy dose distributions.

  3. Simulating 3-D radiative transfer effects over the Sierra Nevada Mountains using WRF

    SciTech Connect

    Gu, Y.; Liou, K. N.; Lee, W. -L.; Leung, L. R.

    2012-01-01

    A surface solar radiation parameterization based on deviations between 3-D and conventional plane-parallel radiative transfer models has been incorporated into the Weather Research and Forecasting (WRF) model to understand the solar insolation over mountain/snow areas and to investigate the impact of the spatial and temporal distribution and variation of surface solar fluxes on land-surface processes. Using the Sierra-Nevada in the western United States as a testbed, we show that mountain effect could produce up to -50 to + 50 W m-2 deviations in the surface solar fluxes over the mountain areas, resulting in a temperature increase of up to 1 °C on the sunny side. Upward surface sensible and latent heat fluxes are modulated accordingly to compensate for the change in surface solar fluxes. Snow water equivalent and surface albedo both show decreases on the sunny side of the mountains, indicating more snowmelt and hence reduced snow albedo associated with more solar insolation due to mountain effect. Soil moisture increases on the sunny side of the mountains due to enhanced snowmelt, while decreases on the shaded side. Substantial differences are found in the morning hours from 8–10 a.m. and in the afternoon around 3–5 p.m., while differences around noon and in the early morning and late afternoon are comparatively smaller. Variation in the surface energy balance can also affect atmospheric processes, such as cloud fields, through the modulation of vertical thermal structure. Negative changes of up to -40 g m-2 are found in the cloud water path, associated with reductions in the surface insolation over the cloud region. The day-averaged deviations in the surface solar flux are positive over the mountain areas and negative in the valleys, with a range between -12~12 W m-2. Changes in sensible and latent heat fluxes and surface skin temperature follow the solar insolation pattern. Differences in the domain-averaged diurnal variation

  4. Impact of patient rotational errors on target and critical structure dose in IMRT: A 3D simulation study

    NASA Astrophysics Data System (ADS)

    Arumugam, S.; Xing, A.; Vial, P.; Scotti, A.; Stirton, R.; Goozee, G.; Holloway, Lois

    2013-06-01

    The impact of 3D rotational errors in patient positioning on dose delivered target volumes and critical structures in IMRT was studied. Patient rotational errors ranging from -30 to +30 was introduced to IMRT treatment plans of pelvis, head and neck and brain treatment sites and the impact of rotational error on DVH metrics was assessed. The magnitude of impact of rotational error on the error in dose delivered to the target volume and critical structures depends on the location of the structures from plan isocentre. In studied plans, a maximum percentage difference of up to -9.8(1s=13.4) % in D95 to PTV was observed for head and neck treatments. Similarly, in Brain treatments a maximum difference of up to 24.0(1s=33.0) % in maximum dose of Optic chiasm was observed. The results suggest that failure to correct patient's rotational error results in under-dosage to target volumes and over-dosage to the critical structures in some specific treatment scenarios.

  5. Can radiation therapy treatment planning system accurately predict surface doses in postmastectomy radiation therapy patients?

    SciTech Connect

    Wong, Sharon; Back, Michael; Tan, Poh Wee; Lee, Khai Mun; Baggarley, Shaun; Lu, Jaide Jay

    2012-07-01

    Skin doses have been an important factor in the dose prescription for breast radiotherapy. Recent advances in radiotherapy treatment techniques, such as intensity-modulated radiation therapy (IMRT) and new treatment schemes such as hypofractionated breast therapy have made the precise determination of the surface dose necessary. Detailed information of the dose at various depths of the skin is also critical in designing new treatment strategies. The purpose of this work was to assess the accuracy of surface dose calculation by a clinically used treatment planning system and those measured by thermoluminescence dosimeters (TLDs) in a customized chest wall phantom. This study involved the construction of a chest wall phantom for skin dose assessment. Seven TLDs were distributed throughout each right chest wall phantom to give adequate representation of measured radiation doses. Point doses from the CMS Xio Registered-Sign treatment planning system (TPS) were calculated for each relevant TLD positions and results correlated. There were no significant difference between measured absorbed dose by TLD and calculated doses by the TPS (p > 0.05 (1-tailed). Dose accuracy of up to 2.21% was found. The deviations from the calculated absorbed doses were overall larger (3.4%) when wedges and bolus were used. 3D radiotherapy TPS is a useful and accurate tool to assess the accuracy of surface dose. Our studies have shown that radiation treatment accuracy expressed as a comparison between calculated doses (by TPS) and measured doses (by TLD dosimetry) can be accurately predicted for tangential treatment of the chest wall after mastectomy.

  6. Final Report – Study of Shortwave Spectra in Fully 3D Environment. Synergy Between Scanning Radars and Spectral Radiation Measurements

    SciTech Connect

    Chiu, Jui-Yuan

    2015-09-14

    ARM set out 20 years ago to “close” the radiation problem, that is, to improve radiation models to the point where they could routinely predict the observed spectral radiation fluxes knowing the optical properties of the surface and of gases, clouds and aerosols in the atmosphere. Only then could such radiation models form a proper springboard for global climate model (GCM) parameterizations of spectral radiation. Sustained efforts have more or less achieved that goal with regard to longwave radiation; ASR models now routinely predict ARM spectral longwave radiances to 1–2%. Similar efforts in the shortwave have achieved far less; the successes are mainly for carefully selected 1D stratiform cloud cases. Such cases amount, even with the most optimistic interpretation, to no more than 30% of all cases at SGP. The problem has not been lack of effort but lack of appropriate instruments.The new ARM stimulus-funded instruments, with their new capabilities, will dramatically improve this situation and once again make progress possible on the shortwave problem. The new shortwave spectrometers will provide a reliable, calibrated record including the near infrared – and for other climatic regimes than SGP. The new scanning radars will provide the 3D cloud view, making it possible to tackle fully 3D situations. Thus, our main theme for the project is the understanding and closure of the surface spectral shortwave radiation problem in fully 3D cloud situations by combining the new ARM scanning radars and shortwave spectrometers with the arsenal of radiative transfer tools.

  7. SU-E-J-49: Design and Fabrication of Custom 3D Printed Phantoms for Radiation Therapy Research and Quality Assurance

    SciTech Connect

    Jenkins, C; Xing, L

    2015-06-15

    Purpose The rapid proliferation of affordable 3D printing techniques has enabled the custom fabrication of items ranging from paper weights to medical implants. This study investigates the feasibility of utilizing the technology for developing novel phantoms for use in radiation therapy quality assurance (QA) procedures. Methods A phantom for measuring the geometric parameters of linear accelerator (LINAC) on-board imaging (OBI) systems was designed using SolidWorks. The design was transferred to a 3D printer and fabricated using a fused deposition modeling (FDM) technique. Fiducials were embedded in the phantom by placing 1.6 mm diameter steel balls in predefined holes and securing them with silicone. Several MV and kV images of the phantom were collected and the visibility and geometric accuracy were evaluated. A second phantom, for use in the experimental evaluation of a high dose rate (HDR) brachytherapy dosimeter, was designed to secure several applicator needles in water. The applicator was fabricated in the same 3D printer and used for experiments. Results The general accuracy of printed parts was determined to be 0.1 mm. The cost of materials for the imaging and QA phantoms were $22 and $5 respectively. Both the plastic structure and fiducial markers of the imaging phantom were visible in MV and kV images. Fiducial marker locations were determined to be within 1mm of desired locations, with the discrepancy being attributed to the fiducial attachment process. The HDR phantom secured the applicators within 0.5 mm of the desired locations. Conclusion 3D printing offers an inexpensive method for fabricating custom phantoms for use in radiation therapy quality assurance. While the geometric accuracy of such parts is limited compared to more expensive methods, the phantoms are still highly functional and provide a unique opportunity for rapid fabrication of custom phantoms for use in radiation therapy QA and research.

  8. A WRF simulation of the impact of 3-D radiative transfer on surface hydrology over the Rocky-Sierra Mountains

    NASA Astrophysics Data System (ADS)

    Liou, K. N.; Gu, Y.; Leung, L. R.; Lee, W. L.; Fovell, R. G.

    2013-07-01

    Essentially all modern climate models utilize a plane-parallel (PP) radiative transfer approach in physics parameterizations; however, the potential errors that arise from neglecting three-dimensional (3-D) interactions between radiation and mountains/snow on climate simulations have not been studied and quantified. This paper is a continuation of our efforts to investigate 3-D mountains/snow effects on solar flux distributions and their impact on surface hydrology over the Western United States, specifically the Rocky and Sierra-Nevada Mountains. We use the Weather Research and Forecasting (WRF) model applied at a 30 km grid resolution with incorporation of a 3-D radiative transfer parameterization covering a time period from 1 November 2007 to 31 May 2008 during which abundant snowfall occurred. Comparison of the 3-D WRF simulation with the observed snow water equivalent (SWE) and precipitation from Snowpack Telemetry (SNOTEL) sites shows reasonable agreement in terms of spatial patterns and daily and seasonal variability, although the simulation generally has a positive precipitation bias. We show that 3-D mountain features have a profound impact on the diurnal and monthly variation of surface radiative and heat fluxes and on the consequent elevation-dependence of snowmelt and precipitation distributions. In particular, during the winter months, large deviations (3-D-PP) of the monthly mean surface solar flux are found in the morning and afternoon hours due to shading effects for elevations below 2.5 km. During spring, positive deviations shift to earlier morning. Over the mountain tops above 3 km, positive deviations are found throughout the day, with the largest values of 40-60 W m-2 occurring at noon during the snowmelt season of April to May. The monthly SWE deviations averaged over the entire domain show an increase in lower elevations due to reduced snowmelt, leading to a reduction in cumulative runoff. Over higher elevation areas, positive SWE deviations

  9. Radiation dose to the global flying population.

    PubMed

    Alvarez, Luis E; Eastham, Sebastian D; Barrett, Steven R H

    2016-03-01

    Civil airliner passengers and crew are exposed to elevated levels of radiation relative to being at sea level. Previous studies have assessed the radiation dose received in particular cases or for cohort studies. Here we present the first estimate of the total radiation dose received by the worldwide civilian flying population. We simulated flights globally from 2000 to 2013 using schedule data, applying a radiation propagation code to estimate the dose associated with each flight. Passengers flying in Europe and North America exceed the International Commission on Radiological Protection annual dose limits at an annual average of 510 or 420 flight hours per year, respectively. However, this falls to 160 or 120 h on specific routes under maximum exposure conditions. PMID:26769857

  10. Patient Radiation Doses from Diagnostic Radiology.

    ERIC Educational Resources Information Center

    Hart, D.

    1996-01-01

    Explains how x-ray doses to patients are measured. Describes how different techniques expose patients to differing amounts of ionizing radiation. Compares these figures with other natural and man-made sources. (Author/MKR)

  11. Gamma Radiation Doses In Sweden

    SciTech Connect

    Almgren, Sara; Isaksson, Mats; Barregaard, Lars

    2008-08-07

    Gamma dose rate measurements were performed in one urban and one rural area using thermoluminescence dosimeters (TLD) worn by 46 participants and placed in their dwellings. The personal effective dose rates were 0.096{+-}0.019(1 SD) and 0.092{+-}0.016(1 SD){mu}Sv/h in the urban and rural area, respectively. The corresponding dose rates in the dwellings were 0.11{+-}0.042(1 SD) and 0.091{+-}0.026(1 SD){mu}Sv/h. However, the differences between the areas were not significant. The values were higher in buildings made of concrete than of wood and higher in apartments than in detached houses. Also, {sup 222}Rn measurements were performed in each dwelling, which showed no correlation with the gamma dose rates in the dwellings.

  12. Dose and dose rate effectiveness of space radiation.

    PubMed

    Schimmerling, W; Cucinotta, F A

    2006-01-01

    Dose and dose rate effectiveness factors (DDREF), in conjunction with other weighting factors, are commonly used to scale atomic bomb survivor data in order to establish limits for occupational radiation exposure, including radiation exposure in space. We use some well-known facts about the microscopic pattern of energy deposition of high-energy heavy ions, and about the dose rate dependence of chemical reactions initiated by radiation, to show that DDREF are likely to vary significantly as a function of particle type and energy, cell, tissue, and organ type, and biological end point. As a consequence, we argue that validation of DDREF by conventional methods, e.g. irradiating animal colonies and compiling statistics of cancer mortality, is not appropriate. However, the use of approaches derived from information theory and thermodynamics is a very wide field, and the present work can only be understood as a contribution to an ongoing discussion. PMID:17169950

  13. Validation of a method for in vivo 3D dose reconstruction for IMRT and VMAT treatments using on-treatment EPID images and a model-based forward-calculation algorithm

    SciTech Connect

    Van Uytven, Eric Van Beek, Timothy; McCowan, Peter M.; Chytyk-Praznik, Krista; Greer, Peter B.; McCurdy, Boyd M. C.

    2015-12-15

    Purpose: Radiation treatments are trending toward delivering higher doses per fraction under stereotactic radiosurgery and hypofractionated treatment regimens. There is a need for accurate 3D in vivo patient dose verification using electronic portal imaging device (EPID) measurements. This work presents a model-based technique to compute full three-dimensional patient dose reconstructed from on-treatment EPID portal images (i.e., transmission images). Methods: EPID dose is converted to incident fluence entering the patient using a series of steps which include converting measured EPID dose to fluence at the detector plane and then back-projecting the primary source component of the EPID fluence upstream of the patient. Incident fluence is then recombined with predicted extra-focal fluence and used to calculate 3D patient dose via a collapsed-cone convolution method. This method is implemented in an iterative manner, although in practice it provides accurate results in a single iteration. The robustness of the dose reconstruction technique is demonstrated with several simple slab phantom and nine anthropomorphic phantom cases. Prostate, head and neck, and lung treatments are all included as well as a range of delivery techniques including VMAT and dynamic intensity modulated radiation therapy (IMRT). Results: Results indicate that the patient dose reconstruction algorithm compares well with treatment planning system computed doses for controlled test situations. For simple phantom and square field tests, agreement was excellent with a 2%/2 mm 3D chi pass rate ≥98.9%. On anthropomorphic phantoms, the 2%/2 mm 3D chi pass rates ranged from 79.9% to 99.9% in the planning target volume (PTV) region and 96.5% to 100% in the low dose region (>20% of prescription, excluding PTV and skin build-up region). Conclusions: An algorithm to reconstruct delivered patient 3D doses from EPID exit dosimetry measurements was presented. The method was applied to phantom and patient

  14. Ultra-high-resolution 3D digitalized imaging of the cerebral angioarchitecture in rats using synchrotron radiation

    PubMed Central

    Zhang, Meng-Qi; Zhou, Luo; Deng, Qian-Fang; Xie, Yuan-Yuan; Xiao, Ti-Qiao; Cao, Yu-Ze; Zhang, Ji-Wen; Chen, Xu-Meng; Yin, Xian-Zhen; Xiao, Bo

    2015-01-01

    The angioarchitecture is a fundamental aspect of brain development and physiology. However, available imaging tools are unsuited for non-destructive cerebral mapping of the functionally important three-dimensional (3D) vascular microstructures. To address this issue, we developed an ultra-high resolution 3D digitalized angioarchitectural map for rat brain, based on synchrotron radiation phase contrast imaging (SR-PCI) with pixel size of 5.92 μm. This approach provides a systematic and detailed view of the cerebrovascular anatomy at the micrometer level without any need for contrast agents. From qualitative and quantitative perspectives, the present 3D data provide a considerable insight into the spatial vascular network for whole rodent brain, particularly for functionally important regions of interest, such as the hippocampus, pre-frontal cerebral cortex and the corpus striatum. We extended these results to synchrotron-based virtual micro-endoscopy, thus revealing the trajectory of targeted vessels in 3D. The SR-PCI method for systematic visualization of cerebral microvasculature holds considerable promise for wider application in life sciences, including 3D micro-imaging in experimental models of neurodevelopmental and vascular disorders. PMID:26443231

  15. 3D Aerosol-Cloud Radiative Interaction Observed in Collocated MODIS and ASTER Images of Cumulus Cloud Fields

    NASA Technical Reports Server (NTRS)

    Wen, Guoyong; Marshak, Alexander; Cahalan, Robert F.; Remer, Lorraine A.; Kleidman, Richard G.

    2007-01-01

    3D aerosol-cloud interaction is examined by analyzing two images containing cumulus clouds in biomass burning regions in Brazil. The research consists of two parts. The first part focuses on identifying 3D clo ud impacts on the reflectance of pixel selected for the MODIS aerosol retrieval based purely on observations. The second part of the resea rch combines the observations with radiative transfer computations to identify key parameters in 3D aerosol-cloud interaction. We found that 3D cloud-induced enhancement depends on optical properties of nearb y clouds as well as wavelength. The enhancement is too large to be ig nored. Associated biased error in 1D aerosol optical thickness retrie val ranges from 50% to 140% depending on wavelength and optical prope rties of nearby clouds as well as aerosol optical thickness. We caution the community to be prudent when applying 1D approximations in comp uting solar radiation in dear regions adjacent to clouds or when usin g traditional retrieved aerosol optical thickness in aerosol indirect effect research.

  16. Reactor Dosimetry Applications Using RAPTOR-M3G:. a New Parallel 3-D Radiation Transport Code

    NASA Astrophysics Data System (ADS)

    Longoni, Gianluca; Anderson, Stanwood L.

    2009-08-01

    The numerical solution of the Linearized Boltzmann Equation (LBE) via the Discrete Ordinates method (SN) requires extensive computational resources for large 3-D neutron and gamma transport applications due to the concurrent discretization of the angular, spatial, and energy domains. This paper will discuss the development RAPTOR-M3G (RApid Parallel Transport Of Radiation - Multiple 3D Geometries), a new 3-D parallel radiation transport code, and its application to the calculation of ex-vessel neutron dosimetry responses in the cavity of a commercial 2-loop Pressurized Water Reactor (PWR). RAPTOR-M3G is based domain decomposition algorithms, where the spatial and angular domains are allocated and processed on multi-processor computer architectures. As compared to traditional single-processor applications, this approach reduces the computational load as well as the memory requirement per processor, yielding an efficient solution methodology for large 3-D problems. Measured neutron dosimetry responses in the reactor cavity air gap will be compared to the RAPTOR-M3G predictions. This paper is organized as follows: Section 1 discusses the RAPTOR-M3G methodology; Section 2 describes the 2-loop PWR model and the numerical results obtained. Section 3 addresses the parallel performance of the code, and Section 4 concludes this paper with final remarks and future work.

  17. Doses from Medical Radiation Sources

    MedlinePlus

    ... radiation dosimetry. Continuing Medical Education Article, Journal of Nuclear Medicine 41(5):863–873; 2000. © 2016 Health Physics Society Site Map | Privacy Statement | Disclaimer | Webmaster

  18. 3D Finite Element Model for Writing Long-Period Fiber Gratings by CO2 Laser Radiation

    PubMed Central

    Coelho, João M. P.; Nespereira, Marta; Abreu, Manuel; Rebordão, José

    2013-01-01

    In the last years, mid-infrared radiation emitted by CO2 lasers has become increasing popular as a tool in the development of long-period fiber gratings. However, although the development and characterization of the resulting sensing devices have progressed quickly, further research is still necessary to consolidate functional models, especially regarding the interaction between laser radiation and the fiber's material. In this paper, a 3D finite element model is presented to simulate the interaction between laser radiation and an optical fiber and to determine the resulting refractive index change. Dependence with temperature of the main parameters of the optical fiber materials (with special focus on the absorption of incident laser radiation) is considered, as well as convection and radiation losses. Thermal and residual stress analyses are made for a standard single mode fiber, and experimental results are presented. PMID:23941908

  19. Low-dose radiation exposure and carcinogenesis.

    PubMed

    Suzuki, Keiji; Yamashita, Shunichi

    2012-07-01

    Absorption of energy from ionizing radiation by the genetic material in the cell leads to damage to DNA, which in turn leads to cell death, chromosome aberrations and gene mutations. While early or deterministic effects result from organ and tissue damage caused by cell killing, latter two are considered to be involved in the initial events that lead to the development of cancer. Epidemiological studies have demonstrated the dose-response relationships for cancer induction and quantitative evaluations of cancer risk following exposure to moderate to high doses of low-linear energy transfer radiation. A linear, no-threshold model has been applied to assessment of the risks resulting from exposure to moderate and high doses of ionizing radiation; however, a statistically significant increase has hardly been described for radiation doses below 100 mSv. This review summarizes our current knowledge of the physical and biological features of low-dose radiation and discusses the possibilities of induction of cancer by low-dose radiation. PMID:22641644

  20. Pilot Study on Image Quality and Radiation Dose of CT Colonography with Adaptive Iterative Dose Reduction Three-Dimensional

    PubMed Central

    Shen, Hesong; Liang, Dan; Luo, Mingyue; Duan, Chaijie; Cai, Wenli; Zhu, Shanshan; Qiu, Jianping; Li, Wenru

    2015-01-01

    Objective To investigate image quality and radiation dose of CT colonography (CTC) with adaptive iterative dose reduction three-dimensional (AIDR3D). Methods Ten segments of porcine colon phantom were collected, and 30 pedunculate polyps with diameters ranging from 1 to 15 mm were simulated on each segment. Image data were acquired with tube voltage of 120 kVp, and current doses of 10 mAs, 20 mAs, 30 mAs, 40 mAs, 50 mAs, respectively. CTC images were reconstructed using filtered back projection (FBP) and AIDR3D. Two radiologists blindly evaluated image quality. Quantitative evaluation of image quality included image noise, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR). Qualitative image quality was evaluated with a five-score scale. Radiation dose was calculated based on dose-length product. Ten volunteers were examined supine 50 mAs with FBP and prone 20 mAs with AIDR3D, and image qualities were assessed. Paired t test was performed for statistical analysis. Results For 20 mAs with AIDR3D and 50 mAs with FBP, image noise, SNRs and CNRs were (16.4 ± 1.6) HU vs. (16.8 ± 2.6) HU, 1.9 ± 0.2 vs. 1.9 ± 0.4, and 62.3 ± 6.8 vs. 62.0 ± 6.2, respectively; qualitative image quality scores were 4.1 and 4.3, respectively; their differences were all not statistically significant. Compared with 50 mAs with FBP, radiation dose (1.62 mSv) of 20 mAs with AIDR3D was decreased by 60.0%. There was no statistically significant difference in image noise, SNRs, CNRs and qualitative image quality scores between prone 20 mAs with AIDR3D and supine 50 mAs with FBP in 10 volunteers, the former reduced radiation dose by 61.1%. Conclusion Image quality of CTC using 20 mAs with AIDR3D could be comparable to standard 50 mAs with FBP, radiation dose of the former reduced by about 60.0% and was only 1.62 mSv. PMID:25635839

  1. Radiation dose from reentrant electrons.

    PubMed

    Badhwar, G D; Watts, J; Cleghorn, T E

    2001-06-01

    In estimating the crew exposures during an extra vehicular activity (EVA), the contribution of reentrant electrons has always been neglected. Although the flux of these electrons is small compared to the flux of trapped electrons, their energy spectrum extends to several GeV compared to about 7 MeV for trapped electrons. This is also true of splash electrons. Using the measured reentrant electron energy spectra, it is shown that the dose contribution of these electrons to the blood forming organs (BFO) is more that 10 times greater than that from the trapped electrons. The calculations also show that the dose-depth response is a very slowly changing function of depth, and thus adding reasonable amounts of additional shielding would not significantly lower the dose to BFO. PMID:11855420

  2. Radiation Dose from Reentrant Electrons

    NASA Technical Reports Server (NTRS)

    Badhwar, G.D.; Cleghorn, T. E.; Watts, J.

    2003-01-01

    In estimating the crew exposures during an EVA, the contribution of reentrant electrons has always been neglected. Although the flux of these electrons is small compared to the flux of trapped electrons, their energy spectrum extends to several GeV compared to about 7 MeV for trapped electrons. This is also true of splash electrons. Using the measured reentrant electron energy spectra, it is shown that the dose contribution of these electrons to the blood forming organs (BFO) is more than 10 times greater than that from the trapped electrons. The calculations also show that the dose-depth response is a very slowly changing function of depth, and thus adding reasonable amounts of additional shielding would not significantly lower the dose to BFO.

  3. Effects of Proton Radiation Dose, Dose Rate and Dose Fractionation on Hematopoietic Cells in Mice

    PubMed Central

    Ware, J. H.; Sanzari, J.; Avery, S.; Sayers, C.; Krigsfeld, G.; Nuth, M.; Wan, X. S.; Rusek, A.; Kennedy, A. R.

    2012-01-01

    The present study evaluated the acute effects of radiation dose, dose rate and fractionation as well as the energy of protons in hematopoietic cells of irradiated mice. The mice were irradiated with a single dose of 51.24 MeV protons at a dose of 2 Gy and a dose rate of 0.05–0.07 Gy/min or 1 GeV protons at doses of 0.1, 0.2, 0.5, 1, 1.5 and 2 Gy delivered in a single dose at dose rates of 0.05 or 0.5 Gy/min or in five daily dose fractions at a dose rate of 0.05 Gy/min. Sham-irradiated animals were used as controls. The results demonstrate a dose-dependent loss of white blood cells (WBCs) and lymphocytes by up to 61% and 72%, respectively, in mice irradiated with protons at doses up to 2 Gy. The results also demonstrate that the dose rate, fractionation pattern and energy of the proton radiation did not have significant effects on WBC and lymphocyte counts in the irradiated animals. These results suggest that the acute effects of proton radiation on WBC and lymphocyte counts are determined mainly by the radiation dose, with very little contribution from the dose rate (over the range of dose rates evaluated), fractionation and energy of the protons. PMID:20726731

  4. Effects of proton radiation dose, dose rate and dose fractionation on hematopoietic cells in mice

    SciTech Connect

    Ware, J.H.; Rusek, A.; Sanzari, J.; Avery, S.; Sayers, C.; Krigsfeld, G.; Nuth, M.; Wan, X.S.; Kennedy, A.R.

    2010-09-01

    The present study evaluated the acute effects of radiation dose, dose rate and fractionation as well as the energy of protons in hematopoietic cells of irradiated mice. The mice were irradiated with a single dose of 51.24 MeV protons at a dose of 2 Gy and a dose rate of 0.05-0.07 Gy/min or 1 GeV protons at doses of 0.1, 0.2, 0.5, 1, 1.5 and 2 Gy delivered in a single dose at dose rates of 0.05 or 0.5 Gy/min or in five daily dose fractions at a dose rate of 0.05 Gy/min. Sham-irradiated animals were used as controls. The results demonstrate a dose-dependent loss of white blood cells (WBCs) and lymphocytes by up to 61% and 72%, respectively, in mice irradiated with protons at doses up to 2 Gy. The results also demonstrate that the dose rate, fractionation pattern and energy of the proton radiation did not have significant effects on WBC and lymphocyte counts in the irradiated animals. These results suggest that the acute effects of proton radiation on WBC and lymphocyte counts are determined mainly by the radiation dose, with very little contribution from the dose rate (over the range of dose rates evaluated), fractionation and energy of the protons.

  5. 3D Space Radiation Transport in a Shielded ICRU Tissue Sphere

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Slaba, Tony C.; Badavi, Francis F.; Reddell, Brandon D.; Bahadori, Amir A.

    2014-01-01

    A computationally efficient 3DHZETRN code capable of simulating High Charge (Z) and Energy (HZE) and light ions (including neutrons) under space-like boundary conditions with enhanced neutron and light ion propagation was recently developed for a simple homogeneous shield object. Monte Carlo benchmarks were used to verify the methodology in slab and spherical geometry, and the 3D corrections were shown to provide significant improvement over the straight-ahead approximation in some cases. In the present report, the new algorithms with well-defined convergence criteria are extended to inhomogeneous media within a shielded tissue slab and a shielded tissue sphere and tested against Monte Carlo simulation to verify the solution methods. The 3D corrections are again found to more accurately describe the neutron and light ion fluence spectra as compared to the straight-ahead approximation. These computationally efficient methods provide a basis for software capable of space shield analysis and optimization.

  6. Long term dose monitoring onboard the European Columbus module of the international space station (ISS) in the frame of DOSIS and DOSIS 3D project - results from the active instruments

    NASA Astrophysics Data System (ADS)

    Burmeister, Soenke; Berger, Thomas; Reitz, Guenther; Boehme, Matthias; Haumann, Lutz; Labrenz, Johannes

    Besides the effects of the microgravity environment, and the psychological and psychosocial problems encountered in confined spaces, radiation is the main health detriment for long duration human space missions. The radiation environment encountered in space differs in nature from that on earth, consisting mostly of high energetic ions from protons up to iron, resulting in radiation levels far exceeding the ones encountered on earth for occupational radiation workers. Accurate knowledge of the physical characteristics of the space radiation field in dependence on the solar activity, the orbital parameters and the different shielding configurations of the International Space Station ISS is therefore needed. For the investigation of the spatial and temporal distribution of the radiation field inside the European COLUMBUS module the experiment DOSIS (Dose Distribution Inside the ISS) under the lead of DLR has been launched on July 15 (th) 2009 with STS-127 to the ISS. The experimental package was transferred from the Space Shuttle into COLUMBUS on July 18 (th) . It consists of a combination of passive detector packages (PDP) distributed at 11 locations inside the European Columbus Laboratory and two active radiation detectors (Dosimetry Telescopes = DOSTELs) with a DDPU (DOSTEL Data and Power Unit) in a Nomex pouch (DOSIS MAIN BOX) mounted at a fixed location beneath the European Physiology Module rack (EPM) inside COLUMBUS. The active components of the DOSIS experiment were operational from July 18 (th) 2009 to June 16 (th) 2011. After refurbishment the hardware has been reactivated on May 15 (th) 2012 as active part of the DOSIS 3D experiment and provides continuous data since this activation. The presentation will focus on the latest results from the two DOSTEL instruments as absorbed dose, dose equivalent and the related LET spectra gathered within the DOSIS (2009 - 2011) and DOSIS 3D (2012 - 2014) experiment. The CAU contributions to DOSIS and DOSIS 3D are

  7. The Dose Response Relationship for Radiation Carcinogenesis

    NASA Astrophysics Data System (ADS)

    Hall, Eric

    2008-03-01

    Recent surveys show that the collective population radiation dose from medical procedures in the U.S. has increased by 750% in the past two decades. It would be impossible to imagine the practice of medicine today without diagnostic and therapeutic radiology, but nevertheless the widespread and rapidly increasing use of a modality which is a known human carcinogen is a cause for concern. To assess the magnitude of the problem it is necessary to establish the shape of the dose response relationship for radiation carcinogenesis. Information on radiation carcinogenesis comes from the A-bomb survivors, from occupationally exposed individuals and from radiotherapy patients. The A-bomb survivor data indicates a linear relationship between dose and the risk of solid cancers up to a dose of about 2.5 Sv. The lowest dose at which there is a significant excess cancer risk is debatable, but it would appear to be between 40 and 100 mSv. Data from the occupation exposure of nuclear workers shows an excess cancer risk at an average dose of 19.4 mSv. At the other end of the dose scale, data on second cancers in radiotherapy patients indicates that cancer risk does not continue to rise as a linear function of dose, but tends towards a plateau of 40 to 60 Gy, delivered in a fractionated regime. These data can be used to estimate the impact of diagnostic radiology at the low dose end of the dose response relationship, and the impact of new radiotherapy modalities at the high end of the dose response relationship. In the case of diagnostic radiology about 90% of the collective population dose comes from procedures (principally CT scans) which involve doses at which there is credible evidence of an excess cancer incidence. While the risk to the individual is small and justified in a symptomatic patient, the same is not true of some screening procedures is asymptomatic individuals, and in any case the huge number of procedures must add up to a potential public health problem. In the

  8. Macroscopic Degeneracy of Zero-Mode Rotating Surface States in 3D Dirac and Weyl Semimetals under Radiation.

    PubMed

    González, José; Molina, Rafael A

    2016-04-15

    We investigate the development of novel surface states when 3D Dirac or Weyl semimetals are placed under circularly polarized electromagnetic radiation. We find that the hybridization between inverted Floquet bands opens, in general, a gap, which closes at so-called exceptional points found for complex values of the momentum. This corresponds to the appearance of midgap surface states in the form of evanescent waves decaying from the surface exposed to the radiation. We observe a phenomenon reminiscent of Landau quantization by which the midgap surface states get a large degeneracy proportional to the radiation flux traversing the surface of the semimetal. We show that all of these surface states carry angular current, leading to an angular modulation of their charge that rotates with the same frequency of the radiation, which should manifest in the observation of a macroscopic chiral current in the irradiated surface. PMID:27127980

  9. Mapping of cosmic radiation dose in Croatia.

    PubMed

    Poje, M; Vuković, B; Radolić, V; Miklavčić, I; Faj, D; Varga Pajtler, M; Planinić, J

    2012-01-01

    The Earth is continually bombarded by high-energy particles coming from the outer space and the sun. These particles, termed cosmic radiation, interact with nuclei of atmospheric constituents and decrease in intensity with depth in the atmosphere. Measurements of photon and gamma radiation, performed with a Radiameter at 1 m above the ground, indicated dose rates of 50-100 nSv/h. The neutron dose rate was measured with the CR-39 track etch detector calibrated by the CERN-EU high-energy Reference Field (CERF) facility. Correlation between neutron dose rates and altitudes at 36 sites was examined in order to obtain a significant positive correlation coefficient; the resulting linear regression enabled estimation of a neutron dose at particular altitude. The measured neutron dose rate in Osijek (altitude of 89 m, latitude of 45.31° N) was 110 nSv/h.

  10. Radiation dose from cigarette tobacco

    SciTech Connect

    Papastefanou, C.

    2008-08-07

    The radioactivity in tobacco leaves collected from 15 different regions of Greece before cigarette production was studied in order to estimate the effective dose from cigarette tobacco due to the naturally occurring primordial radionuclides, such as {sup 226}Ra and {sup 210}Pb of the uranium series and {sup 228}Ra of the thorium series and/or man-made produced radionuclides, such as {sup 137}Cs of Chernobyl origin. Gamma-ray spectrometry was applied using Ge planar and coaxial type detectors of high resolution and high efficiency. It was concluded that the annual effective dose due to inhalation for adults (smokers) for {sup 226}Ra varied from 42.5 to 178.6 {mu}Sv y{sup -1} (average 79.7 {mu}Sv y{sup -1}), while for {sup 228}Ra from 19.3 to 116.0 {mu}Sv y{sup -1} (average 67.1 {mu}Sv y{sup -1}) and for {sup 210}Pb from 47.0 to 134.9 {mu}Sv y{sup -1} (average 104.7 {mu}Sv y{sup -1}), that is the same order of magnitude for each radionuclide. The sum of the effective dose of the three natural radionuclides varied from 151.9 to 401.3 {mu}Sv y{sup -1} (average 251.5 {mu}Sv y{sup -1}). The annual effective dose from {sup 137}Cs of Chernobyl origin was three orders of magnitude lower as it varied from 70.4 to 410.4 nSv y{sup -1} (average 199.3 nSv y{sup -1})

  11. A Global 3D Radiation MHD Simulation of Super-Eddington Accretion Disks

    NASA Astrophysics Data System (ADS)

    Jiang, Yanfei

    2014-10-01

    We study how black holes can accrete above the Eddington limit using a global three dimensional radiation magneto-hydrodynamic simulation without ad-hoc assumptions. The simulation reaches an accretion rate ~ 220L_Edd/c^2 and forms a radiation driven outflow along the rotation axis. The radiative luminosity of this flow is ~ 10L_Edd. This yields a radiative efficiency ~ 4.5%, which is comparable to the value in a standard thin disk model. In our simulation, vertical advection of radiation caused by magnetic buoyancy transports energy faster than photon diffusion, allowing a significant fraction of the photons to escape from the surface of the disk before being advected into the black hole. We contrast our results with the lower radiative efficiencies inferred in slim disk model, which neglect vertical advection. The results have important implications for the growth of supermassive black holes in the early universe, tidal disruption events and ultra-luminous X-ray sources.

  12. 3D dosimetry estimation for selective internal radiation therapy (SIRT) using SPECT/CT images: a phantom study

    NASA Astrophysics Data System (ADS)

    Debebe, Senait A.; Franquiz, Juan; McGoron, Anthony J.

    2015-03-01

    Selective Internal Radiation Therapy (SIRT) is a common way to treat liver cancer that cannot be treated surgically. SIRT involves administration of Yttrium - 90 (90Y) microspheres via the hepatic artery after a diagnostic procedure using 99mTechnetium (Tc)-macroaggregated albumin (MAA) to detect extrahepatic shunting to the lung or the gastrointestinal tract. Accurate quantification of radionuclide administered to patients and radiation dose absorbed by different organs is of importance in SIRT. Accurate dosimetry for SIRT allows optimization of dose delivery to the target tumor and may allow for the ability to assess the efficacy of the treatment. In this study, we proposed a method that can efficiently estimate radiation absorbed dose from 90Y bremsstrahlung SPECT/CT images of liver and the surrounding organs. Bremsstrahlung radiation from 90Y was simulated using the Compton window of 99mTc (78keV at 57%). 99mTc images acquired at the photopeak energy window were used as a standard to examine the accuracy of dosimetry prediction by the simulated bremsstrahlung images. A Liqui-Phil abdominal phantom with liver, stomach and two tumor inserts was imaged using a Philips SPECT/CT scanner. The Dose Point Kernel convolution method was used to find the radiation absorbed dose at a voxel level for a three dimensional dose distribution. This method will allow for a complete estimate of the distribution of radiation absorbed dose by tumors, liver, stomach and other surrounding organs at the voxel level. The method provides a quantitative predictive method for SIRT treatment outcome and administered dose response for patients who undergo the treatment.

