Science.gov

Sample records for 3d relative motion

  1. 3D Human Motion Editing and Synthesis: A Survey

    PubMed Central

    Wang, Xin; Chen, Qiudi; Wang, Wanliang

    2014-01-01

    The ways to compute the kinematics and dynamic quantities of human bodies in motion have been studied in many biomedical papers. This paper presents a comprehensive survey of 3D human motion editing and synthesis techniques. Firstly, four types of methods for 3D human motion synthesis are introduced and compared. Secondly, motion capture data representation, motion editing, and motion synthesis are reviewed successively. Finally, future research directions are suggested. PMID:25045395

  2. Motion estimation in the 3-D Gabor domain.

    PubMed

    Feng, Mu; Reed, Todd R

    2007-08-01

    Motion estimation methods can be broadly classified as being spatiotemporal or frequency domain in nature. The Gabor representation is an analysis framework providing localized frequency information. When applied to image sequences, the 3-D Gabor representation displays spatiotemporal/spatiotemporal-frequency (st/stf) information, enabling the application of robust frequency domain methods with adjustable spatiotemporal resolution. In this work, the 3-D Gabor representation is applied to motion analysis. We demonstrate that piecewise uniform translational motion can be estimated by using a uniform translation motion model in the st/stf domain. The resulting motion estimation method exhibits both good spatiotemporal resolution and substantial noise resistance compared to existing spatiotemporal methods. To form the basis of this model, we derive the signature of the translational motion in the 3-D Gabor domain. Finally, to obtain higher spatiotemporal resolution for more complex motions, a dense motion field estimation method is developed to find a motion estimate for every pixel in the sequence.

  3. Processing 3D form and 3D motion: respective contributions of attention-based and stimulus-driven activity.

    PubMed

    Paradis, A-L; Droulez, J; Cornilleau-Pérès, V; Poline, J-B

    2008-12-01

    This study aims at segregating the neural substrate for the 3D-form and 3D-motion attributes in structure-from-motion perception, and at disentangling the stimulus-driven and endogenous-attention-driven processing of these attributes. Attention and stimulus were manipulated independently: participants had to detect the transitions of one attribute--form, 3D motion or colour--while the visual stimulus underwent successive transitions of all attributes. We compared the BOLD activity related to form and 3D motion in three conditions: stimulus-driven processing (unattended transitions), endogenous attentional selection (task) or both stimulus-driven processing and attentional selection (attended transitions). In all conditions, the form versus 3D-motion contrasts revealed a clear dorsal/ventral segregation. However, while the form-related activity is consistent with previously described shape-selective areas, the activity related to 3D motion does not encompass the usual "visual motion" areas, but rather corresponds to a high-level motion system, including IPL and STS areas. Second, we found a dissociation between the neural processing of unattended attributes and that involved in endogenous attentional selection. Areas selective for 3D-motion and form showed either increased activity at transitions of these respective attributes or decreased activity when subjects' attention was directed to a competing attribute. We propose that both facilitatory and suppressive mechanisms of attribute selection are involved depending on the conditions driving this selection. Therefore, attentional selection is not limited to an increased activity in areas processing stimulus properties, and may unveil different functional localization from stimulus modulation.

  4. On the Inverse Problem of Binocular 3D Motion Perception

    PubMed Central

    Lages, Martin; Heron, Suzanne

    2010-01-01

    It is shown that existing processing schemes of 3D motion perception such as interocular velocity difference, changing disparity over time, as well as joint encoding of motion and disparity, do not offer a general solution to the inverse optics problem of local binocular 3D motion. Instead we suggest that local velocity constraints in combination with binocular disparity and other depth cues provide a more flexible framework for the solution of the inverse problem. In the context of the aperture problem we derive predictions from two plausible default strategies: (1) the vector normal prefers slow motion in 3D whereas (2) the cyclopean average is based on slow motion in 2D. Predicting perceived motion directions for ambiguous line motion provides an opportunity to distinguish between these strategies of 3D motion processing. Our theoretical results suggest that velocity constraints and disparity from feature tracking are needed to solve the inverse problem of 3D motion perception. It seems plausible that motion and disparity input is processed in parallel and integrated late in the visual processing hierarchy. PMID:21124957

  5. 3D Guided Wave Motion Analysis on Laminated Composites

    NASA Technical Reports Server (NTRS)

    Tian, Zhenhua; Leckey, Cara; Yu, Lingyu

    2013-01-01

    Ultrasonic guided waves have proved useful for structural health monitoring (SHM) and nondestructive evaluation (NDE) due to their ability to propagate long distances with less energy loss compared to bulk waves and due to their sensitivity to small defects in the structure. Analysis of actively transmitted ultrasonic signals has long been used to detect and assess damage. However, there remain many challenging tasks for guided wave based SHM due to the complexity involved with propagating guided waves, especially in the case of composite materials. The multimodal nature of the ultrasonic guided waves complicates the related damage analysis. This paper presents results from parallel 3D elastodynamic finite integration technique (EFIT) simulations used to acquire 3D wave motion in the subject laminated carbon fiber reinforced polymer composites. The acquired 3D wave motion is then analyzed by frequency-wavenumber analysis to study the wave propagation and interaction in the composite laminate. The frequency-wavenumber analysis enables the study of individual modes and visualization of mode conversion. Delamination damage has been incorporated into the EFIT model to generate "damaged" data. The potential for damage detection in laminated composites is discussed in the end.

  6. 3D visual presentation of shoulder joint motion.

    PubMed

    Totterman, S; Tamez-Pena, J; Kwok, E; Strang, J; Smith, J; Rubens, D; Parker, K

    1998-01-01

    The 3D visual presentation of biodynamic events of human joints is a challenging task. Although the 3D reconstruction of high contrast structures from CT data has been widely explored, then there is much less experience in reconstructing the small low contrast soft tissue structures from inhomogeneous and sometimes noisy MR data. Further, there are no algorithms for tracking the motion of moving anatomic structures through MR data. We represent a comprehensive approach to 3D musculoskeletal imagery that addresses these challenges. Specific imaging protocols, segmentation algorithms and rendering techniques are developed and applied to render complex 3D musculoskeletal systems for their 4D visual presentation. Applications of our approach include analysis of rotational motion of the shoulder, the knee flexion, and other complex musculoskeletal motions, and the development of interactive virtual human joints.

  7. 3D Reconstruction of Human Motion from Monocular Image Sequences.

    PubMed

    Wandt, Bastian; Ackermann, Hanno; Rosenhahn, Bodo

    2016-08-01

    This article tackles the problem of estimating non-rigid human 3D shape and motion from image sequences taken by uncalibrated cameras. Similar to other state-of-the-art solutions we factorize 2D observations in camera parameters, base poses and mixing coefficients. Existing methods require sufficient camera motion during the sequence to achieve a correct 3D reconstruction. To obtain convincing 3D reconstructions from arbitrary camera motion, our method is based on a-priorly trained base poses. We show that strong periodic assumptions on the coefficients can be used to define an efficient and accurate algorithm for estimating periodic motion such as walking patterns. For the extension to non-periodic motion we propose a novel regularization term based on temporal bone length constancy. In contrast to other works, the proposed method does not use a predefined skeleton or anthropometric constraints and can handle arbitrary camera motion. We achieve convincing 3D reconstructions, even under the influence of noise and occlusions. Multiple experiments based on a 3D error metric demonstrate the stability of the proposed method. Compared to other state-of-the-art methods our algorithm shows a significant improvement. PMID:27093439

  8. 3D Reconstruction of Human Motion from Monocular Image Sequences.

    PubMed

    Wandt, Bastian; Ackermann, Hanno; Rosenhahn, Bodo

    2016-08-01

    This article tackles the problem of estimating non-rigid human 3D shape and motion from image sequences taken by uncalibrated cameras. Similar to other state-of-the-art solutions we factorize 2D observations in camera parameters, base poses and mixing coefficients. Existing methods require sufficient camera motion during the sequence to achieve a correct 3D reconstruction. To obtain convincing 3D reconstructions from arbitrary camera motion, our method is based on a-priorly trained base poses. We show that strong periodic assumptions on the coefficients can be used to define an efficient and accurate algorithm for estimating periodic motion such as walking patterns. For the extension to non-periodic motion we propose a novel regularization term based on temporal bone length constancy. In contrast to other works, the proposed method does not use a predefined skeleton or anthropometric constraints and can handle arbitrary camera motion. We achieve convincing 3D reconstructions, even under the influence of noise and occlusions. Multiple experiments based on a 3D error metric demonstrate the stability of the proposed method. Compared to other state-of-the-art methods our algorithm shows a significant improvement.

  9. [Evaluation of Motion Sickness Induced by 3D Video Clips].

    PubMed

    Matsuura, Yasuyuki; Takada, Hiroki

    2016-01-01

    The use of stereoscopic images has been spreading rapidly. Nowadays, stereoscopic movies are nothing new to people. Stereoscopic systems date back to 280 A.D. when Euclid first recognized the concept of depth perception by humans. Despite the increase in the production of three-dimensional (3D) display products and many studies on stereoscopic vision, the effect of stereoscopic vision on the human body has been insufficiently understood. However, symptoms such as eye fatigue and 3D sickness have been the concerns when viewing 3D films for a prolonged period of time; therefore, it is important to consider the safety of viewing virtual 3D contents as a contribution to society. It is generally explained to the public that accommodation and convergence are mismatched during stereoscopic vision and that this is the main reason for the visual fatigue and visually induced motion sickness (VIMS) during 3D viewing. We have devised a method to simultaneously measure lens accommodation and convergence. We used this simultaneous measurement device to characterize 3D vision. Fixation distance was compared between accommodation and convergence during the viewing of 3D films with repeated measurements. Time courses of these fixation distances and their distributions were compared in subjects who viewed 2D and 3D video clips. The results indicated that after 90 s of continuously viewing 3D images, the accommodative power does not correspond to the distance of convergence. In this paper, remarks on methods to measure the severity of motion sickness induced by viewing 3D films are also given. From the epidemiological viewpoint, it is useful to obtain novel knowledge for reduction and/or prevention of VIMS. We should accumulate empirical data on motion sickness, which may contribute to the development of relevant fields in science and technology.

  10. Preference for motion and depth in 3D film

    NASA Astrophysics Data System (ADS)

    Hartle, Brittney; Lugtigheid, Arthur; Kazimi, Ali; Allison, Robert S.; Wilcox, Laurie M.

    2015-03-01

    While heuristics have evolved over decades for the capture and display of conventional 2D film, it is not clear these always apply well to stereoscopic 3D (S3D) film. Further, while there has been considerable recent research on viewer comfort in S3D media, little attention has been paid to audience preferences for filming parameters in S3D. Here we evaluate viewers' preferences for moving S3D film content in a theatre setting. Specifically we examine preferences for combinations of camera motion (speed and direction) and stereoscopic depth (IA). The amount of IA had no impact on clip preferences regardless of the direction or speed of camera movement. However, preferences were influenced by camera speed, but only in the in-depth condition where viewers preferred faster motion. Given that previous research shows that slower speeds are more comfortable for viewing S3D content, our results show that viewing preferences cannot be predicted simply from measures of comfort. Instead, it is clear that viewer response to S3D film is complex and that film parameters selected to enhance comfort may in some instances produce less appealing content.

  11. Learning Projectile Motion with the Computer Game ``Scorched 3D``

    NASA Astrophysics Data System (ADS)

    Jurcevic, John S.

    2008-01-01

    For most of our students, video games are a normal part of their lives. We should take advantage of this medium to teach physics in a manner that is engrossing for our students. In particular, modern video games incorporate accurate physics in their game engines, and they allow us to visualize the physics through flashy and captivating graphics. I recently used the game "Scorched 3D" to help my students understand projectile motion.

  12. Characterization of 3-D coronary tree motion from MSCT angiography

    PubMed Central

    Yang, Guanyu; Zhou, Jian; Boulmier, Dominique; Garcia, Marie-Paule; Luo, Limin; Toumoulin, Christine

    2010-01-01

    This paper describes a method for the characterization of coronary artery motion using Multi-slice Computed Tomography (MSCT) volume sequences. Coronary trees are first extracted by a spatial vessel tracking method in each volume of MSCT sequence. A point-based matching algorithm, with feature landmarks constraint, is then applied to match the 3D extracted centerlines between two consecutive instants over a complete cardiac cycle. The transformation functions and correspondence matrices are estimated simultaneously and allow deformable fitting of the vessels over the volume series. Either point-based or branch-based motion features can be derived. Experiments have been conducted in order to evaluate the performance of the method with a matching error analysis. PMID:19783508

  13. Inertial Motion-Tracking Technology for Virtual 3-D

    NASA Technical Reports Server (NTRS)

    2005-01-01

    In the 1990s, NASA pioneered virtual reality research. The concept was present long before, but, prior to this, the technology did not exist to make a viable virtual reality system. Scientists had theories and ideas they knew that the concept had potential, but the computers of the 1970s and 1980s were not fast enough, sensors were heavy and cumbersome, and people had difficulty blending fluidly with the machines. Scientists at Ames Research Center built upon the research of previous decades and put the necessary technology behind them, making the theories of virtual reality a reality. Virtual reality systems depend on complex motion-tracking sensors to convey information between the user and the computer to give the user the feeling that he is operating in the real world. These motion-tracking sensors measure and report an object s position and orientation as it changes. A simple example of motion tracking would be the cursor on a computer screen moving in correspondence to the shifting of the mouse. Tracking in 3-D, necessary to create virtual reality, however, is much more complex. To be successful, the perspective of the virtual image seen on the computer must be an accurate representation of what is seen in the real world. As the user s head or camera moves, turns, or tilts, the computer-generated environment must change accordingly with no noticeable lag, jitter, or distortion. Historically, the lack of smooth and rapid tracking of the user s motion has thwarted the widespread use of immersive 3-D computer graphics. NASA uses virtual reality technology for a variety of purposes, mostly training of astronauts. The actual missions are costly and dangerous, so any opportunity the crews have to practice their maneuvering in accurate situations before the mission is valuable and instructive. For that purpose, NASA has funded a great deal of virtual reality research, and benefited from the results.

  14. Rigid Body Motion in Stereo 3D Simulation

    ERIC Educational Resources Information Center

    Zabunov, Svetoslav

    2010-01-01

    This paper addresses the difficulties experienced by first-grade students studying rigid body motion at Sofia University. Most quantities describing the rigid body are in relations that the students find hard to visualize and understand. They also lose the notion of cause-result relations between vector quantities, such as the relation between…

  15. Use of 3D vision for fine robot motion

    NASA Technical Reports Server (NTRS)

    Lokshin, Anatole; Litwin, Todd

    1989-01-01

    An integration of 3-D vision systems with robot manipulators will allow robots to operate in a poorly structured environment by visually locating targets and obstacles. However, by using computer vision for objects acquisition makes the problem of overall system calibration even more difficult. Indeed, in a CAD based manipulation a control architecture has to find an accurate mapping between the 3-D Euclidean work space and a robot configuration space (joint angles). If a stereo vision is involved, then one needs to map a pair of 2-D video images directly into the robot configuration space. Neural Network approach aside, a common solution to this problem is to calibrate vision and manipulator independently, and then tie them via common mapping into the task space. In other words, both vision and robot refer to some common Absolute Euclidean Coordinate Frame via their individual mappings. This approach has two major difficulties. First a vision system has to be calibrated over the total work space. And second, the absolute frame, which is usually quite arbitrary, has to be the same with a high degree of precision for both robot and vision subsystem calibrations. The use of computer vision to allow robust fine motion manipulation in a poorly structured world which is currently in progress is described along with the preliminary results and encountered problems.

  16. Artificial neural networks for 3-D motion analysis-Part II: Nonrigid motion.

    PubMed

    Chen, T; Lin, W C; Chen, C T

    1995-01-01

    For pt. I see ibid., p. 1386-93 (1995). An approach applying artificial neural net techniques to 3D nonrigid motion analysis is proposed. The 3D nonrigid motion of the left ventricle of a human heart is examined using biplanar cineangiography data, consisting of 3D coordinates of 30 coronary artery bifurcation points of the left ventricle and the correspondences of these points taken over 10 time instants during the heart cardiac cycle. The motion is decomposed into global rigid motion and a set of local nonrigid deformations which are coupled with the global motion. The global rigid motion can be estimated precisely as a translation vecto and a rotation matrix. Local nonrigid deformation estimation is discussed. A set of neural nets similar in structure and dynamics but different in physical size is proposed to tackle the problem of nonrigidity. These neural networks are interconnected through feedbacks. The activation function of the output layer is selected so that a feedback is involved in the output updating. The constraints are specified to ensure stable and globally consistent estimation. The objective is to find the optimal deformation matrices that satisfy the constraints for all coronary artery bifurcation points of the left ventricle. The proposed neural networks differ from other existing neural network models in their unique structure and dynamics.

  17. Real-time 3D visualization of volumetric video motion sensor data

    SciTech Connect

    Carlson, J.; Stansfield, S.; Shawver, D.; Flachs, G.M.; Jordan, J.B.; Bao, Z.

    1996-11-01

    This paper addresses the problem of improving detection, assessment, and response capabilities of security systems. Our approach combines two state-of-the-art technologies: volumetric video motion detection (VVMD) and virtual reality (VR). This work capitalizes on the ability of VVMD technology to provide three-dimensional (3D) information about the position, shape, and size of intruders within a protected volume. The 3D information is obtained by fusing motion detection data from multiple video sensors. The second component involves the application of VR technology to display information relating to the sensors and the sensor environment. VR technology enables an operator, or security guard, to be immersed in a 3D graphical representation of the remote site. VVMD data is transmitted from the remote site via ordinary telephone lines. There are several benefits to displaying VVMD information in this way. Because the VVMD system provides 3D information and because the sensor environment is a physical 3D space, it seems natural to display this information in 3D. Also, the 3D graphical representation depicts essential details within and around the protected volume in a natural way for human perception. Sensor information can also be more easily interpreted when the operator can `move` through the virtual environment and explore the relationships between the sensor data, objects and other visual cues present in the virtual environment. By exploiting the powerful ability of humans to understand and interpret 3D information, we expect to improve the means for visualizing and interpreting sensor information, allow a human operator to assess a potential threat more quickly and accurately, and enable a more effective response. This paper will detail both the VVMD and VR technologies and will discuss a prototype system based upon their integration.

  18. Faceless identification: a model for person identification using the 3D shape and 3D motion as cues

    NASA Astrophysics Data System (ADS)

    Klasen, Lena M.; Li, Haibo

    1999-02-01

    Person identification by using biometric methods based on image sequences, or still images, often requires a controllable and cooperative environment during the image capturing stage. In the forensic case the situation is more likely to be the opposite. In this work we propose a method that makes use of the anthropometry of the human body and human actions as cues for identification. Image sequences from surveillance systems are used, which can be seen as monocular image sequences. A 3D deformable wireframe body model is used as a platform to handle the non-rigid information of the 3D shape and 3D motion of the human body from the image sequence. A recursive method for estimating global motion and local shape variations is presented, using two recursive feedback systems.

  19. 3D imaging of particle-scale rotational motion in cyclically driven granular flows

    NASA Astrophysics Data System (ADS)

    Harrington, Matt; Powers, Dylan; Cooper, Eric; Losert, Wolfgang

    Recent experimental advances have enabled three-dimensional (3D) imaging of motion, structure, and failure within granular systems. 3D imaging allows researchers to directly characterize bulk behaviors that arise from particle- and meso-scale features. For instance, segregation of a bidisperse system of spheres under cyclic shear can originate from microscopic irreversibilities and the development of convective secondary flows. Rotational motion and frictional rotational coupling, meanwhile, have been less explored in such experimental 3D systems, especially under cyclic forcing. In particular, relative amounts of sliding and/or rolling between pairs of contacting grains could influence the reversibility of both trajectories, in terms of both position and orientation. In this work, we apply the Refractive Index Matched Scanning technique to a granular system that is cyclically driven and measure both translational and rotational motion of individual grains. We relate measured rotational motion to resulting shear bands and convective flows, further indicating the degree to which pairs and neighborhoods of grains collectively rotate.

  20. 3D Measurement of Forearm and Upper Arm during Throwing Motion using Body Mounted Sensor

    NASA Astrophysics Data System (ADS)

    Koda, Hideharu; Sagawa, Koichi; Kuroshima, Kouta; Tsukamoto, Toshiaki; Urita, Kazutaka; Ishibashi, Yasuyuki

    The aim of this study is to propose the measurement method of three-dimensional (3D) movement of forearm and upper arm during pitching motion of baseball using inertial sensors without serious consideration of sensor installation. Although high accuracy measurement of sports motion is achieved by using optical motion capture system at present, it has some disadvantages such as the calibration of cameras and limitation of measurement place. Whereas the proposed method for 3D measurement of pitching motion using body mounted sensors provides trajectory and orientation of upper arm by the integration of acceleration and angular velocity measured on upper limb. The trajectory of forearm is derived so that the elbow joint axis of forearm corresponds to that of upper arm. Spatial relation between upper limb and sensor system is obtained by performing predetermined movements of upper limb and utilizing angular velocity and gravitational acceleration. The integration error is modified so that the estimated final position, velocity and posture of upper limb agree with the actual ones. The experimental results of the measurement of pitching motion show that trajectories of shoulder, elbow and wrist estimated by the proposed method are highly correlated to those from the motion capture system within the estimation error of about 10 [%].

  1. Brightness-compensated 3-D optical flow algorithm for monitoring cochlear motion patterns

    NASA Astrophysics Data System (ADS)

    von Tiedemann, Miriam; Fridberger, Anders; Ulfendahl, Mats; de Monvel, Jacques Boutet

    2010-09-01

    A method for three-dimensional motion analysis designed for live cell imaging by fluorescence confocal microscopy is described. The approach is based on optical flow computation and takes into account brightness variations in the image scene that are not due to motion, such as photobleaching or fluorescence variations that may reflect changes in cellular physiology. The 3-D optical flow algorithm allowed almost perfect motion estimation on noise-free artificial sequences, and performed with a relative error of <10% on noisy images typical of real experiments. The method was applied to a series of 3-D confocal image stacks from an in vitro preparation of the guinea pig cochlea. The complex motions caused by slow pressure changes in the cochlear compartments were quantified. At the surface of the hearing organ, the largest motion component was the transverse one (normal to the surface), but significant radial and longitudinal displacements were also present. The outer hair cell displayed larger radial motion at their basolateral membrane than at their apical surface. These movements reflect mechanical interactions between different cellular structures, which may be important for communicating sound-evoked vibrations to the sensory cells. A better understanding of these interactions is important for testing realistic models of cochlear mechanics.

  2. Determining 3-D motion and structure from image sequences

    NASA Technical Reports Server (NTRS)

    Huang, T. S.

    1982-01-01

    A method of determining three-dimensional motion and structure from two image frames is presented. The method requires eight point correspondences between the two frames, from which motion and structure parameters are determined by solving a set of eight linear equations and a singular value decomposition of a 3x3 matrix. It is shown that the solution thus obtained is unique.

  3. Full 3-D transverse oscillations: a method for tissue motion estimation.

    PubMed

    Salles, Sebastien; Liebgott, Hervé; Garcia, Damien; Vray, Didier

    2015-08-01

    We present a new method to estimate 4-D (3-D + time) tissue motion. The method used combines 3-D phase based motion estimation with an unconventional beamforming strategy. The beamforming technique allows us to obtain full 3-D RF volumes with axial, lateral, and elevation modulations. Based on these images, we propose a method to estimate 3-D motion that uses phase images instead of amplitude images. First, volumes featuring 3-D oscillations are created using only a single apodization function, and the 3-D displacement between two consecutive volumes is estimated simultaneously by applying this 3-D estimation. The validity of the method is investigated by conducting simulations and phantom experiments. The results are compared with those obtained with two other conventional estimation methods: block matching and optical flow. The results show that the proposed method outperforms the conventional methods, especially in the transverse directions.

