Science.gov

Sample records for 3d radiative hydrodynamical

  1. 3D radiation hydrodynamics: Interacting photo-evaporating clumps

    NASA Astrophysics Data System (ADS)

    Lim, A. J.; Mellema, G.

    2003-07-01

    We present the results of a new radiation hydrodynamics code called Maartje. This code describes the evolution of a flow in three spatial dimensions using an adaptive mesh, and contains a combination of a ray tracer and an atomic physics module to describe the effects of ionizing radiation. The code is parallelized using a custom threadpool library. We present an application in which we follow the ionization of two dense spherical clumps which are exposed to an ionizing radiation field from a 50 000 K black body. We study various configurations in which one of the clumps shields the other from the ionizing photons. We find that relatively long-lived filamentary structures with narrow tails are formed. This raises the possibility that cometary knots (such as are found in the Helix Nebula) may be the result of the interaction of an ionizing radiation field with an ensemble of clumps, as opposed to the identification of a single knot with a single clump. Movies are available at http://www.edpsciences.org

  2. 3D hydrodynamical and radiative transfer modeling of η Carinae's colliding winds

    NASA Astrophysics Data System (ADS)

    Madura, T. I.; Clementel, N.; Gull, T. R.; Kruip, C. J. H.; Paardekooper, J.-P.; Icke, V.

    We present results of full 3D hydrodynamical and radiative transfer simulations of the colliding stellar winds in the massive binary system η Carinae. We accomplish this by applying the SimpleX algorithm for 3D radiative transfer on an unstructured Voronoi-Delaunay grid to recent 3D smoothed particle hydrodynamics (SPH) simulations of the binary colliding winds. We use SimpleX to obtain detailed ionization fractions of hydrogen and helium, in 3D, at the resolution of the original SPH simulations. We investigate several computational domain sizes and Luminous Blue Variable primary star mass-loss rates. We furthermore present new methods of visualizing and interacting with output from complex 3D numerical simulations, including 3D interactive graphics and 3D printing. While we initially focus on η Car, the methods employed can be applied to numerous other colliding wind (WR 140, WR 137, WR 19) and dusty `pinwheel' (WR 104, WR 98a) binary systems. Coupled with 3D hydrodynamical simulations, SimpleX simulations have the potential to help determine the regions where various observed time-variable emission and absorption lines form in these unique objects.

  3. 3D Hydrodynamical and Radiative Transfer Modeling of Eta Carinae's Colliding Winds

    NASA Astrophysics Data System (ADS)

    Madura, Thomas Ignatius; Clementel, Nicola; Gull, Theodore R.; Kruip, Chael J. H.; Paardekooper, Jan-Pieter; Icke, Vincent

    2015-08-01

    We present the results of full 3D hydrodynamical and radiative transfer simulations of the colliding stellar winds in the massive binary system Eta Carinae (Clementel, Madura, et al. 2014, MNRAS, 443, 2475 and Clementel, Madura, et al. 2015, MNRAS, 447, 2445). We accomplish this by applying the SimpleX algorithm for 3D radiative transfer on an unstructured Voronoi-Delaunay grid to 3D smoothed particle hydrodynamics simulations of the binary colliding winds. We use SimpleX to obtain detailed ionization fractions of hydrogen and helium in 3D. We investigate several computational domain sizes and Luminous Blue Variable primary-star mass-loss rates. We show how the SimpleX simulations can be used to generate synthetic spectral data cubes for comparison to data obtained with the Hubble Space Telescope (HST)/Space Telescope Imaging Spectrograph as part of a multi-cycle program to map changes in Eta Carinae's spatially extended interacting wind structures across one binary cycle. Comparison of the HST observations to the SimpleX models can help lead to more accurate constraints on the orbital, stellar, and wind parameters of the Eta Carinae system, such as the LBV primary's mass-loss rate and the companion star's temperature and luminosity. We furthermore present new methods of visualizing and interacting with output from complex 3D numerical simulations, including 3D interactive graphics and 3D printing (Madura et al. 2015, arXiv:1503.00716). While we initially focus specifically on Eta Carinae, the methods employed can be applied to numerous other colliding wind (WR 140, WR 137, WR 19) and dusty ‘pinwheel’ (WR 112, WR 104, WR 98a) binary systems. Coupled with 3D hydrodynamical simulations, SimpleX simulations have the potential to help determine the regions where dust can form and survive in these unique objects.

  4. Simulations of implosions with a 3D, parallel, unstructured-grid, radiation-hydrodynamics code

    SciTech Connect

    Kaiser, T B; Milovich, J L; Prasad, M K; Rathkopf, J; Shestakov, A I

    1998-12-28

    An unstructured-grid, radiation-hydrodynamics code is used to simulate implosions. Although most of the problems are spherically symmetric, they are run on 3D, unstructured grids in order to test the code's ability to maintain spherical symmetry of the converging waves. Three problems, of increasing complexity, are presented. In the first, a cold, spherical, ideal gas bubble is imploded by an enclosing high pressure source. For the second, we add non-linear heat conduction and drive the implosion with twelve laser beams centered on the vertices of an icosahedron. In the third problem, a NIF capsule is driven with a Planckian radiation source.

  5. New Insights on Pulsating White Dwarfs from 3D Radiation-Hydrodynamical Simulations

    NASA Astrophysics Data System (ADS)

    Tremblay, Pier-Emmanuel; Fontaine, Gilles; Ludwig, Hans-Günter

    2015-08-01

    We have recently computed a grid of 3D radiation-hydrodynamical simulations for the atmosphere of 70 pure-hydrogen DA white dwarfs in the range 7.0 < log g < 9.0. This includes the full ZZ Ceti instability strip where DA white dwarfs are pulsating, by far the most common type of degenerate pulsators. We have significantly improved the theoretical framework to study these objects by removing the free parameters of 1D convection, which were previously a major modeling hurdle. We will compare our new models with the observed sample of ZZ Ceti stars and highlight the improved derived properties of these objects. In particular, the new spectroscopically determined 3D atmospheric parameters allow for an improved definition of instability strip edges. We have also made new predictions for the size of convection zones, which significantly impact the position where the pulsations are driven, and the region of the HR diagram where white dwarfs are expected to pulsate. Finally, we will present new results from non-adiabatic pulsation calculations.

  6. DYNA3D. Explicit 3-d Hydrodynamic FEM Program

    SciTech Connect

    Whirley, R.G.; Englemann, B.E. )

    1993-11-30

    DYNA3D is an explicit, three-dimensional, finite element program for analyzing the large deformation dynamic response of inelastic solids and structures. DYNA3D contains 30 material models and 10 equations of state (EOS) to cover a wide range of material behavior. The material models implemented are: elastic, orthotropic elastic, kinematic/isotropic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, Blatz-Ko rubber, high explosive burn, hydrodynamic without deviatoric stresses, elastoplastic hydrodynamic, temperature-dependent elastoplastic, isotropic elastoplastic, isotropic elastoplastic with failure, soil and crushable foam with failure, Johnson/Cook plasticity model, pseudo TENSOR geological model, elastoplastic with fracture, power law isotropic plasticity, strain rate dependent plasticity, rigid, thermal orthotropic, composite damage model, thermal orthotropic with 12 curves, piecewise linear isotropic plasticity, inviscid two invariant geologic cap, orthotropic crushable model, Moonsy-Rivlin rubber, resultant plasticity, closed form update shell plasticity, and Frazer-Nash rubber model. The hydrodynamic material models determine only the deviatoric stresses. Pressure is determined by one of 10 equations of state including linear polynomial, JWL high explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, tabulated, and TENSOR pore collapse. DYNA3D generates three binary output databases. One contains information for complete states at infrequent intervals; 50 to 100 states is typical. The second contains information for a subset of nodes and elements at frequent intervals; 1,000 to 10,000 states is typical. The last contains interface data for contact surfaces.

  7. Radiation Hydrodynamics

    SciTech Connect

    Castor, J I

    2003-10-16

    The discipline of radiation hydrodynamics is the branch of hydrodynamics in which the moving fluid absorbs and emits electromagnetic radiation, and in so doing modifies its dynamical behavior. That is, the net gain or loss of energy by parcels of the fluid material through absorption or emission of radiation are sufficient to change the pressure of the material, and therefore change its motion; alternatively, the net momentum exchange between radiation and matter may alter the motion of the matter directly. Ignoring the radiation contributions to energy and momentum will give a wrong prediction of the hydrodynamic motion when the correct description is radiation hydrodynamics. Of course, there are circumstances when a large quantity of radiation is present, yet can be ignored without causing the model to be in error. This happens when radiation from an exterior source streams through the problem, but the latter is so transparent that the energy and momentum coupling is negligible. Everything we say about radiation hydrodynamics applies equally well to neutrinos and photons (apart from the Einstein relations, specific to bosons), but in almost every area of astrophysics neutrino hydrodynamics is ignored, simply because the systems are exceedingly transparent to neutrinos, even though the energy flux in neutrinos may be substantial. Another place where we can do ''radiation hydrodynamics'' without using any sophisticated theory is deep within stars or other bodies, where the material is so opaque to the radiation that the mean free path of photons is entirely negligible compared with the size of the system, the distance over which any fluid quantity varies, and so on. In this case we can suppose that the radiation is in equilibrium with the matter locally, and its energy, pressure and momentum can be lumped in with those of the rest of the fluid. That is, it is no more necessary to distinguish photons from atoms, nuclei and electrons, than it is to distinguish

  8. High-temperature Processing of Solids through Solar Nebular Bow Shocks: 3D Radiation Hydrodynamics Simulations with Particles

    NASA Astrophysics Data System (ADS)

    Boley, A. C.; Morris, M. A.; Desch, S. J.

    2013-10-01

    A fundamental, unsolved problem in solar system formation is explaining the melting and crystallization of chondrules found in chondritic meteorites. Theoretical models of chondrule melting in nebular shocks have been shown to be consistent with many aspects of thermal histories inferred for chondrules from laboratory experiments; but, the mechanism driving these shocks is unknown. Planetesimals and planetary embryos on eccentric orbits can produce bow shocks as they move supersonically through the disk gas, and are one possible source of chondrule-melting shocks. We investigate chondrule formation in bow shocks around planetoids through three-dimensional radiation hydrodynamics simulations. A new radiation transport algorithm that combines elements of flux-limited diffusion and Monte Carlo methods is used to capture the complexity of radiative transport around bow shocks. An equation of state that includes the rotational, vibrational, and dissociation modes of H2 is also used. Solids are followed directly in the simulations and their thermal histories are recorded. Adiabatic expansion creates rapid cooling of the gas, and tail shocks behind the embryo can cause secondary heating events. Radiative transport is efficient, and bow shocks around planetoids can have luminosities ~few× 10-8 L ⊙. While barred and radial chondrule textures could be produced in the radiative shocks explored here, porphyritic chondrules may only be possible in the adiabatic limit. We present a series of predicted cooling curves that merit investigation in laboratory experiments to determine whether the solids produced by bow shocks are represented in the meteoritic record by chondrules or other solids.

  9. HIGH-TEMPERATURE PROCESSING OF SOLIDS THROUGH SOLAR NEBULAR BOW SHOCKS: 3D RADIATION HYDRODYNAMICS SIMULATIONS WITH PARTICLES

    SciTech Connect

    Boley, A. C.; Morris, M. A.; Desch, S. J.

    2013-10-20

    A fundamental, unsolved problem in solar system formation is explaining the melting and crystallization of chondrules found in chondritic meteorites. Theoretical models of chondrule melting in nebular shocks have been shown to be consistent with many aspects of thermal histories inferred for chondrules from laboratory experiments; but, the mechanism driving these shocks is unknown. Planetesimals and planetary embryos on eccentric orbits can produce bow shocks as they move supersonically through the disk gas, and are one possible source of chondrule-melting shocks. We investigate chondrule formation in bow shocks around planetoids through three-dimensional radiation hydrodynamics simulations. A new radiation transport algorithm that combines elements of flux-limited diffusion and Monte Carlo methods is used to capture the complexity of radiative transport around bow shocks. An equation of state that includes the rotational, vibrational, and dissociation modes of H{sub 2} is also used. Solids are followed directly in the simulations and their thermal histories are recorded. Adiabatic expansion creates rapid cooling of the gas, and tail shocks behind the embryo can cause secondary heating events. Radiative transport is efficient, and bow shocks around planetoids can have luminosities ∼few× 10{sup –8} L{sub ☉}. While barred and radial chondrule textures could be produced in the radiative shocks explored here, porphyritic chondrules may only be possible in the adiabatic limit. We present a series of predicted cooling curves that merit investigation in laboratory experiments to determine whether the solids produced by bow shocks are represented in the meteoritic record by chondrules or other solids.

  10. Automotive Underhood Thermal Management Analysis Using 3-D Coupled Thermal-Hydrodynamic Computer Models: Thermal Radiation Modeling

    SciTech Connect

    Pannala, S; D'Azevedo, E; Zacharia, T

    2002-02-26

    The goal of the radiation modeling effort was to develop and implement a radiation algorithm that is fast and accurate for the underhood environment. As part of this CRADA, a net-radiation model was chosen to simulate radiative heat transfer in an underhood of a car. The assumptions (diffuse-gray and uniform radiative properties in each element) reduce the problem tremendously and all the view factors for radiation thermal calculations can be calculated once and for all at the beginning of the simulation. The cost for online integration of heat exchanges due to radiation is found to be less than 15% of the baseline CHAD code and thus very manageable. The off-line view factor calculation is constructed to be very modular and has been completely integrated to read CHAD grid files and the output from this code can be read into the latest version of CHAD. Further integration has to be performed to accomplish the same with STAR-CD. The main outcome of this effort is to obtain a highly scalable and portable simulation capability to model view factors for underhood environment (for e.g. a view factor calculation which took 14 hours on a single processor only took 14 minutes on 64 processors). The code has also been validated using a simple test case where analytical solutions are available. This simulation capability gives underhood designers in the automotive companies the ability to account for thermal radiation - which usually is critical in the underhood environment and also turns out to be one of the most computationally expensive components of underhood simulations. This report starts off with the original work plan as elucidated in the proposal in section B. This is followed by Technical work plan to accomplish the goals of the project in section C. In section D, background to the current work is provided with references to the previous efforts this project leverages on. The results are discussed in section 1E. This report ends with conclusions and future scope of

  11. Explicit 3-D Hydrodynamic FEM Program

    2000-11-07

    DYNA3D is a nonlinear explicit finite element code for analyzing 3-D structures and solid continuum. The code is vectorized and available on several computer platforms. The element library includes continuum, shell, beam, truss and spring/damper elements to allow maximum flexibility in modeling physical problems. Many materials are available to represent a wide range of material behavior, including elasticity, plasticity, composites, thermal effects and rate dependence. In addition, DYNA3D has a sophisticated contact interface capability, includingmore » frictional sliding, single surface contact and automatic contact generation.« less

  12. Parton shower evolution in a 3D hydrodynamical medium

    SciTech Connect

    Renk, Thorsten

    2008-09-15

    We present a Monte Carlo simulation of the perturbative quantum chromodynamics shower developing after a hard process embedded in a heavy-ion collision. The main assumption is that the cascade of branching partons traverses a medium that (consistent with standard radiative energy loss pictures) is characterized by a local transport coefficient q-circumflex that measures the virtuality per unit length transferred to a parton that propagates in this medium. This increase in parton virtuality alters the development of the shower and in essence leads to extra induced radiation and hence a softening of the momentum distribution in the shower. After hadronization, this leads to the concept of a medium-modified fragmentation function. On the level of observables, this is manifest as the suppression of high-transverse-momentum (P{sub T}) hadron spectra. We simulate the soft medium created in heavy-ion collisions by a 3D hydrodynamical evolution and average the medium-modified fragmentation function over this evolution to compare with data on single inclusive hadron suppression and extract the q-circumflex that characterizes the medium. Finally, we discuss possible uncertainties of the model formulation and argue that the data in a soft momentum show evidence of qualitatively different physics that presumably cannot be described by a medium-modified parton shower.

  13. 3D hydrodynamic focusing microfluidics for emerging sensing technologies.

    PubMed

    Daniele, Michael A; Boyd, Darryl A; Mott, David R; Ligler, Frances S

    2015-05-15

    While the physics behind laminar flows has been studied for 200 years, understanding of how to use parallel flows to augment the capabilities of microfluidic systems has been a subject of study primarily over the last decade. The use of one flow to focus another within a microfluidic channel has graduated from a two-dimensional to a three-dimensional process and the design principles are only now becoming established. This review explores the underlying principles for hydrodynamic focusing in three dimensions (3D) using miscible fluids and the application of these principles for creation of biosensors, separation of cells and particles for sample manipulation, and fabrication of materials that could be used for biosensors. Where sufficient information is available, the practicality of devices implementing fluid flows directed in 3D is evaluated and the advantages and limitations of 3D hydrodynamic focusing for the particular application are highlighted.

  14. Photospheric Emission from Collapsar Jets in 3D Relativistic Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Ito, Hirotaka; Matsumoto, Jin; Nagataki, Shigehiro; Warren, Donald C.; Barkov, Maxim V.

    2015-12-01

    We explore the photospheric emission from a relativistic jet breaking out from a massive stellar envelope based on relativistic hydrodynamical simulations and post-process radiation transfer calculations in three dimensions. To investigate the impact of three-dimensional (3D) dynamics on the emission, two models of injection conditions are considered for the jet at the center of the progenitor star: one with periodic precession and another without precession. We show that structures developed within the jet due to the interaction with the stellar envelope, as well as due to the precession, have a significant imprint on the resulting emission. Particularly, we find that the signature of precession activity by the central engine is not smeared out and can be directly observed in the light curve as a periodic signal. We also show that non-thermal features, which can account for observations of gamma-ray bursts, are produced in the resulting spectra even though only thermal photons are injected initially and the effect of non-thermal particles is not considered.

  15. PHOTOSPHERIC EMISSION FROM COLLAPSAR JETS IN 3D RELATIVISTIC HYDRODYNAMICS

    SciTech Connect

    Ito, Hirotaka; Matsumoto, Jin; Nagataki, Shigehiro; Warren, Donald C.; Barkov, Maxim V.

    2015-12-01

    We explore the photospheric emission from a relativistic jet breaking out from a massive stellar envelope based on relativistic hydrodynamical simulations and post-process radiation transfer calculations in three dimensions. To investigate the impact of three-dimensional (3D) dynamics on the emission, two models of injection conditions are considered for the jet at the center of the progenitor star: one with periodic precession and another without precession. We show that structures developed within the jet due to the interaction with the stellar envelope, as well as due to the precession, have a significant imprint on the resulting emission. Particularly, we find that the signature of precession activity by the central engine is not smeared out and can be directly observed in the light curve as a periodic signal. We also show that non-thermal features, which can account for observations of gamma-ray bursts, are produced in the resulting spectra even though only thermal photons are injected initially and the effect of non-thermal particles is not considered.

  16. 3-D HYDRODYNAMIC MODELING IN A GEOSPATIAL FRAMEWORK

    SciTech Connect

    Bollinger, J; Alfred Garrett, A; Larry Koffman, L; David Hayes, D

    2006-08-24

    3-D hydrodynamic models are used by the Savannah River National Laboratory (SRNL) to simulate the transport of thermal and radionuclide discharges in coastal estuary systems. Development of such models requires accurate bathymetry, coastline, and boundary condition data in conjunction with the ability to rapidly discretize model domains and interpolate the required geospatial data onto the domain. To facilitate rapid and accurate hydrodynamic model development, SRNL has developed a pre- and post-processor application in a geospatial framework to automate the creation of models using existing data. This automated capability allows development of very detailed models to maximize exploitation of available surface water radionuclide sample data and thermal imagery.

  17. Regularity criterion for the 3D Hall-magneto-hydrodynamics

    NASA Astrophysics Data System (ADS)

    Dai, Mimi

    2016-07-01

    This paper studies the regularity problem for the 3D incompressible resistive viscous Hall-magneto-hydrodynamic (Hall-MHD) system. The Kolmogorov 41 phenomenological theory of turbulence [14] predicts that there exists a critical wavenumber above which the high frequency part is dominated by the dissipation term in the fluid equation. Inspired by this idea, we apply an approach of splitting the wavenumber combined with an estimate of the energy flux to obtain a new regularity criterion. The regularity condition presented here is weaker than conditions in the existing criteria (Prodi-Serrin type criteria) for the 3D Hall-MHD system.

  18. 3D Hydrodynamical Simulations of Evolved Stars and Observations of Stellar Surfaces

    NASA Astrophysics Data System (ADS)

    Chiavassa, A.; Freytag, B.

    2015-08-01

    Evolved stars are among the largest and brightest stars and they are ideal targets for the new generation of sensitive, high resolution instrumentation that provides spectrophotometric, interferometric, astrometric, and imaging observables. The interpretation of the complex stellar surface images requires numerical simulations of stellar convection that take into account multi-dimensional time-dependent radiation hydrodynamics with realistic input physics. We show how the evolved star simulations are obtained using the radiative hydrodynamics code CO5BOLD and how the accurate observables are computed with the post-processing radiative transfer code OPTIM3D. The synergy between observations and theoretical work is supported by a proper and quantitative analysis using these simulations, and by strong constraints from the observational side.

  19. 3D Radiative Transfer in Cloudy Atmospheres

    NASA Astrophysics Data System (ADS)

    Marshak, Alexander; Davis, Anthony

    Developments in three-dimensional cloud radiation over the past few decades are assessed and distilled into this contributed volume. Chapters are authored by subject-matter experts who address a broad audience of graduate students, researchers, and anyone interested in cloud-radiation processes in the solar and infrared spectral regions. After two introductory chapters and a section on the fundamental physics and computational techniques, the volume extensively treats two main application areas: the impact of clouds on the Earth's radiation budget, which is an essential aspect of climate modeling; and remote observation of clouds, especially with the advanced sensors on current and future satellite missions. http://www.springeronline.com/alert/article?a=3D1_1fva7w_1j826l_41z_6

  20. Toward a Fully Consistent Radiation Hydrodynamics

    SciTech Connect

    Castor, J I

    2009-07-07

    Dimitri Mihalas set the standard for all work in radiation hydrodynamics since 1984. The present contribution builds on 'Foundations of Radiation Hydrodynamics' to explore the relativistic effects that have prevented having a consistent non-relativistic theory. Much of what I have to say is in FRH, but the 3-D development is new. Results are presented for the relativistic radiation transport equation in the frame obtained by a Lorentz boost with the fluid velocity, and the exact momentum-integrated moment equations. The special-relativistic hydrodynamic equations are summarized, including the radiation contributions, and it is shown that exact conservation is obtained, and certain puzzles in the non-relativistic radhydro equations are explained.

  1. 3D Kinematics and Hydrodynamic Analysis of Freely Swimming Cetacean

    NASA Astrophysics Data System (ADS)

    Ren, Yan; Sheinberg, Dustin; Liu, Geng; Dong, Haibo; Fish, Frank; Javed, Joveria

    2015-11-01

    It's widely thought that flexibility and the ability to control flexibility are crucial elements in determining the performance of animal swimming. However, there is a lack of quantification of both span-wise and chord-wise deformation of Cetacean's flukes and associated hydrodynamic performance during actively swimming. To fill this gap, we examined the motion and flexure of both dolphin fluke and orca fluke in steady swimming using a combined experimental and computational approach. It is found that the fluke surface morphing can effectively modulate the flow structures and influence the propulsive performance. Findings from this work are fundamental for understanding key kinematic features of effective Cetacean propulsors, and for quantifying the hydrodynamic force production that naturally occurs during different types of swimming. This work is supported by ONR MURI N00014-14-1-0533 and NSF CBET-1313217.

  2. 3D Printing Meets Computational Astrophysics: Deciphering the Structure of Eta Carinae’s Colliding Winds Using 3D Prints of Smoothed Particle Hydrodynamics Simulations

    NASA Astrophysics Data System (ADS)

    Madura, Thomas; Gull, Theodore R.; Clementel, Nicola; Paardekooper, Jan-Pieter; Kruip, Chael; Corcoran, Michael F.; Hamaguchi, Kenji; Teodoro, Mairan

    2015-01-01

    We present the first 3D prints of output from a supercomputer simulation of a complex astrophysical system, the colliding stellar winds in the massive (>120 MSun), highly eccentric (e ~ 0.9) binary Eta Carinae. Using a consumer-grade 3D printer (Makerbot Replicator 2X), we successfully printed 3D smoothed particle hydrodynamics simulations of Eta Carinae's inner (r ~110 AU) wind-wind collision interface at multiple orbital phases. These 3D prints reveal important, previously unknown 'finger-like' structures at orbital phases shortly after periastron (φ ~1.045) that protrude radially outward from the spiral wind-wind collision region. We speculate that these fingers are related to instabilities (e.g. Rayleigh-Taylor) that arise at the interface between the radiatively-cooled layer of dense post-shock primary-star wind and the hot, adiabatic post-shock companion-star wind. The success of our work and easy identification of previously unknown physical features highlight the important role 3D printing can play in the visualization and understanding of complex 3D time-dependent numerical simulations of astrophysical phenomena.

  3. SB3D User Manual, Santa Barbara 3D Radiative Transfer Model

    SciTech Connect

    O'Hirok, William

    1999-01-01

    SB3D is a three-dimensional atmospheric and oceanic radiative transfer model for the Solar spectrum. The microphysics employed in the model are the same as used in the model SBDART. It is assumed that the user of SB3D is familiar with SBDART and IDL. SB3D differs from SBDART in that computations are conducted on media in three-dimensions rather than a single column (i.e. plane-parallel), and a stochastic method (Monte Carlo) is employed instead of a numerical approach (Discrete Ordinates) for estimating a solution to the radiative transfer equation. Because of these two differences between SB3D and SBDART, the input and running of SB3D is more unwieldy and requires compromises between model performance and computational expense. Hence, there is no one correct method for running the model and the user must develop a sense to the proper input and configuration of the model.

  4. 3D radiative transfer in colliding wind binaries: Application of the SimpleX algorithm to 3D SPH simulations

    NASA Astrophysics Data System (ADS)

    Madura, Thomas; Clementel, Nicola; Kruip, Chael; Icke, Vincent; Gull, Theodore

    2014-09-01

    We present the first results of full 3D radiative transfer simulations of the colliding stellar winds in a massive binary system. We accomplish this by applying the SIMPLEX algorithm for 3D radiative transfer on an unstructured Delaunay grid to recent 3D smoothed particle hydrodynamics (SPH) simulations of the colliding winds in the binary system η Carinae. We use SIMPLEX to obtain detailed ionization fractions of hydrogen and helium, in 3D, at the resolution of the original SPH simulations. We show how the SIMPLEX simulations can be used to generate synthetic spectral data cubes for comparison to data obtained with the Hubble Space Telescope (HST)/Space Telescope Imaging Spectrograph as part of a multi-cycle program to map changes in η Car's extended interacting wind structures across one binary cycle. Comparison of the HST observations to the SIMPLEX models can help lead to more accurate constraints on the orbital, stellar, and wind parameters of the η Car system, such as the primary's mass-loss rate and the companion's temperature and luminosity. While we initially focus specifically on the η Car binary, the numerical methods employed can be applied to numerous other colliding wind (WR140, WR137, WR19) and dusty 'pinwheel' (WR104, WR98a) binary systems. One of the biggest remaining mysteries is how dust can form and survive in such systems that contain a hot, luminous O star. Coupled with 3D hydrodynamical simulations, SIMPLEX simulations have the potential to help determine the regions where dust can form and survive in these unique objects.

  5. FlexyDos3D: a deformable anthropomorphic 3D radiation dosimeter: radiation properties

    NASA Astrophysics Data System (ADS)

    De Deene, Y.; Skyt, P. S.; Hil, R.; Booth, J. T.

    2015-02-01

    Three dimensional radiation dosimetry has received growing interest with the implementation of highly conformal radiotherapy treatments. The radiotherapy community faces new challenges with the commissioning of image guided and image gated radiotherapy treatments (IGRT) and deformable image registration software. A new three dimensional anthropomorphically shaped flexible dosimeter, further called ‘FlexyDos3D’, has been constructed and a new fast optical scanning method has been implemented that enables scanning of irregular shaped dosimeters. The FlexyDos3D phantom can be actuated and deformed during the actual treatment. FlexyDos3D offers the additional advantage that it is easy to fabricate, is non-toxic and can be molded in an arbitrary shape with high geometrical precision. The dosimeter formulation has been optimized in terms of dose sensitivity. The influence of the casting material and oxygen concentration has also been investigated. The radiophysical properties of this new dosimeter are discussed including stability, spatial integrity, temperature dependence of the dosimeter during radiation, readout and storage, dose rate dependence and tissue equivalence. The first authors Y De Deene and P S Skyt made an equivalent contribution to the experimental work presented in this paper.

  6. Protostellar Collapse Using Multigroup Radiation Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Vaytet, N.; Chabrier, G.; Audit, E.; Commerçon, B.; Masson, J.; González, M.; Ferguson, J.; Delahaye, F.

    2015-10-01

    Many simulations of protostellar collapse make use of a grey treatment of radiative transfer coupled to the hydrodynamics. However, interstellar gas and dust opacities present large variations as a function of frequency. In this paper, we present multigroup radiation hydrodynamics simulations of the collapse of a spherically symmetric cloud and the formation of the first and second Larson cores. We have used a non-ideal gas equation of state as well as an extensive set of spectral opacities. Small differences between grey and multigroup simulations were observed. The first and second core accretion shocks were found to be super- and sub-critical, respectively. Varying the initial size and mass of the parent cloud had little impact on the core properties (especially for the second core). We finally present early results from 3D simulations that were performed using the RAMSES code.

  7. Recent Hydrodynamics Improvements to the RELAP5-3D Code

    SciTech Connect

    Richard A. Riemke; Cliff B. Davis; Richard.R. Schultz

    2009-07-01

    The hydrodynamics section of the RELAP5-3D computer program has been recently improved. Changes were made as follows: (1) improved turbine model, (2) spray model for the pressurizer model, (3) feedwater heater model, (4) radiological transport model, (5) improved pump model, and (6) compressor model.

  8. Oxygen spectral line synthesis: 3D non-LTE with CO5BOLD hydrodynamical model atmospheres.

    NASA Astrophysics Data System (ADS)

    Prakapavičius, D.; Steffen, M.; Kučinskas, A.; Ludwig, H.-G.; Freytag, B.; Caffau, E.; Cayrel, R.

    In this work we present first results of our current project aimed at combining the 3D hydrodynamical stellar atmosphere approach with non-LTE (NLTE) spectral line synthesis for a number of key chemical species. We carried out a full 3D-NLTE spectrum synthesis of the oxygen IR 777 nm triplet, using a modified and improved version of our NLTE3D package to calculate departure coefficients for the atomic levels of oxygen in a CO5BOLD 3D hydrodynamical solar model atmosphere. Spectral line synthesis was subsequently performed with the Linfor3D code. In agreement with previous studies, we find that the lines of the oxygen triplet produce deeper cores under NLTE conditions, due to the diminished line source function in the line forming region. This means that the solar oxygen IR 777 nm lines should be stronger in NLTE, leading to negative 3D NLTE-LTE abundance corrections. Qualitatively this result would support previous claims for a relatively low solar oxygen abundance. Finally, we outline several further steps that need to be taken in order to improve the physical realism and numerical accuracy of our current 3D-NLTE calculations.

  9. The Radiation Transport Conundrum in Radiation Hydrodynamics

    SciTech Connect

    Castor, J I

    2005-03-18

    The summary of this paper is: (1) The conundrum in the title is whether to treat radiation in the lab frame or the comoving frame in a radiation-hydrodynamic problem; (2) Several of the difficulties are associated with combining a somewhat relativistic treatment of radiation with a non-relativistic treatment of hydrodynamics; (3) The principal problem is a tradeoff between easily obtaining the correct diffusion limit and describing free-streaming radiation with the correct wave speed; (4) The computational problems of the comoving-frame formulation in more than one dimension, and the difficulty of obtaining both exact conservation and full u/c accuracy argue against this method; (5) As the interest in multi-D increases, as well as the power of computers, the lab-frame method is becoming more attractive; and (6) The Monte Carlo method combines the advantages of both lab-frame and comoving-frame approaches, its only disadvantage being cost.

  10. The early phases of galaxy clusters formation in IR: coupling hydrodynamical simulations with GRASIL-3D

    NASA Astrophysics Data System (ADS)

    Granato, Gian Luigi; Ragone-Figueroa, Cinthia; Domínguez-Tenreiro, Rosa; Obreja, Aura; Borgani, Stefano; De Lucia, Gabriella; Murante, Giuseppe

    2015-06-01

    We compute and study the infrared and sub-mm properties of high-redshift (z ≳ 1) simulated clusters and protoclusters. The results of a large set of hydrodynamical zoom-in simulations including active galactic nuclei (AGN) feedback, have been treated with the recently developed radiative transfer code GRASIL-3D, which accounts for the effect of dust reprocessing in an arbitrary geometry. Here, we have slightly generalized the code to adapt it to the present purpose. Then we have post-processed boxes of physical size 2 Mpc encompassing each of the 24 most massive clusters identified at z = 0, at several redshifts between 0.5 and 3, producing IR and sub-mm mock images of these regions and spectral energy distributions (SEDs) of the radiation coming out from them. While this field is in its infancy from the observational point of view, rapid development is expected in the near future thanks to observations performed in the far-IR and sub-mm bands. Notably, we find that in this spectral regime our prediction are little affected by the assumption required by this post-processing, and the emission is mostly powered by star formation (SF) rather than accretion on to super massive black hole (SMBH). The comparison with the little observational information currently available, highlights that the simulated cluster regions never attain the impressive star formation rates suggested by these observations. This problem becomes more intriguing taking into account that the brightest cluster galaxies (BCGs) in the same simulations turn out to be too massive. It seems that the interplay between the feedback schemes and the star formation model should be revised, possibly incorporating a positive feedback mode.

  11. Cloud Property Retrieval and 3D Radiative Transfer

    NASA Technical Reports Server (NTRS)

    Cahalan, Robert F.

    2003-01-01

    Cloud thickness and photon mean-free-path together determine the scale of "radiative smoothing" of cloud fluxes and radiances. This scale is observed as a change in the spatial spectrum of cloud radiances, and also as the "halo size" seen by off beam lidar such as THOR and WAIL. Such of beam lidar returns are now being used to retrieve cloud layer thickness and vertical scattering extinction profile. We illustrate with recent measurements taken at the Oklahoma ARM site, comparing these to the-dependent 3D simulations. These and other measurements sensitive to 3D transfer in clouds, coupled with Monte Carlo and other 3D transfer methods, are providing a better understanding of the dependence of radiation on cloud inhomogeneity, and to suggest new retrieval algorithms appropriate for inhomogeneous clouds. The international "Intercomparison of 3D Radiation Codes" or I3RC, program is coordinating and evaluating the variety of 3D radiative transfer methods now available, and to make them more widely available. Information is on the Web at: http://i3rc.gsfc.nasa.gov/. Input consists of selected cloud fields derived from data sources such as radar, microwave and satellite, and from models involved in the GEWEX Cloud Systems Studies. Output is selected radiative quantities that characterize the large-scale properties of the fields of radiative fluxes and heating. Several example cloud fields will be used to illustrate. I3RC is currently implementing an "open source" 3d code capable of solving the baseline cases. Maintenance of this effort is one of the goals of a new 3DRT Working Group under the International Radiation Commission. It is hoped that the 3DRT WG will include active participation by land and ocean modelers as well, such as 3D vegetation modelers participating in RAMI.

  12. Hydrodynamic growth experiments with the 3-D, “native-roughness” modulations on NIF

    NASA Astrophysics Data System (ADS)

    Smalyuk, V. A.; Weber, S. V.; Casey, D.; Clark, D. S.; Coppari, F.; Field, J. E.; Haan, S. W.; Hammel, B. A.; Hamza, A.; Hsing, W.; Landen, O.; Nikroo, A.; Robey, H. F.; Weber, C. R.

    2016-05-01

    Hydrodynamic instability growth experiments with threedimensional (3-D) surface-roughness modulations were performed on plastic (CH) shell spherical implosions at the National Ignition Facility (NIF). The initial capsule outer-surface roughness was similar to the standard specifications (“native roughness”) used in a majority of implosions on NIF. At a convergence ratio of ∼3, the measured tent modulations were close to those predicted by 3-D simulations (within ∼15-20%), while measured 3-D, broadband modulations were ∼3-4 times larger than those simulated based on the growth of the known imposed initial surface modulations. One of the hypotheses to explain the results is based on the increased instability amplitudes due to modulations of the oxygen content in the bulk of the capsule. These new experiments results have prompted looking for ways to reduce UV light exposure during target fabrication.

  13. How Do Hydrodynamic Instabilities Affect 3D Transport in Geophysical Vortices?

    NASA Astrophysics Data System (ADS)

    Wang, P.; Ozgokmen, T. M.

    2014-12-01

    Understanding three-dimensional (3D) transport in ocean eddies is important for processes at a variety of scales, ranging from plankton production to climate variability. It is well known that geophysical vortices are subject to various hydrodynamic instabilities. Yet the influence of these instabilities on 3D material transport in vortex systems is not well investigated. Focusing on barotropic, inertial and 3D instabilities, we analyze these instabilities with normal-mode method, and reproduce their characteristics via highly-resolved numerical simulations using a spectral element Navier-Stokes solver. By comparing the simulation results of stable and unstable vortices, we investigate the joint impacts of instabilities on 3D transport through three major aspects: (i) energy transfer, (ii) overturning transport of the secondary circulation, and (iii) rates of vertical exchange and mixing. It is found that instabilities can enhance local nonlinear interactions and cause the kinetic energy wavenumber spectrum to have slopes between the conventional -5/3 and -3 at inertial ranges. The cascade of a new quantity is proposed to explain these non-conventional slopes. One of our main results is the discovery of material exchange between the central vortex and satellite vortices through 3D pathways, called funnels. These funnels modify the concept of elliptic regions that can trap material when confined to 2D dynamics. Thus, we show that a family of vortices, created by the hydrodynamic instabilities of the initially unstable vortex, can still continue to operate in unity in order to complete the 3D transport in these systems. We also show that flow instabilities can double the magnitude of vertical velocity, increase the rate of vertical exchange by an order of magnitude and enhance mixing rate more than 100%.

  14. 3D volume visualization in remote radiation treatment planning

    NASA Astrophysics Data System (ADS)

    Yun, David Y.; Garcia, Hong-Mei C.; Mun, Seong K.; Rogers, James E.; Tohme, Walid G.; Carlson, Wayne E.; May, Stephen; Yagel, Roni

    1996-03-01

    This paper reports a novel applications of 3D visualization in an ARPA-funded remote radiation treatment planning (RTP) experiment, utilizing supercomputer 3D volumetric modeling power and NASA ACTS (Advanced Communication Technology Satellite) communication bandwidths at the Ka-band range. The objective of radiation treatment is to deliver a tumorcidal dose of radiation to a tumor volume while minimizing doses to surrounding normal tissues. High performance graphics computers are required to allow physicians to view a 3D anatomy, specify proposed radiation beams, and evaluate the dose distribution around the tumor. Supercomputing power is needed to compute and even optimize dose distribution according to pre-specified requirements. High speed communications offer possibilities for sharing scarce and expensive computing resources (e.g., hardware, software, personnel, etc.) as well as medical expertise for 3D treatment planning among hospitals. This paper provides initial technical insights into the feasibility of such resource sharing. The overall deployment of the RTP experiment, visualization procedures, and parallel volume rendering in support of remote interactive 3D volume visualization will be described.

  15. 3D Data assimilation in the radiation belts

    NASA Astrophysics Data System (ADS)

    Shprits, Y.; Kellerman, A. C.; Subbotin, D.; Kondrashov, D. A.; Daae, M.; Turner, D. L.

    2013-05-01

    Significant progress has been made in recent years in application of the data assimilation tools to the radiation belt research. Previous studies concentrated on the analysis of radial profiles of phase space density using multi-satellite measurements and radial transport models. In this study we present analysis of the 3D phase space density using the VERB-3D code blended with CRRES observations by means of operator-splitting Kalman filtering. Assimilation electron fluxes at various energies and pitch-angles into the model allows us to utilize a vast amount of data including information on pitch-angle distributions and radial energy spectra. 3D data assimilation of the radiation belts allows us to differentiate between various acceleration and loss mechanisms. We present reanalysis of the radiation belts and find tell-tale signatures of various physical processes. 3D data assimilative VERB code with RBSP , THEMIS, and GOES data will significantly improve our capabilities in forecasting and now casting radiation belts' hazard.

  16. Radiation hydrodynamics in solar flares

    SciTech Connect

    Fisher, G.H.

    1985-10-18

    Solar flares are rather violent and extremely complicated phenomena, and it should be made clear at the outset that a physically complete picture describing all aspects of flares does not exist. From the wealth of data which is available, it is apparent that many different types of physical processes are involved during flares: energetic particle acceleration, rapid magnetohydrodynamic motion of complex field structures, magnetic reconnection, violent mass motion along magnetic field lines, and the heating of plasma to tens of millions of degrees, to name a few. The goal of this paper is to explore just one aspect of solar flares, namely, the interaction of hydrodynamics and radiation processes in fluid being rapidly heated along closed magnetic field lines. The models discussed are therefore necessarily restrictive, and will address only a few of the observed or observable phenomena. 46 refs., 6 figs.

  17. A harmonic polynomial cell (HPC) method for 3D Laplace equation with application in marine hydrodynamics

    SciTech Connect

    Shao, Yan-Lin Faltinsen, Odd M.

    2014-10-01

    We propose a new efficient and accurate numerical method based on harmonic polynomials to solve boundary value problems governed by 3D Laplace equation. The computational domain is discretized by overlapping cells. Within each cell, the velocity potential is represented by the linear superposition of a complete set of harmonic polynomials, which are the elementary solutions of Laplace equation. By its definition, the method is named as Harmonic Polynomial Cell (HPC) method. The characteristics of the accuracy and efficiency of the HPC method are demonstrated by studying analytical cases. Comparisons will be made with some other existing boundary element based methods, e.g. Quadratic Boundary Element Method (QBEM) and the Fast Multipole Accelerated QBEM (FMA-QBEM) and a fourth order Finite Difference Method (FDM). To demonstrate the applications of the method, it is applied to some studies relevant for marine hydrodynamics. Sloshing in 3D rectangular tanks, a fully-nonlinear numerical wave tank, fully-nonlinear wave focusing on a semi-circular shoal, and the nonlinear wave diffraction of a bottom-mounted cylinder in regular waves are studied. The comparisons with the experimental results and other numerical results are all in satisfactory agreement, indicating that the present HPC method is a promising method in solving potential-flow problems. The underlying procedure of the HPC method could also be useful in other fields than marine hydrodynamics involved with solving Laplace equation.

  18. VISRAD, 3-D Target Design and Radiation Simulation Code

    NASA Astrophysics Data System (ADS)

    Golovkina, Viktoriya; Macfarlane, Joseph; Golovkin, Igor; Kulkarni, Subodh

    2014-10-01

    The 3-D view factor code VISRAD is widely used in designing HEDP experiments at major laser and pulsed-power facilities, including NIF, OMEGA, OMEGA-EP, ORION, LMJ, Z, and PLX. It simulates target designs by generating a 3-D grid of surface elements, utilizing a variety of 3-D primitives and surface removal algorithms, and can be used to compute the radiation flux throughout the surface element grid by computing element-to-element view factors and solving power balance equations. Target set-up and beam pointing are facilitated by allowing users to specify positions and angular orientations using a variety of coordinates systems (e.g., that of any laser beam, target component, or diagnostic port). Analytic modeling for laser beam spatial profiles for OMEGA DPPs and NIF CPPs is used to compute laser intensity profiles throughout the grid of surface elements. We will discuss recent improvements to the software package and plans for future developments.

  19. VISRAD, 3-D Target Design and Radiation Simulation Code

    NASA Astrophysics Data System (ADS)

    Li, Yingjie; Macfarlane, Joseph; Golovkin, Igor

    2015-11-01

    The 3-D view factor code VISRAD is widely used in designing HEDP experiments at major laser and pulsed-power facilities, including NIF, OMEGA, OMEGA-EP, ORION, LMJ, Z, and PLX. It simulates target designs by generating a 3-D grid of surface elements, utilizing a variety of 3-D primitives and surface removal algorithms, and can be used to compute the radiation flux throughout the surface element grid by computing element-to-element view factors and solving power balance equations. Target set-up and beam pointing are facilitated by allowing users to specify positions and angular orientations using a variety of coordinates systems (e.g., that of any laser beam, target component, or diagnostic port). Analytic modeling for laser beam spatial profiles for OMEGA DPPs and NIF CPPs is used to compute laser intensity profiles throughout the grid of surface elements. We will discuss recent improvements to the software package and plans for future developments.

  20. Application of 3D hydrodynamic and particle tracking models for better environmental management of finfish culture

    NASA Astrophysics Data System (ADS)

    Moreno Navas, Juan; Telfer, Trevor C.; Ross, Lindsay G.

    2011-04-01

    Hydrographic conditions, and particularly current speeds, have a strong influence on the management of fish cage culture. These hydrodynamic conditions can be used to predict particle movement within the water column and the results used to optimise environmental conditions for effective site selection, setting of environmental quality standards, waste dispersion, and potential disease transfer. To this end, a 3D hydrodynamic model, MOHID, has been coupled to a particle tracking model to study the effects of mean current speed, quiescent water periods and bulk water circulation in Mulroy Bay, Co. Donegal Ireland, an Irish fjard (shallow fjordic system) important to the aquaculture industry. A Lagangrian method simulated the instantaneous release of "particles" emulating discharge from finfish cages to show the behaviour of waste in terms of water circulation and water exchange. The 3D spatial models were used to identify areas of mixed and stratified water using a version of the Simpson-Hunter criteria, and to use this in conjunction with models of current flow for appropriate site selection for salmon aquaculture. The modelled outcomes for stratification were in good agreement with the direct measurements of water column stratification based on observed density profiles. Calculations of the Simpson-Hunter tidal parameter indicated that most of Mulroy Bay was potentially stratified with a well mixed region over the shallow channels where the water is faster flowing. The fjard was characterised by areas of both very low and high mean current speeds, with some areas having long periods of quiescent water. The residual current and the particle tracking animations created through the models revealed an anticlockwise eddy that may influence waste dispersion and potential for disease transfer, among salmon cages and which ensures that the retention time of waste substances from cages is extended. The hydrodynamic model results were incorporated into the ArcView TM GIS

  1. Delft3D-FLOW on PRACE infrastructures for real life hydrodynamic applications.

    NASA Astrophysics Data System (ADS)

    Donners, John; Genseberger, Menno; Jagers, Bert; de Goede, Erik; Mourits, Adri

    2013-04-01

    PRACE, the Partnership for Advanced Computing in Europe, offers access to the largest high-performance computing systems in Europe. PRACE invites and helps industry to increase their innovative potential through the use of the PRACE infrastructure. This poster describes different efforts to assist Deltares with porting the open-source simulation software Delft3D-FLOW to PRACE infrastructures. Analysis of the performance on these infrastructures has been done for real life flow applications. Delft3D-FLOW is a 2D and 3D shallow water solver which calculates non-steady flow and transport phenomena resulting from tidal and meteorological forcing on a curvilinear, boundary fitted grid in Cartesian or spherical coordinates. It also includes a module which sediment transport (both suspended and bed total load) and morphological changes for an arbitrary number of cohesive and non-cohesive fractions. As Delft3D-FLOW has been developed over several decades, with a variety of functionality and over 350k lines of source code, porting to PRACE infrastructures needs some effort. At the moment Delft3D-FLOW uses MPI with domain decomposition in one direction as its parallellisation approach. Because it is hard to identify scaling issues if one immediately starts with a complex case with many features enabled, different cases with increasing complexity have been used to investigate scaling of this parallellisation approach on several PRACE platforms. As a base reference case we started with a schematic high-resolution 2D hydrodynamic model of the river Waal that turned out to be surprisingly well-suited to the highly-parallel PRACE machines. Although Delft3D-FLOW employs a sophisticated build system, several modifications were required to port it to most PRACE systems due to the use of specific, highly-tuned compilers and MPI-libraries. After this we moved to a 3D hydrodynamic model of Rotterdam harbour that includes sections of the rivers Rhine and Meuse and a part of the North

  2. Size-Controlled Fabrication of Polyaniline Microfibers Based on 3D Hydrodynamic Focusing Approach.

    PubMed

    Yoo, Imsung; Song, Simon; Uh, Kyungchan; Lee, Chan Woo; Kim, Jong-Man

    2015-07-01

    Owing to the relatively high conductivity and unique redox behavior, polyaniline (PANI) has been one of the most technologically promising conducting polymers. Although various methodologies have been developed, fabrication of PANI microfibers has been a challenging task owing to the poor solubility in most organic solvents. By taking advantage of a microfluidic technology and organic soluble acid labile t-Boc-protected PANI (t-Boc-PANI) as the conducting polymer precursor, fabrication of PANI microfibers in a size-controlled manner is possible. Introduction of a THF solution containing t-Boc-PANI, and dodecylbenzenesulfonic acid (DBSA) as a core flow, and water as a sheath flow into a microfluidic channel with a 3D hydrodynamic focusing effect results in crystallization of the polymer fiber. By changing the flow rate, linear PANI microfibers that range from 16.2 to 39.4 μm in diameter are readily obtained.

  3. HERO - A 3D general relativistic radiative post-processor for accretion discs around black holes

    NASA Astrophysics Data System (ADS)

    Zhu, Yucong; Narayan, Ramesh; Sadowski, Aleksander; Psaltis, Dimitrios

    2015-08-01

    HERO (Hybrid Evaluator for Radiative Objects) is a 3D general relativistic radiative transfer code which has been tailored to the problem of analysing radiation from simulations of relativistic accretion discs around black holes. HERO is designed to be used as a post-processor. Given some fixed fluid structure for the disc (i.e. density and velocity as a function of position from a hydrodynamic or magnetohydrodynamic simulation), the code obtains a self-consistent solution for the radiation field and for the gas temperatures using the condition of radiative equilibrium. The novel aspect of HERO is that it combines two techniques: (1) a short-characteristics (SC) solver that quickly converges to a self-consistent disc temperature and radiation field, with (2) a long-characteristics (LC) solver that provides a more accurate solution for the radiation near the photosphere and in the optically thin regions. By combining these two techniques, we gain both the computational speed of SC and the high accuracy of LC. We present tests of HERO on a range of 1D, 2D, and 3D problems in flat space and show that the results agree well with both analytical and benchmark solutions. We also test the ability of the code to handle relativistic problems in curved space. Finally, we discuss the important topic of ray defects, a major limitation of the SC method, and describe our strategy for minimizing the induced error.

  4. 3D Radiative Transfer in Eta Carinae: The SimpleX Radiative Transfer Algorithm Applied to 3D SPH Simulations of Eta Car's Colliding Winds

    NASA Astrophysics Data System (ADS)

    Clementel, N.; Madura, T. I.; Kruip, C. J. H.; Icke, V.; Gull, T. R.

    2014-04-01

    At the heart of the spectacular bipolar Homunculus nebula lies an extremely luminous (5*10^6 L_sun) colliding wind binary with a highly eccentric (e ~ 0.9), 5.54-year orbit and a total mass ~ 110 M_sun. Our closest (D ~ 2.3 kpc) and best example of a pre-hypernova environment, Eta Carinae is an ideal astrophysical laboratory for studying massive binary interactions, stellar wind-wind collisions, and massive star evolution. In order to improve our knowledge of the system, we need to generate synthetic observations and compare them with the already available and future HST/STIS data. We present initial results from full 3D radiative transfer post-processing of 3D SPH hydrodynamical simulations of the interacting winds of Eta Carinae. We use SimpleX algorithm to obtain the ionization fractions of hydrogen and helium, this results in ionization maps of both species that constrain the regions where these lines can form. These results will allow us to put constraints on the number of ionizing photons coming from the companion. This construction of synthetic observations allows us to obtain insight into the highly complex 3D flows in Eta, from the shape of the ionized volume and its resulting optical/spectral appearance.

  5. 3D radiative transfer in η Carinae: application of the SIMPLEX algorithm to 3D SPH simulations of binary colliding winds

    NASA Astrophysics Data System (ADS)

    Clementel, N.; Madura, T. I.; Kruip, C. J. H.; Icke, V.; Gull, T. R.

    2014-09-01

    Eta Carinae is an ideal astrophysical laboratory for studying massive binary interactions and evolution, and stellar wind-wind collisions. Recent three-dimensional (3D) simulations set the stage for understanding the highly complex 3D flows in η Car. Observations of different broad high- and low-ionization forbidden emission lines provide an excellent tool to constrain the orientation of the system, the primary's mass-loss rate, and the ionizing flux of the hot secondary. In this work, we present the first steps towards generating synthetic observations to compare with available and future HST/STIS data. We present initial results from full 3D radiative transfer simulations of the interacting winds in η Car. We use the SIMPLEX algorithm to post-process the output from 3D smoothed particle hydrodynamics (SPH) simulations and obtain the ionization fractions of hydrogen and helium assuming three different mass-loss rates for the primary star. The resultant ionization maps of both species constrain the regions where the observed forbidden emission lines can form. Including collisional ionization is necessary to achieve a better description of the ionization states, especially in the areas shielded from the secondary's radiation. We find that reducing the primary's mass-loss rate increases the volume of ionized gas, creating larger areas where the forbidden emission lines can form. We conclude that post-processing 3D SPH data with SIMPLEX is a viable tool to create ionization maps for η Car.

  6. Fast parallel interferometric 3D tracking of numerous optically trapped particles and their hydrodynamic interaction.

    PubMed

    Ruh, Dominic; Tränkle, Benjamin; Rohrbach, Alexander

    2011-10-24

    Multi-dimensional, correlated particle tracking is a key technology to reveal dynamic processes in living and synthetic soft matter systems. In this paper we present a new method for tracking micron-sized beads in parallel and in all three dimensions - faster and more precise than existing techniques. Using an acousto-optic deflector and two quadrant-photo-diodes, we can track numerous optically trapped beads at up to tens of kHz with a precision of a few nanometers by back-focal plane interferometry. By time-multiplexing the laser focus, we can calibrate individually all traps and all tracking signals in a few seconds and in 3D. We show 3D histograms and calibration constants for nine beads in a quadratic arrangement, although trapping and tracking is easily possible for more beads also in arbitrary 2D arrangements. As an application, we investigate the hydrodynamic coupling and diffusion anomalies of spheres trapped in a 3 × 3 arrangement. PMID:22109012

  7. Computing Radiative Transfer in a 3D Medium

    NASA Technical Reports Server (NTRS)

    Von Allmen, Paul; Lee, Seungwon

    2012-01-01

    A package of software computes the time-dependent propagation of a narrow laser beam in an arbitrary three- dimensional (3D) medium with absorption and scattering, using the transient-discrete-ordinates method and a direct integration method. Unlike prior software that utilizes a Monte Carlo method, this software enables simulation at very small signal-to-noise ratios. The ability to simulate propagation of a narrow laser beam in a 3D medium is an improvement over other discrete-ordinate software. Unlike other direct-integration software, this software is not limited to simulation of propagation of thermal radiation with broad angular spread in three dimensions or of a laser pulse with narrow angular spread in two dimensions. Uses for this software include (1) computing scattering of a pulsed laser beam on a material having given elastic scattering and absorption profiles, and (2) evaluating concepts for laser-based instruments for sensing oceanic turbulence and related measurements of oceanic mixed-layer depths. With suitable augmentation, this software could be used to compute radiative transfer in ultrasound imaging in biological tissues, radiative transfer in the upper Earth crust for oil exploration, and propagation of laser pulses in telecommunication applications.

  8. Towards a 3D Space Radiation Transport Code

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Tripathl, R. K.; Cicomptta, F. A.; Heinbockel, J. H.; Tweed, J.

    2002-01-01

    High-speed computational procedures for space radiation shielding have relied on asymptotic expansions in terms of the off-axis scatter and replacement of the general geometry problem by a collection of flat plates. This type of solution was derived for application to human rated systems in which the radius of the shielded volume is large compared to the off-axis diffusion limiting leakage at lateral boundaries. Over the decades these computational codes are relatively complete and lateral diffusion effects are now being added. The analysis for developing a practical full 3D space shielding code is presented.

  9. 3D imaging of fetus vertebra by synchrotron radiation microtomography

    NASA Astrophysics Data System (ADS)

    Peyrin, Francoise; Pateyron-Salome, Murielle; Denis, Frederic; Braillon, Pierre; Laval-Jeantet, Anne-Marie; Cloetens, Peter

    1997-10-01

    A synchrotron radiation computed microtomography system allowing high resolution 3D imaging of bone samples has been developed at ESRF. The system uses a high resolution 2D detector based on a CCd camera coupled to a fluorescent screen through light optics. The spatial resolution of the device is particularly well adapted to the imaging of bone structure. In view of studying growth, vertebra samples of fetus with differential gestational ages were imaged. The first results show that fetus vertebra is quite different from adult bone both in terms of density and organization.

  10. High-resolution modelling of 3D hydrodynamics in coastal archipelagos

    NASA Astrophysics Data System (ADS)

    Miettunen, Elina; Tuomi, Laura; Ropponen, Janne; Lignell, Risto

    2016-04-01

    Dynamics of the coastal seas are affected by eutrophication, over-fishing, coastal construction and climate change. To enable the sustainable development of these areas, monitoring and modelling of the state of the sea are needed. The Archipelago Sea, located in the northern part of the semi-enclosed and brackish water Baltic Sea, is one of the most complex coastal areas with over 40 000 small islands and islets. It is also very vulnerable area already heavily stressed with eutrophication. Applicable modelling tools are needed to support the decision making and to provide sufficiently reliable information on the effects of the planned actions on the state of the coastal waters. We used 3D hydrodynamic model COHERENS to model the Archipelago Sea area with high spatial resolution of 0.25 nmi. Boundary conditions for this limited area were provided from coarser resolution, 2 nmi, Baltic Sea grid. In order to evaluate the performance of the high-resolution coastal model implementation a comprehensive measurement dataset was gathered, including hydrographic data from three intensive monitoring stations and several more rarely visited monitoring or research stations. The hydrodynamic model was able to simulate the surface temperature and salinity fields and their seasonal variation with good accuracy in this complex area. The sharp depth gradients typical for this area provided some challenges to the modelling. There was some over mixing and related to too strong vertical currents in the steep slopes of the deeper fault lines. Also the water exchange between the more open sea and coastal areas through narrow channels between the islands is not sufficiently well reproduced with the current resolution, leading to too high bottom temperatures.

  11. The hydrodynamic part of the 3D CEMBS model for the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Dzierzbicka-Glowacka, Lidia; Jakacki, Jaromir; Janecki, Maciej; Nowicki, Artur

    2013-04-01

    The paper presents a hydrodynamic part of the coupled ice-ocean model 3D CEMBS designed for the Baltic Sea. It is based on the Community Earth System Model (CESM from the National Center for Atmospheric Research). It was adopted for the Baltic Sea as a coupled sea-ice model. It consists of the Community Ice Code (CICE model, version 4.0) and the Parallel Ocean Program (version 2.1). The models are linked through the coupler (CPL7) based on the Model Coupling Toolkit library. The ocean model has 21 vertical levels and horizontal grid of 600x640 cells. Horizontal resolution is approximately 2km. It is forced by atmospheric fields from European Centre for Medium-Range Weather Forecasts and in operational mode from 48-hour atmospheric forecasts provided by the UM model from the Interdisciplinary Centre for Mathematical and Computational Modelling of Warsaw University (ICM). The study was financially supported by the Polish State Committee of Scientific Research (grants: No N N305 111636, N N306 353239). The partial support for this study was also provided by the project Satellite Monitoring of the Baltic Sea Environment - SatBaltyk founded by European Union through European Regional Development Fund contract no. POIG 01.01.02-22-011/09. Calculations were carried out at the Academy Computer Centre in Gdansk.

  12. 3-D hydrodynamic modelling of flood impacts on a building and indoor flooding processes

    NASA Astrophysics Data System (ADS)

    Gems, Bernhard; Mazzorana, Bruno; Hofer, Thomas; Sturm, Michael; Gabl, Roman; Aufleger, Markus

    2016-06-01

    Given the current challenges in flood risk management and vulnerability assessment of buildings exposed to flood hazards, this study presents three-dimensional numerical modelling of torrential floods and its interaction with buildings. By means of a case study application, the FLOW-3D software is applied to the lower reach of the Rio Vallarsa torrent in the village of Laives (Italy). A single-family house on the flood plain is therefore considered in detail. It is exposed to a 300-year flood hydrograph. Different building representation scenarios, including an entire impervious building envelope and the assumption of fully permeable doors, light shafts and windows, are analysed. The modelling results give insight into the flooding process of the building's interior, the impacting hydrodynamic forces on the exterior and interior walls, and further, they quantify the impact of the flooding of a building on the flow field on the surrounding flood plain. The presented study contributes to the development of a comprehensive physics-based vulnerability assessment framework. For pure water floods, this study presents the possibilities and limits of advanced numerical modelling techniques within flood risk management and, thereby, the planning of local structural protection measures.

  13. Linking 1D evolutionary to 3D hydrodynamical simulations of massive stars

    NASA Astrophysics Data System (ADS)

    Cristini, A.; Meakin, C.; Hirschi, R.; Arnett, D.; Georgy, C.; Viallet, M.

    2016-03-01

    Stellar evolution models of massive stars are important for many areas of astrophysics, for example nucleosynthesis yields, supernova progenitor models and understanding physics under extreme conditions. Turbulence occurs in stars primarily due to nuclear burning at different mass coordinates within the star. The understanding and correct treatment of turbulence and turbulent mixing at convective boundaries in stellar models has been studied for decades but still lacks a definitive solution. This paper presents initial results of a study on convective boundary mixing (CBM) in massive stars. The ‘stiffness’ of a convective boundary can be quantified using the bulk Richardson number ({{Ri}}{{B}}), the ratio of the potential energy for restoration of the boundary to the kinetic energy of turbulent eddies. A ‘stiff’ boundary ({{Ri}}{{B}}˜ {10}4) will suppress CBM, whereas in the opposite case a ‘soft’ boundary ({{Ri}}{{B}}˜ 10) will be more susceptible to CBM. One of the key results obtained so far is that lower convective boundaries (closer to the centre) of nuclear burning shells are ‘stiffer’ than the corresponding upper boundaries, implying limited CBM at lower shell boundaries. This is in agreement with 3D hydrodynamic simulations carried out by Meakin and Arnett (2007 Astrophys. J. 667 448-75). This result also has implications for new CBM prescriptions in massive stars as well as for nuclear burning flame front propagation in super-asymptotic giant branch stars and also the onset of novae.

  14. Constraints on Decreases in Eta Carinae's Mass-loss from 3D Hydrodynamic Simulations of Its Binary Colliding Winds

    NASA Technical Reports Server (NTRS)

    Madura, T. I.; Gull, T. R.; Okazaki, A. T.; Russell, C. M. P.; Owocki, S. P.; Groh, J. H.; Corcoran, M. F.; Hamaguchi, K.; Teodoro, M.

    2013-01-01

    Recent work suggests that the mass-loss rate of the primary star Eta-A in the massive colliding wind binary Eta Carinae dropped by a factor of 2-3 between 1999 and 2010. We present result from large- (+/- 1545 au) and small- (+/- 155 au) domain, 3D smoothed particle hydrodynamics (SPH) simulations of Eta Car's colliding winds for three Eta-A mass-loss rates ( (dot-M(sub Eta-A) = 2.4, 4.8 and 8.5 × 10(exp -4) M(solar)/ yr), investigating the effects on the dynamics of the binary wind-wind collision (WWC). These simulations include orbital motion, optically thin radiative cooling and radiative forces. We find that dot-M Eta-A greatly affects the time-dependent hydrodynamics at all spatial scales investigated. The simulations also show that the post-shock wind of the companion star Eta-B switches from the adiabatic to the radiative-cooling regime during periastron passage (Phi approx.= 0.985-1.02). This switchover starts later and ends earlier the lower the value of dot-M Eta-A and is caused by the encroachment of the wind of Eta-A into the acceleration zone of Eta-B's wind, plus radiative inhibition of Eta-B's wind by Eta-A. The SPH simulations together with 1D radiative transfer models of Eta-A's spectra reveal that a factor of 2 or more drop in dot-M EtaA should lead to substantial changes in numerous multiwavelength observables. Recent observations are not fully consistent with the model predictions, indicating that any drop in dot- M Eta-A was likely by a factor of approx. < 2 and occurred after 2004. We speculate that most of the recent observed changes in Eta Car are due to a small increase in the WWC opening angle that produces significant effects because our line of sight to the system lies close to the dense walls of the WWC zone. A modest decrease in dot-M Eta-A may be responsible, but changes in the wind/stellar parameter of Eta-B, while less likely, cannot yet be fully ruled out. We suggest observations during Eta-Car's next periastron in 2014 to further

  15. Simple Waves in Ideal Radiation Hydrodynamics

    SciTech Connect

    Johnson, B M

    2008-09-03

    In the dynamic diffusion limit of radiation hydrodynamics, advection dominates diffusion; the latter primarily affects small scales and has negligible impact on the large scale flow. The radiation can thus be accurately regarded as an ideal fluid, i.e., radiative diffusion can be neglected along with other forms of dissipation. This viewpoint is applied here to an analysis of simple waves in an ideal radiating fluid. It is shown that much of the hydrodynamic analysis carries over by simply replacing the material sound speed, pressure and index with the values appropriate for a radiating fluid. A complete analysis is performed for a centered rarefaction wave, and expressions are provided for the Riemann invariants and characteristic curves of the one-dimensional system of equations. The analytical solution is checked for consistency against a finite difference numerical integration, and the validity of neglecting the diffusion operator is demonstrated. An interesting physical result is that for a material component with a large number of internal degrees of freedom and an internal energy greater than that of the radiation, the sound speed increases as the fluid is rarefied. These solutions are an excellent test for radiation hydrodynamic codes operating in the dynamic diffusion regime. The general approach may be useful in the development of Godunov numerical schemes for radiation hydrodynamics.

  16. Annual Report: Hydrodynamics and Radiative Hydrodynamics with Astrophysical Applications

    SciTech Connect

    R. Paul Drake

    2005-12-01

    We report the ongoing work of our group in hydrodynamics and radiative hydrodynamics with astrophysical applications. During the period of the existing grant, we have carried out two types of experiments at the Omega laser. One set of experiments has studied radiatively collapsing shocks, obtaining high-quality scaling data using a backlit pinhole and obtaining the first (ever, anywhere) Thomson-scattering data from a radiative shock. Other experiments have studied the deeply nonlinear development of the Rayleigh-Taylor (RT) instability from complex initial conditions, obtaining the first (ever, anywhere) dual-axis radiographic data using backlit pinholes and ungated detectors. All these experiments have applications to astrophysics, discussed in the corresponding papers either in print or in preparation. We also have obtained preliminary radiographs of experimental targets using our x-ray source. The targets for the experiments have been assembled at Michigan, where we also prepare many of the simple components. The above activities, in addition to a variety of data analysis and design projects, provide good experience for graduate and undergraduates students. In the process of doing this research we have built a research group that uses such work to train junior scientists.

  17. Review of solutions for 3D hydrodynamic modeling applied to aquaculture in South Pacific atoll lagoons.

    PubMed

    Andréfouët, S; Ouillon, S; Brinkman, R; Falter, J; Douillet, P; Wolk, F; Smith, R; Garen, P; Martinez, E; Laurent, V; Lo, C; Remoissenet, G; Scourzic, B; Gilbert, A; Deleersnijder, E; Steinberg, C; Choukroun, S; Buestel, D

    2006-10-01

    A workshop organized in French Polynesia in November 2004 allowed reviewing the current methods to model the three-dimensional hydrodynamic circulation in semi-enclosed atoll lagoons for aquaculture applications. Mollusk (e.g. pearl oyster, clam) aquaculture is a major source of income for South Pacific countries such as French Polynesia or Cook Islands. This aquaculture now requires a better understanding of circulation patterns to improve the spatial use of the lagoons, especially to define the best area to set larvae collectors. The pelagic larval duration of the relevant species (<20 days) and the size of the semi-closed lagoons (few hundreds of km2) drive the specifications of the model in terms of the spatial and temporal scale. It is considered that, in contrast with fish, mollusk larvae movements are limited and that their cycle occurs completely in the lagoon, without an oceanic stage. Atolls where aquaculture is productive are generally well-bounded, or semi-closed, without significant large and deep openings to the ocean. Nevertheless part of the lagoon circulation is driven by oceanic water inputs through the rim, ocean swells, tides and winds. Therefore, boundary conditions of the lagoon system are defined by the spatial structure of a very shallow rim (exposition and number of hoas), the deep ocean swell climate, tides and wind regimes. To obtain a realistic 3D numerical model of lagoon circulation with adequate forcing, it is thus necessary to connect in an interdisciplinary way a variety of methods (models, remote sensing and in situ data collection) to accurately represent the different components of the lagoon system and its specific boundary conditions. We review here the current methods and tools used to address these different components for a hypothetical atoll of the Tuamotu Archipelago (French Polynesia), representative of the semi-closed lagoons of the South Pacific Ocean. We hope this paper will serve as a guide for similar studies

  18. Circumstellar Hydrodynamics and Spectral Radiation in ALGOLS

    NASA Astrophysics Data System (ADS)

    Terrell, Dirk Curtis

    1994-01-01

    Algols are the remnants of binary systems that have undergone large scale mass transfer. This dissertation presents the results of the coupling of a hydrodynamical model and a radiative model of the flow of gas from the inner Lagrangian point. The hydrodynamical model is a fully Lagrangian, three-dimensional scheme with a novel treatment of viscosity and an implementation of the smoothed particle hydrodynamics method to compute pressure gradients. Viscosity is implemented by allowing particles within a specified interaction length to share momentum. The hydrodynamical model includes a provision for computing the self-gravity of the disk material, although it is not used in the present application to Algols. Hydrogen line profiles and equivalent widths computed with a code by Drake and Ulrich are compared with observations of both short and long period Algols. More sophisticated radiative transfer computations are done with the escape probability code of Ko and Kallman which includes the spectral lines of thirteen elements. The locations and velocities of the gas particles, and the viscous heating from the hydro program are supplied to the radiative transfer program, which computes the equilibrium temperature of the gas and generates its emission spectrum. Intrinsic line profiles are assumed to be delta functions and are properly Doppler shifted and summed for gas particles that are not eclipsed by either star. Polarization curves are computed by combining the hydro program with the Wilson-Liou polarization program. Although the results are preliminary, they show that polarization observations show great promise for studying circumstellar matter.

  19. Introduction and guide to LLNL's relativistic 3-D nuclear hydrodynamics code

    SciTech Connect

    Zingman, J.A.; McAbee, T.L.; Alonso, C.T.; Wilson, J.R.

    1987-11-01

    We have constructed a relativistic hydrodynamic model to investigate Bevalac and higher energy, heavy-ion collisions. The basis of the model is a finite-difference solution to covariant hydrodynamics, which will be described in the rest of this paper. This paper also contains: a brief review of the equations and numerical methods we have employed in the solution to the hydrodynamic equations, a detailed description of several of the most important subroutines, and a numerical test on the code. 30 refs., 8 figs., 1 tab.

  20. One-layer microfluidic device for hydrodynamic 3D self-flow-focusing operating in low flow speed

    NASA Astrophysics Data System (ADS)

    Daghighi, Yasaman; Gnyawali, Vaskar; Strohm, Eric M.; Tsai, Scott S. H.; Kolios, Michael C.

    2016-03-01

    Hydrodynamic 3D flow-focusing techniques in microfluidics are categorized as (a) sheathless techniques which require high flow rates and long channels, resulting in high operating cost and high flow rates which are inappropriate for applications with flow rate limitations, and (b) sheath-flow based techniques which usually require excessive sheath flow rate to achieve hydrodynamic 3D flow-focusing. Many devices based on these principles use complicated fabrication methods to create multi-layer microchannels. We have developed a sheath-flow based microfluidic device that is capable of hydrodynamic 3D self-flow-focusing. In this device the main flow (black ink) in a low speed, and a sheath flow, enter through two inlets and enter a 180 degree curved channel (300 × 300 μm cross-section). Main flow migrates outwards into the sheath-flow due to centrifugal effects and consequently, vertical focusing is achieved at the end of the curved channel. Then, two other sheath flows horizontally confine the main flow to achieve horizontal focusing. Thus, the core flow is three-dimensionally focused at the center of the channel at the downstream. Using centrifugal force for 3D flow-focusing in a single-layer fabricated microchannel has been previously investigated by few groups. However, their demonstrated designs required high flow speed (>1 m/s) which is not suitable for many applications that live biomedical specie are involved. Here, we introduce a new design which is operational in low flow speed (<0.05 m/s) and is suitable for applications involving live cells. This microfluidic device can be used in detecting, counting and isolating cells in many biomedical applications.

  1. Migration of Earth-sized planets in 3D radiative discs

    NASA Astrophysics Data System (ADS)

    Lega, E.; Crida, A.; Bitsch, B.; Morbidelli, A.

    2014-05-01

    In this paper, we address the migration of small-mass planets in 3D radiative discs. Indeed, migration of small planets is known to be too fast inwards in locally isothermal conditions. However, thermal effects could reverse its direction, potentially saving planets in the inner, optically thick parts of the protoplanetary disc. This effect has been seen for masses larger than 5 Earth masses, but the minimum mass for this to happen has never been probed numerically, although it is of crucial importance for planet formation scenarios. We have extended the hydrodynamical code FARGO to 3D, with thermal diffusion. With this code, we perform simulations of embedded planets down to 2 Earth masses. For a set of discs' parameters for which outward migration has been shown in the range of [5, 35] Earth masses, we find that the transition to inward migration occurs for masses in the range [3, 5] Earth masses. The transition appears to be due to an unexpected phenomenon: the formation of an asymmetric cold and dense finger of gas driven by circulation and libration streamlines. We recover this phenomenon in 2D simulations where we control the cooling effects of the gas through a simple modelling of the energy equation.

  2. A hybrid Godunov method for radiation hydrodynamics

    SciTech Connect

    Sekora, Michael D.; Stone, James M.

    2010-09-20

    From a mathematical perspective, radiation hydrodynamics can be thought of as a system of hyperbolic balance laws with dual multiscale behavior (multiscale behavior associated with the hyperbolic wave speeds as well as multiscale behavior associated with source term relaxation). With this outlook in mind, this paper presents a hybrid Godunov method for one-dimensional radiation hydrodynamics that is uniformly well behaved from the photon free streaming (hyperbolic) limit through the weak equilibrium diffusion (parabolic) limit and to the strong equilibrium diffusion (hyperbolic) limit. Moreover, one finds that the technique preserves certain asymptotic limits. The method incorporates a backward Euler upwinding scheme for the radiation energy density E{sub r} and flux F{sub r} as well as a modified Godunov scheme for the material density {rho}, momentum density m, and energy density E. The backward Euler upwinding scheme is first-order accurate and uses an implicit HLLE flux function to temporally advance the radiation components according to the material flow scale. The modified Godunov scheme is second-order accurate and directly couples stiff source term effects to the hyperbolic structure of the system of balance laws. This Godunov technique is composed of a predictor step that is based on Duhamel's principle and a corrector step that is based on Picard iteration. The Godunov scheme is explicit on the material flow scale but is unsplit and fully couples matter and radiation without invoking a diffusion-type approximation for radiation hydrodynamics. This technique derives from earlier work by Miniati and Colella (2007) . Numerical tests demonstrate that the method is stable, robust, and accurate across various parameter regimes.

  3. A microfluidic opto-caloric switch for sorting of particles by using 3D-hydrodynamic focusing based on SLE fabrication capabilities.