  13. A global model simulation for 3-D radiative transfer impact on surface hydrology over the Sierra Nevada and Rocky Mountains

    DOE PAGES

    Lee, W.-L.; Gu, Y.; Liou, K. N.; Leung, L. R.; Hsu, H.-H.

    2015-05-19

    We investigate 3-D mountain effects on solar flux distributions and their impact on surface hydrology over the western United States, specifically the Rocky Mountains and the Sierra Nevada, using the global CCSM4 (Community Climate System Model version 4; Community Atmosphere Model/Community Land Model – CAM4/CLM4) with a 0.23° × 0.31° resolution for simulations over 6 years. In a 3-D radiative transfer parameterization, we have updated surface topography data from a resolution of 1 km to 90 m to improve parameterization accuracy. In addition, we have also modified the upward-flux deviation (3-D–PP (plane-parallel)) adjustment to ensure that the energy balance atmore » the surface is conserved in global climate simulations based on 3-D radiation parameterization. We show that deviations in the net surface fluxes are not only affected by 3-D mountains but also influenced by feedbacks of cloud and snow in association with the long-term simulations. Deviations in sensible heat and surface temperature generally follow the patterns of net surface solar flux. The monthly snow water equivalent (SWE) deviations show an increase in lower elevations due to reduced snowmelt, leading to a reduction in cumulative runoff. Over higher-elevation areas, negative SWE deviations are found because of increased solar radiation available at the surface. Simulated precipitation increases for lower elevations, while it decreases for higher elevations, with a minimum in April. Liquid runoff significantly decreases at higher elevations after April due to reduced SWE and precipitation.« less

  14. Application of 3-D radiative transfer theory to atmospheric correction of land surface images

    NASA Technical Reports Server (NTRS)

    Diner, D. J.; Martonchik, J. V.; Danielson, E. D.; Bruegge, C. J.

    1988-01-01

    Three dimensional radiative transfer theory was applied to computation of atmospheric effects on remotely sensed imagery. The atmospheric correction algorithm derived is used to estimate aerosol opacity.

  15. Radiation dose implications of digital angiographic systems.

    PubMed

    Hynes, D M; Gershater, R; Edmonds, E W; Rowlands, J A; Baranoski, D; Turow, D G

    1984-08-01

    Digital subtraction angiography (DSA) has been widely accepted and applied. The concentration of iodine in the vessels of interest is low in intravenous DSA. The resultant images can be improved to some extent by increasing the radiation dose. Therefore DSA could become, and possibly could remain, a relatively high-dose procedure. The contributions to dose from the various components of the examination such as fluoroscopy, positioning, test exposures, and final acquisition runs are considered separately. Individual segments of a DSA examination are discussed to show how and where opportunities arise to reduce doses to the lowest levels consistent with satisfactory images. PMID:6377858

  16. Identifying cell and molecular stress after radiation in a three-dimensional (3-D) model of oral mucositis

    SciTech Connect

    Lambros, Maria Polikandritou; Parsa, Cyrus; Mulamalla, HariChandana; Orlando, Robert; Lau, Bernard; Huang, Ying; Pon, Doreen; Chow, Moses

    2011-02-04

    Research highlights: {yields} We irradiated a 3-D human oral cell culture of keratinocytes and fibroblasts with 12 and 2 Gy. {yields} 6 h after irradiation the histopathology and apoptosis of the 3-D culture were evaluated. Microarrays were used to assess the gene expression in the irradiated 3-D tissue. {yields} 12 Gy induced significant histopathologic changes and cellular apoptosis. {yields} 12 Gy significantly affected genes of the NF-kB pathway, inflammatory cytokines and DAMPs. -- Abstract: Mucositis is a debilitating adverse effect of chemotherapy and radiation treatment. It is important to develop a simple and reliable in vitro model, which can routinely be used to screen new drugs for prevention and treatment of mucositis. Furthermore, identifying cell and molecular stresses especially in the initiation phase of mucositis in this model will help towards this end. We evaluated a three-dimensional (3-D) human oral cell culture that consisted of oral keratinocytes and fibroblasts as a model of oral mucositis. The 3-D cell culture model was irradiated with 12 or 2 Gy. Six hours after the irradiation we evaluated microscopic sections of the cell culture for evidence of morphologic changes including apoptosis. We used microarrays to compare the expression of several genes from the irradiated tissue with identical genes from tissue that was not irradiated. We found that irradiation with 12 Gy induced significant histopathologic effects including cellular apoptosis. Irradiation significantly affected the expression of several genes of the NF-kB pathway and several inflammatory cytokines, such as IL-1B, 1L-8, NF-kB1, and FOS compared to tissue that was not irradiated. We identified significant upregulation of several genes that belong to damage-associated molecular patterns (DAMPs) such as HMB1, S100A13, SA10014, and SA10016 in the 3-D tissues that received 12 Gy but not in tissues that received 2 Gy. In conclusion, this model quantifies radiation damage and this

  17. Exploring Rotations Due to Radiation Pressure: 2-D to 3-D Transition Is Interesting!

    ERIC Educational Resources Information Center

    Waxman, Michael A.

    2010-01-01

    Radiation pressure is an important topic within a standard physics course (see, in particular, Refs. 1 and 2). The physics of radiation pressure is described, the magnitude of it is derived, both for the case of a perfectly absorbing surface and of a perfect reflector, and various applications of this interesting effect are discussed, such as…

  18. Focusing optics of a parallel beam CCD optical tomography apparatus for 3D radiation gel dosimetry.

    PubMed

    Krstajić, Nikola; Doran, Simon J

    2006-04-21

    Optical tomography of gel dosimeters is a promising and cost-effective avenue for quality control of radiotherapy treatments such as intensity-modulated radiotherapy (IMRT). Systems based on a laser coupled to a photodiode have so far shown the best results within the context of optical scanning of radiosensitive gels, but are very slow ( approximately 9 min per slice) and poorly suited to measurements that require many slices. Here, we describe a fast, three-dimensional (3D) optical computed tomography (optical-CT) apparatus, based on a broad, collimated beam, obtained from a high power LED and detected by a charged coupled detector (CCD). The main advantages of such a system are (i) an acquisition speed approximately two orders of magnitude higher than a laser-based system when 3D data are required, and (ii) a greater simplicity of design. This paper advances our previous work by introducing a new design of focusing optics, which take information from a suitably positioned focal plane and project an image onto the CCD. An analysis of the ray optics is presented, which explains the roles of telecentricity, focusing, acceptance angle and depth-of-field (DOF) in the formation of projections. A discussion of the approximation involved in measuring the line integrals required for filtered backprojection reconstruction is given. Experimental results demonstrate (i) the effect on projections of changing the position of the focal plane of the apparatus, (ii) how to measure the acceptance angle of the optics, and (iii) the ability of the new scanner to image both absorbing and scattering gel phantoms. The quality of reconstructed images is very promising and suggests that the new apparatus may be useful in a clinical setting for fast and accurate 3D dosimetry. PMID:16585845

  19. Focusing optics of a parallel beam CCD optical tomography apparatus for 3D radiation gel dosimetry

    NASA Astrophysics Data System (ADS)

    Krstajic, Nikola; Doran, Simon J.

    2006-04-01

    Optical tomography of gel dosimeters is a promising and cost-effective avenue for quality control of radiotherapy treatments such as intensity-modulated radiotherapy (IMRT). Systems based on a laser coupled to a photodiode have so far shown the best results within the context of optical scanning of radiosensitive gels, but are very slow (~9 min per slice) and poorly suited to measurements that require many slices. Here, we describe a fast, three-dimensional (3D) optical computed tomography (optical-CT) apparatus, based on a broad, collimated beam, obtained from a high power LED and detected by a charged coupled detector (CCD). The main advantages of such a system are (i) an acquisition speed approximately two orders of magnitude higher than a laser-based system when 3D data are required, and (ii) a greater simplicity of design. This paper advances our previous work by introducing a new design of focusing optics, which take information from a suitably positioned focal plane and project an image onto the CCD. An analysis of the ray optics is presented, which explains the roles of telecentricity, focusing, acceptance angle and depth-of-field (DOF) in the formation of projections. A discussion of the approximation involved in measuring the line integrals required for filtered backprojection reconstruction is given. Experimental results demonstrate (i) the effect on projections of changing the position of the focal plane of the apparatus, (ii) how to measure the acceptance angle of the optics, and (iii) the ability of the new scanner to image both absorbing and scattering gel phantoms. The quality of reconstructed images is very promising and suggests that the new apparatus may be useful in a clinical setting for fast and accurate 3D dosimetry.

  20. Biodosimetry and assessment of radiation dose

    PubMed Central

    Crespo, Rafael Herranz; Domene, Mercedes Moreno; Rodríguez, María Jesús Prieto

    2011-01-01

    Aim When investigating radiation accidents, it is very important to determine the exposition dose to the individuals. In the case of exposures over 1 Gy, clinicians may expect deterministic effects arising the following weeks and months, in these cases dose estimation will help physicians in the planning of therapy. Nevertheless, for doses below 1 Gy, biodosimetry data are important due to the risk of developing late stochastic effects. Finally, some accidental overexposures are lack of physical measurements and the only way of quantifying dose is by biological dosimetry. Background The analysis of chromosomal aberrations by different techniques is the most developed method of quantifying dose to individuals exposed to ionising radiations.1,2 Furthermore, the analysis of dicentric chromosomes observed in metaphases from peripheral lymphocytes is the routine technique used in case of acute exposures to assess radiation doses. Materials and methods Solid stain of chromosomes is used to determine dicentric yields for dose estimation. Fluorescence in situ hybridization (FISH) for translocations analysis is used when delayed sampling or suspected chronically irradiation dose assessment. Recommendations in technical considerations are based mainly in the IAEA Technical Report No. 405.2 Results Experience in biological dosimetry at Gregorio Marañón General Hospital is described, including own calibration curves used for dose estimation, background studies and real cases of overexposition. Conclusion Dose assessment by biological dosimeters requires a large previous standardization work and a continuous update. Individual dose assessment involves high qualification professionals and its long time consuming, therefore requires specific Centres. For large mass casualties cooperation among specialized Institutions is needed. PMID:24376970

  1. Wide-range radiation dose monitor

    DOEpatents

    Kopp, M.K.

    1984-09-20

    A radiation dose-rate monitor is provided which operates in a conventional linear mode for radiation in the 0 to 0.5 R/h range and utilizes a nonlinear mode of operation for sensing radiation from 0.5 R/h to over 500 R/h. The nonlinear mode is achieved by a feedback circuit which adjusts the high voltage bias of the proportional counter, and hence its gas gain, in accordance with the amount of radiation being monitored. This allows compression of readout onto a single scale over the range of 0 to greater than 500 R/h without scale switching operations.

  2. Wide-range radiation dose monitor

    DOEpatents

    Kopp, Manfred K.

    1986-01-01

    A radiation dose-rate monitor is provided which operates in a conventional linear mode for radiation in the 0 to 0.5 R/h range and utilizes a nonlinear mode of operation for sensing radiation from 0.5 R/h to over 500 R/h. The nonlinear mode is achieved by a feedback circuit which adjusts the high voltage bias of the proportional counter, and hence its gas gain, in accordance with the amount of radiation being monitored. This allows compression of readout onto a single scale over the range of 0 to greater than 500 R/h without scale switching operations.

  3. 3D Multi-Level Non-LTE Radiative Transfer for the CO Molecule

    NASA Astrophysics Data System (ADS)

    Berkner, A.; Schweitzer, A.; Hauschildt, P. H.

    2015-01-01

    The photospheres of cool stars are both rich in molecules and an environment where the assumption of LTE can not be upheld under all circumstances. Unfortunately, detailed 3D non-LTE calculations involving molecules are hardly feasible with current computers. For this reason, we present our implementation of the super level technique, in which molecular levels are combined into super levels, to reduce the number of unknowns in the rate equations and, thus, the computational effort and memory requirements involved, and show the results of our first tests against the 1D implementation of the same method.

  4. 3-D aluminum nanostructure with microhole array synthesized by femtosecond laser radiation for enhanced light extinction

    NASA Astrophysics Data System (ADS)

    Mahmood, Abdul Salam; Venkatakrishnan, Krishnan; Tan, Bo

    2013-11-01

    This article presents 3-D aluminum micro-nanostructures for enhanced light absorption. Periodic microhole arrays were created by firing a train of femtosecond laser pulses at megahertz pulse frequency onto the surface of an aluminum target at ambient conditions. The laser trains ablated the target surface and created microholes leading to the generation of deposited nanostructures inside and around the microholes. These micro-nanostructures showed enhanced light absorption, which is attributed to surface plasmonics induced by the generation of both nano- and microstructures. These micro-nanostructures may be promising for solar cell applications.

  5. 3-D aluminum nanostructure with microhole array synthesized by femtosecond laser radiation for enhanced light extinction.

    PubMed

    Mahmood, Abdul Salam; Venkatakrishnan, Krishnan; Tan, Bo

    2013-01-01

    This article presents 3-D aluminum micro-nanostructures for enhanced light absorption. Periodic microhole arrays were created by firing a train of femtosecond laser pulses at megahertz pulse frequency onto the surface of an aluminum target at ambient conditions. The laser trains ablated the target surface and created microholes leading to the generation of deposited nanostructures inside and around the microholes. These micro-nanostructures showed enhanced light absorption, which is attributed to surface plasmonics induced by the generation of both nano- and microstructures. These micro-nanostructures may be promising for solar cell applications. PMID:24225364

  6. 3-D aluminum nanostructure with microhole array synthesized by femtosecond laser radiation for enhanced light extinction

    PubMed Central

    2013-01-01

    This article presents 3-D aluminum micro-nanostructures for enhanced light absorption. Periodic microhole arrays were created by firing a train of femtosecond laser pulses at megahertz pulse frequency onto the surface of an aluminum target at ambient conditions. The laser trains ablated the target surface and created microholes leading to the generation of deposited nanostructures inside and around the microholes. These micro-nanostructures showed enhanced light absorption, which is attributed to surface plasmonics induced by the generation of both nano- and microstructures. These micro-nanostructures may be promising for solar cell applications. PMID:24225364

  7. Metabolic response of lung cancer cells to radiation in a paper-based 3D cell culture system.

    PubMed

    Simon, Karen A; Mosadegh, Bobak; Minn, Kyaw Thu; Lockett, Matthew R; Mohammady, Marym R; Boucher, Diane M; Hall, Amy B; Hillier, Shawn M; Udagawa, Taturo; Eustace, Brenda K; Whitesides, George M

    2016-07-01

    This work demonstrates the application of a 3D culture system-Cells-in-Gels-in-Paper (CiGiP)-in evaluating the metabolic response of lung cancer cells to ionizing radiation. The 3D tissue-like construct-prepared by stacking multiple sheets of paper containing cell-embedded hydrogels-generates a gradient of oxygen and nutrients that decreases monotonically in the stack. Separating the layers of the stack after exposure enabled analysis of the cellular response to radiation as a function of oxygen and nutrient availability; this availability is dictated by the distance between the cells and the source of oxygenated medium. As the distance between the cells and source of oxygenated media increased, cells show increased levels of hypoxia-inducible factor 1-alpha, decreased proliferation, and reduced sensitivity to ionizing radiation. Each of these cellular responses are characteristic of cancer cells observed in solid tumors. With this setup we were able to differentiate three isogenic variants of A549 cells based on their metabolic radiosensitivity; these three variants have known differences in their metastatic behavior in vivo. This system can, therefore, capture some aspects of radiosensitivity of populations of cancer cells related to mass-transport phenomenon, carry out systematic studies of radiation response in vitro that decouple effects from migration and proliferation of cells, and regulate the exposure of oxygen to subpopulations of cells in a tissue-like construct either before or after irradiation. PMID:27116031

  8. 3D active edge silicon sensors with different electrode configurations: Radiation hardness and noise performance

    NASA Astrophysics Data System (ADS)

    Da Viá, C.; Bolle, E.; Einsweiler, K.; Garcia-Sciveres, M.; Hasi, J.; Kenney, C.; Linhart, V.; Parker, Sherwood; Pospisil, S.; Rohne, O.; Slavicek, T.; Watts, S.; Wermes, N.

    2009-06-01

    3D detectors, with electrodes penetrating the entire silicon wafer and active edges, were fabricated at the Stanford Nano Fabrication Facility (SNF), California, USA, with different electrode configurations. After irradiation with neutrons up to a fluence of 8.8×10 15 n eq cm -2, they were characterised using an infrared laser tuned to inject ˜2 minimum ionising particles showing signal efficiencies as high as 66% for the configuration with the shortest (56 μm) inter-electrode spacing. Sensors from the same wafer were also bump-bonded to the ATLAS FE-I3 pixel readout chip and their noise characterised. Most probable signal-to-noise ratios were calculated before and after irradiation to be as good as 38:1 after the highest irradiation level with a substrate thickness of 210 μm. These devices are promising candidates for application at the LHC such as the very forward detectors at ATLAS and CMS, the ATLAS B-Layer replacement and the general pixel upgrade. Moreover, 3D sensors could play a role in applications where high speed, high-resolution detectors are required, such as the vertex locators at the proposed Compact Linear Collider (CLIC) at CERN.

  9. Epigenomic Adaptation to Low Dose Radiation

    SciTech Connect

    Gould, Michael N.

    2015-06-30

    The overall hypothesis of this grant application is that the adaptive responses elicited by low dose ionizing radiation (LDIR) result in part from heritable DNA methylation changes in the epigenome. In the final budget period at the University of Wisconsin-Madison, we will specifically address this hypothesis by determining if the epigenetically labile, differentially methylated regions (DMRs) that regulate parental-specific expression of imprinted genes are deregulated in agouti mice by low dose radiation exposure during gestation. This information is particularly important to ascertain given the 1) increased human exposure to medical sources of radiation; 2) increased number of people predicted to live and work in space; and 3) enhanced citizen concern about radiation exposure from nuclear power plant accidents and terrorist ‘dirty bombs.’

  10. Method for dose-reduced 3D catheter tracking on a scanning-beam digital x-ray system using dynamic electronic collimation

    NASA Astrophysics Data System (ADS)

    Dunkerley, David A. P.; Funk, Tobias; Speidel, Michael A.

    2016-03-01

    Scanning-beam digital x-ray (SBDX) is an inverse geometry x-ray fluoroscopy system capable of tomosynthesis-based 3D catheter tracking. This work proposes a method of dose-reduced 3D tracking using dynamic electronic collimation (DEC) of the SBDX scanning x-ray tube. Positions in the 2D focal spot array are selectively activated to create a regionof- interest (ROI) x-ray field around the tracked catheter. The ROI position is updated for each frame based on a motion vector calculated from the two most recent 3D tracking results. The technique was evaluated with SBDX data acquired as a catheter tip inside a chest phantom was pulled along a 3D trajectory. DEC scans were retrospectively generated from the detector images stored for each focal spot position. DEC imaging of a catheter tip in a volume measuring 11.4 cm across at isocenter required 340 active focal spots per frame, versus 4473 spots in full-FOV mode. The dose-area-product (DAP) and peak skin dose (PSD) for DEC versus full field-of-view (FOV) scanning were calculated using an SBDX Monte Carlo simulation code. DAP was reduced to 7.4% to 8.4% of the full-FOV value, consistent with the relative number of active focal spots (7.6%). For image sequences with a moving catheter, PSD was 33.6% to 34.8% of the full-FOV value. The root-mean-squared-deviation between DEC-based 3D tracking coordinates and full-FOV 3D tracking coordinates was less than 0.1 mm. The 3D distance between the tracked tip and the sheath centerline averaged 0.75 mm. Dynamic electronic collimation can reduce dose with minimal change in tracking performance.

  11. 3D sensitive voxel detector of ionizing radiation based on Timepix device

    NASA Astrophysics Data System (ADS)

    Soukup, P.; Jakubek, J.; Vykydal, Z.

    2011-01-01

    Position sensitive detectors are evolving towards higher segmentation geometries from 0D (single pad) over 1D (strip) to 2D (pixel) detectors. Each step has brought up substantial expansion in the field of applications. The next logical step in this evolution is to design a 3D, i.e. voxel detector. The voxel detector can be constructed from 2D volume element detectors arranged in layers forming a 3D matrix of sensitive elements — voxels. Such detectors can effectively record tracks of energetic particles. By proper analysis of these tracks it is possible to determine the type, direction and energy of the primary particle. One of the prominent applications of such device is in the localization and identification of gamma and neutron sources in the environment. It can be also used for emission and transmission radiography in many fields where standard imagers are currently utilized. The qualitative properties of current imagers such as: spatial resolution, efficiency, directional sensitivity, energy sensitivity and selectivity (background suppression) can be improved. The first prototype of a voxel detector was built using a number of Timepix devices. Timepix is hybrid semiconductor detector consisting of a segmented semiconductor sensor bump-bonded to a readout chip. Each sensor contains 256x256 square pixels of 55 μm size. The voxel detector prototype was successfully tested to prove the concept functionality. The detector has a modular architecture with a daisy chain connection of the individual detector layers. This permits easy rearrangement due to its modularity, while keeping a single readout system for a variable number of detector layers. A limitation of this approach is the relatively large inter-layer distance (4 mm) compared to the pixel thickness (0.3 mm). Therefore the next step in the design is to decrease the space between the 2D detectors.

  12. Radiation Leukemogenesis at Low Dose Rates

    SciTech Connect

    Weil, Michael; Ullrich, Robert

    2013-09-25

    The major goals of this program were to study the efficacy of low dose rate radiation exposures for the induction of acute myeloid leukemia (AML) and to characterize the leukemias that are caused by radiation exposures at low dose rate. An irradiator facility was designed and constructed that allows large numbers of mice to be irradiated at low dose rates for protracted periods (up to their life span). To the best of our knowledge this facility is unique in the US and it was subsequently used to study radioprotectors being developed for radiological defense (PLoS One. 7(3), e33044, 2012) and is currently being used to study the role of genetic background in susceptibility to radiation-induced lung cancer. One result of the irradiation was expected; low dose rate exposures are ineffective in inducing AML. However, another result was completely unexpected; the irradiated mice had a very high incidence of hepatocellular carcinoma (HCC), approximately 50%. It was unexpected because acute exposures are ineffective in increasing HCC incidence above background. This is a potential important finding for setting exposure limits because it supports the concept of an 'inverse dose rate effect' for some tumor types. That is, for the development of some tumor types low dose rate exposures carry greater risks than acute exposures.

  13. Aerosols, Chemistry, and Radiative Forcing: A 3-D Model Analysis of Satellite and ACE-Asia data (ACMAP)

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Ginoux, Paul; Torres, Omar; Zhao, Xue-Peng

    2005-01-01

    We propose a research project to incorporate a global 3-D model and satellite data into the multi-national Aerosol Characterization Experiment-Asia (ACE-Asia) mission. Our objectives are (1) to understand the physical, chemical, and optical properties of aerosols and the processes that control those properties over the Asian-Pacific region, (2) to investigate the interaction between aerosols and tropospheric chemistry, and (3) to determine the aerosol radiative forcing over the Asia-Pacific region. We will use the Georgia TecWGoddard Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) model to link satellite observations and the ACE-Asia measurements. First, we will use the GOCART model to simulate aerosols and related species, and evaluate the model with satellite and in-situ observations. Second, the model generated aerosol vertical profiles and compositions will be used to validate the satellite products; and the satellite data will be used for during- and post- mission analysis. Third, we will use the model to analyze and interpret both satellite and ACE- Asia field campaign data and investigate the aerosol-chemistry interactions. Finally, we will calculate aerosol radiative forcing over the Asian-Pacific region, and assess the influence of Asian pollution in the global atmosphere. We propose a research project to incorporate a global 3-D model and satellite data into

  14. A 3-D elasticity theory based model for acoustic radiation from multilayered anisotropic plates.

    PubMed

    Shen, C; Xin, F X; Lu, T J

    2014-05-01

    A theoretical model built upon three-dimensional elasticity theory is developed to investigate the acoustic radiation from multilayered anisotropic plates subjected to a harmonic point force excitation. Fourier transform technique and stationary phase method are combined to predict the far-field radiated sound pressure of one-side water immersed plate. Compared to equivalent single-layer plate models, the present model based on elasticity theory can differentiate radiated sound pressure between dry-side and wet-side excited cases, as well as discrepancies induced by different layer sequences for multilayered anisotropic plates. These results highlight the superiority of the present theoretical model especially for handling multilayered anisotropic structures. PMID:24815294

  15. Effects of incremental beta-blocker dosing on myocardial mechanics of the human left ventricle: MRI 3D-tagging insight into pharmacodynamics supports theory of inner antagonism.

    PubMed

    Schmitt, Boris; Li, Tieyan; Kutty, Shelby; Khasheei, Alireza; Schmitt, Katharina R L; Anderson, Robert H; Lunkenheimer, Paul P; Berger, Felix; Kühne, Titus; Peters, Björn

    2015-07-01

    Beta-blockers contribute to treatment of heart failure. Their mechanism of action, however, is incompletely understood. Gradients in beta-blocker sensitivity of helically aligned cardiomyocytes compared with counteracting transversely intruding cardiomyocytes seem crucial. We hypothesize that selective blockade of transversely intruding cardiomyocytes by low-dose beta-blockade unloads ventricular performance. Cardiac magnetic resonance imaging (MRI) 3D tagging delivers parameters of myocardial performance. We studied 13 healthy volunteers by MRI 3D tagging during escalated intravenous administration of esmolol. The circumferential, longitudinal, and radial myocardial shortening was determined for each dose. The curves were analyzed for peak value, time-to-peak, upslope, and area-under-the-curve. At low doses, from 5 to 25 μg·kg(-1)·min(-1), peak contraction increased while time-to-peak decreased yielding a steeper upslope. Combining the values revealed a left shift of the curves at low doses compared with baseline without esmolol. At doses of 50 to 150 μg·kg(-1)·min(-1), a right shift with flattening occurred. In healthy volunteers we found more pronounced myocardial shortening at low compared with clinical dosage of beta-blockers. In patients with ventricular hypertrophy and higher prevalence of transversely intruding cardiomyocytes selective low-dose beta-blockade could be even more effective. MRI 3D tagging could help to determine optimal individual beta-blocker dosing avoiding undesirable side effects. PMID:25888512

  16. Radiation-induced genomic instability: radiation quality and dose response

    NASA Technical Reports Server (NTRS)

    Smith, Leslie E.; Nagar, Shruti; Kim, Grace J.; Morgan, William F.

    2003-01-01

    Genomic instability is a term used to describe a phenomenon that results in the accumulation of multiple changes required to convert a stable genome of a normal cell to an unstable genome characteristic of a tumor. There has been considerable recent debate concerning the importance of genomic instability in human cancer and its temporal occurrence in the carcinogenic process. Radiation is capable of inducing genomic instability in mammalian cells and instability is thought to be the driving force responsible for radiation carcinogenesis. Genomic instability is characterized by a large collection of diverse endpoints that include large-scale chromosomal rearrangements and aberrations, amplification of genetic material, aneuploidy, micronucleus formation, microsatellite instability, and gene mutation. The capacity of radiation to induce genomic instability depends to a large extent on radiation quality or linear energy transfer (LET) and dose. There appears to be a low dose threshold effect with low LET, beyond which no additional genomic instability is induced. Low doses of both high and low LET radiation are capable of inducing this phenomenon. This report reviews data concerning dose rate effects of high and low LET radiation and their capacity to induce genomic instability assayed by chromosomal aberrations, delayed lethal mutations, micronuclei and apoptosis.

  17. 2D-3D registration for brain radiation therapy using a 3D CBCT and a single limited field-of-view 2D kV radiograph

    NASA Astrophysics Data System (ADS)

    Munbodh, R.; Moseley, D. J.

    2014-03-01

    We report results of an intensity-based 2D-3D rigid registration framework for patient positioning and monitoring during brain radiotherapy. We evaluated two intensity-based similarity measures, the Pearson Correlation Coefficient (ICC) and Maximum Likelihood with Gaussian noise (MLG) derived from the statistics of transmission images. A useful image frequency band was identified from the bone-to-no-bone ratio. Validation was performed on gold-standard data consisting of 3D kV CBCT scans and 2D kV radiographs of an anthropomorphic head phantom acquired at 23 different poses with parameter variations along six degrees of freedom. At each pose, a single limited field of view kV radiograph was registered to the reference CBCT. The ground truth was determined from markers affixed to the phantom and visible in the CBCT images. The mean (and standard deviation) of the absolute errors in recovering each of the six transformation parameters along the x, y and z axes for ICC were varphix: 0.08(0.04)°, varphiy: 0.10(0.09)°, varphiz: 0.03(0.03)°, tx: 0.13(0.11) mm, ty: 0.08(0.06) mm and tz: 0.44(0.23) mm. For MLG, the corresponding results were varphix: 0.10(0.04)°, varphiy: 0.10(0.09)°, varphiz: 0.05(0.07)°, tx: 0.11(0.13) mm, ty: 0.05(0.05) mm and tz: 0.44(0.31) mm. It is feasible to accurately estimate all six transformation parameters from a 3D CBCT of the head and a single 2D kV radiograph within an intensity-based registration framework that incorporates the physics of transmission images.

  18. Dosimetric characteristics of intensity-modulated radiation therapy and RapidArc® therapy using a 3D N-isopropylacrylamide gel dosimeter

    NASA Astrophysics Data System (ADS)

    Yao, Chun-Hsu; Tsai, Ting-Yu; Hsieh, Bor-Tsung; Tsang, Yuk-Wah; Chiu, Chung-Yu; Chao, His-Ya; Chang, Yuan-Jen

    2016-09-01

    This study aimed to investigate the dosimetric characteristics of intensity-modulated radiation therapy (IMRT) and RapidArc therapy by using 3D N-isopropylacrylamide (NIPAM) polymer gel. Optical computed tomography, specifically OCTOPUSTM-10X fast optical computed tomography scanner, was used as a readout tool. Two cylindrical acrylic phantoms (10 cm in diameter, 10 cm in height, and 3 mm in thickness) were filled with NIPAM gel and used for IMRT and RapidArc irradiation by using the Clinac iX treatment machine. The irradiation energies for IMRT and RapidArc® were set as 6 MV photons, but their irradiation angles and dose rates differed during irradiation. The irradiation angles of IMRT were 120°, 155°, 180°, 215°, and 245°, and the dose rate was fixed at 400 cGy/min. RapidArc® rotated continuously during irradiation, and the dose rate varied from 330 cGy/min to 400 cGy/min. The pass rates were 98.02% and 97.48% for IMRT and RapidArc®, respectively, and the rejected area appeared at the edge of the irradiated region. The isodose lines of IMRT and RapidArc® were consistent with those of TPS in most regions. Scattering and edge enhancement effects are main factors that cause dose inaccuracy in the edge region and reduced pass rates. Considering dose rate dependence, we used variable dose rates during irradiation with RapidArc®. Results showed that the dose distribution of NIPAM gel was consistent with that of TPS. The pass rates were also the same for IMRT and RapidArc® irradiation. This study proposes a preliminary profile of dosimetric characteristics of IMRT and RapidArc® by using a NIPAM gel dosimeter.

  19. Doppler effects on 3-D non-LTE radiation transport and emission spectra

    NASA Astrophysics Data System (ADS)

    Hansen, S. B.; Jones, B.; Giuliani, J. L.; Apruzese, J. P.; Thornhill, J. W.; Scott, H. A.; Ampleford, D. J.; Jennings, C. A.; Coverdale, C. A.; Cuneo, M. E.; Rochau, G. A.; Bailey, J. E.; Dasgupta, A.; Clark, R. W.; Davis, J.

    2011-12-01

    Spatially and temporally resolved X-ray emission lines contain information about temperatures, densities, velocities, and the gradients in a plasma. Extracting this information from optically thick lines emitted from complex ions in dynamic, three-dimensional, non-LTE plasmas requires self-consistent accounting for both non-LTE atomic physics and non-local radiative transfer. We present a brief description of a hybrid-structure spectroscopic atomic model coupled to an iterative tabular on-the-spot treatment of radiative transfer that can be applied to plasmas of arbitrary material composition, conditions, and geometries. The effects of Doppler line shifts on the self-consistent radiative transfer within the plasma and the emergent emission and absorption spectra are included in the model. Sample calculations for a two-level atom in a uniform cylindrical plasma are given, showing reasonable agreement with more sophisticated transport models and illustrating the potential complexity - or richness - of radially resolved emission lines from an imploding cylindrical plasma. Also presented is a comparison of modeled L- and K-shell spectra to temporally and radially resolved emission data from a Cu:Ni plasma. Finally, some shortcomings of the model and possible paths for improvement are discussed.

  20. Accelerating 3D radiative transfer for realistic OCO-2 cloud-aerosol scenes

    NASA Astrophysics Data System (ADS)

    Schmidt, S.; Massie, S. T.; Platnick, S. E.; Song, S.

    2014-12-01

    The recently launched NASA OCO-2 satellite is expected to provide important information about the carbon dioxide distribution in the troposphere down to Earth's surface. Among the challenges in accurately retrieving CO2 concentration from the hyperspectral observations in each of the three OCO-2 bands are cloud and aerosol impacts on the observed radiances. Preliminary studies based on idealized cloud fields have shown that they can lead to spectrally dependent radiance perturbations which differ from band to band and may lead to biases in the derived products. Since OCO-2 was inserted into the A-Train, it is only natural to capitalize on sensor synergies with other instruments, in this case on the cloud and aerosol scene context that is provided by MODIS and CALIOP. Our approach is to use cloud imagery (especially for inhomogeneous scenes) for predicting the hyperspectral observations within a collocated OCO-2 footprint and comparing with the observations, which allows a systematic assessment of the causes for biases in the retrievals themselves, and their manifestation in spectral residuals for various different cloud types and distributions. Simulating a large number of cases with line-by-line calculations using a 3D code is computationally prohibitive even on large parallel computers. Therefore, we developed a number of acceleration approaches. In this contribution, we will analyze them in terms of their speed and accuracy, using cloud fields from airborne imagery collected during a recent NASA field experiment (SEAC4RS) as proxy for different types of inhomogeneous cloud fields. The broader goal of this effort is to improve OCO-2 retrievals in the vicinity of cloud fields, and to extend the range of conditions under which the instrument will provide useful results.

  1. Relativistic radiation belt electron responses to GEM magnetic storms: Comparison of CRRES observations with 3-D VERB simulations

    NASA Astrophysics Data System (ADS)

    Kim, Kyung-Chan; Shprits, Yuri; Subbotin, Dmitriy; Ni, Binbin

    2012-08-01

    Understanding the dynamics of relativistic electron acceleration, loss, and transport in the Earth's radiation belt during magnetic storms is a challenging task. The U.S. National Science Foundation's Geospace Environment Modeling (GEM) has identified five magnetic storms for in-depth study that occurred during the second half of the Combined Release and Radiation Effects Satellite (CRRES) mission in the year 1991. In this study, we show the responses of relativistic radiation belt electrons to the magnetic storms by comparing the time-dependent 3-D Versatile Electron Radiation Belt (VERB) simulations with the CRRES MEA 1 MeV electron observations in order to investigate the relative roles of the competing effects of previously proposed scattering mechanisms at different storm phases, as well as to examine the extent to which the simulations can reproduce observations. The major scattering processes in our model are radial transport due to Ultra Low Frequency (ULF) electromagnetic fluctuations, pitch angle and energy diffusion including mixed diffusion by whistler mode chorus waves outside the plasmasphere, and pitch angle scattering by plasmaspheric hiss inside the plasmasphere. The 3-D VERB simulations show that during the storm main phase and early recovery phase the estimated plasmapause is located deep in the inner region, indicating that pitch angle scattering by chorus waves can be a dominant loss process in the outer belt. We have also confirmed the important role played by mixed energy-pitch angle diffusion by chorus waves, which tends to reduce the fluxes enhanced by local acceleration, resulting in comparable levels of computed and measured fluxes. However, we cannot reproduce the more pronounced flux dropout near the boundary of our simulations during the main phase, which indicates that non-adiabatic losses may extend toL-shells lower than our simulation boundary. We also provide a detailed description of simulations for each of the GEM storm events.

  2. 3D inpatient dose reconstruction from the PET-CT imaging of {sup 90}Y microspheres for metastatic cancer to the liver: Feasibility study

    SciTech Connect

    Fourkal, E.; Veltchev, I.; Lin, M.; Meyer, J.; Koren, S.; Doss, M.; Yu, J. Q.