  4. Low-level motion analysis of color and luminance for perception of 2D and 3D motion.

    PubMed

    Shioiri, Satoshi; Yoshizawa, Masanori; Ogiya, Mistuharu; Matsumiya, Kazumichi; Yaguchi, Hirohisa

    2012-01-01

    We investigated the low-level motion mechanisms for color and luminance and their integration process using 2D and 3D motion aftereffects (MAEs). The 2D and 3D MAEs obtained in equiluminant color gratings showed that the visual system has the low-level motion mechanism for color motion as well as for luminance motion. The 3D MAE is an MAE for motion in depth after monocular motion adaptation. Apparent 3D motion can be perceived after prolonged exposure of one eye to lateral motion because the difference in motion signal between the adapted and unadapted eyes generates interocular velocity differences (IOVDs). Since IOVDs cannot be analyzed by the high-level motion mechanism of feature tracking, we conclude that a low-level motion mechanism is responsible for the 3D MAE. Since we found different temporal frequency characteristics between the color and luminance stimuli, MAEs in the equiluminant color stimuli cannot be attributed to a residual luminance component in the color stimulus. Although a similar MAE was found with a luminance and a color test both for 2D and 3D motion judgments after adapting to either color or luminance motion, temporal frequency characteristics were different between the color and luminance adaptation. The visual system must have a low-level motion mechanism for color signals as for luminance ones. We also found that color and luminance motion signals are integrated monocularly before IOVD analysis, showing a cross adaptation effect between color and luminance stimuli. This was supported by an experiment with dichoptic presentations of color and luminance tests. In the experiment, color and luminance tests were presented in the different eyes dichoptically with four different combinations of test and adaptation: color or luminance test in the adapted eye after color or luminance adaptation. Findings of little or no influence of the adaptation/test combinations indicate the integration of color and luminance motion signals prior to the

  5. Tracking 3-D body motion for docking and robot control

    NASA Technical Reports Server (NTRS)

    Donath, M.; Sorensen, B.; Yang, G. B.; Starr, R.

    1987-01-01

    An advanced method of tracking three-dimensional motion of bodies has been developed. This system has the potential to dynamically characterize machine and other structural motion, even in the presence of structural flexibility, thus facilitating closed loop structural motion control. The system's operation is based on the concept that the intersection of three planes defines a point. Three rotating planes of laser light, fixed and moving photovoltaic diode targets, and a pipe-lined architecture of analog and digital electronics are used to locate multiple targets whose number is only limited by available computer memory. Data collection rates are a function of the laser scan rotation speed and are currently selectable up to 480 Hz. The tested performance on a preliminary prototype designed for 0.1 in accuracy (for tracking human motion) at a 480 Hz data rate includes a worst case resolution of 0.8 mm (0.03 inches), a repeatability of plus or minus 0.635 mm (plus or minus 0.025 inches), and an absolute accuracy of plus or minus 2.0 mm (plus or minus 0.08 inches) within an eight cubic meter volume with all results applicable at the 95 percent level of confidence along each coordinate region. The full six degrees of freedom of a body can be computed by attaching three or more target detectors to the body of interest.

  6. Towards robust 3D visual tracking for motion compensation in beating heart surgery.

    PubMed

    Richa, Rogério; Bó, Antônio P L; Poignet, Philippe

    2011-06-01

    In the context of minimally invasive cardiac surgery, active vision-based motion compensation schemes have been proposed for mitigating problems related to physiological motion. However, robust and accurate visual tracking remains a difficult task. The purpose of this paper is to present a robust visual tracking method that estimates the 3D temporal and spatial deformation of the heart surface using stereo endoscopic images. The novelty is the combination of a visual tracking method based on a Thin-Plate Spline (TPS) model for representing the heart surface deformations with a temporal heart motion model based on a time-varying dual Fourier series for overcoming tracking disturbances or failures. The considerable improvements in tracking robustness facing specular reflections and occlusions are demonstrated through experiments using images of in vivo porcine and human beating hearts.

  7. Towards robust 3D visual tracking for motion compensation in beating heart surgery.

    PubMed

    Richa, Rogério; Bó, Antônio P L; Poignet, Philippe

    2011-06-01

    In the context of minimally invasive cardiac surgery, active vision-based motion compensation schemes have been proposed for mitigating problems related to physiological motion. However, robust and accurate visual tracking remains a difficult task. The purpose of this paper is to present a robust visual tracking method that estimates the 3D temporal and spatial deformation of the heart surface using stereo endoscopic images. The novelty is the combination of a visual tracking method based on a Thin-Plate Spline (TPS) model for representing the heart surface deformations with a temporal heart motion model based on a time-varying dual Fourier series for overcoming tracking disturbances or failures. The considerable improvements in tracking robustness facing specular reflections and occlusions are demonstrated through experiments using images of in vivo porcine and human beating hearts. PMID:21277821

  8. Markerless 3D motion capture for animal locomotion studies

    PubMed Central

    Sellers, William Irvin; Hirasaki, Eishi

    2014-01-01

    ABSTRACT Obtaining quantitative data describing the movements of animals is an essential step in understanding their locomotor biology. Outside the laboratory, measuring animal locomotion often relies on video-based approaches and analysis is hampered because of difficulties in calibration and often the limited availability of possible camera positions. It is also usually restricted to two dimensions, which is often an undesirable over-simplification given the essentially three-dimensional nature of many locomotor performances. In this paper we demonstrate a fully three-dimensional approach based on 3D photogrammetric reconstruction using multiple, synchronised video cameras. This approach allows full calibration based on the separation of the individual cameras and will work fully automatically with completely unmarked and undisturbed animals. As such it has the potential to revolutionise work carried out on free-ranging animals in sanctuaries and zoological gardens where ad hoc approaches are essential and access within enclosures often severely restricted. The paper demonstrates the effectiveness of video-based 3D photogrammetry with examples from primates and birds, as well as discussing the current limitations of this technique and illustrating the accuracies that can be obtained. All the software required is open source so this can be a very cost effective approach and provides a methodology of obtaining data in situations where other approaches would be completely ineffective. PMID:24972869

  9. Flash trajectory imaging of target 3D motion

    NASA Astrophysics Data System (ADS)

    Wang, Xinwei; Zhou, Yan; Fan, Songtao; He, Jun; Liu, Yuliang

    2011-03-01

    We present a flash trajectory imaging technique which can directly obtain target trajectory and realize non-contact measurement of motion parameters by range-gated imaging and time delay integration. Range-gated imaging gives the range of targets and realizes silhouette detection which can directly extract targets from complex background and decrease the complexity of moving target image processing. Time delay integration increases information of one single frame of image so that one can directly gain the moving trajectory. In this paper, we have studied the algorithm about flash trajectory imaging and performed initial experiments which successfully obtained the trajectory of a falling badminton. Our research demonstrates that flash trajectory imaging is an effective approach to imaging target trajectory and can give motion parameters of moving targets.

  10. 2D-3D rigid registration to compensate for prostate motion during 3D TRUS-guided biopsy

    NASA Astrophysics Data System (ADS)

    De Silva, Tharindu; Fenster, Aaron; Bax, Jeffrey; Gardi, Lori; Romagnoli, Cesare; Samarabandu, Jagath; Ward, Aaron D.

    2012-02-01

    Prostate biopsy is the clinical standard for prostate cancer diagnosis. To improve the accuracy of targeting suspicious locations, systems have been developed that can plan and record biopsy locations in a 3D TRUS image acquired at the beginning of the procedure. Some systems are designed for maximum compatibility with existing ultrasound equipment and are thus designed around the use of a conventional 2D TRUS probe, using controlled axial rotation of this probe to acquire a 3D TRUS reference image at the start of the biopsy procedure. Prostate motion during the biopsy procedure causes misalignments between the prostate in the live 2D TRUS images and the pre-acquired 3D TRUS image. We present an image-based rigid registration technique that aligns live 2D TRUS images, acquired immediately prior to biopsy needle insertion, with the pre-acquired 3D TRUS image to compensate for this motion. Our method was validated using 33 manually identified intrinsic fiducials in eight subjects and the target registration error was found to be 1.89 mm. We analysed the suitability of two image similarity metrics (normalized cross correlation and mutual information) for this task by plotting these metrics as a function of varying parameters in the six degree-of-freedom transformation space, with the ground truth plane obtained from registration as the starting point for the parameter exploration. We observed a generally convex behaviour of the similarity metrics. This encourages their use for this registration problem, and could assist in the design of a tool for the detection of misalignment, which could trigger the execution of a non-real-time registration, when needed during the procedure.

  11. Simple 3-D stimulus for motion parallax and its simulation.

    PubMed

    Ono, Hiroshi; Chornenkyy, Yevgen; D'Amour, Sarah

    2013-01-01

    Simulation of a given stimulus situation should produce the same perception as the original. Rogers et al (2009 Perception 38 907-911) simulated Wheeler's (1982, PhD thesis, Rutgers University, NJ) motion parallax stimulus and obtained quite different perceptions. Wheeler's observers were unable to reliably report the correct direction of depth, whereas Rogers's were. With three experiments we explored the possible reasons for the discrepancy. Our results suggest that Rogers was able to see depth from the simulation partly due to his experience seeing depth with random dot surfaces. PMID:23964382

  12. Motion field estimation for a dynamic scene using a 3D LiDAR.

    PubMed

    Li, Qingquan; Zhang, Liang; Mao, Qingzhou; Zou, Qin; Zhang, Pin; Feng, Shaojun; Ochieng, Washington

    2014-09-09

    This paper proposes a novel motion field estimation method based on a 3D light detection and ranging (LiDAR) sensor for motion sensing for intelligent driverless vehicles and active collision avoidance systems. Unlike multiple target tracking methods, which estimate the motion state of detected targets, such as cars and pedestrians, motion field estimation regards the whole scene as a motion field in which each little element has its own motion state. Compared to multiple target tracking, segmentation errors and data association errors have much less significance in motion field estimation, making it more accurate and robust. This paper presents an intact 3D LiDAR-based motion field estimation method, including pre-processing, a theoretical framework for the motion field estimation problem and practical solutions. The 3D LiDAR measurements are first projected to small-scale polar grids, and then, after data association and Kalman filtering, the motion state of every moving grid is estimated. To reduce computing time, a fast data association algorithm is proposed. Furthermore, considering the spatial correlation of motion among neighboring grids, a novel spatial-smoothing algorithm is also presented to optimize the motion field. The experimental results using several data sets captured in different cities indicate that the proposed motion field estimation is able to run in real-time and performs robustly and effectively.

  13. Motion Field Estimation for a Dynamic Scene Using a 3D LiDAR

    PubMed Central

    Li, Qingquan; Zhang, Liang; Mao, Qingzhou; Zou, Qin; Zhang, Pin; Feng, Shaojun; Ochieng, Washington

    2014-01-01

    This paper proposes a novel motion field estimation method based on a 3D light detection and ranging (LiDAR) sensor for motion sensing for intelligent driverless vehicles and active collision avoidance systems. Unlike multiple target tracking methods, which estimate the motion state of detected targets, such as cars and pedestrians, motion field estimation regards the whole scene as a motion field in which each little element has its own motion state. Compared to multiple target tracking, segmentation errors and data association errors have much less significance in motion field estimation, making it more accurate and robust. This paper presents an intact 3D LiDAR-based motion field estimation method, including pre-processing, a theoretical framework for the motion field estimation problem and practical solutions. The 3D LiDAR measurements are first projected to small-scale polar grids, and then, after data association and Kalman filtering, the motion state of every moving grid is estimated. To reduce computing time, a fast data association algorithm is proposed. Furthermore, considering the spatial correlation of motion among neighboring grids, a novel spatial-smoothing algorithm is also presented to optimize the motion field. The experimental results using several data sets captured in different cities indicate that the proposed motion field estimation is able to run in real-time and performs robustly and effectively. PMID:25207868

  14. A Little Knowledge of Ground Motion: Explaining 3-D Physics-Based Modeling to Engineers

    NASA Astrophysics Data System (ADS)

    Porter, K.

    2014-12-01

    Users of earthquake planning scenarios require the ground-motion map to be credible enough to justify costly planning efforts, but not all ground-motion maps are right for all uses. There are two common ways to create a map of ground motion for a hypothetical earthquake. One approach is to map the median shaking estimated by empirical attenuation relationships. The other uses 3-D physics-based modeling, in which one analyzes a mathematical model of the earth's crust near the fault rupture and calculates the generation and propagation of seismic waves from source to ground surface by first principles. The two approaches produce different-looking maps. The more-familiar median maps smooth out variability and correlation. Using them in a planning scenario can lead to a systematic underestimation of damage and loss, and could leave a community underprepared for realistic shaking. The 3-D maps show variability, including some very high values that can disconcert non-scientists. So when the USGS Science Application for Risk Reduction's (SAFRR) Haywired scenario project selected 3-D maps, it was necessary to explain to scenario users—especially engineers who often use median maps—the differences, advantages, and disadvantages of the two approaches. We used authority, empirical evidence, and theory to support our choice. We prefaced our explanation with SAFRR's policy of using the best available earth science, and cited the credentials of the maps' developers and the reputation of the journal in which they published the maps. We cited recorded examples from past earthquakes of extreme ground motions that are like those in the scenario map. We explained the maps on theoretical grounds as well, explaining well established causes of variability: directivity, basin effects, and source parameters. The largest mapped motions relate to potentially unfamiliar extreme-value theory, so we used analogies to human longevity and the average age of the oldest person in samples of

  15. Nonrigid Autofocus Motion Correction for Coronary MR Angiography with a 3D Cones Trajectory

    PubMed Central

    Ingle, R. Reeve; Wu, Holden H.; Addy, Nii Okai; Cheng, Joseph Y.; Yang, Phillip C.; Hu, Bob S.; Nishimura, Dwight G.

    2014-01-01

    Purpose: To implement a nonrigid autofocus motion correction technique to improve respiratory motion correction of free-breathing whole-heart coronary magnetic resonance angiography (CMRA) acquisitions using an image-navigated 3D cones sequence. Methods: 2D image navigators acquired every heartbeat are used to measure superior-inferior, anterior-posterior, and right-left translation of the heart during a free-breathing CMRA scan using a 3D cones readout trajectory. Various tidal respiratory motion patterns are modeled by independently scaling the three measured displacement trajectories. These scaled motion trajectories are used for 3D translational compensation of the acquired data, and a bank of motion-compensated images is reconstructed. From this bank, a gradient entropy focusing metric is used to generate a nonrigid motion-corrected image on a pixel-by-pixel basis. The performance of the autofocus motion correction technique is compared with rigid-body translational correction and no correction in phantom, volunteer, and patient studies. Results: Nonrigid autofocus motion correction yields improved image quality compared to rigid-body-corrected images and uncorrected images. Quantitative vessel sharpness measurements indicate superiority of the proposed technique in 14 out of 15 coronary segments from three patient and two volunteer studies. Conclusion: The proposed technique corrects nonrigid motion artifacts in free-breathing 3D cones acquisitions, improving image quality compared to rigid-body motion correction. PMID:24006292

  16. Motion-Corrected 3D Sonic Anemometer for Tethersondes and Other Moving Platforms

    NASA Technical Reports Server (NTRS)

    Bognar, John

    2012-01-01

    To date, it has not been possible to apply 3D sonic anemometers on tethersondes or similar atmospheric research platforms due to the motion of the supporting platform. A tethersonde module including both a 3D sonic anemometer and associated motion correction sensors has been developed, enabling motion-corrected 3D winds to be measured from a moving platform such as a tethersonde. Blimps and other similar lifting systems are used to support tethersondes meteorological devices that fly on the tether of a blimp or similar platform. To date, tethersondes have been limited to making basic meteorological measurements (pressure, temperature, humidity, and wind speed and direction). The motion of the tethersonde has precluded the addition of 3D sonic anemometers, which can be used for high-speed flux measurements, thereby limiting what has been achieved to date with tethersondes. The tethersonde modules fly on a tether that can be constantly moving and swaying. This would introduce enormous error into the output of an uncorrected 3D sonic anemometer. The motion correction that is required must be implemented in a low-weight, low-cost manner to be suitable for this application. Until now, flux measurements using 3D sonic anemometers could only be made if the 3D sonic anemometer was located on a rigid, fixed platform such as a tower. This limited the areas in which they could be set up and used. The purpose of the innovation was to enable precise 3D wind and flux measurements to be made using tether - sondes. In brief, a 3D accelerometer and a 3D gyroscope were added to a tethersonde module along with a 3D sonic anemometer. This combination allowed for the necessary package motions to be measured, which were then mathematically combined with the measured winds to yield motion-corrected 3D winds. At the time of this reporting, no tethersonde has been able to make any wind measurement other than a basic wind speed and direction measurement. The addition of a 3D sonic

  17. Broadband Near-Field Ground Motion Simulations in 3D Scattering Media

    NASA Astrophysics Data System (ADS)

    Imperatori, Walter; Mai, Martin

    2013-04-01

    The heterogeneous nature of Earth's crust is manifested in the scattering of propagating seismic waves. In recent years, different techniques have been developed to include such phenomenon in broadband ground-motion calculations, either considering scattering as a semi-stochastic or pure stochastic process. In this study, we simulate broadband (0-10 Hz) ground motions using a 3D finite-difference wave propagation solver using several 3D media characterized by Von Karman correlation functions with different correlation lengths and standard deviation values. Our goal is to investigate scattering characteristics and its influence on the seismic wave-field at short and intermediate distances from the source in terms of ground motion parameters. We also examine other relevant scattering-related phenomena, such as the loss of radiation pattern and the directivity breakdown. We first simulate broadband ground motions for a point-source characterized by a classic omega-squared spectrum model. Fault finiteness is then introduced by means of a Haskell-type source model presenting both sub-shear and super-shear rupture speed. Results indicate that scattering plays an important role in ground motion even at short distances from the source, where source effects are thought to be dominating. In particular, peak ground motion parameters can be affected even at relatively low frequencies, implying that earthquake ground-motion simulations should include scattering also for PGV calculations. At the same time, we find a gradual loss of the source signature in the 2-5 Hz frequency range, together with a distortion of the Mach cones in case of super-shear rupture. For more complex source models and truly heterogeneous Earth, these effects may occur even at lower frequencies. Our simulations suggest that Von Karman correlation functions with correlation length between several hundred meters and few kilometers, Hurst exponent around 0.3 and standard deviation in the 5-10% range

  18. Blind watermark algorithm on 3D motion model based on wavelet transform

    NASA Astrophysics Data System (ADS)

    Qi, Hu; Zhai, Lang

    2013-12-01

    With the continuous development of 3D vision technology, digital watermark technology, as the best choice for copyright protection, has fused with it gradually. This paper proposed a blind watermark plan of 3D motion model based on wavelet transform, and made it loaded into the Vega real-time visual simulation system. Firstly, put 3D model into affine transform, and take the distance from the center of gravity to the vertex of 3D object in order to generate a one-dimensional discrete signal; then make this signal into wavelet transform to change its frequency coefficients and embed watermark, finally generate 3D motion model with watermarking. In fixed affine space, achieve the robustness in translation, revolving and proportion transforms. The results show that this approach has better performances not only in robustness, but also in watermark- invisibility.

  19. Model-based risk assessment for motion effects in 3D radiotherapy of lung tumors

    NASA Astrophysics Data System (ADS)

    Werner, René; Ehrhardt, Jan; Schmidt-Richberg, Alexander; Handels, Heinz

    2012-02-01

    Although 4D CT imaging becomes available in an increasing number of radiotherapy facilities, 3D imaging and planning is still standard in current clinical practice. In particular for lung tumors, respiratory motion is a known source of uncertainty and should be accounted for during radiotherapy planning - which is difficult by using only a 3D planning CT. In this contribution, we propose applying a statistical lung motion model to predict patients' motion patterns and to estimate dosimetric motion effects in lung tumor radiotherapy if only 3D images are available. Being generated based on 4D CT images of patients with unimpaired lung motion, the model tends to overestimate lung tumor motion. It therefore promises conservative risk assessment regarding tumor dose coverage. This is exemplarily evaluated using treatment plans of lung tumor patients with different tumor motion patterns and for two treatment modalities (conventional 3D conformal radiotherapy and step-&- shoot intensity modulated radiotherapy). For the test cases, 4D CT images are available. Thus, also a standard registration-based 4D dose calculation is performed, which serves as reference to judge plausibility of the modelbased 4D dose calculation. It will be shown that, if combined with an additional simple patient-specific breathing surrogate measurement (here: spirometry), the model-based dose calculation provides reasonable risk assessment of respiratory motion effects.

  20. Structural response to 3D simulated earthquake motions in San Bernardino Valley

    USGS Publications Warehouse

    Safak, E.; Frankel, A.

    1994-01-01

    Structural repsonse to one- and three-dimensional (3D) simulated motions in San Bernardino Valley from a hypothetical earthquake along the San Andreas fault with moment magnitude 6.5 and rupture length of 30km is investigated. The results show that the ground motions and the structural response vary dramatically with the type of simulation and the location. -from Authors

  1. Geometric uncertainty of 2D projection imaging in monitoring 3D tumor motion

    NASA Astrophysics Data System (ADS)

    Suh, Yelin; Dieterich, Sonja; Keall, Paul J.

    2007-07-01

    The purpose of this study was to investigate the accuracy of two-dimensional (2D) projection imaging methods in three-dimensional (3D) tumor motion monitoring. Many commercial linear accelerator types have projection imaging capabilities, and tumor motion monitoring is useful for motion inclusive, respiratory gated or tumor tracking strategies. Since 2D projection imaging is limited in its ability to resolve the motion along the imaging beam axis, there is unresolved motion when monitoring 3D tumor motion. From the 3D tumor motion data of 160 treatment fractions for 46 thoracic and abdominal cancer patients, the unresolved motion due to the geometric limitation of 2D projection imaging was calculated as displacement in the imaging beam axis for different beam angles and time intervals. The geometric uncertainty to monitor 3D motion caused by the unresolved motion of 2D imaging was quantified using the root-mean-square (rms) metric. Geometric uncertainty showed interfractional and intrafractional variation. Patient-to-patient variation was much more significant than variation for different time intervals. For the patient cohort studied, as the time intervals increase, the rms, minimum and maximum values of the rms uncertainty show decreasing tendencies for the lung patients but increasing for the liver and retroperitoneal patients, which could be attributed to patient relaxation. Geometric uncertainty was smaller for coplanar treatments than non-coplanar treatments, as superior-inferior (SI) tumor motion, the predominant motion from patient respiration, could be always resolved for coplanar treatments. Overall rms of the rms uncertainty was 0.13 cm for all treatment fractions and 0.18 cm for the treatment fractions whose average breathing peak-trough ranges were more than 0.5 cm. The geometric uncertainty for 2D imaging varies depending on the tumor site, tumor motion range, time interval and beam angle as well as between patients, between fractions and within a

  2. Exploring Direct 3D Interaction for Full Horizontal Parallax Light Field Displays Using Leap Motion Controller

    PubMed Central

    Adhikarla, Vamsi Kiran; Sodnik, Jaka; Szolgay, Peter; Jakus, Grega

    2015-01-01

    This paper reports on the design and evaluation of direct 3D gesture interaction with a full horizontal parallax light field display. A light field display defines a visual scene using directional light beams emitted from multiple light sources as if they are emitted from scene points. Each scene point is rendered individually resulting in more realistic and accurate 3D visualization compared to other 3D displaying technologies. We propose an interaction setup combining the visualization of objects within the Field Of View (FOV) of a light field display and their selection through freehand gesture tracked by the Leap Motion Controller. The accuracy and usefulness of the proposed interaction setup was also evaluated in a user study with test subjects. The results of the study revealed high user preference for free hand interaction with light field display as well as relatively low cognitive demand of this technique. Further, our results also revealed some limitations and adjustments of the proposed setup to be addressed in future work. PMID:25875189

  3. 3D fluoroscopic image estimation using patient-specific 4DCBCT-based motion models.

    PubMed

    Dhou, S; Hurwitz, M; Mishra, P; Cai, W; Rottmann, J; Li, R; Williams, C; Wagar, M; Berbeco, R; Ionascu, D; Lewis, J H

    2015-05-01

    3D fluoroscopic images represent volumetric patient anatomy during treatment with high spatial and temporal resolution. 3D fluoroscopic images estimated using motion models built using 4DCT images, taken days or weeks prior to treatment, do not reliably represent patient anatomy during treatment. In this study we developed and performed initial evaluation of techniques to develop patient-specific motion models from 4D cone-beam CT (4DCBCT) images, taken immediately before treatment, and used these models to estimate 3D fluoroscopic images based on 2D kV projections captured during treatment. We evaluate the accuracy of 3D fluoroscopic images by comparison to ground truth digital and physical phantom images. The performance of 4DCBCT-based and 4DCT-based motion models are compared in simulated clinical situations representing tumor baseline shift or initial patient positioning errors. The results of this study demonstrate the ability for 4DCBCT imaging to generate motion models that can account for changes that cannot be accounted for with 4DCT-based motion models. When simulating tumor baseline shift and patient positioning errors of up to 5 mm, the average tumor localization error and the 95th percentile error in six datasets were 1.20 and 2.2 mm, respectively, for 4DCBCT-based motion models. 4DCT-based motion models applied to the same six datasets resulted in average tumor localization error and the 95th percentile error of 4.18 and 5.4 mm, respectively. Analysis of voxel-wise intensity differences was also conducted for all experiments. In summary, this study demonstrates the feasibility of 4DCBCT-based 3D fluoroscopic image generation in digital and physical phantoms and shows the potential advantage of 4DCBCT-based 3D fluoroscopic image estimation when there are changes in anatomy between the time of 4DCT imaging and the time of treatment delivery.