    PubMed

    Meineke, G; Hermans, M; Klos, J; Lenenbach, A; Noll, R

    2016-03-01

    In a miniaturised flow switch fluid flows are controlled by reducing the local viscosity via absorption of laser radiation. Through this, the local flow rates are increased to switch the outlet port of a fluid flow carrying the analyte. The microfluidic chip is fabricated using Selective Laser-Induced Etching (SLE). SLE allows novel 3D-hydrodynamic focusing, realising circular shaped channel cross-sections and adapting interaction volume geometries to the profile of the laser radiation for optimised absorption. The performance of the switch is validated experimentally with a dyed analyte and video image processing. The ability to sort particles like cells is demonstrated at 8 Hz using polystyrene beads having a diameter of 8 μm.

  4. 3D Atmospheric Radiative Transfer for Cloud System-Resolving Models: Forward Modelling and Observations

    SciTech Connect

    Howard Barker; Jason Cole

    2012-05-17

    Utilization of cloud-resolving models and multi-dimensional radiative transfer models to investigate the importance of 3D radiation effects on the numerical simulation of cloud fields and their properties.

  5. Parameterization and Analysis of 3-D Solar Radiative Transfer in Clouds: Final Report

    SciTech Connect

    Jerry Y. Harrington

    2012-09-21

    This document reports on the research that we have done over the course of our two-year project. The report also covers the research done on this project during a 1 year no-cost extension of the grant. Our work has had two main, inter-related thrusts: The first thrust was to characterize the response of stratocumulus cloud structure and dynamics to systematic changes in cloud infrared radiative cooling and solar heating using one-dimensional radiative transfer models. The second was to couple a three-dimensional (3-D) solar radiative transfer model to the Large Eddy Simulation (LES) model that we use to simulate stratocumulus. The purpose of the studies with 3-D radiative transfer was to examine the possible influences of 3-D photon transport on the structure, evolution, and radiative properties of stratocumulus. While 3-D radiative transport has been examined in static cloud environments, few studies have attempted to examine whether the 3-D nature of radiative absorption and emission influence the structure and evolution of stratocumulus. We undertook this dual approach because only a small number of LES simulations with the 3-D radiative transfer model are possible due to the high computational costs. Consequently, LES simulations with a 1-D radiative transfer solver were used in order to examine the portions of stratocumulus parameter space that may be most sensitive to perturbations in the radiative fields. The goal was then to explore these sensitive regions with LES using full 3-D radiative transfer. Our overall goal was to discover whether 3-D radiative processes alter cloud structure and evolution, and whether this may have any indirect implications for cloud radiative properties. In addition, we collaborated with Dr. Tamas Varni, providing model output fields for his attempt at parameterizing 3-D radiative effects for cloud models.

  6. Solving 3D relativistic hydrodynamical problems with weighted essentially nonoscillatory discontinuous Galerkin methods

    NASA Astrophysics Data System (ADS)

    Bugner, Marcus; Dietrich, Tim; Bernuzzi, Sebastiano; Weyhausen, Andreas; Brügmann, Bernd

    2016-10-01

    Discontinuous Galerkin (DG) methods coupled to weighted essentially nonoscillatory (WENO) algorithms allow high order convergence for smooth problems and for the simulation of discontinuities and shocks. In this work, we investigate WENO-DG algorithms in the context of numerical general relativity, in particular for general relativistic hydrodynamics. We implement the standard WENO method at different orders, a compact (simple) WENO scheme, as well as an alternative subcell evolution algorithm. To evaluate the performance of the different numerical schemes, we study nonrelativistic, special relativistic, and general relativistic test beds. We present the first three-dimensional simulations of general relativistic hydrodynamics, albeit for a fixed spacetime background, within the framework of WENO-DG methods. The most important test bed is a single Tolman-Oppenheimer-Volkoff star in three dimensions, showing that long term stable simulations of single isolated neutron stars can be obtained with WENO-DG methods.

  7. Cholla: 3D GPU-based hydrodynamics code for astrophysical simulation

    NASA Astrophysics Data System (ADS)

    Schneider, Evan E.; Robertson, Brant E.

    2016-07-01

    Cholla (Computational Hydrodynamics On ParaLLel Architectures) models the Euler equations on a static mesh and evolves the fluid properties of thousands of cells simultaneously using GPUs. It can update over ten million cells per GPU-second while using an exact Riemann solver and PPM reconstruction, allowing computation of astrophysical simulations with physically interesting grid resolutions (>256^3) on a single device; calculations can be extended onto multiple devices with nearly ideal scaling beyond 64 GPUs.

  8. Combined 3D hydrodynamic and watershed modelling of Lake Tana, Ethiopia

    NASA Astrophysics Data System (ADS)

    Dargahi, Bijan; Setegn, Shimelis Gebriye

    2011-02-01

    SummaryThe growing high demand for Lake Tana water portends a disturbing future. The main objective of this paper is to make a contribution to the development of a sustainable use of the water of Lake Tana. A fully three-dimensional hydrodynamic model was combined with a watershed model and together, these models were successfully validated for the year 2006. The flow structure is characterized by large recirculation and secondary flow regions. Secondary flows are induced by hydrodynamic instabilities occurring at the interfaces of layers with a velocity gradient and the interaction with the irregularities of the bed. The weak stratification process in Lake Tana is characterized by a classic summer profile, which is more pronounced during January-February. Mixing processes in the lake are controlled by wind, the mixing energy induced by both river inflows and the lake outlet, and convective mixing due to the negative buoyancy. An alarming fall of the water levels in Lake Tana was found in response to the planned water withdrawal. The long flushing time (19 months) will not allow a fast decay of contaminated materials released into the lake. The flow structure will not be significantly modified by the planned water withdrawal but the flushing time will decrease. The hydrodynamics of Lake Tana resemble a closed system similar to a shallow reservoir with an overflow type outlet. The implication is that the lake is vulnerable to changes in external conditions and sustainable use of the water resource of the lake will require awareness of this vulnerability. The combined watershed and hydrodynamic models would be effective tools to achieve this awareness. It is also necessary to address the impact of climate change on the fate of the lake. These are all difficult challenges that need to be addressed to safeguard the sensitive eco-system of the area.

  9. Separation efficiency of a hydrodynamic separator using a 3D computational fluid dynamics multiscale approach.

    PubMed

    Schmitt, Vivien; Dufresne, Matthieu; Vazquez, Jose; Fischer, Martin; Morin, Antoine

    2014-01-01

    The aim of this study is to investigate the use of computational fluid dynamics (CFD) to predict the solid separation efficiency of a hydrodynamic separator. The numerical difficulty concerns the discretization of the geometry to simulate both the global behavior and the local phenomena that occur near the screen. In this context, a CFD multiscale approach was used: a global model (at the scale of the device) is used to observe the hydrodynamic behavior within the device; a local model (portion of the screen) is used to determine the local phenomena that occur near the screen. The Eulerian-Lagrangian approach was used to model the particle trajectories in both models. The global model shows the influence of the particles' characteristics on the trapping efficiency. A high density favors the sedimentation. In contrast, particles with small densities (1,040 kg/m(3)) are steered by the hydrodynamic behavior and can potentially be trapped by the separator. The use of the local model allows us to observe the particle trajectories near the screen. A comparison between two types of screens (perforated plate vs expanded metal) highlights the turbulent effects created by the shape of the screen.

  10. Radiation Transport in 3D Heterogeneous Materials: DNS

    SciTech Connect

    Graziani, F

    2003-07-09

    In order to develop a phenomenological approach to transport in 3D heterogeneous media, we have performed direct numerical simulation studies. Using an algorithm based on the lattice random walk to generate random media, we have performed radiographic shots of the sample and digitized both the chord length and optical depth distributions. The optical depth distribution is then used to compute an effective mean free path. As theory predicts, the atomically averaged mean free path is always a minimum value. We have also demonstrated a dependency of mean free path on the distribution of random material.

  11. Parameterization and analysis of 3-D radiative transfer in clouds

    SciTech Connect

    Varnai, Tamas

    2012-03-16

    This report provides a summary of major accomplishments from the project. The project examines the impact of radiative interactions between neighboring atmospheric columns, for example clouds scattering extra sunlight toward nearby clear areas. While most current cloud models don't consider these interactions and instead treat sunlight in each atmospheric column separately, the resulting uncertainties have remained unknown. This project has provided the first estimates on the way average solar heating is affected by interactions between nearby columns. These estimates have been obtained by combining several years of cloud observations at three DOE Atmospheric Radiation Measurement (ARM) Climate Research Facility sites (in Alaska, Oklahoma, and Papua New Guinea) with simulations of solar radiation around the observed clouds. The importance of radiative interactions between atmospheric columns was evaluated by contrasting simulations that included the interactions with those that did not. This study provides lower-bound estimates for radiative interactions: It cannot consider interactions in cross-wind direction, because it uses two-dimensional vertical cross-sections through clouds that were observed by instruments looking straight up as clouds drifted aloft. Data from new DOE scanning radars will allow future radiative studies to consider the full three-dimensional nature of radiative processes. The results reveal that two-dimensional radiative interactions increase overall day-and-night average solar heating by about 0.3, 1.2, and 4.1 Watts per meter square at the three sites, respectively. This increase grows further if one considers that most large-domain cloud simulations have resolutions that cannot specify small-scale cloud variability. For example, the increases in solar heating mentioned above roughly double for a fairly typical model resolution of 1 km. The study also examined the factors that shape radiative interactions between atmospheric columns and

  12. Observations and 3D Hydrodynamical models of planetary nebulae with Wolf Rayet type central stars

    NASA Astrophysics Data System (ADS)

    Rechy-García, J. S.; Velázquez, P. F.; Peña, M.; Raga, A. C.

    2016-10-01

    We present high-resolution, long-slit spectroscopic observations of two planetary nebulae with [WC] central stars located near the galactic bulge, M 1-32 and M 3-15. The observations were obtained with the 2.1-m telescope at the Observatorio Astronómico Nacional, San Pedro Mártir. M 1-32 shows wide wings on the base of its emission lines and M 3-15 has two very faint high-velocity knots. In order to model both PNe we built a three-dimensional model consisting of a jet interacting with an equatorially concentrated slow wind, emulating the presence of a dense torus, using the Yguazú hydrodynamical code. From our hydrodynamical models, we obtained position-velocity (PV) diagrams in the [N II]λ6583 line for comparison with the observations. We find that the spectral characteristics of M 1-32 and M 3-15 can be explained with the same physical model -a jet moving inside an AGB wind- using different parameters (physical conditions and position angles of the jet). In agreement with our model and observations, these objects contain a dense torus seeing pole-on and a bipolar jet escaping thorough the poles. Then we propose to classify this kind of objects as spectroscopic bipolar nebulae, although they have been classified morphologically as compact, round, or elliptical nebulae or with "close collimated lobes".

  13. Radiation hardness tests of highly irradiated full-3D sensors

    NASA Astrophysics Data System (ADS)

    Haughton, Iain; DaVia, Cinzia; Watts, Stephen

    2016-01-01

    Several full-3D silicon sensors (with column electrodes going fully through the bulk) were irradiated up to a fluence of (2.14±0.18)×1016 neq cm-2. An infra-red laser was used to induce a homogeneous signal within each sensor's bulk. The signal degradation, measured as a signal efficiency (signal after irradiation normalised to its value before irradiation) was determined for each fluence. The experimental set-up allowed for monitoring of the beam spot diameter, position and reflection intensity on the sensor's surface. Corrections, dependent on the measured reflection intensity, were made when calculating the signal efficiency. The sensor irradiated to the highest fluence showed a signal efficiency of (50 ± 5) %.

  14. Coupling Magnetic Fields and ALE Hydrodynamics for 3D Simulations of MFCG's

    SciTech Connect

    White, D; Rieben, R; Wallin, B

    2006-09-20

    We review the development of a full 3D multiphysics code for the simulation of explosively driven Magnetic Flux Compression Generators (MFCG) and related pulse power devices. In a typical MFCG the device is seeded with an initial electric current and the device is then detonated. The detonation compresses the magnetic field and amplifies the current. This is a multiphysics problem in that detonation kinetics, electromagnetic diffusion and induction, material deformation, and thermal effects are all important. This is a tightly coupled problem in that the different physical quantities have comparable spatial and temporal variation, and hence should be solved simultaneously on the same computational mesh.

  15. 3D hydrodynamic lift force model for AREVA fuel assembly in EDF PWRs

    SciTech Connect

    Ekomie, S.; Bigot, J.; Dolleans, Ph.; Vallory, J.

    2007-07-01

    The accurate knowledge of the hydrodynamic lift force acting on a fuel assembly in PWR core is necessary to design the hold-down system of this assembly. This paper presents the model used by AREVA NP and EDF for computing this force. It results from a post-processing of sub-channel thermal-hydraulic codes respectively porous medium approach code THYC (EDF) and sub-channel type code FLICA III-F (AREVA NP). This model is based on the application of the Euler's theorem. Some hypotheses used to simplify the complexity of fuel assembly geometry are supported by CFD calculations. Then the model is compared to some experimental results obtained on a single fuel assembly inserted in the HERMES-T test facility located in CEA - Cadarache. Finally, the model is applied to calculate the lift force for the whole core. Various loading patterns including homogenous and mixed cores have been investigated and compared. (authors)

  16. Low-mass gas envelopes around accreting cores embedded in radiative 3D discs

    NASA Astrophysics Data System (ADS)

    Lega, Elena; Lambrechts, Michiel

    2016-10-01

    Planets with a core mass larger than few Earth masses and a gaseous envelope not exceeding about 10% of the total mass budget are common. Such planets are present in the Solar System (Uranus, Neptune) and are frequently observed around other stars.Our knowledge about the evolution of gas envelopes is mainly based on 1D models. However, such models cannot investigate the complex interaction between the forming envelope and the surrounding gas disc.In this work we perform 3D hydrodynamics simulations accounting for energy transfer and radiative cooling using the FARGOCA code (Lega et al., MNRAS 440, 2014). In addition to the usually considered heatingsources, namely viscous and compressional heating, we have modeled the energy deposited by the accretion of solids.We show that the thermal evolution of the envelope of a 5 Earth mass core is mainly dominated by compressional heating for accretion rates lower than 5 Earth masses per 105 years.Additionally, we demonstrate efficient gas circulation through the envelope. Under certain conditions, the competition between gas circulation and cooling of the envelope can efficiently delay the onset of runaway accretion. This could help in explaining the population of planets with low-mass gas envelope.

  17. A 3D boundary-fitted barotropic hydrodynamic model for the New York Harbor region

    NASA Astrophysics Data System (ADS)

    Sankaranarayanan, S.

    2005-11-01

    A three-dimensional barotropic hydrodynamic model application to the New York Harbor Region is performed using the Boundary-Fitted HYDROdynamic model (BFHYDRO). The model forcing functions consist of surface elevations along the open boundaries, hourly winds, and fresh water flows from the rivers and sewage flows. A comprehensive skill assessment of the model predictions is done using observed surface elevations and three-dimensional currents. The model-predicted surface elevations compare well with the observed surface elevations at four stations. Mean errors in the model-predicted surface elevations are less than 4% and correlation coefficients exceed 0.985. Model-predicted three-dimensional currents at Verrazano Narrows show excellent comparison with the observations, with mean errors less than 11% and correlation coefficients exceeding 0.960. Model-predicted three-dimensional currents at Bergen Point compare well with the observations, with mean errors less than 15% and correlation coefficients exceeding 0.897. The surface elevation amplitudes and phases of the principal tidal constituents at nine tidal stations, obtained from a harmonic analysis of a 60-day simulation compare well with the observed data. The predicted amplitude and phase of the M2 tidal constituent at these stations are, respectively, within 5 cm and 6° of the observed data. The model-predicted tidal ellipse parameters for the major tidal constituents compare well with the observations at Verrazano Narrows and Bergen Point. The model-predicted along channel sub-tidal currents also compare well with the observations. The semi-diurnal tidal ranges and spring and neap tidal cycles of the surface elevations and currents are well reproduced in the model at all stations. The observed currents at Bergen Point were shown to be flood dominant through tidal distortion analysis. The model-predicted currents also showed Newark Bay and Arthur Kill to be flood dominant systems. The model predictions showed

  18. 3D Hydrodynamic Modeling of SN 1987A from the SN explosion till the Athena Era

    NASA Astrophysics Data System (ADS)

    Orlando, Salvatore; Miceli, Marco; Pumo, Maria Letizia; Bocchino, Fabrizio

    2015-09-01

    The proximity of SN 1987A and the wealth of observations collected at all wavelength bands since its outburst allow us to study in detail the transition of a supernova (SN) in a supernova remnant(SNR) and the link between the morphological properties of a SNRand the complex phases in the SN explosion. Here we investigate theinteraction between the remnant of SN 1987A and the surroundingcircumstellar medium (CSM) through three-dimensional hydrodynamic modeling. The aim is to identify the imprint of SN 1987A on the X-ray emission of its remnant and to determine the contribution of shocked ejecta and shocked CSM to the detected X-ray flux, thusproviding clues on both the ejecta and the density structure of theinhomogeneous CSM. Our model describes the evolution of the blastwave from the breakout of the shock wave at the stellar surfacetill its transition from SN to SNR, making predictions on the futureobservations of SN 1987A with the instruments on board Athena. Ourmodel is able to reproduce alltogether the main observables of boththe progenitor supernova (e.g. the bolometric lightcurve during thefirst 250 days) and of its remnant (X-ray lightcurves and spectraduring the following 26 years of evolution), providing for the firsttime an accurate description of the structure of ejecta and of the CSM around the progenitor.

  19. 3D Monte Carlo radiation transfer modelling of photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Campbell, C. Louise; Christison, Craig; Brown, C. Tom A.; Wood, Kenneth; Valentine, Ronan M.; Moseley, Harry

    2015-06-01

    The effects of ageing and skin type on Photodynamic Therapy (PDT) for different treatment methods have been theoretically investigated. A multilayered Monte Carlo Radiation Transfer model is presented where both daylight activated PDT and conventional PDT are compared. It was found that light penetrates deeper through older skin with a lighter complexion, which translates into a deeper effective treatment depth. The effect of ageing was found to be larger for darker skin types. The investigation further strengthens the usage of daylight as a potential light source for PDT where effective treatment depths of about 2 mm can be achieved.

  20. Modeling Early Galaxies Using Radiation Hydrodynamics

    SciTech Connect

    2011-01-01

    This simulation uses a flux-limited diffusion solver to explore the radiation hydrodynamics of early galaxies, in particular, the ionizing radiation created by Population III stars. At the time of this rendering, the simulation has evolved to a redshift of 3.5. The simulation volume is 11.2 comoving megaparsecs, and has a uniform grid of 10243 cells, with over 1 billion dark matter and star particles. This animation shows a combined view of the baryon density, dark matter density, radiation energy and emissivity from this simulation. The multi-variate rendering is particularly useful because is shows both the baryonic matter ("normal") and dark matter, and the pressure and temperature variables are properties of only the baryonic matter. Visible in the gas density are "bubbles", or shells, created by the radiation feedback from young stars. Seeing the bubbles from feedback provides confirmation of the physics model implemented. Features such as these are difficult to identify algorithmically, but easily found when viewing the visualization. Simulation was performed on Kraken at the National Institute for Computational Sciences. Visualization was produced using resources of the Argonne Leadership Computing Facility at Argonne National Laboratory.

  1. Do Fractal Models of Clouds Produces the Right 3D Radiative Effects?

    NASA Technical Reports Server (NTRS)

    Varnai, Tamas; Marshak, Alexander; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Stochastic fractal models of clouds are often used to study 3D radiative effects and their influence on the remote sensing of cloud properties. Since it is important that the cloud models produce a correct radiative response, some researchers require the model parameters to match observed cloud properties such as scale-independent optical thickness variability. Unfortunately, matching these properties does not necessarily imply that the cloud models will cause the right 3D radiative effects. First, the matched properties alone only influence the 3D effects but do not completely determine them. Second, in many cases the retrieved cloud properties have been already biased by 3D radiative effects, and so the models may not match the true real clouds. Finally, the matched cloud properties cannot be considered independent from the scales at which they have been retrieved. This paper proposes an approach that helps ensure that fractal cloud models are realistic and produce the right 3D effects. The technique compares the results of radiative transfer simulations for the model clouds to new direct observations of 3D radiative effects in satellite images.

  2. 3D unstructured-mesh radiation transport codes

    SciTech Connect

    Morel, J.

    1997-12-31

    Three unstructured-mesh radiation transport codes are currently being developed at Los Alamos National Laboratory. The first code is ATTILA, which uses an unstructured tetrahedral mesh in conjunction with standard Sn (discrete-ordinates) angular discretization, standard multigroup energy discretization, and linear-discontinuous spatial differencing. ATTILA solves the standard first-order form of the transport equation using source iteration in conjunction with diffusion-synthetic acceleration of the within-group source iterations. DANTE is designed to run primarily on workstations. The second code is DANTE, which uses a hybrid finite-element mesh consisting of arbitrary combinations of hexahedra, wedges, pyramids, and tetrahedra. DANTE solves several second-order self-adjoint forms of the transport equation including the even-parity equation, the odd-parity equation, and a new equation called the self-adjoint angular flux equation. DANTE also offers three angular discretization options: $S{_}n$ (discrete-ordinates), $P{_}n$ (spherical harmonics), and $SP{_}n$ (simplified spherical harmonics). DANTE is designed to run primarily on massively parallel message-passing machines, such as the ASCI-Blue machines at LANL and LLNL. The third code is PERICLES, which uses the same hybrid finite-element mesh as DANTE, but solves the standard first-order form of the transport equation rather than a second-order self-adjoint form. DANTE uses a standard $S{_}n$ discretization in angle in conjunction with trilinear-discontinuous spatial differencing, and diffusion-synthetic acceleration of the within-group source iterations. PERICLES was initially designed to run on workstations, but a version for massively parallel message-passing machines will be built. The three codes will be described in detail and computational results will be presented.

  3. CASTRO: Multi-dimensional Eulerian AMR Radiation-hydrodynamics Code

    NASA Astrophysics Data System (ADS)

    CenterComputational Sciences; Engineering (Berkeley); Howell, Louis; Singer, Mike

    2011-05-01

    CASTRO is a multi-dimensional Eulerian AMR radiation-hydrodynamics code that includes stellar equations of state, nuclear reaction networks, and self-gravity. Initial target applications for CASTRO include Type Ia and Type II supernovae. CASTRO supports calculations in 1-d, 2-d and 3-d Cartesian coordinates, as well as 1-d spherical and 2-d cylindrical (r-z) coordinate systems. Time integration of the hydrodynamics equations is based on an unsplit version of the the piecewise parabolic method (PPM) with new limiters that avoid reducing the accuracy of the scheme at smooth extrema. CASTRO can follow an arbitrary number of isotopes or elements. The atomic weights and amounts of these elements are used to calculate the mean molecular weight of the gas required by the equation of state. CASTRO supports several different approaches to solving for self-gravity. The most general is a full Poisson solve for the gravitational potential. CASTRO also supports a monopole approximation for gravity, and a constant gravity option is also available. The CASTRO software is written in C++ and Fortran, and is based on the BoxLib software framework developed by CCSE.

  4. Two-field radiation hydrodynamics in n spatial dimensions

    NASA Astrophysics Data System (ADS)

    Larecki, Wieslaw; Banach, Zbigniew

    2016-03-01

    The two-field radiation hydrodynamics in n spatial dimensions is derived from the kinetic theory of radiation. Both the full-moment (frequency-independent) and spectral (frequency-dependent) formulations of radiation hydrodynamics are considered. The derivation is based on the entropy principle of extended thermodynamics of gases. In the case of the full-moment hydrodynamics, the formulation of the entropy principle introduced by Boillat and Ruggeri (1997 Contin. Mech. Thermodyn. 9 205) is adapted and this suffices to determine the radiation pressure tensor. In the full-moment formulation, the equations of radiation hydrodynamics take the same form for all possible types of radiation statistics. In the spectral formulation, the different radiation pressure tensors are assigned to Bose-Einstein, Fermi-Dirac and Maxwell-Boltzmann statistics, and consequently the different hydrodynamic equations are obtained for each of those statistics types. In order to derive the equations of the spectral radiation hydrodynamics, the relations for the radiation pressure tensor implied by the entropy principle must be supplemented by the additional conditions. Considering the limit of small heat flux, we arrive at the linearized equations of radiation hydrodynamics which assume the same form in both the full-moment and spectral formulations.

  5. Surface-effect corrections for solar-like oscillations using 3D hydrodynamical simulations. I. Adiabatic oscillations

    NASA Astrophysics Data System (ADS)

    Sonoi, T.; Samadi, R.; Belkacem, K.; Ludwig, H.-G.; Caffau, E.; Mosser, B.

    2015-11-01

    Context. The CoRoT and Kepler space-borne missions have provided us with a wealth of high-quality observational data that allows for seismic inferences of stellar interiors. This requires the computation of precise and accurate theoretical frequencies, but imperfect modeling of the uppermost stellar layers introduces systematic errors. To overcome this problem, an empirical correction has been introduced by Kjeldsen et al. (2008, ApJ, 683, L175) and is now commonly used for seismic inferences. Nevertheless, we still lack a physical justification allowing for the quantification of the surface-effect corrections. Aims: Our aim is to constrain the surface-effect corrections across the Hertzsprung-Russell (HR) diagram using a set of 3D hydrodynamical simulations. Methods: We used a grid of these simulations computed with the CO5BOLD code to model the outer layers of solar-like stars. Upper layers of the corresponding 1D standard models were then replaced by the layers obtained from the horizontally averaged 3D models. The frequency differences between these patched models and the 1D standard models were then calculated using the adiabatic approximation and allowed us to constrain the Kjeldsen et al. power law, as well as a Lorentzian formulation. Results: We find that the surface effects on modal frequencies depend significantly on both the effective temperature and the surface gravity. We further provide the variation in the parameters related to the surface-effect corrections using their power law as well as a Lorentzian formulation. Scaling relations between these parameters and the elevation (related to the Mach number) is also provided. The Lorentzian formulation is shown to be more robust for the whole frequency spectrum, while the power law is not suitable for the frequency shifts in the frequency range above νmax. Finally, we show that, owing to turbulent pressure, the elevation of the uppermost layers modifies the location of the hydrogen ionization zone and

  6. Radiation energy transport through hydrodynamically evolving slits

    NASA Astrophysics Data System (ADS)

    Foster, J. M.; Graham, P.; Taylor, M.; Moore, A.; Sorce, C.; Reighard, A.; MacLaren, S.; Young, P.; Glendinning, G.; Blue, B.; Back, C.; Hund, J.

    2008-11-01

    Radiation transport through enclosed spaces with inwardly moving walls is a key component of the physics of laser-heated hohlraums. It arises in the cavity itself (where inward motion of the wall results in late-time stagnation of dense plasma on the hohlraum axis), and also in the laser-entry and diagnostic holes (where an understanding of hole-closure is important to hohlraum design and the interpretation of diagnostic data). To understand these phenomena better, we have carried out a series of experiments at the Omega laser facility. A laser-heated hohlraum is used to illuminate linear and annular slits machined in samples of solid-density tantalum and low-density, tantalum-oxide foam. Measurements of the transmitted energy are made indirectly (by measuring the temperature rise of a ``calorimeter'' hohlraum) and directly (by measuring the emission from the slit component, using a target in which the calorimeter hohlraum was omitted). The hydrodynamics is investigated by self-emission and absorption (backlighting) x-ray imaging of the closing slits. Simulations (using a 2-D Eulerian hydrocode) reproduce the overall energetics, the detail of the deceleration shock and axial stagnation region at the centre of the slit, and the complex shock interactions that occur at corners of the slits.

  7. Effects of the LBV Primary's Mass-loss Rate on the 3D Hydrodynamics of eta Carinae's Colliding Winds

    NASA Technical Reports Server (NTRS)

    Madura, Thomas I.; Gull, Theodore R.; Cocoran, M.; Okazaki, A.; Owocki, S.; Russell, C.; Hamaguchi, K.; Clementel, N; Groh, J.; Hillier, D. J.

    2013-01-01

    At the heart of eta Carinae's spectacular "Homunculus" nebula lies an extremely luminous (L(sub Total) greater than approximately 5 × 10(exp 6) solar luminosity) colliding wind binary with a highly eccentric (e approximately 0.9), 5.54-year orbit (Figure 1). The primary of the system, a Luminous Blue Variable (LBV), is our closest (D approximately 2.3 kpc) and best example of a pre-hypernova or pre-gamma ray burst environment. The remarkably consistent and periodic RXTE X-ray light curve surprisingly showed a major change during the system's last periastron in 2009, with the X-ray minimum being approximately 50% shorter than the minima of the previous two cycles1. Between 1998 and 2011, the strengths of various broad stellar wind emission lines (e.g. Halpha, Fe II) in line-of-sight (l.o.s.) also decreased by factors of 1.5 - 3 relative to the continuum2. The current interpretation for these changes is that they are due to a gradual factor of 2 - 4 drop in the primary's mass-loss rate over the last approximately 15 years1, 2. However, while a secular change is seen for a direct view of the central source, little to no change is seen in profiles at high stellar latitudes or reflected off of the dense, circumbinary material known as the "Weigelt blobs"2, 3. Moreover, model spectra generated with CMFGEN predict that a factor of 2 - 4 drop in the primary's mass-loss rate should lead to huge changes in the observed spectrum, which thus far have not been seen. Here we present results from large- (plus or minus 1620 AU) and small- (plus or minus 162 AU) domain, full 3D smoothed particle hydrodynamics (SPH) simulations of eta Car's massive binary colliding winds for three different primary-star mass-loss rates (2.4, 4.8, and 8.5 × 10(exp -4) solar mass/yr). The goal is to investigate how the mass-loss rate affects the 3D geometry and dynamics of eta Car's optically-thick wind and spatially-extended wind-wind collision (WWC) regions, both of which are known sources of

  8. Solar Radiation Transport in the Cloudy Atmosphere: A 3D Perspective on Observations and Climate Impacts

    NASA Technical Reports Server (NTRS)

    Davis, Anthony B.; Marshak, Alexander

    2010-01-01

    The interplay of sunlight with clouds is a ubiquitous and often pleasant visual experience, but it conjures up major challenges for weather, climate, environmental science and beyond. Those engaged in the characterization of clouds (and the clear air nearby) by remote sensing methods are even more confronted. The problem comes, on the one hand, from the spatial complexity of real clouds and, on the other hand, from the dominance of multiple scattering in the radiation transport. The former ingredient contrasts sharply with the still popular representation of clouds as homogeneous plane-parallel slabs for the purposes of radiative transfer computations. In typical cloud scenes the opposite asymptotic transport regimes of diffusion and ballistic propagation coexist. We survey the three-dimensional (3D) atmospheric radiative transfer literature over the past 50 years and identify three concurrent and intertwining thrusts: first, how to assess the damage (bias) caused by 3D effects in the operational 1D radiative transfer models? Second, how to mitigate this damage? Finally, can we exploit 3D radiative transfer phenomena to innovate observation methods and technologies? We quickly realize that the smallest scale resolved computationally or observationally may be artificial but is nonetheless a key quantity that separates the 3D radiative transfer solutions into two broad and complementary classes: stochastic and deterministic. Both approaches draw on classic and contemporary statistical, mathematical and computational physics.

  9. A coupled wave-3-D hydrodynamics model of the Taranto Sea (Italy): a multiple-nesting approach

    NASA Astrophysics Data System (ADS)

    Gaeta, Maria Gabriella; Samaras, Achilleas G.; Federico, Ivan; Archetti, Renata; Maicu, Francesco; Lorenzetti, Giuliano

    2016-09-01

    The present work describes an operational strategy for the development of a multiscale modeling system, based on a multiple-nesting approach and open-source numerical models. The strategy was applied and validated for the Gulf of Taranto in southern Italy, scaling large-scale oceanographic model results to high-resolution coupled wave-3-D hydrodynamics simulations for the area of Mar Grande in the Taranto Sea. The spatial and temporal high-resolution simulations were performed using the open-source TELEMAC suite, forced by wind data from the COSMO-ME database, boundary wave spectra from the RON buoy at Crotone and results from the Southern Adriatic Northern Ionian coastal Forecasting System (SANIFS) regarding sea levels and current fields. Model validation was carried out using data collected in the Mar Grande basin from a fixed monitoring station and during an oceanographic campaign in October 2014. The overall agreement between measurements and model results in terms of waves, sea levels, surface currents, circulation patterns and vertical velocity profiles is deemed to be satisfactory, and the methodology followed in the process can constitute a useful tool for both research and operational applications in the same field and as support of decisions for management and design of infrastructures.

  10. Application of a 3D volumetric display for radiation therapy treatment planning I: quality assurance procedures.

    PubMed

    Gong, Xing; Kirk, Michael Collins; Napoli, Josh; Stutsman, Sandy; Zusag, Tom; Khelashvili, Gocha; Chu, James

    2009-07-17

    To design and implement a set of quality assurance tests for an innovative 3D volumetric display for radiation treatment planning applications. A genuine 3D display (Perspecta Spatial 3D, Actuality-Systems Inc., Bedford, MA) has been integrated with the Pinnacle TPS (Philips Medical Systems, Madison WI), for treatment planning. The Perspecta 3D display renders a 25 cm diameter volume that is viewable from any side, floating within a translucent dome. In addition to displaying all 3D data exported from Pinnacle, the system provides a 3D mouse to define beam angles and apertures and to measure distance. The focus of this work is the design and implementation of a quality assurance program for 3D displays and specific 3D planning issues as guided by AAPM Task Group Report 53. A series of acceptance and quality assurance tests have been designed to evaluate the accuracy of CT images, contours, beams, and dose distributions as displayed on Perspecta. Three-dimensional matrices, rulers and phantoms with known spatial dimensions were used to check Perspecta's absolute spatial accuracy. In addition, a system of tests was designed to confirm Perspecta's ability to import and display Pinnacle data consistently. CT scans of phantoms were used to confirm beam field size, divergence, and gantry and couch angular accuracy as displayed on Perspecta. Beam angles were verified through Cartesian coordinate system measurements and by CT scans of phantoms rotated at known angles. Beams designed on Perspecta were exported to Pinnacle and checked for accuracy. Dose at sampled points were checked for consistency with Pinnacle and agreed within 1% or 1 mm. All data exported from Pinnacle to Perspecta was displayed consistently. The 3D spatial display of images, contours, and dose distributions were consistent with Pinnacle display. When measured by the 3D ruler, the distances between any two points calculated using Perspecta agreed with Pinnacle within the measurement error.

  11. 3D modeling of satellite spectral images, radiation budget and energy budget of urban landscapes

    NASA Astrophysics Data System (ADS)

    Gastellu-Etchegorry, J. P.

    2008-12-01

    DART EB is a model that is being developed for simulating the 3D (3 dimensional) energy budget of urban and natural scenes, possibly with topography and atmosphere. It simulates all non radiative energy mechanisms (heat conduction, turbulent momentum and heat fluxes, water reservoir evolution, etc.). It uses DART model (Discrete Anisotropic Radiative Transfer) for simulating radiative mechanisms: 3D radiative budget of 3D scenes and their remote sensing images expressed in terms of reflectance or brightness temperature values, for any atmosphere, wavelength, sun/view direction, altitude and spatial resolution. It uses an innovative multispectral approach (ray tracing, exact kernel, discrete ordinate techniques) over the whole optical domain. This paper presents two major and recent improvements of DART for adapting it to urban canopies. (1) Simulation of the geometry and optical characteristics of urban elements (houses, etc.). (2) Modeling of thermal infrared emission by vegetation and urban elements. The new DART version was used in the context of the CAPITOUL project. For that, districts of the Toulouse urban data base (Autocad format) were translated into DART scenes. This allowed us to simulate visible, near infrared and thermal infrared satellite images of Toulouse districts. Moreover, the 3D radiation budget was used by DARTEB for simulating the time evolution of a number of geophysical quantities of various surface elements (roads, walls, roofs). Results were successfully compared with ground measurements of the CAPITOUL project.

  12. A Review of 3D Radiative Transfer in Atmospheric Science: History and Outlook

    NASA Astrophysics Data System (ADS)

    Wiscombe, W. J.

    2006-12-01

    3D radiative transfer has, until recently, remained a marginal subject within atmospheric science. While some measurement techniques like lidar and radar are inherently 3D, the simplifying assumptions made in the use of such data have alleviated any need to deal with 3D radiative transfer. Cloud scenes are obviously 3D, but the crude resolution of past atmospheric models (GCMs) required clouds to be treated as 1D. Measured radiative fluxes containing 3D cloud effects were simply time-averaged until all their 3D-ness was apparently beaten out of them. The main subject which has propelled 3D radiative transfer onto center stage is, nevertheless, clouds. This is because conventional GCMs are being challenged by GCMs that have their large-scale parametrizations of cloud-related processes replaced by explicit cloud-system-resolving models. Within these new GCMs, 3D radiative transfer cannot be ignored since cloud fluctuations are resolved explicitly down to scales where 1D and 3D radiative transfer can differ markedly. This talk will attempt to identify the high points in the development of the 3D cloud radiation field. My own career interleaved with much of this history, including the strong move away from just using computers and toward field observations, and also the effort to fit the new knowledge into climate models. The 3D cloud radiation field began in the 1970s, but attracted few adherents because of severe limitations on computer time and memory, and also because of ignorance of cloud structure (beyond the qualitative classifications which had ruled for 170 years). The earliest landmarks were Monte Carlo calcuations for cubic clouds, whose main point was the drastic errors incurred by ignoring cloud 3D-ness. This line of development ramified until the early 1990s, leading finally to randomly placed cubes with sizes drawn from a probability distribution. A parallel line of development began with the landmark paper of Lovejoy in 1982, which showed that cloud

  13. IM3D: A parallel Monte Carlo code for efficient simulations of primary radiation displacements and damage in 3D geometry

    PubMed Central

    Li, Yong Gang; Yang, Yang; Short, Michael P.; Ding, Ze Jun; Zeng, Zhi; Li, Ju

    2015-01-01

    SRIM-like codes have limitations in describing general 3D geometries, for modeling radiation displacements and damage in nanostructured materials. A universal, computationally efficient and massively parallel 3D Monte Carlo code, IM3D, has been developed with excellent parallel scaling performance. IM3D is based on fast indexing of scattering integrals and the SRIM stopping power database, and allows the user a choice of Constructive Solid Geometry (CSG) or Finite Element Triangle Mesh (FETM) method for constructing 3D shapes and microstructures. For 2D films and multilayers, IM3D perfectly reproduces SRIM results, and can be ∼102 times faster in serial execution and > 104 times faster using parallel computation. For 3D problems, it provides a fast approach for analyzing the spatial distributions of primary displacements and defect generation under ion irradiation. Herein we also provide a detailed discussion of our open-source collision cascade physics engine, revealing the true meaning and limitations of the “Quick Kinchin-Pease” and “Full Cascades” options. The issues of femtosecond to picosecond timescales in defining displacement versus damage, the limitation of the displacements per atom (DPA) unit in quantifying radiation damage (such as inadequacy in quantifying degree of chemical mixing), are discussed. PMID:26658477

  14. Quantification of Single- and Multi-Phase Hydrodynamic Dispersion in Rocks Using Dynamic 3D PET Imaging

    NASA Astrophysics Data System (ADS)

    Pini, R.; Vandehey, N. T.; O'Neil, J.; Benson, S. M.

    2015-12-01

    We report results of an experimental investigation into the effects of small-scale (mm-cm) heterogeneities and hydrodynamic dispersion on miscible and immiscible displacements in a Berea Sandstone core. Pulse-radiotracer tests were carried out by measuring breakthrough curves at distinct flow rates and gas/water saturation ratios, while simultaneously imaging the internal displacement of the radioactive solution by [11C]PET. Dynamic multidimensional maps of the tracer concentration in the rock sample have been obtained with a spatial resolution of about 10 mm3 and provide evidence for significant macrodispersion effects caused by the presence of heterogeneities at the same scale. The numerical solution of the classic Advection-Dispersion Equation (ADE) applied in 1D form fails to describe the measured breakthrough curves and significantly overestimates longitudinal dispersivity. An excellent agreement with the experiments is attained by explicitly accounting for permeability heterogeneity, while reducing the contribution of "Fickian" dispersivity. Heterogeneity was introduced in the model by discretising the rock sample into independent parallel streamlines, which were generated based on a previously determined 3D permeability map, and by solving the 1D ADE for each of them. The use of streamlines is supported by direct quantitative observations from the PET scans; remarkably, this approach leads to an accurate representation of both the temporal behaviour and spatial distribution of the tracer concentration in the sample. It is shown that when the length-scale of permeability variations is similar in order as the size of the sample, the effect of the former can be as significant as hydrodynamic dispersion. The presence of a second immiscible fluid phase further complicates the flow field and, accordingly, the interpretation of the experiments. The ability to decouple these effects leads to the estimation of dispersion coefficients that aren't sample specific and

  15. Hierarchical Statistical 3D ' Atomistic' Simulation of Decanano MOSFETs: Drift-Diffusion, Hydrodynamic and Quantum Mechanical Approaches

    NASA Technical Reports Server (NTRS)

    Asenov, Asen; Brown, A. R.; Slavcheva, G.; Davies, J. H.

    2000-01-01

    voltage only single solution of the nonlinear Poisson equation is sufficient to extract the current with satisfactory accuracy. A pilot version of a hydrodynamic 'atomistic' simulator has been developed in order to study the effect of the nonequilibrium, non local transport in decanano MOSFETs on the random dopant induced current fluctuations. For the first time we have also applied the density gradient approach in 3D to investigate the effect of the quantum confinement on the threshold voltage fluctuations. The developed 'atomistic' simulation techniques have been applied to study various fluctuation resistant MOSFET architectures including epitaxial and delta doped devices.

  16. Modelling of river plume dynamics in Öre estuary (Baltic Sea) with Telemac-3D hydrodynamic model

    NASA Astrophysics Data System (ADS)

    Sokolov, Alexander

    2016-04-01

    The main property of river plumes is their buoyancy, fresh water discharged by rivers is less dense than the receiving, saline waters. To study the processes of plume formation in case of river discharge into a brackish estuary where salinity is low (3.5 - 5 psu) a three dimensional hydrodynamic model was applied to the Öre estuary in the Baltic Sea. This estuary is a small fjord-like bay in the north part of the Baltic Sea. Size of the bay is about 8 by 8 km with maximum depth of 35 metres. River Öre has a small average freshwater discharge of 35 m3/s. But in spring during snowmelt the discharge can be many times higher. For example, in April 2015 the discharge increased from 8 m3/s to 160 m3/s in 18 days. To study river plume dynamics a finite element based three dimensional baroclinic model TELEMAC - 3D is used. The TELEMAC modelling suite is developed by the National Laboratory of Hydraulics and Environment (LNHE) of Electricité de France (EDF). Modelling domain was approximated by an unstructured mesh with element size varies from 50 to 500 m. In vertical direction a sigma-coordinate with 20 layers was used. Open sea boundary conditions were obtained from the Baltic Sea model HIROMB-BOOS using COPERNICUS marine environment monitoring service. Comparison of modelling results with observations obtained by BONUS COCOA project's field campaign in Öre estuary in 2015 shows that the model plausible simulate river plume dynamics. Modelling of age of freshwater is also discussed. This work resulted from the BONUS COCOA project was supported by BONUS (Art 185), funded jointly by the EU and the Swedish Research Council Formas.

  17. A Global 3D Radiation MHD Simulation of Super-Eddington Accretion Disks

    NASA Astrophysics Data System (ADS)

    Jiang, Yanfei

    2014-10-01

    We study how black holes can accrete above the Eddington limit using a global three dimensional radiation magneto-hydrodynamic simulation without ad-hoc assumptions. The simulation reaches an accretion rate ~ 220L_Edd/c^2 and forms a radiation driven outflow along the rotation axis. The radiative luminosity of this flow is ~ 10L_Edd. This yields a radiative efficiency ~ 4.5%, which is comparable to the value in a standard thin disk model. In our simulation, vertical advection of radiation caused by magnetic buoyancy transports energy faster than photon diffusion, allowing a significant fraction of the photons to escape from the surface of the disk before being advected into the black hole. We contrast our results with the lower radiative efficiencies inferred in slim disk model, which neglect vertical advection. The results have important implications for the growth of supermassive black holes in the early universe, tidal disruption events and ultra-luminous X-ray sources.

  18. Using the full scale 3D solid anthropometric model in radiation oncology positioning and verification.

    PubMed

    Sun, Shuh-Ping; Wu, Ching-Jung

    2004-01-01

    This paper describes the full size solid 3D Anthropometric Model using in the positioning and verification process for radiation treatment planning of the skull of cancer patients in radiotherapy. In order to obtain a full scale 3D, solid Anthropometric Model, data is first collected through computed tomography and optical scanning. Through surface reconstruction, a model is made of the patients skull, after which rapid prototyping and rapid tooling is applied to acquire a 1:1 solid model, thus, it can replace the patient for the tumor positioning and verification in radiotherapy. The 3D Anthropometric Model are not only provide a clear picture of the external appearance, but also allow insight into the internal structure of organic bodies, which is of great advantage in radiotherapy. During radiotherapy planning, 3D Anthropometric Model can be used to simulate all kinds of situations on the simulator and the linear accelerator, without the patient needing to be present, so that the medical physicist or dosimetrist will be able to design a precise treatment plan that is tailored to the patient. The 3D Anthropometric Model production system can effectively help us solve problems related to r adiotherapy positioning and verification, helping both radiotherapists and cancer patients. We expect that the application of 3D Anthropometric Model can reduce the time that needs to be spent on pretreatment procedures and enhance the quality of health care for cancer patients.

  19. A study of the 3D radiative transfer effect in cloudy atmospheres

    NASA Astrophysics Data System (ADS)

    Okata, M.; Teruyuki, N.; Suzuki, K.

    2015-12-01

    Evaluation of the effect of clouds in the atmosphere is a significant problem in the Earth's radiation budget study with their large uncertainties of microphysics and the optical properties. In this situation, we still need more investigations of 3D cloud radiative transer problems using not only models but also satellite observational data.For this purpose, we have developed a 3D-Monte-Carlo radiative transfer code that is implemented with various functions compatible with the OpenCLASTR R-Star radiation code for radiance and flux computation, i.e. forward and backward tracing routines, non-linear k-distribution parameterization (Sekiguchi and Nakajima, 2008) for broad band solar flux calculation, and DM-method for flux and TMS-method for upward radiance (Nakajima and Tnaka 1998). We also developed a Minimum cloud Information Deviation Profiling Method (MIDPM) as a method for a construction of 3D cloud field with MODIS/AQUA and CPR/CloudSat data. We then selected a best-matched radar reflectivity factor profile from the library for each of off-nadir pixels of MODIS where CPR profile is not available, by minimizing the deviation between library MODIS parameters and those at the pixel. In this study, we have used three cloud microphysical parameters as key parameters for the MIDPM, i.e. effective particle radius, cloud optical thickness and top of cloud temperature, and estimated 3D cloud radiation budget. We examined the discrepancies between satellite observed and mode-simulated radiances and three cloud microphysical parameter's pattern for studying the effects of cloud optical and microphysical properties on the radiation budget of the cloud-laden atmospheres.

  20. Real-time 3D radiation risk assessment supporting simulation of work in nuclear environments.

    PubMed

    Szőke, I; Louka, M N; Bryntesen, T R; Bratteli, J; Edvardsen, S T; RøEitrheim, K K; Bodor, K

    2014-06-01

    This paper describes the latest developments at the Institute for Energy Technology (IFE) in Norway, in the field of real-time 3D (three-dimensional) radiation risk assessment for the support of work simulation in nuclear environments. 3D computer simulation can greatly facilitate efficient work planning, briefing, and training of workers. It can also support communication within and between work teams, and with advisors, regulators, the media and public, at all the stages of a nuclear installation's lifecycle. Furthermore, it is also a beneficial tool for reviewing current work practices in order to identify possible gaps in procedures, as well as to support the updating of international recommendations, dissemination of experience, and education of the current and future generation of workers.IFE has been involved in research and development into the application of 3D computer simulation and virtual reality (VR) technology to support work in radiological environments in the nuclear sector since the mid 1990s. During this process, two significant software tools have been developed, the VRdose system and the Halden Planner, and a number of publications have been produced to contribute to improving the safety culture in the nuclear industry.This paper describes the radiation risk assessment techniques applied in earlier versions of the VRdose system and the Halden Planner, for visualising radiation fields and calculating dose, and presents new developments towards implementing a flexible and up-to-date dosimetric package in these 3D software tools, based on new developments in the field of radiation protection. The latest versions of these 3D tools are capable of more accurate risk estimation, permit more flexibility via a range of user choices, and are applicable to a wider range of irradiation situations than their predecessors. PMID:24727389

  1. Long-term radiation belt simulation with the VERB 3-D code: Comparison with CRRES observations

    NASA Astrophysics Data System (ADS)

    Subbotin, D. A.; Shprits, Y. Y.; Ni, B.

    2011-12-01

    Highly energetic electrons in the Earth’s radiation belts are hazardous for satellite equipment. Fluxes of relativistic electrons can vary by orders of magnitude during geomagnetic storms. The evolution of relativistic electron fluxes in the radiation belts is described by the 3-D Fokker-Planck equation in terms of the radial distance, energy, and equatorial pitch angle. To better understand the mechanisms that control radiation belt acceleration and loss and particle flux dynamics, we present a long-term radiation belt simulation for 100 days from 29 July to 6 November 1990 with the 3-D Versatile Electron Radiation Belt (VERB) code and compare the results with the electron fluxes observed by the Combined Release and Radiation Effects Satellite (CRRES). We also perform a comparison of Phase Space Density with a multisatellite reanalysis obtained by using Kalman filtering of observations from CRRES, Geosynchronous (GEO), GPS, and Akebono satellites. VERB 3-D simulations include radial, energy, and pitch angle diffusion and mixed energy and pitch angle diffusion driven by electromagnetic waves inside the magnetosphere with losses to the atmosphere. Boundary conditions account for the convective source of electrons and loss to the magnetopause. The results of the simulation that include all of the above processes show a good agreement with the data. The agreement implies that these processes are important for the radiation belt electron dynamics and therefore should be accounted for in outer radiation belt simulations. We also show that the results are very sensitive to the assumed wave model. Our simulations are driven only by the variation of the Kp index and variations of the seed electron population around geosynchronous orbit, which allows the model to be used for forecasting and nowcasting.

  2. MONTE CARLO RADIATION-HYDRODYNAMICS WITH IMPLICIT METHODS

    SciTech Connect

    Roth, Nathaniel; Kasen, Daniel

    2015-03-15

    We explore the application of Monte Carlo transport methods to solving coupled radiation-hydrodynamics (RHD) problems. We use a time-dependent, frequency-dependent, three-dimensional radiation transport code that is special relativistic and includes some detailed microphysical interactions such as resonant line scattering. We couple the transport code to two different one-dimensional (non-relativistic) hydrodynamics solvers: a spherical Lagrangian scheme and a Eulerian Godunov solver. The gas–radiation energy coupling is treated implicitly, allowing us to take hydrodynamical time-steps that are much longer than the radiative cooling time. We validate the code and assess its performance using a suite of radiation hydrodynamical test problems, including ones in the radiation energy dominated regime. We also develop techniques that reduce the noise of the Monte Carlo estimated radiation force by using the spatial divergence of the radiation pressure tensor. The results suggest that Monte Carlo techniques hold promise for simulating the multi-dimensional RHD of astrophysical systems.

  3. SU-C-213-03: Custom 3D Printed Boluses for Radiation Therapy

    SciTech Connect

    Zhao, B; Yang, M; Yan, Y; Rahimi, A; Chopra, R; Jiang, S

    2015-06-15

    Purpose: To develop a clinical workflow and to commission the process of creating custom 3d printed boluses for radiation therapy. Methods: We designed a workflow to create custom boluses using a commercial 3D printer. Contours of several patients were deformably mapped to phantoms where the test bolus contours were designed. Treatment plans were created on the phantoms following our institutional planning guideline. The DICOM file of the bolus contours were then converted to stereoLithography (stl) file for the 3d printer. The boluses were printed on a commercial 3D printer using polylactic acid (PLA) material. Custom printing parameters were optimized in order to meet the requirement of bolus composition. The workflow was tested on multiple anatomical sites such as skull, nose and chest wall. The size of boluses varies from 6×9cm2 to 12×25cm2. To commission the process, basic CT and dose properties of the printing materials were measured in photon and electron beams and compared against water and soft superflab bolus. Phantoms were then scanned to confirm the placement of custom boluses. Finally dose distributions with rescanned CTs were compared with those computer-generated boluses. Results: The relative electron density(1.08±0.006) of the printed boluses resemble those of liquid tap water(1.04±0.004). The dosimetric properties resemble those of liquid tap water(1.04±0.004). The dosimetric properties were measured at dmax with an ion chamber in electron and photon open beams. Compared with solid water and soft bolus, the output difference was within 1% for the 3D printer material. The printed boluses fit well to the phantom surfaces on CT scans. The dose distribution and DVH based on the printed boluses match well with those based on TPS generated boluses. Conclusion: 3d printing provides a cost effective and convenient solution for patient-specific boluses in radiation therapy.

  4. Scripting in Radiation Therapy: An Automatic 3D Beam-Naming System

    SciTech Connect

    Holdsworth, Clay; Hummel-Kramer, Sharon M.; Phillips, Mark

    2011-10-01

    Scripts can be executed within the radiation treatment planning software framework to reduce human error, increase treatment planning efficiency, reduce confusion, and promote consistency within an institution or even among institutions. Scripting is versatile, and one application is an automatic 3D beam-naming system that describes the position of the beam relative to the patient in 3D space. The naming system meets the need for nomenclature that is conducive for clear and accurate communication of beam entry relative to patient anatomy. In radiation oncology in particular, where miscommunication can cause significant harm to patients, a system that minimizes error is essential. Frequent sharing of radiation treatment information occurs not only among members within a department but also between different treatment centers. Descriptions of treatment beams are perhaps the most commonly shared information about a patient's course of treatment in radiation oncology. Automating the naming system by the use of a script reduces the potential for human error, improves efficiency, enforces consistency, and would allow an institution to convert to a new naming system with greater ease. This script has been implemented in the Department of Radiation Oncology at the University of Washington Medical Center since December 2009. It is currently part of the dosimetry protocol and is accessible by medical dosimetrists, radiation oncologists, and medical physicists. This paper highlights the advantages of using an automatic 3D beam-naming script to flawlessly and quickly identify treatment beams with unique names. Scripting in radiation treatment planning software has many uses and great potential for improving clinical care.

  5. 3D Radiative Transfer in Eta Carinae: Application of the SimpleX Algorithm to 3D SPH Simulations of Binary Colliding Winds

    NASA Technical Reports Server (NTRS)

    Clementel, N.; Madura, T. I.; Kruip, C. J. H.; Icke, V.; Gull, T. R.

    2014-01-01

    Eta Carinae is an ideal astrophysical laboratory for studying massive binary interactions and evolution, and stellar wind-wind collisions. Recent three-dimensional (3D) simulations set the stage for understanding the highly complex 3D flows in Eta Car. Observations of different broad high- and low-ionization forbidden emission lines provide an excellent tool to constrain the orientation of the system, the primary's mass-loss rate, and the ionizing flux of the hot secondary. In this work we present the first steps towards generating synthetic observations to compare with available and future HST/STIS data. We present initial results from full 3D radiative transfer simulations of the interacting winds in Eta Car. We use the SimpleX algorithm to post-process the output from 3D SPH simulations and obtain the ionization fractions of hydrogen and helium assuming three different mass-loss rates for the primary star. The resultant ionization maps of both species constrain the regions where the observed forbidden emission lines can form. Including collisional ionization is necessary to achieve a better description of the ionization states, especially in the areas shielded from the secondary's radiation. We find that reducing the primary's mass-loss rate increases the volume of ionized gas, creating larger areas where the forbidden emission lines can form. We conclude that post processing 3D SPH data with SimpleX is a viable tool to create ionization maps for Eta Car.

  6. 3D Radiative Transfer in Eta Carinae: Application of the SimpleX Algorithm to 3D SPH Simulations of Binary Colliding Winds

    NASA Technical Reports Server (NTRS)

    Clementel, N.; Madura, T. I.; Kruip, C.J.H.; Icke, V.; Gull, T. R.

    2014-01-01

    Eta Carinae is an ideal astrophysical laboratory for studying massive binary interactions and evolution, and stellar wind-wind collisions. Recent three-dimensional (3D) simulations set the stage for understanding the highly complex 3D flows in eta Car. Observations of different broad high- and low-ionization forbidden emission lines provide an excellent tool to constrain the orientation of the system, the primary's mass-loss rate, and the ionizing flux of the hot secondary. In this work we present the first steps towards generating synthetic observations to compare with available and future HST/STIS data. We present initial results from full 3D radiative transfer simulations of the interacting winds in eta Car.We use the SimpleX algorithm to post-process the output from 3D SPH simulations and obtain the ionization fractions of hydrogen and helium assuming three different mass-loss rates for the primary star. The resultant ionization maps of both species constrain the regions where the observed forbidden emission lines can form. Including collisional ionization is necessary to achieve a better description of the ionization states, especially in the areas shielded from the secondary's radiation. We find that reducing the primary's mass-loss rate increases the volume of ionized gas, creating larger areas where the forbidden emission lines can form.We conclude that post processing 3D SPH data with SimpleX is a viable tool to create ionization maps for eta Car.

  7. 3D ultrasound Nakagami imaging for radiation-induced vaginal fibrosis

    NASA Astrophysics Data System (ADS)

    Yang, Xiaofeng; Rossi, Peter; Shelton, Joseph; Bruner, Debrorah; Tridandapani, Srini; Liu, Tian

    2014-03-01

    Radiation-induced vaginal fibrosis is a debilitating side-effect affecting up to 80% of women receiving radiotherapy for their gynecological (GYN) malignancies. Despite the significant incidence and severity, little research has been conducted to identify the pathophysiologic changes of vaginal toxicity. In a previous study, we have demonstrated that ultrasound Nakagami shape and PDF parameters can be used to quantify radiation-induced vaginal toxicity. These Nakagami parameters are derived from the statistics of ultrasound backscattered signals to capture the physical properties (e.g., arrangement and distribution) of the biological tissues. In this paper, we propose to expand this Nakagami imaging concept from 2D to 3D to fully characterize radiation-induced changes to the vaginal wall within the radiation treatment field. A pilot study with 5 post-radiotherapy GYN patients was conducted using a clinical ultrasound scanner (6 MHz) with a mechanical stepper. A serial of 2D ultrasound images, with radio-frequency (RF) signals, were acquired at 1 mm step size. The 2D Nakagami shape and PDF parameters were calculated from the RF signal envelope with a sliding window, and then 3D Nakagami parameter images were generated from the parallel 2D images. This imaging method may be useful as we try to monitor radiation-induced vaginal injury, and address vaginal toxicities and sexual dysfunction in women after radiotherapy for GYN malignancies.

  8. 3D-radiative transfer in terrestrial atmosphere: An efficient parallel numerical procedure

    NASA Astrophysics Data System (ADS)

    Bass, L. P.; Germogenova, T. A.; Nikolaeva, O. V.; Kokhanovsky, A. A.; Kuznetsov, V. S.

    2003-04-01

    Light propagation and scattering in terrestrial atmosphere is usually studied in the framework of the 1D radiative transfer theory [1]. However, in reality particles (e.g., ice crystals, solid and liquid aerosols, cloud droplets) are randomly distributed in 3D space. In particular, their concentrations vary both in vertical and horizontal directions. Therefore, 3D effects influence modern cloud and aerosol retrieval procedures, which are currently based on the 1D radiative transfer theory. It should be pointed out that the standard radiative transfer equation allows to study these more complex situations as well [2]. In recent year the parallel version of the 2D and 3D RADUGA code has been developed. This version is successfully used in gammas and neutrons transport problems [3]. Applications of this code to radiative transfer in atmosphere problems are contained in [4]. Possibilities of code RADUGA are presented in [5]. The RADUGA code system is an universal solver of radiative transfer problems for complicated models, including 2D and 3D aerosol and cloud fields with arbitrary scattering anisotropy, light absorption, inhomogeneous underlying surface and topography. Both delta type and distributed light sources can be accounted for in the framework of the algorithm developed. The accurate numerical procedure is based on the new discrete ordinate SWDD scheme [6]. The algorithm is specifically designed for parallel supercomputers. The version RADUGA 5.1(P) can run on MBC1000M [7] (768 processors with 10 Gb of hard disc memory for each processor). The peak productivity is equal 1 Tfl. Corresponding scalar version RADUGA 5.1 is working on PC. As a first example of application of the algorithm developed, we have studied the shadowing effects of clouds on neighboring cloudless atmosphere, depending on the cloud optical thickness, surface albedo, and illumination conditions. This is of importance for modern satellite aerosol retrieval algorithms development. [1] Sobolev

  9. 3D Continuum Radiative Transfer. An adaptive grid construction algorithm based on the Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Niccolini, G.; Alcolea, J.

    Solving the radiative transfer problem is a common problematic to may fields in astrophysics. With the increasing angular resolution of spatial or ground-based telescopes (VLTI, HST) but also with the next decade instruments (NGST, ALMA, ...), astrophysical objects reveal and will certainly reveal complex spatial structures. Consequently, it is necessary to develop numerical tools being able to solve the radiative transfer equation in three dimensions in order to model and interpret these observations. I present a 3D radiative transfer program, using a new method for the construction of an adaptive spatial grid, based on the Monte Claro method. With the help of this tools, one can solve the continuum radiative transfer problem (e.g. a dusty medium), computes the temperature structure of the considered medium and obtain the flux of the object (SED and images).

  10. PREFACE: 7th International Conference on 3D Radiation Dosimetry (IC3DDose)

    NASA Astrophysics Data System (ADS)

    Thwaites, David; Baldock, Clive

    2013-06-01

    IC3DDose 2013, the 7th International Conference on 3D Radiation Dosimetry held in Sydney, Australia from 4-8 November 2012, grew out of the DosGel series, which began as DosGel99, the 1st International Workshop on Radiation Therapy Gel Dosimetry in Lexington, Kentucky. Since 1999 subsequent DoSGel conferences were held in Brisbane, Australia (2001), Ghent, Belgium (2004), Sherbrooke, Canada (2006) and Crete, Greece (2008). In 2010 the conference was held on Hilton Head Island, South Carolina and underwent a name-change to IC3DDose. The aim of the first workshop was to bring together individuals, both researchers and users, with an interest in 3D radiation dosimetry techniques, with a mix of presentations from basic science to clinical applications, which has remained an objective for all of the meetings. One rationale of DosGel99 was stated as supporting the increasing clinical implementation of gel dosimetry, as the technique appeared, at that time, to be leaving the laboratories of gel dosimetry enthusiasts and entering clinical practice. Clearly by labelling the first workshop as the 1st, there was a vision of a continuing series, which has been fulfilled. On the other hand, the expectation of widespread clinical use of gel dosimetry has perhaps not been what was hoped for and anticipated. Nevertheless the rapidly increasing demand for advanced high-precision 3D radiotherapy technology and techniques has continued apace. The need for practical and accurate 3D dosimetry methods for development and quality assurance has only increased. By the 6th meeting, held in South Carolina in 2010, the Conference Scientific Committee recognised the wider developments in 3D systems and methods and decided to widen the scope, whilst keeping the same span from basic science to applications. This was signalled by a change of name from 'Dosgel' to 'IC3DDose', a name that has continued to this latest conference. The conference objectives were: to enhance the quality and accuracy of

  11. Influence of the Aral Sea negative water balance on its seasonal circulation and ventilation patterns: use of a 3d hydrodynamic model.

    NASA Astrophysics Data System (ADS)

    Sirjacobs, D.; Grégoire, M.; Delhez, E.; Nihoul, J.

    2003-04-01

    Within the context of the EU INCO-COPERNICUS program "Desertification in the Aral Sea Region: A study of the Natural and Anthropogenic Impacts" (Contract IAC2-CT-2000-10023), a large-scale 3D hydrodynamic model was adapted to address specifically the macroscale processes affecting the Aral Sea water circulation and ventilation. The particular goal of this research is to simulate the effect of lasting negative water balance on the 3D seasonal circulation, temperature, salinity and water-mixing fields of the Aral Sea. The original Aral Sea seasonal hydrodynamism is simulated with the average seasonal forcings corresponding to the period from 1956 to 1960. This first investigation concerns a period of relative stability of the water balance, before the beginning of the drying process. The consequences of the drying process on the hydrodynamic of the Sea will be studied by comparing this first results with the simulation representing the average situation for the years 1981 to 1985, a very low river flow period. For both simulation periods, the forcing considered are the seasonal fluctuations of wind fields, precipitation, evaporation, river discharge and salinity, cloud cover, air temperature and humidity. The meteorological forcings were adapted to the common optimum one-month temporal resolution of the available data sets. Monthly mean kinetic energy flux and surface tensions were calculated from daily ECMWF wind data. Monthly in situ precipitation, surface air temperature and humidity fields were interpolated from data obtained from the Russian Hydrological and Meteorological Institute. Monthly water discharge and average salinity of the river water were considered for both Amu Darya and Syr Darya river over each simulation periods. The water mass conservation routines allowed the simulation of a changing coastline by taking into account local drying and flooding events of particular grid points. Preliminary barotropic runs were realised (for the 1951

  12. 3D visualization of the scoliotic spine: longitudinal studies, data acquisition, and radiation dosage constraints

    NASA Astrophysics Data System (ADS)

    Kalvin, Alan D.; Adler, Roy L.; Margulies, Joseph Y.; Tresser, Charles P.; Wu, Chai W.

    1999-05-01

    Decision making in the treatment of scoliosis is typically based on longitudinal studies that involve the imaging and visualization the progressive degeneration of a patient's spine over a period of years. Some patients will need surgery if their spinal deformation exceeds a certain degree of severity. Currently, surgeons rely on 2D measurements, obtained from x-rays, to quantify spinal deformation. Clearly working only with 2D measurements seriously limits the surgeon's ability to infer 3D spinal pathology. Standard CT scanning is not a practical solution for obtaining 3D spinal measurements of scoliotic patients. Because it would expose the patient to a prohibitively high dose of radiation. We have developed 2 new CT-based methods of 3D spinal visualization that produce 3D models of the spine by integrating a very small number of axial CT slices with data obtained from CT scout data. In the first method the scout data are converted to sinogram data, and then processed by a tomographic image reconstruction algorithm. In the second method, the vertebral boundaries are detected in the scout data, and these edges are then used as linear constraints to determine 2D convex hulls of the vertebrae.

  13. Analysis of Intensity-Modulated Radiation Therapy (IMRT), Proton and 3D Conformal Radiotherapy (3D-CRT) for Reducing Perioperative Cardiopulmonary Complications in Esophageal Cancer Patients

    PubMed Central

    Ling, Ted C.; Slater, Jerry M.; Nookala, Prashanth; Mifflin, Rachel; Grove, Roger; Ly, Anh M.; Patyal, Baldev; Slater, Jerry D.; Yang, Gary Y.

    2014-01-01

    Background. While neoadjuvant concurrent chemoradiotherapy has improved outcomes for esophageal cancer patients, surgical complication rates remain high. The most frequent perioperative complications after trimodality therapy were cardiopulmonary in nature. The radiation modality utilized can be a strong mitigating factor of perioperative complications given the location of the esophagus and its proximity to the heart and lungs. The purpose of this study is to make a dosimetric comparison of Intensity-Modulated Radiation Therapy (IMRT), proton and 3D conformal radiotherapy (3D-CRT) with regard to reducing perioperative cardiopulmonary complications in esophageal cancer patients. Materials. Ten patients with esophageal cancer treated between 2010 and 2013 were evaluated in this study. All patients were simulated with contrast-enhanced CT imaging. Separate treatment plans using proton radiotherapy, IMRT, and 3D-CRT modalities were created for each patient. Dose-volume histograms were calculated and analyzed to compare plans between the three modalities. The organs at risk (OAR) being evaluated in this study are the heart, lungs, and spinal cord. To determine statistical significance, ANOVA and two-tailed paired t-tests were performed for all data parameters. Results. The proton plans showed decreased dose to various volumes of the heart and lungs in comparison to both the IMRT and 3D-CRT plans. There was no difference between the IMRT and 3D-CRT plans in dose delivered to the lung or heart. This finding was seen consistently across the parameters analyzed in this study. Conclusions. In patients receiving radiation therapy for esophageal cancer, proton plans are technically feasible while achieving adequate coverage with lower doses delivered to the lungs and cardiac structures. This may result in decreased cardiopulmonary toxicity and less morbidity to esophageal cancer patients. PMID:25489937

  14. 4D VMAT, gated VMAT, and 3D VMAT for stereotactic body radiation therapy in lung.

    PubMed

    Chin, E; Loewen, S K; Nichol, A; Otto, K

    2013-02-21

    Four-dimensional volumetric modulated arc therapy (4D VMAT) is a treatment strategy for lung cancers that aims to exploit relative target and tissue motion to improve organ at risk (OAR) sparing. The algorithm incorporates the entire patient respiratory cycle using 4D CT data into the optimization process. Resulting treatment plans synchronize the delivery of each beam aperture to a specific phase of target motion. Stereotactic body radiation therapy treatment plans for 4D VMAT, gated VMAT, and 3D VMAT were generated on three patients with non-small cell lung cancer. Tumour motion ranged from 1.4-3.4 cm. The dose and fractionation scheme was 48 Gy in four fractions. A B-spline transformation model registered the 4D CT images. 4D dose volume histograms (4D DVH) were calculated from total dose accumulated at the maximum exhalation. For the majority of OARs, gated VMAT achieved the most radiation sparing but treatment times were 77-148% longer than 3D VMAT. 4D VMAT plan qualities were comparable to gated VMAT, but treatment times were only 11-25% longer than 3D VMAT. 4D VMAT's improvement of healthy tissue sparing can allow for further dose escalation. Future study could potentially adapt 4D VMAT to irregular patient breathing patterns.

  15. 4D VMAT, gated VMAT, and 3D VMAT for stereotactic body radiation therapy in lung

    NASA Astrophysics Data System (ADS)

    Chin, E.; Loewen, S. K.; Nichol, A.; Otto, K.

    2013-02-01

    Four-dimensional volumetric modulated arc therapy (4D VMAT) is a treatment strategy for lung cancers that aims to exploit relative target and tissue motion to improve organ at risk (OAR) sparing. The algorithm incorporates the entire patient respiratory cycle using 4D CT data into the optimization process. Resulting treatment plans synchronize the delivery of each beam aperture to a specific phase of target motion. Stereotactic body radiation therapy treatment plans for 4D VMAT, gated VMAT, and 3D VMAT were generated on three patients with non-small cell lung cancer. Tumour motion ranged from 1.4-3.4 cm. The dose and fractionation scheme was 48 Gy in four fractions. A B-spline transformation model registered the 4D CT images. 4D dose volume histograms (4D DVH) were calculated from total dose accumulated at the maximum exhalation. For the majority of OARs, gated VMAT achieved the most radiation sparing but treatment times were 77-148% longer than 3D VMAT. 4D VMAT plan qualities were comparable to gated VMAT, but treatment times were only 11-25% longer than 3D VMAT. 4D VMAT's improvement of healthy tissue sparing can allow for further dose escalation. Future study could potentially adapt 4D VMAT to irregular patient breathing patterns.

  16. Radiation Coupling with the FUN3D Unstructured-Grid CFD Code

    NASA Technical Reports Server (NTRS)

    Wood, William A.

    2012-01-01

    The HARA radiation code is fully-coupled to the FUN3D unstructured-grid CFD code for the purpose of simulating high-energy hypersonic flows. The radiation energy source terms and surface heat transfer, under the tangent slab approximation, are included within the fluid dynamic ow solver. The Fire II flight test, at the Mach-31 1643-second trajectory point, is used as a demonstration case. Comparisons are made with an existing structured-grid capability, the LAURA/HARA coupling. The radiative surface heat transfer rates from the present approach match the benchmark values within 6%. Although radiation coupling is the focus of the present work, convective surface heat transfer rates are also reported, and are seen to vary depending upon the choice of mesh connectivity and FUN3D ux reconstruction algorithm. On a tetrahedral-element mesh the convective heating matches the benchmark at the stagnation point, but under-predicts by 15% on the Fire II shoulder. Conversely, on a mixed-element mesh the convective heating over-predicts at the stagnation point by 20%, but matches the benchmark away from the stagnation region.

  17. Mass Spectrometry of 3D-printed plastic parts under plasma and radiative heat environments

    NASA Astrophysics Data System (ADS)

    Rivera, W. F.; Romero-Talamas, C. A.; Bates, E. M.; Birmingham, W.; Takeno, J.; Knop, S.

    2015-11-01

    We present the design and preliminary results of a mass spectrometry system used to assess vacuum compatibility of 3D-printed parts, developed at the Dusty Plasma Laboratory of the University of Maryland Baltimore County (UMBC). A decrease in outgassing was observed when electroplated parts were inserted in the test chamber vs. non electroplated ones. Outgassing will also be tested under different environments such as plasma and radiative heat. Heat will be generated by a titanium getter pump placed inside a 90 degree elbow, such that titanium does not coat the part. A mirror inside the elbow will be used to throttle the heat arriving at the part. Plasma exposure of 3D printed parts will be achieved by placing the parts in a separate chamber connected to the spectrometer by a vacuum line that is differentially pumped. The signals from the mass spectrometer will be analyzed to see how the vacuum conditions fluctuate under different plasma discharges.

  18. 3D silicon sensors with variable electrode depth for radiation hard high resolution particle tracking

    NASA Astrophysics Data System (ADS)

    Da Vià, C.; Borri, M.; Dalla Betta, G.; Haughton, I.; Hasi, J.; Kenney, C.; Povoli, M.; Mendicino, R.

    2015-04-01

    3D sensors, with electrodes micro-processed inside the silicon bulk using Micro-Electro-Mechanical System (MEMS) technology, were industrialized in 2012 and were installed in the first detector upgrade at the LHC, the ATLAS IBL in 2014. They are the radiation hardest sensors ever made. A new idea is now being explored to enhance the three-dimensional nature of 3D sensors by processing collecting electrodes at different depths inside the silicon bulk. This technique uses the electric field strength to suppress the charge collection effectiveness of the regions outside the p-n electrodes' overlap. Evidence of this property is supported by test beam data of irradiated and non-irradiated devices bump-bonded with pixel readout electronics and simulations. Applications include High-Luminosity Tracking in the high multiplicity LHC forward regions. This paper will describe the technical advantages of this idea and the tracking application rationale.

  19. PREFACE: 8th International Conference on 3D Radiation Dosimetry (IC3DDose)

    NASA Astrophysics Data System (ADS)

    Olsson, Lars E.; Bäck, S.; Ceberg, Sofie

    2015-01-01

    IC3DDose 2014, the 8th International Conference on 3D Radiation Dosimetry was held in Ystad, Sweden, from 4-7 September 2014. This grew out of the DosGel series, which began as DosGel99, the 1st International Workshop on Radiation Therapy Gel Dosimetry in Lexington, Kentucky. Since 1999 subsequent DoSGel conferences were held in Brisbane, Australia (2001), Ghent, Belgium (2004), Sherbrooke, Canada (2006) and Crete, Greece (2008). In 2010 the conference was held on Hilton Head Island, South Carolina and underwent a name-change to IC3DDose. The 7th and last meeting was held in Sydney, Australia from 4-8 November 2012. It is worth remembering that the conference series started at the very beginning of the intensity modulated radiotherapy era and that the dosimeters being developed then were, to some extent, ahead of the clinical need of radiotherapy. However, since then the technical developments in radiation therapy have been dramatic, with dynamic treatments, including tracking, gating and volumetric modulated arc therapy, widely introduced in the clinic with the need for 3D dosimetry thus endless. This was also reflected by the contributions at the meeting in Ystad. Accordingly the scope of the meeting has also broadened to IC3DDOSE - I See Three-Dimensional Dose. A multitude of dosimetry techniques and radiation detectors are now represented, all with the common denominator: three-dimensional or 3D. Additionally, quality assurance (QA) procedures and other aspects of clinical dosimetry are represented. The implementation of new dosimetric techniques in radiotherapy is a process that needs every kind of caution, carefulness and thorough validation. Therefore, the clinical needs, reformulated as the aims for IC3DDOSE - I See Three-Dimensional Dose, are: • Enhance the quality and accuracy of radiation therapy treatments through improved clinical dosimetry. • Investigate and understand the dosimetric challenges of modern radiation treatment techniques. • Provide

  20. A simulation technique for 3D MR-guided acoustic radiation force imaging

    SciTech Connect

    Payne, Allison; Bever, Josh de; Farrer, Alexis; Coats, Brittany; Parker, Dennis L.; Christensen, Douglas A.