    2013-08-15

    Purpose: The introduction of radioembolization with microspheres represents a significant step forward in the treatment of patients with metastatic disease to the liver. This technique uses semiempirical formulae based on body surface area or liver and target volumes to calculate the required total activity for a given patient. However, this treatment modality lacks extremely important information, which is the three-dimensional (3D) dose delivered by microspheres to different organs after their administration. The absence of this information dramatically limits the clinical efficacy of this modality, specifically the predictive power of the treatment. Therefore, the aim of this study is to develop a 3D dose calculation technique that is based on the PET imaging of the infused microspheres.Methods: The Fluka Monte Carlo code was used to calculate the voxel dose kernel for {sup 90}Y source with voxel size equal to that of the PET scan. The measured PET activity distribution was converted to total activity distribution for the subsequent convolution with the voxel dose kernel to obtain the 3D dose distribution. In addition, dose-volume histograms were generated to analyze the dose to the tumor and critical structures.Results: The 3D inpatient dose distribution can be reconstructed from the PET data of a patient scanned after the infusion of microspheres. A total of seven patients have been analyzed so far using the proposed reconstruction method. Four patients underwent treatment with SIR-Spheres for liver metastases from colorectal cancer and three patients were treated with Therasphere for hepatocellular cancer. A total of 14 target tumors were contoured on post-treatment PET-CT scans for dosimetric evaluation. Mean prescription activity was 1.7 GBq (range: 0.58–3.8 GBq). The resulting mean maximum measured dose to targets was 167 Gy (range: 71–311 Gy). Mean minimum dose to 70% of target (D70) was 68 Gy (range: 25–155 Gy). Mean minimum dose to 90% of target

  3. 3D-weighted cone beam filtered backprojection (CB-FBP) algorithm for image reconstruction at low-helical pitches to improve noise characteristics and dose efficiency

    NASA Astrophysics Data System (ADS)

    Tang, Xiangyang; Hsieh, Jiang; Nilsen, Roy A.

    2006-03-01

    A three-dimensional weighted cone beam filtered backprojection (CB-FBP) algorithm (namely 3D weighted CB-FBP algorithm) has been proposed to reconstruct images from the projection data acquired along a helical trajectory in angular ranges up to [0, 2π]. However, an over scan is usually employed in the clinic to provide premium image qualities for an accurate diagnosis at the most challenging anatomic structures, such as head, spine and extremities. In an over scan, the corresponding normalized helical pitch is usually smaller than 1:1, under which the projection data acquired along angular range larger than [0, 2π] can be utilized to reconstruct an image. To improve noise characteristics or dose efficiency in an over scan, we extended the 3D weighted CB-FBP algorithm to handle helical pitches that are smaller than 1:1, while the algorithm's other advantages, such as reconstruction accuracy and computational efficiency, are maintained. The novelty of the extended 3D weighted CB-FBP algorithm is the decomposition of an over scan with an angular range corresponding to [0, 2π + Δβ] (0 < Δβ < 2π) into a union of full scans with an angular range corresponding to [0, 2π]. As a result, the extended 3D weighted function is a weighted sum of all 3D weighting functions corresponding to each overlapped full scan. An experimental evaluation shows that, the extended 3D weighted CB-FBP algorithm can significantly improve noise characteristics or dose efficiency of the 3D weighted CB-FBP algorithm at helical pitch smaller than 1:1, while its reconstruction accuracy and computational efficiency are maintained. It is imortant to indicate that, the extended 3D weighting function is still applied on projection data before 3D backporjection, resulting in the computational efficiency of the extended 3D weighted CB-FBP algorithm comparable to that of the 3D weighted CB-FBP algorithm. It is believed that, such an efficient CB reconstruction algorithm that can provide premium

  4. The Intercomparison of 3D Radiation Codes (I3RC): Showcasing Mathematical and Computational Physics in a Critical Atmospheric Application

    NASA Astrophysics Data System (ADS)

    Davis, A. B.; Cahalan, R. F.

    2001-05-01

    The Intercomparison of 3D Radiation Codes (I3RC) is an on-going initiative involving an international group of over 30 researchers engaged in the numerical modeling of three-dimensional radiative transfer as applied to clouds. Because of their strong variability and extreme opacity, clouds are indeed a major source of uncertainty in the Earth's local radiation budget (at GCM grid scales). Also 3D effects (at satellite pixel scales) invalidate the standard plane-parallel assumption made in the routine of cloud-property remote sensing at NASA and NOAA. Accordingly, the test-cases used in I3RC are based on inputs and outputs which relate to cloud effects in atmospheric heating rates and in real-world remote sensing geometries. The main objectives of I3RC are to (1) enable participants to improve their models, (2) publish results as a community, (3) archive source code, and (4) educate. We will survey the status of I3RC and its plans for the near future with a special emphasis on the mathematical models and computational approaches. We will also describe some of the prime applications of I3RC's efforts in climate models, cloud-resolving models, and remote-sensing observations of clouds, or that of the surface in their presence. In all these application areas, computational efficiency is the main concern and not accuracy. One of I3RC's main goals is to document the performance of as wide a variety as possible of three-dimensional radiative transfer models for a small but representative number of ``cases.'' However, it is dominated by modelers working at the level of linear transport theory (i.e., they solve the radiative transfer equation) and an overwhelming majority of these participants use slow-but-robust Monte Carlo techniques. This means that only a small portion of the efficiency vs. accuracy vs. flexibility domain is currently populated by I3RC participants. To balance this natural clustering the present authors have organized a systematic outreach towards

  5. TU-C-BRE-11: 3D EPID-Based in Vivo Dosimetry: A Major Step Forward Towards Optimal Quality and Safety in Radiation Oncology Practice

    SciTech Connect

    Mijnheer, B; Mans, A; Olaciregui-Ruiz, I; Rozendaal, R; Spreeuw, H; Herk, M van

    2014-06-15

    Purpose: To develop a 3D in vivo dosimetry method that is able to substitute pre-treatment verification in an efficient way, and to terminate treatment delivery if the online measured 3D dose distribution deviates too much from the predicted dose distribution. Methods: A back-projection algorithm has been further developed and implemented to enable automatic 3D in vivo dose verification of IMRT/VMAT treatments using a-Si EPIDs. New software tools were clinically introduced to allow automated image acquisition, to periodically inspect the record-and-verify database, and to automatically run the EPID dosimetry software. The comparison of the EPID-reconstructed and planned dose distribution is done offline to raise automatically alerts and to schedule actions when deviations are detected. Furthermore, a software package for online dose reconstruction was also developed. The RMS of the difference between the cumulative planned and reconstructed 3D dose distributions was used for triggering a halt of a linac. Results: The implementation of fully automated 3D EPID-based in vivo dosimetry was able to replace pre-treatment verification for more than 90% of the patient treatments. The process has been fully automated and integrated in our clinical workflow where over 3,500 IMRT/VMAT treatments are verified each year. By optimizing the dose reconstruction algorithm and the I/O performance, the delivered 3D dose distribution is verified in less than 200 ms per portal image, which includes the comparison between the reconstructed and planned dose distribution. In this way it was possible to generate a trigger that can stop the irradiation at less than 20 cGy after introducing large delivery errors. Conclusion: The automatic offline solution facilitated the large scale clinical implementation of 3D EPID-based in vivo dose verification of IMRT/VMAT treatments; the online approach has been successfully tested for various severe delivery errors.

  6. Radiation and Polarization Signatures of the 3D Multizone Time-dependent Hadronic Blazar Model

    NASA Astrophysics Data System (ADS)

    Zhang, Haocheng; Diltz, Chris; Böttcher, Markus

    2016-10-01

    We present a newly developed time-dependent three-dimensional multizone hadronic blazar emission model. By coupling a Fokker-Planck-based lepto-hadronic particle evolution code, 3DHad, with a polarization-dependent radiation transfer code, 3DPol, we are able to study the time-dependent radiation and polarization signatures of a hadronic blazar model for the first time. Our current code is limited to parameter regimes in which the hadronic γ-ray output is dominated by proton synchrotron emission, neglecting pion production. Our results demonstrate that the time-dependent flux and polarization signatures are generally dominated by the relation between the synchrotron cooling and the light-crossing timescale, which is largely independent of the exact model parameters. We find that unlike the low-energy polarization signatures, which can vary rapidly in time, the high-energy polarization signatures appear stable. As a result, future high-energy polarimeters may be able to distinguish such signatures from the lower and more rapidly variable polarization signatures expected in leptonic models.

  7. Estimated radiation dose from timepieces containing tritium

    SciTech Connect

    McDowell-Boyer, L M

    1980-01-01

    Luminescent timepieces containing radioactive tritium, either in elemental form or incorporated into paint, are available to the general public. The purpose of this study was to estimate potential radiation dose commitments received by the public annually as a result of exposure to tritium which may escape from the timepieces during their distribution, use, repair, and disposal. Much uncertainty is associated with final dose estimates due to limitations of empirical data from which exposure parameters were derived. Maximum individual dose estimates were generally less than 3 ..mu..Sv/yr, but ranged up to 2 mSv under worst-case conditions postulated. Estimated annual collective (population) doses were less than 5 person/Sv per million timepieces distributed.

  8. A technique for multi-dimensional optimization of radiation dose, contrast dose, and image quality in CT imaging

    NASA Astrophysics Data System (ADS)

    Sahbaee, Pooyan; Abadi, Ehsan; Sanders, Jeremiah; Becchetti, Marc; Zhang, Yakun; Agasthya, Greeshma; Segars, Paul; Samei, Ehsan

    2016-03-01

    The purpose of this study was to substantiate the interdependency of image quality, radiation dose, and contrast material dose in CT towards the patient-specific optimization of the imaging protocols. The study deployed two phantom platforms. First, a variable sized phantom containing an iodinated insert was imaged on a representative CT scanner at multiple CTDI values. The contrast and noise were measured from the reconstructed images for each phantom diameter. Linearly related to iodine-concentration, contrast to noise ratio (CNR), was calculated for different iodine-concentration levels. Second, the analysis was extended to a recently developed suit of 58 virtual human models (5D-XCAT) with added contrast dynamics. Emulating a contrast-enhanced abdominal image procedure and targeting a peak-enhancement in aorta, each XCAT phantom was "imaged" using a CT simulation platform. 3D surfaces for each patient/size established the relationship between iodine-concentration, dose, and CNR. The Sensitivity of Ratio (SR), defined as ratio of change in iodine-concentration versus dose to yield a constant change in CNR was calculated and compared at high and low radiation dose for both phantom platforms. The results show that sensitivity of CNR to iodine concentration is larger at high radiation dose (up to 73%). The SR results were highly affected by radiation dose metric; CTDI or organ dose. Furthermore, results showed that the presence of contrast material could have a profound impact on optimization results (up to 45%).

  9. 10 CFR 20.1004 - Units of radiation dose.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Units of radiation dose. 20.1004 Section 20.1004 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION General Provisions § 20.1004 Units of radiation dose. (a) Definitions. As used in this part, the units of radiation dose are:...

  10. 10 CFR 20.1004 - Units of radiation dose.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Units of radiation dose. 20.1004 Section 20.1004 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION General Provisions § 20.1004 Units of radiation dose. (a) Definitions. As used in this part, the units of radiation dose are:...

  11. 10 CFR 20.1004 - Units of radiation dose.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Units of radiation dose. 20.1004 Section 20.1004 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION General Provisions § 20.1004 Units of radiation dose. (a) Definitions. As used in this part, the units of radiation dose are:...

  12. The intrafraction motion induced dosimetric impacts in breast 3D radiation treatment: A 4DCT based study

    SciTech Connect

    Yue, Ning J.; Li Xiang; Beriwal, Sushil; Heron, Dwight E.; Sontag, Marc R.; Huq, M. Saiful

    2007-07-15

    The question remains regarding the dosimetric impact of intrafraction motion in 3D breast treatment. This study was conducted to investigate this issue utilizing the 4DCT scan. The 4D and helical CT scan sets were acquired for 12 breast cancer patients. For each of these patients, based on the helical CT scan, a conventional 3D conformal plan was generated. The breast treatment was then simulated based on the 4DCT scan. In each phase of the 4DCT scan, dose distribution was generated with the same beam parameters as the conventional plan. A software package was developed to compute the cumulative dose distribution from all the phases. Since the intrafraction organ motion is reflected by the 4DCT images, the cumulative dose computed based on the 4DCT images should be closer to what the patient received during treatment. Various dosimetric parameters were obtained from the plan and 4D cumulative dose distribution for the target volume and heart, and were compared to deduce the motion-induced impacts. The studies were performed for both whole breast and partial breast treatment. In the whole breast treatment, the average intrafraction motion induced changes in D{sub 95}, D{sub 90}, V{sub 100}, V{sub 95}, and V{sub 90} of the target volume were -5.4%, -3.1%, -13.4%, -5.1%, and -3.2%, respectively, with the largest values at -26.2%, -14.1%, -91.0%, -15.1%, and -9.0%, respectively. Motion had little impact on the D{sub max} of the target volume, but its impact on the D{sub min} of the target volume was significant. For left breast treatment, the motion-induced D{sub max} change to the heart could be negative or positive, with the largest increase at about 6 Gy. In partial breast treatment, the only non-insignificant impact was in the D{sub min} of the CTV (ranging from -15.2% to 11.7%). The results showed that the intrafraction motion may compromise target dose coverage in breast treatments and the degree of that compromise was correlated with motion magnitude. However

  13. Radiation Dose Optimization For Critical Organs

    NASA Astrophysics Data System (ADS)

    Khodadadegan, Yasaman

    Ionizing radiation used in the patient diagnosis or therapy has negative effects on the patient body in short term and long term depending on the amount of exposure. More than 700,000 examinations are everyday performed on Interventional Radiology modalities, however; there is no patient-centric information available to the patient or the Quality Assurance for the amount of organ dose received. In this study, we are exploring the methodologies to systematically reduce the absorbed radiation dose in the Fluoroscopically Guided Interventional Radiology procedures. In the first part of this study, we developed a mathematical model which determines a set of geometry settings for the equipment and a level for the energy during a patient exam. The goal is to minimize the amount of absorbed dose in the critical organs while maintaining image quality required for the diagnosis. The model is a large-scale mixed integer program. We performed polyhedral analysis and derived several sets of strong inequalities to improve the computational speed and quality of the solution. Results present the amount of absorbed dose in the critical organ can be reduced up to 99% for a specific set of angles. In the second part, we apply an approximate gradient method to simultaneously optimize angle and table location while minimizing dose in the critical organs with respect to the image quality. In each iteration, we solve a sub-problem as a MIP to determine the radiation field size and corresponding X-ray tube energy. In the computational experiments, results show further reduction (up to 80%) of the absorbed dose in compare with previous method. Last, there are uncertainties in the medical procedures resulting imprecision of the absorbed dose. We propose a robust formulation to hedge from the worst case absorbed dose while ensuring feasibility. In this part, we investigate a robust approach for the organ motions within a radiology procedure. We minimize the absorbed dose for the critical

  14. WE-F-16A-06: Using 3D Printers to Create Complex Phantoms for Dose Verification, Quality Assurance, and Treatment Planning System Commissioning in Radiotherapy

    SciTech Connect

    Kassaee, A; Ding, X; McDonough, J; Reiche, M; Witztum, A; Teo, B

    2014-06-15

    Purpose: To use 3D printers to design and construct complex geometrical phantoms for commissioning treatment planning systems, dose calculation algorithms, quality assurance (QA), dose delivery, and patient dose verifications. Methods: In radiotherapy, complex geometrical phantoms are often required for dose verification, dose delivery and calculation algorithm validation. Presently, fabrication of customized phantoms is limited due to time, expense and challenges in machining of complex shapes. In this work, we designed and utilized 3D printers to fabricate two phantoms for QA purposes. One phantom includes hills and valleys (HV) for verification of intensity modulated radiotherapy for photons, and protons (IMRT and IMPT). The other phantom includes cylindrical cavities (CC) of various sizes for dose verification of inhomogeneities. We evaluated the HV phantoms for an IMPT beam, and the CC phantom to study various inhomogeneity configurations using photon, electron, and proton beams. Gafcromic ™ films were used to quantify the dose distributions delivered to the phantoms. Results: The HV phantom has dimensions of 12 cm × 12 cm and consists of one row and one column of five peaks with heights ranging from 2 to 5 cm. The CC phantom has a size 10 cm × 14 cm and includes 6 cylindrical cavities with length of 7.2 cm and diameters ranging from 0.6 to 1.2 cm. The IMPT evaluation using the HV phantom shows good agreement as compared to the dose distribution calculated with treatment planning system. The CC phantom also shows reasonable agreements for using different algorithms for each beam modalities. Conclusion: 3D printers with submillimiter resolutions are capable of printing complex phantoms for dose verification and QA in radiotherapy. As printing costs decrease and the technology becomes widely available, phantom design and construction will be readily available to any clinic for testing geometries that were not previously feasible.

  15. Agriculture-related radiation dose calculations

    SciTech Connect

    Furr, J.M.; Mayberry, J.J.; Waite, D.A.

    1987-10-01

    Estimates of radiation dose to the public must be made at each stage in the identification and qualification process leading to siting a high-level nuclear waste repository. Specifically considering the ingestion pathway, this paper examines questions of reliability and adequacy of dose calculations in relation to five stages of data availability (geologic province, region, area, location, and mass balance) and three methods of calculation (population, population/food production, and food production driven). Calculations were done using the model PABLM with data for the Permian and Palo Duro Basins and the Deaf Smith County area. Extra effort expended in gathering agricultural data at succeeding environmental characterization levels does not appear justified, since dose estimates do not differ greatly; that effort would be better spent determining usage of food types that contribute most to the total dose; and that consumption rate and the air dispersion factor are critical to assessment of radiation dose via the ingestion pathway. 17 refs., 9 figs., 32 tabs.

  16. Viewing MORSE-CG radiation transport with 3-D color graphics

    SciTech Connect

    Namito, Yoshihito; Jenkins, T.M.; Nelson, W.R.

    1990-01-01

    In this paper we present the coupling of MORSE-CG with the SLAC Unified Graphics System (UGS77) through an add-on package called MORSGRAF which allows for real-time display of neutron and photon tracks in the Monte Carlo simulation. In addition to displaying the myriad of complicated geometries that can be created with the MORSE Combinatorial Geometry program, MORSGRAF permits color tagging of neutrons (green) and photons (red) with the variation of track intensity an indicator of the energy of the particle. Particle types can be switched off and on by means of a mouse-icon system, and the perspective can be changed (i.e., rotated, translated, and zoomed). MORSGRAF also allows one to display the propagation of radiation through shields and mazes on an ordinary graphics terminal, as well as in documents printed on a laser printer. Several examples will be given to demonstrate the various capabilities of MORSGRAF coupled to MORSE-CG. 12 refs., 8 figs.

  17. 3D unmanned aerial vehicle radiation mapping for assessing contaminant distribution and mobility

    NASA Astrophysics Data System (ADS)

    Martin, P. G.; Kwong, S.; Smith, N. T.; Yamashiki, Y.; Payton, O. D.; Russell-Pavier, F. S.; Fardoulis, J. S.; Richards, D. A.; Scott, T. B.

    2016-10-01

    Following the events of March 2011 at the Fukushima Daiichi Nuclear Power Plant, significant quantities of radioactive material were released into the local and wider global environment. At five years since the incident, much expense is being currently devoted to the remediation of a large portion of eastern Japan contaminated primarily by radiocesium, yet further significant expenditure will be required over the succeeding decades to complete this clean-up. People displaced from their homes by the incident are now increasingly keen to return, making it more important than ever to provide accurate quantification and representation of any residual radiological contamination. Presented here is the use of an unmanned aerial vehicle equipped with a laser rangefinder unit to generate a three dimensional point-cloud of an area onto which a radiation contamination map, also obtained concurrently via the unmanned aerial platform, can be rendered. An exemplar site of an un-remediated farm consisting of multiple stepped rice paddy fields with a dedicated irrigation system was used for this work. The results obtained show that heightened radiological contamination exists around the site within the drainage network where material is observed to have collected, having been transported by transient water runoff events. These results obtained in May 2014 suggest that a proportion of the fallout material is highly mobile within the natural environment and is likely to be transported further through the system over the succeeding years.

  18. Measurements of the neutron dose equivalent for various radiation qualities, treatment machines and delivery techniques in radiation therapy

    NASA Astrophysics Data System (ADS)

    Hälg, R. A.; Besserer, J.; Boschung, M.; Mayer, S.; Lomax, A. J.; Schneider, U.

    2014-05-01

    In radiation therapy, high energy photon and proton beams cause the production of secondary neutrons. This leads to an unwanted dose contribution, which can be considerable for tissues outside of the target volume regarding the long term health of cancer patients. Due to the high biological effectiveness of neutrons in regards to cancer induction, small neutron doses can be important. This study quantified the neutron doses for different radiation therapy modalities. Most of the reports in the literature used neutron dose measurements free in air or on the surface of phantoms to estimate the amount of neutron dose to the patient. In this study, dose measurements were performed in terms of neutron dose equivalent inside an anthropomorphic phantom. The neutron dose equivalent was determined using track etch detectors as a function of the distance to the isocenter, as well as for radiation sensitive organs. The dose distributions were compared with respect to treatment techniques (3D-conformal, volumetric modulated arc therapy and intensity-modulated radiation therapy for photons; spot scanning and passive scattering for protons), therapy machines (Varian, Elekta and Siemens linear accelerators) and radiation quality (photons and protons). The neutron dose equivalent varied between 0.002 and 3 mSv per treatment gray over all measurements. Only small differences were found when comparing treatment techniques, but substantial differences were observed between the linear accelerator models. The neutron dose equivalent for proton therapy was higher than for photons in general and in particular for double-scattered protons. The overall neutron dose equivalent measured in this study was an order of magnitude lower than the stray dose of a treatment using 6 MV photons, suggesting that the contribution of the secondary neutron dose equivalent to the integral dose of a radiotherapy patient is small.

  19. Measuring the effects of fractionated radiation therapy in a 3D prostate cancer model system using SERS nanosensors.

    PubMed

    Camus, Victoria L; Stewart, Grant; Nailon, William H; McLaren, Duncan B; Campbell, Colin J

    2016-08-15

    Multicellular tumour spheroids (MTS) are three-dimensional cell cultures that possess their own microenvironments and provide a more meaningful model of tumour biology than monolayer cultures. As a result, MTS are becoming increasingly used as tumor models when measuring the efficiency of therapies. Monitoring the viability of live MTS is complicated by their 3D nature and conventional approaches such as fluorescence often require fixation and sectioning. In this paper we detail the use of Surface Enhanced Raman Spectroscopy (SERS) to measure the viability of MTS grown from prostate cancer (PC3) cells. Our results show that we can monitor loss of viability by measuring pH and redox potential in MTS and furthermore we demonstrate that SERS can be used to measure the effects of fractionation of a dose of radiotherapy in a way that has potential to inform treatment planning.

  20. Measuring the effects of fractionated radiation therapy in a 3D prostate cancer model system using SERS nanosensors.

    PubMed

    Camus, Victoria L; Stewart, Grant; Nailon, William H; McLaren, Duncan B; Campbell, Colin J

    2016-08-15

    Multicellular tumour spheroids (MTS) are three-dimensional cell cultures that possess their own microenvironments and provide a more meaningful model of tumour biology than monolayer cultures. As a result, MTS are becoming increasingly used as tumor models when measuring the efficiency of therapies. Monitoring the viability of live MTS is complicated by their 3D nature and conventional approaches such as fluorescence often require fixation and sectioning. In this paper we detail the use of Surface Enhanced Raman Spectroscopy (SERS) to measure the viability of MTS grown from prostate cancer (PC3) cells. Our results show that we can monitor loss of viability by measuring pH and redox potential in MTS and furthermore we demonstrate that SERS can be used to measure the effects of fractionation of a dose of radiotherapy in a way that has potential to inform treatment planning. PMID:27310732

  1. Effect of nonlinear three-dimensional optimized reconstruction algorithm filter on image quality and radiation dose: validation on phantoms.

    PubMed

    Bai, Mei; Chen, Jiuhong; Raupach, Rainer; Suess, Christoph; Tao, Ying; Peng, Mingchen

    2009-01-01

    A new technique called the nonlinear three-dimensional optimized reconstruction algorithm filter (3D ORA filter) is currently used to improve CT image quality and reduce radiation dose. This technical note describes the comparison of image noise, slice sensitivity profile (SSP), contrast-to-noise ratio, and modulation transfer function (MTF) on phantom images processed with and without the 3D ORA filter, and the effect of the 3D ORA filter on CT images at a reduced dose. For CT head scans the noise reduction was up to 54% with typical bone reconstruction algorithms (H70) and a 0.6 mm slice thickness; for liver CT scans the noise reduction was up to 30% with typical high-resolution reconstruction algorithms (B70) and a 0.6 mm slice thickness. MTF and SSP did not change significantly with the application of 3D ORA filtering (P > 0.05), whereas noise was reduced (P < 0.05). The low contrast detectability and MTF of images obtained at a reduced dose and filtered by the 3D ORA were equivalent to those of standard dose CT images; there was no significant difference in image noise of scans taken at a reduced dose, filtered using 3D ORA and standard dose CT (P > 0.05). The 3D ORA filter shows good potential for reducing image noise without affecting image quality attributes such as sharpness. By applying this approach, the same image quality can be achieved whilst gaining a marked dose reduction.

  2. Effect of nonlinear three-dimensional optimized reconstruction algorithm filter on image quality and radiation dose: Validation on phantoms

    SciTech Connect

    Bai Mei; Chen Jiuhong; Raupach, Rainer; Suess, Christoph; Tao Ying; Peng Mingchen

    2009-01-15

    A new technique called the nonlinear three-dimensional optimized reconstruction algorithm filter (3D ORA filter) is currently used to improve CT image quality and reduce radiation dose. This technical note describes the comparison of image noise, slice sensitivity profile (SSP), contrast-to-noise ratio, and modulation transfer function (MTF) on phantom images processed with and without the 3D ORA filter, and the effect of the 3D ORA filter on CT images at a reduced dose. For CT head scans the noise reduction was up to 54% with typical bone reconstruction algorithms (H70) and a 0.6 mm slice thickness; for liver CT scans the noise reduction was up to 30% with typical high-resolution reconstruction algorithms (B70) and a 0.6 mm slice thickness. MTF and SSP did not change significantly with the application of 3D ORA filtering (P>0.05), whereas noise was reduced (P<0.05). The low contrast detectability and MTF of images obtained at a reduced dose and filtered by the 3D ORA were equivalent to those of standard dose CT images; there was no significant difference in image noise of scans taken at a reduced dose, filtered using 3D ORA and standard dose CT (P>0.05). The 3D ORA filter shows good potential for reducing image noise without affecting image quality attributes such as sharpness. By applying this approach, the same image quality can be achieved whilst gaining a marked dose reduction.

  3. Extended range radiation dose-rate monitor

    DOEpatents

    Valentine, Kenneth H.

    1988-01-01

    An extended range dose-rate monitor is provided which utilizes the pulse pileup phenomenon that occurs in conventional counting systems to alter the dynamic response of the system to extend the dose-rate counting range. The current pulses from a solid-state detector generated by radiation events are amplified and shaped prior to applying the pulses to the input of a comparator. The comparator generates one logic pulse for each input pulse which exceeds the comparator reference threshold. These pulses are integrated and applied to a meter calibrated to indicate the measured dose-rate in response to the integrator output. A portion of the output signal from the integrator is fed back to vary the comparator reference threshold in proportion to the output count rate to extend the sensitive dynamic detection range by delaying the asymptotic approach of the integrator output toward full scale as measured by the meter.

  4. Radiation dose descriptors: BERT, COD, DAP, and other strange creatures.

    PubMed

    Nickoloff, Edward L; Lu, Zheng Feng; Dutta, Ajoy K; So, James C

    2008-01-01

    Over the years, a number of terms have been used to describe radiation dose. Eight common radiation dose descriptors include background equivalent radiation time (BERT), critical organ dose (COD), surface absorbed dose (SAD), dose area product (DAP), diagnostic acceptable reference level (DARLing), effective dose (ED), fetal absorbed dose (FAD), and total imparted energy (TIE). BERT is compared to the annual natural background radiation (about 3 mSv per year) and is easily understandable for the general public. COD refers to the radiation dose delivered to an individual critical organ. SAD is the radiation dose delivered at the skin surface. DAP is a product of the irradiated surface area multiplied by the radiation dose at the surface. DARLing is usually the radiation level that encompasses 75% (the third quartile) of the data derived from a nationwide or regional survey. DARLings are meant for voluntary guidance. Consistently higher patient doses should be investigated for possible equipment deficiencies or suboptimal protocols. ED is obtained by multiplying the radiation dose delivered to each organ by its weighting factor and then by adding those values to get the sum. It can be used to assess the risk of radiation-induced cancers and serious hereditary effects to future generations, regardless of the procedure being performed, and is the most useful radiation dose descriptor. FAD is the radiation dose delivered to the fetus, and TIE is the sum of the energy imparted to all irradiated tissue. Each of these descriptors is intended to relate radiation dose ultimately to potential biologic effects. To avoid confusion, the key is to avoid using the terms interchangeably. It is important to understand each of the radiation dose descriptors and their derivation in order to correctly evaluate radiation dose and to consult with patients concerned about the risks of radiation.

  5. Characterization of the first double-sided 3D radiation sensors fabricated at FBK on 6-inch silicon wafers

    NASA Astrophysics Data System (ADS)

    Sultan, D. M. S.; Mendicino, R.; Boscardin, M.; Ronchin, S.; Zorzi, N.; Dalla Betta, G.-F.

    2015-12-01

    Following 3D pixel sensor production for the ATLAS Insertable B-Layer, Fondazione Bruno Kessler (FBK) fabrication facility has recently been upgraded to process 6-inch wafers. In 2014, a test batch was fabricated to check for possible issues relevant to this upgrade. While maintaining a double-sided fabrication technology, some process modifications have been investigated. We report here on the technology and the design of this batch, and present selected results from the electrical characterization of sensors and test structures. Notably, the breakdown voltage is shown to exceed 200 V before irradiation, much higher than in earlier productions, demonstrating robustness in terms of radiation hardness for forthcoming productions aimed at High Luminosity LHC upgrades.

  6. Monte Carlo investigation of the increased radiation deposition due to gold nanoparticles using kilovoltage and megavoltage photons in a 3D randomized cell model

    SciTech Connect

    Douglass, Michael; Bezak, Eva; Penfold, Scott

    2013-07-15

    Purpose: Investigation of increased radiation dose deposition due to gold nanoparticles (GNPs) using a 3D computational cell model during x-ray radiotherapy.Methods: Two GNP simulation scenarios were set up in Geant4; a single 400 nm diameter gold cluster randomly positioned in the cytoplasm and a 300 nm gold layer around the nucleus of the cell. Using an 80 kVp photon beam, the effect of GNP on the dose deposition in five modeled regions of the cell including cytoplasm, membrane, and nucleus was simulated. Two Geant4 physics lists were tested: the default Livermore and custom built Livermore/DNA hybrid physics list. 10{sup 6} particles were simulated at 840 cells in the simulation. Each cell was randomly placed with random orientation and a diameter varying between 9 and 13 {mu}m. A mathematical algorithm was used to ensure that none of the 840 cells overlapped. The energy dependence of the GNP physical dose enhancement effect was calculated by simulating the dose deposition in the cells with two energy spectra of 80 kVp and 6 MV. The contribution from Auger electrons was investigated by comparing the two GNP simulation scenarios while activating and deactivating atomic de-excitation processes in Geant4.Results: The physical dose enhancement ratio (DER) of GNP was calculated using the Monte Carlo model. The model has demonstrated that the DER depends on the amount of gold and the position of the gold cluster within the cell. Individual cell regions experienced statistically significant (p < 0.05) change in absorbed dose (DER between 1 and 10) depending on the type of gold geometry used. The DER resulting from gold clusters attached to the cell nucleus had the more significant effect of the two cases (DER {approx} 55). The DER value calculated at 6 MV was shown to be at least an order of magnitude smaller than the DER values calculated for the 80 kVp spectrum. Based on simulations, when 80 kVp photons are used, Auger electrons have a statistically insignificant (p

  7. Mapping tropical biodiversity using spectroscopic imagery : characterization of structural and chemical diversity with 3-D radiative transfer modeling

    NASA Astrophysics Data System (ADS)

    Feret, J. B.; Gastellu-Etchegorry, J. P.; Lefèvre-Fonollosa, M. J.; Proisy, C.; Asner, G. P.

    2014-12-01

    The accelerating loss of biodiversity is a major environmental trend. Tropical ecosystems are particularly threatened due to climate change, invasive species, farming and natural resources exploitation. Recent advances in remote sensing of biodiversity confirmed the potential of high spatial resolution spectroscopic imagery for species identification and biodiversity mapping. Such information bridges the scale-gap between small-scale, highly detailed field studies and large-scale, low-resolution satellite observations. In order to produce fine-scale resolution maps of canopy alpha-diversity and beta-diversity of the Peruvian Amazonian forest, we designed, applied and validated a method based on spectral variation hypothesis to CAO AToMS (Carnegie Airborne Observatory Airborne Taxonomic Mapping System) images, acquired from 2011 to 2013. There is a need to understand on a quantitative basis the physical processes leading to this spectral variability. This spectral variability mainly depends on canopy chemistry, structure, and sensor's characteristics. 3D radiative transfer modeling provides a powerful framework for the study of the relative influence of each of these factors in dense and complex canopies. We simulated series of spectroscopic images with the 3D radiative model DART, with variability gradients in terms of leaf chemistry, individual tree structure, spatial and spectral resolution, and applied methods for biodiversity mapping. This sensitivity study allowed us to determine the relative influence of these factors on the radiometric signal acquired by different types of sensors. Such study is particularly important to define the domain of validity of our approach, to refine requirements for the instrumental specifications, and to help preparing hyperspectral spatial missions to be launched at the horizon 2015-2025 (EnMAP, PRISMA, HISUI, SHALOM, HYSPIRI, HYPXIM). Simulations in preparation include topographic variations in order to estimate the robustness

  8. Survey of Stereotactic Body Radiation Therapy in Japan by the Japan 3-D Conformal External Beam Radiotherapy Group

    SciTech Connect

    Nagata, Yasushi Hiraoka, Masahiro; Mizowaki, Takashi; Narita, Yuichiro; Matsuo, Yukinori; Norihisa, Yoshiki; Onishi, Hiroshi; Shirato, Hiroki

    2009-10-01

    Purpose: To recognize the current status of stereotactic body radiotherapy (SBRT) in Japan, using a nationwide survey conducted by the Japan 3-D Conformal External Beam Radiotherapy Group. Methods and Materials: The questionnaire was sent by mail to 117 institutions. Ninety-four institutions (80%) responded by the end of November 2005. Fifty-three institutions indicated that they have already started SBRT, and 38 institutions had been reimbursed by insurance. Results: A total of 1111 patients with histologically confirmed lung cancer were treated. Among these patients, 637 had T1N0M0 and 272 had T2N0M0 lung cancer. Metastatic lung cancer was found in 702 and histologically unconfirmed lung tumor in 291 patients. Primary liver cancer was found in 207 and metastatic liver cancer in 76 patients. The most frequent schedule used for primary lung cancer was 48Gy in 4 fractions at 22 institutions (52%), followed by 50Gy in 5 fractions at 11 institutions (26%) and 60Gy in 8 fractions at 4 institutions (10%). The tendency was the same for metastatic lung cancer. The average number of personnel involved in SBRT was 1.8 radiation oncologists, including 1.1 certified radiation oncologists, 2.8 technologists, 0.7 nurses, and 0.6 certified quality assurance personnel and 0.3 physicists. The most frequent amount of time for treatment planning was 61-120min, for quality assurance was 50-60min, and for treatment was 30min. There were 14 (0.6% of all cases) reported Grade 5 complications: 11 cases of radiation pneumonitis, 2 cases of hemoptysis, and 1 case of radiation esophagitis. Conclusion: The current status of SBRT in Japan was surveyed.

  9. Treatment techniques for 3D conformal radiation to breast and chest wall including the internal mammary chain.

    PubMed

    Sonnik, Deborah; Selvaraj, Raj N; Faul, Clare; Gerszten, Kristina; Heron, Dwight E; King, Gwendolyn C

    2007-01-01

    Breast, chest wall, and regional nodal irradiation have been associated with an improved outcome in high-risk breast cancer patients. Complex treatment planning is often utilized to ensure complete coverage of the target volume while minimizing the dose to surrounding normal tissues. The 2 techniques evaluated in this report are the partially wide tangent fields (PWTFs) and the 4-field photon/electron combination (the modified "Kuske Technique"). These 2 techniques were evaluated in 10 consecutive breast cancer patients. All patients had computerized tomographic (CT) scans for 3D planning supine on a breast board. The breast was defined clinically by the physician and confirmed radiographically with radiopaque bebes. The resulting dose-volume histograms (DVHs) of normal and target tissues were then compared. The deep tangent field with blocks resulted in optimal coverage of the target and the upper internal mammary chain (IMC) while sparing of critical and nontarget tissues. The wide tangent technique required less treatment planning and delivery time. We compared the 2 techniques and their resultant DVHs and feasibility in a busy clinic.

