Science.gov

Sample records for 3d reconstruction methods

  1. Improving automated 3D reconstruction methods via vision metrology

    NASA Astrophysics Data System (ADS)

    Toschi, Isabella; Nocerino, Erica; Hess, Mona; Menna, Fabio; Sargeant, Ben; MacDonald, Lindsay; Remondino, Fabio; Robson, Stuart

    2015-05-01

    This paper aims to provide a procedure for improving automated 3D reconstruction methods via vision metrology. The 3D reconstruction problem is generally addressed using two different approaches. On the one hand, vision metrology (VM) systems try to accurately derive 3D coordinates of few sparse object points for industrial measurement and inspection applications; on the other, recent dense image matching (DIM) algorithms are designed to produce dense point clouds for surface representations and analyses. This paper strives to demonstrate a step towards narrowing the gap between traditional VM and DIM approaches. Efforts are therefore intended to (i) test the metric performance of the automated photogrammetric 3D reconstruction procedure, (ii) enhance the accuracy of the final results and (iii) obtain statistical indicators of the quality achieved in the orientation step. VM tools are exploited to integrate their main functionalities (centroid measurement, photogrammetric network adjustment, precision assessment, etc.) into the pipeline of 3D dense reconstruction. Finally, geometric analyses and accuracy evaluations are performed on the raw output of the matching (i.e. the point clouds) by adopting a metrological approach. The latter is based on the use of known geometric shapes and quality parameters derived from VDI/VDE guidelines. Tests are carried out by imaging the calibrated Portable Metric Test Object, designed and built at University College London (UCL), UK. It allows assessment of the performance of the image orientation and matching procedures within a typical industrial scenario, characterised by poor texture and known 3D/2D shapes.

  2. 3D scanning modeling method application in ancient city reconstruction

    NASA Astrophysics Data System (ADS)

    Ren, Pu; Zhou, Mingquan; Du, Guoguang; Shui, Wuyang; Zhou, Pengbo

    2015-07-01

    With the development of optical engineering technology, the precision of 3D scanning equipment becomes higher, and its role in 3D modeling is getting more distinctive. This paper proposed a 3D scanning modeling method that has been successfully applied in Chinese ancient city reconstruction. On one hand, for the existing architectures, an improved algorithm based on multiple scanning is adopted. Firstly, two pieces of scanning data were rough rigid registered using spherical displacers and vertex clustering method. Secondly, a global weighted ICP (iterative closest points) method is used to achieve a fine rigid registration. On the other hand, for the buildings which have already disappeared, an exemplar-driven algorithm for rapid modeling was proposed. Based on the 3D scanning technology and the historical data, a system approach was proposed for 3D modeling and virtual display of ancient city.

  3. Optical Sensors and Methods for Underwater 3D Reconstruction.

    PubMed

    Massot-Campos, Miquel; Oliver-Codina, Gabriel

    2015-01-01

    This paper presents a survey on optical sensors and methods for 3D reconstruction in underwater environments. The techniques to obtain range data have been listed and explained, together with the different sensor hardware that makes them possible. The literature has been reviewed, and a classification has been proposed for the existing solutions. New developments, commercial solutions and previous reviews in this topic have also been gathered and considered. PMID:26694389

  4. Optical Sensors and Methods for Underwater 3D Reconstruction

    PubMed Central

    Massot-Campos, Miquel; Oliver-Codina, Gabriel

    2015-01-01

    This paper presents a survey on optical sensors and methods for 3D reconstruction in underwater environments. The techniques to obtain range data have been listed and explained, together with the different sensor hardware that makes them possible. The literature has been reviewed, and a classification has been proposed for the existing solutions. New developments, commercial solutions and previous reviews in this topic have also been gathered and considered. PMID:26694389

  5. 3D reconstruction methods of coronal structures by radio observations

    NASA Astrophysics Data System (ADS)

    Aschwanden, Markus J.; Bastian, T. S.; White, Stephen M.

    1992-11-01

    The ability to carry out the three dimensional (3D) reconstruction of structures in the solar corona would represent a major advance in the study of the physical properties in active regions and in flares. Methods which allow a geometric reconstruction of quasistationary coronal structures (for example active region loops) or dynamic structures (for example flaring loops) are described: stereoscopy of multi-day imaging observations by the VLA (Very Large Array); tomography of optically thin emission (in radio or soft x-rays); multifrequency band imaging by the VLA; and tracing of magnetic field lines by propagating electron beams.

  6. 3D reconstruction methods of coronal structures by radio observations

    NASA Technical Reports Server (NTRS)

    Aschwanden, Markus J.; Bastian, T. S.; White, Stephen M.

    1992-01-01

    The ability to carry out the three dimensional (3D) reconstruction of structures in the solar corona would represent a major advance in the study of the physical properties in active regions and in flares. Methods which allow a geometric reconstruction of quasistationary coronal structures (for example active region loops) or dynamic structures (for example flaring loops) are described: stereoscopy of multi-day imaging observations by the VLA (Very Large Array); tomography of optically thin emission (in radio or soft x-rays); multifrequency band imaging by the VLA; and tracing of magnetic field lines by propagating electron beams.

  7. New method for 3D reconstruction in digital tomosynthesis

    NASA Astrophysics Data System (ADS)

    Claus, Bernhard E. H.; Eberhard, Jeffrey W.

    2002-05-01

    Digital tomosynthesis mammography is an advanced x-ray application that can provide detailed 3D information about the imaged breast. We introduce a novel reconstruction method based on simple backprojection, which yields high contrast reconstructions with reduced artifacts at a relatively low computational complexity. The first step in the proposed reconstruction method is a simple backprojection with an order statistics-based operator (e.g., minimum) used for combining the backprojected images into a reconstructed slice. Accordingly, a given pixel value does generally not contribute to all slices. The percentage of slices where a given pixel value does not contribute, as well as the associated reconstructed values, are collected. Using a form of re-projection consistency constraint, one now updates the projection images, and repeats the order statistics backprojection reconstruction step, but now using the enhanced projection images calculated in the first step. In our digital mammography application, this new approach enhances the contrast of structures in the reconstruction, and allows in particular to recover the loss in signal level due to reduced tissue thickness near the skinline, while keeping artifacts to a minimum. We present results obtained with the algorithm for phantom images.

  8. An automated 3D reconstruction method of UAV images

    NASA Astrophysics Data System (ADS)

    Liu, Jun; Wang, He; Liu, Xiaoyang; Li, Feng; Sun, Guangtong; Song, Ping

    2015-10-01

    In this paper a novel fully automated 3D reconstruction approach based on low-altitude unmanned aerial vehicle system (UAVs) images will be presented, which does not require previous camera calibration or any other external prior knowledge. Dense 3D point clouds are generated by integrating orderly feature extraction, image matching, structure from motion (SfM) and multi-view stereo (MVS) algorithms, overcoming many of the cost, time limitations of rigorous photogrammetry techniques. An image topology analysis strategy is introduced to speed up large scene reconstruction by taking advantage of the flight-control data acquired by UAV. Image topology map can significantly reduce the running time of feature matching by limiting the combination of images. A high-resolution digital surface model of the study area is produced base on UAV point clouds by constructing the triangular irregular network. Experimental results show that the proposed approach is robust and feasible for automatic 3D reconstruction of low-altitude UAV images, and has great potential for the acquisition of spatial information at large scales mapping, especially suitable for rapid response and precise modelling in disaster emergency.

  9. Method for 3D fibre reconstruction on a microrobotic platform.

    PubMed

    Hirvonen, J; Myllys, M; Kallio, P

    2016-07-01

    Automated handling of a natural fibrous object requires a method for acquiring the three-dimensional geometry of the object, because its dimensions cannot be known beforehand. This paper presents a method for calculating the three-dimensional reconstruction of a paper fibre on a microrobotic platform that contains two microscope cameras. The method is based on detecting curvature changes in the fibre centreline, and using them as the corresponding points between the different views of the images. We test the developed method with four fibre samples and compare the results with the references measured with an X-ray microtomography device. We rotate the samples through 16 different orientations on the platform and calculate the three-dimensional reconstruction to test the repeatability of the algorithm and its sensitivity to the orientation of the sample. We also test the noise sensitivity of the algorithm, and record the mismatch rate of the correspondences provided. We use the iterative closest point algorithm to align the measured three-dimensional reconstructions with the references. The average point-to-point distances between the reconstructed fibre centrelines and the references are 20-30 μm, and the mismatch rate is low. Given the manipulation tolerance, this shows that the method is well suited to automated fibre grasping. This has also been demonstrated with actual grasping experiments. PMID:26695385

  10. Analysis of method of 3D shape reconstruction using scanning deflectometry

    NASA Astrophysics Data System (ADS)

    Novák, Jiří; Novák, Pavel; Mikš, Antonín.

    2013-04-01

    This work presents a scanning deflectometric approach to solving a 3D surface reconstruction problem, which is based on measurements of a surface gradient of optically smooth surfaces. It is shown that a description of this problem leads to a nonlinear partial differential equation (PDE) of the first order, from which the surface shape can be reconstructed numerically. The method for effective finding of the solution of this differential equation is proposed, which is based on the transform of the problem of PDE solving to the optimization problem. We describe different types of surface description for the shape reconstruction and a numerical simulation of the presented method is performed. The reconstruction process is analyzed by computer simulations and presented on examples. The performed analysis confirms a robustness of the reconstruction method and a good possibility for measurements and reconstruction of the 3D shape of specular surfaces.

  11. A new method to combine 3D reconstruction volumes for multiple parallel circular cone beam orbits

    PubMed Central

    Baek, Jongduk; Pelc, Norbert J.

    2010-01-01

    Purpose: This article presents a new reconstruction method for 3D imaging using a multiple 360° circular orbit cone beam CT system, specifically a way to combine 3D volumes reconstructed with each orbit. The main goal is to improve the noise performance in the combined image while avoiding cone beam artifacts. Methods: The cone beam projection data of each orbit are reconstructed using the FDK algorithm. When at least a portion of the total volume can be reconstructed by more than one source, the proposed combination method combines these overlap regions using weighted averaging in frequency space. The local exactness and the noise performance of the combination method were tested with computer simulations of a Defrise phantom, a FORBILD head phantom, and uniform noise in the raw data. Results: A noiseless simulation showed that the local exactness of the reconstructed volume from the source with the smallest tilt angle was preserved in the combined image. A noise simulation demonstrated that the combination method improved the noise performance compared to a single orbit reconstruction. Conclusions: In CT systems which have overlap volumes that can be reconstructed with data from more than one orbit and in which the spatial frequency content of each reconstruction can be calculated, the proposed method offers improved noise performance while keeping the local exactness of data from the source with the smallest tilt angle. PMID:21089770

  12. Comparison of Parallel MRI Reconstruction Methods for Accelerated 3D Fast Spin-Echo Imaging

    PubMed Central

    Xiao, Zhikui; Hoge, W. Scott; Mulkern, R.V.; Zhao, Lei; Hu, Guangshu; Kyriakos, Walid E.

    2014-01-01

    Parallel MRI (pMRI) achieves imaging acceleration by partially substituting gradient-encoding steps with spatial information contained in the component coils of the acquisition array. Variable-density subsampling in pMRI was previously shown to yield improved two-dimensional (2D) imaging in comparison to uniform subsampling, but has yet to be used routinely in clinical practice. In an effort to reduce acquisition time for 3D fast spin-echo (3D-FSE) sequences, this work explores a specific nonuniform sampling scheme for 3D imaging, subsampling along two phase-encoding (PE) directions on a rectilinear grid. We use two reconstruction methods—2D-GRAPPA-Operator and 2D-SPACE RIP—and present a comparison between them. We show that high-quality images can be reconstructed using both techniques. To evaluate the proposed sampling method and reconstruction schemes, results via simulation, phantom study, and in vivo 3D human data are shown. We find that fewer artifacts can be seen in the 2D-SPACE RIP reconstructions than in 2D-GRAPPA-Operator reconstructions, with comparable reconstruction times. PMID:18727083

  13. Reconstructing photorealistic 3D models from image sequence using domain decomposition method

    NASA Astrophysics Data System (ADS)

    Xiong, Hanwei; Pan, Ming; Zhang, Xiangwei

    2009-11-01

    In the fields of industrial design, artistic design and heritage conservation, physical objects are usually digitalized by reverse engineering through some 3D scanning methods. Structured light and photogrammetry are two main methods to acquire 3D information, and both are expensive. Even if these expensive instruments are used, photorealistic 3D models are seldom available. In this paper, a new method to reconstruction photorealistic 3D models using a single camera is proposed. A square plate glued with coded marks is used to place the objects, and a sequence of about 20 images is taken. From the coded marks, the images are calibrated, and a snake algorithm is used to segment object from the background. A rough 3d model is obtained using shape from silhouettes algorithm. The silhouettes are decomposed into a combination of convex curves, which are used to partition the rough 3d model into some convex mesh patches. For each patch, the multi-view photo consistency constraints and smooth regulations are expressed as a finite element formulation, which can be resolved locally, and the information can be exchanged along the patches boundaries. The rough model is deformed into a fine 3d model through such a domain decomposition finite element method. The textures are assigned to each element mesh, and a photorealistic 3D model is got finally. A toy pig is used to verify the algorithm, and the result is exciting.

  14. Accident or homicide--virtual crime scene reconstruction using 3D methods.

    PubMed

    Buck, Ursula; Naether, Silvio; Räss, Beat; Jackowski, Christian; Thali, Michael J

    2013-02-10

    The analysis and reconstruction of forensically relevant events, such as traffic accidents, criminal assaults and homicides are based on external and internal morphological findings of the injured or deceased person. For this approach high-tech methods are gaining increasing importance in forensic investigations. The non-contact optical 3D digitising system GOM ATOS is applied as a suitable tool for whole body surface and wound documentation and analysis in order to identify injury-causing instruments and to reconstruct the course of event. In addition to the surface documentation, cross-sectional imaging methods deliver medical internal findings of the body. These 3D data are fused into a whole body model of the deceased. Additional to the findings of the bodies, the injury inflicting instruments and incident scene is documented in 3D. The 3D data of the incident scene, generated by 3D laser scanning and photogrammetry, is also included into the reconstruction. Two cases illustrate the methods. In the fist case a man was shot in his bedroom and the main question was, if the offender shot the man intentionally or accidentally, as he declared. In the second case a woman was hit by a car, driving backwards into a garage. It was unclear if the driver drove backwards once or twice, which would indicate that he willingly injured and killed the woman. With this work, we demonstrate how 3D documentation, data merging and animation enable to answer reconstructive questions regarding the dynamic development of patterned injuries, and how this leads to a real data based reconstruction of the course of event. PMID:22727689

  15. The point-source method for 3D reconstructions for the Helmholtz and Maxwell equations

    NASA Astrophysics Data System (ADS)

    Ben Hassen, M. F.; Erhard, K.; Potthast, R.

    2006-02-01

    We use the point-source method (PSM) to reconstruct a scattered field from its associated far field pattern. The reconstruction scheme is described and numerical results are presented for three-dimensional acoustic and electromagnetic scattering problems. We give new proofs of the algorithms, based on the Green and Stratton-Chu formulae, which are more general than with the former use of the reciprocity relation. This allows us to handle the case of limited aperture data and arbitrary incident fields. Both for 3D acoustics and electromagnetics, numerical reconstructions of the field for different settings and with noisy data are shown. For shape reconstruction in acoustics, we develop an appropriate strategy to identify areas with good reconstruction quality and combine different such regions into one joint function. Then, we show how shapes of unknown sound-soft scatterers are found as level curves of the total reconstructed field.

  16. Reconstruction for 3D PET Based on Total Variation Constrained Direct Fourier Method

    PubMed Central

    Yu, Haiqing; Chen, Zhi; Zhang, Heye; Loong Wong, Kelvin Kian; Chen, Yunmei; Liu, Huafeng

    2015-01-01

    This paper presents a total variation (TV) regularized reconstruction algorithm for 3D positron emission tomography (PET). The proposed method first employs the Fourier rebinning algorithm (FORE), rebinning the 3D data into a stack of ordinary 2D data sets as sinogram data. Then, the resulted 2D sinogram are ready to be reconstructed by conventional 2D reconstruction algorithms. Given the locally piece-wise constant nature of PET images, we introduce the total variation (TV) based reconstruction schemes. More specifically, we formulate the 2D PET reconstruction problem as an optimization problem, whose objective function consists of TV norm of the reconstructed image and the data fidelity term measuring the consistency between the reconstructed image and sinogram. To solve the resulting minimization problem, we apply an efficient methods called the Bregman operator splitting algorithm with variable step size (BOSVS). Experiments based on Monte Carlo simulated data and real data are conducted as validations. The experiment results show that the proposed method produces higher accuracy than conventional direct Fourier (DF) (bias in BOSVS is 70% of ones in DF, variance of BOSVS is 80% of ones in DF). PMID:26398232

  17. Flexible 3D reconstruction method based on phase-matching in multi-sensor system.

    PubMed

    Wu, Qingyang; Zhang, Baichun; Huang, Jinhui; Wu, Zejun; Zeng, Zeng

    2016-04-01

    Considering the measuring range limitation of a single sensor system, multi-sensor system has become essential in obtaining complete image information of the object in the field of 3D image reconstruction. However, for the traditional multi-sensors worked independently in its system, there was some point in calibrating each sensor system separately. And the calibration between all single sensor systems was complicated and required a long time. In this paper, we present a flexible 3D reconstruction method based on phase-matching in multi-sensor system. While calibrating each sensor, it realizes the data registration of multi-sensor system in a unified coordinate system simultaneously. After all sensors are calibrated, the whole 3D image data directly exist in the unified coordinate system, and there is no need to calibrate the positions between sensors any more. Experimental results prove that the method is simple in operation, accurate in measurement, and fast in 3D image reconstruction. PMID:27137020

  18. A Method for 3D Histopathology Reconstruction Supporting Mouse Microvasculature Analysis.

    PubMed

    Xu, Yiwen; Pickering, J Geoffrey; Nong, Zengxuan; Gibson, Eli; Arpino, John-Michael; Yin, Hao; Ward, Aaron D

    2015-01-01

    Structural abnormalities of the microvasculature can impair perfusion and function. Conventional histology provides good spatial resolution with which to evaluate the microvascular structure but affords no 3-dimensional information; this limitation could lead to misinterpretations of the complex microvessel network in health and disease. The objective of this study was to develop and evaluate an accurate, fully automated 3D histology reconstruction method to visualize the arterioles and venules within the mouse hind-limb. Sections of the tibialis anterior muscle from C57BL/J6 mice (both normal and subjected to femoral artery excision) were reconstructed using pairwise rigid and affine registrations of 5 µm-thick, paraffin-embedded serial sections digitized at 0.25 µm/pixel. Low-resolution intensity-based rigid registration was used to initialize the nucleus landmark-based registration, and conventional high-resolution intensity-based registration method. The affine nucleus landmark-based registration was developed in this work and was compared to the conventional affine high-resolution intensity-based registration method. Target registration errors were measured between adjacent tissue sections (pairwise error), as well as with respect to a 3D reference reconstruction (accumulated error, to capture propagation of error through the stack of sections). Accumulated error measures were lower (p < 0.01) for the nucleus landmark technique and superior vasculature continuity was observed. These findings indicate that registration based on automatic extraction and correspondence of small, homologous landmarks may support accurate 3D histology reconstruction. This technique avoids the otherwise problematic "banana-into-cylinder" effect observed using conventional methods that optimize the pairwise alignment of salient structures, forcing them to be section-orthogonal. This approach will provide a valuable tool for high-accuracy 3D histology tissue reconstructions for

  19. Reconstruction of 3D structure using stochastic methods: morphology and transport properties

    NASA Astrophysics Data System (ADS)

    Karsanina, Marina; Gerke, Kirill; Čapek, Pavel; Vasilyev, Roman; Korost, Dmitry; Skvortsova, Elena

    2013-04-01

    One of the main factors defining numerous flow phenomena in rocks, soils and other porous media, including fluid and solute movements, is pore structure, e.g., pore sizes and their connectivity. Numerous numerical methods were developed to quantify single and multi-phase flow in such media on microscale. Among most popular ones are: 1) a wide range of finite difference/element/volume solutions of Navier-Stokes equations and its simplifications; 2) lattice-Boltzmann method; 3) pore-network models, among others. Each method has some advantages and shortcomings, so that different research teams usually utilize more than one, depending on the study case. Recent progress in 3D imaging of internal structure, e.g., X-ray tomography, FIB-SEM and confocal microscopy, made it possible to obtain digitized input pore parameters for such models, however, a trade-off between resolution and sample size is usually unavoidable. There are situations then only standard two-dimensional information of porous structure is known due to tomography high cost or resolution limitations. However, physical modeling on microscale requires 3D information. There are three main approaches to reconstruct (using 2D cut(s) or some other limited information/properties) porous media: 1) statistical methods (correlation functions and simulated annealing, multi-point statistics, entropy methods), 2) sequential methods (sphere or other granular packs) and 3) morphological methods. Stochastic reconstructions using correlation functions possess some important advantage - they provide a statistical description of the structure, which is known to have relationships with all physical properties. In addition, this method is more flexible for other applications to characterize porous media. Taking different 3D scans of natural and artificial porous materials (sandstones, soils, shales, ceramics) we choose some 2D cut/s as sources of input correlation functions. Based on different types of correlation functions

  20. Image selection in photogrammetric multi-view stereo methods for metric and complete 3D reconstruction

    NASA Astrophysics Data System (ADS)

    Hosseininaveh Ahmadabadian, Ali; Robson, Stuart; Boehm, Jan; Shortis, Mark

    2013-04-01

    Multi-View Stereo (MVS) as a low cost technique for precise 3D reconstruction can be a rival for laser scanners if the scale of the model is resolved. A fusion of stereo imaging equipment with photogrammetric bundle adjustment and MVS methods, known as photogrammetric MVS, can generate correctly scaled 3D models without using any known object distances. Although a huge number of stereo images (e.g. 200 high resolution images from a small object) captured of the object contains redundant data that allows detailed and accurate 3D reconstruction, the capture and processing time is increased when a vast amount of high resolution images are employed. Moreover, some parts of the object are often missing due to the lack of coverage of all areas. These problems demand a logical selection of the most suitable stereo camera views from the large image dataset. This paper presents a method for clustering and choosing optimal stereo or optionally single images from a large image dataset. The approach focusses on the two key steps of image clustering and iterative image selection. The method is developed within a software application called Imaging Network Designer (IND) and tested by the 3D recording of a gearbox and three metric reference objects. A comparison is made between IND and CMVS, which is a free package for selecting vantage images. The final 3D models obtained from the IND and CMVS approaches are compared with datasets generated with an MMDx Nikon Laser scanner. Results demonstrate that IND can provide a better image selection for MVS than CMVS in terms of surface coordinate uncertainty and completeness.

  1. A multi-thread scheduling method for 3D CT image reconstruction using multi-GPU.

    PubMed

    Zhu, Yining; Zhao, Yunsong; Zhao, Xing

    2012-01-01

    As a whole process, we present a concept that the complete reconstruction of CT image should include the computation part on GPUs and the data storage part on hard disks. From this point of view, we propose a Multi-Thread Scheduling (MTS) method to implement the 3D CT image reconstruction such as using FDK algorithm, to trade off the computing and storage time. In this method we use Multi-Threads to control GPUs and a separate thread to accomplish data storage, so that we make the calculation and data storage simultaneously. In addition, we use the 4-channel texture to maintain symmetrical projection data in CUDA framework, which can reduce the calculation time significantly. Numerical experiment shows that the time for the whole process with our method is almost the same as the data storage time. PMID:22635174

  2. A method for 3D reconstruction of coronary arteries using biplane angiography and intravascular ultrasound images.

    PubMed

    Bourantas, Christos V; Kourtis, Iraklis C; Plissiti, Marina E; Fotiadis, Dimitrios I; Katsouras, Christos S; Papafaklis, Michail I; Michalis, Lampros K

    2005-12-01

    The aim of this study is to describe a new method for the three-dimensional reconstruction of coronary arteries and its quantitative validation. Our approach is based on the fusion of the data provided by intravascular ultrasound images (IVUS) and biplane angiographies. A specific segmentation algorithm is used for the detection of the regions of interest in intravascular ultrasound images. A new methodology is also introduced for the accurate extraction of the catheter path. In detail, a cubic B-spline is used for approximating the catheter path in each biplane projection. Each B-spline curve is swept along the normal direction of its X-ray angiographic plane forming a surface. The intersection of the two surfaces is a 3D curve, which represents the reconstructed path. The detected regions of interest in the IVUS images are placed perpendicularly onto the path and their relative axial twist is computed using the sequential triangulation algorithm. Then, an efficient algorithm is applied to estimate the absolute orientation of the first IVUS frame. In order to obtain 3D visualization the commercial package Geomagic Studio 4.0 is used. The performance of the proposed method is assessed using a validation methodology which addresses the separate validation of each step followed for obtaining the coronary reconstruction. The performance of the segmentation algorithm was examined in 80 IVUS images. The reliability of the path extraction method was studied in vitro using a metal wire model and in vivo in a dataset of 11 patients. The performance of the sequential triangulation algorithm was tested in two gutter models and in the coronary arteries (marked with metal clips) of six cadaveric sheep hearts. Finally, the accuracy in the estimation of the first IVUS frame absolute orientation was examined in the same set of cadaveric sheep hearts. The obtained results demonstrate that the proposed reconstruction method is reliable and capable of depicting the morphology of

  3. A new combined prior based reconstruction method for compressed sensing in 3D ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Uddin, Muhammad S.; Islam, Rafiqul; Tahtali, Murat; Lambert, Andrew J.; Pickering, Mark R.

    2015-03-01

    Ultrasound (US) imaging is one of the most popular medical imaging modalities, with 3D US imaging gaining popularity recently due to its considerable advantages over 2D US imaging. However, as it is limited by long acquisition times and the huge amount of data processing it requires, methods for reducing these factors have attracted considerable research interest. Compressed sensing (CS) is one of the best candidates for accelerating the acquisition rate and reducing the data processing time without degrading image quality. However, CS is prone to introduce noise-like artefacts due to random under-sampling. To address this issue, we propose a combined prior-based reconstruction method for 3D US imaging. A Laplacian mixture model (LMM) constraint in the wavelet domain is combined with a total variation (TV) constraint to create a new regularization regularization prior. An experimental evaluation conducted to validate our method using synthetic 3D US images shows that it performs better than other approaches in terms of both qualitative and quantitative measures.

  4. Image reconstruction for 3D light microscopy with a regularized linear method incorporating a smoothness prior

    NASA Astrophysics Data System (ADS)

    Preza, Chrysanthe; Miller, Michael I.; Conchello, Jose-Angel

    1993-07-01

    We have shown that the linear least-squares (LLS) estimate of the intensities of a 3-D object obtained from a set of optical sections is unstable due to the inversion of small and zero-valued eigenvalues of the point-spread function (PSF) operator. The LLS solution was regularized by constraining it to lie in a subspace spanned by the eigenvectors corresponding to a selected number of the largest eigenvalues. In this paper we extend the regularized LLS solution to a maximum a posteriori (MAP) solution induced by a prior formed from a 'Good's like' smoothness penalty. This approach also yields a regularized linear estimator which reduces noise as well as edge artifacts in the reconstruction. The advantage of the linear MAP (LMAP) estimate over the current regularized LLS (RLLS) is its ability to regularize the inverse problem by smoothly penalizing components in the image associated with small eigenvalues. Computer simulations were performed using a theoretical PSF and a simple phantom to compare the two regularization techniques. It is shown that the reconstructions using the smoothness prior, give superior variance and bias results compared to the RLLS reconstructions. Encouraging reconstructions obtained with the LMAP method from real microscopical images of a 10 micrometers fluorescent bead, and a four-cell Volvox embryo are shown.

  5. 3D shape reconstruction of medical images using a perspective shape-from-shading method

    NASA Astrophysics Data System (ADS)

    Yang, Lei; Han, Jiu-qiang

    2008-06-01

    A 3D shape reconstruction approach for medical images using a shape-from-shading (SFS) method was proposed in this paper. A new reflectance map equation of medical images was analyzed with the assumption that the Lambertian reflectance surface was irradiated by a point light source located at the light center and the image was formed under perspective projection. The corresponding static Hamilton-Jacobi (H-J) equation of the reflectance map equation was established. So the shape-from-shading problem turned into solving the viscosity solution of the static H-J equation. Then with the conception of a viscosity vanishing approximation, the Lax-Friedrichs fast sweeping numerical method was used to compute the viscosity solution of the H-J equation and a new iterative SFS algorithm was gained. Finally, experiments on both synthetic images and real medical images were performed to illustrate the efficiency of the proposed SFS method.

  6. A continuous surface reconstruction method on point cloud captured from a 3D surface photogrammetry system

    SciTech Connect

    Liu, Wenyang; Cheung, Yam; Sabouri, Pouya; Arai, Tatsuya J.; Sawant, Amit; Ruan, Dan

    2015-11-15

    achieved submillimeter reconstruction RMSE under different configurations, demonstrating quantitatively the faith of the proposed method in preserving local structural properties of the underlying surface in the presence of noise and missing measurements, and its robustness toward variations of such characteristics. On point clouds from the human subject, the proposed method successfully reconstructed all patient surfaces, filling regions where raw point coordinate readings were missing. Within two comparable regions of interest in the chest area, similar mean curvature distributions were acquired from both their reconstructed surface and CT surface, with mean and standard deviation of (μ{sub recon} = − 2.7 × 10{sup −3} mm{sup −1}, σ{sub recon} = 7.0 × 10{sup −3} mm{sup −1}) and (μ{sub CT} = − 2.5 × 10{sup −3} mm{sup −1}, σ{sub CT} = 5.3 × 10{sup −3} mm{sup −1}), respectively. The agreement of local geometry properties between the reconstructed surfaces and the CT surface demonstrated the ability of the proposed method in faithfully representing the underlying patient surface. Conclusions: The authors have integrated and developed an accurate level-set based continuous surface reconstruction method on point clouds acquired by a 3D surface photogrammetry system. The proposed method has generated a continuous representation of the underlying phantom and patient surfaces with good robustness against noise and missing measurements. It serves as an important first step for further development of motion tracking methods during radiotherapy.

  7. 3D reconstruction and quantitative assessment method of mitral eccentric regurgitation from color Doppler echocardiography

    NASA Astrophysics Data System (ADS)

    Liu, Qi; Ge, Yi Nan; Wang, Tian Fu; Zheng, Chang Qiong; Zheng, Yi

    2005-10-01

    Based on the two-dimensional color Doppler image in this article, multilane transesophageal rotational scanning method is used to acquire original Doppler echocardiography while echocardiogram is recorded synchronously. After filtering and interpolation, the surface rendering and volume rendering methods are performed. Through analyzing the color-bar information and the color Doppler flow image's superposition principle, the grayscale mitral anatomical structure and color-coded regurgitation velocity parameter were separated from color Doppler flow images, three-dimensional reconstruction of mitral structure and regurgitation velocity distribution was implemented separately, fusion visualization of the reconstructed regurgitation velocity distribution parameter with its corresponding 3D mitral anatomical structures was realized, which can be used in observing the position, phase, direction and measuring the jet length, area, volume, space distribution and severity level of the mitral regurgitation. In addition, in patients with eccentric mitral regurgitation, this new modality overcomes the inherent limitations of two-dimensional color Doppler flow image by depicting the full extent of the jet trajectory, the area of eccentric regurgitation on three-dimensional image was much larger than that on two-dimensional image, the area variation tendency and volume variation tendency of regurgitation have been shown in figure at different angle and different systolic phase. The study shows that three-dimensional color Doppler provides quantitative measurements of eccentric mitral regurgitation that are more accurate and reproducible than conventional color Doppler.

  8. Some Methods of Applied Numerical Analysis to 3d Facial Reconstruction Software

    NASA Astrophysics Data System (ADS)

    Roşu, Şerban; Ianeş, Emilia; Roşu, Doina

    2010-09-01

    This paper deals with the collective work performed by medical doctors from the University Of Medicine and Pharmacy Timisoara and engineers from the Politechnical Institute Timisoara in the effort to create the first Romanian 3d reconstruction software based on CT or MRI scans and to test the created software in clinical practice.

  9. An interface reconstruction method based on an analytical formula for 3D arbitrary convex cells

    NASA Astrophysics Data System (ADS)

    Diot, Steven; François, Marianne M.

    2016-01-01

    In this paper, we are interested in an interface reconstruction method for 3D arbitrary convex cells that could be used in multi-material flow simulations for instance. We assume that the interface is represented by a plane whose normal vector is known and we focus on the volume-matching step that consists in finding the plane constant so that it splits the cell according to a given volume fraction. We follow the same approach as in the recent authors' publication for 2D arbitrary convex cells in planar and axisymmetrical geometries, namely we derive an analytical formula for the volume of the specific prismatoids obtained when decomposing the cell using the planes that are parallel to the interface and passing through all the cell nodes. This formula is used to bracket the interface plane constant such that the volume-matching problem is rewritten in a single prismatoid in which the same formula is used to find the final solution. The proposed method is tested against an important number of reproducible configurations and shown to be at least five times faster.

  10. Joint Cross-Range Scaling and 3D Geometry Reconstruction of ISAR Targets Based on Factorization Method.

    PubMed

    Lei Liu; Feng Zhou; Xue-Ru Bai; Ming-Liang Tao; Zi-Jing Zhang

    2016-04-01

    Traditionally, the factorization method is applied to reconstruct the 3D geometry of a target from its sequential inverse synthetic aperture radar images. However, this method requires performing cross-range scaling to all the sub-images and thus has a large computational burden. To tackle this problem, this paper proposes a novel method for joint cross-range scaling and 3D geometry reconstruction of steadily moving targets. In this method, we model the equivalent rotational angular velocity (RAV) by a linear polynomial with time, and set its coefficients randomly to perform sub-image cross-range scaling. Then, we generate the initial trajectory matrix of the scattering centers, and solve the 3D geometry and projection vectors by the factorization method with relaxed constraints. After that, the coefficients of the polynomial are estimated from the projection vectors to obtain the RAV. Finally, the trajectory matrix is re-scaled using the estimated rotational angle, and accurate 3D geometry is reconstructed. The two major steps, i.e., the cross-range scaling and the factorization, are performed repeatedly to achieve precise 3D geometry reconstruction. Simulation results have proved the effectiveness and robustness of the proposed method. PMID:26886991

  11. Cardiac C-arm computed tomography using a 3D + time ROI reconstruction method with spatial and temporal regularization

    SciTech Connect

    Mory, Cyril; Auvray, Vincent; Zhang, Bo; Grass, Michael; Schäfer, Dirk; Chen, S. James; Carroll, John D.; Rit, Simon; Peyrin, Françoise; Douek, Philippe; Boussel, Loïc

    2014-02-15

    Purpose: Reconstruction of the beating heart in 3D + time in the catheter laboratory using only the available C-arm system would improve diagnosis, guidance, device sizing, and outcome control for intracardiac interventions, e.g., electrophysiology, valvular disease treatment, structural or congenital heart disease. To obtain such a reconstruction, the patient's electrocardiogram (ECG) must be recorded during the acquisition and used in the reconstruction. In this paper, the authors present a 4D reconstruction method aiming to reconstruct the heart from a single sweep 10 s acquisition. Methods: The authors introduce the 4D RecOnstructiOn using Spatial and TEmporal Regularization (short 4D ROOSTER) method, which reconstructs all cardiac phases at once, as a 3D + time volume. The algorithm alternates between a reconstruction step based on conjugate gradient and four regularization steps: enforcing positivity, averaging along time outside a motion mask that contains the heart and vessels, 3D spatial total variation minimization, and 1D temporal total variation minimization. Results: 4D ROOSTER recovers the different temporal representations of a moving Shepp and Logan phantom, and outperforms both ECG-gated simultaneous algebraic reconstruction technique and prior image constrained compressed sensing on a clinical case. It generates 3D + time reconstructions with sharp edges which can be used, for example, to estimate the patient's left ventricular ejection fraction. Conclusions: 4D ROOSTER can be applied for human cardiac C-arm CT, and potentially in other dynamic tomography areas. It can easily be adapted to other problems as regularization is decoupled from projection and back projection.

  12. Body mass estimations for Plateosaurus engelhardti using laser scanning and 3D reconstruction methods

    NASA Astrophysics Data System (ADS)

    Gunga, Hanns-Christian; Suthau, Tim; Bellmann, Anke; Friedrich, Andreas; Schwanebeck, Thomas; Stoinski, Stefan; Trippel, Tobias; Kirsch, Karl; Hellwich, Olaf

    2007-08-01

    Both body mass and surface area are factors determining the essence of any living organism. This should also hold true for an extinct organism such as a dinosaur. The present report discusses the use of a new 3D laser scanner method to establish body masses and surface areas of an Asian elephant (Zoological Museum of Copenhagen, Denmark) and of Plateosaurus engelhardti, a prosauropod from the Upper Triassic, exhibited at the Paleontological Museum in Tübingen (Germany). This method was used to study the effect that slight changes in body shape had on body mass for P. engelhardti. It was established that body volumes varied between 0.79 m3 (slim version) and 1.14 m3 (robust version), resulting in a presumable body mass of 630 and 912 kg, respectively. The total body surface areas ranged between 8.8 and 10.2 m2, of which, in both reconstructions of P. engelhardti, ˜33% account for the thorax area alone. The main difference between the two models is in the tail and hind limb reconstruction. The tail of the slim version has a surface area of 1.98 m2, whereas that of the robust version has a surface area of 2.73 m2. The body volumes calculated for the slim version were as follows: head 0.006 m3, neck 0.016 m3, fore limbs 0.020 m3, hind limbs 0.08 m3, thoracic cavity 0.533 m3, and tail 0.136 m3. For the robust model, the following volumes were established: 0.01 m3 head, neck 0.026 m3, fore limbs 0.025 m3, hind limbs 0.18 m3, thoracic cavity 0.616 m3, and finally, tail 0.28 m3. Based on these body volumes, scaling equations were used to assess the size that the organs of this extinct dinosaur have.

  13. On the evaluation of photogrammetric methods for dense 3D surface reconstruction in a metrological context

    NASA Astrophysics Data System (ADS)

    Toschi, I.; Capra, A.; De Luca, L.; Beraldin, J.-A.; Cournoyer, L.

    2014-05-01

    This paper discusses a methodology to evaluate the accuracy of recently developed image-based 3D modelling techniques. So far, the emergence of these novel methods has not been supported by the definition of an internationally recognized standard which is fundamental for user confidence and market growth. In order to provide an element of reflection and solution to the different communities involved in 3D imaging, a promising approach is presented in this paper for the assessment of both metric quality and limitations of an open-source suite of tools (Apero/MicMac), developed for the extraction of dense 3D point clouds from a set of unordered 2D images. The proposed procedural workflow is performed within a metrological context, through inter-comparisons with "reference" data acquired with two hemispherical laser scanners, one total station, and one laser tracker. The methodology is applied to two case studies, designed in order to analyse the software performances in dealing with both outdoor and environmentally controlled conditions, i.e. the main entrance of Cathédrale de la Major (Marseille, France) and a custom-made scene located at National Research Council of Canada 3D imaging Metrology Laboratory (Ottawa). Comparative data and accuracy evidence produced for both tests allow the study of some key factors affecting 3D model accuracy.

  14. 3D Ion Temperature Reconstruction

    NASA Astrophysics Data System (ADS)

    Tanabe, Hiroshi; You, Setthivoine; Balandin, Alexander; Inomoto, Michiaki; Ono, Yasushi

    2009-11-01

    The TS-4 experiment at the University of Tokyo collides two spheromaks to form a single high-beta compact toroid. Magnetic reconnection during the merging process heats and accelerates the plasma in toroidal and poloidal directions. The reconnection region has a complex 3D topology determined by the pitch of the spheromak magnetic fields at the merging plane. A pair of multichord passive spectroscopic diagnostics have been established to measure the ion temperature and velocity in the reconnection volume. One setup measures spectral lines across a poloidal plane, retrieving velocity and temperature from Abel inversion. The other, novel setup records spectral lines across another section of the plasma and reconstructs velocity and temperature from 3D vector and 2D scalar tomography techniques. The magnetic field linking both measurement planes is determined from in situ magnetic probe arrays. The ion temperature is then estimated within the volume between the two measurement planes and at the reconnection region. The measurement is followed over several repeatable discharges to follow the heating and acceleration process during the merging reconnection.

  15. Forensic 3D Scene Reconstruction

    SciTech Connect

    LITTLE,CHARLES Q.; PETERS,RALPH R.; RIGDON,J. BRIAN; SMALL,DANIEL E.

    1999-10-12

    Traditionally law enforcement agencies have relied on basic measurement and imaging tools, such as tape measures and cameras, in recording a crime scene. A disadvantage of these methods is that they are slow and cumbersome. The development of a portable system that can rapidly record a crime scene with current camera imaging, 3D geometric surface maps, and contribute quantitative measurements such as accurate relative positioning of crime scene objects, would be an asset to law enforcement agents in collecting and recording significant forensic data. The purpose of this project is to develop a feasible prototype of a fast, accurate, 3D measurement and imaging system that would support law enforcement agents to quickly document and accurately record a crime scene.

  16. Forensic 3D scene reconstruction

    NASA Astrophysics Data System (ADS)

    Little, Charles Q.; Small, Daniel E.; Peters, Ralph R.; Rigdon, J. B.

    2000-05-01

    Traditionally law enforcement agencies have relied on basic measurement and imaging tools, such as tape measures and cameras, in recording a crime scene. A disadvantage of these methods is that they are slow and cumbersome. The development of a portable system that can rapidly record a crime scene with current camera imaging, 3D geometric surface maps, and contribute quantitative measurements such as accurate relative positioning of crime scene objects, would be an asset to law enforcement agents in collecting and recording significant forensic data. The purpose of this project is to develop a fieldable prototype of a fast, accurate, 3D measurement and imaging system that would support law enforcement agents to quickly document and accurately record a crime scene.

  17. A FIB-nanotomography method for accurate 3D reconstruction of open nanoporous structures.

    PubMed

    Mangipudi, K R; Radisch, V; Holzer, L; Volkert, C A

    2016-04-01

    We present an automated focused ion beam nanotomography method for nanoporous microstructures with open porosity, and apply it to reconstruct nanoporous gold (np-Au) structures with ligament sizes on the order of a few tens of nanometers. This method uses serial sectioning of a well-defined wedge-shaped geometry to determine the thickness of individual slices from the changes in the sample width in successive cross-sectional images. The pore space of a selected region of the np-Au is infiltrated with ion-beam-deposited Pt composite before serial sectioning. The cross-sectional images are binarized and stacked according to the individual slice thicknesses, and then processed using standard reconstruction methods. For the image conditions and sample geometry used here, we are able to determine the thickness of individual slices with an accuracy much smaller than a pixel. The accuracy of the new method based on actual slice thickness is assessed by comparing it with (i) a reconstruction using the same cross-sectional images but assuming a constant slice thickness, and (ii) a reconstruction using traditional FIB-tomography method employing constant slice thickness. The morphology and topology of the structures are characterized using ligament and pore size distributions, interface shape distribution functions, interface normal distributions, and genus. The results suggest that the morphology and topology of the final reconstructions are significantly influenced when a constant slice thickness is assumed. The study reveals grain-to-grain variations in the morphology and topology of np-Au. PMID:26906523

  18. An Automatic 3d Reconstruction Method Based on Multi-View Stereo Vision for the Mogao Grottoes

    NASA Astrophysics Data System (ADS)

    Xiong, J.; Zhong, S.; Zheng, L.

    2015-05-01

    This paper presents an automatic three-dimensional reconstruction method based on multi-view stereo vision for the Mogao Grottoes. 3D digitization technique has been used in cultural heritage conservation and replication over the past decade, especially the methods based on binocular stereo vision. However, mismatched points are inevitable in traditional binocular stereo matching due to repeatable or similar features of binocular images. In order to reduce the probability of mismatching greatly and improve the measure precision, a portable four-camera photographic measurement system is used for 3D modelling of a scene. Four cameras of the measurement system form six binocular systems with baselines of different lengths to add extra matching constraints and offer multiple measurements. Matching error based on epipolar constraint is introduced to remove the mismatched points. Finally, an accurate point cloud can be generated by multi-images matching and sub-pixel interpolation. Delaunay triangulation and texture mapping are performed to obtain the 3D model of a scene. The method has been tested on 3D reconstruction several scenes of the Mogao Grottoes and good results verify the effectiveness of the method.

  19. Monitoring 3D dose distributions in proton therapy by reconstruction using an iterative method.

    PubMed

    Kim, Young-Hak; Yoon, Changyeon; Lee, Wonho

    2016-08-01

    The Bragg peak of protons can be determined by measuring prompt γ-rays. In this study, prompt γ-rays detected by single-photon emission computed tomography with a geometrically optimized collimation system were reconstructed by an iterative method. The falloff position by iterative method (52.48mm) was most similar to the Bragg peak (52mm) of an 80MeV proton compared with those of back-projection (54.11mm) and filtered back-projection (54.91mm) methods. Iterative method also showed better image performance than other methods. PMID:27179145

  20. Assessment of a fully 3D Monte Carlo reconstruction method for preclinical PET with iodine-124

    NASA Astrophysics Data System (ADS)

    Moreau, M.; Buvat, I.; Ammour, L.; Chouin, N.; Kraeber-Bodéré, F.; Chérel, M.; Carlier, T.

    2015-03-01

    Iodine-124 is a radionuclide well suited to the labeling of intact monoclonal antibodies. Yet, accurate quantification in preclinical imaging with I-124 is challenging due to the large positron range and a complex decay scheme including high-energy gammas. The aim of this work was to assess the quantitative performance of a fully 3D Monte Carlo (MC) reconstruction for preclinical I-124 PET. The high-resolution small animal PET Inveon (Siemens) was simulated using GATE 6.1. Three system matrices (SM) of different complexity were calculated in addition to a Siddon-based ray tracing approach for comparison purpose. Each system matrix accounted for a more or less complete description of the physics processes both in the scanned object and in the PET scanner. One homogeneous water phantom and three heterogeneous phantoms including water, lungs and bones were simulated, where hot and cold regions were used to assess activity recovery as well as the trade-off between contrast recovery and noise in different regions. The benefit of accounting for scatter, attenuation, positron range and spurious coincidences occurring in the object when calculating the system matrix used to reconstruct I-124 PET images was highlighted. We found that the use of an MC SM including a thorough modelling of the detector response and physical effects in a uniform water-equivalent phantom was efficient to get reasonable quantitative accuracy in homogeneous and heterogeneous phantoms. Modelling the phantom heterogeneities in the SM did not necessarily yield the most accurate estimate of the activity distribution, due to the high variance affecting many SM elements in the most sophisticated SM.

  1. 3D model reconstruction of underground goaf

    NASA Astrophysics Data System (ADS)

    Fang, Yuanmin; Zuo, Xiaoqing; Jin, Baoxuan

    2005-10-01

    Constructing 3D model of underground goaf, we can control the process of mining better and arrange mining work reasonably. However, the shape of goaf and the laneway among goafs are very irregular, which produce great difficulties in data-acquiring and 3D model reconstruction. In this paper, we research on the method of data-acquiring and 3D model construction of underground goaf, building topological relation among goafs. The main contents are as follows: a) The paper proposed an efficient encoding rule employed to structure the field measurement data. b) A 3D model construction method of goaf is put forward, which by means of combining several TIN (triangulated irregular network) pieces, and an efficient automatic processing algorithm of boundary of TIN is proposed. c) Topological relation of goaf models is established. TIN object is the basic modeling element of goaf 3D model, and the topological relation among goaf is created and maintained by building the topological relation among TIN objects. Based on this, various 3D spatial analysis functions can be performed including transect and volume calculation of goaf. A prototype is developed, which can realized the model and algorithm proposed in this paper.

  2. Efficient and robust 3D CT image reconstruction based on total generalized variation regularization using the alternating direction method.

    PubMed

    Chen, Jianlin; Wang, Linyuan; Yan, Bin; Zhang, Hanming; Cheng, Genyang

    2015-01-01

    Iterative reconstruction algorithms for computed tomography (CT) through total variation regularization based on piecewise constant assumption can produce accurate, robust, and stable results. Nonetheless, this approach is often subject to staircase artefacts and the loss of fine details. To overcome these shortcomings, we introduce a family of novel image regularization penalties called total generalized variation (TGV) for the effective production of high-quality images from incomplete or noisy projection data for 3D reconstruction. We propose a new, fast alternating direction minimization algorithm to solve CT image reconstruction problems through TGV regularization. Based on the theory of sparse-view image reconstruction and the framework of augmented Lagrange function method, the TGV regularization term has been introduced in the computed tomography and is transformed into three independent variables of the optimization problem by introducing auxiliary variables. This new algorithm applies a local linearization and proximity technique to make the FFT-based calculation of the analytical solutions in the frequency domain feasible, thereby significantly reducing the complexity of the algorithm. Experiments with various 3D datasets corresponding to incomplete projection data demonstrate the advantage of our proposed algorithm in terms of preserving fine details and overcoming the staircase effect. The computation cost also suggests that the proposed algorithm is applicable to and is effective for CBCT imaging. Theoretical and technical optimization should be investigated carefully in terms of both computation efficiency and high resolution of this algorithm in application-oriented research. PMID:26756406

  3. Refined Method of Lipofilling following DIEP Breast Reconstruction: 3D Analysis of Graft Survival

    PubMed Central

    Lhoest, Florence; Preud’Homme, Laurence

    2015-01-01

    Background: The deep inferior epigastric perforator (DIEP) flap technique gives good clinical results, but aesthetic surgical adjustments are often necessary. Lipofilling represents a good complementary method, but fat resorption within the few months after surgery limits its use. Recently, a new protocol was introduced and successfully evaluated on murine models. This study aims to evaluate this protocol following a DIEP procedure by three-dimensional analysis. Methods: Within a period of 4 months, every patient having undergone breast reconstruction with DIEP and who required a lipofilling adjustment was invited to take part in this study. All surgeries were performed using the Adip’sculpt disposable medical device MACROFILL (Laboratoires SEBBIN, Boissy-l’Aillerie, France). Fat resorption was analyzed using a three-dimensional photography system. Results: Twenty-three patients were included, with a total of 25 breasts operated on. Injections were carried out on irradiated breasts in 73% of cases, and average injection volume was 124 mL (SD = 39 mL), whereas average operating time was 68 minutes (44–96 minutes). At an average follow-up of 5 months (4–8 months), 70.9% of projection gain afforded by the lipofilling was still present. Conclusions: It is now clear that particular rules should be respected for an efficient lipofilling, particularly regarding aspiration cannula characteristics, vacuum used, and the necessity of washes and soft centrifugations. We demonstrate here that by following a specific protocol that addresses these precautions, while using material that is specifically adapted, a 70.9% fat survival rate can be achieved, even in the very unfavorable case of postirradiation DIEP breast reconstruction. PMID:26495239

  4. Interaction and behaviour imaging: a novel method to measure mother-infant interaction using video 3D reconstruction.

    PubMed

    Leclère, C; Avril, M; Viaux-Savelon, S; Bodeau, N; Achard, C; Missonnier, S; Keren, M; Feldman, R; Chetouani, M; Cohen, D

    2016-01-01

    Studying early interaction is essential for understanding development and psychopathology. Automatic computational methods offer the possibility to analyse social signals and behaviours of several partners simultaneously and dynamically. Here, 20 dyads of mothers and their 13-36-month-old infants were videotaped during mother-infant interaction including 10 extremely high-risk and 10 low-risk dyads using two-dimensional (2D) and three-dimensional (3D) sensors. From 2D+3D data and 3D space reconstruction, we extracted individual parameters (quantity of movement and motion activity ratio for each partner) and dyadic parameters related to the dynamics of partners heads distance (contribution to heads distance), to the focus of mutual engagement (percentage of time spent face to face or oriented to the task) and to the dynamics of motion activity (synchrony ratio, overlap ratio, pause ratio). Features are compared with blind global rating of the interaction using the coding interactive behavior (CIB). We found that individual and dyadic parameters of 2D+3D motion features perfectly correlates with rated CIB maternal and dyadic composite scores. Support Vector Machine classification using all 2D-3D motion features classified 100% of the dyads in their group meaning that motion behaviours are sufficient to distinguish high-risk from low-risk dyads. The proposed method may present a promising, low-cost methodology that can uniquely use artificial technology to detect meaningful features of human interactions and may have several implications for studying dyadic behaviours in psychiatry. Combining both global rating scales and computerized methods may enable a continuum of time scale from a summary of entire interactions to second-by-second dynamics. PMID:27219342

  5. 3D Surface Reconstruction and Automatic Camera Calibration

    NASA Technical Reports Server (NTRS)

    Jalobeanu, Andre

    2004-01-01

    Illustrations in this view-graph presentation are presented on a Bayesian approach to 3D surface reconstruction and camera calibration.Existing methods, surface analysis and modeling,preliminary surface reconstruction results, and potential applications are addressed.

  6. A 3D reconstruction method of the body envelope from biplanar X-rays: Evaluation of its accuracy and reliability.

    PubMed

    Nérot, Agathe; Choisne, Julie; Amabile, Célia; Travert, Christophe; Pillet, Hélène; Wang, Xuguang; Skalli, Wafa

    2015-12-16

    The aim of this study was to propose a novel method for reconstructing the external body envelope from the low dose biplanar X-rays of a person. The 3D body envelope was obtained by deforming a template to match the surface profiles in two X-rays images in three successive steps: global morphing to adopt the position of a person and scale the template׳s body segments, followed by a gross deformation and a fine deformation using two sets of pre-defined control points. To evaluate the method, a biplanar X-ray acquisition was obtained from head to foot for 12 volunteers in a standing posture. Up to 172 radio-opaque skin markers were attached to the body surface and used as reference positions. Each envelope was reconstructed three times by three operators. Results showed a bias lower than 7mm and a confidence interval (95%) of reproducibility lower than 6mm for all body parts, comparable to other existing methods matching a template onto stereographic photographs. The proposed method offers the possibility of reconstructing body shape in addition to the skeleton using a low dose biplanar X-rays system. PMID:26592437

  7. Post-processing methods of rendering and visualizing 3-D reconstructed tomographic images

    SciTech Connect

    Wong, S.T.C.

    1997-02-01

    The purpose of this presentation is to discuss the computer processing techniques of tomographic images, after they have been generated by imaging scanners, for volume visualization. Volume visualization is concerned with the representation, manipulation, and rendering of volumetric data. Since the first digital images were produced from computed tomography (CT) scanners in the mid 1970s, applications of visualization in medicine have expanded dramatically. Today, three-dimensional (3D) medical visualization has expanded from using CT data, the first inherently digital source of 3D medical data, to using data from various medical imaging modalities, including magnetic resonance scanners, positron emission scanners, digital ultrasound, electronic and confocal microscopy, and other medical imaging modalities. We have advanced from rendering anatomy to aid diagnosis and visualize complex anatomic structures to planning and assisting surgery and radiation treatment. New, more accurate and cost-effective procedures for clinical services and biomedical research have become possible by integrating computer graphics technology with medical images. This trend is particularly noticeable in current market-driven health care environment. For example, interventional imaging, image-guided surgery, and stereotactic and visualization techniques are now stemming into surgical practice. In this presentation, we discuss only computer-display-based approaches of volumetric medical visualization. That is, we assume that the display device available is two-dimensional (2D) in nature and all analysis of multidimensional image data is to be carried out via the 2D screen of the device. There are technologies such as holography and virtual reality that do provide a {open_quotes}true 3D screen{close_quotes}. To confine the scope, this presentation will not discuss such approaches.

  8. 3D Wind Reconstruction and Turbulence Estimation in the Boundary Layer from Doppler Lidar Measurements using Particle Method

    NASA Astrophysics Data System (ADS)

    Rottner, L.; Baehr, C.

    2014-12-01

    Turbulent phenomena in the atmospheric boundary layer (ABL) are characterized by small spatial and temporal scales which make them difficult to observe and to model.New remote sensing instruments, like Doppler Lidar, give access to fine and high-frequency observations of wind in the ABL. This study suggests to use a method of nonlinear estimation based on these observations to reconstruct 3D wind in a hemispheric volume, and to estimate atmospheric turbulent parameters. The wind observations are associated to particle systems which are driven by a local turbulence model. The particles have both fluid and stochastic properties. Therefore, spatial averages and covariances may be deduced from the particles. Among the innovative aspects, we point out the absence of the common hypothesis of stationary-ergodic turbulence and the non-use of particle model closure hypothesis. Every time observations are available, 3D wind is reconstructed and turbulent parameters such as turbulent kinectic energy, dissipation rate, and Turbulent Intensity (TI) are provided. This study presents some results obtained using real wind measurements provided by a five lines of sight Lidar. Compared with classical methods (e.g. eddy covariance) our technic renders equivalent long time results. Moreover it provides finer and real time turbulence estimations. To assess this new method, we suggest computing independently TI using different observation types. First anemometer data are used to have TI reference.Then raw and filtered Lidar observations have also been compared. The TI obtained from raw data is significantly higher than the reference one, whereas the TI estimated with the new algorithm has the same order.In this study we have presented a new class of algorithm to reconstruct local random media. It offers a new way to understand turbulence in the ABL, in both stable or convective conditions. Later, it could be used to refine turbulence parametrization in meteorological meso-scale models.

  9. A Residual Kriging method for the reconstruction of 3D high-resolution meteorological fields from airborne and surface observations

    NASA Astrophysics Data System (ADS)

    Laiti, Lavinia; Zardi, Dino; de Franceschi, Massimiliano; Rampanelli, Gabriele

    2013-04-01

    Manned light aircrafts and remotely piloted aircrafts represent very valuable and flexible measurement platforms for atmospheric research, as they are able to provide high temporal and spatial resolution observations of the atmosphere above the ground surface. In the present study the application of a geostatistical interpolation technique called Residual Kriging (RK) is proposed for the mapping of airborne measurements of scalar quantities over regularly spaced 3D grids. In RK the dominant (vertical) trend component underlying the original data is first extracted to filter out local anomalies, then the residual field is separately interpolated and finally added back to the trend; the determination of the interpolation weights relies on the estimate of the characteristic covariance function of the residuals, through the computation and modelling of their semivariogram function. RK implementation also allows for the inference of the characteristic spatial scales of variability of the target field and its isotropization, and for an estimate of the interpolation error. The adopted test-bed database consists in a series of flights of an instrumented motorglider exploring the atmosphere of two valleys near the city of Trento (in the southeastern Italian Alps), performed on fair-weather summer days. RK method is used to reconstruct fully 3D high-resolution fields of potential temperature and mixing ratio for specific vertical slices of the valley atmosphere, integrating also ground-based measurements from the nearest surface weather stations. From RK-interpolated meteorological fields, fine-scale features of the atmospheric boundary layer developing over the complex valley topography in connection with the occurrence of thermally-driven slope and valley winds, are detected. The performance of RK mapping is also tested against two other commonly adopted interpolation methods, i.e. the Inverse Distance Weighting and the Delaunay triangulation methods, comparing the results

  10. 3D puzzle reconstruction for archeological fragments

    NASA Astrophysics Data System (ADS)

    Jampy, F.; Hostein, A.; Fauvet, E.; Laligant, O.; Truchetet, F.

    2015-03-01

    The reconstruction of broken artifacts is a common task in archeology domain; it can be supported now by 3D data acquisition device and computer processing. Many works have been dedicated in the past to reconstructing 2D puzzles but very few propose a true 3D approach. We present here a complete solution including a dedicated transportable 3D acquisition set-up and a virtual tool with a graphic interface allowing the archeologists to manipulate the fragments and to, interactively, reconstruct the puzzle. The whole lateral part is acquired by rotating the fragment around an axis chosen within a light sheet thanks to a step-motor synchronized with the camera frame clock. Another camera provides a top view of the fragment under scanning. A scanning accuracy of 100μm is attained. The iterative automatic processing algorithm is based on segmentation into facets of the lateral part of the fragments followed by a 3D matching providing the user with a ranked short list of possible assemblies. The device has been applied to the reconstruction of a set of 1200 fragments from broken tablets supporting a Latin inscription dating from the first century AD.

  11. 3D EIT image reconstruction with GREIT.

    PubMed

    Grychtol, Bartłomiej; Müller, Beat; Adler, Andy

    2016-06-01

    Most applications of thoracic EIT use a single plane of electrodes on the chest from which a transverse image 'slice' is calculated. However, interpretation of EIT images is made difficult by the large region above and below the electrode plane to which EIT is sensitive. Volumetric EIT images using two (or more) electrode planes should help compensate, but are little used currently. The Graz consensus reconstruction algorithm for EIT (GREIT) has become popular in lung EIT. One shortcoming of the original formulation of GREIT is its restriction to reconstruction onto a 2D planar image. We present an extension of the GREIT algorithm to 3D and develop open-source tools to evaluate its performance as a function of the choice of stimulation and measurement pattern. Results show 3D GREIT using two electrode layers has significantly more uniform sensitivity profiles through the chest region. Overall, the advantages of 3D EIT are compelling. PMID:27203184

  12. A method for 3D-reconstruction of a muscle thick filament using the tilt series images of a single filament electron tomogram.

    PubMed

    Márquez, G; Pinto, A; Alamo, L; Baumann, B; Ye, F; Winkler, H; Taylor, K; Padrón, R

    2014-05-01

    Myosin interacting-heads (MIH) motifs are visualized in 3D-reconstructions of thick filaments from striated muscle. These reconstructions are calculated by averaging methods using images from electron micrographs of grids prepared using numerous filament preparations. Here we propose an alternative method to calculate the 3D-reconstruction of a single thick filament using only a tilt series images recorded by electron tomography. Relaxed thick filaments, prepared from tarantula leg muscle homogenates, were negatively stained. Single-axis tilt series of single isolated thick filaments were obtained with the electron microscope at a low electron dose, and recorded on a CCD camera by electron tomography. An IHRSR 3D-recontruction was calculated from the tilt series images of a single thick filament. The reconstruction was enhanced by including in the search stage dual tilt image segments while only single tilt along the filament axis is usually used, as well as applying a band pass filter just before the back projection. The reconstruction from a single filament has a 40 Å resolution and clearly shows the presence of MIH motifs. In contrast, the electron tomogram 3D-reconstruction of the same thick filament - calculated without any image averaging and/or imposition of helical symmetry - only reveals MIH motifs infrequently. This is - to our knowledge - the first application of the IHRSR method to calculate a 3D reconstruction from tilt series images. This single filament IHRSR reconstruction method (SF-IHRSR) should provide a new tool to assess structural differences between well-ordered thick (or thin) filaments in a grid by recording separately their electron tomograms. PMID:24727133

  13. The PRISM3D paleoenvironmental reconstruction

    USGS Publications Warehouse

    Dowsett, H.; Robinson, M.; Haywood, A.M.; Salzmann, U.; Hill, Daniel; Sohl, L.E.; Chandler, M.; Williams, Mark; Foley, K.; Stoll, D.K.

    2010-01-01

    The Pliocene Research, Interpretation and Synoptic Mapping (PRISM) paleoenvironmental reconstruction is an internally consistent and comprehensive global synthesis of a past interval of relatively warm and stable climate. It is regularly used in model studies that aim to better understand Pliocene climate, to improve model performance in future climate scenarios, and to distinguish model-dependent climate effects. The PRISM reconstruction is constantly evolving in order to incorporate additional geographic sites and environmental parameters, and is continuously refined by independent research findings. The new PRISM three dimensional (3D) reconstruction differs from previous PRISM reconstructions in that it includes a subsurface ocean temperature reconstruction, integrates geochemical sea surface temperature proxies to supplement the faunal-based temperature estimates, and uses numerical models for the first time to augment fossil data. Here we describe the components of PRISM3D and describe new findings specific to the new reconstruction. Highlights of the new PRISM3D reconstruction include removal of Hudson Bay and the Great Lakes and creation of open waterways in locations where the current bedrock elevation is less than 25m above modern sea level, due to the removal of the West Antarctic Ice Sheet and the reduction of the East Antarctic Ice Sheet. The mid-Piacenzian oceans were characterized by a reduced east-west temperature gradient in the equatorial Pacific, but PRISM3D data do not imply permanent El Niño conditions. The reduced equator-to-pole temperature gradient that characterized previous PRISM reconstructions is supported by significant displacement of vegetation belts toward the poles, is extended into the Arctic Ocean, and is confirmed by multiple proxies in PRISM3D. Arctic warmth coupled with increased dryness suggests the formation of warm and salty paleo North Atlantic Deep Water (NADW) and a more vigorous thermohaline circulation system that may

  14. 3D scene reconstruction from multi-aperture images

    NASA Astrophysics Data System (ADS)

    Mao, Miao; Qin, Kaihuai

    2014-04-01

    With the development of virtual reality, there is a growing demand for 3D modeling of real scenes. This paper proposes a novel 3D scene reconstruction framework based on multi-aperture images. Our framework consists of four parts. Firstly, images with different apertures are captured via programmable aperture. Secondly, we use SIFT method for feature point matching. Then we exploit binocular stereo vision to calculate camera parameters and 3D positions of matching points, forming a sparse 3D scene model. Finally, we apply patch-based multi-view stereo to obtain a dense 3D scene model. Experimental results show that our method is practical and effective to reconstruct dense 3D scene.

  15. 3-D flame temperature field reconstruction with multiobjective neural network

    NASA Astrophysics Data System (ADS)

    Wan, Xiong; Gao, Yiqing; Wang, Yuanmei

    2003-02-01

    A novel 3-D temperature field reconstruction method is proposed in this paper, which is based on multiwavelength thermometry and Hopfield neural network computed tomography. A mathematical model of multi-wavelength thermometry is founded, and a neural network algorithm based on multiobjective optimization is developed. Through computer simulation and comparison with the algebraic reconstruction technique (ART) and the filter back-projection algorithm (FBP), the reconstruction result of the new method is discussed in detail. The study shows that the new method always gives the best reconstruction results. At last, temperature distribution of a section of four peaks candle flame is reconstructed with this novel method.

  16. Three-dimensional X-ray absorptiometry (3D-XA): a method for reconstruction of human bones using a dual X-ray absorptiometry device.

    PubMed

    Kolta, S; Le Bras, A; Mitton, D; Bousson, V; de Guise, J A; Fechtenbaum, J; Laredo, J D; Roux, C; Skalli, W

    2005-08-01

    Three-dimensional accurate evaluation of the geometry of the proximal femur may be helpful for hip fracture risk evaluation. The purpose of this study was to apply and validate a stereo-radiographic 3D reconstruction method of the proximal femur, using contours identification from biplanar DXA images. Twenty-five excised human proximal femurs were investigated using a standard DXA unit. Three-dimensional personalized models were reconstructed using a dedicated non-stereo corresponding contours (NSCC) algorithm. Three-dimensional CT-scan reconstructions obtained on a clinical CT-scan unit were defined as geometric references for the comparison protocol, in order to assess accuracy and reproducibility of the 3D stereo-radiographic reconstructions. The precision of a set of 3D geometric parameters (femoral-neck axis length, mid-neck cross-section area, neck-shaft angle), obtained from stereo-radiographic models was also evaluated. This study shows that the NSCC method may be applied to obtain 3D reconstruction from biplanar DXA acquisitions. Applied to the proximal femur, this method showed good accuracy as compared with high-resolution personalized CT-scan models (mean error = 0.8 mm). Moreover, precision study for the set of 3D parameters yielded coefficients of variation lower than 5%. This is the first study providing 3D geometric parameters from standard 2D DXA images using the NSCC method. It has good accuracy and reproducibility in the present study on cadaveric femurs. In vivo prospective studies are needed to evaluate its discriminating potential on hip fracture risk prediction. PMID:15599494

  17. Development of an iterative reconstruction method to overcome 2D detector low resolution limitations in MLC leaf position error detection for 3D dose verification in IMRT.