    2015-02-15

    Purpose: In magnetic resonance-guided focused ultrasound (MRgFUS) therapies, the in situ characterization of the focal spot location and quality is critical. MR acoustic radiation force imaging (MR-ARFI) is a technique that measures the tissue displacement caused by the radiation force exerted by the ultrasound beam. This work presents a new technique to model the displacements caused by the radiation force of an ultrasound beam in a homogeneous tissue model. Methods: When a steady-state point-source force acts internally in an infinite homogeneous medium, the displacement of the material in all directions is given by the Somigliana elastostatic tensor. The radiation force field, which is caused by absorption and reflection of the incident ultrasound intensity pattern, will be spatially distributed, and the tensor formulation takes the form of a convolution of a 3D Green’s function with the force field. The dynamic accumulation of MR phase during the ultrasound pulse can be theoretically accounted for through a time-of-arrival weighting of the Green’s function. This theoretical model was evaluated experimentally in gelatin phantoms of varied stiffness (125-, 175-, and 250-bloom). The acoustic and mechanical properties of the phantoms used as parameters of the model were measured using independent techniques. Displacements at focal depths of 30- and 45-mm in the phantoms were measured by a 3D spin echo MR-ARFI segmented-EPI sequence. Results: The simulated displacements agreed with the MR-ARFI measured displacements for all bloom values and focal depths with a normalized RMS difference of 0.055 (range 0.028–0.12). The displacement magnitude decreased and the displacement pattern broadened with increased bloom value for both focal depths, as predicted by the theory. Conclusions: A new technique that models the displacements caused by the radiation force of an ultrasound beam in a homogeneous tissue model theory has been rigorously validated through comparison

  1. Characterization of a parallel beam CCD optical-CT apparatus for 3D radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Krstajić, Nikola; Doran, Simon J.

    2006-12-01

    This paper describes the initial steps we have taken in establishing CCD based optical-CT as a viable alternative for 3-D radiation dosimetry. First, we compare the optical density (OD) measurements from a high quality test target and variable neutral density filter (VNDF). A modulation transfer function (MTF) of individual projections is derived for three positions of the sinusoidal test target within the scanning tank. Our CCD is then characterized in terms of its signal-to-noise ratio (SNR). Finally, a sample reconstruction of a scan of a PRESAGETM (registered trademark of Heuris Pharma, NJ, Skillman, USA.) dosimeter is given, demonstrating the capabilities of the apparatus.

  2. Visualization of 3D osteon morphology by synchrotron radiation micro-CT

    PubMed Central

    Cooper, D M L; Erickson, B; Peele, A G; Hannah, K; Thomas, C D L; Clement, J G

    2011-01-01

    Cortical bone histology has been the subject of scientific inquiry since the advent of the earliest microscopes. Histology – literally the study of tissue – is a field nearly synonymous with 2D thin sections. That said, progressive developments in high-resolution X-ray imaging are enabling 3D visualization to reach ever smaller structures. Micro-computed tomography (micro-CT), employing conventional X-ray sources, has become the gold standard for 3D analysis of trabecular bone and is capable of detecting the structure of vascular (osteonal) porosity in cortical bone. To date, however, direct 3D visualization of secondary osteons has eluded micro-CT based upon absorption-derived contrast. Synchrotron radiation micro-CT, through greater image quality, resolution and alternative contrast mechanisms (e.g. phase contrast), holds great potential for non-destructive 3D visualization of secondary osteons. Our objective was to demonstrate this potential and to discuss areas of bone research that can be advanced through the application of this approach. We imaged human mid-femoral cortical bone specimens derived from a 20-year-old male (Melbourne Femur Collection) at the Advanced Photon Source synchrotron (Chicago, IL, USA) using the 2BM beam line. A 60-mm distance between the target and the detector was employed to enhance visualization of internal structures through propagation phase contrast. Scan times were 1 h and images were acquired with 1.4-μm nominal isotropic resolution. Computer-aided manual segmentation and volumetric 3D rendering were employed to visualize secondary osteons and porous structures, respectively. Osteonal borders were evident via two contrast mechanisms. First, relatively new (hypomineralized) osteons were evident due to differences in X-ray attenuation relative to the surrounding bone. Second, osteon boundaries (cement lines) were delineated by phase contrast. Phase contrast also enabled the detection of soft tissue remnants within the

  3. Implementation of a 3D Coupled Hydrodynamic and Contaminant Fate Model for PCDD/Fs in Thau Lagoon (France): The Importance of Atmospheric Sources of Contamination

    PubMed Central

    Dueri, Sibylle; Marinov, Dimitar; Fiandrino, Annie; Tronczyński, Jacek; Zaldívar, José-Manuel

    2010-01-01

    A 3D hydrodynamic and contaminant fate model was implemented for polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in Thau lagoon. The hydrodynamic model was tested against temperature and salinity measurements, while the contaminant fate model was assessed against available data collected at different stations inside the lagoon. The model results allow an assessment of the spatial and temporal variability of the distribution of contaminants in the lagoon, the seasonality of loads and the role of atmospheric deposition for the input of PCDD/Fs. The outcome suggests that air is an important source of PCDD/Fs for this ecosystem, therefore the monitoring of air pollution is very appropriate for assessing the inputs of these contaminants. These results call for the development of integrated environmental protection policies. PMID:20617040

  4. Improved Finite-Volume Method for Radiative Hydrodynamics

    NASA Technical Reports Server (NTRS)

    Wray, Alan

    2012-01-01

    Fully coupled simulations of hydrodynamics and radiative transfer are essential to a number of fields ranging from astrophysics to engineering applications. Of particular interest in this work are hypersonic atmospheric entries and associated experimental apparatus, e.g., shock tubes and high enthalpy testing facilities. The radiative transfer calculations must supply to the CFD a heating term in the energy equation in the form of the divergence of the radiative heat flux and the radiative heat fluxes to bounding surfaces. It is most efficient to solve the radiative transfer equation on the same grid as the CFD solution, and this work presents an algorithm with improved accuracy for such simulations on structured and unstructured grids compared to more conventional approaches. Results will be shown for shock radiation during hypersonic reentry. Issues of parallelization within a radiation sweep will also be discussed.

  5. Radiation-hydrodynamic simulations of quasar disk winds

    NASA Astrophysics Data System (ADS)

    Higginbottom, N.

    2015-09-01

    Disk winds are a compelling candidate to provide geometrical unification between Broad Absorption Line QSOs (BALQSOs) and Type1 Quasars. However, the geometry of these winds, and even the driving mech- anism remain largely unknown. Progress has been made through RT simulations and theoretical analysis of simplified wind geometries but there are several outstanding issues including the problem of shielding the low ionization BAL gas from the intense X-ray radiation from the central corona, and also how to produce the strong emission lines which exemplify Type 1 Quasars. A complex, clumpy geometry may provide a solution, and a full hydrodynamic model in which such structure may well spontaneously develop is something we wish to investigate. We have already demonstrated that the previous generation of hydrodynamic models of BALQSOs suffer from the fact that radiation transfer (RT) was necessarily simplified to permit computation, thereby neglecting the effects of multiple scattering and reprocessing of photons within the wind (potentially very important processes). We have therefore embarked upon a project to marry together a RT code with a hydrodynamics code to permit full radiation hydrodynamics simulations to be carried out on QSO disk winds. Here we present details of the project and results to date.

  6. The Radiation Hydrodynamics of Relativistic Shear Flows

    NASA Astrophysics Data System (ADS)

    Coughlin, Eric R.; Begelman, Mitchell C.

    2016-07-01

    We present a method for analyzing the interaction between radiation and matter in regions of intense, relativistic shear that can arise in many astrophysical situations. We show that there is a simple velocity profile that should be manifested in regions of large shear that have “lost memory” of their boundary conditions, and we use this self-similar velocity profile to construct the surface of last scattering, or the τ ≃ 1 surface, as viewed from any comoving point within the flow. We demonstrate that a simple treatment of scattering from this τ ≃ 1 surface exactly conserves photon number, and we derive the rate at which the radiation field is heated due to the shear present in the flow. The components of the comoving radiation energy–momentum tensor are calculated, and we show that they have relatively simple, approximate forms that interpolate between the viscous (small shear) and streaming (large shear) limits. We put our expression for the energy–momentum tensor in a covariant form that does not depend on the explicit velocity profile within the fluid and, therefore, represents a natural means for analyzing general, radiation-dominated, relativistic shear flows.

  7. Radiation Quality Effects on Transcriptome Profiles in 3-d Cultures After Particle Irradiation

    NASA Technical Reports Server (NTRS)

    Patel, Z. S.; Kidane, Y. H.; Huff, J. L.

    2014-01-01

    In this work, we evaluate the differential effects of low- and high-LET radiation on 3-D organotypic cultures in order to investigate radiation quality impacts on gene expression and cellular responses. Reducing uncertainties in current risk models requires new knowledge on the fundamental differences in biological responses (the so-called radiation quality effects) triggered by heavy ion particle radiation versus low-LET radiation associated with Earth-based exposures. We are utilizing novel 3-D organotypic human tissue models that provide a format for study of human cells within a realistic tissue framework, thereby bridging the gap between 2-D monolayer culture and animal models for risk extrapolation to humans. To identify biological pathway signatures unique to heavy ion particle exposure, functional gene set enrichment analysis (GSEA) was used with whole transcriptome profiling. GSEA has been used extensively as a method to garner biological information in a variety of model systems but has not been commonly used to analyze radiation effects. It is a powerful approach for assessing the functional significance of radiation quality-dependent changes from datasets where the changes are subtle but broad, and where single gene based analysis using rankings of fold-change may not reveal important biological information. We identified 45 statistically significant gene sets at 0.05 q-value cutoff, including 14 gene sets common to gamma and titanium irradiation, 19 gene sets specific to gamma irradiation, and 12 titanium-specific gene sets. Common gene sets largely align with DNA damage, cell cycle, early immune response, and inflammatory cytokine pathway activation. The top gene set enriched for the gamma- and titanium-irradiated samples involved KRAS pathway activation and genes activated in TNF-treated cells, respectively. Another difference noted for the high-LET samples was an apparent enrichment in gene sets involved in cycle cycle/mitotic control. It is

  8. Dynamic Implicit 3D Adaptive Mesh Refinement for Non-Equilibrium Radiation Diffusion

    SciTech Connect

    Philip, Bobby; Wang, Zhen; Berrill, Mark A; Rodriguez Rodriguez, Manuel; Pernice, Michael

    2014-01-01

    The time dependent non-equilibrium radiation diffusion equations are important for solving the transport of energy through radiation in optically thick regimes and find applications in several fields including astrophysics and inertial confinement fusion. The associated initial boundary value problems that are encountered exhibit a wide range of scales in space and time and are extremely challenging to solve. To efficiently and accurately simulate these systems we describe our research on combining techniques that will also find use more broadly for long term time integration of nonlinear multiphysics systems: implicit time integration for efficient long term time integration of stiff multiphysics systems, local control theory based step size control to minimize the required global number of time steps while controlling accuracy, dynamic 3D adaptive mesh refinement (AMR) to minimize memory and computational costs, Jacobian Free Newton Krylov methods on AMR grids for efficient nonlinear solution, and optimal multilevel preconditioner components that provide level independent linear solver convergence.

  9. STEMS3D: An X-ray spectral model for magnetar persistent radiations

    NASA Astrophysics Data System (ADS)

    Gogus, Ersin; Weng, Shan-Shan

    2016-07-01

    Anomalous X-ray pulsars and soft gamma-ray repeaters are recognized as the most promising magnetar candidates, as indicated by their energetic bursts and rapid spin-downs. It is expected that the strong magnetic field leaves distinctive imprints on the emergent radiation both by affecting the radiative processes in atmospheres of magnetars and by scattering in the upper magnetospheres. We construct a self-consistent physical model that incorporates emission from the magnetar surface and its reprocessing in the three-dimensional twisted magnetosphere using a Monte Carlo technique. The synthetic spectra are characterized by four parameters: surface temperature kT, surface magnetic field strength B, magnetospheric twist angle Δφ, and the normalized electron velocity β. We also create a tabular model (STEMS3D) and apply it to X-ray spectra of magnetars.

  10. A modified Henyey method for computing radiative transfer hydrodynamics

    NASA Technical Reports Server (NTRS)

    Karp, A. H.

    1975-01-01

    The implicit hydrodynamic code of Kutter and Sparks (1972), which is limited to optically thick regions and employs the diffusion approximation for radiative transfer, is modified to include radiative transfer effects in the optically thin regions of a model star. A modified Henyey method is used to include the solution of the radiative transfer equation in this implicit code, and the convergence properties of this method are proven. A comparison is made between two hydrodynamic models of a classical Cepheid with a 12-day period, one of which was computed with the diffusion approximation and the other with the modified Henyey method. It is found that the two models produce nearly identical light and velocity curves, but differ in the fact that the former never has temperature inversions in the atmosphere while the latter does when sufficiently strong shocks are present.

  11. Applications of 3D hydrodynamic and particle tracking models in the San Francisco bay-delta estuary

    USGS Publications Warehouse

    Smith, P.E.; Donovan, J.M.; Wong, H.F.N.

    2005-01-01

    Three applications of three-dimensional hydrodynamic and particle-tracking models are currently underway by the United States Geological Survey in the San Francisco Bay-Delta Estuary. The first application is to the San Francisco Bay and a portion of the coastal ocean. The second application is to an important, gated control channel called the Delta Cross Channel, located within the northern portion of the Sacramento-San Joaquin River Delta. The third application is to a reach of the San Joaquin River near Stockton, California where a significant dissolved oxygen problem exists due, in part, to conditions associated with the deep-water ship channel for the Port of Stockton, California. This paper briefly discusses the hydrodynamic and particle tracking models being used and the three applications. Copyright ASCE 2005.

  12. Astrophysical Radiation Hydrodynamics: The Prospects for Scaling

    SciTech Connect

    Castor, J I

    2006-05-25

    The general principles of scaling are discussed, followed by a survey of the important dimensionless parameters of fluid dynamics including radiation and magnetic fields, and of non-LTE spectroscopy. The values of the parameters are reviewed for a variety of astronomical and laboratory environments. It is found that parameters involving transport coefficients--the fluid and magnetic Reynolds numbers--have enormous values for the astronomical problems that are not reached in the lab. The parameters that measure the importance of radiation are also scarcely reached in the lab. This also means that the lab environments are much closer to LTE than the majority of astronomical examples. Some of the astronomical environments are more magnetically dominated than anything in the lab. The conclusion is that a good astronomical environment for simulation in a given lab experiment can be found, but that the reverse is much more difficult.

  13. Displaying 3D radiation dose on endoscopic video for therapeutic assessment and surgical guidance.

    PubMed

    Qiu, Jimmy; Hope, Andrew J; Cho, B C John; Sharpe, Michael B; Dickie, Colleen I; DaCosta, Ralph S; Jaffray, David A; Weersink, Robert A

    2012-10-21

    We have developed a method to register and display 3D parametric data, in particular radiation dose, on two-dimensional endoscopic images. This registration of radiation dose to endoscopic or optical imaging may be valuable in assessment of normal tissue response to radiation, and visualization of radiated tissues in patients receiving post-radiation surgery. Electromagnetic sensors embedded in a flexible endoscope were used to track the position and orientation of the endoscope allowing registration of 2D endoscopic images to CT volumetric images and radiation doses planned with respect to these images. A surface was rendered from the CT image based on the air/tissue threshold, creating a virtual endoscopic view analogous to the real endoscopic view. Radiation dose at the surface or at known depth below the surface was assigned to each segment of the virtual surface. Dose could be displayed as either a colorwash on this surface or surface isodose lines. By assigning transparency levels to each surface segment based on dose or isoline location, the virtual dose display was overlaid onto the real endoscope image. Spatial accuracy of the dose display was tested using a cylindrical phantom with a treatment plan created for the phantom that matched dose levels with grid lines on the phantom surface. The accuracy of the dose display in these phantoms was 0.8-0.99 mm. To demonstrate clinical feasibility of this approach, the dose display was also tested on clinical data of a patient with laryngeal cancer treated with radiation therapy, with estimated display accuracy of ∼2-3 mm. The utility of the dose display for registration of radiation dose information to the surgical field was further demonstrated in a mock sarcoma case using a leg phantom. With direct overlay of radiation dose on endoscopic imaging, tissue toxicities and tumor response in endoluminal organs can be directly correlated with the actual tissue dose, offering a more nuanced assessment of normal tissue

  14. Quantitative analysis of tomotherapy, linear-accelerator-based 3D conformal radiation therapy, intensity-modulated radiation therapy, and 4D conformal radiation therapy

    NASA Astrophysics Data System (ADS)

    Cho, Jae-Hwan; Lee, Hae-Kag; Dong, Kyung-Rae; Chung, Woon-Kwan; Lee, Jong-Woong; Park, Hoon-Hee

    2012-04-01

    This study quantified, evaluated and analyzed the radiation dose to which tumors and normal tissues were exposed in 3D conformal radiation therapy (CRT), intensity-modulated radiation therapy (IMRT) and tomotherapy by using a dose volume histogram (DVH) that represented the volume dose and the dose distribution of anatomical structures in the evaluation of treatment planning. Furthermore, a comparison was made for the dose to the gross tumor volume (GTV) and the planning target volume (PTV) of organ to be treated based on the change in field size for three- and four-dimensional computed tomography (3D-CT and 4D-CT) (gating based) and in the histogram with a view to proving the usefulness of 4D-CT therapy, which corresponds to respiration-gated radiation therapy. According to the study results, a comparison of 3D CRT, IMRT with a linear accelerator (LINAC), and tomotherapy demonstrated that the GTV of the cranium was higher for tomotherapy than for 3D CRT and IMRT with a LINAC by 5.2% and 4.6%, respectively. The GTV of the neck was higher for tomotherapy than for 3D CRT and IMRT with a LINAC by 6.5% and 2.0%, respectively. The GTV of the pelvis was higher for tomotherapy than for 3D CRT and IMRT with a LINAC by 8.6% and 3.7%, respectively. When the comparison was made for the 3D-CT and the 4D-CT (gating based) treatment equipment, the GTV and the PTV became smaller for 4D-CT treatment planning than for 3D-CT, which could reduce the area in which normal tissues in the surroundings are exposed to an unnecessary radiation dose. In addition, when 4D-CT treatment planning (gating based) was used, the radiation dose could be concentrated on the GTV, CTV or PTV, which meant that the treatment area exceeded that when 3D-CT's treatment planning was used. Moreover, the radiation dose on nearby normal tissues could be reduced. When 4D-CT treatment planning (gating based) was utilized, unnecessary areas that were exposed to a radiation dose could be reduced more than they could

  15. Verification Test Suite (VERTS) For Rail Gun Applications using ALE3D: 2-D Hydrodynamics & Thermal Cases

    SciTech Connect

    Najjar, F M; Solberg, J; White, D

    2008-04-17

    A verification test suite has been assessed with primary focus on low reynolds number flow of liquid metals. This is representative of the interface between the armature and rail in gun applications. The computational multiphysics framework, ALE3D, is used. The main objective of the current study is to provide guidance and gain confidence in the results obtained with ALE3D. A verification test suite based on 2-D cases is proposed and includes the lid-driven cavity and the Couette flow are investigated. The hydro and thermal fields are assumed to be steady and laminar in nature. Results are compared with analytical solutions and previously published data. Mesh resolution studies are performed along with various models for the equation of state.

  16. Analysis of the radiative lifetime of Pr{sup 3+} d-f emission

    SciTech Connect

    Zych, Aleksander; Lange, Matthijs de; Mello Donega, Celso de; Meijerink, Andries

    2012-07-01

    The radiative lifetime of excited states is governed by Fermi's Golden Rule. For many applications, the radiative decay rate is an important parameter. For example, for scintillators materials in PET scanners, a short response time is crucial and it has been realized that the d-f emission of Pr{sup 3+} is faster than for the widely applied d-f emission from Ce{sup 3+}. In this paper, the radiative decay rate of d-f emission from Pr{sup 3+} is systematically investigated in a wide variety of host lattices, including scintillators materials. The variation in the decay rate is analyzed based on Fermi's Golden Rule. The trend observed is best described using a full cavity model to correct for local-field effects and a {lambda}{sup 3} factor to account for the energy of the transition. Still, there is a considerable scatter of the experimental data around the best fit to these data. The variation is explained by uncertainties in the refractive indices and a variation in the transition dipole moment of the d-f transition for Pr{sup 3+}. Based on the results, the shortest radiative lifetime that can be achieved for Pr{sup 3+} d-f emission is predicted to be {approx}6 ns.

  17. Radiation-induced second cancers: the impact of 3D-CRT and IMRT

    NASA Technical Reports Server (NTRS)

    Hall, Eric J.; Wuu, Cheng-Shie

    2003-01-01

    Information concerning radiation-induced malignancies comes from the A-bomb survivors and from medically exposed individuals, including second cancers in radiation therapy patients. The A-bomb survivors show an excess incidence of carcinomas in tissues such as the gastrointestinal tract, breast, thyroid, and bladder, which is linear with dose up to about 2.5 Sv. There is great uncertainty concerning the dose-response relationship for radiation-induced carcinogenesis at higher doses. Some animal and human data suggest a decrease at higher doses, usually attributed to cell killing; other data suggest a plateau in dose. Radiotherapy patients also show an excess incidence of carcinomas, often in sites remote from the treatment fields; in addition there is an excess incidence of sarcomas in the heavily irradiated in-field tissues. The transition from conventional radiotherapy to three-dimensional conformal radiation therapy (3D-CRT) involves a reduction in the volume of normal tissues receiving a high dose, with an increase in dose to the target volume that includes the tumor and a limited amount of normal tissue. One might expect a decrease in the number of sarcomas induced and also (less certain) a small decrease in the number of carcinomas. All around, a good thing. By contrast, the move from 3D-CRT to intensity-modulated radiation therapy (IMRT) involves more fields, and the dose-volume histograms show that, as a consequence, a larger volume of normal tissue is exposed to lower doses. In addition, the number of monitor units is increased by a factor of 2 to 3, increasing the total body exposure, due to leakage radiation. Both factors will tend to increase the risk of second cancers. Altogether, IMRT is likely to almost double the incidence of second malignancies compared with conventional radiotherapy from about 1% to 1.75% for patients surviving 10 years. The numbers may be larger for longer survival (or for younger patients), but the ratio should remain the same.

  18. The dynamic coupling of a third-generation wave model and a 3D hydrodynamic model through boundary layers

    NASA Astrophysics Data System (ADS)

    Zhang, M. Y.; Li, Y. S.

    1997-08-01

    A third-generation wind wave model based on the energy balance equation taking into account the effects of time-varying currents and coupled dynamically with a semi-implicit three-dimensional hydrodynamic model incorporating the influences of time- and space-varying vertical eddy viscosity, bottom topography and wave-current interactions is presented in this paper. The wave model is synchronously coupled with the three-dimensional hydrodynamic model through the surface atmospheric turbulent boundary layer and the bottom boundary layer. The theory of Janssen (1991) (in Journal of Physical Oceanography21, 1631-1642) is used to incorporate the effects of waves on the surface boundary layer, while the theory of Grant and Maddsen (1979) [in Journal of Geophysical Research (Oceans)84, 1797-1808], which was used by Signell et al. (1990) (in Journal of Geophysical Research95, 9671-9678) on the bottom boundary layer for constant waves, is modified for the inclusion of time-varying waves. The mutual influences between waves and currents are investigated through an idealized continental shelf case and hindcastings of storm events in the sea area adjacent to Hong Kong in the northern South China Sea. Calculations are compared with other computed results and observations. Calculations show that the wave-dependent surface stress incorporated in the three-dimensional hydrodynamic model has significant impact on water surface velocities and surface elevations (over 10% higher). The inclusion of wave-dependent bottom stress also shows some effects; however, in the presence of the wave-dependent surface stress, its effect on surge levels becomes negligible. The effect of currents on waves amounts to the reduction of the significant wave height by about 8% and less for wave mean periods. However, the inclusion of the wave-dependent bottom stress in the three-dimensional hydrodynamic model has little effect on wave characteristics whether or not the wave-dependent surface stress is

  19. HEROIC: 3D general relativistic radiative post-processor with comptonization for black hole accretion discs

    NASA Astrophysics Data System (ADS)

    Narayan, Ramesh; Zhu, Yucong; Psaltis, Dimitrios; Saḑowski, Aleksander

    2016-03-01

    We describe Hybrid Evaluator for Radiative Objects Including Comptonization (HEROIC), an upgraded version of the relativistic radiative post-processor code HERO described in a previous paper, but which now Includes Comptonization. HEROIC models Comptonization via the Kompaneets equation, using a quadratic approximation for the source function in a short characteristics radiation solver. It employs a simple form of accelerated lambda iteration to handle regions of high scattering opacity. In addition to solving for the radiation field, HEROIC also solves for the gas temperature by applying the condition of radiative equilibrium. We present benchmarks and tests of the Comptonization module in HEROIC with simple 1D and 3D scattering problems. We also test the ability of the code to handle various relativistic effects using model atmospheres and accretion flows in a black hole space-time. We present two applications of HEROIC to general relativistic magnetohydrodynamics simulations of accretion discs. One application is to a thin accretion disc around a black hole. We find that the gas below the photosphere in the multidimensional HEROIC solution is nearly isothermal, quite different from previous solutions based on 1D plane parallel atmospheres. The second application is to a geometrically thick radiation-dominated accretion disc accreting at 11 times the Eddington rate. Here, the multidimensional HEROIC solution shows that, for observers who are on axis and look down the polar funnel, the isotropic equivalent luminosity could be more than 10 times the Eddington limit, even though the spectrum might still look thermal and show no signs of relativistic beaming.

  20. First attempt at interpreting millimetric observations of CO in comet C/1995 O1 (Hale-Bopp) using 3D+t hydrodynamical coma simulations

    NASA Astrophysics Data System (ADS)

    Boissier, J.; Bockelée-Morvan, D.; Rodionov, A. V.; Crifo, J.-F.

    2010-02-01

    Context. Millimetre line observations of comet C/1995 O1 (Hale-Bopp) close to perihelion, completed using the IRAM Plateau de Bure Interferometer, have detected temporal variations in the CO J(2-1) 230 GHz line shape, and in the position of its maximum emission brightness within the field-of-view, whose heuristic analysis has suggested the presence in the coma of a slowly rotating spiral-shaped enhancement of the CO density. Aims: Here, we reanalyse these data using a physically consistent model of the coma. Methods: We consider a large, rotating, icy nucleus with an arbitrarily aspherical shape and an adhoc rotation mode, and compute its tridimensional, time-dependent (”3D+t”) mixed CO + H2O coma, using a previously developed tridimensional hydrodynamical code (HDC). The line emission of CO is then computed using a molecular excitation and radiation transfer code (ERC). In the present, pioneering phase, the HDC and ERC both contain crude, and not thoroughly mutually consistent approximations. Several alternative CO surface flux distributions are considered, and the resulting CO 230 GHz line spectra and brightness maps are compared with observations. Results: We find that when an uniform surface flux of CO is assumed, the spiral structures created by the nucleus asphericity in the CO coma are too faint to account for the observational data, whereas we confirm earlier conclusions based on a heuristic approach that the assumption of an area of suitable dimensions and localization with increased CO flux leads to results in agreement with a large subset of (but not all) the data. This suggests that the true CO coma production map may be more complex than the presently assumed rather simple-minded one. Refined and mutually consistent HDC and ERC are needed for a more satisfactory interpretation of the present and any similar future data. Based on observations carried out with the IRAM Plateau de Bure Interferometer. IRAM is supported by INSU/CNRS (France), MPG

  1. Development and Implementation of Radiation-Hydrodynamics Verification Test Problems

    SciTech Connect

    Marcath, Matthew J.; Wang, Matthew Y.; Ramsey, Scott D.

    2012-08-22

    Analytic solutions to the radiation-hydrodynamic equations are useful for verifying any large-scale numerical simulation software that solves the same set of equations. The one-dimensional, spherically symmetric Coggeshall No.9 and No.11 analytic solutions, cell-averaged over a uniform-grid have been developed to analyze the corresponding solutions from the Los Alamos National Laboratory Eulerian Applications Project radiation-hydrodynamics code xRAGE. These Coggeshall solutions have been shown to be independent of heat conduction, providing a unique opportunity for comparison with xRAGE solutions with and without the heat conduction module. Solution convergence was analyzed based on radial step size. Since no shocks are involved in either problem and the solutions are smooth, second-order convergence was expected for both cases. The global L1 errors were used to estimate the convergence rates with and without the heat conduction module implemented.

  2. CASTRO: A NEW COMPRESSIBLE ASTROPHYSICAL SOLVER. II. GRAY RADIATION HYDRODYNAMICS

    SciTech Connect

    Zhang, W.; Almgren, A.; Bell, J.; Howell, L.; Burrows, A.

    2011-10-01

    We describe the development of a flux-limited gray radiation solver for the compressible astrophysics code, CASTRO. CASTRO uses an Eulerian grid with block-structured adaptive mesh refinement based on a nested hierarchy of logically rectangular variable-sized grids with simultaneous refinement in both space and time. The gray radiation solver is based on a mixed-frame formulation of radiation hydrodynamics. In our approach, the system is split into two parts, one part that couples the radiation and fluid in a hyperbolic subsystem, and another parabolic part that evolves radiation diffusion and source-sink terms. The hyperbolic subsystem is solved explicitly with a high-order Godunov scheme, whereas the parabolic part is solved implicitly with a first-order backward Euler method.

  3. Post-processing of 3D-printed parts using femtosecond and picosecond laser radiation

    NASA Astrophysics Data System (ADS)

    Mingareev, Ilya; Gehlich, Nils; Bonhoff, Tobias; Meiners, Wilhelm; Kelbassa, Ingomar; Biermann, Tim; Richardson, Martin C.

    2014-03-01

    Additive manufacturing, also known as 3D-printing, is a near-net shape manufacturing approach, delivering part geometry that can be considerably affected by various process conditions, heat-induced distortions, solidified melt droplets, partially fused powders, and surface modifications induced by the manufacturing tool motion and processing strategy. High-repetition rate femtosecond and picosecond laser radiation was utilized to improve surface quality of metal parts manufactured by laser additive techniques. Different laser scanning approaches were utilized to increase the ablation efficiency and to reduce the surface roughness while preserving the initial part geometry. We studied post-processing of 3D-shaped parts made of Nickel- and Titanium-base alloys by utilizing Selective Laser Melting (SLM) and Laser Metal Deposition (LMD) as additive manufacturing techniques. Process parameters such as the pulse energy, the number of layers and their spatial separation were varied. Surface processing in several layers was necessary to remove the excessive material, such as individual powder particles, and to reduce the average surface roughness from asdeposited 22-45 μm to a few microns. Due to the ultrafast laser-processing regime and the small heat-affected zone induced in materials, this novel integrated manufacturing approach can be used to post-process parts made of thermally and mechanically sensitive materials, and to attain complex designed shapes with micrometer precision.

  4. 3D quantification of brain microvessels exposed to heavy particle radiation

    NASA Astrophysics Data System (ADS)

    Hintermüller, C.; Coats, J. S.; Obenaus, A.; Nelson, G.; Krucker, T.; Stampanoni, M.

    2009-09-01

    Space radiation with high energy particles and cosmic rays presents a significant hazard to spaceflight crews. Recent reviews of the health risk to astronauts from ionizing radiation concluded to establish a level of risk which may indicate the possible performance decrements and decreased latency of late dysfunction syndromes (LDS) of the brain. A hierarchical imaging approach developed at ETH Zürich and PSI, which relies on synchrotron based X-ray Tomographic Microscopy (SRXTM), was used to visualize and analyze 3D vascular structures down to the capillary level in their precise anatomical context. Various morphological parameters, such as overall vessel volume, vessel thickness and spacing, are extracted to characterize the vascular structure within a region of interest. For a first quantification of the effect of high energy particles on the vasculature we scanned a set of 6 animals, all of same age. The animals were irradiated with 1 Gy, 2 Gy and 4 Gy of 600MeV 56Fe heavy particles simulating the space radiation environment. We found that with increasing dose the diameter of vessels and the overall vessel volume are decreased whereas the vessel spacing is increased. As these parameters reflect blood flow in three-dimensional space they can be used as indicators for the degree of vascular efficiency which can have an impact on the function and development of lung tissue or tumors.

  5. An investigation of PRESAGE® 3D dosimetry for IMRT and VMAT radiation therapy treatment verification

    NASA Astrophysics Data System (ADS)

    Jackson, Jake; Juang, Titania; Adamovics, John; Oldham, Mark

    2015-03-01

    The purpose of this work was to characterize three formulations of PRESAGE® dosimeters (DEA-1, DEA-2, and DX) and to identify optimal readout timing and procedures for accurate in-house 3D dosimetry. The optimal formulation and procedure was then applied for the verification of an intensity modulated radiation therapy (IMRT) and a volumetric modulated arc therapy (VMAT) treatment technique. PRESAGE® formulations were studied for their temporal stability post-irradiation, sensitivity, and linearity of dose response. Dosimeters were read out using a high-resolution optical-CT scanner. Small volumes of PRESAGE® were irradiated to investigate possible differences in sensitivity for large and small volumes (‘volume effect’). The optimal formulation and read-out technique was applied to the verification of two patient treatments: an IMRT plan and a VMAT plan. A gradual decrease in post-irradiation optical-density was observed in all formulations with DEA-1 exhibiting the best temporal stability with less than 4% variation between 2-22 h post-irradiation. A linear dose response at the 4 h time point was observed for all formulations with an R2 value >0.99. A large volume effect was observed for DEA-1 with sensitivity of the large dosimeter being ~63% less than the sensitivity of the cuvettes. For the IMRT and VMAT treatments, the 3D gamma passing rates for 3%/3 mm criteria using absolute measured dose were 99.6 and 94.5% for the IMRT and VMAT treatments, respectively. In summary, this work shows that accurate 3D dosimetry is possible with all three PRESAGE® formulations. The optimal imaging windows post-irradiation were 3-24 h, 2-6 h, and immediately for the DEA-1, DEA-2, and DX formulations, respectively. Because of the large volume effect, small volume cuvettes are not yet a reliable method for calibration of larger dosimeters to absolute dose. Finally, PRESAGE® is observed to be a useful method of 3D verification when careful consideration is given

  6. An investigation of PRESAGE® 3D dosimetry for IMRT and VMAT radiation therapy treatment verification

    PubMed Central

    Jackson, Jake; Juang, Titania; Adamovics, John; Oldham, Mark

    2016-01-01

    The purpose of this work was to characterize three formulations of PRESAGE® dosimeters (DEA-1, DEA-2, and DX) and to identify optimal readout timing and procedures for accurate in-house 3D dosimetry. The optimal formulation and procedure was then applied for the verification of an intensity modulated radiation therapy (IMRT) and a volumetric modulated arc therapy (VMAT) treatment technique. PRESAGE® formulations were studied for their temporal stability postirradiation, sensitivity, and linearity of dose response. Dosimeters were read out using a high-resolution optical-CT scanner. Small volumes of PRESAGE® were irradiated to investigate possible differences in sensitivity for large and small volumes (‘volume effect’). The optimal formulation and read-out technique was applied to the verification of two patient treatments: an IMRT plan and a VMAT plan. A gradual decrease in post-irradiation optical-density was observed in all formulations with DEA-1 exhibiting the best temporal stability with less than 4% variation between 2–22 h post-irradiation. A linear dose response at the 4 h time point was observed for all formulations with an R2 value >0.99. A large volume effect was observed for DEA-1 with sensitivity of the large dosimeter being ~63% less than the sensitivity of the cuvettes. For the IMRT and VMAT treatments, the 3D gamma passing rates for 3%/3 mm criteria using absolute measured dose were 99.6 and 94.5% for the IMRT and VMAT treatments, respectively. In summary, this work shows that accurate 3D dosimetry is possible with all three PRESAGE® formulations. The optimal imaging windows post-irradiation were 3–24 h, 2–6 h, and immediately for the DEA-1, DEA-2, and DX formulations, respectively. Because of the large volume effect, small volume cuvettes are not yet a reliable method for calibration of larger dosimeters to absolute dose. Finally, PRESAGE® is observed to be a useful method of 3D verification when careful consideration is given to the

  7. Development of a patient-specific 3D dose evaluation program for QA in radiation therapy

    NASA Astrophysics Data System (ADS)

    Lee, Suk; Chang, Kyung Hwan; Cao, Yuan Jie; Shim, Jang Bo; Yang, Dae Sik; Park, Young Je; Yoon, Won Sup; Kim, Chul Yong

    2015-03-01

    We present preliminary results for a 3-dimensional dose evaluation software system ( P DRESS, patient-specific 3-dimensional dose real evaluation system). Scanned computed tomography (CT) images obtained by using dosimetry were transferred to the radiation treatment planning system (ECLIPSE, VARIAN, Palo Alto, CA) where the intensity modulated radiation therapy (IMRT) nasopharynx plan was designed. We used a 10 MV photon beam (CLiX, VARIAN, Palo Alto, CA) to deliver the nasopharynx treatment plan. After irradiation, the TENOMAG dosimeter was scanned using a VISTA ™ scanner. The scanned data were reconstructed using VistaRecon software to obtain a 3D dose distribution of the optical density. An optical-CT scanner was used to readout the dose distribution in the gel dosimeter. Moreover, we developed the P DRESS by using Flatform, which were developed by our group, to display the 3D dose distribution by loading the DICOM RT data which are exported from the radiotherapy treatment plan (RTP) and the optical-CT reconstructed VFF file, into the independent P DRESS with an ioniz ation chamber and EBT film was used to compare the dose distribution calculated from the RTP with that measured by using a gel dosimeter. The agreement between the normalized EBT, the gel dosimeter and RTP data was evaluated using both qualitative and quantitative methods, such as the isodose distribution, dose difference, point value, and profile. The profiles showed good agreement between the RTP data and the gel dosimeter data, and the precision of the dose distribution was within ±3%. The results from this study showed significantly discrepancies between the dose distribution calculated from the treatment plan and the dose distribution measured by a TENOMAG gel and by scanning with an optical CT scanner. The 3D dose evaluation software system ( P DRESS, patient specific dose real evaluation system), which were developed in this study evaluates the accuracies of the three-dimensional dose

  8. Clinical Outcome of Patients Treated With 3D Conformal Radiation Therapy (3D-CRT) for Prostate Cancer on RTOG 9406

    SciTech Connect

    Michalski, Jeff; Winter, Kathryn; Roach, Mack; Markoe, Arnold; Sandler, Howard M.; Ryu, Janice; Parliament, Matthew; Purdy, James A.; Valicenti, Richard K.; Cox, James D.

    2012-07-01

    Purpose: Report of clinical cancer control outcomes on Radiation Therapy Oncology Group (RTOG) 9406, a three-dimensional conformal radiation therapy (3D-CRT) dose escalation trial for localized adenocarcinoma of the prostate. Methods and Materials: RTOG 9406 is a Phase I/II multi-institutional dose escalation study of 3D-CRT for men with localized prostate cancer. Patients were registered on five sequential dose levels: 68.4 Gy, 73.8 Gy, 79.2 Gy, 74 Gy, and 78 Gy with 1.8 Gy/day (levels I-III) or 2.0 Gy/day (levels IV and V). Neoadjuvant hormone therapy (NHT) from 2 to 6 months was allowed. Protocol-specific, American Society for Therapeutic Radiation Oncology (ASTRO), and Phoenix biochemical failure definitions are reported. Results: Thirty-four institutions enrolled 1,084 patients and 1,051 patients are analyzable. Median follow-up for levels I, II, III, IV, and V was 11.7, 10.4, 11.8, 10.4, and 9.2 years, respectively. Thirty-six percent of patients received NHT. The 5-year overall survival was 90%, 87%, 88%, 89%, and 88% for dose levels I-V, respectively. The 5-year clinical disease-free survival (excluding protocol prostate-specific antigen definition) for levels I-V is 84%, 78%, 81%, 82%, and 82%, respectively. By ASTRO definition, the 5-year disease-free survivals were 57%, 59%, 52%, 64% and 75% (low risk); 46%, 52%, 54%, 56%, and 63% (intermediate risk); and 50%, 34%, 46%, 34%, and 61% (high risk) for levels I-V, respectively. By the Phoenix definition, the 5-year disease-free survivals were 68%, 73%, 67%, 84%, and 80% (low risk); 70%, 62%, 70%, 74%, and 69% (intermediate risk); and 42%, 62%, 68%, 54%, and 67% (high risk) for levels I-V, respectively. Conclusion: Dose-escalated 3D-CRT yields favorable outcomes for localized prostate cancer. This multi-institutional experience allows comparison to other experiences with modern radiation therapy.

  9. Retrieval of cloud microphysical parameters from INSAT-3D: a feasibility study using radiative transfer simulations

    NASA Astrophysics Data System (ADS)

    Jinya, John; Bipasha, Paul S.

    2016-05-01

    Clouds strongly modulate the Earths energy balance and its atmosphere through their interaction with the solar and terrestrial radiation. They interact with radiation in various ways like scattering, emission and absorption. By observing these changes in radiation at different wavelength, cloud properties can be estimated. Cloud properties are of utmost importance in studying different weather and climate phenomena. At present, no satellite provides cloud microphysical parameters over the Indian region with high temporal resolution. INSAT-3D imager observations in 6 spectral channels from geostationary platform offer opportunity to study continuous cloud properties over Indian region. Visible (0.65 μm) and shortwave-infrared (1.67 μm) channel radiances can be used to retrieve cloud microphysical parameters such as cloud optical thickness (COT) and cloud effective radius (CER). In this paper, we have carried out a feasibility study with the objective of cloud microphysics retrieval. For this, an inter-comparison of 15 globally available radiative transfer models (RTM) were carried out with the aim of generating a Look-up- Table (LUT). SBDART model was chosen for the simulations. The sensitivity of each spectral channel to different cloud properties was investigated. The inputs to the RT model were configured over our study region (50°S - 50°N and 20°E - 130°E) and a large number of simulations were carried out using random input vectors to generate the LUT. The determination of cloud optical thickness and cloud effective radius from spectral reflectance measurements constitutes the inverse problem and is typically solved by comparing the measured reflectances with entries in LUT and searching for the combination of COT and CER that gives the best fit. The products are available on the website www.mosdac.gov.in

  10. Dynamic implicit 3D adaptive mesh refinement for non-equilibrium radiation diffusion

    SciTech Connect

    B. Philip; Z. Wang; M.A. Berrill; M. Birke; M. Pernice

    2014-04-01

    The time dependent non-equilibrium radiation diffusion equations are important for solving the transport of energy through radiation in optically thick regimes and find applications in several fields including astrophysics and inertial confinement fusion. The associated initial boundary value problems that are encountered often exhibit a wide range of scales in space and time and are extremely challenging to solve. To efficiently and accurately simulate these systems we describe our research on combining techniques that will also find use more broadly for long term time integration of nonlinear multi-physics systems: implicit time integration for efficient long term time integration of stiff multi-physics systems, local control theory based step size control to minimize the required global number of time steps while controlling accuracy, dynamic 3D adaptive mesh refinement (AMR) to minimize memory and computational costs, Jacobian Free Newton–Krylov methods on AMR grids for efficient nonlinear solution, and optimal multilevel preconditioner components that provide level independent solver convergence.

  11. 3D Radiative MHD Modeling of Quiet-Sun Magnetic Activity

    NASA Astrophysics Data System (ADS)

    Kitiashvili, Irina

    2016-05-01

    Quiet-Sun regions that cover most of the solar surface represent a background state that plays an extremely important role in the dynamics and energetics of the solar atmosphere. A clear understanding of these regions is required for accurate interpretation of solar activity events such as emergence of magnetic flux, sunspot formation, and eruptive dynamics. Modern high-resolution observations from ground and space telescopes have revealed a complicated dynamics of turbulent magnetoconvection and its effects in the solar atmosphere and corona, showing intense interactions across different temporal and spatial scales. Interpretation of the observed complex phenomena and understanding of their origins is impossible without advanced numerical models. I will present new results of realistic-type 3D radiative MHD simulations of the upper turbulent convective layer and atmosphere of the Sun. The results reveal the mechanism of formation and properties of the Sun’s “magnetic carpet” controlled by subsurface small-scale dynamo processes, and demonstrate interaction between the subsurface layers and the atmosphere via spontaneous small-scale eruptions and wave phenomena. To link the simulations to solar data the spectro-polarimetric radiative transfer code SPINOR is used to convert the simulated data into the Stokes profiles of various spectral lines, including the SDO and Hinode observables. The results provide a detailed physical understanding of the quiet-Sun dynamics, and show potential for future observations with the DKIST and other large solar telescopes.

  12. FURN3D: A computer code for radiative heat transfer in pulverized coal furnaces

    SciTech Connect

    Ahluwalia, R.K.; Im, K.H.

    1992-08-01

    A computer code FURN3D has been developed for assessing the impact of burning different coals on heat absorption pattern in pulverized coal furnaces. The code is unique in its ability to conduct detailed spectral calculations of radiation transport in furnaces fully accounting for the size distributions of char, soot and ash particles, ash content, and ash composition. The code uses a hybrid technique of solving the three-dimensional radiation transport equation for absorbing, emitting and anisotropically scattering media. The technique achieves an optimal mix of computational speed and accuracy by combining the discrete ordinate method (S[sub 4]), modified differential approximation (MDA) and P, approximation in different range of optical thicknesses. The code uses spectroscopic data for estimating the absorption coefficients of participating gases C0[sub 2], H[sub 2]0 and CO. It invokes Mie theory for determining the extinction and scattering coefficients of combustion particulates. The optical constants of char, soot and ash are obtained from dispersion relations derived from reflectivity, transmissivity and extinction measurements. A control-volume formulation is adopted for determining the temperature field inside the furnace. A simple char burnout model is employed for estimating heat release and evolution of particle size distribution. The code is written in Fortran 77, has modular form, and is machine-independent. The computer memory required by the code depends upon the number of grid points specified and whether the transport calculations are performed on spectral or gray basis.

  13. FURN3D: A computer code for radiative heat transfer in pulverized coal furnaces

    SciTech Connect

    Ahluwalia, R.K.; Im, K.H.

    1992-08-01

    A computer code FURN3D has been developed for assessing the impact of burning different coals on heat absorption pattern in pulverized coal furnaces. The code is unique in its ability to conduct detailed spectral calculations of radiation transport in furnaces fully accounting for the size distributions of char, soot and ash particles, ash content, and ash composition. The code uses a hybrid technique of solving the three-dimensional radiation transport equation for absorbing, emitting and anisotropically scattering media. The technique achieves an optimal mix of computational speed and accuracy by combining the discrete ordinate method (S{sub 4}), modified differential approximation (MDA) and P, approximation in different range of optical thicknesses. The code uses spectroscopic data for estimating the absorption coefficients of participating gases C0{sub 2}, H{sub 2}0 and CO. It invokes Mie theory for determining the extinction and scattering coefficients of combustion particulates. The optical constants of char, soot and ash are obtained from dispersion relations derived from reflectivity, transmissivity and extinction measurements. A control-volume formulation is adopted for determining the temperature field inside the furnace. A simple char burnout model is employed for estimating heat release and evolution of particle size distribution. The code is written in Fortran 77, has modular form, and is machine-independent. The computer memory required by the code depends upon the number of grid points specified and whether the transport calculations are performed on spectral or gray basis.

  14. Dosimetry in brain tumor phantom at 15 MV 3D conformal radiation therapy

    PubMed Central

    2013-01-01

    Glioblastoma multiforme (GBM) is the most common, aggressive, highly malignant and infiltrative of all brain tumors with low rate of control. The main goal of this work was to evaluate the spatial dose distribution into a GBM simulator inside a head phantom exposed to a 15 MV 3D conformal radiation therapy in order to validate internal doses. A head and neck phantom developed by the Ionizing Radiation Research Group (NRI) was used on the experiments. Such phantom holds the following synthetic structures: brain and spinal cord, skull, cervical and thoracic vertebrae, jaw, hyoid bone, laryngeal cartilages, head and neck muscles and skin. Computer tomography (CT) of the simulator was taken, capturing a set of contrasted references. Therapy Radiation planning (TPS) was performed based on those CT images, satisfying a 200 cGy prescribed dose split in three irradiation fields. The TPS assumed 97% of prescribed dose cover the prescribed treatment volume (PTV). Radiochromic films in a solid water phantom provided dose response as a function of optical density. Spatial dosimetric distribution was generated by radiochromic film samples at coronal, sagittal-anterior and sagittal-posterior positions, inserted into tumor simulator and brain. The spatial dose profiles held 70 to 120% of the prescribed dose. In spite of the stratified profile, as opposed to the smooth dose profile from TPS, the tumor internal doses were within a 5% deviation from 214.4 cGy evaluated by TPS. 83.2% of the points with a gamma value of less than 1 (3%/3mm) for TPS and experimental values, respectively. At the tumor, measured at coronal section, a few dark spots in the film caused the appearance of outlier points in 13-15% of dose deviation percentage. And, as final conclusion, such dosimeter choice and the physical anthropomorphic and anthropometric phantom provided an efficient method for validating radiotherapy protocols. PMID:23829593

  15. Study of a non-diffusing radiochromic gel dosimeter for 3D radiation dose imaging

    NASA Astrophysics Data System (ADS)

    Marsden, Craig Michael

    2000-12-01

    This thesis investigates the potential of a new radiation gel dosimeter, based on nitro-blue tetrazolium (NBTZ) suspended in a gelatin mold. Unlike all Fricke based gel dosimeters this dosimeter does not suffer from diffusive loss of image stability. Images are obtained by an optical tomography method. Nitro blue tetrazolium is a common biological indicator that when irradiated in an aqueous medium undergoes reduction to a highly colored formazan, which has an absorbance maximum at 525nm. Tetrazolium is water soluble while the formazan product is insoluble. The formazan product sticks to the gelatin matrix and the dose image is maintained for three months. Methods to maximize the sensitivity of the system were evaluated. It was found that a chemical detergent, Triton X-100, in combination with sodium formate, increased the dosimeter sensitivity significantly. An initial G-value of formazan production for a dosimeter composed of 1mM NBTZ, gelatin, and water was on the order of 0.2. The addition of Triton and formate produced a G-value in excess of 5.0. The effects of NBTZ, triton, formate, and gel concentration were all investigated. All the gels provided linear dose vs. absorbance plots for doses from 0 to >100 Gy. It was determined that gel concentration had minimal if any effect on sensitivity. Sensitivity increased slightly with increasing NBTZ concentration. Triton and formate individually and together provided moderate to large increases in dosimeter sensitivity. The dosimeter described in this work can provide stable 3D radiation dose images for all modalities of radiation therapy equipment. Methods to increase sensitivity are developed and discussed.

  16. New insights into photodynamic therapy treatment through the use of 3D Monte Carlo radiation transfer modelling

    NASA Astrophysics Data System (ADS)

    Campbell, C. L.; Wood, Kenneth; Brown, C. Tom A.; Moseley, Harry

    2016-02-01

    Photodynamic therapy (PDT) has been theoretically investigated using a Monte Carlo radiation transfer (MCRT) model. By including complex three dimensional (3D) tumour models a more appropriate representation of the treatment was achieved. The 3D clustered tumour model was compared to a smooth model, resulting in a significantly deeper penetration associated with the clustered model. The results from the work presented here indicates that light might penetrate deeper than suggested by 2D or simple layered models.

  17. Large-eddy simulations of 3D Taylor-Green vortex: comparison of Smoothed Particle Hydrodynamics, Lattice Boltzmann and Finite Volume methods

    NASA Astrophysics Data System (ADS)

    Kajzer, A.; Pozorski, J.; Szewc, K.

    2014-08-01

    In the paper we present Large-eddy simulation (LES) results of 3D Taylor- Green vortex obtained by the three different computational approaches: Smoothed Particle Hydrodynamics (SPH), Lattice Boltzmann Method (LBM) and Finite Volume Method (FVM). The Smagorinsky model was chosen as a subgrid-scale closure in LES for all considered methods and a selection of spatial resolutions have been investigated. The SPH and LBM computations have been carried out with the use of the in-house codes executed on GPU and compared, for validation purposes, with the FVM results obtained using the open-source CFD software OpenFOAM. A comparative study in terms of one-point statistics and turbulent energy spectra shows a good agreement of LES results for all methods. An analysis of the GPU code efficiency and implementation difficulties has been made. It is shown that both SPH and LBM may offer a significant advantage over mesh-based CFD methods.

  18. Annual Report 2006 for Hydrodynamics and Radiation Hydrodynamics with Astrophysical Applications

    SciTech Connect

    R. Paul Drake

    2007-04-05

    We report the ongoing work of our group in hydrodynamics and radiation hydrodynamics with astrophysical applications. During the period of the existing grant, we have carried out two types of experiments at the Omega laser. One set of experiments has studied radiatively collapsing shocks, obtaining data using a backlit pinhole with a 100 ps backlighter and beginning to develop the ability to look into the shock tube with optical or x-ray diagnostics. Other experiments have studied the deeply nonlinear development of the Rayleigh-Taylor (RT) instability from complex initial conditions, using dual-axis radiographic data with backlit pinholes and ungated detectors to complete the data set for a Ph.D. student. We lead a team that is developing a proposal for experiments at the National Ignition Facility and are involved in experiments at NIKE and LIL. All these experiments have applications to astrophysics, discussed in the corresponding papers. We assemble the targets for the experiments at Michigan, where we also prepare many of the simple components. We also have several projects underway in our laboratory involving our x-ray source. The above activities, in addition to a variety of data analysis and design projects, provide good experience for graduate and undergraduates students. In the process of doing this research we have built a research group that uses such work to train junior scientists.

  19. A study of the earth radiation budget using a 3D Monte-Carlo radiative transer code

    NASA Astrophysics Data System (ADS)

    Okata, M.; Nakajima, T.; Sato, Y.; Inoue, T.; Donovan, D. P.

    2013-12-01

    The purpose of this study is to evaluate the earth's radiation budget when data are available from satellite-borne active sensors, i.e. cloud profiling radar (CPR) and lidar, and a multi-spectral imager (MSI) in the project of the Earth Explorer/EarthCARE mission. For this purpose, we first developed forward and backward 3D Monte Carlo radiative transfer codes that can treat a broadband solar flux calculation including thermal infrared emission calculation by k-distribution parameters of Sekiguchi and Nakajima (2008). In order to construct the 3D cloud field, we tried the following three methods: 1) stochastic cloud generated by randomized optical thickness each layer distribution and regularly-distributed tilted clouds, 2) numerical simulations by a non-hydrostatic model with bin cloud microphysics model and 3) Minimum cloud Information Deviation Profiling Method (MIDPM) as explained later. As for the method-2 (numerical modeling method), we employed numerical simulation results of Californian summer stratus clouds simulated by a non-hydrostatic atmospheric model with a bin-type cloud microphysics model based on the JMA NHM model (Iguchi et al., 2008; Sato et al., 2009, 2012) with horizontal (vertical) grid spacing of 100m (20m) and 300m (20m) in a domain of 30km (x), 30km (y), 1.5km (z) and with a horizontally periodic lateral boundary condition. Two different cell systems were simulated depending on the cloud condensation nuclei (CCN) concentration. In the case of horizontal resolution of 100m, regionally averaged cloud optical thickness, , and standard deviation of COT, were 3.0 and 4.3 for pristine case and 8.5 and 7.4 for polluted case, respectively. In the MIDPM method, we first construct a library of pair of observed vertical profiles from active sensors and collocated imager products at the nadir footprint, i.e. spectral imager radiances, cloud optical thickness (COT), effective particle radius (RE) and cloud top temperature (Tc). We then select a

  20. CASTRO: A NEW COMPRESSIBLE ASTROPHYSICAL SOLVER. III. MULTIGROUP RADIATION HYDRODYNAMICS

    SciTech Connect

    Zhang, W.; Almgren, A.; Bell, J.; Howell, L.; Burrows, A.; Dolence, J.

    2013-01-15

    We present a formulation for multigroup radiation hydrodynamics that is correct to order O(v/c) using the comoving-frame approach and the flux-limited diffusion approximation. We describe a numerical algorithm for solving the system, implemented in the compressible astrophysics code, CASTRO. CASTRO uses a Eulerian grid with block-structured adaptive mesh refinement based on a nested hierarchy of logically rectangular variable-sized grids with simultaneous refinement in both space and time. In our multigroup radiation solver, the system is split into three parts: one part that couples the radiation and fluid in a hyperbolic subsystem, another part that advects the radiation in frequency space, and a parabolic part that evolves radiation diffusion and source-sink terms. The hyperbolic subsystem and the frequency space advection are solved explicitly with high-order Godunov schemes, whereas the parabolic part is solved implicitly with a first-order backward Euler method. Our multigroup radiation solver works for both neutrino and photon radiation.

  1. CASTRO: A New Compressible Astrophysical Solver. III. Multigroup Radiation Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Zhang, W.; Howell, L.; Almgren, A.; Burrows, A.; Dolence, J.; Bell, J.

    2013-01-01

    We present a formulation for multigroup radiation hydrodynamics that is correct to order O(v/c) using the comoving-frame approach and the flux-limited diffusion approximation. We describe a numerical algorithm for solving the system, implemented in the compressible astrophysics code, CASTRO. CASTRO uses a Eulerian grid with block-structured adaptive mesh refinement based on a nested hierarchy of logically rectangular variable-sized grids with simultaneous refinement in both space and time. In our multigroup radiation solver, the system is split into three parts: one part that couples the radiation and fluid in a hyperbolic subsystem, another part that advects the radiation in frequency space, and a parabolic part that evolves radiation diffusion and source-sink terms. The hyperbolic subsystem and the frequency space advection are solved explicitly with high-order Godunov schemes, whereas the parabolic part is solved implicitly with a first-order backward Euler method. Our multigroup radiation solver works for both neutrino and photon radiation.

  2. Radiation hydrodynamics using characteristics on adaptive decomposed domains for massively parallel star formation simulations

    NASA Astrophysics Data System (ADS)

    Buntemeyer, Lars; Banerjee, Robi; Peters, Thomas; Klassen, Mikhail; Pudritz, Ralph E.

    2016-02-01

    We present an algorithm for solving the radiative transfer problem on massively parallel computers using adaptive mesh refinement and domain decomposition. The solver is based on the method of characteristics which requires an adaptive raytracer that integrates the equation of radiative transfer. The radiation field is split into local and global components which are handled separately to overcome the non-locality problem. The solver is implemented in the framework of the magneto-hydrodynamics code FLASH and is coupled by an operator splitting step. The goal is the study of radiation in the context of star formation simulations with a focus on early disc formation and evolution. This requires a proper treatment of radiation physics that covers both the optically thin as well as the optically thick regimes and the transition region in particular. We successfully show the accuracy and feasibility of our method in a series of standard radiative transfer problems and two 3D collapse simulations resembling the early stages of protostar and disc formation.

  3. Radiation hydrodynamical instabilities in cosmological and galactic ionization fronts

    NASA Astrophysics Data System (ADS)

    Whalen, Daniel J.; Norman, Michael L.

    2011-11-01

    Ionization fronts, the sharp radiation fronts behind which H/He ionizing photons from massive stars and galaxies propagate through space, were ubiquitous in the universe from its earliest times. The cosmic dark ages ended with the formation of the first primeval stars and galaxies a few hundred Myr after the Big Bang. Numerical simulations suggest that stars in this era were very massive, 25-500 solar masses, with H(II) regions of up to 30,000 light-years in diameter. We present three-dimensional radiation hydrodynamical calculations that reveal that the I-fronts of the first stars and galaxies were prone to violent instabilities, enhancing the escape of UV photons into the early intergalactic medium (IGM) and forming clumpy media in which supernovae later exploded. The enrichment of such clumps with metals by the first supernovae may have led to the prompt formation of a second generation of low-mass stars, profoundly transforming the nature of the first protogalaxies. Cosmological radiation hydrodynamics is unique because ionizing photons coupled strongly to both gas flows and primordial chemistry at early epochs, introducing a hierarchy of disparate characteristic timescales whose relative magnitudes can vary greatly throughout a given calculation. We describe the adaptive multistep integration scheme we have developed for the self-consistent transport of both cosmological and galactic ionization fronts.

  4. Radiation Hydrodynamics Test Problems with Linear Velocity Profiles

    SciTech Connect

    Hendon, Raymond C.; Ramsey, Scott D.

    2012-08-22

    As an extension of the works of Coggeshall and Ramsey, a class of analytic solutions to the radiation hydrodynamics equations is derived for code verification purposes. These solutions are valid under assumptions including diffusive radiation transport, a polytropic gas equation of state, constant conductivity, separable flow velocity proportional to the curvilinear radial coordinate, and divergence-free heat flux. In accordance with these assumptions, the derived solution class is mathematically invariant with respect to the presence of radiative heat conduction, and thus represents a solution to the compressible flow (Euler) equations with or without conduction terms included. With this solution class, a quantitative code verification study (using spatial convergence rates) is performed for the cell-centered, finite volume, Eulerian compressible flow code xRAGE developed at Los Alamos National Laboratory. Simulation results show near second order spatial convergence in all physical variables when using the hydrodynamics solver only, consistent with that solver's underlying order of accuracy. However, contrary to the mathematical properties of the solution class, when heat conduction algorithms are enabled the calculation does not converge to the analytic solution.

  5. Development and application of a 3-D geometry/mass model for LDEF satellite ionizing radiation assessments

    NASA Technical Reports Server (NTRS)

    Colborn, B. L.; Armstrong, T. W.

    1992-01-01

    A computer model of the three dimensional geometry and material distributions for the LDEF spacecraft, experiment trays, and, for selected trays, the components of experiments within a tray was developed for use in ionizing radiation assessments. The model is being applied to provide 3-D shielding distributions around radiation dosimeters to aid in data interpretation, particularly in assessing the directional properties of the radiation exposure. Also, the model has been interfaced with radiation transport codes for 3-D dosimetry response predictions and for calculations related to determining the accuracy of trapped proton and cosmic ray environment models. The methodology is described used in developing the 3-D LDEF model and the level of detail incorporated. Currently, the trays modeled in detail are F2, F8, and H12 and H3. Applications of the model which are discussed include the 3-D shielding distributions around various dosimeters, the influence of shielding on dosimetry responses, and comparisons of dose predictions based on the present 3-D model vs those from 1-D geometry model approximations used in initial estimates.

  6. Large area 3-D optical coherence tomography imaging of lumpectomy specimens for radiation treatment planning

    NASA Astrophysics Data System (ADS)

    Wang, Cuihuan; Kim, Leonard; Barnard, Nicola; Khan, Atif; Pierce, Mark C.

    2016-02-01

    Our long term goal is to develop a high-resolution imaging method for comprehensive assessment of tissue removed during lumpectomy procedures. By identifying regions of high-grade disease within the excised specimen, we aim to develop patient-specific post-operative radiation treatment regimens. We have assembled a benchtop spectral-domain optical coherence tomography (SD-OCT) system with 1320 nm center wavelength. Automated beam scanning enables "sub-volumes" spanning 5 mm x 5 mm x 2 mm (500 A-lines x 500 B-scans x 2 mm in depth) to be collected in under 15 seconds. A motorized sample positioning stage enables multiple sub-volumes to be acquired across an entire tissue specimen. Sub-volumes are rendered from individual B-scans in 3D Slicer software and en face (XY) images are extracted at specific depths. These images are then tiled together using MosaicJ software to produce a large area en face view (up to 40 mm x 25 mm). After OCT imaging, specimens were sectioned and stained with HE, allowing comparison between OCT image features and disease markers on histopathology. This manuscript describes the technical aspects of image acquisition and reconstruction, and reports initial qualitative comparison between large area en face OCT images and HE stained tissue sections. Future goals include developing image reconstruction algorithms for mapping an entire sample, and registering OCT image volumes with clinical CT and MRI images for post-operative treatment planning.

  7. Analysis of riverine suspended particulate matter fluxes (Gulf of Lion, Mediterranean Sea) using a synergy of ocean color observations with a 3-D hydrodynamic sediment transport model

    NASA Astrophysics Data System (ADS)

    Le Fouest, Vincent; Chami, Malik; Verney, Romaric

    2015-02-01

    The export of riverine suspended particulate matter (SPM) in the coastal ocean has major implications for the biogeochemical cycles. In the Mediterranean Sea (France), the Rhone River inputs of SPM into the Gulf of Lion (GoL) are highly variable in time, which severely impedes the assessment of SPM fluxes. The objectives of this study are (i) to investigate the prediction of the land-to-ocean flux of SPM using the complementarity (i.e., synergy) between a hydrodynamic sediment transport model and satellite observations, and (ii) to analyze the spatial distribution of the SPM export. An original approach that combines the MARS-3D model with satellite ocean color data is proposed. Satellite-derived SPM and light penetration depth are used to initialize MARS-3D and to validate its predictions. A sensitivity analysis is performed to quantify the impact of riverine SPM size composition and settling rate on the horizontal export of SPM. The best agreement between the model and the satellite in terms of SPM spatial distribution and export is obtained for two conditions: (i) when the relative proportion of "heavy and fast" settling particles significantly increases relative to the "light and slow" ones, and (ii) when the settling rate of heavy and light SPM increases by fivefold. The synergy between MARS-3D and the satellite data improved the SPM flux predictions by 48% near the Rhone River mouth. Our results corroborate the importance of implementing satellite observations within initialization procedures of ocean models since data assimilation techniques may fail for river floods showing strong seasonal variability.

  8. Investigation of Three-Dimensional (3-D) Solar Radiative Transfer Effects Using A-Train Satellite Measurements

    NASA Astrophysics Data System (ADS)

    Ham, S.; Kato, S.; Barker, H.; Rose, F. G.

    2012-12-01

    Three-dimensional (3-D) radiative effects are examined for cloudy atmosphere obtained from A-train satellite measurements. Since CloudSat and Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) only provide two-dimensional (2-D) nadir profiles along the satellite track, Moderate Resolution Imaging Spectroradiometer (MODIS) spectral radiances are used to extend the 2-D cloud profiles to the cross track direction (Barker et al., 2011). Then one-dimensional (1-D) and 3-D simulations are performed to get (SW) broad band (BB) flux and heating rate profile for constructed 3-D cloud field. In the simulation, correlated k-distribution model is employed to obtain rapid estimation of gaseous optical depths for 70 solar spectral bands. The difference between 1-D and 3-D results are interpreted as 3-D solar effects, and analyzed for different cloud types and solar zenith angle. In addition, modeled top-of-atmosphere (TOA) irradiances by the 1-D and 3-D models are compared to Clouds and the Earth's Radiant Energy System (CERES)-derived TOA irradiances. The preliminary results show that 3-D cloud absorption is larger than 1-D calculation, and thus 3-D heating rate is larger than 1-D heating rate for cloud layer. On the other hand, 3-D downward flux at surface is smaller than 1-D flux. Reference Barker, H. W., M. P. Jerg, T. Wehr, S. Kato, D. P. Donovan, and R. J. Hogan, 2011, A 3D cloud-construction algorithm for the EarthCARE mission, Q. J. R. Meteorol. Soc., 137, 1042-1058.

  9. A global model simulation for 3-D radiative transfer impact on surface hydrology over Sierra Nevada and Rocky Mountains

    DOE PAGES

    Lee, W. -L.; Gu, Y.; Liou, K. N.; Leung, L. R.; Hsu, H. -H.

    2014-12-15

    We investigate 3-D mountain effects on solar flux distributions and their impact on surface hydrology over the Western United States, specifically the Rocky Mountains and Sierra Nevada using CCSM4 (CAM4/CLM4) global model with a 0.23° × 0.31° resolution for simulations over 6 years. In 3-D radiative transfer parameterization, we have updated surface topography data from a resolution of 1 km to 90 m to improve parameterization accuracy. In addition, we have also modified the upward-flux deviation [3-D - PP (plane-parallel)] adjustment to ensure that energy balance at the surface is conserved in global climate simulations based on 3-D radiation parameterization.more » We show that deviations of the net surface fluxes are not only affected by 3-D mountains, but also influenced by feedbacks of cloud and snow in association with the long-term simulations. Deviations in sensible heat and surface temperature generally follow the patterns of net surface solar flux. The monthly snow water equivalent (SWE) deviations show an increase in lower elevations due to reduced snowmelt, leading to a reduction in cumulative runoff. Over higher elevation areas, negative SWE deviations are found because of increased solar radiation available at the surface. Simulated precipitation increases for lower elevations, while decreases for higher elevations with a minimum in April. Liquid runoff significantly decreases in higher elevations after April due to reduced SWE and precipitation.« less

  10. Study of Shortwave Spectra in Fully 3D Environment: Synergy Between Scanning Radars and Spectral Radiation Measurements

    NASA Technical Reports Server (NTRS)

    Wiscombe, Warren J.

    2012-01-01

    The main theme for our research is the understanding and closure of the surface spectral shortwave radiation problem in fully 3D cloud situations by combining the new ARM scanning radars, shortwave spectrometers, and microwave radiometers with the arsenal of radiative transfer tools developed by our group. In particular, we define first a large number of cloudy test cases spanning all 3D possibilities not just the customary uniform-overcast ones. Second, for each case, we define a "Best Estimate of Clouds That Affect Shortwave Radiation" using all relevant ARM instruments, notably the new scanning radars, and contribute this to the ARM Archive. Third, we test the ASR-signature radiative transfer model RRTMG_SW for those cases, focusing on the near-IR because of long-standing problems in this spectral region, and work with the developers to improve RRTMG_SW in order to increase its penetration into the modeling community.

  11. RADIATIVE HYDRODYNAMIC SIMULATIONS OF ACOUSTIC WAVES IN SUNSPOTS

    SciTech Connect

    Bard, S.; Carlsson, M.

    2010-10-10

    We investigate the formation and evolution of the Ca II H line in a sunspot. The aim of our study is to establish the mechanisms underlying the formation of the frequently observed brightenings of small regions of sunspot umbrae known as 'umbral flashes'. We perform fully consistent NLTE radiation hydrodynamic simulations of the propagation of acoustic waves in sunspot umbrae and conclude that umbral flashes result from increased emission of the local solar material during the passage of acoustic waves originating in the photosphere and steepening to shock in the chromosphere. To quantify the significance of possible physical mechanisms that contribute to the formation of umbral flashes, we perform a set of simulations on a grid formed by different wave power spectra, different inbound coronal radiation, and different parameterized chromospheric heating. Our simulations show that the waves with frequencies in the range 4.5-7.0 mHz are critical to the formation of the observed blueshifts of umbral flashes while waves with frequencies below 4.5 mHz do not play a role despite their dominance in the photosphere. The observed emission in the Ca II H core between flashes only occurs in the simulations that include significant inbound coronal radiation and/or extra non-radiative chromospheric heating in addition to shock dissipation.

  12. Numeric spectral radiation hydrodynamic calculations of supernova shock breakouts

    SciTech Connect

    Sapir, Nir; Halbertal, Dorri

    2014-12-01

    We present here an efficient numerical scheme for solving the non-relativistic one-dimensional radiation-hydrodynamics equations including inelastic Compton scattering, which is not included in most codes and is crucial for solving problems such as shock breakout. The devised code is applied to the problems of a steady-state planar radiation mediated shock (RMS) and RMS breakout from a stellar envelope. The results are in agreement with those of a previous work on shock breakout, in which Compton equilibrium between matter and radiation was assumed and the 'effective photon' approximation was used to describe the radiation spectrum. In particular, we show that the luminosity and its temporal dependence, the peak temperature at breakout, and the universal shape of the spectral fluence derived in this earlier work are all accurate. Although there is a discrepancy between the spectral calculations and the effective photon approximation due to the inaccuracy of the effective photon approximation estimate of the effective photon production rate, which grows with lower densities and higher velocities, the difference in peak temperature reaches only 30% for the most discrepant cases of fast shocks in blue supergiants. The presented model is exemplified by calculations for supernova 1987A, showing the detailed evolution of the burst spectrum. The incompatibility of the stellar envelope shock breakout model results with observed properties of X-ray flashes (XRFs) and the discrepancy between the predicted and observed rates of XRFs remain unexplained.

  13. Comparison of 3D kinetic and hydrodynamic models to ROSINA-COPS measurements of the neutral coma of 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Bieler, Andre; Altwegg, Kathrin; Balsiger, Hans; Berthelier, Jean-Jacques; Calmonte, Ursina; Combi, Michael; De Keyser, Johan; Fiethe, Björn; Fougere, Nicolas; Fuselier, Stephen; Gasc, Sébastien; Gombosi, Tamas; Hansen, Kenneth; Hässig, Myrtha; Huang, Zhenguang; Jäckel, Annette; Jia, Xianzhe; Le Roy, Lena; Mall, Urs A.; Rème, Henri; Rubin, Martin; Tenishev, Valeriy; Tóth, Gábor; Tzou, Chia-Yu; Wurz, Peter

    2015-11-01

    67P/Churyumov-Gerasimenko (67P) is a Jupiter-family comet and the object of investigation of the European Space Agency mission Rosetta. This report presents the first full 3D simulation results of 67P's neutral gas coma. In this study we include results from a direct simulation Monte Carlo method, a hydrodynamic code, and a purely geometric calculation which computes the total illuminated surface area on the nucleus. All models include the triangulated 3D shape model of 67P as well as realistic illumination and shadowing conditions. The basic concept is the assumption that these illumination conditions on the nucleus are the main driver for the gas activity of the comet. As a consequence, the total production rate of 67P varies as a function of solar insolation. The best agreement between the model and the data is achieved when gas fluxes on the night side are in the range of 7% to 10% of the maximum flux, accounting for contributions from the most volatile components. To validate the output of our numerical simulations we compare the results of all three models to in situ gas number density measurements from the ROSINA COPS instrument. We are able to reproduce the overall features of these local neutral number density measurements of ROSINA COPS for the time period between early August 2014 and January 1 2015 with all three models. Some details in the measurements are not reproduced and warrant further investigation and refinement of the models. However, the overall assumption that illumination conditions on the nucleus are at least an important driver of the gas activity is validated by the models. According to our simulation results we find the total production rate of 67P to be constant between August and November 2014 with a value of about 1 × 1026 molecules s-1.

  14. Simulating 3-D radiative transfer effects over the Sierra Nevada Mountains using WRF

    SciTech Connect

    Gu, Y.; Liou, K. N.; Lee, W. -L.; Leung, L. R.

    2012-01-01

    A surface solar radiation parameterization based on deviations between 3-D and conventional plane-parallel radiative transfer models has been incorporated into the Weather Research and Forecasting (WRF) model to understand the solar insolation over mountain/snow areas and to investigate the impact of the spatial and temporal distribution and variation of surface solar fluxes on land-surface processes. Using the Sierra-Nevada in the western United States as a testbed, we show that mountain effect could produce up to -50 to + 50 W m-2 deviations in the surface solar fluxes over the mountain areas, resulting in a temperature increase of up to 1 °C on the sunny side. Upward surface sensible and latent heat fluxes are modulated accordingly to compensate for the change in surface solar fluxes. Snow water equivalent and surface albedo both show decreases on the sunny side of the mountains, indicating more snowmelt and hence reduced snow albedo associated with more solar insolation due to mountain effect. Soil moisture increases on the sunny side of the mountains due to enhanced snowmelt, while decreases on the shaded side. Substantial differences are found in the morning hours from 8–10 a.m. and in the afternoon around 3–5 p.m., while differences around noon and in the early morning and late afternoon are comparatively smaller. Variation in the surface energy balance can also affect atmospheric processes, such as cloud fields, through the modulation of vertical thermal structure. Negative changes of up to -40 g m-2 are found in the cloud water path, associated with reductions in the surface insolation over the cloud region. The day-averaged deviations in the surface solar flux are positive over the mountain areas and negative in the valleys, with a range between -12~12 W m-2. Changes in sensible and latent heat fluxes and surface skin temperature follow the solar insolation pattern. Differences in the domain-averaged diurnal variation

  15. Radiation Hydrodynamics Meets Nebular Evolution at the Hubble Space Telescope

    NASA Astrophysics Data System (ADS)

    Balick, Bruce

    1997-04-01

    The evolution of gaseous nebular hydrodynamics in astrophysics interests everyone studying star formation, stellar winds and ejecta, shocks assoicated with supernovae and other explosive events, outflows from black holes and neutron stars, and active galactic nuclei. However, even the closest nebulae cannot be studied on size scales of a mean free path, typically 10^15.5 cm, from the ground. Entire generations of models have been computed ``in the dark'' without recourse to observational feedback and evaluation. [0.1cm] The Hubble Space Telescope with its corrected optics is providing exciting new images which are helping to verify many of the model computations, sharpening others, and overturning all sorts of expectations. In this talk I shall describe the immense changes occurring in radiation hydrodynamics through a brief ``tour'' of HST images of planetary nebulae (like these and these) - a particulary bright, nearby, simple, and well-studied class of objects formed as dying stars shed and then wind-sculpt and photoionize their former envelopes into nebulae of strikingly complex symmetries and morphology. A review of the physical processes believed to affect the state and flow variables of these astrophyscial nebulae will also be introduced.