  4. The effect of motion on IMRT - looking at interplay with 3D measurements

    NASA Astrophysics Data System (ADS)

    Thomas, A.; Yan, H.; Oldham, M.; Juang, T.; Adamovics, J.; Yin, F. F.

    2013-06-01

    Clinical recommendations to address tumor motion management have been derived from studies dealing with simulations and 2D measurements. 3D measurements may provide more insight and possibly alter the current motion management guidelines. This study provides an initial look at true 3D measurements involving leaf motion deliveries by use of a motion phantom and the PRESAGE/DLOS dosimetry system. An IMRT and VMAT plan were delivered to the phantom and analyzed by means of DVHs to determine whether the expansion of treatment volumes based on known imaging motion adequately cover the target. DVHs confirmed that for these deliveries the expansion volumes were adequate to treat the intended target although further studies should be conducted to allow for differences in parameters that could alter the results, such as delivery dose and breathe rate.

  5. Motif3D: Relating protein sequence motifs to 3D structure.

    PubMed

    Gaulton, Anna; Attwood, Teresa K

    2003-07-01

    Motif3D is a web-based protein structure viewer designed to allow sequence motifs, and in particular those contained in the fingerprints of the PRINTS database, to be visualised on three-dimensional (3D) structures. Additional functionality is provided for the rhodopsin-like G protein-coupled receptors, enabling fingerprint motifs of any of the receptors in this family to be mapped onto the single structure available, that of bovine rhodopsin. Motif3D can be used via the web interface available at: http://www.bioinf.man.ac.uk/dbbrowser/motif3d/motif3d.html.

  6. The 3D Human Motion Control Through Refined Video Gesture Annotation

    NASA Astrophysics Data System (ADS)

    Jin, Yohan; Suk, Myunghoon; Prabhakaran, B.

    In the beginning of computer and video game industry, simple game controllers consisting of buttons and joysticks were employed, but recently game consoles are replacing joystick buttons with novel interfaces such as the remote controllers with motion sensing technology on the Nintendo Wii [1] Especially video-based human computer interaction (HCI) technique has been applied to games, and the representative game is 'Eyetoy' on the Sony PlayStation 2. Video-based HCI technique has great benefit to release players from the intractable game controller. Moreover, in order to communicate between humans and computers, video-based HCI is very crucial since it is intuitive, easy to get, and inexpensive. On the one hand, extracting semantic low-level features from video human motion data is still a major challenge. The level of accuracy is really dependent on each subject's characteristic and environmental noises. Of late, people have been using 3D motion-capture data for visualizing real human motions in 3D space (e.g, 'Tiger Woods' in EA Sports, 'Angelina Jolie' in Bear-Wolf movie) and analyzing motions for specific performance (e.g, 'golf swing' and 'walking'). 3D motion-capture system ('VICON') generates a matrix for each motion clip. Here, a column is corresponding to a human's sub-body part and row represents time frames of data capture. Thus, we can extract sub-body part's motion only by selecting specific columns. Different from low-level feature values of video human motion, 3D human motion-capture data matrix are not pixel values, but is closer to human level of semantics.

  7. 3D model-based catheter tracking for motion compensation in EP procedures

    NASA Astrophysics Data System (ADS)

    Brost, Alexander; Liao, Rui; Hornegger, Joachim; Strobel, Norbert

    2010-02-01

    Atrial fibrillation is the most common sustained heart arrhythmia and a leading cause of stroke. Its treatment by radio-frequency catheter ablation, performed using fluoroscopic image guidance, is gaining increasingly more importance. Two-dimensional fluoroscopic navigation can take advantage of overlay images derived from pre-operative 3-D data to add anatomical details otherwise not visible under X-ray. Unfortunately, respiratory motion may impair the utility of these static overlay images for catheter navigation. We developed an approach for image-based 3-D motion compensation as a solution to this problem. A bi-plane C-arm system is used to take X-ray images of a special circumferential mapping catheter from two directions. In the first step of the method, a 3-D model of the device is reconstructed. Three-dimensional respiratory motion at the site of ablation is then estimated by tracking the reconstructed catheter model in 3-D. This step involves bi-plane fluoroscopy and 2-D/3-D registration. Phantom data and clinical data were used to assess our model-based catheter tracking method. Experiments involving a moving heart phantom yielded an average 2-D tracking error of 1.4 mm and an average 3-D tracking error of 1.1 mm. Our evaluation of clinical data sets comprised 469 bi-plane fluoroscopy frames (938 monoplane fluoroscopy frames). We observed an average 2-D tracking error of 1.0 mm +/- 0.4 mm and an average 3-D tracking error of 0.8 mm +/- 0.5 mm. These results demonstrate that model-based motion-compensation based on 2-D/3-D registration is both feasible and accurate.

  8. Motion-Capture-Enabled Software for Gestural Control of 3D Models

    NASA Technical Reports Server (NTRS)

    Norris, Jeffrey S.; Luo, Victor; Crockett, Thomas M.; Shams, Khawaja S.; Powell, Mark W.; Valderrama, Anthony

    2012-01-01

    Current state-of-the-art systems use general-purpose input devices such as a keyboard, mouse, or joystick that map to tasks in unintuitive ways. This software enables a person to control intuitively the position, size, and orientation of synthetic objects in a 3D virtual environment. It makes possible the simultaneous control of the 3D position, scale, and orientation of 3D objects using natural gestures. Enabling the control of 3D objects using a commercial motion-capture system allows for natural mapping of the many degrees of freedom of the human body to the manipulation of the 3D objects. It reduces training time for this kind of task, and eliminates the need to create an expensive, special-purpose controller.

  9. Intrathoracic tumour motion estimation from CT imaging using the 3D optical flow method

    NASA Astrophysics Data System (ADS)

    Guerrero, Thomas; Zhang, Geoffrey; Huang, Tzung-Chi; Lin, Kang-Ping

    2004-09-01

    The purpose of this work was to develop and validate an automated method for intrathoracic tumour motion estimation from breath-hold computed tomography (BH CT) imaging using the three-dimensional optical flow method (3D OFM). A modified 3D OFM algorithm provided 3D displacement vectors for each voxel which were used to map tumour voxels on expiration BH CT onto inspiration BH CT images. A thoracic phantom and simulated expiration/inspiration BH CT pairs were used for validation. The 3D OFM was applied to the measured inspiration and expiration BH CT images from one lung cancer and one oesophageal cancer patient. The resulting displacements were plotted in histogram format and analysed to provide insight regarding the tumour motion. The phantom tumour displacement was measured as 1.20 and 2.40 cm with full-width at tenth maximum (FWTM) for the distribution of displacement estimates of 0.008 and 0.006 cm, respectively. The maximum error of any single voxel's motion estimate was 1.1 mm along the z-dimension or approximately one-third of the z-dimension voxel size. The simulated BH CT pairs revealed an rms error of less than 0.25 mm. The displacement of the oesophageal tumours was nonuniform and up to 1.4 cm, this was a new finding. A lung tumour maximum displacement of 2.4 cm was found in the case evaluated. In conclusion, 3D OFM provided an accurate estimation of intrathoracic tumour motion, with estimated errors less than the voxel dimension in a simulated motion phantom study. Surprisingly, oesophageal tumour motion was large and nonuniform, with greatest motion occurring at the gastro-oesophageal junction. Presented at The IASTED Second International Conference on Biomedical Engineering (BioMED 2004), Innsbruck, Austria, 16-18 February 2004.

  10. Automated 3D Motion Tracking using Gabor Filter Bank, Robust Point Matching, and Deformable Models

    PubMed Central

    Wang, Xiaoxu; Chung, Sohae; Metaxas, Dimitris; Axel, Leon

    2013-01-01

    Tagged Magnetic Resonance Imaging (tagged MRI or tMRI) provides a means of directly and noninvasively displaying the internal motion of the myocardium. Reconstruction of the motion field is needed to quantify important clinical information, e.g., the myocardial strain, and detect regional heart functional loss. In this paper, we present a three-step method for this task. First, we use a Gabor filter bank to detect and locate tag intersections in the image frames, based on local phase analysis. Next, we use an improved version of the Robust Point Matching (RPM) method to sparsely track the motion of the myocardium, by establishing a transformation function and a one-to-one correspondence between grid tag intersections in different image frames. In particular, the RPM helps to minimize the impact on the motion tracking result of: 1) through-plane motion, and 2) relatively large deformation and/or relatively small tag spacing. In the final step, a meshless deformable model is initialized using the transformation function computed by RPM. The model refines the motion tracking and generates a dense displacement map, by deforming under the influence of image information, and is constrained by the displacement magnitude to retain its geometric structure. The 2D displacement maps in short and long axis image planes can be combined to drive a 3D deformable model, using the Moving Least Square method, constrained by the minimization of the residual error at tag intersections. The method has been tested on a numerical phantom, as well as on in vivo heart data from normal volunteers and heart disease patients. The experimental results show that the new method has a good performance on both synthetic and real data. Furthermore, the method has been used in an initial clinical study to assess the differences in myocardial strain distributions between heart disease (left ventricular hypertrophy) patients and the normal control group. The final results show that the proposed method

  11. Tracking left ventricular borders in 3D echocardiographic sequences using motion-guided optical flow

    NASA Astrophysics Data System (ADS)

    Leung, K. Y. Esther; Danilouchkine, Mikhail G.; van Stralen, Marijn; de Jong, Nico; van der Steen, Antonius F. W.; Bosch, Johan G.

    2009-02-01

    For obtaining quantitative and objective functional parameters from three-dimensional (3D) echocardiographic sequences, automated segmentation methods may be preferable to cumbersome manual delineation of 3D borders. In this study, a novel optical-flow based tracking method is proposed for propagating 3D endocardial contours of the left ventricle throughout the cardiac cycle. To take full advantage of the time-continuous nature of cardiac motion, a statistical motion model was explicitly embedded in the optical flow solution. The cardiac motion was modeled as frame-to-frame affine transforms, which were extracted using Procrustes analysis on a set of training contours. Principal component analysis was applied to obtain a compact model of cardiac motion throughout the whole cardiac cycle. The parameters of this model were resolved in an optical flow manner, via spatial and temporal gradients in image intensity. The algorithm was tested on 36 noncontrast and 28 contrast enhanced 3D echocardiographic sequences in a leave-one-out manner. Good results were obtained using a combination of the proposed motion-guided method and a purely data-driven optical flow approach. The improvement was particularly noticeable in areas where the LV wall was obscured by image artifacts. In conclusion, the results show the applicability of the proposed method in clinical quality echocardiograms.

  12. From canonical poses to 3D motion capture using a single camera.

    PubMed

    Fossati, Andrea; Dimitrijevic, Miodrag; Lepetit, Vincent; Fua, Pascal

    2010-07-01

    We combine detection and tracking techniques to achieve robust 3D motion recovery of people seen from arbitrary viewpoints by a single and potentially moving camera. We rely on detecting key postures, which can be done reliably, using a motion model to infer 3D poses between consecutive detections, and finally refining them over the whole sequence using a generative model. We demonstrate our approach in the cases of golf motions filmed using a static camera and walking motions acquired using a potentially moving one. We will show that our approach, although monocular, is both metrically accurate because it integrates information over many frames and robust because it can recover from a few misdetections.

  13. Meshless deformable models for 3D cardiac motion and strain analysis from tagged MRI.

    PubMed

    Wang, Xiaoxu; Chen, Ting; Zhang, Shaoting; Schaerer, Joël; Qian, Zhen; Huh, Suejung; Metaxas, Dimitris; Axel, Leon

    2015-01-01

    Tagged magnetic resonance imaging (TMRI) provides a direct and noninvasive way to visualize the in-wall deformation of the myocardium. Due to the through-plane motion, the tracking of 3D trajectories of the material points and the computation of 3D strain field call for the necessity of building 3D cardiac deformable models. The intersections of three stacks of orthogonal tagging planes are material points in the myocardium. With these intersections as control points, 3D motion can be reconstructed with a novel meshless deformable model (MDM). Volumetric MDMs describe an object as point cloud inside the object boundary and the coordinate of each point can be written in parametric functions. A generic heart mesh is registered on the TMRI with polar decomposition. A 3D MDM is generated and deformed with MR image tagging lines. Volumetric MDMs are deformed by calculating the dynamics function and minimizing the local Laplacian coordinates. The similarity transformation of each point is computed by assuming its neighboring points are making the same transformation. The deformation is computed iteratively until the control points match the target positions in the consecutive image frame. The 3D strain field is computed from the 3D displacement field with moving least squares. We demonstrate that MDMs outperformed the finite element method and the spline method with a numerical phantom. Meshless deformable models can track the trajectory of any material point in the myocardium and compute the 3D strain field of any particular area. The experimental results on in vivo healthy and patient heart MRI show that the MDM can fully recover the myocardium motion in three dimensions.

  14. Meshless deformable models for 3D cardiac motion and strain analysis from tagged MRI.

    PubMed

    Wang, Xiaoxu; Chen, Ting; Zhang, Shaoting; Schaerer, Joël; Qian, Zhen; Huh, Suejung; Metaxas, Dimitris; Axel, Leon

    2015-01-01

    Tagged magnetic resonance imaging (TMRI) provides a direct and noninvasive way to visualize the in-wall deformation of the myocardium. Due to the through-plane motion, the tracking of 3D trajectories of the material points and the computation of 3D strain field call for the necessity of building 3D cardiac deformable models. The intersections of three stacks of orthogonal tagging planes are material points in the myocardium. With these intersections as control points, 3D motion can be reconstructed with a novel meshless deformable model (MDM). Volumetric MDMs describe an object as point cloud inside the object boundary and the coordinate of each point can be written in parametric functions. A generic heart mesh is registered on the TMRI with polar decomposition. A 3D MDM is generated and deformed with MR image tagging lines. Volumetric MDMs are deformed by calculating the dynamics function and minimizing the local Laplacian coordinates. The similarity transformation of each point is computed by assuming its neighboring points are making the same transformation. The deformation is computed iteratively until the control points match the target positions in the consecutive image frame. The 3D strain field is computed from the 3D displacement field with moving least squares. We demonstrate that MDMs outperformed the finite element method and the spline method with a numerical phantom. Meshless deformable models can track the trajectory of any material point in the myocardium and compute the 3D strain field of any particular area. The experimental results on in vivo healthy and patient heart MRI show that the MDM can fully recover the myocardium motion in three dimensions. PMID:25157446

  15. Meshless deformable models for 3D cardiac motion and strain analysis from tagged MRI

    PubMed Central

    Wang, Xiaoxu; Chen, Ting; Zhang, Shaoting; Schaerer, Joël; Qian, Zhen; Huh, Suejung; Metaxas, Dimitris; Axel, Leon

    2016-01-01

    Tagged magnetic resonance imaging (TMRI) provides a direct and noninvasive way to visualize the in-wall deformation of the myocardium. Due to the through-plane motion, the tracking of 3D trajectories of the material points and the computation of 3D strain field call for the necessity of building 3D cardiac deformable models. The intersections of three stacks of orthogonal tagging planes are material points in the myocardium. With these intersections as control points, 3D motion can be reconstructed with a novel meshless deformable model (MDM). Volumetric MDMs describe an object as point cloud inside the object boundary and the coordinate of each point can be written in parametric functions. A generic heart mesh is registered on the TMRI with polar decomposition. A 3D MDM is generated and deformed with MR image tagging lines. Volumetric MDMs are deformed by calculating the dynamics function and minimizing the local Laplacian coordinates. The similarity transformation of each point is computed by assuming its neighboring points are making the same transformation. The deformation is computed iteratively until the control points match the target positions in the consecutive image frame. The 3D strain field is computed from the 3D displacement field with moving least squares. We demonstrate that MDMs outperformed the finite element method and the spline method with a numerical phantom. Meshless deformable models can track the trajectory of any material point in the myocardium and compute the 3D strain field of any particular area. The experimental results on in vivo healthy and patient heart MRI show that the MDM can fully recover the myocardium motion in three dimensions. PMID:25157446

  16. Motion corrected LV quantification based on 3D modelling for improved functional assessment in cardiac MRI

    NASA Astrophysics Data System (ADS)

    Liew, Y. M.; McLaughlin, R. A.; Chan, B. T.; Aziz, Y. F. Abdul; Chee, K. H.; Ung, N. M.; Tan, L. K.; Lai, K. W.; Ng, S.; Lim, E.

    2015-04-01

    Cine MRI is a clinical reference standard for the quantitative assessment of cardiac function, but reproducibility is confounded by motion artefacts. We explore the feasibility of a motion corrected 3D left ventricle (LV) quantification method, incorporating multislice image registration into the 3D model reconstruction, to improve reproducibility of 3D LV functional quantification. Multi-breath-hold short-axis and radial long-axis images were acquired from 10 patients and 10 healthy subjects. The proposed framework reduced misalignment between slices to subpixel accuracy (2.88 to 1.21 mm), and improved interstudy reproducibility for 5 important clinical functional measures, i.e. end-diastolic volume, end-systolic volume, ejection fraction, myocardial mass and 3D-sphericity index, as reflected in a reduction in the sample size required to detect statistically significant cardiac changes: a reduction of 21-66%. Our investigation on the optimum registration parameters, including both cardiac time frames and number of long-axis (LA) slices, suggested that a single time frame is adequate for motion correction whereas integrating more LA slices can improve registration and model reconstruction accuracy for improved functional quantification especially on datasets with severe motion artefacts.

  17. Introductory review on `Flying Triangulation': a motion-robust optical 3D measurement principle

    NASA Astrophysics Data System (ADS)

    Ettl, Svenja

    2015-04-01

    'Flying Triangulation' (FlyTri) is a recently developed principle which allows for a motion-robust optical 3D measurement of rough surfaces. It combines a simple sensor with sophisticated algorithms: a single-shot sensor acquires 2D camera images. From each camera image, a 3D profile is generated. The series of 3D profiles generated are aligned to one another by algorithms, without relying on any external tracking device. It delivers real-time feedback of the measurement process which enables an all-around measurement of objects. The principle has great potential for small-space acquisition environments, such as the measurement of the interior of a car, and motion-sensitive measurement tasks, such as the intraoral measurement of teeth. This article gives an overview of the basic ideas and applications of FlyTri. The main challenges and their solutions are discussed. Measurement examples are also given to demonstrate the potential of the measurement principle.

  18. Image-driven, model-based 3D abdominal motion estimation for MR-guided radiotherapy

    NASA Astrophysics Data System (ADS)

    Stemkens, Bjorn; Tijssen, Rob H. N.; de Senneville, Baudouin Denis; Lagendijk, Jan J. W.; van den Berg, Cornelis A. T.

    2016-07-01

    Respiratory motion introduces substantial uncertainties in abdominal radiotherapy for which traditionally large margins are used. The MR-Linac will open up the opportunity to acquire high resolution MR images just prior to radiation and during treatment. However, volumetric MRI time series are not able to characterize 3D tumor and organ-at-risk motion with sufficient temporal resolution. In this study we propose a method to estimate 3D deformation vector fields (DVFs) with high spatial and temporal resolution based on fast 2D imaging and a subject-specific motion model based on respiratory correlated MRI. In a pre-beam phase, a retrospectively sorted 4D-MRI is acquired, from which the motion is parameterized using a principal component analysis. This motion model is used in combination with fast 2D cine-MR images, which are acquired during radiation, to generate full field-of-view 3D DVFs with a temporal resolution of 476 ms. The geometrical accuracies of the input data (4D-MRI and 2D multi-slice acquisitions) and the fitting procedure were determined using an MR-compatible motion phantom and found to be 1.0-1.5 mm on average. The framework was tested on seven healthy volunteers for both the pancreas and the kidney. The calculated motion was independently validated using one of the 2D slices, with an average error of 1.45 mm. The calculated 3D DVFs can be used retrospectively for treatment simulations, plan evaluations, or to determine the accumulated dose for both the tumor and organs-at-risk on a subject-specific basis in MR-guided radiotherapy.

  19. Image-driven, model-based 3D abdominal motion estimation for MR-guided radiotherapy

    NASA Astrophysics Data System (ADS)

    Stemkens, Bjorn; Tijssen, Rob H. N.; de Senneville, Baudouin Denis; Lagendijk, Jan J. W.; van den Berg, Cornelis A. T.

    2016-07-01

    Respiratory motion introduces substantial uncertainties in abdominal radiotherapy for which traditionally large margins are used. The MR-Linac will open up the opportunity to acquire high resolution MR images just prior to radiation and during treatment. However, volumetric MRI time series are not able to characterize 3D tumor and organ-at-risk motion with sufficient temporal resolution. In this study we propose a method to estimate 3D deformation vector fields (DVFs) with high spatial and temporal resolution based on fast 2D imaging and a subject-specific motion model based on respiratory correlated MRI. In a pre-beam phase, a retrospectively sorted 4D-MRI is acquired, from which the motion is parameterized using a principal component analysis. This motion model is used in combination with fast 2D cine-MR images, which are acquired during radiation, to generate full field-of-view 3D DVFs with a temporal resolution of 476 ms. The geometrical accuracies of the input data (4D-MRI and 2D multi-slice acquisitions) and the fitting procedure were determined using an MR-compatible motion phantom and found to be 1.0–1.5 mm on average. The framework was tested on seven healthy volunteers for both the pancreas and the kidney. The calculated motion was independently validated using one of the 2D slices, with an average error of 1.45 mm. The calculated 3D DVFs can be used retrospectively for treatment simulations, plan evaluations, or to determine the accumulated dose for both the tumor and organs-at-risk on a subject-specific basis in MR-guided radiotherapy.

  20. Image-driven, model-based 3D abdominal motion estimation for MR-guided radiotherapy.

    PubMed

    Stemkens, Bjorn; Tijssen, Rob H N; de Senneville, Baudouin Denis; Lagendijk, Jan J W; van den Berg, Cornelis A T

    2016-07-21

    Respiratory motion introduces substantial uncertainties in abdominal radiotherapy for which traditionally large margins are used. The MR-Linac will open up the opportunity to acquire high resolution MR images just prior to radiation and during treatment. However, volumetric MRI time series are not able to characterize 3D tumor and organ-at-risk motion with sufficient temporal resolution. In this study we propose a method to estimate 3D deformation vector fields (DVFs) with high spatial and temporal resolution based on fast 2D imaging and a subject-specific motion model based on respiratory correlated MRI. In a pre-beam phase, a retrospectively sorted 4D-MRI is acquired, from which the motion is parameterized using a principal component analysis. This motion model is used in combination with fast 2D cine-MR images, which are acquired during radiation, to generate full field-of-view 3D DVFs with a temporal resolution of 476 ms. The geometrical accuracies of the input data (4D-MRI and 2D multi-slice acquisitions) and the fitting procedure were determined using an MR-compatible motion phantom and found to be 1.0-1.5 mm on average. The framework was tested on seven healthy volunteers for both the pancreas and the kidney. The calculated motion was independently validated using one of the 2D slices, with an average error of 1.45 mm. The calculated 3D DVFs can be used retrospectively for treatment simulations, plan evaluations, or to determine the accumulated dose for both the tumor and organs-at-risk on a subject-specific basis in MR-guided radiotherapy.

  1. A comparison of 3D scapular kinematics between dominant and nondominant shoulders during multiplanar arm motion

    PubMed Central

    Lee, Sang Ki; Yang, Dae Suk; Kim, Ha Yong; Choy, Won Sik

    2013-01-01

    Background: Generally, the scapular motions of pathologic and contralateral normal shoulders are compared to characterize shoulder disorders. However, the symmetry of scapular motion of normal shoulders remains undetermined. Therefore, the aim of this study was to compare 3dimensinal (3D) scapular motion between dominant and nondominant shoulders during three different planes of arm motion by using an optical tracking system. Materials and Methods: Twenty healthy subjects completed five repetitions of elevation and lowering in sagittal plane flexion, scapular plane abduction, and coronal plane abduction. The 3D scapular motion was measured using an optical tracking system, after minimizing reflective marker skin slippage using ultrasonography. The dynamic 3D motion of the scapula of dominant and nondominant shoulders, and the scapulohumeral rhythm (SHR) were analyzed at each 10° increment during the three planes of arm motion. Results: There was no significant difference in upward rotation or internal rotation (P > 0.05) of the scapula between dominant and nondominant shoulders during the three planes of arm motion. However, there was a significant difference in posterior tilting (P = 0.018) during coronal plane abduction. The SHR was a large positive or negative number in the initial phase of sagittal plane flexion and scapular plane abduction. However, the SHR was a small positive or negative number in the initial phase of coronal plane abduction. Conclusions: Only posterior tilting of the scapula during coronal plane abduction was asymmetrical in our healthy subjects, and depending on the plane of arm motion, the pattern of the SHR differed as well. These differences should be considered in the clinical assessment of shoulder pathology. PMID:23682174

  2. The use of an MEG device as 3D digitizer and motion monitoring system.

    PubMed

    de Munck, J C; Verbunt, J P; Van't Ent, D; Van Dijk, B W

    2001-08-01

    An algorithm is described that localizes a set of simultaneously activated coils using MEG detectors. These coil positions are used for continuous or intermittent head position registration during long MEG sessions, to coregistrate MR and MEG data and to localize EEG electrodes attached to the scalp, when EEG and MEG are recorded simultaneously. The algorithm is based on a mathematical model in which the coils are described as stationary magnetic dipoles with known source time functions. This knowledge makes it possible to detect and remove bad channels automatically. It is also assumed that the source time functions are orthogonal. Therefore, the localization problem splits into independent localization problems. for each coil. The method is validated in a phantom experiment, where the relative coil positions were known. From this experiment it is found that the average error is 0.25 cm. An error of 0.23 cm was found in an experiment where 64 electrode positions were measured four times independently. Examples of the applications of the method are presented. Our method eliminates the use of an external 3D digitizer and maps the MEG directly onto other modalities. This is not only a practical advantage, but it also reduces the gross registration error. Furthermore, head motions can be monitored and MEG data can be corrected for these motions.