    PubMed

    Visser, R; Godart, J; Wauben, D J L; Langendijk, J A; Van't Veld, A A; Korevaar, E W

    2016-05-21

    The objective of this study was to introduce a new iterative method to reconstruct multi leaf collimator (MLC) positions based on low resolution ionization detector array measurements and to evaluate its error detection performance. The iterative reconstruction method consists of a fluence model, a detector model and an optimizer. Expected detector response was calculated using a radiotherapy treatment plan in combination with the fluence model and detector model. MLC leaf positions were reconstructed by minimizing differences between expected and measured detector response. The iterative reconstruction method was evaluated for an Elekta SLi with 10.0 mm MLC leafs in combination with the COMPASS system and the MatriXX Evolution (IBA Dosimetry) detector with a spacing of 7.62 mm. The detector was positioned in such a way that each leaf pair of the MLC was aligned with one row of ionization chambers. Known leaf displacements were introduced in various field geometries ranging from  -10.0 mm to 10.0 mm. Error detection performance was tested for MLC leaf position dependency relative to the detector position, gantry angle dependency, monitor unit dependency, and for ten clinical intensity modulated radiotherapy (IMRT) treatment beams. For one clinical head and neck IMRT treatment beam, influence of the iterative reconstruction method on existing 3D dose reconstruction artifacts was evaluated. The described iterative reconstruction method was capable of individual MLC leaf position reconstruction with millimeter accuracy, independent of the relative detector position within the range of clinically applied MU's for IMRT. Dose reconstruction artifacts in a clinical IMRT treatment beam were considerably reduced as compared to the current dose verification procedure. The iterative reconstruction method allows high accuracy 3D dose verification by including actual MLC leaf positions reconstructed from low resolution 2D measurements. PMID:27100169

  18. Development of an iterative reconstruction method to overcome 2D detector low resolution limitations in MLC leaf position error detection for 3D dose verification in IMRT

    NASA Astrophysics Data System (ADS)

    Visser, R.; Godart, J.; Wauben, D. J. L.; Langendijk, J. A.; van’t Veld, A. A.; Korevaar, E. W.

    2016-05-01

    The objective of this study was to introduce a new iterative method to reconstruct multi leaf collimator (MLC) positions based on low resolution ionization detector array measurements and to evaluate its error detection performance. The iterative reconstruction method consists of a fluence model, a detector model and an optimizer. Expected detector response was calculated using a radiotherapy treatment plan in combination with the fluence model and detector model. MLC leaf positions were reconstructed by minimizing differences between expected and measured detector response. The iterative reconstruction method was evaluated for an Elekta SLi with 10.0 mm MLC leafs in combination with the COMPASS system and the MatriXX Evolution (IBA Dosimetry) detector with a spacing of 7.62 mm. The detector was positioned in such a way that each leaf pair of the MLC was aligned with one row of ionization chambers. Known leaf displacements were introduced in various field geometries ranging from  ‑10.0 mm to 10.0 mm. Error detection performance was tested for MLC leaf position dependency relative to the detector position, gantry angle dependency, monitor unit dependency, and for ten clinical intensity modulated radiotherapy (IMRT) treatment beams. For one clinical head and neck IMRT treatment beam, influence of the iterative reconstruction method on existing 3D dose reconstruction artifacts was evaluated. The described iterative reconstruction method was capable of individual MLC leaf position reconstruction with millimeter accuracy, independent of the relative detector position within the range of clinically applied MU’s for IMRT. Dose reconstruction artifacts in a clinical IMRT treatment beam were considerably reduced as compared to the current dose verification procedure. The iterative reconstruction method allows high accuracy 3D dose verification by including actual MLC leaf positions reconstructed from low resolution 2D measurements.

  19. Accuracy of 3d Reconstruction in AN Illumination Dome

    NASA Astrophysics Data System (ADS)

    MacDonald, Lindsay; Toschi, Isabella; Nocerino, Erica; Hess, Mona; Remondino, Fabio; Robson, Stuart

    2016-06-01

    The accuracy of 3D surface reconstruction was compared from image sets of a Metric Test Object taken in an illumination dome by two methods: photometric stereo and improved structure-from-motion (SfM), using point cloud data from a 3D colour laser scanner as the reference. Metrics included pointwise height differences over the digital elevation model (DEM), and 3D Euclidean differences between corresponding points. The enhancement of spatial detail was investigated by blending high frequency detail from photometric normals, after a Poisson surface reconstruction, with low frequency detail from a DEM derived from SfM.

  20. 3D near-to-surface conductivity reconstruction by inversion of VETEM data using the distorted Born iterative method

    USGS Publications Warehouse

    Wang, G.L.; Chew, W.C.; Cui, T.J.; Aydiner, A.A.; Wright, D.L.; Smith, D.V.

    2004-01-01

    Three-dimensional (3D) subsurface imaging by using inversion of data obtained from the very early time electromagnetic system (VETEM) was discussed. The study was carried out by using the distorted Born iterative method to match the internal nonlinear property of the 3D inversion problem. The forward solver was based on the total-current formulation bi-conjugate gradient-fast Fourier transform (BCCG-FFT). It was found that the selection of regularization parameter follow a heuristic rule as used in the Levenberg-Marquardt algorithm so that the iteration is stable.

  1. Improving 3D Genome Reconstructions Using Orthologous and Functional Constraints

    PubMed Central

    Diament, Alon; Tuller, Tamir

    2015-01-01

    The study of the 3D architecture of chromosomes has been advancing rapidly in recent years. While a number of methods for 3D reconstruction of genomic models based on Hi-C data were proposed, most of the analyses in the field have been performed on different 3D representation forms (such as graphs). Here, we reproduce most of the previous results on the 3D genomic organization of the eukaryote Saccharomyces cerevisiae using analysis of 3D reconstructions. We show that many of these results can be reproduced in sparse reconstructions, generated from a small fraction of the experimental data (5% of the data), and study the properties of such models. Finally, we propose for the first time a novel approach for improving the accuracy of 3D reconstructions by introducing additional predicted physical interactions to the model, based on orthologous interactions in an evolutionary-related organism and based on predicted functional interactions between genes. We demonstrate that this approach indeed leads to the reconstruction of improved models. PMID:26000633

  2. IFSAR processing for 3D target reconstruction

    NASA Astrophysics Data System (ADS)

    Austin, Christian D.; Moses, Randolph L.

    2005-05-01

    In this paper we investigate the use of interferometric synthetic aperture radar (IFSAR) processing for the 3D reconstruction of radar targets. A major source of reconstruction error is induced by multiple scattering responses in a resolution cell, giving rise to height errors. We present a model for multiple scattering centers and analyze the errors that result using traditional IFSAR height estimation. We present a simple geometric model that characterizes the height error and suggests tests for detecting or reducing this error. We consider the use of image magnitude difference as a test statistic to detect multiple scattering responses in a resolution cell, and we analyze the resulting height error reduction and hypothesis test performance using this statistic. Finally, we consider phase linearity test statistics when three or more IFSAR images are available. Examples using synthetic Xpatch backhoe imagery are presented.

  3. Light field display and 3D image reconstruction

    NASA Astrophysics Data System (ADS)

    Iwane, Toru

    2016-06-01

    Light field optics and its applications become rather popular in these days. With light field optics or light field thesis, real 3D space can be described in 2D plane as 4D data, which we call as light field data. This process can be divided in two procedures. First, real3D scene is optically reduced with imaging lens. Second, this optically reduced 3D image is encoded into light field data. In later procedure we can say that 3D information is encoded onto a plane as 2D data by lens array plate. This transformation is reversible and acquired light field data can be decoded again into 3D image with the arrayed lens plate. "Refocusing" (focusing image on your favorite point after taking a picture), light-field camera's most popular function, is some kind of sectioning process from encoded 3D data (light field data) to 2D image. In this paper at first I show our actual light field camera and our 3D display using acquired and computer-simulated light field data, on which real 3D image is reconstructed. In second I explain our data processing method whose arithmetic operation is performed not in Fourier domain but in real domain. Then our 3D display system is characterized by a few features; reconstructed image is of finer resolutions than density of arrayed lenses and it is not necessary to adjust lens array plate to flat display on which light field data is displayed.

  4. 3D reconstruction of tensors and vectors

    SciTech Connect

    Defrise, Michel; Gullberg, Grant T.

    2005-02-17

    Here we have developed formulations for the reconstruction of 3D tensor fields from planar (Radon) and line-integral (X-ray) projections of 3D vector and tensor fields. Much of the motivation for this work is the potential application of MRI to perform diffusion tensor tomography. The goal is to develop a theory for the reconstruction of both Radon planar and X-ray or line-integral projections because of the flexibility of MRI to obtain both of these type of projections in 3D. The development presented here for the linear tensor tomography problem provides insight into the structure of the nonlinear MRI diffusion tensor inverse problem. A particular application of tensor imaging in MRI is the potential application of cardiac diffusion tensor tomography for determining in vivo cardiac fiber structure. One difficulty in the cardiac application is the motion of the heart. This presents a need for developing future theory for tensor tomography in a motion field. This means developing a better understanding of the MRI signal for diffusion processes in a deforming media. The techniques developed may allow the application of MRI tensor tomography for the study of structure of fiber tracts in the brain, atherosclerotic plaque, and spine in addition to fiber structure in the heart. However, the relations presented are also applicable to other fields in medical imaging such as diffraction tomography using ultrasound. The mathematics presented can also be extended to exponential Radon transform of tensor fields and to other geometric acquisitions such as cone beam tomography of tensor fields.

  5. Adapting 3D Equilibrium Reconstruction to Reconstruct Weakly 3D H-mode Tokamaks

    NASA Astrophysics Data System (ADS)

    Cianciosa, M. R.; Hirshman, S. P.; Seal, S. K.; Unterberg, E. A.; Wilcox, R. S.; Wingen, A.; Hanson, J. D.

    2015-11-01

    The application of resonant magnetic perturbations for edge localized mode (ELM) mitigation breaks the toroidal symmetry of tokamaks. In these scenarios, the axisymmetric assumptions of the Grad-Shafranov equation no longer apply. By extension, equilibrium reconstruction tools, built around these axisymmetric assumptions, are insufficient to fully reconstruct a 3D perturbed equilibrium. 3D reconstruction tools typically work on systems where the 3D components of signals are a significant component of the input signals. In nominally axisymmetric systems, applied field perturbations can be on the order of 1% of the main field or less. To reconstruct these equilibria, the 3D component of signals must be isolated from the axisymmetric portions to provide the necessary information for reconstruction. This presentation will report on the adaptation to V3FIT for application on DIII-D H-mode discharges with applied resonant magnetic perturbations (RMPs). Newly implemented motional stark effect signals and modeling of electric field effects will also be discussed. Work supported under U.S. DOE Cooperative Agreement DE-AC05-00OR22725.

  6. Photogrammetric 3D reconstruction using mobile imaging

    NASA Astrophysics Data System (ADS)

    Fritsch, Dieter; Syll, Miguel

    2015-03-01

    In our paper we demonstrate the development of an Android Application (AndroidSfM) for photogrammetric 3D reconstruction that works on smartphones and tablets likewise. The photos are taken with mobile devices, and can thereafter directly be calibrated using standard calibration algorithms of photogrammetry and computer vision, on that device. Due to still limited computing resources on mobile devices, a client-server handshake using Dropbox transfers the photos to the sever to run AndroidSfM for the pose estimation of all photos by Structure-from-Motion and, thereafter, uses the oriented bunch of photos for dense point cloud estimation by dense image matching algorithms. The result is transferred back to the mobile device for visualization and ad-hoc on-screen measurements.

  7. 3D Reconstruction of Human Motion from Monocular Image Sequences.

    PubMed

    Wandt, Bastian; Ackermann, Hanno; Rosenhahn, Bodo

    2016-08-01

    This article tackles the problem of estimating non-rigid human 3D shape and motion from image sequences taken by uncalibrated cameras. Similar to other state-of-the-art solutions we factorize 2D observations in camera parameters, base poses and mixing coefficients. Existing methods require sufficient camera motion during the sequence to achieve a correct 3D reconstruction. To obtain convincing 3D reconstructions from arbitrary camera motion, our method is based on a-priorly trained base poses. We show that strong periodic assumptions on the coefficients can be used to define an efficient and accurate algorithm for estimating periodic motion such as walking patterns. For the extension to non-periodic motion we propose a novel regularization term based on temporal bone length constancy. In contrast to other works, the proposed method does not use a predefined skeleton or anthropometric constraints and can handle arbitrary camera motion. We achieve convincing 3D reconstructions, even under the influence of noise and occlusions. Multiple experiments based on a 3D error metric demonstrate the stability of the proposed method. Compared to other state-of-the-art methods our algorithm shows a significant improvement. PMID:27093439

  8. Iterative Reconstruction of Volumetric Particle Distribution for 3D Velocimetry

    NASA Astrophysics Data System (ADS)

    Wieneke, Bernhard; Neal, Douglas

    2011-11-01

    A number of different volumetric flow measurement techniques exist for following the motion of illuminated particles. For experiments that have lower seeding densities, 3D-PTV uses recorded images from typically 3-4 cameras and then tracks the individual particles in space and time. This technique is effective in flows that have lower seeding densities. For flows that have a higher seeding density, tomographic PIV uses a tomographic reconstruction algorithm (e.g. MART) to reconstruct voxel intensities of the recorded volume followed by the cross-correlation of subvolumes to provide the instantaneous 3D vector fields on a regular grid. A new hybrid algorithm is presented which iteratively reconstructs the 3D-particle distribution directly using particles with certain imaging properties instead of voxels as base functions. It is shown with synthetic data that this method is capable of reconstructing densely seeded flows up to 0.05 particles per pixel (ppp) with the same or higher accuracy than 3D-PTV and tomographic PIV. Finally, this new method is validated using experimental data on a turbulent jet.

  9. 3D medical volume reconstruction using web services.

    PubMed

    Kooper, Rob; Shirk, Andrew; Lee, Sang-Chul; Lin, Amy; Folberg, Robert; Bajcsy, Peter

    2008-04-01

    We address the problem of 3D medical volume reconstruction using web services. The use of proposed web services is motivated by the fact that the problem of 3D medical volume reconstruction requires significant computer resources and human expertise in medical and computer science areas. Web services are implemented as an additional layer to a dataflow framework called data to knowledge. In the collaboration between UIC and NCSA, pre-processed input images at NCSA are made accessible to medical collaborators for registration. Every time UIC medical collaborators inspected images and selected corresponding features for registration, the web service at NCSA is contacted and the registration processing query is executed using the image to knowledge library of registration methods. Co-registered frames are returned for verification by medical collaborators in a new window. In this paper, we present 3D volume reconstruction problem requirements and the architecture of the developed prototype system at http://isda.ncsa.uiuc.edu/MedVolume. We also explain the tradeoffs of our system design and provide experimental data to support our system implementation. The prototype system has been used for multiple 3D volume reconstructions of blood vessels and vasculogenic mimicry patterns in histological sections of uveal melanoma studied by fluorescent confocal laser scanning microscope. PMID:18336808

  10. Evaluation of the reliability of the maximum entropy method for reconstructing 3D and 4D NOESY-type NMR spectra of proteins.

    PubMed

    Shigemitsu, Yoshiki; Ikeya, Teppei; Yamamoto, Akihiro; Tsuchie, Yuusuke; Mishima, Masaki; Smith, Brian O; Güntert, Peter; Ito, Yutaka

    2015-02-01

    Despite their advantages in analysis, 4D NMR experiments are still infrequently used as a routine tool in protein NMR projects due to the long duration of the measurement and limited digital resolution. Recently, new acquisition techniques for speeding up multidimensional NMR experiments, such as nonlinear sampling, in combination with non-Fourier transform data processing methods have been proposed to be beneficial for 4D NMR experiments. Maximum entropy (MaxEnt) methods have been utilised for reconstructing nonlinearly sampled multi-dimensional NMR data. However, the artefacts arising from MaxEnt processing, particularly, in NOESY spectra have not yet been clearly assessed in comparison with other methods, such as quantitative maximum entropy, multidimensional decomposition, and compressed sensing. We compared MaxEnt with other methods in reconstructing 3D NOESY data acquired with variously reduced sparse sampling schedules and found that MaxEnt is robust, quick and competitive with other methods. Next, nonlinear sampling and MaxEnt processing were applied to 4D NOESY experiments, and the effect of the artefacts of MaxEnt was evaluated by calculating 3D structures from the NOE-derived distance restraints. Our results demonstrated that sufficiently converged and accurate structures (RMSD of 0.91Å to the mean and 1.36Å to the reference structures) were obtained even with NOESY spectra reconstructed from 1.6% randomly selected sampling points for indirect dimensions. This suggests that 3D MaxEnt processing in combination with nonlinear sampling schedules is still a useful and advantageous option for rapid acquisition of high-resolution 4D NOESY spectra of proteins. PMID:25545060

  11. A fast 3D surface reconstruction and volume estimation method for grain storage based on priori model

    NASA Astrophysics Data System (ADS)

    Liang, Xian-hua; Sun, Wei-dong

    2011-06-01

    Inventory checking is one of the most significant parts for grain reserves, and plays a very important role on the macro-control of food and food security. Simple, fast and accurate method to obtain internal structure information and further to estimate the volume of the grain storage is needed. Here in our developed system, a special designed multi-site laser scanning system is used to acquire the range data clouds of the internal structure of the grain storage. However, due to the seriously uneven distribution of the range data, this data should firstly be preprocessed by an adaptive re-sampling method to reduce the data redundancy as well as noise. Then the range data is segmented and useful features, such as plane and cylinder information, are extracted. With these features a coarse registration between all of these single-site range data is done, and then an Iterative Closest Point (ICP) algorithm is carried out to achieve fine registration. Taking advantage of the structure of the grain storage being well defined and the types of them are limited, a fast automatic registration method based on the priori model is proposed to register the multi-sites range data more efficiently. Then after the integration of the multi-sites range data, the grain surface is finally reconstructed by a delaunay based algorithm and the grain volume is estimated by a numerical integration method. This proposed new method has been applied to two common types of grain storage, and experimental results shown this method is more effective and accurate, and it can also avoids the cumulative effect of errors when registering the overlapped area pair-wisely.

  12. Tomographic system for 3D temperature reconstruction

    NASA Astrophysics Data System (ADS)

    Antos, Martin; Malina, Radomir

    2003-11-01

    The novel laboratory system for the optical tomography is used to obtain three-dimensional temperature field around a heated element. The Mach-Zehnder holographic interferometers with diffusive illumination of the phase object provide the possibility to scan of multidirectional holographic interferograms in the range of viewing angles from 0 deg to 108 deg. These interferograms form the input data for the computer tomography of the 3D distribution of the refractive index variation, which characterizes the physical state of the studied medium. The configuration of the system allows automatic projection scanning of the studied phase object. The computer calculates the wavefront deformation for each projection, making use of different methods of Fourier-transform and phase-sampling evaluations. The experimental set-up together with experimental results is presented.

  13. 3D multifocus astigmatism and compressed sensing (3D MACS) based superresolution reconstruction

    PubMed Central

    Huang, Jiaqing; Sun, Mingzhai; Gumpper, Kristyn; Chi, Yuejie; Ma, Jianjie

    2015-01-01

    Single molecule based superresolution techniques (STORM/PALM) achieve nanometer spatial resolution by integrating the temporal information of the switching dynamics of fluorophores (emitters). When emitter density is low for each frame, they are located to the nanometer resolution. However, when the emitter density rises, causing significant overlapping, it becomes increasingly difficult to accurately locate individual emitters. This is particularly apparent in three dimensional (3D) localization because of the large effective volume of the 3D point spread function (PSF). The inability to precisely locate the emitters at a high density causes poor temporal resolution of localization-based superresolution technique and significantly limits its application in 3D live cell imaging. To address this problem, we developed a 3D high-density superresolution imaging platform that allows us to precisely locate the positions of emitters, even when they are significantly overlapped in three dimensional space. Our platform involves a multi-focus system in combination with astigmatic optics and an ℓ1-Homotopy optimization procedure. To reduce the intrinsic bias introduced by the discrete formulation of compressed sensing, we introduced a debiasing step followed by a 3D weighted centroid procedure, which not only increases the localization accuracy, but also increases the computation speed of image reconstruction. We implemented our algorithms on a graphic processing unit (GPU), which speeds up processing 10 times compared with central processing unit (CPU) implementation. We tested our method with both simulated data and experimental data of fluorescently labeled microtubules and were able to reconstruct a 3D microtubule image with 1000 frames (512×512) acquired within 20 seconds. PMID:25798314

  14. 3D multifocus astigmatism and compressed sensing (3D MACS) based superresolution reconstruction.

    PubMed

    Huang, Jiaqing; Sun, Mingzhai; Gumpper, Kristyn; Chi, Yuejie; Ma, Jianjie

    2015-03-01

    Single molecule based superresolution techniques (STORM/PALM) achieve nanometer spatial resolution by integrating the temporal information of the switching dynamics of fluorophores (emitters). When emitter density is low for each frame, they are located to the nanometer resolution. However, when the emitter density rises, causing significant overlapping, it becomes increasingly difficult to accurately locate individual emitters. This is particularly apparent in three dimensional (3D) localization because of the large effective volume of the 3D point spread function (PSF). The inability to precisely locate the emitters at a high density causes poor temporal resolution of localization-based superresolution technique and significantly limits its application in 3D live cell imaging. To address this problem, we developed a 3D high-density superresolution imaging platform that allows us to precisely locate the positions of emitters, even when they are significantly overlapped in three dimensional space. Our platform involves a multi-focus system in combination with astigmatic optics and an ℓ 1-Homotopy optimization procedure. To reduce the intrinsic bias introduced by the discrete formulation of compressed sensing, we introduced a debiasing step followed by a 3D weighted centroid procedure, which not only increases the localization accuracy, but also increases the computation speed of image reconstruction. We implemented our algorithms on a graphic processing unit (GPU), which speeds up processing 10 times compared with central processing unit (CPU) implementation. We tested our method with both simulated data and experimental data of fluorescently labeled microtubules and were able to reconstruct a 3D microtubule image with 1000 frames (512×512) acquired within 20 seconds. PMID:25798314

  15. Reconstruction and 3D visualisation based on objective real 3D based documentation.

    PubMed

    Bolliger, Michael J; Buck, Ursula; Thali, Michael J; Bolliger, Stephan A

    2012-09-01

    Reconstructions based directly upon forensic evidence alone are called primary information. Historically this consists of documentation of findings by verbal protocols, photographs and other visual means. Currently modern imaging techniques such as 3D surface scanning and radiological methods (computer tomography, magnetic resonance imaging) are also applied. Secondary interpretation is based on facts and the examiner's experience. Usually such reconstructive expertises are given in written form, and are often enhanced by sketches. However, narrative interpretations can, especially in complex courses of action, be difficult to present and can be misunderstood. In this report we demonstrate the use of graphic reconstruction of secondary interpretation with supporting pictorial evidence, applying digital visualisation (using 'Poser') or scientific animation (using '3D Studio Max', 'Maya') and present methods of clearly distinguishing between factual documentation and examiners' interpretation based on three cases. The first case involved a pedestrian who was initially struck by a car on a motorway and was then run over by a second car. The second case involved a suicidal gunshot to the head with a rifle, in which the trigger was pushed with a rod. The third case dealt with a collision between two motorcycles. Pictorial reconstruction of the secondary interpretation of these cases has several advantages. The images enable an immediate overview, give rise to enhanced clarity, and compel the examiner to look at all details if he or she is to create a complete image. PMID:21979427

  16. 3D/3D registration of coronary CTA and biplane XA reconstructions for improved image guidance

    SciTech Connect

    Dibildox, Gerardo Baka, Nora; Walsum, Theo van; Punt, Mark; Aben, Jean-Paul; Schultz, Carl; Niessen, Wiro

    2014-09-15

    Purpose: The authors aim to improve image guidance during percutaneous coronary interventions of chronic total occlusions (CTO) by providing information obtained from computed tomography angiography (CTA) to the cardiac interventionist. To this end, the authors investigate a method to register a 3D CTA model to biplane reconstructions. Methods: The authors developed a method for registering preoperative coronary CTA with intraoperative biplane x-ray angiography (XA) images via 3D models of the coronary arteries. The models are extracted from the CTA and biplane XA images, and are temporally aligned based on CTA reconstruction phase and XA ECG signals. Rigid spatial alignment is achieved with a robust probabilistic point set registration approach using Gaussian mixture models (GMMs). This approach is extended by including orientation in the Gaussian mixtures and by weighting bifurcation points. The method is evaluated on retrospectively acquired coronary CTA datasets of 23 CTO patients for which biplane XA images are available. Results: The Gaussian mixture model approach achieved a median registration accuracy of 1.7 mm. The extended GMM approach including orientation was not significantly different (P > 0.1) but did improve robustness with regards to the initialization of the 3D models. Conclusions: The authors demonstrated that the GMM approach can effectively be applied to register CTA to biplane XA images for the purpose of improving image guidance in percutaneous coronary interventions.

  17. On detailed 3D reconstruction of large indoor environments

    NASA Astrophysics Data System (ADS)

    Bondarev, Egor

    2015-03-01

    In this paper we present techniques for highly detailed 3D reconstruction of extra large indoor environments. We discuss the benefits and drawbacks of low-range, far-range and hybrid sensing and reconstruction approaches. The proposed techniques for low-range and hybrid reconstruction, enabling the reconstruction density of 125 points/cm3 on large 100.000 m3 models, are presented in detail. The techniques tackle the core challenges for the above requirements, such as a multi-modal data fusion (fusion of a LIDAR data with a Kinect data), accurate sensor pose estimation, high-density scanning and depth data noise filtering. Other important aspects for extra large 3D indoor reconstruction are the point cloud decimation and real-time rendering. In this paper, we present a method for planar-based point cloud decimation, allowing for reduction of a point cloud size by 80-95%. Besides this, we introduce a method for online rendering of extra large point clouds enabling real-time visualization of huge cloud spaces in conventional web browsers.

  18. Reconstruction of 3D scenes from sequences of images

    NASA Astrophysics Data System (ADS)

    Niu, Bei; Sang, Xinzhu; Chen, Duo; Cai, Yuanfa

    2013-08-01

    Reconstruction of three-dimensional (3D) scenes is an active research topic in the field of computer vision and 3D display. It's a challenge to model 3D objects rapidly and effectively. A 3D model can be extracted from multiple images. The system only requires a sequence of images taken with cameras without knowing the parameters of camera, which provide flexibility to a high degree. We focus on quickly merging point cloud of the object from depth map sequences. The whole system combines algorithms of different areas in computer vision, such as camera calibration, stereo correspondence, point cloud splicing and surface reconstruction. The procedure of 3D reconstruction is decomposed into a number of successive steps. Firstly, image sequences are received by the camera freely moving around the object. Secondly, the scene depth is obtained by a non-local stereo matching algorithm. The pairwise is realized with the Scale Invariant Feature Transform (SIFT) algorithm. An initial matching is then made for the first two images of the sequence. For the subsequent image that is processed with previous image, the point of interest corresponding to ones in previous images are refined or corrected. The vertical parallax between the images is eliminated. The next step is to calibrate camera, and intrinsic parameters and external parameters of the camera are calculated. Therefore, The relative position and orientation of camera are gotten. A sequence of depth maps are acquired by using a non-local cost aggregation method for stereo matching. Then point cloud sequence is achieved by the scene depths, which consists of point cloud model using the external parameters of camera and the point cloud sequence. The point cloud model is then approximated by a triangular wire-frame mesh to reduce geometric complexity and to tailor the model to the requirements of computer graphics visualization systems. Finally, the texture is mapped onto the wire-frame model, which can also be used for 3

  19. 3DSEM++: Adaptive and intelligent 3D SEM surface reconstruction.

    PubMed

    Tafti, Ahmad P; Holz, Jessica D; Baghaie, Ahmadreza; Owen, Heather A; He, Max M; Yu, Zeyun

    2016-08-01

    Structural analysis of microscopic objects is a longstanding topic in several scientific disciplines, such as biological, mechanical, and materials sciences. The scanning electron microscope (SEM), as a promising imaging equipment has been around for decades to determine the surface properties (e.g., compositions or geometries) of specimens by achieving increased magnification, contrast, and resolution greater than one nanometer. Whereas SEM micrographs still remain two-dimensional (2D), many research and educational questions truly require knowledge and facts about their three-dimensional (3D) structures. 3D surface reconstruction from SEM images leads to remarkable understanding of microscopic surfaces, allowing informative and qualitative visualization of the samples being investigated. In this contribution, we integrate several computational technologies including machine learning, contrario methodology, and epipolar geometry to design and develop a novel and efficient method called 3DSEM++ for multi-view 3D SEM surface reconstruction in an adaptive and intelligent fashion. The experiments which have been performed on real and synthetic data assert the approach is able to reach a significant precision to both SEM extrinsic calibration and its 3D surface modeling. PMID:27200484

  20. 3D scene reconstruction based on 3D laser point cloud combining UAV images

    NASA Astrophysics Data System (ADS)

    Liu, Huiyun; Yan, Yangyang; Zhang, Xitong; Wu, Zhenzhen

    2016-03-01

    It is a big challenge capturing and modeling 3D information of the built environment. A number of techniques and technologies are now in use. These include GPS, and photogrammetric application and also remote sensing applications. The experiment uses multi-source data fusion technology for 3D scene reconstruction based on the principle of 3D laser scanning technology, which uses the laser point cloud data as the basis and Digital Ortho-photo Map as an auxiliary, uses 3DsMAX software as a basic tool for building three-dimensional scene reconstruction. The article includes data acquisition, data preprocessing, 3D scene construction. The results show that the 3D scene has better truthfulness, and the accuracy of the scene meet the need of 3D scene construction.

  1. 3D Equilibrium Reconstructions in DIII-D

    NASA Astrophysics Data System (ADS)

    Lao, L. L.; Ferraro, N. W.; Strait, E. J.; Turnbull, A. D.; King, J. D.; Hirshman, H. P.; Lazarus, E. A.; Sontag, A. C.; Hanson, J.; Trevisan, G.

    2013-10-01

    Accurate and efficient 3D equilibrium reconstruction is needed in tokamaks for study of 3D magnetic field effects on experimentally reconstructed equilibrium and for analysis of MHD stability experiments with externally imposed magnetic perturbations. A large number of new magnetic probes have been recently installed in DIII-D to improve 3D equilibrium measurements and to facilitate 3D reconstructions. The V3FIT code has been in use in DIII-D to support 3D reconstruction and the new magnetic diagnostic design. V3FIT is based on the 3D equilibrium code VMEC that assumes nested magnetic surfaces. V3FIT uses a pseudo-Newton least-square algorithm to search for the solution vector. In parallel, the EFIT equilibrium reconstruction code is being extended to allow for 3D effects using a perturbation approach based on an expansion of the MHD equations. EFIT uses the cylindrical coordinate system and can include the magnetic island and stochastic effects. Algorithms are being developed to allow EFIT to reconstruct 3D perturbed equilibria directly making use of plasma response to 3D perturbations from the GATO, MARS-F, or M3D-C1 MHD codes. DIII-D 3D reconstruction examples using EFIT and V3FIT and the new 3D magnetic data will be presented. Work supported in part by US DOE under DE-FC02-04ER54698, DE-FG02-95ER54309 and DE-AC05-06OR23100.

  2. Interactive 3D imaging technologies: application in advanced methods of jaw bone reconstruction using stem cells/pre-osteoblasts in oral surgery

    PubMed Central

    Wojtowicz, Andrzej; Perek, Jan; Popowski, Wojciech

    2014-01-01

    Cone beam computed tomography has created a specific revolution in maxillofacial imaging, facilitating the transition of diagnosis from 2D to 3D, and expanded the role of imaging from diagnosis to the possibility of actual planning. There are many varieties of cone beam computed tomography-related software available, from basic DICOM viewers to very advanced planning modules, such as InVivo Anatomage, and SimPlant (Materialise Dental). Through the use of these programs scans can be processed into a three-dimensional high-quality simulation which enables planning of the overall treatment. In this article methods of visualization are demonstrated and compared, in the example of 2 cases of reconstruction of advanced jaw bone defects using tissue engineering. Advanced imaging methods allow one to plan a miniinvasive treatment, including assessment of the bone defect's shape and localization, planning a surgical approach and individual graft preparation. PMID:25337171

  3. 3D Reconstruction of Coronary Artery Vascular Smooth Muscle Cells

    PubMed Central

    Luo, Tong; Chen, Huan; Kassab, Ghassan S.

    2016-01-01

    Aims The 3D geometry of individual vascular smooth muscle cells (VSMCs), which are essential for understanding the mechanical function of blood vessels, are currently not available. This paper introduces a new 3D segmentation algorithm to determine VSMC morphology and orientation. Methods and Results A total of 112 VSMCs from six porcine coronary arteries were used in the analysis. A 3D semi-automatic segmentation method was developed to reconstruct individual VSMCs from cell clumps as well as to extract the 3D geometry of VSMCs. A new edge blocking model was introduced to recognize cell boundary while an edge growing was developed for optimal interpolation and edge verification. The proposed methods were designed based on Region of Interest (ROI) selected by user and interactive responses of limited key edges. Enhanced cell boundary features were used to construct the cell’s initial boundary for further edge growing. A unified framework of morphological parameters (dimensions and orientations) was proposed for the 3D volume data. Virtual phantom was designed to validate the tilt angle measurements, while other parameters extracted from 3D segmentations were compared with manual measurements to assess the accuracy of the algorithm. The length, width and thickness of VSMCs were 62.9±14.9μm, 4.6±0.6μm and 6.2±1.8μm (mean±SD). In longitudinal-circumferential plane of blood vessel, VSMCs align off the circumferential direction with two mean angles of -19.4±9.3° and 10.9±4.7°, while an out-of-plane angle (i.e., radial tilt angle) was found to be 8±7.6° with median as 5.7°. Conclusions A 3D segmentation algorithm was developed to reconstruct individual VSMCs of blood vessel walls based on optical image stacks. The results were validated by a virtual phantom and manual measurement. The obtained 3D geometries can be utilized in mathematical models and leads a better understanding of vascular mechanical properties and function. PMID:26882342

  4. 3D Building Reconstruction Using Dense Photogrammetric Point Cloud

    NASA Astrophysics Data System (ADS)

    Malihi, S.; Valadan Zoej, M. J.; Hahn, M.; Mokhtarzade, M.; Arefi, H.

    2016-06-01

    Three dimensional models of urban areas play an important role in city planning, disaster management, city navigation and other applications. Reconstruction of 3D building models is still a challenging issue in 3D city modelling. Point clouds generated from multi view images of UAV is a novel source of spatial data, which is used in this research for building reconstruction. The process starts with the segmentation of point clouds of roofs and walls into planar groups. By generating related surfaces and using geometrical constraints plus considering symmetry, a 3d model of building is reconstructed. In a refinement step, dormers are extracted, and their models are reconstructed. The details of the 3d reconstructed model are in LoD3 level, with respect to modelling eaves, fractions of roof and dormers.

  5. 3D segmentation and reconstruction of endobronchial ultrasound

    NASA Astrophysics Data System (ADS)

    Zang, Xiaonan; Breslav, Mikhail; Higgins, William E.

    2013-03-01

    State-of-the-art practice for lung-cancer staging bronchoscopy often draws upon a combination of endobronchial ultrasound (EBUS) and multidetector computed-tomography (MDCT) imaging. While EBUS offers real-time in vivo imaging of suspicious lesions and lymph nodes, its low signal-to-noise ratio and tendency to exhibit missing region-of-interest (ROI) boundaries complicate diagnostic tasks. Furthermore, past efforts did not incorporate automated analysis of EBUS images and a subsequent fusion of the EBUS and MDCT data. To address these issues, we propose near real-time automated methods for three-dimensional (3D) EBUS segmentation and reconstruction that generate a 3D ROI model along with ROI measurements. Results derived from phantom data and lung-cancer patients show the promise of the methods. In addition, we present a preliminary image-guided intervention (IGI) system example, whereby EBUS imagery is registered to a patient's MDCT chest scan.

  6. 3D temperature field reconstruction using ultrasound sensing system

    NASA Astrophysics Data System (ADS)

    Liu, Yuqian; Ma, Tong; Cao, Chengyu; Wang, Xingwei

    2016-04-01

    3D temperature field reconstruction is of practical interest to the power, transportation and aviation industries and it also opens up opportunities for real time control or optimization of high temperature fluid or combustion process. In our paper, a new distributed optical fiber sensing system consisting of a series of elements will be used to generate and receive acoustic signals. This system is the first active temperature field sensing system that features the advantages of the optical fiber sensors (distributed sensing capability) and the acoustic sensors (non-contact measurement). Signals along multiple paths will be measured simultaneously enabled by a code division multiple access (CDMA) technique. Then a proposed Gaussian Radial Basis Functions (GRBF)-based approach can approximate the temperature field as a finite summation of space-dependent basis functions and time-dependent coefficients. The travel time of the acoustic signals depends on the temperature of the media. On this basis, the Gaussian functions are integrated along a number of paths which are determined by the number and distribution of sensors. The inversion problem to estimate the unknown parameters of the Gaussian functions can be solved with the measured times-of-flight (ToF) of acoustic waves and the length of propagation paths using the recursive least square method (RLS). The simulation results show an approximation error less than 2% in 2D and 5% in 3D respectively. It demonstrates the availability and efficiency of our proposed 3D temperature field reconstruction mechanism.

  7. A method for reconstructing the PDF of a 3D turbulent density field from 2D observations

    NASA Astrophysics Data System (ADS)

    Brunt, Christopher M.; Federrath, Christoph; Price, Daniel J.

    2010-06-01

    We introduce a method for calculating the probability density function (PDF) of a turbulent density field in three dimensions using only information contained in the projected two-dimensional column density field. We test the method by applying it to numerical simulations of hydrodynamic and magnetohydrodynamic turbulence in molecular clouds. To a good approximation, the PDF of log(normalized column density) is a compressed, shifted version of the PDF of log(normalized density). The degree of compression can be determined observationally from the column density power spectrum, under the assumption of statistical isotropy of the turbulence.

  8. Interior Reconstruction Using the 3d Hough Transform

    NASA Astrophysics Data System (ADS)

    Dumitru, R.-C.; Borrmann, D.; Nüchter, A.

    2013-02-01

    Laser scanners are often used to create accurate 3D models of buildings for civil engineering purposes, but the process of manually vectorizing a 3D point cloud is time consuming and error-prone (Adan and Huber, 2011). Therefore, the need to characterize and quantify complex environments in an automatic fashion arises, posing challenges for data analysis. This paper presents a system for 3D modeling by detecting planes in 3D point clouds, based on which the scene is reconstructed at a high architectural level through removing automatically clutter and foreground data. The implemented software detects openings, such as windows and doors and completes the 3D model by inpainting.

  9. One-step reconstruction of assembled 3D holographic scenes

    NASA Astrophysics Data System (ADS)

    Velez Zea, Alejandro; Barrera-Ramírez, John Fredy; Torroba, Roberto

    2015-12-01

    We present a new experimental approach for reconstructing in one step 3D scenes otherwise not feasible in a single snapshot from standard off-axis digital hologram architecture, due to a lack of illuminating resources or a limited setup size. Consequently, whenever a scene could not be wholly illuminated or the size of the scene surpasses the available setup disposition, this protocol can be implemented to solve these issues. We need neither to alter the original setup in every step nor to cover the whole scene by the illuminating source, thus saving resources. With this technique we multiplex the processed holograms of actual diffuse objects composing a scene using a two-beam off-axis holographic setup in a Fresnel approach. By registering individually the holograms of several objects and applying a spatial filtering technique, the filtered Fresnel holograms can then be added to produce a compound hologram. The simultaneous reconstruction of all objects is performed in one step using the same recovering procedure employed for single holograms. Using this technique, we were able to reconstruct, for the first time to our knowledge, a scene by multiplexing off-axis holograms of the 3D objects without cross talk. This technique is important for quantitative visualization of optically packaged multiple images and is useful for a wide range of applications. We present experimental results to support the method.

  10. Real-Time Camera Guidance for 3d Scene Reconstruction

    NASA Astrophysics Data System (ADS)

    Schindler, F.; Förstner, W.

    2012-07-01

    We propose a framework for operator guidance during the image acquisition process for reliable multi-view stereo reconstruction. Goal is to achieve full coverage of the object and sufficient overlap. Multi-view stereo is a commonly used method to reconstruct both camera trajectory and 3D object shape. After determining an initial solution, a globally optimal reconstruction is usually obtained by executing a bundle adjustment involving all images. Acquiring suitable images, however, still requires an experienced operator to ensure accuracy and completeness of the final solution. We propose an interactive framework for guiding unexperienced users or possibly an autonomous robot. Using approximate camera orientations and object points we estimate point uncertainties within a sliding bundle adjustment and suggest appropriate camera movements. A visual feedback system communicates the decisions to the user in an intuitive way. We demonstrate the suitability of our system with a virtual image acquisition simulation as well as in real-world scenarios. We show that when following the camera movements suggested by our system, the proposed framework is able to generate good approximate values for the bundle adjustment, leading to accurate results compared to ground truth after few iterations. Possible applications are non-professional 3D acquisition systems on low-cost platforms like mobile phones, autonomously navigating robots as well as online flight planning of unmanned aerial vehicles.

  11. Reconstructing White Walls: Multi-View Multi-Shot 3d Reconstruction of Textureless Surfaces

    NASA Astrophysics Data System (ADS)

    Ley, Andreas; Hänsch, Ronny; Hellwich, Olaf

    2016-06-01

    The reconstruction of the 3D geometry of a scene based on image sequences has been a very active field of research for decades. Nevertheless, there are still existing challenges in particular for homogeneous parts of objects. This paper proposes a solution to enhance the 3D reconstruction of weakly-textured surfaces by using standard cameras as well as a standard multi-view stereo pipeline. The underlying idea of the proposed method is based on improving the signal-to-noise ratio in weakly-textured regions while adaptively amplifying the local contrast to make better use of the limited numerical range in 8-bit images. Based on this premise, multiple shots per viewpoint are used to suppress statistically uncorrelated noise and enhance low-contrast texture. By only changing the image acquisition and adding a preprocessing step, a tremendous increase of up to 300% in completeness of the 3D reconstruction is achieved.

  12. 3D reconstruction of SEM images by use of optical photogrammetry software.

    PubMed

    Eulitz, Mona; Reiss, Gebhard

    2015-08-01

    Reconstruction of the three-dimensional (3D) surface of an object to be examined is widely used for structure analysis in science and many biological questions require information about their true 3D structure. For Scanning Electron Microscopy (SEM) there has been no efficient non-destructive solution for reconstruction of the surface morphology to date. The well-known method of recording stereo pair images generates a 3D stereoscope reconstruction of a section, but not of the complete sample surface. We present a simple and non-destructive method of 3D surface reconstruction from SEM samples based on the principles of optical close range photogrammetry. In optical close range photogrammetry a series of overlapping photos is used to generate a 3D model of the surface of an object. We adapted this method to the special SEM requirements. Instead of moving a detector around the object, the object itself was rotated. A series of overlapping photos was stitched and converted into a 3D model using the software commonly used for optical photogrammetry. A rabbit kidney glomerulus was used to demonstrate the workflow of this adaption. The reconstruction produced a realistic and high-resolution 3D mesh model of the glomerular surface. The study showed that SEM micrographs are suitable for 3D reconstruction by optical photogrammetry. This new approach is a simple and useful method of 3D surface reconstruction and suitable for various applications in research and teaching. PMID:26073969

  13. The sinogram polygonizer for reconstructing 3D shapes.

    PubMed

    Yamanaka, Daiki; Ohtake, Yutaka; Suzuki, Hiromasa

    2013-11-01

    This paper proposes a novel approach, the sinogram polygonizer, for directly reconstructing 3D shapes from sinograms (i.e., the primary output from X-ray computed tomography (CT) scanners consisting of projection image sequences of an object shown from different viewing angles). To obtain a polygon mesh approximating the surface of a scanned object, a grid-based isosurface polygonizer, such as Marching Cubes, has been conventionally applied to the CT volume reconstructed from a sinogram. In contrast, the proposed method treats CT values as a continuous function and directly extracts a triangle mesh based on tetrahedral mesh deformation. This deformation involves quadratic error metric minimization and optimal Delaunay triangulation for the generation of accurate, high-quality meshes. Thanks to the analytical gradient estimation of CT values, sharp features are well approximated, even though the generated mesh is very coarse. Moreover, this approach eliminates aliasing artifacts on triangle meshes. PMID:24029910

  14. The Sinogram Polygonizer for Reconstructing 3D Shapes.

    PubMed

    Yamanaka, Daiki; Ohtake, Yutaka; Suzuki, Hiromasa

    2013-05-24

    This paper proposes a novel approach, the sinogram polygonizer, for directly reconstructing 3D shapes from sinograms (i.e., the primary output from X-ray computed tomography (CT) scanners consisting of projection image sequences of an object shown from different viewing angles). To obtain a polygon mesh approximating the surface of a scanned object, a grid-based isosurface polygonizer, such as Marching Cubes, has been conventionally applied to the CT volume reconstructed from a sinogram. In contrast, the proposed method treats CT values as a continuous function and directly extracts a triangle mesh based on tetrahedral mesh deformation. This deformation involves quadratic error metric minimization and optimal Delaunay triangulation for the generation of accurate, high-quality meshes. Thanks to the analytical gradient estimation of CT values, sharp features are well approximated, even though the generated mesh is very coarse. Moreover, this approach eliminates aliasing artifacts on triangle meshes. PMID:23712999

  15. Digital Reconstruction of 3D Polydisperse Dry Foam

    NASA Astrophysics Data System (ADS)

    Chieco, A.; Feitosa, K.; Roth, A. E.; Korda, P. T.; Durian, D. J.

    2012-02-01

    Dry foam is a disordered packing of bubbles that distort into familiar polyhedral shapes. We have implemented a method that uses optical axial tomography to reconstruct the internal structure of a dry foam in three dimensions. The technique consists of taking a series of photographs of the dry foam against a uniformly illuminated background at successive angles. By summing the projections we create images of the foam cross section. Image analysis of the cross sections allows us to locate Plateau borders and vertices. The vertices are then connected according to Plateau's rules to reconstruct the internal structure of the foam. Using this technique we are able to visualize a large number of bubbles of real 3D foams and obtain statistics of faces and edges.

  16. 3D Reconstruction of Irregular Buildings and Buddha Statues

    NASA Astrophysics Data System (ADS)

    Zhang, K.; Li, M.-j.

    2014-04-01

    Three-dimensional laser scanning could acquire object's surface data quickly and accurately. However, the post-processing of point cloud is not perfect and could be improved. Based on the study of 3D laser scanning technology, this paper describes the details of solutions to modelling irregular ancient buildings and Buddha statues in Jinshan Temple, which aiming at data acquisition, modelling and texture mapping, etc. In order to modelling irregular ancient buildings effectively, the structure of each building is extracted manually by point cloud and the textures are mapped by the software of 3ds Max. The methods clearly combine 3D laser scanning technology with traditional modelling methods, and greatly improves the efficiency and accuracy of the ancient buildings restored. On the other hand, the main idea of modelling statues is regarded as modelling objects in reverse engineering. The digital model of statues obtained is not just vivid, but also accurate in the field of surveying and mapping. On this basis, a 3D scene of Jinshan Temple is reconstructed, which proves the validity of the solutions.

  17. Tomographic compressive holographic reconstruction of 3D objects

    NASA Astrophysics Data System (ADS)

    Nehmetallah, G.; Williams, L.; Banerjee, P. P.

    2012-10-01

    Compressive holography with multiple projection tomography is applied to solve the inverse ill-posed problem of reconstruction of 3D objects with high axial accuracy. To visualize the 3D shape, we propose Digital Tomographic Compressive Holography (DiTCH), where projections from more than one direction as in tomographic imaging systems can be employed, so that a 3D shape with better axial resolution can be reconstructed. We compare DiTCH with single-beam holographic tomography (SHOT) which is based on Fresnel back-propagation. A brief theory of DiTCH is presented, and experimental results of 3D shape reconstruction of objects using DITCH and SHOT are compared.

  18. 3D Flow reconstruction using ultrasound PIV

    NASA Astrophysics Data System (ADS)

    Poelma, C.; Mari, J. M.; Foin, N.; Tang, M.-X.; Krams, R.; Caro, C. G.; Weinberg, P. D.; Westerweel, J.

    2011-04-01

    Ultrasound particle image velocimetry (PIV) can be used to obtain velocity fields in non-transparent geometries and/or fluids. In the current study, we use this technique to document the flow in a curved tube, using ultrasound contrast bubbles as flow tracer particles. The performance of the technique is first tested in a straight tube, with both steady laminar and pulsatile flows. Both experiments confirm that the technique is capable of reliable measurements. A number of adaptations are introduced that improve the accuracy and applicability of ultrasound PIV. Firstly, due to the method of ultrasound image acquisition, a correction is required for the estimation of velocities from tracer displacements. This correction accounts for the fact that columns in the image are recorded at slightly different instances. The second improvement uses a slice-by-slice scanning approach to obtain three-dimensional velocity data. This approach is here demonstrated in a strongly curved tube. The resulting flow profiles and wall shear stress distribution shows a distinct asymmetry. To meaningfully interpret these three-dimensional results, knowledge of the measurement thickness is required. Our third contribution is a method to determine this quantity, using the correlation peak heights. The latter method can also provide the third (out-of-plane) component if the measurement thickness is known, so that all three velocity components are available using a single probe.

  19. 3D Surface Reconstruction and Volume Calculation of Rills

    NASA Astrophysics Data System (ADS)

    Brings, Christine; Gronz, Oliver; Becker, Kerstin; Wirtz, Stefan; Seeger, Manuel; Ries, Johannes B.

    2015-04-01

    We use the low-cost, user-friendly photogrammetric Structure from Motion (SfM) technique, which is implemented in the Software VisualSfM, for 3D surface reconstruction and volume calculation of an 18 meter long rill in Luxembourg. The images were taken with a Canon HD video camera 1) before a natural rainfall event, 2) after a natural rainfall event and before a rill experiment and 3) after a rill experiment. Recording with a video camera results compared to a photo camera not only a huge time advantage, the method also guarantees more than adequately overlapping sharp images. For each model, approximately 8 minutes of video were taken. As SfM needs single images, we automatically selected the sharpest image from 15 frame intervals. The sharpness was estimated using a derivative-based metric. Then, VisualSfM detects feature points in each image, searches matching feature points in all image pairs, recovers the camera positions and finally by triangulation of camera positions and feature points the software reconstructs a point cloud of the rill surface. From the point cloud, 3D surface models (meshes) are created and via difference calculations of the pre and post models a visualization of the changes (erosion and accumulation areas) and quantification of erosion volumes are possible. The calculated volumes are presented in spatial units of the models and so real values must be converted via references. The outputs are three models at three different points in time. The results show that especially using images taken from suboptimal videos (bad lighting conditions, low contrast of the surface, too much in-motion unsharpness), the sharpness algorithm leads to much more matching features. Hence the point densities of the 3D models are increased and thereby clarify the calculations.

  20. Fast fully 3-D image reconstruction in PET using planograms.

    PubMed

    Brasse, D; Kinahan, P E; Clackdoyle, R; Defrise, M; Comtat, C; Townsend, D W

    2004-04-01

    We present a method of performing fast and accurate three-dimensional (3-D) backprojection using only Fourier transform operations for line-integral data acquired by planar detector arrays in positron emission tomography. This approach is a 3-D extension of the two-dimensional (2-D) linogram technique of Edholm. By using a special choice of parameters to index a line of response (LOR) for a pair of planar detectors, rather than the conventional parameters used to index a LOR for a circular tomograph, all the LORs passing through a point in the field of view (FOV) lie on a 2-D plane in the four-dimensional (4-D) data space. Thus, backprojection of all the LORs passing through a point in the FOV corresponds to integration of a 2-D plane through the 4-D "planogram." The key step is that the integration along a set of parallel 2-D planes through the planogram, that is, backprojection of a plane of points, can be replaced by a 2-D section through the origin of the 4-D Fourier transform of the data. Backprojection can be performed as a sequence of Fourier transform operations, for faster implementation. In addition, we derive the central-section theorem for planogram format data, and also derive a reconstruction filter for both backprojection-filtering and filtered-backprojection reconstruction algorithms. With software-based Fourier transform calculations we provide preliminary comparisons of planogram backprojection to standard 3-D backprojection and demonstrate a reduction in computation time by a factor of approximately 15. PMID:15084067

  1. Colored 3D surface reconstruction using Kinect sensor

    NASA Astrophysics Data System (ADS)

    Guo, Lian-peng; Chen, Xiang-ning; Chen, Ying; Liu, Bin

    2015-03-01

    A colored 3D surface reconstruction method which effectively fuses the information of both depth and color image using Microsoft Kinect is proposed and demonstrated by experiment. Kinect depth images are processed with the improved joint-bilateral filter based on region segmentation which efficiently combines the depth and color data to improve its quality. The registered depth data are integrated to achieve a surface reconstruction through the colored truncated signed distance fields presented in this paper. Finally, the improved ray casting for rendering full colored surface is implemented to estimate color texture of the reconstruction object. Capturing the depth and color images of a toy car, the improved joint-bilateral filter based on region segmentation is used to improve the quality of depth images and the peak signal-to-noise ratio (PSNR) is approximately 4.57 dB, which is better than 1.16 dB of the joint-bilateral filter. The colored construction results of toy car demonstrate the suitability and ability of the proposed method.

  2. Single view-based 3D face reconstruction robust to self-occlusion

    NASA Astrophysics Data System (ADS)

    Lee, Youn Joo; Lee, Sung Joo; Park, Kang Ryoung; Jo, Jaeik; Kim, Jaihie

    2012-12-01

    State-of-the-art 3D morphable model (3DMM) is used widely for 3D face reconstruction based on a single image. However, this method has a high computational cost, and hence, a simplified 3D morphable model (S3DMM) was proposed as an alternative. Unlike the original 3DMM, S3DMM uses only a sparse 3D facial shape, and therefore, it incurs a lower computational cost. However, this method is vulnerable to self-occlusion due to head rotation. Therefore, we propose a solution to the self-occlusion problem in S3DMM-based 3D face reconstruction. This research is novel compared with previous works, in the following three respects. First, self-occlusion of the input face is detected automatically by estimating the head pose using a cylindrical head model. Second, a 3D model fitting scheme is designed based on selected visible facial feature points, which facilitates 3D face reconstruction without any effect from self-occlusion. Third, the reconstruction performance is enhanced by using the estimated pose as the initial pose parameter during the 3D model fitting process. The experimental results showed that the self-occlusion detection had high accuracy and our proposed method delivered a noticeable improvement in the 3D face reconstruction performance compared with previous methods.

  3. 3D Reconstruction For The Detection Of Cranial Anomalies

    NASA Astrophysics Data System (ADS)

    Kettner, B.; Shalev, S.; Lavelle, C.

    1986-01-01

    There is a growing interest in the use of three-dimensional (3D) cranial reconstruction from CT scans for surgical planning. A low-cost imaging system has been developed, which provides pseudo-3D images which may be manipulated to reveal the craniofacial skeleton as a whole or any particular component region. The contrast between congenital (hydrocephalic), normocephalic and acquired (carcinoma of the maxillary sinus) anomalous cranial forms demonstrates the potential of this system.

  4. Bound constrained bundle adjustment for reliable 3D reconstruction.

    PubMed

    Gong, Yuanzheng; Meng, De; Seibel, Eric J

    2015-04-20

    Bundle adjustment (BA) is a common estimation algorithm that is widely used in machine vision as the last step in a feature-based three-dimensional (3D) reconstruction algorithm. BA is essentially a non-convex non-linear least-square problem that can simultaneously solve the 3D coordinates of all the feature points describing the scene geometry, as well as the parameters of the camera. The conventional BA takes a parameter either as a fixed value or as an unconstrained variable based on whether the parameter is known or not. In cases where the known parameters are inaccurate but constrained in a range, conventional BA results in an incorrect 3D reconstruction by using these parameters as fixed values. On the other hand, these inaccurate parameters can be treated as unknown variables, but this does not exploit the knowledge of the constraints, and the resulting reconstruction can be erroneous since the BA optimization halts at a dramatically incorrect local minimum due to its non-convexity. In many practical 3D reconstruction applications, unknown variables with range constraints are usually available, such as a measurement with a range of uncertainty or a bounded estimate. Thus to better utilize these pre-known, constrained, but inaccurate parameters, a bound constrained bundle adjustment (BCBA) algorithm is proposed, developed and tested in this study. A scanning fiber endoscope (the camera) is used to capture a sequence of images above a surgery phantom (the object) of known geometry. 3D virtual models are reconstructed based on these images and then compared with the ground truth. The experimental results demonstrate BCBA can achieve a more reliable, rapid, and accurate 3D reconstruction than conventional bundle adjustment. PMID:25969115

  5. Bound constrained bundle adjustment for reliable 3D reconstruction

    PubMed Central

    Gong, Yuanzheng; Meng, De; Seibel, Eric J.

    2015-01-01

    Bundle adjustment (BA) is a common estimation algorithm that is widely used in machine vision as the last step in a feature-based three-dimensional (3D) reconstruction algorithm. BA is essentially a non-convex non-linear least-square problem that can simultaneously solve the 3D coordinates of all the feature points describing the scene geometry, as well as the parameters of the camera. The conventional BA takes a parameter either as a fixed value or as an unconstrained variable based on whether the parameter is known or not. In cases where the known parameters are inaccurate but constrained in a range, conventional BA results in an incorrect 3D reconstruction by using these parameters as fixed values. On the other hand, these inaccurate parameters can be treated as unknown variables, but this does not exploit the knowledge of the constraints, and the resulting reconstruction can be erroneous since the BA optimization halts at a dramatically incorrect local minimum due to its non-convexity. In many practical 3D reconstruction applications, unknown variables with range constraints are usually available, such as a measurement with a range of uncertainty or a bounded estimate. Thus to better utilize these pre-known, constrained, but inaccurate parameters, a bound constrained bundle adjustment (BCBA) algorithm is proposed, developed and tested in this study. A scanning fiber endoscope (the camera) is used to capture a sequence of images above a surgery phantom (the object) of known geometry. 3D virtual models are reconstructed based on these images and then compared with the ground truth. The experimental results demonstrate BCBA can achieve a more reliable, rapid, and accurate 3D reconstruction than conventional bundle adjustment. PMID:25969115

  6. Opti-acoustic stereo imaging: on system calibration and 3-D target reconstruction.

    PubMed

    Negahdaripour, Shahriar; Sekkati, Hicham; Pirsiavash, Hamed

    2009-06-01

    Utilization of an acoustic camera for range measurements is a key advantage for 3-D shape recovery of underwater targets by opti-acoustic stereo imaging, where the associated epipolar geometry of optical and acoustic image correspondences can be described in terms of conic sections. In this paper, we propose methods for system calibration and 3-D scene reconstruction by maximum likelihood estimation from noisy image measurements. The recursive 3-D reconstruction method utilized as initial condition a closed-form solution that integrates the advantages of two other closed-form solutions, referred to as the range and azimuth solutions. Synthetic data tests are given to provide insight into the merits of the new target imaging and 3-D reconstruction paradigm, while experiments with real data confirm the findings based on computer simulations, and demonstrate the merits of this novel 3-D reconstruction paradigm. PMID:19380272

  7. 3D Lunar Terrain Reconstruction from Apollo Images

    NASA Technical Reports Server (NTRS)

    Broxton, Michael J.; Nefian, Ara V.; Moratto, Zachary; Kim, Taemin; Lundy, Michael; Segal, Alkeksandr V.

    2009-01-01

    Generating accurate three dimensional planetary models is becoming increasingly important as NASA plans manned missions to return to the Moon in the next decade. This paper describes a 3D surface reconstruction system called the Ames Stereo Pipeline that is designed to produce such models automatically by processing orbital stereo imagery. We discuss two important core aspects of this system: (1) refinement of satellite station positions and pose estimates through least squares bundle adjustment; and (2) a stochastic plane fitting algorithm that generalizes the Lucas-Kanade method for optimal matching between stereo pair images.. These techniques allow us to automatically produce seamless, highly accurate digital elevation models from multiple stereo image pairs while significantly reducing the influence of image noise. Our technique is demonstrated on a set of 71 high resolution scanned images from the Apollo 15 mission

  8. New Reconstruction Accuracy Metric for 3D PIV

    NASA Astrophysics Data System (ADS)

    Bajpayee, Abhishek; Techet, Alexandra

    2015-11-01

    Reconstruction for 3D PIV typically relies on recombining images captured from different viewpoints via multiple cameras/apertures. Ideally, the quality of reconstruction dictates the accuracy of the derived velocity field. A reconstruction quality parameter Q is commonly used as a measure of the accuracy of reconstruction algorithms. By definition, a high Q value requires intensity peak levels and shapes in the reconstructed and reference volumes to be matched. We show that accurate velocity fields rely only on the peak locations in the volumes and not on intensity peak levels and shapes. In synthetic aperture (SA) PIV reconstructions, the intensity peak shapes and heights vary with the number of cameras and due to spatial/temporal particle intensity variation respectively. This lowers Q but not the accuracy of the derived velocity field. We introduce a new velocity vector correlation factor Qv as a metric to assess the accuracy of 3D PIV techniques, which provides a better indication of algorithm accuracy. For SAPIV, the number of cameras required for a high Qv are lower than that for a high Q. We discuss Qv in the context of 3D PIV and also present a preliminary comparison of the performance of TomoPIV and SAPIV based on Qv.

  9. The new CORIMP CME catalog & 3D reconstructions

    NASA Astrophysics Data System (ADS)

    Byrne, Jason; Morgan, Huw; Gallagher, Peter; Habbal, Shadia; Davies, Jackie

    2015-04-01

    A new coronal mass ejection catalog has been built from a unique set of coronal image processing techniques, called CORIMP, that overcomes many of the limitations of current catalogs in operation. An online database has been produced for the SOHO/LASCO data and event detections therein; providing information on CME onset time, position angle, angular width, speed, acceleration, and mass, along with kinematic plots and observation movies. The high-fidelity and robustness of these methods and derived CME structure and kinematics will lead to an improved understanding of the dynamics of CMEs, and a realtime version of the algorithm has been implemented to provide CME detection alerts to the interested space weather community. Furthermore, STEREO data has been providing the ability to perform 3D reconstructions of CMEs that are observed in multipoint observations. This allows a determination of the 3D kinematics and morphologies of CMEs characterised in STEREO data via the 'elliptical tie-pointing' technique. The associated observations of SOHO, SDO and PROBA2 (and intended use of K-Cor) provide additional measurements and constraints on the CME analyses in order to improve their accuracy.

  10. Automated 3D reconstruction of interiors with multiple scan views

    NASA Astrophysics Data System (ADS)

    Sequeira, Vitor; Ng, Kia C.; Wolfart, Erik; Goncalves, Joao G. M.; Hogg, David C.

    1998-12-01

    This paper presents two integrated solutions for realistic 3D model acquisition and reconstruction; an early prototype, in the form of a push trolley, and a later prototype in the form of an autonomous robot. The systems encompass all hardware and software required, from laser and video data acquisition, processing and output of texture-mapped 3D models in VRML format, to batteries for power supply and wireless network communications. The autonomous version is also equipped with a mobile platform and other sensors for the purpose of automatic navigation. The applications for such a system range from real estate and tourism (e.g., showing a 3D computer model of a property to a potential buyer or tenant) or as tool for content creation (e.g., creating 3D models of heritage buildings or producing broadcast quality virtual studios). The system can also be used in industrial environments as a reverse engineering tool to update the design of a plant, or as a 3D photo-archive for insurance purposes. The system is Internet compatible: the photo-realistic models can be accessed via the Internet and manipulated interactively in 3D using a common Web browser with a VRML plug-in. Further information and example reconstructed models are available on- line via the RESOLV web-page at http://www.scs.leeds.ac.uk/resolv/.

  11. 3D video sequence reconstruction algorithms implemented on a DSP

    NASA Astrophysics Data System (ADS)

    Ponomaryov, V. I.; Ramos-Diaz, E.

    2011-03-01

    A novel approach for 3D image and video reconstruction is proposed and implemented. This is based on the wavelet atomic functions (WAF) that have demonstrated better approximation properties in different processing problems in comparison with classical wavelets. Disparity maps using WAF are formed, and then they are employed in order to present 3D visualization using color anaglyphs. Additionally, the compression via Pth law is performed to improve the disparity map quality. Other approaches such as optical flow and stereo matching algorithm are also implemented as the comparative approaches. Numerous simulation results have justified the efficiency of the novel framework. The implementation of the proposed algorithm on the Texas Instruments DSP TMS320DM642 permits to demonstrate possible real time processing mode during 3D video reconstruction for images and video sequences.

  12. Incremental volume reconstruction and rendering for 3-D ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Ohbuchi, Ryutarou; Chen, David; Fuchs, Henry

    1992-09-01

    In this paper, we present approaches toward an interactive visualization of a real time input, applied to 3-D visualizations of 2-D ultrasound echography data. The first, 3 degrees-of- freedom (DOF) incremental system visualizes a 3-D volume acquired as a stream of 2-D slices with location and orientation with 3 DOF. As each slice arrives, the system reconstructs a regular 3-D volume and renders it. Rendering is done by an incremental image-order ray- casting algorithm which stores and reuses the results of expensive resampling along the rays for speed. The second is our first experiment toward real-time 6 DOF acquisition and visualization. Two-dimensional slices with 6 DOF are reconstructed off-line, and visualized at an interactive rate using a parallel volume rendering code running on the graphics multicomputer Pixel-Planes 5.

  13. Gene Electrotransfer in 3D Reconstructed Human Dermal Tissue.

    PubMed

    Madi, Moinecha; Rols, Marie-Pierre; Gibot, Laure

    2016-01-01

    Gene electrotransfer into the skin is of particular interest for the development of medical applications including DNA vaccination, cancer treatment, wound healing or treatment of local skin disorders. However, such clinical applications are currently limited due to poor understanding of the mechanisms governing DNA electrotransfer within human tissue. Nowadays, most studies are carried out in rodent models but rodent skin varies from human skin in terms of cell composition and architecture. We used a tissue-engineering approach to study gene electrotransfer mechanisms in a human tissue context. Primary human dermal fibroblasts were cultured according to the self-assembly method to produce 3D reconstructed human dermal tissue. In this study, we showed that cells of the reconstructed cutaneous tissue were efficiently electropermeabilized by applying millisecond electric pulses, without affecting their viability. A reporter gene was successfully electrotransferred into this human tissue and gene expression was detected for up to 48h. Interestingly, the transfected cells were solely located on the upper surface of the tissue, where they were in close contact with plasmid DNA solution. Furthermore, we report evidences that electrotransfection success depends on plasmid mobility within tissue- rich in collagens, but not on cell proliferation status. In conclusion, in addition to proposing a reliable alternative to animal experiments, tissue engineering produces valid biological tool for the in vitro study of gene electrotransfer mechanisms in human tissue. PMID:27029947

  14. 3D reconstruction with two webcams and a laser line projector

    NASA Astrophysics Data System (ADS)

    Li, Dongdong; Hui, Bingwei; Qiu, Shaohua; Wen, Gongjian

    2014-09-01

    Three-dimensional (3D) reconstruction is one of the most attractive research topics in photogrammetry and computer vision. Nowadays 3D reconstruction with simple and consumable equipment plays an important role. In this paper, a 3D reconstruction desktop system is built based on binocular stereo vision using a laser scanner. The hardware requirements are a simple commercial hand-held laser line projector and two common webcams for image acquisition. Generally, 3D reconstruction based on passive triangulation methods requires point correspondences among various viewpoints. The development of matching algorithms remains a challenging task in computer vision. In our proposal, with the help of a laser line projector, stereo correspondences are established robustly from epipolar geometry and the laser shadow on the scanned object. To establish correspondences more conveniently, epipolar rectification is employed using Bouguet's method after stereo calibration with a printed chessboard. 3D coordinates of the observed points are worked out with rayray triangulation and reconstruction outliers are removed with the planarity constraint of the laser plane. Dense 3D point clouds are derived from multiple scans under different orientations. Each point cloud is derived by sweeping the laser plane across the object requiring 3D reconstruction. The Iterative Closest Point algorithm is employed to register the derived point clouds. Rigid body transformation between neighboring scans is obtained to get the complete 3D point cloud. Finally polygon meshes are reconstructed from the derived point cloud and color images are used in texture mapping to get a lifelike 3D model. Experiments show that our reconstruction method is simple and efficient.

  15. Advanced system for 3D dental anatomy reconstruction and 3D tooth movement simulation during orthodontic treatment

    NASA Astrophysics Data System (ADS)

    Monserrat, Carlos; Alcaniz-Raya, Mariano L.; Juan, M. Carmen; Grau Colomer, Vincente; Albalat, Salvador E.