  16. Analysis of stratification patterns in river-influenced mesotidal and macrotidal estuaries using 3D hydrodynamic modelling and K-means clustering

    NASA Astrophysics Data System (ADS)

    Bárcena, Javier F.; García-Alba, Javier; García, Andrés; Álvarez, César

    2016-11-01

    A methodology to determine the spatial and temporal evolution of stratification in estuaries driven by astronomical tides and river discharges was developed and is presented here. Using a 3D hydrodynamic model, the variation of estuarine currents, water levels and densities was investigated under different realistic forcing conditions. These conditions were classified from a long-term period (>30 years) of river flows and tidal water levels by a K-means clustering approach suggested by Bárcena et al. (2015). The methodology allows computing the location of mixed, partially mixed/stratified and stratified areas in tidal river estuaries along a continuum by means of Richardson's Layer number and the frequency of every model scenario. In order to illustrate the power of the method, it was applied to a case study, the Suances Estuary. In the application case, the Suances Estuary was vertically mixed at its innermost part due to riverine influence. At the outer part, it was also vertically mixed due to the turbulence caused by tidal action. At the intermediate section, it was partially mixed in the main channel or stratified in intertidal areas due to the combined action of forcing, depth gradients between the main channel and intertidal areas, and salinity variations in the water column.

  17. Radiation Hydrodynamic Simulations of an Inertial Fusion Energy Reactor Chamber

    NASA Astrophysics Data System (ADS)

    Sacks, Ryan Foster

    Inertial fusion energy reactors present great promise for the future as they are capable of providing baseline power with no carbon footprint. Simulation work regarding the chamber response and first wall insult is carried out using the 1-D BUCKY radiation hydrodynamics code for a variety of differing chamber fills, radii, chamber obstructions and first wall materials. Discussion of the first wall temperature rise, x-ray spectrum incident on the wall, shock timing and maximum overpressure are presented. An additional discussion of the impact of different gas opacities and their effect on overall chamber dynamics, including the formation of two shock fronts, is also presented. This work is performed under collaboration with Lawrence Livermore National Laboratory at the University of Wisconsin-Madison's Fusion Technology Institute.

  18. Radiation Hydrodynamic Parameter Study of Inertial Fusion Energy Reactor Chambers

    NASA Astrophysics Data System (ADS)

    Sacks, Ryan; Moses, Gregory

    2014-10-01

    Inertial fusion energy reactors present great promise for the future as they are capable of providing baseline power with no carbon footprint. Simulation work regarding the chamber response and first wall insult is performed with the 1-D radiation hydrodynamics code BUCKY. Simulation with differing chamber parameters are implemented to study the effect of gas fill, gas mixtures and chamber radii. Xenon and argon gases are of particular interest as shielding for the first wall due to their high opacity values and ready availability. Mixing of the two gases is an attempt to engineer a gas cocktail to provide the maximum amount of shielding with the least amount of cost. A parameter study of different chamber radii shows a consistent relationship with that of first wall temperature (~1/r2) and overpressure (~1/r3). This work is performed under collaboration with Lawrence Livermore National Laboratory.

  19. Radiation Hydrodynamical Models of the Inner Rim in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Flock, Mario

    2016-06-01

    Many stars host planets orbiting within one astronomical unit (AU). These close planets’ origins are a mystery that motivates investigating protoplanetary disks’ central regions. A key factor governing the conditions near the star is the silicate sublimation front, which largely determines where the starlight is absorbed, and which is often called the inner rim. We present the first radiation hydrodynamical modeling of the sublimation front in the disks around the young intermediate-mass stars called Herbig Ae stars. The models are axisymmetric, and include starlight heating, silicate grains sublimating and condensing to equilibrium at the local, timedependent temperature and density, and accretion stresses parametrizing the results of MHD magneto-rotational turbulence models. The results compare well with radiation hydrostatic solutions, and prove to be dynamically stable. Passing the model disks into Monte Carlo radiative transfer calculations, we show that the models satisfy observational constraints on the inner rims’s location. A small optically-thin halo of hot dust naturally arises between the inner rim and the star. The inner rim has a substantial radial extent, corresponding to several disk scale heights. While the front’s overall position varies with the stellar luminosity, its radial extent depends on the mass accretion rate. A pressure maximum develops at the position of thermal ionization at temperatures about 1000 K. The pressure maximum is capable of halting solid pebbles’ radial drift and concentrating them in a zone where temperatures are su ciently high for annealing to form crystalline silicates.

  20. Final Report – Study of Shortwave Spectra in Fully 3D Environment. Synergy Between Scanning Radars and Spectral Radiation Measurements

    SciTech Connect

    Chiu, Jui-Yuan

    2015-09-14

    ARM set out 20 years ago to “close” the radiation problem, that is, to improve radiation models to the point where they could routinely predict the observed spectral radiation fluxes knowing the optical properties of the surface and of gases, clouds and aerosols in the atmosphere. Only then could such radiation models form a proper springboard for global climate model (GCM) parameterizations of spectral radiation. Sustained efforts have more or less achieved that goal with regard to longwave radiation; ASR models now routinely predict ARM spectral longwave radiances to 1–2%. Similar efforts in the shortwave have achieved far less; the successes are mainly for carefully selected 1D stratiform cloud cases. Such cases amount, even with the most optimistic interpretation, to no more than 30% of all cases at SGP. The problem has not been lack of effort but lack of appropriate instruments.The new ARM stimulus-funded instruments, with their new capabilities, will dramatically improve this situation and once again make progress possible on the shortwave problem. The new shortwave spectrometers will provide a reliable, calibrated record including the near infrared – and for other climatic regimes than SGP. The new scanning radars will provide the 3D cloud view, making it possible to tackle fully 3D situations. Thus, our main theme for the project is the understanding and closure of the surface spectral shortwave radiation problem in fully 3D cloud situations by combining the new ARM scanning radars and shortwave spectrometers with the arsenal of radiative transfer tools.

  1. A WRF simulation of the impact of 3-D radiative transfer on surface hydrology over the Rocky-Sierra Mountains

    NASA Astrophysics Data System (ADS)

    Liou, K. N.; Gu, Y.; Leung, L. R.; Lee, W. L.; Fovell, R. G.

    2013-07-01

    Essentially all modern climate models utilize a plane-parallel (PP) radiative transfer approach in physics parameterizations; however, the potential errors that arise from neglecting three-dimensional (3-D) interactions between radiation and mountains/snow on climate simulations have not been studied and quantified. This paper is a continuation of our efforts to investigate 3-D mountains/snow effects on solar flux distributions and their impact on surface hydrology over the Western United States, specifically the Rocky and Sierra-Nevada Mountains. We use the Weather Research and Forecasting (WRF) model applied at a 30 km grid resolution with incorporation of a 3-D radiative transfer parameterization covering a time period from 1 November 2007 to 31 May 2008 during which abundant snowfall occurred. Comparison of the 3-D WRF simulation with the observed snow water equivalent (SWE) and precipitation from Snowpack Telemetry (SNOTEL) sites shows reasonable agreement in terms of spatial patterns and daily and seasonal variability, although the simulation generally has a positive precipitation bias. We show that 3-D mountain features have a profound impact on the diurnal and monthly variation of surface radiative and heat fluxes and on the consequent elevation-dependence of snowmelt and precipitation distributions. In particular, during the winter months, large deviations (3-D-PP) of the monthly mean surface solar flux are found in the morning and afternoon hours due to shading effects for elevations below 2.5 km. During spring, positive deviations shift to earlier morning. Over the mountain tops above 3 km, positive deviations are found throughout the day, with the largest values of 40-60 W m-2 occurring at noon during the snowmelt season of April to May. The monthly SWE deviations averaged over the entire domain show an increase in lower elevations due to reduced snowmelt, leading to a reduction in cumulative runoff. Over higher elevation areas, positive SWE deviations

  2. SU-E-T-03: 3D GPU-Accelerated Secondary Checks of Radiation Therapy Treatment Plans

    SciTech Connect

    Clemente, F; Perez, C

    2014-06-01

    Purpose: Redundant treatment verifications in conformal and intensity-modulated radiation therapy techniques are traditionally performed with single point calculations. New solutions can replace these checks with 3D treatment plan verifications. This work describes a software tool (Mobius3D, Mobius Medical Systems) that uses a GPU-accelerated collapsed cone algorithm to perform 3D independent verifications of TPS calculations. Methods: Mobius3D comes with reference beam models for common linear accelerators. The system uses an independently developed collapsed cone algorithm updated with recent enhancements. 144 isotropically-spaced cones are used for each voxel for calculations. These complex calculations can be sped up by using GPUs. Mobius3D calculate dose using DICOM information coming from TPS (CT, RT Struct, RT Plan RT Dose). DVH-metrics and 3D gamma tests can be used to compare both TPS and secondary calculations. 170 patients treated with all common techniques as 3DCFRT (including wedged), static and dynamic IMRT and VMAT have been successfully verified with this solution. Results: Calculation times are between 3–5 minutes for 3DCFRT treatments and 15–20 for most complex dMLC and VMAT plans. For all PTVs mean dose and 90% coverage differences are (1.12±0.97)% and (0.68±1.19)%, respectively. Mean dose discrepancies for all OARs is (0.64±1.00)%. 3D gamma (global, 3%/3 mm) analysis shows a mean passing rate of (97.8 ± 3.0)% for PTVs and (99.0±3.0)% for OARs. 3D gamma pasing rate for all voxels in CT has a mean value of (98.5±1.6)%. Conclusion: Mobius3D is a powerful tool to verify all modalities of radiation therapy treatments. Dose discrepancies calculated by this system are in good agreement with TPS. The use of reference beam data results in time savings and can be used to avoid the propagation of errors in original beam data into our QA system. GPU calculations permit enhanced collapsed cone calculations with reasonable calculation times.

  3. Involved-Site Image-Guided Intensity Modulated Versus 3D Conformal Radiation Therapy in Early Stage Supradiaphragmatic Hodgkin Lymphoma

    SciTech Connect

    Filippi, Andrea Riccardo; Ciammella, Patrizia; Piva, Cristina; Ragona, Riccardo; Botto, Barbara; Gavarotti, Paolo; Merli, Francesco; Vitolo, Umberto; Iotti, Cinzia; Ricardi, Umberto

    2014-06-01

    Purpose: Image-guided intensity modulated radiation therapy (IG-IMRT) allows for margin reduction and highly conformal dose distribution, with consistent advantages in sparing of normal tissues. The purpose of this retrospective study was to compare involved-site IG-IMRT with involved-site 3D conformal RT (3D-CRT) in the treatment of early stage Hodgkin lymphoma (HL) involving the mediastinum, with efficacy and toxicity as primary clinical endpoints. Methods and Materials: We analyzed 90 stage IIA HL patients treated with either involved-site 3D-CRT or IG-IMRT between 2005 and 2012 in 2 different institutions. Inclusion criteria were favorable or unfavorable disease (according to European Organization for Research and Treatment of Cancer criteria), complete response after 3 to 4 cycles of an adriamycin- bleomycin-vinblastine-dacarbazine (ABVD) regimen plus 30 Gy as total radiation dose. Exclusion criteria were chemotherapy other than ABVD, partial response after ABVD, total radiation dose other than 30 Gy. Clinical endpoints were relapse-free survival (RFS) and acute toxicity. Results: Forty-nine patients were treated with 3D-CRT (54.4%) and 41 with IG-IMRT (45.6%). Median follow-up time was 54.2 months for 3D-CRT and 24.1 months for IG-IMRT. No differences in RFS were observed between the 2 groups, with 1 relapse each. Three-year RFS was 98.7% for 3D-CRT and 100% for IG-IMRT. Grade 2 toxicity events, mainly mucositis, were recorded in 32.7% of 3D-CRT patients (16 of 49) and in 9.8% of IG-IMRT patients (4 of 41). IG-IMRT was significantly associated with a lower incidence of grade 2 acute toxicity (P=.043). Conclusions: RFS rates at 3 years were extremely high in both groups, albeit the median follow-up time is different. Acute tolerance profiles were better for IG-IMRT than for 3D-CRT. Our preliminary results support the clinical safety and efficacy of advanced RT planning and delivery techniques in patients affected with early stage HL, achieving complete

  4. Ultra-high-resolution 3D digitalized imaging of the cerebral angioarchitecture in rats using synchrotron radiation

    PubMed Central

    Zhang, Meng-Qi; Zhou, Luo; Deng, Qian-Fang; Xie, Yuan-Yuan; Xiao, Ti-Qiao; Cao, Yu-Ze; Zhang, Ji-Wen; Chen, Xu-Meng; Yin, Xian-Zhen; Xiao, Bo

    2015-01-01

    The angioarchitecture is a fundamental aspect of brain development and physiology. However, available imaging tools are unsuited for non-destructive cerebral mapping of the functionally important three-dimensional (3D) vascular microstructures. To address this issue, we developed an ultra-high resolution 3D digitalized angioarchitectural map for rat brain, based on synchrotron radiation phase contrast imaging (SR-PCI) with pixel size of 5.92 μm. This approach provides a systematic and detailed view of the cerebrovascular anatomy at the micrometer level without any need for contrast agents. From qualitative and quantitative perspectives, the present 3D data provide a considerable insight into the spatial vascular network for whole rodent brain, particularly for functionally important regions of interest, such as the hippocampus, pre-frontal cerebral cortex and the corpus striatum. We extended these results to synchrotron-based virtual micro-endoscopy, thus revealing the trajectory of targeted vessels in 3D. The SR-PCI method for systematic visualization of cerebral microvasculature holds considerable promise for wider application in life sciences, including 3D micro-imaging in experimental models of neurodevelopmental and vascular disorders. PMID:26443231

  5. Radiation dose reduction for coronary artery calcium scoring at 320-detector CT with adaptive iterative dose reduction 3D.

    PubMed

    Tatsugami, Fuminari; Higaki, Toru; Fukumoto, Wataru; Kaichi, Yoko; Fujioka, Chikako; Kiguchi, Masao; Yamamoto, Hideya; Kihara, Yasuki; Awai, Kazuo

    2015-06-01

    To assess the possibility of reducing the radiation dose for coronary artery calcium (CAC) scoring by using adaptive iterative dose reduction 3D (AIDR 3D) on a 320-detector CT scanner. Fifty-four patients underwent routine- and low-dose CT for CAC scoring. Low-dose CT was performed at one-third of the tube current used for routine-dose CT. Routine-dose CT was reconstructed with filtered back projection (FBP) and low-dose CT was reconstructed with AIDR 3D. We compared the calculated Agatston-, volume-, and mass scores of these images. The overall percentage difference in the Agatston-, volume-, and mass scores between routine- and low-dose CT studies was 15.9, 11.6, and 12.6%, respectively. There were no significant differences in the routine- and low-dose CT studies irrespective of the scoring algorithms applied. The CAC measurements of both imaging modalities were highly correlated with respect to the Agatston- (r = 0.996), volume- (r = 0.996), and mass score (r = 0.997; p < 0.001, all); the Bland-Altman limits of agreement scores were -37.4 to 51.4, -31.2 to 36.4 and -30.3 to 40.9%, respectively, suggesting that AIDR 3D was a good alternative for FBP. The mean effective radiation dose for routine- and low-dose CT was 2.2 and 0.7 mSv, respectively. The use of AIDR 3D made it possible to reduce the radiation dose by 67% for CAC scoring without impairing the quantification of coronary calcification.

  6. Radiation dose reduction for coronary artery calcium scoring at 320-detector CT with adaptive iterative dose reduction 3D.

    PubMed

    Tatsugami, Fuminari; Higaki, Toru; Fukumoto, Wataru; Kaichi, Yoko; Fujioka, Chikako; Kiguchi, Masao; Yamamoto, Hideya; Kihara, Yasuki; Awai, Kazuo

    2015-06-01

    To assess the possibility of reducing the radiation dose for coronary artery calcium (CAC) scoring by using adaptive iterative dose reduction 3D (AIDR 3D) on a 320-detector CT scanner. Fifty-four patients underwent routine- and low-dose CT for CAC scoring. Low-dose CT was performed at one-third of the tube current used for routine-dose CT. Routine-dose CT was reconstructed with filtered back projection (FBP) and low-dose CT was reconstructed with AIDR 3D. We compared the calculated Agatston-, volume-, and mass scores of these images. The overall percentage difference in the Agatston-, volume-, and mass scores between routine- and low-dose CT studies was 15.9, 11.6, and 12.6%, respectively. There were no significant differences in the routine- and low-dose CT studies irrespective of the scoring algorithms applied. The CAC measurements of both imaging modalities were highly correlated with respect to the Agatston- (r = 0.996), volume- (r = 0.996), and mass score (r = 0.997; p < 0.001, all); the Bland-Altman limits of agreement scores were -37.4 to 51.4, -31.2 to 36.4 and -30.3 to 40.9%, respectively, suggesting that AIDR 3D was a good alternative for FBP. The mean effective radiation dose for routine- and low-dose CT was 2.2 and 0.7 mSv, respectively. The use of AIDR 3D made it possible to reduce the radiation dose by 67% for CAC scoring without impairing the quantification of coronary calcification. PMID:25754302

  7. 3D Aerosol-Cloud Radiative Interaction Observed in Collocated MODIS and ASTER Images of Cumulus Cloud Fields

    NASA Technical Reports Server (NTRS)

    Wen, Guoyong; Marshak, Alexander; Cahalan, Robert F.; Remer, Lorraine A.; Kleidman, Richard G.

    2007-01-01

    3D aerosol-cloud interaction is examined by analyzing two images containing cumulus clouds in biomass burning regions in Brazil. The research consists of two parts. The first part focuses on identifying 3D clo ud impacts on the reflectance of pixel selected for the MODIS aerosol retrieval based purely on observations. The second part of the resea rch combines the observations with radiative transfer computations to identify key parameters in 3D aerosol-cloud interaction. We found that 3D cloud-induced enhancement depends on optical properties of nearb y clouds as well as wavelength. The enhancement is too large to be ig nored. Associated biased error in 1D aerosol optical thickness retrie val ranges from 50% to 140% depending on wavelength and optical prope rties of nearby clouds as well as aerosol optical thickness. We caution the community to be prudent when applying 1D approximations in comp uting solar radiation in dear regions adjacent to clouds or when usin g traditional retrieved aerosol optical thickness in aerosol indirect effect research.

  8. Reactor Dosimetry Applications Using RAPTOR-M3G:. a New Parallel 3-D Radiation Transport Code

    NASA Astrophysics Data System (ADS)

    Longoni, Gianluca; Anderson, Stanwood L.

    2009-08-01

    The numerical solution of the Linearized Boltzmann Equation (LBE) via the Discrete Ordinates method (SN) requires extensive computational resources for large 3-D neutron and gamma transport applications due to the concurrent discretization of the angular, spatial, and energy domains. This paper will discuss the development RAPTOR-M3G (RApid Parallel Transport Of Radiation - Multiple 3D Geometries), a new 3-D parallel radiation transport code, and its application to the calculation of ex-vessel neutron dosimetry responses in the cavity of a commercial 2-loop Pressurized Water Reactor (PWR). RAPTOR-M3G is based domain decomposition algorithms, where the spatial and angular domains are allocated and processed on multi-processor computer architectures. As compared to traditional single-processor applications, this approach reduces the computational load as well as the memory requirement per processor, yielding an efficient solution methodology for large 3-D problems. Measured neutron dosimetry responses in the reactor cavity air gap will be compared to the RAPTOR-M3G predictions. This paper is organized as follows: Section 1 discusses the RAPTOR-M3G methodology; Section 2 describes the 2-loop PWR model and the numerical results obtained. Section 3 addresses the parallel performance of the code, and Section 4 concludes this paper with final remarks and future work.

  9. 3D Finite Element Model for Writing Long-Period Fiber Gratings by CO2 Laser Radiation

    PubMed Central

    Coelho, João M. P.; Nespereira, Marta; Abreu, Manuel; Rebordão, José

    2013-01-01

    In the last years, mid-infrared radiation emitted by CO2 lasers has become increasing popular as a tool in the development of long-period fiber gratings. However, although the development and characterization of the resulting sensing devices have progressed quickly, further research is still necessary to consolidate functional models, especially regarding the interaction between laser radiation and the fiber's material. In this paper, a 3D finite element model is presented to simulate the interaction between laser radiation and an optical fiber and to determine the resulting refractive index change. Dependence with temperature of the main parameters of the optical fiber materials (with special focus on the absorption of incident laser radiation) is considered, as well as convection and radiation losses. Thermal and residual stress analyses are made for a standard single mode fiber, and experimental results are presented. PMID:23941908

  10. Radiative Transport for a Smoothed Particle Hydrodynamic Code

    NASA Astrophysics Data System (ADS)

    Lang, Bernd; Kessel-Deynet, Olaf; Burkert, Andreas

    One crude approximation to describe the effect of Radiative Transport in SPH simulations is to introduce a density dependent polytropic index in the equation of state (Matthew R. Bate 1998), which is larger than one if the medium becomes optically thick. By doing this one fixes the system to a special density-temperature dependence. But in principle the system should have the possibility to realize a variety of different density-temperature dependencies if radiative transport is involved and arbitrary heating and cooling functions can be used. We combine the advantages of the SPH Code with an algorithm describing a flux limited diffusive radiative transport to develop a RHD-Code. Flux limited diffusion involves the Rosseland-means of the absorption and scattering coefficients. To calculate this coefficients we use the model from Preibisch et al. 1993. This will restrict our simulations to low temperatures (T <= 1000 K) and high densities (ρ >= 103 cm-3) but on the other hand keeps the code as simple and as fast as possible. For a given energy-density distribution, the radiation field evolves towards the equilibrium solution on a time-scale much smaller than the typical dynamical time-step for the hydrodynamic equations. So the RT equations have to be solved implicit. To do this we use the nice convergence features of the Successive Over-Relaxing (SOR) method. The focus of the simulations than will be on the prestellar phase where molecular cloud cores become optically thick. The central temperature is still low (T = 10 dots 500 K) and thus the ionization and dissociation degree is low and nearly constant.

  11. Mechanistic and quantitative studies of bystander response in 3D tissues for low-dose radiation risk estimations

    SciTech Connect

    Amundson, Sally A.

    2013-06-12

    We have used the MatTek 3-dimensional human skin model to study the gene expression response of a 3D model to low and high dose low LET radiation, and to study the radiation bystander effect as a function of distance from the site of irradiation with either alpha particles or low LET protons. We have found response pathways that appear to be specific for low dose exposures, that could not have been predicted from high dose studies. We also report the time and distance dependent expression of a large number of genes in bystander tissue. the bystander response in 3D tissues showed many similarities to that described previously in 2D cultured cells, but also showed some differences.

  12. General-Relativistic Three-Dimensional Multi-group Neutrino Radiation-Hydrodynamics Simulations of Core-Collapse Supernovae

    NASA Astrophysics Data System (ADS)

    Roberts, Luke F.; Ott, Christian D.; Haas, Roland; O’Connor, Evan P.; Diener, Peter; Schnetter, Erik

    2016-11-01

    We report on a set of long-term general-relativistic three-dimensional (3D) multi-group (energy-dependent) neutrino radiation-hydrodynamics simulations of core-collapse supernovae. We employ a full 3D two-moment scheme with the local M1 closure, three neutrino species, and 12 energy groups per species. With this, we follow the post-core-bounce evolution of the core of a nonrotating 27 - {M}ȯ progenitor in full unconstrained 3D and in octant symmetry for ≳380 ms. We find the development of an asymmetric runaway explosion in our unconstrained simulation. We test the resolution dependence of our results and, in agreement with previous work, find that low resolution artificially aids explosion and leads to an earlier runaway expansion of the shock. At low resolution, the octant and full 3D dynamics are qualitatively very similar, but at high resolution, only the full 3D simulation exhibits the onset of explosion.

  13. 3D Space Radiation Transport in a Shielded ICRU Tissue Sphere

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Slaba, Tony C.; Badavi, Francis F.; Reddell, Brandon D.; Bahadori, Amir A.

    2014-01-01

    A computationally efficient 3DHZETRN code capable of simulating High Charge (Z) and Energy (HZE) and light ions (including neutrons) under space-like boundary conditions with enhanced neutron and light ion propagation was recently developed for a simple homogeneous shield object. Monte Carlo benchmarks were used to verify the methodology in slab and spherical geometry, and the 3D corrections were shown to provide significant improvement over the straight-ahead approximation in some cases. In the present report, the new algorithms with well-defined convergence criteria are extended to inhomogeneous media within a shielded tissue slab and a shielded tissue sphere and tested against Monte Carlo simulation to verify the solution methods. The 3D corrections are again found to more accurately describe the neutron and light ion fluence spectra as compared to the straight-ahead approximation. These computationally efficient methods provide a basis for software capable of space shield analysis and optimization.

  14. Radiation Hydrodynamics Models of the Inner Rim in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Flock, M.; Fromang, S.; Turner, N. J.; Benisty, M.

    2016-08-01

    Many stars host planets orbiting within a few astronomical units (AU). The occurrence rate and distributions of masses and orbits vary greatly with the host star’s mass. These close planets’ origins are a mystery that motivates investigating protoplanetary disks’ central regions. A key factor governing the conditions near the star is the silicate sublimation front, which largely determines where the starlight is absorbed, and which is often called the inner rim. We present the first radiation hydrodynamical modeling of the sublimation front in the disks around the young intermediate-mass stars called Herbig Ae stars. The models are axisymmetric and include starlight heating silicate grains sublimating and condensing to equilibrium at the local, time-dependent temperature and density and accretion stresses parameterizing the results of MHD magnetorotational turbulence models. The results compare well with radiation hydrostatic solutions and prove to be dynamically stable. Passing the model disks into Monte Carlo radiative transfer calculations, we show that the models satisfy observational constraints on the inner rim’s location. A small optically thin halo of hot dust naturally arises between the inner rim and the star. The inner rim has a substantial radial extent, corresponding to several disk scale heights. While the front’s overall position varies with the stellar luminosity, its radial extent depends on the mass accretion rate. A pressure maximum develops near the location of thermal ionization at temperatures of about 1000 K. The pressure maximum is capable of halting solid pebbles’ radial drift and concentrating them in a zone where temperatures are sufficiently high for annealing to form crystalline silicates.

  15. Macroscopic Degeneracy of Zero-Mode Rotating Surface States in 3D Dirac and Weyl Semimetals under Radiation.

    PubMed

    González, José; Molina, Rafael A

    2016-04-15

    We investigate the development of novel surface states when 3D Dirac or Weyl semimetals are placed under circularly polarized electromagnetic radiation. We find that the hybridization between inverted Floquet bands opens, in general, a gap, which closes at so-called exceptional points found for complex values of the momentum. This corresponds to the appearance of midgap surface states in the form of evanescent waves decaying from the surface exposed to the radiation. We observe a phenomenon reminiscent of Landau quantization by which the midgap surface states get a large degeneracy proportional to the radiation flux traversing the surface of the semimetal. We show that all of these surface states carry angular current, leading to an angular modulation of their charge that rotates with the same frequency of the radiation, which should manifest in the observation of a macroscopic chiral current in the irradiated surface. PMID:27127980

  16. A global model simulation for 3-D radiative transfer impact on surface hydrology over the Sierra Nevada and Rocky Mountains

    DOE PAGES

    Lee, W.-L.; Gu, Y.; Liou, K. N.; Leung, L. R.; Hsu, H.-H.

    2015-05-19

    We investigate 3-D mountain effects on solar flux distributions and their impact on surface hydrology over the western United States, specifically the Rocky Mountains and the Sierra Nevada, using the global CCSM4 (Community Climate System Model version 4; Community Atmosphere Model/Community Land Model – CAM4/CLM4) with a 0.23° × 0.31° resolution for simulations over 6 years. In a 3-D radiative transfer parameterization, we have updated surface topography data from a resolution of 1 km to 90 m to improve parameterization accuracy. In addition, we have also modified the upward-flux deviation (3-D–PP (plane-parallel)) adjustment to ensure that the energy balance atmore » the surface is conserved in global climate simulations based on 3-D radiation parameterization. We show that deviations in the net surface fluxes are not only affected by 3-D mountains but also influenced by feedbacks of cloud and snow in association with the long-term simulations. Deviations in sensible heat and surface temperature generally follow the patterns of net surface solar flux. The monthly snow water equivalent (SWE) deviations show an increase in lower elevations due to reduced snowmelt, leading to a reduction in cumulative runoff. Over higher-elevation areas, negative SWE deviations are found because of increased solar radiation available at the surface. Simulated precipitation increases for lower elevations, while it decreases for higher elevations, with a minimum in April. Liquid runoff significantly decreases at higher elevations after April due to reduced SWE and precipitation.« less

  17. Application of 3-D radiative transfer theory to atmospheric correction of land surface images

    NASA Technical Reports Server (NTRS)

    Diner, D. J.; Martonchik, J. V.; Danielson, E. D.; Bruegge, C. J.

    1988-01-01

    Three dimensional radiative transfer theory was applied to computation of atmospheric effects on remotely sensed imagery. The atmospheric correction algorithm derived is used to estimate aerosol opacity.

  18. Identifying cell and molecular stress after radiation in a three-dimensional (3-D) model of oral mucositis

    SciTech Connect

    Lambros, Maria Polikandritou; Parsa, Cyrus; Mulamalla, HariChandana; Orlando, Robert; Lau, Bernard; Huang, Ying; Pon, Doreen; Chow, Moses

    2011-02-04

    Research highlights: {yields} We irradiated a 3-D human oral cell culture of keratinocytes and fibroblasts with 12 and 2 Gy. {yields} 6 h after irradiation the histopathology and apoptosis of the 3-D culture were evaluated. Microarrays were used to assess the gene expression in the irradiated 3-D tissue. {yields} 12 Gy induced significant histopathologic changes and cellular apoptosis. {yields} 12 Gy significantly affected genes of the NF-kB pathway, inflammatory cytokines and DAMPs. -- Abstract: Mucositis is a debilitating adverse effect of chemotherapy and radiation treatment. It is important to develop a simple and reliable in vitro model, which can routinely be used to screen new drugs for prevention and treatment of mucositis. Furthermore, identifying cell and molecular stresses especially in the initiation phase of mucositis in this model will help towards this end. We evaluated a three-dimensional (3-D) human oral cell culture that consisted of oral keratinocytes and fibroblasts as a model of oral mucositis. The 3-D cell culture model was irradiated with 12 or 2 Gy. Six hours after the irradiation we evaluated microscopic sections of the cell culture for evidence of morphologic changes including apoptosis. We used microarrays to compare the expression of several genes from the irradiated tissue with identical genes from tissue that was not irradiated. We found that irradiation with 12 Gy induced significant histopathologic effects including cellular apoptosis. Irradiation significantly affected the expression of several genes of the NF-kB pathway and several inflammatory cytokines, such as IL-1B, 1L-8, NF-kB1, and FOS compared to tissue that was not irradiated. We identified significant upregulation of several genes that belong to damage-associated molecular patterns (DAMPs) such as HMB1, S100A13, SA10014, and SA10016 in the 3-D tissues that received 12 Gy but not in tissues that received 2 Gy. In conclusion, this model quantifies radiation damage and this

  19. Exploring Rotations Due to Radiation Pressure: 2-D to 3-D Transition Is Interesting!

    ERIC Educational Resources Information Center

    Waxman, Michael A.

    2010-01-01

    Radiation pressure is an important topic within a standard physics course (see, in particular, Refs. 1 and 2). The physics of radiation pressure is described, the magnitude of it is derived, both for the case of a perfectly absorbing surface and of a perfect reflector, and various applications of this interesting effect are discussed, such as…

  20. 3D printer generated thorax phantom with mobile tumor for radiation dosimetry.

    PubMed

    Mayer, Rulon; Liacouras, Peter; Thomas, Andrew; Kang, Minglei; Lin, Liyong; Simone, Charles B

    2015-07-01

    This article describes the design, construction, and properties of an anthropomorphic thorax phantom with a moving surrogate tumor. This novel phantom permits detection of dose both inside and outside a moving tumor and within the substitute lung tissue material. A 3D printer generated the thorax shell composed of a chest wall, spinal column, and posterior regions of the phantom. Images of a computed tomography scan of the thorax from a patient with lung cancer provided the template for the 3D printing. The plastic phantom is segmented into two materials representing the muscle and bones, and its geometry closely matches a patient. A surrogate spherical plastic tumor controlled by a 3D linear stage simulates a lung tumor's trajectory during normal breathing. Sawdust emulates the lung tissue in terms of average and distribution in Hounsfield numbers. The sawdust also provides a forgiving medium that permits tumor motion and sandwiching of radiochromic film inside the mobile surrogate plastic tumor for dosimetry. A custom cork casing shields the film and tumor and eliminates film bending during extended scans. The phantom, lung tissue surrogate, and radiochromic film are exposed to a seven field plan based on an ECLIPSE plan for 6 MV photons from a Trilogy machine delivering 230 cGy to the isocenter. The dose collected in a sagittal plane is compared to the calculated plan. Gamma analysis finds 8.8% and 5.5% gamma failure rates for measurements of large amplitude trajectory and static measurements relative to the large amplitude plan, respectively. These particular gamma analysis results were achieved using parameters of 3% dose and 3 mm, for regions receiving doses >150 cGy. The plan assumes a stationary detection grid unlike the moving radiochromic film and tissues. This difference was experimentally observed and motivated calculated dose distributions that incorporated the phase of the tumor periodic motion. These calculations modestly improve agreement between

  1. Focusing optics of a parallel beam CCD optical tomography apparatus for 3D radiation gel dosimetry.

    PubMed

    Krstajić, Nikola; Doran, Simon J

    2006-04-21

    Optical tomography of gel dosimeters is a promising and cost-effective avenue for quality control of radiotherapy treatments such as intensity-modulated radiotherapy (IMRT). Systems based on a laser coupled to a photodiode have so far shown the best results within the context of optical scanning of radiosensitive gels, but are very slow ( approximately 9 min per slice) and poorly suited to measurements that require many slices. Here, we describe a fast, three-dimensional (3D) optical computed tomography (optical-CT) apparatus, based on a broad, collimated beam, obtained from a high power LED and detected by a charged coupled detector (CCD). The main advantages of such a system are (i) an acquisition speed approximately two orders of magnitude higher than a laser-based system when 3D data are required, and (ii) a greater simplicity of design. This paper advances our previous work by introducing a new design of focusing optics, which take information from a suitably positioned focal plane and project an image onto the CCD. An analysis of the ray optics is presented, which explains the roles of telecentricity, focusing, acceptance angle and depth-of-field (DOF) in the formation of projections. A discussion of the approximation involved in measuring the line integrals required for filtered backprojection reconstruction is given. Experimental results demonstrate (i) the effect on projections of changing the position of the focal plane of the apparatus, (ii) how to measure the acceptance angle of the optics, and (iii) the ability of the new scanner to image both absorbing and scattering gel phantoms. The quality of reconstructed images is very promising and suggests that the new apparatus may be useful in a clinical setting for fast and accurate 3D dosimetry. PMID:16585845

  2. 3D printer generated thorax phantom with mobile tumor for radiation dosimetry

    NASA Astrophysics Data System (ADS)

    Mayer, Rulon; Liacouras, Peter; Thomas, Andrew; Kang, Minglei; Lin, Liyong; Simone, Charles B.

    2015-07-01

    This article describes the design, construction, and properties of an anthropomorphic thorax phantom with a moving surrogate tumor. This novel phantom permits detection of dose both inside and outside a moving tumor and within the substitute lung tissue material. A 3D printer generated the thorax shell composed of a chest wall, spinal column, and posterior regions of the phantom. Images of a computed tomography scan of the thorax from a patient with lung cancer provided the template for the 3D printing. The plastic phantom is segmented into two materials representing the muscle and bones, and its geometry closely matches a patient. A surrogate spherical plastic tumor controlled by a 3D linear stage simulates a lung tumor's trajectory during normal breathing. Sawdust emulates the lung tissue in terms of average and distribution in Hounsfield numbers. The sawdust also provides a forgiving medium that permits tumor motion and sandwiching of radiochromic film inside the mobile surrogate plastic tumor for dosimetry. A custom cork casing shields the film and tumor and eliminates film bending during extended scans. The phantom, lung tissue surrogate, and radiochromic film are exposed to a seven field plan based on an ECLIPSE plan for 6 MV photons from a Trilogy machine delivering 230 cGy to the isocenter. The dose collected in a sagittal plane is compared to the calculated plan. Gamma analysis finds 8.8% and 5.5% gamma failure rates for measurements of large amplitude trajectory and static measurements relative to the large amplitude plan, respectively. These particular gamma analysis results were achieved using parameters of 3% dose and 3 mm, for regions receiving doses >150 cGy. The plan assumes a stationary detection grid unlike the moving radiochromic film and tissues. This difference was experimentally observed and motivated calculated dose distributions that incorporated the phase of the tumor periodic motion. These calculations modestly improve agreement between

  3. 3D printer generated thorax phantom with mobile tumor for radiation dosimetry

    SciTech Connect

    Mayer, Rulon; Liacouras, Peter; Thomas, Andrew; Kang, Minglei; Lin, Liyong; Simone, Charles B.

    2015-07-15

    This article describes the design, construction, and properties of an anthropomorphic thorax phantom with a moving surrogate tumor. This novel phantom permits detection of dose both inside and outside a moving tumor and within the substitute lung tissue material. A 3D printer generated the thorax shell composed of a chest wall, spinal column, and posterior regions of the phantom. Images of a computed tomography scan of the thorax from a patient with lung cancer provided the template for the 3D printing. The plastic phantom is segmented into two materials representing the muscle and bones, and its geometry closely matches a patient. A surrogate spherical plastic tumor controlled by a 3D linear stage simulates a lung tumor’s trajectory during normal breathing. Sawdust emulates the lung tissue in terms of average and distribution in Hounsfield numbers. The sawdust also provides a forgiving medium that permits tumor motion and sandwiching of radiochromic film inside the mobile surrogate plastic tumor for dosimetry. A custom cork casing shields the film and tumor and eliminates film bending during extended scans. The phantom, lung tissue surrogate, and radiochromic film are exposed to a seven field plan based on an ECLIPSE plan for 6 MV photons from a Trilogy machine delivering 230 cGy to the isocenter. The dose collected in a sagittal plane is compared to the calculated plan. Gamma analysis finds 8.8% and 5.5% gamma failure rates for measurements of large amplitude trajectory and static measurements relative to the large amplitude plan, respectively. These particular gamma analysis results were achieved using parameters of 3% dose and 3 mm, for regions receiving doses >150 cGy. The plan assumes a stationary detection grid unlike the moving radiochromic film and tissues. This difference was experimentally observed and motivated calculated dose distributions that incorporated the phase of the tumor periodic motion. These calculations modestly improve agreement between

  4. Focusing optics of a parallel beam CCD optical tomography apparatus for 3D radiation gel dosimetry

    NASA Astrophysics Data System (ADS)

    Krstajic, Nikola; Doran, Simon J.

    2006-04-01

    Optical tomography of gel dosimeters is a promising and cost-effective avenue for quality control of radiotherapy treatments such as intensity-modulated radiotherapy (IMRT). Systems based on a laser coupled to a photodiode have so far shown the best results within the context of optical scanning of radiosensitive gels, but are very slow (~9 min per slice) and poorly suited to measurements that require many slices. Here, we describe a fast, three-dimensional (3D) optical computed tomography (optical-CT) apparatus, based on a broad, collimated beam, obtained from a high power LED and detected by a charged coupled detector (CCD). The main advantages of such a system are (i) an acquisition speed approximately two orders of magnitude higher than a laser-based system when 3D data are required, and (ii) a greater simplicity of design. This paper advances our previous work by introducing a new design of focusing optics, which take information from a suitably positioned focal plane and project an image onto the CCD. An analysis of the ray optics is presented, which explains the roles of telecentricity, focusing, acceptance angle and depth-of-field (DOF) in the formation of projections. A discussion of the approximation involved in measuring the line integrals required for filtered backprojection reconstruction is given. Experimental results demonstrate (i) the effect on projections of changing the position of the focal plane of the apparatus, (ii) how to measure the acceptance angle of the optics, and (iii) the ability of the new scanner to image both absorbing and scattering gel phantoms. The quality of reconstructed images is very promising and suggests that the new apparatus may be useful in a clinical setting for fast and accurate 3D dosimetry.

  5. 3D Multi-Level Non-LTE Radiative Transfer for the CO Molecule

    NASA Astrophysics Data System (ADS)

    Berkner, A.; Schweitzer, A.; Hauschildt, P. H.

    2015-01-01

    The photospheres of cool stars are both rich in molecules and an environment where the assumption of LTE can not be upheld under all circumstances. Unfortunately, detailed 3D non-LTE calculations involving molecules are hardly feasible with current computers. For this reason, we present our implementation of the super level technique, in which molecular levels are combined into super levels, to reduce the number of unknowns in the rate equations and, thus, the computational effort and memory requirements involved, and show the results of our first tests against the 1D implementation of the same method.

  6. 3-D aluminum nanostructure with microhole array synthesized by femtosecond laser radiation for enhanced light extinction

    NASA Astrophysics Data System (ADS)

    Mahmood, Abdul Salam; Venkatakrishnan, Krishnan; Tan, Bo

    2013-11-01

    This article presents 3-D aluminum micro-nanostructures for enhanced light absorption. Periodic microhole arrays were created by firing a train of femtosecond laser pulses at megahertz pulse frequency onto the surface of an aluminum target at ambient conditions. The laser trains ablated the target surface and created microholes leading to the generation of deposited nanostructures inside and around the microholes. These micro-nanostructures showed enhanced light absorption, which is attributed to surface plasmonics induced by the generation of both nano- and microstructures. These micro-nanostructures may be promising for solar cell applications.

  7. 3-D aluminum nanostructure with microhole array synthesized by femtosecond laser radiation for enhanced light extinction.

    PubMed

    Mahmood, Abdul Salam; Venkatakrishnan, Krishnan; Tan, Bo

    2013-01-01

    This article presents 3-D aluminum micro-nanostructures for enhanced light absorption. Periodic microhole arrays were created by firing a train of femtosecond laser pulses at megahertz pulse frequency onto the surface of an aluminum target at ambient conditions. The laser trains ablated the target surface and created microholes leading to the generation of deposited nanostructures inside and around the microholes. These micro-nanostructures showed enhanced light absorption, which is attributed to surface plasmonics induced by the generation of both nano- and microstructures. These micro-nanostructures may be promising for solar cell applications. PMID:24225364

  8. 3-D aluminum nanostructure with microhole array synthesized by femtosecond laser radiation for enhanced light extinction

    PubMed Central

    2013-01-01

    This article presents 3-D aluminum micro-nanostructures for enhanced light absorption. Periodic microhole arrays were created by firing a train of femtosecond laser pulses at megahertz pulse frequency onto the surface of an aluminum target at ambient conditions. The laser trains ablated the target surface and created microholes leading to the generation of deposited nanostructures inside and around the microholes. These micro-nanostructures showed enhanced light absorption, which is attributed to surface plasmonics induced by the generation of both nano- and microstructures. These micro-nanostructures may be promising for solar cell applications. PMID:24225364

  9. Metabolic response of lung cancer cells to radiation in a paper-based 3D cell culture system.

    PubMed

    Simon, Karen A; Mosadegh, Bobak; Minn, Kyaw Thu; Lockett, Matthew R; Mohammady, Marym R; Boucher, Diane M; Hall, Amy B; Hillier, Shawn M; Udagawa, Taturo; Eustace, Brenda K; Whitesides, George M

    2016-07-01

    This work demonstrates the application of a 3D culture system-Cells-in-Gels-in-Paper (CiGiP)-in evaluating the metabolic response of lung cancer cells to ionizing radiation. The 3D tissue-like construct-prepared by stacking multiple sheets of paper containing cell-embedded hydrogels-generates a gradient of oxygen and nutrients that decreases monotonically in the stack. Separating the layers of the stack after exposure enabled analysis of the cellular response to radiation as a function of oxygen and nutrient availability; this availability is dictated by the distance between the cells and the source of oxygenated medium. As the distance between the cells and source of oxygenated media increased, cells show increased levels of hypoxia-inducible factor 1-alpha, decreased proliferation, and reduced sensitivity to ionizing radiation. Each of these cellular responses are characteristic of cancer cells observed in solid tumors. With this setup we were able to differentiate three isogenic variants of A549 cells based on their metabolic radiosensitivity; these three variants have known differences in their metastatic behavior in vivo. This system can, therefore, capture some aspects of radiosensitivity of populations of cancer cells related to mass-transport phenomenon, carry out systematic studies of radiation response in vitro that decouple effects from migration and proliferation of cells, and regulate the exposure of oxygen to subpopulations of cells in a tissue-like construct either before or after irradiation. PMID:27116031

  10. 3D active edge silicon sensors with different electrode configurations: Radiation hardness and noise performance

    NASA Astrophysics Data System (ADS)

    Da Viá, C.; Bolle, E.; Einsweiler, K.; Garcia-Sciveres, M.; Hasi, J.; Kenney, C.; Linhart, V.; Parker, Sherwood; Pospisil, S.; Rohne, O.; Slavicek, T.; Watts, S.; Wermes, N.

    2009-06-01

    3D detectors, with electrodes penetrating the entire silicon wafer and active edges, were fabricated at the Stanford Nano Fabrication Facility (SNF), California, USA, with different electrode configurations. After irradiation with neutrons up to a fluence of 8.8×10 15 n eq cm -2, they were characterised using an infrared laser tuned to inject ˜2 minimum ionising particles showing signal efficiencies as high as 66% for the configuration with the shortest (56 μm) inter-electrode spacing. Sensors from the same wafer were also bump-bonded to the ATLAS FE-I3 pixel readout chip and their noise characterised. Most probable signal-to-noise ratios were calculated before and after irradiation to be as good as 38:1 after the highest irradiation level with a substrate thickness of 210 μm. These devices are promising candidates for application at the LHC such as the very forward detectors at ATLAS and CMS, the ATLAS B-Layer replacement and the general pixel upgrade. Moreover, 3D sensors could play a role in applications where high speed, high-resolution detectors are required, such as the vertex locators at the proposed Compact Linear Collider (CLIC) at CERN.

  11. Scaling of magneto-quantum-radiative hydrodynamic equations: from laser-produced plasmas to astrophysics

    SciTech Connect

    Cross, J. E.; Gregori, G.; Reville, B.

    2014-11-01

    We introduce the equations of magneto-quantum-radiative hydrodynamics. By rewriting them in a dimensionless form, we obtain a set of parameters that describe scale-dependent ratios of characteristic hydrodynamic quantities. We discuss how these dimensionless parameters relate to the scaling between astrophysical observations and laboratory experiments.

  12. 3D sensitive voxel detector of ionizing radiation based on Timepix device

    NASA Astrophysics Data System (ADS)

    Soukup, P.; Jakubek, J.; Vykydal, Z.

    2011-01-01

    Position sensitive detectors are evolving towards higher segmentation geometries from 0D (single pad) over 1D (strip) to 2D (pixel) detectors. Each step has brought up substantial expansion in the field of applications. The next logical step in this evolution is to design a 3D, i.e. voxel detector. The voxel detector can be constructed from 2D volume element detectors arranged in layers forming a 3D matrix of sensitive elements — voxels. Such detectors can effectively record tracks of energetic particles. By proper analysis of these tracks it is possible to determine the type, direction and energy of the primary particle. One of the prominent applications of such device is in the localization and identification of gamma and neutron sources in the environment. It can be also used for emission and transmission radiography in many fields where standard imagers are currently utilized. The qualitative properties of current imagers such as: spatial resolution, efficiency, directional sensitivity, energy sensitivity and selectivity (background suppression) can be improved. The first prototype of a voxel detector was built using a number of Timepix devices. Timepix is hybrid semiconductor detector consisting of a segmented semiconductor sensor bump-bonded to a readout chip. Each sensor contains 256x256 square pixels of 55 μm size. The voxel detector prototype was successfully tested to prove the concept functionality. The detector has a modular architecture with a daisy chain connection of the individual detector layers. This permits easy rearrangement due to its modularity, while keeping a single readout system for a variable number of detector layers. A limitation of this approach is the relatively large inter-layer distance (4 mm) compared to the pixel thickness (0.3 mm). Therefore the next step in the design is to decrease the space between the 2D detectors.

  13. Aerosols, Chemistry, and Radiative Forcing: A 3-D Model Analysis of Satellite and ACE-Asia data (ACMAP)

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Ginoux, Paul; Torres, Omar; Zhao, Xue-Peng

    2005-01-01

    We propose a research project to incorporate a global 3-D model and satellite data into the multi-national Aerosol Characterization Experiment-Asia (ACE-Asia) mission. Our objectives are (1) to understand the physical, chemical, and optical properties of aerosols and the processes that control those properties over the Asian-Pacific region, (2) to investigate the interaction between aerosols and tropospheric chemistry, and (3) to determine the aerosol radiative forcing over the Asia-Pacific region. We will use the Georgia TecWGoddard Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) model to link satellite observations and the ACE-Asia measurements. First, we will use the GOCART model to simulate aerosols and related species, and evaluate the model with satellite and in-situ observations. Second, the model generated aerosol vertical profiles and compositions will be used to validate the satellite products; and the satellite data will be used for during- and post- mission analysis. Third, we will use the model to analyze and interpret both satellite and ACE- Asia field campaign data and investigate the aerosol-chemistry interactions. Finally, we will calculate aerosol radiative forcing over the Asian-Pacific region, and assess the influence of Asian pollution in the global atmosphere. We propose a research project to incorporate a global 3-D model and satellite data into

  14. A 3-D elasticity theory based model for acoustic radiation from multilayered anisotropic plates.

    PubMed

    Shen, C; Xin, F X; Lu, T J

    2014-05-01

    A theoretical model built upon three-dimensional elasticity theory is developed to investigate the acoustic radiation from multilayered anisotropic plates subjected to a harmonic point force excitation. Fourier transform technique and stationary phase method are combined to predict the far-field radiated sound pressure of one-side water immersed plate. Compared to equivalent single-layer plate models, the present model based on elasticity theory can differentiate radiated sound pressure between dry-side and wet-side excited cases, as well as discrepancies induced by different layer sequences for multilayered anisotropic plates. These results highlight the superiority of the present theoretical model especially for handling multilayered anisotropic structures. PMID:24815294

  15. Formation of globular clusters induced by external ultraviolet radiation II: Three-dimensional radiation hydrodynamics simulations

    NASA Astrophysics Data System (ADS)

    Abe, Makito; Umemura, Masayuki; Hasegawa, Kenji

    2016-08-01

    We explore the possibility of the formation of globular clusters under ultraviolet (UV) background radiation. One-dimensional spherical symmetric radiation hydrodynamics (RHD) simulations by Hasegawa et al. have demonstrated that the collapse of low-mass (106-7 M⊙) gas clouds exposed to intense UV radiation can lead to the formation of compact star clusters like globular clusters (GCs) if gas clouds contract with supersonic infall velocities. However, three-dimensional effects, such as the anisotropy of background radiation and the inhomogeneity in gas clouds, have not been studied so far. In this paper, we perform three-dimensional RHD simulations in a semi-cosmological context, and reconsider the formation of compact star clusters in strong UV radiation fields. As a result, we find that although anisotropic radiation fields bring an elongated shadow of neutral gas, almost spherical compact star clusters can be procreated from a "supersonic infall" cloud, since photo-dissociating radiation suppresses the formation of hydrogen molecules in the shadowed regions and the regions are compressed by UV heated ambient gas. The properties of resultant star clusters match those of GCs. On the other hand, in weak UV radiation fields, dark matter-dominated star clusters with low stellar density form due to the self-shielding effect as well as the positive feedback by ionizing photons. Thus, we conclude that the "supersonic infall" under a strong UV background is a potential mechanism to form GCs.

  16. 2D-3D registration for brain radiation therapy using a 3D CBCT and a single limited field-of-view 2D kV radiograph

    NASA Astrophysics Data System (ADS)

    Munbodh, R.; Moseley, D. J.

    2014-03-01

    We report results of an intensity-based 2D-3D rigid registration framework for patient positioning and monitoring during brain radiotherapy. We evaluated two intensity-based similarity measures, the Pearson Correlation Coefficient (ICC) and Maximum Likelihood with Gaussian noise (MLG) derived from the statistics of transmission images. A useful image frequency band was identified from the bone-to-no-bone ratio. Validation was performed on gold-standard data consisting of 3D kV CBCT scans and 2D kV radiographs of an anthropomorphic head phantom acquired at 23 different poses with parameter variations along six degrees of freedom. At each pose, a single limited field of view kV radiograph was registered to the reference CBCT. The ground truth was determined from markers affixed to the phantom and visible in the CBCT images. The mean (and standard deviation) of the absolute errors in recovering each of the six transformation parameters along the x, y and z axes for ICC were varphix: 0.08(0.04)°, varphiy: 0.10(0.09)°, varphiz: 0.03(0.03)°, tx: 0.13(0.11) mm, ty: 0.08(0.06) mm and tz: 0.44(0.23) mm. For MLG, the corresponding results were varphix: 0.10(0.04)°, varphiy: 0.10(0.09)°, varphiz: 0.05(0.07)°, tx: 0.11(0.13) mm, ty: 0.05(0.05) mm and tz: 0.44(0.31) mm. It is feasible to accurately estimate all six transformation parameters from a 3D CBCT of the head and a single 2D kV radiograph within an intensity-based registration framework that incorporates the physics of transmission images.

  17. The feasibility assessment of radiation dose of movement 3D NIPAM gel by magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Hsieh, Chih-Ming; Leung, Joseph Hang; Ng, Yu-Bun; Cheng, Chih-Wu; Sun, Jung-Chang; Lin, Ping-Chin; Hsieh, Bor-Tsung

    2015-11-01

    NIPAM dosimeter is widely accepted and recommended for its 3D distribution and accuracy in dose absorption. Up to the moment, most research works on dose measurement are based on a fixed irradiation target without the consideration of the effect from physiological motion. We present a study to construct a respiratory motion simulating patient anatomical and dosimetry model for the study of dosimetic effect of organ motion. The dose on fixed and motion targets was measured by MRI after a dose adminstration of 1, 2, 5, 8, and 10 Gy from linear accelerator. Comparison of two situations is made. The average sensitivity of fixed NIPAM was 0.1356 s-1/Gy with linearity R2=0.998. The average sensitivity of movement NIPAM was 0.1366 s-1/Gy with linearity R2=0.998 both having only 0.001 of the sensitivity difference. The difference between the two based on dose rate dependency, position and depth was not significant. There was thus no apparent impact on NIPAM dosimeter from physiological motion. The high sensitivity, linearity and stability of NIPAM dosimeter proved to be an ideal apparatus in the dose measurement in these circumstances.

  18. Doppler effects on 3-D non-LTE radiation transport and emission spectra

    NASA Astrophysics Data System (ADS)

    Hansen, S. B.; Jones, B.; Giuliani, J. L.; Apruzese, J. P.; Thornhill, J. W.; Scott, H. A.; Ampleford, D. J.; Jennings, C. A.; Coverdale, C. A.; Cuneo, M. E.; Rochau, G. A.; Bailey, J. E.; Dasgupta, A.; Clark, R. W.; Davis, J.

    2011-12-01

    Spatially and temporally resolved X-ray emission lines contain information about temperatures, densities, velocities, and the gradients in a plasma. Extracting this information from optically thick lines emitted from complex ions in dynamic, three-dimensional, non-LTE plasmas requires self-consistent accounting for both non-LTE atomic physics and non-local radiative transfer. We present a brief description of a hybrid-structure spectroscopic atomic model coupled to an iterative tabular on-the-spot treatment of radiative transfer that can be applied to plasmas of arbitrary material composition, conditions, and geometries. The effects of Doppler line shifts on the self-consistent radiative transfer within the plasma and the emergent emission and absorption spectra are included in the model. Sample calculations for a two-level atom in a uniform cylindrical plasma are given, showing reasonable agreement with more sophisticated transport models and illustrating the potential complexity - or richness - of radially resolved emission lines from an imploding cylindrical plasma. Also presented is a comparison of modeled L- and K-shell spectra to temporally and radially resolved emission data from a Cu:Ni plasma. Finally, some shortcomings of the model and possible paths for improvement are discussed.

  19. Accelerating 3D radiative transfer for realistic OCO-2 cloud-aerosol scenes

    NASA Astrophysics Data System (ADS)

    Schmidt, S.; Massie, S. T.; Platnick, S. E.; Song, S.

    2014-12-01

    The recently launched NASA OCO-2 satellite is expected to provide important information about the carbon dioxide distribution in the troposphere down to Earth's surface. Among the challenges in accurately retrieving CO2 concentration from the hyperspectral observations in each of the three OCO-2 bands are cloud and aerosol impacts on the observed radiances. Preliminary studies based on idealized cloud fields have shown that they can lead to spectrally dependent radiance perturbations which differ from band to band and may lead to biases in the derived products. Since OCO-2 was inserted into the A-Train, it is only natural to capitalize on sensor synergies with other instruments, in this case on the cloud and aerosol scene context that is provided by MODIS and CALIOP. Our approach is to use cloud imagery (especially for inhomogeneous scenes) for predicting the hyperspectral observations within a collocated OCO-2 footprint and comparing with the observations, which allows a systematic assessment of the causes for biases in the retrievals themselves, and their manifestation in spectral residuals for various different cloud types and distributions. Simulating a large number of cases with line-by-line calculations using a 3D code is computationally prohibitive even on large parallel computers. Therefore, we developed a number of acceleration approaches. In this contribution, we will analyze them in terms of their speed and accuracy, using cloud fields from airborne imagery collected during a recent NASA field experiment (SEAC4RS) as proxy for different types of inhomogeneous cloud fields. The broader goal of this effort is to improve OCO-2 retrievals in the vicinity of cloud fields, and to extend the range of conditions under which the instrument will provide useful results.

  20. Relativistic radiation belt electron responses to GEM magnetic storms: Comparison of CRRES observations with 3-D VERB simulations

    NASA Astrophysics Data System (ADS)

    Kim, Kyung-Chan; Shprits, Yuri; Subbotin, Dmitriy; Ni, Binbin

    2012-08-01

    Understanding the dynamics of relativistic electron acceleration, loss, and transport in the Earth's radiation belt during magnetic storms is a challenging task. The U.S. National Science Foundation's Geospace Environment Modeling (GEM) has identified five magnetic storms for in-depth study that occurred during the second half of the Combined Release and Radiation Effects Satellite (CRRES) mission in the year 1991. In this study, we show the responses of relativistic radiation belt electrons to the magnetic storms by comparing the time-dependent 3-D Versatile Electron Radiation Belt (VERB) simulations with the CRRES MEA 1 MeV electron observations in order to investigate the relative roles of the competing effects of previously proposed scattering mechanisms at different storm phases, as well as to examine the extent to which the simulations can reproduce observations. The major scattering processes in our model are radial transport due to Ultra Low Frequency (ULF) electromagnetic fluctuations, pitch angle and energy diffusion including mixed diffusion by whistler mode chorus waves outside the plasmasphere, and pitch angle scattering by plasmaspheric hiss inside the plasmasphere. The 3-D VERB simulations show that during the storm main phase and early recovery phase the estimated plasmapause is located deep in the inner region, indicating that pitch angle scattering by chorus waves can be a dominant loss process in the outer belt. We have also confirmed the important role played by mixed energy-pitch angle diffusion by chorus waves, which tends to reduce the fluxes enhanced by local acceleration, resulting in comparable levels of computed and measured fluxes. However, we cannot reproduce the more pronounced flux dropout near the boundary of our simulations during the main phase, which indicates that non-adiabatic losses may extend toL-shells lower than our simulation boundary. We also provide a detailed description of simulations for each of the GEM storm events.

  1. The Intercomparison of 3D Radiation Codes (I3RC): Showcasing Mathematical and Computational Physics in a Critical Atmospheric Application

    NASA Astrophysics Data System (ADS)

    Davis, A. B.; Cahalan, R. F.

    2001-05-01

    The Intercomparison of 3D Radiation Codes (I3RC) is an on-going initiative involving an international group of over 30 researchers engaged in the numerical modeling of three-dimensional radiative transfer as applied to clouds. Because of their strong variability and extreme opacity, clouds are indeed a major source of uncertainty in the Earth's local radiation budget (at GCM grid scales). Also 3D effects (at satellite pixel scales) invalidate the standard plane-parallel assumption made in the routine of cloud-property remote sensing at NASA and NOAA. Accordingly, the test-cases used in I3RC are based on inputs and outputs which relate to cloud effects in atmospheric heating rates and in real-world remote sensing geometries. The main objectives of I3RC are to (1) enable participants to improve their models, (2) publish results as a community, (3) archive source code, and (4) educate. We will survey the status of I3RC and its plans for the near future with a special emphasis on the mathematical models and computational approaches. We will also describe some of the prime applications of I3RC's efforts in climate models, cloud-resolving models, and remote-sensing observations of clouds, or that of the surface in their presence. In all these application areas, computational efficiency is the main concern and not accuracy. One of I3RC's main goals is to document the performance of as wide a variety as possible of three-dimensional radiative transfer models for a small but representative number of ``cases.'' However, it is dominated by modelers working at the level of linear transport theory (i.e., they solve the radiative transfer equation) and an overwhelming majority of these participants use slow-but-robust Monte Carlo techniques. This means that only a small portion of the efficiency vs. accuracy vs. flexibility domain is currently populated by I3RC participants. To balance this natural clustering the present authors have organized a systematic outreach towards

  2. Radiation and Polarization Signatures of the 3D Multizone Time-dependent Hadronic Blazar Model

    NASA Astrophysics Data System (ADS)

    Zhang, Haocheng; Diltz, Chris; Böttcher, Markus

    2016-10-01

    We present a newly developed time-dependent three-dimensional multizone hadronic blazar emission model. By coupling a Fokker-Planck-based lepto-hadronic particle evolution code, 3DHad, with a polarization-dependent radiation transfer code, 3DPol, we are able to study the time-dependent radiation and polarization signatures of a hadronic blazar model for the first time. Our current code is limited to parameter regimes in which the hadronic γ-ray output is dominated by proton synchrotron emission, neglecting pion production. Our results demonstrate that the time-dependent flux and polarization signatures are generally dominated by the relation between the synchrotron cooling and the light-crossing timescale, which is largely independent of the exact model parameters. We find that unlike the low-energy polarization signatures, which can vary rapidly in time, the high-energy polarization signatures appear stable. As a result, future high-energy polarimeters may be able to distinguish such signatures from the lower and more rapidly variable polarization signatures expected in leptonic models.

  3. An in-depth spectroscopic examination of molecular bands from 3D hydrodynamical model atmospheres. I. Formation of the G-band in metal-poor dwarf stars

    NASA Astrophysics Data System (ADS)

    Gallagher, A. J.; Caffau, E.; Bonifacio, P.; Ludwig, H.-G.; Steffen, M.; Spite, M.

    2016-09-01

    Context. Recent developments in the three-dimensional (3D) spectral synthesis code Linfor3D have meant that for the first time, large spectral wavelength regions, such as molecular bands, can be synthesised with it in a short amount of time. Aims: A detailed spectral analysis of the synthetic G-band for several dwarf turn-off-type 3D atmospheres (5850 ≲ Teff [ K ] ≲ 6550, 4.0 ≤ log g ≤ 4.5, - 3.0 ≤ [Fe/H] ≤-1.0) was conducted, under the assumption of local thermodynamic equilibrium. We also examine carbon and oxygen molecule formation at various metallicity regimes and discuss the impact it has on the G-band. Methods: Using a qualitative approach, we describe the different behaviours between the 3D atmospheres and the traditional one-dimensional (1D) atmospheres and how the different physics involved inevitably leads to abundance corrections, which differ over varying metallicities. Spectra computed in 1D were fit to every 3D spectrum to determine the 3D abundance correction. Results: Early analysis revealed that the CH molecules that make up the G-band exhibited an oxygen abundance dependency; a higher oxygen abundance leads to weaker CH features. Nitrogen abundances showed zero impact to CH formation. The 3D corrections are also stronger at lower metallicity. Analysis of the 3D corrections to the G-band allows us to assign estimations of the 3D abundance correction to most dwarf stars presented in the literature. Conclusions: The 3D corrections suggest that A(C) in carbon-enhanced metal-poor (CEMP) stars with high A(C) would remain unchanged, but would decrease in CEMP stars with lower A(C). It was found that the C/O ratio is an important parameter to the G-band in 3D. Additional testing confirmed that the C/O ratio is an equally important parameter for OH transitions under 3D. This presents a clear interrelation between the carbon and oxygen abundances in 3D atmospheres through their molecular species, which is not seen in 1D.

  4. 3D measurement of the radiation distribution in a water phantom in a hadron therapy beam

    NASA Astrophysics Data System (ADS)

    Opalka, L.; Granja, C.; Hartmann, B.; Jakubek, J.; Jaekel, O.; Martisikova, M.; Pospisil, S.; Solc, J.

    2012-01-01

    Hadron therapy is a highly precise radio-therapeutic method with many advantages especially in cases when the tumour is close to sensitive organs where standard treatments cannot be used. For reliable treatment planning it is necessary to have calculation tools for maximization of the dose delivered to the targeted tissue and minimization of the dose outside of it. While the main physical processes in material irradiated by hadron beams are known, in reality the processes involved are complex so that analytical computations are impossible. Thus, the planning tools to incorporate simplified models and numerical approximations and an experimental method for high precision verification of the models within phantoms is desired. The development of sensitive, high resolution and online methods for measurement of the radiation environment inside of the irradiated object is the aim of this work. Such measurements are made possible by the resolving power of the state-of-the-art pixel detector Timepix. This quantum counting imaging device is able to record the characteristic shapes of the particle traces including their energies deposited in the detector. All these data recorded for each event allow to estimate the particle type, its energy and direction of flight. Event-by-event analysis is done using pattern recognition of the characteristic traces. The objective of the experiment is the detection and characterization of secondary radiation generated by the primary therapeutic beams in tissue equivalent material (water). Measurements were performed inside of a water phantom irradiated by a carbon beam at the Heidelberg Ion-Beam Therapy Center (HIT).

  5. 3D MR Sialography as a Tool to Investigate Radiation-Induced Xerostomia: Feasibility Study

    SciTech Connect

    Astreinidou, Eleftheria . E-mail: E.Astreinidou@umcutrecht.nl; Roesink, Judith M.; Raaijmakers, Cornelis P.J.; Bartels, Lambertus W.; Witkamp, Theo D.; Lagendijk, Jan J.W.; Terhaard, Chris H.J.

    2007-08-01

    Purpose: To evaluate whether magnetic-resonance (MR) sialography can be used to investigate radiation-induced xerostomia. Preradiotherapy (pre-RT) and postradiotherapy (post-RT) MR sialographic images of the major salivary ducts (parotid and submandibular) were compared. Methods and Materials: Magnetic-resonance sialography was performed pre-RT, and 6 weeks and 6 months post-RT on 9 patients with T1-4N0-2M0 naso- or oropharyngeal tumors, on a 1.5-T MR scanner. Patients were positioned in the scanner, using a radiotherapy immobilization mask. Image registration of the MR sialograms pre- and post-RT with each other and with the CT and consequently the dose distribution was performed. A categorical scoring system was used to compare the visibility of ducts pre-RT and post-RT. Results: Good-quality MR sialographic images were obtained, and image registration was successful in all cases. The visibility score of the parotid ducts and submandibular ducts was reduced at 6 weeks post-RT, which means that the full trajectory of the salivary ducts, from the intraglandular space to the mouth cavity, was only partially visualized. For some of the parotid ducts, the visibility score improved at 6 months post-RT, but not for the submandibular ducts. The mean dose for the parotid glands was 35 Gy (1 standard deviation [SD] 3 Gy), and for the submandibular glands it was 62 Gy (SD, 8 Gy). Conclusion: Three-dimensional MR sialography is a promising approach for investigating xerostomia, because radiation-induced changes to the saliva content of the ducts can be visualized.

  6. A Bayesian mixture model relating dose to critical organs and functional complication in 3D conformal radiation therapy.

    PubMed

    Johnson, Timothy D; Taylor, Jeremy M G; Ten Haken, Randall K; Eisbruch, Avraham

    2005-10-01

    A goal of cancer radiation therapy is to deliver maximum dose to the target tumor while minimizing complications due to irradiation of critical organs. Technological advances in 3D conformal radiation therapy has allowed great strides in realizing this goal; however, complications may still arise. Critical organs may be adjacent to tumors or in the path of the radiation beam. Several mathematical models have been proposed that describe the relationship between dose and observed functional complication; however, only a few published studies have successfully fit these models to data using modern statistical methods which make efficient use of the data. One complication following radiation therapy of head and neck cancers is the patient's inability to produce saliva. Xerostomia (dry mouth) leads to high susceptibility to oral infection and dental caries and is, in general, unpleasant and an annoyance. We present a dose-damage-injury model that subsumes any of the various mathematical models relating dose to damage. The model is a nonlinear, longitudinal mixed effects model where the outcome (saliva flow rate) is modeled as a mixture of a Dirac measure at zero and a gamma distribution whose mean is a function of time and dose. Bayesian methods are used to estimate the relationship between dose delivered to the parotid glands and the observational outcome-saliva flow rate. A summary measure of the dose-damage relationship is modeled and assessed by a Bayesian chi(2) test for goodness-of-fit. PMID:15917377

  7. Viewing MORSE-CG radiation transport with 3-D color graphics

    SciTech Connect

    Namito, Yoshihito; Jenkins, T.M.; Nelson, W.R.

    1990-01-01

    In this paper we present the coupling of MORSE-CG with the SLAC Unified Graphics System (UGS77) through an add-on package called MORSGRAF which allows for real-time display of neutron and photon tracks in the Monte Carlo simulation. In addition to displaying the myriad of complicated geometries that can be created with the MORSE Combinatorial Geometry program, MORSGRAF permits color tagging of neutrons (green) and photons (red) with the variation of track intensity an indicator of the energy of the particle. Particle types can be switched off and on by means of a mouse-icon system, and the perspective can be changed (i.e., rotated, translated, and zoomed). MORSGRAF also allows one to display the propagation of radiation through shields and mazes on an ordinary graphics terminal, as well as in documents printed on a laser printer. Several examples will be given to demonstrate the various capabilities of MORSGRAF coupled to MORSE-CG. 12 refs., 8 figs.

  8. 3D unmanned aerial vehicle radiation mapping for assessing contaminant distribution and mobility

    NASA Astrophysics Data System (ADS)

    Martin, P. G.; Kwong, S.; Smith, N. T.; Yamashiki, Y.; Payton, O. D.; Russell-Pavier, F. S.; Fardoulis, J. S.; Richards, D. A.; Scott, T. B.

    2016-10-01

    Following the events of March 2011 at the Fukushima Daiichi Nuclear Power Plant, significant quantities of radioactive material were released into the local and wider global environment. At five years since the incident, much expense is being currently devoted to the remediation of a large portion of eastern Japan contaminated primarily by radiocesium, yet further significant expenditure will be required over the succeeding decades to complete this clean-up. People displaced from their homes by the incident are now increasingly keen to return, making it more important than ever to provide accurate quantification and representation of any residual radiological contamination. Presented here is the use of an unmanned aerial vehicle equipped with a laser rangefinder unit to generate a three dimensional point-cloud of an area onto which a radiation contamination map, also obtained concurrently via the unmanned aerial platform, can be rendered. An exemplar site of an un-remediated farm consisting of multiple stepped rice paddy fields with a dedicated irrigation system was used for this work. The results obtained show that heightened radiological contamination exists around the site within the drainage network where material is observed to have collected, having been transported by transient water runoff events. These results obtained in May 2014 suggest that a proportion of the fallout material is highly mobile within the natural environment and is likely to be transported further through the system over the succeeding years.

  9. Incorporation of gantry angle correction for 3D dose prediction in intensity-modulated radiation therapy

    PubMed Central

    Sumida, Iori; Yamaguchi, Hajime; Kizaki, Hisao; Aboshi, Keiko; Tsujii, Mari; Yamada, Yuji; Yagi, Masashi; Ogawa, Kazuhiko

    2015-01-01

    Pretreatment dose verification with beam-by-beam analysis for intensity-modulated radiation therapy (IMRT) is commonly performed with a gantry angle of 0° using a 2D diode detector array. Any changes in multileaf collimator (MLC) position between the actual treatment gantry angle and 0° may result in deviations from the planned dose. We evaluated the effects of MLC positioning errors between the actual treatment gantry angles and nominal gantry angles. A gantry angle correction (GAC) factor was generated by performing a non-gap test at various gantry angles using an electronic portal imaging device (EPID). To convert pixel intensity to dose at the MLC abutment positions, a non-gap test was performed using an EPID and a film at 0° gantry angle. We then assessed the correlations between pixel intensities and doses. Beam-by-beam analyses for 15 prostate IMRT cases as patient-specific quality assurance were performed with a 2D diode detector array at 0° gantry angle to determine the relative dose error for each beam. The resulting relative dose error with or without GAC was added back to the original dose grid for each beam. We compared the predicted dose distributions with or without GAC for film measurements to validate GAC effects. A gamma pass rate with a tolerance of 2%/2 mm was used to evaluate these dose distributions. The gamma pass rate with GAC was higher than that without GAC (P = 0.01). The predicted dose distribution improved with GAC, although the dosimetric effect to a patient was minimal. PMID:25742866

  10. Sci—Sat AM: Stereo — 01: 3D Pre-treatment Dose Verification for Stereotactic Body Radiation Therapy Patients

    SciTech Connect

    Asuni, G; Beek, T van; Van Utyven, E; McCowan, P; McCurdy, B.M.C.

    2014-08-15

    Radical treatment techniques such as stereotactic body radiation therapy (SBRT) are becoming popular and they involve delivery of large doses in fewer fractions. Due to this feature of SBRT, a high-resolution, pre-treatment dose verification method that makes use of a 3D patient representation would be appropriate. Such a technique will provide additional information about dose delivered to the target volume(s) and organs-at-risk (OARs) in the patient volume compared to 2D verification methods. In this work, we investigate an electronic portal imaging device (EPID) based pre-treatment QA method which provides an accurate reconstruction of the 3D-dose distribution in the patient model. Customized patient plans are delivered ‘in air’ and the portal images are collected using the EPID in cine mode. The images are then analysed to determine an estimate of the incident energy fluence. This is then passed to a collapsed-cone convolution dose algorithm which reconstructs a 3D patient dose estimate on the CT imaging dataset. To date, the method has been applied to 5 SBRT patient plans. Reconstructed doses were compared to those calculated by the TPS. Reconstructed mean doses were mostly within 3% of those in the TPS. DVHs of target volumes and OARs compared well. The Chi pass rates using 3%/3mm in the high dose region are greater than 97% in all cases. These initial results demonstrate clinical feasibility and utility of a robust, efficient, effective and convenient pre-treatment QA method using EPID. Research sponsored in part by Varian Medical Systems.