  10. Differences in 3D dose distributions due to calculation method of voxel S-values and the influence of image blurring in SPECT

    NASA Astrophysics Data System (ADS)

    Pacilio, Massimiliano; Amato, Ernesto; Lanconelli, Nico; Basile, Chiara; Torres, Leonel Alberto; Botta, Francesca; Ferrari, Mahila; Cornejo Diaz, Nestor; Coca Perez, Marco; Fernández, María; Lassmann, Michael; Vergara Gil, Alex; Cremonesi, Marta

    2015-03-01

    This study compares 3D dose distributions obtained with voxel S values (VSVs) for soft tissue, calculated by several methods at their current state-of-the-art, varying the degree of image blurring. The methods were: 1) convolution of Dose Point Kernel (DPK) for water, using a scaling factor method; 2) an analytical model (AM), fitting the deposited energy as a function of the source-target distance; 3) a rescaling method (RSM) based on a set of high-resolution VSVs for each isotope; 4) local energy deposition (LED). VSVs calculated by direct Monte Carlo simulations were assumed as reference. Dose distributions were calculated considering spheroidal clusters with various sizes (251, 1237 and 4139 voxels of 3 mm size), uniformly filled with 131I, 177Lu, 188Re or 90Y. The activity distributions were blurred with Gaussian filters of various widths (6, 8 and 12 mm). Moreover, 3D-dosimetry was performed for 10 treatments with 90Y derivatives. Cumulative Dose Volume Histograms (cDVHs) were compared, studying the differences in D95%, D50% or Dmax (ΔD95%, ΔD50% and ΔDmax) and dose profiles. For unblurred spheroidal clusters, ΔD95%, ΔD50% and ΔDmax were mostly within some percents, slightly higher for 177Lu with DPK (8%) and RSM (12%) and considerably higher for LED (ΔD95% up to 59%). Increasing the blurring, differences decreased and also LED yielded very similar results, but D95% and D50% underestimations between 30-60% and 15-50%, respectively (with respect to 3D-dosimetry with unblurred distributions), were evidenced. Also for clinical images (affected by blurring as well), cDVHs differences for most methods were within few percents, except for slightly higher differences with LED, and almost systematic for dose profiles with DPK (-1.2%), AM (-3.0%) and RSM (4.5%), whereas showed an oscillating trend with LED. The major concern for 3D-dosimetry on clinical SPECT images is more strongly represented by image blurring than by differences among the VSVs

  11. SU-D-201-07: Exploring the Utility of 4D FDG-PET/CT Scans in Design of Radiation Therapy Planning Compared with 3D PET/CT: A Prospective Study

    SciTech Connect

    Ma, C; Yin, Y

    2015-06-15

    Purpose: A method using four-dimensional(4D) PET/CT in design of radiation treatment planning was proposed and the target volume and radiation dose distribution changes relative to standard three-dimensional (3D) PET/CT were examined. Methods: A target deformable registration method was used by which the whole patient’s respiration process was considered and the effect of respiration motion was minimized when designing radiotherapy planning. The gross tumor volume of a non-small-cell lung cancer was contoured on the 4D FDG-PET/CT and 3D PET/CT scans by use of two different techniques: manual contouring by an experienced radiation oncologist using a predetermined protocol; another technique using a constant threshold of standardized uptake value (SUV) greater than 2.5. The target volume and radiotherapy dose distribution between VOL3D and VOL4D were analyzed. Results: For all phases, the average automatic and manually GTV volume was 18.61 cm3 (range, 16.39–22.03 cm3) and 31.29 cm3 (range, 30.11–35.55 cm3), respectively. The automatic and manually volume of merged IGTV were 27.82 cm3 and 49.37 cm3, respectively. For the manual contour, compared to 3D plan the mean dose for the left, right, and total lung of 4D plan have an average decrease 21.55%, 15.17% and 15.86%, respectively. The maximum dose of spinal cord has an average decrease 2.35%. For the automatic contour, the mean dose for the left, right, and total lung have an average decrease 23.48%, 16.84% and 17.44%, respectively. The maximum dose of spinal cord has an average decrease 1.68%. Conclusion: In comparison to 3D PET/CT, 4D PET/CT may better define the extent of moving tumors and reduce the contouring tumor volume thereby optimize radiation treatment planning for lung tumors.

  12. I-125 ROPES eye plaque dosimetry: Validation of a commercial 3D ophthalmic brachytherapy treatment planning system and independent dose calculation software with GafChromic{sup ®} EBT3 films

    SciTech Connect

    Poder, Joel; Corde, Stéphanie

    2013-12-15

    Purpose: The purpose of this study was to measure the dose distributions for different Radiation Oncology Physics and Engineering Services, Australia (ROPES) type eye plaques loaded with I-125 (model 6711) seeds using GafChromic{sup ®} EBT3 films, in order to verify the dose distributions in the Plaque Simulator™ (PS) ophthalmic 3D treatment planning system. The brachytherapy module of RADCALC{sup ®} was used to independently check the dose distributions calculated by PS. Correction factors were derived from the measured data to be used in PS to account for the effect of the stainless steel ROPES plaque backing on the 3D dose distribution.Methods: Using GafChromic{sup ®} EBT3 films inserted in a specially designed Solid Water™ eye ball phantom, dose distributions were measured three-dimensionally both along and perpendicular to I-125 (model 6711) loaded ROPES eye plaque's central axis (CAX) with 2 mm depth increments. Each measurement was performed in full scatter conditions both with and without the stainless steel plaque backing attached to the eye plaque, to assess its effect on the dose distributions. Results were compared to the dose distributions calculated by Plaque Simulator™ and checked independently with RADCALC{sup ®}.Results: The EBT3 film measurements without the stainless steel backing were found to agree with PS and RADCALC{sup ®} to within 2% and 4%, respectively, on the plaque CAX. Also, RADCALC{sup ®} was found to agree with PS to within 2%. The CAX depth doses measured using EBT3 film with the stainless steel backing were observed to result in a 4% decrease relative to when the backing was not present. Within experimental uncertainty, the 4% decrease was found to be constant with depth and independent of plaque size. Using a constant dose correction factor of T= 0.96 in PS, where the calculated dose for the full water scattering medium is reduced by 4% in every voxel in the dose grid, the effect of the plaque backing was accurately

  13. Ultraviolet radiation therapy and UVR dose models

    SciTech Connect

    Grimes, David Robert

    2015-01-15

    Ultraviolet radiation (UVR) has been an effective treatment for a number of chronic skin disorders, and its ability to alleviate these conditions has been well documented. Although nonionizing, exposure to ultraviolet (UV) radiation is still damaging to deoxyribonucleic acid integrity, and has a number of unpleasant side effects ranging from erythema (sunburn) to carcinogenesis. As the conditions treated with this therapy tend to be chronic, exposures are repeated and can be high, increasing the lifetime probability of an adverse event or mutagenic effect. Despite the potential detrimental effects, quantitative ultraviolet dosimetry for phototherapy is an underdeveloped area and better dosimetry would allow clinicians to maximize biological effect whilst minimizing the repercussions of overexposure. This review gives a history and insight into the current state of UVR phototherapy, including an overview of biological effects of UVR, a discussion of UVR production, illness treated by this modality, cabin design and the clinical implementation of phototherapy, as well as clinical dose estimation techniques. Several dose models for ultraviolet phototherapy are also examined, and the need for an accurate computational dose estimation method in ultraviolet phototherapy is discussed.

  14. Internal structures of scaffold-free 3D cell cultures visualized by synchrotron radiation-based micro-computed tomography

    NASA Astrophysics Data System (ADS)

    Saldamli, Belma; Herzen, Julia; Beckmann, Felix; Tübel, Jutta; Schauwecker, Johannes; Burgkart, Rainer; Jürgens, Philipp; Zeilhofer, Hans-Florian; Sader, Robert; Müller, Bert

    2008-08-01

    Recently the importance of the third dimension in cell biology has been better understood, resulting in a re-orientation towards three-dimensional (3D) cultivation. Yet adequate tools for their morphological characterization have to be established. Synchrotron radiation-based micro computed tomography (SRμCT) allows visualizing such biological systems with almost isotropic micrometer resolution, non-destructively. We have applied SRμCT for studying the internal morphology of human osteoblast-derived, scaffold-free 3D cultures, termed histoids. Primary human osteoblasts, isolated from femoral neck spongy bone, were grown as 2D culture in non-mineralizing osteogenic medium until a rather thick, multi-cellular membrane was formed. This delicate system was intentionally released to randomly fold itself. The folded cell cultures were grown to histoids of cubic milli- or centimeter size in various combinations of mineralizing and non-mineralizing osteogenic medium for a total period of minimum 56 weeks. The SRμCT-measurements were performed in the absorption contrast mode at the beamlines BW 2 and W 2 (HASYLAB at DESY, Hamburg, Germany), operated by the GKSS-Research Center. To investigate the entire volume of interest several scans were performed under identical conditions and registered to obtain one single dataset of each sample. The histoids grown under different conditions exhibit similar external morphology of globular or ovoid shape. The SRμCT-examination revealed the distinctly different morphological structures inside the histoids. One obtains details of the histoids that permit to identify and select the most promising slices for subsequent histological characterization.

  15. Commissioning and Implementation of an EPID Based IMRT QA System "Dosimetry Check" for 3D Absolute Dose Measurements and Quantitative Comparisons to MapCheck

    NASA Astrophysics Data System (ADS)

    Patel, Jalpa A.

    The software package "Dosimetry Check" by MathResolutions, LLC, provides an absolute 3D volumetric dose measurement for IMRT QA using the existing Electronic Portal Imaging Device (EPID) mounted on most linear accelerators. This package provides a feedback loop using the patient's treatment planning CT data as the phantom for dose reconstruction. The aim of this work is to study the difference between point, planar and volumetric doses with MapCheck and Dosimetry Check via the use of the EPID and the diode array respectively. Evaluating tools such as point doses at isocenter, 1-D profiles, gamma volume histograms, and dose volume histograms are used for IMRT dose comparison in three types of cases: head and neck, prostate, and lung. Dosimetry Check can be a valuable tool for IMRT QA as it uses patient specific attenuation corrections and the superiority of the EPID as compared to the MapCheck diode array. This helps reduce the uncertainty in dose for less variability in delivery and a more realistic measured vs computed dose verification system as compared to MapCheck.

  16. SU-C-213-01: 3D Printed Patient Specific Phantom Composed of Bone and Soft Tissue Substitute Plastics for Radiation Therapy

    SciTech Connect

    Ehler, E; Sterling, D; Higgins, P

    2015-06-15

    Purpose: 3D printed phantoms constructed of multiple tissue approximating materials could be useful in both clinical and research aspects of radiotherapy. This work describes a 3D printed phantom constructed with tissue substitute plastics for both bone and soft tissue; air cavities were included as well. Methods: 3D models of an anonymized nasopharynx patient were generated for air cavities, soft tissues, and bone, which were segmented by Hounsfield Unit (HU) thresholds. HU thresholds were chosen to define air-to-soft tissue boundaries of 0.65 g/cc and soft tissue-to-bone boundaries of 1.18 g/cc based on clinical HU to density tables. After evaluation of several composite plastics, a bone tissue substitute was identified as an acceptable material for typical radiotherapy x-ray energies, composed of iron and PLA plastic. PET plastic was determined to be an acceptable soft tissue substitute. 3D printing was performed on a consumer grade dual extrusion fused deposition model 3D printer. Results: MVCT scans of the 3D printed heterogeneous phantom were acquired. Rigid image registration of the patient and the 3D printed phantom scans was performed. The average physical density of the soft tissue and bone regions was 1.02 ± 0.08 g/cc and 1.39 ± 0.14 g/cc, respectively, for the patient kVCT scan. In the 3D printed phantom MVCT scan, the average density of the soft tissue and bone was 1.01 ± 0.09 g/cc and 1.44 ± 0.12 g/cc, respectively. Conclusion: A patient specific phantom, constructed of heterogeneous tissue substitute materials was constructed by 3D printing. MVCT of the 3D printed phantom showed realistic tissue densities were recreated by the 3D printing materials. Funding provided by intra-department grant by University of Minnesota Department of Radiation Oncology.

  17. Dose verification in carcinoma of uterine cervix patients undergoing 3D conformal radiotherapy with Farmer type ion chamber

    PubMed Central

    Srinivas, Challapalli; Kumar, P Suman; Ravichandran, Ramamoorthy; Banerjee, S; Saxena, P.U; Kumar, E.S Arun; Pai, Dinesh K.

    2014-01-01

    External beam radiotherapy (EBRT) for carcinoma of uterine cervix is a basic line of treatment with three dimensional conformal radiotherapy (3DCRT) in large number of patients. There is need for an established method for verification dosimetry. We tried to document absorbed doses in a group of carcinoma cervix patients by inserting a 0.6 cc Farmer type ion chamber in the vaginal cavity. A special long perspex sleeve cap is designed to cover the chamber for using in the patient's body. Response of ionization chamber is checked earlier in water phantom with and without cap. Treatment planning was carried out with X-ray computed tomography (CT) scan and with the chamber along with cap in inserted position, and with the images Xio treatment planning system. Three measurements on 3 days at 5-6 fraction intervals were recorded in 12 patients. Electrometer measured charges are converted to absorbed dose at the chamber center, in vivo. Our results show good agreement with planned dose within 3% against prescribed dose. This study, is a refinement over our previous studies with transmission dosimetry and chemicals in ampules. This preliminary work shows promise that this can be followed as a routine dose check with special relevance to new protocols in the treatment of carcinoma cervix with EBRT. PMID:25525313

  18. Comparative study of four advanced 3d-conformal radiation therapy treatment planning techniques for head and neck cancer.

    PubMed

    Herrassi, Mohamed Yassine; Bentayeb, Farida; Malisan, Maria Rosa

    2013-04-01

    For the head-and-neck cancer bilateral irradiation, intensity-modulated radiation therapy (IMRT) is the most reported technique as it enables both target dose coverage and organ-at-risk (OAR) sparing. However, during the last 20 years, three-dimensional conformal radiotherapy (3DCRT) techniques have been introduced, which are tailored to improve the classic shrinking field technique, as regards both planning target volume (PTV) dose conformality and sparing of OAR's, such as parotid glands and spinal cord. In this study, we tested experimentally in a sample of 13 patients, four of these advanced 3DCRT techniques, all using photon beams only and a unique isocentre, namely Bellinzona, Forward-Planned Multisegments (FPMS), ConPas, and field-in-field (FIF) techniques. Statistical analysis of the main dosimetric parameters of PTV and OAR's DVH's as well as of homogeneity and conformity indexes was carried out in order to compare the performance of each technique. The results show that the PTV dose coverage is adequate for all the techniques, with the FPMS techniques providing the highest value for D95%; on the other hand, the best sparing of parotid glands is achieved using the FIF and ConPas techniques, with a mean dose of 26 Gy to parotid glands for a PTV prescription dose of 54 Gy. After taking into account both PTV coverage and parotid sparing, the best global performance was achieved by the FIF technique with results comparable to that of IMRT plans. This technique can be proposed as a valid alternative when IMRT equipment is not available or patient is not suitable for IMRT treatment.

  19. Comparative study of four advanced 3d-conformal radiation therapy treatment planning techniques for head and neck cancer

    PubMed Central

    Herrassi, Mohamed Yassine; Bentayeb, Farida; Malisan, Maria Rosa

    2013-01-01

    For the head-and-neck cancer bilateral irradiation, intensity-modulated radiation therapy (IMRT) is the most reported technique as it enables both target dose coverage and organ-at-risk (OAR) sparing. However, during the last 20 years, three-dimensional conformal radiotherapy (3DCRT) techniques have been introduced, which are tailored to improve the classic shrinking field technique, as regards both planning target volume (PTV) dose conformality and sparing of OAR’s, such as parotid glands and spinal cord. In this study, we tested experimentally in a sample of 13 patients, four of these advanced 3DCRT techniques, all using photon beams only and a unique isocentre, namely Bellinzona, Forward-Planned Multisegments (FPMS), ConPas, and field-in-field (FIF) techniques. Statistical analysis of the main dosimetric parameters of PTV and OAR’s DVH’s as well as of homogeneity and conformity indexes was carried out in order to compare the performance of each technique. The results show that the PTV dose coverage is adequate for all the techniques, with the FPMS techniques providing the highest value for D95%; on the other hand, the best sparing of parotid glands is achieved using the FIF and ConPas techniques, with a mean dose of 26 Gy to parotid glands for a PTV prescription dose of 54 Gy. After taking into account both PTV coverage and parotid sparing, the best global performance was achieved by the FIF technique with results comparable to that of IMRT plans. This technique can be proposed as a valid alternative when IMRT equipment is not available or patient is not suitable for IMRT treatment. PMID:23776314

  20. Neutron detection and characterization for non-proliferation applications using 3D computer optical memories [Use of 3D optical computer memory for radiation detectors/dosimeters. Final progress report

    SciTech Connect

    Gary W. Phillips

    2000-12-20

    We have investigated 3-dimensional optical random access memory (3D-ORAM) materials for detection and characterization of charged particles of neutrons by detecting tracks left by the recoil charged particles produced by the neutrons. We have characterized the response of these materials to protons, alpha particles and carbon-12 nuclei as a functions of dose and energy. We have observed individual tracks using scanning electron microscopy and atomic force microscopy. We are investigating the use of neural net analysis to characterize energetic neutron fields from their track structure in these materials.

  1. Radiation Dose-Volume Effects of Optic Nerves and Chiasm

    SciTech Connect

    Mayo, Charles; Martel, Mary K.; Marks, Lawrence B.; Flickinger, John; Nam, Jiho; Kirkpatrick, John

    2010-03-01

    Publications relating radiation toxicity of the optic nerves and chiasm to quantitative dose and dose-volume measures were reviewed. Few studies have adequate data for dose-volume outcome modeling. The risk of toxicity increased markedly at doses >60 Gy at {approx}1.8 Gy/fraction and at >12 Gy for single-fraction radiosurgery. The evidence is strong that radiation tolerance is increased with a reduction in the dose per fraction. Models of threshold tolerance were examined.

  2. Development of phantom and methodology for 3D and 4D dose intercomparisons for advanced lung radiotherapy

    NASA Astrophysics Data System (ADS)

    Caloz, Misael; Kafrouni, Marilyne; Leturgie, Quentin; Corde, Stéphanie; Downes, Simon; Lehmann, Joerg; Thwaites, David

    2015-01-01

    There are few reported intercomparisons or audits of combinations of advanced radiotherapy methods, particularly for 4D treatments. As part of an evaluation of the implementation of advanced radiotherapy technology, a phantom and associated methods, initially developed for in-house commissioning and QA of 4D lung treatments, has been developed further with the aim of using it for end-to-end dose intercomparison of 4D treatment planning and delivery. The respiratory thorax phantom can house moving inserts with variable speed (breathing rate) and motion amplitude. In one set-up mode it contains a small ion chamber for point dose measurements, or alternatively it can hold strips of radiochromic film to measure dose distributions. Initial pilot and feasibility measurements have been carried out in one hospital to thoroughly test the methods and procedures before using it more widely across a range of hospitals and treatment systems. Overall, the results show good agreement between measured and calculated doses and distributions, supporting the use of the phantom and methodology for multi-centre intercomparisons. However, before wider use, refinements of the method and analysis are currently underway particularly for the film measurements.

  3. SU-E-J-141: Activity-Equivalent Path Length Approach for the 3D PET-Based Dose Reconstruction in Proton Therapy

    SciTech Connect

    Attili, A; Vignati, A; Giordanengo, S; Kraan, A; Dalmasso, F; Battistoni, G

    2015-06-15

    Purpose: Ion beam therapy is sensitive to uncertainties from treatment planning and dose delivery. PET imaging of induced positron emitter distributions is a practical approach for in vivo, in situ verification of ion beam treatments. Treatment verification is usually done by comparing measured activity distributions with reference distributions, evaluated in nominal conditions. Although such comparisons give valuable information on treatment quality, a proper clinical evaluation of the treatment ultimately relies on the knowledge of the actual delivered dose. Analytical deconvolution methods relating activity and dose have been studied in this context, but were not clinically applied. In this work we present a feasibility study of an alternative approach for dose reconstruction from activity data, which is based on relating variations in accumulated activity to tissue density variations. Methods: First, reference distributions of dose and activity were calculated from the treatment plan and CT data. Then, the actual measured activity data were cumulatively matched with the reference activity distributions to obtain a set of activity-equivalent path lengths (AEPLs) along the rays of the pencil beams. Finally, these AEPLs were used to deform the original dose distribution, yielding the actual delivered dose. The method was tested by simulating a proton therapy treatment plan delivering 2 Gy on a homogeneous water phantom (the reference), which was compared with the same plan delivered on a phantom containing inhomogeneities. Activity and dose distributions were were calculated by means of the FLUKA Monte Carlo toolkit. Results: The main features of the observed dose distribution in the inhomogeneous situation were reproduced using the AEPL approach. Variations in particle range were reproduced and the positions, where these deviations originated, were properly identified. Conclusions: For a simple inhomogeneous phantom the 3D dose reconstruction from PET

  4. The effect of concurrent androgen deprivation and 3D conformal radiotherapy on prostate volume and clinical organ doses during treatment for prostate cancer

    PubMed Central

    Onal, C; Topkan, E; Efe, E; Yavuz, M; Arslan, G; Yavuz, A

    2009-01-01

    In this study, we investigated the shrinking effect of concurrent three-dimensional conformal radiotherapy (3D-CRT) and androgen deprivation (AD) on prostate volume, and its possible impact on the dose received by the rectum and bladder during the course of 3D-CRT. The difference between the prostatic volumes determined on pre-treatment planning CT (PL-CT) and post-treatment CT (PT-CT) following a 3D-CRT course was assessed in 52 patients with localised prostate carcinoma. The changes in mean prostate volume when compared with PL-CT and PT-CT-based measurements were assessed. The pre- and post-treatment mean prostate volumes for the whole study population were 49.7 cm3 and 41.0 cm3 (p _ 0.02), respectively. The study cohort was divided into two groups depending on the duration of neoadjuvant androgen deprivation (NAD): 23 patients (44.7%) were designated as “short NAD” (≤3 months; SNAD) and the remaining 29 (55.3%) as “long NAD” (>3 months; LNAD). Patients on SNAD experienced a significantly greater reduction in prostate volume compared with those on LNAD (14.1% vs 5.1%; p _ 0.03). A significant increase in rectum V40–60 values in PT-CT compared with PL-CT was demonstrated. LNAD patients had significantly higher rectal V50–70 values at PT-CT compared with the SNAD group. There was a significant decline in V30–V75 bladder values in PT-CT compared with PL-CT in the SNAD group. In conclusion, a higher prostate volume reduction during 3D-CRT was demonstrated when RT planning was performed within 3 months of NAD. However, this reduction and daily organ motion may lead to an unpredictable increase in rectal doses. PMID:19581310

  5. A comparison of needle tip localization accuracy using 2D and 3D trans-rectal ultrasound for high-dose-rate prostate cancer brachytherapy treatment planning

    NASA Astrophysics Data System (ADS)

    Hrinivich, W. Thomas; Hoover, Douglas A.; Surry, Kathleen; Edirisinghe, Chandima; Montreuil, Jacques; D'Souza, David; Fenster, Aaron; Wong, Eugene

    2016-03-01

    Background: High-dose-rate brachytherapy (HDR-BT) is a prostate cancer treatment option involving the insertion of hollow needles into the gland through the perineum to deliver a radioactive source. Conventional needle imaging involves indexing a trans-rectal ultrasound (TRUS) probe in the superior/inferior (S/I) direction, using the axial transducer to produce an image set for organ segmentation. These images have limited resolution in the needle insertion direction (S/I), so the sagittal transducer is used to identify needle tips, requiring a manual registration with the axial view. This registration introduces a source of uncertainty in the final segmentations and subsequent treatment plan. Our lab has developed a device enabling 3D-TRUS guided insertions with high S/I spatial resolution, eliminating the need to align axial and sagittal views. Purpose: To compare HDR-BT needle tip localization accuracy between 2D and 3D-TRUS. Methods: 5 prostate cancer patients underwent conventional 2D TRUS guided HDR-BT, during which 3D images were also acquired for post-operative registration and segmentation. Needle end-length measurements were taken, providing a gold standard for insertion depths. Results: 73 needles were analyzed from all 5 patients. Needle tip position differences between imaging techniques was found to be largest in the S/I direction with mean+/-SD of -2.5+/-4.0 mm. End-length measurements indicated that 3D TRUS provided statistically significantly lower mean+/-SD insertion depth error of -0.2+/-3.4 mm versus 2.3+/-3.7 mm with 2D guidance (p < .001). Conclusions: 3D TRUS may provide more accurate HDR-BT needle localization than conventional 2D TRUS guidance for the majority of HDR-BT needles.

  6. The 3D plant canopy radiative transfer analysis in an Alaskan black spruce forest: the characteristics of fraction of absorbed photosynthetically active radiation in the heterogeneous landscape

    NASA Astrophysics Data System (ADS)

    Kobayashi, H.; Suzuki, R.; Nagai, S.; Nakai, T.; Kim, Y.

    2012-12-01

    Over the last couple of decades, the three dimensional plant canopy radiative transfer models have been developed, improved and used for the retrievals of biophysical variables of vegetative surface. Fraction of absorbed photosynthetically active radiation (FAPAR) by plant canopy, a similar variable to heating rate in the atmosphere, is one of the important biophysical variables to infer the terrestrial plant canopy photosynthesis. FAPAR can be estimated by the radiative transfer model inversion or the empirical relationships between FAPAR and vegetation indices such as normalized difference vegetation index (NDVI). To date, some global FAPAR products are publicly available. These products are estimated from the moderate resolution satellites such as MODIS and SPOT-VEGETATION. One may apply the similar FAPAR algorithms to higher spatial resolution satellites if the ecosystem structures are horizontally homogeneous, which means that the adjacent satellite pixels have a similar spectral properties. If the vegetation surface is highly heterogeneous, "domain average FAPAR", which assumes no net horizontal radiation fluxes, can be unrealistically high (more than 1). In this presentation, we analyzed the characteristics of FAPAR in a heterogeneous landscape. As a case study, we selected our study site in a sparse black spruce forest in Alaska. We conducted the field campaigns to measure forest structural and optical properties that are used in the radiative transfer simulation. We used a 3D radiative transfer, FLiES (Kobayashi, H. and H. Iwabuchi (2008), A coupled 1-D atmosphere and 3-D canopy radiative transfer model for canopy reflectance, light environment, and photosynthesis simulation in a heterogeneous landscape, Remote Sensing of Environment, 112, 173-185) to create a high resolution simulated spectral reflectance and FAPAR images over the course of the growing season. From the analysis, we show (1) FAPAR with no net horizontal fluxes assumption can be higher than

  7. 3D printing of five-in-one dose combination polypill with defined immediate and sustained release profiles.

    PubMed

    Khaled, Shaban A; Burley, Jonathan C; Alexander, Morgan R; Yang, Jing; Roberts, Clive J

    2015-11-10

    We have used three dimensional (3D) extrusion printing to manufacture a multi-active solid dosage form or so called polypill. This contains five compartmentalised drugs with two independently controlled and well-defined release profiles. This polypill demonstrates that complex medication regimes can be combined in a single personalised tablet. This could potentially improve adherence for those patients currently taking many separate tablets and also allow ready tailoring of a particular drug combination/drug release for the needs of an individual. The polypill here represents a cardiovascular treatment regime with the incorporation of an immediate release compartment with aspirin and hydrochlorothiazide and three sustained release compartments containing pravastatin, atenolol, and ramipril. X-ray powder diffraction (XRPD) and Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR) were used to assess drug-excipient interaction. The printed polypills were evaluated for drug release using USP dissolution testing. We found that the polypill showed the intended immediate and sustained release profiles based upon the active/excipient ratio used. PMID:26390808

  8. Monte-Carlo Simulation of Radiation Track Structure and Calculation of Dose Deposition in Nanovolumes

    NASA Technical Reports Server (NTRS)

    Plante, I.; Cucinotta, F. A.

    2010-01-01

    INTRODUCTION: The radiation track structure is of crucial importance to understand radiation damage to molecules and subsequent biological effects. Of a particular importance in radiobiology is the induction of double-strand breaks (DSBs) by ionizing radiation, which are caused by clusters of lesions in DNA, and oxidative damage to cellular constituents leading to aberrant signaling cascades. DSB can be visualized within cell nuclei with gamma-H2AX experiments. MATERIAL AND METHODS: In DSB induction models, the DSB probability is usually calculated by the local dose obtained from a radial dose profile of HZE tracks. In this work, the local dose imparted by HZE ions is calculated directly from the 3D Monte-Carlo simulation code RITRACKS. A cubic volume of 5 micron edge (Figure 1) is irradiated by a (Fe26+)-56 ion of 1 GeV/amu (LET approx.150 keV/micron) and by a fluence of 450 H+ ions, 300 MeV/amu (LET approx. 0.3 keV/micron). In both cases, the dose deposited in the volume is approx.1 Gy. The dose is then calculated into each 3D pixels (voxels) of 20 nm edge and visualized in 3D. RESULTS AND DISCUSSION: The dose is deposited uniformly in the volume by the H+ ions. The voxels which receive a high dose (orange) corresponds to electron track ends. The dose is deposited differently by the 56Fe26+ ion. Very high dose (red) is deposited in voxels with direct ion traversal. Voxels with electron track ends (orange) are also found distributed around the path of the track. In both cases, the appearance of the dose distribution looks very similar to DSBs seen in gammaH2AX experiments, particularly when the visualization threshold is applied. CONCLUSION: The refinement of the dose calculation to the nanometer scale has revealed important differences in the energy deposition between high- and low-LET ions. Voxels of very high dose are only found in the path of high-LET ions. Interestingly, experiments have shown that DSB induced by high-LET radiation are more difficult to

  9. SU-E-T-105: Development of 3D Dose Verification System for Volumetric Modulated Arc Therapy Using Improved Polyacrylamide-Based Gel Dosimeter

    SciTech Connect

    Ono, K; Fujimoto, S; Akagi, Y; Hirokawa, Y; Hayashi, S; Miyazawa, M

    2014-06-01

    Purpose: The aim of this dosimetric study was to develop 3D dose verification system for volumetric modulated arc therapy (VMAT) using polyacrylamide-based gel (PAGAT) dosimeter improved the sensitivity by magnesium chloride (MgCl{sub 2}). Methods: PAGAT gel containing MgCl{sub 2} as a sensitizer was prepared in this study. Methacrylic-acid-based gel (MAGAT) was also prepared to compare the dosimetric characteristics with PAGAT gel. The cylindrical glass vials (4 cm diameter, 12 cm length) filled with each polymer gel were irradiated with 6 MV photon beam using Novalis Tx linear accelerator (Varian/BrainLAB). The irradiated polymer gel dosimeters were scanned with Signa 1.5 T MRI system (GE), and dose calibration curves were obtained using T{sub 2} relaxation rate (R{sub 2} = 1/T{sub 2}). Dose rate (100-600 MU min{sup −1}) and fractionation (1-8 fractions) were varied. In addition, a cubic acrylic phantom (10 × 10 × 10 cm{sup 3}) filled with improved PAGAT gel inserted into the IMRT phantom (IBA) was irradiated with VMAT (RapidArc). C-shape structure was used for the VMAT planning by the Varian Eclipse treatment planning system (TPS). The dose comparison of TPS and measurements with the polymer gel dosimeter was accomplished by the gamma index analysis, overlaying the dose profiles for a set of data on selected planes using in-house developed software. Results: Dose rate and fractionation dependence of improved PAGAT gel were smaller than MAGAT gel. A high similarity was found by overlaying the dose profiles measured with improved PAGAT gel dosimeter and the TPS dose, and the mean pass rate of the gamma index analysis using 3%/3 mm criteria was achieved 90% on orthogonal planes for VMAT using improved PAGAT gel dosimeter. Conclusion: In-house developed 3D dose verification system using improved polyacrylamide-based gel dosimeter had a potential as an effective tool for VMAT QA.

  10. A WRF simulation of the impact of 3-D radiative transfer on surface hydrology over the Rocky Mountains and Sierra Nevada

    NASA Astrophysics Data System (ADS)

    Liou, K. N.; Gu, Y.; Leung, L. R.; Lee, W. L.; Fovell, R. G.

    2013-12-01

    We investigate 3-D mountains/snow effects on solar flux distributions and their impact on surface hydrology over the western United States, specifically the Rocky Mountains and Sierra Nevada. The Weather Research and Forecasting (WRF) model, applied at a 30 km grid resolution, is used in conjunction with a 3-D radiative transfer parameterization covering a time period from 1 November 2007 to 31 May 2008, during which abundant snowfall occurred. A comparison of the 3-D WRF simulation with the observed snow water equivalent (SWE) and precipitation from Snowpack Telemetry (SNOTEL) sites shows reasonable agreement in terms of spatial patterns and daily and seasonal variability, although the simulation generally has a positive precipitation bias. We show that 3-D mountain features have a profound impact on the diurnal and monthly variation of surface radiative and heat fluxes, and on the consequent elevation-dependence of snowmelt and precipitation distributions. In particular, during the winter months, large deviations (3-D-PP, in which PP denotes the plane-parallel approach) of the monthly mean surface solar flux are found in the morning and afternoon hours due to shading effects for elevations below 2.5 km. During spring, positive deviations shift to the earlier morning. Over mountaintops higher than 3 km, positive deviations are found throughout the day, with the largest values of 40-60 W m-2 occurring at noon during the snowmelt season of April to May. The monthly SWE deviations averaged over the entire domain show an increase in lower elevations due to reduced snowmelt, which leads to a reduction in cumulative runoff. Over higher elevation areas, positive SWE deviations are found because of increased solar radiation available at the surface. Overall, this study shows that deviations of SWE due to 3-D radiation effects range from an increase of 18% at the lowest elevation range (1.5-2 km) to a decrease of 8% at the highest elevation range (above 3 km). Since lower

  11. A WRF simulation of the impact of 3-D radiative transfer on surface hydrology over the Rocky Mountains and Sierra Nevada

    SciTech Connect

    Liou, K. N.; Gu, Y.; Leung, L. R.; Lee, W. L.; Fovell, R. G.

    2013-01-01

    We investigate 3-D mountains/snow effects on solar flux distributions and their impact on surface hydrology over the western United States, specifically the Rocky Mountains and Sierra Nevada. The Weather Research and Forecasting (WRF) model, applied at a 30 km grid resolution, is used in conjunction with a 3-D radiative transfer parameterization covering a time period from 1 November 2007 to 31 May 2008, during which abundant snowfall occurred. A comparison of the 3-D WRF simulation with the observed snow water equivalent (SWE) and precipitation from Snowpack Telemetry (SNOTEL) sites shows reasonable agreement in terms of spatial patterns and daily and seasonal variability, although the simulation generally has a positive precipitation bias. We show that 3-D mountain features have a profound impact on the diurnal and monthly variation of surface radiative and heat fluxes, and on the consequent elevation-dependence of snowmelt and precipitation distributions. In particular, during the winter months, large deviations (3-D-PP, in which PP denotes the plane-parallel approach) of the monthly mean surface solar flux are found in the morning and afternoon hours due to shading effects for elevations below 2.5 km. During spring, positive deviations shift to the earlier morning. Over mountaintops higher than 3 km, positive deviations are found throughout the day, with the largest values of 40–60 W m-2 occurring at noon during the snowmelt season of April to May. The monthly SWE deviations averaged over the entire domain show an increase in lower elevations due to reduced snowmelt, which leads to a reduction in cumulative runoff. Over higher elevation areas, positive SWE deviations are found because of increased solar radiation available at the surface. Overall, this study shows that deviations of SWE due to 3-D radiation effects range from an increase of 18% at the lowest elevation range (1.5–2 km) to a decrease of 8% at the highest elevation range (above 3 km

  12. Risk of cancer subsequent to low-dose radiation

    SciTech Connect

    Warren, S.

    1980-01-01

    The author puts low dose irradiation risks in perspective using average background radiation doses for standards. He assailed irresponsible media coverage during the height of public interest in the Three-Mile Island Reactor incident. (PCS)

  13. Variations of the radiation dose onboard Mir station.

    PubMed

    Panasyuk, M I; Teltsov, M V; Shumshurov, V I; Tsetlin, V V

    1998-01-01

    Dose variations, associated with the 11-year solar activity cycle, seasonal variations of particle fluxes in the Earth's radiation belts at the station orbit, and solar proton events are studied, using prolonged measurements of radiation doses inside orbital station Mir. Daily averages of radiation doses during the declining phase of the 22nd solar cycle and during transition to the 23rd solar activity cycle reached very large values for astronauts and significantly exceed the values calculated according to existing models.