  3. Effects of 3D random correlated velocity perturbations on predicted ground motions

    USGS Publications Warehouse

    Hartzell, S.; Harmsen, S.; Frankel, A.

    2010-01-01

    Three-dimensional, finite-difference simulations of a realistic finite-fault rupture on the southern Hayward fault are used to evaluate the effects of random, correlated velocity perturbations on predicted ground motions. Velocity perturbations are added to a three-dimensional (3D) regional seismic velocity model of the San Francisco Bay Area using a 3D von Karman random medium. Velocity correlation lengths of 5 and 10 km and standard deviations in the velocity of 5% and 10% are considered. The results show that significant deviations in predicted ground velocities are seen in the calculated frequency range (≤1 Hz) for standard deviations in velocity of 5% to 10%. These results have implications for the practical limits on the accuracy of scenario ground-motion calculations and on retrieval of source parameters using higher-frequency, strong-motion data.

  4. Determining the 3-D structure and motion of objects using a scanning laser range sensor

    NASA Technical Reports Server (NTRS)

    Nandhakumar, N.; Smith, Philip W.

    1993-01-01

    In order for the EVAHR robot to autonomously track and grasp objects, its vision system must be able to determine the 3-D structure and motion of an object from a sequence of sensory images. This task is accomplished by the use of a laser radar range sensor which provides dense range maps of the scene. Unfortunately, the currently available laser radar range cameras use a sequential scanning approach which complicates image analysis. Although many algorithms have been developed for recognizing objects from range images, none are suited for use with single beam, scanning, time-of-flight sensors because all previous algorithms assume instantaneous acquisition of the entire image. This assumption is invalid since the EVAHR robot is equipped with a sequential scanning laser range sensor. If an object is moving while being imaged by the device, the apparent structure of the object can be significantly distorted due to the significant non-zero delay time between sampling each image pixel. If an estimate of the motion of the object can be determined, this distortion can be eliminated; but, this leads to the motion-structure paradox - most existing algorithms for 3-D motion estimation use the structure of objects to parameterize their motions. The goal of this research is to design a rigid-body motion recovery technique which overcomes this limitation. The method being developed is an iterative, linear, feature-based approach which uses the non-zero image acquisition time constraint to accurately recover the motion parameters from the distorted structure of the 3-D range maps. Once the motion parameters are determined, the structural distortion in the range images is corrected.

  5. Robust object tracking techniques for vision-based 3D motion analysis applications

    NASA Astrophysics Data System (ADS)

    Knyaz, Vladimir A.; Zheltov, Sergey Y.; Vishnyakov, Boris V.

    2016-04-01

    Automated and accurate spatial motion capturing of an object is necessary for a wide variety of applications including industry and science, virtual reality and movie, medicine and sports. For the most part of applications a reliability and an accuracy of the data obtained as well as convenience for a user are the main characteristics defining the quality of the motion capture system. Among the existing systems for 3D data acquisition, based on different physical principles (accelerometry, magnetometry, time-of-flight, vision-based), optical motion capture systems have a set of advantages such as high speed of acquisition, potential for high accuracy and automation based on advanced image processing algorithms. For vision-based motion capture accurate and robust object features detecting and tracking through the video sequence are the key elements along with a level of automation of capturing process. So for providing high accuracy of obtained spatial data the developed vision-based motion capture system "Mosca" is based on photogrammetric principles of 3D measurements and supports high speed image acquisition in synchronized mode. It includes from 2 to 4 technical vision cameras for capturing video sequences of object motion. The original camera calibration and external orientation procedures provide the basis for high accuracy of 3D measurements. A set of algorithms as for detecting, identifying and tracking of similar targets, so for marker-less object motion capture is developed and tested. The results of algorithms' evaluation show high robustness and high reliability for various motion analysis tasks in technical and biomechanics applications.

  6. 3D deformable organ model based liver motion tracking in ultrasound videos

    NASA Astrophysics Data System (ADS)

    Kim, Jung-Bae; Hwang, Youngkyoo; Oh, Young-Taek; Bang, Won-Chul; Lee, Heesae; Kim, James D. K.; Kim, Chang Yeong

    2013-03-01

    This paper presents a novel method of using 2D ultrasound (US) cine images during image-guided therapy to accurately track the 3D position of a tumor even when the organ of interest is in motion due to patient respiration. Tracking is possible thanks to a 3D deformable organ model we have developed. The method consists of three processes in succession. The first process is organ modeling where we generate a personalized 3D organ model from high quality 3D CT or MR data sets captured during three different respiratory phases. The model includes the organ surface, vessel and tumor, which can all deform and move in accord with patient respiration. The second process is registration of the organ model to 3D US images. From 133 respiratory phase candidates generated from the deformable organ model, we resolve the candidate that best matches the 3D US images according to vessel centerline and surface. As a result, we can determine the position of the US probe. The final process is real-time tracking using 2D US cine images captured by the US probe. We determine the respiratory phase by tracking the diaphragm on the image. The 3D model is then deformed according to respiration phase and is fitted to the image by considering the positions of the vessels. The tumor's 3D positions are then inferred based on respiration phase. Testing our method on real patient data, we have found the accuracy of 3D position is within 3.79mm and processing time is 5.4ms during tracking.

  7. Teleoperation of a robot manipulator from 3D human hand-arm motion

    NASA Astrophysics Data System (ADS)

    Kofman, Jonathan; Verma, Siddharth; Wu, Xianghai; Luu, Timothy

    2003-10-01

    The control of a robot manipulator by a human operator is often necessary in unstructured dynamic environments with unfamiliar objects. Remote teleoperation is required when human presence at the robot site is undesirable or difficult, such as in handling hazardous materials and operating in dangerous or inaccessible environments. Previous approaches have employed mechanical or other contacting interfaces which require unnatural motions for object manipulation tasks or hinder dexterous human motion. This paper presents a non-contacting method of teleoperating a robot manipulator by having the human operator perform the 3D human hand-arm motion that would naturally be used to compete an object manipulation task and tracking the motion with a stereo-camera system at a local site. The 3D human hand-arm motion is reconstructed at the remote robot site and is used to control the position and orientation of the robot manipulator end-effector in real-time. Images captured of the robot interacting with objects at the remote site provide visual feedback to the human operator. Tests in teleoperation of the robot manipulator have demonstrated the ability of the human to carry out object manipulator tasks remotely and the teleoperated robot manipulator system to copy human-arm motions in real-time.

  8. Quantitative underwater 3D motion analysis using submerged video cameras: accuracy analysis and trajectory reconstruction.

    PubMed

    Silvatti, Amanda P; Cerveri, Pietro; Telles, Thiago; Dias, Fábio A S; Baroni, Guido; Barros, Ricardo M L

    2013-01-01

    In this study we aim at investigating the applicability of underwater 3D motion capture based on submerged video cameras in terms of 3D accuracy analysis and trajectory reconstruction. Static points with classical direct linear transform (DLT) solution, a moving wand with bundle adjustment and a moving 2D plate with Zhang's method were considered for camera calibration. As an example of the final application, we reconstructed the hand motion trajectories in different swimming styles and qualitatively compared this with Maglischo's model. Four highly trained male swimmers performed butterfly, breaststroke and freestyle tasks. The middle fingertip trajectories of both hands in the underwater phase were considered. The accuracy (mean absolute error) of the two calibration approaches (wand: 0.96 mm - 2D plate: 0.73 mm) was comparable to out of water results and highly superior to the classical DLT results (9.74 mm). Among all the swimmers, the hands' trajectories of the expert swimmer in the style were almost symmetric and in good agreement with Maglischo's model. The kinematic results highlight symmetry or asymmetry between the two hand sides, intra- and inter-subject variability in terms of the motion patterns and agreement or disagreement with the model. The two outcomes, calibration results and trajectory reconstruction, both move towards the quantitative 3D underwater motion analysis.

  9. Analysis and Visualization of 3D Motion Data for UPDRS Rating of Patients with Parkinson's Disease.

    PubMed

    Piro, Neltje E; Piro, Lennart K; Kassubek, Jan; Blechschmidt-Trapp, Ronald A

    2016-01-01

    Remote monitoring of Parkinson's Disease (PD) patients with inertia sensors is a relevant method for a better assessment of symptoms. We present a new approach for symptom quantification based on motion data: the automatic Unified Parkinson Disease Rating Scale (UPDRS) classification in combination with an animated 3D avatar giving the neurologist the impression of having the patient live in front of him. In this study we compared the UPDRS ratings of the pronation-supination task derived from: (a) an examination based on video recordings as a clinical reference; (b) an automatically classified UPDRS; and (c) a UPDRS rating from the assessment of the animated 3D avatar. Data were recorded using Magnetic, Angular Rate, Gravity (MARG) sensors with 15 subjects performing a pronation-supination movement of the hand. After preprocessing, the data were classified with a J48 classifier and animated as a 3D avatar. Video recording of the movements, as well as the 3D avatar, were examined by movement disorder specialists and rated by UPDRS. The mean agreement between the ratings based on video and (b) the automatically classified UPDRS is 0.48 and with (c) the 3D avatar it is 0.47. The 3D avatar is similarly suitable for assessing the UPDRS as video recordings for the examined task and will be further developed by the research team. PMID:27338400

  10. Kinetic depth effect and optic flow--I. 3D shape from Fourier motion.

    PubMed

    Dosher, B A; Landy, M S; Sperling, G

    1989-01-01

    Fifty-three different 3D shapes were defined by sequences of 2D views (frames) of dots on a rotating 3D surface. (1) Subjects' accuracy of shape identifications dropped from over 90% to less than 10% when either the polarity of the stimulus dots was alternated from light-on-gray to dark-on-gray on successive frames or when neutral gray interframe intervals were interposed. Both manipulations interfere with motion extraction by spatio-temporal (Fourier) and gradient first-order detectors. Second-order (non-Fourier) detectors that use full-wave rectification are unaffected by alternating-polarity but disrupted by interposed gray frames. (2) To equate the accuracy of two-alternative forced-choice (2AFC) planar direction-of-motion discrimination in standard and polarity-alternated stimuli, standard contrast was reduced. 3D shape discrimination survived contrast reduction in standard stimuli whereas it failed completely with polarity-alternation even at full contrast. (3) When individual dots were permitted to remain in the image sequence for only two frames, performance showed little loss compared to standard displays where individual dots had an expected lifetime of 20 frames, showing that 3D shape identification does not require continuity of stimulus tokens. (4) Performance in all discrimination tasks is predicted (up to a monotone transformation) by considering the quality of first-order information (as given by a simple computation on Fourier power) and the number of locations at which motion information is required. Perceptual first-order analysis of optic flow is the primary substrate for structure-from-motion computations in random dot displays because only it offers sufficient quality of perceptual motion at a sufficient number of locations.

  11. On Integral Invariants for Effective 3-D Motion Trajectory Matching and Recognition.

    PubMed

    Shao, Zhanpeng; Li, Youfu

    2016-02-01

    Motion trajectories tracked from the motions of human, robots, and moving objects can provide an important clue for motion analysis, classification, and recognition. This paper defines some new integral invariants for a 3-D motion trajectory. Based on two typical kernel functions, we design two integral invariants, the distance and area integral invariants. The area integral invariants are estimated based on the blurred segment of noisy discrete curve to avoid the computation of high-order derivatives. Such integral invariants for a motion trajectory enjoy some desirable properties, such as computational locality, uniqueness of representation, and noise insensitivity. Moreover, our formulation allows the analysis of motion trajectories at a range of scales by varying the scale of kernel function. The features of motion trajectories can thus be perceived at multiscale levels in a coarse-to-fine manner. Finally, we define a distance function to measure the trajectory similarity to find similar trajectories. Through the experiments, we examine the robustness and effectiveness of the proposed integral invariants and find that they can capture the motion cues in trajectory matching and sign recognition satisfactorily.

  12. Using a wireless motion controller for 3D medical image catheter interactions

    NASA Astrophysics Data System (ADS)

    Vitanovski, Dime; Hahn, Dieter; Daum, Volker; Hornegger, Joachim

    2009-02-01

    State-of-the-art morphological imaging techniques usually provide high resolution 3D images with a huge number of slices. In clinical practice, however, 2D slice-based examinations are still the method of choice even for these large amounts of data. Providing intuitive interaction methods for specific 3D medical visualization applications is therefore a critical feature for clinical imaging applications. For the domain of catheter navigation and surgery planning, it is crucial to assist the physician with appropriate visualization techniques, such as 3D segmentation maps, fly-through cameras or virtual interaction approaches. There has been an ongoing development and improvement for controllers that help to interact with 3D environments in the domain of computer games. These controllers are based on both motion and infrared sensors and are typically used to detect 3D position and orientation. We have investigated how a state-of-the-art wireless motion sensor controller (Wiimote), developed by Nintendo, can be used for catheter navigation and planning purposes. By default the Wiimote controller only measure rough acceleration over a range of +/- 3g with 10% sensitivity and orientation. Therefore, a pose estimation algorithm was developed for computing accurate position and orientation in 3D space regarding 4 Infrared LEDs. Current results show that for the translation it is possible to obtain a mean error of (0.38cm, 0.41cm, 4.94cm) and for the rotation (0.16, 0.28) respectively. Within this paper we introduce a clinical prototype that allows steering of a virtual fly-through camera attached to the catheter tip by the Wii controller on basis of a segmented vessel tree.

  13. Angle-independent measure of motion for image-based gating in 3D coronary angiography

    SciTech Connect

    Lehmann, Glen C.; Holdsworth, David W.; Drangova, Maria

    2006-05-15

    The role of three-dimensional (3D) image guidance for interventional procedures and minimally invasive surgeries is increasing for the treatment of vascular disease. Currently, most interventional procedures are guided by two-dimensional x-ray angiography, but computed rotational angiography has the potential to provide 3D geometric information about the coronary arteries. The creation of 3D angiographic images of the coronary arteries requires synchronization of data acquisition with respect to the cardiac cycle, in order to minimize motion artifacts. This can be achieved by inferring the extent of motion from a patient's electrocardiogram (ECG) signal. However, a direct measurement of motion (from the 2D angiograms) has the potential to improve the 3D angiographic images by ensuring that only projections acquired during periods of minimal motion are included in the reconstruction. This paper presents an image-based metric for measuring the extent of motion in 2D x-ray angiographic images. Adaptive histogram equalization was applied to projection images to increase the sharpness of coronary arteries and the superior-inferior component of the weighted centroid (SIC) was measured. The SIC constitutes an image-based metric that can be used to track vessel motion, independent of apparent motion induced by the rotational acquisition. To evaluate the technique, six consecutive patients scheduled for routine coronary angiography procedures were studied. We compared the end of the SIC rest period ({rho}) to R-waves (R) detected in the patient's ECG and found a mean difference of 14{+-}80 ms. Two simultaneous angular positions were acquired and {rho} was detected for each position. There was no statistically significant difference (P=0.79) between {rho} in the two simultaneously acquired angular positions. Thus we have shown the SIC to be independent of view angle, which is critical for rotational angiography. A preliminary image-based gating strategy that employed the SIC

  14. Ultrasonic diaphragm tracking for cardiac interventional navigation on 3D motion compensated static roadmaps

    NASA Astrophysics Data System (ADS)

    Timinger, Holger; Kruger, Sascha; Dietmayer, Klaus; Borgert, Joern

    2005-04-01

    In this paper, a novel approach to cardiac interventional navigation on 3D motion-compensated static roadmaps is presented. Current coronary interventions, e.g. percutaneous transluminal coronary angioplasties, are performed using 2D X-ray fluoroscopy. This comes along with well-known drawbacks like radiation exposure, use of contrast agent, and limited visualization, e.g. overlap and foreshortening, due to projection imaging. In the presented approach, the interventional device, i.e. the catheter, is tracked using an electromagnetic tracking system (MTS). Therefore, the catheters position is mapped into a static 3D image of the volume of interest (VOI) by means of an affine registration. In order to compensate for respiratory motion of the catheter with respect to the static image, a parameterized affine motion model is used which is driven by a respiratory sensor signal. This signal is derived from ultrasonic diaphragm tracking. The motion compensation for the heartbeat is done using ECG-gating. The methods are validated using a heart- and diaphragm-phantom. The mean displacement of the catheter due to the simulated organ motion decreases from approximately 9 mm to 1.3 mm. This result indicates that the proposed method is able to reconstruct the catheter position within the VOI accurately and that it can help to overcome drawbacks of current interventional procedures.

  15. A collaborative computing framework of cloud network and WBSN applied to fall detection and 3-D motion reconstruction.

    PubMed

    Lai, Chin-Feng; Chen, Min; Pan, Jeng-Shyang; Youn, Chan-Hyun; Chao, Han-Chieh

    2014-03-01

    As cloud computing and wireless body sensor network technologies become gradually developed, ubiquitous healthcare services prevent accidents instantly and effectively, as well as provides relevant information to reduce related processing time and cost. This study proposes a co-processing intermediary framework integrated cloud and wireless body sensor networks, which is mainly applied to fall detection and 3-D motion reconstruction. In this study, the main focuses includes distributed computing and resource allocation of processing sensing data over the computing architecture, network conditions and performance evaluation. Through this framework, the transmissions and computing time of sensing data are reduced to enhance overall performance for the services of fall events detection and 3-D motion reconstruction.

  16. 3D Geometry and Motion Estimations of Maneuvering Targets for Interferometric ISAR With Sparse Aperture.

    PubMed

    Xu, Gang; Xing, Mengdao; Xia, Xiang-Gen; Zhang, Lei; Chen, Qianqian; Bao, Zheng

    2016-05-01

    In the current scenario of high-resolution inverse synthetic aperture radar (ISAR) imaging, the non-cooperative targets may have strong maneuverability, which tends to cause time-variant Doppler modulation and imaging plane in the echoed data. Furthermore, it is still a challenge to realize ISAR imaging of maneuvering targets from sparse aperture (SA) data. In this paper, we focus on the problem of 3D geometry and motion estimations of maneuvering targets for interferometric ISAR (InISAR) with SA. For a target of uniformly accelerated rotation, the rotational modulation in echo is formulated as chirp sensing code under a chirp-Fourier dictionary to represent the maneuverability. In particular, a joint multi-channel imaging approach is developed to incorporate the multi-channel data and treat the multi-channel ISAR image formation as a joint-sparsity constraint optimization. Then, a modified orthogonal matching pursuit (OMP) algorithm is employed to solve the optimization problem to produce high-resolution range-Doppler (RD) images and chirp parameter estimation. The 3D target geometry and the motion estimations are followed by using the acquired RD images and chirp parameters. Herein, a joint estimation approach of 3D geometry and rotation motion is presented to realize outlier removing and error reduction. In comparison with independent single-channel processing, the proposed joint multi-channel imaging approach performs better in 2D imaging, 3D imaging, and motion estimation. Finally, experiments using both simulated and measured data are performed to confirm the effectiveness of the proposed algorithm. PMID:26930684

  17. 3D Geometry and Motion Estimations of Maneuvering Targets for Interferometric ISAR With Sparse Aperture.

    PubMed

    Xu, Gang; Xing, Mengdao; Xia, Xiang-Gen; Zhang, Lei; Chen, Qianqian; Bao, Zheng

    2016-05-01

    In the current scenario of high-resolution inverse synthetic aperture radar (ISAR) imaging, the non-cooperative targets may have strong maneuverability, which tends to cause time-variant Doppler modulation and imaging plane in the echoed data. Furthermore, it is still a challenge to realize ISAR imaging of maneuvering targets from sparse aperture (SA) data. In this paper, we focus on the problem of 3D geometry and motion estimations of maneuvering targets for interferometric ISAR (InISAR) with SA. For a target of uniformly accelerated rotation, the rotational modulation in echo is formulated as chirp sensing code under a chirp-Fourier dictionary to represent the maneuverability. In particular, a joint multi-channel imaging approach is developed to incorporate the multi-channel data and treat the multi-channel ISAR image formation as a joint-sparsity constraint optimization. Then, a modified orthogonal matching pursuit (OMP) algorithm is employed to solve the optimization problem to produce high-resolution range-Doppler (RD) images and chirp parameter estimation. The 3D target geometry and the motion estimations are followed by using the acquired RD images and chirp parameters. Herein, a joint estimation approach of 3D geometry and rotation motion is presented to realize outlier removing and error reduction. In comparison with independent single-channel processing, the proposed joint multi-channel imaging approach performs better in 2D imaging, 3D imaging, and motion estimation. Finally, experiments using both simulated and measured data are performed to confirm the effectiveness of the proposed algorithm.

  18. Ground motion simulations in Marmara (Turkey) region from 3D finite difference method

    NASA Astrophysics Data System (ADS)

    Aochi, Hideo; Ulrich, Thomas; Douglas, John

    2016-04-01

    In the framework of the European project MARSite (2012-2016), one of the main contributions from our research team was to provide ground-motion simulations for the Marmara region from various earthquake source scenarios. We adopted a 3D finite difference code, taking into account the 3D structure around the Sea of Marmara (including the bathymetry) and the sea layer. We simulated two moderate earthquakes (about Mw4.5) and found that the 3D structure improves significantly the waveforms compared to the 1D layer model. Simulations were carried out for different earthquakes (moderate point sources and large finite sources) in order to provide shake maps (Aochi and Ulrich, BSSA, 2015), to study the variability of ground-motion parameters (Douglas & Aochi, BSSA, 2016) as well as to provide synthetic seismograms for the blind inversion tests (Diao et al., GJI, 2016). The results are also planned to be integrated in broadband ground-motion simulations, tsunamis generation and simulations of triggered landslides (in progress by different partners). The simulations are freely shared among the partners via the internet and the visualization of the results is diffused on the project's homepage. All these simulations should be seen as a reference for this region, as they are based on the latest knowledge that obtained during the MARSite project, although their refinement and validation of the model parameters and the simulations are a continuing research task relying on continuing observations. The numerical code used, the models and the simulations are available on demand.

  19. Estimation of 3D myocardial motion from tagged MRI using LDDMM

    NASA Astrophysics Data System (ADS)

    Kotamraju, Vinay; McVeigh, Elliot; Beg, Mirza Faisal

    2007-03-01

    Non-invasive estimation of regional cardiac function is important for assessment of myocardial contractility. The use of MR tagging technique enables acquisition of intra-myocardial tissue motion by placing a spatially modulated pattern of magnetization whose deformation with the myocardium over the cardiac cycle can be imaged. Quantitative computation of parameters such as wall thickening, shearing, rotation, torsion and strain within the myocardium is traditionally achieved by processing the tag-marked MR image frames to 1) segment the tag lines and 2) detect the correspondence between points across the time-indexed frames. In this paper, we describe our approach to solving this problem using the Large Deformation Diffeomorphic Metric Mapping (LDDMM) algorithm in which tag-line segmentation and motion reconstruction occur simultaneously. Our method differs from earlier proposed non rigid registration based cardiac motion estimation methods in that our matching cost incorporates image intensity overlap via the L2 norm and the estimated tranformations are diffeomorphic. We also present a novel method of generating synthetic tag line images with known ground truth and motion characteristics that closely follow those in the original data; these can be used for validation of motion estimation algorithms. Initial validation shows that our method is able to accurately segment tag-lines and estimate a dense 3D motion field describing the motion of the myocardium in both the left and the right ventricle.

  20. Infrared tomographic PIV and 3D motion tracking system applied to aquatic predator-prey interaction

    NASA Astrophysics Data System (ADS)

    Adhikari, Deepak; Longmire, Ellen K.