  11. Limited Advantages of Intensity-Modulated Radiotherapy Over 3D Conformal Radiation Therapy in the Adjuvant Management of Gastric Cancer

    SciTech Connect

    Alani, Shlomo; Soyfer, Viacheslav; Strauss, Natan; Schifter, Dan; Corn, Benjamin W.

    2009-06-01

    Purpose: Although chemoradiotherapy was considered the standard adjuvant treatment for gastric cancer, a recent Phase III trial (Medical Research Council Adjuvant Gastric Infusional Chemotherapy [MAGIC]) did not include radiotherapy in the randomization scheme because it was considered expendable. Given radiotherapy's potential, efforts needed to be made to optimize its use for treating gastric cancer. We assessed whether intensity-modulated radiotherapy (IMRT) could improve upon our published results in patients treated with three-dimensional (3D) conformal therapy. Methods and Materials: Fourteen patients with adenocarcinoma of the stomach were treated with adjuvant chemoradiotherapy using a noncoplanar four-field arrangement. Subsequently, a nine-field IMRT plan was designed using a CMS Xio IMRT version 4.3.3 module. Two IMRT beam arrangements were evaluated: beam arrangement 1 consisted of gantry angles of 0 deg., 53 deg., 107 deg., 158 deg., 204 deg., 255 deg., and 306 deg.. Beam arrangement 2 consisted of gantry angles of 30 deg., 90 deg., 315 deg., and 345 deg.; a gantry angle of 320 deg./couch, 30 deg.; and a gantry angle of 35{sup o}/couch, 312{sup o}. Both the target volume coverage and the dose deposition in adjacent critical organs were assessed in the plans. Dose-volume histograms were generated for the clinical target volume, kidneys, spine, and liver. Results: Comparison of the clinical target volumes revealed satisfactory coverage by the 95% isodose envelope using either IMRT or 3D conformal therapy. However, IMRT was only marginally better than 3D conformal therapy at protecting the spine and kidneys from radiation. Conclusions: IMRT confers only a marginal benefit in the adjuvant treatment of gastric cancer and should be used only in the small subset of patients with risk factors for kidney disease or those with a preexisting nephropathy.

  12. Three-dimensional radiation-hydrodynamics calculations of the envelopes of young planets embedded in protoplanetary disks

    SciTech Connect

    D'Angelo, Gennaro; Bodenheimer, Peter E-mail: peter@ucolick.org

    2013-11-20

    We perform global three-dimensional (3D) radiation-hydrodynamics calculations of the envelopes surrounding young planetary cores of 5, 10, and 15 Earth masses, located in a protoplanetary disk at 5 and 10 AU from a solar-mass star. We apply a nested-grid technique to resolve the thermodynamics of the disk at the orbital-radius length scale and that of the envelope at the core-radius length scale. The gas is modeled as a solar mixture of molecular and atomic hydrogen, helium, and their ions. The equation of state accounts for both gas and radiation, and gas energy includes contributions from rotational and vibrational states of molecular hydrogen and from ionization of atomic species. Dust opacities are computed from first principles, applying the full Mie theory. One-dimensional (1D) calculations of planet formation are used to supplement the 3D calculations by providing energy deposition rates in the envelope due to solids accretion. We compare 1D and 3D envelopes and find that masses and gas accretion rates agree within factors of 2, and so do envelope temperatures. The trajectories of passive tracers are used to define the size of 3D envelopes, resulting in radii much smaller than the Hill radius and smaller than the Bondi radius. The moments of inertia and angular momentum of the envelopes are determined and the rotation rates are derived from the rigid-body approximation, resulting in slow bulk rotation. We find that the polar flattening is ≲ 0.05. The dynamics of the accretion flow are examined by tracking the motion of tracers that move into the envelope. The anisotropy of this flow is characterized in terms of both its origin and impact site at the envelope surface. Gas merges with the envelope preferentially at mid- to high latitudes.

  13. Radiation-Driven Hydrodynamics of High-Z Hohlraums on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Dewald, E. L.; Suter, L. J.; Landen, O. L.; Holder, J. P.; Schein, J.; Lee, F. D.; Campbell, K. M.; Weber, F. A.; Pellinen, D. G.; Schneider, M. B.; Celeste, J. R.; McDonald, J. W.; Foster, J. M.; Niemann, C.; MacKinnon, A. J.; Glenzer, S. H.; Young, B. K.; Haynam, C. A.; Shaw, M. J.; Turner, R. E.; Froula, D.; Kauffman, R. L.; Thomas, B. R.; Atherton, L. J.; Bonanno, R. E.; Dixit, S. N.; Eder, D. C.; Holtmeier, G.; Kalantar, D. H.; Koniges, A. E.; MacGowan, B. J.; Manes, K. R.; Munro, D. H.; Murray, J. R.; Parham, T. G.; Piston, K.; van Wonterghem, B. M.; Wallace, R. J.; Wegner, P. J.; Whitman, P. K.; Hammel, B. A.; Moses, E. I.

    2005-11-01

    The first hohlraum experiments on the National Ignition Facility (NIF) using the initial four laser beams tested radiation temperature limits imposed by plasma filling. For a variety of hohlraum sizes and pulse lengths, the measured x-ray flux shows signatures of filling that coincide with hard x-ray emission from plasma streaming out of the hohlraum. These observations agree with hydrodynamic simulations and with an analytical model that includes hydrodynamic and coronal radiative losses. The modeling predicts radiation temperature limits with full NIF (1.8 MJ), greater, and of longer duration than required for ignition hohlraums.

  14. Second-order discretization in space and time for radiation hydrodynamics

    SciTech Connect

    Edwards, J. D.; Morel, J. E.; Lowrie, R. B.

    2013-07-01

    We present a method for solving the equations of radiation hydrodynamics that is second-order accurate in space and time. This method combines the MUSCL-Hancock method for solving the Euler equations with the TR/BDF2 scheme in time for solving the equations of radiative transfer. We use an LDFEM to discretize the radiative transfer equations in space, which, though uncommon for radiation diffusion calculations, is a standard for radiation transport applications. We address the challenges inherent to using different spatial discretizations for the hydrodynamics and radiation and demonstrate how these may be overcome. We define our method for a 1-D model of compressible fluid dynamics coupled with grey radiation diffusion. Using the method of manufactured solutions, we show that the method is second-order accurate in space and time for both the equilibrium diffusion and streaming limit. (authors)

  15. A Low-Dose Ipsilateral Lung Restriction Improves 3-D Conformal Planning for Partial Breast Radiation Therapy

    SciTech Connect

    Mitchell, Tracy; Truong, Pauline T.; Salter, Lee; Graham, Cathy; Gaffney, Helene; Beckham, Wayne; Olivotto, Ivo A.

    2011-04-01

    In trials of 3D conformal external beam partial breast radiotherapy (PBRT), the dosimetrist must balance the priorities of achieving high conformity to the target versus minimizing low-dose exposure to the normal structures. This study highlights the caveat that in the absence of a low-dose lung restriction, the use of relatively en-face fields may meet trial-defined requirements but expose the ipsilateral lung to unnecessary low-dose radiation. Adding a low-dose restriction that {<=}20% of the ipsilateral lung should receive 10% of the prescribed dose resulted in successful plans in 88% of cases. This low-dose lung limit should be used in PBRT planning.

  16. Characterization of the first double-sided 3D radiation sensors fabricated at FBK on 6-inch silicon wafers

    NASA Astrophysics Data System (ADS)

    Sultan, D. M. S.; Mendicino, R.; Boscardin, M.; Ronchin, S.; Zorzi, N.; Dalla Betta, G.-F.

    2015-12-01

    Following 3D pixel sensor production for the ATLAS Insertable B-Layer, Fondazione Bruno Kessler (FBK) fabrication facility has recently been upgraded to process 6-inch wafers. In 2014, a test batch was fabricated to check for possible issues relevant to this upgrade. While maintaining a double-sided fabrication technology, some process modifications have been investigated. We report here on the technology and the design of this batch, and present selected results from the electrical characterization of sensors and test structures. Notably, the breakdown voltage is shown to exceed 200 V before irradiation, much higher than in earlier productions, demonstrating robustness in terms of radiation hardness for forthcoming productions aimed at High Luminosity LHC upgrades.

  17. Mapping tropical biodiversity using spectroscopic imagery : characterization of structural and chemical diversity with 3-D radiative transfer modeling

    NASA Astrophysics Data System (ADS)

    Feret, J. B.; Gastellu-Etchegorry, J. P.; Lefèvre-Fonollosa, M. J.; Proisy, C.; Asner, G. P.

    2014-12-01

    The accelerating loss of biodiversity is a major environmental trend. Tropical ecosystems are particularly threatened due to climate change, invasive species, farming and natural resources exploitation. Recent advances in remote sensing of biodiversity confirmed the potential of high spatial resolution spectroscopic imagery for species identification and biodiversity mapping. Such information bridges the scale-gap between small-scale, highly detailed field studies and large-scale, low-resolution satellite observations. In order to produce fine-scale resolution maps of canopy alpha-diversity and beta-diversity of the Peruvian Amazonian forest, we designed, applied and validated a method based on spectral variation hypothesis to CAO AToMS (Carnegie Airborne Observatory Airborne Taxonomic Mapping System) images, acquired from 2011 to 2013. There is a need to understand on a quantitative basis the physical processes leading to this spectral variability. This spectral variability mainly depends on canopy chemistry, structure, and sensor's characteristics. 3D radiative transfer modeling provides a powerful framework for the study of the relative influence of each of these factors in dense and complex canopies. We simulated series of spectroscopic images with the 3D radiative model DART, with variability gradients in terms of leaf chemistry, individual tree structure, spatial and spectral resolution, and applied methods for biodiversity mapping. This sensitivity study allowed us to determine the relative influence of these factors on the radiometric signal acquired by different types of sensors. Such study is particularly important to define the domain of validity of our approach, to refine requirements for the instrumental specifications, and to help preparing hyperspectral spatial missions to be launched at the horizon 2015-2025 (EnMAP, PRISMA, HISUI, SHALOM, HYSPIRI, HYPXIM). Simulations in preparation include topographic variations in order to estimate the robustness

  18. CRASH: A BLOCK-ADAPTIVE-MESH CODE FOR RADIATIVE SHOCK HYDRODYNAMICS-IMPLEMENTATION AND VERIFICATION

    SciTech Connect

    Van der Holst, B.; Toth, G.; Sokolov, I. V.; Myra, E. S.; Fryxell, B.; Drake, R. P.; Powell, K. G.; Holloway, J. P.; Stout, Q.; Adams, M. L.; Morel, J. E.; Karni, S.

    2011-06-01

    We describe the Center for Radiative Shock Hydrodynamics (CRASH) code, a block-adaptive-mesh code for multi-material radiation hydrodynamics. The implementation solves the radiation diffusion model with a gray or multi-group method and uses a flux-limited diffusion approximation to recover the free-streaming limit. Electrons and ions are allowed to have different temperatures and we include flux-limited electron heat conduction. The radiation hydrodynamic equations are solved in the Eulerian frame by means of a conservative finite-volume discretization in either one-, two-, or three-dimensional slab geometry or in two-dimensional cylindrical symmetry. An operator-split method is used to solve these equations in three substeps: (1) an explicit step of a shock-capturing hydrodynamic solver; (2) a linear advection of the radiation in frequency-logarithm space; and (3) an implicit solution of the stiff radiation diffusion, heat conduction, and energy exchange. We present a suite of verification test problems to demonstrate the accuracy and performance of the algorithms. The applications are for astrophysics and laboratory astrophysics. The CRASH code is an extension of the Block-Adaptive Tree Solarwind Roe Upwind Scheme (BATS-R-US) code with a new radiation transfer and heat conduction library and equation-of-state and multi-group opacity solvers. Both CRASH and BATS-R-US are part of the publicly available Space Weather Modeling Framework.

  19. Image Quality and Radiation Dose of CT Coronary Angiography with Automatic Tube Current Modulation and Strong Adaptive Iterative Dose Reduction Three-Dimensional (AIDR3D)

    PubMed Central

    Shen, Hesong; Dai, Guochao; Luo, Mingyue; Duan, Chaijie; Cai, Wenli; Liang, Dan; Wang, Xinhua; Zhu, Dongyun; Li, Wenru; Qiu, Jianping

    2015-01-01

    Purpose To investigate image quality and radiation dose of CT coronary angiography (CTCA) scanned using automatic tube current modulation (ATCM) and reconstructed by strong adaptive iterative dose reduction three-dimensional (AIDR3D). Methods Eighty-four consecutive CTCA patients were collected for the study. All patients were scanned using ATCM and reconstructed with strong AIDR3D, standard AIDR3D and filtered back-projection (FBP) respectively. Two radiologists who were blinded to the patients' clinical data and reconstruction methods evaluated image quality. Quantitative image quality evaluation included image noise, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR). To evaluate image quality qualitatively, coronary artery is classified into 15 segments based on the modified guidelines of the American Heart Association. Qualitative image quality was evaluated using a 4-point scale. Radiation dose was calculated based on dose-length product. Results Compared with standard AIDR3D, strong AIDR3D had lower image noise, higher SNR and CNR, their differences were all statistically significant (P<0.05); compared with FBP, strong AIDR3D decreased image noise by 46.1%, increased SNR by 84.7%, and improved CNR by 82.2%, their differences were all statistically significant (P<0.05 or 0.001). Segments with diagnostic image quality for strong AIDR3D were 336 (100.0%), 486 (96.4%), and 394 (93.8%) in proximal, middle, and distal part respectively; whereas those for standard AIDR3D were 332 (98.8%), 472 (93.7%), 378 (90.0%), respectively; those for FBP were 217 (64.6%), 173 (34.3%), 114 (27.1%), respectively; total segments with diagnostic image quality in strong AIDR3D (1216, 96.5%) were higher than those of standard AIDR3D (1182, 93.8%) and FBP (504, 40.0%); the differences between strong AIDR3D and standard AIDR3D, strong AIDR3D and FBP were all statistically significant (P<0.05 or 0.001). The mean effective radiation dose was (2.55±1.21) mSv. Conclusion

  20. Survey of Stereotactic Body Radiation Therapy in Japan by the Japan 3-D Conformal External Beam Radiotherapy Group

    SciTech Connect

    Nagata, Yasushi Hiraoka, Masahiro; Mizowaki, Takashi; Narita, Yuichiro; Matsuo, Yukinori; Norihisa, Yoshiki; Onishi, Hiroshi; Shirato, Hiroki

    2009-10-01

    Purpose: To recognize the current status of stereotactic body radiotherapy (SBRT) in Japan, using a nationwide survey conducted by the Japan 3-D Conformal External Beam Radiotherapy Group. Methods and Materials: The questionnaire was sent by mail to 117 institutions. Ninety-four institutions (80%) responded by the end of November 2005. Fifty-three institutions indicated that they have already started SBRT, and 38 institutions had been reimbursed by insurance. Results: A total of 1111 patients with histologically confirmed lung cancer were treated. Among these patients, 637 had T1N0M0 and 272 had T2N0M0 lung cancer. Metastatic lung cancer was found in 702 and histologically unconfirmed lung tumor in 291 patients. Primary liver cancer was found in 207 and metastatic liver cancer in 76 patients. The most frequent schedule used for primary lung cancer was 48Gy in 4 fractions at 22 institutions (52%), followed by 50Gy in 5 fractions at 11 institutions (26%) and 60Gy in 8 fractions at 4 institutions (10%). The tendency was the same for metastatic lung cancer. The average number of personnel involved in SBRT was 1.8 radiation oncologists, including 1.1 certified radiation oncologists, 2.8 technologists, 0.7 nurses, and 0.6 certified quality assurance personnel and 0.3 physicists. The most frequent amount of time for treatment planning was 61-120min, for quality assurance was 50-60min, and for treatment was 30min. There were 14 (0.6% of all cases) reported Grade 5 complications: 11 cases of radiation pneumonitis, 2 cases of hemoptysis, and 1 case of radiation esophagitis. Conclusion: The current status of SBRT in Japan was surveyed.

  1. Prostate and seminal vesicle volume based consideration of prostate cancer patients for treatment with 3D-conformal or intensity-modulated radiation therapy

    SciTech Connect

    Reddy, Nandanuri M. S.; Nori, Dattatreyudu; Chang, Hyesook; Lange, Christopher S.; Ravi, Akkamma

    2010-07-15

    Purpose: The purpose of this article was to determine the suitability of the prostate and seminal vesicle volumes as factors to consider patients for treatment with image-guided 3D-conformal radiation therapy (3D-CRT) or intensity-modulated radiation therapy (IMRT), using common dosimetry parameters as comparison tools. Methods: Dosimetry of 3D and IMRT plans for 48 patients was compared. Volumes of prostate, SV, rectum, and bladder, and prescriptions were the same for both plans. For both 3D and IMRT plans, expansion margins to prostate+SV (CTV) and prostate were 0.5 cm posterior and superior and 1 cm in other dimensions to create PTV and CDPTV, respectively. Six-field 3D plans were prepared retrospectively. For 3D plans, an additional 0.5 cm margin was added to PTV and CDPTV. Prescription for both 3D and IMRT plans was the same: 45 Gy to CTV followed by a 36 Gy boost to prostate. Dosimetry parameters common to 3D and IMRT plans were used for comparison: Mean doses to prostate, CDPTV, SV, rectum, bladder, and femurs; percent volume of rectum and bladder receiving 30 (V30), 50 (V50), and 70 Gy (V70), dose to 30% of rectum and bladder, minimum and maximum point dose to CDPTV, and prescription dose covering 95% of CDPTV (D95). Results: When the data for all patients were combined, mean dose to prostate and CDPTV was higher with 3D than IMRT plans (P<0.01). Mean D95 to CDPTV was the same for 3D and IMRT plans (P>0.2). On average, among all cases, the minimum point dose was less for 3D-CRT plans and the maximum point dose was greater for 3D-CRT than for IMRT (P<0.01). Mean dose to 30% rectum with 3D and IMRT plans was comparable (P>0.1). V30 was less (P<0.01), V50 was the same (P>0.2), and V70 was more (P<0.01) for rectum with 3D than IMRT plans. Mean dose to bladder was less with 3D than IMRT plans (P<0.01). V30 for bladder with 3D plans was less than that of IMRT plans (P<0.01). V50 and V70 for 3D plans were the same for 3D and IMRT plans (P>0.2). Mean dose to femurs

  2. Entropy-based artificial viscosity stabilization for non-equilibrium Grey Radiation-Hydrodynamics

    SciTech Connect

    Delchini, Marc O. Ragusa, Jean C. Morel, Jim

    2015-09-01

    The entropy viscosity method is extended to the non-equilibrium Grey Radiation-Hydrodynamic equations. The method employs a viscous regularization to stabilize the numerical solution. The artificial viscosity coefficient is modulated by the entropy production and peaks at shock locations. The added dissipative terms are consistent with the entropy minimum principle. A new functional form of the entropy residual, suitable for the Radiation-Hydrodynamic equations, is derived. We demonstrate that the viscous regularization preserves the equilibrium diffusion limit. The equations are discretized with a standard Continuous Galerkin Finite Element Method and a fully implicit temporal integrator within the MOOSE multiphysics framework. The method of manufactured solutions is employed to demonstrate second-order accuracy in both the equilibrium diffusion and streaming limits. Several typical 1-D radiation-hydrodynamic test cases with shocks (from Mach 1.05 to Mach 50) are presented to establish the ability of the technique to capture and resolve shocks.

  3. Sci—Thur AM: YIS - 07: Design and production of 3D printed bolus for electron radiation therapy

    SciTech Connect

    Su, Shiqin; Moran, Kathryn; Robar, James L.

    2014-08-15

    This is a proof-of-concept study demonstrating the capacity for modulated electron radiation therapy (MERT) using 3D printed bolus. Previous reports have involved bolus design using an electron pencil beam model and fabrication using a milling machine. In this study, an in-house algorithm is presented that optimizes the dose distribution with regard to dose coverage, conformity and homogeneity within planning target volume (PTV). The algorithm uses calculated result of a commercial electron Monte Carlo dose calculation as input. Distances along ray lines from distal side of 90% isodose to distal surface of PTV are used to estimate the bolus thickness. Inhomogeneities within the calculation volume are accounted for using coefficient of equivalent thickness method. Several regional modulation operators are applied to improve dose coverage and uniformity. The process is iterated (usually twice) until an acceptable MERT plan is realized, and the final bolus is printed using solid polylactic acid. The method is evaluated with regular geometric phantoms, anthropomorphic phantoms and a clinical rhabdomyosarcoma pediatric case. In all cases the dose conformity is improved compared to that with uniform bolus. The printed boluses conform well to the surface of complex anthropomorphic phantoms. For the rhabdomyosarcoma patient, the MERT plan yields a reduction of mean dose by 38.2% in left kidney relative to uniform bolus. MERT using 3D printed bolus appears to be a practical, low cost approach to generating optimized bolus for electron therapy. The method is effective in improving conformity of prescription isodose surface and in sparing immediately adjacent normal tissues.

  4. Internal structures of scaffold-free 3D cell cultures visualized by synchrotron radiation-based micro-computed tomography

    NASA Astrophysics Data System (ADS)

    Saldamli, Belma; Herzen, Julia; Beckmann, Felix; Tübel, Jutta; Schauwecker, Johannes; Burgkart, Rainer; Jürgens, Philipp; Zeilhofer, Hans-Florian; Sader, Robert; Müller, Bert

    2008-08-01

    Recently the importance of the third dimension in cell biology has been better understood, resulting in a re-orientation towards three-dimensional (3D) cultivation. Yet adequate tools for their morphological characterization have to be established. Synchrotron radiation-based micro computed tomography (SRμCT) allows visualizing such biological systems with almost isotropic micrometer resolution, non-destructively. We have applied SRμCT for studying the internal morphology of human osteoblast-derived, scaffold-free 3D cultures, termed histoids. Primary human osteoblasts, isolated from femoral neck spongy bone, were grown as 2D culture in non-mineralizing osteogenic medium until a rather thick, multi-cellular membrane was formed. This delicate system was intentionally released to randomly fold itself. The folded cell cultures were grown to histoids of cubic milli- or centimeter size in various combinations of mineralizing and non-mineralizing osteogenic medium for a total period of minimum 56 weeks. The SRμCT-measurements were performed in the absorption contrast mode at the beamlines BW 2 and W 2 (HASYLAB at DESY, Hamburg, Germany), operated by the GKSS-Research Center. To investigate the entire volume of interest several scans were performed under identical conditions and registered to obtain one single dataset of each sample. The histoids grown under different conditions exhibit similar external morphology of globular or ovoid shape. The SRμCT-examination revealed the distinctly different morphological structures inside the histoids. One obtains details of the histoids that permit to identify and select the most promising slices for subsequent histological characterization.

  5. ENZO+MORAY: radiation hydrodynamics adaptive mesh refinement simulations with adaptive ray tracing

    NASA Astrophysics Data System (ADS)

    Wise, John H.; Abel, Tom

    2011-07-01

    We describe a photon-conserving radiative transfer algorithm, using a spatially-adaptive ray-tracing scheme, and its parallel implementation into the adaptive mesh refinement cosmological hydrodynamics code ENZO. By coupling the solver with the energy equation and non-equilibrium chemistry network, our radiation hydrodynamics framework can be utilized to study a broad range of astrophysical problems, such as stellar and black hole feedback. Inaccuracies can arise from large time-steps and poor sampling; therefore, we devised an adaptive time-stepping scheme and a fast approximation of the optically-thin radiation field with multiple sources. We test the method with several radiative transfer and radiation hydrodynamics tests that are given in Iliev et al. We further test our method with more dynamical situations, for example, the propagation of an ionization front through a Rayleigh-Taylor instability, time-varying luminosities and collimated radiation. The test suite also includes an expanding H II region in a magnetized medium, utilizing the newly implemented magnetohydrodynamics module in ENZO. This method linearly scales with the number of point sources and number of grid cells. Our implementation is scalable to 512 processors on distributed memory machines and can include the radiation pressure and secondary ionizations from X-ray radiation. It is included in the newest public release of ENZO.

  6. SU-C-213-01: 3D Printed Patient Specific Phantom Composed of Bone and Soft Tissue Substitute Plastics for Radiation Therapy

    SciTech Connect

    Ehler, E; Sterling, D; Higgins, P

    2015-06-15

    Purpose: 3D printed phantoms constructed of multiple tissue approximating materials could be useful in both clinical and research aspects of radiotherapy. This work describes a 3D printed phantom constructed with tissue substitute plastics for both bone and soft tissue; air cavities were included as well. Methods: 3D models of an anonymized nasopharynx patient were generated for air cavities, soft tissues, and bone, which were segmented by Hounsfield Unit (HU) thresholds. HU thresholds were chosen to define air-to-soft tissue boundaries of 0.65 g/cc and soft tissue-to-bone boundaries of 1.18 g/cc based on clinical HU to density tables. After evaluation of several composite plastics, a bone tissue substitute was identified as an acceptable material for typical radiotherapy x-ray energies, composed of iron and PLA plastic. PET plastic was determined to be an acceptable soft tissue substitute. 3D printing was performed on a consumer grade dual extrusion fused deposition model 3D printer. Results: MVCT scans of the 3D printed heterogeneous phantom were acquired. Rigid image registration of the patient and the 3D printed phantom scans was performed. The average physical density of the soft tissue and bone regions was 1.02 ± 0.08 g/cc and 1.39 ± 0.14 g/cc, respectively, for the patient kVCT scan. In the 3D printed phantom MVCT scan, the average density of the soft tissue and bone was 1.01 ± 0.09 g/cc and 1.44 ± 0.12 g/cc, respectively. Conclusion: A patient specific phantom, constructed of heterogeneous tissue substitute materials was constructed by 3D printing. MVCT of the 3D printed phantom showed realistic tissue densities were recreated by the 3D printing materials. Funding provided by intra-department grant by University of Minnesota Department of Radiation Oncology.

  7. Self-consistent solution of cosmological radiation-hydrodynamics and chemical ionization

    SciTech Connect

    Reynolds, Daniel R. Hayes, John C. Paschos, Pascal Norman, Michael L.

    2009-10-01

    We consider a PDE system comprising compressible hydrodynamics, flux-limited diffusion radiation transport and chemical ionization kinetics in a cosmologically-expanding universe. Under an operator-split framework, the cosmological hydrodynamics equations are solved through the piecewise parabolic method, as implemented in the Enzo community hydrodynamics code. The remainder of the model, including radiation transport, chemical ionization kinetics, and gas energy feedback, form a stiff coupled PDE system, which we solve using a fully-implicit inexact Newton approach, and which forms the crux of this paper. The inner linear Newton systems are solved using a Schur complement formulation, and employ a multigrid-preconditioned conjugate gradient solver for the inner Schur systems. We describe this approach and provide results on a suite of test problems, demonstrating its accuracy, robustness, and scalability to very large problems.

  8. The 3D plant canopy radiative transfer analysis in an Alaskan black spruce forest: the characteristics of fraction of absorbed photosynthetically active radiation in the heterogeneous landscape

    NASA Astrophysics Data System (ADS)

    Kobayashi, H.; Suzuki, R.; Nagai, S.; Nakai, T.; Kim, Y.

    2012-12-01

    Over the last couple of decades, the three dimensional plant canopy radiative transfer models have been developed, improved and used for the retrievals of biophysical variables of vegetative surface. Fraction of absorbed photosynthetically active radiation (FAPAR) by plant canopy, a similar variable to heating rate in the atmosphere, is one of the important biophysical variables to infer the terrestrial plant canopy photosynthesis. FAPAR can be estimated by the radiative transfer model inversion or the empirical relationships between FAPAR and vegetation indices such as normalized difference vegetation index (NDVI). To date, some global FAPAR products are publicly available. These products are estimated from the moderate resolution satellites such as MODIS and SPOT-VEGETATION. One may apply the similar FAPAR algorithms to higher spatial resolution satellites if the ecosystem structures are horizontally homogeneous, which means that the adjacent satellite pixels have a similar spectral properties. If the vegetation surface is highly heterogeneous, "domain average FAPAR", which assumes no net horizontal radiation fluxes, can be unrealistically high (more than 1). In this presentation, we analyzed the characteristics of FAPAR in a heterogeneous landscape. As a case study, we selected our study site in a sparse black spruce forest in Alaska. We conducted the field campaigns to measure forest structural and optical properties that are used in the radiative transfer simulation. We used a 3D radiative transfer, FLiES (Kobayashi, H. and H. Iwabuchi (2008), A coupled 1-D atmosphere and 3-D canopy radiative transfer model for canopy reflectance, light environment, and photosynthesis simulation in a heterogeneous landscape, Remote Sensing of Environment, 112, 173-185) to create a high resolution simulated spectral reflectance and FAPAR images over the course of the growing season. From the analysis, we show (1) FAPAR with no net horizontal fluxes assumption can be higher than

  9. Dosimetric study for cervix carcinoma treatment using intensity modulated radiation therapy (IMRT) compensation based on 3D intracavitary brachytherapy technique

    PubMed Central

    Yin, Gang; Wang, Pei; Lang, Jinyi; Tian, Yin; Luo, Yangkun; Fan, Zixuan

    2016-01-01

    Purpose Intensity modulated radiation therapy (IMRT) compensation based on 3D high-dose-rate (HDR) intracavitary brachytherapy (ICBT) boost technique (ICBT + IMRT) has been used in our hospital for advanced cervix carcinoma patients. The purpose of this study was to compare the dosimetric results of the four different boost techniques (the conventional 2D HDR intracavitary brachytherapy [CICBT], 3D optimized HDR intracavitary brachytherapy [OICBT], and IMRT-alone with the applicator in situ). Material and methods For 30 patients with locally advanced cervical carcinoma, after the completion of external beam radiotherapy (EBRT) for whole pelvic irradiation 45 Gy/25 fractions, five fractions of ICBT + IMRT boost with 6 Gy/fractions for high risk clinical target volume (HRCTV), and 5 Gy/fractions for intermediate risk clinical target volume (IRCTV) were applied. Computed tomography (CT) and magnetic resonance imaging (MRI) scans were acquired using an in situ CT/MRI-compatible applicator. The gross tumor volume (GTV), the high/intermediate-risk clinical target volume (HRCTV/IRCTV), bladder, rectum, and sigmoid were contoured by CT scans. Results For ICBT + IMRT plan, values of D90, D100 of HRCTV, D90, D100, and V100 of IRCTV significantly increased (p < 0.05) in comparison to OICBT and CICBT. The D2cc values for bladder, rectum, and sigmoid were significantly lower than that of CICBT and IMRT alone. In all patients, the mean rectum V60 Gy values generated from ICBT + IMRT and OICBT techniques were very similar but for bladder and sigmoid, the V60 Gy values generated from ICBT + IMRT were higher than that of OICBT. For the ICBT + IMRT plan, the standard deviations (SD) of D90 and D2cc were found to be lower than other three treatment plans. Conclusions The ICBT + IMRT technique not only provides good target coverage but also maintains low doses (D2cc) to the OAR. ICBT + IMRT is an optional technique to boost parametrial region or tumor of large size and irregular shape

  10. A WRF simulation of the impact of 3-D radiative transfer on surface hydrology over the Rocky Mountains and Sierra Nevada

    NASA Astrophysics Data System (ADS)

    Liou, K. N.; Gu, Y.; Leung, L. R.; Lee, W. L.; Fovell, R. G.

    2013-12-01

    We investigate 3-D mountains/snow effects on solar flux distributions and their impact on surface hydrology over the western United States, specifically the Rocky Mountains and Sierra Nevada. The Weather Research and Forecasting (WRF) model, applied at a 30 km grid resolution, is used in conjunction with a 3-D radiative transfer parameterization covering a time period from 1 November 2007 to 31 May 2008, during which abundant snowfall occurred. A comparison of the 3-D WRF simulation with the observed snow water equivalent (SWE) and precipitation from Snowpack Telemetry (SNOTEL) sites shows reasonable agreement in terms of spatial patterns and daily and seasonal variability, although the simulation generally has a positive precipitation bias. We show that 3-D mountain features have a profound impact on the diurnal and monthly variation of surface radiative and heat fluxes, and on the consequent elevation-dependence of snowmelt and precipitation distributions. In particular, during the winter months, large deviations (3-D-PP, in which PP denotes the plane-parallel approach) of the monthly mean surface solar flux are found in the morning and afternoon hours due to shading effects for elevations below 2.5 km. During spring, positive deviations shift to the earlier morning. Over mountaintops higher than 3 km, positive deviations are found throughout the day, with the largest values of 40-60 W m-2 occurring at noon during the snowmelt season of April to May. The monthly SWE deviations averaged over the entire domain show an increase in lower elevations due to reduced snowmelt, which leads to a reduction in cumulative runoff. Over higher elevation areas, positive SWE deviations are found because of increased solar radiation available at the surface. Overall, this study shows that deviations of SWE due to 3-D radiation effects range from an increase of 18% at the lowest elevation range (1.5-2 km) to a decrease of 8% at the highest elevation range (above 3 km). Since lower

  11. A WRF simulation of the impact of 3-D radiative transfer on surface hydrology over the Rocky Mountains and Sierra Nevada

    SciTech Connect

    Liou, K. N.; Gu, Y.; Leung, L. R.; Lee, W. L.; Fovell, R. G.

    2013-01-01

    We investigate 3-D mountains/snow effects on solar flux distributions and their impact on surface hydrology over the western United States, specifically the Rocky Mountains and Sierra Nevada. The Weather Research and Forecasting (WRF) model, applied at a 30 km grid resolution, is used in conjunction with a 3-D radiative transfer parameterization covering a time period from 1 November 2007 to 31 May 2008, during which abundant snowfall occurred. A comparison of the 3-D WRF simulation with the observed snow water equivalent (SWE) and precipitation from Snowpack Telemetry (SNOTEL) sites shows reasonable agreement in terms of spatial patterns and daily and seasonal variability, although the simulation generally has a positive precipitation bias. We show that 3-D mountain features have a profound impact on the diurnal and monthly variation of surface radiative and heat fluxes, and on the consequent elevation-dependence of snowmelt and precipitation distributions. In particular, during the winter months, large deviations (3-D-PP, in which PP denotes the plane-parallel approach) of the monthly mean surface solar flux are found in the morning and afternoon hours due to shading effects for elevations below 2.5 km. During spring, positive deviations shift to the earlier morning. Over mountaintops higher than 3 km, positive deviations are found throughout the day, with the largest values of 40–60 W m-2 occurring at noon during the snowmelt season of April to May. The monthly SWE deviations averaged over the entire domain show an increase in lower elevations due to reduced snowmelt, which leads to a reduction in cumulative runoff. Over higher elevation areas, positive SWE deviations are found because of increased solar radiation available at the surface. Overall, this study shows that deviations of SWE due to 3-D radiation effects range from an increase of 18% at the lowest elevation range (1.5–2 km) to a decrease of 8% at the highest elevation range (above 3 km

  12. DRACO development for 3D simulations

    NASA Astrophysics Data System (ADS)

    Fatenejad, Milad; Moses, Gregory

    2006-10-01

    The DRACO (r-z) lagrangian radiation-hydrodynamics laser fusion simulation code is being extended to model 3D hydrodynamics in (x-y-z) coordinates with hexahedral cells on a structured grid. The equation of motion is solved with a lagrangian update with optional rezoning. The fluid equations are solved using an explicit scheme based on (Schulz, 1964) while the SALE-3D algorithm (Amsden, 1981) is used as a template for computing cell volumes and other quantities. A second order rezoner has been added which uses linear interpolation of the underlying continuous functions to preserve accuracy (Van Leer, 1976). Artificial restoring force terms and smoothing algorithms are used to avoid grid distortion in high aspect ratio cells. These include alternate node couplers along with a rotational restoring force based on the Tensor Code (Maenchen, 1964). Electron and ion thermal conduction is modeled using an extension of Kershaw's method (Kershaw, 1981) to 3D geometry. Test problem simulations will be presented to demonstrate the applicability of this new version of DRACO to the study of fluid instabilities in three dimensions.

  13. Testing astrophysical radiation hydrodynamics codes with hypervelocity jet experiments on the nova laser

    SciTech Connect

    Estabrook, K; Farley, D; Glendinning, S G; Remington, B A; Stone, J; Turner, N

    1999-09-22

    Recent shock tube experiments using the Nova laser facility have demonstrated that strong shocks and highly supersonic flows similar to those encountered in astrophysical jets can be studied in detail through carefully controlled experiment. We propose the use of high power lasers such as Nova, Omega, and NIF to perform experiments on radiation hydrodynamic problems such as jets involving the multidimensional dynamics of strong shocks. High power lasers are the only experimental facilities that can reach the very high Mach number regime. The experiments will serve both as diagnostics of astrophysically interesting gas dynamic problems, and could also form the basis of test problems for numerical algorithms for astrophysical radiation hydrodynamic codes, The potential for experimentally achieving a strongly radiative jet seems very good.

  14. Hybrid MV-kV 3D respiratory motion tracking during radiation therapy with low imaging dose

    NASA Astrophysics Data System (ADS)

    Yan, Huagang; Li, Haiyun; Liu, Zhixiang; Nath, Ravinder; Liu, Wu

    2012-12-01

    A novel real-time adaptive MV-kV imaging framework for image-guided radiation therapy is developed to reduce the thoracic and abdominal tumor targeting uncertainty caused by respiration-induced intrafraction motion with ultra-low patient imaging dose. In our method, continuous stereoscopic MV-kV imaging is used at the beginning of a radiation therapy delivery for several seconds to measure the implanted marker positions. After this stereoscopic imaging period, the kV imager is switched off except for the times when no fiducial marker is detected in the cine-MV images. The 3D time-varying marker positions are estimated by combining the MV 2D projection data and the motion correlations between directional components of marker motion established from the stereoscopic imaging period and updated afterwards; in particular, the most likely position is assumed to be the position on the projection line that has the shortest distance to the first principal component line segment constructed from previous trajectory points. An adaptive windowed auto-regressive prediction is utilized to predict the marker position a short time later (310 ms and 460 ms in this study) to allow for tracking system latency. To demonstrate the feasibility and evaluate the accuracy of the proposed method, computer simulations were performed for both arc and fixed-gantry deliveries using 66 h of retrospective tumor motion data from 42 patients treated for thoracic or abdominal cancers. The simulations reveal that using our hybrid approach, a smaller than 1.2 mm or 1.5 mm root-mean-square tracking error can be achieved at a system latency of 310 ms or 460 ms, respectively. Because the kV imaging is only used for a short period of time in our method, extra patient imaging dose can be reduced by an order of magnitude compared to continuous MV-kV imaging, while the clinical tumor targeting accuracy for thoracic or abdominal cancers is maintained. Furthermore, no additional hardware is required with the

  15. 3D Cloud Radiative Effects on Aerosol Optical Thickness Retrievals in Cumulus Cloud Fields in the Biomass Burning Region in Brazil

    NASA Technical Reports Server (NTRS)

    Wen, Guo-Yong; Marshak, Alexander; Cahalan, Robert F.

    2004-01-01

    Aerosol amount in clear regions of a cloudy atmosphere is a critical parameter in studying the interaction between aerosols and clouds. Since the global cloud cover is about 50%, cloudy scenes are often encountered in any satellite images. Aerosols are more or less transparent, while clouds are extremely reflective in the visible spectrum of solar radiation. The radiative transfer in clear-cloudy condition is highly three- dimensional (3D). This paper focuses on estimating the 3D effects on aerosol optical thickness retrievals using Monte Carlo simulations. An ASTER image of cumulus cloud fields in the biomass burning region in Brazil is simulated in this study. The MODIS products (i-e., cloud optical thickness, particle effective radius, cloud top pressure, surface reflectance, etc.) are used to construct the cloud property and surface reflectance fields. To estimate the cloud 3-D effects, we assume a plane-parallel stratification of aerosol properties in the 60 km x 60 km ASTER image. The simulated solar radiation at the top of the atmosphere is compared with plane-parallel calculations. Furthermore, the 3D cloud radiative effects on aerosol optical thickness retrieval are estimated.

  16. Radiochromic 3D Detectors

    NASA Astrophysics Data System (ADS)

    Oldham, Mark

    2015-01-01

    Radiochromic materials exhibit a colour change when exposed to ionising radiation. Radiochromic film has been used for clinical dosimetry for many years and increasingly so recently, as films of higher sensitivities have become available. The two principle advantages of radiochromic dosimetry include greater tissue equivalence (radiologically) and the lack of requirement for development of the colour change. In a radiochromic material, the colour change arises direct from ionising interactions affecting dye molecules, without requiring any latent chemical, optical or thermal development, with important implications for increased accuracy and convenience. It is only relatively recently however, that 3D radiochromic dosimetry has become possible. In this article we review recent developments and the current state-of-the-art of 3D radiochromic dosimetry, and the potential for a more comprehensive solution for the verification of complex radiation therapy treatments, and 3D dose measurement in general.

  17. Recommendations from gynaecological (GYN) GEC ESTRO working group (II): concepts and terms in 3D image-based treatment planning in cervix cancer brachytherapy-3D dose volume parameters and aspects of 3D image-based anatomy, radiation physics, radiobiology.

    PubMed

    Pötter, Richard; Haie-Meder, Christine; Van Limbergen, Erik; Barillot, Isabelle; De Brabandere, Marisol; Dimopoulos, Johannes; Dumas, Isabelle; Erickson, Beth; Lang, Stefan; Nulens, An; Petrow, Peter; Rownd, Jason; Kirisits, Christian

    2006-01-01

    The second part of the GYN GEC ESTRO working group recommendations is focused on 3D dose-volume parameters for brachytherapy of cervical carcinoma. Methods and parameters have been developed and validated from dosimetric, imaging and clinical experience from different institutions (University of Vienna, IGR Paris, University of Leuven). Cumulative dose volume histograms (DVH) are recommended for evaluation of the complex dose heterogeneity. DVH parameters for GTV, HR CTV and IR CTV are the minimum dose delivered to 90 and 100% of the respective volume: D90, D100. The volume, which is enclosed by 150 or 200% of the prescribed dose (V150, V200), is recommended for overall assessment of high dose volumes. V100 is recommended for quality assessment only within a given treatment schedule. For Organs at Risk (OAR) the minimum dose in the most irradiated tissue volume is recommended for reporting: 0.1, 1, and 2 cm3; optional 5 and 10 cm3. Underlying assumptions are: full dose of external beam therapy in the volume of interest, identical location during fractionated brachytherapy, contiguous volumes and contouring of organ walls for >2 cm3. Dose values are reported as absorbed dose and also taking into account different dose rates. The linear-quadratic radiobiological model-equivalent dose (EQD2)-is applied for brachytherapy and is also used for calculating dose from external beam therapy. This formalism allows systematic assessment within one patient, one centre and comparison between different centres with analysis of dose volume relations for GTV, CTV, and OAR. Recommendations for the transition period from traditional to 3D image-based cervix cancer brachytherapy are formulated. Supplementary data (available in the electronic version of this paper) deals with aspects of 3D imaging, radiation physics, radiation biology, dose at reference points and dimensions and volumes for the GTV and CTV (adding to [Haie-Meder C, Pötter R, Van Limbergen E et al. Recommendations from

  18. New BNL 3D-Trench Electrode Si Detectors for Radiation Hard Detectors for sLHC and for X-ray Applications

    SciTech Connect

    Li Z.

    2011-05-11

    A new international-patent-pending (PCT/US2010/52887) detector type, named here as 3D-Trench electrode Si detectors, is proposed in this work. In this new 3D electrode configuration, one or both types of electrodes are etched as trenches deep into the Si (fully penetrating with SOI or supporting wafer, or non-fully penetrating into 50-90% of the thickness), instead of columns as in the conventional ('standard') 3D electrode Si detectors. With trench etched electrodes, the electric field in the new 3D electrode detectors are well defined without low or zero field regions. Except near both surfaces of the detector, the electric field in the concentric type 3D-Trench electrode Si detectors is nearly radial with little or no angular dependence in the circular and hexangular (concentric-type) pixel cell geometries. In the case of parallel plate 3D trench pixels, the field is nearly linear (like the planar 2D electrode detectors), with simple and well-defined boundary conditions. Since each pixel cell in a 3D-Trench electrode detector is isolated from others by highly doped trenches, it is an electrically independent cell. Therefore, an alternative name 'Independent Coaxial Detector Array', or ICDA, is assigned to an array of 3D-Trench electrode detectors. The electric field in the detector can be reduced by a factor of nearly 10 with an optimal 3D-Trench configuration where the junction is on the surrounding trench side. The full depletion voltage in this optimal configuration can be up to 7 times less than that of a conventional 3D detector, and even a factor of two less than that of a 2D planar detector with a thickness the same as the electrode spacing in the 3D-Trench electrode detector. In the case of non-fully penetrating trench electrodes, the processing is true one-sided with backside being unprocessed. The charge loss due to the dead space associated with the trenches is insignificant as compared to that due to radiation-induced trapping in sLHC environment

  19. New BNL 3D-Trench electrode Si detectors for radiation hard detectors for sLHC and for X-ray applications

    NASA Astrophysics Data System (ADS)

    Li, Zheng

    2011-12-01

    A new international-patent-pending (PCT/US2010/52887) detector type, named here as 3D-Trench electrode Si detectors, is proposed in this work. In this new 3D electrode configuration, one or both types of electrodes are etched as trenches deep into the Si (fully penetrating with SOI or supporting wafer, or non-fully penetrating into 50-90% of the thickness), instead of columns as in the conventional ("standard") 3D electrode Si detectors. With trench etched electrodes, the electric field in the new 3D electrode detectors are well defined without low or zero field regions. Except near both surfaces of the detector, the electric field in the concentric type 3D-Trench electrode Si detectors is nearly radial with little or no angular dependence in the circular and hexangular (concentric-type) pixel cell geometries. In the case of parallel plate 3D trench pixels, the field is nearly linear (like the planar 2D electrode detectors), with simple and well-defined boundary conditions. Since each pixel cell in a 3D-Trench electrode detector is isolated from others by highly doped trenches, it is an electrically independent cell. Therefore, an alternative name "Independent Coaxial Detector Array", or ICDA, is assigned to an array of 3D-Trench electrode detectors. The electric field in the detector can be reduced by a factor of nearly 10 with an optimal 3D-Trench configuration where the junction is on the surrounding trench side. The full depletion voltage in this optimal configuration can be up to 7 times less than that of a conventional 3D detector, and even a factor of two less than that of a 2D planar detector with a thickness the same as the electrode spacing in the 3D-Trench electrode detector. In the case of non-fully penetrating trench electrodes, the processing is true one-sided with backside being unprocessed. The charge loss due to the dead space associated with the trenches is insignificant as compared to that due to radiation-induced trapping in sLHC environment

  20. A comparative analysis of 3D conformal deep inspiratory–breath hold and free-breathing intensity-modulated radiation therapy for left-sided breast cancer

    SciTech Connect

    Reardon, Kelli A.; Read, Paul W.; Morris, Monica M.; Reardon, Michael A.; Geesey, Constance; Wijesooriya, Krishni

    2013-07-01

    Patients undergoing radiation for left-sided breast cancer have increased rates of coronary artery disease. Free-breathing intensity-modulated radiation therapy (FB-IMRT) and 3-dimensional conformal deep inspiratory–breath hold (3D-DIBH) reduce cardiac irradiation. The purpose of this study is to compare the dose to organs at risk in FB-IMRT vs 3D-DIBH for patients with left-sided breast cancer. Ten patients with left-sided breast cancer had 2 computed tomography scans: free breathing and voluntary DIBH. Optimization of the IMRT plan was performed on the free-breathing scan using 6 noncoplanar tangential beams. The 3D-DIBH plan was optimized on the DIBH scan and used standard tangents. Mean volumes of the heart, the left anterior descending coronary artery (LAD), the total lung, and the right breast receiving 5% to 95% (5% increments) of the prescription dose were calculated. Mean volumes of the heart and the LAD were lower (p<0.05) in 3D-DIBH for volumes receiving 5% to 80% of the prescription dose for the heart and 5% for the LAD. Mean dose to the LAD and heart were lower in 3D-DIBH (p≤0.01). Mean volumes of the total lung were lower in FB-IMRT for dose levels 20% to 75% (p<0.05), but mean dose was not different. Mean volumes of the right breast were not different for any dose; however, mean dose was lower for 3D-DIBH (p = 0.04). 3D-DIBH is an alternative approach to FB-IMRT that provides a clinically equivalent treatment for patients with left-sided breast cancer while sparing organs at risk with increased ease of implementation.

  1. Stellar, brown dwarf and multiple star properties from a radiation hydrodynamical simulation of star cluster formation

    NASA Astrophysics Data System (ADS)

    Bate, Matthew R.

    2012-02-01

    We report the statistical properties of stars, brown dwarfs and multiple systems obtained from the largest radiation hydrodynamical simulation of star cluster formation to date that resolves masses down to the opacity limit for fragmentation (a few Jupiter masses). The initial conditions are identical to those of previous barotropic calculations published by Bate, but this time the calculation is performed using a realistic equation of state and radiation hydrodynamics. The calculation uses sink particles to model 183 stars and brown dwarfs, including 28 binaries and 12 higher-order multiple systems, the properties of which are compared to the results from observational surveys. We find that the radiation hydrodynamical/sink particle simulation reproduces many observed stellar properties very well. In particular, whereas using a barotropic equation of state produces more brown dwarfs than stars, the inclusion of radiative feedback results in a stellar mass function and a ratio of brown dwarfs to stars in good agreement with observations of Galactic star-forming regions. In addition, many of the other statistical properties of the stars and brown dwarfs are in reasonable agreement with observations, including multiplicity as a function of primary mass, the frequency of very low mass binaries, and general trends for the mass ratio and separation distributions of binaries. We also examine the velocity dispersion of the stars, the distributions of disc truncation radii due to dynamical interactions, and coplanarity of orbits and sink particle spins in multiple systems. Overall, the calculation produces a cluster of stars whose statistical properties are difficult to distinguish from observed systems, implying that gravity, hydrodynamics and radiative feedback are the primary ingredients for determining the origin of the statistical properties of low-mass stars.

  2. Computation of Solar Radiative Fluxes by 1D and 3D Methods Using Cloudy Atmospheres Inferred from A-train Satellite Data

    NASA Technical Reports Server (NTRS)

    Barker, Howard W.; Kato, Serji; Wehr, T.

    2012-01-01

    The main point of this study was to use realistic representations of cloudy atmospheres to assess errors in solar flux estimates associated with 1D radiative transfer models. A scene construction algorithm, developed for the EarthCARE satellite mission, was applied to CloudSat, CALIPSO, and MODIS satellite data thus producing 3D cloudy atmospheres measuring 60 km wide by 13,000 km long at 1 km grid-spacing. Broadband solar fluxes and radiances for each (1 km)2 column where then produced by a Monte Carlo photon transfer model run in both full 3D and independent column approximation mode (i.e., a 1D model).

  3. Genotoxic Effects of Low- and High-LET Radiation on Human Epithelial Cells Grown in 2-D Versus 3-D Culture

    NASA Technical Reports Server (NTRS)

    Patel, Z. S.; Cucinotta, F. A.; Huff, J. L.

    2011-01-01

    Risk estimation for radiation-induced cancer relies heavily on human epidemiology data obtained from terrestrial irradiation incidents from sources such as medical and occupational exposures as well as from the atomic bomb survivors. No such data exists for exposures to the types and doses of high-LET radiation that will be encountered during space travel; therefore, risk assessment for space radiation requires the use of data derived from cell culture and animal models. The use of experimental models that most accurately replicate the response of human tissues is critical for precision in risk projections. This work compares the genotoxic effects of radiation on normal human epithelial cells grown in standard 2-D monolayer culture compared to 3-D organotypic co-culture conditions. These 3-D organotypic models mimic the morphological features, differentiation markers, and growth characteristics of fully-differentiated normal human tissue and are reproducible using defined components. Cultures were irradiated with 2 Gy low-LET gamma rays or varying doses of high-LET particle radiation and genotoxic damage was measured using a modified cytokinesis block micronucleus assay. Our results revealed a 2-fold increase in residual damage in 2 Gy gamma irradiated cells grown under organotypic culture conditions compared to monolayer culture. Irradiation with high-LET particle radiation gave similar results, while background levels of damage were comparable under both scenarios. These observations may be related to the phenomenon of "multicellular resistance" where cancer cells grown as 3-D spheroids or in vivo exhibit an increased resistance to killing by chemotherapeutic agents compared to the same cells grown in 2-D culture. A variety of factors are likely involved in mediating this process, including increased cell-cell communication, microenvironment influences, and changes in cell cycle kinetics that may promote survival of damaged cells in 3-D culture that would

  4. General relativistic radiation hydrodynamics of accretion flows - II. Treating stiff source terms and exploring physical limitations

    NASA Astrophysics Data System (ADS)

    Roedig, C.; Zanotti, O.; Alic, D.

    2012-10-01

    We present the implementation of an implicit-explicit (IMEX) Runge-Kutta numerical scheme for general relativistic (GR) hydrodynamics coupled to an optically thick radiation field in two existing GR-(magneto)hydrodynamics codes. We argue that the necessity of such an improvement arises naturally in most astrophysically relevant regimes where the optical thickness is high as the equations become stiff. By performing several simple 1D tests, we verify the codes' new ability to deal with this stiffness and show consistency. Then, still in one spatial dimension, we compute a luminosity versus accretion rate diagram for the set-up of spherical accretion on to a Schwarzschild black hole and find good agreement with previous work which included more radiation processes than we currently have available. Lastly, we revisit the supersonic Bondi-Hoyle-Lyttleton (BHL) accretion in two dimensions where we can now present simulations of realistic temperatures, down to T ˜ 106 K or less. Here we find that radiation pressure plays an important role, but also that these highly dynamical set-ups push our approximate treatment towards the limit of physical applicability. The main features of radiation hydrodynamics BHL flows manifest as (i) an effective adiabatic index approaching γeff ˜ 4/3; (ii) accretion rates two orders of magnitude lower than without radiation pressure, but still super-Eddington; (iii) luminosity estimates around the Eddington limit, hence with an overall radiative efficiency as small as ηBHL˜10-2; (iv) strong departures from thermal equilibrium in shocked regions; (v) no appearance of the flip-flop instability. We conclude that the current optically thick approximation to the radiation transfer does give physically substantial improvements over the pure hydro also in set-ups departing from equilibrium, and, once accompanied by an optically thin treatment, is likely to provide a fundamental tool for investigating accretion flows in a large variety of

  5. Parameterization of 3D Radiative Transfer over Mountains and Investigation of its Impact on Surface Hydrology over the Western United States Using WRF

    NASA Astrophysics Data System (ADS)

    Gu, Y.; Liou, K.; Leung, L.; Lee, W.; Fovell, R. G.

    2013-12-01

    Modern climate models have used a plane-parallel (PP) radiative transfer approach in physics parameterizations; however, the potential errors that arise from neglecting three-dimensional (3D) interactions between radiation and mountains/snow on climate simulations have not been studied and quantified. We have developed a surface solar radiation parameterization based on the regression analysis of flux deviations between 3D and conventional PP radiative transfer models, which has been incorporated into the Weather Research and Forecasting (WRF) model to investigate the impact of the spatial and temporal distribution and variation of surface solar fluxes on surface hydrology. Using the Rocky and Sierra-Nevada Mountains in the Western United States as a testbed, the WRF model with the incorporation of the 3D parameterization is applied at a 30 km grid resolution covering a time period from November 1, 2007 to May 31, 2008 during which abundant snowfall occurred. Comparison of the 3D WRF simulation with the observed snow water equivalent (SWE) and precipitation from Snowpack Telemetry (SNOTEL) sites shows reasonable agreement in terms of spatial patterns and daily and seasonal variability, although the simulation generally has a positive precipitation bias. We show that 3D mountain features have a profound impact on the diurnal and monthly variation of surface radiative and heat fluxes and on the consequent elevation-dependence of snowmelt and precipitation distributions. For lower elevations, positive deviations (3D - PP) of the monthly mean surface solar flux are found in the morning and afternoon hours, while negative deviations are shown between 10 am-2 pm during the winter months, leading to reduced diurnal variations. Over the mountain tops above 3 km, positive deviations are found throughout the day, with the largest values of 40 - 60 W/m2 occurring at noon during the snowmelt season of April to May. The monthly SWE deviations averaged over the entire domain

  6. AGN Obscuration Through Dusty Infrared Dominated Flows. II. Multidimensional, Radiation-Hydrodynamics Modeling

    NASA Technical Reports Server (NTRS)

    Dorodnitsyn, Anton; Kallman, Tim; Bisno\\vatyiI-Kogan, Gennadyi

    2011-01-01

    We explore a detailed model in which the active galactic nucleus (AGN) obscuration results from the extinction of AGN radiation in a global ow driven by the pressure of infrared radiation on dust grains. We assume that external illumination by UV and soft X-rays of the dusty gas located at approximately 1pc away from the supermassive black hole is followed by a conversion of such radiation into IR. Using 2.5D, time-dependent radiation hydrodynamics simulations in a ux-limited di usion approximation we nd that the external illumination can support a geometrically thick obscuration via out ows driven by infrared radiation pressure in AGN with luminosities greater than 0:05 L(sub edd) and Compton optical depth, Tau(sub T) approx > & 1.

  7. Time-dependent two-dimensional radiation hydrodynamics of accreting matter onto highly magnetized neutron stars

    SciTech Connect

    Klein, R.I. . Dept. of Astronomy Lawrence Livermore National Lab., CA ); Arons, J. . Dept. of Astronomy California Univ., Berkeley, CA . Dept. of Physics)

    1990-11-20

    We present for the first time, the self-consistent solution of the two-dimensional, time-dependent equations of radiation-hydrodynamics governing the accretion of matter onto the highly magnetized polar caps of luminous x-ray pulsars. The calculations show a structure in the accretion column very different from previous one-zone uniform models. We have included all the relevant magnetic field corrections to both the hydrodynamics and the radiative transport. We include a new theory for the diffusion and advection of both radiation energy density and photon number density. For initially uniformly accreting models with super-Eddington flows, we have uncovered evidence of strong radiation-driven outflowing optically thin radiation filled regions of the accretion column embedded in optically-thick inflowing plasma. We follow the evolution of these photon bubbles for several dynamical timescales. The development of these photon bubbles'' indicates growth times on the order of a millisecond and show fluctuations on sub-millisecond timescales in agreement with a linear stability analysis. The photon bubbles are a consequence of the effect of radiative heat flux on the internal gravity waves in the strongly magnetized atmosphere and may result in observable fluctuations in the emitted luminosity leading to luminosity dependent changes in the pulse profile. This may provide important new diagnostics for conditions in accreting x-ray pulsars. 19 refs., 13 figs.

  8. Schur-decomposition for 3D matrix equations and its application in solving radiative discrete ordinates equations discretized by Chebyshev collocation spectral method

    SciTech Connect

    Li Benwen Tian Shuai; Sun Yasong; Hu, Zhang-Mao

    2010-02-20

    The Schur-decomposition for three-dimensional matrix equations is developed and used to directly solve the radiative discrete ordinates equations which are discretized by Chebyshev collocation spectral method. Three methods, say, the spectral methods based on 2D and 3D matrix equation solvers individually, and the standard discrete ordinates method, are presented. The numerical results show the good accuracy of spectral method based on direct solvers. The CPU time cost comparisons against the resolutions between these three methods are made using MATLAB and FORTRAN 95 computer languages separately. The results show that the CPU time cost of Chebyshev collocation spectral method with 3D Schur-decomposition solver is the least, and almost only one thirtieth to one fiftieth CPU time is needed when using the spectral method with 3D Schur-decomposition solver compared with the standard discrete ordinates method.

  9. SU-E-J-200: A Dosimetric Analysis of 3D Versus 4D Image-Based Dose Calculation for Stereotactic Body Radiation Therapy in Lung Tumors

    SciTech Connect

    Ma, M; Rouabhi, O; Flynn, R; Xia, J; Bayouth, J

    2014-06-01

    Purpose: To evaluate the dosimetric difference between 3D and 4Dweighted dose calculation using patient specific respiratory trace and deformable image registration for stereotactic body radiation therapy in lung tumors. Methods: Two dose calculation techniques, 3D and 4D-weighed dose calculation, were used for dosimetric comparison for 9 lung cancer patients. The magnitude of the tumor motion varied from 3 mm to 23 mm. Breath-hold exhale CT was used for 3D dose calculation with ITV generated from the motion observed from 4D-CT. For 4D-weighted calculation, dose of each binned CT image from the ten breathing amplitudes was first recomputed using the same planning parameters as those used in the 3D calculation. The dose distribution of each binned CT was mapped to the breath-hold CT using deformable image registration. The 4D-weighted dose was computed by summing the deformed doses with the temporal probabilities calculated from their corresponding respiratory traces. Dosimetric evaluation criteria includes lung V20, mean lung dose, and mean tumor dose. Results: Comparing with 3D calculation, lung V20, mean lung dose, and mean tumor dose using 4D-weighted dose calculation were changed by −0.67% ± 2.13%, −4.11% ± 6.94% (−0.36 Gy ± 0.87 Gy), −1.16% ± 1.36%(−0.73 Gy ± 0.85 Gy) accordingly. Conclusion: This work demonstrates that conventional 3D dose calculation method may overestimate the lung V20, MLD, and MTD. The absolute difference between 3D and 4D-weighted dose calculation in lung tumor may not be clinically significant. This research is supported by Siemens Medical Solutions USA, Inc and Iowa Center for Research By Undergraduates.

  10. A Comparison of Helical Intensity-Modulated Radiotherapy, Intensity-Modulated Radiotherapy, and 3D-Conformal Radiation Therapy for Pancreatic Cancer

    SciTech Connect

    Poppe, Matthew M.; Narra, Venkat; Yue, Ning J.; Zhou Jinghao; Nelson, Carl; Jabbour, Salma K.

    2011-01-01

    We assessed dosimetric differences in pancreatic cancer radiotherapy via helical intensity-modulated radiotherapy (HIMRT), linac-based IMRT, and 3D-conformal radiation therapy (3D-CRT) with regard to successful plan acceptance and dose to critical organs. Dosimetric analysis was performed in 16 pancreatic cases that were planned to 54 Gy; both post-pancreaticoduodenectomy (n = 8) and unresected (n = 8) cases were compared. Without volume modification, plans met constraints 75% of the time with HIMRT and IMRT and 13% with 3D-CRT. There was no statistically significantly improvement with HIMRT over conventional IMRT in reducing liver V35, stomach V45, or bowel V45. HIMRT offers improved planning target volume (PTV) dose homogeneity compared with IMRT, averaging a lower maximum dose and higher volume receiving the prescription dose (D100). HIMRT showed an increased mean dose over IMRT to bowel and liver. Both HIMRT and IMRT offer a statistically significant improvement over 3D-CRT in lowering dose to liver, stomach, and bowel. The results were similar for both unresected and resected patients. In pancreatic cancer, HIMRT offers improved dose homogeneity over conventional IMRT and several significant benefits to 3D-CRT. Factors to consider before incorporating IMRT into pancreatic cancer therapy are respiratory motion, dose inhomogeneity, and mean dose.

  11. Acute Toxicity After Image-Guided Intensity Modulated Radiation Therapy Compared to 3D Conformal Radiation Therapy in Prostate Cancer Patients

    SciTech Connect

    Wortel, Ruud C.; Incrocci, Luca; Pos, Floris J.; Lebesque, Joos V.; Witte, Marnix G.; Heide, Uulke A. van der; Herk, Marcel van; Heemsbergen, Wilma D.

    2015-03-15

    Purpose: Image-guided intensity modulated radiation therapy (IG-IMRT) allows significant dose reductions to organs at risk in prostate cancer patients. However, clinical data identifying the benefits of IG-IMRT in daily practice are scarce. The purpose of this study was to compare dose distributions to organs at risk and acute gastrointestinal (GI) and genitourinary (GU) toxicity levels of patients treated to 78 Gy with either IG-IMRT or 3D-CRT. Methods and Materials: Patients treated with 3D-CRT (n=215) and IG-IMRT (n=260) receiving 78 Gy in 39 fractions within 2 randomized trials were selected. Dose surface histograms of anorectum, anal canal, and bladder were calculated. Identical toxicity questionnaires were distributed at baseline, prior to fraction 20 and 30 and at 90 days after treatment. Radiation Therapy Oncology Group (RTOG) grade ≥1, ≥2, and ≥3 endpoints were derived directly from questionnaires. Univariate and multivariate binary logistic regression analyses were applied. Results: The median volumes receiving 5 to 75 Gy were significantly lower (all P<.001) with IG-IMRT for anorectum, anal canal, and bladder. The mean dose to the anorectum was 34.4 Gy versus 47.3 Gy (P<.001), 23.6 Gy versus 44.6 Gy for the anal canal (P<.001), and 33.1 Gy versus 43.2 Gy for the bladder (P<.001). Significantly lower grade ≥2 toxicity was observed for proctitis, stool frequency ≥6/day, and urinary frequency ≥12/day. IG-IMRT resulted in significantly lower overall RTOG grade ≥2 GI toxicity (29% vs 49%, respectively, P=.002) and overall GU grade ≥2 toxicity (38% vs 48%, respectively, P=.009). Conclusions: A clinically meaningful reduction in dose to organs at risk and acute toxicity levels was observed in IG-IMRT patients, as a result of improved technique and tighter margins. Therefore reduced late toxicity levels can be expected as well; additional research is needed to quantify such reductions.

  12. Time-dependent two-dimensional radiation hydrodynamics of accreting matter onto highly magnetized neutron stars

    SciTech Connect

    Klein, R.I. . Dept. of Astronomy Lawrence Livermore National Lab., CA California Univ., Los Angeles, CA . Inst. of Geophysics and Planetary Physics); Arons, J. . Dept. of Astronomy California Univ., Los Angeles, CA . Inst. of Geophysics and Planetary Physics CEA Centre d'Etudes Nucleaires de Saclay, 91 -

    1989-11-24

    We present for the first time, the self-consistent solution of the two-dimensional, time-dependent equations of radiation-hydrodynamics governing the accretion of matter onto the highly magnetized polar caps of luminous x-ray pulsars. The calculations show a structure in the accretion column very different from previous one-zone uniform models. We have included all the relevant magnetic field corrections to both the hydrodynamics and the radiative transport. We include a new theory for the diffusion and advection of both radiation energy density and photon number density. For initially uniformly accreting models with super-Eddington flows, we have uncovered evidence of strong radiation-driven outflowing optically thin radiation filled regions of the accretion column embedded in optically-thick inflowing plasma. The development of these photon bubbles'' have growth times on the order of a millisecond and show fluctuations on sub-millisecond timescales. The photon bubbles are likely to be a consequence of convective over-stability and may result in observable fluctuations in the emitted luminosity leading to luminosity dependent changes in the pulse profile. This may provide important new diagnostics for conditions in accreting x-ray pulsars. 13 refs., 18 figs.

  13. A Two-moment Radiation Hydrodynamics Module in ATHENA Using a Godunov Method

    NASA Astrophysics Data System (ADS)

    Skinner, M. A.; Ostriker, E. C.

    2013-04-01

    We describe a module for the Athena code that solves the grey equations of radiation hydrodynamics (RHD) using a local variable Eddington tensor (VET) based on the M1 closure of the two-moment hierarchy of the transfer equation. The variables are updated via a combination of explicit Godunov methods to advance the gas and radiation variables including the non-stiff source terms, and a local implicit method to integrate the stiff source terms. We employ the reduced speed of light approximation (RSLA) with subcycling of the radiation variables in order to reduce computational costs. The streaming and diffusion limits are well-described by the M1 closure model, and our implementation shows excellent behavior for problems containing both regimes simultaneously. Our operator-split method is ideally suited for problems with a slowly-varying radiation field and dynamical gas flows, in which the effect of the RSLA is minimal.

  14. Detecting Radiation-Induced Injury Using Rapid 3D Variogram Analysis of CT Images of Rat Lungs

    SciTech Connect

    Jacob, Rick E.; Murphy, Mark K.; Creim, Jeffrey A.; Carson, James P.

    2013-10-01

    A new heterogeneity analysis approach to discern radiation-induced lung damage was tested on CT images of irradiated rats. The method, combining octree decomposition with variogram analysis, demonstrated a significant correlation with radiation exposure levels, whereas conventional measurements and pulmonary function tests did not. The results suggest the new approach may be highly sensitive for assessing even subtle radiation-induced changes

  15. Combining node-centered parallel radiation transport and higher-order multi-material cell-centered hydrodynamics methods in three-temperature radiation hydrodynamics code TRHD

    NASA Astrophysics Data System (ADS)

    Sijoy, C. D.; Chaturvedi, S.

    2016-06-01

    Higher-order cell-centered multi-material hydrodynamics (HD) and parallel node-centered radiation transport (RT) schemes are combined self-consistently in three-temperature (3T) radiation hydrodynamics (RHD) code TRHD (Sijoy and Chaturvedi, 2015) developed for the simulation of intense thermal radiation or high-power laser driven RHD. For RT, a node-centered gray model implemented in a popular RHD code MULTI2D (Ramis et al., 2009) is used. This scheme, in principle, can handle RT in both optically thick and thin materials. The RT module has been parallelized using message passing interface (MPI) for parallel computation. Presently, for multi-material HD, we have used a simple and robust closure model in which common strain rates to all materials in a mixed cell is assumed. The closure model has been further generalized to allow different temperatures for the electrons and ions. In addition to this, electron and radiation temperatures are assumed to be in non-equilibrium. Therefore, the thermal relaxation between the electrons and ions and the coupling between the radiation and matter energies are required to be computed self-consistently. This has been achieved by using a node-centered symmetric-semi-implicit (SSI) integration scheme. The electron thermal conduction is calculated using a cell-centered, monotonic, non-linear finite volume scheme (NLFV) suitable for unstructured meshes. In this paper, we have described the details of the 2D, 3T, non-equilibrium, multi-material RHD code developed with a special attention to the coupling of various cell-centered and node-centered formulations along with a suite of validation test problems to demonstrate the accuracy and performance of the algorithms. We also report the parallel performance of RT module. Finally, in order to demonstrate the full capability of the code implementation, we have presented the simulation of laser driven shock propagation in a layered thin foil. The simulation results are found to be in good

  16. 3-D radiative transfer in large-eddy simulations - experiences coupling the TenStream solver to the UCLA-LES

    NASA Astrophysics Data System (ADS)

    Jakub, Fabian; Mayer, Bernhard

    2016-04-01

    The recently developed 3-D TenStream radiative transfer solver was integrated into the University of California, Los Angeles large-eddy simulation (UCLA-LES) cloud-resolving model. This work documents the overall performance of the TenStream solver as well as the technical challenges of migrating from 1-D schemes to 3-D schemes. In particular the employed Monte Carlo spectral integration needed to be reexamined in conjunction with 3-D radiative transfer. Despite the fact that the spectral sampling has to be performed uniformly over the whole domain, we find that the Monte Carlo spectral integration remains valid. To understand the performance characteristics of the coupled TenStream solver, we conducted weak as well as strong-scaling experiments. In this context, we investigate two matrix preconditioner: geometric algebraic multigrid preconditioning (GAMG) and block Jacobi incomplete LU (ILU) factorization and find that algebraic multigrid preconditioning performs well for complex scenes and highly parallelized simulations. The TenStream solver is tested for up to 4096 cores and shows a parallel scaling efficiency of 80-90 % on various supercomputers. Compared to the widely employed 1-D delta-Eddington two-stream solver, the computational costs for the radiative transfer solver alone increases by a factor of 5-10.

  17. Using 1D theory to understand 3D stagnation of a wire-array Z pinch in the absence of radiation

    NASA Astrophysics Data System (ADS)

    Yu, Edmund

    2015-11-01

    Many high-energy-density systems implode towards the axis of symmetry, where it collides on itself, forming a hot plasma. However, experiments show these imploding plasmas develop three-dimensional (3D) structures. As a result, the plasma cannot completely dissipate its kinetic energy at stagnation, instead retaining significant 3D flow. A useful tool for understanding the effects of this residual flow is 3D simulation, but the amount and complexity of information can be daunting. To address this problem, we explore the connection between 3D simulation and one-dimensional (1D) theory. Such a connection, if it exists, is mutually beneficial: 1D theory can provide a clear picture of the underlying dynamics of 3D stagnation. On the other hand, deviations between theory and simulation suggest how 1D theory must be modified to account for 3D effects. In this work, we focus on a 3D, magnetohydrodynamic simulation of a compact wire-array Z pinch. To provide a simpler background against which to test our ideas, we artificially turn off radiation during the stagnation phase. Examination of the initial accumulation of mass on axis reveals oblique collision between jets, shock accretion, and vortex formation. Despite evidence for shock-dominated stagnation, a 1D shockless stagnation solution is more appropriate for describing the global dynamics, in that it reproduces the increase of on-axis density with time. However, the 1D solution must be modified to account for 3D effects: the flows suggest enhanced thermal transport as well as centrifugal force. Upon reaching peak compression, the stagnation transitions to a second phase, in which the high-pressure core on axis expands outward into the remaining imploding plasma. During this phase, a 1D shock solution describes the growth of the shock accretion region, as well as the decrease of on-axis density with time. However, the effect of 3D flows is still present: the on-axis temperature does not cool during expansion, which

  18. Using hybrid implicit Monte Carlo diffusion to simulate gray radiation hydrodynamics

    SciTech Connect

    Cleveland, Mathew A. Gentile, Nick

    2015-06-15

    This work describes how to couple a hybrid Implicit Monte Carlo Diffusion (HIMCD) method with a Lagrangian hydrodynamics code to evaluate the coupled radiation hydrodynamics equations. This HIMCD method dynamically applies Implicit Monte Carlo Diffusion (IMD) [1] to regions of a problem that are opaque and diffusive while applying standard Implicit Monte Carlo (IMC) [2] to regions where the diffusion approximation is invalid. We show that this method significantly improves the computational efficiency as compared to a standard IMC/Hydrodynamics solver, when optically thick diffusive material is present, while maintaining accuracy. Two test cases are used to demonstrate the accuracy and performance of HIMCD as compared to IMC and IMD. The first is the Lowrie semi-analytic diffusive shock [3]. The second is a simple test case where the source radiation streams through optically thin material and heats a thick diffusive region of material causing it to rapidly expand. We found that HIMCD proves to be accurate, robust, and computationally efficient for these test problems.

  19. Using hybrid implicit Monte Carlo diffusion to simulate gray radiation hydrodynamics

    NASA Astrophysics Data System (ADS)

    Cleveland, Mathew A.; Gentile, Nick

    2015-06-01

    This work describes how to couple a hybrid Implicit Monte Carlo Diffusion (HIMCD) method with a Lagrangian hydrodynamics code to evaluate the coupled radiation hydrodynamics equations. This HIMCD method dynamically applies Implicit Monte Carlo Diffusion (IMD) [1] to regions of a problem that are opaque and diffusive while applying standard Implicit Monte Carlo (IMC) [2] to regions where the diffusion approximation is invalid. We show that this method significantly improves the computational efficiency as compared to a standard IMC/Hydrodynamics solver, when optically thick diffusive material is present, while maintaining accuracy. Two test cases are used to demonstrate the accuracy and performance of HIMCD as compared to IMC and IMD. The first is the Lowrie semi-analytic diffusive shock [3]. The second is a simple test case where the source radiation streams through optically thin material and heats a thick diffusive region of material causing it to rapidly expand. We found that HIMCD proves to be accurate, robust, and computationally efficient for these test problems.

  20. The hydrodynamic and radiative properties of low-density foams heated by x-rays

    NASA Astrophysics Data System (ADS)

    Rosmej, O. N.; Suslov, N.; Martsovenko, D.; Vergunova, G.; Borisenko, N.; Orlov, N.; Rienecker, T.; Klir, D.; Rezack, K.; Orekhov, A.; Borisenko, L.; Krousky, E.; Pfeifer, M.; Dudzak, R.; Maeder, R.; Schaechinger, M.; Schoenlein, A.; Zaehter, S.; Jacoby, J.; Limpouch, J.; Ullschmied, J.; Zhidkov, N.