    1997-05-01

    This paper describes a new method for 3D orthodontics treatment simulation developed for an orthodontics planning system (MAGALLANES). We develop an original system for 3D capturing and reconstruction of dental anatomy that avoid use of dental casts in orthodontic treatments. Two original techniques are presented, one direct in which data are acquired directly form patient's mouth by mean of low cost 3D digitizers, and one mixed in which data are obtained by 3D digitizing of hydrocollids molds. FOr this purpose we have designed and manufactured an optimized optical measuring system based on laser structured light. We apply these 3D dental models to simulate 3D movement of teeth, including rotations, during orthodontic treatment. The proposed algorithms enable to quantify the effect of orthodontic appliance on tooth movement. The developed techniques has been integrated in a system named MAGALLANES. This original system present several tools for 3D simulation and planning of orthodontic treatments. The prototype system has been tested in several orthodontic clinic with very good results.

  16. Robust registration for removing vibrations in 3D reconstruction of web material

    NASA Astrophysics Data System (ADS)

    Usamentiaga, Rubén; Garcia, Daniel F.

    2015-05-01

    Vibrations are a major challenge in laser-based 3D reconstruction of web material. In uncontrolled environments, the movement of web material forward along a track is inevitably affected by vibrations. These oscillations significantly degrade the performance of the 3D reconstruction system, as they are incorrectly interpreted as irregularities on the surface of the material, leading to an erroneous reconstruction of the 3D surface. This work proposes a method to estimate and remove these vibrations based on a robust registration procedure. Registration is used to estimate vibrations and a rigid transformation is used to compensate the movements, removing the effects of vibrations on 3D reconstruction. The proposed method is applied to an extensive dataset, both synthetic and real, with very good results.

  17. 3D surface reconstruction based on image stitching from gastric endoscopic video sequence

    NASA Astrophysics Data System (ADS)

    Duan, Mengyao; Xu, Rong; Ohya, Jun

    2013-09-01

    This paper proposes a method for reconstructing 3D detailed structures of internal organs such as gastric wall from endoscopic video sequences. The proposed method consists of the four major steps: Feature-point-based 3D reconstruction, 3D point cloud stitching, dense point cloud creation and Poisson surface reconstruction. Before the first step, we partition one video sequence into groups, where each group consists of two successive frames (image pairs), and each pair in each group contains one overlapping part, which is used as a stitching region. Fist, the 3D point cloud of each group is reconstructed by utilizing structure from motion (SFM). Secondly, a scheme based on SIFT features registers and stitches the obtained 3D point clouds, by estimating the transformation matrix of the overlapping part between different groups with high accuracy and efficiency. Thirdly, we select the most robust SIFT feature points as the seed points, and then obtain the dense point cloud from sparse point cloud via a depth testing method presented by Furukawa. Finally, by utilizing Poisson surface reconstruction, polygonal patches for the internal organs are obtained. Experimental results demonstrate that the proposed method achieves a high accuracy and efficiency for 3D reconstruction of gastric surface from an endoscopic video sequence.

  18. A 3D Level Set Method for Microwave Breast Imaging

    PubMed Central

    Colgan, Timothy J.; Hagness, Susan C.; Van Veen, Barry D.

    2015-01-01

    Objective Conventional inverse-scattering algorithms for microwave breast imaging result in moderate resolution images with blurred boundaries between tissues. Recent 2D numerical microwave imaging studies demonstrate that the use of a level set method preserves dielectric boundaries, resulting in a more accurate, higher resolution reconstruction of the dielectric properties distribution. Previously proposed level set algorithms are computationally expensive and thus impractical in 3D. In this paper we present a computationally tractable 3D microwave imaging algorithm based on level sets. Methods We reduce the computational cost of the level set method using a Jacobian matrix, rather than an adjoint method, to calculate Frechet derivatives. We demonstrate the feasibility of 3D imaging using simulated array measurements from 3D numerical breast phantoms. We evaluate performance by comparing full 3D reconstructions to those from a conventional microwave imaging technique. We also quantitatively assess the efficacy of our algorithm in evaluating breast density. Results Our reconstructions of 3D numerical breast phantoms improve upon those of a conventional microwave imaging technique. The density estimates from our level set algorithm are more accurate than those of conventional microwave imaging, and the accuracy is greater than that reported for mammographic density estimation. Conclusion Our level set method leads to a feasible level of computational complexity for full 3D imaging, and reconstructs the heterogeneous dielectric properties distribution of the breast more accurately than conventional microwave imaging methods. Significance 3D microwave breast imaging using a level set method is a promising low-cost, non-ionizing alternative to current breast imaging techniques. PMID:26011863

  19. [3D Super-resolution Reconstruction and Visualization of Pulmonary Nodules from CT Image].

    PubMed

    Wang, Bing; Fan, Xing; Yang, Ying; Tian, Xuedong; Gu, Lixu

    2015-08-01

    The aim of this study was to propose an algorithm for three-dimensional projection onto convex sets (3D POCS) to achieve super resolution reconstruction of 3D lung computer tomography (CT) images, and to introduce multi-resolution mixed display mode to make 3D visualization of pulmonary nodules. Firstly, we built the low resolution 3D images which have spatial displacement in sub pixel level between each other and generate the reference image. Then, we mapped the low resolution images into the high resolution reference image using 3D motion estimation and revised the reference image based on the consistency constraint convex sets to reconstruct the 3D high resolution images iteratively. Finally, we displayed the different resolution images simultaneously. We then estimated the performance of provided method on 5 image sets and compared them with those of 3 interpolation reconstruction methods. The experiments showed that the performance of 3D POCS algorithm was better than that of 3 interpolation reconstruction methods in two aspects, i.e., subjective and objective aspects, and mixed display mode is suitable to the 3D visualization of high resolution of pulmonary nodules. PMID:26710449

  20. 3D digital breast tomosynthesis image reconstruction using anisotropic total variation minimization.

    PubMed

    Seyyedi, Saeed; Yildirim, Isa

    2014-01-01

    This paper presents a compressed sensing based reconstruction method for 3D digital breast tomosynthesis (DBT) imaging. Algebraic reconstruction technique (ART) has been in use in DBT imaging by minimizing the isotropic total variation (TV) of the reconstructed image. The resolution in DBT differs in sagittal and axial directions which should be encountered during the TV minimization. In this study we develop a 3D anisotropic TV (ATV) minimization by considering the different resolutions in different directions. A customized 3D Shepp-logan phantom was generated to mimic a real DBT image by considering the overlapping tissue and directional resolution issues. Results of the ART, ART+3D TV and ART+3D ATV are compared using structural similarity (SSIM) diagram. PMID:25571377

  1. Combinatorial clustering and Its Application to 3D Polygonal Traffic Sign Reconstruction From Multiple Images

    NASA Astrophysics Data System (ADS)

    Vallet, B.; Soheilian, B.; Brédif, M.

    2014-08-01

    The 3D reconstruction of similar 3D objects detected in 2D faces a major issue when it comes to grouping the 2D detections into clusters to be used to reconstruct the individual 3D objects. Simple clustering heuristics fail as soon as similar objects are close. This paper formulates a framework to use the geometric quality of the reconstruction as a hint to do a proper clustering. We present a methodology to solve the resulting combinatorial optimization problem with some simplifications and approximations in order to make it tractable. The proposed method is applied to the reconstruction of 3D traffic signs from their 2D detections to demonstrate its capacity to solve ambiguities.

  2. A new algorithm for 3D reconstruction from support functions.

    PubMed

    Gardner, Richard J; Kiderlen, Markus

    2009-03-01

    We introduce a new algorithm for reconstructing an unknown shape from a finite number of noisy measurements of its support function. The algorithm, based on a least squares procedure, is very easy to program in standard software such as Matlab, and it works for both 2D and 3D reconstructions (in fact, in principle, in any dimension). Reconstructions may be obtained without any pre- or post-processing steps and with no restriction on the sets of measurement directions except their number, a limitation dictated only by computing time. An algorithm due to Prince and Willsky was implemented earlier for 2D reconstructions, and we compare the performance of their algorithm and ours. But our algorithm is the first that works for 3D reconstructions with the freedom stated in the previous paragraph. Moreover, under mild conditions, theory guarantees that outputs of the new algorithm will converge to the input shape as the number of measurements increases. In addition we offer a linear program version of the new algorithm that is much faster and better, or at least comparable, in performance at low levels of noise and reasonably small numbers of measurements. Another modification of the algorithm, suitable for use in a "focus of attention" scheme, is also described. PMID:19147881

  3. Appearance of bony lesions on 3-D CT reconstructions: a case study in variable renderings

    NASA Astrophysics Data System (ADS)

    Mankovich, Nicholas J.; White, Stuart C.

    1992-05-01

    This paper discusses conventional 3-D reconstruction for bone visualization and presents a case study to demonstrate the dangers of performing 3-D reconstructions without careful selection of the bone threshold. The visualization of midface bone lesions directly from axial CT images is difficult because of the complex anatomic relationships. Three-dimensional reconstructions made from the CT to provide graphic images showing lesions in relation to adjacent facial bones. Most commercially available 3-D image reconstruction requires that the radiologist or technologist identify a threshold image intensity value that can be used to distinguish bone from other tissues. Much has been made of the many disadvantages of this technique, but it continues as the predominant method in producing 3-D pictures for clinical use. This paper is intended to provide a clear demonstration for the physician of the caveats that should accompany 3-D reconstructions. We present a case of recurrent odontogenic keratocyst in the anterior maxilla where the 3-D reconstructions, made with different bone thresholds (windows), are compared to the resected specimen. A DMI 3200 computer was used to convert the scan data from a GE 9800 CT into a 3-D shaded surface image. Threshold values were assigned to (1) generate the most clinically pleasing image, (2) produce maximum theoretical fidelity (using the midpoint image intensity between average cortical bone and average soft tissue), and (3) cover stepped threshold intensities between these two methods. We compared the computer lesions with the resected specimen and noted measurement errors of up to 44 percent introduced by inappropriate bone threshold levels. We suggest clinically applicable standardization techniques in the 3-D reconstruction as well as cautionary language that should accompany the 3-D images.

  4. Scattering robust 3D reconstruction via polarized transient imaging.

    PubMed

    Wu, Rihui; Suo, Jinli; Dai, Feng; Zhang, Yongdong; Dai, Qionghai

    2016-09-01

    Reconstructing 3D structure of scenes in the scattering medium is a challenging task with great research value. Existing techniques often impose strong assumptions on the scattering behaviors and are of limited performance. Recently, a low-cost transient imaging system has provided a feasible way to resolve the scene depth, by detecting the reflection instant on the time profile of a surface point. However, in cases with scattering medium, the rays are both reflected and scattered during transmission, and the depth calculated from the time profile largely deviates from the true value. To handle this problem, we used the different polarization behaviors of the reflection and scattering components, and introduced active polarization to separate the reflection component to estimate the scattering robust depth. Our experiments have demonstrated that our approach can accurately reconstruct the 3D structure underlying the scattering medium. PMID:27607944

  5. Diachronic 3d Reconstruction for Lost Cultural Heritage

    NASA Astrophysics Data System (ADS)

    Guidi, G.; Russo, M.

    2011-09-01

    Cultural Heritage artifacts can often be underestimated for their hidden presence in the landscape. Such problem is particularly large in countries like Italy, where the massive amount of "famous" artifacts tends to neglect other presences unless properly exposed, or when the remains are dramatically damaged leaving very few interpretation clues to the visitor. In such cases a virtual presentation of the Cultural Heritage site can be of great help, specially for explaining the evolution of its status, giving sometimes sense to few spare stones. The definition of these digital representations deal with two crucial aspects: on the one hand the possibility of 3D surveying the relics in order to have an accurate geometrical image of the current status of the artifact; on the other hand the presence of historical sources both in form of written text or images, that once properly matched with the current geometrical data, may help to recreate digitally a set of 3D models representing visually the various historical phases (diachronic model), up to the current one. The core of this article is the definition of an integrated methodology that starts from an high-resolution digital survey of the remains of an ancient building and develops a coherent virtual reconstruction from different historical sources, suggesting a scalable method suitable to be re-used for generating a 4D (geometry + time) model of the artifact. This approach has been experimented on the "Basilica di San Giovanni in Conca" in Milan, a very significant example for its complex historic evolution that combines evident historic values with an invisible presence inside the city.

  6. Structured Light-Based 3D Reconstruction System for Plants

    PubMed Central

    Nguyen, Thuy Tuong; Slaughter, David C.; Max, Nelson; Maloof, Julin N.; Sinha, Neelima

    2015-01-01

    Camera-based 3D reconstruction of physical objects is one of the most popular computer vision trends in recent years. Many systems have been built to model different real-world subjects, but there is lack of a completely robust system for plants.This paper presents a full 3D reconstruction system that incorporates both hardware structures (including the proposed structured light system to enhance textures on object surfaces) and software algorithms (including the proposed 3D point cloud registration and plant feature measurement). This paper demonstrates the ability to produce 3D models of whole plants created from multiple pairs of stereo images taken at different viewing angles, without the need to destructively cut away any parts of a plant. The ability to accurately predict phenotyping features, such as the number of leaves, plant height, leaf size and internode distances, is also demonstrated. Experimental results show that, for plants having a range of leaf sizes and a distance between leaves appropriate for the hardware design, the algorithms successfully predict phenotyping features in the target crops, with a recall of 0.97 and a precision of 0.89 for leaf detection and less than a 13-mm error for plant size, leaf size and internode distance. PMID:26230701

  7. Structured Light-Based 3D Reconstruction System for Plants.

    PubMed

    Nguyen, Thuy Tuong; Slaughter, David C; Max, Nelson; Maloof, Julin N; Sinha, Neelima

    2015-01-01

    Camera-based 3D reconstruction of physical objects is one of the most popular computer vision trends in recent years. Many systems have been built to model different real-world subjects, but there is lack of a completely robust system for plants. This paper presents a full 3D reconstruction system that incorporates both hardware structures (including the proposed structured light system to enhance textures on object surfaces) and software algorithms (including the proposed 3D point cloud registration and plant feature measurement). This paper demonstrates the ability to produce 3D models of whole plants created from multiple pairs of stereo images taken at different viewing angles, without the need to destructively cut away any parts of a plant. The ability to accurately predict phenotyping features, such as the number of leaves, plant height, leaf size and internode distances, is also demonstrated. Experimental results show that, for plants having a range of leaf sizes and a distance between leaves appropriate for the hardware design, the algorithms successfully predict phenotyping features in the target crops, with a recall of 0.97 and a precision of 0.89 for leaf detection and less than a 13-mm error for plant size, leaf size and internode distance. PMID:26230701

  8. New method of 3-D object recognition

    NASA Astrophysics Data System (ADS)

    He, An-Zhi; Li, Qun Z.; Miao, Peng C.

    1991-12-01

    In this paper, a new method of 3-D object recognition using optical techniques and a computer is presented. We perform 3-D object recognition using moire contour to obtain the object's 3- D coordinates, projecting drawings of the object in three coordinate planes to describe it and using a method of inquiring library of judgement to match objects. The recognition of a simple geometrical entity is simulated by computer and studied experimentally. The recognition of an object which is composed of a few simple geometrical entities is discussed.

  9. Automatic Texture Reconstruction of 3d City Model from Oblique Images

    NASA Astrophysics Data System (ADS)

    Kang, Junhua; Deng, Fei; Li, Xinwei; Wan, Fang

    2016-06-01

    In recent years, the photorealistic 3D city models are increasingly important in various geospatial applications related to virtual city tourism, 3D GIS, urban planning, real-estate management. Besides the acquisition of high-precision 3D geometric data, texture reconstruction is also a crucial step for generating high-quality and visually realistic 3D models. However, most of the texture reconstruction approaches are probably leading to texture fragmentation and memory inefficiency. In this paper, we introduce an automatic framework of texture reconstruction to generate textures from oblique images for photorealistic visualization. Our approach include three major steps as follows: mesh parameterization, texture atlas generation and texture blending. Firstly, mesh parameterization procedure referring to mesh segmentation and mesh unfolding is performed to reduce geometric distortion in the process of mapping 2D texture to 3D model. Secondly, in the texture atlas generation step, the texture of each segmented region in texture domain is reconstructed from all visible images with exterior orientation and interior orientation parameters. Thirdly, to avoid color discontinuities at boundaries between texture regions, the final texture map is generated by blending texture maps from several corresponding images. We evaluated our texture reconstruction framework on a dataset of a city. The resulting mesh model can get textured by created texture without resampling. Experiment results show that our method can effectively mitigate the occurrence of texture fragmentation. It is demonstrated that the proposed framework is effective and useful for automatic texture reconstruction of 3D city model.

  10. Dose fractionation theorem in 3-D reconstruction (tomography)

    SciTech Connect

    Glaeser, R.M.

    1997-02-01

    It is commonly assumed that the large number of projections for single-axis tomography precludes its application to most beam-labile specimens. However, Hegerl and Hoppe have pointed out that the total dose required to achieve statistical significance for each voxel of a computed 3-D reconstruction is the same as that required to obtain a single 2-D image of that isolated voxel, at the same level of statistical significance. Thus a statistically significant 3-D image can be computed from statistically insignificant projections, as along as the total dosage that is distributed among these projections is high enough that it would have resulted in a statistically significant projection, if applied to only one image. We have tested this critical theorem by simulating the tomographic reconstruction of a realistic 3-D model created from an electron micrograph. The simulations verify the basic conclusions of high absorption, signal-dependent noise, varying specimen contrast and missing angular range. Furthermore, the simulations demonstrate that individual projections in the series of fractionated-dose images can be aligned by cross-correlation because they contain significant information derived from the summation of features from different depths in the structure. This latter information is generally not useful for structural interpretation prior to 3-D reconstruction, owing to the complexity of most specimens investigated by single-axis tomography. These results, in combination with dose estimates for imaging single voxels and measurements of radiation damage in the electron microscope, demonstrate that it is feasible to use single-axis tomography with soft X-ray microscopy of frozen-hydrated specimens.

  11. Methods for comparing 3D surface attributes

    NASA Astrophysics Data System (ADS)

    Pang, Alex; Freeman, Adam

    1996-03-01

    A common task in data analysis is to compare two or more sets of data, statistics, presentations, etc. A predominant method in use is side-by-side visual comparison of images. While straightforward, it burdens the user with the task of discerning the differences between the two images. The user if further taxed when the images are of 3D scenes. This paper presents several methods for analyzing the extent, magnitude, and manner in which surfaces in 3D differ in their attributes. The surface geometry are assumed to be identical and only the surface attributes (color, texture, etc.) are variable. As a case in point, we examine the differences obtained when a 3D scene is rendered progressively using radiosity with different form factor calculation methods. The comparison methods include extensions of simple methods such as mapping difference information to color or transparency, and more recent methods including the use of surface texture, perturbation, and adaptive placements of error glyphs.

  12. A fast 3D reconstruction system with a low-cost camera accessory

    PubMed Central

    Zhang, Yiwei; Gibson, Graham M.; Hay, Rebecca; Bowman, Richard W.; Padgett, Miles J.; Edgar, Matthew P.

    2015-01-01

    Photometric stereo is a three dimensional (3D) imaging technique that uses multiple 2D images, obtained from a fixed camera perspective, with different illumination directions. Compared to other 3D imaging methods such as geometry modeling and 3D-scanning, it comes with a number of advantages, such as having a simple and efficient reconstruction routine. In this work, we describe a low-cost accessory to a commercial digital single-lens reflex (DSLR) camera system allowing fast reconstruction of 3D objects using photometric stereo. The accessory consists of four white LED lights fixed to the lens of a commercial DSLR camera and a USB programmable controller board to sequentially control the illumination. 3D images are derived for different objects with varying geometric complexity and results are presented, showing a typical height error of <3 mm for a 50 mm sized object. PMID:26057407

  13. A fast 3D reconstruction system with a low-cost camera accessory

    NASA Astrophysics Data System (ADS)

    Zhang, Yiwei; Gibson, Graham M.; Hay, Rebecca; Bowman, Richard W.; Padgett, Miles J.; Edgar, Matthew P.

    2015-06-01

    Photometric stereo is a three dimensional (3D) imaging technique that uses multiple 2D images, obtained from a fixed camera perspective, with different illumination directions. Compared to other 3D imaging methods such as geometry modeling and 3D-scanning, it comes with a number of advantages, such as having a simple and efficient reconstruction routine. In this work, we describe a low-cost accessory to a commercial digital single-lens reflex (DSLR) camera system allowing fast reconstruction of 3D objects using photometric stereo. The accessory consists of four white LED lights fixed to the lens of a commercial DSLR camera and a USB programmable controller board to sequentially control the illumination. 3D images are derived for different objects with varying geometric complexity and results are presented, showing a typical height error of <3 mm for a 50 mm sized object.

  14. Reconstruction of quadratic curves in 3D using two or more perspective views: simulation studies

    NASA Astrophysics Data System (ADS)

    Kumar, Sanjeev; Sukavanam, N.; Balasubramanian, R.

    2006-01-01

    The shapes of many natural and man-made objects have planar and curvilinear surfaces. The images of such curves usually do not have sufficient distinctive features to apply conventional feature-based reconstruction algorithms. In this paper, we describe a method of reconstruction of a quadratic curve in 3-D space as an intersection of two cones containing the respective projected curve images. The correspondence between this pair of projections of the curve is assumed to be established in this work. Using least-square curve fitting, the parameters of a curve in 2-D space are found. From this we are reconstructing the 3-D quadratic curve. Relevant mathematical formulations and analytical solutions for obtaining the equation of reconstructed curve are given. The result of the described reconstruction methodology are studied by simulation studies. This reconstruction methodology is applicable to LBW decision in cricket, path of the missile, Robotic Vision, path lanning etc.

  15. Clinical Experience With A Portable 3-D Reconstruction Program

    NASA Astrophysics Data System (ADS)

    Holshouser, Barbara A.; Christiansen, Edwin L.; Thompson, Joseph R.; Reynolds, R. Anthony; Goldwasser, Samuel M.

    1988-06-01

    Clinical experience with a computer program for reconstructing and visualizing three-dimensional (3-D) structures is reported. Applications to the study of soft-tissue and skeletal structures, such as the temporomandibular joint and craniofacial anatomy, using computed tomography (CT) data are described. Several features specific to the computer algorithm are demonstrated and evaluated. These include: (1) manipulation of density windows to selectively visualize bone or soft tissue structures; (2) the efficacy of gradient shading algorithms in revealing fine surface detail; and (3) the rapid generation of cut-away views revealing details of internal structures. Also demonstrated is the importance of high resolution data as input to the 3-D program. The implementation of the program (VoxelView-32) described here, is on a MASSCOMP computer running UNIX. Data were collected with General Electric or Siemens CT scanners and transferred to the MASSCOMP for off-line 3-D recon-struction, via magnetic tape or Ethernet. An interactive graphics facility on the MASSCOMP allows viewing of 2-D slices, subregioning, and selection of lower and upper density thresholds for segmentation. The software then enters a pre-processing phase during which a volume representation of the segmented object (soft tissue or bone) is automatically created. This is followed by a rendering phase during which multiple views of the segmented object are automatically generated. The pre-processing phase typically takes 4 to 8 minutes (although very large datasets may require as much as 30 minutes) and the rendering phase typically takes 1 to 2 minutes for each 3-D view. Volume representation and rendering techniques are used at all stages of the processing, and gradient shading is used for enhanced surface detail.

  16. Height inspection of wafer bumps without explicit 3D reconstruction

    NASA Astrophysics Data System (ADS)

    Dong, Mei; Chung, Ronald; Zhao, Yang; Lam, Edmund Y.

    2006-02-01

    The shrunk dimension of electronic devices leads to more stringent requirement on process control and quality assurance of their fabrication. For instance, direct die-to-die bonding requires placement of solder bumps not on PCB but on the wafer itself. Such wafer solder bumps, which are much miniaturized from the counterparts on PCB, still need to have their heights meet the specification, or else the electrical connection could be compromised, or the dies be crushed, or even the manufacturing equipments be damaged. Yet the tiny size, typically tens of microns in diameter, and the textureless and mirror nature of the bumps pose great challenge to the 3D inspection process. This paper addresses how a large number of such wafer bumps could have their heights massively checked against the specification. We assume ball bumps in this work. We propose a novel inspection measure about the collection of bump heights that possesses these advantages: (1) it is sensitive to global and local disturbances to the bump heights, thus serving the bump height inspection purpose; (2) it is invariant to how individual bumps are locally displaced against one another on the substrate surface, thus enduring 2D displacement error in soldering the bumps onto the wafer substrate; and (3) it is largely invariant to how the wafer itself is globally positioned relative to the imaging system, thus having tolerance to repeatability error in wafer placement. This measure makes use of the mirror nature of the bumps, which used to cause difficulty in traditional inspection methods, to capture images of two planes. One contains the bump peaks and the other corresponds to the substrate. With the homography matrices of these two planes and fundamental matrix of the camera, we synthesize a matrix called Biplanar Disparity Matrix. This matrix can summarize the bumps' heights in a fast and direct way without going through explicit 3D reconstruction. We also present a design of the imaging and

  17. Evaluation of Model Recognition for Grammar-Based Automatic 3d Building Model Reconstruction

    NASA Astrophysics Data System (ADS)

    Yu, Qian; Helmholz, Petra; Belton, David

    2016-06-01

    In recent years, 3D city models are in high demand by many public and private organisations, and the steadily growing capacity in both quality and quantity are increasing demand. The quality evaluation of these 3D models is a relevant issue both from the scientific and practical points of view. In this paper, we present a method for the quality evaluation of 3D building models which are reconstructed automatically from terrestrial laser scanning (TLS) data based on an attributed building grammar. The entire evaluation process has been performed in all the three dimensions in terms of completeness and correctness of the reconstruction. Six quality measures are introduced to apply on four datasets of reconstructed building models in order to describe the quality of the automatic reconstruction, and also are assessed on their validity from the evaluation point of view.

  18. Facial-paralysis diagnostic system based on 3D reconstruction

    NASA Astrophysics Data System (ADS)

    Khairunnisaa, Aida; Basah, Shafriza Nisha; Yazid, Haniza; Basri, Hassrizal Hassan; Yaacob, Sazali; Chin, Lim Chee

    2015-05-01

    The diagnostic process of facial paralysis requires qualitative assessment for the classification and treatment planning. This result is inconsistent assessment that potential affect treatment planning. We developed a facial-paralysis diagnostic system based on 3D reconstruction of RGB and depth data using a standard structured-light camera - Kinect 360 - and implementation of Active Appearance Models (AAM). We also proposed a quantitative assessment for facial paralysis based on triangular model. In this paper, we report on the design and development process, including preliminary experimental results. Our preliminary experimental results demonstrate the feasibility of our quantitative assessment system to diagnose facial paralysis.

  19. 3D-reconstruction of blood vessels by ultramicroscopy

    PubMed Central

    Jährling, Nina; Becker, Klaus

    2009-01-01

    As recently shown, ultramicroscopy (UM) allows 3D-visualization of even large microscopic structures with µm resolution. Thus, it can be applied to anatomical studies of numerous biological and medical specimens. We reconstructed the three-dimensional architecture of tomato-lectin (Lycopersicon esculentum) stained vascular networks by UM in whole mouse organs. The topology of filigree branches of the microvasculature was visualized. Since tumors require an extensive growth of blood vessels to survive, this novel approach may open up new vistas in neurobiology and histology, particularly in cancer research. PMID:20539742

  20. 3D reconstruction based on CT image and its application

    NASA Astrophysics Data System (ADS)

    Zhang, Jianxun; Zhang, Mingmin

    2004-03-01

    Reconstitute the 3-D model of the liver and its internal piping system and simulation of the liver surgical operation can increase the accurate and security of the liver surgical operation, attain a purpose for the biggest limit decrease surgical operation wound, shortening surgical operation time, increasing surgical operation succeeding rate, reducing medical treatment expenses and promoting patient recovering from illness. This text expatiated technology and method that the author constitutes 3-D the model of the liver and its internal piping system and simulation of the liver surgical operation according to the images of CT. The direct volume rendering method establishes 3D the model of the liver. Under the environment of OPENGL adopt method of space point rendering to display liver's internal piping system and simulation of the liver surgical operation. Finally, we adopt the wavelet transform method compressed the medical image data.

  1. APPROXIMATION OF SURFACES IN QUANTITATIVE 3-D RECONSTRUCTIONS

    EPA Science Inventory

    In serial section reconstructions a series of planar profiles are taken representing curves on the surface of the structure to be reconstructed. or a number of quantitative serial section methods, approximation of a surface is done by the formation of tiles between points of adja...

  2. Discussion of Source Reconstruction Models Using 3D MCG Data

    NASA Astrophysics Data System (ADS)

    Melis, Massimo De; Uchikawa, Yoshinori

    In this study we performed the source reconstruction of magnetocardiographic signals generated by the human heart activity to localize the site of origin of the heart activation. The localizations were performed in a four compartment model of the human volume conductor. The analyses were conducted on normal subjects and on a subject affected by the Wolff-Parkinson-White syndrome. Different models of the source activation were used to evaluate whether a general model of the current source can be applied in the study of the cardiac inverse problem. The data analyses were repeated using normal and vector component data of the MCG. The results show that a distributed source model has the better accuracy in performing the source reconstructions, and that 3D MCG data allow finding smaller differences between the different source models.

  3. Computerized 3-D reconstruction of two "double teeth".

    PubMed

    Lyroudia, K; Mikrogeorgis, G; Nikopoulos, N; Samakovitis, G; Molyvdas, I; Pitas, I

    1997-10-01

    "Double teeth" is a root malformation in the dentition and the purpose of this study was to reconstruct three-dimensionally the external and internal morphology of two "double teeth". The first set of "double teeth" was formed by the conjunction of a mandibular molar and a premolar, and the second by a conjunction of a maxillary molar and a supernumerary tooth. The process of 3-D reconstruction included serial cross-sectioning, photographs of the sections, digitization of the photographs, extraction of the boundaries of interest for each section, surface representation using triangulation and, finally, surface rendering using photorealistic effects. The resulting three-dimensional representations of the two teeth helped us visualize their external and internal anatomy. The results showed: a) in the first case, fusion of the radical and coronal dentin, as well as fusion of the pulp chambers; and b) in the second case, fusion only of the radical dentin and the pulp chambers. PMID:9550051

  4. Assessing 3D tunnel position in ACL reconstruction using a novel single image 3D-2D registration

    NASA Astrophysics Data System (ADS)

    Kang, X.; Yau, W. P.; Otake, Y.; Cheung, P. Y. S.; Hu, Y.; Taylor, R. H.

    2012-02-01

    The routinely used procedure for evaluating tunnel positions following anterior cruciate ligament (ACL) reconstructions based on standard X-ray images is known to pose difficulties in terms of obtaining accurate measures, especially in providing three-dimensional tunnel positions. This is largely due to the variability in individual knee joint pose relative to X-ray plates. Accurate results were reported using postoperative CT. However, its extensive usage in clinical routine is hampered by its major requirement of having CT scans of individual patients, which is not available for most ACL reconstructions. These difficulties are addressed through the proposed method, which aligns a knee model to X-ray images using our novel single-image 3D-2D registration method and then estimates the 3D tunnel position. In the proposed method, the alignment is achieved by using a novel contour-based 3D-2D registration method wherein image contours are treated as a set of oriented points. However, instead of using some form of orientation weighting function and multiplying it with a distance function, we formulate the 3D-2D registration as a probability density estimation using a mixture of von Mises-Fisher-Gaussian (vMFG) distributions and solve it through an expectation maximization (EM) algorithm. Compared with the ground-truth established from postoperative CT, our registration method in an experiment using a plastic phantom showed accurate results with errors of (-0.43°+/-1.19°, 0.45°+/-2.17°, 0.23°+/-1.05°) and (0.03+/-0.55, -0.03+/-0.54, -2.73+/-1.64) mm. As for the entry point of the ACL tunnel, one of the key measurements, it was obtained with high accuracy of 0.53+/-0.30 mm distance errors.

  5. Fast vision-based catheter 3D reconstruction.

    PubMed

    Moradi Dalvand, Mohsen; Nahavandi, Saeid; Howe, Robert D

    2016-07-21

    Continuum robots offer better maneuverability and inherent compliance and are well-suited for surgical applications as catheters, where gentle interaction with the environment is desired. However, sensing their shape and tip position is a challenge as traditional sensors can not be employed in the way they are in rigid robotic manipulators. In this paper, a high speed vision-based shape sensing algorithm for real-time 3D reconstruction of continuum robots based on the views of two arbitrary positioned cameras is presented. The algorithm is based on the closed-form analytical solution of the reconstruction of quadratic curves in 3D space from two arbitrary perspective projections. High-speed image processing algorithms are developed for the segmentation and feature extraction from the images. The proposed algorithms are experimentally validated for accuracy by measuring the tip position, length and bending and orientation angles for known circular and elliptical catheter shaped tubes. Sensitivity analysis is also carried out to evaluate the robustness of the algorithm. Experimental results demonstrate good accuracy (maximum errors of  ±0.6 mm and  ±0.5 deg), performance (200 Hz), and robustness (maximum absolute error of 1.74 mm, 3.64 deg for the added noises) of the proposed high speed algorithms. PMID:27352011

  6. Digital 3D facial reconstruction of George Washington

    NASA Astrophysics Data System (ADS)

    Razdan, Anshuman; Schwartz, Jeff; Tocheri, Mathew; Hansford, Dianne

    2006-02-01

    PRISM is a focal point of interdisciplinary research in geometric modeling, computer graphics and visualization at Arizona State University. Many projects in the last ten years have involved laser scanning, geometric modeling and feature extraction from such data as archaeological vessels, bones, human faces, etc. This paper gives a brief overview of a recently completed project on the 3D reconstruction of George Washington (GW). The project brought together forensic anthropologists, digital artists and computer scientists in the 3D digital reconstruction of GW at 57, 45 and 19 including detailed heads and bodies. Although many other scanning projects such as the Michelangelo project have successfully captured fine details via laser scanning, our project took it a step further, i.e. to predict what that individual (in the sculpture) might have looked like both in later and earlier years, specifically the process to account for reverse aging. Our base data was GWs face mask at Morgan Library and Hudons bust of GW at Mount Vernon, both done when GW was 53. Additionally, we scanned the statue at the Capitol in Richmond, VA; various dentures, and other items. Other measurements came from clothing and even portraits of GW. The digital GWs were then milled in high density foam for a studio to complete the work. These will be unveiled at the opening of the new education center at Mt Vernon in fall 2006.

  7. 3D Reconstruction of virtual colon structures from colonoscopy images.

    PubMed

    Hong, DongHo; Tavanapong, Wallapak; Wong, Johnny; Oh, JungHwan; de Groen, Piet C

    2014-01-01

    This paper presents the first fully automated reconstruction technique of 3D virtual colon segments from individual colonoscopy images. It is the basis of new software applications that may offer great benefits for improving quality of care for colonoscopy patients. For example, a 3D map of the areas inspected and uninspected during colonoscopy can be shown on request of the endoscopist during the procedure. The endoscopist may revisit the suggested uninspected areas to reduce the chance of missing polyps that reside in these areas. The percentage of the colon surface seen by the endoscopist can be used as a coarse objective indicator of the quality of the procedure. The derived virtual colon models can be stored for post-procedure training of new endoscopists to teach navigation techniques that result in a higher level of procedure quality. Our technique does not require a prior CT scan of the colon or any global positioning device. Our experiments on endoscopy images of an Olympus synthetic colon model reveal encouraging results with small average reconstruction errors (4.1 mm for the fold depths and 12.1 mm for the fold circumferences). PMID:24225230

  8. Fast vision-based catheter 3D reconstruction

    NASA Astrophysics Data System (ADS)

    Moradi Dalvand, Mohsen; Nahavandi, Saeid; Howe, Robert D.

    2016-07-01

    Continuum robots offer better maneuverability and inherent compliance and are well-suited for surgical applications as catheters, where gentle interaction with the environment is desired. However, sensing their shape and tip position is a challenge as traditional sensors can not be employed in the way they are in rigid robotic manipulators. In this paper, a high speed vision-based shape sensing algorithm for real-time 3D reconstruction of continuum robots based on the views of two arbitrary positioned cameras is presented. The algorithm is based on the closed-form analytical solution of the reconstruction of quadratic curves in 3D space from two arbitrary perspective projections. High-speed image processing algorithms are developed for the segmentation and feature extraction from the images. The proposed algorithms are experimentally validated for accuracy by measuring the tip position, length and bending and orientation angles for known circular and elliptical catheter shaped tubes. Sensitivity analysis is also carried out to evaluate the robustness of the algorithm. Experimental results demonstrate good accuracy (maximum errors of  ±0.6 mm and  ±0.5 deg), performance (200 Hz), and robustness (maximum absolute error of 1.74 mm, 3.64 deg for the added noises) of the proposed high speed algorithms.

  9. Recognition methods for 3D textured surfaces

    NASA Astrophysics Data System (ADS)

    Cula, Oana G.; Dana, Kristin J.

    2001-06-01

    Texture as a surface representation is the subject of a wide body of computer vision and computer graphics literature. While texture is always associated with a form of repetition in the image, the repeating quantity may vary. The texture may be a color or albedo variation as in a checkerboard, a paisley print or zebra stripes. Very often in real-world scenes, texture is instead due to a surface height variation, e.g. pebbles, gravel, foliage and any rough surface. Such surfaces are referred to here as 3D textured surfaces. Standard texture recognition algorithms are not appropriate for 3D textured surfaces because the appearance of these surfaces changes in a complex manner with viewing direction and illumination direction. Recent methods have been developed for recognition of 3D textured surfaces using a database of surfaces observed under varied imaging parameters. One of these methods is based on 3D textons obtained using K-means clustering of multiscale feature vectors. Another method uses eigen-analysis originally developed for appearance-based object recognition. In this work we develop a hybrid approach that employs both feature grouping and dimensionality reduction. The method is tested using the Columbia-Utrecht texture database and provides excellent recognition rates. The method is compared with existing recognition methods for 3D textured surfaces. A direct comparison is facilitated by empirical recognition rates from the same texture data set. The current method has key advantages over existing methods including requiring less prior information on both the training and novel images.

  10. Validation of a method for in vivo 3D dose reconstruction for IMRT and VMAT treatments using on-treatment EPID images and a model-based forward-calculation algorithm

    SciTech Connect

    Van Uytven, Eric Van Beek, Timothy; McCowan, Peter M.; Chytyk-Praznik, Krista; Greer, Peter B.; McCurdy, Boyd M. C.

    2015-12-15

    Purpose: Radiation treatments are trending toward delivering higher doses per fraction under stereotactic radiosurgery and hypofractionated treatment regimens. There is a need for accurate 3D in vivo patient dose verification using electronic portal imaging device (EPID) measurements. This work presents a model-based technique to compute full three-dimensional patient dose reconstructed from on-treatment EPID portal images (i.e., transmission images). Methods: EPID dose is converted to incident fluence entering the patient using a series of steps which include converting measured EPID dose to fluence at the detector plane and then back-projecting the primary source component of the EPID fluence upstream of the patient. Incident fluence is then recombined with predicted extra-focal fluence and used to calculate 3D patient dose via a collapsed-cone convolution method. This method is implemented in an iterative manner, although in practice it provides accurate results in a single iteration. The robustness of the dose reconstruction technique is demonstrated with several simple slab phantom and nine anthropomorphic phantom cases. Prostate, head and neck, and lung treatments are all included as well as a range of delivery techniques including VMAT and dynamic intensity modulated radiation therapy (IMRT). Results: Results indicate that the patient dose reconstruction algorithm compares well with treatment planning system computed doses for controlled test situations. For simple phantom and square field tests, agreement was excellent with a 2%/2 mm 3D chi pass rate ≥98.9%. On anthropomorphic phantoms, the 2%/2 mm 3D chi pass rates ranged from 79.9% to 99.9% in the planning target volume (PTV) region and 96.5% to 100% in the low dose region (>20% of prescription, excluding PTV and skin build-up region). Conclusions: An algorithm to reconstruct delivered patient 3D doses from EPID exit dosimetry measurements was presented. The method was applied to phantom and patient

  11. 3D Coronal Magnetic Field Reconstruction Based on Infrared Polarimetric Observations

    NASA Astrophysics Data System (ADS)

    Kramar, M.; Lin, H.; Tomczyk, S.

    2014-12-01

    Measurement of the coronal magnetic field is a crucial ingredient in understanding the nature of solar coronal phenomena at all scales. A significant progress has been recently achieved here with deployment of the Coronal Multichannel Polarimeter (CoMP) of the High Altitude Observatory (HAO). The instrument provides polarization measurements of Fe xiii 10747 A forbidden line emission. The observed polarization are the result of a line-of-sight (LOS) integration through a nonuniform temperature, density and magnetic field distribution. In order resolve the LOS problem and utilize this type of data, the vector tomography method has been developed for 3D reconstruction of the coronal magnetic field. The 3D electron density and temperature, needed as additional input, have been reconstructed by tomography method based on STEREO/EUVI data. We will present the 3D coronal magnetic field and associated 3D curl B, density, and temperature resulted from these inversions.

  12. Discovering hotspots in functional genomic data superposed on 3D chromatin configuration reconstructions

    PubMed Central

    Capurso, Daniel; Bengtsson, Henrik; Segal, Mark R.

    2016-01-01

    The spatial organization of the genome influences cellular function, notably gene regulation. Recent studies have assessed the three-dimensional (3D) co-localization of functional annotations (e.g. centromeres, long terminal repeats) using 3D genome reconstructions from Hi-C (genome-wide chromosome conformation capture) data; however, corresponding assessments for continuous functional genomic data (e.g. chromatin immunoprecipitation-sequencing (ChIP-seq) peak height) are lacking. Here, we demonstrate that applying bump hunting via the patient rule induction method (PRIM) to ChIP-seq data superposed on a Saccharomyces cerevisiae 3D genome reconstruction can discover ‘functional 3D hotspots’, regions in 3-space for which the mean ChIP-seq peak height is significantly elevated. For the transcription factor Swi6, the top hotspot by P-value contains MSB2 and ERG11 – known Swi6 target genes on different chromosomes. We verify this finding in a number of ways. First, this top hotspot is relatively stable under PRIM across parameter settings. Second, this hotspot is among the top hotspots by mean outcome identified by an alternative algorithm, k-Nearest Neighbor (k-NN) regression. Third, the distance between MSB2 and ERG11 is smaller than expected (by resampling) in two other 3D reconstructions generated via different normalization and reconstruction algorithms. This analytic approach can discover functional 3D hotspots and potentially reveal novel regulatory interactions. PMID:26869583

  13. MO-C-18A-01: Advances in Model-Based 3D Image Reconstruction

    SciTech Connect

    Chen, G; Pan, X; Stayman, J; Samei, E

    2014-06-15

    Recent years have seen the emergence of CT image reconstruction techniques that exploit physical models of the imaging system, photon statistics, and even the patient to achieve improved 3D image quality and/or reduction of radiation dose. With numerous advantages in comparison to conventional 3D filtered backprojection, such techniques bring a variety of challenges as well, including: a demanding computational load associated with sophisticated forward models and iterative optimization methods; nonlinearity and nonstationarity in image quality characteristics; a complex dependency on multiple free parameters; and the need to understand how best to incorporate prior information (including patient-specific prior images) within the reconstruction process. The advantages, however, are even greater – for example: improved image quality; reduced dose; robustness to noise and artifacts; task-specific reconstruction protocols; suitability to novel CT imaging platforms and noncircular orbits; and incorporation of known characteristics of the imager and patient that are conventionally discarded. This symposium features experts in 3D image reconstruction, image quality assessment, and the translation of such methods to emerging clinical applications. Dr. Chen will address novel methods for the incorporation of prior information in 3D and 4D CT reconstruction techniques. Dr. Pan will show recent advances in optimization-based reconstruction that enable potential reduction of dose and sampling requirements. Dr. Stayman will describe a “task-based imaging” approach that leverages models of the imaging system and patient in combination with a specification of the imaging task to optimize both the acquisition and reconstruction process. Dr. Samei will describe the development of methods for image quality assessment in such nonlinear reconstruction techniques and the use of these methods to characterize and optimize image quality and dose in a spectrum of clinical

  14. Comparison of 3d Reconstruction Services and Terrestrial Laser Scanning for Cultural Heritage Documentation

    NASA Astrophysics Data System (ADS)

    Rasztovits, S.; Dorninger, P.

    2013-07-01

    Terrestrial Laser Scanning (TLS) is an established method to reconstruct the geometrical surface of given objects. Current systems allow for fast and efficient determination of 3D models with high accuracy and richness in detail. Alternatively, 3D reconstruction services are using images to reconstruct the surface of an object. While the instrumental expenses for laser scanning systems are high, upcoming free software services as well as open source software packages enable the generation of 3D models using digital consumer cameras. In addition, processing TLS data still requires an experienced user while recent web-services operate completely automatically. An indisputable advantage of image based 3D modeling is its implicit capability for model texturing. However, the achievable accuracy and resolution of the 3D models is lower than those of laser scanning data. Within this contribution, we investigate the results of automated web-services for image based 3D model generation with respect to a TLS reference model. For this, a copper sculpture was acquired using a laser scanner and using image series of different digital cameras. Two different webservices, namely Arc3D and AutoDesk 123D Catch were used to process the image data. The geometric accuracy was compared for the entire model and for some highly structured details. The results are presented and interpreted based on difference models. Finally, an economical comparison of the generation of the models is given considering the interactive and processing time costs.

  15. MR image denoising method for brain surface 3D modeling

    NASA Astrophysics Data System (ADS)

    Zhao, De-xin; Liu, Peng-jie; Zhang, De-gan

    2014-11-01

    Three-dimensional (3D) modeling of medical images is a critical part of surgical simulation. In this paper, we focus on the magnetic resonance (MR) images denoising for brain modeling reconstruction, and exploit a practical solution. We attempt to remove the noise existing in the MR imaging signal and preserve the image characteristics. A wavelet-based adaptive curve shrinkage function is presented in spherical coordinates system. The comparative experiments show that the denoising method can preserve better image details and enhance the coefficients of contours. Using these denoised images, the brain 3D visualization is given through surface triangle mesh model, which demonstrates the effectiveness of the proposed method.

  16. The New Approach to Sport Medicine: 3-D Reconstruction

    ERIC Educational Resources Information Center

    Ince, Alparslan

    2015-01-01

    The aim of this study is to present a new approach to sport medicine. Comparative analysis of the Vertebrae Lumbales was done in sedentary group and Muay Thai athletes. It was done by acquiring three dimensional (3-D) data and models through photogrammetric methods from the Multi-detector Computerized Tomography (MDCT) images of the Vertebrae…

  17. 3D Building Modeling and Reconstruction using Photometric Satellite and Aerial Imageries

    NASA Astrophysics Data System (ADS)

    Izadi, Mohammad

    In this thesis, the problem of three dimensional (3D) reconstruction of building models using photometric satellite and aerial images is investigated. Here, two systems are pre-sented: 1) 3D building reconstruction using a nadir single-view image, and 2) 3D building reconstruction using slant multiple-view aerial images. The first system detects building rooftops in orthogonal aerial/satellite images using a hierarchical segmentation algorithm and a shadow verification approach. The heights of detected buildings are then estimated using a fuzzy rule-based method, which measures the height of a building by comparing its predicted shadow region with the actual shadow evidence in the image. This system finally generated a KML (Keyhole Markup Language) file as the output, that contains 3D models of detected buildings. The second system uses the geolocation information of a scene containing a building of interest and uploads all slant-view images that contain this scene from an input image dataset. These images are then searched automatically to choose image pairs with different views of the scene (north, east, south and west) based on the geolocation and auxiliary data accompanying the input data (metadata that describes the acquisition parameters at the capture time). The camera parameters corresponding to these images are refined using a novel point matching algorithm. Next, the system independently reconstructs 3D flat surfaces that are visible in each view using an iterative algorithm. 3D surfaces generated for all views are combined, and redundant surfaces are removed to create a complete set of 3D surfaces. Finally, the combined 3D surfaces are connected together to generate a more complete 3D model. For the experimental results, both presented systems are evaluated quantitatively and qualitatively and different aspects of the two systems including accuracy, stability, and execution time are discussed.

  18. High quality surface reconstruction in radiotherapy: Cross-sectional contours to 3D mesh using wavelets.

    PubMed

    Moriconi, S; Scalco, E; Broggi, S; Avuzzi, B; Valdagni, R; Rizzo, G

    2015-08-01

    A novel approach for three-dimensional (3D) surface reconstruction of anatomical structures in radiotherapy (RT) is presented. This is obtained from manual cross-sectional contours by combining both image voxel segmentation processing and implicit surface streaming methods using wavelets. 3D meshes reconstructed with the proposed approach are compared to those obtained from traditional triangulation algorithm. Qualitative and quantitative evaluations are performed in terms of mesh quality metrics. Differences in smoothness, detail and accuracy are observed in the comparison, considering three different anatomical districts and several organs at risk in radiotherapy. Overall best performances were recorded for the proposed approach, regardless the complexity of the anatomical structure. This demonstrates the efficacy of the proposed approach for the 3D surface reconstruction in radiotherapy and allows for further specific image analyses using real biomedical data. PMID:26737226

  19. Toward 3D Reconstruction of Outdoor Scenes Using an MMW Radar and a Monocular Vision Sensor

    PubMed Central

    El Natour, Ghina; Ait-Aider, Omar; Rouveure, Raphael; Berry, François; Faure, Patrice

    2015-01-01

    In this paper, we introduce a geometric method for 3D reconstruction of the exterior environment using a panoramic microwave radar and a camera. We rely on the complementarity of these two sensors considering the robustness to the environmental conditions and depth detection ability of the radar, on the one hand, and the high spatial resolution of a vision sensor, on the other. Firstly, geometric modeling of each sensor and of the entire system is presented. Secondly, we address the global calibration problem, which consists of finding the exact transformation between the sensors’ coordinate systems. Two implementation methods are proposed and compared, based on the optimization of a non-linear criterion obtained from a set of radar-to-image target correspondences. Unlike existing methods, no special configuration of the 3D points is required for calibration. This makes the methods flexible and easy to use by a non-expert operator. Finally, we present a very simple, yet robust 3D reconstruction method based on the sensors’ geometry. This method enables one to reconstruct observed features in 3D using one acquisition (static sensor), which is not always met in the state of the art for outdoor scene reconstruction. The proposed methods have been validated with synthetic and real data. PMID:26473874

  20. 3D reconstruction of rotational video microscope based on patches

    NASA Astrophysics Data System (ADS)

    Ma, Shijie; Qu, Yufu

    2015-11-01

    Due to the small field of view and shallow depth of field, the microscope could only capture 2D images of the object. In order to observe the three-dimensional structure of the micro object, a microscopy images reconstruction algorithm based on an improved patch-based multi-view stereo (PMVS) algorithm is proposed. The new algorithm improves PMVS from two aspects: first, increasing the propagation directions, second, on the basis of the expansion, different expansion radius and times are set by the angle between the normal vector of the seed patch and the direction vector of the line passing through the seed patch center and the camera center. Compared with PMVS, the number of 3D points made by the new algorithm is three times as much as PMVS. And the holes in the vertical side are also eliminated.

  1. 3D imaging reconstruction and impacted third molars: case reports

    PubMed Central

    Tuzi, Andrea; Di Bari, Roberto; Cicconetti, Andrea

    2012-01-01

    Summary There is a debate in the literature about the need for Computed Tomagraphy (CT) before removing third molars, even if positive radiographic signs are present. In few cases, the third molar is so close to the inferior alveolar nerve that its extraction might expose patients to the risk of post-operative neuro-sensitive alterations of the skin and the mucosa of the homolateral lower lip and chin. Thus, the injury of the inferior alveolar nerve may represent a serious, though infrequent, neurologic complication in the surgery of the third molars rendering necessary a careful pre-operative evaluation of their anatomical relationship with the inferior alveolar nerve by means of radiographic imaging techniques. This contribution presents two case reports showing positive radiographic signs, which are the hallmarks of a possible close relationship between the inferior alveolar nerve and the third molars. We aim at better defining the relationship between third molars and the mandibular canal using Dental CT Scan, DICOM image acquisition and 3D reconstruction with a dedicated software. By our study we deduce that 3D images are not indispensable, but they can provide a very agreeable assistance in the most complicated cases. PMID:23386934

  2. Grammar-based Automatic 3D Model Reconstruction from Terrestrial Laser Scanning Data

    NASA Astrophysics Data System (ADS)

    Yu, Q.; Helmholz, P.; Belton, D.; West, G.

    2014-04-01

    The automatic reconstruction of 3D buildings has been an important research topic during the last years. In this paper, a novel method is proposed to automatically reconstruct the 3D building models from segmented data based on pre-defined formal grammar and rules. Such segmented data can be extracted e.g. from terrestrial or mobile laser scanning devices. Two steps are considered in detail. The first step is to transform the segmented data into 3D shapes, for instance using the DXF (Drawing Exchange Format) format which is a CAD data file format used for data interchange between AutoCAD and other program. Second, we develop a formal grammar to describe the building model structure and integrate the pre-defined grammars into the reconstruction process. Depending on the different segmented data, the selected grammar and rules are applied to drive the reconstruction process in an automatic manner. Compared with other existing approaches, our proposed method allows the model reconstruction directly from 3D shapes and takes the whole building into account.

  3. 3D face reconstruction from limited images based on differential evolution

    NASA Astrophysics Data System (ADS)

    Wang, Qun; Li, Jiang; Asari, Vijayan K.; Karim, Mohammad A.

    2011-09-01

    3D face modeling has been one of the greatest challenges for researchers in computer graphics for many years. Various methods have been used to model the shape and texture of faces under varying illumination and pose conditions from a single given image. In this paper, we propose a novel method for the 3D face synthesis and reconstruction by using a simple and efficient global optimizer. A 3D-2D matching algorithm which employs the integration of the 3D morphable model (3DMM) and the differential evolution (DE) algorithm is addressed. In 3DMM, the estimation process of fitting shape and texture information into 2D images is considered as the problem of searching for the global minimum in a high dimensional feature space, in which optimization is apt to have local convergence. Unlike the traditional scheme used in 3DMM, DE appears to be robust against stagnation in local minima and sensitiveness to initial values in face reconstruction. Benefitting from DE's successful performance, 3D face models can be created based on a single 2D image with respect to various illuminating and pose contexts. Preliminary results demonstrate that we are able to automatically create a virtual 3D face from a single 2D image with high performance. The validation process shows that there is only an insignificant difference between the input image and the 2D face image projected by the 3D model.

  4. Validation of 3D surface reconstruction of vertebrae and spinal column using 3D ultrasound data--a pilot study.

    PubMed

    Nguyen, Duc V; Vo, Quang N; Le, Lawrence H; Lou, Edmond H M

    2015-02-01

    Adolescent idiopathic scoliosis (AIS) is a three-dimensional deformity of spine associated with vertebra rotation. The Cobb angle and axial vertebral rotation are important parameters to assess the severity of scoliosis. However, the vertebral rotation is seldom measured from radiographs due to time consuming. Different techniques have been developed to extract 3D spinal information. Among many techniques, ultrasound imaging is a promising method. This pilot study reported an image processing method to reconstruct the posterior surface of vertebrae from 3D ultrasound data. Three cadaver vertebrae, a Sawbones spine phantom, and a spine from a child with AIS were used to validate the development. The in-vitro result showed the surface of the reconstructed image was visually similar to the original objects. The dimension measurement error was <5 mm and the Pearson correlation was >0.99. The results also showed a high accuracy in vertebral rotation with errors of 0.8 ± 0.3°, 2.8 ± 0.3° and 3.6 ± 0.5° for the rotation values of 0°, 15° and 30°, respectively. Meanwhile, the difference in the Cobb angle between the phantom and the image was 4° and the vertebral rotation at the apex was 2°. The Cobb angle measured from the in-vivo ultrasound image was 4° different from the radiograph. PMID:25550193

  5. Full 3-D cluster-based iterative image reconstruction tool for a small animal PET camera

    NASA Astrophysics Data System (ADS)

    Valastyán, I.; Imrek, J.; Molnár, J.; Novák, D.; Balkay, L.; Emri, M.; Trón, L.; Bükki, T.; Kerek, A.

    2007-02-01

    Iterative reconstruction methods are commonly used to obtain images with high resolution and good signal-to-noise ratio in nuclear imaging. The aim of this work was to develop a scalable, fast, cluster based, fully 3-D iterative image reconstruction package for our small animal PET camera, the miniPET. The reconstruction package is developed to determine the 3-D radioactivity distribution from list mode type of data sets and it can also simulate noise-free projections of digital phantoms. We separated the system matrix generation and the fully 3-D iterative reconstruction process. As the detector geometry is fixed for a given camera, the system matrix describing this geometry is calculated only once and used for every image reconstruction, making the process much faster. The Poisson and the random noise sensitivity of the ML-EM iterative algorithm were studied for our small animal PET system with the help of the simulation and reconstruction tool. The reconstruction tool has also been tested with data collected by the miniPET from a line and a cylinder shaped phantom and also a rat.

  6. SU-E-J-128: 3D Surface Reconstruction of a Patient Using Epipolar Geometry

    SciTech Connect

    Kotoku, J; Nakabayashi, S; Kumagai, S; Ishibashi, T; Kobayashi, T; Haga, A; Saotome, N; Arai, N

    2014-06-01

    Purpose: To obtain a 3D surface data of a patient in a non-invasive way can substantially reduce the effort for the registration of patient in radiation therapy. To achieve this goal, we introduced the multiple view stereo technique, which is known to be used in a 'photo tourism' on the internet. Methods: 70 Images were taken with a digital single-lens reflex camera from different angles and positions. The camera positions and angles were inferred later in the reconstruction step. A sparse 3D reconstruction model was locating by SIFT features, which is robust for rotation and shift variance, in each image. We then found a set of correspondences between pairs of images by computing the fundamental matrix using the eight-point algorithm with RANSAC. After the pair matching, we optimized the parameter including camera positions to minimize the reprojection error by use of bundle adjustment technique (non-linear optimization). As a final step, we performed dense reconstruction and associate a color with each point using the library of PMVS. Results: Surface data were reconstructed well by visual inspection. The human skin is reconstructed well, althogh the reconstruction was time-consuming for direct use in daily clinical practice. Conclusion: 3D reconstruction using multi view stereo geometry is a promising tool for reducing the effort of patient setup. This work was supported by JSPS KAKENHI(25861128)

  7. Manifold Based Optimization for Single-Cell 3D Genome Reconstruction

    PubMed Central

    Collas, Philippe

    2015-01-01

    The three-dimensional (3D) structure of the genome is important for orchestration of gene expression and cell differentiation. While mapping genomes in 3D has for a long time been elusive, recent adaptations of high-throughput sequencing to chromosome conformation capture (3C) techniques, allows for genome-wide structural characterization for the first time. However, reconstruction of "consensus" 3D genomes from 3C-based data is a challenging problem, since the data are aggregated over millions of cells. Recent single-cell adaptations to the 3C-technique, however, allow for non-aggregated structural assessment of genome structure, but data suffer from sparse and noisy interaction sampling. We present a manifold based optimization (MBO) approach for the reconstruction of 3D genome structure from chromosomal contact data. We show that MBO is able to reconstruct 3D structures based on the chromosomal contacts, imposing fewer structural violations than comparable methods. Additionally, MBO is suitable for efficient high-throughput reconstruction of large systems, such as entire genomes, allowing for comparative studies of genomic structure across cell-lines and different species. PMID:26262780

  8. 3D Surface Reconstruction of Plant Seeds by Volume Carving: Performance and Accuracies

    PubMed Central

    Roussel, Johanna; Geiger, Felix; Fischbach, Andreas; Jahnke, Siegfried; Scharr, Hanno

    2016-01-01

    We describe a method for 3D reconstruction of plant seed surfaces, focusing on small seeds with diameters as small as 200 μm. The method considers robotized systems allowing single seed handling in order to rotate a single seed in front of a camera. Even though such systems feature high position repeatability, at sub-millimeter object scales, camera pose variations have to be compensated. We do this by robustly estimating the tool center point from each acquired image. 3D reconstruction can then be performed by a simple shape-from-silhouette approach. In experiments we investigate runtimes, theoretically achievable accuracy, experimentally achieved accuracy, and show as a proof of principle that the proposed method is well sufficient for 3D seed phenotyping purposes. PMID:27375628

  9. A preliminary investigation of 3D preconditioned conjugate gradient reconstruction for cone-beam CT

    NASA Astrophysics Data System (ADS)

    Fu, Lin; De Man, Bruno; Zeng, Kai; Benson, Thomas M.; Yu, Zhou; Cao, Guangzhi; Thibault, Jean-Baptiste

    2012-03-01

    Model-based iterative reconstruction (MBIR) methods based on maximum a posteriori (MAP) estimation have been recently introduced to multi-slice CT scanners. The model-based approach has shown promising image quality improvement with reduced radiation dose compared to conventional FBP methods, but the associated high computation cost limits its widespread use in clinical environments. Among the various choices of numerical algorithms to optimize the MAP cost function, simultaneous update methods such as the conjugate gradient (CG) method have a relatively high level of parallelism to take full advantage of a new generation of many-core computing hardware. With proper preconditioning techniques, fast convergence speeds of CG algorithms have been demonstrated in 3D emission and 2D transmission reconstruction. However, 3D transmission reconstruction using preconditioned conjugate gradient (PCG) has not been reported. Additional challenges in applying PCG in 3D CT reconstruction include the large size of clinical CT data, shift-variant and incomplete sampling, and complex regularization schemes to meet the diagnostic standard of image quality. In this paper, we present a ramp-filter based PCG algorithm for 3D CT MBIR. Convergence speeds of algorithms with and without using the preconditioner are compared.

  10. Fast and efficient particle reconstruction on a 3D grid using sparsity

    NASA Astrophysics Data System (ADS)

    Cornic, P.; Champagnat, F.; Cheminet, A.; Leclaire, B.; Le Besnerais, G.

    2015-03-01

    We propose an approach for efficient localization and intensity reconstruction of particles on a 3D grid based on sparsity principles. The computational complexity of the method is limited by using the particle volume reconstruction paradigm (Champagnat et al. in Meas Sci Technol 25, 2014) and a reduction in the problem dimension. Tests on synthetic and experimental data show that the proposed method leads to more efficient detections and to reconstructions of higher quality than classical tomoPIV approaches on a large range of seeding densities, up to ppp ≈ 0.12.

  11. In vivo bioluminescence tomography based on multi-view projection and 3D surface reconstruction

    NASA Astrophysics Data System (ADS)

    Zhang, Shuang; Wang, Kun; Leng, Chengcai; Deng, Kexin; Hu, Yifang; Tian, Jie

    2015-03-01

    Bioluminescence tomography (BLT) is a powerful optical molecular imaging modality, which enables non-invasive realtime in vivo imaging as well as 3D quantitative analysis in preclinical studies. In order to solve the inverse problem and reconstruct inner light sources accurately, the prior structural information is commonly necessary and obtained from computed tomography or magnetic resonance imaging. This strategy requires expensive hybrid imaging system, complicated operation protocol and possible involvement of ionizing radiation. The overall robustness highly depends on the fusion accuracy between the optical and structural information. In this study we present a pure optical bioluminescence tomographic system (POBTS) and a novel BLT method based on multi-view projection acquisition and 3D surface reconstruction. The POBTS acquired a sparse set of white light surface images and bioluminescent images of a mouse. Then the white light images were applied to an approximate surface model to generate a high quality textured 3D surface reconstruction of the mouse. After that we integrated multi-view luminescent images based on the previous reconstruction, and applied an algorithm to calibrate and quantify the surface luminescent flux in 3D.Finally, the internal bioluminescence source reconstruction was achieved with this prior information. A BALB/C mouse with breast tumor of 4T1-fLuc cells mouse model were used to evaluate the performance of the new system and technique. Compared with the conventional hybrid optical-CT approach using the same inverse reconstruction method, the reconstruction accuracy of this technique was improved. The distance error between the actual and reconstructed internal source was decreased by 0.184 mm.

  12. 3D Reconstruction from X-ray Fluoroscopy for Clinical Veterinary Medicine using Differential Volume Rendering

    NASA Astrophysics Data System (ADS)

    Khongsomboon, Khamphong; Hamamoto, Kazuhiko; Kondo, Shozo

    3D reconstruction from ordinary X-ray equipment which is not CT or MRI is required in clinical veterinary medicine. Authors have already proposed a 3D reconstruction technique from X-ray photograph to present bone structure. Although the reconstruction is useful for veterinary medicine, the thechnique has two problems. One is about exposure of X-ray and the other is about data acquisition process. An x-ray equipment which is not special one but can solve the problems is X-ray fluoroscopy. Therefore, in this paper, we propose a method for 3D-reconstruction from X-ray fluoroscopy for clinical veterinary medicine. Fluoroscopy is usually used to observe a movement of organ or to identify a position of organ for surgery by weak X-ray intensity. Since fluoroscopy can output a observed result as movie, the previous two problems which are caused by use of X-ray photograph can be solved. However, a new problem arises due to weak X-ray intensity. Although fluoroscopy can present information of not only bone structure but soft tissues, the contrast is very low and it is very difficult to recognize some soft tissues. It is very useful to be able to observe not only bone structure but soft tissues clearly by ordinary X-ray equipment in the field of clinical veterinary medicine. To solve this problem, this paper proposes a new method to determine opacity in volume rendering process. The opacity is determined according to 3D differential coefficient of 3D reconstruction. This differential volume rendering can present a 3D structure image of multiple organs volumetrically and clearly for clinical veterinary medicine. This paper shows results of simulation and experimental investigation of small dog and evaluation by veterinarians.

  13. 3D reconstruction of tropospheric cirrus clouds by stereovision system

    NASA Astrophysics Data System (ADS)

    Nadjib Kouahla, Mohamed; Moreels, Guy; Seridi, Hamid

    2016-07-01

    A stereo imaging method is applied to measure the altitude of cirrus clouds and provide a 3D map of the altitude of the layer centroid. They are located in the high troposphere and, sometimes in the lower stratosphere, between 6 and 10 km high. Two simultaneous images of the same scene are taken with Canon cameras (400D) in two sites distant of 37 Km. Each image processed in order to invert the perspective effect and provide a satellite-type view of the layer. Pairs of matched points that correspond to a physical emissive point in the common area are identified in calculating a correlation coefficient (ZNCC: Zero mean Normalized Cross-correlation or ZSSD: as Zero mean Sum of Squared Differences). This method is suitable for obtaining 3D representations in the case of low-contrast objects. An observational campaign was conducted in June 2014 in France. The images were taken simultaneously at Marnay (47°17'31.5" N, 5°44'58.8" E; altitude 275 m) 25 km northwest of Besancon and in Mont poupet (46°58'31.5" N, 5°52'22.7" E; altitude 600 m) southwest of Besancon at 43 km. 3D maps of the Natural cirrus clouds and artificial like "aircraft trails" are retrieved. They are compared with pseudo-relief intensity maps of the same region. The mean altitude of the cirrus barycenter is located at 8.5 ± 1km on June 11.

  14. Fast 3D reconstruction of tool wear based on monocular vision and multi-color structured light illuminator

    NASA Astrophysics Data System (ADS)

    Wang, Zhongren; Li, Bo; Zhou, Yuebin

    2014-11-01

    Fast 3D reconstruction of tool wear from 2D images has great importance to 3D measuring and objective evaluating tool wear condition, determining accurate tool change and insuring machined part's quality. Extracting 3D information of tool wear zone based on monocular multi-color structured light can realize fast recovery of surface topography of tool wear, which overcomes the problems of traditional methods such as solution diversity and slow convergence when using SFS method and stereo match when using 3D reconstruction from multiple images. In this paper, a kind of new multi-color structured light illuminator was put forward. An information mapping model was established among illuminator's structure parameters, surface morphology and color images. The mathematical model to reconstruct 3D morphology based on monocular multi-color structured light was presented. Experimental results show that this method is effective and efficient to reconstruct the surface morphology of tool wear zone.

  15. Using flow information to support 3D vessel reconstruction from rotational angiography

    SciTech Connect

    Waechter, Irina; Bredno, Joerg; Weese, Juergen; Barratt, Dean C.; Hawkes, David J.