    2013-02-01

    Infrared tomographic PIV and 3D motion tracking are combined to measure evolving volumetric velocity fields and organism trajectories during aquatic predator-prey interactions. The technique was used to study zebrafish foraging on both non-evasive and evasive prey species. Measurement volumes of 22.5 mm × 10.5 mm × 12 mm were reconstructed from images captured on a set of four high-speed cameras. To obtain accurate fluid velocity vectors within each volume, fish were first masked out using an automated visual hull method. Fish and prey locations were identified independently from the same image sets and tracked separately within the measurement volume. Experiments demonstrated that fish were not influenced by the infrared laser illumination or the tracer particles. Results showed that the zebrafish used different strategies, suction and ram feeding, for successful capture of non-evasive and evasive prey, respectively. The two strategies yielded different variations in fluid velocity between the fish mouth and the prey. In general, the results suggest that the local flow field, the direction of prey locomotion with respect to the predator and the relative accelerations and speeds of the predator and prey may all be significant in determining predation success.

  1. Heart wall motion analysis by dynamic 3D strain rate imaging from tissue Doppler echocardiography

    NASA Astrophysics Data System (ADS)

    Hastenteufel, Mark; Wolf, Ivo; de Simone, Raffaele; Mottl-Link, Sibylle; Meinzer, Hans-Peter

    2002-04-01

    The knowledge about the complex three-dimensional (3D) heart wall motion pattern, particular in the left ventricle, provides valuable information about potential malfunctions, e.g., myocardial ischemia. Nowadays, echocardiography (cardiac ultrasound) is the predominant technique for evaluation of cardiac function. Beside morphology, tissue velocities can be obtained by Doppler techniques (tissue Doppler imaging, TDI). Strain rate imaging (SRI) is a new technique to diagnose heart vitality. It provides information about the contraction ability of the myocardium. Two-dimensional color Doppler echocardiography is still the most important clinical method for estimation of morphology and function. Two-dimensional methods leads to a lack of information due to the three-dimensional overall nature of the heart movement. Due to this complex three-dimensional motion pattern of the heart, the knowledge about velocity and strain rate distribution over the whole ventricle can provide more valuable diagnostic information about motion disorders. For the assessment of intracardiac blood flow three-dimensional color Doppler has already shown its clinical utility. We have developed methods to produce strain rate images by means of 3D tissue Doppler echocardiography. The tissue Doppler and strain rate images can be visualized and quantified by different methods. The methods are integrated into an interactively usable software environment, making them available in clinical everyday life. Our software provides the physician with a valuable tool for diagnosis of heart wall motion.

  2. 3D motion and strain estimation of the heart: initial clinical findings

    NASA Astrophysics Data System (ADS)

    Barbosa, Daniel; Hristova, Krassimira; Loeckx, Dirk; Rademakers, Frank; Claus, Piet; D'hooge, Jan

    2010-03-01

    The quantitative assessment of regional myocardial function remains an important goal in clinical cardiology. As such, tissue Doppler imaging and speckle tracking based methods have been introduced to estimate local myocardial strain. Recently, volumetric ultrasound has become more readily available, allowing therefore the 3D estimation of motion and myocardial deformation. Our lab has previously presented a method based on spatio-temporal elastic registration of ultrasound volumes to estimate myocardial motion and deformation in 3D, overcoming the spatial limitations of the existing methods. This method was optimized on simulated data sets in previous work and is currently tested in a clinical setting. In this manuscript, 10 healthy volunteers, 10 patient with myocardial infarction and 10 patients with arterial hypertension were included. The cardiac strain values extracted with the proposed method were compared with the ones estimated with 1D tissue Doppler imaging and 2D speckle tracking in all patient groups. Although the absolute values of the 3D strain components assessed by this new methodology were not identical to the reference methods, the relationship between the different patient groups was similar.

  3. Spatiotemporal non-rigid image registration for 3D ultrasound cardiac motion estimation

    NASA Astrophysics Data System (ADS)

    Loeckx, D.; Ector, J.; Maes, F.; D'hooge, J.; Vandermeulen, D.; Voigt, J.-U.; Heidbüchel, H.; Suetens, P.

    2007-03-01

    We present a new method to evaluate 4D (3D + time) cardiac ultrasound data sets by nonrigid spatio-temporal image registration. First, a frame-to-frame registration is performed that yields a dense deformation field. The deformation field is used to calculate local spatiotemporal properties of the myocardium, such as the velocity, strain and strain rate. The field is also used to propagate particular points and surfaces, representing e.g. the endo-cardial surface over the different frames. As such, the 4D path of these point is obtained, which can be used to calculate the velocity by which the wall moves and the evolution of the local surface area over time. The wall velocity is not angle-dependent as in classical Doppler imaging, since the 4D data allows calculating the true 3D motion. Similarly, all 3D myocardium strain components can be estimated. Combined they result in local surface area or volume changes which van be color-coded as a measure of local contractability. A diagnostic method that strongly benefits from this technique is cardiac motion and deformation analysis, which is an important aid to quantify the mechanical properties of the myocardium.

  4. Integration of 3D structure from disparity into biological motion perception independent of depth awareness.

    PubMed

    Wang, Ying; Jiang, Yi

    2014-01-01

    Images projected onto the retinas of our two eyes come from slightly different directions in the real world, constituting binocular disparity that serves as an important source for depth perception - the ability to see the world in three dimensions. It remains unclear whether the integration of disparity cues into visual perception depends on the conscious representation of stereoscopic depth. Here we report evidence that, even without inducing discernible perceptual representations, the disparity-defined depth information could still modulate the visual processing of 3D objects in depth-irrelevant aspects. Specifically, observers who could not discriminate disparity-defined in-depth facing orientations of biological motions (i.e., approaching vs. receding) due to an excessive perceptual bias nevertheless exhibited a robust perceptual asymmetry in response to the indistinguishable facing orientations, similar to those who could consciously discriminate such 3D information. These results clearly demonstrate that the visual processing of biological motion engages the disparity cues independent of observers' depth awareness. The extraction and utilization of binocular depth signals thus can be dissociable from the conscious representation of 3D structure in high-level visual perception.

  5. Dynamics and cortical distribution of neural responses to 2D and 3D motion in human.

    PubMed

    Cottereau, Benoit R; McKee, Suzanne P; Norcia, Anthony M

    2014-02-01

    The perception of motion-in-depth is important for avoiding collisions and for the control of vergence eye-movements and other motor actions. Previous psychophysical studies have suggested that sensitivity to motion-in-depth has a lower temporal processing limit than the perception of lateral motion. The present study used functional MRI-informed EEG source-imaging to study the spatiotemporal properties of the responses to lateral motion and motion-in-depth in human visual cortex. Lateral motion and motion-in-depth displays comprised stimuli whose only difference was interocular phase: monocular oscillatory motion was either in-phase in the two eyes (lateral motion) or in antiphase (motion-in-depth). Spectral analysis was used to break the steady-state visually evoked potentials responses down into even and odd harmonic components within five functionally defined regions of interest: V1, V4, lateral occipital complex, V3A, and hMT+. We also characterized the responses within two anatomically defined regions: the inferior and superior parietal cortex. Even harmonic components dominated the evoked responses and were a factor of approximately two larger for lateral motion than motion-in-depth. These responses were slower for motion-in-depth and were largely independent of absolute disparity. In each of our regions of interest, responses at odd-harmonics were relatively small, but were larger for motion-in-depth than lateral motion, especially in parietal cortex, and depended on absolute disparity. Taken together, our results suggest a plausible neural basis for reduced psychophysical sensitivity to rapid motion-in-depth.

  6. Dynamics and cortical distribution of neural responses to 2D and 3D motion in human

    PubMed Central

    McKee, Suzanne P.; Norcia, Anthony M.

    2013-01-01

    The perception of motion-in-depth is important for avoiding collisions and for the control of vergence eye-movements and other motor actions. Previous psychophysical studies have suggested that sensitivity to motion-in-depth has a lower temporal processing limit than the perception of lateral motion. The present study used functional MRI-informed EEG source-imaging to study the spatiotemporal properties of the responses to lateral motion and motion-in-depth in human visual cortex. Lateral motion and motion-in-depth displays comprised stimuli whose only difference was interocular phase: monocular oscillatory motion was either in-phase in the two eyes (lateral motion) or in antiphase (motion-in-depth). Spectral analysis was used to break the steady-state visually evoked potentials responses down into even and odd harmonic components within five functionally defined regions of interest: V1, V4, lateral occipital complex, V3A, and hMT+. We also characterized the responses within two anatomically defined regions: the inferior and superior parietal cortex. Even harmonic components dominated the evoked responses and were a factor of approximately two larger for lateral motion than motion-in-depth. These responses were slower for motion-in-depth and were largely independent of absolute disparity. In each of our regions of interest, responses at odd-harmonics were relatively small, but were larger for motion-in-depth than lateral motion, especially in parietal cortex, and depended on absolute disparity. Taken together, our results suggest a plausible neural basis for reduced psychophysical sensitivity to rapid motion-in-depth. PMID:24198326

  7. Extension of RCC Topological Relations for 3d Complex Objects Components Extracted from 3d LIDAR Point Clouds

    NASA Astrophysics Data System (ADS)

    Xing, Xu-Feng; Abolfazl Mostafavia, Mir; Wang, Chen

    2016-06-01

    Topological relations are fundamental for qualitative description, querying and analysis of a 3D scene. Although topological relations for 2D objects have been extensively studied and implemented in GIS applications, their direct extension to 3D is very challenging and they cannot be directly applied to represent relations between components of complex 3D objects represented by 3D B-Rep models in R3. Herein we present an extended Region Connection Calculus (RCC) model to express and formalize topological relations between planar regions for creating 3D model represented by Boundary Representation model in R3. We proposed a new dimension extended 9-Intersection model to represent the basic relations among components of a complex object, including disjoint, meet and intersect. The last element in 3*3 matrix records the details of connection through the common parts of two regions and the intersecting line of two planes. Additionally, this model can deal with the case of planar regions with holes. Finally, the geometric information is transformed into a list of strings consisting of topological relations between two planar regions and detailed connection information. The experiments show that the proposed approach helps to identify topological relations of planar segments of point cloud automatically.

  8. 3D delivered dose assessment using a 4DCT-based motion model

    SciTech Connect

    Cai, Weixing; Hurwitz, Martina H.; Williams, Christopher L.; Dhou, Salam; Berbeco, Ross I.; Mishra, Pankaj E-mail: jhlewis@lroc.harvard.edu; Lewis, John H. E-mail: jhlewis@lroc.harvard.edu; Seco, Joao

    2015-06-15

    Purpose: The purpose of this work is to develop a clinically feasible method of calculating actual delivered dose distributions for patients who have significant respiratory motion during the course of stereotactic body radiation therapy (SBRT). Methods: A novel approach was proposed to calculate the actual delivered dose distribution for SBRT lung treatment. This approach can be specified in three steps. (1) At the treatment planning stage, a patient-specific motion model is created from planning 4DCT data. This model assumes that the displacement vector field (DVF) of any respiratory motion deformation can be described as a linear combination of some basis DVFs. (2) During the treatment procedure, 2D time-varying projection images (either kV or MV projections) are acquired, from which time-varying “fluoroscopic” 3D images of the patient are reconstructed using the motion model. The DVF of each timepoint in the time-varying reconstruction is an optimized linear combination of basis DVFs such that the 2D projection of the 3D volume at this timepoint matches the projection image. (3) 3D dose distribution is computed for each timepoint in the set of 3D reconstructed fluoroscopic images, from which the total effective 3D delivered dose is calculated by accumulating deformed dose distributions. This approach was first validated using two modified digital extended cardio-torso (XCAT) phantoms with lung tumors and different respiratory motions. The estimated doses were compared to the dose that would be calculated for routine 4DCT-based planning and to the actual delivered dose that was calculated using “ground truth” XCAT phantoms at all timepoints. The approach was also tested using one set of patient data, which demonstrated the application of our method in a clinical scenario. Results: For the first XCAT phantom that has a mostly regular breathing pattern, the errors in 95% volume dose (D95) are 0.11% and 0.83%, respectively for 3D fluoroscopic images

  9. 3D delivered dose assessment using a 4DCT-based motion model

    PubMed Central

    Cai, Weixing; Hurwitz, Martina H.; Williams, Christopher L.; Dhou, Salam; Berbeco, Ross I.; Seco, Joao; Mishra, Pankaj; Lewis, John H.

    2015-01-01

    Purpose: The purpose of this work is to develop a clinically feasible method of calculating actual delivered dose distributions for patients who have significant respiratory motion during the course of stereotactic body radiation therapy (SBRT). Methods: A novel approach was proposed to calculate the actual delivered dose distribution for SBRT lung treatment. This approach can be specified in three steps. (1) At the treatment planning stage, a patient-specific motion model is created from planning 4DCT data. This model assumes that the displacement vector field (DVF) of any respiratory motion deformation can be described as a linear combination of some basis DVFs. (2) During the treatment procedure, 2D time-varying projection images (either kV or MV projections) are acquired, from which time-varying “fluoroscopic” 3D images of the patient are reconstructed using the motion model. The DVF of each timepoint in the time-varying reconstruction is an optimized linear combination of basis DVFs such that the 2D projection of the 3D volume at this timepoint matches the projection image. (3) 3D dose distribution is computed for each timepoint in the set of 3D reconstructed fluoroscopic images, from which the total effective 3D delivered dose is calculated by accumulating deformed dose distributions. This approach was first validated using two modified digital extended cardio-torso (XCAT) phantoms with lung tumors and different respiratory motions. The estimated doses were compared to the dose that would be calculated for routine 4DCT-based planning and to the actual delivered dose that was calculated using “ground truth” XCAT phantoms at all timepoints. The approach was also tested using one set of patient data, which demonstrated the application of our method in a clinical scenario. Results: For the first XCAT phantom that has a mostly regular breathing pattern, the errors in 95% volume dose (D95) are 0.11% and 0.83%, respectively for 3D fluoroscopic images

  10. Computational optical-sectioning microscopy for 3D quantization of cell motion: results and challenges

    NASA Astrophysics Data System (ADS)

    McNally, James G.

    1994-09-01

    How cells move and navigate within a 3D tissue mass is of central importance in such diverse problems as embryonic development, wound healing and metastasis. This locomotion can now be visualized and quantified by using computation optical-sectioning microscopy. In this approach, a series of 2D images at different depths in a specimen are stacked to construct a 3D image, and then with a knowledge of the microscope's point-spread function, the actual distribution of fluorescent intensity in the specimen is estimated via computation. When coupled with wide-field optics and a cooled CCD camera, this approach permits non-destructive 3D imaging of living specimens over long time periods. With these techniques, we have observed a complex diversity of motile behaviors in a model embryonic system, the cellular slime mold Dictyostelium. To understand the mechanisms which control these various behaviors, we are examining motion in various Dictyostelium mutants with known defects in proteins thought to be essential for signal reception, cell-cell adhesion or locomotion. This application of computational techniques to analyze 3D cell locomotion raises several technical challenges. Image restoration techniques must be fast enough to process numerous 1 Gbyte time-lapse data sets (16 Mbytes per 3D image X 60 time points). Because some cells are weakly labeled and background intensity is often high due to unincorporated dye, the SNR in some of these images is poor. Currently, the images are processed by a regularized linear least- squares restoration method, and occasionally by a maximum-likelihood method. Also required for these studies are accurate automated- tracking procedures to generate both 3D trajectories for individual cells and 3D flows for a group of cells. Tracking is currently done independently for each cell, using a cell's image as a template to search for a similar image at the next time point. Finally, sophisticated visualization techniques are needed to view the

  11. 3D motion of DNA-Au nanoconjugates in graphene liquid cell electron microscopy.

    PubMed

    Chen, Qian; Smith, Jessica M; Park, Jungwon; Kim, Kwanpyo; Ho, Davy; Rasool, Haider I; Zettl, Alex; Alivisatos, A Paul

    2013-09-11

    Liquid-phase transmission electron microscopy (TEM) can probe and visualize dynamic events with structural or functional details at the nanoscale in a liquid medium. Earlier efforts have focused on the growth and transformation kinetics of hard material systems, relying on their stability under electron beam. Our recently developed graphene liquid cell technique pushed the spatial resolution of such imaging to the atomic scale but still focused on growth trajectories of metallic nanocrystals. Here, we adopt this technique to imaging three-dimensional (3D) dynamics of soft materials instead, double strand (dsDNA) connecting Au nanocrystals as one example, at nanometer resolution. We demonstrate first that a graphene liquid cell can seal an aqueous sample solution of a lower vapor pressure than previously investigated well against the high vacuum in TEM. Then, from quantitative analysis of real time nanocrystal trajectories, we show that the status and configuration of dsDNA dictate the motions of linked nanocrystals throughout the imaging time of minutes. This sustained connecting ability of dsDNA enables this unprecedented continuous imaging of its dynamics via TEM. Furthermore, the inert graphene surface minimizes sample-substrate interaction and allows the whole nanostructure to rotate freely in the liquid environment; we thus develop and implement the reconstruction of 3D configuration and motions of the nanostructure from the series of 2D projected TEM images captured while it rotates. In addition to further proving the nanoconjugate structural stability, this reconstruction demonstrates 3D dynamic imaging by TEM beyond its conventional use in seeing a flattened and dry sample. Altogether, we foresee the new and exciting use of graphene liquid cell TEM in imaging 3D biomolecular transformations or interaction dynamics at nanometer resolution. PMID:23944844

  12. Action Sport Cameras as an Instrument to Perform a 3D Underwater Motion Analysis.

    PubMed

    Bernardina, Gustavo R D; Cerveri, Pietro; Barros, Ricardo M L; Marins, João C B; Silvatti, Amanda P

    2016-01-01

    Action sport cameras (ASC) are currently adopted mainly for entertainment purposes but their uninterrupted technical improvements, in correspondence of cost decreases, are going to disclose them for three-dimensional (3D) motion analysis in sport gesture study and athletic performance evaluation quantitatively. Extending this technology to sport analysis however still requires a methodologic step-forward to making ASC a metric system, encompassing ad-hoc camera setup, image processing, feature tracking, calibration and 3D reconstruction. Despite traditional laboratory analysis, such requirements become an issue when coping with both indoor and outdoor motion acquisitions of athletes. In swimming analysis for example, the camera setup and the calibration protocol are particularly demanding since land and underwater cameras are mandatory. In particular, the underwater camera calibration can be an issue affecting the reconstruction accuracy. In this paper, the aim is to evaluate the feasibility of ASC for 3D underwater analysis by focusing on camera setup and data acquisition protocols. Two GoPro Hero3+ Black (frequency: 60Hz; image resolutions: 1280×720/1920×1080 pixels) were located underwater into a swimming pool, surveying a working volume of about 6m3. A two-step custom calibration procedure, consisting in the acquisition of one static triad and one moving wand, carrying nine and one spherical passive markers, respectively, was implemented. After assessing camera parameters, a rigid bar, carrying two markers at known distance, was acquired in several positions within the working volume. The average error upon the reconstructed inter-marker distances was less than 2.5mm (1280×720) and 1.5mm (1920×1080). The results of this study demonstrate that the calibration of underwater ASC is feasible enabling quantitative kinematic measurements with accuracy comparable to traditional motion capture systems. PMID:27513846

  13. Action Sport Cameras as an Instrument to Perform a 3D Underwater Motion Analysis

    PubMed Central

    Cerveri, Pietro; Barros, Ricardo M. L.; Marins, João C. B.; Silvatti, Amanda P.

    2016-01-01

    Action sport cameras (ASC) are currently adopted mainly for entertainment purposes but their uninterrupted technical improvements, in correspondence of cost decreases, are going to disclose them for three-dimensional (3D) motion analysis in sport gesture study and athletic performance evaluation quantitatively. Extending this technology to sport analysis however still requires a methodologic step-forward to making ASC a metric system, encompassing ad-hoc camera setup, image processing, feature tracking, calibration and 3D reconstruction. Despite traditional laboratory analysis, such requirements become an issue when coping with both indoor and outdoor motion acquisitions of athletes. In swimming analysis for example, the camera setup and the calibration protocol are particularly demanding since land and underwater cameras are mandatory. In particular, the underwater camera calibration can be an issue affecting the reconstruction accuracy. In this paper, the aim is to evaluate the feasibility of ASC for 3D underwater analysis by focusing on camera setup and data acquisition protocols. Two GoPro Hero3+ Black (frequency: 60Hz; image resolutions: 1280×720/1920×1080 pixels) were located underwater into a swimming pool, surveying a working volume of about 6m3. A two-step custom calibration procedure, consisting in the acquisition of one static triad and one moving wand, carrying nine and one spherical passive markers, respectively, was implemented. After assessing camera parameters, a rigid bar, carrying two markers at known distance, was acquired in several positions within the working volume. The average error upon the reconstructed inter-marker distances was less than 2.5mm (1280×720) and 1.5mm (1920×1080). The results of this study demonstrate that the calibration of underwater ASC is feasible enabling quantitative kinematic measurements with accuracy comparable to traditional motion capture systems. PMID:27513846

  14. Action Sport Cameras as an Instrument to Perform a 3D Underwater Motion Analysis.

    PubMed

    Bernardina, Gustavo R D; Cerveri, Pietro; Barros, Ricardo M L; Marins, João C B; Silvatti, Amanda P

    2016-01-01

    Action sport cameras (ASC) are currently adopted mainly for entertainment purposes but their uninterrupted technical improvements, in correspondence of cost decreases, are going to disclose them for three-dimensional (3D) motion analysis in sport gesture study and athletic performance evaluation quantitatively. Extending this technology to sport analysis however still requires a methodologic step-forward to making ASC a metric system, encompassing ad-hoc camera setup, image processing, feature tracking, calibration and 3D reconstruction. Despite traditional laboratory analysis, such requirements become an issue when coping with both indoor and outdoor motion acquisitions of athletes. In swimming analysis for example, the camera setup and the calibration protocol are particularly demanding since land and underwater cameras are mandatory. In particular, the underwater camera calibration can be an issue affecting the reconstruction accuracy. In this paper, the aim is to evaluate the feasibility of ASC for 3D underwater analysis by focusing on camera setup and data acquisition protocols. Two GoPro Hero3+ Black (frequency: 60Hz; image resolutions: 1280×720/1920×1080 pixels) were located underwater into a swimming pool, surveying a working volume of about 6m3. A two-step custom calibration procedure, consisting in the acquisition of one static triad and one moving wand, carrying nine and one spherical passive markers, respectively, was implemented. After assessing camera parameters, a rigid bar, carrying two markers at known distance, was acquired in several positions within the working volume. The average error upon the reconstructed inter-marker distances was less than 2.5mm (1280×720) and 1.5mm (1920×1080). The results of this study demonstrate that the calibration of underwater ASC is feasible enabling quantitative kinematic measurements with accuracy comparable to traditional motion capture systems.

  15. Validation of INSAT-3D atmospheric motion vectors for monsoon 2015

    NASA Astrophysics Data System (ADS)

    Sharma, Priti; Rani, S. Indira; Das Gupta, M.

    2016-05-01

    Atmospheric Motion Vector (AMV) over Indian Ocean and surrounding region is one of the most important sources of tropospheric wind information assimilated in numerical weather prediction (NWP) system. Earlier studies showed that the quality of Indian geo-stationary satellite Kalpana-1 AMVs was not comparable to that of other geostationary satellites over this region and hence not used in NWP system. Indian satellite INSAT-3D was successfully launched on July 26, 2013 with upgraded imaging system as compared to that of previous Indian satellite Kalpana-1. INSAT-3D has middle infrared band (3.80 - 4.00 μm) which is capable of night time pictures of low clouds and fog. Three consecutive images of 30-minutes interval are used to derive the AMVs. New height assignment scheme (using NWP first guess and replacing old empirical GA method) along with modified quality control scheme were implemented for deriving INSAT-3D AMVs. In this paper an attempt has been made to validate these AMVs against in-situ observations as well as against NCMRWF's NWP first guess for monsoon 2015. AMVs are subdivided into three different pressure levels in the vertical viz. low (1000 - 700 hPa), middle (700 - 400 hPa) and high (400 - 100 hPa) for validation purpose. Several statistics viz. normalized root mean square vector difference; biases etc. have been computed over different latitudinal belt. Result shows that the general mean monsoon circulations along with all the transient monsoon systems are well captured by INSAT-3D AMVs, as well as the error statistics viz., RMSE etc of INSAT-3D AMVs is now comparable to other geostationary satellites.

  16. 3D digital holographic interferometry as a tool to measure the tympanic membrane motion

    NASA Astrophysics Data System (ADS)

    del Socorro Hernández-Montes, M.; Muñoz Solis, S.; Mendoza Santoyo, F.