    2015-09-01

    An advanced type of hydrodynamic stable plasma targets with homogeneous distribution of plasma parameters has been proposed for application in experiments on heavy ion stopping in plasmas and relativistic laser based particle acceleration. Plasma was created via x-ray heating of polymer aerogels with a mean density 103 times lower than that of solid matter. Hydrodynamic and radiation properties of low-density polymer aerogels heated by x-rays, which were generated due to laser interaction with a gold hohlraum, have been investigated experimentally and numerically. In experiments carried out at the PALS laser facility in Prague, the parameters of the hohlraum based soft x-ray source and the fraction of x-ray energy absorbed by foam layers have been measured. The results of these experiments and numerical simulations show that the x-ray heat process occurs via propagation of supersonic radiation driven heat waves. The measured heat wave velocity of 107 cm s-1 allows one to estimate the plasma temperature reached as 25 eV. The hydrodynamic stability of x-ray heated plasma layers has been demonstrated by means of an optical streak camera viewing the plasma expansion process. Simulations of the foam heating process denote rather homogeneous distribution of the plasma temperature and density in the x-ray heated plasma layer and sharp plasma boundaries. The investigated features of such plasma targets are a great advantage for experiments with heavy ion and relativistic laser beams.

  1. Multi-wavelength simulations of atmospheric radiation from Io with a 3-D spherical-shell backward Monte Carlo radiative transfer model

    NASA Astrophysics Data System (ADS)

    Gratiy, Sergey L.; Walker, Andrew C.; Levin, Deborah A.; Goldstein, David B.; Varghese, Philip L.; Trafton, Laurence M.; Moore, Chris H.

    2010-05-01

    Conflicting observations regarding the dominance of either sublimation or volcanism as the source of the atmosphere on Io and disparate reports on the extent of its spatial distribution and the absolute column abundance invite the development of detailed computational models capable of improving our understanding of Io's unique atmospheric structure and origin. Improving upon previous models, Walker et al. (Walker, A.C., Gratiy, S.L., Levin, D.A., Goldstein, D.B., Varghese, P.L., Trafton, L.M., Moore, C.H., Stewart, B. [2009]. Icarus) developed a fully 3-D global rarefied gas dynamics model of Io's atmosphere including both sublimation and volcanic sources of SO 2 gas. The fidelity of the model is tested by simulating remote observations at selected wavelength bands and comparing them to the corresponding astronomical observations of Io's atmosphere. The simulations are performed with a new 3-D spherical-shell radiative transfer code utilizing a backward Monte Carlo method. We present: (1) simulations of the mid-infrared disk-integrated spectra of Io's sunlit hemisphere at 19 μm, obtained with TEXES during 2001-2004; (2) simulations of disk-resolved images at Lyman- α obtained with the Hubble Space Telescope (HST), Space Telescope Imaging Spectrograph (STIS) during 1997-2001; and (3) disk-integrated simulations of emission line profiles in the millimeter wavelength range obtained with the IRAM-30 m telescope in October-November 1999. We found that the atmospheric model generally reproduces the longitudinal variation in band depth from the mid-infrared data; however, the best match is obtained when our simulation results are shifted ˜30° toward lower orbital longitudes. The simulations of Lyman- α images do not reproduce the mid-to-high latitude bright patches seen in the observations, suggesting that the model atmosphere sustains columns that are too high at those latitudes. The simulations of emission line profiles in the millimeter spectral region support

  2. SU-E-J-49: Design and Fabrication of Custom 3D Printed Phantoms for Radiation Therapy Research and Quality Assurance

    SciTech Connect

    Jenkins, C; Xing, L

    2015-06-15

    Purpose The rapid proliferation of affordable 3D printing techniques has enabled the custom fabrication of items ranging from paper weights to medical implants. This study investigates the feasibility of utilizing the technology for developing novel phantoms for use in radiation therapy quality assurance (QA) procedures. Methods A phantom for measuring the geometric parameters of linear accelerator (LINAC) on-board imaging (OBI) systems was designed using SolidWorks. The design was transferred to a 3D printer and fabricated using a fused deposition modeling (FDM) technique. Fiducials were embedded in the phantom by placing 1.6 mm diameter steel balls in predefined holes and securing them with silicone. Several MV and kV images of the phantom were collected and the visibility and geometric accuracy were evaluated. A second phantom, for use in the experimental evaluation of a high dose rate (HDR) brachytherapy dosimeter, was designed to secure several applicator needles in water. The applicator was fabricated in the same 3D printer and used for experiments. Results The general accuracy of printed parts was determined to be 0.1 mm. The cost of materials for the imaging and QA phantoms were $22 and $5 respectively. Both the plastic structure and fiducial markers of the imaging phantom were visible in MV and kV images. Fiducial marker locations were determined to be within 1mm of desired locations, with the discrepancy being attributed to the fiducial attachment process. The HDR phantom secured the applicators within 0.5 mm of the desired locations. Conclusion 3D printing offers an inexpensive method for fabricating custom phantoms for use in radiation therapy quality assurance. While the geometric accuracy of such parts is limited compared to more expensive methods, the phantoms are still highly functional and provide a unique opportunity for rapid fabrication of custom phantoms for use in radiation therapy QA and research.

  3. Development and application of a 3-D geometry/mass model for LDEF satellite ionizing radiation assessments

    NASA Technical Reports Server (NTRS)

    Colborn, B. L.; Armstong, T. W.

    1993-01-01

    A three-dimensional geometry and mass model of the Long Duration Exposure Facility (LDEF) spacecraft and experiment trays was developed for use in predictions and data interpretation related to ionizing radiation measurements. The modeling approach, level of detail incorporated, example models for specific experiments and radiation dosimeters, and example applications of the model are described.

  4. Comparison of 1D stagnation solutions to 3D wire-array Z pinch simulations in absence of radiation

    NASA Astrophysics Data System (ADS)

    Yu, Edmund; Velikovich, Alexander; Maron, Yitzhak

    2013-10-01

    In the idealized picture of a Z pinch, a cylindrically symmetric plasma shell implodes towards axis. In this 1D (radial) picture, the resulting stagnation is very efficient: all the kinetic energy of the shell converts to internal energy, as for instance in the Noh shock solution or the homogeneous stagnation flow. If we generalize the problem to 2D by deforming the shell from perfectly circular to oblate, the resulting stagnation will not be as efficient. As in the Hiemenz flow, in which a jet of fluid strikes a rigid flat boundary and squirts out to the sides, the more complicated flows allowed in 2D allow flow kinetic energy to redirect rather than stagnate. With this picture in mind, we might expect the stagnation of a wire-array Z pinch, which in actuality forms a highly distorted 3D imploding plasma, to dissipate its kinetic energy inefficiently due to the lack of symmetry, and be indescribable by means of the idealized 1D stagnation solutions. On the other hand, one might expect that if the imploding plasma is sufficiently messy, the non-uniformities might ``wash out,'' allowing a quasi-1D description of the averaged quantities of plasma. In this work we explore this idea, comparing predictions of 1D stagnation solutions with 3D simulation. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC0 4-94AL85000.

  5. Observation of hydrodynamic processes of radiation-ablated plasma in a small hole

    SciTech Connect

    Li, Hang; Kuang, Longyu; Jiang, Shaoen Ding, Yongkun; Song, Tianming; Yang, Jiamin Zhu, Tuo; Lin, Zhiwei; Zheng, Jianhua; Zhang, Haiying; Yu, Ruizhen; Liu, Shenye; Hu, Guangyue; Zhao, Bin; Zheng, Jian

    2015-07-15

    In the hohlraum used in laser indirect-drive inertial confinement fusion experiments, hydrodynamic processes of radiation-ablated high-Z plasma have a great effect on laser injection efficiency, radiation uniformity, and diagnosis of hohlraum radiation field from diagnostic windows (DW). To study plasma filling in the DWs, a laser-irradiated Ti disk was used to generate 2–5 keV narrow energy band X-ray as the intense backlighter source, and laser-produced X-ray in a hohlraum with low-Z foam tamper was used to heat a small hole surrounded by gold wall with 150 μm in diameter and 100 μm deep. The hydrodynamic movement of the gold plasma in the small hole was measured by an X-ray framing camera and the results are analyzed. Quantitative measurement of the plasma areal density distribution and evolution in the small hole can be used to assess the effect of plasma filling on the diagnosis from the DWs.

  6. Spatially adaptive radiation-hydrodynamical simulations of galaxy formation during cosmological reionization

    NASA Astrophysics Data System (ADS)

    Pawlik, Andreas H.; Schaye, Joop; Dalla Vecchia, Claudio

    2015-08-01

    We present a suite of cosmological radiation-hydrodynamical simulations of the assembly of galaxies driving the reionization of the intergalactic medium (IGM) at z ≳ 6. The simulations account for the hydrodynamical feedback from photoionization heating and the explosion of massive stars as supernovae (SNe). Our reference simulation, which was carried out in a box of size 25 h-1 comovingMpc using 2 × 5123 particles, produces a reasonable reionization history and matches the observed UV luminosity function of galaxies. Simulations with different box sizes and resolutions are used to investigate numerical convergence, and simulations in which either SNe or photoionization heating or both are turned off, are used to investigate the role of feedback from star formation. Ionizing radiation is treated using accurate radiative transfer at the high spatially adaptive resolution at which the hydrodynamics is carried out. SN feedback strongly reduces the star formation rates (SFRs) over nearly the full mass range of simulated galaxies and is required to yield SFRs in agreement with observations. Photoheating helps to suppress star formation in low-mass galaxies, but its impact on the cosmic SFR is small. Because the effect of photoheating is masked by the strong SN feedback, it does not imprint a signature on the UV galaxy luminosity function, although we note that our resolution is insufficient to model star-forming minihaloes cooling through molecular hydrogen transitions. Photoheating does provide a strong positive feedback on reionization because it smooths density fluctuations in the IGM, which lowers the IGM recombination rate substantially. Our simulations demonstrate a tight non-linear coupling of galaxy formation and reionization, motivating the need for the accurate and simultaneous inclusion of photoheating and SN feedback in models of the early Universe.

  7. SU-C-213-05: Evaluation of a Composite Copper-Plastic Material for a 3D Printed Radiation Therapy Bolus

    SciTech Connect

    Vitzthum, L; Ehler, E; Sterling, D; Reynolds, T; Higgins, P; Dusenbery, K

    2015-06-15

    Purpose: To evaluate a novel 3D printed bolus fabricated from a copper-plastic composite as a thin flexible, custom fitting device that can replicate doses achieved with conventional bolus techniques. Methods: Two models of bolus were created on a 3D printer using a composite copper-PLA/PHA. Firstly, boluses were constructed at thicknesses of 0.4, 0.6 and 0.8 mm. Relative dose measurements were performed under the bolus with an Attix Chamber as well as with radiochromic film. Results were compared to superficial Attix Chamber measurements in a water equivalent material to determine the dosimetric water equivalence of the copper-PLA/PHA plastic. Secondly, CT images of a RANDO phantom were used to create a custom fitting bolus across the anterolateral scalp. Surface dose with the bolus placed on the RANDO phantom was measured with radiochromic film at tangential angles with 6, 10, 10 flattening filter free (FFF) and 18 MV photon beams. Results: Mean surface doses for 6, 10, 10FFF and 18 MV were measured as a percent of Dmax for the flat bolus devices of each thickness. The 0.4 mm thickness bolus was determined to be near equivalent to 2.5 mm depth in water for all four energies. Surface doses ranged from 59–63% without bolus and 85–90% with the custom 0.4 mm copper-plastic bolus relative to the prescribed dose for an oblique tangential beam arrangement on the RANDO phantom. Conclusion: Sub-millimeter thickness, 3D printed composite copper-PLA/PHA bolus can provide a build-up effect equivalent to conventional bolus. At this thickness, the 3D printed bolus allows a level of flexure that may provide more patient comfort than current 3D printing materials used in bolus fabrication while still retaining the CT based custom patient shape. Funding provided by an intra-department grant of the University of Minnesota Department of Radiation Oncology.

  8. A global three-dimensional radiation magneto-hydrodynamic simulation of super-eddington accretion disks

    SciTech Connect

    Jiang, Yan-Fei; Stone, James M.; Davis, Shane W.

    2014-12-01

    We study super-Eddington accretion flows onto black holes using a global three-dimensional radiation magneto-hydrodynamical simulation. We solve the time-dependent radiative transfer equation for the specific intensities to accurately calculate the angular distribution of the emitted radiation. Turbulence generated by the magneto-rotational instability provides self-consistent angular momentum transfer. The simulation reaches inflow equilibrium with an accretion rate ∼220 L {sub Edd}/c {sup 2} and forms a radiation-driven outflow along the rotation axis. The mechanical energy flux carried by the outflow is ∼20% of the radiative energy flux. The total mass flux lost in the outflow is about 29% of the net accretion rate. The radiative luminosity of this flow is ∼10 L {sub Edd}. This yields a radiative efficiency ∼4.5%, which is comparable to the value in a standard thin disk model. In our simulation, vertical advection of radiation caused by magnetic buoyancy transports energy faster than photon diffusion, allowing a significant fraction of the photons to escape from the surface of the disk before being advected into the black hole. We contrast our results with the lower radiative efficiencies inferred in most models, such as the slim disk model, which neglect vertical advection. Our inferred radiative efficiencies also exceed published results from previous global numerical simulations, which did not attribute a significant role to vertical advection. We briefly discuss the implications for the growth of supermassive black holes in the early universe and describe how these results provided a basis for explaining the spectrum and population statistics of ultraluminous X-ray sources.

  9. A Global Three-dimensional Radiation Magneto-hydrodynamic Simulation of Super-Eddington Accretion Disks

    NASA Astrophysics Data System (ADS)

    Jiang, Yan-Fei; Stone, James M.; Davis, Shane W.

    2014-12-01

    We study super-Eddington accretion flows onto black holes using a global three-dimensional radiation magneto-hydrodynamical simulation. We solve the time-dependent radiative transfer equation for the specific intensities to accurately calculate the angular distribution of the emitted radiation. Turbulence generated by the magneto-rotational instability provides self-consistent angular momentum transfer. The simulation reaches inflow equilibrium with an accretion rate ~220 L Edd/c 2 and forms a radiation-driven outflow along the rotation axis. The mechanical energy flux carried by the outflow is ~20% of the radiative energy flux. The total mass flux lost in the outflow is about 29% of the net accretion rate. The radiative luminosity of this flow is ~10 L Edd. This yields a radiative efficiency ~4.5%, which is comparable to the value in a standard thin disk model. In our simulation, vertical advection of radiation caused by magnetic buoyancy transports energy faster than photon diffusion, allowing a significant fraction of the photons to escape from the surface of the disk before being advected into the black hole. We contrast our results with the lower radiative efficiencies inferred in most models, such as the slim disk model, which neglect vertical advection. Our inferred radiative efficiencies also exceed published results from previous global numerical simulations, which did not attribute a significant role to vertical advection. We briefly discuss the implications for the growth of supermassive black holes in the early universe and describe how these results provided a basis for explaining the spectrum and population statistics of ultraluminous X-ray sources.

  10. Radiation-hydrodynamic Simulations of Massive Star Formation with Protostellar Outflows

    NASA Astrophysics Data System (ADS)

    Cunningham, Andrew J.; Klein, Richard I.; Krumholz, Mark R.; McKee, Christopher F.

    2011-10-01

    We report the results of a series of adaptive mesh refinement radiation-hydrodynamic simulations of the collapse of massive star-forming clouds using the ORION code. These simulations are the first to include the feedback effects protostellar outflows, as well as protostellar radiative heating and radiation pressure exerted on the infalling, dusty gas. We find that outflows evacuate polar cavities of reduced optical depth through the ambient core. These enhance the radiative flux in the poleward direction so that it is 1.7-15 times larger than that in the midplane. As a result the radiative heating and outward radiation force exerted on the protostellar disk and infalling cloud gas in the equatorial direction are greatly diminished. This simultaneously reduces the Eddington radiation pressure barrier to high-mass star formation and increases the minimum threshold surface density for radiative heating to suppress fragmentation compared to models that do not include outflows. The strength of both these effects depends on the initial core surface density. Lower surface density cores have longer free-fall times and thus massive stars formed within them undergo more Kelvin contraction as the core collapses, leading to more powerful outflows. Furthermore, in lower surface density clouds the ratio of the time required for the outflow to break out of the core to the core free-fall time is smaller, so that these clouds are consequently influenced by outflows at earlier stages of the collapse. As a result, outflow effects are strongest in low surface density cores and weakest in high surface density ones. We also find that radiation focusing in the direction of outflow cavities is sufficient to prevent the formation of radiation pressure-supported circumstellar gas bubbles, in contrast to models which neglect protostellar outflow feedback.

  11. Radiation-Hydrodynamic Simulations of Massive Star Formation with Protostellar Outflows

    SciTech Connect

    Cunningham, A J; Klein, R I; Krumholz, M R; McKee, C F

    2011-03-02

    We report the results of a series of AMR radiation-hydrodynamic simulations of the collapse of massive star forming clouds using the ORION code. These simulations are the first to include the feedback effects protostellar outflows, as well as protostellar radiative heating and radiation pressure exerted on the infalling, dusty gas. We find that that outflows evacuate polar cavities of reduced optical depth through the ambient core. These enhance the radiative flux in the poleward direction so that it is 1.7 to 15 times larger than that in the midplane. As a result the radiative heating and outward radiation force exerted on the protostellar disk and infalling cloud gas in the equatorial direction are greatly diminished. The simultaneously reduces the Eddington radiation pressure barrier to high-mass star formation and increases the minimum threshold surface density for radiative heating to suppress fragmentation compared to models that do not include outflows. The strength of both these effects depends on the initial core surface density. Lower surface density cores have longer free-fall times and thus massive stars formed within them undergo more Kelvin contraction as the core collapses, leading to more powerful outflows. Furthermore, in lower surface density clouds the ratio of the time required for the outflow to break out of the core to the core free-fall time is smaller, so that these clouds are consequently influenced by outflows at earlier stages of collapse. As a result, outflow effects are strongest in low surface density cores and weakest in high surface density one. We also find that radiation focusing in the direction of outflow cavities is sufficient to prevent the formation of radiation pressure-supported circumstellar gas bubbles, in contrast to models which neglect protostellar outflow feedback.

  12. Models of the Shoemaker-Levy 9 Impacts. II. Radiative-Hydrodynamic Modeling of the Plume Splashback

    NASA Astrophysics Data System (ADS)

    Deming, Drake; Harrington, Joseph

    2001-11-01

    We model the plume ``splashback'' phase of the Shoemaker-Levy 9 (SL9) collisions with Jupiter. We modified the ZEUS-3D hydrodynamic code to include radiative transport in the gray approximation and present validation tests. After initializing with a model Jovian atmosphere, we couple mass and momentum fluxes of SL9 plume material, as calculated by the ballistic Monte Carlo plume model of Paper I of this series. A strong and complex shock structure results. The shock temperatures produced by the model agree well with observations, and the structure and evolution of the modeled shocks account for the appearance of high-excitation molecular line emission after the peak of the continuum light curve. The splashback region cools by radial expansion as well as by radiation. The morphology of our synthetic continuum light curves agrees with observations over a broad wavelength range (0.9-12 μm). Much of the complex structure of these light curves is a natural consequence of the temperature dependence of the Planck function and the plume velocity distribution. A feature of our ballistic plume is a shell of mass at the highest velocities, which we term the ``vanguard.'' Portions of the vanguard ejected on shallow trajectories produce a lateral shock front, whose initial expansion accounts for the ``third precursors'' seen in the 2 μm light curves of the larger impacts and for hot methane emission at early times observed by Dinelli and coworkers. Continued propagation of this lateral shock approximately reproduces the radii, propagation speed, and centroid positions of the large rings observed at 3-4 μm by McGregor and coworkers. The portion of the vanguard ejected closer to the vertical falls back with high z-component velocities just after maximum light, producing CO emission and the ``flare'' seen at 0.9 μm. The model also produces secondary maxima (``bounces''), whose amplitudes and periods are in agreement with observations.

  13. Measuring the effects of fractionated radiation therapy in a 3D prostate cancer model system using SERS nanosensors.

    PubMed

    Camus, Victoria L; Stewart, Grant; Nailon, William H; McLaren, Duncan B; Campbell, Colin J

    2016-08-15

    Multicellular tumour spheroids (MTS) are three-dimensional cell cultures that possess their own microenvironments and provide a more meaningful model of tumour biology than monolayer cultures. As a result, MTS are becoming increasingly used as tumor models when measuring the efficiency of therapies. Monitoring the viability of live MTS is complicated by their 3D nature and conventional approaches such as fluorescence often require fixation and sectioning. In this paper we detail the use of Surface Enhanced Raman Spectroscopy (SERS) to measure the viability of MTS grown from prostate cancer (PC3) cells. Our results show that we can monitor loss of viability by measuring pH and redox potential in MTS and furthermore we demonstrate that SERS can be used to measure the effects of fractionation of a dose of radiotherapy in a way that has potential to inform treatment planning.

  14. Measuring the effects of fractionated radiation therapy in a 3D prostate cancer model system using SERS nanosensors.

    PubMed

    Camus, Victoria L; Stewart, Grant; Nailon, William H; McLaren, Duncan B; Campbell, Colin J

    2016-08-15

    Multicellular tumour spheroids (MTS) are three-dimensional cell cultures that possess their own microenvironments and provide a more meaningful model of tumour biology than monolayer cultures. As a result, MTS are becoming increasingly used as tumor models when measuring the efficiency of therapies. Monitoring the viability of live MTS is complicated by their 3D nature and conventional approaches such as fluorescence often require fixation and sectioning. In this paper we detail the use of Surface Enhanced Raman Spectroscopy (SERS) to measure the viability of MTS grown from prostate cancer (PC3) cells. Our results show that we can monitor loss of viability by measuring pH and redox potential in MTS and furthermore we demonstrate that SERS can be used to measure the effects of fractionation of a dose of radiotherapy in a way that has potential to inform treatment planning. PMID:27310732

  15. MULTI2D - a computer code for two-dimensional radiation hydrodynamics

    NASA Astrophysics Data System (ADS)

    Ramis, R.; Meyer-ter-Vehn, J.; Ramírez, J.

    2009-06-01

    Simulation of radiation hydrodynamics in two spatial dimensions is developed, having in mind, in particular, target design for indirectly driven inertial confinement energy (IFE) and the interpretation of related experiments. Intense radiation pulses by laser or particle beams heat high-Z target configurations of different geometries and lead to a regime which is optically thick in some regions and optically thin in others. A diffusion description is inadequate in this situation. A new numerical code has been developed which describes hydrodynamics in two spatial dimensions (cylindrical R-Z geometry) and radiation transport along rays in three dimensions with the 4 π solid angle discretized in direction. Matter moves on a non-structured mesh composed of trilateral and quadrilateral elements. Radiation flux of a given direction enters on two (one) sides of a triangle and leaves on the opposite side(s) in proportion to the viewing angles depending on the geometry. This scheme allows to propagate sharply edged beams without ray tracing, though at the price of some lateral diffusion. The algorithm treats correctly both the optically thin and optically thick regimes. A symmetric semi-implicit (SSI) method is used to guarantee numerical stability. Program summaryProgram title: MULTI2D Catalogue identifier: AECV_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECV_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 151 098 No. of bytes in distributed program, including test data, etc.: 889 622 Distribution format: tar.gz Programming language: C Computer: PC (32 bits architecture) Operating system: Linux/Unix RAM: 2 Mbytes Word size: 32 bits Classification: 19.7 External routines: X-window standard library (libX11.so) and corresponding heading files (X11/*.h) are

  16. 3D dosimetry estimation for selective internal radiation therapy (SIRT) using SPECT/CT images: a phantom study

    NASA Astrophysics Data System (ADS)

    Debebe, Senait A.; Franquiz, Juan; McGoron, Anthony J.

    2015-03-01

    Selective Internal Radiation Therapy (SIRT) is a common way to treat liver cancer that cannot be treated surgically. SIRT involves administration of Yttrium - 90 (90Y) microspheres via the hepatic artery after a diagnostic procedure using 99mTechnetium (Tc)-macroaggregated albumin (MAA) to detect extrahepatic shunting to the lung or the gastrointestinal tract. Accurate quantification of radionuclide administered to patients and radiation dose absorbed by different organs is of importance in SIRT. Accurate dosimetry for SIRT allows optimization of dose delivery to the target tumor and may allow for the ability to assess the efficacy of the treatment. In this study, we proposed a method that can efficiently estimate radiation absorbed dose from 90Y bremsstrahlung SPECT/CT images of liver and the surrounding organs. Bremsstrahlung radiation from 90Y was simulated using the Compton window of 99mTc (78keV at 57%). 99mTc images acquired at the photopeak energy window were used as a standard to examine the accuracy of dosimetry prediction by the simulated bremsstrahlung images. A Liqui-Phil abdominal phantom with liver, stomach and two tumor inserts was imaged using a Philips SPECT/CT scanner. The Dose Point Kernel convolution method was used to find the radiation absorbed dose at a voxel level for a three dimensional dose distribution. This method will allow for a complete estimate of the distribution of radiation absorbed dose by tumors, liver, stomach and other surrounding organs at the voxel level. The method provides a quantitative predictive method for SIRT treatment outcome and administered dose response for patients who undergo the treatment.

  17. Final Report for "Verification and Validation of Radiation Hydrodynamics for Astrophysical Applications"

    SciTech Connect

    Zingale, M; Howell, L H

    2010-03-17

    The motivation for this work is to gain experience in the methodology of verification and validation (V&V) of astrophysical radiation hydrodynamics codes. In the first period of this work, we focused on building the infrastructure to test a single astrophysical application code, Castro, developed in collaboration between Lawrence Livermore National Laboratory (LLNL) and Lawrence Berkeley Laboratory (LBL). We delivered several hydrodynamic test problems, in the form of coded initial conditions and documentation for verification, routines to perform data analysis, and a generalized regression test suite to allow for continued automated testing. Astrophysical simulation codes aim to model phenomena that elude direct experimentation. Our only direct information about these systems comes from what we observe, and may be transient. Simulation can help further our understanding by allowing virtual experimentation of these systems. However, to have confidence in our simulations requires us to have confidence in the tools we use. Verification and Validation is a process by which we work to build confidence that a simulation code is accurately representing reality. V&V is a multistep process, and is never really complete. Once a single test problem is working as desired (i.e. that problem is verified), one wants to ensure that subsequent code changes do not break that test. At the same time, one must also search for new verification problems that test the code in a new way. It can be rather tedious to manually retest each of the problems, so before going too far with V&V, it is desirable to have an automated test suite. Our project aims to provide these basic tools for astrophysical radiation hydrodynamics codes.

  18. SU-C-BRE-04: Microbeam-Radiation-Therapy (MRT): Characterizing a Novel MRT Device Using High Resolution 3D Dosimetry

    SciTech Connect

    Li, Q; Juang, T; Bache, S; Chang, S; Oldham, M

    2014-06-15

    Purpose: The feasibility of MRT has recently been demonstrated utilizing a new technology of Carbon-Nano-Tube(CNT) field emission x-ray sources.This approach can deliver very high dose(10's of Gy) in narrow stripes(sub-mm) of radiation which enables the study of novel radiation treatment approaches. Here we investigate the application of highresolution (50um isotropic) PRESAGE/Optical-CT 3D dosimetry techniques to characterize the radiation delivered in this extremely dosimetrically challenging scenario. Methods: The CNT field emission x-ray source irradiator comprises of a linear cathode array and a novel collimator alignment system. This allows a precise delivery of high-energy small beams up to 160 kVp. A cylindrical dosimeter (∼2.2cm in height ∼2.5cm in diameter) was irradiated by CNT MRT delivering 3 strips of radiation with a nominal entrance dose of 32 Gy.A second dosimeter was irradiated with similar entrance dose, with a regular x-ray irradiator collimated to microscopical strip-beams. 50um (isotropic) 3D dosimetry was performed using an in-house optical-CT system designed and optimized for high resolution imaging (including a stray light deconvolution correction).The percentage depth dose (PDD), peak-to-valley ratio (PVR) and beam width (FWHM) data were obtained and analyzed in both cases. Results: High resolution 3D images were successfully achieved with the prototype system, enabling extraction of PDD and dose profiles. The PDDs for the CNT irradiation showed pronounced attenuation, but less build-up effect than that from the multibeam irradiation. The beam spacing between the three strips has an average value of 0.9mm while that for the 13 strips is 1.5 mm at a depth of 16.5 mm. The stray light corrected image shows line profiles with reduced noise and consistent PVR values. Conclusion: MRT dosimetry is extremely challenging due to the ultra small fields involved.This preliminary application of a novel, ultra-high resolution, optical-CT 3D

  19. Modeling the physical structure of star-forming regions with LIME, a 3D radiative transfer code

    NASA Astrophysics Data System (ADS)

    Quénard, D.; Bottinelli, S.; Caux, E.

    2016-05-01

    The ability to predict line emission is crucial in order to make a comparison with observations. From LTE to full radiative transfer codes, the goal is always to derive the most accurately possible the physical properties of the source. Non-LTE calculations can be very time consuming but are needed in most of the cases since many studied regions are far from LTE.

  20. A New Multi-energy Neutrino Radiation-Hydrodynamics Code in Full General Relativity and Its Application to the Gravitational Collapse of Massive Stars

    NASA Astrophysics Data System (ADS)

    Kuroda, Takami; Takiwaki, Tomoya; Kotake, Kei

    2016-02-01

    We present a new multi-dimensional radiation-hydrodynamics code for massive stellar core-collapse in full general relativity (GR). Employing an M1 analytical closure scheme, we solve spectral neutrino transport of the radiation energy and momentum based on a truncated moment formalism. Regarding neutrino opacities, we take into account a baseline set in state-of-the-art simulations, in which inelastic neutrino-electron scattering, thermal neutrino production via pair annihilation, and nucleon-nucleon bremsstrahlung are included. While the Einstein field equations and the spatial advection terms in the radiation-hydrodynamics equations are evolved explicitly, the source terms due to neutrino-matter interactions and energy shift in the radiation moment equations are integrated implicitly by an iteration method. To verify our code, we first perform a series of standard radiation tests with analytical solutions that include the check of gravitational redshift and Doppler shift. A good agreement in these tests supports the reliability of the GR multi-energy neutrino transport scheme. We then conduct several test simulations of core-collapse, bounce, and shock stall of a 15{M}⊙ star in the Cartesian coordinates and make a detailed comparison with published results. Our code performs quite well to reproduce the results of full Boltzmann neutrino transport especially before bounce. In the postbounce phase, our code basically performs well, however, there are several differences that are most likely to come from the insufficient spatial resolution in our current 3D-GR models. For clarifying the resolution dependence and extending the code comparison in the late postbounce phase, we discuss that next-generation Exaflops class supercomputers are needed at least.

  1. REIONIZATION ON LARGE SCALES. I. A PARAMETRIC MODEL CONSTRUCTED FROM RADIATION-HYDRODYNAMIC SIMULATIONS

    SciTech Connect

    Battaglia, N.; Trac, H.; Cen, R.; Loeb, A.

    2013-10-20

    We present a new method for modeling inhomogeneous cosmic reionization on large scales. Utilizing high-resolution radiation-hydrodynamic simulations with 2048{sup 3} dark matter particles, 2048{sup 3} gas cells, and 17 billion adaptive rays in a L = 100 Mpc h {sup –1} box, we show that the density and reionization redshift fields are highly correlated on large scales (∼> 1 Mpc h {sup –1}). This correlation can be statistically represented by a scale-dependent linear bias. We construct a parametric function for the bias, which is then used to filter any large-scale density field to derive the corresponding spatially varying reionization redshift field. The parametric model has three free parameters that can be reduced to one free parameter when we fit the two bias parameters to simulation results. We can differentiate degenerate combinations of the bias parameters by combining results for the global ionization histories and correlation length between ionized regions. Unlike previous semi-analytic models, the evolution of the reionization redshift field in our model is directly compared cell by cell against simulations and performs well in all tests. Our model maps the high-resolution, intermediate-volume radiation-hydrodynamic simulations onto lower-resolution, larger-volume N-body simulations (∼> 2 Gpc h {sup –1}) in order to make mock observations and theoretical predictions.

  2. The intrafraction motion induced dosimetric impacts in breast 3D radiation treatment: A 4DCT based study

    SciTech Connect

    Yue, Ning J.; Li Xiang; Beriwal, Sushil; Heron, Dwight E.; Sontag, Marc R.; Huq, M. Saiful

    2007-07-15

    The question remains regarding the dosimetric impact of intrafraction motion in 3D breast treatment. This study was conducted to investigate this issue utilizing the 4DCT scan. The 4D and helical CT scan sets were acquired for 12 breast cancer patients. For each of these patients, based on the helical CT scan, a conventional 3D conformal plan was generated. The breast treatment was then simulated based on the 4DCT scan. In each phase of the 4DCT scan, dose distribution was generated with the same beam parameters as the conventional plan. A software package was developed to compute the cumulative dose distribution from all the phases. Since the intrafraction organ motion is reflected by the 4DCT images, the cumulative dose computed based on the 4DCT images should be closer to what the patient received during treatment. Various dosimetric parameters were obtained from the plan and 4D cumulative dose distribution for the target volume and heart, and were compared to deduce the motion-induced impacts. The studies were performed for both whole breast and partial breast treatment. In the whole breast treatment, the average intrafraction motion induced changes in D{sub 95}, D{sub 90}, V{sub 100}, V{sub 95}, and V{sub 90} of the target volume were -5.4%, -3.1%, -13.4%, -5.1%, and -3.2%, respectively, with the largest values at -26.2%, -14.1%, -91.0%, -15.1%, and -9.0%, respectively. Motion had little impact on the D{sub max} of the target volume, but its impact on the D{sub min} of the target volume was significant. For left breast treatment, the motion-induced D{sub max} change to the heart could be negative or positive, with the largest increase at about 6 Gy. In partial breast treatment, the only non-insignificant impact was in the D{sub min} of the CTV (ranging from -15.2% to 11.7%). The results showed that the intrafraction motion may compromise target dose coverage in breast treatments and the degree of that compromise was correlated with motion magnitude. However

  3. AGN Obscuration Through Dusty Infrared Dominated Flows. 1; Radiation-Hydrodynamics Solution for the Wind

    NASA Technical Reports Server (NTRS)

    Dorodnitsyn, A.; Bisnovatyi-Kogan. G. S.; Kallman, T.

    2011-01-01

    We construct a radiation-hydrodynamics model for the obscuring toroidal structure in active galactic nuclei. In this model the obscuration is produced at parsec scale by a dense, dusty wind which is supported by infrared radiation pressure on dust grains. To find the distribution of radiation pressure, we numerically solve the 2D radiation transfer problem in a flux limited diffusion approximation. We iteratively couple the solution with calculations of stationary 1D models for the wind, and obtain the z-component of the velocity. Our results demonstrate that for AGN luminosities greater than 0.1 L(sub edd) external illumination can support a geometrically thick obscuration via outflows driven by infrared radiation pressure. The terminal velocity of marginally Compton-thin models (0.2 < tau(sub T) < 0.6), is comparable to or greater than the escape velocity. In Compton thick models the maximum value of the vertical component of the velocity is lower than the escape velocity, suggesting that a significant part of our torus is in the form of failed wind. The results demonstrate that obscuration via normal or failed infrared-driven winds is a viable option for the AGN torus problem and AGN unification models. Such winds can also provide an important channel for AGN feedback.

  4. Treatment techniques for 3D conformal radiation to breast and chest wall including the internal mammary chain.

    PubMed

    Sonnik, Deborah; Selvaraj, Raj N; Faul, Clare; Gerszten, Kristina; Heron, Dwight E; King, Gwendolyn C

    2007-01-01

    Breast, chest wall, and regional nodal irradiation have been associated with an improved outcome in high-risk breast cancer patients. Complex treatment planning is often utilized to ensure complete coverage of the target volume while minimizing the dose to surrounding normal tissues. The 2 techniques evaluated in this report are the partially wide tangent fields (PWTFs) and the 4-field photon/electron combination (the modified "Kuske Technique"). These 2 techniques were evaluated in 10 consecutive breast cancer patients. All patients had computerized tomographic (CT) scans for 3D planning supine on a breast board. The breast was defined clinically by the physician and confirmed radiographically with radiopaque bebes. The resulting dose-volume histograms (DVHs) of normal and target tissues were then compared. The deep tangent field with blocks resulted in optimal coverage of the target and the upper internal mammary chain (IMC) while sparing of critical and nontarget tissues. The wide tangent technique required less treatment planning and delivery time. We compared the 2 techniques and their resultant DVHs and feasibility in a busy clinic.

  5. Imaging the position-dependent 3D force on microbeads subjected to acoustic radiation forces and streaming.

    PubMed

    Lamprecht, Andreas; Lakämper, Stefan; Baasch, Thierry; Schaap, Iwan A T; Dual, Jurg

    2016-07-01

    Acoustic particle manipulation in microfluidic channels is becoming a powerful tool in microfluidics to control micrometer sized objects in medical, chemical and biological applications. By creating a standing acoustic wave in the channel, the resulting pressure field can be employed to trap or sort particles. To design efficient and reproducible devices, it is important to characterize the pressure field throughout the volume of the microfluidic device. Here, we used an optically trapped particle as probe to measure the forces in all three dimensions. By moving the probe through the volume of the channel, we imaged spatial variations in the pressure field. In the direction of the standing wave this revealed a periodic energy landscape for 2 μm beads, resulting in an effective stiffness of 2.6 nN m(-1) for the acoustic trap. We found that multiple fabricated devices showed consistent pressure fields. Surprisingly, forces perpendicular to the direction of the standing wave reached values of up to 20% of the main-axis-values. To separate the direct acoustic force from secondary effects, we performed experiments with different bead sizes, which attributed some of the perpendicular forces to acoustic streaming. This method to image acoustically generated forces in 3D can be used to either minimize perpendicular forces or to employ them for specific applications in novel acoustofluidic designs. PMID:27302661

  6. Imaging the position-dependent 3D force on microbeads subjected to acoustic radiation forces and streaming.

    PubMed

    Lamprecht, Andreas; Lakämper, Stefan; Baasch, Thierry; Schaap, Iwan A T; Dual, Jurg

    2016-07-01

    Acoustic particle manipulation in microfluidic channels is becoming a powerful tool in microfluidics to control micrometer sized objects in medical, chemical and biological applications. By creating a standing acoustic wave in the channel, the resulting pressure field can be employed to trap or sort particles. To design efficient and reproducible devices, it is important to characterize the pressure field throughout the volume of the microfluidic device. Here, we used an optically trapped particle as probe to measure the forces in all three dimensions. By moving the probe through the volume of the channel, we imaged spatial variations in the pressure field. In the direction of the standing wave this revealed a periodic energy landscape for 2 μm beads, resulting in an effective stiffness of 2.6 nN m(-1) for the acoustic trap. We found that multiple fabricated devices showed consistent pressure fields. Surprisingly, forces perpendicular to the direction of the standing wave reached values of up to 20% of the main-axis-values. To separate the direct acoustic force from secondary effects, we performed experiments with different bead sizes, which attributed some of the perpendicular forces to acoustic streaming. This method to image acoustically generated forces in 3D can be used to either minimize perpendicular forces or to employ them for specific applications in novel acoustofluidic designs.

  7. FACET: a radiation view factor computer code for axisymmetric, 2D planar, and 3D geometries with shadowing

    SciTech Connect

    Shapiro, A.B.

    1983-08-01

    The computer code FACET calculates the radiation geometric view factor (alternatively called shape factor, angle factor, or configuration factor) between surfaces for axisymmetric, two-dimensional planar and three-dimensional geometries with interposed third surface obstructions. FACET was developed to calculate view factors for input to finite-element heat-transfer analysis codes. The first section of this report is a brief review of previous radiation-view-factor computer codes. The second section presents the defining integral equation for the geometric view factor between two surfaces and the assumptions made in its derivation. Also in this section are the numerical algorithms used to integrate this equation for the various geometries. The third section presents the algorithms used to detect self-shadowing and third-surface shadowing between the two surfaces for which a view factor is being calculated. The fourth section provides a user's input guide followed by several example problems.

  8. Scrape-off layer modeling of radiative divertor and high heat flux experiments on D3-D

    NASA Astrophysics Data System (ADS)

    Campbell, R. B.; Petrie, T. W.; Hill, D. N.

    1992-03-01

    We use a new multispecies 1-D fluid code, NEWT-1D, to model DIII-D scrape-off layer (SOL) behavior during radiative divertor and high heat flux experiments. The separatrix location and the width of the SOL are uncertain, and affect the comparison of the data in important ways. The model agrees with many of the experimental measurements for a particular prescription for the separatrix location. The model cannot explain the recent data on the separatrix T(sub i) with a conventional picture of ion and electron power flows across the separatrix. Radial transport of particles and heat in some form is required to explain the peak heat flux data before and after gas puffing. For argon puffing in the private flux region, entrainment is poor in the steady state. The calculations suggest that strike point argon puffing in a slot divertor geometry results in substantially better entrainment. Self-consistent, steady-state solutions with radiated powers up to 80 percent of the SOL power input are obtained in 1-D. We discuss significant radial effects which warrant the development of a code which can treat strongly radiating impurities in 2-D geometries.

  9. Studies of 3D-cloud optical depth from small to very large values, and of the radiation and remote sensing impacts of larger-drop clustering

    SciTech Connect

    Wiscombe, Warren; Marshak, Alexander; Knyazikhin, Yuri; Chiu, Christine

    2007-05-04

    We have basically completed all the goals stated in the previous proposal and published or submitted journal papers thereon, the only exception being First-Principles Monte Carlo which has taken more time than expected. We finally finished the comprehensive book on 3D cloud radiative transfer (edited by Marshak and Davis and published by Springer), with many contributions by ARM scientists; this book was highlighted in the 2005 ARM Annual Report. We have also completed (for now) our pioneering work on new models of cloud drop clustering based on ARM aircraft FSSP data, with applications both to radiative transfer and to rainfall. This clustering work was highlighted in the FY07 “Our Changing Planet” (annual report of the US Climate Change Science Program). Our group published 22 papers, one book, and 5 chapters in that book, during this proposal period. All are listed at the end of this section. Below, we give brief highlights of some of those papers.

  10. Use of the ARM Measurements of Spectral Zenith Radiance for Better Understanding of 3D Cloud-Radiation Processes & Aerosol-Cloud Interaction

    SciTech Connect

    Alexander Marshak; Warren Wiscombe; Yuri Knyazikhin; Christine Chiu

    2011-05-24

    We proposed a variety of tasks centered on the following question: what can we learn about 3D cloud-radiation processes and aerosol-cloud interaction from rapid-sampling ARM measurements of spectral zenith radiance? These ARM measurements offer spectacular new and largely unexploited capabilities in both the temporal and spectral domains. Unlike most other ARM instruments, which average over many seconds or take samples many seconds apart, the new spectral zenith radiance measurements are fast enough to resolve natural time scales of cloud change and cloud boundaries as well as the transition zone between cloudy and clear areas. In the case of the shortwave spectrometer, the measurements offer high time resolution and high spectral resolution, allowing new discovery-oriented science which we intend to pursue vigorously. Research objectives are, for convenience, grouped under three themes: • Understand radiative signature of the transition zone between cloud-free and cloudy areas using data from ARM shortwave radiometers, which has major climatic consequences in both aerosol direct and indirect effect studies. • Provide cloud property retrievals from the ARM sites and the ARM Mobile Facility for studies of aerosol-cloud interactions. • Assess impact of 3D cloud structures on aerosol properties using passive and active remote sensing techniques from both ARM and satellite measurements.

  11. THE GENERAL RELATIVISTIC EQUATIONS OF RADIATION HYDRODYNAMICS IN THE VISCOUS LIMIT

    SciTech Connect

    Coughlin, Eric R.; Begelman, Mitchell C. E-mail: mitch@jila.colorado.edu

    2014-12-20

    We present an analysis of the general relativistic Boltzmann equation for radiation, appropriate to the case where particles and photons interact through Thomson scattering, and derive the radiation energy-momentum tensor in the diffusion limit with viscous terms included. Contrary to relativistic generalizations of the viscous stress tensor that appear in the literature, we find that the stress tensor should contain a correction to the comoving energy density proportional to the divergence of the four-velocity, as well as a finite bulk viscosity. These modifications are consistent with the framework of radiation hydrodynamics in the limit of large optical depth, and do not depend on thermodynamic arguments such as the assignment of a temperature to the zeroth-order photon distribution. We perform a perturbation analysis on our equations and demonstrate that as long as the wave numbers do not probe scales smaller than the mean free path of the radiation, the viscosity contributes only decaying, i.e., stable, corrections to the dispersion relations. The astrophysical applications of our equations, including jets launched from super-Eddington tidal disruption events and those from collapsars, are discussed and will be considered further in future papers.

  12. Evaluation of a prototype 3D ultrasound system for multimodality imaging of cervical nodes for adaptive radiation therapy

    NASA Astrophysics Data System (ADS)

    Fraser, Danielle; Fava, Palma; Cury, Fabio; Vuong, Te; Falco, Tony; Verhaegen, Frank

    2007-03-01

    Sonography has good topographic accuracy for superficial lymph node assessment in patients with head and neck cancers. It is therefore an ideal non-invasive tool for precise inter-fraction volumetric analysis of enlarged cervical nodes. In addition, when registered with computed tomography (CT) images, ultrasound information may improve target volume delineation and facilitate image-guided adaptive radiation therapy. A feasibility study was developed to evaluate the use of a prototype ultrasound system capable of three dimensional visualization and multi-modality image fusion for cervical node geometry. A ceiling-mounted optical tracking camera recorded the position and orientation of a transducer in order to synchronize the transducer's position with respect to the room's coordinate system. Tracking systems were installed in both the CT-simulator and radiation therapy treatment rooms. Serial images were collected at the time of treatment planning and at subsequent treatment fractions. Volume reconstruction was performed by generating surfaces around contours. The quality of the spatial reconstruction and semi-automatic segmentation was highly dependent on the system's ability to track the transducer throughout each scan procedure. The ultrasound information provided enhanced soft tissue contrast and facilitated node delineation. Manual segmentation was the preferred method to contour structures due to their sonographic topography.

  13. A radiation-hydrodynamics model of accretion columns for ultra-luminous X-ray pulsars

    NASA Astrophysics Data System (ADS)

    Kawashima, Tomohisa; Mineshige, Shin; Ohsuga, Ken; Ogawa, Takumi

    2016-10-01

    Prompted by the recent discovery of pulsed emission from an ultra-luminous X-ray source, M 82 X-2 ("ULX-pulsar"), we perform a two-dimensional radiation-hydrodynamics simulation of a supercritical accretion flow onto a neutron star through a narrow accretion column. We set an accretion column with a cone shape filled with tenuous gas with the density of 10-4 g cm-3 above a neutron star and solve the two-dimensional gas motion and radiative transfer within the column. The side boundaries are set such that radiation can freely escape, but gas cannot. Since the initial gas layer is not in a hydrostatic balance, the column gas falls onto the neutron-star surface, and thereby a shock is generated. As a result, the accretion column is composed of two regions: an upper, nearly free-fall region and a lower settling region, as noted by Basko and Sunyaev (1976, MNRAS, 175, 395). The average accretion rate is very high; dot{M}˜ 10^{2{-}3} L_E/c2 (with LE being the Eddington luminosity), and so radiation energy dominates over gas internal energy entirely within the column. Despite the high accretion rate, the radiation flux in the laboratory frame is kept barely below LE/(4πr2) at a distance r in the settling region so that matter can slowly accrete. This adjustment is made possible, since a large amount of photons produced via dissipation of kinetic energy of matter can escape through the side boundaries. The total luminosity can greatly exceed LE by several orders of magnitude, whereas the apparent luminosity observed from the top of the column is much less. Due to such highly anisotropic radiation fields, the observed flux should exhibit periodic variations with the rotation period, provided that the rotation and magnetic axes are misaligned.

  14. Local Radiation Hydrodynamic Simulations of Massive Star Envelopes at the Iron Opacity Peak

    NASA Astrophysics Data System (ADS)

    Jiang, Yan-Fei; Cantiello, Matteo; Bildsten, Lars; Quataert, Eliot; Blaes, Omer

    2015-11-01

    We perform three-dimensional radiation hydrodynamic simulations of the structure and dynamics of the radiation-dominated envelopes of massive stars at the location of the iron opacity peak. One-dimensional hydrostatic calculations predict an unstable density inversion at this location, whereas our simulations reveal a complex interplay of convective and radiative transport whose behavior depends on the ratio of the photon diffusion time to the dynamical time. The latter is set by the ratio of the optical depth per pressure scale height, {τ }0, to {τ }{{c}}=c/{c}{{g}}, where {c}{{g}}≈ 50 {km} {{{s}}}-1 is the isothermal sound speed in the gas alone. When {τ }0\\gg {τ }{{c}}, convection reduces the radiation acceleration and removes the density inversion. The turbulent energy transport in the simulations agrees with mixing length theory and provides its first numerical calibration in the radiation-dominated regime. When {τ }0\\ll {τ }{{c}}, convection becomes inefficient and the turbulent energy transport is negligible. The turbulent velocities exceed cg, driving shocks and large density fluctuations that allow photons to preferentially diffuse out through low-density regions. However, the effective radiation acceleration is still larger than the gravitational acceleration so that the time average density profile contains a modest density inversion. In addition, the simulated envelope undergoes large-scale oscillations with periods of a few hours. The turbulent velocity field may affect the broadening of spectral lines and therefore stellar rotation measurements in massive stars, while the time variable outer atmosphere could lead to variations in their mass loss and stellar radius.

  15. A radiation-hydrodynamics model of accretion columns for ultra-luminous X-ray pulsars

    NASA Astrophysics Data System (ADS)

    Kawashima, Tomohisa; Mineshige, Shin; Ohsuga, Ken; Ogawa, Takumi

    2016-09-01

    Prompted by the recent discovery of pulsed emission from an ultra-luminous X-ray source, M 82 X-2 ("ULX-pulsar"), we perform a two-dimensional radiation-hydrodynamics simulation of a supercritical accretion flow onto a neutron star through a narrow accretion column. We set an accretion column with a cone shape filled with tenuous gas with the density of 10-4 g cm-3 above a neutron star and solve the two-dimensional gas motion and radiative transfer within the column. The side boundaries are set such that radiation can freely escape, but gas cannot. Since the initial gas layer is not in a hydrostatic balance, the column gas falls onto the neutron-star surface, and thereby a shock is generated. As a result, the accretion column is composed of two regions: an upper, nearly free-fall region and a lower settling region, as noted by Basko and Sunyaev (1976, MNRAS, 175, 395). The average accretion rate is very high; dot{M}}˜ 10^{2-3} L_E/c2 (with LE being the Eddington luminosity), and so radiation energy dominates over gas internal energy entirely within the column. Despite the high accretion rate, the radiation flux in the laboratory frame is kept barely below LE/(4πr2) at a distance r in the settling region so that matter can slowly accrete. This adjustment is made possible, since a large amount of photons produced via dissipation of kinetic energy of matter can escape through the side boundaries. The total luminosity can greatly exceed LE by several orders of magnitude, whereas the apparent luminosity observed from the top of the column is much less. Due to such highly anisotropic radiation fields, the observed flux should exhibit periodic variations with the rotation period, provided that the rotation and magnetic axes are misaligned.

  16. Radiation Hydrodynamics of Stainless Steel Wire Arrays on the Z Accelerator

    SciTech Connect

    Davis, J.; Dasgupta, A.; Thornhill, J. W.; Giuliani, J.; Clark, R. W.; Whitney, K.; Coverdale, C. A.; Lepell, D.; Jones, B.; Deeney, C.

    2009-01-21

    Experiments on the Z accelerator with nested stainless steel wire arrays produced K-shell x-ray yields exceeding 50 kJ in the energy range 5.5 to 8 keV. Stainless steel (Z = 24-28) can barely be ionized to the K-shell on Z, and the spectra are therefore sensitive to the details of the implosion. We have simulated the implosion dynamics of stainless steel wire arrays with diameters ranging from 4.5 to 8.0 centimeters using a detailed configuration non-LTE radiation hydrodynamics model. Reasonable agreement with total and K-shell experimental yields was obtained for the various array configurations. A comparison is made between the 1-D and 2-D simulations for shot Z-578.

  17. RECENT RESULTS OF RADIATION HYDRODYNAMICS AND TURBULENCE EXPERIMENTS IN CYLINDRICAL GEOMETRY.

    SciTech Connect

    Magelssen G. R.; Scott, J. M.; Batha, S. H.; Holmes, R. L.; Lanier, N. E.; Tubbs, D. L.; Elliott, N. E.; Dunne, A. M.; Rothman, S.; Parker, K. W.; Youngs, D.

    2001-01-01

    Cylindrical implosion experiments at the University of Rochester laser facility, OMEGA, were performed to study radiation hydrodynamics and compressible turbulence in convergent geometry. Laser beams were used to directly drive a cylinder with either a gold (AU) or dichloropolystyrene (C6H8CL2) marker layer placed between a solid CH ablator and a foam cushion. When the cylinder is imploded the Richtmyer-Meshkov instability and convergence cause the marker layer to increase in thickness. Marker thickness measurements were made by x-ray backlighting along the cylinder axis. Experimental results of the effect of surface roughness will be presented. Computational results with an AMR code are in good agreement with the experimental results from targets with the roughest surface. Computational results suggest that marker layer 'end effects' and bowing increase the effective thickness of the marker layer at lower levels of roughness.

  18. Coupling hydrodynamics and radiation calculations for star-jet interactions in active galactic nuclei

    NASA Astrophysics Data System (ADS)

    de la Cita, V. M.; Bosch-Ramon, V.; Paredes-Fortuny, X.; Khangulyan, D.; Perucho, M.

    2016-06-01

    Context. Stars and their winds can contribute to the non-thermal emission in extragalactic jets. Because of the complexity of jet-star interactions, the properties of the resulting emission are closely linked to those of the emitting flows. Aims: We simulate the interaction between a stellar wind and a relativistic extragalactic jet and use the hydrodynamic results to compute the non-thermal emission under different conditions. Methods: We performed relativistic axisymmetric hydrodynamical simulations of a relativistic jet interacting with a supersonic, non-relativistic stellar wind. We computed the corresponding streamlines out of the simulation results and calculated the injection, evolution, and emission of non-thermal particles accelerated in the jet shock, focusing on electrons or e±-pairs. Several cases were explored, considering different jet-star interaction locations, magnetic fields, and observer lines of sight. The jet luminosity and star properties were fixed, but the results are easily scalable when these parameters are changed. Results: Individual jet-star interactions produce synchrotron and inverse Compton emission that peaks from X-rays to MeV energies (depending on the magnetic field), and at ~100-1000 GeV (depending on the stellar type), respectively. The radiation spectrum is hard in the scenarios explored here as a result of non-radiative cooling dominance, as low-energy electrons are efficiently advected even under relatively high magnetic fields. Interactions of jets with cold stars lead to an even harder inverse Compton spectrum because of the Klein-Nishina effect in the cross section. Doppler boosting has a strong effect on the observer luminosity. Conclusions: The emission levels for individual interactions found here are in the line of previous, more approximate, estimates, strengthening the hypothesis that collective jet-star interactions could significantly contribute at high energies under efficient particle acceleration.

  19. Comparative study of four advanced 3d-conformal radiation therapy treatment planning techniques for head and neck cancer.

    PubMed

    Herrassi, Mohamed Yassine; Bentayeb, Farida; Malisan, Maria Rosa

    2013-04-01

    For the head-and-neck cancer bilateral irradiation, intensity-modulated radiation therapy (IMRT) is the most reported technique as it enables both target dose coverage and organ-at-risk (OAR) sparing. However, during the last 20 years, three-dimensional conformal radiotherapy (3DCRT) techniques have been introduced, which are tailored to improve the classic shrinking field technique, as regards both planning target volume (PTV) dose conformality and sparing of OAR's, such as parotid glands and spinal cord. In this study, we tested experimentally in a sample of 13 patients, four of these advanced 3DCRT techniques, all using photon beams only and a unique isocentre, namely Bellinzona, Forward-Planned Multisegments (FPMS), ConPas, and field-in-field (FIF) techniques. Statistical analysis of the main dosimetric parameters of PTV and OAR's DVH's as well as of homogeneity and conformity indexes was carried out in order to compare the performance of each technique. The results show that the PTV dose coverage is adequate for all the techniques, with the FPMS techniques providing the highest value for D95%; on the other hand, the best sparing of parotid glands is achieved using the FIF and ConPas techniques, with a mean dose of 26 Gy to parotid glands for a PTV prescription dose of 54 Gy. After taking into account both PTV coverage and parotid sparing, the best global performance was achieved by the FIF technique with results comparable to that of IMRT plans. This technique can be proposed as a valid alternative when IMRT equipment is not available or patient is not suitable for IMRT treatment.

  20. Comparative study of four advanced 3d-conformal radiation therapy treatment planning techniques for head and neck cancer

    PubMed Central

    Herrassi, Mohamed Yassine; Bentayeb, Farida; Malisan, Maria Rosa

    2013-01-01

    For the head-and-neck cancer bilateral irradiation, intensity-modulated radiation therapy (IMRT) is the most reported technique as it enables both target dose coverage and organ-at-risk (OAR) sparing. However, during the last 20 years, three-dimensional conformal radiotherapy (3DCRT) techniques have been introduced, which are tailored to improve the classic shrinking field technique, as regards both planning target volume (PTV) dose conformality and sparing of OAR’s, such as parotid glands and spinal cord. In this study, we tested experimentally in a sample of 13 patients, four of these advanced 3DCRT techniques, all using photon beams only and a unique isocentre, namely Bellinzona, Forward-Planned Multisegments (FPMS), ConPas, and field-in-field (FIF) techniques. Statistical analysis of the main dosimetric parameters of PTV and OAR’s DVH’s as well as of homogeneity and conformity indexes was carried out in order to compare the performance of each technique. The results show that the PTV dose coverage is adequate for all the techniques, with the FPMS techniques providing the highest value for D95%; on the other hand, the best sparing of parotid glands is achieved using the FIF and ConPas techniques, with a mean dose of 26 Gy to parotid glands for a PTV prescription dose of 54 Gy. After taking into account both PTV coverage and parotid sparing, the best global performance was achieved by the FIF technique with results comparable to that of IMRT plans. This technique can be proposed as a valid alternative when IMRT equipment is not available or patient is not suitable for IMRT treatment. PMID:23776314

  1. High density resolution synchrotron radiation based x-ray microtomography (SR μCT) for quantitative 3D-morphometrics in zoological sciences

    NASA Astrophysics Data System (ADS)

    Nickel, Michael; Hammel, Jörg U.; Herzen, Julia; Bullinger, Eric; Beckmann, Felix

    2008-08-01

    Zoological sciences widely rely on morphological data to reconstruct and understand body structures of animals. The best suitable methods like tomography allow for a direct representation of 3D-structures. In recent years, synchrotron radiation based x-ray microtomography (SR μCT) placed high resolutions to the disposal of morphologists. With the development of highly brilliant and collimated third generation synchrotron sources, phase contrast SR μCT became widely available. A number of scientific contributions stressed the superiority of phase contrast over absorption contrast. However, here we demonstrate the power of high density resolution methods based on absorption-contrast SRμCT for quantitative 3D-measurements of tissues and other delicate bio-structures in zoological sciences. We used beamline BW2 at DORIS III (DESY, Hamburg, Germany) to perform microtomography on tissue and mineral skeletons of marine sponges (Porifera) which were shock frozen and/or fixed in a glutamate osmium tetroxide solution, followed by critical point drying. High density resolution tomographic reconstructions allowed running quantitative 3D-image analyses in Matlab and ImageJ. By applying contrast and shape rule based algorithms we semi-automatically extracted and measured sponge body structures like mineral spicules, elements of the canal system or tissue structures. This lead to a better understanding of sponge biology: from skeleton functional morphology and internal water flow regimes to body contractility. Our high density resolution based quantitative approach can be applied to a wide variety of biological structures. However, two prerequisites apply: (1) maximum density resolution is necessary; (2) edge effects as seen for example in phase outline contrast SR μCT must not be present. As a consequence, to allow biological sciences to fully exploit the power of SR μCT further increase of density resolution in absorption contrast methods is desirable.

  2. Outflows Driven by Quasars in High-Redshift Galaxies with Radiation Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Bieri, Rebekka; Dubois, Yohan; Rosdahl, Joakim; Wagner, Alexander; Silk, Joseph; Mamon, Gary A.

    2016-09-01

    The quasar mode of Active Galactic Nuclei (AGN) in the high-redshift Universe is routinely observed in gas-rich galaxies together with large-scale AGN-driven winds. It is crucial to understand how photons emitted by the central AGN source couple to the ambient interstellar-medium to trigger large-scale outflows. By means of radiation-hydrodynamical simulations of idealised galactic discs, we study the coupling of photons with the multiphase galactic gas, and how it varies with gas cloud sizes, and the radiation bands included in the simulations, which are ultraviolet (UV), optical, and infrared (IR). We show how a quasar with a luminosity of 146 erg s-1 can drive large-scale winds with velocities of 102 - 103 km s-1 and mass outflow rates around 10^3 M_⊙ yr^{-1} for times of order a few million years. Infrared radiation is necessary to efficiently transfer momentum to the gas via multi-scattering on dust in dense clouds. However, IR multi-scattering, despite being extremely important at early times, quickly declines as the central gas cloud expands and breaks up, allowing the radiation to escape through low gas density channels. The typical number of multi-scattering events for an IR photon is only about a quarter of the mean optical depth from the center of the cloud. Our models account for the observed outflow rates of ˜ 500-1000 M_{⊙} {yr}^{-1} and high velocities of ˜ 10^3 km s^{-1}, favouring winds that are energy-driven via extremely fast nuclear outflows, interpreted here as being IR-radiatively-driven winds.

  3. Salinity and eutrophication management by in situ continuous real-time monitoring and 3D modelling (hydrodynamics coupled with water quality): the case of the Berre lagoon (Mediterranean, France)

    NASA Astrophysics Data System (ADS)

    Martin, Laurent; Emma, Gouze

    2010-05-01

    . Since 2008, these three buoys have been also equipped with nitrate, chlorophyll and oxygen probes. Thanks to these measurements, a 3D hydrodynamic model (TELEMAC©) has been developped and validated to better qualify and quantify the relationships between the salinity of the lagoon, the fresh water inputs (from the powerplant and from the rivers), the water exchanges through the Caronte channel and the wind mixing. This model is currently used by the electricity producer to manage fresh water discharges complying with salinity indicators fixed by the European Court of Justice. Then, a biogeochemical model (DelWAQ©) coupled with the hydrodynamic model has been developped to understand the ecosystem functioning and to assess the hydroelectric powerplant implication in the eutrophication of the lagoon. Simulations reproduce quite well: 1/ the seasonal variations of nutrients, 2/ biogeochemical processes, 3/ anoxia events in connection with stratification periods at deep stations and 4/ are able to calculate nutrients budgets over a year. The results show that high primary production rates are based on high dynamical mineralization processes. The allochtonous nutrients sources are not sufficient to feed the phytoplanktonic demand (less than 1%). This models coupling is the only way to compile the physical and biogeochemical variables and processes. It's a tool aiming at a better assessment of the high complexity of the lagoon nutrients cycles. It will help us to understand the powerplant implication for the eutrophication with respect to the anthropised rivers. Moreover we would be able to test various managing scenarii (e.g. drop of nutrients loads) and to suggest new rehabilitation strategies.

  4. An In Vivo Validation of the Application of Acoustic Radiation Force to Enhance the Diagnostic Utility of Molecular Imaging Using 3D Ultrasound

    PubMed Central

    Gessner, Ryan C.; Streeter, Jason E.; Kothadia, Roshni; Feingold, Steven; Dayton, Paul A.

    2012-01-01

    For over a decade, the application of acoustic radiation force (ARF) has been proposed as a mechanism to increase ultrasonic molecular imaging (MI) sensitivity in vivo. Presented herein is the first noninvasive in vivo validation of ARF-enhanced MI with an unmodified clinical system. First, an in vitro optical-acoustical setup was used to optimize system parameters and ensure sufficient microbubble translation when exposed to ARF. 3D ARF-enhanced MI was then performed on 7 rat fibrosarcoma tumors using microbubbles targeted to αvβ3 and non-targeted microbubbles. Low-amplitude (< 25 kPa) 3D ARF pulse sequences were tested and compared to passive targeting studies in the same animal. Our results demonstrate that a 78% increase in image intensity from targeted microbubbles can be achieved when using ARF relative to the passive targeting studies. Furthermore, ARF did not significantly increase image contrast when applied to non-targeted agents, suggesting that ARF did not increase non-specific adhesion. PMID:22341052

  5. Plans for a 3D reconnection experiment

    NASA Astrophysics Data System (ADS)

    Bellan, Paul

    2010-11-01

    Plasma-filled, current-carrying magnetic flux tubes are the essence of tokamaks, RFP's, spheromaks, solar coronal loops, and astrophysical jets. Relevant behaviors/issues are magnetic helicity content and injection, motion of the tube axis (hoop force, kinking), plasma confinement (balance between hydrodynamic pressure and pinch force), axial jet flows (acceleration and stagnation), waves, particle orbits, reconnection, and open v. closed field lines. These behaviors/issues and their mutual interaction are being investigated via Alfven time-scale imaging and conventional diagnostics in highly reproducible experiments having the simplest relevant geometry. High-speed movies clearly show flux tube kinking, motion of the flux tube axis due to hoop force, axial jet flows, an unusual particle orbit associated with flows counter to the electrical current, and reconnection between adjacent co- or counter-helicity flux tubes. A new experiment now under construction will have two slightly offset plasma-filled, current carrying flux tubes locally reconnect in 3D to form a single long flux tube. The setup requires two floating power supplies to drive the pre-reconnection currents as post-reconnection the power supplies become series-connected. A means for overcoming the topologically unavoidable mutual repulsion between the pre-reconnection currents is also required. It is anticipated that Alfven waves will radiate from the 3D localized reconnection region.

  6. New self-similar radiation-hydrodynamics solutions in the high-energy density, equilibrium diffusion limit

    NASA Astrophysics Data System (ADS)

    Lane, Taylor K.; McClarren, Ryan G.

    2013-09-01

    This work presents semi-analytic solutions to a radiation-hydrodynamics problem of a radiation source driving an initially cold medium. Our solutions are in the equilibrium diffusion limit, include material motion and allow for radiation-dominated situations where the radiation energy is comparable to (or greater than) the material internal energy density. As such, this work is a generalization of the classical Marshak wave problem that assumes no material motion and that the radiation energy is negligible. Including radiation energy density in the model serves to slow down the wave propagation. The solutions provide insight into the impact of radiation energy and material motion, as well as present a novel verification test for radiation transport packages. As a verification test, the solution exercises the radiation-matter coupling terms and their v/c treatment without needing a hydrodynamics solve. An example comparison between the self-similar solution and a numerical code is given. Tables of the self-similar solutions are also provided.

  7. SOLAR FLARE CHROMOSPHERIC LINE EMISSION: COMPARISON BETWEEN IBIS HIGH-RESOLUTION OBSERVATIONS AND RADIATIVE HYDRODYNAMIC SIMULATIONS

    SciTech Connect

    Costa, Fatima Rubio da; Petrosian, Vahé; Kleint, Lucia; Dalda, Alberto Sainz; Liu, Wei

    2015-05-01

    Solar flares involve impulsive energy release, which results in enhanced radiation over a broad spectral range and a wide range of heights. In particular, line emission from the chromosphere can provide critical diagnostics of plasma heating processes. Thus, a direct comparison between high-resolution spectroscopic observations and advanced numerical modeling results could be extremely valuable, but has not yet been attempted. In this paper, we present such a self-consistent investigation of an M3.0 flare observed by the Dunn Solar Telescope’s Interferometric Bi-dimensional Spectrometer (IBIS) on 2011 September 24 which we have modeled using the radiative hydrodynamic code RADYN. We obtained images and spectra of the flaring region with IBIS in Hα 6563 Å and Ca ii 8542 Å, and with RHESSI in X-rays. The latter observations were used to infer the non-thermal electron population, which was passed to RADYN to simulate the atmospheric response to electron collisional heating. We then synthesized spectral lines and compared their shapes and intensities to those observed by IBIS and found a general agreement. In particular, the synthetic Ca ii 8542 Å profile fits well to the observed profile, while the synthetic Hα profile is fainter in the core than for the observation. This indicates that Hα emission is more responsive to the non-thermal electron flux than the Ca ii 8542 Å emission. We suggest that it is necessary to refine the energy input and other processes to resolve this discrepancy.

  8. Radiation hydrodynamic simulations of line-driven disk winds for ultra-fast outflows

    NASA Astrophysics Data System (ADS)

    Nomura, Mariko; Ohsuga, Ken; Takahashi, Hiroyuki R.; Wada, Keiichi; Yoshida, Tessei

    2016-02-01

    Using two-dimensional radiation hydrodynamic simulations, we investigate the origin of the ultra-fast outflows (UFOs) that are often observed in luminous active galactic nuclei (AGNs). We found that the radiation force due to the spectral lines generates strong winds (line-driven disk winds) that are launched from the inner region of accretion disks (˜30 Schwarzschild radii). A wide range of black hole masses (MBH) and Eddington ratios (ε) was investigated to study the conditions causing the line-driven winds. For MBH = 106-109 M⊙ and ε = 0.1-0.7, funnel-shaped disk winds appear, in which dense matter is accelerated outward with an opening angle of 70°-80° and with 10% of the speed of light. If we observe the wind along its direction, the velocity, the column density, and the ionization state are consistent with those of the observed UFOs. As long as obscuration by the torus does not affect the observation of X-ray bands, the UFOs could be statistically observed in about 13%-28% of the luminous AGNs, which is not inconsistent with the observed ratio (˜40%). We also found that the results are insensitive to the X-ray luminosity and the density of the disk surface. Thus, we can conclude that UFOs could exist in any luminous AGNs, such as narrow-line Seyfert 1s and quasars with ε > 0.1, with which fast line-driven winds are associated.

  9. Numerical Modeling of Imploding Plasma liners Using the 1D Radiation-Hydrodynamics Code HELIOS

    NASA Astrophysics Data System (ADS)

    Davis, J. S.; Hanna, D. S.; Awe, T. J.; Hsu, S. C.; Stanic, M.; Cassibry, J. T.; Macfarlane, J. J.

    2010-11-01

    The Plasma Liner Experiment (PLX) is attempting to form imploding plasma liners to reach 0.1 Mbar upon stagnation, via 30--60 spherically convergent plasma jets. PLX is partly motivated by the desire to develop a standoff driver for magneto-inertial fusion. The liner density, atomic makeup, and implosion velocity will help determine the maximum pressure that can be achieved. This work focuses on exploring the effects of atomic physics and radiation on the 1D liner implosion and stagnation dynamics. For this reason, we are using Prism Computational Science's 1D Lagrangian rad-hydro code HELIOS, which has both equation of state (EOS) table-lookup and detailed configuration accounting (DCA) atomic physics modeling. By comparing a series of PLX-relevant cases proceeding from ideal gas, to EOS tables, to DCA treatments, we aim to identify how and when atomic physics effects are important for determining the peak achievable stagnation pressures. In addition, we present verification test results as well as brief comparisons to results obtained with RAVEN (1D radiation-MHD) and SPHC (smoothed particle hydrodynamics).

  10. Multifrequency radiation hydrodynamics simulations of H2 line emission in primordial, star-forming clouds

    NASA Astrophysics Data System (ADS)

    Greif, Thomas H.

    2014-10-01

    We investigate the collapse of primordial gas in a minihalo with three-dimensional radiation hydrodynamics simulations that accurately model the transfer of H2 line emission. For this purpose, we have implemented a multiline, multifrequency ray-tracing scheme in the moving-mesh code AREPO that is capable of adaptively refining rays based on the HEALPIX algorithm, as well as a hybrid equilibrium/non-equilibrium primordial chemistry solver. We find that a multifrequency treatment of the individual H2 lines is essential, since for high optical depths the smaller cross-section in the wings of the lines greatly increases the amount of energy that can escape. The influence of Doppler shifts due to bulk velocities is comparatively small, since systematic velocity differences in the cloud are typically smaller than the sound speed. During the initial collapse phase, the radially averaged escape fraction agrees relatively well with the fit of Ripamonti & Abel. However, in general it is not advisable to use a simple density-dependent fitting function, since the escape fraction depends on many factors and does not capture the suppression of density perturbations due to the diffusion of radiation. The Sobolev method overestimates the escape fraction by more than an order of magnitude, since the properties of the gas change on scales smaller than the Sobolev length.

  11. Solar Flare Chromospheric Line Emission: Comparison Between IBIS High-resolution Observations and Radiative Hydrodynamic Simulations

    NASA Astrophysics Data System (ADS)

    Rubio da Costa, Fatima; Kleint, Lucia; Petrosian, Vahé; Sainz Dalda, Alberto; Liu, Wei

    2015-05-01

    Solar flares involve impulsive energy release, which results in enhanced radiation over a broad spectral range and a wide range of heights. In particular, line emission from the chromosphere can provide critical diagnostics of plasma heating processes. Thus, a direct comparison between high-resolution spectroscopic observations and advanced numerical modeling results could be extremely valuable, but has not yet been attempted. In this paper, we present such a self-consistent investigation of an M3.0 flare observed by the Dunn Solar Telescope’s Interferometric Bi-dimensional Spectrometer (IBIS) on 2011 September 24 which we have modeled using the radiative hydrodynamic code RADYN. We obtained images and spectra of the flaring region with IBIS in Hα 6563 Å and Ca ii 8542 Å, and with RHESSI in X-rays. The latter observations were used to infer the non-thermal electron population, which was passed to RADYN to simulate the atmospheric response to electron collisional heating. We then synthesized spectral lines and compared their shapes and intensities to those observed by IBIS and found a general agreement. In particular, the synthetic Ca ii 8542 Å profile fits well to the observed profile, while the synthetic Hα profile is fainter in the core than for the observation. This indicates that Hα emission is more responsive to the non-thermal electron flux than the Ca ii 8542 Å emission. We suggest that it is necessary to refine the energy input and other processes to resolve this discrepancy.

  12. Radiation-hydrodynamic Model of High-Mass X-ray Binaries

    NASA Astrophysics Data System (ADS)

    Čechura, J.; Hadrava, P.

    2014-10-01

    The topic of circumstellar matter in the X-ray binaries and its spectroscopic diagnostics is addressed by method of generating synthetic Dopplerograms for direct comparison with observations. The presented results were obtained using our improved three-dimensional radiation-hydrodynamic model of the stellar wind in HMXBs. We use the model to simulate dynamics, anisotropy and other characteristics of the wind, e.g. the density distribution and ionization structure. We adopt parameters of Cygnus X-1 in our simulations and use the Doppler tomography to probe the structure of radiation-emitting material in the system. We introduce a data interpretation method of observed Doppler tomograms via direct comparison with synthetic Dopplerograms obtained from our model. We test the reliability of the model as well as set constrains on various physical parameters and processes, e.g. the accretion rate. We take into account the Coriolis force, the ionization structure of the medium, the gravity darkening, and we investigate the effects these phenomena have on the accretion process. E.g. the Coriolis force substantially influences the mass-loss of the donor and by that the accretion rate of the compact companion. Additionally, focusing of the stellar wind by the gravitational field of the compact companion leads to the formation of an unstable gaseous tail behind the companion. This tail shows signs of quasi-periodic oscillations and its existence presents us with other means to explain the switching mechanism among the various X-ray states.

  13. Europeana and 3D

    NASA Astrophysics Data System (ADS)

    Pletinckx, D.