    2008-07-15

    For the assessment of cerebrovascular diseases, it is beneficial to obtain three-dimensional (3D) morphologic and hemodynamic information about the vessel system. Rotational angiography is routinely used to image the 3D vascular geometry and we have shown previously that rotational subtraction angiography has the potential to also give quantitative information about blood flow. Flow information can be determined when the angiographic sequence shows inflow and possibly outflow of contrast agent. However, a standard volume reconstruction assumes that the vessel tree is uniformly filled with contrast agent during the whole acquisition. If this is not the case, the reconstruction exhibits artifacts. Here, we show how flow information can be used to support the reconstruction of the 3D vessel centerline and radii in this case. Our method uses the fast marching algorithm to determine the order in which voxels are analyzed. For every voxel, the rotational time intensity curve (R-TIC) is determined from the image intensities at the projection points of the current voxel. Next, the bolus arrival time of the contrast agent at the voxel is estimated from the R-TIC. Then, a measure of the intensity and duration of the enhancement is determined, from which a speed value is calculated that steers the propagation of the fast marching algorithm. The results of the fast marching algorithm are used to determine the 3D centerline by backtracking. The 3D radius is reconstructed from 2D radius estimates on the projection images. The proposed method was tested on computer simulated rotational angiography sequences with systematically varied x-ray acquisition, blood flow, and contrast agent injection parameters and on datasets from an experimental setup using an anthropomorphic cerebrovascular phantom. For the computer simulation, the mean absolute error of the 3D centerline and 3D radius estimation was 0.42 and 0.25 mm, respectively. For the experimental datasets, the mean absolute

  16. Objective and subjective quality assessment of geometry compression of reconstructed 3D humans in a 3D virtual room

    NASA Astrophysics Data System (ADS)

    Mekuria, Rufael; Cesar, Pablo; Doumanis, Ioannis; Frisiello, Antonella

    2015-09-01

    Compression of 3D object based video is relevant for 3D Immersive applications. Nevertheless, the perceptual aspects of the degradation introduced by codecs for meshes and point clouds are not well understood. In this paper we evaluate the subjective and objective degradations introduced by such codecs in a state of art 3D immersive virtual room. In the 3D immersive virtual room, users are captured with multiple cameras, and their surfaces are reconstructed as photorealistic colored/textured 3D meshes or point clouds. To test the perceptual effect of compression and transmission, we render degraded versions with different frame rates in different contexts (near/far) in the scene. A quantitative subjective study with 16 users shows that negligible distortion of decoded surfaces compared to the original reconstructions can be achieved in the 3D virtual room. In addition, a qualitative task based analysis in a full prototype field trial shows increased presence, emotion, user and state recognition of the reconstructed 3D Human representation compared to animated computer avatars.

  17. Reconstruction of 3D ultrasound images based on Cyclic Regularized Savitzky-Golay filters.

    PubMed

    Toonkum, Pollakrit; Suwanwela, Nijasri C; Chinrungrueng, Chedsada

    2011-02-01

    This paper presents a new three-dimensional (3D) ultrasound reconstruction algorithm for generation of 3D images from a series of two-dimensional (2D) B-scans acquired in the mechanical linear scanning framework. Unlike most existing 3D ultrasound reconstruction algorithms, which have been developed and evaluated in the freehand scanning framework, the new algorithm has been designed to capitalize the regularity pattern of the mechanical linear scanning, where all the B-scan slices are precisely parallel and evenly spaced. The new reconstruction algorithm, referred to as the Cyclic Regularized Savitzky-Golay (CRSG) filter, is a new variant of the Savitzky-Golay (SG) smoothing filter. The CRSG filter has been improved upon the original SG filter in two respects: First, the cyclic indicator function has been incorporated into the least square cost function to enable the CRSG filter to approximate nonuniformly spaced data of the unobserved image intensities contained in unfilled voxels and reduce speckle noise of the observed image intensities contained in filled voxels. Second, the regularization function has been augmented to the least squares cost function as a mechanism to balance between the degree of speckle reduction and the degree of detail preservation. The CRSG filter has been evaluated and compared with the Voxel Nearest-Neighbor (VNN) interpolation post-processed by the Adaptive Speckle Reduction (ASR) filter, the VNN interpolation post-processed by the Adaptive Weighted Median (AWM) filter, the Distance-Weighted (DW) interpolation, and the Adaptive Distance-Weighted (ADW) interpolation, on reconstructing a synthetic 3D spherical image and a clinical 3D carotid artery bifurcation in the mechanical linear scanning framework. This preliminary evaluation indicates that the CRSG filter is more effective in both speckle reduction and geometric reconstruction of 3D ultrasound images than the other methods. PMID:20696448

  18. 3D reconstruction of tomographic images applied to largely spaced slices.

    PubMed

    Traina, A J; Prado, A H; Bueno, J M

    1997-12-01

    This paper presents a full reconstruction process of magnetic resonance images. The first step is to bring the acquired data from the frequency domain, using a Fast Fourier Transform algorithm. A Tomographic Image Interpolation is then used to transform a sequence of tomographic slices in an isotropic volume data set, a process also called 3D Reconstruction. This work describes an automatic method whose interpolation stage is based on a previous matching stage using Delaunay Triangulation. The reconstruction approach uses an extrapolation procedure that permits appropriate treatment of the boundaries of the object under analysis. PMID:9555624

  19. Automatic 3d Building Reconstruction from a Dense Image Matching Dataset

    NASA Astrophysics Data System (ADS)

    McClune, Andrew P.; Mills, Jon P.; Miller, Pauline E.; Holland, David A.

    2016-06-01

    Over the last 20 years the demand for three dimensional (3D) building models has resulted in a vast amount of research being conducted in attempts to automate the extraction and reconstruction of models from airborne sensors. Recent results have shown that current methods tend to favour planar fitting procedures from lidar data, which are able to successfully reconstruct simple roof structures automatically but fail to reconstruct more complex structures or roofs with small artefacts. Current methods have also not fully explored the potential of recent developments in digital photogrammetry. Large format digital aerial cameras can now capture imagery with increased overlap and a higher spatial resolution, increasing the number of pixel correspondences between images. Every pixel in each stereo pair can also now be matched using per-pixel algorithms, which has given rise to the approach known as dense image matching. This paper presents an approach to 3D building reconstruction to try and overcome some of the limitations of planar fitting procedures. Roof vertices, extracted from true-orthophotos using edge detection, are refined and converted to roof corner points. By determining the connection between extracted corner points, a roof plane can be defined as a closed-cycle of points. Presented results demonstrate the potential of this method for the reconstruction of complex 3D building models at CityGML LoD2 specification.

  20. Evaluation of iterative sparse object reconstruction from few projections for 3-D rotational coronary angiography.

    PubMed

    Hansis, Eberhard; Schäfer, Dirk; Dössel, Olaf; Grass, Michael

    2008-11-01

    A 3-D reconstruction of the coronary arteries offers great advantages in the diagnosis and treatment of cardiovascular disease, compared to 2-D X-ray angiograms. Besides improved roadmapping, quantitative vessel analysis is possible. Due to the heart's motion, rotational coronary angiography typically provides only 5-10 projections for the reconstruction of each cardiac phase, which leads to a strongly undersampled reconstruction problem. Such an ill-posed problem can be approached with regularized iterative methods. The coronary arteries cover only a small fraction of the reconstruction volume. Therefore, the minimization of the mbiL(1) norm of the reconstructed image, favoring spatially sparse images, is a suitable regularization. Additional problems are overlaid background structures and projection truncation, which can be alleviated by background reduction using a morphological top-hat filter. This paper quantitatively evaluates image reconstruction based on these ideas on software phantom data, in terms of reconstructed absorption coefficients and vessel radii. Results for different algorithms and different input data sets are compared. First results for electrocardiogram-gated reconstruction from clinical catheter-based rotational X-ray coronary angiography are presented. Excellent 3-D image quality can be achieved. PMID:18955171

  1. 3D seismic data reconstruction based on complex-valued curvelet transform in frequency domain

    NASA Astrophysics Data System (ADS)

    Zhang, Hua; Chen, Xiaohong; Li, Hongxing

    2015-02-01

    Traditional seismic data sampling must follow the Nyquist Sampling Theorem. However, the field data acquisition may not meet the sampling criteria due to missing traces or limits in exploration cost, causing a prestack data reconstruction problem. Recently researchers have proposed many useful methods to regularize the seismic data. In this paper, a 3D seismic data reconstruction method based on the Projections Onto Convex Sets (POCS) algorithm and a complex-valued curvelet transform (CCT) has been introduced in the frequency domain. In order to improve reconstruction efficiency and reduce the computation time, the seismic data are transformed from the t-x-y domain to the f-x-y domain and the data reconstruction is processed for every frequency slice during the reconstruction process. The selection threshold parameter is important for reconstruction efficiency for each iteration, therefore an exponential square root decreased (ESRD) threshold is proposed. The experimental results show that the ESRD threshold can greatly reduce iterations and improve reconstruction efficiency compared to the other thresholds for the same reconstruction result. We also analyze the antinoise ability of the CCT-based POCS reconstruction method. The example studies on synthetic and real marine seismic data showed that our proposed method is more efficient and applicable.

  2. SAMA: A Method for 3D Morphological Analysis

    PubMed Central

    Cerruti, Florent; Sonnenschein, Carlos; Soto, Ana M.

    2016-01-01

    Three-dimensional (3D) culture models are critical tools for understanding tissue morphogenesis. A key requirement for their analysis is the ability to reconstruct the tissue into computational models that allow quantitative evaluation of the formed structures. Here, we present Software for Automated Morphological Analysis (SAMA), a method by which epithelial structures grown in 3D cultures can be imaged, reconstructed and analyzed with minimum human intervention. SAMA allows quantitative analysis of key features of epithelial morphogenesis such as ductal elongation, branching and lumen formation that distinguish different hormonal treatments. SAMA is a user-friendly set of customized macros operated via FIJI (http://fiji.sc/Fiji), an open-source image analysis platform in combination with a set of functions in R (http://www.r-project.org/), an open-source program for statistical analysis. SAMA enables a rapid, exhaustive and quantitative 3D analysis of the shape of a population of structures in a 3D image. SAMA is cross-platform, licensed under the GPLv3 and available at http://montevil.theobio.org/content/sama. PMID:27035711

  3. Real-Time 3d Reconstruction from Images Taken from AN Uav

    NASA Astrophysics Data System (ADS)

    Zingoni, A.; Diani, M.; Corsini, G.; Masini, A.

    2015-08-01

    We designed a method for creating 3D models of objects and areas from two aerial images acquired from an UAV. The models are generated automatically and in real-time, and consist in dense and true-colour reconstructions of the considered areas, which give the impression to the operator to be physically present within the scene. The proposed method only needs a cheap compact camera, mounted on a small UAV. No additional instrumentation is necessary, so that the costs are very limited. The method consists of two main parts: the design of the acquisition system and the 3D reconstruction algorithm. In the first part, the choices for the acquisition geometry and for the camera parameters are optimized, in order to yield the best performance. In the second part, a reconstruction algorithm extracts the 3D model from the two acquired images, maximizing the accuracy under the real-time constraint. A test was performed in monitoring a construction yard, obtaining very promising results. Highly realistic and easy-to-interpret 3D models of objects and areas of interest were produced in less than one second, with an accuracy of about 0.5m. For its characteristics, the designed method is suitable for video-surveillance, remote sensing and monitoring, especially in those applications that require intuitive and reliable information quickly, as disasters monitoring, search and rescue and area surveillance.

  4. 3D model tools for architecture and archaeology reconstruction

    NASA Astrophysics Data System (ADS)

    Vlad, Ioan; Herban, Ioan Sorin; Stoian, Mircea; Vilceanu, Clara-Beatrice

    2016-06-01

    The main objective of architectural and patrimonial survey is to provide a precise documentation of the status quo of the surveyed objects (monuments, buildings, archaeological object and sites) for preservation and protection, for scientific studies and restoration purposes, for the presentation to the general public. Cultural heritage documentation includes an interdisciplinary approach having as purpose an overall understanding of the object itself and an integration of the information which characterize it. The accuracy and the precision of the model are directly influenced by the quality of the measurements realized on field and by the quality of the software. The software is in the process of continuous development, which brings many improvements. On the other side, compared to aerial photogrammetry, close range photogrammetry and particularly architectural photogrammetry is not limited to vertical photographs with special cameras. The methodology of terrestrial photogrammetry has changed significantly and various photographic acquisitions are widely in use. In this context, the present paper brings forward a comparative study of TLS (Terrestrial Laser Scanner) and digital photogrammetry for 3D modeling. The authors take into account the accuracy of the 3D models obtained, the overall costs involved for each technology and method and the 4th dimension - time. The paper proves its applicability as photogrammetric technologies are nowadays used at a large scale for obtaining the 3D model of cultural heritage objects, efficacious in their assessment and monitoring, thus contributing to historic conservation. Its importance also lies in highlighting the advantages and disadvantages of each method used - very important issue for both the industrial and scientific segment when facing decisions such as in which technology to invest more research and funds.

  5. Modifications in SIFT-based 3D reconstruction from image sequence

    NASA Astrophysics Data System (ADS)

    Wei, Zhenzhong; Ding, Boshen; Wang, Wei

    2014-11-01

    In this paper, we aim to reconstruct 3D points of the scene from related images. Scale Invariant Feature Transform( SIFT) as a feature extraction and matching algorithm has been proposed and improved for years and has been widely used in image alignment and stitching, image recognition and 3D reconstruction. Because of the robustness and reliability of the SIFT's feature extracting and matching algorithm, we use it to find correspondences between images. Hence, we describe a SIFT-based method to reconstruct 3D sparse points from ordered images. In the process of matching, we make a modification in the process of finding the correct correspondences, and obtain a satisfying matching result. By rejecting the "questioned" points before initial matching could make the final matching more reliable. Given SIFT's attribute of being invariant to the image scale, rotation, and variable changes in environment, we propose a way to delete the multiple reconstructed points occurred in sequential reconstruction procedure, which improves the accuracy of the reconstruction. By removing the duplicated points, we avoid the possible collapsed situation caused by the inexactly initialization or the error accumulation. The limitation of some cases that all reprojected points are visible at all times also does not exist in our situation. "The small precision" could make a big change when the number of images increases. The paper shows the contrast between the modified algorithm and not. Moreover, we present an approach to evaluate the reconstruction by comparing the reconstructed angle and length ratio with actual value by using a calibration target in the scene. The proposed evaluation method is easy to be carried out and with a great applicable value. Even without the Internet image datasets, we could evaluate our own results. In this paper, the whole algorithm has been tested on several image sequences both on the internet and in our shots.

  6. Intuitive Terrain Reconstruction Using Height Observation-Based Ground Segmentation and 3D Object Boundary Estimation

    PubMed Central

    Song, Wei; Cho, Kyungeun; Um, Kyhyun; Won, Chee Sun; Sim, Sungdae

    2012-01-01

    Mobile robot operators must make rapid decisions based on information about the robot’s surrounding environment. This means that terrain modeling and photorealistic visualization are required for the remote operation of mobile robots. We have produced a voxel map and textured mesh from the 2D and 3D datasets collected by a robot’s array of sensors, but some upper parts of objects are beyond the sensors’ measurements and these parts are missing in the terrain reconstruction result. This result is an incomplete terrain model. To solve this problem, we present a new ground segmentation method to detect non-ground data in the reconstructed voxel map. Our method uses height histograms to estimate the ground height range, and a Gibbs-Markov random field model to refine the segmentation results. To reconstruct a complete terrain model of the 3D environment, we develop a 3D boundary estimation method for non-ground objects. We apply a boundary detection technique to the 2D image, before estimating and refining the actual height values of the non-ground vertices in the reconstructed textured mesh. Our proposed methods were tested in an outdoor environment in which trees and buildings were not completely sensed. Our results show that the time required for ground segmentation is faster than that for data sensing, which is necessary for a real-time approach. In addition, those parts of objects that were not sensed are accurately recovered to retrieve their real-world appearances. PMID:23235454

  7. Intuitive terrain reconstruction using height observation-based ground segmentation and 3D object boundary estimation.

    PubMed

    Song, Wei; Cho, Kyungeun; Um, Kyhyun; Won, Chee Sun; Sim, Sungdae

    2012-01-01

    Mobile robot operators must make rapid decisions based on information about the robot's surrounding environment. This means that terrain modeling and photorealistic visualization are required for the remote operation of mobile robots. We have produced a voxel map and textured mesh from the 2D and 3D datasets collected by a robot's array of sensors, but some upper parts of objects are beyond the sensors' measurements and these parts are missing in the terrain reconstruction result. This result is an incomplete terrain model. To solve this problem, we present a new ground segmentation method to detect non-ground data in the reconstructed voxel map. Our method uses height histograms to estimate the ground height range, and a Gibbs-Markov random field model to refine the segmentation results. To reconstruct a complete terrain model of the 3D environment, we develop a 3D boundary estimation method for non-ground objects. We apply a boundary detection technique to the 2D image, before estimating and refining the actual height values of the non-ground vertices in the reconstructed textured mesh. Our proposed methods were tested in an outdoor environment in which trees and buildings were not completely sensed. Our results show that the time required for ground segmentation is faster than that for data sensing, which is necessary for a real-time approach. In addition, those parts of objects that were not sensed are accurately recovered to retrieve their real-world appearances. PMID:23235454

  8. Semiautomated segmentation and 3D reconstruction of coronary trees: biplane angiography and intravascular ultrasound data fusion

    NASA Astrophysics Data System (ADS)

    Prause, Guido P. M.; DeJong, Steven C.; McKay, Charles R.; Sonka, Milan

    1996-04-01

    In this paper, we describe an approach to 3D reconstruction of the coronary tree based on combined use of biplane coronary angiography and intravascular ultrasound (IVUS). Shortly before the start of a constant-speed IVUS pullback, radiopaque dye is injected into the examined coronary tree and the heart is imaged with a calibrated biplane X-ray system. The 3D centerline of the coronary tree is reconstructed from the geometrically corrected biplane angiograms using an automated segmentation method and manual matching of corresponding branching points. The borders of vessel wall and plaque are automatically detected in the acquired pullback images and the IVUS cross sections are mapped perpendicular to the previously reconstructed 3D vessel centerline. In addition, the twist of the IVUS probe due to the curvature of the coronary artery is calculated for a torsion-free catheter and the whole vessel reconstruction is rotationally adjusted using available anatomic landmarks. The accuracy of the biplane reconstruction procedure is validated by means of a left coronary tree phantom. The feasibility of the entire approach is demonstrated in a cadaveric pig heart.

  9. Pragmatic fully 3D image reconstruction for the MiCES mouse imaging PET scanner

    NASA Astrophysics Data System (ADS)

    Lee, Kisung; Kinahan, Paul E.; Fessler, Jeffrey A.; Miyaoka, Robert S.; Janes, Marie; Lewellen, Tom K.

    2004-10-01

    We present a pragmatic approach to image reconstruction for data from the micro crystal elements system (MiCES) fully 3D mouse imaging positron emission tomography (PET) scanner under construction at the University of Washington. Our approach is modelled on fully 3D image reconstruction used in clinical PET scanners, which is based on Fourier rebinning (FORE) followed by 2D iterative image reconstruction using ordered-subsets expectation-maximization (OSEM). The use of iterative methods allows modelling of physical effects (e.g., statistical noise, detector blurring, attenuation, etc), while FORE accelerates the reconstruction process by reducing the fully 3D data to a stacked set of independent 2D sinograms. Previous investigations have indicated that non-stationary detector point-spread response effects, which are typically ignored for clinical imaging, significantly impact image quality for the MiCES scanner geometry. To model the effect of non-stationary detector blurring (DB) in the FORE+OSEM(DB) algorithm, we have added a factorized system matrix to the ASPIRE reconstruction library. Initial results indicate that the proposed approach produces an improvement in resolution without an undue increase in noise and without a significant increase in the computational burden. The impact on task performance, however, remains to be evaluated.

  10. A 3D Contact Smoothing Method

    SciTech Connect

    Puso, M A; Laursen, T A

    2002-05-02

    Smoothing of contact surfaces can be used to eliminate the chatter typically seen with node on facet contact and give a better representation of the actual contact surface. The latter affect is well demonstrated for problems with interference fits. In this work we present two methods for the smoothing of contact surfaces for 3D finite element contact. In the first method, we employ Gregory patches to smooth the faceted surface in a node on facet implementation. In the second method, we employ a Bezier interpolation of the faceted surface in a mortar method implementation of contact. As is well known, node on facet approaches can exhibit locking due to the failure of the Babuska-Brezzi condition and in some instances fail the patch test. The mortar method implementation is stable and provides optimal convergence in the energy of error. In the this work we demonstrate the superiority of the smoothed versus the non-smoothed node on facet implementations. We also show where the node on facet method fails and some results from the smoothed mortar method implementation.

  11. A Bayesian approach for suppression of limited angular sampling artifacts in single particle 3D reconstruction.

    PubMed

    Moriya, Toshio; Acar, Erman; Cheng, R Holland; Ruotsalainen, Ulla

    2015-09-01

    In the single particle reconstruction, the initial 3D structure often suffers from the limited angular sampling artifact. Selecting 2D class averages of particle images generally improves the accuracy and efficiency of the reference-free 3D angle estimation, but causes an insufficient angular sampling to fill the information of the target object in the 3D frequency space. Similarly, the initial 3D structure by the random-conical tilt reconstruction has the well-known "missing cone" artifact. Here, we attempted to solve the limited angular sampling problem by sequentially applying maximum a posteriori estimate with expectation maximization algorithm (sMAP-EM). Using both simulated and experimental cryo-electron microscope images, the sMAP-EM was compared to the direct Fourier method on the basis of reconstruction error and resolution. To establish selection criteria of the final regularization weight for the sMAP-EM, the effects of noise level and sampling sparseness on the reconstructions were examined with evenly distributed sampling simulations. The frequency information filled in the missing cone of the conical tilt sampling simulations was assessed by developing new quantitative measurements. All the results of visual and numerical evaluations showed the sMAP-EM performed better than the direct Fourier method, regardless of the sampling method, noise level, and sampling sparseness. Furthermore, the frequency domain analysis demonstrated that the sMAP-EM can fill the meaningful information in the unmeasured angular space without detailed a priori knowledge of the objects. The current research demonstrated that the sMAP-EM has a high potential to facilitate the determination of 3D protein structures at near atomic-resolution. PMID:26193484

  12. Compressed sensing reconstruction for whole-heart imaging with 3D radial trajectories: a graphics processing unit implementation.

    PubMed

    Nam, Seunghoon; Akçakaya, Mehmet; Basha, Tamer; Stehning, Christian; Manning, Warren J; Tarokh, Vahid; Nezafat, Reza

    2013-01-01

    A disadvantage of three-dimensional (3D) isotropic acquisition in whole-heart coronary MRI is the prolonged data acquisition time. Isotropic 3D radial trajectories allow undersampling of k-space data in all three spatial dimensions, enabling accelerated acquisition of the volumetric data. Compressed sensing (CS) reconstruction can provide further acceleration in the acquisition by removing the incoherent artifacts due to undersampling and improving the image quality. However, the heavy computational overhead of the CS reconstruction has been a limiting factor for its application. In this article, a parallelized implementation of an iterative CS reconstruction method for 3D radial acquisitions using a commercial graphics processing unit is presented. The execution time of the graphics processing unit-implemented CS reconstruction was compared with that of the C++ implementation, and the efficacy of the undersampled 3D radial acquisition with CS reconstruction was investigated in both phantom and whole-heart coronary data sets. Subsequently, the efficacy of CS in suppressing streaking artifacts in 3D whole-heart coronary MRI with 3D radial imaging and its convergence properties were studied. The CS reconstruction provides improved image quality (in terms of vessel sharpness and suppression of noise-like artifacts) compared with the conventional 3D gridding algorithm, and the graphics processing unit implementation greatly reduces the execution time of CS reconstruction yielding 34-54 times speed-up compared with C++ implementation. PMID:22392604

  13. Image-based reconstruction of 3D myocardial infarct geometry for patient specific applications

    NASA Astrophysics Data System (ADS)

    Ukwatta, Eranga; Rajchl, Martin; White, James; Pashakhanloo, Farhad; Herzka, Daniel A.; McVeigh, Elliot; Lardo, Albert C.; Trayanova, Natalia; Vadakkumpadan, Fijoy

    2015-03-01

    Accurate reconstruction of the three-dimensional (3D) geometry of a myocardial infarct from two-dimensional (2D) multi-slice image sequences has important applications in the clinical evaluation and treatment of patients with ischemic cardiomyopathy. However, this reconstruction is challenging because the resolution of common clinical scans used to acquire infarct structure, such as short-axis, late-gadolinium enhanced cardiac magnetic resonance (LGE-CMR) images, is low, especially in the out-of-plane direction. In this study, we propose a novel technique to reconstruct the 3D infarct geometry from low resolution clinical images. Our methodology is based on a function called logarithm of odds (LogOdds), which allows the broader class of linear combinations in the LogOdds vector space as opposed to being limited to only a convex combination in the binary label space. To assess the efficacy of the method, we used high-resolution LGE-CMR images of 36 human hearts in vivo, and 3 canine hearts ex vivo. The infarct was manually segmented in each slice of the acquired images, and the manually segmented data were downsampled to clinical resolution. The developed method was then applied to the downsampled image slices, and the resulting reconstructions were compared with the manually segmented data. Several existing reconstruction techniques were also implemented, and compared with the proposed method. The results show that the LogOdds method significantly outperforms all the other tested methods in terms of region overlap.

  14. Novel 3D Compression Methods for Geometry, Connectivity and Texture

    NASA Astrophysics Data System (ADS)

    Siddeq, M. M.; Rodrigues, M. A.

    2016-06-01

    A large number of applications in medical visualization, games, engineering design, entertainment, heritage, e-commerce and so on require the transmission of 3D models over the Internet or over local networks. 3D data compression is an important requirement for fast data storage, access and transmission within bandwidth limitations. The Wavefront OBJ (object) file format is commonly used to share models due to its clear simple design. Normally each OBJ file contains a large amount of data (e.g. vertices and triangulated faces, normals, texture coordinates and other parameters) describing the mesh surface. In this paper we introduce a new method to compress geometry, connectivity and texture coordinates by a novel Geometry Minimization Algorithm (GM-Algorithm) in connection with arithmetic coding. First, each vertex ( x, y, z) coordinates are encoded to a single value by the GM-Algorithm. Second, triangle faces are encoded by computing the differences between two adjacent vertex locations, which are compressed by arithmetic coding together with texture coordinates. We demonstrate the method on large data sets achieving compression ratios between 87 and 99 % without reduction in the number of reconstructed vertices and triangle faces. The decompression step is based on a Parallel Fast Matching Search Algorithm (Parallel-FMS) to recover the structure of the 3D mesh. A comparative analysis of compression ratios is provided with a number of commonly used 3D file formats such as VRML, OpenCTM and STL highlighting the performance and effectiveness of the proposed method.

  15. Minimizing camera-eye optical aberrations during the 3D reconstruction of retinal structures

    NASA Astrophysics Data System (ADS)

    Aldana-Iuit, Javier; Martinez-Perez, M. Elena; Espinosa-Romero, Arturo; Diaz-Uribe, Rufino

    2010-05-01

    3D reconstruction of blood vessels is a powerful visualization tool for physicians, since it allows them to refer to qualitative representation of their subject of study. In this paper we propose a 3D reconstruction method of retinal vessels from fundus images. The reconstruction method propose herein uses images of the same retinal structure in epipolar geometry. Images are preprocessed by RISA system for segmenting blood vessels and obtaining feature points for correspondences. The correspondence points process is solved using correlation. The LMedS analysis and Graph Transformation Matching algorithm are used for outliers suppression. Camera projection matrices are computed with the normalized eight point algorithm. Finally, we retrieve 3D position of the retinal tree points by linear triangulation. In order to increase the power of visualization, 3D tree skeletons are represented by surfaces via generalized cylinders whose radius correspond to morphological measurements obtained by RISA. In this paper the complete calibration process including the fundus camera and the optical properties of the eye, the so called camera-eye system is proposed. On one hand, the internal parameters of the fundus camera are obtained by classical algorithms using a reference pattern. On the other hand, we minimize the undesirable efects of the aberrations induced by the eyeball optical system assuming that contact enlarging lens corrects astigmatism, spherical and coma aberrations are reduced changing the aperture size and eye refractive errors are suppressed adjusting camera focus during image acquisition. Evaluation of two self-calibration proposals and results of 3D blood vessel surface reconstruction are presented.

  16. GlaRe, a GIS tool to reconstruct the 3D surface of palaeoglaciers

    NASA Astrophysics Data System (ADS)

    Pellitero, Ramón; Rea, Brice R.; Spagnolo, Matteo; Bakke, Jostein; Ivy-Ochs, Susan; Frew, Craig R.; Hughes, Philip; Ribolini, Adriano; Lukas, Sven; Renssen, Hans

    2016-09-01

    Glacier reconstructions are widely used in palaeoclimatic studies and this paper presents a new semi-automated method for generating glacier reconstructions: GlaRe, is a toolbox coded in Python and operating in ArcGIS. This toolbox provides tools to generate the ice thickness from the bed topography along a palaeoglacier flowline applying the standard flow law for ice, and generates the 3D surface of the palaeoglacier using multiple interpolation methods. The toolbox performance has been evaluated using two extant glaciers, an icefield and a cirque/valley glacier from which the subglacial topography is known, using the basic reconstruction routine in GlaRe. Results in terms of ice surface, ice extent and equilibrium line altitude show excellent agreement that confirms the robustness of this procedure in the reconstruction of palaeoglaciers from glacial landforms such as frontal moraines.

  17. Experimentation of structured light and stereo vision for underwater 3D reconstruction

    NASA Astrophysics Data System (ADS)

    Bruno, F.; Bianco, G.; Muzzupappa, M.; Barone, S.; Razionale, A. V.

    Current research on underwater 3D imaging methods is mainly addressing long range applications like seafloor mapping or surveys of archeological sites and shipwrecks. Recently, there is an increasing need for more accessible and precise close-range 3D acquisition technologies in some application fields like, for example, monitoring the growth of coral reefs or reconstructing underwater archaeological pieces that in most cases cannot be recovered from the seabed. This paper presents the first results of a research project that aims to investigate the possibility of using active optical techniques for the whole-field 3D reconstructions in an underwater environment. In this work we have tested an optical technique, frequently used for in air acquisition, based on the projection of structured lighting patterns acquired by a stereo vision system. We describe the experimental setup used for the underwater tests, which were conducted in a water tank with different turbidity conditions. The tests have evidenced that the quality of 3D reconstruction is acceptable even with high turbidity values, despite the heavy presence of scattering and absorption effects.

  18. Interactive Retro-Deformation of Terrain for Reconstructing 3D Fault Displacements.

    PubMed

    Westerteiger, R; Compton, T; Bernadin, T; Cowgill, E; Gwinner, K; Hamann, B; Gerndt, A; Hagen, H

    2012-12-01

    Planetary topography is the result of complex interactions between geological processes, of which faulting is a prominent component. Surface-rupturing earthquakes cut and move landforms which develop across active faults, producing characteristic surface displacements across the fault. Geometric models of faults and their associated surface displacements are commonly applied to reconstruct these offsets to enable interpretation of the observed topography. However, current 2D techniques are limited in their capability to convey both the three-dimensional kinematics of faulting and the incremental sequence of events required by a given reconstruction. Here we present a real-time system for interactive retro-deformation of faulted topography to enable reconstruction of fault displacement within a high-resolution (sub 1m/pixel) 3D terrain visualization. We employ geometry shaders on the GPU to intersect the surface mesh with fault-segments interactively specified by the user and transform the resulting surface blocks in realtime according to a kinematic model of fault motion. Our method facilitates a human-in-the-loop approach to reconstruction of fault displacements by providing instant visual feedback while exploring the parameter space. Thus, scientists can evaluate the validity of traditional point-to-point reconstructions by visually examining a smooth interpolation of the displacement in 3D. We show the efficacy of our approach by using it to reconstruct segments of the San Andreas fault, California as well as a graben structure in the Noctis Labyrinthus region on Mars. PMID:26357128

  19. 3D volume reconstruction of a mouse brain histological sections using warp filtering

    SciTech Connect

    Ju, Tao; Warren, Joe; Carson, James P.; Bello, Musodiq; Kakadiaris, Ioannis; Chiu, Wah; Thaller, Christina; Eichele, Gregor

    2006-09-30

    Sectioning tissues for optical microscopy often introduces upon the resulting sections distortions that make 3D reconstruction difficult. Here we present an automatic method for producing a smooth 3D volume from distorted 2D sections in the absence of any undistorted references. The method is based on pairwise elastic image warps between successive tissue sections, which can be computed by 2D image registration. Using a Gaussian filter, an average warp is computed for each section from the pairwise warps in a group of its neighboring sections. The average warps deform each section to match its neighboring sections, thus creating a smooth volume where corresponding features on successive sections lie close to each other. The proposed method can be used with any existing 2D image registration method for 3D reconstruction. In particular, we present a novel image warping algorithm based on dynamic programming that extends Dynamic Time Warping in 1D speech recognition to compute pairwise warps between high-resolution 2D images. The warping algorithm efficiently computes a restricted class of 2D local deformations that are characteristic between successive tissue sections. Finally, a validation framework is proposed and applied to evaluate the quality of reconstruction using both real sections and a synthetic volume.

  20. Assist feature printability prediction by 3-D resist profile reconstruction

    NASA Astrophysics Data System (ADS)

    Zheng, Xin; Huang, Jensheng; Chin, Fook; Kazarian, Aram; Kuo, Chun-Chieh

    2012-06-01

    properties may then be used to optimize the printability vs. efficacy of an SRAF either prior to or during an Optical Proximity Correction (OPC) run. The process models that are used during OPC have never been able to reliably predict which SRAFs will print. This appears to be due to the fact that OPC process models are generally created using data that does not include printed subresolution patterns. An enhancement to compact modeling capability to predict Assist Features (AF) printability is developed and discussed. A hypsometric map representing 3-D resist profile was built by applying a first principle approximation to estimate the "energy loss" from the resist top to bottom. Such a 3-D resist profile is an extrapolation of a well calibrated traditional OPC model without any additional information. Assist features are detected at either top of resist (dark field) or bottom of resist (bright field). Such detection can be done by just extracting top or bottom resist models from our 3-D resist model. There is no measurement of assist features needed when we build AF but it can be included if interested but focusing on resist calibration to account for both exposure dosage and focus change sensitivities. This approach significantly increases resist model's capability for predicting printed SRAF accuracy. And we don't need to calibrate an SRAF model in addition to the OPC model. Without increase in computation time, this compact model can draw assist feature contour with real placement and size at any vertical plane. The result is compared and validated with 3-D rigorous modeling as well as SEM images. Since this method does not change any form of compact modeling, it can be integrated into current MBAF solutions without any additional work.

  1. Incremental Multi-view 3D Reconstruction Starting from Two Images Taken by a Stereo Pair of Cameras

    NASA Astrophysics Data System (ADS)

    El hazzat, Soulaiman; Saaidi, Abderrahim; Karam, Antoine; Satori, Khalid

    2015-03-01

    In this paper, we present a new method for multi-view 3D reconstruction based on the use of a binocular stereo vision system constituted of two unattached cameras to initialize the reconstruction process. Afterwards , the second camera of stereo vision system (characterized by varying parameters) moves to capture more images at different times which are used to obtain an almost complete 3D reconstruction. The first two projection matrices are estimated by using a 3D pattern with known properties. After that, 3D scene points are recovered by triangulation of the matched interest points between these two images. The proposed approach is incremental. At each insertion of a new image, the camera projection matrix is estimated using the 3D information already calculated and new 3D points are recovered by triangulation from the result of the matching of interest points between the inserted image and the previous image. For the refinement of the new projection matrix and the new 3D points, a local bundle adjustment is performed. At first, all projection matrices are estimated, the matches between consecutive images are detected and Euclidean sparse 3D reconstruction is obtained. So, to increase the number of matches and have a more dense reconstruction, the Match propagation algorithm, more suitable for interesting movement of the camera, was applied on the pairs of consecutive images. The experimental results show the power and robustness of the proposed approach.

  2. High-Performance 3D Compressive Sensing MRI Reconstruction Using Many-Core Architectures

    PubMed Central

    Kim, Daehyun; Trzasko, Joshua; Smelyanskiy, Mikhail; Haider, Clifton; Dubey, Pradeep; Manduca, Armando

    2011-01-01

    Compressive sensing (CS) describes how sparse signals can be accurately reconstructed from many fewer samples than required by the Nyquist criterion. Since MRI scan duration is proportional to the number of acquired samples, CS has been gaining significant attention in MRI. However, the computationally intensive nature of CS reconstructions has precluded their use in routine clinical practice. In this work, we investigate how different throughput-oriented architectures can benefit one CS algorithm and what levels of acceleration are feasible on different modern platforms. We demonstrate that a CUDA-based code running on an NVIDIA Tesla C2050 GPU can reconstruct a 256 × 160 × 80 volume from an 8-channel acquisition in 19 seconds, which is in itself a significant improvement over the state of the art. We then show that Intel's Knights Ferry can perform the same 3D MRI reconstruction in only 12 seconds, bringing CS methods even closer to clinical viability. PMID:21922017

  3. DIII-D Equilibrium Reconstructions with New 3D Magnetic Probes

    NASA Astrophysics Data System (ADS)

    Lao, Lang; Strait, E. J.; Ferraro, N. M.; Ferron, J. R.; King, J. D.; Lee, X.; Meneghini, O.; Turnbull, A. D.; Huang, Y.; Qian, J. G.; Wingen, A.

    2015-11-01

    DIII-D equilibrium reconstructions with the recently installed new 3D magnetic diagnostic are presented. In addition to providing information to allow more accurate 2D reconstructions, the new 3D probes also provide useful information to guide computation of 3D perturbed equilibria. A new more comprehensive magnetic compensation has been implemented. Algorithms are being developed to allow EFIT to reconstruct 3D perturbed equilibria making use of the new 3D probes and plasma responses from 3D MHD codes such as GATO and M3D-C1. To improve the computation efficiency, all inactive probes in one of the toroidal planes in EFIT have been replaced with new probes from other planes. Other 3D efforts include testing of 3D reconstructions using V3FIT and a new 3D variational moment equilibrium code VMOM3D. Other EFIT developments include a GPU EFIT version and new safety factor and MSE-LS constraints. The accuracy and limitation of the new probes for 3D reconstructions will be discussed. Supported by US DOE under DE-FC02-04ER54698 and DE-FG02-95ER54309.

  4. Automatic Reconstruction of Spacecraft 3D Shape from Imagery

    NASA Astrophysics Data System (ADS)

    Poelman, C.; Radtke, R.; Voorhees, H.

    We describe a system that computes the three-dimensional (3D) shape of a spacecraft from a sequence of uncalibrated, two-dimensional images. While the mathematics of multi-view geometry is well understood, building a system that accurately recovers 3D shape from real imagery remains an art. A novel aspect of our approach is the combination of algorithms from computer vision, photogrammetry, and computer graphics. We demonstrate our system by computing spacecraft models from imagery taken by the Air Force Research Laboratory's XSS-10 satellite and DARPA's Orbital Express satellite. Using feature tie points (each identified in two or more images), we compute the relative motion of each frame and the 3D location of each feature using iterative linear factorization followed by non-linear bundle adjustment. The "point cloud" that results from this traditional shape-from-motion approach is typically too sparse to generate a detailed 3D model. Therefore, we use the computed motion solution as input to a volumetric silhouette-carving algorithm, which constructs a solid 3D model based on viewpoint consistency with the image frames. The resulting voxel model is then converted to a facet-based surface representation and is texture-mapped, yielding realistic images from arbitrary viewpoints. We also illustrate other applications of the algorithm, including 3D mensuration and stereoscopic 3D movie generation.

  5. Automated Reconstruction of Walls from Airborne LIDAR Data for Complete 3d Building Modelling

    NASA Astrophysics Data System (ADS)

    He, Y.; Zhang, C.; Awrangjeb, M.; Fraser, C. S.

    2012-07-01

    Automated 3D building model generation continues to attract research interests in photogrammetry and computer vision. Airborne Light Detection and Ranging (LIDAR) data with increasing point density and accuracy has been recognized as a valuable source for automated 3D building reconstruction. While considerable achievements have been made in roof extraction, limited research has been carried out in modelling and reconstruction of walls, which constitute important components of a full building model. Low point density and irregular point distribution of LIDAR observations on vertical walls render this task complex. This paper develops a novel approach for wall reconstruction from airborne LIDAR data. The developed method commences with point cloud segmentation using a region growing approach. Seed points for planar segments are selected through principle component analysis, and points in the neighbourhood are collected and examined to form planar segments. Afterwards, segment-based classification is performed to identify roofs, walls and planar ground surfaces. For walls with sparse LIDAR observations, a search is conducted in the neighbourhood of each individual roof segment to collect wall points, and the walls are then reconstructed using geometrical and topological constraints. Finally, walls which were not illuminated by the LIDAR sensor are determined via both reconstructed roof data and neighbouring walls. This leads to the generation of topologically consistent and geometrically accurate and complete 3D building models. Experiments have been conducted in two test sites in the Netherlands and Australia to evaluate the performance of the proposed method. Results show that planar segments can be reliably extracted in the two reported test sites, which have different point density, and the building walls can be correctly reconstructed if the walls are illuminated by the LIDAR sensor.

  6. Integration of real-time 3D capture, reconstruction, and light-field display

    NASA Astrophysics Data System (ADS)

    Zhang, Zhaoxing; Geng, Zheng; Li, Tuotuo; Pei, Renjing; Liu, Yongchun; Zhang, Xiao

    2015-03-01

    Effective integration of 3D acquisition, reconstruction (modeling) and display technologies into a seamless systems provides augmented experience of visualizing and analyzing real objects and scenes with realistic 3D sensation. Applications can be found in medical imaging, gaming, virtual or augmented reality and hybrid simulations. Although 3D acquisition, reconstruction, and display technologies have gained significant momentum in recent years, there seems a lack of attention on synergistically combining these components into a "end-to-end" 3D visualization system. We designed, built and tested an integrated 3D visualization system that is able to capture in real-time 3D light-field images, perform 3D reconstruction to build 3D model of the objects, and display the 3D model on a large autostereoscopic screen. In this article, we will present our system architecture and component designs, hardware/software implementations, and experimental results. We will elaborate on our recent progress on sparse camera array light-field 3D acquisition, real-time dense 3D reconstruction, and autostereoscopic multi-view 3D display. A prototype is finally presented with test results to illustrate the effectiveness of our proposed integrated 3D visualization system.

  7. Application of 3D Photo-reconstruction techniques in Geomorphology: Examples through different landforms and scales

    NASA Astrophysics Data System (ADS)

    Gómez-Gutiérrez, Álvaro; Susanne, Schnabel; Conoscenti, Christian; Caraballo-Arias, Nathalie A.; Ferro, Vito; di Stefano, Constanza; Juan de Sanjosé, José; Berenguer-Sempere, Fernando; de Matías, Javier

    2014-05-01

    Recent developments made in tri-dimensional photo-reconstruction techniques (3D-PR), such as the use of Structure from Motion (SfM) and MultiView Stereo (MVS) techniques together, have allowed obtaining high resolution 3D point clouds. In order to achieve final point clouds with these techniques, only oblique images from consumer un-calibrated and non-metric cameras are needed. Here, these techniques are used in order to measure, monitor and quantify geomorphological features and processes. Three different applications through a range of scales and landforms are presented here. Firstly, five small gully headcuts located in a small catchment in SW Spain were monitored with the aim of estimating headcut retreat rates. During this field work, 3D models obtained by means of a Terrestrial Laser Scanner (TLS) were captured and used as benchmarks to analyze 3D-PR method accuracy. Results of this analysis showed centimeter-level accuracies with average distances between the 3D-PR model and the TLS model ranging from 0.009 to 0.025 m. Estimated soil loss ranged from -0.246 m3 to 0.114 m3 for a wet period (289 mm) of 54 days in 2013. Secondly, a calanchi type badland in Sicily (Italy) was photo-reconstructed and the quality of the 3D-PR model was analyzed using a Digital Elevation Model produced by classic digital photogrammetry with photos captured by an Unmanned Aerial Vehicle (UAV). In this case, sub-meter calculated accuracies (0.30) showed that it is possible to describe badland morphology using 3D-PR models but it is not feasible to use these models to quantify annual rates of soil erosion in badlands (10 mm eroded per year). Finally, a high-resolution model of the Veleta rock glacier (in SE Spain) was elaborated with 3D-PR techniques and compared with a 3D model obtained by means of a TLS. Results indicated that 3D-PR method can be applied to the micro-scale study of glacier morphologies and processes with average distances to the TLS point cloud of 0.21 m.

  8. Segmentation and reconstruction of cerebral vessels from 3D rotational angiography for AVM embolization planning.

    PubMed

    Li, Fan; Chenoune, Yasmina; Ouenniche, Meriem; Blanc, Raphaël; Petit, Eric

    2014-01-01

    Diagnosis and computer-guided therapy of cerebral Arterio-Venous Malformations (AVM) require an accurate understanding of the cerebral vascular network both from structural and biomechanical point of view. We propose to obtain such information by analyzing three Dimensional Rotational Angiography (3DRA) images. In this paper, we describe a two-step process allowing 1) the 3D automatic segmentation of cerebral vessels from 3DRA images using a region-growing based algorithm and 2) the reconstruction of the segmented vessels using the 3D constrained Delaunay Triangulation method. The proposed algorithm was successfully applied to reconstruct cerebral blood vessels from ten datasets of 3DRA images. This software allows the neuroradiologist to separately analyze cerebral vessels for pre-operative interventions planning and therapeutic decision making. PMID:25571245

  9. 3D TEM reconstruction and segmentation process of laminar bio-nanocomposites

    SciTech Connect

    Iturrondobeitia, M. Okariz, A.; Fernandez-Martinez, R.; Jimbert, P.; Guraya, T.; Ibarretxe, J.

    2015-03-30

    The microstructure of laminar bio-nanocomposites (Poly (lactic acid)(PLA)/clay) depends on the amount of clay platelet opening after integration with the polymer matrix and determines the final properties of the material. Transmission electron microscopy (TEM) technique is the only one that can provide a direct observation of the layer dispersion and the degree of exfoliation. However, the orientation of the clay platelets, which affects the final properties, is practically immeasurable from a single 2D TEM image. This issue can be overcome using transmission electron tomography (ET), a technique that allows the complete 3D characterization of the structure, including the measurement of the orientation of clay platelets, their morphology and their 3D distribution. ET involves a 3D reconstruction of the study volume and a subsequent segmentation of the study object. Currently, accurate segmentation is performed manually, which is inefficient and tedious. The aim of this work is to propose an objective/automated segmentation methodology process of a 3D TEM tomography reconstruction. In this method the segmentation threshold is optimized by minimizing the variation of the dimensions of the segmented objects and matching the segmented V{sub clay} (%) and the actual one. The method is first validated using a fictitious set of objects, and then applied on a nanocomposite.

  10. Automatic 3D power line reconstruction of multi-angular imaging power line inspection system

    NASA Astrophysics Data System (ADS)

    Zhang, Wuming; Yan, Guangjian; Wang, Ning; Li, Qiaozhi; Zhao, Wei

    2007-06-01

    We develop a multi-angular imaging power line inspection system. Its main objective is to monitor the relative distance between high voltage power line and around objects, and alert if the warning threshold is exceeded. Our multi-angular imaging power line inspection system generates DSM of the power line passage, which comprises ground surface and ground objects, for example trees and houses, etc. For the purpose of revealing the dangerous regions, where ground objects are too close to the power line, 3D power line information should be extracted at the same time. In order to improve the automation level of extraction, reduce labour costs and human errors, an automatic 3D power line reconstruction method is proposed and implemented. It can be achieved by using epipolar constraint and prior knowledge of pole tower's height. After that, the proper 3D power line information can be obtained by space intersection using found homologous projections. The flight experiment result shows that the proposed method can successfully reconstruct 3D power line, and the measurement accuracy of the relative distance satisfies the user requirement of 0.5m.

  11. 3D Alternating Direction TV-Based Cone-Beam CT Reconstruction with Efficient GPU Implementation

    PubMed Central

    Cai, Ailong; Zhang, Hanming; Li, Lei; Xi, Xiaoqi; Guan, Min; Li, Jianxin

    2014-01-01

    Iterative image reconstruction (IIR) with sparsity-exploiting methods, such as total variation (TV) minimization, claims potentially large reductions in sampling requirements. However, the computation complexity becomes a heavy burden, especially in 3D reconstruction situations. In order to improve the performance for iterative reconstruction, an efficient IIR algorithm for cone-beam computed tomography (CBCT) with GPU implementation has been proposed in this paper. In the first place, an algorithm based on alternating direction total variation using local linearization and proximity technique is proposed for CBCT reconstruction. The applied proximal technique avoids the horrible pseudoinverse computation of big matrix which makes the proposed algorithm applicable and efficient for CBCT imaging. The iteration for this algorithm is simple but convergent. The simulation and real CT data reconstruction results indicate that the proposed algorithm is both fast and accurate. The GPU implementation shows an excellent acceleration ratio of more than 100 compared with CPU computation without losing numerical accuracy. The runtime for the new 3D algorithm is about 6.8 seconds per loop with the image size of 256 × 256 × 256 and 36 projections of the size of 512 × 512. PMID:25045400

  12. Using videogrammetry and 3D image reconstruction to identify crime suspects

    NASA Astrophysics Data System (ADS)

    Klasen, Lena M.; Fahlander, Olov

    1997-02-01

    The anthropometry and movements are unique for every individual human being. We identify persons we know by recognizing the way the look and move. By quantifying these measures and using image processing methods this method can serve as a tool in the work of the police as a complement to the ability of the human eye. The idea is to use virtual 3-D parameterized models of the human body to measure the anthropometry and movements of a crime suspect. The Swedish National Laboratory of Forensic Science in cooperation with SAAB Military Aircraft have developed methods for measuring the lengths of persons from video sequences. However, there is so much unused information in a digital image sequence from a crime scene. The main approach for this paper is to give an overview of the current research project at Linkoping University, Image Coding Group where methods to measure anthropometrical data and movements by using virtual 3-D parameterized models of the person in the crime scene are being developed. The length of an individual might vary up to plus or minus 10 cm depending on whether the person is in upright position or not. When measuring during the best available conditions, the length still varies within plus or minus 1 cm. Using a full 3-D model provides a rich set of anthropometric measures describing the person in the crime scene. Once having obtained such a model the movements can be quantified as well. The results depend strongly on the accuracy of the 3-D model and the strategy of having such an accurate 3-D model is to make one estimate per image frame by using 3-D scene reconstruction, and an averaged 3-D model as the final result from which the anthropometry and movements are calculated.

  13. Measurement Matrix Optimization and Mismatch Problem Compensation for DLSLA 3-D SAR Cross-Track Reconstruction.

    PubMed

    Bao, Qian; Jiang, Chenglong; Lin, Yun; Tan, Weixian; Wang, Zhirui; Hong, Wen

    2016-01-01

    With a short linear array configured in the cross-track direction, downward looking sparse linear array three-dimensional synthetic aperture radar (DLSLA 3-D SAR) can obtain the 3-D image of an imaging scene. To improve the cross-track resolution, sparse recovery methods have been investigated in recent years. In the compressive sensing (CS) framework, the reconstruction performance depends on the property of measurement matrix. This paper concerns the technique to optimize the measurement matrix and deal with the mismatch problem of measurement matrix caused by the off-grid scatterers. In the model of cross-track reconstruction, the measurement matrix is mainly affected by the configuration of antenna phase centers (APC), thus, two mutual coherence based criteria are proposed to optimize the configuration of APCs. On the other hand, to compensate the mismatch problem of the measurement matrix, the sparse Bayesian inference based method is introduced into the cross-track reconstruction by jointly estimate the scatterers and the off-grid error. Experiments demonstrate the performance of the proposed APCs' configuration schemes and the proposed cross-track reconstruction method. PMID:27556471

  14. Application of 3D photo-reconstruction in soil erosion studies

    NASA Astrophysics Data System (ADS)

    Castillo, Carlos; James, Michael; Pérez, Rafael; Gómez, Jose Alfonso

    2014-05-01

    3D photo-reconstruction (3D-PR) has been applied successfully to obtain elevation models using uncalibrated and nonmetric cameras for a range of geoscience applications (e.g. James and Robson, 2012), including gully erosion assessment (Castillo et al., 2012). However, its application in soil erosion studies is currently at the outset. The aim of this work is to compare 3D-PR with conventional techniques that have been employed traditionally for different purposes in soil erosion studies. In this preliminary work, we tested three applications that involve volume calculations: estimation of soil bulk density (BD), quantification of soil erosion at road banks (RB) and sedimentation rates behind check dams (CD). For each analysis, a PR field survey was carried out simultaneously with a conventional method (volume of water was used for BD, and total station surveys for RB and CD). For the 3D-PR technique, the accuracy as a function of the number of pictures taken was evaluated. In this study we explore the difference in the volume estimates between 3D-PR and conventional techniques as well as the time requirements for each method in order to compare their performance and optimal field of application.

  15. 3D reconstruction of a carotid bifurcation from 2D transversal ultrasound images.

    PubMed

    Yeom, Eunseop; Nam, Kweon-Ho; Jin, Changzhu; Paeng, Dong-Guk; Lee, Sang-Joon

    2014-12-01

    Visualizing and analyzing the morphological structure of carotid bifurcations are important for understanding the etiology of carotid atherosclerosis, which is a major cause of stroke and transient ischemic attack. For delineation of vasculatures in the carotid artery, ultrasound examinations have been widely employed because of a noninvasive procedure without ionizing radiation. However, conventional 2D ultrasound imaging has technical limitations in observing the complicated 3D shapes and asymmetric vasodilation of bifurcations. This study aims to propose image-processing techniques for better 3D reconstruction of a carotid bifurcation in a rat by using 2D cross-sectional ultrasound images. A high-resolution ultrasound imaging system with a probe centered at 40MHz was employed to obtain 2D transversal images. The lumen boundaries in each transverse ultrasound image were detected by using three different techniques; an ellipse-fitting, a correlation mapping to visualize the decorrelation of blood flow, and the ellipse-fitting on the correlation map. When the results are compared, the third technique provides relatively good boundary extraction. The incomplete boundaries of arterial lumen caused by acoustic artifacts are somewhat resolved by adopting the correlation mapping and the distortion in the boundary detection near the bifurcation apex was largely reduced by using the ellipse-fitting technique. The 3D lumen geometry of a carotid artery was obtained by volumetric rendering of several 2D slices. For the 3D vasodilatation of the carotid bifurcation, lumen geometries at the contraction and expansion states were simultaneously depicted at various view angles. The present 3D reconstruction methods would be useful for efficient extraction and construction of the 3D lumen geometries of carotid bifurcations from 2D ultrasound images. PMID:24965564

  16. Accuracy Assessment in Structure from Motion 3d Reconstruction from Uav-Born Images: the Influence of the Data Processing Methods

    NASA Astrophysics Data System (ADS)

    Caroti, G.; Martínez-Espejo Zaragoza, I.; Piemonte, A.

    2015-08-01

    The evolution of Structure from Motion (SfM) techniques and their integration with the established procedures of classic stereoscopic photogrammetric survey have provided a very effective tool for the production of three-dimensional textured models. Such models are not only aesthetically pleasing but can also contain metric information, the quality of which depends on both survey type and applied processing methodologies. An open research topic in this area refers to checking attainable accuracy levels. The knowledge of such accuracy is essential, especially in the integration of models obtained through SfM with other models derived from different sensors or methods (laser scanning, classic photogrammetry ...). Accuracy checks may be conducted by either comparing SfM models against a reference one or measuring the deviation of control points identified on models and measured with classic topographic instrumentation and methodologies. This paper presents an analysis of attainable accuracy levels, according to different approaches of survey and data processing. For this purpose, a survey of the Church of San Miniato in Marcianella (Pisa, Italy), has been used. The dataset is an integration of laser scanning with terrestrial and UAV-borne photogrammetric surveys; in addition, a high precision topographic network was established for the specific purpose. In particular, laser scanning has been used for the interior and the exterior of the church, with the exclusion of the roof, while UAVs have been used for the photogrammetric survey of both roof, with horizontal strips, and façade, with vertical strips.

  17. Fringe projection profilometry for panoramic 3D reconstruction

    NASA Astrophysics Data System (ADS)

    Almaraz-Cabral, César-Cruz; Gonzalez-Barbosa, José-Joel; Villa, Jesús; Hurtado-Ramos, Juan-Bautista; Ornelas-Rodriguez, Francisco-Javier; Córdova-Esparza, Diana-Margarita

    2016-03-01

    In this paper, we introduce a panoramic profilometric system to reconstruct inner cylindrical environments. The system projects circular fringes and uses a temporal phase unwrapping technique. The recovered phase map is used to reconstruct objects placed on the inner cylindrical surface. We derived a phase to depth conversion formula for this system. The use of fringe projection allows dense reconstructions. The panoramic system is composed by a digital projector, two parabolic mirrors and a CCD camera. All these components share a common axis with a reference cylinder. This paper presents results for distinct objects.

  18. Recent improvement of a FIB-SEM serial-sectioning method for precise 3D image reconstruction - application of the orthogonally-arranged FIB-SEM.

    PubMed

    Hara, Toru

    2014-11-01

    plasma cleaner, many kinds of signals can be obtained simultaneously.jmicro;63/suppl_1/i5-a/DFU077F1F1DFU077F1Fig. 1.Schematic illustration described (a) a standard type arrangement, (b) an orthogonal type arrangement. Recent topics and Future prospectsWe have applied this instrument for wide area of microstructure analysis; Metals and Alloys, Semiconductor devices, Battery electrodes, Minerals, Biomaterials, and so on. In my presentation, I would like to introduce some of our application results and will discuss about future development of the methodology of a FIB-SEM serial sectioning. As the applied research field becomes wider, various requests for the method were arisen. However, most requests can be summarized as follows: observation of larger area, expansion of applicable sample, obtain many kind of information, linkage with other instruments. AcknowledgmentsThe instrument introduced in this work was installed at NIMS by a part of "Low-carbon research network Japan" funded by the MEXT,Japan. PMID:25359844

  19. Automated reconstruction of 3D scenes from sequences of images

    NASA Astrophysics Data System (ADS)

    Pollefeys, M.; Koch, R.; Vergauwen, M.; Van Gool, L.

    Modelling of 3D objects from image sequences is a challenging problem and has been an important research topic in the areas of photogrammetry and computer vision for many years. In this paper, a system is presented which automatically extracts a textured 3D surface model from a sequence of images of a scene. The system can deal with unknown camera settings. In addition, the parameters of this camera are allowed to change during acquisition (e.g., by zooming or focusing). No prior knowledge about the scene is necessary to build the 3D models. Therefore, this system offers a high degree of flexibility. The system is based on state-of-the-art algorithms recently developed in computer vision. The 3D modelling task is decomposed into a number of successive steps. Gradually, more knowledge of the scene and the camera setup is retrieved. At this point, the obtained accuracy is not yet at the level required for most metrology applications, but the visual quality is very convincing. This system has been applied to a number of applications in archaeology. The Roman site of Sagalassos (southwest Turkey) was used as a test case to illustrate the potential of this new approach.

  20. 3-D Virtual and Physical Reconstruction of Bendego Iron

    NASA Astrophysics Data System (ADS)

    Belmonte, S. L. R.; Zucolotto, M. E.; Fontes, R. C.; dos Santos, J. R. L.

    2012-09-01

    The use of 3D laser scanning to meteoritic to preserve the original shape of the meteorites before cutting and the facility of saved the datas in STL format (stereolithography) to print three-dimensional physical models and generate a digital replica.

  1. Robust 3D reconstruction system for human jaw modeling

    NASA Astrophysics Data System (ADS)

    Yamany, Sameh M.; Farag, Aly A.; Tazman, David; Farman, Allan G.

    1999-03-01

    This paper presents a model-based vision system for dentistry that will replace traditional approaches used in diagnosis, treatment planning and surgical simulation. Dentistry requires accurate 3D representation of the teeth and jaws for many diagnostic and treatment purposes. For example orthodontic treatment involves the application of force systems to teeth over time to correct malocclusion. In order to evaluate tooth movement progress, the orthodontists monitors this movement by means of visual inspection, intraoral measurements, fabrication of plastic models, photographs and radiographs, a process which is both costly and time consuming. In this paper an integrate system has been developed to record the patient's occlusion using computer vision. Data is acquired with an intraoral video camera. A modified shape from shading (SFS) technique, using perspective projection and camera calibration, is used to extract accurate 3D information from a sequence of 2D images of the jaw. A new technique for 3D data registration, using a Grid Closest Point transform and genetic algorithms, is used to register the SFS output. Triangulization is then performed, and a solid 3D model is obtained via a rapid prototype machine.

  2. Online reconstruction of 3D magnetic particle imaging data

    NASA Astrophysics Data System (ADS)

    Knopp, T.; Hofmann, M.

    2016-06-01

    Magnetic particle imaging is a quantitative functional imaging technique that allows imaging of the spatial distribution of super-paramagnetic iron oxide particles at high temporal resolution. The raw data acquisition can be performed at frame rates of more than 40 volumes s‑1. However, to date image reconstruction is performed in an offline step and thus no direct feedback is available during the experiment. Considering potential interventional applications such direct feedback would be mandatory. In this work, an online reconstruction framework is implemented that allows direct visualization of the particle distribution on the screen of the acquisition computer with a latency of about 2 s. The reconstruction process is adaptive and performs block-averaging in order to optimize the signal quality for a given amount of reconstruction time.

  3. Online reconstruction of 3D magnetic particle imaging data.

    PubMed

    Knopp, T; Hofmann, M

    2016-06-01

    Magnetic particle imaging is a quantitative functional imaging technique that allows imaging of the spatial distribution of super-paramagnetic iron oxide particles at high temporal resolution. The raw data acquisition can be performed at frame rates of more than 40 volumes s(-1). However, to date image reconstruction is performed in an offline step and thus no direct feedback is available during the experiment. Considering potential interventional applications such direct feedback would be mandatory. In this work, an online reconstruction framework is implemented that allows direct visualization of the particle distribution on the screen of the acquisition computer with a latency of about 2 s. The reconstruction process is adaptive and performs block-averaging in order to optimize the signal quality for a given amount of reconstruction time. PMID:27182668

  4. A novel 3D template for mandible and maxilla reconstruction: Rapid prototyping using stereolithography

    PubMed Central

    Kumta, Samir; Kumta, Monica; Jain, Leena; Purohit, Shrirang; Ummul, Rani

    2015-01-01

    Introduction: Replication of the exact three-dimensional (3D) structure of the maxilla and mandible is now a priority whilst attempting reconstruction of these bones to attain a complete functional and aesthetic rehabilitation. We hereby present the process of rapid prototyping using stereolithography to produce templates for modelling bone grafts and implants for maxilla/mandible reconstructions, its applications in tumour/trauma, and outcomes for primary and secondary reconstruction. Materials and Methods: Stereolithographic template-assisted reconstruction was used on 11 patients for the reconstruction of the mandible/maxilla primarily following tumour excision and secondarily for the realignment of post-traumatic malunited fractures or deformity corrections. Data obtained from the computed tomography (CT) scans with 1-mm resolution were converted into a computer-aided design (CAD) using the CT Digital Imaging and Communications in Medicine (DICOM) data. Once a CAD model was constructed, it was converted into a stereolithographic format and then processed by the rapid prototyping technology to produce the physical anatomical model using a resin. This resin model replicates the native mandible, which can be thus used off table as a guide for modelling the bone grafts. Discussion: This conversion of two-dimensional (2D) data from CT scan into 3D models is a very precise guide to shaping the bone grafts. Further, this CAD can reconstruct the defective half of the mandible using the mirror image principle, and the normal anatomical model can be created to aid secondary reconstructions. Conclusion: This novel approach allows a precise translation of the treatment plan directly to the surgical field. It is also an important teaching tool for implant moulding and fixation, and helps in patient counselling. PMID:26933279

  5. Fast, automatic, and accurate catheter reconstruction in HDR brachytherapy using an electromagnetic 3D tracking system

    SciTech Connect

    Poulin, Eric; Racine, Emmanuel; Beaulieu, Luc; Binnekamp, Dirk

    2015-03-15

    Purpose: In high dose rate brachytherapy (HDR-B), current catheter reconstruction protocols are relatively slow and error prone. The purpose of this technical note is to evaluate the accuracy and the robustness of an electromagnetic (EM) tracking system for automated and real-time catheter reconstruction. Methods: For this preclinical study, a total of ten catheters were inserted in gelatin phantoms with different trajectories. Catheters were reconstructed using a 18G biopsy needle, used as an EM stylet and equipped with a miniaturized sensor, and the second generation Aurora{sup ®} Planar Field Generator from Northern Digital Inc. The Aurora EM system provides position and orientation value with precisions of 0.7 mm and 0.2°, respectively. Phantoms were also scanned using a μCT (GE Healthcare) and Philips Big Bore clinical computed tomography (CT) system with a spatial resolution of 89 μm and 2 mm, respectively. Reconstructions using the EM stylet were compared to μCT and CT. To assess the robustness of the EM reconstruction, five catheters were reconstructed twice and compared. Results: Reconstruction time for one catheter was 10 s, leading to a total reconstruction time inferior to 3 min for a typical 17-catheter implant. When compared to the μCT, the mean EM tip identification error was 0.69 ± 0.29 mm while the CT error was 1.08 ± 0.67 mm. The mean 3D distance error was found to be 0.66 ± 0.33 mm and 1.08 ± 0.72 mm for the EM and CT, respectively. EM 3D catheter trajectories were found to be more accurate. A maximum difference of less than 0.6 mm was found between successive EM reconstructions. Conclusions: The EM reconstruction was found to be more accurate and precise than the conventional methods used for catheter reconstruction in HDR-B. This approach can be applied to any type of catheters and applicators.

  6. Performance analysis of different surface reconstruction algorithms for 3D reconstruction of outdoor objects from their digital images.

    PubMed

    Maiti, Abhik; Chakravarty, Debashish

    2016-01-01

    3D reconstruction of geo-objects from their digital images is a time-efficient and convenient way of studying the structural features of the object being modelled. This paper presents a 3D reconstruction methodology which can be used to generate photo-realistic 3D watertight surface of different irregular shaped objects, from digital image sequences of the objects. The 3D reconstruction approach described here is robust, simplistic and can be readily used in reconstructing watertight 3D surface of any object from its digital image sequence. Here, digital images of different objects are used to build sparse, followed by dense 3D point clouds of the objects. These image-obtained point clouds are then used for generation of photo-realistic 3D surfaces, using different surface reconstruction algorithms such as Poisson reconstruction and Ball-pivoting algorithm. Different control parameters of these algorithms are identified, which affect the quality and computation time of the reconstructed 3D surface. The effects of these control parameters in generation of 3D surface from point clouds of different density are studied. It is shown that the reconstructed surface quality of Poisson reconstruction depends on Samples per node (SN) significantly, greater SN values resulting in better quality surfaces. Also, the quality of the 3D surface generated using Ball-Pivoting algorithm is found to be highly depend upon Clustering radius and Angle threshold values. The results obtained from this study give the readers of the article a valuable insight into the effects of different control parameters on determining the reconstructed surface quality. PMID:27386376

  7. Test of 3D CT reconstructions by EM + TV algorithm from undersampled data

    SciTech Connect

    Evseev, Ivan; Ahmann, Francielle; Silva, Hamilton P. da

    2013-05-06

    Computerized tomography (CT) plays an important role in medical imaging for diagnosis and therapy. However, CT imaging is connected with ionization radiation exposure of patients. Therefore, the dose reduction is an essential issue in CT. In 2011, the Expectation Maximization and Total Variation Based Model for CT Reconstruction (EM+TV) was proposed. This method can reconstruct a better image using less CT projections in comparison with the usual filtered back projection (FBP) technique. Thus, it could significantly reduce the overall dose of radiation in CT. This work reports the results of an independent numerical simulation for cone beam CT geometry with alternative virtual phantoms. As in the original report, the 3D CT images of 128 Multiplication-Sign 128 Multiplication-Sign 128 virtual phantoms were reconstructed. It was not possible to implement phantoms with lager dimensions because of the slowness of code execution even by the CORE i7 CPU.