  14. Low-dose radiation epidemiology studies: status and issues.

    PubMed

    Shore, Roy E

    2009-11-01

    Although the Japanese atomic bomb study and radiotherapy studies have clearly documented cancer risks from high-dose radiation exposures, radiation risk assessment groups have long recognized that protracted or low exposures to low-linear energy transfer radiations are key radiation protection concerns because these are far more common than high-exposure scenarios. Epidemiologic studies of human populations with low-dose or low dose-rate exposures are one approach to addressing those concerns. A number of large studies of radiation workers (Chernobyl clean-up workers, U.S. and Chinese radiological technologists, and the 15-country worker study) or of persons exposed to environmental radiation at moderate to low levels (residents near Techa River, Semipalatinsk, Chernobyl, or nuclear facilities) have been conducted. A variety of studies of medical radiation exposures (multiple-fluoroscopy, diagnostic (131)I, scatter radiation doses from radiotherapy, etc.) also are of interest. Key results from these studies are summarized and compared with risk estimates from the Japanese atomic bomb study. Ideally, one would like the low-dose and low dose-rate studies to guide radiation risk estimation regarding the shape of the dose-response curve, DDREF (dose and dose-rate effectiveness factor), and risk at low doses. However, the degree to which low-dose studies can do so is subject to various limitations, especially those pertaining to dosimetric uncertainties and limited statistical power. The identification of individuals who are particularly susceptible to radiation cancer induction also is of high interest in terms of occupational and medical radiation protection. Several examples of studies of radiation-related cancer susceptibility are discussed, but none thus far have clearly identified radiation-susceptible genotypes.

  15. Low-dose radiation epidemiology studies: status and issues.

    PubMed

    Shore, Roy E

    2009-11-01

    Although the Japanese atomic bomb study and radiotherapy studies have clearly documented cancer risks from high-dose radiation exposures, radiation risk assessment groups have long recognized that protracted or low exposures to low-linear energy transfer radiations are key radiation protection concerns because these are far more common than high-exposure scenarios. Epidemiologic studies of human populations with low-dose or low dose-rate exposures are one approach to addressing those concerns. A number of large studies of radiation workers (Chernobyl clean-up workers, U.S. and Chinese radiological technologists, and the 15-country worker study) or of persons exposed to environmental radiation at moderate to low levels (residents near Techa River, Semipalatinsk, Chernobyl, or nuclear facilities) have been conducted. A variety of studies of medical radiation exposures (multiple-fluoroscopy, diagnostic (131)I, scatter radiation doses from radiotherapy, etc.) also are of interest. Key results from these studies are summarized and compared with risk estimates from the Japanese atomic bomb study. Ideally, one would like the low-dose and low dose-rate studies to guide radiation risk estimation regarding the shape of the dose-response curve, DDREF (dose and dose-rate effectiveness factor), and risk at low doses. However, the degree to which low-dose studies can do so is subject to various limitations, especially those pertaining to dosimetric uncertainties and limited statistical power. The identification of individuals who are particularly susceptible to radiation cancer induction also is of high interest in terms of occupational and medical radiation protection. Several examples of studies of radiation-related cancer susceptibility are discussed, but none thus far have clearly identified radiation-susceptible genotypes. PMID:19820457

  16. WE-G-18A-04: 3D Dictionary Learning Based Statistical Iterative Reconstruction for Low-Dose Cone Beam CT Imaging

    SciTech Connect

    Bai, T; Yan, H; Shi, F; Jia, X; Jiang, Steve B.; Lou, Y; Xu, Q; Mou, X

    2014-06-15

    Purpose: To develop a 3D dictionary learning based statistical reconstruction algorithm on graphic processing units (GPU), to improve the quality of low-dose cone beam CT (CBCT) imaging with high efficiency. Methods: A 3D dictionary containing 256 small volumes (atoms) of 3x3x3 voxels was trained from a high quality volume image. During reconstruction, we utilized a Cholesky decomposition based orthogonal matching pursuit algorithm to find a sparse representation on this dictionary basis of each patch in the reconstructed image, in order to regularize the image quality. To accelerate the time-consuming sparse coding in the 3D case, we implemented our algorithm in a parallel fashion by taking advantage of the tremendous computational power of GPU. Evaluations are performed based on a head-neck patient case. FDK reconstruction with full dataset of 364 projections is used as the reference. We compared the proposed 3D dictionary learning based method with a tight frame (TF) based one using a subset data of 121 projections. The image qualities under different resolutions in z-direction, with or without statistical weighting are also studied. Results: Compared to the TF-based CBCT reconstruction, our experiments indicated that 3D dictionary learning based CBCT reconstruction is able to recover finer structures, to remove more streaking artifacts, and is less susceptible to blocky artifacts. It is also observed that statistical reconstruction approach is sensitive to inconsistency between the forward and backward projection operations in parallel computing. Using high a spatial resolution along z direction helps improving the algorithm robustness. Conclusion: 3D dictionary learning based CBCT reconstruction algorithm is able to sense the structural information while suppressing noise, and hence to achieve high quality reconstruction. The GPU realization of the whole algorithm offers a significant efficiency enhancement, making this algorithm more feasible for potential

  17. 3D Cloud Radiative Effects on Aerosol Optical Thickness Retrievals in Cumulus Cloud Fields in the Biomass Burning Region in Brazil

    NASA Technical Reports Server (NTRS)

    Wen, Guo-Yong; Marshak, Alexander; Cahalan, Robert F.

    2004-01-01

    Aerosol amount in clear regions of a cloudy atmosphere is a critical parameter in studying the interaction between aerosols and clouds. Since the global cloud cover is about 50%, cloudy scenes are often encountered in any satellite images. Aerosols are more or less transparent, while clouds are extremely reflective in the visible spectrum of solar radiation. The radiative transfer in clear-cloudy condition is highly three- dimensional (3D). This paper focuses on estimating the 3D effects on aerosol optical thickness retrievals using Monte Carlo simulations. An ASTER image of cumulus cloud fields in the biomass burning region in Brazil is simulated in this study. The MODIS products (i-e., cloud optical thickness, particle effective radius, cloud top pressure, surface reflectance, etc.) are used to construct the cloud property and surface reflectance fields. To estimate the cloud 3-D effects, we assume a plane-parallel stratification of aerosol properties in the 60 km x 60 km ASTER image. The simulated solar radiation at the top of the atmosphere is compared with plane-parallel calculations. Furthermore, the 3D cloud radiative effects on aerosol optical thickness retrieval are estimated.

  18. Measurement and assessment of radiation dose of astronauts in space

    NASA Astrophysics Data System (ADS)

    Zhang, Binquan; Sun, Yue-qiang; Yang, Chuibai; Zhang, Shenyi; Liang, Jinbao

    Astronauts in flight are exposed by the space radiation, which is mainly composed of proton, electron, heavy ion, and neutron. To assess the radiation risk, measurement and assessment of radiation dose of astronauts is indispensable. Especially, measurement for heavy ion radiation is most important as it contributes the major dose. Until now, most of the measurements and assessments of radiation dose of astronauts are based on the LET (Linear Energy Transfer) spectrum of space radiation. However, according to the ICRP Publication 123, energy and charge number of heavy ions should be measured in order to assess space radiation exposure to astronauts. In addition, from the publication, quality factors for each organs or tissues of astronauts are different and they should be calculated or measured independently. Here, a method to measure the energy and charge number of heavy ion and a voxel phantom based on the anatomy of Chinese adult male are presented for radiation dose assessment of astronauts.

  19. Response of Biological Systems to Low Doses of Ionizing Radiation.

    PubMed

    Hei, Tom K

    2016-03-01

    Radiation is ubiquitous in the environment. Biological effects of exposure to low doses of ionizing radiation are subjected to several modulating factors. Two of these, bystander response and adaptive protections, are discussed briefly. PMID:26808883

  20. Identifying Clinically Significant Prostate Cancers using 3-D In Vivo Acoustic Radiation Force Impulse Imaging with Whole-Mount Histology Validation.

    PubMed

    Palmeri, Mark L; Glass, Tyler J; Miller, Zachary A; Rosenzweig, Stephen J; Buck, Andrew; Polascik, Thomas J; Gupta, Rajan T; Brown, Alison F; Madden, John; Nightingale, Kathryn R

    2016-06-01

    Overly aggressive prostate cancer (PCa) treatment adversely affects patients and places an unnecessary burden on our health care system. The inability to identify and grade clinically significant PCa lesions is a factor contributing to excessively aggressive PCa treatment, such as radical prostatectomy, instead of more focal, prostate-sparing procedures such as cryotherapy and high-dose radiation therapy. We have performed 3-D in vivo B-mode and acoustic radiation force impulse (ARFI) imaging using a mechanically rotated, side-fire endorectal imaging array to identify regions suspicious for PCa in 29 patients being treated with radical prostatectomies for biopsy-confirmed PCa. Whole-mount histopathology analyses were performed to identify regions of clinically significant/insignificant PCa lesions, atrophy and benign prostatic hyperplasia. Regions of suspicion for PCa were reader-identified in ARFI images based on boundary delineation, contrast, texture and location. These regions of suspicion were compared with histopathology identified lesions using a nearest-neighbor regional localization approach. Of all clinically significant lesions identified on histopathology, 71.4% were also identified using ARFI imaging, including 79.3% of posterior and 33.3% of anterior lesions. Among the ARFI-identified lesions, 79.3% corresponded to clinically significant PCa lesions, with these lesions having higher indices of suspicion than clinically insignificant PCa. ARFI imaging had greater sensitivity for posterior versus anterior lesions because of greater displacement signal-to-noise ratio and finer spatial sampling. Atrophy and benign prostatic hyperplasia can cause appreciable prostate anatomy distortion and heterogeneity that confounds ARFI PCa lesion identification; however, in general, ARFI regions of suspicion did not coincide with these benign pathologies. PMID:26947445

  1. Development of an iterative reconstruction method to overcome 2D detector low resolution limitations in MLC leaf position error detection for 3D dose verification in IMRT.

    PubMed

    Visser, R; Godart, J; Wauben, D J L; Langendijk, J A; Van't Veld, A A; Korevaar, E W

    2016-05-21

    The objective of this study was to introduce a new iterative method to reconstruct multi leaf collimator (MLC) positions based on low resolution ionization detector array measurements and to evaluate its error detection performance. The iterative reconstruction method consists of a fluence model, a detector model and an optimizer. Expected detector response was calculated using a radiotherapy treatment plan in combination with the fluence model and detector model. MLC leaf positions were reconstructed by minimizing differences between expected and measured detector response. The iterative reconstruction method was evaluated for an Elekta SLi with 10.0 mm MLC leafs in combination with the COMPASS system and the MatriXX Evolution (IBA Dosimetry) detector with a spacing of 7.62 mm. The detector was positioned in such a way that each leaf pair of the MLC was aligned with one row of ionization chambers. Known leaf displacements were introduced in various field geometries ranging from  -10.0 mm to 10.0 mm. Error detection performance was tested for MLC leaf position dependency relative to the detector position, gantry angle dependency, monitor unit dependency, and for ten clinical intensity modulated radiotherapy (IMRT) treatment beams. For one clinical head and neck IMRT treatment beam, influence of the iterative reconstruction method on existing 3D dose reconstruction artifacts was evaluated. The described iterative reconstruction method was capable of individual MLC leaf position reconstruction with millimeter accuracy, independent of the relative detector position within the range of clinically applied MU's for IMRT. Dose reconstruction artifacts in a clinical IMRT treatment beam were considerably reduced as compared to the current dose verification procedure. The iterative reconstruction method allows high accuracy 3D dose verification by including actual MLC leaf positions reconstructed from low resolution 2D measurements. PMID:27100169

  2. Development of an iterative reconstruction method to overcome 2D detector low resolution limitations in MLC leaf position error detection for 3D dose verification in IMRT

    NASA Astrophysics Data System (ADS)

    Visser, R.; Godart, J.; Wauben, D. J. L.; Langendijk, J. A.; van't Veld, A. A.; Korevaar, E. W.

    2016-05-01

    The objective of this study was to introduce a new iterative method to reconstruct multi leaf collimator (MLC) positions based on low resolution ionization detector array measurements and to evaluate its error detection performance. The iterative reconstruction method consists of a fluence model, a detector model and an optimizer. Expected detector response was calculated using a radiotherapy treatment plan in combination with the fluence model and detector model. MLC leaf positions were reconstructed by minimizing differences between expected and measured detector response. The iterative reconstruction method was evaluated for an Elekta SLi with 10.0 mm MLC leafs in combination with the COMPASS system and the MatriXX Evolution (IBA Dosimetry) detector with a spacing of 7.62 mm. The detector was positioned in such a way that each leaf pair of the MLC was aligned with one row of ionization chambers. Known leaf displacements were introduced in various field geometries ranging from  -10.0 mm to 10.0 mm. Error detection performance was tested for MLC leaf position dependency relative to the detector position, gantry angle dependency, monitor unit dependency, and for ten clinical intensity modulated radiotherapy (IMRT) treatment beams. For one clinical head and neck IMRT treatment beam, influence of the iterative reconstruction method on existing 3D dose reconstruction artifacts was evaluated. The described iterative reconstruction method was capable of individual MLC leaf position reconstruction with millimeter accuracy, independent of the relative detector position within the range of clinically applied MU’s for IMRT. Dose reconstruction artifacts in a clinical IMRT treatment beam were considerably reduced as compared to the current dose verification procedure. The iterative reconstruction method allows high accuracy 3D dose verification by including actual MLC leaf positions reconstructed from low resolution 2D measurements.

  3. Development of an iterative reconstruction method to overcome 2D detector low resolution limitations in MLC leaf position error detection for 3D dose verification in IMRT

    NASA Astrophysics Data System (ADS)

    Visser, R.; Godart, J.; Wauben, D. J. L.; Langendijk, J. A.; van’t Veld, A. A.; Korevaar, E. W.

    2016-05-01

    The objective of this study was to introduce a new iterative method to reconstruct multi leaf collimator (MLC) positions based on low resolution ionization detector array measurements and to evaluate its error detection performance. The iterative reconstruction method consists of a fluence model, a detector model and an optimizer. Expected detector response was calculated using a radiotherapy treatment plan in combination with the fluence model and detector model. MLC leaf positions were reconstructed by minimizing differences between expected and measured detector response. The iterative reconstruction method was evaluated for an Elekta SLi with 10.0 mm MLC leafs in combination with the COMPASS system and the MatriXX Evolution (IBA Dosimetry) detector with a spacing of 7.62 mm. The detector was positioned in such a way that each leaf pair of the MLC was aligned with one row of ionization chambers. Known leaf displacements were introduced in various field geometries ranging from  ‑10.0 mm to 10.0 mm. Error detection performance was tested for MLC leaf position dependency relative to the detector position, gantry angle dependency, monitor unit dependency, and for ten clinical intensity modulated radiotherapy (IMRT) treatment beams. For one clinical head and neck IMRT treatment beam, influence of the iterative reconstruction method on existing 3D dose reconstruction artifacts was evaluated. The described iterative reconstruction method was capable of individual MLC leaf position reconstruction with millimeter accuracy, independent of the relative detector position within the range of clinically applied MU’s for IMRT. Dose reconstruction artifacts in a clinical IMRT treatment beam were considerably reduced as compared to the current dose verification procedure. The iterative reconstruction method allows high accuracy 3D dose verification by including actual MLC leaf positions reconstructed from low resolution 2D measurements.

  4. Monte-Carlo Simulation of Heavy Ion Track Structure Calculation of Local Dose and 3D Time Evolution of Radiolytic Species

    NASA Technical Reports Server (NTRS)

    Plante, Ianik; Cucinotta, Francis A.

    2010-01-01

    Heavy ions have gained considerable importance in radiotherapy due to their advantageous dose distribution profile and high Relative Biological Effectiveness (RBE). Heavy ions are difficult to produce on Earth, but they are present in space and it is impossible at this moment to completely shield astronauts from them. The risk of these radiations is poorly understood, which is a concern for a 3-years Mars mission. The effects of radiation are mainly due to DNA damage such as DNA double-strand breaks (DSBs), although non-targeted effects are also very important. DNA can be damaged by the direct interaction of radiation and by reactions with chemical species produced by the radiolysis of water. The energy deposition is of crucial importance to understand biological effects of radiation. Therefore, much effort has been done recently to improve models of radiation tracks.

  5. SU-E-T-157: Evaluation and Comparison of Doses to Pelvic Lymph Nodes and to Point B with 3D Image Guided Treatment Planning for High Dose Brachytherapy for Treatment of Cervical Cancer

    SciTech Connect

    Bhandare, N.

    2014-06-01

    Purpose: To estimate and compare the doses received by the obturator, external and internal iliac lymph nodes and point Methods: CT-MR fused image sets of 15 patients obtained for each of 5 fractions of HDR brachytherapy using tandem and ring applicator, were used to generate treatment plans optimized to deliver a prescription dose to HRCTV-D90 and to minimize the doses to organs at risk (OARs). For each set of image, target volume (GTV, HRCTV) OARs (Bladder, Rectum, Sigmoid), and both left and right pelvic lymph nodes (obturator, external and internal iliac lymph nodes) were delineated. Dose-volume histograms (DVH) were generated for pelvic nodal groups (left and right obturator group, internal and external iliac chains) Per fraction DVH parameters used for dose comparison included dose to 100% volume (D100), and dose received by 2cc (D2cc), 1cc (D1cc) and 0.1 cc (D0.1cc) of nodal volume. Dose to point B was compared with each DVH parameter using 2 sided t-test. Pearson correlation were determined to examine relationship of point B dose with nodal DVH parameters. Results: FIGO clinical stage varied from 1B1 to IIIB. The median pretreatment tumor diameter measured on MRI was 4.5 cm (2.7– 6.4cm).The median dose to bilateral point B was 1.20 Gy ± 0.12 or 20% of the prescription dose. The correlation coefficients were all <0.60 for all nodal DVH parameters indicating low degree of correlation. Only 2 cc of obturator nodes was not significantly different from point B dose on t-test. Conclusion: Dose to point B does not adequately represent the dose to any specific pelvic nodal group. When using image guided 3D dose-volume optimized treatment nodal groups should be individually identified and delineated to obtain the doses received by pelvic nodes.

  6. Comparison between Monte Carlo simulation and measurement with a 3D polymer gel dosimeter for dose distributions in biological samples.

    PubMed

    Furuta, T; Maeyama, T; Ishikawa, K L; Fukunishi, N; Fukasaku, K; Takagi, S; Noda, S; Himeno, R; Hayashi, S

    2015-08-21

    In this research, we used a 135 MeV/nucleon carbon-ion beam to irradiate a biological sample composed of fresh chicken meat and bones, which was placed in front of a PAGAT gel dosimeter, and compared the measured and simulated transverse-relaxation-rate (R2) distributions in the gel dosimeter. We experimentally measured the three-dimensional R2 distribution, which records the dose induced by particles penetrating the sample, by using magnetic resonance imaging. The obtained R2 distribution reflected the heterogeneity of the biological sample. We also conducted Monte Carlo simulations using the PHITS code by reconstructing the elemental composition of the biological sample from its computed tomography images while taking into account the dependence of the gel response on the linear energy transfer. The simulation reproduced the experimental distal edge structure of the R2 distribution with an accuracy under about 2 mm, which is approximately the same as the voxel size currently used in treatment planning. PMID:26266894

  7. Comparison between Monte Carlo simulation and measurement with a 3D polymer gel dosimeter for dose distributions in biological samples

    NASA Astrophysics Data System (ADS)

    Furuta, T.; Maeyama, T.; Ishikawa, K. L.; Fukunishi, N.; Fukasaku, K.; Takagi, S.; Noda, S.; Himeno, R.; Hayashi, S.

    2015-08-01

    In this research, we used a 135 MeV/nucleon carbon-ion beam to irradiate a biological sample composed of fresh chicken meat and bones, which was placed in front of a PAGAT gel dosimeter, and compared the measured and simulated transverse-relaxation-rate (R2) distributions in the gel dosimeter. We experimentally measured the three-dimensional R2 distribution, which records the dose induced by particles penetrating the sample, by using magnetic resonance imaging. The obtained R2 distribution reflected the heterogeneity of the biological sample. We also conducted Monte Carlo simulations using the PHITS code by reconstructing the elemental composition of the biological sample from its computed tomography images while taking into account the dependence of the gel response on the linear energy transfer. The simulation reproduced the experimental distal edge structure of the R2 distribution with an accuracy under about 2 mm, which is approximately the same as the voxel size currently used in treatment planning.

  8. New BNL 3D-Trench Electrode Si Detectors for Radiation Hard Detectors for sLHC and for X-ray Applications

    SciTech Connect

    Li Z.

    2011-05-11

    A new international-patent-pending (PCT/US2010/52887) detector type, named here as 3D-Trench electrode Si detectors, is proposed in this work. In this new 3D electrode configuration, one or both types of electrodes are etched as trenches deep into the Si (fully penetrating with SOI or supporting wafer, or non-fully penetrating into 50-90% of the thickness), instead of columns as in the conventional ('standard') 3D electrode Si detectors. With trench etched electrodes, the electric field in the new 3D electrode detectors are well defined without low or zero field regions. Except near both surfaces of the detector, the electric field in the concentric type 3D-Trench electrode Si detectors is nearly radial with little or no angular dependence in the circular and hexangular (concentric-type) pixel cell geometries. In the case of parallel plate 3D trench pixels, the field is nearly linear (like the planar 2D electrode detectors), with simple and well-defined boundary conditions. Since each pixel cell in a 3D-Trench electrode detector is isolated from others by highly doped trenches, it is an electrically independent cell. Therefore, an alternative name 'Independent Coaxial Detector Array', or ICDA, is assigned to an array of 3D-Trench electrode detectors. The electric field in the detector can be reduced by a factor of nearly 10 with an optimal 3D-Trench configuration where the junction is on the surrounding trench side. The full depletion voltage in this optimal configuration can be up to 7 times less than that of a conventional 3D detector, and even a factor of two less than that of a 2D planar detector with a thickness the same as the electrode spacing in the 3D-Trench electrode detector. In the case of non-fully penetrating trench electrodes, the processing is true one-sided with backside being unprocessed. The charge loss due to the dead space associated with the trenches is insignificant as compared to that due to radiation-induced trapping in sLHC environment

  9. New BNL 3D-Trench electrode Si detectors for radiation hard detectors for sLHC and for X-ray applications

    NASA Astrophysics Data System (ADS)

    Li, Zheng

    2011-12-01

    A new international-patent-pending (PCT/US2010/52887) detector type, named here as 3D-Trench electrode Si detectors, is proposed in this work. In this new 3D electrode configuration, one or both types of electrodes are etched as trenches deep into the Si (fully penetrating with SOI or supporting wafer, or non-fully penetrating into 50-90% of the thickness), instead of columns as in the conventional ("standard") 3D electrode Si detectors. With trench etched electrodes, the electric field in the new 3D electrode detectors are well defined without low or zero field regions. Except near both surfaces of the detector, the electric field in the concentric type 3D-Trench electrode Si detectors is nearly radial with little or no angular dependence in the circular and hexangular (concentric-type) pixel cell geometries. In the case of parallel plate 3D trench pixels, the field is nearly linear (like the planar 2D electrode detectors), with simple and well-defined boundary conditions. Since each pixel cell in a 3D-Trench electrode detector is isolated from others by highly doped trenches, it is an electrically independent cell. Therefore, an alternative name "Independent Coaxial Detector Array", or ICDA, is assigned to an array of 3D-Trench electrode detectors. The electric field in the detector can be reduced by a factor of nearly 10 with an optimal 3D-Trench configuration where the junction is on the surrounding trench side. The full depletion voltage in this optimal configuration can be up to 7 times less than that of a conventional 3D detector, and even a factor of two less than that of a 2D planar detector with a thickness the same as the electrode spacing in the 3D-Trench electrode detector. In the case of non-fully penetrating trench electrodes, the processing is true one-sided with backside being unprocessed. The charge loss due to the dead space associated with the trenches is insignificant as compared to that due to radiation-induced trapping in sLHC environment

  10. Comparison of the ionizing radiation fields observed by Liulin-Photo and R3D-B3 spectrum-dosimeters inside and outside Foton-M3 spacecraft

    NASA Astrophysics Data System (ADS)

    Damasso, Mario; Dachev, Tsvetan; Zanini, Alba; Falzetta, Giuseppe; Lambreva, Maya; Rea, Giuseppina; Giardi, Maria Teresa

    Foton-M3 ESA space mission flew in Low Earth Orbit (250÷290 km) from 14 to 26 September 2007, carrying more than 40 experiments related to different scientific disciplines. During the mission, the dose and particle flux variations inside and outside the capsule have been monitored in real time by Liulin-Photo e R3D-B3 spectrum-dosimeters respectively, the latter housed in the Biopan-6 facility containing experiments directly exposed to the space environment. Liulin-Photo and R3D-B3 are both composed of a silicon detector (area=2 cm2 ) and they measure the energies deposited by the incident ionizing particles (R3D-B3 measuring also solar UV radiation). Inside the capsule, Liulin-Photo was mounted on the top of the space biology experiment Photo-II to monitor the radiation field around this experiment. The device Photo- II is a system of optical sensors that measured in real time the chlorophyll fluorescence to study the effects of the mixed ionizing space radiations on the photosynthetic activity of several microrganisms modified at the level of the photosynthetic electron transfer chain of Photosystem II. In this study we present the results obtained comparing the dose and flux data collected from the two instruments, in order to get information about the effects produced by the capsule shielding. In particular, we analyse in deeper detail the data corresponding to the passages of the spacecraft above the South Atlantic magnetic Anomaly (SAA) and inside the outer electron belt. A comparison between experimental data and predictions of ionizing radiation environment models is also performed. Moreover, an analysis of some space weather data is conducted to better characterize the space environment in relation to the effect on the biological material during the mission.

  11. Bystander and Adaptive Responses in Tissue Models exposed to Low Radiation Doses

    SciTech Connect

    Kevin M. Prise

    2007-01-02

    The overall goal is characterization of 3D tissue models that can be used for investigation of the mechanisms underlying radiation-induced bystander effect at low doses (20 cGy or less) of low LET ionizing radiation, using a unique focused soft X-ray microprobe that had been upgraded to provide a range of focused soft X-ray energies, some sufficient to penetrate 3D models (Ref DE-FG02-01ER63236). The proposed studies will include an examination of whether the passage of a single electron track can trigger bystander responses in the 3D tissue models and, if so, whether the response is altered by increased or decreased levels of oxidative stress. Our existing multi-photon/confocal in-depth microscopy techniques will be used to develop assays for damage induced within intact 3D tissue models. The working hypothesis is that organization of cells into tissues, particularly involving more than one cell type, alters expression of the radiation-induced bystander effect compared to that seen in isolated single cell types in monolayer.

  12. Computation of Solar Radiative Fluxes by 1D and 3D Methods Using Cloudy Atmospheres Inferred from A-train Satellite Data

    NASA Technical Reports Server (NTRS)

    Barker, Howard W.; Kato, Serji; Wehr, T.

    2012-01-01

    The main point of this study was to use realistic representations of cloudy atmospheres to assess errors in solar flux estimates associated with 1D radiative transfer models. A scene construction algorithm, developed for the EarthCARE satellite mission, was applied to CloudSat, CALIPSO, and MODIS satellite data thus producing 3D cloudy atmospheres measuring 60 km wide by 13,000 km long at 1 km grid-spacing. Broadband solar fluxes and radiances for each (1 km)2 column where then produced by a Monte Carlo photon transfer model run in both full 3D and independent column approximation mode (i.e., a 1D model).

  13. Genetic Factors Affecting Susceptibility to Low Dose & Low Dose-Rate Radiation

    SciTech Connect

    Bedford, Joel

    2014-04-18

    Our laboratory has, among other things, developed and used the gamma H2AX focus assay and other chromosomal and cell killing assays to show that differences in this DNA double strand break (dsb) related response can be clearly and distinctly demonstrated for cells which are mildly hyper-radiosensitive such as those associated with A-T heterozygosity. We have found this level of mild hypersensitivity for cells from some 20 to 30 % of apparently normal individuals and from apparently normal parents of Retinoblastoma patients. We found significant differences in gene expression in somatic cells from unaffected parents of Rb patients as compared with normal controls, suggesting that these parents may harbor some as yet unidentified genetic abnormality. In other experiments we sought to determine the extent of differences in normal human cellular reaponses to radiation depending on their irradiation in 2D monolayer vs 3D organized acinar growth conditions. We exmined cell reproductive death, chromosomal aberration induction, and the levels of γ-H2AX foci in cells after single acute gamma-ray doses and immediately after 20 hours of irradiation at a dose rate of 0.0017 Gy/min. We found no significant differences in the dose-responses of these cells under the 2D or 3D growth conditions. While this does not mean such differences cannot occur in other situations, it does mean that they do not generally or necessarily occur. In another series of studies in collaboration with Dr Chuan Li, with supprt from this current grant. We reported a role for apoptotic cell death in promoting wound healing and tissue regeneration in mice. Apoptotic cells released growth signals that stimulated the proliferation of progenitor or stem cells. In yet another collaboration with Dr, B. Chen with funds from this grant, the relative radiosensitivity to cell killing as well as chromosomal instability of 13 DNA-PKcs site-directed mutant cell lines (defective at phosphorylation sites or kinase

  14. Radiation therapy for gastric mucosa-associated lymphoid tissue lymphoma: dose-volumetric analysis and its clinical implications

    PubMed Central

    Lim, Hyeon Woo; Kim, Tae Hyun; Choi, Il Ju; Kim, Chan Gyoo; Lee, Jong Yeul; Cho, Soo Jeong; Eom, Hyeon Seok; Moon, Sung Ho; Kim, Dae Yong

    2016-01-01

    Purpose To assess the clinical outcomes of radiotherapy (RT) using two-dimensional (2D) and three-dimensional conformal RT (3D-CRT) for patients with gastric mucosa-associated lymphoid tissue (MALT) lymphoma to evaluate the effectiveness of involved field RT with moderate-dose and to evaluate the benefit of 3D-CRT comparing with 2D-RT. Materials and Methods Between July 2003 and March 2015, 33 patients with stage IE and IIE gastric MALT lymphoma received RT were analyzed. Of 33 patients, 17 patients (51.5%) were Helicobacter pylori (HP) negative and 16 patients (48.5%) were HP positive but refractory to HP eradication (HPE). The 2D-RT (n = 14) and 3D-CRT (n = 19) were performed and total dose was 30.6 Gy/17 fractions. Of 11 patients who RT planning data were available, dose-volumetric parameters between 2D-RT and 3D-CRT plans was compared. Results All patients reached complete remission (CR) eventually and median time to CR was 3 months (range, 1 to 15 months). No local relapse occurred and one patient died with second primary malignancy. Tumor response, survival, and toxicity were not significantly different between 2D-RT and 3D-CRT (p > 0.05, each). In analysis for dose-volumetric parameters, Dmax and CI for PTV were significantly lower in 3D-CRT plans than 2D-RT plans (p < 0.05, each) and Dmean and V15 for right kidney and Dmean for left kidney were significantly lower in 3D-CRT than 2D-RT (p < 0.05, each). Conclusion Our data suggested that involved field RT with moderate-dose for gastric MALT lymphoma could be promising and 3D-CRT could be considered to improve the target coverage and reduce radiation dose to the both kidneys. PMID:27730803

  15. Tracking the dose distribution in radiation therapy by accounting for variable anatomy

    NASA Astrophysics Data System (ADS)

    Schaly, B.; Kempe, J. A.; Bauman, G. S.; Battista, J. J.; Van Dyk, J.

    2004-03-01

    The goal of this research is to calculate the daily and cumulative dose distribution received by the radiotherapy patient while accounting for variable anatomy, by tracking the dose distribution delivered to tissue elements (voxels) that move within the patient. Non-linear image registration techniques (i.e., thin-plate splines) are used along with a conventional treatment planning system to combine the dose distributions computed for each 3D computed tomography (CT) study taken during treatment. For a clinical prostate case, we demonstrate that there are significant localized dose differences due to systematic voxel motion in a single fraction as well as in 15 cumulative fractions. The largest positive dose differences in rectum, bladder and seminal vesicles were 29%, 2% and 24%, respectively, after the first fraction of radiation treatment compared to the planned dose. After 15 cumulative fractions, the largest positive dose differences in rectum, bladder and seminal vesicles were 23%, 32% and 18%, respectively, compared to the planned dose. A sensitivity analysis of control point placement is also presented. This method provides an important understanding of actual delivered doses and has the potential to provide quantitative information to use as a guide for adaptive radiation treatments.

  16. Biological-Based Modeling of Low Dose Radiation Risks

    SciTech Connect

    Scott, Bobby R., Ph.D.

    2006-11-08

    The objective of this project was to refine a biological-based model (called NEOTRANS2) for low-dose, radiation-induced stochastic effects taking into consideration newly available data, including data on bystander effects (deleterious and protective). The initial refinement led to our NEOTRANS3 model which has undergone further refinement (e.g., to allow for differential DNA repair/apoptosis over different dose regions). The model has been successfully used to explain nonlinear dose-response curves for low-linear-energy-transfer (LET) radiation-induced mutations (in vivo) and neoplastic transformation (in vitro). Relative risk dose-response functions developed for neoplastic transformation have been adapted for application to cancer relative risk evaluation for irradiated humans. Our low-dose research along with that conducted by others collectively demonstrate the following regarding induced protection associated with exposure to low doses of low-LET radiation: (1) protects against cell killing by high-LET alpha particles; (2) protects against spontaneous chromosomal damage; (3) protects against spontaneous mutations and neoplastic transformations; (4) suppresses mutations induced by a large radiation dose even when the low dose is given after the large dose; (5) suppresses spontaneous and alpha-radiation-induced cancers; (6) suppresses metastasis of existing cancer; (7) extends tumor latent period; (8) protects against diseases other than cancer; and (9) extends life expectancy. These forms of radiation-induced protection are called adapted protection as they relate to induced adaptive response. Thus, low doses and dose rates of low-LET radiation generally protect rather than harm us. These findings invalidate the linear not threshold (LNT) hypothesis which is based on the premise that any amount of radiation is harmful irrespective of its type. The hypothesis also implicates a linear dose-response curve for cancer induction that has a positive slope and no

  17. Mapping motion from 4D-MRI to 3D-CT for use in 4D dose calculations: A technical feasibility study

    SciTech Connect

    Boye, Dirk; Lomax, Tony; Knopf, Antje

    2013-06-15

    Purpose: Target sites affected by organ motion require a time resolved (4D) dose calculation. Typical 4D dose calculations use 4D-CT as a basis. Unfortunately, 4D-CT images have the disadvantage of being a 'snap-shot' of the motion during acquisition and of assuming regularity of breathing. In addition, 4D-CT acquisitions involve a substantial additional dose burden to the patient making many, repeated 4D-CT acquisitions undesirable. Here the authors test the feasibility of an alternative approach to generate patient specific 4D-CT data sets. Methods: In this approach motion information is extracted from 4D-MRI. Simulated 4D-CT data sets [which the authors call 4D-CT(MRI)] are created by warping extracted deformation fields to a static 3D-CT data set. The employment of 4D-MRI sequences for this has the advantage that no assumptions on breathing regularity are made, irregularities in breathing can be studied and, if necessary, many repeat imaging studies (and consequently simulated 4D-CT data sets) can be performed on patients and/or volunteers. The accuracy of 4D-CT(MRI)s has been validated by 4D proton dose calculations. Our 4D dose algorithm takes into account displacements as well as deformations on the originating 4D-CT/4D-CT(MRI) by calculating the dose of each pencil beam based on an individual time stamp of when that pencil beam is applied. According to corresponding displacement and density-variation-maps the position and the water equivalent range of the dose grid points is adjusted at each time instance. Results: 4D dose distributions, using 4D-CT(MRI) data sets as input were compared to results based on a reference conventional 4D-CT data set capturing similar motion characteristics. Almost identical 4D dose distributions could be achieved, even though scanned proton beams are very sensitive to small differences in the patient geometry. In addition, 4D dose calculations have been performed on the same patient, but using 4D-CT(MRI) data sets based on

  18. Parameterization of 3D Radiative Transfer over Mountains and Investigation of its Impact on Surface Hydrology over the Western United States Using WRF

    NASA Astrophysics Data System (ADS)

    Gu, Y.; Liou, K.; Leung, L.; Lee, W.; Fovell, R. G.