    2011-09-01

    The current 3D hype creates a lot of interest in 3D. People go to 3D movies, but are we ready to use 3D in our homes, in our offices, in our communication? Are we ready to deliver real 3D to a general public and use interactive 3D in a meaningful way to enjoy, learn, communicate? The CARARE project is realising this for the moment in the domain of monuments and archaeology, so that real 3D of archaeological sites and European monuments will be available to the general public by 2012. There are several aspects to this endeavour. First of all is the technical aspect of flawlessly delivering 3D content over all platforms and operating systems, without installing software. We have currently a working solution in PDF, but HTML5 will probably be the future. Secondly, there is still little knowledge on how to create 3D learning objects, 3D tourist information or 3D scholarly communication. We are still in a prototype phase when it comes to integrate 3D objects in physical or virtual museums. Nevertheless, Europeana has a tremendous potential as a multi-facetted virtual museum. Finally, 3D has a large potential to act as a hub of information, linking to related 2D imagery, texts, video, sound. We describe how to create such rich, explorable 3D objects that can be used intuitively by the generic Europeana user and what metadata is needed to support the semantic linking.

  14. A faster algorithm for smoothed particle hydrodynamics with radiative transfer in the flux-limited diffusion approximation

    NASA Astrophysics Data System (ADS)

    Whitehouse, Stuart C.; Bate, Matthew R.; Monaghan, Joe J.

    2005-12-01

    We describe a new, faster implicit algorithm for solving the radiation hydrodynamics equations in the flux-limited diffusion approximation for smoothed particle hydrodynamics. This improves on the method elucidated in Whitehouse and Bate by using a Gauss-Seidel iterative method rather than iterating over the exchange of energy between pairs of particles. The new algorithm is typically many thousands of times faster than the old one, which will enable more complex problems to be solved. The new algorithm is tested using the same tests performed by Turner and Stone for ZEUS-2D, and repeated by Whitehouse and Bate.

  15. 3D micro-scale deformations of wood in bending: synchrotron radiation muCT data analyzed with digital volume correlation.

    PubMed

    Forsberg, F; Mooser, R; Arnold, M; Hack, E; Wyss, P

    2008-12-01

    A micro-scale three-point-bending experiment with a wood specimen was carried out and monitored by synchrotron radiation micro-computed tomography. The full three-dimensional wood structure of the 1.57x3.42x0.75mm(3) specimen was reconstructed at cellular level in different loading states. Furthermore, the full three-dimensional deformation field of the loaded wood specimen was determined by digital volume correlation, applied to the reconstructed data at successive loading states. Results from two selected regions within the wood specimen are presented as continuous displacement and strain fields in both 2D and 3D. The applied combination of synchrotron radiation micro-computed tomography and digital volume correlation for the deformation analysis of wood under bending stress is a novel application in wood material science. The method offers the potential for the simultaneous observation of structural changes and quantified deformations during in situ micro-mechanical experiments. Moreover, the high spatial resolution allows studying the influence of anatomical features on the fracture behaviour of wood. Possible applications of this method range from bio-mechanical observations in fresh plant tissue to fracture mechanics aspects in structural timber. PMID:18804168

  16. 3D micro-scale deformations of wood in bending: synchrotron radiation muCT data analyzed with digital volume correlation.

    PubMed

    Forsberg, F; Mooser, R; Arnold, M; Hack, E; Wyss, P

    2008-12-01

    A micro-scale three-point-bending experiment with a wood specimen was carried out and monitored by synchrotron radiation micro-computed tomography. The full three-dimensional wood structure of the 1.57x3.42x0.75mm(3) specimen was reconstructed at cellular level in different loading states. Furthermore, the full three-dimensional deformation field of the loaded wood specimen was determined by digital volume correlation, applied to the reconstructed data at successive loading states. Results from two selected regions within the wood specimen are presented as continuous displacement and strain fields in both 2D and 3D. The applied combination of synchrotron radiation micro-computed tomography and digital volume correlation for the deformation analysis of wood under bending stress is a novel application in wood material science. The method offers the potential for the simultaneous observation of structural changes and quantified deformations during in situ micro-mechanical experiments. Moreover, the high spatial resolution allows studying the influence of anatomical features on the fracture behaviour of wood. Possible applications of this method range from bio-mechanical observations in fresh plant tissue to fracture mechanics aspects in structural timber.

  17. RELAP5-3D User Problems

    SciTech Connect

    Riemke, Richard Allan

    2002-09-01

    The Reactor Excursion and Leak Analysis Program with 3D capability1 (RELAP5-3D) is a reactor system analysis code that has been developed at the Idaho National Engineering and Environmental Laboratory (INEEL) for the U. S. Department of Energy (DOE). The 3D capability in RELAP5-3D includes 3D hydrodynamics2 and 3D neutron kinetics3,4. Assessment, verification, and validation of the 3D capability in RELAP5-3D is discussed in the literature5,6,7,8,9,10. Additional assessment, verification, and validation of the 3D capability of RELAP5-3D will be presented in other papers in this users seminar. As with any software, user problems occur. User problems usually fall into the categories of input processing failure, code execution failure, restart/renodalization failure, unphysical result, and installation. This presentation will discuss some of the more generic user problems that have been reported on RELAP5-3D as well as their resolution.

  18. Neutron detection and characterization for non-proliferation applications using 3D computer optical memories [Use of 3D optical computer memory for radiation detectors/dosimeters. Final progress report

    SciTech Connect

    Gary W. Phillips

    2000-12-20

    We have investigated 3-dimensional optical random access memory (3D-ORAM) materials for detection and characterization of charged particles of neutrons by detecting tracks left by the recoil charged particles produced by the neutrons. We have characterized the response of these materials to protons, alpha particles and carbon-12 nuclei as a functions of dose and energy. We have observed individual tracks using scanning electron microscopy and atomic force microscopy. We are investigating the use of neural net analysis to characterize energetic neutron fields from their track structure in these materials.

  19. 3D printing meets computational astrophysics: deciphering the structure of η Carinae's inner colliding winds

    NASA Astrophysics Data System (ADS)

    Madura, T. I.; Clementel, N.; Gull, T. R.; Kruip, C. J. H.; Paardekooper, J.-P.

    2015-06-01

    We present the first 3D prints of output from a supercomputer simulation of a complex astrophysical system, the colliding stellar winds in the massive (≳120 M⊙), highly eccentric (e ˜ 0.9) binary star system η Carinae. We demonstrate the methodology used to incorporate 3D interactive figures into a PDF (Portable Document Format) journal publication and the benefits of using 3D visualization and 3D printing as tools to analyse data from multidimensional numerical simulations. Using a consumer-grade 3D printer (MakerBot Replicator 2X), we successfully printed 3D smoothed particle hydrodynamics simulations of η Carinae's inner (r ˜ 110 au) wind-wind collision interface at multiple orbital phases. The 3D prints and visualizations reveal important, previously unknown `finger-like' structures at orbital phases shortly after periastron (φ ˜ 1.045) that protrude radially outwards from the spiral wind-wind collision region. We speculate that these fingers are related to instabilities (e.g. thin-shell, Rayleigh-Taylor) that arise at the interface between the radiatively cooled layer of dense post-shock primary-star wind and the fast (3000 km s-1), adiabatic post-shock companion-star wind. The success of our work and easy identification of previously unrecognized physical features highlight the important role 3D printing and interactive graphics can play in the visualization and understanding of complex 3D time-dependent numerical simulations of astrophysical phenomena.

  20. Supernova hydrodynamics experiments using the Nova laser

    SciTech Connect

    Remington, B.A.; Glendinning, S.G.; Estabrook, K.; Wallace, R.J.; Rubenchik, A.; Kane, J.; Arnett, D.; Drake, R.P.; McCray, R.

    1997-04-01

    We are developing experiments using the Nova laser to investigate two areas of physics relevant to core-collapse supernovae (SN): (1) compressible nonlinear hydrodynamic mixing and (2) radiative shock hydrodynamics. In the former, we are examining the differences between the 2D and 3D evolution of the Rayleigh-Taylor instability, an issue critical to the observables emerging from SN in the first year after exploding. In the latter, we are investigating the evolution of a colliding plasma system relevant to the ejecta-stellar wind interactions of the early stages of SN remnant formation. The experiments and astrophysical implications are discussed.

  1. 3d-3d correspondence revisited

    NASA Astrophysics Data System (ADS)

    Chung, Hee-Joong; Dimofte, Tudor; Gukov, Sergei; Sułkowski, Piotr

    2016-04-01

    In fivebrane compactifications on 3-manifolds, we point out the importance of all flat connections in the proper definition of the effective 3d {N}=2 theory. The Lagrangians of some theories with the desired properties can be constructed with the help of homological knot invariants that categorify colored Jones polynomials. Higgsing the full 3d theories constructed this way recovers theories found previously by Dimofte-Gaiotto-Gukov. We also consider the cutting and gluing of 3-manifolds along smooth boundaries and the role played by all flat connections in this operation.

  2. 3d-3d correspondence revisited

    DOE PAGES

    Chung, Hee -Joong; Dimofte, Tudor; Gukov, Sergei; Sułkowski, Piotr

    2016-04-21

    In fivebrane compactifications on 3-manifolds, we point out the importance of all flat connections in the proper definition of the effective 3d N = 2 theory. The Lagrangians of some theories with the desired properties can be constructed with the help of homological knot invariants that categorify colored Jones polynomials. Higgsing the full 3d theories constructed this way recovers theories found previously by Dimofte-Gaiotto-Gukov. As a result, we also consider the cutting and gluing of 3-manifolds along smooth boundaries and the role played by all flat connections in this operation.

  3. Improved non-local electron thermal transport model for two-dimensional radiation hydrodynamics simulations

    SciTech Connect

    Cao, Duc; Moses, Gregory; Delettrez, Jacques

    2015-08-15

    An implicit, non-local thermal conduction algorithm based on the algorithm developed by Schurtz, Nicolai, and Busquet (SNB) [Schurtz et al., Phys. Plasmas 7, 4238 (2000)] for non-local electron transport is presented and has been implemented in the radiation-hydrodynamics code DRACO. To study the model's effect on DRACO's predictive capability, simulations of shot 60 303 from OMEGA are completed using the iSNB model, and the computed shock speed vs. time is compared to experiment. Temperature outputs from the iSNB model are compared with the non-local transport model of Goncharov et al. [Phys. Plasmas 13, 012702 (2006)]. Effects on adiabat are also examined in a polar drive surrogate simulation. Results show that the iSNB model is not only capable of flux-limitation but also preheat prediction while remaining numerically robust and sacrificing little computational speed. Additionally, the results provide strong incentive to further modify key parameters within the SNB theory, namely, the newly introduced non-local mean free path. This research was supported by the Laboratory for Laser Energetics of the University of Rochester.

  4. Radiation Hydrodynamic Simulations in the Planar Scheme for the Fundamental Studies of Shock Ignition

    NASA Astrophysics Data System (ADS)

    Dong, Yunsong; Yang, Jiamin; Song, Tianming; Zhu, Tuo; Huang, Chengwu

    2016-04-01

    As a fundamental and crucial research topic in the direct-driven inertial confinement fusion (ICF), especially for shock ignition (SI), investigation on the laser coupling with planar low-Z targets is beneficial for deep physical comprehension at the primary phase of SI. The production of the intense shock and the shock coalescence in the multi-layer targets, driven by the 3ω intense laser (351 nm the wavelength), were studied in detail with the 1D and 2D radiation hydrodynamic simulations. It was inferred that the 1D simulation would overrate the shock velocity and the ablation pressure of the spike; the coalescence time and the velocity of the coalescence shock depended evidently on the pulse shape and the start time of the spike. The present study can also provide a semi-quantitative reference for the design of the SI decomposition experiments on the Shenguang-III prototype laser facility. supported by the National High-Tech R&D Program (863 Program) of China and National Natural Science Foundation of China (Nos. 11205143, 11505167)

  5. Improved non-local electron thermal transport model for two-dimensional radiation hydrodynamics simulations

    NASA Astrophysics Data System (ADS)

    Cao, Duc; Moses, Gregory; Delettrez, Jacques

    2015-08-01

    An implicit, non-local thermal conduction algorithm based on the algorithm developed by Schurtz, Nicolai, and Busquet (SNB) [Schurtz et al., Phys. Plasmas 7, 4238 (2000)] for non-local electron transport is presented and has been implemented in the radiation-hydrodynamics code DRACO. To study the model's effect on DRACO's predictive capability, simulations of shot 60 303 from OMEGA are completed using the iSNB model, and the computed shock speed vs. time is compared to experiment. Temperature outputs from the iSNB model are compared with the non-local transport model of Goncharov et al. [Phys. Plasmas 13, 012702 (2006)]. Effects on adiabat are also examined in a polar drive surrogate simulation. Results show that the iSNB model is not only capable of flux-limitation but also preheat prediction while remaining numerically robust and sacrificing little computational speed. Additionally, the results provide strong incentive to further modify key parameters within the SNB theory, namely, the newly introduced non-local mean free path. This research was supported by the Laboratory for Laser Energetics of the University of Rochester.

  6. RADIATION-HYDRODYNAMIC MODELS OF THE EVOLVING CIRCUMSTELLAR MEDIUM AROUND MASSIVE STARS

    SciTech Connect

    Toala, J. A.; Arthur, S. J.

    2011-08-20

    We study the evolution of the interstellar and circumstellar media around massive stars (M {>=} 40 M{sub sun}) from the main sequence (MS) through to the Wolf-Rayet (WR) stage by means of radiation-hydrodynamic simulations. We use publicly available stellar evolution models to investigate the different possible structures that can form in the stellar wind bubbles around WR stars. We find significant differences between models with and without stellar rotation, and between models from different authors. More specifically, we find that the main ingredients in the formation of structures in the WR wind bubbles are the duration of the red supergiant (or luminous blue variable) phase, the amount of mass lost, and the wind velocity during this phase, in agreement with previous authors. Thermal conduction is also included in our models. We find that MS bubbles with thermal conduction are slightly smaller, due to extra cooling which reduces the pressure in the hot, shocked bubble, but that thermal conduction does not appear to significantly influence the formation of structures in post-MS bubbles. Finally, we study the predicted X-ray emission from the models and compare our results with observations of the WR bubbles S 308, NGC 6888, and RCW 58. We find that bubbles composed primarily of clumps have reduced X-ray luminosity and very soft spectra, while bubbles with shells correspond more closely to observations.

  7. Introducing CoDa (Cosmic Dawn): Radiation-Hydrodynamics of Galaxy Formation in the Early Universe

    NASA Astrophysics Data System (ADS)

    Ocvirk, Pierre; Gillet, Nicolas; Shapiro, Paul; Aubert, Dominique; Iliev, Ilian; Romain, Teyssier; Yepes, Gustavo; Choi, Jun-hwan; Sullivan, David; Knebe, Alexander; Gottloeber, Stefan; D'Aloisio, Anson; Park, Hyunbae; Hoffman, Yehuda

    2015-08-01

    CoDa (Cosmic Dawn) is the largest fully coupled radiation hydrodynamics simulation of the reionization of the local Universe to date. It was performed using RAMSES-CUDATON running on 8192 nodes (i.e. 8192 GPUs) on the titan supercomputer at Oak Ridge National Laboratory to simulate a 64 h-1Mpc side box down to z=4.23. In this simulation, reionization proceeds self-consistently, driven by stellar radiation. We compare the simulation's reionization history, ionizing flux density, the cosmic star formation history and the CMB Thompson scattering optical depth with their observational values. Luminosity functions are also in rather good agreement with high redshift observations, although very bright objects (MAB1600 < -21) are overabundant in CoDa. We investigate the evolution of the intergalactic medium, and find that gas filaments present a sheathed structure, with a hot envelope surrounding a cooler core. They are however not able to self-shield, while regions denser than 10^-4.5 H atoms per comoving h^-3cm^3 are. Haloes below M ˜ 3.10^9 M⊙ are severely affected by the expanding, rising UV background: their ISM is quickly photo-heated to temperatures above our star formation threshold and therefore stop forming stars after local reionization has occured. Overall, the haloes between 10^(10-11) M⊙ dominate the star formation budget of the box for most of the Epoch of Reionization. Several additional studies will follow, looking for instance at environmental effects on galaxy properties, and the regimes of accretion.

  8. Dark matter annihilation radiation in hydrodynamic simulations of Milky Way haloes

    NASA Astrophysics Data System (ADS)

    Schaller, Matthieu; Frenk, Carlos S.; Theuns, Tom; Calore, Francesca; Bertone, Gianfranco; Bozorgnia, Nassim; Crain, Robert A.; Fattahi, Azadeh; Navarro, Julio F.; Sawala, Till; Schaye, Joop

    2016-02-01

    We obtain predictions for the properties of cold dark matter annihilation radiation using high-resolution hydrodynamic zoom-in cosmological simulations of Milky Way-like galaxies (APOSTLE project) carried out as part of the `Evolution and Assembly of GaLaxies and their Environments' (EAGLE) programme. Galactic haloes in the simulation have significantly different properties from those assumed in the `standard halo model' often used in dark matter detection studies. The formation of the galaxy causes a contraction of the dark matter halo, whose density profile develops a steeper slope than the Navarro-Frenk-White (NFW) profile between r ≈ 1.5 kpc and r ≈ 10 kpc. At smaller radii, r ≲ 1.5 kpc, the haloes develop a flatter than NFW slope. This unexpected feature may be specific to our particular choice of subgrid physics model but nevertheless the dark matter density profiles agree within 30 per cent as the mass resolution is increased by a factor 150. The inner regions of the haloes are almost perfectly spherical (axis ratios b/a > 0.97 within r = 1 kpc) and there is no offset larger than 45 pc between the centre of the stellar distribution and the centre of the dark halo. The morphology of the predicted dark matter annihilation radiation signal is in broad agreement with γ-ray observations at large Galactic latitudes (b ≳ 3°). At smaller angles, the inferred signal in one of our four galaxies is similar to that which is observed but it is significantly weaker in the other three.

  9. 2D Radiation-hydrodynamic Simulations of Supernova Shock Breakout in Bipolar Explosions of a Blue Supergiant Progenitor

    NASA Astrophysics Data System (ADS)

    Suzuki, Akihiro; Maeda, Keiichi; Shigeyama, Toshikazu

    2016-07-01

    A two-dimensional special relativistic radiation-hydrodynamics code is developed and applied to numerical simulations of supernova shock breakout in bipolar explosions of a blue supergiant. Our calculations successfully simulate the dynamical evolution of a blast wave in the star and its emergence from the surface. Results of the model with spherical energy deposition show a good agreement with previous simulations. Furthermore, we calculate several models with bipolar energy deposition and compare their results with the spherically symmetric model. The bolometric light curves of the shock breakout emission are calculated by a ray-tracing method. Our radiation-hydrodynamic models indicate that the early part of the shock breakout emission can be used to probe the geometry of the blast wave produced as a result of the gravitational collapse of the iron core.

  10. Identifying Clinically Significant Prostate Cancers using 3-D In Vivo Acoustic Radiation Force Impulse Imaging with Whole-Mount Histology Validation.

    PubMed

    Palmeri, Mark L; Glass, Tyler J; Miller, Zachary A; Rosenzweig, Stephen J; Buck, Andrew; Polascik, Thomas J; Gupta, Rajan T; Brown, Alison F; Madden, John; Nightingale, Kathryn R

    2016-06-01

    Overly aggressive prostate cancer (PCa) treatment adversely affects patients and places an unnecessary burden on our health care system. The inability to identify and grade clinically significant PCa lesions is a factor contributing to excessively aggressive PCa treatment, such as radical prostatectomy, instead of more focal, prostate-sparing procedures such as cryotherapy and high-dose radiation therapy. We have performed 3-D in vivo B-mode and acoustic radiation force impulse (ARFI) imaging using a mechanically rotated, side-fire endorectal imaging array to identify regions suspicious for PCa in 29 patients being treated with radical prostatectomies for biopsy-confirmed PCa. Whole-mount histopathology analyses were performed to identify regions of clinically significant/insignificant PCa lesions, atrophy and benign prostatic hyperplasia. Regions of suspicion for PCa were reader-identified in ARFI images based on boundary delineation, contrast, texture and location. These regions of suspicion were compared with histopathology identified lesions using a nearest-neighbor regional localization approach. Of all clinically significant lesions identified on histopathology, 71.4% were also identified using ARFI imaging, including 79.3% of posterior and 33.3% of anterior lesions. Among the ARFI-identified lesions, 79.3% corresponded to clinically significant PCa lesions, with these lesions having higher indices of suspicion than clinically insignificant PCa. ARFI imaging had greater sensitivity for posterior versus anterior lesions because of greater displacement signal-to-noise ratio and finer spatial sampling. Atrophy and benign prostatic hyperplasia can cause appreciable prostate anatomy distortion and heterogeneity that confounds ARFI PCa lesion identification; however, in general, ARFI regions of suspicion did not coincide with these benign pathologies. PMID:26947445

  11. Use of the ARM Measurement of Spectral Zenith Radiance For Better Understanding Of 3D Cloud-Radiation Processes and Aerosol-Cloud Interaction

    SciTech Connect

    Chiu, Jui-Yuan

    2010-10-19

    Our proposal focuses on cloud-radiation processes in a general 3D cloud situation, with particular emphasis on cloud optical depth and effective particle size. We also focus on zenith radiance measurements, both active and passive. The proposal has three main parts. Part One exploits the "solar-background" mode of ARM lidars to allow them to retrieve cloud optical depth not just for thin clouds but for all clouds. This also enables the study of aerosol cloud interactions with a single instrument. Part Two exploits the large number of new wavelengths offered by ARM's zenith-pointing ShortWave Spectrometer (SWS), especially during CLASIC, to develop better retrievals not only of cloud optical depth but also of cloud particle size. We also propose to take advantage of the SWS's 1 Hz sampling to study the "twilight zone" around clouds where strong aerosol-cloud interactions are taking place. Part Three involves continuing our cloud optical depth and cloud fraction retrieval research with ARM's 2NFOV instrument by, first, analyzing its data from the AMF-COPS/CLOWD deployment, and second, making our algorithms part of ARM's operational data processing.

  12. In situ 3D topographic and shape analysis by synchrotron radiation X-ray microtomography for crystal form identification in polymorphic mixtures

    NASA Astrophysics Data System (ADS)

    Yin, Xian-Zhen; Xiao, Ti-Qiao; Nangia, Ashwini; Yang, Shuo; Lu, Xiao-Long; Li, Hai-Yan; Shao, Qun; He, You; York, Peter; Zhang, Ji-Wen

    2016-04-01

    Polymorphism denotes the existence of more than one crystal structure of a substance, and great practical and theoretical interest for the chemical and pharmaceutical industries. In many cases, it is challenging to produce a pure crystal form and establish a sensitive detection method for the identification of crystal form in a mixture of polymorphs. In this study, an accurate and sensitive method based on synchrotron radiation X-ray computed microtomography (SR-μCT) was devised to identify the polymorphs of clopidogrel bisulphate (CLP). After 3D reconstruction, crystal particles were extracted and dozens of structural parameters were calculated. Whilst, the particle shapes of the two crystal forms were all irregular, the surface of CLP II was found to be rougher than CLP I. In order to classify the crystal form based on the quantitative morphological property of particles, Volume Bias Percentage based on Surface Smoothing (VBP) was defined and a new method based on VBP was successfully developed, with a total matching rate of 99.91% for 4544 particles and a lowest detectable limit of 1%. More important for the mixtures in solid pharmaceutical formulations, the interference of excipients can be avoided, a feature cannot achieved by other available analytical methods.

  13. In situ 3D topographic and shape analysis by synchrotron radiation X-ray microtomography for crystal form identification in polymorphic mixtures

    PubMed Central

    Yin, Xian-Zhen; Xiao, Ti-Qiao; Nangia, Ashwini; Yang, Shuo; Lu, Xiao-Long; Li, Hai-Yan; Shao, Qun; He, You; York, Peter; Zhang, Ji-Wen

    2016-01-01

    Polymorphism denotes the existence of more than one crystal structure of a substance, and great practical and theoretical interest for the chemical and pharmaceutical industries. In many cases, it is challenging to produce a pure crystal form and establish a sensitive detection method for the identification of crystal form in a mixture of polymorphs. In this study, an accurate and sensitive method based on synchrotron radiation X-ray computed microtomography (SR-μCT) was devised to identify the polymorphs of clopidogrel bisulphate (CLP). After 3D reconstruction, crystal particles were extracted and dozens of structural parameters were calculated. Whilst, the particle shapes of the two crystal forms were all irregular, the surface of CLP II was found to be rougher than CLP I. In order to classify the crystal form based on the quantitative morphological property of particles, Volume Bias Percentage based on Surface Smoothing (VBP) was defined and a new method based on VBP was successfully developed, with a total matching rate of 99.91% for 4544 particles and a lowest detectable limit of 1%. More important for the mixtures in solid pharmaceutical formulations, the interference of excipients can be avoided, a feature cannot achieved by other available analytical methods. PMID:27097672

  14. 3D and Education

    NASA Astrophysics Data System (ADS)

    Meulien Ohlmann, Odile

    2013-02-01

    Today the industry offers a chain of 3D products. Learning to "read" and to "create in 3D" becomes an issue of education of primary importance. 25 years professional experience in France, the United States and Germany, Odile Meulien set up a personal method of initiation to 3D creation that entails the spatial/temporal experience of the holographic visual. She will present some different tools and techniques used for this learning, their advantages and disadvantages, programs and issues of educational policies, constraints and expectations related to the development of new techniques for 3D imaging. Although the creation of display holograms is very much reduced compared to the creation of the 90ies, the holographic concept is spreading in all scientific, social, and artistic activities of our present time. She will also raise many questions: What means 3D? Is it communication? Is it perception? How the seeing and none seeing is interferes? What else has to be taken in consideration to communicate in 3D? How to handle the non visible relations of moving objects with subjects? Does this transform our model of exchange with others? What kind of interaction this has with our everyday life? Then come more practical questions: How to learn creating 3D visualization, to learn 3D grammar, 3D language, 3D thinking? What for? At what level? In which matter? for whom?

  15. EFFECTS OF LASER RADIATION ON MATTER. LASER PLASMA: Doppler backscattered-signal diagnostics of laser-induced surface hydrodynamic processes

    NASA Astrophysics Data System (ADS)

    Gordienko, Vyacheslav M.; Kurochkin, Nikolay N.; Markov, V. N.; Panchenko, Vladislav Ya; Pogosov, G. A.; Chastukhin, E. M.

    1995-02-01

    A method is proposed for on-line monitoring of laser industrial processing. The method is based on optical heterodyne measurements of the Doppler backscattering signal generated in the interaction zone. Qualitative and quantitative information on hydrodynamic flows in the interaction zone can be obtained. A report is given of measurements, carried out at cw CO2 laser radiation intensities up to 1 kW cm-2, on the surfaces of a number of condensed materials irradiated in the monostatic interaction configuration.

  16. [3D reconstructions in radiotherapy planning].

    PubMed

    Schlegel, W

    1991-10-01

    3D Reconstructions from tomographic images are used in the planning of radiation therapy to study important anatomical structures such as the body surface, target volumes, and organs at risk. The reconstructed anatomical models are used to define the geometry of the radiation beams. In addition, 3D voxel models are used for the calculation of the 3D dose distributions with an accuracy, previously impossible to achieve. Further uses of 3D reconstructions are in the display and evaluation of 3D therapy plans, and in the transfer of treatment planning parameters to the irradiation situation with the help of digitally reconstructed radiographs. 3D tomographic imaging with subsequent 3D reconstruction must be regarded as a completely new basis for the planning of radiation therapy, enabling tumor-tailored radiation therapy of localized target volumes with increased radiation doses and improved sparing of organs at risk. 3D treatment planning is currently being evaluated in clinical trials in connection with the new treatment techniques of conformation radiotherapy. Early experience with 3D treatment planning shows that its clinical importance in radiotherapy is growing, but will only become a standard radiotherapy tool when volumetric CT scanning, reliable and user-friendly treatment planning software, and faster and cheaper PACS-integrated medical work stations are accessible to radiotherapists.

  17. 3D Simulations of the Beehive Proplyd

    NASA Astrophysics Data System (ADS)

    Feitosa, J. A.; Vasconcelos, M. J.; Cerqueira, A. H.

    2014-10-01

    Some star formation regions, like the Orion nebula, have stars of different masses, from massive stars, responsible for strong ionizing winds and HII regions, to low-mass stars, which spend a long time in the protostellar phase, and are frequently associated with protostellar disks and jets. Massive O or B stars emit a great deal of UV radiation, able to dissociate the hydrogen molecule (FUV radiation, energies between 6-13 eV), to ionize the atomic hydrogen (EUV radiation, energies greater than 13.6 eV) and heat the gas. Around these stars, a large and hot (10^{4}K) region is formed, known as HII region. T-Tauri stars inside HII regions produce a type of young stellar object, a proplyd, described with accuracy in O'Dell et al. (1993). Proplyds exhibit a cometary shape from which we can distinguish a central low-mass star with an accretion disk, an ionization front, a photodissociation region and, sometimes, an external bow shock and a protostellar jet. Its morphological characteristics depends on the distance between the low-mass star and the source of the ionizing radiation. The Beehive, a giant proplyd in Orion Nebula, has attracted attention due to its exotic system of rings coaxial to the HH540 jet's axis. Bally et al. (2005) suggested that the rings are perturbations due to the crossing of the ionization front by the jet. In this work, we test this hypothesis making 3D hydrodynamic numerical simulations over an adaptive grid, using the Yguazú-A code (Raga et al., 2000), properly adapted for the Beehive conditions. Our results show that the jet causes a perturbation in the ionization front of the proplyd, but is necessary to adjust carefully some parameters of the jet like its velocity and ejection frequency in order to have the results matching the observations.

  18. Multi-Dimensional Full Boltzmann-Neutrino-Radiation Hydrodynamic Simulations and Their Detailed Comparisons with Monte-Carlo Methods in Core Collapse Supernovae

    NASA Astrophysics Data System (ADS)

    Nagakura, H.; Richers, S.; Ott, C. D.; Iwakami, W.; Furusawa, S.; Sumiyoshi, K.; Yamada, S.; Matsufuru, H.; Imakura, A.

    2016-10-01

    We have developed a 7-dimensional Full Boltzmann-neutrino-radiation-hydrodynamical code and carried out ab-initio axisymmetric CCSNe simulations. I will talk about main results of our simulations and also discuss current ongoing projects.

  19. Hydrodynamic, Atomic Kinetic, and Monte Carlo Radiation Transfer Models of the X-ray Spectra of Compact Binaries

    SciTech Connect

    Mauche, C W; Liedahl, D A; Akiyama, S; Plewa, T

    2008-02-08

    We describe the results of an effort, funded by the Lawrence Livermore National Laboratory Directed Research and Development Program, to model, using FLASH time-dependent adaptive-mesh hydrodynamic simulations, XSTAR photoionization calculations, HULLAC atomic data, and Monte Carlo radiation transport, the radiatively-driven photoionized wind and accretion flow of high-mass X-ray binaries (HMXBs). In this final report, we describe the purpose, approach, and technical accomplishments of this effort, including maps of the density, temperature, velocity, ionization parameter, and emissivity distributions of the X-ray emission lines of the well-studied HMXB Vela X-1.

  20. GAMMA-RAY BURST DYNAMICS AND AFTERGLOW RADIATION FROM ADAPTIVE MESH REFINEMENT, SPECIAL RELATIVISTIC HYDRODYNAMIC SIMULATIONS

    SciTech Connect

    De Colle, Fabio; Ramirez-Ruiz, Enrico; Granot, Jonathan; Lopez-Camara, Diego

    2012-02-20

    We report on the development of Mezcal-SRHD, a new adaptive mesh refinement, special relativistic hydrodynamics (SRHD) code, developed with the aim of studying the highly relativistic flows in gamma-ray burst sources. The SRHD equations are solved using finite-volume conservative solvers, with second-order interpolation in space and time. The correct implementation of the algorithms is verified by one-dimensional (1D) and multi-dimensional tests. The code is then applied to study the propagation of 1D spherical impulsive blast waves expanding in a stratified medium with {rho}{proportional_to}r{sup -k}, bridging between the relativistic and Newtonian phases (which are described by the Blandford-McKee and Sedov-Taylor self-similar solutions, respectively), as well as to a two-dimensional (2D) cylindrically symmetric impulsive jet propagating in a constant density medium. It is shown that the deceleration to nonrelativistic speeds in one dimension occurs on scales significantly larger than the Sedov length. This transition is further delayed with respect to the Sedov length as the degree of stratification of the ambient medium is increased. This result, together with the scaling of position, Lorentz factor, and the shock velocity as a function of time and shock radius, is explained here using a simple analytical model based on energy conservation. The method used for calculating the afterglow radiation by post-processing the results of the simulations is described in detail. The light curves computed using the results of 1D numerical simulations during the relativistic stage correctly reproduce those calculated assuming the self-similar Blandford-McKee solution for the evolution of the flow. The jet dynamics from our 2D simulations and the resulting afterglow light curves, including the jet break, are in good agreement with those presented in previous works. Finally, we show how the details of the dynamics critically depend on properly resolving the structure of the

  1. CHEMISTRY IN THE FIRST HYDROSTATIC CORE STAGE BY ADOPTING THREE-DIMENSIONAL RADIATION HYDRODYNAMIC SIMULATIONS

    SciTech Connect

    Furuya, Kenji; Aikawa, Yuri; Tomida, Kengo; Tomisaka, Kohji; Matsumoto, Tomoaki; Saigo, Kazuya; Hersant, Franck; Wakelam, Valentine

    2012-10-20

    We investigate molecular evolution from a molecular cloud core to a first hydrostatic core in three spatial dimensions. We perform a radiation hydrodynamic simulation in order to trace fluid parcels, in which molecular evolution is investigated, using a gas-phase and grain-surface chemical reaction network. We derive spatial distributions of molecular abundances and column densities in the molecular cloud core harboring the first core. We find that the total gas and ice abundances of many species in a cold era (10 K) remain unaltered until the temperature reaches {approx}500 K. The gas abundances in the warm envelope and the outer layer of the first core (T {approx}< 500 K) are mainly determined via the sublimation of ice-mantle species. Above 500 K, the abundant molecules, such as H{sub 2}CO, start to be destroyed, and simple molecules, such as CO, H{sub 2}O, and N{sub 2}, are reformed. On the other hand, some molecules are effectively formed at high temperature; carbon chains, such as C{sub 2}H{sub 2} and cyanopolyynes, are formed at temperatures >700 K. We also find that large organic molecules, such as CH{sub 3}OH and HCOOCH{sub 3}, are associated with the first core (r {approx}< 10 AU). Although the abundances of these molecules in the first core stage are comparable to or less than in the protostellar stage (hot corino), reflecting the lower luminosity of the central object, their column densities in our model are comparable to the observed values toward the prototypical hot corino, IRAS 16293-2422. We propose that these large organic molecules can be good tracers of the first cores.

  2. Two-dimensional radiation hydrodynamics simulations of superluminous interacting supernovae of Type IIn

    NASA Astrophysics Data System (ADS)

    Vlasis, Alkiviadis; Dessart, Luc; Audit, Edouard

    2016-05-01

    Some interacting supernovae (SNe) of Type IIn show a sizeable continuum polarization suggestive of a large-scale asymmetry in the circumstellar medium (CSM) and/or the SN ejecta. Here, we extend the recent work of Dessart et al. on superluminous SNe IIn and perform axially-symmetric (i.e. 2D) multigroup radiation hydrodynamics simulations to explore the impact of an imposed large-scale density asymmetry. When the CSM is asymmetric, the latitudinal variation of the radial optical depth τ introduces a strong flux redistribution from the higher density CSM regions, where the shock luminosity is larger, towards the lower density CSM regions where photons escape more freely - this redistribution ceases when τ ≲ 1. Along directions where the CSM density is larger, the shock deceleration is stronger and its progression slower, producing a non-spherical cold-dense shell (CDS). For an oblate CSM density distribution, the photosphere (CDS) has an oblate (prolate) morphology when τ ≳ 1. When the CSM is symmetric and the ejecta asymmetric, the flux redistribution within the CSM now tends to damp the latitudinal variation of the luminosity at the shock. It then requires a larger ejecta asymmetry to produce a sizeable latitudinal variation in the emergent flux. When the interaction is between a SN ejecta and a relic disc, the luminosity boost at early times scales with the disc opening angle - forming a superluminous SN IIn this way requires an unrealistically thick disc. In contrast, interaction with a disc of modest thickness/mass can yield a power that rivals radioactive decay of a standard SN II at nebular times.

  3. Gamma-Ray Burst Dynamics and Afterglow Radiation from Adaptive Mesh Refinement, Special Relativistic Hydrodynamic Simulations

    NASA Astrophysics Data System (ADS)

    De Colle, Fabio; Granot, Jonathan; López-Cámara, Diego; Ramirez-Ruiz, Enrico

    2012-02-01

    We report on the development of Mezcal-SRHD, a new adaptive mesh refinement, special relativistic hydrodynamics (SRHD) code, developed with the aim of studying the highly relativistic flows in gamma-ray burst sources. The SRHD equations are solved using finite-volume conservative solvers, with second-order interpolation in space and time. The correct implementation of the algorithms is verified by one-dimensional (1D) and multi-dimensional tests. The code is then applied to study the propagation of 1D spherical impulsive blast waves expanding in a stratified medium with ρvpropr -k , bridging between the relativistic and Newtonian phases (which are described by the Blandford-McKee and Sedov-Taylor self-similar solutions, respectively), as well as to a two-dimensional (2D) cylindrically symmetric impulsive jet propagating in a constant density medium. It is shown that the deceleration to nonrelativistic speeds in one dimension occurs on scales significantly larger than the Sedov length. This transition is further delayed with respect to the Sedov length as the degree of stratification of the ambient medium is increased. This result, together with the scaling of position, Lorentz factor, and the shock velocity as a function of time and shock radius, is explained here using a simple analytical model based on energy conservation. The method used for calculating the afterglow radiation by post-processing the results of the simulations is described in detail. The light curves computed using the results of 1D numerical simulations during the relativistic stage correctly reproduce those calculated assuming the self-similar Blandford-McKee solution for the evolution of the flow. The jet dynamics from our 2D simulations and the resulting afterglow light curves, including the jet break, are in good agreement with those presented in previous works. Finally, we show how the details of the dynamics critically depend on properly resolving the structure of the relativistic flow.

  4. 3D Imaging.

    ERIC Educational Resources Information Center

    Hastings, S. K.

    2002-01-01

    Discusses 3 D imaging as it relates to digital representations in virtual library collections. Highlights include X-ray computed tomography (X-ray CT); the National Science Foundation (NSF) Digital Library Initiatives; output peripherals; image retrieval systems, including metadata; and applications of 3 D imaging for libraries and museums. (LRW)

  5. Dosimetric characteristics of intensity-modulated radiation therapy and RapidArc® therapy using a 3D N-isopropylacrylamide gel dosimeter

    NASA Astrophysics Data System (ADS)

    Yao, Chun-Hsu; Tsai, Ting-Yu; Hsieh, Bor-Tsung; Tsang, Yuk-Wah; Chiu, Chung-Yu; Chao, His-Ya; Chang, Yuan-Jen

    2016-09-01

    This study aimed to investigate the dosimetric characteristics of intensity-modulated radiation therapy (IMRT) and RapidArc therapy by using 3D N-isopropylacrylamide (NIPAM) polymer gel. Optical computed tomography, specifically OCTOPUSTM-10X fast optical computed tomography scanner, was used as a readout tool. Two cylindrical acrylic phantoms (10 cm in diameter, 10 cm in height, and 3 mm in thickness) were filled with NIPAM gel and used for IMRT and RapidArc irradiation by using the Clinac iX treatment machine. The irradiation energies for IMRT and RapidArc® were set as 6 MV photons, but their irradiation angles and dose rates differed during irradiation. The irradiation angles of IMRT were 120°, 155°, 180°, 215°, and 245°, and the dose rate was fixed at 400 cGy/min. RapidArc® rotated continuously during irradiation, and the dose rate varied from 330 cGy/min to 400 cGy/min. The pass rates were 98.02% and 97.48% for IMRT and RapidArc®, respectively, and the rejected area appeared at the edge of the irradiated region. The isodose lines of IMRT and RapidArc® were consistent with those of TPS in most regions. Scattering and edge enhancement effects are main factors that cause dose inaccuracy in the edge region and reduced pass rates. Considering dose rate dependence, we used variable dose rates during irradiation with RapidArc®. Results showed that the dose distribution of NIPAM gel was consistent with that of TPS. The pass rates were also the same for IMRT and RapidArc® irradiation. This study proposes a preliminary profile of dosimetric characteristics of IMRT and RapidArc® by using a NIPAM gel dosimeter.

  6. TACO3D. 3-D Finite Element Heat Transfer Code

    SciTech Connect

    Mason, W.E.

    1992-03-04

    TACO3D is a three-dimensional, finite-element program for heat transfer analysis. An extension of the two-dimensional TACO program, it can perform linear and nonlinear analyses and can be used to solve either transient or steady-state problems. The program accepts time-dependent or temperature-dependent material properties, and materials may be isotropic or orthotropic. A variety of time-dependent and temperature-dependent boundary conditions and loadings are available including temperature, flux, convection, and radiation boundary conditions and internal heat generation. Additional specialized features treat enclosure radiation, bulk nodes, and master/slave internal surface conditions (e.g., contact resistance). Data input via a free-field format is provided. A user subprogram feature allows for any type of functional representation of any independent variable. A profile (bandwidth) minimization option is available. The code is limited to implicit time integration for transient solutions. TACO3D has no general mesh generation capability. Rows of evenly-spaced nodes and rows of sequential elements may be generated, but the program relies on separate mesh generators for complex zoning. TACO3D does not have the ability to calculate view factors internally. Graphical representation of data in the form of time history and spatial plots is provided through links to the POSTACO and GRAPE postprocessor codes.

  7. TU-C-BRE-11: 3D EPID-Based in Vivo Dosimetry: A Major Step Forward Towards Optimal Quality and Safety in Radiation Oncology Practice

    SciTech Connect

    Mijnheer, B; Mans, A; Olaciregui-Ruiz, I; Rozendaal, R; Spreeuw, H; Herk, M van

    2014-06-15

    Purpose: To develop a 3D in vivo dosimetry method that is able to substitute pre-treatment verification in an efficient way, and to terminate treatment delivery if the online measured 3D dose distribution deviates too much from the predicted dose distribution. Methods: A back-projection algorithm has been further developed and implemented to enable automatic 3D in vivo dose verification of IMRT/VMAT treatments using a-Si EPIDs. New software tools were clinically introduced to allow automated image acquisition, to periodically inspect the record-and-verify database, and to automatically run the EPID dosimetry software. The comparison of the EPID-reconstructed and planned dose distribution is done offline to raise automatically alerts and to schedule actions when deviations are detected. Furthermore, a software package for online dose reconstruction was also developed. The RMS of the difference between the cumulative planned and reconstructed 3D dose distributions was used for triggering a halt of a linac. Results: The implementation of fully automated 3D EPID-based in vivo dosimetry was able to replace pre-treatment verification for more than 90% of the patient treatments. The process has been fully automated and integrated in our clinical workflow where over 3,500 IMRT/VMAT treatments are verified each year. By optimizing the dose reconstruction algorithm and the I/O performance, the delivered 3D dose distribution is verified in less than 200 ms per portal image, which includes the comparison between the reconstructed and planned dose distribution. In this way it was possible to generate a trigger that can stop the irradiation at less than 20 cGy after introducing large delivery errors. Conclusion: The automatic offline solution facilitated the large scale clinical implementation of 3D EPID-based in vivo dose verification of IMRT/VMAT treatments; the online approach has been successfully tested for various severe delivery errors.

  8. Monte Carlo investigation of the increased radiation deposition due to gold nanoparticles using kilovoltage and megavoltage photons in a 3D randomized cell model

    SciTech Connect

    Douglass, Michael; Bezak, Eva; Penfold, Scott

    2013-07-15

    Purpose: Investigation of increased radiation dose deposition due to gold nanoparticles (GNPs) using a 3D computational cell model during x-ray radiotherapy.Methods: Two GNP simulation scenarios were set up in Geant4; a single 400 nm diameter gold cluster randomly positioned in the cytoplasm and a 300 nm gold layer around the nucleus of the cell. Using an 80 kVp photon beam, the effect of GNP on the dose deposition in five modeled regions of the cell including cytoplasm, membrane, and nucleus was simulated. Two Geant4 physics lists were tested: the default Livermore and custom built Livermore/DNA hybrid physics list. 10{sup 6} particles were simulated at 840 cells in the simulation. Each cell was randomly placed with random orientation and a diameter varying between 9 and 13 {mu}m. A mathematical algorithm was used to ensure that none of the 840 cells overlapped. The energy dependence of the GNP physical dose enhancement effect was calculated by simulating the dose deposition in the cells with two energy spectra of 80 kVp and 6 MV. The contribution from Auger electrons was investigated by comparing the two GNP simulation scenarios while activating and deactivating atomic de-excitation processes in Geant4.Results: The physical dose enhancement ratio (DER) of GNP was calculated using the Monte Carlo model. The model has demonstrated that the DER depends on the amount of gold and the position of the gold cluster within the cell. Individual cell regions experienced statistically significant (p < 0.05) change in absorbed dose (DER between 1 and 10) depending on the type of gold geometry used. The DER resulting from gold clusters attached to the cell nucleus had the more significant effect of the two cases (DER {approx} 55). The DER value calculated at 6 MV was shown to be at least an order of magnitude smaller than the DER values calculated for the 80 kVp spectrum. Based on simulations, when 80 kVp photons are used, Auger electrons have a statistically insignificant (p

  9. The thermal structure and the location of the snow line in the protosolar nebula: Axisymmetric models with full 3-D radiative transfer

    NASA Astrophysics Data System (ADS)

    Min, M.; Dullemond, C. P.; Kama, M.; Dominik, C.

    2011-03-01

    The precise location of the water ice condensation front (‘snow line’) in the protosolar nebula has been a debate for a long time. Its importance stems from the expected substantial jump in the abundance of solids beyond the snow line, which is conducive to planet formation, and from the higher ‘stickiness’ in collisions of ice-coated dust grains, which may help the process of coagulation of dust and the formation of planetesimals. In an optically thin nebula, the location of the snow line is easily calculated to be around 3 AU, subject to brightness variations of the young Sun. However, in its first 5-10 myr, the solar nebula was optically thick, implying a smaller snowline radius due to shielding from direct sunlight, but also a larger radius because of viscous heating. Several models have attempted to treat these opposing effects. However, until recently treatments beyond an approximate 1 + 1D radiative transfer were unfeasible. We revisit the problem with a fully self-consistent 3D treatment in an axisymmetric disk model, including a density-dependent treatment of the dust and ice sublimation. We find that the location of the snow line is very sensitive to the opacities of the dust grains and the mass accretion rate of the disk. We show that previous approximate treatments are quite efficient at determining the location of the snow line if the energy budget is locally dominated by viscous accretion. Using this result we derive an analytic estimate of the location of the snow line that compares very well with results from this and previous studies. Using solar abundances of the elements we compute the abundance of dust and ice and find that the expected jump in solid surface density at the snow line is smaller than previously assumed. We further show that in the inner few AU the refractory species are also partly evaporated, leading to a significantly smaller solid state surface density in the regions where the rocky planets were formed.

  10. 3-D Seismic Interpretation

    NASA Astrophysics Data System (ADS)

    Moore, Gregory F.

    2009-05-01

    This volume is a brief introduction aimed at those who wish to gain a basic and relatively quick understanding of the interpretation of three-dimensional (3-D) seismic reflection data. The book is well written, clearly illustrated, and easy to follow. Enough elementary mathematics are presented for a basic understanding of seismic methods, but more complex mathematical derivations are avoided. References are listed for readers interested in more advanced explanations. After a brief introduction, the book logically begins with a succinct chapter on modern 3-D seismic data acquisition and processing. Standard 3-D acquisition methods are presented, and an appendix expands on more recent acquisition techniques, such as multiple-azimuth and wide-azimuth acquisition. Although this chapter covers the basics of standard time processing quite well, there is only a single sentence about prestack depth imaging, and anisotropic processing is not mentioned at all, even though both techniques are now becoming standard.

  11. Bootstrapping 3D fermions

    DOE PAGES

    Iliesiu, Luca; Kos, Filip; Poland, David; Pufu, Silviu S.; Simmons-Duffin, David; Yacoby, Ran

    2016-03-17

    We study the conformal bootstrap for a 4-point function of fermions <ψψψψ> in 3D. We first introduce an embedding formalism for 3D spinors and compute the conformal blocks appearing in fermion 4-point functions. Using these results, we find general bounds on the dimensions of operators appearing in the ψ × ψ OPE, and also on the central charge CT. We observe features in our bounds that coincide with scaling dimensions in the GrossNeveu models at large N. Finally, we also speculate that other features could coincide with a fermionic CFT containing no relevant scalar operators.

  12. The formation of entropy cores in non-radiative galaxy cluster simulations: smoothed particle hydrodynamics versus adaptive mesh refinement

    NASA Astrophysics Data System (ADS)

    Power, C.; Read, J. I.; Hobbs, A.

    2014-06-01

    We simulate cosmological galaxy cluster formation using three different approaches to solving the equations of non-radiative hydrodynamics - classic smoothed particle hydrodynamics (SPH), novel SPH with a higher order dissipation switch (SPHS), and an adaptive mesh refinement (AMR) method. Comparing spherically averaged entropy profiles, we find that SPHS and AMR approaches result in a well-defined entropy core that converges rapidly with increasing mass and force resolution. In contrast, the central entropy profile in the SPH approach is sensitive to the cluster's assembly history and shows poor numerical convergence. We trace this disagreement to the known artificial surface tension in SPH that appears at phase boundaries. Varying systematically numerical dissipation in SPHS, we study the contributions of numerical and physical dissipation to the entropy core and argue that numerical dissipation is required to ensure single-valued fluid quantities in converging flows. However, provided it occurs only at the resolution limit and does not propagate errors to larger scales, its effect is benign - there is no requirement to build `sub-grid' models of unresolved turbulence for galaxy cluster simulations. We conclude that entropy cores in non-radiative galaxy cluster simulations are physical, resulting from entropy generation in shocked gas during cluster assembly.

  13. Venus in 3D

    NASA Astrophysics Data System (ADS)

    Plaut, J. J.

    1993-08-01

    Stereographic images of the surface of Venus which enable geologists to reconstruct the details of the planet's evolution are discussed. The 120-meter resolution of these 3D images make it possible to construct digital topographic maps from which precise measurements can be made of the heights, depths, slopes, and volumes of geologic structures.

  14. 3D reservoir visualization

    SciTech Connect

    Van, B.T.; Pajon, J.L.; Joseph, P. )

    1991-11-01

    This paper shows how some simple 3D computer graphics tools can be combined to provide efficient software for visualizing and analyzing data obtained from reservoir simulators and geological simulations. The animation and interactive capabilities of the software quickly provide a deep understanding of the fluid-flow behavior and an accurate idea of the internal architecture of a reservoir.

  15. The shock/shear platform for planar radiation-hydrodynamics experiments on the National Ignition Facility

    DOE PAGES

    Doss, F. W.; Kline, J. L.; Flippo, K. A.; Perry, T. S.; DeVolder, B. G.; Tregillis, I.; Loomis, E. N.; Merritt, E. C.; Murphy, T. J.; Welser-Sherrill, L.; et al

    2015-04-17

    An indirectly-driven shock tube experiment fielded on the National Ignition Facility (NIF) was used to create a high-energy-density hydrodynamics platform at unprecedented scale. Scaling up a shear-induced mixing experiment previously fielded at OMEGA, the NIF shear platform drives 130 μm/ns shocks into a CH foam-filled shock tube (~ 60 mg/cc) with interior dimensions of 1.5 mm diameter and 5 mm length. The pulse-shaping capabilities of the NIF are used to extend the drive for >10 ns, and the large interior tube volumes are used to isolate physics-altering edge effects from the region of interest. The scaling of the experiment tomore » the NIF allows for considerable improvement in maximum driving time of hydrodynamics, in fidelity of physics under examination, and in diagnostic clarity. Details of the experimental platform and post-shot simulations used in the analysis of the platform-qualifying data are presented. Hydrodynamic scaling is used to compare shear data from OMEGA with that from NIF, suggesting a possible change in the dimensionality of the instability at late times from one platform to the other.« less

  16. The shock/shear platform for planar radiation-hydrodynamics experiments on the National Ignition Facility

    SciTech Connect

    Doss, F. W.; Kline, J. L.; Flippo, K. A.; Perry, T. S.; DeVolder, B. G.; Tregillis, I.; Loomis, E. N.; Merritt, E. C.; Murphy, T. J.; Welser-Sherrill, L.; Fincke, J. R.

    2015-04-17

    An indirectly-driven shock tube experiment fielded on the National Ignition Facility (NIF) was used to create a high-energy-density hydrodynamics platform at unprecedented scale. Scaling up a shear-induced mixing experiment previously fielded at OMEGA, the NIF shear platform drives 130 μm/ns shocks into a CH foam-filled shock tube (~ 60 mg/cc) with interior dimensions of 1.5 mm diameter and 5 mm length. The pulse-shaping capabilities of the NIF are used to extend the drive for >10 ns, and the large interior tube volumes are used to isolate physics-altering edge effects from the region of interest. The scaling of the experiment to the NIF allows for considerable improvement in maximum driving time of hydrodynamics, in fidelity of physics under examination, and in diagnostic clarity. Details of the experimental platform and post-shot simulations used in the analysis of the platform-qualifying data are presented. Hydrodynamic scaling is used to compare shear data from OMEGA with that from NIF, suggesting a possible change in the dimensionality of the instability at late times from one platform to the other.

  17. The Shock/Shear platform for planar radiation-hydrodynamics experiments on the National Ignition Facility

    SciTech Connect

    Doss, F. W. Kline, J. L.; Flippo, K. A.; Perry, T. S.; DeVolder, B. G.; Tregillis, I.; Loomis, E. N.; Merritt, E. C.; Murphy, T. J.; Welser-Sherrill, L.; Fincke, J. R.

    2015-05-15

    An indirectly-driven shock tube experiment fielded on the National Ignition Facility (NIF) was used to create a high-energy-density hydrodynamics platform at unprecedented scale. Scaling up a shear-induced mixing experiment previously fielded at OMEGA, the NIF shear platform drives 130 μm/ns shocks into a CH foam-filled shock tube (∼ 60 mg/cc) with interior dimensions of 1.5 mm diameter and 5 mm length. The pulse-shaping capabilities of the NIF are used to extend the drive for >10 ns, and the large interior tube volumes are used to isolate physics-altering edge effects from the region of interest. The scaling of the experiment to the NIF allows for considerable improvement in maximum driving time of hydrodynamics, in fidelity of physics under examination, and in diagnostic clarity. Details of the experimental platform and post-shot simulations used in the analysis of the platform-qualifying data are presented. Hydrodynamic scaling is used to compare shear data from OMEGA with that from NIF, suggesting a possible change in the dimensionality of the instability at late times from one platform to the other.

  18. VizieR Online Data Catalog: STAGGER-grid of 3D stellar models. IV. (Magic+, 2015)

    NASA Astrophysics Data System (ADS)

    Magic, Z.; Chiavassa, A.; Collet, R.; Asplund, M.

    2014-10-01

    We compute the emergent stellar spectra from the UV to far infrared for different viewing angles using realistic 3D model atmospheres for a large range in stellar parameters to predict the stellar limb darkening. We have computed full 3D LTE synthetic spectra based on 3D radiative hydrodynamic atmosphere models from the Stagger-grid in the ranges: Teff from 4000 to 7000K, logg from 1.5 to 5.0, and [Fe/H], from -4.0 to +0.5. From the resulting intensities at different wavelength, we derived coefficients for the standard limb darkening laws considering a number of often-used photometric filters. Furthermore, we calculated theoretical transit light curves, in order to quantify the differences between predictions by the widely used 1D model atmosphere and our 3D models. (1 data file).

  19. X-ray self-emission imaging used to diagnose 3-D nonuniformities in direct-drive ICF implosions

    NASA Astrophysics Data System (ADS)

    Davis, A. K.; Michel, D. T.; Craxton, R. S.; Epstein, R.; Hohenberger, M.; Mo, T.; Froula, D. H.

    2016-11-01

    As hydrodynamics codes develop to increase understanding of three-dimensional (3-D) effects in inertial confinement fusion implosions, diagnostics must adapt to evaluate their predictive accuracy. A 3-D radiation postprocessor was developed to investigate the use of soft x-ray self-emission images of an imploding target to measure the size of nonuniformities on the target surface. Synthetic self-emission images calculated from 3-D simulations showed a narrow ring of emission outside the ablation surface of the target. Nonuniformities growing in directions perpendicular to the diagnostic axis were measured through angular variations in the radius of the steepest intensity gradient on the inside of the ring and through changes in the peak x-ray intensity in the ring as a function of angle. The technique was applied to an implosion to measure large 3-D nonuniformities resulting from two dropped laser beam quads at the National Ignition Facility.

  20. Radiation hydrodynamics modeling of the highest compression inertial confinement fusion ignition experiment from the National Ignition Campaign

    NASA Astrophysics Data System (ADS)

    Clark, D. S.; Marinak, M. M.; Weber, C. R.; Eder, D. C.; Haan, S. W.; Hammel, B. A.; Hinkel, D. E.; Jones, O. S.; Milovich, J. L.; Patel, P. K.; Robey, H. F.; Salmonson, J. D.; Sepke, S. M.; Thomas, C. A.

    2015-02-01

    The recently completed National Ignition Campaign (NIC) on the National Ignition Facility (NIF) showed significant discrepancies between post-shot simulations of implosion performance and experimentally measured performance, particularly in thermonuclear yield. This discrepancy between simulation and observation persisted despite concerted efforts to include all of the known sources of performance degradation within a reasonable two-dimensional (2-D), and even three-dimensional (3-D), simulation model, e.g., using measured surface imperfections and radiation drives adjusted to reproduce observed implosion trajectories [Clark et al., Phys. Plasmas 20, 056318 (2013)]. Since the completion of the NIC, several effects have been identified that could explain these discrepancies and that were omitted in previous simulations. In particular, there is now clear evidence for larger than anticipated long-wavelength radiation drive asymmetries and a larger than expected perturbation seeded by the capsule support tent. This paper describes an updated suite of one-dimensional (1-D), 2-D, and 3-D simulations that include the current best understanding of these effects identified since the NIC, as applied to a specific NIC shot. The relative importance of each effect on the experimental observables is compared. In combination, these effects reduce the simulated-to-measured yield ratio from 125:1 in 1-D to 1.5:1 in 3-D, as compared to 15:1 in the best 2-D simulations published previously. While the agreement with the experimental data remains imperfect, the comparison to the data is significantly improved and suggests that the largest sources for the previous discrepancies between simulation and experiment are now being included.

  1. Radiation hydrodynamics modeling of the highest compression inertial confinement fusion ignition experiment from the National Ignition Campaign

    SciTech Connect

    Clark, D. S.; Marinak, M. M.; Weber, C. R.; Eder, D. C.; Haan, S. W.; Hammel, B. A.; Hinkel, D. E.; Jones, O. S.; Milovich, J. L.; Patel, P. K.; Robey, H. F.; Salmonson, J. D.; Sepke, S. M.; Thomas, C. A.

    2015-02-15

    The recently completed National Ignition Campaign (NIC) on the National Ignition Facility (NIF) showed significant discrepancies between post-shot simulations of implosion performance and experimentally measured performance, particularly in thermonuclear yield. This discrepancy between simulation and observation persisted despite concerted efforts to include all of the known sources of performance degradation within a reasonable two-dimensional (2-D), and even three-dimensional (3-D), simulation model, e.g., using measured surface imperfections and radiation drives adjusted to reproduce observed implosion trajectories [Clark et al., Phys. Plasmas 20, 056318 (2013)]. Since the completion of the NIC, several effects have been identified that could explain these discrepancies and that were omitted in previous simulations. In particular, there is now clear evidence for larger than anticipated long-wavelength radiation drive asymmetries and a larger than expected perturbation seeded by the capsule support tent. This paper describes an updated suite of one-dimensional (1-D), 2-D, and 3-D simulations that include the current best understanding of these effects identified since the NIC, as applied to a specific NIC shot. The relative importance of each effect on the experimental observables is compared. In combination, these effects reduce the simulated-to-measured yield ratio from 125:1 in 1-D to 1.5:1 in 3-D, as compared to 15:1 in the best 2-D simulations published previously. While the agreement with the experimental data remains imperfect, the comparison to the data is significantly improved and suggests that the largest sources for the previous discrepancies between simulation and experiment are now being included.

  2. 3D rapid mapping

    NASA Astrophysics Data System (ADS)

    Isaksson, Folke; Borg, Johan; Haglund, Leif

    2008-04-01

    In this paper the performance of passive range measurement imaging using stereo technique in real time applications is described. Stereo vision uses multiple images to get depth resolution in a similar way as Synthetic Aperture Radar (SAR) uses multiple measurements to obtain better spatial resolution. This technique has been used in photogrammetry for a long time but it will be shown that it is now possible to do the calculations, with carefully designed image processing algorithms, in e.g. a PC in real time. In order to get high resolution and quantitative data in the stereo estimation a mathematical camera model is used. The parameters to the camera model are settled in a calibration rig or in the case of a moving camera the scene itself can be used for calibration of most of the parameters. After calibration an ordinary TV camera has an angular resolution like a theodolite, but to a much lower price. The paper will present results from high resolution 3D imagery from air to ground. The 3D-results from stereo calculation of image pairs are stitched together into a large database to form a 3D-model of the area covered.

  3. Fabrication of 3D Silicon Sensors

    SciTech Connect

    Kok, A.; Hansen, T.E.; Hansen, T.A.; Lietaer, N.; Summanwar, A.; Kenney, C.; Hasi, J.; Da Via, C.; Parker, S.I.; /Hawaii U.

    2012-06-06

    Silicon sensors with a three-dimensional (3-D) architecture, in which the n and p electrodes penetrate through the entire substrate, have many advantages over planar silicon sensors including radiation hardness, fast time response, active edge and dual readout capabilities. The fabrication of 3D sensors is however rather complex. In recent years, there have been worldwide activities on 3D fabrication. SINTEF in collaboration with Stanford Nanofabrication Facility have successfully fabricated the original (single sided double column type) 3D detectors in two prototype runs and the third run is now on-going. This paper reports the status of this fabrication work and the resulted yield. The work of other groups such as the development of double sided 3D detectors is also briefly reported.

  4. SU-D-201-07: Exploring the Utility of 4D FDG-PET/CT Scans in Design of Radiation Therapy Planning Compared with 3D PET/CT: A Prospective Study

    SciTech Connect

    Ma, C; Yin, Y

    2015-06-15

    Purpose: A method using four-dimensional(4D) PET/CT in design of radiation treatment planning was proposed and the target volume and radiation dose distribution changes relative to standard three-dimensional (3D) PET/CT were examined. Methods: A target deformable registration method was used by which the whole patient’s respiration process was considered and the effect of respiration motion was minimized when designing radiotherapy planning. The gross tumor volume of a non-small-cell lung cancer was contoured on the 4D FDG-PET/CT and 3D PET/CT scans by use of two different techniques: manual contouring by an experienced radiation oncologist using a predetermined protocol; another technique using a constant threshold of standardized uptake value (SUV) greater than 2.5. The target volume and radiotherapy dose distribution between VOL3D and VOL4D were analyzed. Results: For all phases, the average automatic and manually GTV volume was 18.61 cm3 (range, 16.39–22.03 cm3) and 31.29 cm3 (range, 30.11–35.55 cm3), respectively. The automatic and manually volume of merged IGTV were 27.82 cm3 and 49.37 cm3, respectively. For the manual contour, compared to 3D plan the mean dose for the left, right, and total lung of 4D plan have an average decrease 21.55%, 15.17% and 15.86%, respectively. The maximum dose of spinal cord has an average decrease 2.35%. For the automatic contour, the mean dose for the left, right, and total lung have an average decrease 23.48%, 16.84% and 17.44%, respectively. The maximum dose of spinal cord has an average decrease 1.68%. Conclusion: In comparison to 3D PET/CT, 4D PET/CT may better define the extent of moving tumors and reduce the contouring tumor volume thereby optimize radiation treatment planning for lung tumors.

  5. Taming supersymmetric defects in 3d-3d correspondence

    NASA Astrophysics Data System (ADS)

    Gang, Dongmin; Kim, Nakwoo; Romo, Mauricio; Yamazaki, Masahito

    2016-07-01

    We study knots in 3d Chern-Simons theory with complex gauge group {SL}(N,{{C}}), in the context of its relation with 3d { N }=2 theory (the so-called 3d-3d correspondence). The defect has either co-dimension 2 or co-dimension 4 inside the 6d (2,0) theory, which is compactified on a 3-manifold \\hat{M}. We identify such defects in various corners of the 3d-3d correspondence, namely in 3d {SL}(N,{{C}}) CS theory, in 3d { N }=2 theory, in 5d { N }=2 super Yang-Mills theory, and in the M-theory holographic dual. We can make quantitative checks of the 3d-3d correspondence by computing partition functions at each of these theories. This Letter is a companion to a longer paper [1], which contains more details and more results.

  6. 3D Audio System

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Ames Research Center research into virtual reality led to the development of the Convolvotron, a high speed digital audio processing system that delivers three-dimensional sound over headphones. It consists of a two-card set designed for use with a personal computer. The Convolvotron's primary application is presentation of 3D audio signals over headphones. Four independent sound sources are filtered with large time-varying filters that compensate for motion. The perceived location of the sound remains constant. Possible applications are in air traffic control towers or airplane cockpits, hearing and perception research and virtual reality development.

  7. Comparison of the ionizing radiation fields observed by Liulin-Photo and R3D-B3 spectrum-dosimeters inside and outside Foton-M3 spacecraft

    NASA Astrophysics Data System (ADS)

    Damasso, Mario; Dachev, Tsvetan; Zanini, Alba; Falzetta, Giuseppe; Lambreva, Maya; Rea, Giuseppina; Giardi, Maria Teresa

    Foton-M3 ESA space mission flew in Low Earth Orbit (250÷290 km) from 14 to 26 September 2007, carrying more than 40 experiments related to different scientific disciplines. During the mission, the dose and particle flux variations inside and outside the capsule have been monitored in real time by Liulin-Photo e R3D-B3 spectrum-dosimeters respectively, the latter housed in the Biopan-6 facility containing experiments directly exposed to the space environment. Liulin-Photo and R3D-B3 are both composed of a silicon detector (area=2 cm2 ) and they measure the energies deposited by the incident ionizing particles (R3D-B3 measuring also solar UV radiation). Inside the capsule, Liulin-Photo was mounted on the top of the space biology experiment Photo-II to monitor the radiation field around this experiment. The device Photo- II is a system of optical sensors that measured in real time the chlorophyll fluorescence to study the effects of the mixed ionizing space radiations on the photosynthetic activity of several microrganisms modified at the level of the photosynthetic electron transfer chain of Photosystem II. In this study we present the results obtained comparing the dose and flux data collected from the two instruments, in order to get information about the effects produced by the capsule shielding. In particular, we analyse in deeper detail the data corresponding to the passages of the spacecraft above the South Atlantic magnetic Anomaly (SAA) and inside the outer electron belt. A comparison between experimental data and predictions of ionizing radiation environment models is also performed. Moreover, an analysis of some space weather data is conducted to better characterize the space environment in relation to the effect on the biological material during the mission.

  8. Spectral maximum entropy hydrodynamics of fermionic radiation: a three-moment system for one-dimensional flows

    NASA Astrophysics Data System (ADS)

    Banach, Zbigniew; Larecki, Wieslaw

    2013-06-01

    The spectral formulation of the nine-moment radiation hydrodynamics resulting from using the Boltzmann entropy maximization procedure is considered. The analysis is restricted to the one-dimensional flows of a gas of massless fermions. The objective of the paper is to demonstrate that, for such flows, the spectral nine-moment maximum entropy hydrodynamics of fermionic radiation is not a purely formal theory. We first determine the domains of admissible values of the spectral moments and of the Lagrange multipliers corresponding to them. We then prove the existence of a solution to the constrained entropy optimization problem. Due to the strict concavity of the entropy functional defined on the space of distribution functions, there exists a one-to-one correspondence between the Lagrange multipliers and the moments. The maximum entropy closure of moment equations results in the symmetric conservative system of first-order partial differential equations for the Lagrange multipliers. However, this system can be transformed into the equivalent system of conservation equations for the moments. These two systems are consistent with the additional conservation equation interpreted as the balance of entropy. Exploiting the above facts, we arrive at the differential relations satisfied by the entropy function and the additional function required to close the system of moment equations. We refer to this additional function as the moment closure function. In general, the moment closure and entropy-entropy flux functions cannot be explicitly calculated in terms of the moments determining the state of a gas. Therefore, we develop a perturbation method of calculating these functions. Some additional analytical (and also numerical) results are obtained, assuming that the maximum entropy distribution function tends to the Maxwell-Boltzmann limit.

  9. The importance of 3D dosimetry

    NASA Astrophysics Data System (ADS)

    Low, Daniel

    2015-01-01

    Radiation therapy has been getting progressively more complex for the past 20 years. Early radiation therapy techniques needed only basic dosimetry equipment; motorized water phantoms, ionization chambers, and basic radiographic film techniques. As intensity modulated radiation therapy and image guided therapy came into widespread practice, medical physicists were challenged with developing effective and efficient dose measurement techniques. The complex 3-dimensional (3D) nature of the dose distributions that were being delivered demanded the development of more quantitative and more thorough methods for dose measurement. The quality assurance vendors developed a wide array of multidetector arrays that have been enormously useful for measuring and characterizing dose distributions, and these have been made especially useful with the advent of 3D dose calculation systems based on the array measurements, as well as measurements made using film and portal imagers. Other vendors have been providing 3D calculations based on data from the linear accelerator or the record and verify system, providing thorough evaluation of the dose but lacking quality assurance (QA) of the dose delivery process, including machine calibration. The current state of 3D dosimetry is one of a state of flux. The vendors and professional associations are trying to determine the optimal balance between thorough QA, labor efficiency, and quantitation. This balance will take some time to reach, but a necessary component will be the 3D measurement and independent calculation of delivered radiation therapy dose distributions.

  10. Reduction of radiation biases by incorporating the missing cloud variability by means of downscaling techniques: a study using the 3-D MoCaRT model

    NASA Astrophysics Data System (ADS)

    Gimeno García, S.; Trautmann, T.; Venema, V.

    2012-09-01

    Handling complexity to the smallest detail in atmospheric radiative transfer models is unfeasible in practice. On the one hand, the properties of the interacting medium, i.e., the atmosphere and the surface, are only available at a limited spatial resolution. On the other hand, the computational cost of accurate radiation models accounting for three-dimensional heterogeneous media are prohibitive for some applications, especially for climate modelling and operational remote-sensing algorithms. Hence, it is still common practice to use simplified models for atmospheric radiation applications. Three-dimensional radiation models can deal with complex scenarios providing an accurate solution to the radiative transfer. In contrast, one-dimensional models are computationally more efficient, but introduce biases to the radiation results. With the help of stochastic models that consider the multi-fractal nature of clouds, it is possible to scale cloud properties given at a coarse spatial resolution down to a higher resolution. Performing the radiative transfer within the cloud fields at higher spatial resolution noticeably helps to improve the radiation results. We present a new Monte Carlo model, MoCaRT, that computes the radiative transfer in three-dimensional inhomogeneous atmospheres. The MoCaRT model is validated by comparison with the consensus results of the Intercomparison of Three-Dimensional Radiation Codes (I3RC) project. In the framework of this paper, we aim at characterising cloud heterogeneity effects on radiances and broadband fluxes, namely: the errors due to unresolved variability (the so-called plane parallel homogeneous, PPH, bias) and the errors due to the neglect of transversal photon displacements (independent pixel approximation, IPA, bias). First, we study the effect of the missing cloud variability on reflectivities. We will show that the generation of subscale variability by means of stochastic methods greatly reduce or nearly eliminate the

  11. Polarization of the strongest nf→3d (n = 4, 5, 6) radiative lines emitted from tungsten ions following EIE and DR processes

    NASA Astrophysics Data System (ADS)

    Ma, X. Y.; Wu, Z. W.; Dong, C. Z.; Shi, Y. L.; Xie, L. Y.

    2014-04-01

    Electron-impact excitation and resonant electron capture cross sections to the specific magnetic sublevels of highly charged Ni-like to Ge-like tungsten ions have been calculated systematically by using a fully relativistic distorted-wave method. And these magnetic cross sections have further been employed to obtain the degrees of linear polarization of the corresponding strongest nf → 3d (n = 4, 5, 6) x-rays. We compare polarizations of the same lines but from the above two different processes for the first time. It has been found the polarizations following both the both processes are totally different. It is expected that the obvious differences between the polarizations can be used to distinguish the formation mechanism of the corresponding lines.

  12. Real time wide area radiation surveillance system (REWARD) based on 3d silicon and (CD,ZN)Te for neutron and gamma-ray detection

    NASA Astrophysics Data System (ADS)

    Disch, C.

    2014-09-01

    Mobile surveillance systems are used to find lost radioactive sources and possible nuclear threats in urban areas. The REWARD collaboration [1] aims to develop such a complete radiation monitoring system that can be installed in mobile or stationary setups across a wide area. The scenarios include nuclear terrorism threats, lost radioactive sources, radioactive contamination and nuclear accidents. This paper will show the performance capabilities of the REWARD system in different scnarios. The results include both Monte Carlo simulations as well as neutron and gamma-ray detection performances in terms of efficiency and nuclide identification. The outcomes of several radiation mapping survey with the entire REWARD system will also be presented.

  13. Calculations of non-gray gas radiative heat transfer by coupling the discrete ordinates method with the Leckner model in 3D rectangular enclosures

    NASA Astrophysics Data System (ADS)

    Fathi Azarkhavarani, M. E.; Hosseini Abardeh, R.; Rahmani, M.

    2016-11-01

    In this study a new approach for radiation heat flux calculations by coupling the discrete ordinates method with the Leckner global model is introduced. The aim is to analyze the radiative heat transfer problem within a three-dimensional enclosure filled with non-gray gas mixture of {H}2{O} and {C}{O}2. A computer code developed by this approach is applied to radiative calculations in three groups of well-known test cases published previously; considering homogeneous and inhomogeneous isothermal and non-isothermal participating media. All results are compared with well-known calculations based on statistical narrow band model. Also a new series of predictions for a medium with non-black walls and various mixture of {H}2{O} and {C}{O}2 is performed to demonstrate the applicability of the Leckner model. The effect of different compositions of {H}2{O} and {C}{O}2 on the radiative transfer within modern combustors is also examined. Based on the results obtained, it is believed that the discrete ordinates method coupled with the Leckner global model despite of its inherent simplicity and low computational cost is sufficiently accurate. For its convenient use, this method is suitable for a wide range of engineering calculations of participating media as well as for its link to previously written computational fluid dynamics codes.

  14. Calculations of non-gray gas radiative heat transfer by coupling the discrete ordinates method with the Leckner model in 3D rectangular enclosures

    NASA Astrophysics Data System (ADS)

    Fathi Azarkhavarani, M. E.; Hosseini Abardeh, R.; Rahmani, M.

    2015-12-01

    In this study a new approach for radiation heat flux calculations by coupling the discrete ordinates method with the Leckner global model is introduced. The aim is to analyze the radiative heat transfer problem within a three-dimensional enclosure filled with non-gray gas mixture of H2O and CO2 . A computer code developed by this approach is applied to radiative calculations in three groups of well-known test cases published previously; considering homogeneous and inhomogeneous isothermal and non-isothermal participating media. All results are compared with well-known calculations based on statistical narrow band model. Also a new series of predictions for a medium with non-black walls and various mixture of H2O and CO2 is performed to demonstrate the applicability of the Leckner model. The effect of different compositions of H2O and CO2 on the radiative transfer within modern combustors is also examined. Based on the results obtained, it is believed that the discrete ordinates method coupled with the Leckner global model despite of its inherent simplicity and low computational cost is sufficiently accurate. For its convenient use, this method is suitable for a wide range of engineering calculations of participating media as well as for its link to previously written computational fluid dynamics codes.