    2012-10-01

    Most of the current optical non-invasive methodologies used to characterize the tympanic membrane (TM) motion generate data in the z direction only, i.e., employ an out-of-plane sensitive configuration. In this paper, 3-D digital holographic interferometry (3-D DHI), is used to measure micrometer displacements from the TM surface. The proposed optical configuration provides information from three sensitivity vectors that separate the contributions from x, y and z displacement components. In order to achieve high accuracy of the sensitivity vector and to obtain the complete determination of the 3-D TM displacements, its surface contour is obtained by moving only two object illumination sources chosen from any pair within the DHI optical setup. Results are presented from measurements corresponding to individual displacements maps for the three orthogonal displacements components x, y and z combined with the TM shape from an ex-vivo cat. These results will no doubt contribute to enhance the understanding and determinate the mechanical properties of this complex tissue.

  17. Biodynamic Doppler imaging of subcellular motion inside 3D living tissue culture and biopsies (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Nolte, David D.

    2016-03-01

    Biodynamic imaging is an emerging 3D optical imaging technology that probes up to 1 mm deep inside three-dimensional living tissue using short-coherence dynamic light scattering to measure the intracellular motions of cells inside their natural microenvironments. Biodynamic imaging is label-free and non-invasive. The information content of biodynamic imaging is captured through tissue dynamics spectroscopy that displays the changes in the Doppler signatures from intracellular constituents in response to applied compounds. The affected dynamic intracellular mechanisms include organelle transport, membrane undulations, cytoskeletal restructuring, strain at cellular adhesions, cytokinesis, mitosis, exo- and endo-cytosis among others. The development of 3D high-content assays such as biodynamic profiling can become a critical new tool for assessing efficacy of drugs and the suitability of specific types of tissue growth for drug discovery and development. The use of biodynamic profiling to predict clinical outcome of living biopsies to cancer therapeutics can be developed into a phenotypic companion diagnostic, as well as a new tool for therapy selection in personalized medicine. This invited talk will present an overview of the optical, physical and physiological processes involved in biodynamic imaging. Several different biodynamic imaging modalities include motility contrast imaging (MCI), tissue-dynamics spectroscopy (TDS) and tissue-dynamics imaging (TDI). A wide range of potential applications will be described that include process monitoring for 3D tissue culture, drug discovery and development, cancer therapy selection, embryo assessment for in-vitro fertilization and artificial reproductive technologies, among others.

  18. On-line 3D motion estimation using low resolution MRI

    NASA Astrophysics Data System (ADS)

    Glitzner, M.; de Senneville, B. Denis; Lagendijk, J. J. W.; Raaymakers, B. W.; Crijns, S. P. M.

    2015-08-01

    Image processing such as deformable image registration finds its way into radiotherapy as a means to track non-rigid anatomy. With the advent of magnetic resonance imaging (MRI) guided radiotherapy, intrafraction anatomy snapshots become technically feasible. MRI provides the needed tissue signal for high-fidelity image registration. However, acquisitions, especially in 3D, take a considerable amount of time. Pushing towards real-time adaptive radiotherapy, MRI needs to be accelerated without degrading the quality of information. In this paper, we investigate the impact of image resolution on the quality of motion estimations. Potentially, spatially undersampled images yield comparable motion estimations. At the same time, their acquisition times would reduce greatly due to the sparser sampling. In order to substantiate this hypothesis, exemplary 4D datasets of the abdomen were downsampled gradually. Subsequently, spatiotemporal deformations are extracted consistently using the same motion estimation for each downsampled dataset. Errors between the original and the respectively downsampled version of the dataset are then evaluated. Compared to ground-truth, results show high similarity of deformations estimated from downsampled image data. Using a dataset with {{≤ft(2.5 \\text{mm}\\right)}3} voxel size, deformation fields could be recovered well up to a downsampling factor of 2, i.e. {{≤ft(5 \\text{mm}\\right)}3} . In a therapy guidance scenario MRI, imaging speed could accordingly increase approximately fourfold, with acceptable loss of estimated motion quality.

  19. On-line 3D motion estimation using low resolution MRI.

    PubMed

    Glitzner, M; de Senneville, B Denis; Lagendijk, J J W; Raaymakers, B W; Crijns, S P M

    2015-08-21

    Image processing such as deformable image registration finds its way into radiotherapy as a means to track non-rigid anatomy. With the advent of magnetic resonance imaging (MRI) guided radiotherapy, intrafraction anatomy snapshots become technically feasible. MRI provides the needed tissue signal for high-fidelity image registration. However, acquisitions, especially in 3D, take a considerable amount of time. Pushing towards real-time adaptive radiotherapy, MRI needs to be accelerated without degrading the quality of information. In this paper, we investigate the impact of image resolution on the quality of motion estimations. Potentially, spatially undersampled images yield comparable motion estimations. At the same time, their acquisition times would reduce greatly due to the sparser sampling. In order to substantiate this hypothesis, exemplary 4D datasets of the abdomen were downsampled gradually. Subsequently, spatiotemporal deformations are extracted consistently using the same motion estimation for each downsampled dataset. Errors between the original and the respectively downsampled version of the dataset are then evaluated. Compared to ground-truth, results show high similarity of deformations estimated from downsampled image data. Using a dataset with (2.5 mm)3 voxel size, deformation fields could be recovered well up to a downsampling factor of 2, i.e. (5 mm)3. In a therapy guidance scenario MRI, imaging speed could accordingly increase approximately fourfold, with acceptable loss of estimated motion quality.

  20. Semi-automatic segmentation for 3D motion analysis of the tongue with dynamic MRI.

    PubMed

    Lee, Junghoon; Woo, Jonghye; Xing, Fangxu; Murano, Emi Z; Stone, Maureen; Prince, Jerry L

    2014-12-01

    Dynamic MRI has been widely used to track the motion of the tongue and measure its internal deformation during speech and swallowing. Accurate segmentation of the tongue is a prerequisite step to define the target boundary and constrain the tracking to tissue points within the tongue. Segmentation of 2D slices or 3D volumes is challenging because of the large number of slices and time frames involved in the segmentation, as well as the incorporation of numerous local deformations that occur throughout the tongue during motion. In this paper, we propose a semi-automatic approach to segment 3D dynamic MRI of the tongue. The algorithm steps include seeding a few slices at one time frame, propagating seeds to the same slices at different time frames using deformable registration, and random walker segmentation based on these seed positions. This method was validated on the tongue of five normal subjects carrying out the same speech task with multi-slice 2D dynamic cine-MR images obtained at three orthogonal orientations and 26 time frames. The resulting semi-automatic segmentations of a total of 130 volumes showed an average dice similarity coefficient (DSC) score of 0.92 with less segmented volume variability between time frames than in manual segmentations. PMID:25155697

  1. Local characterization of hindered Brownian motion by using digital video microscopy and 3D particle tracking

    SciTech Connect

    Dettmer, Simon L.; Keyser, Ulrich F.; Pagliara, Stefano

    2014-02-15

    In this article we present methods for measuring hindered Brownian motion in the confinement of complex 3D geometries using digital video microscopy. Here we discuss essential features of automated 3D particle tracking as well as diffusion data analysis. By introducing local mean squared displacement-vs-time curves, we are able to simultaneously measure the spatial dependence of diffusion coefficients, tracking accuracies and drift velocities. Such local measurements allow a more detailed and appropriate description of strongly heterogeneous systems as opposed to global measurements. Finite size effects of the tracking region on measuring mean squared displacements are also discussed. The use of these methods was crucial for the measurement of the diffusive behavior of spherical polystyrene particles (505 nm diameter) in a microfluidic chip. The particles explored an array of parallel channels with different cross sections as well as the bulk reservoirs. For this experiment we present the measurement of local tracking accuracies in all three axial directions as well as the diffusivity parallel to the channel axis while we observed no significant flow but purely Brownian motion. Finally, the presented algorithm is suitable also for tracking of fluorescently labeled particles and particles driven by an external force, e.g., electrokinetic or dielectrophoretic forces.

  2. Semi-automatic segmentation for 3D motion analysis of the tongue with dynamic MRI.

    PubMed

    Lee, Junghoon; Woo, Jonghye; Xing, Fangxu; Murano, Emi Z; Stone, Maureen; Prince, Jerry L

    2014-12-01

    Dynamic MRI has been widely used to track the motion of the tongue and measure its internal deformation during speech and swallowing. Accurate segmentation of the tongue is a prerequisite step to define the target boundary and constrain the tracking to tissue points within the tongue. Segmentation of 2D slices or 3D volumes is challenging because of the large number of slices and time frames involved in the segmentation, as well as the incorporation of numerous local deformations that occur throughout the tongue during motion. In this paper, we propose a semi-automatic approach to segment 3D dynamic MRI of the tongue. The algorithm steps include seeding a few slices at one time frame, propagating seeds to the same slices at different time frames using deformable registration, and random walker segmentation based on these seed positions. This method was validated on the tongue of five normal subjects carrying out the same speech task with multi-slice 2D dynamic cine-MR images obtained at three orthogonal orientations and 26 time frames. The resulting semi-automatic segmentations of a total of 130 volumes showed an average dice similarity coefficient (DSC) score of 0.92 with less segmented volume variability between time frames than in manual segmentations.

  3. 3D motion tracking of the heart using Harmonic Phase (HARP) isosurfaces

    NASA Astrophysics Data System (ADS)

    Soliman, Abraam S.; Osman, Nael F.

    2010-03-01

    Tags are non-invasive features induced in the heart muscle that enable the tracking of heart motion. Each tag line, in fact, corresponds to a 3D tag surface that deforms with the heart muscle during the cardiac cycle. Tracking of tag surfaces deformation is useful for the analysis of left ventricular motion. Cardiac material markers (Kerwin et al, MIA, 1997) can be obtained from the intersections of orthogonal surfaces which can be reconstructed from short- and long-axis tagged images. The proposed method uses Harmonic Phase (HARP) method for tracking tag lines corresponding to a specific harmonic phase value and then the reconstruction of grid tag surfaces is achieved by a Delaunay triangulation-based interpolation for sparse tag points. Having three different tag orientations from short- and long-axis images, the proposed method showed the deformation of 3D tag surfaces during the cardiac cycle. Previous work on tag surface reconstruction was restricted for the "dark" tag lines; however, the use of HARP as proposed enables the reconstruction of isosurfaces based on their harmonic phase values. The use of HARP, also, provides a fast and accurate way for tag lines identification and tracking, and hence, generating the surfaces.

  4. Semi-automatic segmentation for 3D motion analysis of the tongue with dynamic MRI

    PubMed Central

    Lee, Junghoon; Woo, Jonghye; Xing, Fangxu; Murano, Emi Z.; Stone, Maureen; Prince, Jerry L.

    2014-01-01

    Dynamic MRI has been widely used to track the motion of the tongue and measure its internal deformation during speech and swallowing. Accurate segmentation of the tongue is a prerequisite step to define the target boundary and constrain the tracking to tissue points within the tongue. Segmentation of 2D slices or 3D volumes is challenging because of the large number of slices and time frames involved in the segmentation, as well as the incorporation of numerous local deformations that occur throughout the tongue during motion. In this paper, we propose a semi-automatic approach to segment 3D dynamic MRI of the tongue. The algorithm steps include seeding a few slices at one time frame, propagating seeds to the same slices at different time frames using deformable registration, and random walker segmentation based on these seed positions. This method was validated on the tongue of five normal subjects carrying out the same speech task with multi-slice 2D dynamic cine-MR images obtained at three orthogonal orientations and 26 time frames. The resulting semi-automatic segmentations of a total of 130 volumes showed an average dice similarity coefficient (DSC) score of 0.92 with less segmented volume variability between time frames than in manual segmentations. PMID:25155697

  5. Prospective motion correction of 3D echo-planar imaging data for functional MRI using optical tracking.

    PubMed

    Todd, Nick; Josephs, Oliver; Callaghan, Martina F; Lutti, Antoine; Weiskopf, Nikolaus

    2015-06-01

    We evaluated the performance of an optical camera based prospective motion correction (PMC) system in improving the quality of 3D echo-planar imaging functional MRI data. An optical camera and external marker were used to dynamically track the head movement of subjects during fMRI scanning. PMC was performed by using the motion information to dynamically update the sequence's RF excitation and gradient waveforms such that the field-of-view was realigned to match the subject's head movement. Task-free fMRI experiments on five healthy volunteers followed a 2 × 2 × 3 factorial design with the following factors: PMC on or off; 3.0mm or 1.5mm isotropic resolution; and no, slow, or fast head movements. Visual and motor fMRI experiments were additionally performed on one of the volunteers at 1.5mm resolution comparing PMC on vs PMC off for no and slow head movements. Metrics were developed to quantify the amount of motion as it occurred relative to k-space data acquisition. The motion quantification metric collapsed the very rich camera tracking data into one scalar value for each image volume that was strongly predictive of motion-induced artifacts. The PMC system did not introduce extraneous artifacts for the no motion conditions and improved the time series temporal signal-to-noise by 30% to 40% for all combinations of low/high resolution and slow/fast head movement relative to the standard acquisition with no prospective correction. The numbers of activated voxels (p<0.001, uncorrected) in both task-based experiments were comparable for the no motion cases and increased by 78% and 330%, respectively, for PMC on versus PMC off in the slow motion cases. The PMC system is a robust solution to decrease the motion sensitivity of multi-shot 3D EPI sequences and thereby overcome one of the main roadblocks to their widespread use in fMRI studies.

  6. Prospective motion correction of 3D echo-planar imaging data for functional MRI using optical tracking

    PubMed Central

    Todd, Nick; Josephs, Oliver; Callaghan, Martina F.; Lutti, Antoine; Weiskopf, Nikolaus

    2015-01-01

    We evaluated the performance of an optical camera based prospective motion correction (PMC) system in improving the quality of 3D echo-planar imaging functional MRI data. An optical camera and external marker were used to dynamically track the head movement of subjects during fMRI scanning. PMC was performed by using the motion information to dynamically update the sequence's RF excitation and gradient waveforms such that the field-of-view was realigned to match the subject's head movement. Task-free fMRI experiments on five healthy volunteers followed a 2 × 2 × 3 factorial design with the following factors: PMC on or off; 3.0 mm or 1.5 mm isotropic resolution; and no, slow, or fast head movements. Visual and motor fMRI experiments were additionally performed on one of the volunteers at 1.5 mm resolution comparing PMC on vs PMC off for no and slow head movements. Metrics were developed to quantify the amount of motion as it occurred relative to k-space data acquisition. The motion quantification metric collapsed the very rich camera tracking data into one scalar value for each image volume that was strongly predictive of motion-induced artifacts. The PMC system did not introduce extraneous artifacts for the no motion conditions and improved the time series temporal signal-to-noise by 30% to 40% for all combinations of low/high resolution and slow/fast head movement relative to the standard acquisition with no prospective correction. The numbers of activated voxels (p < 0.001, uncorrected) in both task-based experiments were comparable for the no motion cases and increased by 78% and 330%, respectively, for PMC on versus PMC off in the slow motion cases. The PMC system is a robust solution to decrease the motion sensitivity of multi-shot 3D EPI sequences and thereby overcome one of the main roadblocks to their widespread use in fMRI studies. PMID:25783205

  7. New method for detection of complex 3D fracture motion - Verification of an optical motion analysis system for biomechanical studies

    PubMed Central

    2012-01-01

    Background Fracture-healing depends on interfragmentary motion. For improved osteosynthesis and fracture-healing, the micromotion between fracture fragments is undergoing intensive research. The detection of 3D micromotions at the fracture gap still presents a challenge for conventional tactile measurement systems. Optical measurement systems may be easier to use than conventional systems, but, as yet, cannot guarantee accuracy. The purpose of this study was to validate the optical measurement system PONTOS 5M for use in biomechanical research, including measurement of micromotion. Methods A standardized transverse fracture model was created to detect interfragmentary motions under axial loadings of up to 200 N. Measurements were performed using the optical measurement system and compared with a conventional high-accuracy tactile system consisting of 3 standard digital dial indicators (1 μm resolution; 5 μm error limit). Results We found that the deviation in the mean average motion detection between the systems was at most 5.3 μm, indicating that detection of micromotion was possible with the optical measurement system. Furthermore, we could show two considerable advantages while using the optical measurement system. Only with the optical system interfragmentary motion could be analyzed directly at the fracture gap. Furthermore, the calibration of the optical system could be performed faster, safer and easier than that of the tactile system. Conclusion The PONTOS 5 M optical measurement system appears to be a favorable alternative to previously used tactile measurement systems for biomechanical applications. Easy handling, combined with a high accuracy for 3D detection of micromotions (≤ 5 μm), suggests the likelihood of high user acceptance. This study was performed in the context of the deployment of a new implant (dynamic locking screw; Synthes, Oberdorf, Switzerland). PMID:22405047

  8. 3D Soil Images Structure Quantification using Relative Entropy

    NASA Astrophysics Data System (ADS)

    Tarquis, A. M.; Gonzalez-Nieto, P. L.; Bird, N. R. A.

    2012-04-01

    Soil voids manifest the cumulative effect of local pedogenic processes and ultimately influence soil behavior - especially as it pertains to aeration and hydrophysical properties. Because of the relatively weak attenuation of X-rays by air, compared with liquids or solids, non-disruptive CT scanning has become a very attractive tool for generating three-dimensional imagery of soil voids. One of the main steps involved in this analysis is the thresholding required to transform the original (greyscale) images into the type of binary representation (e.g., pores in white, solids in black) needed for fractal analysis or simulation with Lattice-Boltzmann models (Baveye et al., 2010). The objective of the current work is to apply an innovative approach to quantifying soil voids and pore networks in original X-ray CT imagery using Relative Entropy (Bird et al., 2006; Tarquis et al., 2008). These will be illustrated using typical imagery representing contrasting soil structures. Particular attention will be given to the need to consider the full 3D context of the CT imagery, as well as scaling issues, in the application and interpretation of this index.

  9. Feasibility Study for Ballet E-Learning: Automatic Composition System for Ballet "Enchainement" with Online 3D Motion Data Archive

    ERIC Educational Resources Information Center

    Umino, Bin; Longstaff, Jeffrey Scott; Soga, Asako

    2009-01-01

    This paper reports on "Web3D dance composer" for ballet e-learning. Elementary "petit allegro" ballet steps were enumerated in collaboration with ballet teachers, digitally acquired through 3D motion capture systems, and categorised into families and sub-families. Digital data was manipulated into virtual reality modelling language (VRML) and fit…

  10. Comparative abilities of Microsoft Kinect and Vicon 3D motion capture for gait analysis.

    PubMed

    Pfister, Alexandra; West, Alexandre M; Bronner, Shaw; Noah, Jack Adam

    2014-07-01

    Biomechanical analysis is a powerful tool in the evaluation of movement dysfunction in orthopaedic and neurologic populations. Three-dimensional (3D) motion capture systems are widely used, accurate systems, but are costly and not available in many clinical settings. The Microsoft Kinect™ has the potential to be used as an alternative low-cost motion analysis tool. The purpose of this study was to assess concurrent validity of the Kinect™ with Brekel Kinect software in comparison to Vicon Nexus during sagittal plane gait kinematics. Twenty healthy adults (nine male, 11 female) were tracked while walking and jogging at three velocities on a treadmill. Concurrent hip and knee peak flexion and extension and stride timing measurements were compared between Vicon and Kinect™. Although Kinect measurements were representative of normal gait, the Kinect™ generally under-estimated joint flexion and over-estimated extension. Kinect™ and Vicon hip angular displacement correlation was very low and error was large. Kinect™ knee measurements were somewhat better than hip, but were not consistent enough for clinical assessment. Correlation between Kinect™ and Vicon stride timing was high and error was fairly small. Variability in Kinect™ measurements was smallest at the slowest velocity. The Kinect™ has basic motion capture capabilities and with some minor adjustments will be an acceptable tool to measure stride timing, but sophisticated advances in software and hardware are necessary to improve Kinect™ sensitivity before it can be implemented for clinical use.

  11. 3D cardiac motion reconstruction from CT data and tagged MRI.

    PubMed

    Wang, Xiaoxu; Mihalef, Viorel; Qian, Zhen; Voros, Szilard; Metaxas, Dimitris

    2012-01-01

    In this paper we present a novel method for left ventricle (LV) endocardium motion reconstruction using high resolution CT data and tagged MRI. High resolution CT data provide anatomic details on the LV endocardial surface, such as the papillary muscle and trabeculae carneae. Tagged MRI provides better time resolution. The combination of these two imaging techniques can give us better understanding on left ventricle motion. The high resolution CT images are segmented with mean shift method and generate the LV endocardium mesh. The meshless deformable model built with high resolution endocardium surface from CT data fit to the tagged MRI of the same phase. 3D deformation of the myocardium is computed with the Lagrangian dynamics and local Laplacian deformation. The segmented inner surface of left ventricle is compared with the heart inner surface picture and show high agreement. The papillary muscles are attached to the inner surface with roots. The free wall of the left ventricle inner surface is covered with trabeculae carneae. The deformation of the heart wall and the papillary muscle in the first half of the cardiac cycle is presented. The motion reconstruction results are very close to the live heart video. PMID:23366825

  12. 3D Cardiac Motion Reconstruction from CT Data and Tagged MRI

    PubMed Central

    Wang, Xiaoxu; Mihalef, Viorel; Qian, Zhen; Voros, Szilard; Metaxas, Dimitris

    2016-01-01

    In this paper we present a novel method for left ventricle (LV) endocardium motion reconstruction using high resolution CT data and tagged MRI. High resolution CT data provide anatomic details on the LV endocardial surface, such as the papillary muscle and trabeculae carneae. Tagged MRI provides better time resolution. The combination of these two imaging techniques can give us better understanding on left ventricle motion. The high resolution CT images are segmented with mean shift method and generate the LV endocardium mesh. The meshless deformable model built with high resolution endocardium surface from CT data fit to the tagged MRI of the same phase. 3D deformation of the myocardium is computed with the Lagrangian dynamics and local Laplacian deformation. The segmented inner surface of left ventricle is compared with the heart inner surface picture and show high agreement. The papillary muscles are attached to the inner surface with roots. The free wall of the left ventricle inner surface is covered with trabeculae carneae. The deformation of the heart wall and the papillary muscle in the first half of the cardiac cycle is presented. The motion reconstruction results are very close to the live heart video. PMID:23366825

  13. 3D hand motion trajectory prediction from EEG mu and beta bandpower.

    PubMed

    Korik, A; Sosnik, R; Siddique, N; Coyle, D

    2016-01-01

    A motion trajectory prediction (MTP) - based brain-computer interface (BCI) aims to reconstruct the three-dimensional (3D) trajectory of upper limb movement using electroencephalography (EEG). The most common MTP BCI employs a time series of bandpass-filtered EEG potentials (referred to here as the potential time-series, PTS, model) for reconstructing the trajectory of a 3D limb movement using multiple linear regression. These studies report the best accuracy when a 0.5-2Hz bandpass filter is applied to the EEG. In the present study, we show that spatiotemporal power distribution of theta (4-8Hz), mu (8-12Hz), and beta (12-28Hz) bands are more robust for movement trajectory decoding when the standard PTS approach is replaced with time-varying bandpower values of a specified EEG band, ie, with a bandpower time-series (BTS) model. A comprehensive analysis comprising of three subjects performing pointing movements with the dominant right arm toward six targets is presented. Our results show that the BTS model produces significantly higher MTP accuracy (R~0.45) compared to the standard PTS model (R~0.2). In the case of the BTS model, the highest accuracy was achieved across the three subjects typically in the mu (8-12Hz) and low-beta (12-18Hz) bands. Additionally, we highlight a limitation of the commonly used PTS model and illustrate how this model may be suboptimal for decoding motion trajectory relevant information. Although our results, showing that the mu and beta bands are prominent for MTP, are not in line with other MTP studies, they are consistent with the extensive literature on classical multiclass sensorimotor rhythm-based BCI studies (classification of limbs as opposed to motion trajectory prediction), which report the best accuracy of imagined limb movement classification using power values of mu and beta frequency bands. The methods proposed here provide a positive step toward noninvasive decoding of imagined 3D hand movements for movement-free BCIs

  14. 3D hand motion trajectory prediction from EEG mu and beta bandpower.