  8. 3D Arterial Trace Reconstruction From Biplane Multi-Valued Projections

    NASA Astrophysics Data System (ADS)

    Barba, Joseph; Fenster, Paul; Suardiaz, Manuel

    1988-12-01

    An automatic algorithm for reconstructing arterial center lines in three dimensional (3D) space from two orthogonal angiographic views is presented. As a result of representing projected center lines by, cubic spline polynomials, corresponding points in both views are automatically determined. A previous paperl showed automatic positional reconstruction to be possible when the projected center line can be expressed as a single-valued function. This algorithm generalizes the method to include cases where the center lines are described by multi-valued functions. Three dimensional curves, representing arterial center lines, were sampled and projected onto two orthogonal planes to simulate the projected vessel center line in each view. Gaussian noise of different magnitudes was added to the projected coordinates in both views to simulate vessel center line estimation errors. Stenosed segments were simulated by deleting sections of the projected center lines. Positional reconstruction accuracy for various mean centering errors (MCE) and stenosis lengths are presented.

  9. Detection and Reconstruction of an Implicit Boundary Surface by Adaptively Expanding A Small Surface Patch in a 3D Image.

    PubMed

    Wang, Lisheng; Wang, Pai; Cheng, Liuhang; Ma, Yu; Wu, Shenzhi; Wang, Yu-Ping; Xu, Zongben

    2014-11-01

    In this paper we propose a novel and easy to use 3D reconstruction method. With the method, users only need to specify a small boundary surface patch in a 2D section image, and then an entire continuous implicit boundary surface (CIBS) can be automatically reconstructed from a 3D image. In the method, a hierarchical tracing strategy is used to grow the known boundary surface patch gradually in the 3D image. An adaptive detection technique is applied to detect boundary surface patches from different local regions. The technique is based on both context dependence and adaptive contrast detection as in the human vision system. A recognition technique is used to distinguish true boundary surface patches from the false ones in different cubes. By integrating these different approaches, a high-resolution CIBS model can be automatically reconstructed by adaptively expanding the small boundary surface patch in the 3D image. The effectiveness of our method is demonstrated by its applications to a variety of real 3D images, where the CIBS with complex shapes/branches and with varying gray values/gradient magnitudes can be well reconstructed. Our method is easy to use, which provides a valuable tool for 3D image visualization and analysis as needed in many applications. PMID:26355329

  10. Thermal infrared exploitation for 3D face reconstruction

    NASA Astrophysics Data System (ADS)

    Abayowa, Bernard O.

    2009-05-01

    Despite the advances in face recognition research, current face recognition systems are still not accurate or robust enough to be deployed in uncontrolled environments. The existence of a pose and illumination invariant face recognition system is still lacking. This research exploits the relationship between thermal infrared and visible imagery, to estimate 3D face with visible texture from infrared imagery. The relationship between visible and thermal infrared texture is learned using kernel canonical correlation analysis(KCCA), and then a 3D modeler is used to estimate the geometric structure from predicted visual imagery. This research will find it's application in uncontrolled environments where illumination and pose invariant identification or tracking is required at long range such as urban search and rescue (Amber alert, missing dementia patient), and manhunt scenarios.

  11. 3-D Reconstruction From 2-D Radiographic Images and Its Application to Clinical Veterinary Medicine

    NASA Astrophysics Data System (ADS)

    Hamamoto, Kazuhiko; Sato, Motoyoshi

    3D imaging technique is very important and indispensable in diagnosis. The main stream of the technique is one in which 3D image is reconstructed from a set of slice images, such as X-ray CT and MRI. However, these systems require large space and high costs. On the other hand, a low cost and small size 3D imaging system is needed in clinical veterinary medicine, for example, in the case of diagnosis in X-ray car or pasture area. We propose a novel 3D imaging technique using 2-D X-ray radiographic images. This system can be realized by cheaper system than X-ray CT and enables to get 3D image in X-ray car or portable X-ray equipment. In this paper, a 3D visualization technique from 2-D radiographic images is proposed and several reconstructions are shown. These reconstructions are evaluated by veterinarians.

  12. Interferometric synthetic aperture radar detection and estimation based 3D image reconstruction

    NASA Astrophysics Data System (ADS)

    Austin, Christian D.; Moses, Randolph L.

    2006-05-01

    This paper explores three-dimensional (3D) interferometric synthetic aperture radar (IFSAR) image reconstruction when multiple scattering centers and noise are present in a radar resolution cell. We introduce an IFSAR scattering model that accounts for both multiple scattering centers and noise. The problem of 3D image reconstruction is then posed as a multiple hypothesis detection and estimation problem; resolution cells containing a single scattering center are detected and the 3D location of these cells' pixels are estimated; all other pixels are rejected from the image. Detection and estimation statistics are derived using the multiple scattering center IFSAR model. A 3D image reconstruction algorithm using these statistics is then presented, and its performance is evaluated for a 3D reconstruction of a backhoe from noisy IFSAR data.

  13. Gothic Churches in Paris ST Gervais et ST Protais Image Matching 3d Reconstruction to Understand the Vaults System Geometry

    NASA Astrophysics Data System (ADS)

    Capone, M.; Campi, M.; Catuogno, R.

    2015-02-01

    This paper is part of a research about ribbed vaults systems in French Gothic Cathedrals. Our goal is to compare some different gothic cathedrals to understand the complex geometry of the ribbed vaults. The survey isn't the main objective but it is the way to verify the theoretical hypotheses about geometric configuration of the flamboyant churches in Paris. The survey method's choice generally depends on the goal; in this case we had to study many churches in a short time, so we chose 3D reconstruction method based on image dense stereo matching. This method allowed us to obtain the necessary information to our study without bringing special equipment, such as the laser scanner. The goal of this paper is to test image matching 3D reconstruction method in relation to some particular study cases and to show the benefits and the troubles. From a methodological point of view this is our workflow: - theoretical study about geometrical configuration of rib vault systems; - 3D model based on theoretical hypothesis about geometric definition of the vaults' form; - 3D model based on image matching 3D reconstruction methods; - comparison between 3D theoretical model and 3D model based on image matching;

  14. Probabilistic fusion of angiographic and echographic images for the 3D reconstruction of vessels

    NASA Astrophysics Data System (ADS)

    Pellot-Barakat, Claire J. M.; Bloch, Isabelle; Sureda, Francisco; Herment, Alain; Sigelle, Marc; Horain, Patrick J.; Long, Anne

    1995-05-01

    In order to provide a better quantitative and morphologic description of complex vascular lesions, we propose an approach of 3D reconstruction of the vessel internal wall, based on data fusion from two different imaging sources: two x ray digital angiography projections and a stack of endovascular echography slices. After extraction of echographic and angiographic information to be fused, a geometric model leads to the determination of the unknown parameters which allow the alignment of all data in a common reference frame. Both types of data are then directly included in a probabilistic reconstruction process based on Markov random fields. The Markovian model consists of cost functions reflecting x ray and ultrasonic data consistency and regularization elements to control the anatomic reality of the reconstruction. The optimal solution according to the definition criteria is obtained by minimizing the model energy with an algorithm based on simulated annealing. Preliminary results have been obtained with data acquired on a dog aorta. The accuracy of reconstruction by data fusion is significantly improved compared with results obtained with separate reconstruction from angiographic or echographic data. Taking into account all information available about the problem, the method avoids uncertainties and ambiguities of a reconstruction based only on one modality, and the probabilistic fusion solves the possible contradictions between both acquisitions.

  15. Active illumination based 3D surface reconstruction and registration for image guided medialization laryngoplasty

    NASA Astrophysics Data System (ADS)

    Jin, Ge; Lee, Sang-Joon; Hahn, James K.; Bielamowicz, Steven; Mittal, Rajat; Walsh, Raymond

    2007-03-01

    The medialization laryngoplasty is a surgical procedure to improve the voice function of the patient with vocal fold paresis and paralysis. An image guided system for the medialization laryngoplasty will help the surgeons to accurately place the implant and thus reduce the failure rates of the surgery. One of the fundamental challenges in image guided system is to accurately register the preoperative radiological data to the intraoperative anatomical structure of the patient. In this paper, we present a combined surface and fiducial based registration method to register the preoperative 3D CT data to the intraoperative surface of larynx. To accurately model the exposed surface area, a structured light based stereo vision technique is used for the surface reconstruction. We combined the gray code pattern and multi-line shifting to generate the intraoperative surface of the larynx. To register the point clouds from the intraoperative stage to the preoperative 3D CT data, a shape priori based ICP method is proposed to quickly register the two surfaces. The proposed approach is capable of tracking the fiducial markers and reconstructing the surface of larynx with no damage to the anatomical structure. We used off-the-shelf digital cameras, LCD projector and rapid 3D prototyper to develop our experimental system. The final RMS error in the registration is less than 1mm.

  16. 3D reconstruction of internal organ surfaces for minimal invasive surgery.

    PubMed

    Hu, Mingxing; Penney, Graeme; Edwards, Philip; Figl, Michael; Hawkes, David

    2007-01-01

    While Minimally Invasive Surgery (MIS) offers great benefits to patients compared with open surgery surgeons suffer from a restricted field-of-view and obstruction from instruments. We present a novel method for 3D reconstruction of soft tissue, which can provide a wider field-of-view with 3D information for surgeons, including restoration of missing data. The paper focuses on the use of Structure from Motion (SFM) techniques to solve the missing data problem and application of competitive evolutionary agents to improve the robustness to missing data and outliers. The method has been evaluated with synthetic data, images from a phantom heart model, and in vivo MIS image sequences using the da Vinci telerobotic surgical system. PMID:18051045

  17. Optic flow aided navigation and 3D scene reconstruction

    NASA Astrophysics Data System (ADS)

    Rollason, Malcolm

    2013-10-01

    An important enabler for low cost airborne systems is the ability to exploit low cost inertial instruments. An Inertial Navigation System (INS) can provide a navigation solution, when GPS is denied, by integrating measurements from inertial sensors. However, the gyrometer and accelerometer biases of low cost inertial sensors cause compound errors in the integrated navigation solution. This paper describes experiments to establish whether (and to what extent) the navigation solution can be aided by fusing measurements from an on-board video camera with measurements from the inertial sensors. The primary aim of the work was to establish whether optic flow aided navigation is beneficial even when the 3D structure within the observed scene is unknown. A further aim was to investigate whether an INS can help to infer 3D scene content from video. Experiments with both real and synthetic data have been conducted. Real data was collected using an AR Parrot quadrotor. Empirical results illustrate that optic flow provides a useful aid to navigation even when the 3D structure of the observed scene is not known. With optic flow aiding of the INS, the computed trajectory is consistent with the true camera motion, whereas the unaided INS yields a rapidly increasing position error (the data represents ~40 seconds, after which the unaided INS is ~50 metres in error and has passed through the ground). The results of the Monte Carlo simulation concur with the empirical result. Position errors, which grow as a quadratic function of time when unaided, are substantially checked by the availability of optic flow measurements.

  18. Quantitative Reconstructions of 3D Chemical Nanostructures in Nanowires.

    PubMed

    Rueda-Fonseca, P; Robin, E; Bellet-Amalric, E; Lopez-Haro, M; Den Hertog, M; Genuist, Y; André, R; Artioli, A; Tatarenko, S; Ferrand, D; Cibert, J

    2016-03-01

    Energy dispersive X-ray spectrometry is used to extract a quantitative 3D composition profile of heterostructured nanowires. The analysis of hypermaps recorded along a limited number of projections, with a preliminary calibration of the signal associated with each element, is compared to the intensity profiles calculated for a model structure with successive shells of circular, elliptic, or faceted cross sections. This discrete tomographic technique is applied to II-VI nanowires grown by molecular beam epitaxy, incorporating ZnTe and CdTe and their alloys with Mn and Mg, with typical size down to a few nanometers and Mn or Mg content as low as 10%. PMID:26837636

  19. Laser point cloud diluting and refined 3D reconstruction fusing with digital images

    NASA Astrophysics Data System (ADS)

    Liu, Jie; Zhang, Jianqing

    2007-06-01

    This paper shows a method to combine the imaged-based modeling technique and Laser scanning data to rebuild a realistic 3D model. Firstly use the image pair to build a relative 3D model of the object, and then register the relative model to the Laser coordinate system. Project the Laser points to one of the images and extract the feature lines from that image. After that fit the 2D projected Laser points to lines in the image and constrain their corresponding 3D points to lines in the 3D Laser space to keep the features of the model. Build TIN and cancel the redundant points, which don't impact the curvature of their neighborhood areas. Use the diluting Laser point cloud to reconstruct the geometry model of the object, and then project the texture of corresponding image onto it. The process is shown to be feasible and progressive proved by experimental results. The final model is quite similar with the real object. This method cuts down the quantity of data in the precondition of keeping the features of model. The effect of it is manifest.

  20. 3D reconstruction software comparison for short sequences

    NASA Astrophysics Data System (ADS)

    Strupczewski, Adam; Czupryński, BłaŻej

    2014-11-01

    Large scale multiview reconstruction is recently a very popular area of research. There are many open source tools that can be downloaded and run on a personal computer. However, there are few, if any, comparisons between all the available software in terms of accuracy on small datasets that a single user can create. The typical datasets for testing of the software are archeological sites or cities, comprising thousands of images. This paper presents a comparison of currently available open source multiview reconstruction software for small datasets. It also compares the open source solutions with a simple structure from motion pipeline developed by the authors from scratch with the use of OpenCV and Eigen libraries.

  1. Quality Analysis of 3d Surface Reconstruction Using Multi-Platform Photogrammetric Systems

    NASA Astrophysics Data System (ADS)

    Lari, Z.; El-Sheimy, N.

    2016-06-01

    In recent years, the necessity of accurate 3D surface reconstruction has been more pronounced for a wide range of mapping, modelling, and monitoring applications. The 3D data for satisfying the needs of these applications can be collected using different digital imaging systems. Among them, photogrammetric systems have recently received considerable attention due to significant improvements in digital imaging sensors, emergence of new mapping platforms, and development of innovative data processing techniques. To date, a variety of techniques haven been proposed for 3D surface reconstruction using imagery collected by multi-platform photogrammetric systems. However, these approaches suffer from the lack of a well-established quality control procedure which evaluates the quality of reconstructed 3D surfaces independent of the utilized reconstruction technique. Hence, this paper aims to introduce a new quality assessment platform for the evaluation of the 3D surface reconstruction using photogrammetric data. This quality control procedure is performed while considering the quality of input data, processing procedures, and photo-realistic 3D surface modelling. The feasibility of the proposed quality control procedure is finally verified by quality assessment of the 3D surface reconstruction using images from different photogrammetric systems.

  2. Clinical examples of 3D dose distribution reconstruction, based on the actual MLC leaves movement, for dynamic treatment techniques

    PubMed Central

    Osewski, Wojciech; Dolla, Łukasz; Radwan, Michał; Szlag, Marta; Rutkowski, Roman; Smolińska, Barbara; Ślosarek, Krzysztof

    2014-01-01

    Aim To present practical examples of our new algorithm for reconstruction of 3D dose distribution, based on the actual MLC leaf movement. Background DynaLog and RTplan files were used by DDcon software to prepare a new RTplan file for dose distribution reconstruction. Materials and methods Four different clinically relevant scenarios were used to assess the feasibility of the proposed new approach: (1) Reconstruction of whole treatment sessions for prostate cancer; (2) Reconstruction of IMRT verification treatment plan; (3) Dose reconstruction in breast cancer; (4) Reconstruction of interrupted arc and complementary plan for an interrupted VMAT treatment session of prostate cancer. The applied reconstruction method was validated by comparing reconstructed and measured fluence maps. For all statistical analysis, the U Mann–Whitney test was used. Results In the first two and the fourth cases, there were no statistically significant differences between the planned and reconstructed dose distribution (p = 0.910, p = 0.975, p = 0.893, respectively). In the third case the differences were statistically significant (p = 0.015). Treatment plan had to be reconstructed. Conclusion Developed dose distribution reconstruction algorithm presents a very useful QA tool. It provides means for 3D dose distribution verification in patient volume and allows to evaluate the influence of actual MLC leaf motion on the dose distribution. PMID:25337416

  3. 3D phase micro-object studies by means of digital holographic tomography supported by algebraic reconstruction technique

    NASA Astrophysics Data System (ADS)

    Bilski, B. J.; Jozwicka, A.; Kujawinska, M.

    2007-09-01

    Constant development of microelements' technology requires a creation of new instruments to determine their basic physical parameters in 3D. The most efficient non-destructive method providing 3D information is tomography. In this paper we present Digital Holographic Tomography (DHT), in which input data is provided by means of Di-git- al Holography (DH). The main advantage of DH is the capability to capture several projections with a single hologram [1]. However, these projections have uneven angular distribution and their number is significantly limited. Therefore - Algebraic Reconstruction Technique (ART), where a few phase projections may be sufficient for proper 3D phase reconstruction, is implemented. The error analysis of the method and its additional limitations due to shape and dimensions of investigated object are presented. Finally, the results of ART application to DHT method are also presented on data reconstructed from numerically generated hologram of a multimode fibre.

  4. Reconstruction of the 3D flow field in a differentially heated rotating annulus laboratory experiment

    NASA Astrophysics Data System (ADS)

    Harlander, U.; Wright, G. B.; Egbers, C.

    2012-04-01

    levels. From these rotated fields, a 3D flow field can be reconstructed that is an approximation to the true 3D flow. The PIV measurements of the horizontal velocity fields do not line up on a nice grid. We therefore use a mesh-free reconstruction method based on radial basis functions (RBFs). Additionally, we employ a filtering strategy for dealing with the noise in the measured velocity fields.

  5. 3D reconstruction in laparoscopy with close-range photometric stereo.

    PubMed

    Collins, Toby; Bartoli, Adrien

    2012-01-01

    In this paper we present the first solution to 3D reconstruction in monocular laparoscopy using methods based on Photometric Stereo (PS). Our main contributions are to provide the new theory and practical solutions to successfully apply PS in close-range imaging conditions. We are specifically motivated by a solution with minimal hardware modification to existing laparoscopes. In fact the only physical modification we make is to adjust the colour of the laparoscope's illumination via three colour filters placed at its tip. Once calibrated, our approach can compute 3D from a single image, does not require correspondence estimation, and computes absolute depth densely. We demonstrate the potential of our approach with ground truth ex-vivo and in-vivo experimentation. PMID:23286102

  6. Portable and accurate 3D scanner for breast implant design and reconstructive plastic surgery

    NASA Astrophysics Data System (ADS)

    Rigotti, Camilla; Borghese, Nunzio A.; Ferrari, Stefano; Baroni, Guido; Ferrigno, Giancarlo

    1998-06-01

    In order to evaluate the proper breast implant, the surgeon relies on a standard set of measurements manually taken on the subject. This approach does not allow to obtain an accurate reconstruction of the breast shape and asymmetries can easily arise after surgery. The purpose of this work is to present a method which can help the surgeon in the choice of the shape and dimensions of a prosthesis allowing for a perfect symmetry between the prosthesis and the controlateral breast and can be used as a 3D visual feedback in plastic surgery.

  7. A Gauss-Seidel Iteration Scheme for Reference-Free 3-D Histological Image Reconstruction

    PubMed Central

    Daum, Volker; Steidl, Stefan; Maier, Andreas; Köstler, Harald; Hornegger, Joachim

    2015-01-01

    Three-dimensional (3-D) reconstruction of histological slice sequences offers great benefits in the investigation of different morphologies. It features very high-resolution which is still unmatched by in-vivo 3-D imaging modalities, and tissue staining further enhances visibility and contrast. One important step during reconstruction is the reversal of slice deformations introduced during histological slice preparation, a process also called image unwarping. Most methods use an external reference, or rely on conservative stopping criteria during the unwarping optimization to prevent straightening of naturally curved morphology. Our approach shows that the problem of unwarping is based on the superposition of low-frequency anatomy and high-frequency errors. We present an iterative scheme that transfers the ideas of the Gauss-Seidel method to image stacks to separate the anatomy from the deformation. In particular, the scheme is universally applicable without restriction to a specific unwarping method, and uses no external reference. The deformation artifacts are effectively reduced in the resulting histology volumes, while the natural curvature of the anatomy is preserved. The validity of our method is shown on synthetic data, simulated histology data using a CT data set and real histology data. In the case of the simulated histology where the ground truth was known, the mean Target Registration Error (TRE) between the unwarped and original volume could be reduced to less than 1 pixel on average after 6 iterations of our proposed method. PMID:25312918

  8. Acceleration of EM-Based 3D CT Reconstruction Using FPGA.

    PubMed

    Choi, Young-Kyu; Cong, Jason

    2016-06-01

    Reducing radiation doses is one of the key concerns in computed tomography (CT) based 3D reconstruction. Although iterative methods such as the expectation maximization (EM) algorithm can be used to address this issue, applying this algorithm to practice is difficult due to the long execution time. Our goal is to decrease this long execution time to an order of a few minutes, so that low-dose 3D reconstruction can be performed even in time-critical events. In this paper we introduce a novel parallel scheme that takes advantage of numerous block RAMs on field-programmable gate arrays (FPGAs). Also, an external memory bandwidth reduction strategy is presented to reuse both the sinogram and the voxel intensity. Moreover, a customized processing engine based on the FPGA is presented to increase overall throughput while reducing the logic consumption. Finally, a hardware and software flow is proposed to quickly construct a design for various CT machines. The complete reconstruction system is implemented on an FPGA-based server-class node. Experiments on actual patient data show that a 26.9 × speedup can be achieved over a 16-thread multicore CPU implementation. PMID:26462240

  9. Calibration target reconstruction for 3-D vision inspection system of large-scale engineering objects

    NASA Astrophysics Data System (ADS)

    Yin, Yongkai; Peng, Xiang; Guan, Yingjian; Liu, Xiaoli; Li, Ameng

    2010-11-01

    It is usually difficult to calibrate the 3-D vision inspection system that may be employed to measure the large-scale engineering objects. One of the challenges is how to in-situ build-up a large and precise calibration target. In this paper, we present a calibration target reconstruction strategy to solve such a problem. First, we choose one of the engineering objects to be inspected as a calibration target, on which we paste coded marks on the object surface. Next, we locate and decode marks to get homologous points. From multiple camera images, the fundamental matrix between adjacent images can be estimated, and then the essential matrix can be derived with priori known camera intrinsic parameters and decomposed to obtain camera extrinsic parameters. Finally, we are able to obtain the initial 3D coordinates with binocular stereo vision reconstruction, and then optimize them with the bundle adjustment by considering the lens distortions, leading to a high-precision calibration target. This reconstruction strategy has been applied to the inspection of an industrial project, from which the proposed method is successfully validated.

  10. 3D parameter reconstruction in hyperspectral diffuse optical tomography

    NASA Astrophysics Data System (ADS)

    Saibaba, Arvind K.; Krishnamurthy, Nishanth; Anderson, Pamela G.; Kainerstorfer, Jana M.; Sassaroli, Angelo; Miller, Eric L.; Fantini, Sergio; Kilmer, Misha E.

    2015-03-01

    The imaging of shape perturbation and chromophore concentration using Diffuse Optical Tomography (DOT) data can be mathematically described as an ill-posed and non-linear inverse problem. The reconstruction algorithm for hyperspectral data using a linearized Born model is prohibitively expensive, both in terms of computation and memory. We model the shape of the perturbation using parametric level-set approach (PaLS). We discuss novel computational strategies for reducing the computational cost based on a Krylov subspace approach for parameteric linear systems and a compression strategy for the parameter-to-observation map. We will demonstrate the validity of our approach by comparison with experiments.

  11. Single Particle Cryo-electron Microscopy and 3-D Reconstruction of Viruses

    PubMed Central

    Guo, Fei; Jiang, Wen

    2014-01-01

    With fast progresses in instrumentation, image processing algorithms, and computational resources, single particle electron cryo-microscopy (cryo-EM) 3-D reconstruction of icosahedral viruses has now reached near-atomic resolutions (3–4 Å). With comparable resolutions and more predictable outcomes, cryo-EM is now considered a preferred method over X-ray crystallography for determination of atomic structure of icosahedral viruses. At near-atomic resolutions, all-atom models or backbone models can be reliably built that allow residue level understanding of viral assembly and conformational changes among different stages of viral life cycle. With the developments of asymmetric reconstruction, it is now possible to visualize the complete structure of a complex virus with not only its icosahedral shell but also its multiple non-icosahedral structural features. In this chapter, we will describe single particle cryo-EM experimental and computational procedures for both near-atomic resolution reconstruction of icosahedral viruses and asymmetric reconstruction of viruses with both icosahedral and non-icosahedral structure components. Procedures for rigorous validation of the reconstructions and resolution evaluations using truly independent de novo initial models and refinements are also introduced. PMID:24357374

  12. Bayesian 3D velocity field reconstruction with VIRBIUS

    NASA Astrophysics Data System (ADS)

    Lavaux, Guilhem

    2016-03-01

    I describe a new Bayesian-based algorithm to infer the full three dimensional velocity field from observed distances and spectroscopic galaxy catalogues. In addition to the velocity field itself, the algorithm reconstructs true distances, some cosmological parameters and specific non-linearities in the velocity field. The algorithm takes care of selection effects, miscalibration issues and can be easily extended to handle direct fitting of e.g. the inverse Tully-Fisher relation. I first describe the algorithm in details alongside its performances. This algorithm is implemented in the VIRBIUS (VelocIty Reconstruction using Bayesian Inference Software) software package. I then test it on different mock distance catalogues with a varying complexity of observational issues. The model proved to give robust measurement of velocities for mock catalogues of 3000 galaxies. I expect the core of the algorithm to scale to tens of thousands galaxies. It holds the promises of giving a better handle on future large and deep distance surveys for which individual errors on distance would impede velocity field inference.

  13. Reconstructing 3-D Ship Motion for Synthetic Aperture Sonar Processing

    NASA Astrophysics Data System (ADS)

    Thomsen, D. R.; Chadwell, C. D.; Sandwell, D.

    2004-12-01

    We are investigating the feasibility of coherent ping-to-ping processing of multibeam sonar data for high-resolution mapping and change detection in the deep ocean. Theoretical calculations suggest that standard multibeam resolution can be improved from 100 m to ~10 m through coherent summation of pings similar to synthetic aperture radar image formation. A requirement for coherent summation of pings is to correct the phase of the return echoes to an accuracy of ~3 cm at a sampling rate of ~10 Hz. In September of 2003, we conducted a seagoing experiment aboard R/V Revelle to test these ideas. Three geodetic-quality GPS receivers were deployed to recover 3-D ship motion to an accuracy of +- 3cm at a 1 Hz sampling rate [Chadwell and Bock, GRL, 2001]. Additionally, inertial navigation data (INS) from fiber-optic gyroscopes and pendulum-type accelerometers were collected at a 10 Hz rate. Independent measurements of ship orientation (yaw, pitch, and roll) from the GPS and INS show agreement to an RMS accuracy of better than 0.1 degree. Because inertial navigation hardware is susceptible to drift, these measurements were combined with the GPS to achieve both high accuracy and high sampling rate. To preserve the short-timescale accuracy of the INS and the long-timescale accuracy of the GPS measurements, time-filtered differences between the GPS and INS were subtracted from the INS integrated linear velocities. An optimal filter length of 25 s was chosen to force the RMS difference between the GPS and the integrated INS to be on the order of the accuracy of the GPS measurements. This analysis provides an upper bound on 3-D ship motion accuracy. Additionally, errors in the attitude can translate to the projections of motion for individual hydrophones. With lever arms on the order of 5m, these errors will likely be ~1mm. Based on these analyses, we expect to achieve the 3-cm accuracy requirement. Using full-resolution hydrophone data collected by a SIMRAD EM/120 echo sounder

  14. Image-Based 3d Reconstruction and Analysis for Orthodontia

    NASA Astrophysics Data System (ADS)

    Knyaz, V. A.

    2012-08-01

    Among the main tasks of orthodontia are analysis of teeth arches and treatment planning for providing correct position for every tooth. The treatment plan is based on measurement of teeth parameters and designing perfect teeth arch curve which teeth are to create after treatment. The most common technique for teeth moving uses standard brackets which put on teeth and a wire of given shape which is clamped by these brackets for producing necessary forces to every tooth for moving it in given direction. The disadvantages of standard bracket technique are low accuracy of tooth dimensions measurements and problems with applying standard approach for wide variety of complex orthodontic cases. The image-based technique for orthodontic planning, treatment and documenting aimed at overcoming these disadvantages is proposed. The proposed approach provides performing accurate measurements of teeth parameters needed for adequate planning, designing correct teeth position and monitoring treatment process. The developed technique applies photogrammetric means for teeth arch 3D model generation, brackets position determination and teeth shifting analysis.

  15. Nonintrusive 3D reconstruction of human bone models to simulate their bio-mechanical response

    NASA Astrophysics Data System (ADS)

    Alexander, Tsouknidas; Antonis, Lontos; Savvas, Savvakis; Nikolaos, Michailidis

    2012-06-01

    3D finite element models representing functional parts of the human skeletal system, have been repeatedly introduced over the last years, to simulate biomechanical response of anatomical characteristics or investigate surgical treatment. The reconstruction of geometrically accurate FEM models, poses a significant challenge for engineers and physicians, as recent advances in tissue engineering dictate highly customized implants, while facilitating the production of alloplast materials that are employed to restore, replace or supplement the function of human tissue. The premises of every accurate reconstruction method, is to encapture the precise geometrical characteristics of the examined tissue and thus the selection of a sufficient imaging technique is of the up-most importance. This paper reviews existing and potential applications related to the current state-of-the-art of medical imaging and simulation techniques. The procedures are examined by introducing their concepts; strengths and limitations, while the authors also present part of their recent activities in these areas. [Figure not available: see fulltext.

  16. 3D Face Modeling Using the Multi-Deformable Method

    PubMed Central

    Hwang, Jinkyu; Yu, Sunjin; Kim, Joongrock; Lee, Sangyoun

    2012-01-01

    In this paper, we focus on the problem of the accuracy performance of 3D face modeling techniques using corresponding features in multiple views, which is quite sensitive to feature extraction errors. To solve the problem, we adopt a statistical model-based 3D face modeling approach in a mirror system consisting of two mirrors and a camera. The overall procedure of our 3D facial modeling method has two primary steps: 3D facial shape estimation using a multiple 3D face deformable model and texture mapping using seamless cloning that is a type of gradient-domain blending. To evaluate our method's performance, we generate 3D faces of 30 individuals and then carry out two tests: accuracy test and robustness test. Our method shows not only highly accurate 3D face shape results when compared with the ground truth, but also robustness to feature extraction errors. Moreover, 3D face rendering results intuitively show that our method is more robust to feature extraction errors than other 3D face modeling methods. An additional contribution of our method is that a wide range of face textures can be acquired by the mirror system. By using this texture map, we generate realistic 3D face for individuals at the end of the paper. PMID:23201976

  17. Visualization and 3D Reconstruction of Flame Cells of Taenia solium (Cestoda)

    PubMed Central

    Valverde-Islas, Laura E.; Arrangoiz, Esteban; Vega, Elio; Robert, Lilia; Villanueva, Rafael; Reynoso-Ducoing, Olivia; Willms, Kaethe; Zepeda-Rodríguez, Armando; Fortoul, Teresa I.; Ambrosio, Javier R.

    2011-01-01

    Background Flame cells are the terminal cells of protonephridial systems, which are part of the excretory systems of invertebrates. Although the knowledge of their biological role is incomplete, there is a consensus that these cells perform excretion/secretion activities. It has been suggested that the flame cells participate in the maintenance of the osmotic environment that the cestodes require to live inside their hosts. In live Platyhelminthes, by light microscopy, the cells appear beating their flames rapidly and, at the ultrastructural, the cells have a large body enclosing a tuft of cilia. Few studies have been performed to define the localization of the cytoskeletal proteins of these cells, and it is unclear how these proteins are involved in cell function. Methodology/Principal Findings Parasites of two different developmental stages of T. solium were used: cysticerci recovered from naturally infected pigs and intestinal adults obtained from immunosuppressed and experimentally infected golden hamsters. Hamsters were fed viable cysticerci to recover adult parasites after one month of infection. In the present studies focusing on flame cells of cysticerci tissues was performed. Using several methods such as video, confocal and electron microscopy, in addition to computational analysis for reconstruction and modeling, we have provided a 3D visual rendition of the cytoskeletal architecture of Taenia solium flame cells. Conclusions/Significance We consider that visual representations of cells open a new way for understanding the role of these cells in the excretory systems of Platyhelminths. After reconstruction, the observation of high resolution 3D images allowed for virtual observation of the interior composition of cells. A combination of microscopic images, computational reconstructions and 3D modeling of cells appears to be useful for inferring the cellular dynamics of the flame cell cytoskeleton. PMID:21412407

  18. Visualization of 3D elbow kinematics using reconstructed bony surfaces

    NASA Astrophysics Data System (ADS)

    Lalone, Emily A.; McDonald, Colin P.; Ferreira, Louis M.; Peters, Terry M.; King, Graham J. W.; Johnson, James A.

    2010-02-01

    An approach for direct visualization of continuous three-dimensional elbow kinematics using reconstructed surfaces has been developed. Simulation of valgus motion was achieved in five cadaveric specimens using an upper arm simulator. Direct visualization of the motion of the ulna and humerus at the ulnohumeral joint was obtained using a contact based registration technique. Employing fiducial markers, the rendered humerus and ulna were positioned according to the simulated motion. The specific aim of this study was to investigate the effect of radial head arthroplasty on restoring elbow joint stability after radial head excision. The position of the ulna and humerus was visualized for the intact elbow and following radial head excision and replacement. Visualization of the registered humerus/ulna indicated an increase in valgus angulation of the ulna with respect to the humerus after radial head excision. This increase in valgus angulation was restored to that of an elbow with a native radial head following radial head arthroplasty. These findings were consistent with previous studies investigating elbow joint stability following radial head excision and arthroplasty. The current technique was able to visualize a change in ulnar position in a single DoF. Using this approach, the coupled motion of ulna undergoing motion in all 6 degrees-of-freedom can also be visualized.

  19. 3D Reconstruction of a Rotating Erupting Prominence

    NASA Technical Reports Server (NTRS)

    Thompson, W. T.; Kliem, B.; Torok, T.

    2011-01-01

    A bright prominence associated with a coronal mass ejection (CME) was seen erupting from the Sun on 9 April 2008. This prominence was tracked by both the Solar Terrestrial Relations Observatory (STEREO) EUVI and COR1 telescopes, and was seen to rotate about the line of sight as it erupted; therefore, the event has been nicknamed the "Cartwheel CME." The threads of the prominence in the core of the CME quite clearly indicate the structure of a weakly to moderately twisted flux rope throughout the field of view, up to heliocentric heights of 4 solar radii. Although the STEREO separation was 48 deg, it was possible to match some sharp features in the later part of the eruption as seen in the 304 Angstrom line in EUVI and in the H alpha-sensitive bandpass of COR1 by both STEREO Ahead and Behind. These features could then be traced out in three dimensional space, and reprojected into a view in which the eruption is directed towards the observer. The reconstructed view shows that the alignment of the prominence to the vertical axis rotates as it rises up to a leading-edge height of approximately equals 2.5 solar radii, and then remains approximately constant. The alignment at 2.5 solar radii differs by about 115 deg. from the original filament orientation inferred from H alpha and EUV data, and the height profile of the rotation, obtained here for the first time, shows that two thirds of the total rotation is reached within approximately equals 0.5 solar radii above the photosphere. These features are well reproduced by numerical simulations of an unstable moderately twisted flux rope embedded in external flux with a relatively strong shear field component.

  20. 3D Reconstruction of a Rotating Erupting Prominence

    NASA Technical Reports Server (NTRS)

    Thompson, W. T.; Kliem, B.; Toeroek, T.

    2011-01-01

    A bright prominence associated with a coronal mass ejection (CME) was seen erupting from the Sun on 9 April 2008. This prominence was tracked by both the Solar Terrestrial Relations Observatory (STEREO) EUVI and COR1 telescopes, and was seen to rotate about the line of sight a it erupted; therefore, the event has been nicknamed the "Cartwheel CME." The threads of the prominence in the core of the CME quite clearly indicate the structure of a weakly to moderately twisted flux rope throughout the field of view, up to heliocentric heights of 4 solar radii. Although the STEREO separation was 48 deg, it was possible to match some sharp features in the later part of the eruption as seen in the 304 A line in EUVI and in the H-alpha-sensitive bandpass of COR I by both STEREO Ahead and Behind. These features could then be traced out in three-dimensional space, and reprojected into a view in which the eruption is directed toward the observer. The reconstructed view shows that the alignment of the prominence to the vertical axis rotates as it rises up to a leading-edge height of approximately equal to 2.5 solar radii, and then remains approximately constant. The alignment at 2.5 solar radii differs by about 115 deg from the original filament orientation inferred from H-alpha and EUV data, and the height profile of the rotation, obtained here for the first time, shows that two thirds of the total rotation are reached within approximately equal to 0.5 solar radii above the photosphere. These features are well reproduced by numerical simulations of an unstable moderately twisted flux rope embedded in external flux with a relatively strong shear field component.

  1. Near-infrared optical imaging of human brain based on the semi-3D reconstruction algorithm

    NASA Astrophysics Data System (ADS)

    Liu, Ming; Meng, Wei; Qin, Zhuanping; Zhou, Xiaoqing; Zhao, Huijuan; Gao, Feng

    2013-03-01

    In the non-invasive brain imaging with near-infrared light, precise head model is of great significance to the forward model and the image reconstruction. To deal with the individual difference of human head tissues and the problem of the irregular curvature, in this paper, we extracted head structure with Mimics software from the MRI image of a volunteer. This scheme makes it possible to assign the optical parameters to every layer of the head tissues reasonably and solve the diffusion equation with the finite-element analysis. During the solution of the inverse problem, a semi-3D reconstruction algorithm is adopted to trade off the computation cost and accuracy between the full 3-D and the 2-D reconstructions. In this scheme, the changes in the optical properties of the inclusions are assumed either axially invariable or confined to the imaging plane, while the 3-D nature of the photon migration is still retained. This therefore leads to a 2-D inverse issue with the matched 3-D forward model. Simulation results show that comparing to the 3-D reconstruction algorithm, the Semi-3D reconstruction algorithm cut 27% the calculation time consumption.

  2. Automatic Model Selection for 3d Reconstruction of Buildings from Satellite Imagary

    NASA Astrophysics Data System (ADS)

    Partovi, T.; Arefi, H.; Krauß, T.; Reinartz, P.

    2013-09-01

    Through the improvements of satellite sensor and matching technology, the derivation of 3D models from space borne stereo data obtained a lot of interest for various applications such as mobile navigation, urban planning, telecommunication, and tourism. The automatic reconstruction of 3D building models from space borne point cloud data is still an active research topic. The challenging problem in this field is the relatively low quality of the Digital Surface Model (DSM) generated by stereo matching of satellite data comparing to airborne LiDAR data. In order to establish an efficient method to achieve high quality models and complete automation from the mentioned DSM, in this paper a new method based on a model-driven strategy is proposed. For improving the results, refined orthorectified panchromatic images are introduced into the process as additional data. The idea of this method is based on ridge line extraction and analysing height values in direction of and perpendicular to the ridgeline direction. After applying pre-processing to the orthorectified data, some feature descriptors are extracted from the DSM, to improve the automatic ridge line detection. Applying RANSAC a line is fitted to each group of ridge points. Finally these ridge lines are refined by matching them or closing gaps. In order to select the type of roof model the heights of point in extension of the ridge line and height differences perpendicular to the ridge line are analysed. After roof model selection, building edge information is extracted from canny edge detection and parameters derived from the roof parts. Then the best model is fitted to extracted façade roofs based on detected type of model. Each roof is modelled independently and final 3D buildings are reconstructed by merging the roof models with the corresponding walls.

  3. A simple approach for 3D reconstruction of the spine from biplanar radiography

    NASA Astrophysics Data System (ADS)

    Zhang, Junhua; Shi, Xinling; Lv, Liang; Guo, Fei; Zhang, Yufeng

    2014-04-01

    This paper proposed a simple approach for 3D spinal reconstruction from biplanar radiography. The proposed reconstruction consisted in reconstructing the 3D central curve of the spine based on the epipolar geometry and automatically aligning vertebrae under the constraint of this curve. The vertebral orientations were adjusted by matching the projections of the 3D pedicles with the 2D pedicles in biplanar radiographs. The user interaction time was within one minute for a thoracic spine. Sixteen pairs of radiographs of a thoracic spinal model were used to evaluate the precision and accuracy. The precision was within 3.1 mm for the location and 3.5° for the orientation. The accuracy was within 3.5 mm for the location and 3.9° for the orientation. These results demonstrate that this approach can be a promising tool to obtain the 3D spinal geometry with acceptable user interactions in scoliotic clinics.

  4. 3D reconstruction of a human heart fascicle using SurfDriver

    NASA Astrophysics Data System (ADS)

    Rader, Robert J.; Phillips, Steven J.; LaFollette, Paul S., Jr.

    2000-06-01

    The Temple University Medical School has a sequence of over 400 serial sections of adult normal ventricular human heart tissue, cut at 25 micrometer thickness. We used a Zeiss Ultraphot with a 4x planapo objective and a Pixera digital camera to make a series of 45 sequential montages to use in the 3D reconstruction of a fascicle (muscle bundle). We wrote custom software to merge 4 smaller image fields from each section into one composite image. We used SurfDriver software, developed by Scott Lozanoff of the University of Hawaii and David Moody of the University of Alberta, for registration, object boundary identification, and 3D surface reconstruction. We used an Epson Stylus Color 900 printer to get photo-quality prints. We describe the challenge and our solution to the following problems: image acquisition and digitization, image merge, alignment and registration, boundary identification, 3D surface reconstruction, 3D visualization and orientation, snapshot, and photo-quality prints.

  5. Rapid 3D dynamic arterial spin labeling with a sparse model-based image reconstruction.

    PubMed

    Zhao, Li; Fielden, Samuel W; Feng, Xue; Wintermark, Max; Mugler, John P; Meyer, Craig H

    2015-11-01

    Dynamic arterial spin labeling (ASL) MRI measures the perfusion bolus at multiple observation times and yields accurate estimates of cerebral blood flow in the presence of variations in arterial transit time. ASL has intrinsically low signal-to-noise ratio (SNR) and is sensitive to motion, so that extensive signal averaging is typically required, leading to long scan times for dynamic ASL. The goal of this study was to develop an accelerated dynamic ASL method with improved SNR and robustness to motion using a model-based image reconstruction that exploits the inherent sparsity of dynamic ASL data. The first component of this method is a single-shot 3D turbo spin echo spiral pulse sequence accelerated using a combination of parallel imaging and compressed sensing. This pulse sequence was then incorporated into a dynamic pseudo continuous ASL acquisition acquired at multiple observation times, and the resulting images were jointly reconstructed enforcing a model of potential perfusion time courses. Performance of the technique was verified using a numerical phantom and it was validated on normal volunteers on a 3-Tesla scanner. In simulation, a spatial sparsity constraint improved SNR and reduced estimation errors. Combined with a model-based sparsity constraint, the proposed method further improved SNR, reduced estimation error and suppressed motion artifacts. Experimentally, the proposed method resulted in significant improvements, with scan times as short as 20s per time point. These results suggest that the model-based image reconstruction enables rapid dynamic ASL with improved accuracy and robustness. PMID:26169322

  6. 3-D reconstruction of neurons from multichannel confocal laser scanning image series.

    PubMed

    Wouterlood, Floris G

    2014-01-01

    A confocal laser scanning microscope (CLSM) collects information from a thin, focal plane and ignores out-of-focus information. Scanning of a specimen, with stepwise axial (Z-) movement of the stage in between each scan, produces Z-series of confocal images of a tissue volume, which then can be used to 3-D reconstruct structures of interest. The operator first configures separate channels (e.g., laser, filters, and detector settings) for each applied fluorochrome and then acquires Z-series of confocal images: one series per channel. Channel signal separation is extremely important. Measures to avoid bleaching are vital. Post-acquisition deconvolution of the image series is often performed to increase resolution before 3-D reconstruction takes place. In the 3-D reconstruction programs described in this unit, reconstructions can be inspected in real time from any viewing angle. By altering viewing angles and by switching channels off and on, the spatial relationships of 3-D-reconstructed structures with respect to structures visualized in other channels can be studied. Since each brand of CLSM, computer program, and 3-D reconstruction package has its own proprietary set of procedures, a general approach is provided in this protocol wherever possible. PMID:24723320

  7. 3D reconstruction of a patient-specific surface model of the proximal femur from calibrated x-ray radiographs: A validation study

    SciTech Connect

    Zheng Guoyan; Schumann, Steffen

    2009-04-15

    Twenty-three femurs (one plastic bone and twenty-two cadaver bones) with both nonpathologic and pathologic cases were considered to validate a statistical shape model based technique for three-dimensional (3D) reconstruction of a patient-specific surface model from calibrated x-ray radiographs. The 3D reconstruction technique is based on an iterative nonrigid registration of the features extracted from a statistically instantiated 3D surface model to those interactively identified from the radiographs. The surface models reconstructed from the radiographs were compared to the associated ground truths derived either from a 3D CT-scan reconstruction method or from a 3D laser-scan reconstruction method and an average error distance of 0.95 mm were found. Compared to the existing works, our approach has the advantage of seamlessly handling both nonpathologic and pathologic cases even when the statistical shape model that we used was constructed from surface models of nonpathologic bones.

  8. 3D reconstruction of a building from LIDAR data with first-and-last echo information

    NASA Astrophysics Data System (ADS)

    Zhang, Guoning; Zhang, Jixian; Yu, Jie; Yang, Haiquan; Tan, Ming

    2007-11-01

    With the aerial LIDAR technology developing, how to automatically recognize and reconstruct the buildings from LIDAR dataset is an important research topic along with the widespread applications of LIDAR data in city modeling, urban planning, etc.. Applying the information of the first-and-last echo data of the same laser point, in this paper, a scheme of 3D-reconstruction of simple building has been presented, which mainly include the following steps: the recognition of non-boundary building points and boundary building points and the generation of each building-point-cluster; the localization of the boundary of each building; the detection of the planes included in each cluster and the reconstruction of building in 3D form. Through experiment, it can be proved that for the LIDAR data with first-and-last echo information the scheme can effectively and efficiently 3D-reconstruct simple buildings, such as flat and gabled buildings.

  9. Application of 3D reconstruction for surgical treatment of hepatic alveolar echinococcosis

    PubMed Central

    He, Yi-Biao; Bai, Lei; Aji, Tuerganaili; Jiang, Yi; Zhao, Jin-Ming; Zhang, Jin-Hui; Shao, Ying-Mei; Liu, Wen-Ya; Wen, Hao

    2015-01-01

    AIM: To evaluate the reliability and accuracy of three-dimensional (3D) reconstruction for liver resection in patients with hepatic alveolar echinococcosis (HAE). METHODS: One-hundred and six consecutive patients with HAE underwent hepatectomy at our hospital between May 2011 and January 2015. Fifty-nine patients underwent preoperative 3D reconstruction and “virtual” 3D liver resection before surgery (Group A). Another 47 patients used conventional imaging methods for preoperative assessment (Group B). Outcomes of hepatectomy were compared between the two groups. RESULTS: There was no significant difference in preoperative data between the two groups. Compared with patients in Group B, those in Group A had a significantly shorter operation time (227.1 ± 51.4 vs 304.6 ± 88.1 min; P < 0.05), less intraoperative blood loss (308.1 ± 135.4 vs 458.1 ± 175.4 mL; P < 0.05), and lower requirement for intraoperative blood transfusion (186.4 ± 169.6 vs 289.4 ± 199.2 mL; P < 0.05). Estimated resection liver volumes in both groups had good correlation with actual graft weight (Group A: r = 0.978; Group B: r = 0.960). There was a significant higher serum level of albumin in Group A (26.3 ± 5.9 vs 22.6 ± 4.3 g/L, P < 0.05). Other postoperative laboratory parameters (serum levels of aminotransferase and bilirubin; prothrombin time) and duration of postoperative hospital stay were similar. Sixteen complications occurred in Group A and 19 in Group B. All patients were followed for 3-46 (mean, 17.3) mo. There was no recurrence of lesions in Group A, but two recurrences in Group B. There were three deaths: two from cerebrovascular accident, and one from car accident. CONCLUSION: 3D reconstruction provides comprehensive and precise anatomical information for the liver. It also improves the chance of success and reduces the risk of hepatectomy in HAE. PMID:26401085

  10. A Reconstruction Approach for Imaging in 3D Cone Beam Vector Field Tomography

    PubMed Central

    Schuster, T.; Theis, D.; Louis, A. K.

    2008-01-01

    3D cone beam vector field tomography (VFT) aims for reconstructing and visualizing the velocity field of a moving fluid by measuring line integrals of projections of the vector field. The data are obtained by ultrasound measurements along a scanning curve which surrounds the object. From a mathematical point of view, we have to deal with the inversion of the vectorial cone beam transform. Since the vectorial cone beam transform of any gradient vector field with compact support is identically equal to zero, we can only hope to reconstruct the solenoidal part of an arbitrary vector field. In this paper we will at first summarize important properties of the cone beam transform for three-dimensional solenoidal vector fields and then propose a solution approach based on the method of approximate inverse. In this context, we intensively make use of results from scalar 3D computerized tomography. The findings presented in the paper will continuously be illustrated by pictures from first numerical experiments done with exact, simulated data. PMID:19197391

  11. Reconstruction and Visualization of Coordinated 3D Cell Migration Based on Optical Flow.

    PubMed

    Kappe, Christopher P; Schütz, Lucas; Gunther, Stefan; Hufnagel, Lars; Lemke, Steffen; Leitte, Heike

    2016-01-01

    Animal development is marked by the repeated reorganization of cells and cell populations, which ultimately determine form and shape of the growing organism. One of the central questions in developmental biology is to understand precisely how cells reorganize, as well as how and to what extent this reorganization is coordinated. While modern microscopes can record video data for every cell during animal development in 3D+t, analyzing these videos remains a major challenge: reconstruction of comprehensive cell tracks turned out to be very demanding especially with decreasing data quality and increasing cell densities. In this paper, we present an analysis pipeline for coordinated cellular motions in developing embryos based on the optical flow of a series of 3D images. We use numerical integration to reconstruct cellular long-term motions in the optical flow of the video, we take care of data validation, and we derive a LIC-based, dense flow visualization for the resulting pathlines. This approach allows us to handle low video quality such as noisy data or poorly separated cells, and it allows the biologists to get a comprehensive understanding of their data by capturing dynamic growth processes in stills. We validate our methods using three videos of growing fruit fly embryos. PMID:26529743

  12. A 3D endoscopy reconstruction as a saliency map for analysis of polyp shapes

    NASA Astrophysics Data System (ADS)

    Ruano, Josue; Martínez, Fabio; Gómez, Martín.; Romero, Eduardo

    2015-01-01

    A first diagnosis of colorectal cancer is performed by examination of polyp shape and appearance during an endoscopy routine procedure. However, the video-endoscopy is highly noisy because exacerbated physiological conditions like increased motility or secretion may limit the visual analysis of lesions. In this work a 3D reconstruction of the digestive tract is proposed, facilitating the polyp shape evaluation by highlighting its surface geometry and allowing an analysis from different perspectives. The method starts by a spatio-temporal map, constructed to group the different regions of the tract by their similar dynamic patterns during the sequence. Then, such map was convolved with a second derivative of a Gaussian kernel that emulates the camera distortion and allows to highlight the polyp surface. The position initialization in each frame of the kernel was computed from expert manual delineation and propagated along the sequence based on. Results show reliable reconstructions, with a salient 3D polyp structure that can then be better observed.

  13. Data acquisition electronics and reconstruction software for real time 3D track reconstruction within the MIMAC project

    NASA Astrophysics Data System (ADS)

    Bourrion, O.; Bosson, G.; Grignon, C.; Bouly, J. L.; Richer, J. P.; Guillaudin, O.; Mayet, F.; Billard, J.; Santos, D.

    2011-11-01

    Directional detection of non-baryonic Dark Matter requires 3D reconstruction of low energy nuclear recoils tracks. A gaseous micro-TPC matrix, filled with either 3He, CF4 or C4H10 has been developed within the MIMAC project. A dedicated acquisition electronics and a real time track reconstruction software have been developed to monitor a 512 channel prototype. This auto-triggered electronic uses embedded processing to reduce the data transfer to its useful part only, i.e. decoded coordinates of hit tracks and corresponding energy measurements. An acquisition software with on-line monitoring and 3D track reconstruction is also presented.

  14. A 3D reconstruction solution to ultrasound Joule heat density tomography based on acousto-electric effect: a simulation study

    NASA Astrophysics Data System (ADS)

    Yang, R.; Song, A.; Li, X. D.; Lu, Y.; Yan, R.; Xu, B.; Li, X.

    2014-10-01

    A 3D reconstruction solution to ultrasound Joule heat density tomography based on acousto-electric effect by deconvolution is proposed for noninvasive imaging of biological tissue. Compared with ultrasound current source density imaging, ultrasound Joule heat density tomography doesn't require any priori knowledge of conductivity distribution and lead fields, so it can gain better imaging result, more adaptive to environment and with wider application scope. For a general 3D volume conductor with broadly distributed current density field, in the AE equation the ultrasound pressure can't simply be separated from the 3D integration, so it is not a common modulation and basebanding (heterodyning) method is no longer suitable to separate Joule heat density from the AE signals. In the proposed method the measurement signal is viewed as the output of Joule heat density convolving with ultrasound wave. As a result, the internal 3D Joule heat density can be reconstructed by means of Wiener deconvolution. A series of computer simulations set for breast cancer imaging applications, with consideration of ultrasound beam diameter, noise level, conductivity contrast, position dependency and size of simulated tumors, have been conducted to evaluate the feasibility and performance of the proposed reconstruction method. The computer simulation results demonstrate that high spatial resolution 3D ultrasound Joule heat density imaging is feasible using the proposed method, and it has potential applications to breast cancer detection and imaging of other organs.

  15. a Fast Method for Measuring the Similarity Between 3d Model and 3d Point Cloud

    NASA Astrophysics Data System (ADS)

    Zhang, Zongliang; Li, Jonathan; Li, Xin; Lin, Yangbin; Zhang, Shanxin; Wang, Cheng

    2016-06-01

    This paper proposes a fast method for measuring the partial Similarity between 3D Model and 3D point Cloud (SimMC). It is crucial to measure SimMC for many point cloud-related applications such as 3D object retrieval and inverse procedural modelling. In our proposed method, the surface area of model and the Distance from Model to point Cloud (DistMC) are exploited as measurements to calculate SimMC. Here, DistMC is defined as the weighted distance of the distances between points sampled from model and point cloud. Similarly, Distance from point Cloud to Model (DistCM) is defined as the average distance of the distances between points in point cloud and model. In order to reduce huge computational burdens brought by calculation of DistCM in some traditional methods, we define SimMC as the ratio of weighted surface area of model to DistMC. Compared to those traditional SimMC measuring methods that are only able to measure global similarity, our method is capable of measuring partial similarity by employing distance-weighted strategy. Moreover, our method is able to be faster than other partial similarity assessment methods. We demonstrate the superiority of our method both on synthetic data and laser scanning data.

  16. 3D-printed haptic "reverse" models for preoperative planning in soft tissue reconstruction: a case report.

    PubMed

    Chae, Michael P; Lin, Frank; Spychal, Robert T; Hunter-Smith, David J; Rozen, Warren Matthew

    2015-02-01

    In reconstructive surgery, preoperative planning is essential for optimal functional and aesthetic outcome. Creating a three-dimensional (3D) model from two-dimensional (2D) imaging data by rapid prototyping has been used in industrial design for decades but has only recently been introduced for medical application. 3D printing is one such technique that is fast, convenient, and relatively affordable. In this report, we present a case in which a reproducible method for producing a 3D-printed "reverse model" representing a skin wound defect was used for flap design and harvesting. This comprised a 82-year-old man with an exposed ankle prosthesis after serial soft tissue debridements for wound infection. Soft tissue coverage and dead-space filling were planned with a composite radial forearm free flap (RFFF). Computed tomographic angiography (CTA) of the donor site (left forearm), recipient site (right ankle), and the left ankle was performed. 2D data from the CTA was 3D-reconstructed using computer software, with a 3D image of the left ankle used as a "control." A 3D model was created by superimposing the left and right ankle images, to create a "reverse image" of the defect, and printed using a 3D printer. The RFFF was thus planned and executed effectively, without complication. To our knowledge, this is the first report of a mechanism of calculating a soft tissue wound defect and producing a 3D model that may be useful for surgical planning. 3D printing and particularly "reverse" modeling may be versatile options in reconstructive planning, and have the potential for broad application. PMID:25046728

  17. Impact of Level of Details in the 3d Reconstruction of Trees for Microclimate Modeling

    NASA Astrophysics Data System (ADS)

    Bournez, E.; Landes, T.; Saudreau, M.; Kastendeuch, P.; Najjar, G.

    2016-06-01

    In the 21st century, urban areas undergo specific climatic conditions like urban heat islands which frequency and intensity increase over the years. Towards the understanding and the monitoring of these conditions, vegetation effects on urban climate are studied. It appears that a natural phenomenon, the evapotranspiration of trees, generates a cooling effect in urban environment. In this work, a 3D microclimate model is used to quantify the evapotranspiration of trees in relation with their architecture, their physiology and the climate. These three characteristics are determined with field measurements and data processing. Based on point clouds acquired with terrestrial laser scanner (TLS), the 3D reconstruction of the tree wood architecture is performed. Then the 3D reconstruction of leaves is carried out from the 3D skeleton of vegetative shoots and allometric statistics. With the aim of extending the simulation on several trees simultaneously, it is necessary to apply the 3D reconstruction process on each tree individually. However, as well for the acquisition as for the processing, the 3D reconstruction approach is time consuming. Mobile laser scanners could provide point clouds in a faster way than static TLS, but this implies a lower point density. Also the processing time could be shortened, but under the assumption that a coarser 3D model is sufficient for the simulation. In this context, the criterion of level of details and accuracy of the tree 3D reconstructed model must be studied. In this paper first tests to assess their impact on the determination of the evapotranspiration are presented.

  18. The Performance Evaluation of Multi-Image 3d Reconstruction Software with Different Sensors

    NASA Astrophysics Data System (ADS)

    Mousavi, V.; Khosravi, M.; Ahmadi, M.; Noori, N.; Naveh, A. Hosseini; Varshosaz, M.

    2015-12-01

    Today, multi-image 3D reconstruction is an active research field and generating three dimensional model of the objects is one the most discussed issues in Photogrammetry and Computer Vision that can be accomplished using range-based or image-based methods. Very accurate and dense point clouds generated by range-based methods such as structured light systems and laser scanners has introduced them as reliable tools in the industry. Image-based 3D digitization methodologies offer the option of reconstructing an object by a set of unordered images that depict it from different viewpoints. As their hardware requirements are narrowed down to a digital camera and a computer system, they compose an attractive 3D digitization approach, consequently, although range-based methods are generally very accurate, image-based methods are low-cost and can be easily used by non-professional users. One of the factors affecting the accuracy of the obtained model in image-based methods is the software and algorithm used to generate three dimensional model. These algorithms are provided in the form of commercial software, open source and web-based services. Another important factor in the accuracy of the obtained model is the type of sensor used. Due to availability of mobile sensors to the public, popularity of professional sensors and the advent of stereo sensors, a comparison of these three sensors plays an effective role in evaluating and finding the optimized method to generate three-dimensional models. Lots of research has been accomplished to identify a suitable software and algorithm to achieve an accurate and complete model, however little attention is paid to the type of sensors used and its effects on the quality of the final model. The purpose of this paper is deliberation and the introduction of an appropriate combination of a sensor and software to provide a complete model with the highest accuracy. To do this, different software, used in previous studies, were compared and

  19. 3D reconstruction for sinusoidal motion based on different feature detection algorithms

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Zhang, Jin; Deng, Huaxia; Yu, Liandong

    2015-02-01

    The dynamic testing of structures and components is an important area of research. Extensive researches on the methods of using sensors for vibration parameters have been studied for years. With the rapid development of industrial high-speed camera and computer hardware, the method of using stereo vision for dynamic testing has been the focus of the research since the advantages of non-contact, full-field, high resolution and high accuracy. But in the country there is not much research about the dynamic testing based on stereo vision, and yet few people publish articles about the three-dimensional (3D) reconstruction of feature points in the case of dynamic. It is essential to the following analysis whether it can obtain accurate movement of target objects. In this paper, an object with sinusoidal motion is detected by stereo vision and the accuracy with different feature detection algorithms is investigated. Three different marks including dot, square and circle are stuck on the object and the object is doing sinusoidal motion by vibration table. Then use feature detection algorithm speed-up robust feature (SURF) to detect point, detect square corners by Harris and position the center by Hough transform. After obtaining the pixel coordinate values of the feature point, the stereo calibration parameters are used to achieve three-dimensional reconstruction through triangulation principle. The trajectories of the specific direction according to the vibration frequency and the frequency camera acquisition are obtained. At last, the reconstruction accuracy of different feature detection algorithms is compared.

  20. Underwater Photogrammetry and 3d Reconstruction of Marble Cargos Shipwreck

    NASA Astrophysics Data System (ADS)

    Balletti, C.; Beltrame, C.; Costa, E.; Guerra, F.; Vernier, P.

    2015-04-01

    Nowadays archaeological and architectural surveys are based on the acquisition and processing of point clouds, allowing a high metric precision, essential prerequisite for a good documentation. Digital image processing and laser scanner have changed the archaeological survey campaign, from manual and direct survey to a digital one and, actually, multi-image photogrammetry is a good solution for the underwater archaeology. This technical documentation cannot operate alone, but it has to be supported by a topographical survey to georeference all the finds in the same reference system. In the last years the Ca' Foscari and IUAV University of Venice are conducting a research on integrated survey techniques to support underwater metric documentation. The paper will explain all the phases regarding the survey's design, images acquisition, topographic measure and the data processing of two Roman shipwrecks in south Sicily. The cargos of the shipwrecks are composed by huge marble blocks, but they are different for morphological characteristic of the sites, for the depth and for their distribution on the seabed. Photogrammetrical and topographical surveys were organized in two distinct methods, especially for the second one, due to the depth that have allowed an experimentation of GPS RTK's measurements on one shipwreck. Moreover, this kind of three-dimensional documentation is useful for educational and dissemination aspect, for the ease of understanding by wide public.

  1. Roles of equalization in radar imaging: modeling for superesolution in 3D reconstruction

    NASA Astrophysics Data System (ADS)

    Merched, Ricardo

    2012-12-01

    In radar imaging, resolution is generally dictated by its corresponding system point spread function, the response to a point source as a result of an external excitation. This notion of resolution turns out to be rather questionable, as the interpretation of echoes received from a range of continuous targets according to a linear model allows one to cast the imaging problem as a communication system that maps the target reflectivity function onto measurements, which in turn suggests that by virtue of sampling and equalization, one can achieve unlimited spatial resolution. This article reviews the fundamental problem inherent to pulse compression in a multistatic multi-input-multi-output (MIMO) scenario, from a communications viewpoint, in both focused and un-focused scenarios. We generalize the notion of 1D range compression and replace it by a more general 4D pulse compression. The process of focusing and scanning over a 3D object can be interpreted as a MIMO 4D convolution between a reflectivity tensor and a space-varying system, which naturally induces a 4D MIMO channel convolution model. This implies that several well-established block and linear equalization methods can be easily extended to a 3D scenario with the purpose of achieving exact reconstruction of a given reflectivity volume. That is, assuming that no multiple scattering occurs, resolution is only limited in range by the sampling device in the unfocused case, while unlimited in case of focusing at multiple depths. Exact reconstruction under a zero-forcing or least-squares criterion depends solely on the amount of diversity induced by sampling in both space (via scanning rate) and time (via sampling rate), which further allows for a tradeoff between range and cross-range resolution. For instance, the fastest scanning rate is achieved by steering non overlapping beams, in which case portions of the object can be reconstructed independently from each other.

  2. Sparse Bayesian framework applied to 3D super-resolution reconstruction in fetal brain MRI

    NASA Astrophysics Data System (ADS)

    Becerra, Laura C.; Velasco Toledo, Nelson; Romero Castro, Eduardo

    2015-01-01

    Fetal Magnetic Resonance (FMR) is an imaging technique that is becoming increasingly important as allows assessing brain development and thus make an early diagnostic of congenital abnormalities, spatial resolution is limited by the short acquisition time and the unpredictable fetus movements, in consequence the resulting images are characterized by non-parallel projection planes composed by anisotropic voxels. The sparse Bayesian representation is a flexible strategy which is able to model complex relationships. The Super-resolution is approached as a regression problem, the main advantage is the capability to learn data relations from observations. Quantitative performance evaluation was carried out using synthetic images, the proposed method demonstrates a better reconstruction quality compared with standard interpolation approach. The presented method is a promising approach to improve the information quality related with the 3-D fetal brain structure. It is important because allows assessing brain development and thus make an early diagnostic of congenital abnormalities.

  3. Using of Bezier Interpolation in 3D Reconstruction of Human Femur Bone

    NASA Astrophysics Data System (ADS)

    Toth-Tascau, Mirela; Pater, Flavius; Stoia, Dan Ioan; Menyhardt, Karoly; Rosu, Serban; Rusu, Lucian; Vigaru, Cosmina

    2011-09-01

    The paper is focused on image acquisition and processing of CT scans of a human femur bone in order to obtain 3D reconstructions of the human femur. The objective of the presented study was to obtain 3D realistic model of the human femur bone. The reconstructed model provides useful data to the physician but more important are the data and 3D models that can be used for virtual testing of femoral implants and endoprosthesis. Using the B-spline patch a 3D volume model of the human femur bone can be achieved. This model can be easy imported in any CAD system, resulting a virtual femur model witch can be used in FEM analysis.

  4. 3D Reconstruction of the Retinal Arterial Tree Using Subject-Specific Fundus Images

    NASA Astrophysics Data System (ADS)

    Liu, D.; Wood, N. B.; Xu, X. Y.; Witt, N.; Hughes, A. D.; Samcg, Thom

    Systemic diseases, such as hypertension and diabetes, are associated with changes in the retinal microvasculature. Although a number of studies have been performed on the quantitative assessment of the geometrical patterns of the retinal vasculature, previous work has been confined to 2 dimensional (2D) analyses. In this paper, we present an approach to obtain a 3D reconstruction of the retinal arteries from a pair of 2D retinal images acquired in vivo. A simple essential matrix based self-calibration approach was employed for the "fundus camera-eye" system. Vessel segmentation was performed using a semi-automatic approach and correspondence between points from different images was calculated. The results of 3D reconstruction show the centreline of retinal vessels and their 3D curvature clearly. Three-dimensional reconstruction of the retinal vessels is feasible and may be useful in future studies of the retinal vasculature in disease.

  5. Reliable Gait Recognition Using 3D Reconstructions and Random Forests - An Anthropometric Approach.

    PubMed

    Sandau, Martin; Heimbürger, Rikke V; Jensen, Karl E; Moeslund, Thomas B; Aanaes, Henrik; Alkjaer, Tine; Simonsen, Erik B

    2016-05-01

    Photogrammetric measurements of bodily dimensions and analysis of gait patterns in CCTV are important tools in forensic investigations but accurate extraction of the measurements are challenging. This study tested whether manual annotation of the joint centers on 3D reconstructions could provide reliable recognition. Sixteen participants performed normal walking where 3D reconstructions were obtained continually. Segment lengths and kinematics from the extremities were manually extracted by eight expert observers. The results showed that all the participants were recognized, assuming the same expert annotated the data. Recognition based on data annotated by different experts was less reliable achieving 72.6% correct recognitions as some parameters were heavily affected by interobserver variability. This study verified that 3D reconstructions are feasible for forensic gait analysis as an improved alternative to conventional CCTV. However, further studies are needed to account for the use of different clothing, field conditions, etc. PMID:27122399

  6. 3D-ANTLERS: Virtual Reconstruction and Three-Dimensional Measurement

    NASA Astrophysics Data System (ADS)

    Barba, S.; Fiorillo, F.; De Feo, E.