    2013-12-01

    Modern climate models have used a plane-parallel (PP) radiative transfer approach in physics parameterizations; however, the potential errors that arise from neglecting three-dimensional (3D) interactions between radiation and mountains/snow on climate simulations have not been studied and quantified. We have developed a surface solar radiation parameterization based on the regression analysis of flux deviations between 3D and conventional PP radiative transfer models, which has been incorporated into the Weather Research and Forecasting (WRF) model to investigate the impact of the spatial and temporal distribution and variation of surface solar fluxes on surface hydrology. Using the Rocky and Sierra-Nevada Mountains in the Western United States as a testbed, the WRF model with the incorporation of the 3D parameterization is applied at a 30 km grid resolution covering a time period from November 1, 2007 to May 31, 2008 during which abundant snowfall occurred. Comparison of the 3D WRF simulation with the observed snow water equivalent (SWE) and precipitation from Snowpack Telemetry (SNOTEL) sites shows reasonable agreement in terms of spatial patterns and daily and seasonal variability, although the simulation generally has a positive precipitation bias. We show that 3D mountain features have a profound impact on the diurnal and monthly variation of surface radiative and heat fluxes and on the consequent elevation-dependence of snowmelt and precipitation distributions. For lower elevations, positive deviations (3D - PP) of the monthly mean surface solar flux are found in the morning and afternoon hours, while negative deviations are shown between 10 am-2 pm during the winter months, leading to reduced diurnal variations. Over the mountain tops above 3 km, positive deviations are found throughout the day, with the largest values of 40 - 60 W/m2 occurring at noon during the snowmelt season of April to May. The monthly SWE deviations averaged over the entire domain

  19. Sci—Thur AM: YIS - 06: An EPID-based 3D patient dose verification method for SBRT-VMAT delivery

    SciTech Connect

    McCowan, P.; Uytven, E van; Beek, T van; McCurdy, B

    2014-08-15

    Purpose: Stereotactic body radiation therapy (SBRT) delivered via volumetric modulated arc therapy (VMAT) can strongly benefit from an in vivo patient dose verification due to the large doses per fraction. Electronic portal imaging devices (EPIDs) can be utilized as a patient dose dosimeter. In this work we present a physics-based model which utilizes on-treatment EPID images to reconstruct the dose delivered to an anthropomorphic phantom during SBRT-VMAT delivery. Methods: An SBRT linac beam was modeled using Monte Carlo methods and verified with measured data. Our dose reconstruction model back-projects EPID measured focal fluence upstream of the patient and adds a predicted extra-focal fluence component. This fluence is forward projected onto the patient's density matrix and convolved with dose kernels to calculate dose. The model was validated for two prostate, three lung, and two spine SBRT-VMAT treatments. Results were compared to the treatment planning system's calculation. Results: 2%/2 mm chi comparison calculations gave pass rates for the whole volume, infield, and high dose region respectively, and no lower than: 98%, 95%, 99% for the prostate plans, 99%, 92%, 85% for the lung plans, and 91%, 85%, 81% for the spine plans. A 3%/3mm calculation gave pass rates no lower than 99%, 94%, and 90% for all dose regions for the prostate, lung, and spine respectively. Conclusions: We have developed a physics-based model which calculates delivered dose to phantom (or patient) for SBRT-VMAT delivery using on treatment EPID images. The accuracy of the results has allowed us to test this model clinically.

  20. [Radiotherapy of a glioma in a pregnant woman: evaluation of the foetal dose in conformational 3D or intensity-modulated].

    PubMed

    Lefebvre, L; Doyeux, K; Linca, S; Challand, T; Hanzen, C

    2014-12-01

    The purpose was to assess three treatments planning techniques including one in intensity-modulated radiation therapy (IMRT) for cerebral irradiation of pregnant woman, in order to limit the dose delivered to the foetus. The treatment provided was 60 Gy to the planning target volume. Estimated foetal dose was measured using an anthropomorphic phantom, on the upper and middle part of the uterus. The first plan consisted in four beams in conformational technique delivered from a Varian accelerator with a 120 leaves collimator, the second one used non-coplanar fields and the third one assessed IMRT. With the conformational technique, the dose at the upper part of the uterus was 8.3 mGy and 6.3 mGy at the middle part. The dose delivered to the foetus was higher with the non-coplanar fields. In IMRT, the dose at the upper part of the uterus was 23.8 mGy and 14.3 mGy at the middle part. The three plans used 6 MV X-rays. Because of the use of leaves and non-coplanar fields, IMRT does not seem to be the optimal technique for the treatment of pregnant woman. However, the dose delivered to the foetus remains low and below the dose of 100 mGy recommended by the International Commission of Radiological Protection. It seems possible to consider the use of this technique for a better sparing of organs at risk for the mother.

  1. CARCINOGENIC EFFECTS OF LOW DOSES OF IONIZING RADIATION

    EPA Science Inventory

    Carcinogenic Effects of Low Doses of Ionizing Radiation

    R Julian Preston, Environmental Carcinogenesis Division, NHEERL, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711

    The form of the dose-response curve for radiation-induced cancers, particu...

  2. Measuring radiation dose to patients undergoing fluoroscopically-guided interventions

    NASA Astrophysics Data System (ADS)

    Lubis, L. E.; Badawy, M. K.

    2016-03-01

    The increasing prevalence and complexity of fluoroscopically guided interventions (FGI) raises concern regarding radiation dose to patients subjected to the procedure. Despite current evidence showing the risk to patients from the deterministic effects of radiation (e.g. skin burns), radiation induced injuries remain commonplace. This review aims to increase the awareness surrounding radiation dose measurement for patients undergoing FGI. A review of the literature was conducted alongside previous researches from the authors’ department. Studies pertaining to patient dose measurement, its formalism along with current advances and present challenges were reviewed. Current patient monitoring techniques (using available radiation dosimeters), as well as the inadequacy of accepting displayed dose as patient radiation dose is discussed. Furthermore, advances in real-time patient radiation dose estimation during FGI are considered. Patient dosimetry in FGI, particularly in real time, remains an ongoing challenge. The increasing occurrence and sophistication of these procedures calls for further advances in the field of patient radiation dose monitoring. Improved measuring techniques will aid clinicians in better predicting and managing radiation induced injury following FGI, thus improving patient care.

  3. Evaluation of patient DVH-based QA metrics for prostate VMAT: correlation between accuracy of estimated 3D patient dose and magnitude of MLC misalignment.

    PubMed

    Kadoya, Noriyuki; Saito, Masahide; Ogasawara, Makoto; Fujita, Yukio; Ito, Kengo; Sato, Kiyokazu; Kishi, Kazuma; Dobashi, Suguru; Takeda, Ken; Jingu, Keiichi

    2015-05-08

    The purpose of this study was to evaluate the accuracy of commercially available software, using patient DVH-based QA metrics, by investigating the correlation between estimated 3D patient dose and magnitude of MLC misalignments. We tested 3DVH software with an ArcCHECK. Two different calculating modes of ArcCHECK Planned Dose Perturbation (ACPDP) were used: "Normal Sensitivity" and "High Sensitivity". Ten prostate cancer patients treated with hypofractionated VMAT (67.6 Gy/26 Fr) in our hospital were studied. For the baseline plan, we induced MLC errors (-0.75, -0.5, -0.25, 0.25, 0.5, and 0.75 mm for each single bank). We calculated the dose differences between the ACPDP dose with error and TPS dose with error using gamma passing rates and using DVH-based QA metrics. The correlations between dose estimation error and MLC position error varied with each structure and metric. A comparison using 1%/1 mm gamma index showed that the larger was the MLC error-induced, the worse were the gamma passing rates. Slopes of linear fit to dose estimation error versus MLC position error for mean dose and D95 to the PTV were 1.76 and 1.40% mm-1, respectively, for "Normal Sensitivity", and -0.53 and -0.88% mm-1, respectively, for "High Sensitivity", showing better accuracy for "High Sensitivity" than "Normal Sensitivity". On the other hand, the slopes for mean dose to the rectum and bladder, V35 to the rectum and bladder and V55 to the rectum and bladder, were -1.00, -0.55, -2.56, -1.25, -3.53, and -1.85%mm-1, respectively, for "Normal Sensitivity", and -2.89, -2.39, -4.54, -3.12, -6.24, and -4.11% mm-1, respectively, for "High Sensitivity", showing significant better accuracy for "Normal Sensitivity" than "High Sensitivity". Our results showed that 3DVH had some residual error for both sensitivities. Furthermore, we found that "Normal Sensitivity" might have better accuracy for the DVH metric for the PTV and that "High Sensitivity" might have better accuracy for DVH metrics for

  4. Preliminary radiation dose assessment to WIPP waste handling personnel

    SciTech Connect

    Harvill, J P

    1985-02-01

    For CH TRU waste handling operations, the receipt and unloading of the TRUPACT is estimated to result in doses to the waste handlers and radiation control personnel of 4.46 man-rem and 0.45 man-rem, respectively. Another portion of the CH TRU waste handling operation which is estimated to result in a relatively high percentage of the total dose is the transfer of CH TRU waste containers from the hoist cage area and subsequent storage in the underground areas. The doses calculated for waste handling and radiation control personnel are 1.87 and 0.45 man-rem, respectivley. These doses represent 24% and 30% of the total CH TRU waste handling doses for these two occupational groups. For RH TRU waste handling the doses are more evenly distributed over the operational steps. The only operational segment which may be clearly considered as resulting in a large percentage of the total RH TRU waste handling dose is the emplacement operation. The series of steps comprising the emplacement operation result in 0.35 man-rem and 0.034 man-rem to the waste handlers and radiation control personnel, respectively. Annual, external wholebody doses for all waste handling operations and support activities are estimated as 11.02 man-rem for waste handlers and 2.41 man-rem for radiation control personnel. With current manpower levels of 16 waste handlers and 8 radiation control personnel, the calculated dose per worker is 0.69 rem for waste handlers and 0.30 rem for radiation control personnel. Combining the highest calculated organ dose with the external wholebody dose, the total dose to the bone per worker is 0.81 rem for waste handlers and 0.45 rem for radiation control personnel. These estimated doses fall below the Department of Energy design requirement that the combined external and internal doses be less than ones rem per person per year.

  5. SU-E-T-35: An Investigation of the Accuracy of Cervical IMRT Dose Distribution Using 2D/3D Ionization Chamber Arrays System and Monte Carlo Simulation

    SciTech Connect

    Zhang, Y; Yang, J; Liu, H; Liu, D

    2014-06-01

    Purpose: The purpose of this work is to compare the verification results of three solutions (2D/3D ionization chamber arrays measurement and Monte Carlo simulation), the results will help make a clinical decision as how to do our cervical IMRT verification. Methods: Seven cervical cases were planned with Pinnacle 8.0m to meet the clinical acceptance criteria. The plans were recalculated in the Matrixx and Delta4 phantom with the accurate plans parameters. The plans were also recalculated by Monte Carlo using leaf sequences and MUs for individual plans of every patient, Matrixx and Delta4 phantom. All plans of Matrixx and Delta4 phantom were delivered and measured. The dose distribution of iso slice, dose profiles, gamma maps of every beam were used to evaluate the agreement. Dose-volume histograms were also compared. Results: The dose distribution of iso slice and dose profiles from Pinnacle calculation were in agreement with the Monte Carlo simulation, Matrixx and Delta4 measurement. A 95.2%/91.3% gamma pass ratio was obtained between the Matrixx/Delta4 measurement and Pinnacle distributions within 3mm/3% gamma criteria. A 96.4%/95.6% gamma pass ratio was obtained between the Matrixx/Delta4 measurement and Monte Carlo simulation within 2mm/2% gamma criteria, almost 100% gamma pass ratio within 3mm/3% gamma criteria. The DVH plot have slightly differences between Pinnacle and Delta4 measurement as well as Pinnacle and Monte Carlo simulation, but have excellent agreement between Delta4 measurement and Monte Carlo simulation. Conclusion: It was shown that Matrixx/Delta4 and Monte Carlo simulation can be used very efficiently to verify cervical IMRT delivery. In terms of Gamma value the pass ratio of Matrixx was little higher, however, Delta4 showed more problem fields. The primary advantage of Delta4 is the fact it can measure true 3D dosimetry while Monte Carlo can simulate in patients CT images but not in phantom.

  6. Radiation dose distributions due to sudden ejection of cobalt device.

    PubMed

    Abdelhady, Amr

    2016-09-01

    The evaluation of the radiation dose during accident in a nuclear reactor is of great concern from the viewpoint of safety. One of important accident must be analyzed and may be occurred in open pool type reactor is the rejection of cobalt device. The study is evaluating the dose rate levels resulting from upset withdrawal of co device especially the radiation dose received by the operator in the control room. Study of indirect radiation exposure to the environment due to skyshine effect is also taken into consideration in order to evaluate the radiation dose levels around the reactor during the ejection trip. Microshield, SHLDUTIL, and MCSky codes were used in this study to calculate the radiation dose profiles during cobalt device ejection trip inside and outside the reactor building.

  7. Radiation dose distributions due to sudden ejection of cobalt device.

    PubMed

    Abdelhady, Amr

    2016-09-01

    The evaluation of the radiation dose during accident in a nuclear reactor is of great concern from the viewpoint of safety. One of important accident must be analyzed and may be occurred in open pool type reactor is the rejection of cobalt device. The study is evaluating the dose rate levels resulting from upset withdrawal of co device especially the radiation dose received by the operator in the control room. Study of indirect radiation exposure to the environment due to skyshine effect is also taken into consideration in order to evaluate the radiation dose levels around the reactor during the ejection trip. Microshield, SHLDUTIL, and MCSky codes were used in this study to calculate the radiation dose profiles during cobalt device ejection trip inside and outside the reactor building. PMID:27423021

  8. A Bayesian Semiparametric Model for Radiation Dose-Response Estimation.

    PubMed

    Furukawa, Kyoji; Misumi, Munechika; Cologne, John B; Cullings, Harry M

    2016-06-01

    In evaluating the risk of exposure to health hazards, characterizing the dose-response relationship and estimating acceptable exposure levels are the primary goals. In analyses of health risks associated with exposure to ionizing radiation, while there is a clear agreement that moderate to high radiation doses cause harmful effects in humans, little has been known about the possible biological effects at low doses, for example, below 0.1 Gy, which is the dose range relevant to most radiation exposures of concern today. A conventional approach to radiation dose-response estimation based on simple parametric forms, such as the linear nonthreshold model, can be misleading in evaluating the risk and, in particular, its uncertainty at low doses. As an alternative approach, we consider a Bayesian semiparametric model that has a connected piece-wise-linear dose-response function with prior distributions having an autoregressive structure among the random slope coefficients defined over closely spaced dose categories. With a simulation study and application to analysis of cancer incidence data among Japanese atomic bomb survivors, we show that this approach can produce smooth and flexible dose-response estimation while reasonably handling the risk uncertainty at low doses and elsewhere. With relatively few assumptions and modeling options to be made by the analyst, the method can be particularly useful in assessing risks associated with low-dose radiation exposures. PMID:26581473

  9. Schur-decomposition for 3D matrix equations and its application in solving radiative discrete ordinates equations discretized by Chebyshev collocation spectral method

    SciTech Connect

    Li Benwen Tian Shuai; Sun Yasong; Hu, Zhang-Mao

    2010-02-20

    The Schur-decomposition for three-dimensional matrix equations is developed and used to directly solve the radiative discrete ordinates equations which are discretized by Chebyshev collocation spectral method. Three methods, say, the spectral methods based on 2D and 3D matrix equation solvers individually, and the standard discrete ordinates method, are presented. The numerical results show the good accuracy of spectral method based on direct solvers. The CPU time cost comparisons against the resolutions between these three methods are made using MATLAB and FORTRAN 95 computer languages separately. The results show that the CPU time cost of Chebyshev collocation spectral method with 3D Schur-decomposition solver is the least, and almost only one thirtieth to one fiftieth CPU time is needed when using the spectral method with 3D Schur-decomposition solver compared with the standard discrete ordinates method.

  10. A 3D Monte Carlo Method for Estimation of Patient-specific Internal Organs Absorbed Dose for (99m)Tc-hynic-Tyr(3)-octreotide Imaging.

    PubMed

    Momennezhad, Mehdi; Nasseri, Shahrokh; Zakavi, Seyed Rasoul; Parach, Ali Asghar; Ghorbani, Mahdi; Asl, Ruhollah Ghahraman

    2016-01-01

    Single-photon emission computed tomography (SPECT)-based tracers are easily available and more widely used than positron emission tomography (PET)-based tracers, and SPECT imaging still remains the most prevalent nuclear medicine imaging modality worldwide. The aim of this study is to implement an image-based Monte Carlo method for patient-specific three-dimensional (3D) absorbed dose calculation in patients after injection of (99m)Tc-hydrazinonicotinamide (hynic)-Tyr(3)-octreotide as a SPECT radiotracer. (99m)Tc patient-specific S values and the absorbed doses were calculated with GATE code for each source-target organ pair in four patients who were imaged for suspected neuroendocrine tumors. Each patient underwent multiple whole-body planar scans as well as SPECT imaging over a period of 1-24 h after intravenous injection of (99m)hynic-Tyr(3)-octreotide. The patient-specific S values calculated by GATE Monte Carlo code and the corresponding S values obtained by MIRDOSE program differed within 4.3% on an average for self-irradiation, and differed within 69.6% on an average for cross-irradiation. However, the agreement between total organ doses calculated by GATE code and MIRDOSE program for all patients was reasonably well (percentage difference was about 4.6% on an average). Normal and tumor absorbed doses calculated with GATE were slightly higher than those calculated with MIRDOSE program. The average ratio of GATE absorbed doses to MIRDOSE was 1.07 ± 0.11 (ranging from 0.94 to 1.36). According to the results, it is proposed that when cross-organ irradiation is dominant, a comprehensive approach such as GATE Monte Carlo dosimetry be used since it provides more reliable dosimetric results.

  11. A 3D Monte Carlo Method for Estimation of Patient-specific Internal Organs Absorbed Dose for (99m)Tc-hynic-Tyr(3)-octreotide Imaging.

    PubMed

    Momennezhad, Mehdi; Nasseri, Shahrokh; Zakavi, Seyed Rasoul; Parach, Ali Asghar; Ghorbani, Mahdi; Asl, Ruhollah Ghahraman

    2016-01-01

    Single-photon emission computed tomography (SPECT)-based tracers are easily available and more widely used than positron emission tomography (PET)-based tracers, and SPECT imaging still remains the most prevalent nuclear medicine imaging modality worldwide. The aim of this study is to implement an image-based Monte Carlo method for patient-specific three-dimensional (3D) absorbed dose calculation in patients after injection of (99m)Tc-hydrazinonicotinamide (hynic)-Tyr(3)-octreotide as a SPECT radiotracer. (99m)Tc patient-specific S values and the absorbed doses were calculated with GATE code for each source-target organ pair in four patients who were imaged for suspected neuroendocrine tumors. Each patient underwent multiple whole-body planar scans as well as SPECT imaging over a period of 1-24 h after intravenous injection of (99m)hynic-Tyr(3)-octreotide. The patient-specific S values calculated by GATE Monte Carlo code and the corresponding S values obtained by MIRDOSE program differed within 4.3% on an average for self-irradiation, and differed within 69.6% on an average for cross-irradiation. However, the agreement between total organ doses calculated by GATE code and MIRDOSE program for all patients was reasonably well (percentage difference was about 4.6% on an average). Normal and tumor absorbed doses calculated with GATE were slightly higher than those calculated with MIRDOSE program. The average ratio of GATE absorbed doses to MIRDOSE was 1.07 ± 0.11 (ranging from 0.94 to 1.36). According to the results, it is proposed that when cross-organ irradiation is dominant, a comprehensive approach such as GATE Monte Carlo dosimetry be used since it provides more reliable dosimetric results. PMID:27134562

  12. A 3D Monte Carlo Method for Estimation of Patient-specific Internal Organs Absorbed Dose for 99mTc-hynic-Tyr3-octreotide Imaging

    PubMed Central

    Momennezhad, Mehdi; Nasseri, Shahrokh; Zakavi, Seyed Rasoul; Parach, Ali Asghar; Ghorbani, Mahdi; Asl, Ruhollah Ghahraman

    2016-01-01

    Single-photon emission computed tomography (SPECT)-based tracers are easily available and more widely used than positron emission tomography (PET)-based tracers, and SPECT imaging still remains the most prevalent nuclear medicine imaging modality worldwide. The aim of this study is to implement an image-based Monte Carlo method for patient-specific three-dimensional (3D) absorbed dose calculation in patients after injection of 99mTc-hydrazinonicotinamide (hynic)-Tyr3-octreotide as a SPECT radiotracer. 99mTc patient-specific S values and the absorbed doses were calculated with GATE code for each source-target organ pair in four patients who were imaged for suspected neuroendocrine tumors. Each patient underwent multiple whole-body planar scans as well as SPECT imaging over a period of 1-24 h after intravenous injection of 99mhynic-Tyr3-octreotide. The patient-specific S values calculated by GATE Monte Carlo code and the corresponding S values obtained by MIRDOSE program differed within 4.3% on an average for self-irradiation, and differed within 69.6% on an average for cross-irradiation. However, the agreement between total organ doses calculated by GATE code and MIRDOSE program for all patients was reasonably well (percentage difference was about 4.6% on an average). Normal and tumor absorbed doses calculated with GATE were slightly higher than those calculated with MIRDOSE program. The average ratio of GATE absorbed doses to MIRDOSE was 1.07 ± 0.11 (ranging from 0.94 to 1.36). According to the results, it is proposed that when cross-organ irradiation is dominant, a comprehensive approach such as GATE Monte Carlo dosimetry be used since it provides more reliable dosimetric results. PMID:27134562

  13. Radiation dose rates from UF{sub 6} cylinders

    SciTech Connect

    Friend, P.J.

    1991-12-31

    This paper describes the results of many studies, both theoretical and experimental, which have been carried out by Urenco over the last 15 years into radiation dose rates from uranium hexafluoride (UF{sub 6}) cylinders. The contents of the cylinder, its history, and the geometry all affect the radiation dose rate. These factors are all examined in detail. Actual and predicted dose rates are compared with levels permitted by IAEA transport regulations.

  14. Total dose performance of radiation hardened voltage regulators and references

    NASA Technical Reports Server (NTRS)

    McClure, S.; Gorelick, J.; Pease, R.; Rax, B.; Ladbury, R.

    2001-01-01

    Total dose test of commercially available radiation hardened bipolar voltage regulators and references show reduced sensitivity to dose rate and varying sensitivity to bias under pressure. Behavior of critical parameters in different dose rate and bias conditions is compared and the impact to hardness assurance methodology is discussed.

  15. Data integration reveals key homeostatic mechanisms following low dose radiation exposure

    SciTech Connect

    Tilton, Susan C.; Matzke, Melissa M.; Sowa, Marianne B.; Stenoien, David L.; Weber, Thomas J.; Morgan, William F.; Waters, Katrina M.

    2015-05-15

    The goal of this study was to define pathways regulated by low dose radiation to understand how biological systems respond to subtle perturbations in their environment and prioritize pathways for human health assessment. Using an in vitro 3-D human full thickness skin model, we have examined the temporal response of dermal and epidermal layers to 10 cGy X-ray using transcriptomic, proteomic, phosphoproteomic and metabolomic platforms. Bioinformatics analysis of each dataset independently revealed potential signaling mechanisms affected by low dose radiation, and integrating data shed additional insight into the mechanisms regulating low dose responses in human tissue. We examined direct interactions among datasets (top down approach) and defined several hubs as significant regulators, including transcription factors (YY1, MYC and CREB1), kinases (CDK2, PLK1) and a protease (MMP2). These data indicate a shift in response across time — with an increase in DNA repair, tissue remodeling and repression of cell proliferation acutely (24–72 h). Pathway-based integration (bottom up approach) identified common molecular and pathway responses to low dose radiation, including oxidative stress, nitric oxide signaling and transcriptional regulation through the SP1 factor that would not have been identified by the individual data sets. Significant regulation of key downstream metabolites of nitrative stress was measured within these pathways. Among the features identified in our study, the regulation of MMP2 and SP1 was experimentally validated. Our results demonstrate the advantage of data integration to broadly define the pathways and networks that represent the mechanisms by which complex biological systems respond to perturbation. - Highlights: • Low dose ionizing radiation altered homeostasis in 3D skin tissue model. • Global gene/protein/metabolite data integrated using complementary statistical approaches • Time and location-specific change in matrix regulation

  16. Radiation dose estimates for copper-64 citrate in man

    SciTech Connect

    Crook, J.E.; Carlton, J.E.; Stabin, M.; Watson, E.

    1985-01-01

    Tumor imaging agents suitable for use with positron emission tomographs are constantly sought. We have performed studies with animal-tumor-bearing models that have demonstrated the rapid uptake of copper-64. The radiation dose estimates for man indicate that the intravenous administration of 7.0 mCi would result in radiation doses to the kidney of 9.8 to 10.5 rads with other organs receiving substantially less radiation. 5 refs., 3 tabs.

  17. A Biodosimeter for Multiparametric Determination of Radiation Dose, Radiation Quality, and Radiation Risk

    NASA Technical Reports Server (NTRS)

    Richmond, Robert; Cruz, Angela; Jansen, Heather; Bors, Karen

    2003-01-01

    Predicting risk of human cancer following exposure of an individual or a population to ionizing radiation is challenging. To an approximation, this is because uncertainties of uniform absorption of dose and the uniform processing of dose-related damage at the cellular level within a complex set of biological variables degrade the confidence of predicting the delayed expression of cancer as a relatively rare event. Cellular biodosimeters that simultaneously report: 1) the quantity of absorbed dose after exposure to ionizing radiation, 2) the quality of radiation delivering that dose, and 3) the risk of developing cancer by the cells absorbing that dose would therefore be useful. An approach to such a multiparametric biodosimeter will be reported. This is the demonstration of a dose responsive field effect of enhanced expression of keratin 18 (K18) in cultures of human mammary epithelial cells irradiated with cesium-1 37 gamma-rays. Dose response of enhanced K18 expression was experimentally extended over a range of 30 to 90 cGy for cells evaluated at mid-log phase. K18 has been reported to be a marker for tumor staging and for apoptosis, and thereby serves as an example of a potential marker for cancer risk, where the reality of such predictive value would require additional experimental development. Since observed radiogenic increase in expression of K18 is a field effect, ie., chronically present in all cells of the irradiated population, it may be hypothesized that K18 expression in specific cells absorbing particulate irradiation, such as the high-LET-producing atomic nuclei of space radiation, will report on both the single-cell distributions of those particles amongst cells within the exposed population, and that the relatively high dose per cell delivered by densely ionizing tracks of those intersecting particles will lead to cell-specific high-expression levels of K18, thereby providing analytical end points that may be used to resolve both the quantity and

  18. SCCT guidelines on radiation dose and dose-optimization strategies in cardiovascular CT

    PubMed Central

    Halliburton, Sandra S.; Abbara, Suhny; Chen, Marcus Y.; Gentry, Ralph; Mahesh, Mahadevappa; Raff, Gilbert L.; Shaw, Leslee J.; Hausleiter, Jörg

    2012-01-01

    Over the last few years, computed tomography (CT) has developed into a standard clinical test for a variety of cardiovascular conditions. The emergence of cardiovascular CT during a period of dramatic increase in radiation exposure to the population from medical procedures and heightened concern about the subsequent potential cancer risk has led to intense scrutiny of the radiation burden of this new technique. This has hastened the development and implementation of dose reduction tools and prompted closer monitoring of patient dose. In an effort to aid the cardiovascular CT community in incorporating patient-centered radiation dose optimization and monitoring strategies into standard practice, the Society of Cardiovascular Computed Tomography has produced a guideline document to review available data and provide recommendations regarding interpretation of radiation dose indices and predictors of risk, appropriate use of scanner acquisition modes and settings, development of algorithms for dose optimization, and establishment of procedures for dose monitoring. PMID:21723512

  19. Intensity modulating and other radiation therapy devices for dose painting.

    PubMed

    Galvin, James M; De Neve, Wilfried

    2007-03-10

    The introduction of intensity-modulated radiation therapy (IMRT) in the early 1990s created the possibility of generating dramatically improved dose distributions that could be tailored to fit a complex geometric arrangement of targets that push against or even surround healthy critical structures. IMRT is a new treatment paradigm that goes beyond the capabilities of the earlier technology called three-dimensional radiation therapy (3DCRT). IMRT took the older approach of using fields that conformed to the silhouette of the target to deliver a relatively homogeneous intensity of radiation and separated the conformal fields into many subfields so that intensity could be varied to better control the final dose distribution. This technique makes it possible to generate radiation dose clouds that have indentations in their surface. Initially, this technology was mainly used to avoid and thus control the dose delivered to critical structures so that they are not seriously damaged in the process of irradiating nearby targets to an appropriately high dose. Avoidance of critical structures allowed homogeneous dose escalation that led to improved local control for small tumors. However, the normal tissue component of large tumors often prohibits homogeneous dose escalation. A newer concept of dose-painting IMRT is aimed at exploiting inhomogeneous dose distributions adapted to tumor heterogeneity. Tumor regions of increased radiation resistance receive escalated dose levels, whereas radiation-sensitive regions receive conventional or even de-escalated dose levels. Dose painting relies on biologic imaging such as positron emission tomography, functional magnetic resonance imaging, and magnetic resonance spectroscopy. This review will describe the competing techologies for dose painting with an emphasis on their commonalities.

  20. Patient radiation doses for electron beam CT.

    PubMed

    Castellano, Isabel A; Dance, David R; Skinner, Claire L; Evans, Phil M

    2005-08-01

    A Monte Carlo based computer model has been developed for electron beam computed tomography (EBCT) to calculate organ and effective doses in a humanoid hermaphrodite phantom. The program has been validated by comparison with experimental measurements of the CT dose index in standard head and body CT dose phantoms; agreement to better than 8% has been found. The robustness of the model has been established by varying the input parameters. The amount of energy deposited at the 12:00 position of the standard body CT dose phantom is most susceptible to rotation angle, whereas that in the central region is strongly influenced by the beam quality. The program has been used to investigate the changes in organ absorbed doses arising from partial and full rotation about supine and prone subjects. Superficial organs experience the largest changes in absorbed dose with a change in subject orientation and for partial rotation. Effective doses for typical clinical scan protocols have been calculated and compared with values obtained using existing dosimetry techniques based on full rotation. Calculations which make use of Monte Carlo conversion factors for the scanner that best matches the EBCT dosimetric characteristics consistently overestimate the effective dose in supine subjects by typically 20%, and underestimate the effective dose in prone subjects by typically 13%. These factors can therefore be used to correct values obtained in this way. Empirical dosimetric techniques based on the dose-length product yield errors as great as 77%. This is due to the sensitivity of the dose length product to individual scan lengths. The magnitude of these errors is reduced if empirical dosimetric techniques based on the average absorbed dose in the irradiated volume (CTDIvol) are used. Therefore conversion factors specific to EBCT have been calculated to convert the CTDIvol to an effective dose. PMID:16193782

  1. Patient radiation doses for electron beam CT

    SciTech Connect

    Castellano, Isabel A.; Dance, David R.; Skinner, Claire L.; Evans, Phil M.

    2005-08-15

    A Monte Carlo based computer model has been developed for electron beam computed tomography (EBCT) to calculate organ and effective doses in a humanoid hermaphrodite phantom. The program has been validated by comparison with experimental measurements of the CT dose index in standard head and body CT dose phantoms; agreement to better than 8% has been found. The robustness of the model has been established by varying the input parameters. The amount of energy deposited at the 12:00 position of the standard body CT dose phantom is most susceptible to rotation angle, whereas that in the central region is strongly influenced by the beam quality. The program has been used to investigate the changes in organ absorbed doses arising from partial and full rotation about supine and prone subjects. Superficial organs experience the largest changes in absorbed dose with a change in subject orientation and for partial rotation. Effective doses for typical clinical scan protocols have been calculated and compared with values obtained using existing dosimetry techniques based on full rotation. Calculations which make use of Monte Carlo conversion factors for the scanner that best matches the EBCT dosimetric characteristics consistently overestimate the effective dose in supine subjects by typically 20%, and underestimate the effective dose in prone subjects by typically 13%. These factors can therefore be used to correct values obtained in this way. Empirical dosimetric techniques based on the dose-length product yield errors as great as 77%. This is due to the sensitivity of the dose length product to individual scan lengths. The magnitude of these errors is reduced if empirical dosimetric techniques based on the average absorbed dose in the irradiated volume (CTDI{sub vol}) are used. Therefore conversion factors specific to EBCT have been calculated to convert the CTDI{sub vol} to an effective dose.

  2. Detecting Radiation-Induced Injury Using Rapid 3D Variogram Analysis of CT Images of Rat Lungs

    SciTech Connect

    Jacob, Rick E.; Murphy, Mark K.; Creim, Jeffrey A.; Carson, James P.

    2013-10-01

    A new heterogeneity analysis approach to discern radiation-induced lung damage was tested on CT images of irradiated rats. The method, combining octree decomposition with variogram analysis, demonstrated a significant correlation with radiation exposure levels, whereas conventional measurements and pulmonary function tests did not. The results suggest the new approach may be highly sensitive for assessing even subtle radiation-induced changes

  3. Low-dose radiation: a cause of breast cancer

    SciTech Connect

    Land, C.E.

    1980-08-15

    It is likely that the breast is the organ most sensitive to radiation carcinogenesis in postpubertal women. Studies of different exposed populations have yielded remarkably consistent results, in spite of wide differences in underlying breast cancer rates and conditions of exposure. Excess risk is approximately proportional to dose, and is relatively independent of ionization density and fractionization of dose. This implies that the risk associated with low-dose exposures to ionizing radiation can be estimated with some confidence from higher-dose data. Excess risk is heavily dependent on age at exposure but relatively independent of population differences in normal risk. The temporal patterns after exposure of both radiation-induced and naturally occurring breast cancer are similar, suggesting a strong influence of factors other than radiation on radiation-induced breast cancer. Uncertainties remain about risks from exposures before puberty and after menopause.

  4. 3-D radiative transfer in large-eddy simulations - experiences coupling the TenStream solver to the UCLA-LES

    NASA Astrophysics Data System (ADS)

    Jakub, Fabian; Mayer, Bernhard

    2016-04-01

    The recently developed 3-D TenStream radiative transfer solver was integrated into the University of California, Los Angeles large-eddy simulation (UCLA-LES) cloud-resolving model. This work documents the overall performance of the TenStream solver as well as the technical challenges of migrating from 1-D schemes to 3-D schemes. In particular the employed Monte Carlo spectral integration needed to be reexamined in conjunction with 3-D radiative transfer. Despite the fact that the spectral sampling has to be performed uniformly over the whole domain, we find that the Monte Carlo spectral integration remains valid. To understand the performance characteristics of the coupled TenStream solver, we conducted weak as well as strong-scaling experiments. In this context, we investigate two matrix preconditioner: geometric algebraic multigrid preconditioning (GAMG) and block Jacobi incomplete LU (ILU) factorization and find that algebraic multigrid preconditioning performs well for complex scenes and highly parallelized simulations. The TenStream solver is tested for up to 4096 cores and shows a parallel scaling efficiency of 80-90 % on various supercomputers. Compared to the widely employed 1-D delta-Eddington two-stream solver, the computational costs for the radiative transfer solver alone increases by a factor of 5-10.

  5. Using 1D theory to understand 3D stagnation of a wire-array Z pinch in the absence of radiation

    NASA Astrophysics Data System (ADS)

    Yu, Edmund

    2015-11-01

    Many high-energy-density systems implode towards the axis of symmetry, where it collides on itself, forming a hot plasma. However, experiments show these imploding plasmas develop three-dimensional (3D) structures. As a result, the plasma cannot completely dissipate its kinetic energy at stagnation, instead retaining significant 3D flow. A useful tool for understanding the effects of this residual flow is 3D simulation, but the amount and complexity of information can be daunting. To address this problem, we explore the connection between 3D simulation and one-dimensional (1D) theory. Such a connection, if it exists, is mutually beneficial: 1D theory can provide a clear picture of the underlying dynamics of 3D stagnation. On the other hand, deviations between theory and simulation suggest how 1D theory must be modified to account for 3D effects. In this work, we focus on a 3D, magnetohydrodynamic simulation of a compact wire-array Z pinch. To provide a simpler background against which to test our ideas, we artificially turn off radiation during the stagnation phase. Examination of the initial accumulation of mass on axis reveals oblique collision between jets, shock accretion, and vortex formation. Despite evidence for shock-dominated stagnation, a 1D shockless stagnation solution is more appropriate for describing the global dynamics, in that it reproduces the increase of on-axis density with time. However, the 1D solution must be modified to account for 3D effects: the flows suggest enhanced thermal transport as well as centrifugal force. Upon reaching peak compression, the stagnation transitions to a second phase, in which the high-pressure core on axis expands outward into the remaining imploding plasma. During this phase, a 1D shock solution describes the growth of the shock accretion region, as well as the decrease of on-axis density with time. However, the effect of 3D flows is still present: the on-axis temperature does not cool during expansion, which

  6. Commentary 2 to Cox and Little: radiation-induced oncogenic transformation: the interplay between dose, dose protraction, and radiation quality

    NASA Technical Reports Server (NTRS)

    Brenner, D. J.; Hall, E. J.

    1992-01-01

    There is now a substantial body of evidence for end points such as oncogenic transformation in vitro, and carcinogenesis and life shortening in vivo, suggesting that dose protraction leads to an increase in effectiveness relative to a single, acute exposure--at least for radiations of medium linear energy transfer (LET) such as neutrons. Table I contains a summary of the pertinent data from studies in which the effect is seen. [table: see text] This phenomenon has come to be known as the "inverse dose rate effect," because it is in marked contrast to the situation at low LET, where protraction in delivery of a dose of radiation, either by fractionation or low dose rate, results in a decreased biological effect; additionally, at medium and high LET, for radiobiological end points such as clonogenic survival, the biological effectiveness is independent of protraction. The quantity and quality of the published reports on the "inverse dose rate effect" leaves little doubt that the effect is real, but the available evidence indicates that the magnitude of the effect is due to a complex interplay between dose, dose rate, and radiation quality. Here, we first summarize the available data on the inverse dose rate effect and suggest that it follows a consistent pattern in regard to dose, dose rate, and radiation quality; second, we describe a model that predicts these features; and, finally, we describe the significance of the effect for radiation protection.