  15. Transport of Aerosols from Asia and Their Radiative Effects Over the Western Pacific: A 3-D Model Study for ACE-Asia Experiment During Spring 2001

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Ginoux, Paul; Flatau, Piotr; Anderson, Tad; Masonis, Sarah; Russell, Phil; Schmid, Beat; Livingston, John; Redemann, Jens; Kahn, Ralph; Bhartia, P. K. (Technical Monitor)

    2001-01-01

    The Aerosol Characterization Experiment-Asia (ACE-Asia) took place in Spring 2001 in the East Asia-West Pacific Ocean. During the ACE-Asia intensive field operation period, high concentrations of dust and anthropogenic aerosols were observed over the Yellow Sea and the Sea of Japan, which were transported out from the Asian continent, with the plume often extending to 6-8 km altitude. The multi-component aerosols originated from Asia are expected to exert a significant radiative forcing over the Pacific region. We present here results from the Georgia Tech/Goddard Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) model of aerosol transport and radiative forcing in the context of ACE-Asia. The model calculated aerosol concentrations, extinctions, optical thickness, size distributions, and vertical profiles are compared with the aircraft and ship measurements, and the distributions of aerosols are compared with satellite data. The model will be used to understand the origins of the aerosols observed in ACE-Asia, estimate the contributions from anthropogenic and natural aerosols to the total aerosol optical thickness, investigate the effects of humidification and clouds on aerosol properties, and assess the radiative forcing of Asian aerosols over the Pacific region and in the northern hemisphere.

  16. New Insights into White-Light Flare Emission from Radiative-Hydrodynamic Modeling of a Chromospheric Condensation

    NASA Astrophysics Data System (ADS)

    Kowalski, Adam F.; Hawley, S. L.; Carlsson, M.; Allred, J. C.; Uitenbroek, H.; Osten, R. A.; Holman, G.

    2015-12-01

    The heating mechanism at high densities during M-dwarf flares is poorly understood. Spectra of M-dwarf flares in the optical and near-ultraviolet wavelength regimes have revealed three continuum components during the impulsive phase: 1) an energetically dominant blackbody component with a color temperature of T≈104 K in the blue-optical, 2) a smaller amount of Balmer continuum emission in the near-ultraviolet at λ≤3 646 Å, and 3) an apparent pseudo-continuum of blended high-order Balmer lines between λ=3 646 Å and λ≈3 900 Å. These properties are not reproduced by models that employ a typical "solar-type" flare heating level of ≤ 10^{11} erg cm^{-2} s^{-1} in nonthermal electrons, and therefore our understanding of these spectra is limited to a phenomenological three-component interpretation. We present a new 1D radiative-hydrodynamic model of an M-dwarf flare from precipitating nonthermal electrons with a high energy flux of 10^{13} erg cm^{-2} s^{-1}. The simulation produces bright near-ultraviolet and optical continuum emission from a dense (n>10^{15} cm^{-3}), hot (T ≈12 000 - 13 500 K) chromospheric condensation. For the first time, the observed color temperature and Balmer jump ratio are produced self-consistently in a radiative-hydrodynamic flare model. We find that a T≈104 K blackbody-like continuum component and a low Balmer jump ratio result from optically thick Balmer (∞→ n=2) and Paschen recombination (∞→ n=3) radiation, and thus the properties of the flux spectrum are caused by blue (λ≈4 300 Å) light escaping over a larger physical depth range than by red (λ≈6 700 Å) and near-ultraviolet (λ≈3 500 Å) light. To model the near-ultraviolet pseudo-continuum previously attributed to overlapping Balmer lines, we include the extra Balmer continuum opacity from Landau-Zener transitions that result from merged, high-order energy levels of hydrogen in a dense, partially ionized atmosphere. This reveals a new diagnostic of

  17. Radiation hydrodynamics simulations of wide-angle outflows from super-critical accretion disks around black holes

    NASA Astrophysics Data System (ADS)

    Hashizume, Katsuya; Ohsuga, Ken; Kawashima, Tomohisa; Tanaka, Masaomi

    2015-08-01

    By performing two-dimensional radiation hydrodynamics simulations with a large computational domain of 5000 times the Schwarzschild radius, we revealed that wide-angle outflow is launched via the radiation force from the super-critical accretion flows around black holes. The angular size of the outflow, where the radial velocity (vr) exceeds the escape velocity (vesc), increases with an increase of the distance from the black hole. As a result, the mass is blown away with speed of vr > vesc in all directions except for in the vicinity of the equatorial plane, θ = 0°-85°, where θ is the polar angle. The mass ejected from the outer boundary per unit time by the outflow is larger than the mass accretion rate onto the black hole, ˜ 150 LEdd/c2, where LEdd and c are the Eddington luminosity and the speed of light. The kinetic power of such wide-angle high-velocity outflow is comparable to the photon luminosity and is a few times larger than the Eddington luminosity. This corresponds to ˜ 1039-1040 erg s-1 for the stellar mass black holes. Our model is consistent with the observations of shock excited bubbles observed in some ultra-luminous X-ray sources (ULXs), supporting a hypothesis that ULXs are powered by the super-critical accretion onto stellar mass black holes.

  18. 3D Models of Symbiotic Binaries

    NASA Astrophysics Data System (ADS)

    Mohamed, S.; Booth, R.; Podsiadlowski, Ph.; Ramstedt, S.; Vlemmings, W.; Maercker, M.

    2015-12-01

    Symbiotic binaries consist of a cool, mass-losing giant and an accreting, compact companion. We present 3D Smoothed Particle Hydrodynamics (SPH) models of two such interacting binaries, RS Oph and Mira AB. RS Oph is also a recurrent nova system, thus we model multiple quiescent mass transfer-nova outburst cycles. The resulting circumstellar structures of both systems are highly complex with the formation of spirals, arcs, shells, equatorial and bipolar outflows. We compare the models to recent observations and discuss the implications of our results for related systems, e.g., bipolar nebulae and jets, chemically peculiar stars, and the progenitors of Type Ia supernovae.

  19. Development and validation of P-MODTRAN7 and P-MCScene, 1D and 3D polarimetric radiative transfer models

    NASA Astrophysics Data System (ADS)

    Hawes, Frederick T.; Berk, Alexander; Richtsmeier, Steven C.

    2016-05-01

    A validated, polarimetric 3-dimensional simulation capability, P-MCScene, is being developed by generalizing Spectral Sciences' Monte Carlo-based synthetic scene simulation model, MCScene, to include calculation of all 4 Stokes components. P-MCScene polarimetric optical databases will be generated by a new version (MODTRAN7) of the government-standard MODTRAN radiative transfer algorithm. The conversion of MODTRAN6 to a polarimetric model is being accomplished by (1) introducing polarimetric data, by (2) vectorizing the MODTRAN radiation calculations and by (3) integrating the newly revised and validated vector discrete ordinate model VDISORT3. Early results, presented here, demonstrate a clear pathway to the long-term goal of fully validated polarimetric models.

  20. Use of the ARM Measurements of Spectral Zenith Radiance for Better Understanding of 3D Cloud-Radiation Processes & Aerosol-Cloud Interaction

    SciTech Connect

    Chiu, Jui-Yuan Christine

    2014-04-10

    This project focuses on cloud-radiation processes in a general three-dimensional cloud situation, with particular emphasis on cloud optical depth and effective particle size. The proposal has two main parts. Part one exploits the large number of new wavelengths offered by the Atmospheric Radiation Measurement (ARM) zenith-pointing ShortWave Spectrometer (SWS), to develop better retrievals not only of cloud optical depth but also of cloud particle size. We also take advantage of the SWS’ high sampling resolution to study the “twilight zone” around clouds where strong aerosol-cloud interactions are taking place. Part two involves continuing our cloud optical depth and cloud fraction retrieval research with ARM’s 2-channel narrow vield-of-view radiometer and sunphotometer instrument by, first, analyzing its data from the ARM Mobile Facility deployments, and second, making our algorithms part of ARM’s operational data processing.

  1. Energy density of standing sound waves at the radiation-dominated phase of the universe expansion (hydrodynamic derivation)

    NASA Astrophysics Data System (ADS)

    Inogamov, N. A.; Sunyaev, R. A.

    2015-12-01

    In the early Universe up to hydrogen recombination in the Universe, the radiation pressure was much greater than the pressure of baryons and electrons. Moreover, the energy density of cosmic microwave background (CMB) photons was greater than or close to the energy density contained in the rest mass of baryonic matter, i.e., the primordial plasma was a radiated-dominated one and the adiabatic index was close to 4/3. The small density perturbations from which the observed galaxies have grown grew as long as the characteristic perturbation scales exceeded the horizon of the Universe сt at that time. On smaller scales, the density perturbations were standing sound waves. Radiative viscosity and heat conduction must have led to the damping of sound waves on very small scales. After the discovery of the cosmic microwave background, J. Silk calculated the scales of this damping, which is now called Silk damping, knowing the CMBtemperature and assuming the density of baryons and electrons. Observations with the South Pole Telescope, the Atacama Cosmology Telescope, and the Planck satellite have revealed the predicted damping of acoustic peaks in the CMB power spectrum and confirmed one important prediction of the theory. In 1970, R.A. Sunyaev and Ya.B. Zeldovich showed that such energy release in the early Universe should lead to characteristic deviations of the CMB spectrum from the Planck one. The development of the technology of cryogenic detectors of submillimeter and millimeter wavelength radiation has made it possible to measure the CMB spectral distortions at 10-8 of its total intensity (PIXIE). This has sharply increased the interest of theoretical cosmologists in the problem of energy release when smallscale sound waves are damped. We have derived a relativistic formula for the energy of a standing sound wave in a photon-baryon-electron plasma from simple hydrodynamic and thermodynamic relations. This formula is applicable for an arbitrary relation between the

  2. 3D Convection-pulsation Simulations with the HERACLES Code

    NASA Astrophysics Data System (ADS)

    Felix, S.; Audit, E.; Dintrans, B.

    2015-10-01

    We present 3D simulations of the coupling between surface convection and pulsations due to the κ-mechanism in classical Cepheids of the red edge of Hertzsprung-Russell diagram's instability strip. We show that 3D convection is less powerful than 2D convection and does not quench the radiative pulsations, leading to an efficient 3D κ-mechanism. Thus, the 3D instability strip is closer to the observed one than the 1D or 2D were.

  3. Prominent rocks - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Many prominent rocks near the Sagan Memorial Station are featured in this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. Wedge is at lower left; Shark, Half-Dome, and Pumpkin are at center. Flat Top, about four inches high, is at lower right. The horizon in the distance is one to two kilometers away.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  4. 'Diamond' in 3-D

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This 3-D, microscopic imager mosaic of a target area on a rock called 'Diamond Jenness' was taken after NASA's Mars Exploration Rover Opportunity ground into the surface with its rock abrasion tool for a second time.

    Opportunity has bored nearly a dozen holes into the inner walls of 'Endurance Crater.' On sols 177 and 178 (July 23 and July 24, 2004), the rover worked double-duty on Diamond Jenness. Surface debris and the bumpy shape of the rock resulted in a shallow and irregular hole, only about 2 millimeters (0.08 inch) deep. The final depth was not enough to remove all the bumps and leave a neat hole with a smooth floor. This extremely shallow depression was then examined by the rover's alpha particle X-ray spectrometer.

    On Sol 178, Opportunity's 'robotic rodent' dined on Diamond Jenness once again, grinding almost an additional 5 millimeters (about 0.2 inch). The rover then applied its Moessbauer spectrometer to the deepened hole. This double dose of Diamond Jenness enabled the science team to examine the rock at varying layers. Results from those grindings are currently being analyzed.

    The image mosaic is about 6 centimeters (2.4 inches) across.

  5. Martian terrain - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This area of terrain near the Sagan Memorial Station was taken on Sol 3 by the Imager for Mars Pathfinder (IMP). 3D glasses are necessary to identify surface detail.

    The IMP is a stereo imaging system with color capability provided by 24 selectable filters -- twelve filters per 'eye.' It stands 1.8 meters above the Martian surface, and has a resolution of two millimeters at a range of two meters.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  6. 3-D Finite Element Heat Transfer

    1992-02-01

    TOPAZ3D is a three-dimensional implicit finite element computer code for heat transfer analysis. TOPAZ3D can be used to solve for the steady-state or transient temperature field on three-dimensional geometries. Material properties may be temperature-dependent and either isotropic or orthotropic. A variety of time-dependent and temperature-dependent boundary conditions can be specified including temperature, flux, convection, and radiation. By implementing the user subroutine feature, users can model chemical reaction kinetics and allow for any type of functionalmore » representation of boundary conditions and internal heat generation. TOPAZ3D can solve problems of diffuse and specular band radiation in an enclosure coupled with conduction in the material surrounding the enclosure. Additional features include thermal contact resistance across an interface, bulk fluids, phase change, and energy balances.« less

  7. AN OPEN-SOURCE NEUTRINO RADIATION HYDRODYNAMICS CODE FOR CORE-COLLAPSE SUPERNOVAE

    SciTech Connect

    O’Connor, Evan

    2015-08-15

    We present an open-source update to the spherically symmetric, general-relativistic hydrodynamics, core-collapse supernova (CCSN) code GR1D. The source code is available at http://www.GR1Dcode.org. We extend its capabilities to include a general-relativistic treatment of neutrino transport based on the moment formalisms of Shibata et al. and Cardall et al. We pay special attention to implementing and testing numerical methods and approximations that lessen the computational demand of the transport scheme by removing the need to invert large matrices. This is especially important for the implementation and development of moment-like transport methods in two and three dimensions. A critical component of neutrino transport calculations is the neutrino–matter interaction coefficients that describe the production, absorption, scattering, and annihilation of neutrinos. In this article we also describe our open-source neutrino interaction library NuLib (available at http://www.nulib.org). We believe that an open-source approach to describing these interactions is one of the major steps needed to progress toward robust models of CCSNe and robust predictions of the neutrino signal. We show, via comparisons to full Boltzmann neutrino-transport simulations of CCSNe, that our neutrino transport code performs remarkably well. Furthermore, we show that the methods and approximations we employ to increase efficiency do not decrease the fidelity of our results. We also test the ability of our general-relativistic transport code to model failed CCSNe by evolving a 40-solar-mass progenitor to the onset of collapse to a black hole.

  8. Comparison between Radiation-Hydrodynamic Simulation of Supercritical Accretion Flows and a Steady Model with Outflows

    NASA Astrophysics Data System (ADS)

    Jiao, Cheng-Liang; Mineshige, Shin; Takeuchi, Shun; Ohsuga, Ken

    2015-06-01

    We apply our two-dimensional (2D), radially self-similar steady-state accretion flow model to the analysis of hydrodynamic simulation results of supercritical accretion flows. Self-similarity is checked and the input parameters for the model calculation, such as advective factor and heat capacity ratio, are obtained from time-averaged simulation data. Solutions of the model are then calculated and compared with the simulation results. We find that in the converged region of the simulation, excluding the part too close to the black hole, the radial distributions of azimuthal velocity {{v}φ }, density ρ and pressure p basically follow the self-similar assumptions, i.e., they are roughly proportional to {{r}-0.5}, {{r}-n}, and {{r}-(n+1)}, respectively, where n∼ 0.85 for the mass injection rate of 1000{{L}E}/{{c}2}, and n∼ 0.74 for 3000{{L}E}/{{c}2}. The distribution of vr and {{v}θ } agrees less with self-similarity, possibly due to convective motions in the rθ plane. The distribution of velocity, density, and pressure in the θ direction obtained by the steady model agrees well with the simulation results within the calculation boundary of the steady model. Outward mass flux in the simulations is overall directed toward a polar angle of 0.8382 rad (∼ 48\\buildrel{\\circ}\\over{.} 0) for 1000{{L}E}/{{c}2} and 0.7852 rad (∼ 43\\buildrel{\\circ}\\over{.} 4) for 3000{{L}E}/{{c}2}, and ∼94% of the mass inflow is driven away as outflow, while outward momentum and energy fluxes are focused around the polar axis. Parts of these fluxes lie in the region that is not calculated by the steady model, and special attention should be paid when the model is applied.

  9. SU-E-T-342: Use of Patient Geometry Measurements to Predict Dosimetric Gain with VMAT Over 3D for Chestwall and Regional Nodal Radiation

    SciTech Connect

    Dumane, V; Knoll, M; Green, S; Bakst, R; Hunt, M; Steinberger, E

    2014-06-01

    Purpose: To predict the dosimetric gain of VMAT over 3D for the treatment ofchestwall/IMN/supraclavicular nodes using geometric parameters acquired during simulation Methods: CT scans for 20 left and 20 right sided patients were retrospectively analyzed toobtain percent ipsilateral lung volume included in the PWT and supraclavicular fields, central lung depth (CLD), maximum lung depth (MLD), separation, chestwall concavity (defined here as the product of CLD and separation) and the maximum heart depth (MHD). VMAT, PWT and P/E plans were done for each case. The ipsilateral lung V20 Gy and mean, total lung V20 Gy and mean, heart V25 Gy and mean were noted for each plan. Correlation coefficients were obtained and linear regression models were built using data from the above training set of patients and then tested on 4 new patients. Results: The decrease in ipsilateral lung V20 Gy, total lung V20 Gy, ipsilateral lung mean and total lung mean with VMAT over PWT significantly (p<0.05) correlated with the percent volume of ipsilateral lung included in the PWT and supraclavicular fields with correlation coefficient values of r = 0.83, r = 0.77, r = 0.78 and r = 0.75 respectively. Significant correlations were also found between MHD and the decrease in heart V25 Gy and mean of r = 0.77 and r = 0.67 respectively. Dosimetric improvement with VMAT over P/E plans showed no correlation to any of the geometric parameters investigated in this study. The dosimetric gain predicted for the 4 test cases by the linear regression models given their respective percent ipsilateral lung volumes fell within the 95% confidence intervals around the best regression fit. Conclusion: The percent ipsilateral lung volume appears to be a strong predictor of the dosimetric gain on using VMAT over PWT apriori.

  10. Cosmic Dawn (CoDa): the First Radiation-Hydrodynamics Simulation of Reionization and Galaxy Formation in the Local Universe

    NASA Astrophysics Data System (ADS)

    Ocvirk, Pierre; Gillet, Nicolas; Shapiro, Paul R.; Aubert, Dominique; Iliev, Ilian T.; Teyssier, Romain; Yepes, Gustavo; Choi, Jun-Hwan; Sullivan, David; Knebe, Alexander; Gottlöber, Stefan; D'Aloisio, Anson; Park, Hyunbae; Hoffman, Yehuda; Stranex, Timothy

    2016-08-01

    Cosmic reionization by starlight from early galaxies affected their evolution, thereby impacting reionization, itself. Star formation suppression, for example, may explain the observed underabundance of Local Group dwarfs relative to N-body predictions for Cold Dark Matter. Reionization modelling requires simulating volumes large enough [ ˜ (100 Mpc)3] to sample reionization "patchiness", while resolving millions of galaxy sources above ˜108 M⊙ , combining gravitational and gas dynamics with radiative transfer. Modelling the Local Group requires initial cosmological density fluctuations pre-selected to form the well-known structures of the local universe today. Cosmic Dawn ("CoDa") is the first such fully-coupled, radiation-hydrodynamics simulation of reionization of the local universe. Our new hybrid CPU-GPU code, RAMSES-CUDATON, performs hundreds of radiative transfer and ionization rate-solver timesteps on the GPUs for each hydro-gravity timestep on the CPUs. CoDa simulated (91Mpc)3 with 40963 particles and cells, to redshift 4.23, on ORNL supercomputer Titan, utilizing 8192 cores and 8192 GPUs. Global reionization ended slightly later than observed. However, a simple temporal rescaling which brings the evolution of ionized fraction into agreement with observations also reconciles ionizing flux density, cosmic star formation history, CMB electron scattering optical depth and galaxy UV luminosity function with their observed values. Photoionization heating suppressed the star formation of haloes below ˜2 × 109 M⊙ , For most of reionization, star formation was dominated by haloes between 1010 - 1011 M⊙ , so low-mass halo suppression was not reflected by a distinct feature in the global star formation history. Intergalactic filaments display sheathed structures, with hot envelopes surrounding cooler cores, but do not self-shield, unlike regions denser than 100 <ρ>.

  11. On the consequences of a Virial star formation criterion and radiation hydrodynamics in simulations of high redshift galaxies

    NASA Astrophysics Data System (ADS)

    Perret, Valentin; Teyssier, Romain; Devriendt, Julien; Rosdahl, Joakim; Slyz, Adrianne

    2015-08-01

    The last decade has seen a data deluge coming from observational facilities targeting the young universe. These data has revealed that high redshift galaxies are substantially different from their local counterpart that populates the Hubble sequence. High redshift star-forming galaxies often display clumpy morphologies associated to disk-like kinematics with a high level of turbulence. Star formation essentially occurs in these giant massive clumps and is therefore a crucial step in the life of galaxies. Reproducing the fragmentation of high redshift disk galaxies in numerical simulations is mandatory if one wants to get a realistic picture of the Hubble sequence shaping. We present state-of-the-art parsec scale idealised simulations of high redshift analogue galaxies that resolve the supersonic turbulent and clumpy multi-phase interstellar medium. These simulations are performed with the adaptive mesh refinement code RAMSES (Teyssier et al. 2002) using its new radiation hydrodynamics module (Rosdahl et al. 2013). We are therefore able to model the radiative pressure from the young massive stars population settled in the star forming clumps which is suspected to play a subsequent role in the onset of outflowing gas in such galaxies. Furthermore, our model includes a star formation criterion inspired from molecular cloud simulations and which is based on a local analysis of the turbulent support of the gas clouds. The star formation efficiency associated to this approach is two order of magnitudes higher than the one using the standard density threshold and has therefore major implications for the evolution of the galaxy. We will review through a comparative study the consequences of using radiative transfer combined with such a Virial star formation criterion for the star formation history, the gas and stellar morphology of the disk and clumps as well as the properties of the galactic fountain induced by stellar feedback. A first set of simulation presents

  12. 3D Radiative Transfer Effects in Multi-Angle/Multi-Spectral Radio-Polarimetric Signals from a Mixture of Clouds and Aerosols Viewed by a Non-Imaging Sensor

    NASA Technical Reports Server (NTRS)

    Davis, Anthony B.; Garay, Michael J.; Xu, Feng; Qu, Zheng; Emde, Claudia

    2013-01-01

    When observing a spatially complex mix of aerosols and clouds in a single relatively large field-of-view, nature entangles their signals non-linearly through polarized radiation transport processes that unfold in the 3D position and direction spaces. In contrast, any practical forward model in a retrieval algorithm will use only 1D vector radiative transfer (vRT) in a linear mixing technique. We assess the difference between the observed and predicted signals using synthetic data from a high-fidelity 3D vRT model with clouds generated using a Large Eddy Simulation model and an aerosol climatology. We find that this difference is signal--not noise--for the Aerosol Polarimetry Sensor (APS), an instrument developed by NASA. Moreover, the worst case scenario is also the most interesting case, namely, when the aerosol burden is large, hence hase the most impact on the cloud microphysics and dynamics. Based on our findings, we formulate a mitigation strategy for these unresolved cloud adjacency effects assuming that some spatial information is available about the structure of the clouds at higher resolution from "context" cameras, as was planned for NASA's ill-fated Glory mission that was to carry the APS but failed to reach orbit. Application to POLDER (POLarization and Directionality of Earth Reflectances) data from the period when PARASOL (Polarization and Anisotropy of Reflectances for Atmospheric Sciences coupled with Observations from a Lidar) was in the A-train is briefly discussed.

  13. Two-Dimensional Radiation Hydrodynamics with Detailed Equations of State and Opacities

    NASA Astrophysics Data System (ADS)

    Santarius, J. F.; Macfarlane, J. J.; Moses, G. A.; Peterson, R. R.; Wang, P.; Cohen, D. H.

    1996-11-01

    The University of Wisconsin presently models ICF targets and target chambers with the 1-D BUCKY computer code.(J.J. MacFarlane, G.A. Moses, and R.R. Peterson, Univ. of Wis. Report UWFDM-984 (1995).) Progress on incorporating the BUCKY physics models in the ZEUS-2D two-dimensional radiation-magnetohydrodynamics computer code(J.M. Stone, D. Mihalas, and M.L. Norman, Ap. J. Suppl.) 80, 753--845 (1992). will be reported. ZEUS-2D has been modified to use detailed equations of state and opacities, multigroup flux-limited radiation diffusion, and multiple materials. Selected studies of radiation burn-through, heat-pulse propagation, and x-ray emission from hohlraums will be presented. Cylindrically symmetric hohlraums exhibit primarily two-dimensional emission of x rays, with axial jets and conical lobes out the laser entrance holes. This information will be particularly useful for evaluating the response of the chamber wall and diagnostics to high-yield NIF shots.

  14. SU-E-T-596: Axillary Nodes Radiotherapy Boost Field Dosimetric Impact Study: Oblique Field and Field Optimization in 3D Conventional Breast Cancer Radiation Treatment

    SciTech Connect

    Su, M; Sura, S

    2014-06-01

    Purpose: To evaluate dosimetric impact of two axillary nodes (AX) boost techniques: (1) posterior-oblique optimized field boost (POB), (2) traditional posterior-anterior boost (PAB) with field optimization (O-PAB), for a postmastectomy breast patient with positive axillary lymph nodes. Methods: Five patients, 3 left and 2 right chest walls, were included in this study. All patients were simulated in 5mm CT slice thickness. Supraclavicular (SC) and level I/II/III AX were contoured based on the RTOG atlas guideline. Five treatment plans, (1) tangential chest wall, (2) oblique SC including AX, (3) PAB, O-PAB and POB, were created for each patient. Three plan sums (PS) were generated by sum one of (3) plan with plan (1) and (2). The field optimization was done through PS dose distribution, which included a field adjustment, a fractional dose, a calculation location and a gantry angle selection for POB. A dosimetric impact was evaluated by comparing a SC and AX coverage, a PS maximum dose, an irradiated area percentage volume received dose over 105% prescription dose (V105), an ipsi-laterial mean lung dose (MLD), an ipsi-laterial mean humeral head dose (MHHD), a mean heart dose (MHD) (for left case only) and their DVH amount these three technique. Results: O-PAB, POB and PAB dosimetric results showed that there was no significant different on SC and AX coverage (p>0.43) and MHD (p>0.16). The benefit of sparing lung irradiation from PAB to O-PAB to POB was significant (p<0.004). PAB showed a highest PS maximum dose (p<0.005), V105 (p<0.023) and MLD (compared with OPAB, p=0.055). MHHD showed very sensitive to the patient arm positioning and anatomy. O-PAB convinced a lower MHHD than PAB (p=0.03). Conclusion: 3D CT contouring plays main role in accuracy radiotherapy. Dosimetric advantage of POB and O-PAB was observed for a better normal tissue irradiation sparing.

  15. Propensity score based comparison of long term outcomes with 3D conformal radiotherapy (3DCRT) versus Intensity Modulated Radiation Therapy (IMRT) in the treatment of esophageal cancer

    PubMed Central

    Lin, Steven H.; Wang, Lu; Myles, Bevan; Thall, Peter F.; Hofstetter, Wayne L.; Swisher, Stephen G.; Ajani, Jaffer A.; Cox, James D.; Komaki, Ritsuko; Liao, Zhongxing

    2014-01-01

    Purpose Although 3DCRT is the worldwide standard for the treatment of esophageal cancers, IMRT improves dose conformality and reduces radiation exposure to normal tissues. We hypothesized that the dosimetric advantages of IMRT should translate to substantive benefits in clinical outcomes compared to 3DCRT. Methods and Materials Analysis was performed on 676 nonrandomized patients (3DCRT=413, IMRT=263) with stage Ib-IVa (AJCC 2002) esophageal cancers treated with chemoradiation at a single institution from 1998–2008. An inverse probability of treatment weighting (IPW) and inclusion of propensity score (treatment probability) as a covariate were used to compare overall survival (OS) time, time to local failure, and time to distant metastasis, while accounting for effects of other clinically relevant covariates. Propensity scores were estimated using logistic regression. Results A fitted multivariate inverse probability weighted (IPW)-adjusted Cox model showed that OS time was significantly associated with several well-known prognostic factors, along with radiation modality (IMRT vs 3DCRT, HR=0.72, p<0.001). Compared to IMRT, 3DCRT patients had a significantly greater risk of dying (72.6% vs 52.9%, IPW log rank test: p<0.0001) and for local-regional recurrence (LRR) (p=0.0038). There was no difference in cancer-specific mortality (Gray’s test, p=0.86), or distant metastasis (p=0.99) between the two groups. An increased cumulative incidence of cardiac deaths was seen in the 3DCRT group (p=0.049), but most deaths were undocumented (5 year estimate: 11.7% in 3DCRT vs 5.4% in IMRT, Gray’s test, p=0.0029). Conclusions Overall survival, locoregional control, and non-cancer related deaths were significantly better for IMRT compared to 3DCRT. Although these results need confirmation, IMRT should be considered for the treatment of esophageal cancer. PMID:22867894

  16. Systematic review of the effect of radiation dose on tumor control and morbidity in the treatment of prostate cancer by 3D-CRT

    SciTech Connect

    Tol-Geerdink, Julia J. van . E-mail: J.vanTol@rther.umcn.nl; Stalmeier, Peep F.M.; Pasker-de Jong, Pieternel C.M.; Huizenga, Henk; Lin, Emile N.J.T. van; Schimmel, Erik C.; Leer, Jan Willem; Daal, Willem A.J. van

    2006-02-01

    Purpose: A higher radiation dose is believed to result in a larger probability of tumor control and a higher risk of side effects. To make an evidence-based choice of dose, the relation between dose and outcome needs to be known. This study focuses on the dose-response relation for prostate cancer. Methods and Materials: A systematic review was carried out on the literature from 1990 to 2003. From the selected studies, the radiation dose, the associated 5-year survival, 5-year bNED (biochemical no evidence of disease), acute and late gastrointestinal (GI) and genitourinary (GU) morbidity Grade 2 or more, and sexual dysfunction were extracted. With logistic regression models, the relation between dose and outcome was described. Results: Thirty-eight studies met our criteria, describing 87 subgroups and involving up to 3000 patients per outcome measure. Between the (equivalent) dose of 70 and 80 Gy, various models estimated an increase in 5-year survival (ranging from 10% to 11%), 5-year bNED for low-risk patients (5-7%), late GI complications (12-16%), late GU complications (8-10%), and erectile dysfunction (19-24%). Only for the overall 5-year bNED, results were inconclusive (range, 0-18%). Conclusions: The data suggest a relationship between dose and outcome measures, including survival. However, the strength of these conclusions is limited by the sometimes small number of studies, the incompleteness of the data, and above all, the correlational nature of the data. Unambiguous proof for the dose-response relationships can, therefore, only be obtained by conducting randomized trials.

  17. One-dimensional radiation-hydrodynamic simulations of imploding spherical plasma liners with detailed equation-of-state modeling

    SciTech Connect

    Davis, J. S.; Hsu, S. C.; Golovkin, I. E.; MacFarlane, J. J.; Cassibry, J. T.

    2012-10-15

    This work extends the one-dimensional radiation-hydrodynamic imploding spherical argon plasma liner simulations of Awe et al.[Phys. Plasmas 18, 072705 (2011)] by using a detailed tabular equation-of-state (EOS) model, whereas Awe et al. used a polytropic EOS model. Results using the tabular EOS model give lower stagnation pressures by a factor of 3.9-8.6 and lower peak ion temperatures compared to the polytropic EOS results. Both local thermodynamic equilibrium (LTE) and non-LTE EOS models were used in this work, giving similar results on stagnation pressure. The lower stagnation pressures using a tabular EOS model are attributed to a reduction in the liner's ability to compress arising from the energy sink introduced by ionization and electron excitation, which are not accounted for in a polytropic EOS model. Variation of the plasma liner species for the same initial liner geometry, mass density, and velocity was also explored using the LTE tabular EOS model, showing that the highest stagnation pressure is achieved with the highest atomic mass species for the constraints imposed.

  18. Kinetic simulation of direct-drive capsule implosions and its comparison with experiments and radiation hydrodynamic simulation

    NASA Astrophysics Data System (ADS)

    Kwan, Thomas; Le, Ari; Schmitt, Mark; Herrmann, Hans; Batha, Steve

    2015-11-01

    We have carried out simulations of direct-drive capsule implosion experiments conducted on Omega laser facility at the Laboratory of Laser energetics of the University of Rochester. The capsules had a glass shell (SiO2) with D, T, He-3 fills at various proportions. One-dimensional radiation hydrodynamic calculations and kinetic particle/hybrid simulations with LSP were carried out for the post-shot analysis to compare neutron yield, yield ratio, and shell convergence in assessing the effects of plasma kinetic effects. The LSP simulations were initiated with the output from the rad-hydro simulations at the end of the laser-drive. The electrons are treated as a fluid while all the ion species by the kinetic PIC technique. Our LSP simulations clearly showed species separation between the deuterons, tritons and He-3 during the implosion but significantly less after the compression. The neutron yield, gamma bang-time and -width from the LSP simulations compared favorably with experiments. Detail comparison among the kinetic simulations, rad-hydro simulations, and experimental results will be presented. Work performed under the auspices of the US Department of Energy by Los Alamos National Laboratory under Contract No. W-7405-ENG-36.

  19. The impact of including spatially longitudinal heterogeneities of vessel oxygen content and vascular fraction in 3D tumor oxygenation models on predicted radiation sensitivity

    SciTech Connect

    Lagerlöf, Jakob H.; Kindblom, Jon; Bernhardt, Peter

    2014-04-15

    Purpose: Oxygen distribution models have been used to analyze the influences of oxygen tensions on tissue response after radiotherapy. These distributions are often generated assuming constant oxygen tension in the blood vessels. However, as red blood cells progress through the vessels, oxygen is continuously released into the plasma and the surrounding tissue, resulting in longitudinally varying oxygen levels in the blood vessels. In the present study, the authors investigated whether a tumor oxygenation model that incorporated longitudinally varying oxygen levels would provide different predictions of necrotic fractions and radiosensitivity compared to commonly used models with a constant oxygen pressure. Methods: Our models simulated oxygen diffusion based on a Green's function approach and oxygen consumption according to the Michaelis-Menten equation. The authors constructed tumor models with different vascular fractions (VFs), from which they generated depth oxygenation curves and a look-up table of oxygen pressure gradients. The authors evaluated models of spherical tumors of various sizes, from 1 to 10{sup 4} mg. The authors compared the results from a model with constant vessel oxygen (CVO) pressure to those from models with longitudinal variations in oxygen saturation and either a constant VF (CVF) or variable VF (VVF) within the tumor tissue. The authors monitored the necrotic fractions, defined as tumor regions with an oxygen pressure below 1 mmHg. Tumor radiation sensitivity was expressed as D{sub 99,} the homogeneous radiation dose required for a tumor control probability of 0.99. Results: In the CVO saturation model, no necrosis was observed, and decreasing the VF could only decrease the D{sub 99} by up to 10%. Furthermore, the D{sub 99} vs VF dependence was similar for different tumor masses. Compared to the CVO model, the extended CVF and VVF models provided clearly different results, including pronounced effects of VF and tumor size on the necrotic

  20. Modified Slim-Disk Model Based on Radiation-Hydrodynamic Simulation Data: The Conflict between Outflow and Photon Trapping

    NASA Astrophysics Data System (ADS)

    Takeuchi, Shun; Mineshige, Shin; Ohsuga, Ken

    2009-08-01

    Photon trapping and outflow are two key physics issues associated with supercritical accretion flow. We investigated the conflict between these two processes based on two-dimensional radiation-hydrodynamic (RHD) simulation data, and constructed a simplified (radially) one-dimensional model. Mass loss due to outflow, which is not considered in the slim-disk model, reduces the surface density of the flow, and if very significantly, it can totally suppress the photon-trapping effects. If photon trapping is very significant, conversely, outflow can be suppressed because the radiation-pressure force is reduced. To see what actually occurs, we examined the RHD simulation data and evaluated the accretion and outflow rates as functions of the radius. We have found that the accretion rate monotonically decreases, while the outflow rate increases, as the radius decreases. However, the accretion remains constant at small radii, inside several Schwarzschild radii, since the outflow is suppressed by photon trapping effects. To understand the conflict between the photon trapping and outflow in a simpler way, we modeled the radial distribution of the accretion rate from our simulation data, and built up a new (radially) one-dimensional model, which is similar to the slim-disk model, but incorporates mass loss effects due to the outflow. We find that the surface density (and, hence, the optical depth) is greatly reduced even inside the trapping radius, compared to the case without outflow, whereas the effective temperature distribution hardly changes. That is, the emergent spectra do not sensitively depend on the amount of mass outflow. We conclude that the slim-disk approach is valid for interpreting observations, even if the outflow is taken into account. The observational implications of our findings are briefly discussed in relation to ultra-luminous X-ray sources.

  1. Initial Efficacy Results of RTOG 0319: Three-Dimensional Conformal Radiation Therapy (3D-CRT) Confined to the Region of the Lumpectomy Cavity for Stage I/ II Breast Carcinoma

    SciTech Connect

    Vicini, Frank; Winter, Kathryn; Wong, John

    2010-07-15

    Purpose: This prospective study (Radiation Therapy Oncology Group 0319) examines the use of three-dimensional conformal external beam radiotherapy (3D-CRT) to deliver accelerated partial breast irradiation (APBI). Initial data on efficacy and toxicity are presented. Methods and Materials: Patients with Stage I or II breast cancer with lesions {<=}3 cm, negative margins and with {<=}3 positive nodes were eligible. The 3D-CRT was 38.5 Gy in 3.85 Gy/fraction delivered 2x/day. Ipsilateral breast, ipsilateral nodal, contralateral breast, and distant failure (IBF, INF, CBF, DF) were estimated using the cumulative incidence method. Mastectomy-free, disease-free, and overall survival (MFS, DFS, OS) were recorded. The National Cancer Institute Common Terminology Criteria for Adverse Events, version 3, was used to grade acute and late toxicity. Results: Fifty-eight patients were entered and 52 patients are eligible and evaluable for efficacy. The median age of patients was 61 years with the following characteristics: 46% tumor size <1 cm; 87% invasive ductal histology; 94% American Joint Committee on Cancer Stage I; 65% postmenopausal; 83% no chemotherapy; and 71% with no hormone therapy. Median follow-up is 4.5 years (1.7-4.8). Four-year estimates (95% CI) of efficacy are: IBF 6% (0-12%) [4% within field (0-9%)]; INF 2% (0-6%); CBF 0%; DF 8% (0-15%); MFS 90% (78-96%); DFS 84% (71-92%); and OS 96% (85-99%). Only two (4%) Grade 3 toxicities were observed. Conclusions: Initial efficacy and toxicity using 3D-CRT to deliver APBI appears comparable to other experiences with similar follow-up. However, additional patients, further follow-up, and mature Phase III data are needed to evaluate the extent of application, limitations, and value of this particular form of APBI.

  2. The Effect of Flattening Filter Free on Three-dimensional Conformal Radiation Therapy (3D-CRT), Intensity-Modulated Radiation Therapy (IMRT), and Volumetric Modulated Arc Therapy (VMAT) Plans for Metastatic Brain Tumors from Non-small Cell Lung Cancer.

    PubMed

    Shi, Li-Wan; Lai, You-Qun; Lin, Qin; Ha, Hui-Ming; Fu, Li-Rong

    2015-07-01

    Flattening filter free (FFF) may affect outcome measures of radiotherapy. The objective of this study is to compare the dosimetric parameters in three types of radiotherapy plans, three-dimensional conformal radiation therapy (3D-CRT), intensity-modulated radiation therapy (IMRT), and volumetric modulated arc therapy (VMAT), with or without the flattening filter (FF), developed for the treatment of metastatic brain tumors from non-small cell lung cancer (NSCLC). From July 2013 to October 2013, 3D-CRT, IMRT, and VMAT treatment plans were designed using 6 MV and 10 MV, with and without FF, for 10 patients with brain metastasis from NSCLC. The evaluation of the treatment plans included homogeneity index (HI), conformity index (CI), monitor units (MU), mean dose (Dmean), treatment time, and the influence of FFF on volumes. There was no difference in CI or HI between FFF and FF models with 3D-CRT, IMRT, and VMAT plans. At 6 MV, a lower Dmean was seen in the FFF model of 3D-CRT and in the VMAT plan at 10 MV. In the IMRT 6 MV, IMRT 10 MV, and VMAT 10 MV plans, higher MUs were seen in the FFF models. FFF treatments are similar in quality to FF plans, generally lead to more monitor units, and are associated with shorter treatment times. FFF plans ranked by the order of superiority in terms of a time advantage are VMAT, 3D-CRT, and IMRT.

  3. The Effect of Flattening Filter Free on Three-dimensional Conformal Radiation Therapy (3D-CRT), Intensity-Modulated Radiation Therapy (IMRT), and Volumetric Modulated Arc Therapy (VMAT) Plans for Metastatic Brain Tumors from Non-small Cell Lung Cancer.

    PubMed

    Shi, Li-Wan; Lai, You-Qun; Lin, Qin; Ha, Hui-Ming; Fu, Li-Rong

    2015-07-01

    Flattening filter free (FFF) may affect outcome measures of radiotherapy. The objective of this study is to compare the dosimetric parameters in three types of radiotherapy plans, three-dimensional conformal radiation therapy (3D-CRT), intensity-modulated radiation therapy (IMRT), and volumetric modulated arc therapy (VMAT), with or without the flattening filter (FF), developed for the treatment of metastatic brain tumors from non-small cell lung cancer (NSCLC). From July 2013 to October 2013, 3D-CRT, IMRT, and VMAT treatment plans were designed using 6 MV and 10 MV, with and without FF, for 10 patients with brain metastasis from NSCLC. The evaluation of the treatment plans included homogeneity index (HI), conformity index (CI), monitor units (MU), mean dose (Dmean), treatment time, and the influence of FFF on volumes. There was no difference in CI or HI between FFF and FF models with 3D-CRT, IMRT, and VMAT plans. At 6 MV, a lower Dmean was seen in the FFF model of 3D-CRT and in the VMAT plan at 10 MV. In the IMRT 6 MV, IMRT 10 MV, and VMAT 10 MV plans, higher MUs were seen in the FFF models. FFF treatments are similar in quality to FF plans, generally lead to more monitor units, and are associated with shorter treatment times. FFF plans ranked by the order of superiority in terms of a time advantage are VMAT, 3D-CRT, and IMRT. PMID:26011493

  4. THE LAUNCHING OF COLD CLOUDS BY GALAXY OUTFLOWS. I. HYDRODYNAMIC INTERACTIONS WITH RADIATIVE COOLING

    SciTech Connect

    Scannapieco, Evan; Brüggen, Marcus

    2015-06-01

    To better understand the nature of the multiphase material found in outflowing galaxies, we study the evolution of cold clouds embedded in flows of hot and fast material. Using a suite of adaptive mesh refinement simulations that include radiative cooling, we investigate both cloud mass loss and cloud acceleration under the full range of conditions observed in galaxy outflows. The simulations are designed to track the cloud center of mass, enabling us to study the cloud evolution at long disruption times. For supersonic flows, a Mach cone forms around the cloud, which damps the Kelvin–Helmholtz instability but also establishes a streamwise pressure gradient that stretches the cloud apart. If time is expressed in units of the cloud crushing time, both the cloud lifetime and the cloud acceleration rate are independent of cloud radius, and we find simple scalings for these quantities as a function of the Mach number of the external medium. A resolution study suggests that our simulations accurately describe the evolution of cold clouds in the absence of thermal conduction and magnetic fields, physical processes whose roles will be studied in forthcoming papers.

  5. A multigroup diffusion solver using pseudo transient continuation for a radiation-hydrodynamic code with patch-based AMR

    SciTech Connect

    Shestakov, Aleksei I. Offner, Stella S.R.

    2008-01-10

    We present a scheme to solve the nonlinear multigroup radiation diffusion (MGD) equations. The method is incorporated into a massively parallel, multidimensional, Eulerian radiation-hydrodynamic code with Adaptive Mesh Refinement (AMR). The patch-based AMR algorithm refines in both space and time creating a hierarchy of levels, coarsest to finest. The physics modules are time-advanced using operator splitting. On each level, separate 'level-solve' packages advance the modules. Our multigroup level-solve adapts an implicit procedure which leads to a two-step iterative scheme that alternates between elliptic solves for each group with intra-cell group coupling. For robustness, we introduce pseudo transient continuation ({psi}tc). We analyze the magnitude of the {psi}tc parameter to ensure positivity of the resulting linear system, diagonal dominance and convergence of the two-step scheme. For AMR, a level defines a subdomain for refinement. For diffusive processes such as MGD, the refined level uses Dirichlet boundary data at the coarse-fine interface and the data is derived from the coarse level solution. After advancing on the fine level, an additional procedure, the sync-solve (SS), is required in order to enforce conservation. The MGD SS reduces to an elliptic solve on a combined grid for a system of G equations, where G is the number of groups. We adapt the 'partial temperature' scheme for the SS; hence, we reuse the infrastructure developed for scalar equations. Results are presented. We consider a multigroup test problem with a known analytic solution. We demonstrate utility of {psi}tc by running with increasingly larger timesteps. Lastly, we simulate the sudden release of energy Y inside an Al sphere (r = 15 cm) suspended in air at STP. For Y = 11 kT, we find that gray radiation diffusion and MGD produce similar results. However, if Y = 1 MT, the two packages yield different results. Our large Y simulation contradicts a long-standing theory and demonstrates

  6. A Multigroup diffusion solver using pseudo transient continuation for a radiation-hydrodynamic code with patch-based AMR

    SciTech Connect

    Shestakov, A I; Offner, S R

    2006-09-21

    We present a scheme to solve the nonlinear multigroup radiation diffusion (MGD) equations. The method is incorporated into a massively parallel, multidimensional, Eulerian radiation-hydrodynamic code with adaptive mesh refinement (AMR). The patch-based AMR algorithm refines in both space and time creating a hierarchy of levels, coarsest to finest. The physics modules are time-advanced using operator splitting. On each level, separate 'level-solve' packages advance the modules. Our multigroup level-solve adapts an implicit procedure which leads to a two-step iterative scheme that alternates between elliptic solves for each group with intra-cell group coupling. For robustness, we introduce pseudo transient continuation ({Psi}tc). We analyze the magnitude of the {Psi}tc parameter to ensure positivity of the resulting linear system, diagonal dominance and convergence of the two-step scheme. For AMR, a level defines a subdomain for refinement. For diffusive processes such as MGD, the refined level uses Dirichet boundary data at the coarse-fine interface and the data is derived from the coarse level solution. After advancing on the fine level, an additional procedure, the sync-solve (SS), is required in order to enforce conservation. The MGD SS reduces to an elliptic solve on a combined grid for a system of G equations, where G is the number of groups. We adapt the 'partial temperature' scheme for the SS; hence, we reuse the infrastructure developed for scalar equations. Results are presented. We consider a multigroup test problem with a known analytic solution. We demonstrate utility of {Psi}tc by running with increasingly larger timesteps. Lastly, we simulate the sudden release of energy Y inside an Al sphere (r = 15 cm) suspended in air at STP. For Y = 11 kT, we find that gray radiation diffusion and MGD produce similar results. However, if Y = 1 MT, the two packages yield different results. Our large Y simulation contradicts a long-standing theory and demonstrates

  7. A multigroup diffusion solver using pseudo transient continuation for a radiation-hydrodynamic code with patch-based AMR

    NASA Astrophysics Data System (ADS)

    Shestakov, Aleksei I.; Offner, Stella S. R.

    2008-01-01

    We present a scheme to solve the nonlinear multigroup radiation diffusion (MGD) equations. The method is incorporated into a massively parallel, multidimensional, Eulerian radiation-hydrodynamic code with Adaptive Mesh Refinement (AMR). The patch-based AMR algorithm refines in both space and time creating a hierarchy of levels, coarsest to finest. The physics modules are time-advanced using operator splitting. On each level, separate "level-solve" packages advance the modules. Our multigroup level-solve adapts an implicit procedure which leads to a two-step iterative scheme that alternates between elliptic solves for each group with intra-cell group coupling. For robustness, we introduce pseudo transient continuation (Ψtc). We analyze the magnitude of the Ψtc parameter to ensure positivity of the resulting linear system, diagonal dominance and convergence of the two-step scheme. For AMR, a level defines a subdomain for refinement. For diffusive processes such as MGD, the refined level uses Dirichlet boundary data at the coarse-fine interface and the data is derived from the coarse level solution. After advancing on the fine level, an additional procedure, the sync-solve (SS), is required in order to enforce conservation. The MGD SS reduces to an elliptic solve on a combined grid for a system of G equations, where G is the number of groups. We adapt the "partial temperature" scheme for the SS; hence, we reuse the infrastructure developed for scalar equations. Results are presented. We consider a multigroup test problem with a known analytic solution. We demonstrate utility of Ψtc by running with increasingly larger timesteps. Lastly, we simulate the sudden release of energy Y inside an Al sphere (r = 15 cm) suspended in air at STP. For Y = 11 kT, we find that gray radiation diffusion and MGD produce similar results. However, if Y = 1 MT, the two packages yield different results. Our large Y simulation contradicts a long-standing theory and demonstrates the

  8. The CIFIST 3D model atmosphere grid.

    NASA Astrophysics Data System (ADS)

    Ludwig, H.-G.; Caffau, E.; Steffen, M.; Freytag, B.; Bonifacio, P.; Kučinskas, A.

    Grids of stellar atmosphere models and associated synthetic spectra are numerical products which have a large impact in astronomy due to their ubiquitous application in the interpretation of radiation from individual stars and stellar populations. 3D model atmospheres are now on the verge of becoming generally available for a wide range of stellar atmospheric parameters. We report on efforts to develop a grid of 3D model atmospheres for late-type stars within the CIFIST Team at Paris Observatory. The substantial demands in computational and human labor for the model production and post-processing render this apparently mundane task a challenging logistic exercise. At the moment the CIFIST grid comprises 77 3D model atmospheres with emphasis on dwarfs of solar and sub-solar metallicities. While the model production is still ongoing, first applications are already worked upon by the CIFIST Team and collaborators.

  9. 3D Elevation Program—Virtual USA in 3D

    USGS Publications Warehouse

    Lukas, Vicki; Stoker, J.M.

    2016-01-01

    The U.S. Geological Survey (USGS) 3D Elevation Program (3DEP) uses a laser system called ‘lidar’ (light detection and ranging) to create a virtual reality map of the Nation that is very accurate. 3D maps have many uses with new uses being discovered all the time.  

  10. 3D Elevation Program—Virtual USA in 3D

    USGS Publications Warehouse

    Lukas, Vicki; Stoker, J.M.

    2016-04-14

    The U.S. Geological Survey (USGS) 3D Elevation Program (3DEP) uses a laser system called ‘lidar’ (light detection and ranging) to create a virtual reality map of the Nation that is very accurate. 3D maps have many uses with new uses being discovered all the time.  

  11. Supernova Remnant in 3-D

    NASA Technical Reports Server (NTRS)

    2009-01-01

    wavelengths. Since the amount of the wavelength shift is related to the speed of motion, one can determine how fast the debris are moving in either direction. Because Cas A is the result of an explosion, the stellar debris is expanding radially outwards from the explosion center. Using simple geometry, the scientists were able to construct a 3-D model using all of this information. A program called 3-D Slicer modified for astronomical use by the Astronomical Medicine Project at Harvard University in Cambridge, Mass. was used to display and manipulate the 3-D model. Commercial software was then used to create the 3-D fly-through.

    The blue filaments defining the blast wave were not mapped using the Doppler effect because they emit a different kind of light synchrotron radiation that does not emit light at discrete wavelengths, but rather in a broad continuum. The blue filaments are only a representation of the actual filaments observed at the blast wave.

    This visualization shows that there are two main components to this supernova remnant: a spherical component in the outer parts of the remnant and a flattened (disk-like) component in the inner region. The spherical component consists of the outer layer of the star that exploded, probably made of helium and carbon. These layers drove a spherical blast wave into the diffuse gas surrounding the star. The flattened component that astronomers were unable to map into 3-D prior to these Spitzer observations consists of the inner layers of the star. It is made from various heavier elements, not all shown in the visualization, such as oxygen, neon, silicon, sulphur, argon and iron.

    High-velocity plumes, or jets, of this material are shooting out from the explosion in the plane of the disk-like component mentioned above. Plumes of silicon appear in the northeast and southwest, while those of iron are seen in the southeast and north. These jets were already known and Doppler velocity measurements have been made for these

  12. Extra dimensions: 3D in PDF documentation

    SciTech Connect

    Graf, Norman A.

    2011-01-11

    Experimental science is replete with multi-dimensional information which is often poorly represented by the two dimensions of presentation slides and print media. Past efforts to disseminate such information to a wider audience have failed for a number of reasons, including a lack of standards which are easy to implement and have broad support. Adobe's Portable Document Format (PDF) has in recent years become the de facto standard for secure, dependable electronic information exchange. It has done so by creating an open format, providing support for multiple platforms and being reliable and extensible. By providing support for the ECMA standard Universal 3D (U3D) file format in its free Adobe Reader software, Adobe has made it easy to distribute and interact with 3D content. By providing support for scripting and animation, temporal data can also be easily distributed to a wide, non-technical audience. We discuss how the field of radiation imaging could benefit from incorporating full 3D information about not only the detectors, but also the results of the experimental analyses, in its electronic publications. In this article, we present examples drawn from high-energy physics, mathematics and molecular biology which take advantage of this functionality. Furthermore, we demonstrate how 3D detector elements can be documented, using either CAD drawings or other sources such as GEANT visualizations as input.

  13. Shim3d Helmholtz Solution Package

    2009-01-29

    This suite of codes solves the Helmholtz Equation for the steady-state propagation of single-frequency electromagnetic radiation in an arbitrary 2D or 3D dielectric medium. Materials can be either transparent or absorptive (including metals) and are described entirely by their shape and complex dielectric constant. Dielectric boundaries are assumed to always fall on grid boundaries and the material within a single grid cell is considered to be uniform. Input to the problem is in the formmore » of a Dirichlet boundary condition on a single boundary, and may be either analytic (Gaussian) in shape, or a mode shape computed using a separate code (such as the included eigenmode solver vwave20), and written to a file. Solution is via the finite difference method using Jacobi iteration for 3D problems or direct matrix inversion for 2D problems. Note that 3D problems that include metals will require different iteration parameters than described in the above reference. For structures with curved boundaries not easily modeled on a rectangular grid, the auxillary codes helmholtz11(2D), helm3d (semivectoral), and helmv3d (full vectoral) are provided. For these codes the finite difference equations are specified on a topological regular triangular grid and solved using Jacobi iteration or direct matrix inversion as before. An automatic grid generator is supplied.« less

  14. Extra dimensions: 3D in PDF documentation

    DOE PAGES

    Graf, Norman A.

    2011-01-11

    Experimental science is replete with multi-dimensional information which is often poorly represented by the two dimensions of presentation slides and print media. Past efforts to disseminate such information to a wider audience have failed for a number of reasons, including a lack of standards which are easy to implement and have broad support. Adobe's Portable Document Format (PDF) has in recent years become the de facto standard for secure, dependable electronic information exchange. It has done so by creating an open format, providing support for multiple platforms and being reliable and extensible. By providing support for the ECMA standard Universalmore » 3D (U3D) file format in its free Adobe Reader software, Adobe has made it easy to distribute and interact with 3D content. By providing support for scripting and animation, temporal data can also be easily distributed to a wide, non-technical audience. We discuss how the field of radiation imaging could benefit from incorporating full 3D information about not only the detectors, but also the results of the experimental analyses, in its electronic publications. In this article, we present examples drawn from high-energy physics, mathematics and molecular biology which take advantage of this functionality. Furthermore, we demonstrate how 3D detector elements can be documented, using either CAD drawings or other sources such as GEANT visualizations as input.« less

  15. Large-scale 3D simulations of ICF and HEDP targets

    NASA Astrophysics Data System (ADS)

    Marinak, Michael M.

    2000-10-01

    The radiation hydrodynamics code HYDRA continues to be developed and applied to 3D simulations of a variety of targets for both inertial confinement fusion (ICF) and high energy density physics. Several packages have been added enabling this code to perform ICF target simulations with similar accuracy as two-dimensional codes of long-time historical use. These include a laser ray trace and deposition package, a heavy ion deposition package, implicit Monte Carlo photonics, and non-LTE opacities, derived from XSN or the linearized response matrix approach.(R. More, T. Kato, Phys. Rev. Lett. 81, 814 (1998), S. Libby, F. Graziani, R. More, T. Kato, Proceedings of the 13th International Conference on Laser Interactions and Related Plasma Phenomena, (AIP, New York, 1997).) LTE opacities can also be calculated for arbitrary mixtures online by combining tabular values generated by different opacity codes. Thermonuclear burn, charged particle transport, neutron energy deposition, electron-ion coupling and conduction, and multigroup radiation diffusion packages are also installed. HYDRA can employ ALE hydrodynamics; a number of grid motion algorithms are available. Multi-material flows are resolved using material interface reconstruction. Results from large-scale simulations run on up to 1680 processors, using a combination of massively parallel processing and symmetric multiprocessing, will be described. A large solid angle simulation of Rayleigh-Taylor instability growth in a NIF ignition capsule has resolved simultaneously the full spectrum of the most dangerous modes that grow from surface roughness. Simulations of a NIF hohlraum illuminated with the initial 96 beam configuration have also been performed. The effect of the hohlraum’s 3D intrinsic drive asymmetry on the capsule implosion will be considered. We will also discuss results from a Nova experiment in which a copper sphere is crushed by a planar shock. Several interacting hydrodynamic instabilities, including

  16. Convergence of smoothed particle hydrodynamics simulations of self-gravitating accretion discs: sensitivity to the implementation of radiative cooling

    NASA Astrophysics Data System (ADS)

    Rice, W. K. M.; Forgan, D. H.; Armitage, P. J.

    2012-02-01

    Recent simulations of self-gravitating accretion discs, carried out using a three-dimensional smoothed particle hydrodynamics (SPH) code by Meru & Bate, have been interpreted as implying that three-dimensional global discs fragment much more easily than would be expected from a two-dimensional local model. Subsequently, global and local two-dimensional models have been shown to display similar fragmentation properties, leaving it unclear whether the three-dimensional results reflect a physical effect or a numerical problem associated with the treatment of cooling or artificial viscosity in SPH. Here, we study how fragmentation of self-gravitating disc flows in SPH depends upon the implementation of cooling. We run disc simulations that compare a simple cooling scheme, in which each particle loses energy based upon its internal energy per unit mass, with a method in which the cooling is derived from a smoothed internal energy density field. For the simple per particle cooling scheme, we find a significant increase in the minimum cooling time-scale for fragmentation with increasing resolution, matching previous results. Switching to smoothed cooling, however, results in lower critical cooling time-scales, and tentative evidence for convergence at the highest spatial resolution tested. We conclude that precision studies of fragmentation using SPH require careful consideration of how cooling (and, probably, artificial viscosity) is implemented, and that the apparent non-convergence of the fragmentation boundary seen in prior simulations is likely a numerical effect. In real discs, where cooling is physically smoothed by radiative transfer effects, the fragmentation boundary is probably displaced from the two-dimensional value by a factor that is only of the order of unity.

  17. Data-driven Radiative Hydrodynamic Modeling of the 2014 March 29 X1.0 Solar Flare

    NASA Astrophysics Data System (ADS)

    Rubio da Costa, Fatima; Kleint, Lucia; Petrosian, Vahé; Liu, Wei; Allred, Joel C.

    2016-08-01

    Spectroscopic observations of solar flares provide critical diagnostics of the physical conditions in the flaring atmosphere. Some key features in observed spectra have not yet been accounted for in existing flare models. Here we report a data-driven simulation of the well-observed X1.0 flare on 2014 March 29 that can reconcile some well-known spectral discrepancies. We analyzed spectra of the flaring region from the Interface Region Imaging Spectrograph (IRIS) in Mg ii h&k, the Interferometric BIdimensional Spectropolarimeter at the Dunn Solar Telescope (DST/IBIS) in Hα 6563 Å and Ca ii 8542 Å, and the Reuven Ramaty High Energy Solar Spectroscope Imager (RHESSI) in hard X-rays. We constructed a multithreaded flare loop model and used the electron flux inferred from RHESSI data as the input to the radiative hydrodynamic code RADYN to simulate the atmospheric response. We then synthesized various chromospheric emission lines and compared them with the IRIS and IBIS observations. In general, the synthetic intensities agree with the observed ones, especially near the northern footpoint of the flare. The simulated Mg ii line profile has narrower wings than the observed one. This discrepancy can be reduced by using a higher microturbulent velocity (27 km s-1) in a narrow chromospheric layer. In addition, we found that an increase of electron density in the upper chromosphere within a narrow height range of ≈800 km below the transition region can turn the simulated Mg ii line core into emission and thus reproduce the single peaked profile, which is a common feature in all IRIS flares.

  18. Market study: 3-D eyetracker

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A market study of a proposed version of a 3-D eyetracker for initial use at NASA's Ames Research Center was made. The commercialization potential of a simplified, less expensive 3-D eyetracker was ascertained. Primary focus on present and potential users of eyetrackers, as well as present and potential manufacturers has provided an effective means of analyzing the prospects for commercialization.

  19. 3D World Building System

    ScienceCinema

    None

    2016-07-12

    This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.

  20. 3D World Building System

    SciTech Connect

    2013-10-30

    This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.

  1. LLNL-Earth3D

    SciTech Connect

    2013-10-01

    Earth3D is a computer code designed to allow fast calculation of seismic rays and travel times through a 3D model of the Earth. LLNL is using this for earthquake location and global tomography efforts and such codes are of great interest to the Earth Science community.

  2. [3-D ultrasound in gastroenterology].

    PubMed

    Zoller, W G; Liess, H

    1994-06-01

    Three-dimensional (3D) sonography represents a development of noninvasive diagnostic imaging by real-time two-dimensional (2D) sonography. The use of transparent rotating scans, comparable to a block of glass, generates a 3D effect. The objective of the present study was to optimate 3D presentation of abdominal findings. Additional investigations were made with a new volumetric program to determine the volume of selected findings of the liver. The results were compared with the estimated volumes of 2D sonography and 2D computer tomography (CT). For the processing of 3D images, typical parameter constellations were found for the different findings, which facilitated processing of 3D images. In more than 75% of the cases examined we found an optimal 3D presentation of sonographic findings with respect to the evaluation criteria developed by us for the 3D imaging of processed data. Great differences were found for the estimated volumes of the findings of the liver concerning the three different techniques applied. 3D ultrasound represents a valuable method to judge morphological appearance in abdominal findings. The possibility of volumetric measurements enlarges its potential diagnostic significance. Further clinical investigations are necessary to find out if definite differentiation between benign and malign findings is possible.

  3. Euro3D Science Conference

    NASA Astrophysics Data System (ADS)

    Walsh, J. R.

    2004-02-01

    The Euro3D RTN is an EU funded Research Training Network to foster the exploitation of 3D spectroscopy in Europe. 3D spectroscopy is a general term for spectroscopy of an area of the sky and derives its name from its two spatial + one spectral dimensions. There are an increasing number of instruments which use integral field devices to achieve spectroscopy of an area of the sky, either using lens arrays, optical fibres or image slicers, to pack spectra of multiple pixels on the sky (``spaxels'') onto a 2D detector. On account of the large volume of data and the special methods required to reduce and analyse 3D data, there are only a few centres of expertise and these are mostly involved with instrument developments. There is a perceived lack of expertise in 3D spectroscopy spread though the astronomical community and its use in the armoury of the observational astronomer is viewed as being highly specialised. For precisely this reason the Euro3D RTN was proposed to train young researchers in this area and develop user tools to widen the experience with this particular type of data in Europe. The Euro3D RTN is coordinated by Martin M. Roth (Astrophysikalisches Institut Potsdam) and has been running since July 2002. The first Euro3D science conference was held in Cambridge, UK from 22 to 23 May 2003. The main emphasis of the conference was, in keeping with the RTN, to expose the work of the young post-docs who are funded by the RTN. In addition the team members from the eleven European institutes involved in Euro3D also presented instrumental and observational developments. The conference was organized by Andy Bunker and held at the Institute of Astronomy. There were over thirty participants and 26 talks covered the whole range of application of 3D techniques. The science ranged from Galactic planetary nebulae and globular clusters to kinematics of nearby galaxies out to objects at high redshift. Several talks were devoted to reporting recent observations with newly

  4. 3D printing in dentistry.

    PubMed

    Dawood, A; Marti Marti, B; Sauret-Jackson, V; Darwood, A

    2015-12-01

    3D printing has been hailed as a disruptive technology which will change manufacturing. Used in aerospace, defence, art and design, 3D printing is becoming a subject of great interest in surgery. The technology has a particular resonance with dentistry, and with advances in 3D imaging and modelling technologies such as cone beam computed tomography and intraoral scanning, and with the relatively long history of the use of CAD CAM technologies in dentistry, it will become of increasing importance. Uses of 3D printing include the production of drill guides for dental implants, the production of physical models for prosthodontics, orthodontics and surgery, the manufacture of dental, craniomaxillofacial and orthopaedic implants, and the fabrication of copings and frameworks for implant and dental restorations. This paper reviews the types of 3D printing technologies available and their various applications in dentistry and in maxillofacial surgery. PMID:26657435

  5. PLOT3D user's manual

    NASA Technical Reports Server (NTRS)

    Walatka, Pamela P.; Buning, Pieter G.; Pierce, Larry; Elson, Patricia A.

    1990-01-01

    PLOT3D is a computer graphics program designed to visualize the grids and solutions of computational fluid dynamics. Seventy-four functions are available. Versions are available for many systems. PLOT3D can handle multiple grids with a million or more grid points, and can produce varieties of model renderings, such as wireframe or flat shaded. Output from PLOT3D can be used in animation programs. The first part of this manual is a tutorial that takes the reader, keystroke by keystroke, through a PLOT3D session. The second part of the manual contains reference chapters, including the helpfile, data file formats, advice on changing PLOT3D, and sample command files.

  6. 3D printing in dentistry.

    PubMed

    Dawood, A; Marti Marti, B; Sauret-Jackson, V; Darwood, A

    2015-12-01

    3D printing has been hailed as a disruptive technology which will change manufacturing. Used in aerospace, defence, art and design, 3D printing is becoming a subject of great interest in surgery. The technology has a particular resonance with dentistry, and with advances in 3D imaging and modelling technologies such as cone beam computed tomography and intraoral scanning, and with the relatively long history of the use of CAD CAM technologies in dentistry, it will become of increasing importance. Uses of 3D printing include the production of drill guides for dental implants, the production of physical models for prosthodontics, orthodontics and surgery, the manufacture of dental, craniomaxillofacial and orthopaedic implants, and the fabrication of copings and frameworks for implant and dental restorations. This paper reviews the types of 3D printing technologies available and their various applications in dentistry and in maxillofacial surgery.

  7. Supernova Remnant in 3-D

    NASA Technical Reports Server (NTRS)

    2009-01-01

    wavelengths. Since the amount of the wavelength shift is related to the speed of motion, one can determine how fast the debris are moving in either direction. Because Cas A is the result of an explosion, the stellar debris is expanding radially outwards from the explosion center. Using simple geometry, the scientists were able to construct a 3-D model using all of this information. A program called 3-D Slicer modified for astronomical use by the Astronomical Medicine Project at Harvard University in Cambridge, Mass. was used to display and manipulate the 3-D model. Commercial software was then used to create the 3-D fly-through.

    The blue filaments defining the blast wave were not mapped using the Doppler effect because they emit a different kind of light synchrotron radiation that does not emit light at discrete wavelengths, but rather in a broad continuum. The blue filaments are only a representation of the actual filaments observed at the blast wave.

    This visualization shows that there are two main components to this supernova remnant: a spherical component in the outer parts of the remnant and a flattened (disk-like) component in the inner region. The spherical component consists of the outer layer of the star that exploded, probably made of helium and carbon. These layers drove a spherical blast wave into the diffuse gas surrounding the star. The flattened component that astronomers were unable to map into 3-D prior to these Spitzer observations consists of the inner layers of the star. It is made from various heavier elements, not all shown in the visualization, such as oxygen, neon, silicon, sulphur, argon and iron.

    High-velocity plumes, or jets, of this material are shooting out from the explosion in the plane of the disk-like component mentioned above. Plumes of silicon appear in the northeast and southwest, while those of iron are seen in the southeast and north. These jets were already known and Doppler velocity measurements have been made for these

  8. Future trends of 3D silicon sensors

    NASA Astrophysics Data System (ADS)

    Da Vià, Cinzia; Boscardin, Maurizio; Dalla Betta, Gian-Franco; Haughton, Iain; Grenier, Philippe; Grinstein, Sebastian; Hansen, Thor-Erik; Hasi, Jasmine; Kenney, Christopher; Kok, Angela; Parker, Sherwood; Pellegrini, Giulio; Povoli, Marco; Tzhnevyi, Vladislav; Watts, Stephen J.

    2013-12-01

    Vertex detectors for the next LHC experiments upgrades will need to have low mass while at the same time be radiation hard and with sufficient granularity to fulfil the physics challenges of the next decade. Based on the gained experience with 3D silicon sensors for the ATLAS IBL project and the on-going developments on light materials, interconnectivity and cooling, this paper will discuss possible solutions to these requirements.

  9. PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITHOUT TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into

  10. PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITH TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into

  11. Unassisted 3D camera calibration

    NASA Astrophysics Data System (ADS)

    Atanassov, Kalin; Ramachandra, Vikas; Nash, James; Goma, Sergio R.

    2012-03-01

    With the rapid growth of 3D technology, 3D image capture has become a critical part of the 3D feature set on mobile phones. 3D image quality is affected by the scene geometry as well as on-the-device processing. An automatic 3D system usually assumes known camera poses accomplished by factory calibration using a special chart. In real life settings, pose parameters estimated by factory calibration can be negatively impacted by movements of the lens barrel due to shaking, focusing, or camera drop. If any of these factors displaces the optical axes of either or both cameras, vertical disparity might exceed the maximum tolerable margin and the 3D user may experience eye strain or headaches. To make 3D capture more practical, one needs to consider unassisted (on arbitrary scenes) calibration. In this paper, we propose an algorithm that relies on detection and matching of keypoints between left and right images. Frames containing erroneous matches, along with frames with insufficiently rich keypoint constellations, are detected and discarded. Roll, pitch yaw , and scale differences between left and right frames are then estimated. The algorithm performance is evaluated in terms of the remaining vertical disparity as compared to the maximum tolerable vertical disparity.

  12. Temporal characterization and in vitro comparison of cell survival following the delivery of 3D-conformal, intensity-modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT)

    NASA Astrophysics Data System (ADS)

    McGarry, Conor K.; Butterworth, Karl T.; Trainor, Colman; O'Sullivan, Joe M.; Prise, Kevin M.; Hounsell, Alan R.

    2011-04-01

    A phantom was designed and implemented for the delivery of treatment plans to cells in vitro. Single beam, 3D-conformal radiotherapy (3D-CRT) plans, inverse planned five-field intensity-modulated radiation therapy (IMRT), nine-field IMRT, single-arc volumetric modulated arc therapy (VMAT) and dual-arc VMAT plans were created on a CT scan of the phantom to deliver 3 Gy to the cell layer and verified using a Farmer chamber, 2D ionization chamber array and gafchromic film. Each plan was delivered to a 2D ionization chamber array to assess the temporal characteristics of the plan including delivery time and 'cell's eye view' for the central ionization chamber. The effective fraction time, defined as the percentage of the fraction time where any dose is delivered to each point examined, was also assessed across 120 ionization chambers. Each plan was delivered to human prostate cancer DU-145 cells and normal primary AGO-1522b fibroblast cells. Uniform beams were delivered to each cell line with the delivery time varying from 0.5 to 20.54 min. Effective fraction time was found to increase with a decreasing number of beams or arcs. For a uniform beam delivery, AGO-1552b cells exhibited a statistically significant trend towards increased survival with increased delivery time. This trend was not repeated when the different modulated clinical delivery methods were used. Less sensitive DU-145 cells did not exhibit a significant trend towards increased survival with increased delivery time for either the uniform or clinical deliveries. These results confirm that dose rate effects are most prevalent in more radiosensitive cells. Cell survival data generated from uniform beam deliveries over a range of dose rates and delivery times may not always be accurate in predicting response to more complex delivery techniques, such as IMRT and VMAT.

  13. 3D unstructured mesh discontinuous finite element hydro

    SciTech Connect

    Prasad, M.K.; Kershaw, D.S.; Shaw, M.J.

    1995-07-01

    The authors present detailed features of the ICF3D hydrodynamics code used for inertial fusion simulations. This code is intended to be a state-of-the-art upgrade of the well-known fluid code, LASNEX. ICF3D employs discontinuous finite elements on a discrete unstructured mesh consisting of a variety of 3D polyhedra including tetrahedra, prisms, and hexahedra. The authors discussed details of how the ROE-averaged second-order convection was applied on the discrete elements, and how the C++ coding interface has helped to simplify implementing the many physics and numerics modules within the code package. The author emphasized the virtues of object-oriented design in large scale projects such as ICF3D.

  14. Spatially resolved 3D noise

    NASA Astrophysics Data System (ADS)

    Haefner, David P.; Preece, Bradley L.; Doe, Joshua M.; Burks, Stephen D.

    2016-05-01

    When evaluated with a spatially uniform irradiance, an imaging sensor exhibits both spatial and temporal variations, which can be described as a three-dimensional (3D) random process considered as noise. In the 1990s, NVESD engineers developed an approximation to the 3D power spectral density (PSD) for noise in imaging systems known as 3D noise. In this correspondence, we describe how the confidence intervals for the 3D noise measurement allows for determination of the sampling necessary to reach a desired precision. We then apply that knowledge to create a smaller cube that can be evaluated spatially across the 2D image giving the noise as a function of position. The method presented here allows for both defective pixel identification and implements the finite sampling correction matrix. In support of the reproducible research effort, the Matlab functions associated with this work can be found on the Mathworks file exchange [1].

  15. Autofocus for 3D imaging

    NASA Astrophysics Data System (ADS)

    Lee-Elkin, Forest

    2008-04-01

    Three dimensional (3D) autofocus remains a significant challenge for the development of practical 3D multipass radar imaging. The current 2D radar autofocus methods are not readily extendable across sensor passes. We propose a general framework that allows a class of data adaptive solutions for 3D auto-focus across passes with minimal constraints on the scene contents. The key enabling assumption is that portions of the scene are sparse in elevation which reduces the number of free variables and results in a system that is simultaneously solved for scatterer heights and autofocus parameters. The proposed method extends 2-pass interferometric synthetic aperture radar (IFSAR) methods to an arbitrary number of passes allowing the consideration of scattering from multiple height locations. A specific case from the proposed autofocus framework is solved and demonstrates autofocus and coherent multipass 3D estimation across the 8 passes of the "Gotcha Volumetric SAR Data Set" X-Band radar data.

  16. Accepting the T3D

    SciTech Connect

    Rich, D.O.; Pope, S.C.; DeLapp, J.G.

    1994-10-01

    In April, a 128 PE Cray T3D was installed at Los Alamos National Laboratory`s Advanced Computing Laboratory as part of the DOE`s High-Performance Parallel Processor Program (H4P). In conjunction with CRI, the authors implemented a 30 day acceptance test. The test was constructed in part to help them understand the strengths and weaknesses of the T3D. In this paper, they briefly describe the H4P and its goals. They discuss the design and implementation of the T3D acceptance test and detail issues that arose during the test. They conclude with a set of system requirements that must be addressed as the T3D system evolves.

  17. Combinatorial 3D Mechanical Metamaterials

    NASA Astrophysics Data System (ADS)

    Coulais, Corentin; Teomy, Eial; de Reus, Koen; Shokef, Yair; van Hecke, Martin

    2015-03-01

    We present a class of elastic structures which exhibit 3D-folding motion. Our structures consist of cubic lattices of anisotropic unit cells that can be tiled in a complex combinatorial fashion. We design and 3d-print this complex ordered mechanism, in which we combine elastic hinges and defects to tailor the mechanics of the material. Finally, we use this large design space to encode smart functionalities such as surface patterning and multistability.

  18. LASTRAC.3d: Transition Prediction in 3D Boundary Layers