    2013-02-01

    The main objective of this paper is to establish a procedural method for measuring and cataloguing antlers through the use of laser scanner and of a 3D reconstruction of complex modeling. The deer's antlers have been used as a test and subjected to capture and measurement. For this purpose multiple data sources techniques have been studied and compared, (also considering low-cost sensors) estimating the accuracy and its errors in order to demonstrate the validity of the process. A further development is the comparison of results with applications of digital photogrammetry, considering also cloud computing software. The study has began with an introduction to sensors, addressing the underlying characteristics of the technology available, the scope and the limits of these applications. We have focused particularly on the "structured light", as the acquisition will be completed through three-dimensional scanners: DAVID and the ARTEC MH. The first is a low-cost sensor, a basic webcam and a linear laser pointer, red coloured, that leads to acquisition of three-dimensional strips. The other one is a hand scanner; even in this case we will explain how to represent a 3D model, with a pipeline that provides data export from the "proprietary" to a "reverse engineering" software. Typically, these are the common steps to the two approaches that have been performed in WRAP format: point sampling, manual and global registration, repair normals, surface editing and texture projection. In fact, after a first and common data processing was done with the use of a software supplied with the equipment, the proto-models thus obtained were treated in Geomagic Studio, which was also chosen to allow the homogenization and standardization of data in order to make a more objective comparison. It is commonplace to observe that the editing of the digital mock-up obtained with the DAVID - which had not yet been upgraded to the 3.5 release at the time of this study - is substantially different

  7. Analysis of bite marks in foodstuffs by computer tomography (cone beam CT)--3D reconstruction.

    PubMed

    Marques, Jeidson; Musse, Jamilly; Caetano, Catarina; Corte-Real, Francisco; Corte-Real, Ana Teresa

    2013-12-01

    The use of three-dimensional (3D) analysis of forensic evidence is highlighted in comparison with traditional methods. This three-dimensional analysis is based on the registration of the surface from a bitten object. The authors propose to use Cone Beam Computed Tomography (CBCT), which is used in dental practice, in order to study the surface and interior of bitten objects and dental casts of suspects. In this study, CBCT is applied to the analysis of bite marks in foodstuffs, which may be found in a forensic case scenario. 6 different types of foodstuffs were used: chocolate, cheese, apple, chewing gum, pizza and tart (flaky pastry and custard). The food was bitten into and dental casts of the possible suspects were made. The dental casts and bitten objects were registered using an x-ray source and the CBCT equipment iCAT® (Pennsylvania, EUA). The software InVivo5® (Anatomage Inc, EUA) was used to visualize and analyze the tomographic slices and 3D reconstructions of the objects. For each material an estimate of its density was assessed by two methods: HU values and specific gravity. All the used materials were successfully reconstructed as good quality 3D images. The relative densities of the materials in study were compared. Amongst the foodstuffs, the chocolate had the highest density (median value 100.5 HU and 1,36 g/cm(3)), while the pizza showed to have the lowest (median value -775 HU and 0,39 g/cm(3)), on both scales. Through tomographic slices and three-dimensional reconstructions it was possible to perform the metric analysis of the bite marks in all the foodstuffs, except for the pizza. These measurements could also be obtained from the dental casts. The depth of the bite mark was also successfully determined in all the foodstuffs except for the pizza. Cone Beam Computed Tomography has the potential to become an important tool for forensic sciences, namely for the registration and analysis of bite marks in foodstuffs that may be found in a crime

  8. Two new methods for simulating photolithography development in 3D

    SciTech Connect

    Helmsen, J.; Colella, P.; Dorr, M.; Puckett, E.G.

    1997-01-30

    Two methods are presented for simulating the development of photolithographic profiles during the resist dissolution phase. These algorithms are the volume-of-fluid algorithm, and the steady level-set algorithm. They are compared with the ray-trace, cell, and level-set techniques employed in SAMPLE-3D. The volume-of-fluid algorithm employs an Euclidean Grid with volume fractions. At each time step, the surface is reconstructed by computing an approximation of the tangent plane of the surface in each cell that contains a value between 0 and 1. The geometry constructed in this manner is used to determine flow velocity vectors and the flux across each edge. The material is then advanced by a split advection scheme. The steady Level Set algorithm is an extension of the Iterative Level Set algorithm. The steady Level Set algorithm combines Fast Level Set concepts and a technique for finding zero residual solutions to the ( ) function. The etch time for each cell is calculated in a time ordered manner. Use of heap sorting data structures allows the algorithm to execute extremely quickly. Comparisons of the methods have been performed and results shown.

  9. 3D Reconstruction and Restoration Monitoring of Sculptural Artworks by a Multi-Sensor Framework

    PubMed Central

    Barone, Sandro; Paoli, Alessandro; Razionale, Armando Viviano

    2012-01-01

    Nowadays, optical sensors are used to digitize sculptural artworks by exploiting various contactless technologies. Cultural Heritage applications may concern 3D reconstructions of sculptural shapes distinguished by small details distributed over large surfaces. These applications require robust multi-view procedures based on aligning several high resolution 3D measurements. In this paper, the integration of a 3D structured light scanner and a stereo photogrammetric sensor is proposed with the aim of reliably reconstructing large free form artworks. The structured light scanner provides high resolution range maps captured from different views. The stereo photogrammetric sensor measures the spatial location of each view by tracking a marker frame integral to the optical scanner. This procedure allows the computation of the rotation-translation matrix to transpose the range maps from local view coordinate systems to a unique global reference system defined by the stereo photogrammetric sensor. The artwork reconstructions can be further augmented by referring metadata related to restoration processes. In this paper, a methodology has been developed to map metadata to 3D models by capturing spatial references using a passive stereo-photogrammetric sensor. The multi-sensor framework has been experienced through the 3D reconstruction of a Statue of Hope located at the English Cemetery in Florence. This sculptural artwork has been a severe test due to the non-cooperative environment and the complex shape features distributed over a large surface. PMID:23223079

  10. 3D reconstruction and restoration monitoring of sculptural artworks by a multi-sensor framework.

    PubMed

    Barone, Sandro; Paoli, Alessandro; Razionale, Armando Viviano

    2012-01-01

    Nowadays, optical sensors are used to digitize sculptural artworks by exploiting various contactless technologies. Cultural Heritage applications may concern 3D reconstructions of sculptural shapes distinguished by small details distributed over large surfaces. These applications require robust multi-view procedures based on aligning several high resolution 3D measurements. In this paper, the integration of a 3D structured light scanner and a stereo photogrammetric sensor is proposed with the aim of reliably reconstructing large free form artworks. The structured light scanner provides high resolution range maps captured from different views. The stereo photogrammetric sensor measures the spatial location of each view by tracking a marker frame integral to the optical scanner. This procedure allows the computation of the rotation-translation matrix to transpose the range maps from local view coordinate systems to a unique global reference system defined by the stereo photogrammetric sensor. The artwork reconstructions can be further augmented by referring metadata related to restoration processes. In this paper, a methodology has been developed to map metadata to 3D models by capturing spatial references using a passive stereo-photogrammetric sensor. The multi-sensor framework has been experienced through the 3D reconstruction of a Statue of Hope located at the English Cemetery in Florence. This sculptural artwork has been a severe test due to the non-cooperative environment and the complex shape features distributed over a large surface. PMID:23223079

  11. On the use of orientation filters for 3D reconstruction in event-driven stereo vision

    PubMed Central

    Camuñas-Mesa, Luis A.; Serrano-Gotarredona, Teresa; Ieng, Sio H.; Benosman, Ryad B.; Linares-Barranco, Bernabe

    2014-01-01

    The recently developed Dynamic Vision Sensors (DVS) sense visual information asynchronously and code it into trains of events with sub-micro second temporal resolution. This high temporal precision makes the output of these sensors especially suited for dynamic 3D visual reconstruction, by matching corresponding events generated by two different sensors in a stereo setup. This paper explores the use of Gabor filters to extract information about the orientation of the object edges that produce the events, therefore increasing the number of constraints applied to the matching algorithm. This strategy provides more reliably matched pairs of events, improving the final 3D reconstruction. PMID:24744694

  12. Holographic and weak-phase projection system for 3D shape reconstruction using temporal phase unwrapping

    NASA Astrophysics Data System (ADS)

    González, C. A.; Dávila, A.; Garnica, G.

    2007-09-01

    Two projection systems that use an LCoS phase modulator are proposed for 3D shape reconstruction. The LCoS is used as an holographic system or as a weak phase projector, both configurations project a set of fringe patterns that are processed by the technique known as temporal phase unwrapping. To minimize the influence of camera sampling, and the speckle noise in the projected fringes, an speckle noise reduction technique is applied to the speckle patterns generated by the holographic optical system. Experiments with 3D shape reconstruction of ophthalmic mold and other testing specimens show the viability of the proposed techniques.

  13. 3D reconstruction on CBCT in the cystic pathology of the jaws

    NASA Astrophysics Data System (ADS)

    Chioran, Doina; Nicoarǎ, Adrian; Roşu, Şerban; Cǎrligeriu, Virgil; Ianeş, Emilia

    2013-10-01

    The paper presents the image acquisition of Cone Beam Computer Tomography scans of human facial bones and their processing in order to obtain a 3D reconstruction model of the skull. The reconstructed model provides useful data to the physician in situations of maxillary cystic pathology but more important is the data about the relationship of the maxillary cyst with the surrounding anatomical elements. Using the B-splines a 3D volume model of the human facial bones can be achieved. This model can be exported in any CAD system, resulting a virtual model witch can be used in FEM analysis.

  14. JULIDE: a software tool for 3D reconstruction and statistical analysis of autoradiographic mouse brain sections.

    PubMed

    Ribes, Delphine; Parafita, Julia; Charrier, Rémi; Magara, Fulvio; Magistretti, Pierre J; Thiran, Jean-Philippe

    2010-01-01

    In this article we introduce JULIDE, a software toolkit developed to perform the 3D reconstruction, intensity normalization, volume standardization by 3D image registration and voxel-wise statistical analysis of autoradiographs of mouse brain sections. This software tool has been developed in the open-source ITK software framework and is freely available under a GPL license. The article presents the complete image processing chain from raw data acquisition to 3D statistical group analysis. Results of the group comparison in the context of a study on spatial learning are shown as an illustration of the data that can be obtained with this tool. PMID:21124830

  15. 3D reconstructions with pixel-based images are made possible by digitally clearing plant and animal tissue

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reconstruction of 3D images from a series of 2D images has been restricted by the limited capacity to decrease the opacity of surrounding tissue. Commercial software that allows color-keying and manipulation of 2D images in true 3D space allowed us to produce 3D reconstructions from pixel based imag...

  16. 3D optical phase reconstruction within PMMA samples using a spectral OCT system

    NASA Astrophysics Data System (ADS)

    Briones-R., Manuel d. J.; De La Torre-Ibarra, Manuel H.; Mendoza Santoyo, Fernando

    2015-08-01

    The optical coherence tomography (OCT) technique has proved to be a useful method in biomedical areas such as ophthalmology, dentistry, dermatology, among many others. In all these applications the main target is to reconstruct the internal structure of the samples from which the physician's expertise may recognize and diagnose the existence of a disease. Nowadays OCT has been applied one step further and is used to study the mechanics of some particular type of materials, where the resulting information involves more than just their internal structure and the measurement of parameters such as displacements, stress and strain. Here we report on a spectral OCT system used to image the internal 3D microstructure and displacement maps from a PMMA (Poly-methyl-methacrylate) sample, subjected to a deformation by a controlled three point bending and tilting. The internal mechanical response of the polymer is shown as consecutive 2D images.

  17. Detecting Distance between Injected Microspheres and Target Tumor via 3D Reconstruction of Tissue Sections

    SciTech Connect

    Carson, James P.; Kuprat, Andrew P.; Colby, Sean M.; Davis, Cassi A.; Basciano, Christopher; Greene, Kevin; Feo, John T.; Kennedy, Andrew

    2012-08-28

    One treatment increasing in use for solid tumors in the liver is radioembolization via the delivery of 90Y microspheres to the vascular bed within or near the location of the tumor. It is desirable as part of the treatment for the microspheres to embed preferentially in or near the tumor. This work details an approach for analyzing the deposition of microspheres with respect to the location of the tumor. The approach used is based upon thin-slice serial sectioning of the tissue sample, followed by high resolution imaging, microsphere detection, and 3-D reconstruction of the tumor surface. Distance from the microspheres to the tumor was calculated using a fast deterministic point inclusion method.

  18. Quality Assessment of 3d Reconstruction Using Fisheye and Perspective Sensors

    NASA Astrophysics Data System (ADS)

    Strecha, C.; Zoller, R.; Rutishauser, S.; Brot, B.; Schneider-Zapp, K.; Chovancova, V.; Krull, M.; Glassey, L.

    2015-03-01

    Recent mathematical advances, growing alongside the use of unmanned aerial vehicles, have not only overcome the restriction of roll and pitch angles during flight but also enabled us to apply non-metric cameras in photogrammetric method, providing more flexibility for sensor selection. Fisheye cameras, for example, advantageously provide images with wide coverage; however, these images are extremely distorted and their non-uniform resolutions make them more difficult to use for mapping or terrestrial 3D modelling. In this paper, we compare the usability of different camera-lens combinations, using the complete workflow implemented in Pix4Dmapper to achieve the final terrestrial reconstruction result of a well-known historical site in Switzerland: the Chillon Castle. We assess the accuracy of the outcome acquired by consumer cameras with perspective and fisheye lenses, comparing the results to a laser scanner point cloud.

  19. 3D models automatic reconstruction of selected close range objects. (Polish Title: Automatyczna rekonstrukcja modeli 3D małych obiektów bliskiego zasiegu)

    NASA Astrophysics Data System (ADS)

    Zaweiska, D.

    2013-12-01

    Reconstruction of three-dimensional, realistic models of objects from digital images has been the topic of research in many areas of science for many years. This development is stimulated by new technologies and tools, which appeared recently, such as digital photography, laser scanners, increase in the equipment efficiency and Internet. The objective of this paper is to present results of automatic modeling of selected close range objects, with the use of digital photographs acquired by the Hasselblad H4D50 camera. The author's software tool was utilized for calculations; it performs successive stages of the 3D model creation. The modeling process was presented as the complete process which starts from acquisition of images and which is completed by creation of a photorealistic 3D model in the same software environment. Experiments were performed for selected close range objects, with appropriately arranged image geometry, creating a ring around the measured object. The Area Base Matching (CC/LSM) method, the RANSAC algorithm, with the use of tensor calculus, were utilized form automatic matching of points detected with the SUSAN algorithm. Reconstruction of the surface of model generation is one of the important stages of 3D modeling. Reconstruction of precise surfaces, performed on the basis of a non-organized cloud of points, acquired from automatic processing of digital images, is a difficult task, which has not been finally solved. Creation of poly-angular models, which may meet high requirements concerning modeling and visualization is required in many applications. The polynomial method is usually the best way to precise representation of measurement results, and, at the same time, to achieving the optimum description of the surface. Three algorithm were tested: the volumetric method (VCG), the Poisson method and the Ball pivoting method. Those methods are mostly applied to modeling of uniform grids of points. Results of experiments proved that incorrect

  20. Inlining 3d Reconstruction, Multi-Source Texture Mapping and Semantic Analysis Using Oblique Aerial Imagery

    NASA Astrophysics Data System (ADS)

    Frommholz, D.; Linkiewicz, M.; Poznanska, A. M.

    2016-06-01

    This paper proposes an in-line method for the simplified reconstruction of city buildings from nadir and oblique aerial images that at the same time are being used for multi-source texture mapping with minimal resampling. Further, the resulting unrectified texture atlases are analyzed for façade elements like windows to be reintegrated into the original 3D models. Tests on real-world data of Heligoland/ Germany comprising more than 800 buildings exposed a median positional deviation of 0.31 m at the façades compared to the cadastral map, a correctness of 67% for the detected windows and good visual quality when being rendered with GPU-based perspective correction. As part of the process building reconstruction takes the oriented input images and transforms them into dense point clouds by semi-global matching (SGM). The point sets undergo local RANSAC-based regression and topology analysis to detect adjacent planar surfaces and determine their semantics. Based on this information the roof, wall and ground surfaces found get intersected and limited in their extension to form a closed 3D building hull. For texture mapping the hull polygons are projected into each possible input bitmap to find suitable color sources regarding the coverage and resolution. Occlusions are detected by ray-casting a full-scale digital surface model (DSM) of the scene and stored in pixel-precise visibility maps. These maps are used to derive overlap statistics and radiometric adjustment coefficients to be applied when the visible image parts for each building polygon are being copied into a compact texture atlas without resampling whenever possible. The atlas bitmap is passed to a commercial object-based image analysis (OBIA) tool running a custom rule set to identify windows on the contained façade patches. Following multi-resolution segmentation and classification based on brightness and contrast differences potential window objects are evaluated against geometric constraints and

  1. Demonstration of digital hologram recording and 3D-scenes reconstruction in real-time

    NASA Astrophysics Data System (ADS)

    Cheremkhin, Pavel A.; Evtikhiev, Nikolay N.; Krasnov, Vitaly V.; Kulakov, Mikhail N.; Kurbatova, Ekaterina A.; Molodtsov, Dmitriy Y.; Rodin, Vladislav G.

    2016-04-01

    Digital holography is technique that allows to reconstruct information about 2D-objects and 3D-scenes. This is achieved by registration of interference pattern formed by two beams: object and reference ones. Pattern registered by the digital camera is processed. This allows to obtain amplitude and phase of the object beam. Reconstruction of shape of the 2D objects and 3D-scenes can be obtained numerically (using computer) and optically (using spatial light modulators - SLMs). In this work camera Megaplus II ES11000 was used for digital holograms recording. The camera has 4008 × 2672 pixels with sizes of 9 μm × 9 μm. For hologram recording, 50 mW frequency-doubled Nd:YAG laser with wavelength 532 nm was used. Liquid crystal on silicon SLM HoloEye PLUTO VIS was used for optical reconstruction of digital holograms. SLM has 1920 × 1080 pixels with sizes of 8 μm × 8 μm. At objects reconstruction 10 mW He-Ne laser with wavelength 632.8 nm was used. Setups for digital holograms recording and their optical reconstruction with the SLM were combined as follows. MegaPlus Central Control Software allows to display registered frames by the camera with a little delay on the computer monitor. The SLM can work as additional monitor. In result displayed frames can be shown on the SLM display in near real-time. Thus recording and reconstruction of the 3D-scenes was obtained in real-time. Preliminary, resolution of displayed frames was chosen equaled to the SLM one. Quantity of the pixels was limited by the SLM resolution. Frame rate was limited by the camera one. This holographic video setup was applied without additional program implementations that would increase time delays between hologram recording and object reconstruction. The setup was demonstrated for reconstruction of 3D-scenes.

  2. Light Attenuation Method for 3D data acquisition (LAM3D) of bottom particle deposits

    NASA Astrophysics Data System (ADS)

    Er, Jenn Wei; Law, Adrian W. K.; Adams, E. Eric; Yang, Yang

    2015-11-01

    We have developed a novel experimental technique, Light Attenuation Method for 3D data acquisition (LAM3D), to acquire three-dimensional spatial characteristics and temporal development of bottom particle deposits. The new technique performs data acquisition with higher spatial and temporal resolution than existing approaches with laser and ultrasonic 3D profilers, and is therefore ideal for laboratory investigations with fast varying changes in the sediment bed, such as the developing deposition profile from sediment clouds commonly formed during dredging or land reclamation projects and the dynamic evolution in movable bed processes in rivers. The principle of the technique is based on the analysis of the light attenuation due to multiple light scattering through the particle deposits layer compared to the clear water column. With appropriate calibration, the particles size and distribution thickness can be quantified by the transmitted light spectrum. In the presentation, we will first show our measurement setup with a light panel for calibrated illumination and a system of DSLR cameras for the light capturing. Subsequently, we shall present the experimental results of fast evolving deposition profile of a barge-disposed sediment cloud upon its bottom impact on the sea bed.

  3. 3D reconstruction of complex geological bodies: Examples from the Alps

    NASA Astrophysics Data System (ADS)

    Zanchi, Andrea; Francesca, Salvi; Stefano, Zanchetta; Simone, Sterlacchini; Graziano, Guerra

    2009-01-01

    Cartographic geological and structural data collected in the field and managed by Geographic Information Systems (GIS) technology can be used for 3D reconstruction of complex geological bodies. Using a link between GIS tools and gOcad, stratigraphic and tectonic surfaces can be reconstructed taking into account any geometrical constraint derived from field observations. Complex surfaces can be reconstructed using large data sets analysed by suitable geometrical techniques. Three main typologies of geometric features and related attributes are exported from a GIS-geodatabase: (1) topographic data as points from a digital elevation model; (2) stratigraphic and tectonic boundaries, and linear features as 2D polylines; (3) structural data as points. After having imported the available information into gOcad, the following steps should be performed: (1) construction of the topographic surface by interpolation of points; (2) 3D mapping of the linear geological boundaries and linear features by vertical projection on the reconstructed topographic surface; (3) definition of geometrical constraints from planar and linear outcrop data; (4) construction of a network of cross-sections based on field observations and geometrical constraints; (5) creation of 3D surfaces, closed volumes and grids from the constructed objects. Three examples of the reconstruction of complex geological bodies from the Italian Alps are presented here. The methodology demonstrates that although only outcrop data were available, 3D modelling has allows the checking of the geometrical consistency of the interpretative 2D sections and of the field geology, through a 3D visualisation of geometrical models. Application of a 3D geometrical model to the case studies can be very useful in geomechanical modelling for slope-stability or resource evaluation.

  4. Quasi Monte Carlo-based Isotropic Distribution of Gradient Directions for Improved Reconstruction Quality of 3D EPR Imaging

    PubMed Central

    Ahmad, Rizwan; Deng, Yuanmu; Vikram, Deepti S.; Clymer, Bradley; Srinivasan, Parthasarathy; Zweier, Jay L.; Kuppusamy, Periannan

    2007-01-01

    In continuous wave (CW) electron paramagnetic resonance imaging (EPRI), high quality of reconstructed image along with fast and reliable data acquisition is highly desirable for many biological applications. An accurate representation of uniform distribution of projection data is necessary to ensure high reconstruction quality. The current techniques for data acquisition suffer from nonuniformities or local anisotropies in the distribution of projection data and present a poor approximation of a true uniform and isotropic distribution. In this work, we have implemented a technique based on Quasi-Monte Carlo method to acquire projections with more uniform and isotropic distribution of data over a 3D acquisition space. The proposed technique exhibits improvements in the reconstruction quality in terms of both mean-square-error and visual judgment. The effectiveness of the suggested technique is demonstrated using computer simulations and 3D EPRI experiments. The technique is robust and exhibits consistent performance for different object configurations and orientations. PMID:17095271

  5. i-BRUSH: a gaze-contingent virtual paintbrush for dense 3D reconstruction in robotic assisted surgery.

    PubMed

    Visentini-Scarzanella, Marco; Mylonas, George P; Stoyanov, Danail; Yang, Guang-Zhong

    2009-01-01

    With increasing demand on intra-operative navigation and motion compensation during robotic assisted minimally invasive surgery, real-time 3D deformation recovery remains a central problem. Currently the majority of existing methods rely on salient features, where the inherent paucity of distinctive landmarks implies either a semi-dense reconstruction or the use of strong geometrical constraints. In this study, we propose a gaze-contingent depth reconstruction scheme by integrating human perception with semi-dense stereo and p-q based shading information. Depth inference is carried out in real-time through a novel application of Bayesian chains without smoothness priors. The practical value of the scheme is highlighted by detailed validation using a beating heart phantom model with known geometry to verify the performance of gaze-contingent 3D surface reconstruction and deformation recovery. PMID:20426007

  6. Operator-free, film-based 3D seed reconstruction in brachytherapy.

    PubMed

    Todor, D A; Cohen, G N; Amols, H I; Zaider, M

    2002-06-21

    In brachytherapy implants, the accuracy of dose calculation depends on the ability to localize radioactive sources correctly. If performed manually using planar images, this is a time-consuming and often error-prone process-primarily because each seed must be identified on (at least) two films. In principle, three films should allow automatic seed identification and position reconstruction; however, practical implementation of the numerous algorithms proposed so far appears to have only limited reliability. The motivation behind this work is to create a fast and reliable system for real-time implant evaluation using digital planar images obtained from radiotherapy simulators, or mobile x-ray/fluoroscopy systems. We have developed algorithms and code for 3D seed coordinate reconstruction. The input consists of projections of seed positions in each of three isocentric images taken at arbitrary angles. The method proposed here consists of a set of heuristic rules (in a sense, a learning algorithm) that attempts to minimize seed misclassifications. In the clinic, this means that the system must be impervious to errors resulting from patient motion as well as from finite tolerances accepted in equipment settings. The software program was tested with simulated data, a pelvic phantom and patient data. One hundred and twenty permanent prostate implants were examined (105 125I and 15 103Pd) with the number of seeds ranging from 35 to 138 (average 79). The mean distance between actual and reconstructed seed positions is in the range 0.03-0.11 cm. On a Pentium III computer at 600 MHz the reconstruction process takes 10-30 s. The total number of seeds is independently validated. The process is robust and able to account for errors introduced in the clinic. PMID:12118599

  7. 3D range scan enhancement using image-based methods

    NASA Astrophysics Data System (ADS)

    Herbort, Steffen; Gerken, Britta; Schugk, Daniel; Wöhler, Christian

    2013-10-01

    This paper addresses the problem of 3D surface scan refinement, which is desirable due to noise, outliers, and missing measurements being present in the 3D surfaces obtained with a laser scanner. We present a novel algorithm for the fusion of absolute laser scanner depth profiles and photometrically estimated surface normal data, which yields a noise-reduced and highly detailed depth profile with large scale shape robustness. In contrast to other approaches published in the literature, the presented algorithm (1) regards non-Lambertian surfaces, (2) simultaneously computes surface reflectance (i.e. BRDF) parameters required for 3D reconstruction, (3) models pixelwise incident light and viewing directions, and (4) accounts for interreflections. The algorithm as such relies on the minimization of a three-component error term, which penalizes intensity deviations, integrability deviations, and deviations from the known large-scale surface shape. The solution of the error minimization is obtained iteratively based on a calculus of variations. BRDF parameters are estimated by initially reducing and then iteratively refining the optical resolution, which provides the required robust data basis. The 3D reconstruction of concave surface regions affected by interreflections is improved by compensating global illumination in the image data. The algorithm is evaluated based on eight objects with varying albedos and reflectance behaviors (diffuse, specular, metallic). The qualitative evaluation shows a removal of outliers and a strong reduction of noise, while the large scale shape is preserved. Fine surface details Which are previously not contained in the surface scans, are incorporated through using image data. The algorithm is evaluated with respect to its absolute accuracy using two caliper objects of known shape, and based on synthetically generated data. The beneficial effect of interreflection compensation on the reconstruction accuracy is evaluated quantitatively in a

  8. 3D face recognition based on a modified ICP method

    NASA Astrophysics Data System (ADS)

    Zhao, Kankan; Xi, Jiangtao; Yu, Yanguang; Chicharo, Joe F.

    2011-11-01

    3D face recognition technique has gained much more attention recently, and it is widely used in security system, identification system, and access control system, etc. The core technique in 3D face recognition is to find out the corresponding points in different 3D face images. The classic partial Iterative Closest Point (ICP) method is iteratively align the two point sets based on repetitively calculate the closest points as the corresponding points in each iteration. After several iterations, the corresponding points can be obtained accurately. However, if two 3D face images with different scale are from the same person, the classic partial ICP does not work. In this paper we propose a modified partial Iterative Closest Point (ICP) method in which the scaling effect is considered to achieve 3D face recognition. We design a 3x3 diagonal matrix as the scale matrix in each iteration of the classic partial ICP. The probing face image which is multiplied by the scale matrix will keep the similar scale with the reference face image. Therefore, we can accurately determine the corresponding points even the scales of probing image and reference image are different. 3D face images in our experiments are acquired by a 3D data acquisition system based on Digital Fringe Projection Profilometry (DFPP). A 3D database consists of 30 group images, three images with the same scale, which are from the same person with different views, are included in each group. And in different groups, the scale of the 3 images may be different from other groups. The experiment results show that our proposed method can achieve 3D face recognition, especially in the case that the scales of probing image and referent image are different.

  9. 3D cardiac motion reconstruction from CT data and tagged MRI.

    PubMed

    Wang, Xiaoxu; Mihalef, Viorel; Qian, Zhen; Voros, Szilard; Metaxas, Dimitris

    2012-01-01

    In this paper we present a novel method for left ventricle (LV) endocardium motion reconstruction using high resolution CT data and tagged MRI. High resolution CT data provide anatomic details on the LV endocardial surface, such as the papillary muscle and trabeculae carneae. Tagged MRI provides better time resolution. The combination of these two imaging techniques can give us better understanding on left ventricle motion. The high resolution CT images are segmented with mean shift method and generate the LV endocardium mesh. The meshless deformable model built with high resolution endocardium surface from CT data fit to the tagged MRI of the same phase. 3D deformation of the myocardium is computed with the Lagrangian dynamics and local Laplacian deformation. The segmented inner surface of left ventricle is compared with the heart inner surface picture and show high agreement. The papillary muscles are attached to the inner surface with roots. The free wall of the left ventricle inner surface is covered with trabeculae carneae. The deformation of the heart wall and the papillary muscle in the first half of the cardiac cycle is presented. The motion reconstruction results are very close to the live heart video. PMID:23366825

  10. 3D Cardiac Motion Reconstruction from CT Data and Tagged MRI

    PubMed Central

    Wang, Xiaoxu; Mihalef, Viorel; Qian, Zhen; Voros, Szilard; Metaxas, Dimitris

    2016-01-01

    In this paper we present a novel method for left ventricle (LV) endocardium motion reconstruction using high resolution CT data and tagged MRI. High resolution CT data provide anatomic details on the LV endocardial surface, such as the papillary muscle and trabeculae carneae. Tagged MRI provides better time resolution. The combination of these two imaging techniques can give us better understanding on left ventricle motion. The high resolution CT images are segmented with mean shift method and generate the LV endocardium mesh. The meshless deformable model built with high resolution endocardium surface from CT data fit to the tagged MRI of the same phase. 3D deformation of the myocardium is computed with the Lagrangian dynamics and local Laplacian deformation. The segmented inner surface of left ventricle is compared with the heart inner surface picture and show high agreement. The papillary muscles are attached to the inner surface with roots. The free wall of the left ventricle inner surface is covered with trabeculae carneae. The deformation of the heart wall and the papillary muscle in the first half of the cardiac cycle is presented. The motion reconstruction results are very close to the live heart video. PMID:23366825

  11. 3D building reconstruction from ALS data using unambiguous decomposition into elementary structures

    NASA Astrophysics Data System (ADS)

    Jarząbek-Rychard, M.; Borkowski, A.

    2016-08-01

    The objective of the paper is to develop an automated method that enables for the recognition and semantic interpretation of topological building structures. The novelty of the proposed modeling approach is an unambiguous decomposition of complex objects into predefined simple parametric structures, resulting in the reconstruction of one topological unit without independent overlapping elements. The aim of a data processing chain is to generate complete polyhedral models at LOD2 with an explicit topological structure and semantic information. The algorithms are performed on 3D point clouds acquired by airborne laser scanning. The presented methodology combines data-based information reflected in an attributed roof topology graph with common knowledge about buildings stored in a library of elementary structures. In order to achieve an appropriate balance between reconstruction precision and visualization aspects, the implemented library contains a set of structure-depended soft modeling rules instead of strictly defined geometric primitives. The proposed modeling algorithm starts with roof plane extraction performed by the segmentation of building point clouds, followed by topology identification and recognition of predefined structures. We evaluate the performance of the novel procedure by the analysis of the modeling accuracy and the degree of modeling detail. The assessment according to the validation methods standardized by the International Society for Photogrammetry and Remote Sensing shows that the completeness of the algorithm is above 80%, whereas the correctness exceeds 98%.

  12. Semi-automated 3D Leaf Reconstruction and Analysis of Trichome Patterning from Light Microscopic Images

    PubMed Central

    Schrader, Andrea; Hülskamp, Martin; Tresch, Achim

    2013-01-01

    Trichomes are leaf hairs that are formed by single cells on the leaf surface. They are known to be involved in pathogen resistance. Their patterning is considered to emerge from a field of initially equivalent cells through the action of a gene regulatory network involving trichome fate promoting and inhibiting factors. For a quantitative analysis of single and double mutants or the phenotypic variation of patterns in different ecotypes, it is imperative to statistically evaluate the pattern reliably on a large number of leaves. Here we present a method that enables the analysis of trichome patterns at early developmental leaf stages and the automatic analysis of various spatial parameters. We focus on the most challenging young leaf stages that require the analysis in three dimensions, as the leaves are typically not flat. Our software TrichEratops reconstructs 3D surface models from 2D stacks of conventional light-microscope pictures. It allows the GUI-based annotation of different stages of trichome development, which can be analyzed with respect to their spatial distribution to capture trichome patterning events. We show that 3D modeling removes biases of simpler 2D models and that novel trichome patterning features increase the sensitivity for inter-accession comparisons. PMID:23637587

  13. Breast mass detection using slice conspicuity in 3D reconstructed digital breast volumes

    NASA Astrophysics Data System (ADS)

    Kim, Seong Tae; Kim, Dae Hoe; Ro, Yong Man

    2014-09-01

    In digital breast tomosynthesis, the three dimensional (3D) reconstructed volumes only provide quasi-3D structure information with limited resolution along the depth direction due to insufficient sampling in depth direction and the limited angular range. The limitation could seriously hamper the conventional 3D image analysis techniques for detecting masses because the limited number of projection views causes blurring in the out-of-focus planes. In this paper, we propose a novel mass detection approach using slice conspicuity in the 3D reconstructed digital breast volumes to overcome the above limitation. First, to overcome the limited resolution along the depth direction, we detect regions of interest (ROIs) on each reconstructed slice and separately utilize the depth directional information to combine the ROIs effectively. Furthermore, we measure the blurriness of each slice for resolving the degradation of performance caused by the blur in the out-of-focus plane. Finally, mass features are extracted from the selected in focus slices and analyzed by a support vector machine classifier to reduce the false positives. Comparative experiments have been conducted on a clinical data set. Experimental results demonstrate that the proposed approach outperforms the conventional 3D approach by achieving a high sensitivity with a small number of false positives.

  14. 2D and 3D reconstruction and geomechanical characterization of kilometre-scale complex folded structures

    NASA Astrophysics Data System (ADS)

    Zanchi, Andrea; Agliardi, Federico; Crosta, Giovanni B.; Villa, Alberto; Bistacchi, Andrea; Iudica, Gaetano

    2015-04-01

    points based on their normal vector orientations to identify and map bedding and fractures. Combined stereographic analysis of bedding orientations and use of filters allowed the quantification of fold hinge and limb geometries and their 3D reconstruction in GOCAD. Fracture patterns derived from points clouds and field data allowed identifying different geomechanical domains associated to the folded structure. Our results encourage the integrated analysis of high-resolution point clouds and detailed structural and geomechanical field data as inputs to the 3D geometrical reconstruction and modelling of folded rock masses. Validation of virtual outcrop reconstructions through a comparison with field structural measurements suggests that very precise geometrical constraints can be obtained by TLS on geological bodies with complex geometrical features. However, additional constraints on TLS survey layout design are required to optimise the reconstruction and distinction of specific structural elements associated to folding as bedding and fold-related fracture systems.

  15. The Avignon Bridge: a 3d Reconstruction Project Integrating Archaeological, Historical and Gemorphological Issues

    NASA Astrophysics Data System (ADS)

    Berthelot, M.; Nony, N.; Gugi, L.; Bishop, A.; De Luca, L.

    2015-02-01

    The history and identity of the Avignon's bridge is inseparable from that of the Rhône river. Therefore, in order to share the history and memory of the Rhône, it is essential to get to know this bridge and especially to identify and make visible the traces of its past, its construction, its interaction with the river dynamics, which greatly influenced his life. These are the objectives of the PAVAGE project that focuses on digitally surveying, modelling and re-visiting a heritage site of primary importance with the aim of virtually restoring the link between the two sides which, after the disappearance of the Roman bridge of Arles, constituted for a long time the only connection between Lyon or Vienna and the sea. Therefore, this project has an important geo-historical dimension for which geo-morphological and paleoenvironmental studies were implemented in connection with the latest digital simulation methods exploiting geographic information systems. By integrating knowledge and reflections of archaeologists, historians, geomorphologists, environmentalists, architects, engineers and computer scientists, the result of this project (which involved 5 laboratories during 4 years) is a 3D digital model covering an extension of 50 km2 achieved by integrating satellite imagery, UAV-based acquisitions, terrestrial laser scanning and photogrammetry, etc. Beyond the actions of scientific valorisation concerning the historical and geomorphological dimensions of the project, the results of this work of this interdisciplinary investigation and interpretation of this site are today integrated within a location-based augmented reality application allowing tourists to exploring the virtual reconstruction of the bridge and its environment through tablets inside the portion of territory covered by this project (between Avignon and Villeneuve-lez-Avignon). This paper presents the main aspects of the 3D virtual reconstruction approach.

  16. 3D Surface Reconstruction of Rills in a Spanish Olive Grove

    NASA Astrophysics Data System (ADS)

    Brings, Christine; Gronz, Oliver; Seeger, Manuel; Wirtz, Stefan; Taguas, Encarnación; Ries, Johannes B.

    2016-04-01

    The low-cost, user-friendly photogrammetric Structure from Motion (SfM) technique is used for 3D surface reconstruction and difference calculation of an 18 meter long rill in South Spain (Andalusia, Puente Genil). The images were taken with a Canon HD video camera before and after a rill experiment in an olive grove. Recording with a video camera has compared to a photo camera a huge time advantage and the method also guarantees more than adequately overlapping sharp images. For each model, approximately 20 minutes of video were taken. As SfM needs single images, the sharpest image was automatically selected from 8 frame intervals. The sharpness was estimated using a derivative-based metric. Then, VisualSfM detects feature points in each image, searches matching feature points in all image pairs and recovers the camera and feature positions. Finally, by triangulation of camera positions and feature points the software reconstructs a point cloud of the rill surface. From the point cloud, 3D surface models (meshes) are created and via difference calculations of the pre and post model a visualization of the changes (erosion and accumulation areas) and quantification of erosion volumes are possible. The calculated volumes are presented in spatial units of the models and so real values must be converted via references. The results show that rills in olive groves have a high dynamic due to the lack of vegetation cover under the trees, so that the rill can incise until the bedrock. Another reason for the high activity is the intensive employment of machinery.

  17. Compressed Sensing Reconstruction of 3D Ultrasound Data Using Dictionary Learning and Line-Wise Subsampling.

    PubMed

    Lorintiu, Oana; Liebgott, Hervé; Alessandrini, Martino; Bernard, Olivier; Friboulet, Denis

    2015-12-01

    In this paper we present a compressed sensing (CS) method adapted to 3D ultrasound imaging (US). In contrast to previous work, we propose a new approach based on the use of learned overcomplete dictionaries that allow for much sparser representations of the signals since they are optimized for a particular class of images such as US images. In this study, the dictionary was learned using the K-SVD algorithm and CS reconstruction was performed on the non-log envelope data by removing 20% to 80% of the original data. Using numerically simulated images, we evaluate the influence of the training parameters and of the sampling strategy. The latter is done by comparing the two most common sampling patterns, i.e., point-wise and line-wise random patterns. The results show in particular that line-wise sampling yields an accuracy comparable to the conventional point-wise sampling. This indicates that CS acquisition of 3D data is feasible in a relatively simple setting, and thus offers the perspective of increasing the frame rate by skipping the acquisition of RF lines. Next, we evaluated this approach on US volumes of several ex vivo and in vivo organs. We first show that the learned dictionary approach yields better performances than conventional fixed transforms such as Fourier or discrete cosine. Finally, we investigate the generality of the learned dictionary approach and show that it is possible to build a general dictionary allowing to reliably reconstruct different volumes of different ex vivo or in vivo organs. PMID:26057610

  18. 3D Reconstruction of Human Laryngeal Dynamics Based on Endoscopic High-Speed Recordings.

    PubMed

    Semmler, Marion; Kniesburges, Stefan; Birk, Veronika; Ziethe, Anke; Patel, Rita; Dollinger, Michael

    2016-07-01

    Standard laryngoscopic imaging techniques provide only limited two-dimensional insights into the vocal fold vibrations not taking the vertical component into account. However, previous experiments have shown a significant vertical component in the vibration of the vocal folds. We present a 3D reconstruction of the entire superior vocal fold surface from 2D high-speed videoendoscopy via stereo triangulation. In a typical camera-laser set-up the structured laser light pattern is projected on the vocal folds and captured at 4000 fps. The measuring device is suitable for in vivo application since the external dimensions of the miniaturized set-up barely exceed the size of a standard rigid laryngoscope. We provide a conservative estimate on the resulting resolution based on the hardware components and point out the possibilities and limitations of the miniaturized camera-laser set-up. In addition to the 3D vocal fold surface, we extended previous approaches with a G2-continuous model of the vocal fold edge. The clinical applicability was successfully established by the reconstruction of visual data acquired from 2D in vivo high-speed recordings of a female and a male subject. We present extracted dynamic parameters like maximum amplitude and velocity in the vertical direction. The additional vertical component reveals deeper insights into the vibratory dynamics of the vocal folds by means of a non-invasive method. The successful miniaturization allows for in vivo application giving access to the most realistic model available and hence enables a comprehensive understanding of the human phonation process. PMID:26829782

  19. 3D image reconstruction algorithms for cryo-electron-microscopy images of virus particles

    NASA Astrophysics Data System (ADS)

    Doerschuk, Peter C.; Johnson, John E.

    2000-11-01

    A statistical model for the object and the complete image formation process in cryo electron microscopy of viruses is presented. Using this model, maximum likelihood reconstructions of the 3D structure of viruses are computed using the expectation maximization algorithm and an example based on Cowpea mosaic virus is provided.

  20. Fuzzy zoning for feature matching technique in 3D reconstruction of nasal endoscopic images.

    PubMed

    Rattanalappaiboon, Surapong; Bhongmakapat, Thongchai; Ritthipravat, Panrasee

    2015-12-01

    3D reconstruction from nasal endoscopic images greatly supports an otolaryngologist in examining nasal passages, mucosa, polyps, sinuses, and nasopharyx. In general, structure from motion is a popular technique. It consists of four main steps; (1) camera calibration, (2) feature extraction, (3) feature matching, and (4) 3D reconstruction. Scale Invariant Feature Transform (SIFT) algorithm is normally used for both feature extraction and feature matching. However, SIFT algorithm relatively consumes computational time particularly in the feature matching process because each feature in an image of interest is compared with all features in the subsequent image in order to find the best matched pair. A fuzzy zoning approach is developed for confining feature matching area. Matching between two corresponding features from different images can be efficiently performed. With this approach, it can greatly reduce the matching time. The proposed technique is tested with endoscopic images created from phantoms and compared with the original SIFT technique in terms of the matching time and average errors of the reconstructed models. Finally, original SIFT and the proposed fuzzy-based technique are applied to 3D model reconstruction of real nasal cavity based on images taken from a rigid nasal endoscope. The results showed that the fuzzy-based approach was significantly faster than traditional SIFT technique and provided similar quality of the 3D models. It could be used for creating a nasal cavity taken by a rigid nasal endoscope. PMID:26498516

  1. Estimation of 3D reconstruction errors in a stereo-vision system

    NASA Astrophysics Data System (ADS)

    Belhaoua, A.; Kohler, S.; Hirsch, E.

    2009-06-01

    The paper presents an approach for error estimation for the various steps of an automated 3D vision-based reconstruction procedure of manufactured workpieces. The process is based on a priori planning of the task and built around a cognitive intelligent sensory system using so-called Situation Graph Trees (SGT) as a planning tool. Such an automated quality control system requires the coordination of a set of complex processes performing sequentially data acquisition, its quantitative evaluation and the comparison with a reference model (e.g., CAD object model) in order to evaluate quantitatively the object. To ensure efficient quality control, the aim is to be able to state if reconstruction results fulfill tolerance rules or not. Thus, the goal is to evaluate independently the error for each step of the stereo-vision based 3D reconstruction (e.g., for calibration, contour segmentation, matching and reconstruction) and then to estimate the error for the whole system. In this contribution, we analyze particularly the segmentation error due to localization errors for extracted edge points supposed to belong to lines and curves composing the outline of the workpiece under evaluation. The fitting parameters describing these geometric features are used as quality measure to determine confidence intervals and finally to estimate the segmentation errors. These errors are then propagated through the whole reconstruction procedure, enabling to evaluate their effect on the final 3D reconstruction result, specifically on position uncertainties. Lastly, analysis of these error estimates enables to evaluate the quality of the 3D reconstruction, as illustrated by the shown experimental results.

  2. 3D reconstruction of scintillation light emission from proton pencil beams using limited viewing angles-a simulation study.

    PubMed

    Hui, CheukKai; Robertson, Daniel; Beddar, Sam

    2014-08-21

    An accurate and high-resolution quality assurance (QA) method for proton radiotherapy beams is necessary to ensure correct dose delivery to the target. Detectors based on a large volume of liquid scintillator have shown great promise in providing fast and high-resolution measurements of proton treatment fields. However, previous work with these detectors has been limited to two-dimensional measurements, and the quantitative measurement of dose distributions was lacking. The purpose of the current study is to assess the feasibility of reconstructing three-dimensional (3D) scintillation light distributions of spot scanning proton beams using a scintillation system. The proposed system consists of a tank of liquid scintillator imaged by charge-coupled device cameras at three orthogonal viewing angles. Because of the limited number of viewing angles, we developed a profile-based technique to obtain an initial estimate that can improve the quality of the 3D reconstruction. We found that our proposed scintillator system and profile-based technique can reconstruct a single energy proton beam in 3D with a gamma passing rate (3%/3 mm local) of 100.0%. For a single energy layer of an intensity modulated proton therapy prostate treatment plan, the proposed method can reconstruct the 3D light distribution with a gamma pass rate (3%/3 mm local) of 99.7%. In addition, we also found that the proposed method is effective in detecting errors in the treatment plan, indicating that it can be a very useful tool for 3D proton beam QA. PMID:25054735

  3. 3D reconstruction of scintillation light emission from proton pencil beams using limited viewing angles—a simulation study

    NASA Astrophysics Data System (ADS)

    Hui, CheukKai; Robertson, Daniel; Beddar, Sam

    2014-08-01

    An accurate and high-resolution quality assurance (QA) method for proton radiotherapy beams is necessary to ensure correct dose delivery to the target. Detectors based on a large volume of liquid scintillator have shown great promise in providing fast and high-resolution measurements of proton treatment fields. However, previous work with these detectors has been limited to two-dimensional measurements, and the quantitative measurement of dose distributions was lacking. The purpose of the current study is to assess the feasibility of reconstructing three-dimensional (3D) scintillation light distributions of spot scanning proton beams using a scintillation system. The proposed system consists of a tank of liquid scintillator imaged by charge-coupled device cameras at three orthogonal viewing angles. Because of the limited number of viewing angles, we developed a profile-based technique to obtain an initial estimate that can improve the quality of the 3D reconstruction. We found that our proposed scintillator system and profile-based technique can reconstruct a single energy proton beam in 3D with a gamma passing rate (3%/3 mm local) of 100.0%. For a single energy layer of an intensity modulated proton therapy prostate treatment plan, the proposed method can reconstruct the 3D light distribution with a gamma pass rate (3%/3 mm local) of 99.7%. In addition, we also found that the proposed method is effective in detecting errors in the treatment plan, indicating that it can be a very useful tool for 3D proton beam QA.

  4. Regularization Designs for Uniform Spatial Resolution and Noise Properties in Statistical Image Reconstruction for 3D X-ray CT

    PubMed Central

    Cho, Jang Hwan; Fessler, Jeffrey A.

    2014-01-01

    Statistical image reconstruction methods for X-ray computed tomography (CT) provide improved spatial resolution and noise properties over conventional filtered back-projection (FBP) reconstruction, along with other potential advantages such as reduced patient dose and artifacts. Conventional regularized image reconstruction leads to spatially variant spatial resolution and noise characteristics because of interactions between the system models and the regularization. Previous regularization design methods aiming to solve such issues mostly rely on circulant approximations of the Fisher information matrix that are very inaccurate for undersampled geometries like short-scan cone-beam CT. This paper extends the regularization method proposed in [1] to 3D cone-beam CT by introducing a hypothetical scanning geometry that helps address the sampling properties. The proposed regularization designs were compared with the original method in [1] with both phantom simulation and clinical reconstruction in 3D axial X-ray CT. The proposed regularization methods yield improved spatial resolution or noise uniformity in statistical image reconstruction for short-scan axial cone-beam CT. PMID:25361500

  5. A Skeleton-Based 3D Shape Reconstruction of Free-Form Objects with Stereo Vision

    NASA Astrophysics Data System (ADS)

    Saini, Deepika; Kumar, Sanjeev

    2015-12-01

    In this paper, an efficient approach is proposed for recovering the 3D shape of a free-form object from its arbitrary pair of stereo images. In particular, the reconstruction problem is treated as the reconstruction of the skeleton and the external boundary of the object. The reconstructed skeleton is termed as the line-like representation or curve-skeleton of the 3D object. The proposed solution for object reconstruction is based on this evolved curve-skeleton. It is used as a seed for recovering shape of the 3D object, and the extracted boundary is used for terminating the growing process of the object. NURBS-skeleton is used to extract the skeleton of both views. Affine invariant property of the convex hulls is used to establish the correspondence between the skeletons and boundaries in the stereo images. In the growing process, a distance field is defined for each skeleton point as the smallest distance from that point to the boundary of the object. A sphere centered at a skeleton point of radius equal to the minimum distance to the boundary is tangential to the boundary. Filling in the spheres centered at each skeleton point reconstructs the object. Several results are presented in order to check the applicability and validity of the proposed algorithm.

  6. 3-D Monte Carlo-Based Scatter Compensation in Quantitative I-131 SPECT Reconstruction

    PubMed Central

    Dewaraja, Yuni K.; Ljungberg, Michael; Fessler, Jeffrey A.

    2010-01-01

    We have implemented highly accurate Monte Carlo based scatter modeling (MCS) with 3-D ordered subsets expectation maximization (OSEM) reconstruction for I-131 single photon emission computed tomography (SPECT). The scatter is included in the statistical model as an additive term and attenuation and detector response are included in the forward/backprojector. In the present implementation of MCS, a simple multiple window-based estimate is used for the initial iterations and in the later iterations the Monte Carlo estimate is used for several iterations before it is updated. For I-131, MCS was evaluated and compared with triple energy window (TEW) scatter compensation using simulation studies of a mathematical phantom and a clinically realistic voxel-phantom. Even after just two Monte Carlo updates, excellent agreement was found between the MCS estimate and the true scatter distribution. Accuracy and noise of the reconstructed images were superior with MCS compared to TEW. However, the improvement was not large, and in some cases may not justify the large computational requirements of MCS. Furthermore, it was shown that the TEW correction could be improved for most of the targets investigated here by applying a suitably chosen scaling factor to the scatter estimate. Finally clinical application of MCS was demonstrated by applying the method to an I-131 radioimmunotherapy (RIT) patient study. PMID:20104252

  7. Recovery and Visualization of 3D Structure of Chromosomes from Tomographic Reconstruction Images

    NASA Astrophysics Data System (ADS)

    Babu, Sabarish; Liao, Pao-Chuan; Shin, Min C.; Tsap, Leonid V.

    2006-12-01

    The objectives of this work include automatic recovery and visualization of a 3D chromosome structure from a sequence of 2D tomographic reconstruction images taken through the nucleus of a cell. Structure is very important for biologists as it affects chromosome functions, behavior of the cell, and its state. Analysis of chromosome structure is significant in the detection of diseases, identification of chromosomal abnormalities, study of DNA structural conformation, in-depth study of chromosomal surface morphology, observation of in vivo behavior of the chromosomes over time, and in monitoring environmental gene mutations. The methodology incorporates thresholding based on a histogram analysis with a polyline splitting algorithm, contour extraction via active contours, and detection of the 3D chromosome structure by establishing corresponding regions throughout the slices. Visualization using point cloud meshing generates a 3D surface. The 3D triangular mesh of the chromosomes provides surface detail and allows a user to interactively analyze chromosomes using visualization software.

  8. Recovery and Visualization of 3D Structure of Chromosomes from Tomographic Reconstruction Images

    SciTech Connect

    Babu, S; Liao, P; Shin, M C; Tsap, L V

    2004-04-28

    The objectives of this work include automatic recovery and visualization of a 3D chromosome structure from a sequence of 2D tomographic reconstruction images taken through the nucleus of a cell. Structure is very important for biologists as it affects chromosome functions, behavior of the cell and its state. Chromosome analysis is significant in the detection of deceases and in monitoring environmental gene mutations. The algorithm incorporates thresholding based on a histogram analysis with a polyline splitting algorithm, contour extraction via active contours, and detection of the 3D chromosome structure by establishing corresponding regions throughout the slices. Visualization using point cloud meshing generates a 3D surface. The 3D triangular mesh of the chromosomes provides surface detail and allows a user to interactively analyze chromosomes using visualization software.

  9. Gap-filling methods for 3D PlanTIS data.

    PubMed

    Loukiala, A; Tuna, U; Beer, S; Jahnke, S; Ruotsalainen, U

    2010-10-21

    The range of positron emitters and their labeled compounds have led to high-resolution PET scanners becoming widely used, not only in clinical and pre-clinical studies but also in plant studies. A high-resolution PET scanner, plant tomographic imaging system (PlanTIS), was designed to study metabolic and physiological functions of plants noninvasively. The gantry of the PlanTIS scanner has detector-free regions. Even when the gantry of the PlanTIS is rotated during the scan, these regions result in missing sinogram bins in the acquired data. Missing data need to be estimated prior to the analytical image reconstructions in order to avoid artifacts in the final reconstructed images. In this study, we propose three gap-filling methods for estimation of the unique gaps existing in the 3D PlanTIS sinogram data. The 3D sinogram data were gap-filled either by linear interpolation in the transaxial planes or by the bicubic interpolation method (proposed for the ECAT high-resolution research tomograph) in the transradial planes or by the inpainting method in the transangular planes. Each gap-filling method independently compensates for slices in one of three orthogonal sinogram planes (transaxial, transradial and transangular planes). A 3D numerical Shepp-Logan phantom and the NEMA image quality phantom were used to evaluate the methods. The gap-filled sinograms were reconstructed using the analytical 3D reprojection (3DRP) method. The NEMA phantom sinograms were also reconstructed by the iterative reconstruction method, ordered subsets maximum a posteriori one step late (OSMAPOSL), to compare the results of gap filling followed by 3DRP with the results of OSMAPOSL reconstruction without gap filling. The three methods were evaluated quantitatively (by mean square error and coefficients of variation) over the selected regions of the 3D numerical Shepp-Logan phantom at eight different Poisson noise levels. Moreover, the NEMA phantom scan data were used in visual assessments

  10. Gap-filling methods for 3D PlanTIS data

    NASA Astrophysics Data System (ADS)

    Loukiala, A.; Tuna, U.; Beer, S.; Jahnke, S.; Ruotsalainen, U.

    2010-10-01

    The range of positron emitters and their labeled compounds have led to high-resolution PET scanners becoming widely used, not only in clinical and pre-clinical studies but also in plant studies. A high-resolution PET scanner, plant tomographic imaging system (PlanTIS), was designed to study metabolic and physiological functions of plants noninvasively. The gantry of the PlanTIS scanner has detector-free regions. Even when the gantry of the PlanTIS is rotated during the scan, these regions result in missing sinogram bins in the acquired data. Missing data need to be estimated prior to the analytical image reconstructions in order to avoid artifacts in the final reconstructed images. In this study, we propose three gap-filling methods for estimation of the unique gaps existing in the 3D PlanTIS sinogram data. The 3D sinogram data were gap-filled either by linear interpolation in the transaxial planes or by the bicubic interpolation method (proposed for the ECAT high-resolution research tomograph) in the transradial planes or by the inpainting method in the transangular planes. Each gap-filling method independently compensates for slices in one of three orthogonal sinogram planes (transaxial, transradial and transangular planes). A 3D numerical Shepp-Logan phantom and the NEMA image quality phantom were used to evaluate the methods. The gap-filled sinograms were reconstructed using the analytical 3D reprojection (3DRP) method. The NEMA phantom sinograms were also reconstructed by the iterative reconstruction method, ordered subsets maximum a posteriori one step late (OSMAPOSL), to compare the results of gap filling followed by 3DRP with the results of OSMAPOSL reconstruction without gap filling. The three methods were evaluated quantitatively (by mean square error and coefficients of variation) over the selected regions of the 3D numerical Shepp-Logan phantom at eight different Poisson noise levels. Moreover, the NEMA phantom scan data were used in visual assessments

  11. 3-D UNSTRUCTURED HEXAHEDRAL-MESH Sn TRANSPORT METHODS

    SciTech Connect

    J. MOREL; J. MCGHEE; ET AL

    2000-11-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). We have developed a method for solving the neutral-particle transport equation on 3-D unstructured hexahedral meshes using a S{sub n} discretization in angle in conjunction with a discontinuous finite-element discretization in space and a multigroup discretization in energy. Previous methods for solving this equation in 3-D have been limited to rectangular meshes. The unstructured-mesh method that we have developed is far more efficient for solving problems with complex 3-D geometric features than rectangular-mesh methods. In spite of having to make several compromises in our spatial discretization technique and our iterative solution technique, our method has been found to be both accurate and efficient for a broad class of problems.

  12. A 3D photogrammetric reconstruction attempt of specimens of Badenian echinoids

    NASA Astrophysics Data System (ADS)

    Polonkai, Bálint; Raveloson, Andrea; Görög, Ágnes; Bodor, Emese; Székely, Balázs

    2016-04-01

    The rich echinoid fauna of the Badenian (Middle Miocene) from Budapest (Hungary) is well known for more than one hundred years. Along the road cuts and due to the construction of large buildings from 1960 to 2011, new Badenian outcrops with rich and well preserved echinoids were found in the city. Thus the main aim of this study was to revise historically collected echinoids (in the collection of Geological and Geophysical Institute of Hungary) from different parts of the city (Örs Vezér Square, Gyakorló Street, Rákos and District of Budafok-Tétény) and to classify the newly collected fossils, moreover to carry out the palaeoenvironmental reconstruction of the different localities. The specimens studied are from the Upper Badenian Leithakalk Formation Rákos Member, which consists of sandy limestone, calcareous loose sandstone with volcanic clast and/or calcarenite without terrigenous or volcanic clast. One of the most common echinoidea in the Badenian, the Parascutella gibbercula DE SERRES, 1829 is well known and researched in both morphological and taxonomic aspects. However there are some intraspecific morphological features that show sharp differences across the specimens: the adapical conical convexity is considerably different between several forms. The petalodium's length/width ratio is also different between many specimens. Other morphological characters for example peristomal and periproctal aperture and the food groove can also be different. These differences within this relatively small area could be determined by ecological conditions (such as substrate, palaeodepth), or can be related to taxonomical or pathological changes. For an appropriate comparison, quantification of these features is necessary. Photogrammetry is in general a useful and well-developed tool to reconstruct 3D surfaces of artefacts (e.g., in archaeology, cultural heritage, and also in palaeontology). In order to evaluate the differences found in P. gibbercula specimens various

  13. Extreme 3D reconstruction of the final ROSETTA/PHILAE landing site

    NASA Astrophysics Data System (ADS)

    Capanna, Claire; Jorda, Laurent; Lamy, Philippe; Gesquiere, Gilles; Delmas, Cédric; Durand, Joelle; Garmier, Romain; Gaudon, Philippe; Jurado, Eric

    2016-04-01

    The Philae lander aboard the Rosetta spacecraft successfully landed at the surface of comet 67P/Churyumov-Gerasimenko (hereafter 67P/C-G) after two rebounds on November 12, 2014. The final landing site, now known as « Abydos », has been identified on images acquired by the OSIRIS imaging system onboard the Rosetta orbiter[1]. The available images of Abydos are very limited in number and reveal a very extreme topography containing cliffs and overhangs. Furthermore, the surface is only observed under very high incidence angles of 60° on average, which implies that the images also exhibit lots of cast shadows. This makes it very difficult to reconstruct the 3D topography with standard methods such as photogrammetry or standard clinometry. We apply a new method called ''Multiresolution PhotoClinometry by Deformation'' (MPCD, [2]) to retrieve the 3D topography of the area around Abydos. The method works in two main steps: (i) a DTM of this region is extracted from a low resolution MPCD global shape model of comet 67P/C-G, and (ii) the resulting triangular mesh is progressively deformed at increasing spatial sampling down to 0.25 m in order to match a set of 14 images of Abydos with projected pixel scales between 1 and 8 m. The method used to perform the image matching is a quasi-Newton non-linear optimization method called L-BFGS-b[3] especially suited to large-scale problems. Finally, we also checked the compatibility of the final MPCD digital terrain model with a set of five panoramic images obtained by the CIVA-P instrument aboard Philae[4]. [1] Lamy et al., 2016, submitted. [2] Capanna et al., Three dimensional reconstruction using multiresoluton photoclinometry by deformation, The visual Computer, v. 29(6-8) pp. 825-835, 2013. [3] Morales et al., Remark on "Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound constrained optimization", v.38(1) pp.1-4, ACM Trans. Math. Softw., 2011 [4] Bibring et al., 67P/Churyumov-Gerasimenko surface properties as

  14. Real-Time Large Scale 3d Reconstruction by Fusing Kinect and Imu Data

    NASA Astrophysics Data System (ADS)

    Huai, J.; Zhang, Y.; Yilmaz, A.

    2015-08-01

    Kinect-style RGB-D cameras have been used to build large scale dense 3D maps for indoor environments. These maps can serve many purposes such as robot navigation, and augmented reality. However, to generate dense 3D maps of large scale environments is still very challenging. In this paper, we present a mapping system for 3D reconstruction that fuses measurements from a Kinect and an inertial measurement unit (IMU) to estimate motion. Our major achievements include: (i) Large scale consistent 3D reconstruction is realized by volume shifting and loop closure; (ii) The coarse-to-fine iterative closest point (ICP) algorithm, the SIFT odometry, and IMU odometry are combined to robustly and precisely estimate pose. In particular, ICP runs routinely to track the Kinect motion. If ICP fails in planar areas, the SIFT odometry provides incremental motion estimate. If both ICP and the SIFT odometry fail, e.g., upon abrupt motion or inadequate features, the incremental motion is estimated by the IMU. Additionally, the IMU also observes the roll and pitch angles which can reduce long-term drift of the sensor assembly. In experiments on a consumer laptop, our system estimates motion at 8Hz on average while integrating color images to the local map and saving volumes of meshes concurrently. Moreover, it is immune to tracking failures, and has smaller drift than the state-of-the-art systems in large scale reconstruction.

  15. Orbital Wall Reconstruction with Two-Piece Puzzle 3D Printed Implants: Technical Note.

    PubMed

    Mommaerts, Maurice Y; Büttner, Michael; Vercruysse, Herman; Wauters, Lauri; Beerens, Maikel

    2016-03-01

    The purpose of this article is to describe a technique for secondary reconstruction of traumatic orbital wall defects using titanium implants that act as three-dimensional (3D) puzzle pieces. We present three cases of large defect reconstruction using implants produced by Xilloc Medical B.V. (Maastricht, the Netherlands) with a 3D printer manufactured by LayerWise (3D Systems; Heverlee, Belgium), and designed using the biomedical engineering software programs ProPlan and 3-Matic (Materialise, Heverlee, Belgium). The smaller size of the implants allowed sequential implantation for the reconstruction of extensive two-wall defects via a limited transconjunctival incision. The precise fit of the implants with regard to the surrounding ledges and each other was confirmed by intraoperative 3D imaging (Mobile C-arm Systems B.V. Pulsera, Philips Medical Systems, Eindhoven, the Netherlands). The patients showed near-complete restoration of orbital volume and ocular motility. However, challenges remain, including traumatic fat atrophy and fibrosis. PMID:26889349

  16. Sensor Fusion of Cameras and a Laser for City-Scale 3D Reconstruction

    PubMed Central

    Bok, Yunsu; Choi, Dong-Geol; Kweon, In So

    2014-01-01

    This paper presents a sensor fusion system of cameras and a 2D laser sensor for large-scale 3D reconstruction. The proposed system is designed to capture data on a fast-moving ground vehicle. The system consists of six cameras and one 2D laser sensor, and they are synchronized by a hardware trigger. Reconstruction of 3D structures is done by estimating frame-by-frame motion and accumulating vertical laser scans, as in previous works. However, our approach does not assume near 2D motion, but estimates free motion (including absolute scale) in 3D space using both laser data and image features. In order to avoid the degeneration associated with typical three-point algorithms, we present a new algorithm that selects 3D points from two frames captured by multiple cameras. The problem of error accumulation is solved by loop closing, not by GPS. The experimental results show that the estimated path is successfully overlaid on the satellite images, such that the reconstruction result is very accurate. PMID:25375758

  17. Virtual 3D bladder reconstruction for augmented medical records from white light cystoscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Lurie, Kristen L.; Zlatev, Dimitar V.; Angst, Roland; Liao, Joseph C.; Ellerbee, Audrey K.

    2016-02-01

    Bladder cancer has a high recurrence rate that necessitates lifelong surveillance to detect mucosal lesions. Examination with white light cystoscopy (WLC), the standard of care, is inherently subjective and data storage limited to clinical notes, diagrams, and still images. A visual history of the bladder wall can enhance clinical and surgical management. To address this clinical need, we developed a tool to transform in vivo WLC videos into virtual 3-dimensional (3D) bladder models using advanced computer vision techniques. WLC videos from rigid cystoscopies (1280 x 720 pixels) were recorded at 30 Hz followed by immediate camera calibration to control for image distortions. Video data were fed into an automated structure-from-motion algorithm that generated a 3D point cloud followed by a 3D mesh to approximate the bladder surface. The highest quality cystoscopic images were projected onto the approximated bladder surface to generate a virtual 3D bladder reconstruction. In intraoperative WLC videos from 36 patients undergoing transurethral resection of suspected bladder tumors, optimal reconstruction was achieved from frames depicting well-focused vasculature, when the bladder was maintained at constant volume with minimal debris, and when regions of the bladder wall were imaged multiple times. A significant innovation of this work is the ability to perform the reconstruction using video from a clinical procedure collected with standard equipment, thereby facilitating rapid clinical translation, application to other forms of endoscopy and new opportunities for longitudinal studies of cancer recurrence.

  18. Accuracy assessment of 3D bone reconstructions using CT: an intro comparison.

    PubMed

    Lalone, Emily A; Willing, Ryan T; Shannon, Hannah L; King, Graham J W; Johnson, James A

    2015-08-01

    Computed tomography provides high contrast imaging of the joint anatomy and is used routinely to reconstruct 3D models of the osseous and cartilage geometry (CT arthrography) for use in the design of orthopedic implants, for computer assisted surgeries and computational dynamic and structural analysis. The objective of this study was to assess the accuracy of bone and cartilage surface model reconstructions by comparing reconstructed geometries with bone digitizations obtained using an optical tracking system. Bone surface digitizations obtained in this study determined the ground truth measure for the underlying geometry. We evaluated the use of a commercially available reconstruction technique using clinical CT scanning protocols using the elbow joint as an example of a surface with complex geometry. To assess the accuracies of the reconstructed models (8 fresh frozen cadaveric specimens) against the ground truth bony digitization-as defined by this study-proximity mapping was used to calculate residual error. The overall mean error was less than 0.4 mm in the cortical region and 0.3 mm in the subchondral region of the bone. Similarly creating 3D cartilage surface models from CT scans using air contrast had a mean error of less than 0.3 mm. Results from this study indicate that clinical CT scanning protocols and commonly used and commercially available reconstruction algorithms can create models which accurately represent the true geometry. PMID:26037323

  19. Workflows and the Role of Images for Virtual 3d Reconstruction of no Longer Extant Historic Objects

    NASA Astrophysics Data System (ADS)

    Münster, S.