  7. Ultraviolet Radiation Dose National Standard of México

    NASA Astrophysics Data System (ADS)

    Cardoso, R.; Rosas, E.

    2006-09-01

    We present the Ultraviolet (UV) Radiation Dose National Standard for México. The establishment of this measurement reference at Centro Nacional de Metrología (CENAM) eliminates the need of contacting foreign suppliers in the search for traceability towards the SI units when calibrating instruments at 365 nm. Further more, the UV Radiation Dose National Standard constitutes a highly accurate and reliable source for the UV radiation dose measurements performed in medical and cosmetic treatments as in the the food and pharmaceutics disinfection processes, among other.

  8. CT radiation dose optimization and estimation: an update for radiologists.

    PubMed

    Goo, Hyun Woo

    2012-01-01

    In keeping with the increasing utilization of CT examinations, the greater concern about radiation hazards from examinations has been addressed. In this regard, CT radiation dose optimization has been given a great deal of attention by radiologists, referring physicians, technologists, and physicists. Dose-saving strategies are continuously evolving in terms of imaging techniques as well as dose management. Consequently, regular updates of this issue are necessary especially for radiologists who play a pivotal role in this activity. This review article will provide an update on how we can optimize CT dose in order to maximize the benefit-to-risk ratio of this clinically useful diagnostic imaging method. PMID:22247630

  9. The Effect of Flattening Filter Free on Three-dimensional Conformal Radiation Therapy (3D-CRT), Intensity-Modulated Radiation Therapy (IMRT), and Volumetric Modulated Arc Therapy (VMAT) Plans for Metastatic Brain Tumors from Non-small Cell Lung Cancer.

    PubMed

    Shi, Li-Wan; Lai, You-Qun; Lin, Qin; Ha, Hui-Ming; Fu, Li-Rong

    2015-07-01

    Flattening filter free (FFF) may affect outcome measures of radiotherapy. The objective of this study is to compare the dosimetric parameters in three types of radiotherapy plans, three-dimensional conformal radiation therapy (3D-CRT), intensity-modulated radiation therapy (IMRT), and volumetric modulated arc therapy (VMAT), with or without the flattening filter (FF), developed for the treatment of metastatic brain tumors from non-small cell lung cancer (NSCLC). From July 2013 to October 2013, 3D-CRT, IMRT, and VMAT treatment plans were designed using 6 MV and 10 MV, with and without FF, for 10 patients with brain metastasis from NSCLC. The evaluation of the treatment plans included homogeneity index (HI), conformity index (CI), monitor units (MU), mean dose (Dmean), treatment time, and the influence of FFF on volumes. There was no difference in CI or HI between FFF and FF models with 3D-CRT, IMRT, and VMAT plans. At 6 MV, a lower Dmean was seen in the FFF model of 3D-CRT and in the VMAT plan at 10 MV. In the IMRT 6 MV, IMRT 10 MV, and VMAT 10 MV plans, higher MUs were seen in the FFF models. FFF treatments are similar in quality to FF plans, generally lead to more monitor units, and are associated with shorter treatment times. FFF plans ranked by the order of superiority in terms of a time advantage are VMAT, 3D-CRT, and IMRT.

  10. The Effect of Flattening Filter Free on Three-dimensional Conformal Radiation Therapy (3D-CRT), Intensity-Modulated Radiation Therapy (IMRT), and Volumetric Modulated Arc Therapy (VMAT) Plans for Metastatic Brain Tumors from Non-small Cell Lung Cancer.

    PubMed

    Shi, Li-Wan; Lai, You-Qun; Lin, Qin; Ha, Hui-Ming; Fu, Li-Rong

    2015-07-01

    Flattening filter free (FFF) may affect outcome measures of radiotherapy. The objective of this study is to compare the dosimetric parameters in three types of radiotherapy plans, three-dimensional conformal radiation therapy (3D-CRT), intensity-modulated radiation therapy (IMRT), and volumetric modulated arc therapy (VMAT), with or without the flattening filter (FF), developed for the treatment of metastatic brain tumors from non-small cell lung cancer (NSCLC). From July 2013 to October 2013, 3D-CRT, IMRT, and VMAT treatment plans were designed using 6 MV and 10 MV, with and without FF, for 10 patients with brain metastasis from NSCLC. The evaluation of the treatment plans included homogeneity index (HI), conformity index (CI), monitor units (MU), mean dose (Dmean), treatment time, and the influence of FFF on volumes. There was no difference in CI or HI between FFF and FF models with 3D-CRT, IMRT, and VMAT plans. At 6 MV, a lower Dmean was seen in the FFF model of 3D-CRT and in the VMAT plan at 10 MV. In the IMRT 6 MV, IMRT 10 MV, and VMAT 10 MV plans, higher MUs were seen in the FFF models. FFF treatments are similar in quality to FF plans, generally lead to more monitor units, and are associated with shorter treatment times. FFF plans ranked by the order of superiority in terms of a time advantage are VMAT, 3D-CRT, and IMRT. PMID:26011493

  11. Multi-wavelength simulations of atmospheric radiation from Io with a 3-D spherical-shell backward Monte Carlo radiative transfer model

    NASA Astrophysics Data System (ADS)

    Gratiy, Sergey L.; Walker, Andrew C.; Levin, Deborah A.; Goldstein, David B.; Varghese, Philip L.; Trafton, Laurence M.; Moore, Chris H.

    2010-05-01

    Conflicting observations regarding the dominance of either sublimation or volcanism as the source of the atmosphere on Io and disparate reports on the extent of its spatial distribution and the absolute column abundance invite the development of detailed computational models capable of improving our understanding of Io's unique atmospheric structure and origin. Improving upon previous models, Walker et al. (Walker, A.C., Gratiy, S.L., Levin, D.A., Goldstein, D.B., Varghese, P.L., Trafton, L.M., Moore, C.H., Stewart, B. [2009]. Icarus) developed a fully 3-D global rarefied gas dynamics model of Io's atmosphere including both sublimation and volcanic sources of SO 2 gas. The fidelity of the model is tested by simulating remote observations at selected wavelength bands and comparing them to the corresponding astronomical observations of Io's atmosphere. The simulations are performed with a new 3-D spherical-shell radiative transfer code utilizing a backward Monte Carlo method. We present: (1) simulations of the mid-infrared disk-integrated spectra of Io's sunlit hemisphere at 19 μm, obtained with TEXES during 2001-2004; (2) simulations of disk-resolved images at Lyman- α obtained with the Hubble Space Telescope (HST), Space Telescope Imaging Spectrograph (STIS) during 1997-2001; and (3) disk-integrated simulations of emission line profiles in the millimeter wavelength range obtained with the IRAM-30 m telescope in October-November 1999. We found that the atmospheric model generally reproduces the longitudinal variation in band depth from the mid-infrared data; however, the best match is obtained when our simulation results are shifted ˜30° toward lower orbital longitudes. The simulations of Lyman- α images do not reproduce the mid-to-high latitude bright patches seen in the observations, suggesting that the model atmosphere sustains columns that are too high at those latitudes. The simulations of emission line profiles in the millimeter spectral region support

  12. Space Radiation Quality Factors and the Delta Ray Dose and Dose-Rate Reduction Effectiveness Factor.

    PubMed

    Cucinotta, Francis A; Cacao, Eliedonna; Alp, Murat

    2016-03-01

    In this paper, the authors recommend that the dose and dose-rate effectiveness factor used for space radiation risk assessments should be based on a comparison of the biological effects of energetic electrons produced along a cosmic ray particles path in low fluence exposures to high dose-rate gamma-ray exposures of doses of about 1 Gy. Methods to implement this approach are described.

  13. Space Radiation Quality Factors and the Delta Ray Dose and Dose-Rate Reduction Effectiveness Factor.

    PubMed

    Cucinotta, Francis A; Cacao, Eliedonna; Alp, Murat

    2016-03-01

    In this paper, the authors recommend that the dose and dose-rate effectiveness factor used for space radiation risk assessments should be based on a comparison of the biological effects of energetic electrons produced along a cosmic ray particles path in low fluence exposures to high dose-rate gamma-ray exposures of doses of about 1 Gy. Methods to implement this approach are described. PMID:26808878

  14. Automation and validation of micronucleus detection in the 3D EpiDerm™ human reconstructed skin assay and correlation with 2D dose responses.

    PubMed

    Chapman, K E; Thomas, A D; Wills, J W; Pfuhler, S; Doak, S H; Jenkins, G J S

    2014-05-01

    Recent restrictions on the testing of cosmetic ingredients in animals have resulted in the need to test the genotoxic potential of chemicals exclusively in vitro prior to licensing. However, as current in vitro tests produce some misleading positive results, sole reliance on such tests could prevent some chemicals with safe or beneficial exposure levels from being marketed. The 3D human reconstructed skin micronucleus (RSMN) assay is a promising new in vitro approach designed to assess genotoxicity of dermally applied compounds. The assay utilises a highly differentiated in vitro model of the human epidermis. For the first time, we have applied automated micronucleus detection to this assay using MetaSystems Metafer Slide Scanning Platform (Metafer), demonstrating concordance with manual scoring. The RSMN assay's fixation protocol was found to be compatible with the Metafer, providing a considerably shorter alternative to the recommended Metafer protocol. Lowest observed genotoxic effect levels (LOGELs) were observed for mitomycin-C at 4.8 µg/ml and methyl methanesulfonate (MMS) at 1750 µg/ml when applied topically to the skin surface. In-medium dosing with MMS produced a LOGEL of 20 µg/ml, which was very similar to the topical LOGEL when considering the total mass of MMS added. Comparisons between 3D medium and 2D LOGELs resulted in a 7-fold difference in total mass of MMS applied to each system, suggesting a protective function of the 3D microarchitecture. Interestingly, hydrogen peroxide (H2O2), a positive clastogen in 2D systems, tested negative in this assay. A non-genotoxic carcinogen, methyl carbamate, produced negative results, as expected. We also demonstrated expression of the DNA repair protein N-methylpurine-DNA glycosylase in EpiDerm™. Our preliminary validation here demonstrates that the RSMN assay may be a valuable follow-up to the current in vitro test battery, and together with its automation, could contribute to minimising unnecessary in vivo

  15. Microelectronic Chips For Radiation-Dose Tests

    NASA Technical Reports Server (NTRS)

    Buehler, Martin G.; Lin, Yu-Sang; Ray, Kevin P.; Sokoloski, Martin M.

    1993-01-01

    Custom-made single-chip complementary metal-oxide semiconductor (CMOS) integrated circuit designed to reveal effects of ionizing radiation on itself and similar integrated circuits. Potential terrestrial use: safety-oriented monitoring of ionizing radiation at nuclear powerplants, nuclear-waste sites, and the like.

  16. Development and application of a 3-D geometry/mass model for LDEF satellite ionizing radiation assessments

    NASA Technical Reports Server (NTRS)

    Colborn, B. L.; Armstong, T. W.

    1993-01-01

    A three-dimensional geometry and mass model of the Long Duration Exposure Facility (LDEF) spacecraft and experiment trays was developed for use in predictions and data interpretation related to ionizing radiation measurements. The modeling approach, level of detail incorporated, example models for specific experiments and radiation dosimeters, and example applications of the model are described.

  17. Clinical Applications of 3-D Conformal Radiotherapy

    NASA Astrophysics Data System (ADS)

    Miralbell, Raymond

    Although a significant improvement in cancer cure (i.e. 20% increment) has been obtained in the last 2-3 decades, 30-40% of patients still fail locally after curative radiotherapy. In order to improve local tumor control rates with radiotherapy high doses to the tumor volume are frequently necessary. Three-dimensional conformal radiation therapy (3-D CRT) is used to denote a spectrum of radiation planning and delivery techniques that rely on three-dimensional imaging to define the target (tumor) and to distinguish it from normal tissues. Modern, high-precision radiotherapy (RT) techniques are needed in order to implement the goal of optimal tumor destruction delivering minimal dose to the non-target normal tissues. A better target definition is nowadays possible with contemporary imaging (computerized tomography, magnetic resonance imaging, and positron emission tomography) and image registration technology. A highly precise dose distributions can be obtained with optimal 3-D CRT treatment delivery techniques such as stereotactic RT, intensity modulated RT (IMRT), or protontherapy (the latter allowing for in-depth conformation). Patient daily set-up repositioning and internal organ immobilization systems are necessary before considering to undertake any of the above mentioned high-precision treatment approaches. Prostate cancer, brain tumors, and base of skull malignancies are among the sites most benefitting of dose escalation approaches. Nevertheless, a significant dose reduction to the normal tissues in the vicinity of the irradiated tumor also achievable with optimal 3-D CRT may also be a major issue in the treatment of pediatric tumors in order to preserve growth, normal development, and to reduce the risk of developing radiation induced diseases such as cancer or endocrinologic disorders.

  18. A graphical user interface (GUI) toolkit for the calculation of three-dimensional (3D) multi-phase biological effective dose (BED) distributions including statistical analyses.

    PubMed

    Kauweloa, Kevin I; Gutierrez, Alonso N; Stathakis, Sotirios; Papanikolaou, Niko; Mavroidis, Panayiotis

    2016-07-01

    A toolkit has been developed for calculating the 3-dimensional biological effective dose (BED) distributions in multi-phase, external beam radiotherapy treatments such as those applied in liver stereotactic body radiation therapy (SBRT) and in multi-prescription treatments. This toolkit also provides a wide range of statistical results related to dose and BED distributions. MATLAB 2010a, version 7.10 was used to create this GUI toolkit. The input data consist of the dose distribution matrices, organ contour coordinates, and treatment planning parameters from the treatment planning system (TPS). The toolkit has the capability of calculating the multi-phase BED distributions using different formulas (denoted as true and approximate). Following the calculations of the BED distributions, the dose and BED distributions can be viewed in different projections (e.g. coronal, sagittal and transverse). The different elements of this toolkit are presented and the important steps for the execution of its calculations are illustrated. The toolkit is applied on brain, head & neck and prostate cancer patients, who received primary and boost phases in order to demonstrate its capability in calculating BED distributions, as well as measuring the inaccuracy and imprecision of the approximate BED distributions. Finally, the clinical situations in which the use of the present toolkit would have a significant clinical impact are indicated.

  19. Performance evaluation of an improved optical computed tomography polymer gel dosimeter system for 3D dose verification of static and dynamic phantom deliveries

    SciTech Connect

    Lopatiuk-Tirpak, O.; Langen, K. M.; Meeks, S. L.; Kupelian, P. A.; Zeidan, O. A.; Maryanski, M. J.

    2008-09-15

    The performance of a next-generation optical computed tomography scanner (OCTOPUS-5X) is characterized in the context of three-dimensional gel dosimetry. Large-volume (2.2 L), muscle-equivalent, radiation-sensitive polymer gel dosimeters (BANG-3) were used. Improvements in scanner design leading to shorter acquisition times are discussed. The spatial resolution, detectable absorbance range, and reproducibility are assessed. An efficient method for calibrating gel dosimeters using the depth-dose relationship is applied, with photon- and electron-based deliveries yielding equivalent results. A procedure involving a preirradiation scan was used to reduce the edge artifacts in reconstructed images, thereby increasing the useful cross-sectional area of the dosimeter by nearly a factor of 2. Dose distributions derived from optical density measurements using the calibration coefficient show good agreement with the treatment planning system simulations and radiographic film measurements. The feasibility of use for motion (four-dimensional) dosimetry is demonstrated on an example comparing dose distributions from static and dynamic delivery of a single-field photon plan. The capability to visualize three-dimensional dose distributions is also illustrated.

  20. KERMA-based radiation dose management system for real-time patient dose measurement

    NASA Astrophysics Data System (ADS)

    Kim, Kyo-Tae; Heo, Ye-Ji; Oh, Kyung-Min; Nam, Sang-Hee; Kang, Sang-Sik; Park, Ji-Koon; Song, Yong-Keun; Park, Sung-Kwang

    2016-07-01

    Because systems that reduce radiation exposure during diagnostic procedures must be developed, significant time and financial resources have been invested in constructing radiation dose management systems. In the present study, the characteristics of an existing ionization-based system were compared to those of a system based on the kinetic energy released per unit mass (KERMA). Furthermore, the feasibility of using the KERMA-based system for patient radiation dose management was verified. The ionization-based system corrected the effects resulting from radiation parameter perturbations in general radiography whereas the KERMA-based system did not. Because of this difference, the KERMA-based radiation dose management system might overestimate the patient's radiation dose due to changes in the radiation conditions. Therefore, if a correction factor describing the correlation between the systems is applied to resolve this issue, then a radiation dose management system can be developed that will enable real-time measurement of the patient's radiation exposure and acquisition of diagnostic images.

  1. Predictors for Rectal and Intestinal Acute Toxicities During Prostate Cancer High-Dose 3D-CRT: Results of a Prospective Multicenter Study

    SciTech Connect

    Vavassori, Vittorio; Fiorino, Claudio . E-mail: fiorino.claudio@hsr.it; Rancati, Tiziana; Magli, Alessandro; Fellin, Gianni; Baccolini, Michela; Bianchi, Carla; Cagna, Emanuela; Mauro, Flora A.; Monti, Angelo F.; Munoz, Fernando; Stasi, Michele; Franzone, Paola; Valdagni, Riccardo

    2007-04-01

    Purpose: To find predictors for rectal and intestinal acute toxicity in patients with prostate cancer treated with {>=}70 Gy conformal radiotherapy. Methods and Materials: Between July 2002 and March 2004, 1,132 patients were entered into a cooperative study (AIROPROS01-02). Toxicity was scored using the Radiation Therapy Oncology Group/European Organization for Research and Treatment of Cancer scale and by considering the changes (before and after treatment) of the scores of a self-administered questionnaire on rectal/intestinal toxicity. The correlation with a number of parameters was assessed by univariate and multivariate analyses. Concerning the questionnaire, only moderate/severe complications were considered. Results: Of 1,132 patients, 1,123 were evaluable. Of these patients, 375, 265, and 28 had Grade 1, 2, and 3 Radiation Therapy Oncology Group/European Organization for Research and Treatment of Cancer toxicity, respectively. The mean rectal dose was the most predictive parameter (p = 0.0004; odds ratio, 1.035) for Grade 2 or worse toxicity, and the use of anticoagulants/antiaggregants (p 0.02; odds ratio, 0.63) and hormonal therapy (p = 0.04, odds ratio, 0.65) were protective. The questionnaire-based scoring revealed that a greater mean rectal dose was associated with a greater risk of bleeding; larger irradiated volumes were associated with frequency, tenesmus, incontinence, and bleeding; hormonal therapy was protective against frequency and tenesmus; hemorrhoids were associated with a greater risk of tenesmus and bleeding; and diabetes associated highly with diarrhea. Conclusion: The mean rectal dose correlated with acute rectal/intestinal toxicity in three-dimensional conformal radiotherapy for prostate cancer, and hormonal therapy and the use of anticoagulants/antiaggregants were protective. According to the moderate/severe injury scores on the self-assessed questionnaire, several clinical and dose-volume parameters were independently predictive for

  2. Galactic cosmic radiation doses to astronauts outside the magnetosphere

    SciTech Connect

    Letaw, J.R.

    1987-12-06

    The dose and dose equivalent from galactic cosmic radiation outside the magnetosphere were computed. The principal radiation components considered include primary cosmic rays, spallation fragments of the heavy ions, and secondary products (protons, neutrons, alphas, and recoil nuclei) from interactions in tissue. Three mission environments were considered: free space, the lunar surface, and the martian surface. The annual dose equivalents to the blood-forming organs in these environments are approximately 500 mSv, 250 mSv, and 120 mSv, respectively (1 mSv = 0.1 rem). The dose on the lunar surface is one-half of free space because there is only a single hemisphere of exposure. The dose on the martian surface is half again the dose on the moon because of the shielding provided by a thin, carbon dioxide atmosphere. Dose versus aluminum shielding thickness functions have been computed for the free space exposure. Galactic cosmic radiation is energetic and highly penetrating. 30 cm of aluminum shielding reduces the dose equivalent 25% to 40% (depending on the phase of the solar cycle). Aiming for conformity with the draft NCRP annual dose limit for space station crew members, which is 500 mSv/yr, we recommend 7.5 cm of aluminum shielding in all habitable areas of spacecraft designed for long-duration missions outside Earth's magnetosphere. This shielding thickness reduces the galactic cosmic ray dose and diminishes the risk to astronauts from energetic particle events.

  3. Comparison of 1D stagnation solutions to 3D wire-array Z pinch simulations in absence of radiation

    NASA Astrophysics Data System (ADS)

    Yu, Edmund; Velikovich, Alexander; Maron, Yitzhak

    2013-10-01

    In the idealized picture of a Z pinch, a cylindrically symmetric plasma shell implodes towards axis. In this 1D (radial) picture, the resulting stagnation is very efficient: all the kinetic energy of the shell converts to internal energy, as for instance in the Noh shock solution or the homogeneous stagnation flow. If we generalize the problem to 2D by deforming the shell from perfectly circular to oblate, the resulting stagnation will not be as efficient. As in the Hiemenz flow, in which a jet of fluid strikes a rigid flat boundary and squirts out to the sides, the more complicated flows allowed in 2D allow flow kinetic energy to redirect rather than stagnate. With this picture in mind, we might expect the stagnation of a wire-array Z pinch, which in actuality forms a highly distorted 3D imploding plasma, to dissipate its kinetic energy inefficiently due to the lack of symmetry, and be indescribable by means of the idealized 1D stagnation solutions. On the other hand, one might expect that if the imploding plasma is sufficiently messy, the non-uniformities might ``wash out,'' allowing a quasi-1D description of the averaged quantities of plasma. In this work we explore this idea, comparing predictions of 1D stagnation solutions with 3D simulation. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC0 4-94AL85000.

  4. Strategies for reduction of radiation dose in cardiac multislice CT.

    PubMed

    Paul, Jean-François; Abada, Hicham T

    2007-08-01

    Because cardiac computed tomography (CT) (mainly coronary CT angiography) is a very promising technique, used more and more for coronary artery evaluation, the benefits and risks of this new low-invasive technique must be balanced. Radiation dose is a major concern for coronary CT angiography, especially in case of repeated examinations or in particular subgroups of patients (for example young female patients). Radiation dose to patient tends to increase from 16- to 64-slice CT. Radiation exposure in ECG-gated acquisitions may reach up to 40 mSv; considerable differences are attributable to the performance of CT machines, to technical dose-sparing tools, but also to radiological habits. Setting radiation dose at the lowest level possible should be a constant goal for the radiologist. Current technological tools are detailed in regard to their efficiency. Optimisation is necessary, by a judicious use of technological tools and also by individual adaptation of kV or mAs. This paper reviews the different current strategies for radiation dose reduction, keeping image quality constant. Data from the literature are discussed, and future technological developments are considered in regards to radiation dose reduction. The particular case of paediatric patients with congenital heart disease is also addressed.

  5. Overview of ICRP Committee 2 'Doses from Radiation Exposure'.

    PubMed

    Harrison, J

    2015-06-01

    Over many years, Committee 2 of the International Commission on Radiological Protection (ICRP) has provided sets of dose coefficients to allow users to evaluate equivalent and effective doses for intakes of radionuclides or exposure to external radiation for comparison with dose limits, constraints, and reference levels as recommended by ICRP. Following the 2007 Recommendations, Committee 2 and its task groups are engaged in a substantial programme of work to provide new dose coefficients for various conditions of radiation exposure. The methodology being applied in the calculation of doses can be regarded as state-of-the-art in terms of the biokinetic models used to describe the behaviour of inhaled and ingested radionuclides, and the dosimetric models used to model radiation transport for external and internal exposures. The level of sophistication of these models is greater than required for calculation of the protection quantities with their inherent simplifications and approximations, which were introduced necessarily, for example by the use of radiation and tissue weighting factors. However, ICRP is at the forefront of developments in this area, and its models are used for scientific as well as protection purposes. This overview provides an outline of recent work and future plans, including publications on dose coefficients for adults, children, and in-utero exposures, with new dosimetric phantoms in each case. The Committee has also recently finished a report on radiation exposures of astronauts in space, and is working with members of the other ICRP committees on the development of advice on the use of effective dose.

  6. Radiation dose modeling using IGRIP and Deneb/ERGO

    SciTech Connect

    Vickers, D.S.; Davis, K.R.; Breazeal, N.L.; Watson, R.A.; Ford, M.S.

    1995-12-31

    The Radiological Environment Modeling System (REMS) quantifies dose to humans in radiation environments using the IGRIP (Interactive Graphical Robot Instruction Program) and Deneb/ERGO (Ergonomics) simulation software products. These commercially available products are augmented with custom C code to provide the radiation exposure information to and collect the radiation dose information from the workcell simulations. The emphasis of this paper is on the IGRIP and Deneb/ERGO parts of REMS, since that represents the extension to existing capabilities developed by the authors. Through the use of any radiation transport code or measured data, a radiation exposure input database may be formulated. User-specified IGRIP simulations utilize these database files to compute and accumulate dose to human devices (Deneb`s ERGO human) during simulated operations around radiation sources. Timing, distances, shielding, and human activity may be modeled accurately in the simulations. The accumulated dose is recorded in output files, and the user is able to process and view this output. REMS was developed because the proposed reduction in the yearly radiation exposure limit will preclude or require changes in many of the manual operations currently being utilized in the Weapons Complex. This is particularly relevant in the area of dismantlement activities at the Pantex Plant in Amarillo, TX. Therefore, a capability was needed to be able to quantify the dose associated with certain manual processes so that the benefits of automation could be identified and understood.

  7. Weighting of secondary radiations in organ dose calculations.

    PubMed

    Siiskonen, T; Tapiovaara, M

    2010-09-01

    The current system of dose quantities in radiological protection is based, in addition to the absorbed dose, on the concepts of equivalent dose and effective dose. This system has been developed mainly with uniform whole-body exposures in mind. Conceptual and practical problems arise when the system is applied to more general exposure situations where the radiation quality is altered within the human body. In this article these problems are discussed, using proton beam radiotherapy as a specific example, and a proposition is made that dose equivalent quantities should be used instead of equivalent doses when organ doses are of interest. The calculations of out-of-field organ doses in proton therapy show that the International Commission on Radiological Protection-prescribed use of the proton weighting factor generally leads to an underestimation of the stochastic risks, while the use of neutron weighting factors in the way as practised in the literature leads to a significant overestimation of these risks.

  8. Effects Of Dose Rates On Radiation Damage In CMOS Parts

    NASA Technical Reports Server (NTRS)

    Goben, Charles A.; Coss, James R.; Price, William E.

    1990-01-01

    Report describes measurements of effects of ionizing-radiation dose rate on consequent damage to complementary metal oxide/semiconductor (CMOS) electronic devices. Depending on irradiation time and degree of annealing, survivability of devices in outer space, or after explosion of nuclear weapons, enhanced. Annealing involving recovery beyond pre-irradiation conditions (rebound) detrimental. Damage more severe at lower dose rates.

  9. A dosimetric analysis of dose escalation using two intensity-modulated radiation therapy techniques in locally advanced pancreatic carcinoma

    SciTech Connect

    Brown, Michael W.; Ning, Holly; Arora, Barbara; Albert, Paul S.; Poggi, Matthew; Camphausen, Kevin; Citrin, Deborah . E-mail: citrind@mail.nih.gov

    2006-05-01

    Purpose: To perform an analysis of three-dimensional conformal radiation therapy (3D-CRT), sequential boost intensity-modulated radiation therapy (IMRTs), and integrated boost IMRT (IMRTi) for dose escalation in unresectable pancreatic carcinoma. Methods and Materials: Computed tomography images from 15 patients were used. Treatment plans were generated using 3D-CRT, IMRTs, and IMRTi for dose levels of 54, 59.4, and 64.8 Gy. Plans were analyzed for target coverage, doses to liver, kidneys, small bowel, and spinal cord. Results: Three-dimensional-CRT exceeded tolerance to small bowel in 1 of 15 (6.67%) patients at 54 Gy, and 4 of 15 (26.7%) patients at 59.4 and 64.8 Gy. 3D-CRT exceeded spinal cord tolerance in 1 of 15 patients (6.67%) at 59.4 Gy and liver constraints in 1 of 15 patients (6.67%) at 64.8 Gy; no IMRT plans exceeded tissue tolerance. Both IMRT techniques reduced the percentage of total kidney volume receiving 20 Gy (V20), the percentage of small bowel receiving 45 Gy (V45), and the percentage of liver receiving 35 Gy (V35). IMRTi appeared superior to IMRTs in reducing the total kidney V20 (p < 0.0001), right kidney V20 (p < 0.0001), and small bowel V45 (p = 0.02). Conclusions: Sequential boost IMRT and IMRTi improved the ability to achieve normal tissue dose goals compared with 3D-CRT. IMRTi allowed dose escalation to 64.8 Gy with acceptable normal tissue doses and superior dosimetry compared with 3D-CRT and IMRTs.

  10. Fetal radiation dose in computed tomography.

    PubMed

    Kelaranta, Anna; Kaasalainen, Touko; Seuri, Raija; Toroi, Paula; Kortesniemi, Mika

    2015-07-01

    The connection between recorded volumetric CT dose index (CTDI vol) and determined mean fetal dose (Df) was examined from metal-oxide-semiconductor field-effect transistor dose measurements on an anthropomorphic female phantom in four stages of pregnancy in a 64-slice CT scanner. Automated tube current modulation kept the mean Df fairly constant through all pregnancy stages in trauma (4.4-4.9 mGy) and abdomino-pelvic (2.1-2.4 mGy) protocols. In pulmonary angiography protocol, the mean Df increased exponentially as the distance from the end of the scan range decreased (0.01-0.09 mGy). For trauma protocol, the relative mean Df as a function of gestational age were in the range 0.80-0.97 compared with the mean CTDI vol. For abdomino-pelvic protocol, the relative mean Df was 0.57-0.79 and for pulmonary angiography protocol, 0.01-0.05 compared with the mean CTDI vol, respectively. In conclusion, if the fetus is in the primary beam, the CTDI vol can be used as an upper estimate of the fetal dose. If the fetus is not in the primary beam, the fetal dose can be estimated by considering also the distance of the fetus from the scan range. PMID:25836690

  11. Flexydos3D: A new deformable anthropomorphic 3D dosimeter readout with optical CT scanning

    NASA Astrophysics Data System (ADS)

    De Deene, Yves; Hill, Robin; Skyt, Peter S.; Booth, Jeremy

    2015-01-01

    A new deformable polydimethylsiloxane (PDMS) based dosimeter is proposed that can be cast in an anthropomorphic shape and that can be used for 3D radiation dosimetry of deformable targets. The new material has additional favorable characteristics as it is tissue equivalent for high-energy photons, easy to make and is non-toxic. In combination with dual wavelength optical scanning, it is a powerful dosimeter for dose verification of image gated or organ tracked radiotherapy with moving and deforming targets.

  12. Radiation dose to the lens and cataract formation

    SciTech Connect

    Henk, J.M.; Whitelocke, R.A.F.; Warrington, A.P.; Bessell, E.M. )

    1993-04-02

    The purpose of this work was to determine the radiation tolerance of the lens of the eye and the incidence of radiation-induced lens changes in patients treated by fractionated supervoltage radiation therapy for orbital tumors. Forty patients treated for orbital lymphoma and pseudotumor with tumor doses of 20--40 Gy were studied. The lens was partly shielded using lead cylinders in most cases. The dose to the germinative zone of the lens was estimated by measurements in a tissue equivalent phantom using both film densitometry and thermoluminescent dosimetry. Opthalmological examination was performed at 6 monthly intervals after treatment. The lead shield was found to reduce the dose to the germinative zone of the lens to between 36--50% of the tumor dose for Cobalt beam therapy, and to between 11--18% for 5 MeV x-rays. Consequently, the lens doses were in the range 4.5--30 Gy in 10--20 fractions. Lens opacities first appeared from between 3 and 9 years after irradiation. Impairment of visual acuity ensued in 74% of the patients who developed lens opacities. The incidence of lens changes was strongly dose-related. None was seen after doses of 5 Gy or lower, whereas doses of 16.5 Gy or higher were all followed by lens opacities which impaired visual acuity. The largest number of patients received a maximum lens dose of 15 Gy; in this group the actuarial incidence of lens opacities at 8 years was 57% with visual impairment in 38%. The adult lens can tolerate a total dose of 5 Gy during a fractionated course of supervoltage radiation therapy without showing any changes. Doses of 16.5 Gy or higher will almost invariably lead to visual impairment. The dose which causes a 50% probability of visual impairment is approximately 15 Gy. 10 refs., 4 figs., 1 tab.

  13. Some cosmic radiation dose measurements aboard flights connecting Zagreb Airport.

    PubMed

    Vuković, B; Radolić, V; Lisjak, I; Vekić, B; Poje, M; Planinić, J

    2008-02-01

    When primary particles from space, mainly protons, enter the atmosphere, they produce interactions with air nuclei, and cosmic-ray showers are induced. The radiation field at aircraft altitude is complex, with different types of particles, mainly photons, electrons, positrons and neutrons, with a large energy range. The non-neutron component of cosmic radiation dose aboard A320 and ATR40 aircraft was measured with TLD-100 (LiF:Mg,Ti) detectors and the Mini 6100 semiconductor dosimeter; the neutron dose was measured with the neutron dosimeter consisted of LR-115 track detector and boron foil BN-1 or 10B converter. The estimated occupational effective dose for the aircraft crew (A320) working 500 h per year was 1.64 mSv. Another experiment was performed at the flights Zagreb-Paris-Buenos Aires and reversely, when one measured non-neutron cosmic radiation dose; for 26.7 h of flight, the MINI 6100 dosimeter gave an average dose rate of 2.3 microSv/h and the TLD dosimeter registered the dose equivalent of 75 microSv or the average dose rate of 2.7 microSv/h; the neutron dosimeter gave the dose rate of 2.4 microSv/h. In the same month, February 2005, a traveling to Japan (24-h-flight: Zagreb-Frankfurt-Tokyo and reversely) and the TLD-100 measurement showed the average dose rate of 2.4microSv/h; the neutron dosimeter gave the dose rate of 2.5 microSv/h. Comparing dose rates of the non-neutron component (low LET) and the neutron one (high LET) of the radiation field at the aircraft flight level, we could conclude that the neutron component carried about 50% of the total dose, that was near other known data.

  14. Some cosmic radiation dose measurements aboard flights connecting Zagreb Airport.

    PubMed

    Vuković, B; Radolić, V; Lisjak, I; Vekić, B; Poje, M; Planinić, J

    2008-02-01

    When primary particles from space, mainly protons, enter the atmosphere, they produce interactions with air nuclei, and cosmic-ray showers are induced. The radiation field at aircraft altitude is complex, with different types of particles, mainly photons, electrons, positrons and neutrons, with a large energy range. The non-neutron component of cosmic radiation dose aboard A320 and ATR40 aircraft was measured with TLD-100 (LiF:Mg,Ti) detectors and the Mini 6100 semiconductor dosimeter; the neutron dose was measured with the neutron dosimeter consisted of LR-115 track detector and boron foil BN-1 or 10B converter. The estimated occupational effective dose for the aircraft crew (A320) working 500 h per year was 1.64 mSv. Another experiment was performed at the flights Zagreb-Paris-Buenos Aires and reversely, when one measured non-neutron cosmic radiation dose; for 26.7 h of flight, the MINI 6100 dosimeter gave an average dose rate of 2.3 microSv/h and the TLD dosimeter registered the dose equivalent of 75 microSv or the average dose rate of 2.7 microSv/h; the neutron dosimeter gave the dose rate of 2.4 microSv/h. In the same month, February 2005, a traveling to Japan (24-h-flight: Zagreb-Frankfurt-Tokyo and reversely) and the TLD-100 measurement showed the average dose rate of 2.4microSv/h; the neutron dosimeter gave the dose rate of 2.5 microSv/h. Comparing dose rates of the non-neutron component (low LET) and the neutron one (high LET) of the radiation field at the aircraft flight level, we could conclude that the neutron component carried about 50% of the total dose, that was near other known data. PMID:17935999

  15. Malignant melanoma of the tongue following low-dose radiation

    SciTech Connect

    Kalemeris, G.C.; Rosenfeld, L.; Gray, G.F. Jr.; Glick, A.D.

    1985-03-01

    A 47-year-old man had a spindly malignant melanoma of the tongue many years after low-dose radiation therapy for lichen planus. To our knowledge, only 12 melanomas of the tongue have been reported previously, and in none of these was radiation documented.

  16. The effect of low dose ionizing radiation on homeostasis and functional integrity in an organotypic human skin model

    SciTech Connect

    von Neubeck, Claere; Geniza, Matthew; Kauer, Paula M.; Robinson, Joseph E.; Chrisler, William B.; Sowa, Marianne B.