    PubMed

    Korik, A; Sosnik, R; Siddique, N; Coyle, D

    2016-01-01

    A motion trajectory prediction (MTP) - based brain-computer interface (BCI) aims to reconstruct the three-dimensional (3D) trajectory of upper limb movement using electroencephalography (EEG). The most common MTP BCI employs a time series of bandpass-filtered EEG potentials (referred to here as the potential time-series, PTS, model) for reconstructing the trajectory of a 3D limb movement using multiple linear regression. These studies report the best accuracy when a 0.5-2Hz bandpass filter is applied to the EEG. In the present study, we show that spatiotemporal power distribution of theta (4-8Hz), mu (8-12Hz), and beta (12-28Hz) bands are more robust for movement trajectory decoding when the standard PTS approach is replaced with time-varying bandpower values of a specified EEG band, ie, with a bandpower time-series (BTS) model. A comprehensive analysis comprising of three subjects performing pointing movements with the dominant right arm toward six targets is presented. Our results show that the BTS model produces significantly higher MTP accuracy (R~0.45) compared to the standard PTS model (R~0.2). In the case of the BTS model, the highest accuracy was achieved across the three subjects typically in the mu (8-12Hz) and low-beta (12-18Hz) bands. Additionally, we highlight a limitation of the commonly used PTS model and illustrate how this model may be suboptimal for decoding motion trajectory relevant information. Although our results, showing that the mu and beta bands are prominent for MTP, are not in line with other MTP studies, they are consistent with the extensive literature on classical multiclass sensorimotor rhythm-based BCI studies (classification of limbs as opposed to motion trajectory prediction), which report the best accuracy of imagined limb movement classification using power values of mu and beta frequency bands. The methods proposed here provide a positive step toward noninvasive decoding of imagined 3D hand movements for movement-free BCIs.

  15. Motion error analysis of the 3D coordinates of airborne lidar for typical terrains

    NASA Astrophysics Data System (ADS)

    Peng, Tao; Lan, Tian; Ni, Guoqiang

    2013-07-01

    A motion error model of 3D coordinates is established and the impact on coordinate errors caused by the non-ideal movement of the airborne platform is analyzed. The simulation results of the model show that when the lidar system operates at high altitude, the influence on the positioning errors derived from laser point cloud spacing is small. For the model the positioning errors obey simple harmonic vibration whose amplitude envelope gradually reduces with the increase of the vibration frequency. When the vibration period number is larger than 50, the coordinate errors are almost uncorrelated with time. The elevation error is less than the plane error and in the plane the error in the scanning direction is less than the error in the flight direction. Through the analysis of flight test data, the conclusion is verified.

  16. Neural network techniques for invariant recognition and motion tracking of 3-D objects

    SciTech Connect

    Hwang, J.N.; Tseng, Y.H.

    1995-12-31

    Invariant recognition and motion tracking of 3-D objects under partial object viewing are difficult tasks. In this paper, we introduce a new neural network solution that is robust to noise corruption and partial viewing of objects. This method directly utilizes the acquired range data and requires no feature extraction. In the proposed approach, the object is first parametrically represented by a continuous distance transformation neural network (CDTNN) which is trained by the surface points of the exemplar object. When later presented with the surface points of an unknown object, this parametric representation allows the mismatch information to back-propagate through the CDTNN to gradually determine the best similarity transformation (translation and rotation) of the unknown object. The mismatch can be directly measured in the reconstructed representation domain between the model and the unknown object.

  17. Tactical 3D model generation using structure-from-motion on video from unmanned systems

    NASA Astrophysics Data System (ADS)

    Harguess, Josh; Bilinski, Mark; Nguyen, Kim B.; Powell, Darren

    2015-05-01

    Unmanned systems have been cited as one of the future enablers of all the services to assist the warfighter in dominating the battlespace. The potential benefits of unmanned systems are being closely investigated -- from providing increased and potentially stealthy surveillance, removing the warfighter from harms way, to reducing the manpower required to complete a specific job. In many instances, data obtained from an unmanned system is used sparingly, being applied only to the mission at hand. Other potential benefits to be gained from the data are overlooked and, after completion of the mission, the data is often discarded or lost. However, this data can be further exploited to offer tremendous tactical, operational, and strategic value. To show the potential value of this otherwise lost data, we designed a system that persistently stores the data in its original format from the unmanned vehicle and then generates a new, innovative data medium for further analysis. The system streams imagery and video from an unmanned system (original data format) and then constructs a 3D model (new data medium) using structure-from-motion. The 3D generated model provides warfighters additional situational awareness, tactical and strategic advantages that the original video stream lacks. We present our results using simulated unmanned vehicle data with Google Earth™providing the imagery as well as real-world data, including data captured from an unmanned aerial vehicle flight.

  18. Velocity and Density Models Incorporating the Cascadia Subduction Zone for 3D Earthquake Ground Motion Simulations

    USGS Publications Warehouse

    Stephenson, William J.

    2007-01-01

    INTRODUCTION In support of earthquake hazards and ground motion studies in the Pacific Northwest, three-dimensional P- and S-wave velocity (3D Vp and Vs) and density (3D rho) models incorporating the Cascadia subduction zone have been developed for the region encompassed from about 40.2?N to 50?N latitude, and from about -122?W to -129?W longitude. The model volume includes elevations from 0 km to 60 km (elevation is opposite of depth in model coordinates). Stephenson and Frankel (2003) presented preliminary ground motion simulations valid up to 0.1 Hz using an earlier version of these models. The version of the model volume described here includes more structural and geophysical detail, particularly in the Puget Lowland as required for scenario earthquake simulations in the development of the Seattle Urban Hazards Maps (Frankel and others, 2007). Olsen and others (in press) used the model volume discussed here to perform a Cascadia simulation up to 0.5 Hz using a Sumatra-Andaman Islands rupture history. As research from the EarthScope Program (http://www.earthscope.org) is published, a wealth of important detail can be added to these model volumes, particularly to depths of the upper-mantle. However, at the time of development for this model version, no EarthScope-specific results were incorporated. This report is intended to be a reference for colleagues and associates who have used or are planning to use this preliminary model in their research. To this end, it is intended that these models will be considered a beginning template for a community velocity model of the Cascadia region as more data and results become available.

  19. Recording High Resolution 3D Lagrangian Motions In Marine Dinoflagellates using Digital Holographic Microscopic Cinematography

    NASA Astrophysics Data System (ADS)

    Sheng, J.; Malkiel, E.; Katz, J.; Place, A. R.; Belas, R.

    2006-11-01

    Detailed data on swimming behavior and locomotion for dense population of dinoflagellates constitutes a key component to understanding cell migration, cell-cell interactions and predator-prey dynamics, all of which affect algae bloom dynamics. Due to the multi-dimensional nature of flagellated cell motions, spatial-temporal Lagrangian measurements of multiple cells in high concentration are very limited. Here we present detailed data on 3D Lagrangian motions for three marine dinoflagellates: Oxyrrhis marina, Karlodinium veneficum, and Pfiesteria piscicida, using digital holographic microscopic cinematography. The measurements are performed in a 5x5x25mm cuvette with cell densities varying from 50,000 ˜ 90,000 cells/ml. Approximately 200-500 cells are tracked simultaneously for 12s at 60fps in a sample volume of 1x1x5 mm at a spatial resolution of 0.4x0.4x2 μm. We fully resolve the longitudinal flagella (˜200nm) along with the Lagrangian trajectory of each organism. Species dependent swimming behavior are identified and categorized quantitatively by velocities, radii of curvature, and rotations of pitch. Statistics on locomotion, temporal & spatial scales, and diffusion rate show substantial differences between species. The scaling between turning radius and cell dimension can be explained by a distributed stokeslet model for a self-propelled body.

  20. Numerical Benchmark of 3D Ground Motion Simulation in the Alpine valley of Grenoble, France.

    NASA Astrophysics Data System (ADS)

    Tsuno, S.; Chaljub, E.; Cornou, C.; Bard, P.

    2006-12-01

    Thank to the use of sophisticated numerical methods and to the access to increasing computational resources, our predictions of strong ground motion become more and more realistic and need to be carefully compared. We report our effort of benchmarking numerical methods of ground motion simulation in the case of the valley of Grenoble in the French Alps. The Grenoble valley is typical of a moderate seismicity area where strong site effects occur. The benchmark consisted in computing the seismic response of the `Y'-shaped Grenoble valley to (i) two local earthquakes (Ml<=3) for which recordings were avalaible; and (ii) two local hypothetical events (Mw=6) occuring on the so-called Belledonne Border Fault (BBF) [1]. A free-style prediction was also proposed, in which participants were allowed to vary the source and/or the model parameters and were asked to provide the resulting uncertainty in their estimation of ground motion. We received a total of 18 contributions from 14 different groups; 7 of these use 3D methods, among which 3 could handle surface topography, the other half comprises predictions based upon 1D (2 contributions), 2D (4 contributions) and empirical Green's function (EGF) (3 contributions) methods. Maximal frequency analysed ranged between 2.5 Hz for 3D calculations and 40 Hz for EGF predictions. We present a detailed comparison of the different predictions using raw indicators (e.g. peak values of ground velocity and acceleration, Fourier spectra, site over reference spectral ratios, ...) as well as sophisticated misfit criteria based upon previous works [2,3]. We further discuss the variability in estimating the importance of particular effects such as non-linear rheology, or surface topography. References: [1] Thouvenot F. et al., The Belledonne Border Fault: identification of an active seismic strike-slip fault in the western Alps, Geophys. J. Int., 155 (1), p. 174-192, 2003. [2] Anderson J., Quantitative measure of the goodness-of-fit of

  1. Are There Side Effects to Watching 3D Movies? A Prospective Crossover Observational Study on Visually Induced Motion Sickness

    PubMed Central

    Solimini, Angelo G.

    2013-01-01

    Background The increasing popularity of commercial movies showing three dimensional (3D) images has raised concern about possible adverse side effects on viewers. Methods and Findings A prospective carryover observational study was designed to assess the effect of exposure (3D vs. 2D movie views) on self reported symptoms of visually induced motion sickness. The standardized Simulator Sickness Questionnaire (SSQ) was self administered on a convenience sample of 497 healthy adult volunteers before and after the vision of 2D and 3D movies. Viewers reporting some sickness (SSQ total score>15) were 54.8% of the total sample after the 3D movie compared to 14.1% of total sample after the 2D movie. Symptom intensity was 8.8 times higher than baseline after exposure to 3D movie (compared to the increase of 2 times the baseline after the 2D movie). Multivariate modeling of visually induced motion sickness as response variables pointed out the significant effects of exposure to 3D movie, history of car sickness and headache, after adjusting for gender, age, self reported anxiety level, attention to the movie and show time. Conclusions Seeing 3D movies can increase rating of symptoms of nausea, oculomotor and disorientation, especially in women with susceptible visual-vestibular system. Confirmatory studies which include examination of clinical signs on viewers are needed to pursue a conclusive evidence on the 3D vision effects on spectators. PMID:23418530

  2. SU-E-J-135: An Investigation of Ultrasound Imaging for 3D Intra-Fraction Prostate Motion Estimation

    SciTech Connect

    O'Shea, T; Harris, E; Bamber, J; Evans, P

    2014-06-01

    Purpose: This study investigates the use of a mechanically swept 3D ultrasound (US) probe to estimate intra-fraction motion of the prostate during radiation therapy using an US phantom and simulated transperineal imaging. Methods: A 3D motion platform was used to translate an US speckle phantom while simulating transperineal US imaging. Motion patterns for five representative types of prostate motion, generated from patient data previously acquired with a Calypso system, were using to move the phantom in 3D. The phantom was also implanted with fiducial markers and subsequently tracked using the CyberKnife kV x-ray system for comparison. A normalised cross correlation block matching algorithm was used to track speckle patterns in 3D and 2D US data. Motion estimation results were compared with known phantom translations. Results: Transperineal 3D US could track superior-inferior (axial) and anterior-posterior (lateral) motion to better than 0.8 mm root-mean-square error (RMSE) at a volume rate of 1.7 Hz (comparable with kV x-ray tracking RMSE). Motion estimation accuracy was poorest along the US probe's swept axis (right-left; RL; RMSE < 4.2 mm) but simple regularisation methods could be used to improve RMSE (< 2 mm). 2D US was found to be feasible for slowly varying motion (RMSE < 0.5 mm). 3D US could also allow accurate radiation beam gating with displacement thresholds of 2 mm and 5 mm exhibiting a RMSE of less than 0.5 mm. Conclusion: 2D and 3D US speckle tracking is feasible for prostate motion estimation during radiation delivery. Since RL prostate motion is small in magnitude and frequency, 2D or a hybrid (2D/3D) US imaging approach which also accounts for potential prostate rotations could be used. Regularisation methods could be used to ensure the accuracy of tracking data, making US a feasible approach for gating or tracking in standard or hypo-fractionated prostate treatments.

  3. 3D Modelling of Inaccessible Areas using UAV-based Aerial Photography and Structure from Motion

    NASA Astrophysics Data System (ADS)

    Obanawa, Hiroyuki; Hayakawa, Yuichi; Gomez, Christopher

    2014-05-01

    In hardly accessible areas, the collection of 3D point-clouds using TLS (Terrestrial Laser Scanner) can be very challenging, while airborne equivalent would not give a correct account of subvertical features and concave geometries like caves. To solve such problem, the authors have experimented an aerial photography based SfM (Structure from Motion) technique on a 'peninsular-rock' surrounded on three sides by the sea at a Pacific coast in eastern Japan. The research was carried out using UAS (Unmanned Aerial System) combined with a commercial small UAV (Unmanned Aerial Vehicle) carrying a compact camera. The UAV is a DJI PHANTOM: the UAV has four rotors (quadcopter), it has a weight of 1000 g, a payload of 400 g and a maximum flight time of 15 minutes. The camera is a GoPro 'HERO3 Black Edition': resolution 12 million pixels; weight 74 g; and 0.5 sec. interval-shot. The 3D model has been constructed by digital photogrammetry using a commercial SfM software, Agisoft PhotoScan Professional®, which can generate sparse and dense point-clouds, from which polygonal models and orthophotographs can be calculated. Using the 'flight-log' and/or GCPs (Ground Control Points), the software can generate digital surface model. As a result, high-resolution aerial orthophotographs and a 3D model were obtained. The results have shown that it was possible to survey the sea cliff and the wave cut-bench, which are unobservable from land side. In details, we could observe the complexity of the sea cliff that is nearly vertical as a whole while slightly overhanging over the thinner base. The wave cut bench is nearly flat and develops extensively at the base of the cliff. Although there are some evidences of small rockfalls at the upper part of the cliff, there is no evidence of very recent activity, because no fallen rock exists on the wave cut bench. This system has several merits: firstly lower cost than the existing measuring methods such as manned-flight survey and aerial laser

  4. Mobile Biplane X-Ray Imaging System for Measuring 3D Dynamic Joint Motion During Overground Gait.

    PubMed

    Guan, Shanyuanye; Gray, Hans A; Keynejad, Farzad; Pandy, Marcus G

    2016-01-01

    Most X-ray fluoroscopy systems are stationary and impose restrictions on the measurement of dynamic joint motion; for example, knee-joint kinematics during gait is usually measured with the subject ambulating on a treadmill. We developed a computer-controlled, mobile, biplane, X-ray fluoroscopy system to track human body movement for high-speed imaging of 3D joint motion during overground gait. A robotic gantry mechanism translates the two X-ray units alongside the subject, tracking and imaging the joint of interest as the subject moves. The main aim of the present study was to determine the accuracy with which the mobile imaging system measures 3D knee-joint kinematics during walking. In vitro experiments were performed to measure the relative positions of the tibia and femur in an intact human cadaver knee and of the tibial and femoral components of a total knee arthroplasty (TKA) implant during simulated overground gait. Accuracy was determined by calculating mean, standard deviation and root-mean-squared errors from differences between kinematic measurements obtained using volumetric models of the bones and TKA components and reference measurements obtained from metal beads embedded in the bones. Measurement accuracy was enhanced by the ability to track and image the joint concurrently. Maximum root-mean-squared errors were 0.33 mm and 0.65° for translations and rotations of the TKA knee and 0.78 mm and 0.77° for translations and rotations of the intact knee, which are comparable to results reported for treadmill walking using stationary biplane systems. System capability for in vivo joint motion measurement was also demonstrated for overground gait.

  5. Sedimentary basin effects in Seattle, Washington: Ground-motion observations and 3D simulations

    USGS Publications Warehouse

    Frankel, Arthur; Stephenson, William; Carver, David

    2009-01-01

    Seismograms of local earthquakes recorded in Seattle exhibit surface waves in the Seattle basin and basin-edge focusing of S waves. Spectral ratios of Swaves and later arrivals at 1 Hz for stiff-soil sites in the Seattle basin show a dependence on the direction to the earthquake, with earthquakes to the south and southwest producing higher average amplification. Earthquakes to the southwest typically produce larger basin surface waves relative to S waves than earthquakes to the north and northwest, probably because of the velocity contrast across the Seattle fault along the southern margin of the Seattle basin. S to P conversions are observed for some events and are likely converted at the bottom of the Seattle basin. We model five earthquakes, including the M 6.8 Nisqually earthquake, using 3D finite-difference simulations accurate up to 1 Hz. The simulations reproduce the observed dependence of amplification on the direction to the earthquake. The simulations generally match the timing and character of basin surface waves observed for many events. The 3D simulation for the Nisqually earth-quake produces focusing of S waves along the southern margin of the Seattle basin near the area in west Seattle that experienced increased chimney damage from the earthquake, similar to the results of the higher-frequency 2D simulation reported by Stephenson et al. (2006). Waveforms from the 3D simulations show reasonable agreement with the data at low frequencies (0.2-0.4 Hz) for the Nisqually earthquake and an M 4.8 deep earthquake west of Seattle.

  6. Evaluating the utility of 3D TRUS image information in guiding intra-procedure registration for motion compensation

    NASA Astrophysics Data System (ADS)

    De Silva, Tharindu; Cool, Derek W.; Romagnoli, Cesare; Fenster, Aaron; Ward, Aaron D.

    2014-03-01

    In targeted 3D transrectal ultrasound (TRUS)-guided biopsy, patient and prostate movement during the procedure can cause target misalignments that hinder accurate sampling of pre-planned suspicious tissue locations. Multiple solutions have been proposed for motion compensation via registration of intra-procedural TRUS images to a baseline 3D TRUS image acquired at the beginning of the biopsy procedure. While 2D TRUS images are widely used for intra-procedural guidance, some solutions utilize richer intra-procedural images such as bi- or multi-planar TRUS or 3D TRUS, acquired by specialized probes. In this work, we measured the impact of such richer intra-procedural imaging on motion compensation accuracy, to evaluate the tradeoff between cost and complexity of intra-procedural imaging versus improved motion compensation. We acquired baseline and intra-procedural 3D TRUS images from 29 patients at standard sextant-template biopsy locations. We used the planes extracted from the 3D intra-procedural scans to simulate 2D and 3D information available in different clinically relevant scenarios for registration. The registration accuracy was evaluated by calculating the target registration error (TRE) using manually identified homologous fiducial markers (micro-calcifications). Our results indicate that TRE improves gradually when the number of intra-procedural imaging planes used in registration is increased. Full 3D TRUS information helps the registration algorithm to robustly converge to more accurate solutions. These results can also inform the design of a fail-safe workflow during motion compensation in a system using a tracked 2D TRUS probe, by prescribing rotational acquisitions that can be performed quickly and easily by the physician immediately prior to needle targeting.

  7. SU-E-J-01: 3D Fluoroscopic Image Estimation From Patient-Specific 4DCBCT-Based Motion Models

    SciTech Connect

    Dhou, S; Hurwitz, M; Lewis, J; Mishra, P

    2014-06-01

    Purpose: 3D motion modeling derived from 4DCT images, taken days or weeks before treatment, cannot reliably represent patient anatomy on the day of treatment. We develop a method to generate motion models based on 4DCBCT acquired at the time of treatment, and apply the model to estimate 3D time-varying images (referred to as 3D fluoroscopic images). Methods: Motion models are derived through deformable registration between each 4DCBCT phase, and principal component analysis (PCA) on the resulting displacement vector fields. 3D fluoroscopic images are estimated based on cone-beam projections simulating kV treatment imaging. PCA coefficients are optimized iteratively through comparison of these cone-beam projections and projections estimated based on the motion model. Digital phantoms reproducing ten patient motion trajectories, and a physical phantom with regular and irregular motion derived from measured patient trajectories, are used to evaluate the method in terms of tumor localization, and the global voxel intensity difference compared to ground truth. Results: Experiments included: 1) assuming no anatomic or positioning changes between 4DCT and treatment time; and 2) simulating positioning and tumor baseline shifts at the time of treatment compared to 4DCT acquisition. 4DCBCT were reconstructed from the anatomy as seen at treatment time. In case 1) the tumor localization error and the intensity differences in ten patient were smaller using 4DCT-based motion model, possible due to superior image quality. In case 2) the tumor localization error and intensity differences were 2.85 and 0.15 respectively, using 4DCT-based motion models, and 1.17 and 0.10 using 4DCBCT-based models. 4DCBCT performed better due to its ability to reproduce daily anatomical changes. Conclusion: The study showed an advantage of 4DCBCT-based motion models in the context of 3D fluoroscopic images estimation. Positioning and tumor baseline shift uncertainties were mitigated by the 4DCBCT

  8. A study of the effects of degraded imagery on tactical 3D model generation using structure-from-motion

    NASA Astrophysics Data System (ADS)

    Bolick, Leslie; Harguess, Josh

    2016-05-01

    An emerging technology in the realm of airborne intelligence, surveillance, and reconnaissance (ISR) systems is structure-from-motion (SfM), which enables the creation of three-dimensional (3D) point clouds and 3D models from two-dimensional (2D) imagery. There are several existing tools, such as VisualSFM and open source project OpenSfM, to assist in this process, however, it is well-known that pristine imagery is usually required to create meaningful 3D data from the imagery. In military applications, such as the use of unmanned aerial vehicles (UAV) for surveillance operations, imagery is rarely pristine. Therefore, we present an analysis of structure-from-motion packages on imagery that has been degraded in a controlled manner.

  9. A 3D MR-acquisition scheme for nonrigid bulk motion correction in simultaneous PET-MR

    SciTech Connect

    Kolbitsch, Christoph Prieto, Claudia; Schaeffter, Tobias; Tsoumpas, Charalampos

    2014-08-15

    Purpose: Positron emission tomography (PET) is a highly sensitive medical imaging technique commonly used to detect and assess tumor lesions. Magnetic resonance imaging (MRI) provides high resolution anatomical images with different contrasts and a range of additional information important for cancer diagnosis. Recently, simultaneous PET-MR systems have been released with the promise to provide complementary information from both modalities in a single examination. Due to long scan times, subject nonrigid bulk motion, i.e., changes of the patient's position on the scanner table leading to nonrigid changes of the patient's anatomy, during data acquisition can negatively impair image quality and tracer uptake quantification. A 3D MR-acquisition scheme is proposed to detect and correct for nonrigid bulk motion in simultaneously acquired PET-MR data. Methods: A respiratory navigated three dimensional (3D) MR-acquisition with Radial Phase Encoding (RPE) is used to obtain T1- and T2-weighted data with an isotropic resolution of 1.5 mm. Healthy volunteers are asked to move the abdomen two to three times during data acquisition resulting in overall 19 movements at arbitrary time points. The acquisition scheme is used to retrospectively reconstruct dynamic 3D MR images with different temporal resolutions. Nonrigid bulk motion is detected and corrected in this image data. A simultaneous PET acquisition is simulated and the effect of motion correction is assessed on image quality and standardized uptake values (SUV) for lesions with different diameters. Results: Six respiratory gated 3D data sets with T1- and T2-weighted contrast have been obtained in healthy volunteers. All bulk motion shifts have successfully been detected and motion fields describing the transformation between the different motion states could be obtained with an accuracy of 1.71 ± 0.29 mm. The PET simulation showed errors of up to 67% in measured SUV due to bulk motion which could be reduced to less than

  10. The effect of motion on IMRT – looking at interplay with 3D measurements

    PubMed Central

    Thomas, A; Yan, H; Oldham, M; Juang, T; Adamovics, J; Yin, FF

    2013-01-01

    Six base of skull IMRT treatment plans were delivered to 3D dosimeters within the RPC Head and Neck Phantom for QA verification. Isotropic 2mm 3D data was obtained using the DLOS-PRESAGE system and compared to an Eclipse (Varian) treatment plan. Normalized Dose Distribution pass rates were obtained for a number of criteria. High quality 3D dosimetry data was observed from the DLOS system, illustrated here through colormaps, isodose lines, profiles, and NDD 3D maps. Excellent agreement with the planned dose distributions was also observed with NDD analysis revealing > 90% NDD pass rates [3%, 2mm], noise < 0.5%. This paper focuses on a detailed exploration of the quality and use of 3D dosimetry data obtained with the DLOS-PRESAGE system. PMID:26877756

  11. On the Significance of Motion Degradation in High-Resolution 3D μMRI of Trabecular Bone

    PubMed Central

    Bhagat, Yusuf A.; Rajapakse, Chamith S.; Magland, Jeremy F.; Wald, Michael J.; Song, Hee Kwon; Leonard, Mary B.; Wehrli, Felix W.