    2013-07-01

    3D reconstruction technologies have gained importance as tools for the research and visualization of no longer extant historic objects during the last decade. Within such reconstruction processes, visual media assumes several important roles: as the most important sources especially for a reconstruction of no longer extant objects, as a tool for communication and cooperation within the production process, as well as for a communication and visualization of results. While there are many discourses about theoretical issues of depiction as sources and as visualization outcomes of such projects, there is no systematic research about the importance of depiction during a 3D reconstruction process and based on empirical findings. Moreover, from a methodological perspective, it would be necessary to understand which role visual media plays during the production process and how it is affected by disciplinary boundaries and challenges specific to historic topics. Research includes an analysis of published work and case studies investigating reconstruction projects. This study uses methods taken from social sciences to gain a grounded view of how production processes would take place in practice and which functions and roles images would play within them. For the investigation of these topics, a content analysis of 452 conference proceedings and journal articles related to 3D reconstruction modeling in the field of humanities has been completed. Most of the projects described in those publications dealt with data acquisition and model building for existing objects. Only a small number of projects focused on structures that no longer or never existed physically. Especially that type of project seems to be interesting for a study of the importance of pictures as sources and as tools for interdisciplinary cooperation during the production process. In the course of the examination the authors of this paper applied a qualitative content analysis for a sample of 26 previously

  20. [An integrated segmentation method for 3D ultrasound carotid artery].

    PubMed

    Yang, Xin; Wu, Huihui; Liu, Yang; Xu, Hongwei; Liang, Huageng; Cai, Wenjuan; Fang, Mengjie; Wang, Yujie

    2013-07-01

    An integrated segmentation method for 3D ultrasound carotid artery was proposed. 3D ultrasound image was sliced into transverse, coronal and sagittal 2D images on the carotid bifurcation point. Then, the three images were processed respectively, and the carotid artery contours and thickness were obtained finally. This paper tries to overcome the disadvantages of current computer aided diagnosis method, such as high computational complexity, easily introduced subjective errors et al. The proposed method could get the carotid artery overall information rapidly, accurately and completely. It could be transplanted into clinical usage for atherosclerosis diagnosis and prevention. PMID:24195385

  1. Automatic system for 3D reconstruction of the chick eye based on digital photographs.

    PubMed

    Wong, Alexander; Genest, Reno; Chandrashekar, Naveen; Choh, Vivian; Irving, Elizabeth L

    2012-01-01

    The geometry of anatomical specimens is very complex and accurate 3D reconstruction is important for morphological studies, finite element analysis (FEA) and rapid prototyping. Although magnetic resonance imaging, computed tomography and laser scanners can be used for reconstructing biological structures, the cost of the equipment is fairly high and specialised technicians are required to operate the equipment, making such approaches limiting in terms of accessibility. In this paper, a novel automatic system for 3D surface reconstruction of the chick eye from digital photographs of a serially sectioned specimen is presented as a potential cost-effective and practical alternative. The system is designed to allow for automatic detection of the external surface of the chick eye. Automatic alignment of the photographs is performed using a combination of coloured markers and an algorithm based on complex phase order likelihood that is robust to noise and illumination variations. Automatic segmentation of the external boundaries of the eye from the aligned photographs is performed using a novel level-set segmentation approach based on a complex phase order energy functional. The extracted boundaries are sampled to construct a 3D point cloud, and a combination of Delaunay triangulation and subdivision surfaces is employed to construct the final triangular mesh. Experimental results using digital photographs of the chick eye show that the proposed system is capable of producing accurate 3D reconstructions of the external surface of the eye. The 3D model geometry is similar to a real chick eye and could be used for morphological studies and FEA. PMID:21181572

  2. "High-precision, reconstructed 3D model" of skull scanned by conebeam CT: Reproducibility verified using CAD/CAM data.

    PubMed

    Katsumura, Seiko; Sato, Keita; Ikawa, Tomoko; Yamamura, Keiko; Ando, Eriko; Shigeta, Yuko; Ogawa, Takumi

    2016-01-01

    Computed tomography (CT) scanning has recently been introduced into forensic medicine and dentistry. However, the presence of metal restorations in the dentition can adversely affect the quality of three-dimensional reconstruction from CT scans. In this study, we aimed to evaluate the reproducibility of a "high-precision, reconstructed 3D model" obtained from a conebeam CT scan of dentition, a method that might be particularly helpful in forensic medicine. We took conebeam CT and helical CT images of three dry skulls marked with 47 measuring points; reconstructed three-dimensional images; and measured the distances between the points in the 3D images with a computer-aided design/computer-aided manufacturing (CAD/CAM) marker. We found that in comparison with the helical CT, conebeam CT is capable of reproducing measurements closer to those obtained from the actual samples. In conclusion, our study indicated that the image-reproduction from a conebeam CT scan was more accurate than that from a helical CT scan. Furthermore, the "high-precision reconstructed 3D model" facilitates reliable visualization of full-sized oral and maxillofacial regions in both helical and conebeam CT scans. PMID:26832374

  3. Dense point-cloud creation using superresolution for a monocular 3D reconstruction system

    NASA Astrophysics Data System (ADS)

    Diskin, Yakov; Asari, Vijayan K.

    2012-05-01

    We present an enhanced 3D reconstruction algorithm designed to support an autonomously navigated unmanned aerial system (UAS). The algorithm presented focuses on the 3D reconstruction of a scene using only a single moving camera. In this way, the system can be used to construct a point cloud model of its unknown surroundings. The original reconstruction process, resulting with a point cloud was computed based on feature matching and depth triangulation analysis. Although dense, this original model was hindered due to its low disparity resolution. As feature points were matched from frame to frame, the resolution of the input images and the discrete nature of disparities limited the depth computations within a scene. With the recent addition of the preprocessing steps of nonlinear super resolution, the accuracy of the point cloud which relies on precise disparity measurement has significantly increased. Using a pixel by pixel approach, the super resolution technique computes the phase congruency of each pixel's neighborhood and produces nonlinearly interpolated high resolution input frames. Thus, a feature point travels a more precise discrete disparity. Also, the quantity of points within the 3D point cloud model is significantly increased since the number of features is directly proportional to the resolution and high frequencies of the input image. The contribution of the newly added preprocessing steps is measured by evaluating the density and accuracy of the reconstructed point cloud for autonomous navigation and mapping tasks within unknown environments.

  4. Detection and 3D reconstruction of traffic signs from multiple view color images

    NASA Astrophysics Data System (ADS)

    Soheilian, Bahman; Paparoditis, Nicolas; Vallet, Bruno

    2013-03-01

    3D reconstruction of traffic signs is of great interest in many applications such as image-based localization and navigation. In order to reflect the reality, the reconstruction process should meet both accuracy and precision. In order to reach such a valid reconstruction from calibrated multi-view images, accurate and precise extraction of signs in every individual view is a must. This paper presents first an automatic pipeline for identifying and extracting the silhouette of signs in every individual image. Then, a multi-view constrained 3D reconstruction algorithm provides an optimum 3D silhouette for the detected signs. The first step called detection, tackles with a color-based segmentation to generate ROIs (Region of Interests) in image. The shape of every ROI is estimated by fitting an ellipse, a quadrilateral or a triangle to edge points. A ROI is rejected if none of the three shapes can be fitted sufficiently precisely. Thanks to the estimated shape the remained candidates ROIs are rectified to remove the perspective distortion and then matched with a set of reference signs using textural information. Poor matches are rejected and the types of remained ones are identified. The output of the detection algorithm is a set of identified road signs whose silhouette in image plane is represented by and ellipse, a quadrilateral or a triangle. The 3D reconstruction process is based on a hypothesis generation and verification. Hypotheses are generated by a stereo matching approach taking into account epipolar geometry and also the similarity of the categories. The hypotheses that are plausibly correspond to the same 3D road sign are identified and grouped during this process. Finally, all the hypotheses of the same group are merged to generate a unique 3D road sign by a multi-view algorithm integrating a priori knowledges about 3D shape of road signs as constraints. The algorithm is assessed on real and synthetic images and reached and average accuracy of 3.5cm for

  5. Direct Detection of the Helical Magnetic Field Geometry from 3D Reconstruction of Prominence Knot Trajectories

    NASA Astrophysics Data System (ADS)

    Zapiór, Maciej; Martínez-Gómez, David

    2016-02-01

    Based on the data collected by the Vacuum Tower Telescope located in the Teide Observatory in the Canary Islands, we analyzed the three-dimensional (3D) motion of so-called knots in a solar prominence of 2014 June 9. Trajectories of seven knots were reconstructed, giving information of the 3D geometry of the magnetic field. Helical motion was detected. From the equipartition principle, we estimated the lower limit of the magnetic field in the prominence to ≈1-3 G and from the Ampère’s law the lower limit of the electric current to ≈1.2 × 109 A.

  6. Reconstruction 3D des structures adjacentes de l'articulation de la hanche par une segmentation multi-structures a l'aide des maillages surfaciques triangulaires

    NASA Astrophysics Data System (ADS)

    Meghoufel, Brahim

    A new 3D reconstruction technique of the two adjacent structures forming the hip joint from the 3D CT-scans images has been developed. The femoral head and the acetabulum are reconstructed using a 3D multi-structure segmentation method for the adjacent surfaces which is based on the use of a 3D triangular surface meshes. This method begins with a preliminary hierarchical segmentation of the two structures, using one triangular mesh for each structure. The two resulting 3D meshes of the hierarchical segmentation are deployed into two planar 2D surfaces. We have used the umbrella deployment to deploy the femoral head mesh, and the parameterization 3D/2D to deploy the acetabulum mesh. The two planar generated surfaces are used to deploy the CT-scan volume around each structure. The surface of each structure is nearly planar in the corresponding deployed volume. The iterative method of minimal surfaces ensures the optimal identification of both sought surfaces from the deployed volumes. The last step of the 3D reconstruction method aims at detecting and correcting the overlap between the two structures. This 3D reconstruction method has been validated using a data base of 10 3D CT-scan images. The results of the 3D reconstructions seem satisfactory. The precision errors of these 3D reconstructions have been quantified by comparing the 3D reconstructions with an available manual gold standard. The errors resulting from the quantification are better than those available in the literature; the mean of those errors is 0,83 +/- 0,25 mm for acetabulum and 0,70 +/- 0,17 mm for the femoral head. The mean execution time of the 3D reconstruction of the two structures forming the hip joint has been estimated at approximately 3,0 +/- 0,3 min . The proposed method shows the potential of the solution which the image processing can provide to the surgeons in order to achieve their routine tasks. Such a method can be applied to every imaging modality.

  7. Rapid 3D video/laser sensing and digital archiving with immediate on-scene feedback for 3D crime scene/mass disaster data collection and reconstruction

    NASA Astrophysics Data System (ADS)

    Altschuler, Bruce R.; Oliver, William R.; Altschuler, Martin D.

    1996-02-01

    We describe a system for rapid and convenient video data acquisition and 3-D numerical coordinate data calculation able to provide precise 3-D topographical maps and 3-D archival data sufficient to reconstruct a 3-D virtual reality display of a crime scene or mass disaster area. Under a joint U.S. army/U.S. Air Force project with collateral U.S. Navy support, to create a 3-D surgical robotic inspection device -- a mobile, multi-sensor robotic surgical assistant to aid the surgeon in diagnosis, continual surveillance of patient condition, and robotic surgical telemedicine of combat casualties -- the technology is being perfected for remote, non-destructive, quantitative 3-D mapping of objects of varied sizes. This technology is being advanced with hyper-speed parallel video technology and compact, very fast laser electro-optics, such that the acquisition of 3-D surface map data will shortly be acquired within the time frame of conventional 2-D video. With simple field-capable calibration, and mobile or portable platforms, the crime scene investigator could set up and survey the entire crime scene, or portions of it at high resolution, with almost the simplicity and speed of video or still photography. The survey apparatus would record relative position, location, and instantly archive thousands of artifacts at the site with 3-D data points capable of creating unbiased virtual reality reconstructions, or actual physical replicas, for the investigators, prosecutors, and jury.

  8. Improving Three-Dimensional (3D) Range Gated Reconstruction Through Time-of-Flight (TOF) Imaging Analysis

    NASA Astrophysics Data System (ADS)

    Chua, S. Y.; Wang, X.; Guo, N.; Tan, C. S.; Chai, T. Y.; Seet, G. L.

    2016-04-01

    This paper performs an experimental investigation on the TOF imaging profile which strongly influences the quality of reconstruction to accomplish accurate range sensing. From our analysis, the reflected intensity profile recorded appears to deviate from Gaussian model which is commonly assumed and can be perceived as a mixture of noises and actual reflected signal. Noise-weighted Average range calculation is therefore proposed to alleviate noise influence based on the signal detection threshold and system noises. From our experimental result, this alternative range solution demonstrates better accuracy as compared to the conventional weighted average method and proven as a para-axial correction to improve range reconstruction in 3D gated imaging system.

  9. Clinically feasible reconstruction of 3D whole-body PET/CT data using blurred anatomical labels

    NASA Astrophysics Data System (ADS)

    Comtat, Claude; Kinahan, Paul E.; Fessler, Jeffrey A.; Beyer, Thomas; Townsend, David W.; Defrise, Michel; Michel, Christian

    2002-01-01

    We present the results of utilizing aligned anatomical information from CT images to locally adjust image smoothness during the reconstruction of three-dimensional (3D) whole-body positron emission tomography (PET) data. The ability of whole-body PET imaging to detect malignant neoplasms is becoming widely recognized. Potentially useful, however, is the role of whole-body PET in quantitative estimation of tracer uptake. The utility of PET in oncology is often limited by the high level of statistical noise in the images. Reduction in noise can be obtained by incorporating a priori image smoothness information from correlated anatomical information during the reconstruction of PET data. A combined PET/CT scanner allows the acquisition of accurately aligned PET and x-ray CT whole-body data. We use the Fourier rebinning algorithm (FORE) to accurately convert the 3D PET data to two-dimensional (2D) data to accelerate the image reconstruction process. The 2D datasets are reconstructed with successive over-relaxation of a penalized weighted least squares (PWLS) objective function to model the statistics of the acquisition, data corrections, and rebinning. A 3D voxel label model is presented that incorporates the anatomical information via the penalty weights of the PWLS objective function. This combination of FORE + PWLS + labels was developed as it allows for both reconstruction of 3D whole-body data sets in clinically feasible times and also the inclusion of anatomical information in such a way that convergence can be guaranteed. Since mismatches between anatomical (CT) and functional (PET) data are unavoidable in practice, the labels are 'blurred' to reflect the uncertainty associated with the anatomical information. Simulated and experimental results show the potential advantage of incorporating anatomical information by using blurred labels to calculate the penalty weights. We conclude that while the effect of this method on detection tasks is complicated and unclear

  10. Quantitative analysis of 3D stent reconstruction from a limited number of views in cardiac rotational angiography

    NASA Astrophysics Data System (ADS)

    Perrenot, Béatrice; Vaillant, Régis; Prost, Rémy; Finet, Gérard; Douek, Philippe; Peyrin, Françoise

    2007-03-01

    Percutaneous coronary angioplasty consists in conducting a guidewire carrying a balloon and a stent through the lesion and deploying the stent by balloon inflation. A stent is a small 3D complex mesh hardly visible in X-ray images : the control of stent deployment is difficult although it is important to avoid post intervention complications. In a previous work, we proposed a method to reconstruct 3D stent images from a set of 2D cone-beam projections acquired in rotational acquisition mode. The process involves a motion compensation procedure based on the position of two markers located on the guidewire in the 2D radiographic sequence. Under the hypothesis that the stent and markers motions are identical, the method was shown to generate a negligible error. If this hypothesis is not fulfilled, a solution could be to use only the images where motion is weakest, at the detriment of having a limiter number of views. In this paper, we propose a simulation based study of the impact of a limited number of views in our context. The chain image involved in the acquisition of X-ray sequences is first modeled to simulate realistic noisy projections of stent animated by a motion close to cardiac motion. Then, the 3D stent images are reconstructed using the proposed motion compensation method from gated projections. Two gating strategies are examined to select projection in the sequences. A quantitative analysis is carried out to assess reconstruction quality as a function of noise and acquisition strategy.

  11. Methods of Voice Reconstruction

    PubMed Central

    Chen, Hung-Chi; Kim Evans, Karen F.; Salgado, Christopher J.; Mardini, Samir

    2010-01-01

    This article reviews methods of voice reconstruction. Nonsurgical methods of voice reconstruction include electrolarynx, pneumatic artificial larynx, and esophageal speech. Surgical methods of voice reconstruction include neoglottis, tracheoesophageal puncture, and prosthesis. Tracheoesophageal puncture can be performed in patients with pedicled flaps such as colon interposition, jejunum, or gastric pull-up or in free flaps such as perforator flaps, jejunum, and colon flaps. Other flaps for voice reconstruction include the ileocolon flap and jejunum. Laryngeal transplantation is also reviewed. PMID:22550443

  12. Quantification of gully volume using very high resolution DSM generated through 3D reconstruction from airborne and field digital imagery

    NASA Astrophysics Data System (ADS)

    Castillo, Carlos; Zarco-Tejada, Pablo; Laredo, Mario; Gómez, Jose Alfonso

    2013-04-01

    Major advances have been made recently in automatic 3D photo-reconstruction techniques using uncalibrated and non-metric cameras (James and Robson, 2012). However, its application on soil conservation studies and landscape feature identification is currently at the outset. The aim of this work is to compare the performance of a remote sensing technique using a digital camera mounted on an airborne platform, with 3D photo-reconstruction, a method already validated for gully erosion assessment purposes (Castillo et al., 2012). A field survey was conducted in November 2012 in a 250 m-long gully located in field crops on a Vertisol in Cordoba (Spain). The airborne campaign was conducted with a 4000x3000 digital camera installed onboard an aircraft flying at 300 m above ground level to acquire 6 cm resolution imagery. A total of 990 images were acquired over the area ensuring a large overlap in the across- and along-track direction of the aircraft. An ortho-mosaic and the digital surface model (DSM) were obtained through automatic aerial triangulation and camera calibration methods. For the field-level photo-reconstruction technique, the gully was divided in several reaches to allow appropriate reconstruction (about 150 pictures taken per reach) and, finally, the resulting point clouds were merged into a unique mesh. A centimetric-accuracy GPS provided a benchmark dataset for gully perimeter and distinguishable reference points in order to allow the assessment of measurement errors of the airborne technique and the georeferenciation of the photo-reconstruction 3D model. The uncertainty on the gully limits definition was explicitly addressed by comparison of several criteria obtained by 3D models (slope and second derivative) with the outer perimeter obtained by the GPS operator identifying visually the change in slope at the top of the gully walls. In this study we discussed the magnitude of planimetric and altimetric errors and the differences observed between the

  13. 3D reconstruction of hollow parts analyzing images acquired by a fiberscope

    NASA Astrophysics Data System (ADS)

    Icasio-Hernández, Octavio; Gonzalez-Barbosa, José-Joel; Hurtado-Ramos, Juan B.; Viliesid-Alonso, Miguel

    2014-07-01

    A modified fiberscope used to reconstruct difficult-to-reach inner structures is presented. By substituting the fiberscope’s original illumination system, we can project a profile-revealing light line inside the object of study. The light line is obtained using a sandwiched power light-emitting diode (LED) attached to an extension arm on the tip of the fiberscope. Profile images from the interior of the object are then captured by a camera attached to the fiberscope’s eyepiece. Using a series of those images at different positions, the system is capable of generating a 3D reconstruction of the object with submillimeter accuracy. Also proposed is the use of a combination of known filters to remove the honeycomb structures produced by the fiberscope and the use of ring gages to obtain the extrinsic parameters of the camera attached to the fiberscope and the metrological traceability of the system. Several standard ring diameter measurements were compared against their certified values to improve the accuracy of the system. To exemplify an application, a 3D reconstruction of the interior of a refrigerator duct was conducted. This reconstruction includes accuracy assessment by comparing the measurements of the system to a coordinate measuring machine. The system, as described, is capable of 3D reconstruction of the interior of objects with uniform and non-uniform profiles from 10 to 60 mm in transversal dimensions and a depth of 1000 mm if the material of the walls of the object is translucent and allows the detection of the power LED light from the exterior through the wall. If this is not possible, we propose the use of a magnetic scale which reduces the working depth to 170 mm. The assessed accuracy is around ±0.15 mm in 2D cross-section reconstructions and ±1.3 mm in 1D position using a magnetic scale, and ±0.5 mm using a CCD camera.

  14. A method to fabricate disconnected silver nanostructures in 3D.

    PubMed

    Vora, Kevin; Kang, SeungYeon; Mazur, Eric

    2012-01-01

    The standard nanofabrication toolkit includes techniques primarily aimed at creating 2D patterns in dielectric media. Creating metal patterns on a submicron scale requires a combination of nanofabrication tools and several material processing steps. For example, steps to create planar metal structures using ultraviolet photolithography and electron-beam lithography can include sample exposure, sample development, metal deposition, and metal liftoff. To create 3D metal structures, the sequence is repeated multiple times. The complexity and difficulty of stacking and aligning multiple layers limits practical implementations of 3D metal structuring using standard nanofabrication tools. Femtosecond-laser direct-writing has emerged as a pre-eminent technique for 3D nanofabrication.(1,2) Femtosecond lasers are frequently used to create 3D patterns in polymers and glasses.(3-7) However, 3D metal direct-writing remains a challenge. Here, we describe a method to fabricate silver nanostructures embedded inside a polymer matrix using a femtosecond laser centered at 800 nm. The method enables the fabrication of patterns not feasible using other techniques, such as 3D arrays of disconnected silver voxels.(8) Disconnected 3D metal patterns are useful for metamaterials where unit cells are not in contact with each other,(9) such as coupled metal dot(10,11)or coupled metal rod(12,13) resonators. Potential applications include negative index metamaterials, invisibility cloaks, and perfect lenses. In femtosecond-laser direct-writing, the laser wavelength is chosen such that photons are not linearly absorbed in the target medium. When the laser pulse duration is compressed to the femtosecond time scale and the radiation is tightly focused inside the target, the extremely high intensity induces nonlinear absorption. Multiple photons are absorbed simultaneously to cause electronic transitions that lead to material modification within the focused region. Using this approach, one can

  15. Accurate compressed look up table method for CGH in 3D holographic display.

    PubMed

    Gao, Chuan; Liu, Juan; Li, Xin; Xue, Gaolei; Jia, Jia; Wang, Yongtian

    2015-12-28

    Computer generated hologram (CGH) should be obtained with high accuracy and high speed in 3D holographic display, and most researches focus on the high speed. In this paper, a simple and effective computation method for CGH is proposed based on Fresnel diffraction theory and look up table. Numerical simulations and optical experiments are performed to demonstrate its feasibility. The proposed method can obtain more accurate reconstructed images with lower memory usage compared with split look up table method and compressed look up table method without sacrificing the computational speed in holograms generation, so it is called accurate compressed look up table method (AC-LUT). It is believed that AC-LUT method is an effective method to calculate the CGH of 3D objects for real-time 3D holographic display where the huge information data is required, and it could provide fast and accurate digital transmission in various dynamic optical fields in the future. PMID:26831987

  16. 3D reconstruction of carbon nanotube networks from neutron scattering experiments

    NASA Astrophysics Data System (ADS)

    Mahdavi, Mostafa; Baniassadi, Majid; Baghani, Mostafa; Dadmun, Mark; Tehrani, Mehran

    2015-09-01

    Structure reconstruction from statistical descriptors, such as scattering data obtained using x-rays or neutrons, is essential in understanding various properties of nanocomposites. Scattering based reconstruction can provide a realistic model, over various length scales, that can be used for numerical simulations. In this study, 3D reconstruction of a highly loaded carbon nanotube (CNT)-conducting polymer system based on small and ultra-small angle neutron scattering (SANS and USANS, respectively) data was performed. These light-weight and flexible materials have recently shown great promise for high-performance thermoelectric energy conversion, and their further improvement requires a thorough understanding of their structure-property relationships. The first step in achieving such understanding is to generate models that contain the hierarchy of CNT networks over nano and micron scales. The studied system is a single walled carbon nanotube (SWCNT)/poly (3,4-ethylenedioxythiophene):poly (styrene sulfonate) (PEDOT:PSS). SANS and USANS patterns of the different samples containing 10, 30, and 50 wt% SWCNTs were measured. These curves were then utilized to calculate statistical two-point correlation functions of the nanostructure. These functions along with the geometrical information extracted from SANS data and scanning electron microscopy images were used to reconstruct a representative volume element (RVE) nanostructure. Generated RVEs can be used for simulations of various mechanical and physical properties. This work, therefore, introduces a framework for the reconstruction of 3D RVEs of high volume faction nanocomposites containing high aspect ratio fillers from scattering experiments.

  17. Advancement of 31P Magnetic Resonance Spectroscopy Using GRAPPA Reconstruction on a 3D Volume

    NASA Astrophysics Data System (ADS)

    Clevenger, Tony

    The overall objective of this research is to improve currently available metabolic imaging techniques for clinical use in monitoring and predicting treatment response to radiation therapy in liver cancer. Liver metabolism correlates with inflammatory and neoplastic liver diseases, which alter the intracellular concentration of phosphorus- 31 (31P) metabolites [1]. It is assumed that such metabolic changes occur prior to physical changes of the tissue. Therefore, information on regional changes of 31P metabolites in the liver, obtained by Magnetic Resonance Spectroscopic Imaging (MRSI) [1,2], can help in diagnosis and follow-up of various liver diseases. Specifically, there appears to be an immediate need of this technology for both the assessment of tumor response in patients with Hepatocellular Carcinoma (HCC) treated with Stereotactic Body Radiation Therapy (SBRT) [3--5], as well as assessment of radiation toxicity, which can result in worsening liver dysfunction [6]. Pilot data from our lab has shown that 31P MRSI has the potential to identify treatment response five months sooner than conventional methods [7], and to assess the biological response of liver tissue to radiation 24 hours post radiation therapy [8]. While this data is very promising, commonly occurring drawbacks for 31P MRSI are patient discomfort due to long scan times and prone positioning within the scanner, as well as reduced data quality due to patient motion and respiration. To further advance the full potential of 31P MRSI as a clinical diagnostic tool in the management of liver cancer, this PhD research project had the following aims: I) Reduce the long acquisition time of 3D 31P MRS by formulating and imple- menting an appropriate GRAPPA undersampling scheme and reconstruction on a clinical MRI scanner II) Testing and quantitative validation of GRAPPA reconstruction on 3D 31P MRSI on developmental phantoms and healthy volunteers At completion, this work should considerably advance 31P MRSI

  18. Characterizing heterogeneity among virus particles by stochastic 3D signal reconstruction

    NASA Astrophysics Data System (ADS)

    Xu, Nan; Gong, Yunye; Wang, Qiu; Zheng, Yili; Doerschuk, Peter C.

    2015-09-01

    In single-particle cryo electron microscopy, many electron microscope images each of a single instance of a biological particle such as a virus or a ribosome are measured and the 3-D electron scattering intensity of the particle is reconstructed by computation. Because each instance of the particle is imaged separately, it should be possible to characterize the heterogeneity of the different instances of the particle as well as a nominal reconstruction of the particle. In this paper, such an algorithm is described and demonstrated on the bacteriophage Hong Kong 97. The algorithm is a statistical maximum likelihood estimator computed by an expectation maximization algorithm implemented in Matlab software.

  19. 3-D reconstruction of the spine from biplanar radiographs based on contour matching using the Hough transform.

    PubMed

    Zhang, Junhua; Lv, Liang; Shi, Xinling; Wang, Yuanyuan; Guo, Fei; Zhang, Yufeng; Li, Hongjian

    2013-07-01

    The purpose of this study was to develop and evaluate a method for three-dimensional (3-D) reconstruction of the spine from biplanar radiographs. The approach was based on vertebral contour matching for estimating vertebral orientations and locations. Vertebral primitives were initially positioned under constraint of the 3-D spine midline, which was estimated from manually identified control points. Vertebral orientations and locations were automatically adjusted by matching projections of 3-D primitives with vertebral edges on biplanar radiographs based on the generalized Hough transform technique with a deformation tolerant matching strategy. We used graphics processing unit to accelerate reconstruction. Accuracy and precision were evaluated using radiographs from 15 scoliotic patients and a spine model in 24 poses. On in vivo radiographs, accuracy was within 2.8° for orientation and 2.4 mm for location; precision was within 2.3° for orientation and 2.1 mm for location. results were slightly better on model radiographs than on in vivo radiographs but without significance (p>0.05). The duration for user intervention was less than 2 min, and the computation time was within 3 min. Results indicated the method's reliability. It is a promising tool to determine 3-D spinal geometry with acceptable user interaction. PMID:23412567

  20. Hollow Cone Electron Imaging for Single Particle 3D Reconstruction of Proteins

    NASA Astrophysics Data System (ADS)

    Tsai, Chun-Ying; Chang, Yuan-Chih; Lobato, Ivan; van Dyck, Dirk; Chen, Fu-Rong

    2016-06-01

    The main bottlenecks for high-resolution biological imaging in electron microscopy are radiation sensitivity and low contrast. The phase contrast at low spatial frequencies can be enhanced by using a large defocus but this strongly reduces the resolution. Recently, phase plates have been developed to enhance the contrast at small defocus but electrical charging remains a problem. Single particle cryo-electron microscopy is mostly used to minimize the radiation damage and to enhance the resolution of the 3D reconstructions but it requires averaging images of a massive number of individual particles. Here we present a new route to achieve the same goals by hollow cone dark field imaging using thermal diffuse scattered electrons giving about a 4 times contrast increase as compared to bright field imaging. We demonstrate the 3D reconstruction of a stained GroEL particle can yield about 13.5 Å resolution but using a strongly reduced number of images.

  1. Hollow Cone Electron Imaging for Single Particle 3D Reconstruction of Proteins.

    PubMed

    Tsai, Chun-Ying; Chang, Yuan-Chih; Lobato, Ivan; Van Dyck, Dirk; Chen, Fu-Rong

    2016-01-01

    The main bottlenecks for high-resolution biological imaging in electron microscopy are radiation sensitivity and low contrast. The phase contrast at low spatial frequencies can be enhanced by using a large defocus but this strongly reduces the resolution. Recently, phase plates have been developed to enhance the contrast at small defocus but electrical charging remains a problem. Single particle cryo-electron microscopy is mostly used to minimize the radiation damage and to enhance the resolution of the 3D reconstructions but it requires averaging images of a massive number of individual particles. Here we present a new route to achieve the same goals by hollow cone dark field imaging using thermal diffuse scattered electrons giving about a 4 times contrast increase as compared to bright field imaging. We demonstrate the 3D reconstruction of a stained GroEL particle can yield about 13.5 Å resolution but using a strongly reduced number of images. PMID:27292544

  2. DSA volumetric 3D reconstructions of intracranial aneurysms: A pictorial essay

    PubMed Central

    Cieściński, Jakub; Serafin, Zbigniew; Strześniewski, Piotr; Lasek, Władysław; Beuth, Wojciech

    2012-01-01

    Summary A gold standard of cerebral vessel imaging remains the digital subtraction angiography (DSA) performed in three projections. However, in specific clinical cases, many additional projections are required, or a complete visualization of a lesion may even be impossible with 2D angiography. Three-dimensional (3D) reconstructions of rotational angiography were reported to improve the performance of DSA significantly. In this pictorial essay, specific applications of this technique are presented in the management of intracranial aneurysms, including: preoperative aneurysm evaluation, intraoperative imaging, and follow-up. Volumetric reconstructions of 3D DSA are a valuable tool for cerebral vessels imaging. They play a vital role in the assessment of intracranial aneurysms, especially in evaluation of the aneurysm neck and the aneurysm recanalization. PMID:22844309

  3. Hollow Cone Electron Imaging for Single Particle 3D Reconstruction of Proteins

    PubMed Central

    Tsai, Chun-Ying; Chang, Yuan-Chih; Lobato, Ivan; Van Dyck, Dirk; Chen, Fu-Rong

    2016-01-01

    The main bottlenecks for high-resolution biological imaging in electron microscopy are radiation sensitivity and low contrast. The phase contrast at low spatial frequencies can be enhanced by using a large defocus but this strongly reduces the resolution. Recently, phase plates have been developed to enhance the contrast at small defocus but electrical charging remains a problem. Single particle cryo-electron microscopy is mostly used to minimize the radiation damage and to enhance the resolution of the 3D reconstructions but it requires averaging images of a massive number of individual particles. Here we present a new route to achieve the same goals by hollow cone dark field imaging using thermal diffuse scattered electrons giving about a 4 times contrast increase as compared to bright field imaging. We demonstrate the 3D reconstruction of a stained GroEL particle can yield about 13.5 Å resolution but using a strongly reduced number of images. PMID:27292544

  4. Reconstruction of 3D ion beam micro-tomography data for applications in Cell Biology

    NASA Astrophysics Data System (ADS)

    Habchi, C.; Nguyen, D. T.; Barberet, Ph.; Incerti, S.; Moretto, Ph.; Sakellariou, A.; Seznec, H.

    2009-06-01

    The DISRA (Discrete Image Space Reconstruction Algorithm) reconstruction code, created by A. Sakellariou, was conceived for the ideal case of complete three-dimensional (3D) PIXET (Particle Induced X-ray Emission Tomography) data. This implies two major difficulties for biological samples: first, the long duration of such experiments and second, the subsequent damage that occurs on such fragile specimens. For this reason, the DISRA code was extended at CENBG in order to probe isolated PIXET slices, taking into account the sample structure and mass density provided by 3D STIMT (Scanning Transmission Ion Microscopy Tomography) in the volume of interest. This modified version was tested on a phantom sample and first results on human cancer cells are also presented.

  5. 3D Topography of the Young Adult Anal Sphincter Complex Reconstructed from Undeformed Serial Anatomical Sections

    PubMed Central

    Wu, Yi; Dabhoiwala, Noshir F.; Hagoort, Jaco; Shan, Jin-Lu; Tan, Li-Wen; Fang, Bin-Ji; Zhang, Shao-Xiang; Lamers, Wouter H.

    2015-01-01

    Background Pelvic-floor anatomy is usually studied by artifact-prone dissection or imaging, which requires prior anatomical knowledge. We used the serial-section approach to settle contentious issues and an interactive 3D-pdf to make the results widely accessible. Method 3D reconstructions of undeformed thin serial anatomical sections of 4 females and 2 males (21–35y) of the Chinese Visible Human database. Findings Based on tendinous septa and muscle-fiber orientation as segmentation guides, the anal-sphincter complex (ASC) comprised the subcutaneous external anal sphincter (EAS) and the U-shaped puborectal muscle, a part of the levator ani muscle (LAM). The anococcygeal ligament fixed the EAS to the coccygeal bone. The puborectal-muscle loops, which define the levator hiatus, passed around the anorectal junction and inserted anteriorly on the perineal body and pubic bone. The LAM had a common anterior attachment to the pubic bone, but separated posteriorly into puborectal and “pubovisceral” muscles. This pubovisceral muscle was bilayered: its internal layer attached to the conjoint longitudinal muscle of the rectum and the rectococcygeal fascia, while its outer, patchy layer reinforced the inner layer. ASC contraction makes the ano-rectal bend more acute and lifts the pelvic floor. Extensions of the rectal longitudinal smooth muscle to the coccygeal bone (rectococcygeal muscle), perineal body (rectoperineal muscle), and endopelvic fascia (conjoint longitudinal and pubovisceral muscles) formed a “diaphragm” at the inferior boundary of the mesorectum that suspended the anorectal junction. Its contraction should straighten the anorectal bend. Conclusion The serial-section approach settled contentious topographic issues of the pelvic floor. We propose that the ASC is involved in continence and the rectal diaphragm in defecation. PMID:26305117

  6. Reproducibility of Frankfort Horizontal Plane on 3D Multi-Planar Reconstructed MR Images

    PubMed Central

    Daboul, Amro; Schwahn, Christian; Schaffner, Grit; Soehnel, Silvia; Samietz, Stefanie; Aljaghsi, Ahmad; Habes, Mohammad; Hegenscheid, Katrin; Puls, Ralf; Klinke, Thomas; Biffar, Reiner

    2012-01-01

    Objective The purpose of this study was to determine the accuracy and reliability of Frankfort horizontal plane identification using displays of multi-planar reconstructed MRI images, and propose it as a sufficiently stable and standardized reference plane for craniofacial structures. Materials and Methods MRI images of 43 subjects were obtained from the longitudinal population based cohort study SHIP-2 using a T1-weighted 3D sequence. Five examiners independently identified the three landmarks that form FH plane. Intra-examiner reproducibility and inter-examiner reliability, correlation coefficients (ICC), coefficient of variability and Bland-Altman plots were obtained for all landmarks coordinates to assess reproducibility. Intra-examiner reproducibility and inter-examiner reliability in terms of location and plane angulation were also assessed. Results Intra- and inter-examiner reliabilities for X, Y and Z coordinates of all three landmarks were excellent with ICC values ranging from 0.914 to 0.998. Differences among examiners were more in X and Z than in Y dimensions. The Bland–Altman analysis demonstrated excellent intra- as well as inter-examiner agreement between examiners in all coordinates for all landmarks. Intra-examiner reproducibility and inter-examiner reliability of the three landmarks in terms of distance showed mean differences between 1.3 to 2.9 mm, Mean differences in plane angulation were between 1.0° to 1.5° among examiners. Conclusion This study revealed excellent intra-examiner reproducibility and inter-examiner reliability of Frankfort Horizontal plane through 3D landmark identification in MRI. Sufficiently stable landmark-based reference plane could be used for different treatments and studies. PMID:23118970

  7. Bayesian 3D X-ray computed tomography image reconstruction with a scaled Gaussian mixture prior model

    NASA Astrophysics Data System (ADS)

    Wang, Li; Gac, Nicolas; Mohammad-Djafari, Ali

    2015-01-01

    In order to improve quality of 3D X-ray tomography reconstruction for Non Destructive Testing (NDT), we investigate in this paper hierarchical Bayesian methods. In NDT, useful prior information on the volume like the limited number of materials or the presence of homogeneous area can be included in the iterative reconstruction algorithms. In hierarchical Bayesian methods, not only the volume is estimated thanks to the prior model of the volume but also the hyper parameters of this prior. This additional complexity in the reconstruction methods when applied to large volumes (from 5123 to 81923 voxels) results in an increasing computational cost. To reduce it, the hierarchical Bayesian methods investigated in this paper lead to an algorithm acceleration by Variational Bayesian Approximation (VBA) [1] and hardware acceleration thanks to projection and back-projection operators paralleled on many core processors like GPU [2]. In this paper, we will consider a Student-t prior on the gradient of the image implemented in a hierarchical way [3, 4, 1]. Operators H (forward or projection) and Ht (adjoint or back-projection) implanted in multi-GPU [2] have been used in this study. Different methods will be evalued on synthetic volume "Shepp and Logan" in terms of quality and time of reconstruction. We used several simple regularizations of order 1 and order 2. Other prior models also exists [5]. Sometimes for a discrete image, we can do the segmentation and reconstruction at the same time, then the reconstruction can be done with less projections.

  8. Possibility of reconstruction of dental plaster cast from 3D digital study models

    PubMed Central

    2013-01-01

    Objectives To compare traditional plaster casts, digital models and 3D printed copies of dental plaster casts based on various criteria. To determine whether 3D printed copies obtained using open source system RepRap can replace traditional plaster casts in dental practice. To compare and contrast the qualities of two possible 3D printing options – open source system RepRap and commercially available 3D printing. Design and settings A method comparison study on 10 dental plaster casts from the Orthodontic department, Department of Stomatology, 2nd medical Faulty, Charles University Prague, Czech Republic. Material and methods Each of 10 plaster casts were scanned by inEos Blue scanner and the printed on 3D printer RepRap [10 models] and ProJet HD3000 3D printer [1 model]. Linear measurements between selected points on the dental arches of upper and lower jaws on plaster casts and its 3D copy were recorded and statistically analyzed. Results 3D printed copies have many advantages over traditional plaster casts. The precision and accuracy of the RepRap 3D printed copies of plaster casts were confirmed based on the statistical analysis. Although the commercially available 3D printing enables to print more details than the RepRap system, it is expensive and for the purpose of clinical use can be replaced by the cheaper prints obtained from RepRap printed copies. Conclusions Scanning of the traditional plaster casts to obtain a digital model offers a pragmatic approach. The scans can subsequently be used as a template to print the plaster casts as required. Using 3D printers can replace traditional plaster casts primarily due to their accuracy and price. PMID:23721330

  9. 3D reconstruction with single image pairs and structured light projection for short-term ultra-high-speed applications

    NASA Astrophysics Data System (ADS)

    Bräuer-Burchardt, Christian; Heist, Stefan; Dietrich, Patrick; Kühmstedt, Peter; Notni, Gunther

    2015-05-01

    A new approach for a 3D reconstruction algorithm using a single pair of a stereo-camera setup and a structured light projection based on spatial correlation is introduced. In comparison to existing methods using sequences of temporally consecutive images, sufficient 3D-reconstruction quality is achieved, even in the case of ultra-high-speed cameras. This is obtained by iterative application of correspondence finding and filtering operators. The calculation effort of the evaluation, filling, filtering, and outlier removing operators is relative high and may prevent a permanent application of the algorithm to high-resolution long-term recordings. The favored application scenario of the new method is the rough 3D reconstruction and motion tracking of quickly moving objects in short-term processes (few seconds), e.g. in the analysis of crash-test situations. Here, the complete recorded image sequence can be analyzed off-line which allows an afterwards optimization of the parameters. An advantage of the new technique regarding high-speed applications is that fixed single patterns instead of pattern sequences can be used for moving objects and hence no synchronization between projection and cameras is necessary.

  10. Comparison Between Two Generic 3d Building Reconstruction Approaches - Point Cloud Based VS. Image Processing Based

    NASA Astrophysics Data System (ADS)

    Dahlke, D.; Linkiewicz, M.

    2016-06-01

    This paper compares two generic approaches for the reconstruction of buildings. Synthesized and real oblique and vertical aerial imagery is transformed on the one hand into a dense photogrammetric 3D point cloud and on the other hand into photogrammetric 2.5D surface models depicting a scene from different cardinal directions. One approach evaluates the 3D point cloud statistically in order to extract the hull of structures, while the other approach makes use of salient line segments in 2.5D surface models, so that the hull of 3D structures can be recovered. With orders of magnitudes more analyzed 3D points, the point cloud based approach is an order of magnitude more accurate for the synthetic dataset compared to the lower dimensioned, but therefor orders of magnitude faster, image processing based approach. For real world data the difference in accuracy between both approaches is not significant anymore. In both cases the reconstructed polyhedra supply information about their inherent semantic and can be used for subsequent and more differentiated semantic annotations through exploitation of texture information.

  11. Sensor fusion of cameras and a laser for city-scale 3D reconstruction.

    PubMed

    Bok, Yunsu; Choi, Dong-Geol; Kweon, In So

    2014-01-01

    This paper presents a sensor fusion system of cameras and a 2D laser sensorfor large-scale 3D reconstruction. The proposed system is designed to capture data on afast-moving ground vehicle. The system consists of six cameras and one 2D laser sensor,and they are synchronized by a hardware trigger. Reconstruction of 3D structures is doneby estimating frame-by-frame motion and accumulating vertical laser scans, as in previousworks. However, our approach does not assume near 2D motion, but estimates free motion(including absolute scale) in 3D space using both laser data and image features. In orderto avoid the degeneration associated with typical three-point algorithms, we present a newalgorithm that selects 3D points from two frames captured by multiple cameras. The problemof error accumulation is solved by loop closing, not by GPS. The experimental resultsshow that the estimated path is successfully overlaid on the satellite images, such that thereconstruction result is very accurate. PMID:25375758

  12. Reconstruction Accuracy Assessment of Surface and Underwater 3D Motion Analysis: A New Approach

    PubMed Central

    de Jesus, Kelly; de Jesus, Karla; Figueiredo, Pedro; Vilas-Boas, João Paulo; Fernandes, Ricardo Jorge; Machado, Leandro José

    2015-01-01

    This study assessed accuracy of surface and underwater 3D reconstruction of a calibration volume with and without homography. A calibration volume (6000 × 2000 × 2500 mm) with 236 markers (64 above and 88 underwater control points—with 8 common points at water surface—and 92 validation points) was positioned on a 25 m swimming pool and recorded with two surface and four underwater cameras. Planar homography estimation for each calibration plane was computed to perform image rectification. Direct linear transformation algorithm for 3D reconstruction was applied, using 1600000 different combinations of 32 and 44 points out of the 64 and 88 control points for surface and underwater markers (resp.). Root Mean Square (RMS) error with homography of control and validations points was lower than without it for surface and underwater cameras (P ≤ 0.03). With homography, RMS errors of control and validation points were similar between surface and underwater cameras (P ≥ 0.47). Without homography, RMS error of control points was greater for underwater than surface cameras (P ≤ 0.04) and the opposite was observed for validation points (P ≤ 0.04). It is recommended that future studies using 3D reconstruction should include homography to improve swimming movement analysis accuracy. PMID:26175796

  13. Quality Analysis on 3d Buidling Models Reconstructed from Uav Imagery

    NASA Astrophysics Data System (ADS)

    Jarzabek-Rychard, M.; Karpina, M.

    2016-06-01

    Recent developments in UAV technology and structure from motion techniques have effected that UAVs are becoming standard platforms for 3D data collection. Because of their flexibility and ability to reach inaccessible urban parts, drones appear as optimal solution for urban applications. Building reconstruction from the data collected with UAV has the important potential to reduce labour cost for fast update of already reconstructed 3D cities. However, especially for updating of existing scenes derived from different sensors (e.g. airborne laser scanning), a proper quality assessment is necessary. The objective of this paper is thus to evaluate the potential of UAV imagery as an information source for automatic 3D building modeling at LOD2. The investigation process is conducted threefold: (1) comparing generated SfM point cloud to ALS data; (2) computing internal consistency measures of the reconstruction process; (3) analysing the deviation of Check Points identified on building roofs and measured with a tacheometer. In order to gain deep insight in the modeling performance, various quality indicators are computed and analysed. The assessment performed according to the ground truth shows that the building models acquired with UAV-photogrammetry have the accuracy of less than 18 cm for the plannimetric position and about 15 cm for the height component.

  14. A complete system for 3D reconstruction of roots for phenotypic analysis.

    PubMed

    Kumar, Pankaj; Cai, Jinhai; Miklavcic, Stanley J

    2015-01-01

    Here we present a complete system for 3D reconstruction of roots grown in a transparent gel medium or washed and suspended in water. The system is capable of being fully automated as it is self calibrating. The system starts with detection of root tips in root images from an image sequence generated by a turntable motion. Root tips are detected using the statistics of Zernike moments on image patches centred on high curvature points on root boundary and Bayes classification rule. The detected root tips are tracked in the image sequence using a multi-target tracking algorithm. Conics are fitted to the root tip trajectories using a novel ellipse fitting algorithm which weighs the data points by its eccentricity. The conics projected from the circular trajectory have a complex conjugate intersection which are image of the circular points. Circular points constraint the image of the absolute conics which are directly related to the internal parameters of the camera. The pose of the camera is computed from the image of the rotation axis and the horizon. The silhouettes of the roots and camera parameters are used to reconstruction the 3D voxel model of the roots. We show the results of real 3D reconstruction of roots which are detailed and realistic for phenotypic analysis. PMID:25381112

  15. Comparison of 3D Reconstructive Technologies Used for Morphometric Research and the Translation of Knowledge Using a Decision Matrix

    ERIC Educational Resources Information Center

    Martin, Charys M.; Roach, Victoria A.; Nguyen, Ngan; Rice, Charles L.; Wilson, Timothy D.

    2013-01-01

    The use of three-dimensional (3D) models for education, pre-operative assessment, presurgical planning, and measurement have become more prevalent. With the increase in prevalence of 3D models there has also been an increase in 3D reconstructive software programs that are used to create these models. These software programs differ in…

  16. A graphic user interface for efficient 3D photo-reconstruction based on free software

    NASA Astrophysics Data System (ADS)

    Castillo, Carlos; James, Michael; Gómez, Jose A.

    2015-04-01

    Recently, different studies have stressed the applicability of 3D photo-reconstruction based on Structure from Motion algorithms in a wide range of geoscience applications. For the purpose of image photo-reconstruction, a number of commercial and freely available software packages have been developed (e.g. Agisoft Photoscan, VisualSFM). The workflow involves typically different stages such as image matching, sparse and dense photo-reconstruction, point cloud filtering and georeferencing. For approaches using open and free software, each of these stages usually require different applications. In this communication, we present an easy-to-use graphic user interface (GUI) developed in Matlab® code as a tool for efficient 3D photo-reconstruction making use of powerful existing software: VisualSFM (Wu, 2015) for photo-reconstruction and CloudCompare (Girardeau-Montaut, 2015) for point cloud processing. The GUI performs as a manager of configurations and algorithms, taking advantage of the command line modes of existing software, which allows an intuitive and automated processing workflow for the geoscience user. The GUI includes several additional features: a) a routine for significantly reducing the duration of the image matching operation, normally the most time consuming stage; b) graphical outputs for understanding the overall performance of the algorithm (e.g. camera connectivity, point cloud density); c) a number of useful options typically performed before and after the photo-reconstruction stage (e.g. removal of blurry images, image renaming, vegetation filtering); d) a manager of batch processing for the automated reconstruction of different image datasets. In this study we explore the advantages of this new tool by testing its performance using imagery collected in several soil erosion applications. References Girardeau-Montaut, D. 2015. CloudCompare documentation accessed at http://cloudcompare.org/ Wu, C. 2015. VisualSFM documentation access at http://ccwu.me/vsfm/doc.html#.

  17. 3D Finite Element Study on: Bar Splinted Implants Supporting Partial Denture in the Reconstructed Mandible

    PubMed Central

    El-Anwar, Mohamed; Ghali, Rami; Aboelnagga, Mona

    2016-01-01

    AIM: This study aimed to estimate the stress patterns induced by the masticatory loads on a removable prosthesis supported and retained by bar splinted implants placed in the reconstructed mandible with two different clip materials and without clip, in the fibula-jaw bone and prosthesis using finite element analysis. METHODS: Two 3D finite element models were constructed, that models components were modeled on commercial CAD/CAM software then assembled into finite element package. Vertical loads were applied simulating the masticatory forces unilaterally in the resected site and bilaterally in the central fossa of the lower first molar as 100N (tension and compression). Analysis was based on the assumption full osseointegration between different types of bones, and between implants and fibula while fixing the top surface of the TMJ in place. RESULTS: The metallic bar connecting the three implants is insensitive to the clips material. Its supporting implants showed typical behavior with maximum stress values at the neck region. Fibula and jaw bone showed stresses within physiologic, while clips material effect seems to be very small due to its relatively small size. CONCLUSION: Switching loading force direction from tensile to compression did-not change the stresses and deformations distribution, but reversed their sign from positive to negative. PMID:27275353

  18. High performance computing approaches for 3D reconstruction of complex biological specimens.

    PubMed

    da Silva, M Laura; Roca-Piera, Javier; Fernández, José-Jesús

    2010-01-01

    Knowledge of the structure of specimens is crucial to determine the role that they play in cellular and molecular biology. To yield the three-dimensional (3D) reconstruction by means of tomographic reconstruction algorithms, we need the use of large projection images and high processing time. Therefore, we propose the use of the high performance computing (HPC) to cope with the huge computational demands of this problem. We have implemented a HPC strategy where the distribution of tasks follows the master-slave paradigm. The master processor distributes a slab of slices, a piece of the final 3D structure to reconstruct, among the slave processors and receives reconstructed slices of the volume. We have evaluated the performance of our HPC approach using different sizes of the slab. We have observed that it is possible to find out an optimal size of the slab for the number of processor used that minimize communications time while maintaining a reasonable grain of parallelism to be exploited by the set of processors. PMID:20865517

  19. Color dithering methods for LEGO-like 3D printing

    NASA Astrophysics Data System (ADS)

    Sun, Pei-Li; Sie, Yuping

    2015-01-01

    Color dithering methods for LEGO-like 3D printing are proposed in this study. The first method is work for opaque color brick building. It is a modification of classic error diffusion. Many color primaries can be chosen. However, RGBYKW is recommended as its image quality is good and the number of color primary is limited. For translucent color bricks, multi-layer color building can enhance the image quality significantly. A LUT-based method is proposed to speed the dithering proceeding and make the color distribution even smoother. Simulation results show the proposed multi-layer dithering method can really improve the image quality of LEGO-like 3D printing.

  20. Model-based adaptive 3D sonar reconstruction in reverberating environments.

    PubMed

    Saucan, Augustin-Alexandru; Sintes, Christophe; Chonavel, Thierry; Caillec, Jean-Marc Le

    2015-10-01

    In this paper, we propose a novel model-based approach for 3D underwater scene reconstruction, i.e., bathymetry, for side scan sonar arrays in complex and highly reverberating environments like shallow water areas. The presence of multipath echoes and volume reverberation generates false depth estimates. To improve the resulting bathymetry, this paper proposes and develops an adaptive filter, based on several original geometrical models. This multimodel approach makes it possible to track and separate the direction of arrival trajectories of multiple echoes impinging the array. Echo tracking is perceived as a model-based processing stage, incorporating prior information on the temporal evolution of echoes in order to reject cluttered observations generated by interfering echoes. The results of the proposed filter on simulated and real sonar data showcase the clutter-free and regularized bathymetric reconstruction. Model validation is carried out with goodness of fit tests, and demonstrates the importance of model-based processing for bathymetry reconstruction. PMID:25974936

  1. Points based reconstruction and rendering of 3D shapes from large volume dataset

    NASA Astrophysics Data System (ADS)

    Zhao, Mingchang; Tian, Jie; He, Huiguang; Li, Guangming

    2003-05-01

    In the field of medical imaging, researchers often need visualize lots of 3D datasets to get the informaiton contained in these datasets. But the huge data genreated by modern medical imaging device challenge the real time processing and rendering algorithms at all the time. Spurring by the great achievement of Points Based Rendering (PBR) in the fields of computer graphics to render very large meshes, we propose a new algorithm to use the points as basic primitive of surface reconstruction and rendering to interactively reconstruct and render very large volume dataset. By utilizing the special characteristics of medical image datasets, we obtain a fast and efficient points-based reconstruction and rendering algorithm in common PC. The experimental results show taht this algorithm is feasible and efficient.

  2. 3D Reconstruction of Interplanetary Scintillation (IPS) Remote-Sensing Data: Global Solar Wind Boundaries for Driving 3D-MHD Models

    NASA Astrophysics Data System (ADS)

    Yu, H.-S.; Jackson, B. V.; Hick, P. P.; Buffington, A.; Odstrcil, D.; Wu, C.-C.; Davies, J. A.; Bisi, M. M.; Tokumaru, M.

    2015-09-01

    The University of California, San Diego, time-dependent analyses of the heliosphere provide three-dimensional (3D) reconstructions of solar wind velocities and densities from observations of interplanetary scintillation (IPS). Using data from the Solar-Terrestrial Environment Laboratory, Japan, these reconstructions provide a real-time prediction of the global solar-wind density and velocity throughout the whole heliosphere with a temporal cadence of about one day (ips.ucsd.edu). Updates to this modeling effort continue: in the present article, near-Sun results extracted from the time-dependent 3D reconstruction are used as inner boundary conditions to drive 3D-MHD models ( e.g. ENLIL and H3D-MHD). This allows us to explore the differences between the IPS kinematic-model data-fitting procedure and current 3D-MHD modeling techniques. The differences in these techniques provide interesting insights into the physical principles governing the expulsion of coronal mass ejections (CMEs). Here we detail for the first time several specific CMEs and an induced shock that occurred in September 2011 that demonstrate some of the issues resulting from these analyses.

  3. 3D reconstruction of digitized histological sections for vasculature quantification in the mouse hind limb

    NASA Astrophysics Data System (ADS)

    Xu, Yiwen; Pickering, J. Geoffrey; Nong, Zengxuan; Gibson, Eli; Ward, Aaron D.

    2014-03-01

    In contrast to imaging modalities such as magnetic resonance imaging and micro computed tomography, digital histology reveals multiple stained tissue features at high resolution (0.25μm/pixel). However, the two-dimensional (2D) nature of histology challenges three-dimensional (3D) quantification and visualization of the different tissue components, cellular structures, and subcellular elements. This limitation is particularly relevant to the vasculature, which has a complex and variable structure within tissues. The objective of this study was to perform a fully automated 3D reconstruction of histology tissue in the mouse hind limb preserving the accurate systemic orientation of the tissues, stained with hematoxylin and immunostained for smooth muscle α actin. We performed a 3D reconstruction using pairwise rigid registrations of 5μm thick, paraffin-embedded serial sections, digitized at 0.25μm/pixel. Each registration was performed using the iterative closest points algorithm on blood vessel landmarks. Landmarks were vessel centroids, determined according to a signed distance map of each pixel to a decision boundary in hue-saturation-value color space; this decision boundary was determined based on manual annotation of a separate training set. Cell nuclei were then automatically extracted and corresponded to refine the vessel landmark registration. Homologous nucleus landmark pairs appearing on not more than two adjacent slides were chosen to avoid registrations which force curved or non-sectionorthogonal structures to be straight and section-orthogonal. The median accumulated target registration errors ± interquartile ranges for the vessel landmark registration, and the nucleus landmark refinement were 43.4+/-42.8μm and 2.9+/-1.7μm, respectively (p<0.0001). Fully automatic and accurate 3D rigid reconstruction of mouse hind limb histology imaging is feasible based on extracted vasculature and nuclei.

  4. Ion track reconstruction in 3D using alumina-based fluorescent nuclear track detectors.

    PubMed

    Niklas, M; Bartz, J A; Akselrod, M S; Abollahi, A; Jäkel, O; Greilich, S

    2013-09-21

    Fluorescent nuclear track detectors (FNTDs) based on Al2O3: C, Mg single crystal combined with confocal microscopy provide 3D information on ion tracks with a resolution only limited by light diffraction. FNTDs are also ideal substrates to be coated with cells to engineer cell-fluorescent ion track hybrid detectors (Cell-Fit-HD). This radiobiological tool enables a novel platform linking cell responses to physical dose deposition on a sub-cellular level in proton and heavy ion therapies. To achieve spatial correlation between single ion hits in the cell coating and its biological response the ion traversals have to be reconstructed in 3D using the depth information gained by the FNTD read-out. FNTDs were coated with a confluent human lung adenocarcinoma epithelial (A549) cell layer. Carbon ion irradiation of the hybrid detector was performed perpendicular and angular to the detector surface. In situ imaging of the fluorescently labeled cell layer and the FNTD was performed in a sequential read-out. Making use of the trajectory information provided by the FNTD the accuracy of 3D track reconstruction of single particles traversing the hybrid detector was studied. The accuracy is strongly influenced by the irradiation angle and therefore by complexity of the FNTD signal. Perpendicular irradiation results in highest accuracy with error of smaller than 0.10°. The ability of FNTD technology to provide accurate 3D ion track reconstruction makes it a powerful tool for radiobiological investigations in clinical ion beams, either being used as a substrate to be coated with living tissue or being implanted in vivo. PMID:23965401

  5. Ion track reconstruction in 3D using alumina-based fluorescent nuclear track detectors

    NASA Astrophysics Data System (ADS)

    Niklas, M.; Bartz, J. A.; Akselrod, M. S.; Abollahi, A.; Jäkel, O.; Greilich, S.

    2013-09-01

    Fluorescent nuclear track detectors (FNTDs) based on Al2O3: C, Mg single crystal combined with confocal microscopy provide 3D information on ion tracks with a resolution only limited by light diffraction. FNTDs are also ideal substrates to be coated with cells to engineer cell-fluorescent ion track hybrid detectors (Cell-Fit-HD). This radiobiological tool enables a novel platform linking cell responses to physical dose deposition on a sub-cellular level in proton and heavy ion therapies. To achieve spatial correlation between single ion hits in the cell coating and its biological response the ion traversals have to be reconstructed in 3D using the depth information gained by the FNTD read-out. FNTDs were coated with a confluent human lung adenocarcinoma epithelial (A549) cell layer. Carbon ion irradiation of the hybrid detector was performed perpendicular and angular to the detector surface. In situ imaging of the fluorescently labeled cell layer and the FNTD was performed in a sequential read-out. Making use of the trajectory information provided by the FNTD the accuracy of 3D track reconstruction of single particles traversing the hybrid detector was studied. The accuracy is strongly influenced by the irradiation angle and therefore by complexity of the FNTD signal. Perpendicular irradiation results in highest accuracy with error of smaller than 0.10°. The ability of FNTD technology to provide accurate 3D ion track reconstruction makes it a powerful tool for radiobiological investigations in clinical ion beams, either being used as a substrate to be coated with living tissue or being implanted in vivo.

  6. 3D reconstruction of internal structure of animal body using near-infrared light

    NASA Astrophysics Data System (ADS)

    Tran, Trung Nghia; Yamamoto, Kohei; Namita, Takeshi; Kato, Yuji; Shimizu, Koichi

    2014-03-01

    To realize three-dimensional (3D) optical imaging of the internal structure of animal body, we have developed a new technique to reconstruct CT images from two-dimensional (2D) transillumination images. In transillumination imaging, the image is blurred due to the strong scattering in the tissue. We had developed a scattering suppression technique using the point spread function (PSF) for a fluorescent light source in the body. In this study, we have newly proposed a technique to apply this PSF for a light source to the image of unknown light-absorbing structure. The effectiveness of the proposed technique was examined in the experiments with a model phantom and a mouse. In the phantom experiment, the absorbers were placed in the tissue-equivalent medium to simulate the light-absorbing organs in mouse body. Near-infrared light was illuminated from one side of the phantom and the image was recorded with CMOS camera from another side. Using the proposed techniques, the scattering effect was efficiently suppressed and the absorbing structure can be visualized in the 2D transillumination image. Using the 2D images obtained in many different orientations, we could reconstruct the 3D image. In the mouse experiment, an anesthetized mouse was held in an acrylic cylindrical holder. We can visualize the internal organs such as kidneys through mouse's abdomen using the proposed technique. The 3D image of the kidneys and a part of the liver were reconstructed. Through these experimental studies, the feasibility of practical 3D imaging of the internal light-absorbing structure of a small animal was verified.

  7. 3D PET image reconstruction including both motion correction and registration directly into an MR or stereotaxic spatial atlas

    NASA Astrophysics Data System (ADS)

    Gravel, Paul; Verhaeghe, Jeroen; Reader, Andrew J.

    2013-01-01

    This work explores the feasibility and impact of including both the motion correction and the image registration transformation parameters from positron emission tomography (PET) image space to magnetic resonance (MR), or stereotaxic, image space within the system matrix of PET image reconstruction. This approach is motivated by the fields of neuroscience and psychiatry, where PET is used to investigate differences in activation patterns between different groups of participants, requiring all images to be registered to a common spatial atlas. Currently, image registration is performed after image reconstruction which introduces interpolation effects into the final image. Furthermore, motion correction (also requiring registration) introduces a further level of interpolation, and the overall result of these operations can lead to resolution degradation and possibly artifacts. It is important to note that performing such operations on a post-reconstruction basis means, strictly speaking, that the final images are not ones which maximize the desired objective function (e.g. maximum likelihood (ML), or maximum a posteriori reconstruction (MAP)). To correctly seek parameter estimates in the desired spatial atlas which are in accordance with the chosen reconstruction objective function, it is necessary to include the transformation parameters for both motion correction and registration within the system modeling stage of image reconstruction. Such an approach not only respects the statistically chosen objective function (e.g. ML or MAP), but furthermore should serve to reduce the interpolation effects. To evaluate the proposed method, this work investigates registration (including motion correction) using 2D and 3D simulations based on the high resolution research tomograph (HRRT) PET scanner geometry, with and without resolution modeling, using the ML expectation maximization (MLEM) reconstruction algorithm. The quality of reconstruction was assessed using bias

  8. A general framework for face reconstruction using single still image based on 2D-to-3D transformation kernel.

    PubMed

    Fooprateepsiri, Rerkchai; Kurutach, Werasak

    2014-03-01

    Face authentication is a biometric classification method that verifies the identity of a user based on image of their face. Accuracy of the authentication is reduced when the pose, illumination and expression of the training face images are different than the testing image. The methods in this paper are designed to improve the accuracy of a features-based face recognition system when the pose between the input images and training images are different. First, an efficient 2D-to-3D integrated face reconstruction approach is introduced to reconstruct a personalized 3D face model from a single frontal face image with neutral expression and normal illumination. Second, realistic virtual faces with different poses are synthesized based on the personalized 3D face to characterize the face subspace. Finally, face recognition is conducted based on these representative virtual faces. Compared with other related works, this framework has the following advantages: (1) only one single frontal face is required for face recognition, which avoids the burdensome enrollment work; and (2) the synthesized face samples provide the capability to conduct recognition under difficult conditions like complex pose, illumination and expression. From the experimental results, we conclude that the proposed method improves the accuracy of face recognition by varying the pose, illumination and expression. PMID:24529782

  9. Detectability limitations with 3-D point reconstruction algorithms using digital radiography

    SciTech Connect

    Lindgren, Erik

    2015-03-31

    The estimated impact of pores in clusters on component fatigue will be highly conservative when based on 2-D rather than 3-D pore positions. To 3-D position and size defects using digital radiography and 3-D point reconstruction algorithms in general require a lower inspection time and in some cases work better with planar geometries than X-ray computed tomography. However, the increase in prior assumptions about the object and the defects will increase the intrinsic uncertainty in the resulting nondestructive evaluation output. In this paper this uncertainty arising when detecting pore defect clusters with point reconstruction algorithms is quantified using simulations. The simulation model is compared to and mapped to experimental data. The main issue with the uncertainty is the possible masking (detectability zero) of smaller defects around some other slightly larger defect. In addition, the uncertainty is explored in connection to the expected effects on the component fatigue life and for different amount of prior object-defect assumptions made.

  10. Web-based intermediate view reconstruction for multiview stereoscopic 3D display

    NASA Astrophysics Data System (ADS)

    Kim, Dong-Kyu; Lee, Won-Kyung; Ko, Jung-Hwan; Bae, Kyung-hoon; Kim, Eun-Soo

    2005-08-01

    In this paper, web-based intermediate view reconstruction for multiview stereoscopic 3D display system is proposed by using stereo cameras and disparity maps, Intel Xeon server computer system and Microsoft's DirectShow programming library and its performance is analyzed in terms of image-grabbing frame rate and number of views. In the proposed system, stereo images are initially captured by using stereo digital cameras and then, these are processed in the Intel Xeon server computer system. And then, the captured two-view image data is compressed by extraction of disparity data between them and transmitted to another client system through the information network, in which the received stereo data is displayed on the 16-view stereoscopic 3D display system by using intermediate view reconstruction. The program for controlling the overall system is developed based on the Microsoft DirectShow SDK. From some experimental results, it is found that the proposed system can display 16-view 3D images with a gray of 8bits and a frame rate of 15fps in real-time.

  11. Reconstructing 3-D skin surface motion for the DIET breast cancer screening system.

    PubMed

    Botterill, Tom; Lotz, Thomas; Kashif, Amer; Chase, J Geoffrey

    2014-05-01

    Digital image-based elasto-tomography (DIET) is a prototype system for breast cancer screening. A breast is imaged while being vibrated, and the observed surface motion is used to infer the internal stiffness of the breast, hence identifying tumors. This paper describes a computer vision system for accurately measuring 3-D surface motion. A model-based segmentation is used to identify the profile of the breast in each image, and the 3-D surface is reconstructed by fitting a model to the profiles. The surface motion is measured using a modern optical flow implementation customized to the application, then trajectories of points on the 3-D surface are given by fusing the optical flow with the reconstructed surfaces. On data from human trials, the system is shown to exceed the performance of an earlier marker-based system at tracking skin surface motion. We demonstrate that the system can detect a 10 mm tumor in a silicone phantom breast. PMID:24770915

  12. Reconstruction of 3D tree stem models from low-cost terrestrial laser scanner data

    NASA Astrophysics Data System (ADS)

    Kelbe, Dave; Romanczyk, Paul; van Aardt, Jan; Cawse-Nicholson, Kerry

    2013-05-01

    With the development of increasingly advanced airborne sensing systems, there is a growing need to support sensor system design, modeling, and product-algorithm development with explicit 3D structural ground truth commensurate to the scale of acquisition. Terrestrial laser scanning is one such technique which could provide this structural information. Commercial instrumentation to suit this purpose has existed for some time now, but cost can be a prohibitive barrier for some applications. As such we recently developed a unique laser scanning system from readily-available components, supporting low cost, highly portable, and rapid measurement of below-canopy 3D forest structure. Tools were developed to automatically reconstruct tree stem models as an initial step towards virtual forest scene generation. The objective of this paper is to assess the potential of this hardware/algorithm suite to reconstruct 3D stem information for a single scan of a New England hardwood forest site. Detailed tree stem structure (e.g., taper, sweep, and lean) is recovered for trees of varying diameter, species, and range from the sensor. Absolute stem diameter retrieval accuracy is 12.5%, with a 4.5% overestimation bias likely due to the LiDAR beam divergence.