    2015-05-01

    Outside the protection of earth’s atmosphere, astronauts are exposed to low doses of high linear energy transfer (LET) radiation. Future NASA plans for deep space missions or a permanent settlement on the moon are limited by the health risks associated with space radiation exposures. There is a paucity of direct epidemiological data for low dose exposures to space radiation-relevant high LET ions. Health risk models are used to estimate the risk for such exposures, though these models are based on high dose experiments. There is increasing evidence, however, that low and high dose exposures result in different signaling events at the molecular level, and may involve different response mechanisms. Further, despite their low abundance, high LET particles have been identified as the major contributor to health risk during manned space flight. The human skin is exposed in every external radiation scenario, making it an ideal epithelial tissue model in which to study radiation induced effects. Here, we exposed an in vitro three dimensional (3-D) human organotypic skin tissue model to low doses of high LET oxygen (O), silicon (Si) and iron (Fe) ions. We measured proliferation and differentiation profiles in the skin tissue and examined the integrity of the skin’s barrier function. We discuss the role of secondary particles in changing the proportion of cells receiving a radiation dose, emphasizing the possible impact on radiation-induced health issues in astronauts.

  17. Radiation Dose from Lunar Neutron Albedo

    NASA Technical Reports Server (NTRS)

    Adams, J. H., Jr.; Bhattacharya, M.; Lin, Zi-Wei; Pendleton, G.

    2006-01-01

    The lunar neutron albedo from thermal energies to 8 MeV was measured on the Lunar Prospector Mission in 1998-1999. Using GEANT4 we have calculated the neutron albedo due to cosmic ray bombardment of the moon and found a good-agreement with the measured fast neutron spectra. We then calculated the total effective dose from neutron albedo of all energies, and made comparisons with the effective dose contributions from both galactic cosmic rays and solar particle events to be expected on the lunar surface.

  18. Radiation Dose-Response Relationships and Risk Assessment

    SciTech Connect

    Strom, Daniel J.

    2005-07-05

    The notion of a dose-response relationship was probably invented shortly after the discovery of poisons, the invention of alcoholic beverages, and the bringing of fire into a confined space in the forgotten depths of ancient prehistory. The amount of poison or medicine ingested can easily be observed to affect the behavior, health, or sickness outcome. Threshold effects, such as death, could be easily understood for intoxicants, medicine, and poisons. As Paracelsus (1493-1541), the 'father' of modern toxicology said, 'It is the dose that makes the poison.' Perhaps less obvious is the fact that implicit in such dose-response relationships is also the notion of dose rate. Usually, the dose is administered fairly acutely, in a single injection, pill, or swallow; a few puffs on a pipe; or a meal of eating or drinking. The same amount of intoxicants, medicine, or poisons administered over a week or month might have little or no observable effect. Thus, before the discovery of ionizing radiation in the late 19th century, toxicology ('the science of poisons') and pharmacology had deeply ingrained notions of dose-response relationships. This chapter demonstrates that the notion of a dose-response relationship for ionizing radiation is hopelessly simplistic from a scientific standpoint. While useful from a policy or regulatory standpoint, dose-response relationships cannot possibly convey enough information to describe the problem from a quantitative view of radiation biology, nor can they address societal values. Three sections of this chapter address the concepts, observations, and theories that contribute to the scientific input to the practice of managing risks from exposure to ionizing radiation. The presentation begins with irradiation regimes, followed by responses to high and low doses of ionizing radiation, and a discussion of how all of this can inform radiation risk management. The knowledge that is really needed for prediction of individual risk is presented

  19. NAIRAS aircraft radiation model development, dose climatology, and initial validation

    NASA Astrophysics Data System (ADS)

    Mertens, Christopher J.; Meier, Matthias M.; Brown, Steven; Norman, Ryan B.; Xu, Xiaojing

    2013-10-01

    The Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) is a real-time, global, physics-based model used to assess radiation exposure to commercial aircrews and passengers. The model is a free-running physics-based model in the sense that there are no adjustment factors applied to nudge the model into agreement with measurements. The model predicts dosimetric quantities in the atmosphere from both galactic cosmic rays (GCR) and solar energetic particles, including the response of the geomagnetic field to interplanetary dynamical processes and its subsequent influence on atmospheric dose. The focus of this paper is on atmospheric GCR exposure during geomagnetically quiet conditions, with three main objectives. First, provide detailed descriptions of the NAIRAS GCR transport and dosimetry methodologies. Second, present a climatology of effective dose and ambient dose equivalent rates at typical commercial airline altitudes representative of solar cycle maximum and solar cycle minimum conditions and spanning the full range of geomagnetic cutoff rigidities. Third, conduct an initial validation of the NAIRAS model by comparing predictions of ambient dose equivalent rates with tabulated reference measurement data and recent aircraft radiation measurements taken in 2008 during the minimum between solar cycle 23 and solar cycle 24. By applying the criterion of the International Commission on Radiation Units and Measurements (ICRU) on acceptable levels of aircraft radiation dose uncertainty for ambient dose equivalent greater than or equal to an annual dose of 1 mSv, the NAIRAS model is within 25% of the measured data, which fall within the ICRU acceptable uncertainty limit of 30%. The NAIRAS model predictions of ambient dose equivalent rate are generally within 50% of the measured data for any single-point comparison. The largest differences occur at low latitudes and high cutoffs, where the radiation dose level is low. Nevertheless, analysis suggests

  20. Individual and collective doses from cosmic radiation in Ireland.

    PubMed

    Colgan, P A; Synnott, H; Fenton, D

    2007-01-01

    This paper assesses the individual and collective doses in Ireland due to cosmic radiation. Information on the exposure to cosmic radiation at ground level is reviewed and published data on the frequency of routes flown by Irish residents is used to calculate the dose due to air travel. Occupational exposure of aircrew is also evaluated. Experimental data on cosmic radiation exposure at ground level is in good agreement with international estimates and the average individual dose is calculated as 300 microSv annually. Published data on international air travel by Irish residents shows a 50% increase in the number of flights taken between 2001 and 2005. This increase is primarily on short-haul flights to Europe, but there have been significant percentage increases in all long-haul flights, with the exception of flights to Africa. The additional per capita dose due to air travel is estimated to be 45 muSv, of which 51% is accumulated on European routes and 34% on routes to the United States. Exposure of aircrew to cosmic radiation is now controlled by legislation and all airlines holding an Air Operator's Certificate issued by the Irish Aviation Authority are required to report annually the doses received by their employees in the previous year. There has been a 75% increase in the number of aircrew receiving doses >1 mSv since 2002. In 2004 and 2005 the average individual doses received by Irish aircrew were 1.8 and 2.0, mSv, respectively. The corresponding per caput dose for the entire population is <3 muSv. While this is low compared with the per caput doses from other sources of cosmic radiation, aircrew exposure represents a higher collective dose than any other identified group of exposed workers in Ireland.

  1. Radiation Dose-Volume Effects in the Heart

    SciTech Connect

    Gagliardi, Giovanna; Constine, Louis S.; Moiseenko, Vitali; Correa, Candace; Pierce, Lori J.; Allen, Aaron M.; Marks, Lawrence B.

    2010-03-01

    The literature is reviewed to identify the main clinical and dose-volume predictors for acute and late radiation-induced heart disease. A clear quantitative dose and/or volume dependence for most cardiac toxicity has not yet been shown, primarily because of the scarcity of the data. Several clinical factors, such as age, comorbidities and doxorubicin use, appear to increase the risk of injury. The existing dose-volume data is presented, as well as suggestions for future investigations to better define radiation-induced cardiac injury.

  2. Approaches to reducing radiation dose from radionuclide myocardial perfusion imaging.

    PubMed

    Dorbala, Sharmila; Blankstein, Ron; Skali, Hicham; Park, Mi-Ae; Fantony, Jolene; Mauceri, Charles; Semer, James; Moore, Stephen C; Di Carli, Marcelo F

    2015-04-01

    Radionuclide myocardial perfusion imaging (MPI) plays a vital role in the evaluation and management of patients with coronary artery disease. However, because of a steep growth in MPI in the mid 2000s, concerns about inappropriate use of MPI and imaging-related radiation exposure increased. In response, the professional societies developed appropriate-use criteria for MPI. Simultaneously, novel technology, image-reconstruction software for traditional scanners, and dedicated cardiac scanners emerged and facilitated the performance of MPI with low-dose and ultra-low-dose radiotracers. This paper provides a practical approach to performing low-radiation-dose MPI using traditional and novel technologies. PMID:25766891

  3. Increased occupational radiation doses: nuclear fuel cycle.

    PubMed

    Bouville, André; Kryuchkov, Victor

    2014-02-01

    The increased occupational doses resulting from the Chernobyl nuclear reactor accident that occurred in Ukraine in April 1986, the reactor accident of Fukushima that took place in Japan in March 2011, and the early operations of the Mayak Production Association in Russia in the 1940s and 1950s are presented and discussed. For comparison purposes, the occupational doses due to the other two major reactor accidents (Windscale in the United Kingdom in 1957 and Three Mile Island in the United States in 1979) and to the main plutonium-producing facility in the United States (Hanford Works) are also covered but in less detail. Both for the Chernobyl nuclear reactor accident and the routine operations at Mayak, the considerable efforts made to reconstruct individual doses from external irradiation to a large number of workers revealed that the recorded doses had been overestimated by a factor of about two.Introduction of Increased Occupational Exposures: Nuclear Industry Workers. (Video 1:32, http://links.lww.com/HP/A21). PMID:24378501

  4. Increased occupational radiation doses: nuclear fuel cycle.

    PubMed

    Bouville, André; Kryuchkov, Victor

    2014-02-01

    The increased occupational doses resulting from the Chernobyl nuclear reactor accident that occurred in Ukraine in April 1986, the reactor accident of Fukushima that took place in Japan in March 2011, and the early operations of the Mayak Production Association in Russia in the 1940s and 1950s are presented and discussed. For comparison purposes, the occupational doses due to the other two major reactor accidents (Windscale in the United Kingdom in 1957 and Three Mile Island in the United States in 1979) and to the main plutonium-producing facility in the United States (Hanford Works) are also covered but in less detail. Both for the Chernobyl nuclear reactor accident and the routine operations at Mayak, the considerable efforts made to reconstruct individual doses from external irradiation to a large number of workers revealed that the recorded doses had been overestimated by a factor of about two.Introduction of Increased Occupational Exposures: Nuclear Industry Workers. (Video 1:32, http://links.lww.com/HP/A21).

  5. ISFSI site boundary radiation dose rate analyses.

    PubMed

    Hagler, R J; Fero, A H

    2005-01-01

    Across the globe nuclear utilities are in the process of designing and analysing Independent Spent Fuel Storage Installations (ISFSI) for the purpose of above ground spent-fuel storage primarily to mitigate the filling of spent-fuel pools. Using a conjoining of discrete ordinates transport theory (DORT) and Monte Carlo (MCNP) techniques, an ISFSI was analysed to determine neutron and photon dose rates for a generic overpack, and ISFSI pad configuration and design at distances ranging from 1 to -1700 m from the ISFSI array. The calculated dose rates are used to address the requirements of 10CFR72.104, which provides limits to be enforced for the protection of the public by the NRC in regard to ISFSI facilities. For this overpack, dose rates decrease by three orders of magnitude through the first 200 m moving away from the ISFSI. In addition, the contributions from different source terms changes over distance. It can be observed that although side photons provide the majority of dose rate in this calculation, scattered photons and side neutrons take on more importance as the distance from the ISFSI is increased. PMID:16604670

  6. Comparison of 2D and 3D gamma analyses

    SciTech Connect

    Pulliam, Kiley B.; Huang, Jessie Y.; Howell, Rebecca M.; Followill, David; Kry, Stephen F.; Bosca, Ryan; O’Daniel, Jennifer

    2014-02-15

    Purpose: As clinics begin to use 3D metrics for intensity-modulated radiation therapy (IMRT) quality assurance, it must be noted that these metrics will often produce results different from those produced by their 2D counterparts. 3D and 2D gamma analyses would be expected to produce different values, in part because of the different search space available. In the present investigation, the authors compared the results of 2D and 3D gamma analysis (where both datasets were generated in the same manner) for clinical treatment plans. Methods: Fifty IMRT plans were selected from the authors’ clinical database, and recalculated using Monte Carlo. Treatment planning system-calculated (“evaluated dose distributions”) and Monte Carlo-recalculated (“reference dose distributions”) dose distributions were compared using 2D and 3D gamma analysis. This analysis was performed using a variety of dose-difference (5%, 3%, 2%, and 1%) and distance-to-agreement (5, 3, 2, and 1 mm) acceptance criteria, low-dose thresholds (5%, 10%, and 15% of the prescription dose), and data grid sizes (1.0, 1.5, and 3.0 mm). Each comparison was evaluated to determine the average 2D and 3D gamma, lower 95th percentile gamma value, and percentage of pixels passing gamma. Results: The average gamma, lower 95th percentile gamma value, and percentage of passing pixels for each acceptance criterion demonstrated better agreement for 3D than for 2D analysis for every plan comparison. The average difference in the percentage of passing pixels between the 2D and 3D analyses with no low-dose threshold ranged from 0.9% to 2.1%. Similarly, using a low-dose threshold resulted in a difference between the mean 2D and 3D results, ranging from 0.8% to 1.5%. The authors observed no appreciable differences in gamma with changes in the data density (constant difference: 0.8% for 2D vs 3D). Conclusions: The authors found that 3D gamma analysis resulted in up to 2.9% more pixels passing than 2D analysis. It must

  7. Automotive Underhood Thermal Management Analysis Using 3-D Coupled Thermal-Hydrodynamic Computer Models: Thermal Radiation Modeling

    SciTech Connect

    Pannala, S; D'Azevedo, E; Zacharia, T

    2002-02-26

    The goal of the radiation modeling effort was to develop and implement a radiation algorithm that is fast and accurate for the underhood environment. As part of this CRADA, a net-radiation model was chosen to simulate radiative heat transfer in an underhood of a car. The assumptions (diffuse-gray and uniform radiative properties in each element) reduce the problem tremendously and all the view factors for radiation thermal calculations can be calculated once and for all at the beginning of the simulation. The cost for online integration of heat exchanges due to radiation is found to be less than 15% of the baseline CHAD code and thus very manageable. The off-line view factor calculation is constructed to be very modular and has been completely integrated to read CHAD grid files and the output from this code can be read into the latest version of CHAD. Further integration has to be performed to accomplish the same with STAR-CD. The main outcome of this effort is to obtain a highly scalable and portable simulation capability to model view factors for underhood environment (for e.g. a view factor calculation which took 14 hours on a single processor only took 14 minutes on 64 processors). The code has also been validated using a simple test case where analytical solutions are available. This simulation capability gives underhood designers in the automotive companies the ability to account for thermal radiation - which usually is critical in the underhood environment and also turns out to be one of the most computationally expensive components of underhood simulations. This report starts off with the original work plan as elucidated in the proposal in section B. This is followed by Technical work plan to accomplish the goals of the project in section C. In section D, background to the current work is provided with references to the previous efforts this project leverages on. The results are discussed in section 1E. This report ends with conclusions and future scope of

  8. Investigation of radiation doses in open space using TLD detectors.

    PubMed

    Reitz, G; Facius, R; Bilski, P; Olko, P

    2002-01-01

    The low energy component of the cosmic radiation field is strongly modified by the shielding of the spacecraft and it is time and location dependent. Thermoluminescent lithium fluoride detectors have been applied to determine the radiation doses inside the ESA-Facility BIOPAN. The BIOPAN facility was mounted outside and launched on a Foton spacecraft and opened to space to allow exposure of several experiments to open space. Standard TLD-600. TLD-700 chips, two layers MTS-Ns sintered pellets with different effective thickness of the sensitive layer and MTS-N of different thickness have been exposed with different shielding thicknesses in front of them. The measured TL signal in the 0.1 mm thick detector just shielded by an aluminised Kapton foil of 25 microm thickness in front yielded a dose of 29.8 Gy (calibrated with 137Cs gamma rays) for an exposure time of 12.7 days: after 2.5 g.cm(-2) shielding the doses dropped to 3 mGy. The monitoring of radiation doses and its depth dose distribution outside the spacecraft are of great interest for radiation protection of astronauts working in open space. The knowledge of depth-dose distribution is a prerequisite to determine the organ doses an astronaut will receive during an extravehicular activity (EVA). The BIOPAN experiments are to be continued in the future. PMID:12382937

  9. Radiation doses in a newly founded Interventional Cardiology department.

    PubMed

    Tsapaki, V; Christou, A; Nikolaou, N; Spanodimos, S; Chinofoti, I; Poulianitou, A; Patsilinakos, S

    2011-09-01

    Coronary angiography (CA) and percutaneous transluminal coronary angioplasty (PTCA) radiation doses were investigated in a recently founded Interventional Cardiology (IC) department. The study includes 336 procedures (177 CAs and 159 PTCAs) carried out with a Philips digital flat detector monoplane system. Patient dose was measured in terms of kerma-area product (KAP) and cumulative dose. Using appropriate conversion factors, peak skin dose (PSD) and effective dose (E) were estimated. Median values of KAP (Gy cm(2)), PSD (mGy) and E (mSv) were: 34 478 and 6.1, respectively for CA and 80 885 and 14.4 for PTCA, within European and international reference levels. Only 1.5 % of patients received radiation dose over the 2 Gy threshold (PTCA procedures) for deterministic effects and none reported any skin effect. Radiation doses were within international standards and comparable with other radiological examinations. The percentage of the high-risk patients for radiation skin effects is extremely low. PMID:21725076

  10. Errors and Uncertainties in Dose Reconstruction for Radiation Effects Research

    SciTech Connect

    Strom, Daniel J.

    2008-04-14

    Dose reconstruction for studies of the health effects of ionizing radiation have been carried out for many decades. Major studies have included Japanese bomb survivors, atomic veterans, downwinders of the Nevada Test Site and Hanford, underground uranium miners, and populations of nuclear workers. For such studies to be credible, significant effort must be put into applying the best science to reconstructing unbiased absorbed doses to tissues and organs as a function of time. In many cases, more and more sophisticated dose reconstruction methods have been developed as studies progressed. For the example of the Japanese bomb survivors, the dose surrogate “distance from the hypocenter” was replaced by slant range, and then by TD65 doses, DS86 doses, and more recently DS02 doses. Over the years, it has become increasingly clear that an equal level of effort must be expended on the quantitative assessment of uncertainty in such doses, and to reducing and managing uncertainty. In this context, this paper reviews difficulties in terminology, explores the nature of Berkson and classical uncertainties in dose reconstruction through examples, and proposes a path forward for Joint Coordinating Committee for Radiation Effects Research (JCCRER) Project 2.4 that requires a reasonably small level of effort for DOSES-2008.

  11. Low-Dose Radiation Cataract and Genetic Determinants of Radiosensitivity

    SciTech Connect

    Kleiman, Norman Jay

    2013-11-30

    The lens of the eye is one of the most radiosensitive tissues in the body. Ocular ionizing radiation exposure results in characteristic, dose related, progressive lens changes leading to cataract formation. While initial, early stages of lens opacification may not cause visual disability, the severity of such changes progressively increases with dose until vision is impaired and cataract extraction surgery may be required. Because of the transparency of the eye, radiation induced lens changes can easily be followed non-invasively over time. Thus, the lens provides a unique model system in which to study the effects of low dose ionizing radiation exposure in a complex, highly organized tissue. Despite this observation, considerable uncertainties remain surrounding the relationship between dose and risk of developing radiation cataract. For example, a growing number of human epidemiological findings suggest significant risk among various groups of occupationally and accidentally exposed individuals and confidence intervals that include zero dose. Nevertheless, questions remain concerning the relationship between lens opacities, visual disability, clinical cataract, threshold dose and/or the role of genetics in determining radiosensitivity. Experimentally, the response of the rodent eye to radiation is quite similar to that in humans and thus animal studies are well suited to examine the relationship between radiation exposure, genetic determinants of radiosensitivity and cataractogenesis. The current work has expanded our knowledge of the low-dose effects of X-irradiation or high-LET heavy ion exposure on timing and progression of radiation cataract and has provided new information on the genetic, molecular, biochemical and cell biological features which contribute to this pathology. Furthermore, findings have indicated that single and/or multiple haploinsufficiency for various genes involved in DNA repair and cell cycle checkpoint control, such as Atm, Brca1 or Rad9

  12. Time-dependent radiation dose simulations during interplanetary space flights

    NASA Astrophysics Data System (ADS)

    Dobynde, Mikhail; Shprits, Yuri; Drozdov, Alexander; Hoffman, Jeffrey; Li, Ju

    2016-07-01

    Space radiation is one of the main concerns in planning long-term interplanetary human space missions. There are two main types of hazardous radiation - Solar Energetic Particles (SEP) and Galactic Cosmic Rays (GCR). Their intensities and evolution depend on the solar activity. GCR activity is most enhanced during solar minimum, while the most intense SEPs usually occur during the solar maximum. SEPs are better shielded with thick shields, while GCR dose is less behind think shields. Time and thickness dependences of the intensity of these two components encourage looking for a time window of flight, when radiation intensity and dose of SEP and GCR would be minimized. In this study we combine state-of-the-art space environment models with GEANT4 simulations to determine the optimal shielding, geometry of the spacecraft, and launch time with respect to the phase of the solar cycle. The radiation environment was described by the time-dependent GCR model, and the SEP spectra that were measured during the period from 1990 to 2010. We included gamma rays, electrons, neutrons and 27 fully ionized elements from hydrogen to nickel. We calculated the astronaut's radiation doses during interplanetary flights using the Monte-Carlo code that accounts for the primary and the secondary radiation. We also performed sensitivity simulations for the assumed spacecraft size and thickness to find an optimal shielding. In conclusion, we present the dependences of the radiation dose as a function of launch date from 1990 to 2010, for flight durations of up to 3 years.

  13. Linking Doses with Clinical Scores of Hematopoietic Acute Radiation Syndrome.

    PubMed

    Hu, Shaowen

    2016-10-01

    In radiation accidents, determining the radiation dose the victim received is a key step for medical decision making and patient prognosis. To reconstruct and evaluate the absorbed dose, researchers have developed many physical devices and biological techniques during the last decades. However, using the physical parameter "absorbed dose" alone is not sufficient to predict the clinical development of the various organs injured in an individual patient. In operational situations for radiation accidents, medical responders need more urgently to classify the severity of the radiation injury based on the signs and symptoms of the patient. In this work, the author uses a unified hematopoietic model to describe dose-dependent dynamics of granulocytes, lymphocytes, and platelets, and the corresponding clinical grading of hematopoietic acute radiation syndrome. This approach not only visualizes the time course of the patient's probable outcome in the form of graphs but also indirectly gives information of the remaining stem and progenitor cells, which are responsible for the autologous recovery of the hematopoietic system. Because critical information on the patient's clinical evolution can be provided within a short time after exposure and only peripheral cell counts are required for the simulation, these modeling tools will be useful to assess radiation exposure and injury in human-involved radiation accident/incident scenarios. PMID:27575346

  14. Space radiation absorbed dose distribution in a human phantom.

    PubMed

    Badhwar, G D; Atwell, W; Badavi, F F; Yang, T C; Cleghorn, T F

    2002-01-01

    The radiation risk to astronauts has always been based on measurements using passive thermoluminescent dosimeters (TLDs). The skin dose is converted to dose equivalent using an average radiation quality factor based on model calculations. The radiological risk estimates, however, are based on organ and tissue doses. This paper describes results from the first space flight (STS-91, 51.65 degrees inclination and approximately 380 km altitude) of a fully instrumented Alderson Rando phantom torso (with head) to relate the skin dose to organ doses. Spatial distributions of absorbed dose in 34 1-inch-thick sections measured using TLDs are described. There is about a 30% change in dose as one moves from the front to the back of the phantom body. Small active dosimeters were developed specifically to provide time-resolved measurements of absorbed dose rates and quality factors at five organ locations (brain, thyroid, heart/lung, stomach and colon) inside the phantom. Using these dosimeters, it was possible to separate the trapped-proton and the galactic cosmic radiation components of the doses. A tissue-equivalent proportional counter (TEPC) and a charged-particle directional spectrometer (CPDS) were flown next to the phantom torso to provide data on the incident internal radiation environment. Accurate models of the shielding distributions at the site of the TEPC, the CPDS and a scalable Computerized Anatomical Male (CAM) model of the phantom torso were developed. These measurements provided a comprehensive data set to map the dose distribution inside a human phantom, and to assess the accuracy and validity of radiation transport models throughout the human body. The results show that for the conditions in the International Space Station (ISS) orbit during periods near the solar minimum, the ratio of the blood-forming organ dose rate to the skin absorbed dose rate is about 80%, and the ratio of the dose equivalents is almost one. The results show that the GCR model dose

  15. Space radiation absorbed dose distribution in a human phantom

    NASA Technical Reports Server (NTRS)

    Badhwar, G. D.; Atwell, W.; Badavi, F. F.; Yang, T. C.; Cleghorn, T. F.

    2002-01-01

    The radiation risk to astronauts has always been based on measurements using passive thermoluminescent dosimeters (TLDs). The skin dose is converted to dose equivalent using an average radiation quality factor based on model calculations. The radiological risk estimates, however, are based on organ and tissue doses. This paper describes results from the first space flight (STS-91, 51.65 degrees inclination and approximately 380 km altitude) of a fully instrumented Alderson Rando phantom torso (with head) to relate the skin dose to organ doses. Spatial distributions of absorbed dose in 34 1-inch-thick sections measured using TLDs are described. There is about a 30% change in dose as one moves from the front to the back of the phantom body. Small active dosimeters were developed specifically to provide time-resolved measurements of absorbed dose rates and quality factors at five organ locations (brain, thyroid, heart/lung, stomach and colon) inside the phantom. Using these dosimeters, it was possible to separate the trapped-proton and the galactic cosmic radiation components of the doses. A tissue-equivalent proportional counter (TEPC) and a charged-particle directional spectrometer (CPDS) were flown next to the phantom torso to provide data on the incident internal radiation environment. Accurate models of the shielding distributions at the site of the TEPC, the CPDS and a scalable Computerized Anatomical Male (CAM) model of the phantom torso were developed. These measurements provided a comprehensive data set to map the dose distribution inside a human phantom, and to assess the accuracy and validity of radiation transport models throughout the human body. The results show that for the conditions in the International Space Station (ISS) orbit during periods near the solar minimum, the ratio of the blood-forming organ dose rate to the skin absorbed dose rate is about 80%, and the ratio of the dose equivalents is almost one. The results show that the GCR model dose

  16. Space radiation absorbed dose distribution in a human phantom.

    PubMed

    Badhwar, G D; Atwell, W; Badavi, F F; Yang, T C; Cleghorn, T F

    2002-01-01

    The radiation risk to astronauts has always been based on measurements using passive thermoluminescent dosimeters (TLDs). The skin dose is converted to dose equivalent using an average radiation quality factor based on model calculations. The radiological risk estimates, however, are based on organ and tissue doses. This paper describes results from the first space flight (STS-91, 51.65 degrees inclination and approximately 380 km altitude) of a fully instrumented Alderson Rando phantom torso (with head) to relate the skin dose to organ doses. Spatial distributions of absorbed dose in 34 1-inch-thick sections measured using TLDs are described. There is about a 30% change in dose as one moves from the front to the back of the phantom body. Small active dosimeters were developed specifically to provide time-resolved measurements of absorbed dose rates and quality factors at five organ locations (brain, thyroid, heart/lung, stomach and colon) inside the phantom. Using these dosimeters, it was possible to separate the trapped-proton and the galactic cosmic radiation components of the doses. A tissue-equivalent proportional counter (TEPC) and a charged-particle directional spectrometer (CPDS) were flown next to the phantom torso to provide data on the incident internal radiation environment. Accurate models of the shielding distributions at the site of the TEPC, the CPDS and a scalable Computerized Anatomical Male (CAM) model of the phantom torso were developed. These measurements provided a comprehensive data set to map the dose distribution inside a human phantom, and to assess the accuracy and validity of radiation transport models throughout the human body. The results show that for the conditions in the International Space Station (ISS) orbit during periods near the solar minimum, the ratio of the blood-forming organ dose rate to the skin absorbed dose rate is about 80%, and the ratio of the dose equivalents is almost one. The results show that the GCR model dose

  17. Modeling the physical structure of star-forming regions with LIME, a 3D radiative transfer code

    NASA Astrophysics Data System (ADS)

    Quénard, D.; Bottinelli, S.; Caux, E.

    2016-05-01

    The ability to predict line emission is crucial in order to make a comparison with observations. From LTE to full radiative transfer codes, the goal is always to derive the most accurately possible the physical properties of the source. Non-LTE calculations can be very time consuming but are needed in most of the cases since many studied regions are far from LTE.

  18. Peripheral Doses from Noncoplanar IMRT for Pediatric Radiation Therapy

    SciTech Connect

    Kan, Monica W.K.; Leung, Lucullus H.T.; Kwong, Dora L.W.; Wong, Wicger; Lam, Nelson

    2010-01-01

    The use of noncoplanar intensity-modulated radiation therapy (IMRT) might result in better sparing of some critical organs because of a higher degree of freedom in beam angle optimization. However, this can lead to a potential increase in peripheral dose compared with coplanar IMRT. The peripheral dose from noncoplanar IMRT has not been previously quantified. This study examines the peripheral dose from noncoplanar IMRT compared with coplanar IMRT for pediatric radiation therapy. Five cases with different pediatric malignancies in head and neck were planned with both coplanar and noncoplanar IMRT techniques. The plans were performed such that the tumor coverage, conformality, and dose uniformity were comparable for both techniques. To measure the peripheral doses of the 2 techniques, thermoluminescent dosimeters (TLD) were placed in 10 different organs of a 5-year-old pediatric anthropomorphic phantom. With the use of noncoplanar beams, the peripheral doses to the spinal cord, bone marrow, lung, and breast were found to be 1.8-2.5 times of those using the coplanar technique. This is mainly because of the additional internal scatter dose from the noncoplanar beams. Although the use of noncoplanar technique can result in better sparing of certain organs such as the optic nerves, lens, or inner ears depending on how the beam angles were optimized on each patient, oncologists should be alert of the possibility of significantly increasing the peripheral doses to certain radiation-sensitive organs such as bone marrow and breast. This might increase the secondary cancer risk to patients at young age.

  19. Overview of ICRP Committee 2: doses from radiation exposure.

    PubMed

    Harrison, J D; Paquet, F

    2016-06-01

    The focus of the work of Committee 2 of the International Commission on Radiological Protection (ICRP) is the computation of dose coefficients compliant with Publication 103 A set of reference computational phantoms is being developed, based on medical imaging data, and used for radiation transport calculations. Biokinetic models used to describe the behaviour of radionuclides in body tissues are being updated, also leading to changes in organ doses and effective dose coefficients. Dose coefficients for external radiation exposure of adults calculated using the new reference phantoms were issued as Publication 116, jointly with the International Commission on Radiation Units and Measurements. Forthcoming reports will provide internal dose coefficients for radionuclide inhalation and ingestion by workers, and associated bioassay data. Work is in progress to revise internal dose coefficients for members of the public, and, for the first time, to provide reference values for external exposures of the public. Committee 2 is also working with Committee 3 on dose coefficients for radiopharmaceuticals, and leading a cross-Committee initiative to give advice on the use of effective dose. PMID:26984902

  20. Overview of ICRP Committee 2: doses from radiation exposure.

    PubMed

    Harrison, J D; Paquet, F

    2016-06-01

    The focus of the work of Committee 2 of the International Commission on Radiological Protection (ICRP) is the computation of dose coefficients compliant with Publication 103 A set of reference computational phantoms is being developed, based on medical imaging data, and used for radiation transport calculations. Biokinetic models used to describe the behaviour of radionuclides in body tissues are being updated, also leading to changes in organ doses and effective dose coefficients. Dose coefficients for external radiation exposure of adults calculated using the new reference phantoms were issued as Publication 116, jointly with the International Commission on Radiation Units and Measurements. Forthcoming reports will provide internal dose coefficients for radionuclide inhalation and ingestion by workers, and associated bioassay data. Work is in progress to revise internal dose coefficients for members of the public, and, for the first time, to provide reference values for external exposures of the public. Committee 2 is also working with Committee 3 on dose coefficients for radiopharmaceuticals, and leading a cross-Committee initiative to give advice on the use of effective dose.

  1. High-temperature Processing of Solids through Solar Nebular Bow Shocks: 3D Radiation Hydrodynamics Simulations with Particles

    NASA Astrophysics Data System (ADS)

    Boley, A. C.; Morris, M. A.; Desch, S. J.

    2013-10-01

    A fundamental, unsolved problem in solar system formation is explaining the melting and crystallization of chondrules found in chondritic meteorites. Theoretical models of chondrule melting in nebular shocks have been shown to be consistent with many aspects of thermal histories inferred for chondrules from laboratory experiments; but, the mechanism driving these shocks is unknown. Planetesimals and planetary embryos on eccentric orbits can produce bow shocks as they move supersonically through the disk gas, and are one possible source of chondrule-melting shocks. We investigate chondrule formation in bow shocks around planetoids through three-dimensional radiation hydrodynamics simulations. A new radiation transport algorithm that combines elements of flux-limited diffusion and Monte Carlo methods is used to capture the complexity of radiative transport around bow shocks. An equation of state that includes the rotational, vibrational, and dissociation modes of H2 is also used. Solids are followed directly in the simulations and their thermal histories are recorded. Adiabatic expansion creates rapid cooling of the gas, and tail shocks behind the embryo can cause secondary heating events. Radiative transport is efficient, and bow shocks around planetoids can have luminosities ~few× 10-8 L ⊙. While barred and radial chondrule textures could be produced in the radiative shocks explored here, porphyritic chondrules may only be possible in the adiabatic limit. We present a series of predicted cooling curves that merit investigation in laboratory experiments to determine whether the solids produced by bow shocks are represented in the meteoritic record by chondrules or other solids.

  2. HIGH-TEMPERATURE PROCESSING OF SOLIDS THROUGH SOLAR NEBULAR BOW SHOCKS: 3D RADIATION HYDRODYNAMICS SIMULATIONS WITH PARTICLES

    SciTech Connect

    Boley, A. C.; Morris, M. A.; Desch, S. J.

    2013-10-20

    A fundamental, unsolved problem in solar system formation is explaining the melting and crystallization of chondrules found in chondritic meteorites. Theoretical models of chondrule melting in nebular shocks have been shown to be consistent with many aspects of thermal histories inferred for chondrules from laboratory experiments; but, the mechanism driving these shocks is unknown. Planetesimals and planetary embryos on eccentric orbits can produce bow shocks as they move supersonically through the disk gas, and are one possible source of chondrule-melting shocks. We investigate chondrule formation in bow shocks around planetoids through three-dimensional radiation hydrodynamics simulations. A new radiation transport algorithm that combines elements of flux-limited diffusion and Monte Carlo methods is used to capture the complexity of radiative transport around bow shocks. An equation of state that includes the rotational, vibrational, and dissociation modes of H{sub 2} is also used. Solids are followed directly in the simulations and their thermal histories are recorded. Adiabatic expansion creates rapid cooling of the gas, and tail shocks behind the embryo can cause secondary heating events. Radiative transport is efficient, and bow shocks around planetoids can have luminosities ∼few× 10{sup –8} L{sub ☉}. While barred and radial chondrule textures could be produced in the radiative shocks explored here, porphyritic chondrules may only be possible in the adiabatic limit. We present a series of predicted cooling curves that merit investigation in laboratory experiments to determine whether the solids produced by bow shocks are represented in the meteoritic record by chondrules or other solids.

  3. Imaging the position-dependent 3D force on microbeads subjected to acoustic radiation forces and streaming.

    PubMed

    Lamprecht, Andreas; Lakämper, Stefan; Baasch, Thierry; Schaap, Iwan A T; Dual, Jurg

    2016-07-01

    Acoustic particle manipulation in microfluidic channels is becoming a powerful tool in microfluidics to control micrometer sized objects in medical, chemical and biological applications. By creating a standing acoustic wave in the channel, the resulting pressure field can be employed to trap or sort particles. To design efficient and reproducible devices, it is important to characterize the pressure field throughout the volume of the microfluidic device. Here, we used an optically trapped particle as probe to measure the forces in all three dimensions. By moving the probe through the volume of the channel, we imaged spatial variations in the pressure field. In the direction of the standing wave this revealed a periodic energy landscape for 2 μm beads, resulting in an effective stiffness of 2.6 nN m(-1) for the acoustic trap. We found that multiple fabricated devices showed consistent pressure fields. Surprisingly, forces perpendicular to the direction of the standing wave reached values of up to 20% of the main-axis-values. To separate the direct acoustic force from secondary effects, we performed experiments with different bead sizes, which attributed some of the perpendicular forces to acoustic streaming. This method to image acoustically generated forces in 3D can be used to either minimize perpendicular forces or to employ them for specific applications in novel acoustofluidic designs. PMID:27302661