  13. Simulation of surface tension in 2D and 3D with smoothed particle hydrodynamics method

    NASA Astrophysics Data System (ADS)

    Zhang, Mingyu

    2010-09-01

    The methods for simulating surface tension with smoothed particle hydrodynamics (SPH) method in two dimensions and three dimensions are developed. In 2D surface tension model, the SPH particle on the boundary in 2D is detected dynamically according to the algorithm developed by Dilts [G.A. Dilts, Moving least-squares particle hydrodynamics II: conservation and boundaries, International Journal for Numerical Methods in Engineering 48 (2000) 1503-1524]. The boundary curve in 2D is reconstructed locally with Lagrangian interpolation polynomial. In 3D surface tension model, the SPH particle on the boundary in 3D is detected dynamically according to the algorithm developed by Haque and Dilts [A. Haque, G.A. Dilts, Three-dimensional boundary detection for particle methods, Journal of Computational Physics 226 (2007) 1710-1730]. The boundary surface in 3D is reconstructed locally with moving least squares (MLS) method. By transforming the coordinate system, it is guaranteed that the interface function is one-valued in the local coordinate system. The normal vector and curvature of the boundary surface are calculated according to the reconstructed boundary surface and then surface tension force can be calculated. Surface tension force acts only on the boundary particle. Density correction is applied to the boundary particle in order to remove the boundary inconsistency. The surface tension models in 2D and 3D have been applied to benchmark tests for surface tension. The ability of the current method applying to the simulation of surface tension in 2D and 3D is proved.

  14. A method for building 3D models of barchan dunes

    NASA Astrophysics Data System (ADS)

    Nai, Yang; Li-lan, Su; Lin, Wan; Jie, Yang; Shi-yi, Chen; Wei-lu, Hu

    2016-01-01

    The distributions of barchan dunes are usually represented by digital terrain models (DTMs) overlaid with digital orthophoto maps. Given that most regions with barchan dues have low relief, a 3D map obtained from a DTM may ineffectively show the stereoscopic shape of each dune. The method of building 3D models of barchan dunes using existing modeling software seldom considers the geographical environment. As a result, barchan dune models are often inconsistent with actual DTMs and incompletely express the morphological characteristics of dunes. Manual construction of barchan dune models is also costly and time consuming. Considering these problems, the morphological characteristics of barchan dunes and the mathematical relationships between the morphological parameters of the dunes, such as length, height, and width, are analyzed in this study. The methods of extracting the morphological feature points of barchan dunes, calculating their morphological parameters and building dune outlines and skeleton lines based on the medial axes, are also presented. The dune outlines, skeleton lines, and part of the medial axes of dunes are used to construct a constrained triangulated irregular network. C# and ArcEngine are employed to build 3D models of barchan dunes automatically. Experimental results of a study conducted in Tengger Desert show that the method can be used to approximate the morphological characteristics of barchan dunes and is less time consuming than manual methods.

  15. 3D surface reconstruction and visualization of the Drosophila wing imaginal disc at cellular resolution

    NASA Astrophysics Data System (ADS)

    Bai, Linge; Widmann, Thomas; Jülicher, Frank; Dahmann, Christian; Breen, David

    2013-01-01

    Quantifying and visualizing the shape of developing biological tissues provide information about the morphogenetic processes in multicellular organisms. The size and shape of biological tissues depend on the number, size, shape, and arrangement of the constituting cells. To better understand the mechanisms that guide tissues into their final shape, it is important to investigate the cellular arrangement within tissues. Here we present a data processing pipeline to generate 3D volumetric surface models of epithelial tissues, as well as geometric descriptions of the tissues' apical cell cross-sections. The data processing pipeline includes image acquisition, editing, processing and analysis, 2D cell mesh generation, 3D contourbased surface reconstruction, cell mesh projection, followed by geometric calculations and color-based visualization of morphological parameters. In their first utilization we have applied these procedures to construct a 3D volumetric surface model at cellular resolution of the wing imaginal disc of Drosophila melanogaster. The ultimate goal of the reported effort is to produce tools for the creation of detailed 3D geometric models of the individual cells in epithelial tissues. To date, 3D volumetric surface models of the whole wing imaginal disc have been created, and the apicolateral cell boundaries have been identified, allowing for the calculation and visualization of cell parameters, e.g. apical cross-sectional area of cells. The calculation and visualization of morphological parameters show position-dependent patterns of cell shape in the wing imaginal disc. Our procedures should offer a general data processing pipeline for the construction of 3D volumetric surface models of a wide variety of epithelial tissues.

  16. Detecting and estimating errors in 3D restoration methods using analog models.

    NASA Astrophysics Data System (ADS)

    José Ramón, Ma; Pueyo, Emilio L.; Briz, José Luis

    2015-04-01

    Some geological scenarios may be important for a number of socio-economic reasons, such as water or energy resources, but the available underground information is often limited, scarce and heterogeneous. A truly 3D reconstruction, which is still necessary during the decision-making process, may have important social and economic implications. For this reason, restoration methods were developed. By honoring some geometric or mechanical laws, they help build a reliable image of the subsurface. Pioneer methods were firstly applied in 2D (balanced and restored cross-sections) during the sixties and seventies. Later on, and due to the improvements of computational capabilities, they were extended to 3D. Currently, there are some academic and commercial restoration solutions; Unfold by the Université de Grenoble, Move by Midland Valley Exploration, Kine3D (on gOcad code) by Paradigm, Dynel3D by igeoss-Schlumberger. We have developed our own restoration method, Pmag3Drest (IGME-Universidad de Zaragoza), which is designed to tackle complex geometrical scenarios using paleomagnetic vectors as a pseudo-3D indicator of deformation. However, all these methods have limitations based on the assumptions they need to establish. For this reason, detecting and estimating uncertainty in 3D restoration methods is of key importance to trust the reconstructions. Checking the reliability and the internal consistency of every method, as well as to compare the results among restoration tools, is a critical issue never tackled so far because of the impossibility to test out the results in Nature. To overcome this problem we have developed a technique using analog models. We built complex geometric models inspired in real cases of superposed and/or conical folding at laboratory scale. The stratigraphic volumes were modeled using EVA sheets (ethylene vinyl acetate). Their rheology (tensile and tear strength, elongation, density etc) and thickness can be chosen among a large number of values

  17. Breast tumour visualization using 3D quantitative ultrasound methods

    NASA Astrophysics Data System (ADS)

    Gangeh, Mehrdad J.; Raheem, Abdul; Tadayyon, Hadi; Liu, Simon; Hadizad, Farnoosh; Czarnota, Gregory J.

    2016-04-01

    Breast cancer is one of the most common cancer types accounting for 29% of all cancer cases. Early detection and treatment has a crucial impact on improving the survival of affected patients. Ultrasound (US) is non-ionizing, portable, inexpensive, and real-time imaging modality for screening and quantifying breast cancer. Due to these attractive attributes, the last decade has witnessed many studies on using quantitative ultrasound (QUS) methods in tissue characterization. However, these studies have mainly been limited to 2-D QUS methods using hand-held US (HHUS) scanners. With the availability of automated breast ultrasound (ABUS) technology, this study is the first to develop 3-D QUS methods for the ABUS visualization of breast tumours. Using an ABUS system, unlike the manual 2-D HHUS device, the whole patient's breast was scanned in an automated manner. The acquired frames were subsequently examined and a region of interest (ROI) was selected in each frame where tumour was identified. Standard 2-D QUS methods were used to compute spectral and backscatter coefficient (BSC) parametric maps on the selected ROIs. Next, the computed 2-D parameters were mapped to a Cartesian 3-D space, interpolated, and rendered to provide a transparent color-coded visualization of the entire breast tumour. Such 3-D visualization can potentially be used for further analysis of the breast tumours in terms of their size and extension. Moreover, the 3-D volumetric scans can be used for tissue characterization and the categorization of breast tumours as benign or malignant by quantifying the computed parametric maps over the whole tumour volume.

  18. Approximation of a foreign object using x-rays, reference photographs and 3D reconstruction techniques.

    PubMed

    Briggs, Matt; Shanmugam, Mohan

    2013-12-01

    This case study describes how a 3D animation was created to approximate the depth and angle of a foreign object (metal bar) that had become embedded into a patient's head. A pre-operative CT scan was not available as the patient could not fit though the CT scanner, therefore a post surgical CT scan, x-ray and photographic images were used. A surface render was made of the skull and imported into Blender (a 3D animation application). The metal bar was not available, however images of a similar object that was retrieved from the scene by the ambulance crew were used to recreate a 3D model. The x-ray images were then imported into Blender and used as background images in order to align the skull reconstruction and metal bar at the correct depth/angle. A 3D animation was then created to fully illustrate the angle and depth of the iron bar in the skull. PMID:24206011

  19. Photometric analysis as an aid to 3D reconstruction of indoor scenes

    NASA Astrophysics Data System (ADS)

    Serfaty, Veronique; Ackah-Miezan, Andrew; Lutton, Evelyne; Gagalowicz, Andre

    1993-06-01

    In an Image Understanding framework, our aim is to reconstruct an actual indoor scene from a (sequence of) color pair(s) of stereoscopic images. The desired (synthesis-oriented) description requires the analysis of both 3D geometric and photometric parameters in order to use the feedback provided by image synthesis to control the image analysis. The environment model is a hierarchy of polyhedral 3D objects (planar lambertian facets). Two main physical phenomena determine the image intensities: surface reflectance properties and light sources. From illumination models established in Computer Graphics, we derive the appropriate irradiance equations. Rather than use a point source located at infinity, we choose instead isotropic point sources with decreasing energy. This allows us to discriminate small irradiance gradients inside regions. For indoor scenes, such photometric models are more realistic, due to the presence of ceiling lights, desk lamps, and so on. Both a photometric reconstruction algorithm and a technique for localizing the 'dominant' light source are presented along with lighting simulations. For comparison purposes, corresponding artificial images are shown. Using this work, we wish to highlight the fruitful cooperation between the Vision and Graphics domains in order to perform a more accurate scene reconstruction, both photometrically and geometrically. The emphasis is on the illumination characterization which influences the scene interpretation.

  20. Enhanced 3-D-reconstruction algorithm for C-arm systems suitable for interventional procedures.

    PubMed

    Wiesent, K; Barth, K; Navab, N; Durlak, P; Brunner, T; Schuetz, O; Seissler, W

    2000-05-01

    Increasingly, three-dimensional (3-D) imaging technologies are used in medical diagnosis, for therapy planning, and during interventional procedures. We describe the possibilities of fast 3-D-reconstruction of high-contrast objects with high spatial resolution from only a small series of two-dimensional (2-D) planar radiographs. The special problems arising from the intended use of an open, mechanically unstable C-arm system are discussed. For the description of the irregular sampling geometry, homogeneous coordinates are used thoroughly. The well-known Feldkamp algorithm is modified to incorporate corresponding projection matrices without any decomposition into intrinsic and extrinsic parameters. Some approximations to speed up the whole reconstruction procedure and the tradeoff between image quality and computation time are also considered. Using standard hardware the reconstruction of a 256(3) cube is now possible within a few minutes, a time that is acceptable during interventions. Examples for cranial vessel imaging from some clinical test installations will be shown as well as promising results for bone imaging with a laboratory C-arm system. PMID:11021683

  1. Automatic urban 3D building reconstruction from multi-ray photogrammetry

    NASA Astrophysics Data System (ADS)

    McClune, A. P.; Miller, P. E.; Mills, J. P.; Holland, D.

    2014-08-01

    Over the last 20 years the use of, and demand for, three dimensional (3D) building models has meant there has been a vast amount of research conducted in automating the extraction and reconstruction of these models from airborne sensors. Whilst many different approaches have been suggested, full automation is yet to be achieved and research has suggested that the combination of data from multiple sources is required in order to achieve this. Developments in digital photogrammetry have delivered improvements in spatial resolution whilst higher image overlap to increase the number of pixel correspondents between images, giving the name multi-ray photogrammetry, has improved the resolution and quality of its by-products. In this paper the extraction of roof geometry from multiray photogrammetry will be covered, which underpins 3D building reconstruction. Using orthophotos, roof vertices are extracted using the Canny edge detector. Roof planes are detected from digital surface models (DSM) by extracting information from 2D cross sections and measuring height differences. To eliminate overhanging vegetation, the segmentation of trees is investigated by calculating the characteristics of a point within a local neighbourhood of the photogrammetric point cloud. The results highlight the complementary nature of these information sources, and a methodology for integration and reconstruction of roof geometry is proposed.

  2. Discrete Method of Images for 3D Radio Propagation Modeling

    NASA Astrophysics Data System (ADS)

    Novak, Roman

    2016-09-01

    Discretization by rasterization is introduced into the method of images (MI) in the context of 3D deterministic radio propagation modeling as a way to exploit spatial coherence of electromagnetic propagation for fine-grained parallelism. Traditional algebraic treatment of bounding regions and surfaces is replaced by computer graphics rendering of 3D reflections and double refractions while building the image tree. The visibility of reception points and surfaces is also resolved by shader programs. The proposed rasterization is shown to be of comparable run time to that of the fundamentally parallel shooting and bouncing rays. The rasterization does not affect the signal evaluation backtracking step, thus preserving its advantage over the brute force ray-tracing methods in terms of accuracy. Moreover, the rendering resolution may be scaled back for a given level of scenario detail with only marginal impact on the image tree size. This allows selection of scene optimized execution parameters for faster execution, giving the method a competitive edge. The proposed variant of MI can be run on any GPU that supports real-time 3D graphics.

  3. 3D Equilibrium Reconstruction with Internal Measurements on Madison Symmetric Torus

    NASA Astrophysics Data System (ADS)

    Koliner, J. J.; Chapman, B. E.; Sarff, J. S.; Anderson, J. K.; Munaretto, S.; Capecchi, W.; Lin, L.; Hanson, J. D.; Cianciosa, M. R.

    2014-10-01

    Plasmas in the MST reversed field pinch (RFP) bifurcate to a helical equilibrium, forming a single helical axis (SHAx) at high plasma current (Ip ~ 500 kA) and low density (ne ~ 0.5 - 1019 m-3) . In order to understand the physics of confinement and self-organization in SHAx, 3D equilibrium reconstruction is needed. The V3FIT equilibrium reconstruction code is applied using measurements from the 11-chord interferometer-polarimeter, 22-point Thomson scattering system, 4-camera soft x-ray probes, and magnetics. Equilibria have been generated using a fixed plasma boundary with no external currents. Model signals fit well to observed signals, χ2 ~ 1, and the zero crossing of line-averaged neBz from Faraday rotation is matched by the model. External magnetics are shown to be an inadequate equilibrium constraint with the VMEC model, due to possible shear in the poloidal phase of the helical structure, as well as strong contribution to the edge magnetic field from currents in the conducting shell. To address this shortcoming, a filament current model has been created to simulate the conducting shell with many external currents for a free plasma boundary. Axisymmetric equilibria have been reconstructed using the filament model and compared to solutions obtained with the MSTFIT axisymmetric equilibrium reconstruction code. The filament model has been extended to allow reconstruction of helical equilibria. Supported by DoE.

  4. Rapid 3D Track Reconstruction with the BaBar Trigger Upgrade

    SciTech Connect

    Bailey, S

    2004-05-24

    As the PEP-II luminosity increases the BaBar trigger and dataflow systems must accommodate the increasing data rate. A significant source of background events at the first trigger level comes from beam particle interactions with the beampipe and synchrotron masks, which are separated from the interaction region by more than 20 cm. The BaBar trigger upgrade will provide 3D tracking capabilities at the first trigger level in order to remove background events by distinguishing the origin of particle tracks. Each new z{sub 0} p{sub T} Discriminator (ZPD) board processes over 1 gigabyte of data per second in order to reconstruct the tracks and make trigger decisions based upon the 3D track parameters.

  5. First 3D reconstruction of the rhizocephalan root system using MicroCT

    NASA Astrophysics Data System (ADS)

    Noever, Christoph; Keiler, Jonas; Glenner, Henrik

    2016-07-01

    Parasitic barnacles (Cirripedia: Rhizocephala) are highly specialized parasites of crustaceans. Instead of an alimentary tract for feeding they utilize a system of roots, which infiltrates the body of their hosts to absorb nutrients. Using X-ray micro computer tomography (MicroCT) and computer-aided 3D-reconstruction, we document the spatial organization of this root system, the interna, inside the intact host and also demonstrate its use for morphological examinations of the parasites reproductive part, the externa. This is the first 3D visualization of the unique root system of the Rhizocephala in situ, showing how it is related to the inner organs of the host. We investigated the interna from different parasitic barnacles of the family Peltogastridae, which are parasitic on anomuran crustaceans. Rhizocephalan parasites of pagurid hermit crabs and lithodid crabs were analysed in this study.

  6. Parallel 3D Mortar Element Method for Adaptive Nonconforming Meshes

    NASA Technical Reports Server (NTRS)

    Feng, Huiyu; Mavriplis, Catherine; VanderWijngaart, Rob; Biswas, Rupak

    2004-01-01

    High order methods are frequently used in computational simulation for their high accuracy. An efficient way to avoid unnecessary computation in smooth regions of the solution is to use adaptive meshes which employ fine grids only in areas where they are needed. Nonconforming spectral elements allow the grid to be flexibly adjusted to satisfy the computational accuracy requirements. The method is suitable for computational simulations of unsteady problems with very disparate length scales or unsteady moving features, such as heat transfer, fluid dynamics or flame combustion. In this work, we select the Mark Element Method (MEM) to handle the non-conforming interfaces between elements. A new technique is introduced to efficiently implement MEM in 3-D nonconforming meshes. By introducing an "intermediate mortar", the proposed method decomposes the projection between 3-D elements and mortars into two steps. In each step, projection matrices derived in 2-D are used. The two-step method avoids explicitly forming/deriving large projection matrices for 3-D meshes, and also helps to simplify the implementation. This new technique can be used for both h- and p-type adaptation. This method is applied to an unsteady 3-D moving heat source problem. With our new MEM implementation, mesh adaptation is able to efficiently refine the grid near the heat source and coarsen the grid once the heat source passes. The savings in computational work resulting from the dynamic mesh adaptation is demonstrated by the reduction of the the number of elements used and CPU time spent. MEM and mesh adaptation, respectively, bring irregularity and dynamics to the computer memory access pattern. Hence, they provide a good way to gauge the performance of computer systems when running scientific applications whose memory access patterns are irregular and unpredictable. We select a 3-D moving heat source problem as the Unstructured Adaptive (UA) grid benchmark, a new component of the NAS Parallel

  7. 3D reconstruction based on compressed-sensing (CS)-based framework by using a dental panoramic detector.

    PubMed

    Je, U K; Cho, H M; Hong, D K; Cho, H S; Park, Y O; Park, C K; Kim, K S; Lim, H W; Kim, G A; Park, S Y; Woo, T H; Cho, S I

    2016-01-01

    In this work, we propose a practical method that can combine the two functionalities of dental panoramic and cone-beam CT (CBCT) features in one by using a single panoramic detector. We implemented a CS-based reconstruction algorithm for the proposed method and performed a systematic simulation to demonstrate its viability for 3D dental X-ray imaging. We successfully reconstructed volumetric images of considerably high accuracy by using a panoramic detector having an active area of 198.4 mm × 6.4 mm and evaluated the reconstruction quality as a function of the pitch (p) and the angle step (Δθ). Our simulation results indicate that the CS-based reconstruction almost completely recovered the phantom structures, as in CBCT, for p≤2.0 and θ≤6°, indicating that it seems very promising for accurate image reconstruction even for large-pitch and few-view data. We expect the proposed method to be applicable to developing a cost-effective, volumetric dental X-ray imaging system. PMID:26494155

  8. The 3D reconstruction of greenhouse tomato plant based on real organ samples and parametric L-system

    NASA Astrophysics Data System (ADS)

    Xin, Longjiao; Xu, Lihong; Li, Dawei; Fu, Daichang

    2014-04-01

    In this paper, a fast and effective 3D reconstruction method for the growth of greenhouse tomato plant is proposed by using real organ samples and a parametric L-system. By analyzing the stereo structure of tomato plant, we extracts rules and parameters to assemble an L-system that is able to simulate the plant growth, and then the components of the L-system are translated into plant organ entities via image processing and computer graphics techniques. This method can efficiently and faithfully simulate the growing process of the greenhouse tomato plant.

  9. TReMAP: Automatic 3D Neuron Reconstruction Based on Tracing, Reverse Mapping and Assembling of 2D Projections.

    PubMed

    Zhou, Zhi; Liu, Xiaoxiao; Long, Brian; Peng, Hanchuan

    2016-01-01

    Efficient and accurate digital reconstruction of neurons from large-scale 3D microscopic images remains a challenge in neuroscience. We propose a new automatic 3D neuron reconstruction algorithm, TReMAP, which utilizes 3D Virtual Finger (a reverse-mapping technique) to detect 3D neuron structures based on tracing results on 2D projection planes. Our fully automatic tracing strategy achieves close performance with the state-of-the-art neuron tracing algorithms, with the crucial advantage of efficient computation (much less memory consumption and parallel computation) for large-scale images. PMID:26306866

  10. Grammar-Supported 3d Indoor Reconstruction from Point Clouds for As-Built Bim

    NASA Astrophysics Data System (ADS)

    Becker, S.; Peter, M.; Fritsch, D.

    2015-03-01

    The paper presents a grammar-based approach for the robust automatic reconstruction of 3D interiors from raw point clouds. The core of the approach is a 3D indoor grammar which is an extension of our previously published grammar concept for the modeling of 2D floor plans. The grammar allows for the modeling of buildings whose horizontal, continuous floors are traversed by hallways providing access to the rooms as it is the case for most office buildings or public buildings like schools, hospitals or hotels. The grammar is designed in such way that it can be embedded in an iterative automatic learning process providing a seamless transition from LOD3 to LOD4 building models. Starting from an initial low-level grammar, automatically derived from the window representations of an available LOD3 building model, hypotheses about indoor geometries can be generated. The hypothesized indoor geometries are checked against observation data - here 3D point clouds - collected in the interior of the building. The verified and accepted geometries form the basis for an automatic update of the initial grammar. By this, the knowledge content of the initial grammar is enriched, leading to a grammar with increased quality. This higher-level grammar can then be applied to predict realistic geometries to building parts where only sparse observation data are available. Thus, our approach allows for the robust generation of complete 3D indoor models whose quality can be improved continuously as soon as new observation data are fed into the grammar-based reconstruction process. The feasibility of our approach is demonstrated based on a real-world example.

  11. Adaptive noise suppression technique for dense 3D point cloud reconstructions from monocular vision

    NASA Astrophysics Data System (ADS)

    Diskin, Yakov; Asari, Vijayan K.

    2012-10-01

    Mobile vision-based autonomous vehicles use video frames from multiple angles to construct a 3D model of their environment. In this paper, we present a post-processing adaptive noise suppression technique to enhance the quality of the computed 3D model. Our near real-time reconstruction algorithm uses each pair of frames to compute the disparities of tracked feature points to translate the distance a feature has traveled within the frame in pixels into real world depth values. As a result these tracked feature points are plotted to form a dense and colorful point cloud. Due to the inevitable small vibrations in the camera and the mismatches within the feature tracking algorithm, the point cloud model contains a significant amount of misplaced points appearing as noise. The proposed noise suppression technique utilizes the spatial information of each point to unify points of similar texture and color into objects while simultaneously removing noise dissociated with any nearby objects. The noise filter combines all the points of similar depth into 2D layers throughout the point cloud model. By applying erosion and dilation techniques we are able to eliminate the unwanted floating points while retaining points of larger objects. To reverse the compression process, we transform the 2D layer back into the 3D model allowing points to return to their original position without the attached noise components. We evaluate the resulting noiseless point cloud by utilizing an unmanned ground vehicle to perform obstacle avoidance tasks. The contribution of the noise suppression technique is measured by evaluating the accuracy of the 3D reconstruction.

  12. The spatial accuracy of cellular dose estimates obtained from 3D reconstructed serial tissue autoradiographs.

    PubMed

    Humm, J L; Macklis, R M; Lu, X Q; Yang, Y; Bump, K; Beresford, B; Chin, L M

    1995-01-01

    In order to better predict and understand the effects of radiopharmaceuticals used for therapy, it is necessary to determine more accurately the radiation absorbed dose to cells in tissue. Using thin-section autoradiography, the spatial distribution of sources relative to the cells can be obtained from a single section with micrometre resolution. By collecting and analysing serial sections, the 3D microscopic distribution of radionuclide relative to the cellular histology, and therefore the dose rate distribution, can be established. In this paper, a method of 3D reconstruction of serial sections is proposed, and measurements are reported of (i) the accuracy and reproducibility of quantitative autoradiography and (ii) the spatial precision with which tissue features from one section can be related to adjacent sections. Uncertainties in the activity determination for the specimen result from activity losses during tissue processing (4-11%), and the variation of grain count per unit activity between batches of serial sections (6-25%). Correlation of the section activity to grain count densities showed deviations ranging from 6-34%. The spatial alignment uncertainties were assessed using nylon fibre fiduciary markers incorporated into the tissue block, and compared to those for alignment based on internal tissue landmarks. The standard deviation for the variation in nylon fibre fiduciary alignment was measured to be 41 microns cm-1, compared to 69 microns cm-1 when internal tissue histology landmarks were used. In addition, tissue shrinkage during histological processing of up to 10% was observed. The implications of these measured activity and spatial distribution uncertainties upon the estimate of cellular dose rate distribution depends upon the range of the radiation emissions. For long-range beta particles, uncertainties in both the activity and spatial distribution translate linearly to the uncertainty in dose rate of < 15%. For short-range emitters (< 100

  13. Improving Semantic Updating Method on 3d City Models Using Hybrid Semantic-Geometric 3d Segmentation Technique

    NASA Astrophysics Data System (ADS)

    Sharkawi, K.-H.; Abdul-Rahman, A.

    2013-09-01

    to LoD4. The accuracy and structural complexity of the 3D objects increases with the LoD level where LoD0 is the simplest LoD (2.5D; Digital Terrain Model (DTM) + building or roof print) while LoD4 is the most complex LoD (architectural details with interior structures). Semantic information is one of the main components in CityGML and 3D City Models, and provides important information for any analyses. However, more often than not, the semantic information is not available for the 3D city model due to the unstandardized modelling process. One of the examples is where a building is normally generated as one object (without specific feature layers such as Roof, Ground floor, Level 1, Level 2, Block A, Block B, etc). This research attempts to develop a method to improve the semantic data updating process by segmenting the 3D building into simpler parts which will make it easier for the users to select and update the semantic information. The methodology is implemented for 3D buildings in LoD2 where the buildings are generated without architectural details but with distinct roof structures. This paper also introduces hybrid semantic-geometric 3D segmentation method that deals with hierarchical segmentation of a 3D building based on its semantic value and surface characteristics, fitted by one of the predefined primitives. For future work, the segmentation method will be implemented as part of the change detection module that can detect any changes on the 3D buildings, store and retrieve semantic information of the changed structure, automatically updates the 3D models and visualize the results in a userfriendly graphical user interface (GUI).

  14. A direct approach for instantaneous 3D density field reconstruction from background-oriented schlieren (BOS) measurements

    NASA Astrophysics Data System (ADS)

    Nicolas, F.; Todoroff, V.; Plyer, A.; Le Besnerais, G.; Donjat, D.; Micheli, F.; Champagnat, F.; Cornic, P.; Le Sant, Y.

    2016-01-01

    We present a new numerical method for reconstruction of instantaneous density volume from 3D background-oriented schlieren (3DBOS) measurements, with a validation on a dedicated flexible experimental BOS bench. In contrast to previous works, we use a direct formulation where density is estimated from measured deviation fields without the intermediate step of density gradient reconstruction. Regularization techniques are implemented to deal with the ill-posed problem encountered. The resulting high-dimensional optimization is conducted by conjugate gradient techniques. A parallel algorithm, implemented on graphics processing unit, helps to speed up the calculation. The resulting software is validated on synthetic BOS images of a 3D density field issued from a numerical simulation. Then, we describe a dedicated 3DBOS experimental facility which has been built to study various BOS settings and to assess the performance of the proposed numerical reconstruction process. Results on various datasets illustrate the potential of the method for flow characterization and measurement in real-world conditions.

  15. Effects of camera location on the reconstruction of 3D flare trajectory with two cameras

    NASA Astrophysics Data System (ADS)

    Özsaraç, Seçkin; Yeşilkaya, Muhammed

    2015-05-01

    Flares are used as valuable electronic warfare assets for the battle against infrared guided missiles. The trajectory of the flare is one of the most important factors that determine the effectiveness of the counter measure. Reconstruction of the three dimensional (3D) position of a point, which is seen by multiple cameras, is a common problem. Camera placement, camera calibration, corresponding pixel determination in between the images of different cameras and also the triangulation algorithm affect the performance of 3D position estimation. In this paper, we specifically investigate the effects of camera placement on the flare trajectory estimation performance by simulations. Firstly, 3D trajectory of a flare and also the aircraft, which dispenses the flare, are generated with simple motion models. Then, we place two virtual ideal pinhole camera models on different locations. Assuming the cameras are tracking the aircraft perfectly, the view vectors of the cameras are computed. Afterwards, using the view vector of each camera and also the 3D position of the flare, image plane coordinates of the flare on both cameras are computed using the field of view (FOV) values. To increase the fidelity of the simulation, we have used two sources of error. One is used to model the uncertainties in the determination of the camera view vectors, i.e. the orientations of the cameras are measured noisy. Second noise source is used to model the imperfections of the corresponding pixel determination of the flare in between the two cameras. Finally, 3D position of the flare is estimated using the corresponding pixel indices, view vector and also the FOV of the cameras by triangulation. All the processes mentioned so far are repeated for different relative camera placements so that the optimum estimation error performance is found for the given aircraft and are trajectories.

  16. Reconstruction of 3d grain boundaries from rock thin sections, using polarised light

    NASA Astrophysics Data System (ADS)

    Markus Hammes, Daniel; Peternell, Mark

    2016-04-01

    Grain boundaries affect the physical and chemical properties of polycrystalline materials significantly by initiating reactions and collecting impurities (Birchenall, 1959), and play an essential role in recrystallization (Doherty et al. 1997). In particular, the shape and crystallographic orientation of grain boundaries reveal the deformation and annealing history of rocks (Kruhl and Peternell 2002, Kuntcheva et al. 2006). However, there is a lack of non-destructive and easy-to-use computer supported methods to determine grain boundary geometries in 3D. The only available instrument using optical light to measure grain boundary angles is still the polarising microscope with attached universal stage; operated manually and time-consuming in use. Here we present a new approach to determine 3d grain boundary orientations from 2D rock thin sections. The data is recorded by using an automatic fabric analyser microscope (Peternell et al., 2010). Due to its unique arrangement of 9 light directions the highest birefringence colour due to each light direction and crystal orientation (retardation) can be determined at each pixel in the field of view. Retardation profiles across grain boundaries enable the calculation of grain boundary angle and direction. The data for all positions separating the grains are combined and further processed. In combination with the lateral position of the grain boundary, acquired using the FAME software (Hammes and Peternell, in review), the data is used to reconstruct a 3d grain boundary model. The processing of data is almost fully automatic by using MATLAB®. Only minor manual input is required. The applicability was demonstrated on quartzite samples, but the method is not solely restricted on quartz grains and other birefringent polycrystalline materials could be used instead. References: Birchenall, C.E., 1959: Physical Metallurgy. McGraw-Hill, New York. Doherty, R.D., Hughes, D.A., Humphreys, F.J., Jonas, J.J., Juul Jensen, D., Kassner, M

  17. System and method for 3D printing of aerogels

    DOEpatents

    Worsley, Marcus A.; Duoss, Eric; Kuntz, Joshua; Spadaccini, Christopher; Zhu, Cheng

    2016-03-08

    A method of forming an aerogel. The method may involve providing a graphene oxide powder and mixing the graphene oxide powder with a solution to form an ink. A 3D printing technique may be used to write the ink into a catalytic solution that is contained in a fluid containment member to form a wet part. The wet part may then be cured in a sealed container for a predetermined period of time at a predetermined temperature. The cured wet part may then be dried to form a finished aerogel part.

  18. Method and simulation to study 3D crosstalk perception

    NASA Astrophysics Data System (ADS)

    Khaustova, Dar'ya; Blondé, Laurent; Huynh-Thu, Quan; Vienne, Cyril; Doyen, Didier

    2012-03-01

    To various degrees, all modern 3DTV displays suffer from crosstalk, which can lead to a decrease of both visual quality and visual comfort, and also affect perception of depth. In the absence of a perfect 3D display technology, crosstalk has to be taken into account when studying perception of 3D stereoscopic content. In order to improve 3D presentation systems and understand how to efficiently eliminate crosstalk, it is necessary to understand its impact on human perception. In this paper, we present a practical method to study the perception of crosstalk. The approach consists of four steps: (1) physical measurements of a 3DTV, (2) building of a crosstalk surface based on those measurements and representing specifically the behavior of that 3TV, (3) manipulation of the crosstalk function and application on reference images to produce test images degraded by crosstalk in various ways, and (4) psychophysical tests. Our approach allows both a realistic representation of the behavior of a 3DTV and the easy manipulation of its resulting crosstalk in order to conduct psycho-visual experiments. Our approach can be used in all studies requiring the understanding of how crosstalk affects perception of stereoscopic content and how it can be corrected efficiently.

  19. Automatic reconstruction of 3D urban landscape by computing connected regions and assigning them an average altitude from LiDAR point cloud image

    NASA Astrophysics Data System (ADS)

    Kawata, Yoshiyuki; Koizumi, Kohei

    2014-10-01

    The demand of 3D city modeling has been increasing in many applications such as urban planing, computer gaming with realistic city environment, car navigation system with showing 3D city map, virtual city tourism inviting future visitors to a virtual city walkthrough and others. We proposed a simple method for reconstructing a 3D urban landscape from airborne LiDAR point cloud data. The automatic reconstruction method of a 3D urban landscape was implemented by the integration of all connected regions, which were extracted and extruded from the altitude mask images. These mask images were generated from the gray scale LiDAR image by the altitude threshold ranges. In this study we demonstrated successfully in the case of Kanazawa city center scene by applying the proposed method to the airborne LiDAR point cloud data.

  20. Implementation of a close range photogrammetric system for 3D reconstruction of a scoliotic torso

    NASA Astrophysics Data System (ADS)

    Detchev, Ivan Denislavov

    Scoliosis is a deformity of the human spine most commonly encountered with children. After being detected, periodic examinations via x-rays are traditionally used to measure its progression. However, due to the increased risk of cancer, a non-invasive and radiation-free scoliosis detection and progression monitoring methodology is needed. Quantifying the scoliotic deformity through the torso surface is a valid alternative, because of its high correlation with the internal spine curvature. This work proposes a low-cost multi-camera photogrammetric system for semi-automated 3D reconstruction of a torso surface with sub-millimetre level accuracy. The thesis describes the system design and calibration for optimal accuracy. It also covers the methodology behind the reconstruction and registration procedures. The experimental results include the complete reconstruction of a scoliotic torso mannequin. The final accuracy is evaluated through the goodness of fit between the reconstructed surface and a more accurate set of points measured by a coordinate measuring machine.

  1. Accurate 3D reconstruction of complex blood vessel geometries from intravascular ultrasound images: in vitro study.

    PubMed

    Subramanian, K R; Thubrikar, M J; Fowler, B; Mostafavi, M T; Funk, M W

    2000-01-01

    We present a technique that accurately reconstructs complex three dimensional blood vessel geometry from 2D intravascular ultrasound (IVUS) images. Biplane x-ray fluoroscopy is used to image the ultrasound catheter tip at a few key points along its path as the catheter is pulled through the blood vessel. An interpolating spline describes the continuous catheter path. The IVUS images are located orthogonal to the path, resulting in a non-uniform structured scalar volume of echo densities. Isocontour surfaces are used to view the vessel geometry, while transparency and clipping enable interactive exploration of interior structures. The two geometries studied are a bovine artery vascular graft having U-shape and a constriction, and a canine carotid artery having multiple branches and a constriction. Accuracy of the reconstructions is established by comparing the reconstructions to (1) silicone moulds of the vessel interior, (2) biplane x-ray images, and (3) the original echo images. Excellent shape and geometry correspondence was observed in both geometries. Quantitative measurements made at key locations of the 3D reconstructions also were in good agreement with those made in silicone moulds. The proposed technique is easily adoptable in clinical practice, since it uses x-rays with minimal exposure and existing IVUS technology. PMID:11105284

  2. Single-camera fixed perspective 360-deg 3D method

    NASA Astrophysics Data System (ADS)

    Harding, Kevin G.; Fergan, Robert K.

    1997-01-01

    The use of 3D methods for such applications as feature locations within a wide field-of-view, such as for automated guided vehicles or large assembly work, offers some distinct challenges. The use of stereo viewing has often been the method of choice due to the wide area coverage and hardware simplicity. However, stereo based methods suffer from a loss of spatial position resolution for more distant object as compared to close objects due to the high demagnification needed to cover large fields-of-view. A long depth-of-field in such systems may also degrade the general ability to perform correlations due to poor focus. In addition, stereo looses distance resolution for features nearing the line of the two cameras, typically requiring movement of the cameras. The paper presents a novel method of obtaining 3D scene information as seen from the center of a cylindrical field. The method described uses a single camera with a view that is rotated through 360 degrees by means of a continuously rotating mirror. The viewing systems uses a constant field of view optical system that provides a constant X-Y resolution of features in the scene over depths of several meters. Comparing successive images with the readout from an encoder on the rotating mirror generates all locations of objects within a limited height cylinder. This paper will discuss the sources of errors and typical capabilities of this approach in light of a real-time part location tracking application useful in assembly systems.

  3. Reconstruction Error of Calibration Volume's Coordinates for 3D Swimming Kinematics.

    PubMed

    Figueiredo, Pedro; Machado, Leandro; Vilas-Boas, João Paulo; Fernandes, Ricardo J

    2011-09-01

    The aim of this study was to investigate the accuracy and reliability of above and underwater 3D reconstruction of three calibration volumes with different control points disposal (#1 - on vertical and horizontal rods; #2 - on vertical and horizontal rods and facets; #3 - on crossed horizontal rods). Each calibration volume (3 × 2 × 3 m) was positioned in a 25 m swimming pool (half above and half below the water surface) and recorded with four underwater and two above water synchronised cameras (50 Hz). Reconstruction accuracy was determined calculating the RMS error of twelve validation points. The standard deviation across all digitisation of the same marker was used for assessing the reliability estimation. Comparison among different number of control points showed that the set of 24 points produced the most accurate results. The volume #2 presented higher accuracy (RMS errors: 5.86 and 3.59 mm for x axis, 3.45 and 3.11 mm for y axis and 4.38 and 4.00 mm for z axis, considering under and above water, respectively) and reliability (SD: underwater cameras ± [0.2; 0.6] mm; above water cameras ± [0.2; 0.3] mm) that may be considered suitable for 3D swimming kinematic analysis. Results revealed that RMS error was greater during underwater analysis, possibly due to refraction. PMID:23486761

  4. 3D surface reconstruction and FIB microscopy of worn alumina hip prostheses

    NASA Astrophysics Data System (ADS)

    Zeng, P.; Inkson, B. J.; Rainforth, W. M.; Stewart, T.

    2008-08-01

    Interest in alumina-on-alumina total hip replacements (THR) continues to grow for the young and active patient due to their superior wear performance and biocompatibility compared to the alternative traditional polymer/metal prostheses. While alumina on alumina bearings offer an excellent solution, a region of high wear, known as stripe wear, is commonly observed on retrieved alumina hip components that poses concern. These in-vivo stripe wear mechanisms can be replicated in vitro by the introduction of micro-separation during the simulated walking cycle in hip joint simulation. However, the understanding of the mechanisms behind the stripe wear processes is relatively poor. 3D topographic reconstructions of titled SEM stereo pairs from different zones have been obtained to determine the local worn surface topography. Focused ion beam (FIB) microscopy was applied to examine the subsurface damage across the stripe wear. The paper presents novel images of sub-surface microcracks in alumina along with 3D reconstructions of the worn ceramic surfaces and a classification of four distinct wear zones following microseparation in hip prostheses.

  5. Reconstructing 3D coastal cliffs from airborne oblique photographs without ground control points

    NASA Astrophysics Data System (ADS)

    Dewez, T. J. B.

    2014-05-01

    Coastal cliff collapse hazard assessment requires measuring cliff face topography at regular intervals. Terrestrial laser scanner techniques have proven useful so far but are expensive to use either through purchasing the equipment or through survey subcontracting. In addition, terrestrial laser surveys take time which is sometimes incompatible with the time during with the beach is accessible at low-tide. By comparison, structure from motion techniques (SFM) are much less costly to implement, and if airborne, acquisition of several kilometers of coastline can be done in a matter of minutes. In this paper, the potential of GPS-tagged oblique airborne photographs and SFM techniques is examined to reconstruct chalk cliff dense 3D point clouds without Ground Control Points (GCP). The focus is put on comparing the relative 3D point of views reconstructed by Visual SFM with their synchronous Solmeta Geotagger Pro2 GPS locations using robust estimators. With a set of 568 oblique photos, shot from the open door of an airplane with a triplet of synchronized Nikon D7000, GPS and SFM-determined view point coordinates converge to X: ±31.5 m; Y: ±39.7 m; Z: ±13.0 m (LE66). Uncertainty in GPS position affects the model scale, angular attitude of the reference frame (the shoreline ends up tilted by 2°) and absolute positioning. Ground Control Points cannot be avoided to orient such models.

  6. Moving beyond flat earth: dense 3D scene reconstruction from a single FL-LWIR camera

    NASA Astrophysics Data System (ADS)

    Stone, K.; Keller, J. M.; Anderson, D. T.

    2013-06-01

    In previous work an automatic detection system for locating buried explosive hazards in forward-looking longwave infrared (FL-LWIR) and forward-looking ground penetrating radar (FL-GPR) data was presented. This system consists of an ensemble of trainable size-contrast filters prescreener coupled with a secondary classification step which extracts cell-structured image space features, such as local binary patterns (LBP), histogram of oriented gradients (HOG), and edge histogram descriptors (EHD), from multiple looks and classifies the resulting feature vectors using a support vector machine. Previously, this system performed image space to UTM coordinate mapping under a flat earth assumption. This limited its applicability to flat terrain and short standoff distances. This paper demonstrates a technique for dense 3D scene reconstruction from a single vehicle mounted FL-LWIR camera. This technique utilizes multiple views and standard stereo vision algorithms such as polar rectification and optimal correction. Results for the detection algorithm using this 3D scene reconstruction approach on data from recent collections at an arid US Army test site are presented. These results are compared to those obtained under the flat earth assumption, with special focus on rougher terrain and longer standoff distance than in previous experiments. The most recent collection also allowed comparison between uncooled and cooled FL-LWIR cameras for buried explosive hazard detection.

  7. A Two-Stage Framework for 3D Face Reconstruction from RGBD Images.

    PubMed

    Wang, Kangkan; Wang, Xianwang; Pan, Zhigeng; Liu, Kai

    2014-08-01

    This paper proposes a new approach for 3D face reconstruction with RGBD images from an inexpensive commodity sensor. The challenges we face are: 1) substantial random noise and corruption are present in low-resolution depth maps; and 2) there is high degree of variability in pose and face expression. We develop a novel two-stage algorithm that effectively maps low-quality depth maps to realistic face models. Each stage is targeted toward a certain type of noise. The first stage extracts sparse errors from depth patches through the data-driven local sparse coding, while the second stage smooths noise on the boundaries between patches and reconstructs the global shape by combining local shapes using our template-based surface refinement. Our approach does not require any markers or user interaction. We perform quantitative and qualitative evaluations on both synthetic and real test sets. Experimental results show that the proposed approach is able to produce high-resolution 3D face models with high accuracy, even if inputs are of low quality, and have large variations in viewpoint and face expression. PMID:26353333

  8. Reconstruction Error of Calibration Volume’s Coordinates for 3D Swimming Kinematics

    PubMed Central

    Figueiredo, Pedro; Machado, Leandro; Vilas-Boas, João Paulo; Fernandes, Ricardo J.

    2011-01-01

    The aim of this study was to investigate the accuracy and reliability of above and underwater 3D reconstruction of three calibration volumes with different control points disposal (#1 - on vertical and horizontal rods; #2 - on vertical and horizontal rods and facets; #3 - on crossed horizontal rods). Each calibration volume (3 × 2 × 3 m) was positioned in a 25 m swimming pool (half above and half below the water surface) and recorded with four underwater and two above water synchronised cameras (50 Hz). Reconstruction accuracy was determined calculating the RMS error of twelve validation points. The standard deviation across all digitisation of the same marker was used for assessing the reliability estimation. Comparison among different number of control points showed that the set of 24 points produced the most accurate results. The volume #2 presented higher accuracy (RMS errors: 5.86 and 3.59 mm for x axis, 3.45 and 3.11 mm for y axis and 4.38 and 4.00 mm for z axis, considering under and above water, respectively) and reliability (SD: underwater cameras ± [0.2; 0.6] mm; above water cameras ± [0.2; 0.3] mm) that may be considered suitable for 3D swimming kinematic analysis. Results revealed that RMS error was greater during underwater analysis, possibly due to refraction. PMID:23486761

  9. 3D endobronchial ultrasound reconstruction and analysis for multimodal image-guided bronchoscopy

    NASA Astrophysics Data System (ADS)

    Zang, Xiaonan; Bascom, Rebecca; Gilbert, Christopher R.; Toth, Jennifer W.; Higgins, William E.

    2014-03-01

    State-of-the-art image-guided intervention (IGI) systems for lung-cancer management draw upon high-resolution three-dimensional multi-detector computed-tomography (MDCT) images and bronchoscopic video. An MDCT scan provides a high-resolution three-dimensional (3D) image of the chest that is used for preoperative procedure planning, while bronchoscopy gives live intraoperative video of the endobronchial airway tree structure. However, because neither source provides live extraluminal information on suspect nodules or lymph nodes, endobronchial ultrasound (EBUS) is often introduced during a procedure. Unfortunately, existing IGI systems provide no direct synergistic linkage between the MDCT/video data and EBUS data. Hence, EBUS proves difficult to use and can lead to inaccurate interpretations. To address this drawback, we present a prototype of a multimodal IGI system that brings together the various image sources. The system enables 3D reconstruction and visualization of structures depicted in the 2D EBUS video stream. It also provides a set of graphical tools that link the EBUS data directly to the 3D MDCT and bronchoscopic video. Results using phantom and human data indicate that the new system could potentially enable smooth natural incorporation of EBUS into the system-level work flow of bronchoscopy.

  10. An Image-Based Technique for 3d Building Reconstruction Using Multi-View Uav Images

    NASA Astrophysics Data System (ADS)

    Alidoost, F.; Arefi, H.

    2015-12-01

    Nowadays, with the development of the urban areas, the automatic reconstruction of the buildings, as an important objects of the city complex structures, became a challenging topic in computer vision and photogrammetric researches. In this paper, the capability of multi-view Unmanned Aerial Vehicles (UAVs) images is examined to provide a 3D model of complex building façades using an efficient image-based modelling workflow. The main steps of this work include: pose estimation, point cloud generation, and 3D modelling. After improving the initial values of interior and exterior parameters at first step, an efficient image matching technique such as Semi Global Matching (SGM) is applied on UAV images and a dense point cloud is generated. Then, a mesh model of points is calculated using Delaunay 2.5D triangulation and refined to obtain an accurate model of building. Finally, a texture is assigned to mesh in order to create a realistic 3D model. The resulting model has provided enough details of building based on visual assessment.

  11. Bayesian 3D X-ray computed tomography image reconstruction with a scaled Gaussian mixture prior model

    SciTech Connect

    Wang, Li; Gac, Nicolas; Mohammad-Djafari, Ali

    2015-01-13

    In order to improve quality of 3D X-ray tomography reconstruction for Non Destructive Testing (NDT), we investigate in this paper hierarchical Bayesian methods. In NDT, useful prior information on the volume like the limited number of materials or the presence of homogeneous area can be included in the iterative reconstruction algorithms. In hierarchical Bayesian methods, not only the volume is estimated thanks to the prior model of the volume but also the hyper parameters of this prior. This additional complexity in the reconstruction methods when applied to large volumes (from 512{sup 3} to 8192{sup 3} voxels) results in an increasing computational cost. To reduce it, the hierarchical Bayesian methods investigated in this paper lead to an algorithm acceleration by Variational Bayesian Approximation (VBA) [1] and hardware acceleration thanks to projection and back-projection operators paralleled on many core processors like GPU [2]. In this paper, we will consider a Student-t prior on the gradient of the image implemented in a hierarchical way [3, 4, 1]. Operators H (forward or projection) and H{sup t} (adjoint or back-projection) implanted in multi-GPU [2] have been used in this study. Different methods will be evalued on synthetic volume 'Shepp and Logan' in terms of quality and time of reconstruction. We used several simple regularizations of order 1 and order 2. Other prior models also exists [5]. Sometimes for a discrete image, we can do the segmentation and reconstruction at the same time, then the reconstruction can be done with less projections.

  12. Portable high-intensity focused ultrasound system with 3D electronic steering, real-time cavitation monitoring, and 3D image reconstruction algorithms: a preclinical study in pigs

    PubMed Central

    2014-01-01

    Purpose: The aim of this study was to evaluate the safety and accuracy of a new portable ultrasonography-guided high-intensity focused ultrasound (USg-HIFU) system with a 3-dimensional (3D) electronic steering transducer, a simultaneous ablation and imaging module, real-time cavitation monitoring, and 3D image reconstruction algorithms. Methods: To address the accuracy of the transducer, hydrophones in a water chamber were used to assess the generation of sonic fields. An animal study was also performed in five pigs by ablating in vivo thighs by single-point sonication (n=10) or volume sonication (n=10) and ex vivo kidneys by single-point sonication (n=10). Histological and statistical analyses were performed. Results: In the hydrophone study, peak voltages were detected within 1.0 mm from the targets on the y- and z-axes and within 2.0-mm intervals along the x-axis (z-axis, direction of ultrasound propagation; y- and x-axes, perpendicular to the direction of ultrasound propagation). Twenty-nine of 30 HIFU sessions successfully created ablations at the target. The in vivo porcine thigh study showed only a small discrepancy (width, 0.5-1.1 mm; length, 3.0 mm) between the planning ultrasonograms and the pathological specimens. Inordinate thermal damage was not observed in the adjacent tissues or sonic pathways in the in vivo thigh and ex vivo kidney studies. Conclusion: Our study suggests that this new USg-HIFU system may be a safe and accurate technique for ablating soft tissues and encapsulated organs. PMID:25038809

  13. A Unified Approach to Diffusion Direction Sensitive Slice Registration and 3-D DTI Reconstruction From Moving Fetal Brain Anatomy

    PubMed Central

    Fogtmann, Mads; Seshamani, Sharmishtaa; Kroenke, Christopher; Cheng, Xi; Chapman, Teresa; Wilm, Jakob; Rousseau, François

    2014-01-01

    This paper presents an approach to 3-D diffusion tensor image (DTI) reconstruction from multi-slice diffusion weighted (DW) magnetic resonance imaging acquisitions of the moving fetal brain. Motion scatters the slice measurements in the spatial and spherical diffusion domain with respect to the underlying anatomy. Previous image registration techniques have been described to estimate the between slice fetal head motion, allowing the reconstruction of 3-D a diffusion estimate on a regular grid using interpolation. We propose Approach to Unified Diffusion Sensitive Slice Alignment and Reconstruction (AUDiSSAR) that explicitly formulates a process for diffusion direction sensitive DW-slice-to-DTI-volume alignment. This also incorporates image resolution modeling to iteratively deconvolve the effects of the imaging point spread function using the multiple views provided by thick slices acquired in different anatomical planes. The algorithm is implemented using a multi-resolution iterative scheme and multiple real and synthetic data are used to evaluate the performance of the technique. An accuracy experiment using synthetically created motion data of an adult head and a experiment using synthetic motion added to sedated fetal monkey dataset show a significant improvement in motion-trajectory estimation compared to a state-of-the-art approaches. The performance of the method is then evaluated on challenging but clinically typical in utero fetal scans of four different human cases, showing improved rendition of cortical anatomy and extraction of white matter tracts. While the experimental work focuses on DTI reconstruction (second-order tensor model), the proposed reconstruction framework can employ any 5-D diffusion volume model that can be represented by the spatial parameterizations of an orientation distribution function. PMID:24108711

  14. Efficient calculation method for realistic deep 3D scene hologram using orthographic projection

    NASA Astrophysics Data System (ADS)

    Igarashi, Shunsuke; Nakamura, Tomoya; Matsushima, Kyoji; Yamaguchi, Masahiro

    2016-03-01

    We propose a fast calculation method to synthesize a computer-generated hologram (CGH) of realistic deep three-dimensional (3D) scene. In our previous study, we have proposed a calculation method of CGH for reproducing such scene called ray-sampling-plane (RSP) method, in which light-ray information of a scene is converted to wavefront, and the wavefront is numerically propagated based on diffraction theory. In this paper, we introduce orthographic projection to the RSP method for accelerating calculation time. By numerical experiments, we verified the accelerated calculation with the ratio of 28-times compared to the conventional RSP method. The calculated CGH was fabricated by the printing system using laser lithography and demonstrated deep 3D image reconstruction in 52mm×52mm with realistic appearance effect such as gloss and translucent effect.

  15. Subcellular Microanatomy by 3D Deconvolution Brightfield Microscopy: Method and Analysis Using Human Chromatin in the Interphase Nucleus

    PubMed Central

    Tadrous, Paul Joseph

    2012-01-01

    Anatomy has advanced using 3-dimensional (3D) studies at macroscopic (e.g., dissection, injection moulding of vessels, radiology) and microscopic (e.g., serial section reconstruction with light and electron microscopy) levels. This paper presents the first results in human cells of a new method of subcellular 3D brightfield microscopy. Unlike traditional 3D deconvolution and confocal techniques, this method is suitable for general application to brightfield microscopy. Unlike brightfield serial sectioning it has subcellular resolution. Results are presented of the 3D structure of chromatin in the interphase nucleus of two human cell types, hepatocyte and plasma cell. I show how the freedom to examine these structures in 3D allows greater morphological discrimination between and within cell types and the 3D structural basis for the classical “clock-face” motif of the plasma cell nucleus is revealed. Potential for further applications discussed. PMID:22567315

  16. 3D reconstruction and spatial auralization of the "Painted Dolmen" of Antelas

    NASA Astrophysics Data System (ADS)

    Dias, Paulo; Campos, Guilherme; Santos, Vítor; Casaleiro, Ricardo; Seco, Ricardo; Sousa Santos, Beatriz

    2008-02-01

    This paper presents preliminary results on the development of a 3D audiovisual model of the Anta Pintada (painted dolmen) of Antelas, a Neolithic chamber tomb located in Oliveira de Frades and listed as Portuguese national monument. The final aim of the project is to create a highly accurate Virtual Reality (VR) model of this unique archaeological site, capable of providing not only visual but also acoustic immersion based on its actual geometry and physical properties. The project started in May 2006 with in situ data acquisition. The 3D geometry of the chamber was captured using a Laser Range Finder. In order to combine the different scans into a complete 3D visual model, reconstruction software based on the Iterative Closest Point (ICP) algorithm was developed using the Visualization Toolkit (VTK). This software computes the boundaries of the room on a 3D uniform grid and populates its interior with "free-space nodes", through an iterative algorithm operating like a torchlight illuminating a dark room. The envelope of the resulting set of "free-space nodes" is used to generate a 3D iso-surface approximating the interior shape of the chamber. Each polygon of this surface is then assigned the acoustic absorption coefficient of the corresponding boundary material. A 3D audiovisual model operating in real-time was developed for a VR Environment comprising head-mounted display (HMD) I-glasses SVGAPro, an orientation sensor (tracker) InterTrax 2 with 3 Degrees Of Freedom (3DOF) and stereo headphones. The auralisation software is based on a geometric model. This constitutes a first approach, since geometric acoustics have well-known limitations in rooms with irregular surfaces. The immediate advantage lies in their inherent computational efficiency, which allows real-time operation. The program computes the early reflections forming the initial part of the chamber's impulse response (IR), which carry the most significant cues for source localisation. These early

  17. Algorithms for improved 3-D reconstruction of live mammalian embryo vasculature from optical coherence tomography data

    PubMed Central

    Kulkarni, Prathamesh M.; Rey-Villamizar, Nicolas; Merouane, Amine; Sudheendran, Narendran; Wang, Shang; Garcia, Monica; Larina, Irina V.; Roysam, Badrinath

    2015-01-01

    Background Robust reconstructions of the three-dimensional network of blood vessels in developing embryos imaged by optical coherence tomography (OCT) are needed for quantifying the longitudinal development of vascular networks in live mammalian embryos, in support of developmental cardiovascular research. Past computational methods [such as speckle variance (SV)] have demonstrated the feasibility of vascular reconstruction, but multiple challenges remain including: the presence of vessel structures at multiple spatial scales, thin blood vessels with weak flow, and artifacts resulting from bulk tissue motion (BTM). Methods In order to overcome these challenges, this paper introduces a robust and scalable reconstruction algorithm based on a combination of anomaly detection algorithms and a parametric dictionary based sparse representation of blood vessels from structural OCT data. Results Validation results using confocal data as the baseline demonstrate that the proposed method enables the detection of vessel segments that are either partially missed or weakly reconstructed using the SV method. Finally, quantitative measurements of vessel reconstruction quality indicate an overall higher quality of vessel reconstruction with the proposed method. Conclusions Results suggest that sparsity-integrated speckle anomaly detection (SSAD) is potentially a valuable tool for performing accurate quantification of the progression of vascular development in the mammalian embryonic yolk sac as imaged using OCT. PMID:25694962

  18. A perceptual preprocess method for 3D-HEVC

    NASA Astrophysics Data System (ADS)

    Shi, Yawen; Wang, Yongfang; Wang, Yubing

    2015-08-01

    A perceptual preprocessing method for 3D-HEVC coding is proposed in the paper. Firstly we proposed a new JND model, which accounts for luminance contrast masking effect, spatial masking effect, and temporal masking effect, saliency characteristic as well as depth information. We utilize spectral residual approach to obtain the saliency map and built a visual saliency factor based on saliency map. In order to distinguish the sensitivity of objects in different depth. We segment each texture frame into foreground and background by a automatic threshold selection algorithm using corresponding depth information, and then built a depth weighting factor. A JND modulation factor is built with a linear combined with visual saliency factor and depth weighting factor to adjust the JND threshold. Then, we applied the proposed JND model to 3D-HEVC for residual filtering and distortion coefficient processing. The filtering process is that the residual value will be set to zero if the JND threshold is greater than residual value, or directly subtract the JND threshold from residual value if JND threshold is less than residual value. Experiment results demonstrate that the proposed method can achieve average bit rate reduction of 15.11%, compared to the original coding scheme with HTM12.1, while maintains the same subjective quality.

  19. Automatic segmentation and 3D reconstruction of intravascular ultrasound images for a fast preliminar evaluation of vessel pathologies.

    PubMed

    Sanz-Requena, Roberto; Moratal, David; García-Sánchez, Diego Ramón; Bodí, Vicente; Rieta, José Joaquín; Sanchis, Juan Manuel

    2007-03-01

    Intravascular ultrasound (IVUS) imaging is used along with X-ray coronary angiography to detect vessel pathologies. Manual analysis of IVUS images is slow and time-consuming and it is not feasible for clinical purposes. A semi-automated method is proposed to generate 3D reconstructions from IVUS video sequences, so that a fast diagnose can be easily done, quantifying plaque length and severity as well as plaque volume of the vessels under study. The methodology described in this work has four steps: a pre-processing of IVUS images, a segmentation of media-adventitia contour, a detection of intima and plaque and a 3D reconstruction of the vessel. Preprocessing is intended to remove noise from the images without blurring the edges. Segmentation of media-adventitia contour is achieved using active contours (snakes). In particular, we use the gradient vector flow (GVF) as external force for the snakes. The detection of lumen border is obtained taking into account gray-level information of the inner part of the previously detected contours. A knowledge-based approach is used to determine which level of gray corresponds statistically to the different regions of interest: intima, plaque and lumen. The catheter region is automatically discarded. An estimate of plaque type is also given. Finally, 3D reconstruction of all detected regions is made. The suitability of this methodology has been verified for the analysis and visualization of plaque length, stenosis severity, automatic detection of the most problematic regions, calculus of plaque volumes and a preliminary estimation of plaque type obtaining for automatic measures of lumen and vessel area an average error smaller than 1mm(2) (equivalent aproximately to 10% of the average measure), for calculus of plaque and lumen volume errors smaller than 0.5mm(3) (equivalent approximately to 20% of the average measure) and for plaque type estimates a mismatch of less than 8% in the analysed frames. PMID:17215103

  20. X-ray imaging and 3D reconstruction of in-flight exploding foil initiator flyers

    NASA Astrophysics Data System (ADS)

    Willey, T. M.; Champley, K.; Hodgin, R.; Lauderbach, L.; Bagge-Hansen, M.; May, C.; Sanchez, N.; Jensen, B. J.; Iverson, A.; van Buuren, T.

    2016-06-01

    Exploding foil initiators (EFIs), also known as slapper initiators or detonators, offer clear safety and timing advantages over other means of initiating detonation in high explosives. This work outlines a new capability for imaging and reconstructing three-dimensional images of operating EFIs. Flyer size and intended velocity were chosen based on parameters of the imaging system. The EFI metal plasma and plastic flyer traveling at 2.5 km/s were imaged with short ˜80 ps pulses spaced 153.4 ns apart. A four-camera system acquired 4 images from successive x-ray pulses from each shot. The first frame was prior to bridge burst, the 2nd images the flyer about 0.16 mm above the surface but edges of the foil and/or flyer are still attached to the substrate. The 3rd frame captures the flyer in flight, while the 4th shows a completely detached flyer in a position that is typically beyond where slappers strike initiating explosives. Multiple acquisitions at different incident angles and advanced computed tomography reconstruction algorithms were used to produce a 3-dimensional image of the flyer at 0.16 and 0.53 mm above the surface. Both the x-ray images and the 3D reconstruction show a strong anisotropy in the shape of the flyer and underlying foil parallel vs. perpendicular to the initiating current and electrical contacts. These results provide detailed flyer morphology during the operation of the EFI.

  1. 3D reconstruction of outdoor environments from omnidirectional range and color images

    NASA Astrophysics Data System (ADS)

    Asai, Toshihiro; Kanbara, Masayuki; Yokoya, Naokazu

    2005-03-01

    This paper describes a 3D modeling method for wide area outdoor environments which is based on integrating omnidirectional range and color images. In the proposed method, outdoor scenes can be efficiently digitized by an omnidirectional laser rangefinder which can obtain a 3D shape with high-accuracy and an omnidirectional multi-camera system (OMS) which can capture a high-resolution color image. Multiple range images are registered by minimizing the distances between corresponding points in the different range images. In order to register multiple range images stably, the points on the plane portions detected from the range data are used in registration process. The position and orientation acquired by the RTK-GPS and the gyroscope are used as initial value of simultaneous registration. The 3D model which is obtained by registration of range data is mapped by the texture selected from omnidirectional images in consideration of the resolution of the texture and occlusions of the model. In experiments, we have carried out 3D modeling of our campus with the proposed method.

  2. A correction method of color projection fringes in 3D contour measurement

    NASA Astrophysics Data System (ADS)

    Song, Li-mei; Li, Zong-yan; Chen, Chang-man; Xi, Jiang-tao; Guo, Qing-hua; Li, Xiao-jie

    2015-07-01

    In the three-dimensional (3D) contour measurement, the phase shift profilometry (PSP) method is the most widely used one. However, the measurement speed of PSP is very low because of the multiple projections. In order to improve the measurement speed, color grating stripes are used for measurement in this paper. During the measurement, only one color sinusoidal fringe is projected on the measured object. Therefore, the measurement speed is greatly improved. Since there is coupling or interference phenomenon between the adjacent color grating stripes, a color correction method is used to improve the measurement results. A method for correcting nonlinear error of measurement system is proposed in this paper, and the sinusoidal property of acquired image after correction is better than that before correction. Experimental results show that with these correction methods, the measurement errors can be reduced. Therefore, it can support a good foundation for the high-precision 3D reconstruction.

  3. 3D bone mineral density distribution and shape reconstruction of the proximal femur from a single simulated DXA image: an in vitro study

    NASA Astrophysics Data System (ADS)

    Whitmarsh, Tristan; Humbert, Ludovic; De Craene, Mathieu; del Río Barquero, Luis M.; Fritscher, Karl; Schubert, Rainer; Eckstein, Felix; Link, Thomas; Frangi, Alejandro F.

    2010-03-01

    Area Bone Mineral Density (aBMD) measured by Dual-energy X-ray Absorptiometry (DXA) is an established criterion in the evaluation of hip fracture risk. The evaluation from these planar images, however, is limited to 2D while it has been shown that proper 3D assessment of both the shape and the Bone Mineral Density (BMD) distribution improves the fracture risk estimation. In this work we present a method to reconstruct both the 3D bone shape and 3D BMD distribution of the proximal femur from a single DXA image. A statistical model of shape and a separate statistical model of the BMD distribution were automatically constructed from a set of Quantitative Computed Tomography (QCT) scans. The reconstruction method incorporates a fully automatic intensity based 3D-2D registration process, maximizing the similarity between the DXA and a digitally reconstructed radiograph of the combined model. For the construction of the models, an in vitro dataset of QCT scans of 60 anatomical specimens was used. To evaluate the reconstruction accuracy, experiments were performed on simulated DXA images from the QCT scans of 30 anatomical specimens. Comparisons between the reconstructions and the same subject QCT scans showed a mean shape accuracy of 1.2mm, and a mean density error of 81mg/cm3. The results show that this method is capable of accurately reconstructing both the 3D shape and 3D BMD distribution of the proximal femur from DXA images used in clinical routine, potentially improving the diagnosis of osteoporosis and fracture risk assessments at a low radiation dose and low cost.

  4. High fidelity digital inline holographic method for 3D flow measurements.

    PubMed

    Toloui, Mostafa; Hong, Jiarong

    2015-10-19

    Among all the 3D optical flow diagnostic techniques, digital inline holographic particle tracking velocimetry (DIH-PTV) provides the highest spatial resolution with low cost, simple and compact optical setups. Despite these advantages, DIH-PTV suffers from major limitations including poor longitudinal resolution, human intervention (i.e. requirement for manually determined tuning parameters during tracer field reconstruction and extraction), limited tracer concentration, and expensive computations. These limitations prevent this technique from being widely used for high resolution 3D flow measurements. In this study, we present a novel holographic particle extraction method with the goal of overcoming all the major limitations of DIH-PTV. The proposed method consists of multiple steps involving 3D deconvolution, automatic signal-to-noise ratio enhancement and thresholding, and inverse iterative particle extraction. The entire method is implemented using GPU-based algorithm to increase the computational speed significantly. Validated with synthetic particle holograms, the proposed method can achieve particle extraction rate above 95% with fake particles less than 3% and maximum position error below 1.6 particle diameter for holograms with particle concentration above 3000 particles/mm3. The applicability of the proposed method for DIH-PTV has been further validated using the experiment of laminar flow in a microchannel and the synthetic tracer flow fields generated using a DNS turbulent channel flow database. Such improvements will substantially enhance the implementation of DIH-PTV for 3D flow measurements and enable the potential commercialization of this technique. PMID:26480377

  5. Phase Tomography Reconstructed by 3D TIE in Hard X-ray Microscope

    SciTech Connect

    Yin, G.-C.; Chen, F.-R.; Pyun, Ahram; Je, Jung Ho; Hwu, Yeukuang; Liang, Keng S.

    2007-01-19

    X-ray phase tomography and phase imaging are promising ways of investigation on low Z material. A polymer blend of PE/PS sample was used to test the 3D phase retrieval method in the parallel beam illuminated microscope. Because the polymer sample is thick, the phase retardation is quite mixed and the image can not be distinguished when the 2D transport intensity equation (TIE) is applied. In this study, we have provided a different approach for solving the phase in three dimensions for thick sample. Our method involves integration of 3D TIE/Fourier slice theorem for solving thick phase sample. In our experimen