    2011-01-01

    Rationale and Objectives Subtle subject movement during high-resolution 3D μMR imaging of trabecular bone (TB) causes blurring, thereby rendering the data unreliable for quantitative analysis. In this work, the effects of translational and rotational motion displacements have been evaluated qualitatively and quantitatively. Materials and Methods In Experiment I, motion was induced by applying various simulated and previously observed in vivo trajectories as phase shifts to k-space or rotation angles to k-space segments of a virtually motion-free data set. In Experiment II, images that were visually free of motion artifacts from two groups of 10 healthy individuals, differing in age, were selected for probing the effects of motion on TB parameters. In both experiments, images were rated for motion severity and the scores were compared to a focus criterion, the normalized gradient squared (NGS). Results Strong correlations were observed between the motion quality scores and the corresponding NGS values (R2= 0.52–0.64; p<0.01). The results from Experiment I demonstrated consistently lower image quality and alterations in structural parameters of 9–45% with increased amplitude of displacements. In Experiment II, the significant differences in structural parameter group means of the motion-free images were lost upon motion degradation. Autofocusing, a post-processing correction method, partially recovered the sharpness of the original motion-free images in 13/20 subjects. Conclusion Quantitative TB structural measures are highly sensitive to subtle motion-induced degradation which adversely affects precision and statistical power. The results underscore the influence of subject movement in high-resolution 3D μMRI and its correction for TB structure analysis. PMID:21816638

  12. Development of real-time motion capture system for 3D on-line games linked with virtual character

    NASA Astrophysics Data System (ADS)

    Kim, Jong Hyeong; Ryu, Young Kee; Cho, Hyung Suck

    2004-10-01

    Motion tracking method is being issued as essential part of the entertainment, medical, sports, education and industry with the development of 3-D virtual reality. Virtual human character in the digital animation and game application has been controlled by interfacing devices; mouse, joysticks, midi-slider, and so on. Those devices could not enable virtual human character to move smoothly and naturally. Furthermore, high-end human motion capture systems in commercial market are expensive and complicated. In this paper, we proposed a practical and fast motion capturing system consisting of optic sensors, and linked the data with 3-D game character with real time. The prototype experiment setup is successfully applied to a boxing game which requires very fast movement of human character.

  13. 3D graphics, virtual reality, and motion-onset visual evoked potentials in neurogaming.

    PubMed

    Beveridge, R; Wilson, S; Coyle, D

    2016-01-01

    A brain-computer interface (BCI) offers movement-free control of a computer application and is achieved by reading and translating the cortical activity of the brain into semantic control signals. Motion-onset visual evoked potentials (mVEP) are neural potentials employed in BCIs and occur when motion-related stimuli are attended visually. mVEP dynamics are correlated with the position and timing of the moving stimuli. To investigate the feasibility of utilizing the mVEP paradigm with video games of various graphical complexities including those of commercial quality, we conducted three studies over four separate sessions comparing the performance of classifying five mVEP responses with variations in graphical complexity and style, in-game distractions, and display parameters surrounding mVEP stimuli. To investigate the feasibility of utilizing contemporary presentation modalities in neurogaming, one of the studies compared mVEP classification performance when stimuli were presented using the oculus rift virtual reality headset. Results from 31 independent subjects were analyzed offline. The results show classification performances ranging up to 90% with variations in conditions in graphical complexity having limited effect on mVEP performance; thus, demonstrating the feasibility of using the mVEP paradigm within BCI-based neurogaming. PMID:27590974

  14. 3D graphics, virtual reality, and motion-onset visual evoked potentials in neurogaming.

    PubMed

    Beveridge, R; Wilson, S; Coyle, D

    2016-01-01

    A brain-computer interface (BCI) offers movement-free control of a computer application and is achieved by reading and translating the cortical activity of the brain into semantic control signals. Motion-onset visual evoked potentials (mVEP) are neural potentials employed in BCIs and occur when motion-related stimuli are attended visually. mVEP dynamics are correlated with the position and timing of the moving stimuli. To investigate the feasibility of utilizing the mVEP paradigm with video games of various graphical complexities including those of commercial quality, we conducted three studies over four separate sessions comparing the performance of classifying five mVEP responses with variations in graphical complexity and style, in-game distractions, and display parameters surrounding mVEP stimuli. To investigate the feasibility of utilizing contemporary presentation modalities in neurogaming, one of the studies compared mVEP classification performance when stimuli were presented using the oculus rift virtual reality headset. Results from 31 independent subjects were analyzed offline. The results show classification performances ranging up to 90% with variations in conditions in graphical complexity having limited effect on mVEP performance; thus, demonstrating the feasibility of using the mVEP paradigm within BCI-based neurogaming.

  15. Analysis and Visualization of 3D Motion Data for UPDRS Rating of Patients with Parkinson’s Disease

    PubMed Central

    Piro, Neltje E.; Piro, Lennart K.; Kassubek, Jan; Blechschmidt-Trapp, Ronald A.

    2016-01-01

    Remote monitoring of Parkinson’s Disease (PD) patients with inertia sensors is a relevant method for a better assessment of symptoms. We present a new approach for symptom quantification based on motion data: the automatic Unified Parkinson Disease Rating Scale (UPDRS) classification in combination with an animated 3D avatar giving the neurologist the impression of having the patient live in front of him. In this study we compared the UPDRS ratings of the pronation-supination task derived from: (a) an examination based on video recordings as a clinical reference; (b) an automatically classified UPDRS; and (c) a UPDRS rating from the assessment of the animated 3D avatar. Data were recorded using Magnetic, Angular Rate, Gravity (MARG) sensors with 15 subjects performing a pronation-supination movement of the hand. After preprocessing, the data were classified with a J48 classifier and animated as a 3D avatar. Video recording of the movements, as well as the 3D avatar, were examined by movement disorder specialists and rated by UPDRS. The mean agreement between the ratings based on video and (b) the automatically classified UPDRS is 0.48 and with (c) the 3D avatar it is 0.47. The 3D avatar is similarly suitable for assessing the UPDRS as video recordings for the examined task and will be further developed by the research team. PMID:27338400

  16. PRIMAS: a real-time 3D motion-analysis system

    NASA Astrophysics Data System (ADS)

    Sabel, Jan C.; van Veenendaal, Hans L. J.; Furnee, E. Hans

    1994-03-01

    The paper describes a CCD TV-camera-based system for real-time multicamera 2D detection of retro-reflective targets and software for accurate and fast 3D reconstruction. Applications of this system can be found in the fields of sports, biomechanics, rehabilitation research, and various other areas of science and industry. The new feature of real-time 3D opens an even broader perspective of application areas; animations in virtual reality are an interesting example. After presenting an overview of the hardware and the camera calibration method, the paper focuses on the real-time algorithms used for matching of the images and subsequent 3D reconstruction of marker positions. When using a calibrated setup of two cameras, it is now possible to track at least ten markers at 100 Hz. Limitations in the performance are determined by the visibility of the markers, which could be improved by adding a third camera.

  17. Robust 2D/3D registration for fast-flexion motion of the knee joint using hybrid optimization.

    PubMed

    Ohnishi, Takashi; Suzuki, Masahiko; Kobayashi, Tatsuya; Naomoto, Shinji; Sukegawa, Tomoyuki; Nawata, Atsushi; Haneishi, Hideaki

    2013-01-01

    Previously, we proposed a 2D/3D registration method that uses Powell's algorithm to obtain 3D motion of a knee joint by 3D computed-tomography and bi-plane fluoroscopic images. The 2D/3D registration is performed consecutively and automatically for each frame of the fluoroscopic images. This method starts from the optimum parameters of the previous frame for each frame except for the first one, and it searches for the next set of optimum parameters using Powell's algorithm. However, if the flexion motion of the knee joint is fast, it is likely that Powell's algorithm will provide a mismatch because the initial parameters are far from the correct ones. In this study, we applied a hybrid optimization algorithm (HPS) combining Powell's algorithm with the Nelder-Mead simplex (NM-simplex) algorithm to overcome this problem. The performance of the HPS was compared with the separate performances of Powell's algorithm and the NM-simplex algorithm, the Quasi-Newton algorithm and hybrid optimization algorithm with the Quasi-Newton and NM-simplex algorithms with five patient data sets in terms of the root-mean-square error (RMSE), target registration error (TRE), success rate, and processing time. The RMSE, TRE, and the success rate of the HPS were better than those of the other optimization algorithms, and the processing time was similar to that of Powell's algorithm alone.

  18. 3D nanometer images of biological fibers by directed motion of gold nanoparticles.

    PubMed

    Estrada, Laura C; Gratton, Enrico

    2011-11-01

    Using near-infrared femtosecond pulses, we move single gold nanoparticles (AuNPs) along biological fibers, such as collagen and actin filaments. While the AuNP is sliding on the fiber, its trajectory is measured in three dimensions (3D) with nanometer resolution providing a high-resolution image of the fiber. Here, we systematically moved a single AuNP along nanometer-size collagen fibers and actin filament inside chinese hamster ovary K1 living cells, mapping their 3D topography with high fidelity.

  19. Types of Reasoning in 3D Geometry Thinking and Their Relation with Spatial Ability

    ERIC Educational Resources Information Center

    Pittalis, Marios; Christou, Constantinos

    2010-01-01

    The aim of this study is to describe and analyse the structure of 3D geometry thinking by identifying different types of reasoning and to examine their relation with spatial ability. To achieve this goal, two tests were administered to students in grades 5 to 9. The results of the study showed that 3D geometry thinking could be described by four…

  20. A new method for automatic tracking of facial landmarks in 3D motion captured images (4D).

    PubMed

    Al-Anezi, T; Khambay, B; Peng, M J; O'Leary, E; Ju, X; Ayoub, A

    2013-01-01

    The aim of this study was to validate the automatic tracking of facial landmarks in 3D image sequences. 32 subjects (16 males and 16 females) aged 18-35 years were recruited. 23 anthropometric landmarks were marked on the face of each subject with non-permanent ink using a 0.5mm pen. The subjects were asked to perform three facial animations (maximal smile, lip purse and cheek puff) from rest position. Each animation was captured by the 3D imaging system. A single operator manually digitised the landmarks on the 3D facial models and their locations were compared with those of the automatically tracked ones. To investigate the accuracy of manual digitisation, the operator re-digitised the same set of 3D images of 10 subjects (5 male and 5 female) at 1 month interval. The discrepancies in x, y and z coordinates between the 3D position of the manual digitised landmarks and that of the automatic tracked facial landmarks were within 0.17mm. The mean distance between the manually digitised and the automatically tracked landmarks using the tracking software was within 0.55 mm. The automatic tracking of facial landmarks demonstrated satisfactory accuracy which would facilitate the analysis of the dynamic motion during facial animations. PMID:23218511

  1. A new method for automatic tracking of facial landmarks in 3D motion captured images (4D).

    PubMed

    Al-Anezi, T; Khambay, B; Peng, M J; O'Leary, E; Ju, X; Ayoub, A

    2013-01-01

    The aim of this study was to validate the automatic tracking of facial landmarks in 3D image sequences. 32 subjects (16 males and 16 females) aged 18-35 years were recruited. 23 anthropometric landmarks were marked on the face of each subject with non-permanent ink using a 0.5mm pen. The subjects were asked to perform three facial animations (maximal smile, lip purse and cheek puff) from rest position. Each animation was captured by the 3D imaging system. A single operator manually digitised the landmarks on the 3D facial models and their locations were compared with those of the automatically tracked ones. To investigate the accuracy of manual digitisation, the operator re-digitised the same set of 3D images of 10 subjects (5 male and 5 female) at 1 month interval. The discrepancies in x, y and z coordinates between the 3D position of the manual digitised landmarks and that of the automatic tracked facial landmarks were within 0.17mm. The mean distance between the manually digitised and the automatically tracked landmarks using the tracking software was within 0.55 mm. The automatic tracking of facial landmarks demonstrated satisfactory accuracy which would facilitate the analysis of the dynamic motion during facial animations.

  2. Automatic 3D motion estimation of left ventricle from C-arm rotational angiocardiography using a prior motion model and learning based boundary detector.

    PubMed

    Chen, Mingqing; Zheng, Yefeng; Wang, Yang; Mueller, Kerstin; Lauritsch, Guenter

    2013-01-01

    Compared to pre-operative imaging modalities, it is more convenient to estimate the current cardiac physiological status from C-arm angiocardiography since C-arm is a widely used intra-operative imaging modality to guide many cardiac interventions. The 3D shape and motion of the left ventricle (LV) estimated from rotational angiocardiography provide important cardiac function measurements, e.g., ejection fraction and myocardium motion dyssynchrony. However, automatic estimation of the 3D LV motion is difficult since all anatomical structures overlap on the 2D X-ray projections and the nearby confounding strong image boundaries (e.g., pericardium) often cause ambiguities to LV endocardium boundary detection. In this paper, a new framework is proposed to overcome the aforementioned difficulties: (1) A new learning-based boundary detector is developed by training a boosting boundary classifier combined with the principal component analysis of a local image patch; (2) The prior LV motion model is learned from a set of dynamic cardiac computed tomography (CT) sequences to provide a good initial estimate of the 3D LV shape of different cardiac phases; (3) The 3D motion trajectory is learned for each mesh point; (4) All these components are integrated into a multi-surface graph optimization method to extract the globally coherent motion. The method is tested on seven patient scans, showing significant improvement on the ambiguous boundary cases with a detection accuracy of 2.87 +/- 1.00 mm on LV endocardium boundary delineation in the 2D projections.

  3. Automatic 3D motion estimation of left ventricle from C-arm rotational angiocardiography using a prior motion model and learning based boundary detector.

    PubMed

    Chen, Mingqing; Zheng, Yefeng; Wang, Yang; Mueller, Kerstin; Lauritsch, Guenter

    2013-01-01

    Compared to pre-operative imaging modalities, it is more convenient to estimate the current cardiac physiological status from C-arm angiocardiography since C-arm is a widely used intra-operative imaging modality to guide many cardiac interventions. The 3D shape and motion of the left ventricle (LV) estimated from rotational angiocardiography provide important cardiac function measurements, e.g., ejection fraction and myocardium motion dyssynchrony. However, automatic estimation of the 3D LV motion is difficult since all anatomical structures overlap on the 2D X-ray projections and the nearby confounding strong image boundaries (e.g., pericardium) often cause ambiguities to LV endocardium boundary detection. In this paper, a new framework is proposed to overcome the aforementioned difficulties: (1) A new learning-based boundary detector is developed by training a boosting boundary classifier combined with the principal component analysis of a local image patch; (2) The prior LV motion model is learned from a set of dynamic cardiac computed tomography (CT) sequences to provide a good initial estimate of the 3D LV shape of different cardiac phases; (3) The 3D motion trajectory is learned for each mesh point; (4) All these components are integrated into a multi-surface graph optimization method to extract the globally coherent motion. The method is tested on seven patient scans, showing significant improvement on the ambiguous boundary cases with a detection accuracy of 2.87 +/- 1.00 mm on LV endocardium boundary delineation in the 2D projections. PMID:24505748

  4. 3D velocity field of present-day crustal motion of the Tibetan Plateau derived from GPS measurements

    NASA Astrophysics Data System (ADS)

    Gan, W.

    2013-12-01

    Using the measurements of 564 GPS stations around the Tibetan plateau for over 10 years, we derived a high-resolution 3D velocity field for the present-day crustal motion of the plateau with improved precision. The horizontal velocity field of the plateau relative to stable Eurasia displays in details the crustal movement and tectonic deformation features of India-Eurasia continental collision zone with thrust compression, lateral extrusion and clockwise rotation. The vertical velocities reveal that the plateau is still rising as a whole relative to its stable north neighbor. However, in some subregions uplift is insignificant or even negative. The main features of the vertical crustal deformation are: a) The Himalayan range is rising at a rate of ~3mm/yr, the most significant in the whole plateau. The uplift rate of the Himalayan range is ~6mm/a relative to its south foot; b) The mid-eastern plateau has an typical uplift rate between 1~2 mm/a, and some high mountain ranges in this area have surprising uplift rates as large as 2~3mm/a; c) In the mid-southern plateau, there is a basin and endorheic subregion with a series of NE striking normal faults, showing obvious sinking with the rates between 0 to -4mm/a; d) The present-day rising and sinking subregions generally correspond well to the Cenozoic orogenic belts and basins, respectively; e) At the southeastern corner of the plateau, although the horizontal velocity field demonstrates an outstanding clockwise rotation and fan-like front of a flow zone, the vertical velocity field does not show a general uplift or incline trend. Horizontal GPS velocities of the Tibetan plateau relative to stable Eurasia Vertical GPS velocities of the Tibetan plateau relative to its stable northern neighbor

  5. Motion patterns in activities of daily living: 3- year longitudinal follow-up after total shoulder arthroplasty using an optical 3D motion analysis system

    PubMed Central

    2014-01-01

    Background Total shoulder arthroplasty (TSA) can improve function in osteoarthritic shoulders, but the ability to perform activities of daily living (ADLs) can still remain impaired. Routinely, shoulder surgeons measure range of motion (ROM) using a goniometer. Objective data are limited, however, concerning functional three-dimensional changes in ROM in ADLs after TSA in patients with degenerative glenohumeral osteoarthritis. Methods This study included ten consecutive patients, who received TSA for primary glenohumeral osteoarthritis. The patients were examined the day before, 6 months, and 3 years after shoulder replacement as well. We compared them with a control group (n = 10) without any shoulder pathology and measured shoulder movement by 3D motion analysis using a novel 3 D model. The measurement included static maximum values, the ability to perform and the ROM of the ADLs “combing the hair”, “washing the opposite armpit”, “tying an apron”, and “taking a book from a shelf”. Results Six months after surgery, almost all TSA patients were able to perform the four ADLs (3 out of 40 tasks could not be performed by the 10 patients); 3 years postoperatively all patients were able to carry out all ADLs (40 out of 40 tasks possible). In performing the ADLs, comparison of the pre- with the 6-month and 3-year postoperative status of the TSA group showed that the subjects did not fully use the available maximum flexion/extension ROM in performing the four ADLs. The ROM used for flexion/extension did not change significantly (preoperatively 135°-0° -34° vs. 3 years postoperatively 131° -0° -53°). For abduction/adduction, ROM improved significantly from 33°-0° -27° preoperatively to 76° -0° -35° postoperatively. Compared to the controls (118°) the TSA group used less ROM for abduction to perform the four ADLs 3 years postoperatively. Conclusion TSA improves the ability to perform ADL and the individual ROM in ADLs in patients with

  6. Influence of Head Motion on the Accuracy of 3D Reconstruction with Cone-Beam CT: Landmark Identification Errors in Maxillofacial Surface Model

    PubMed Central

    Song, Jin-Myoung; Cho, Jin-Hyoung

    2016-01-01

    Purpose The purpose of this study was to investigate the influence of head motion on the accuracy of three-dimensional (3D) reconstruction with cone-beam computed tomography (CBCT) scan. Materials and Methods Fifteen dry skulls were incorporated into a motion controller which simulated four types of head motion during CBCT scan: 2 horizontal rotations (to the right/to the left) and 2 vertical rotations (upward/downward). Each movement was triggered to occur at the start of the scan for 1 second by remote control. Four maxillofacial surface models with head motion and one control surface model without motion were obtained for each skull. Nine landmarks were identified on the five maxillofacial surface models for each skull, and landmark identification errors were compared between the control model and each of the models with head motion. Results Rendered surface models with head motion were similar to the control model in appearance; however, the landmark identification errors showed larger values in models with head motion than in the control. In particular, the Porion in the horizontal rotation models presented statistically significant differences (P < .05). Statistically significant difference in the errors between the right and left side landmark was present in the left side rotation which was opposite direction to the scanner rotation (P < .05). Conclusions Patient movement during CBCT scan might cause landmark identification errors on the 3D surface model in relation to the direction of the scanner rotation. Clinicians should take this into consideration to prevent patient movement during CBCT scan, particularly horizontal movement. PMID:27065238

  7. An eliminating method of motion-induced vertical parallax for time-division 3D display technology

    NASA Astrophysics Data System (ADS)

    Lin, Liyuan; Hou, Chunping

    2015-10-01

    A time difference between the left image and right image of the time-division 3D display makes a person perceive alternating vertical parallax when an object is moving vertically on a fixed depth plane, which causes the left image and right image perceived do not match and makes people more prone to visual fatigue. This mismatch cannot eliminate simply rely on the precise synchronous control of the left image and right image. Based on the principle of time-division 3D display technology and human visual system characteristics, this paper establishes a model of the true vertical motion velocity in reality and vertical motion velocity on the screen, and calculates the amount of the vertical parallax caused by vertical motion, and then puts forward a motion compensation method to eliminate the vertical parallax. Finally, subjective experiments are carried out to analyze how the time difference affects the stereo visual comfort by comparing the comfort values of the stereo image sequences before and after compensating using the eliminating method. The theoretical analysis and experimental results show that the proposed method is reasonable and efficient.

  8. Stereo and motion parallax cues in human 3D vision: can they vanish without a trace?

    PubMed

    Rauschecker, Andreas M; Solomon, Samuel G; Glennerster, Andrew

    2006-01-01

    In an immersive virtual reality environment, subjects fail to notice when a scene expands or contracts around them, despite correct and consistent information from binocular stereopsis and motion parallax, resulting in gross failures of size constancy (A. Glennerster, L. Tcheang, S. J. Gilson, A. W. Fitzgibbon, & A. J. Parker, 2006). We determined whether the integration of stereopsis/motion parallax cues with texture-based cues could be modified through feedback. Subjects compared the size of two objects, each visible when the room was of a different size. As the subject walked, the room expanded or contracted, although subjects failed to notice any change. Subjects were given feedback about the accuracy of their size judgments, where the "correct" size setting was defined either by texture-based cues or (in a separate experiment) by stereo/motion parallax cues. Because of feedback, observers were able to adjust responses such that fewer errors were made. For texture-based feedback, the pattern of responses was consistent with observers weighting texture cues more heavily. However, for stereo/motion parallax feedback, performance in many conditions became worse such that, paradoxically, biases moved away from the point reinforced by the feedback. This can be explained by assuming that subjects remap the relationship between stereo/motion parallax cues and perceived size or that they develop strategies to change their criterion for a size match on different trials. In either case, subjects appear not to have direct access to stereo/motion parallax cues. PMID:17209749

  9. Reconstruction Accuracy Assessment of Surface and Underwater 3D Motion Analysis: A New Approach.

    PubMed

    de Jesus, Kelly; de Jesus, Karla; Figueiredo, Pedro; Vilas-Boas, João Paulo; Fernandes, Ricardo Jorge; Machado, Leandro José

    2015-01-01

    This study assessed accuracy of surface and underwater 3D reconstruction of a calibration volume with and without homography. A calibration volume (6000 × 2000 × 2500 mm) with 236 markers (64 above and 88 underwater control points--with 8 common points at water surface--and 92 validation points) was positioned on a 25 m swimming pool and recorded with two surface and four underwater cameras. Planar homography estimation for each calibration plane was computed to perform image rectification. Direct linear transformation algorithm for 3D reconstruction was applied, using 1600000 different combinations of 32 and 44 points out of the 64 and 88 control points for surface and underwater markers (resp.). Root Mean Square (RMS) error with homography of control and validations points was lower than without it for surface and underwater cameras (P ≤ 0.03). With homography, RMS errors of control and validation points were similar between surface and underwater cameras (P ≥ 0.47). Without homography, RMS error of control points was greater for underwater than surface cameras (P ≤ 0.04) and the opposite was observed for validation points (P ≤ 0.04). It is recommended that future studies using 3D reconstruction should include homography to improve swimming movement analysis accuracy.

  10. 3-d brownian motion simulator for high-sensitivity nanobiotechnological applications.

    PubMed

    Toth, Arpád; Banky, Dániel; Grolmusz, Vince

    2011-12-01

    A wide variety of nanobiotechnologic applications are being developed for nanoparticle based in vitro diagnostic and imaging systems. Some of these systems make possible highly sensitive detection of molecular biomarkers. Frequently, the very low concentration of the biomarkers makes impossible the classical, partial differential equation-based mathematical simulation of the motion of the nanoparticles involved. We present a three-dimensional Brownian motion simulation tool for the prediction of the movement of nanoparticles in various thermal, viscosity, and geometric settings in a rectangular cuvette. For nonprofit users the server is freely available at the site http://brownian.pitgroup.org.

  11. The intrafraction motion induced dosimetric impacts in breast 3D radiation treatment: A 4DCT based study

    SciTech Connect

    Yue, Ning J.; Li Xiang; Beriwal, Sushil; Heron, Dwight E.; Sontag, Marc R.; Huq, M. Saiful

    2007-07-15

    The question remains regarding the dosimetric impact of intrafraction motion in 3D breast treatment. This study was conducted to investigate this issue utilizing the 4DCT scan. The 4D and helical CT scan sets were acquired for 12 breast cancer patients. For each of these patients, based on the helical CT scan, a conventional 3D conformal plan was generated. The breast treatment was then simulated based on the 4DCT scan. In each phase of the 4DCT scan, dose distribution was generated with the same beam parameters as the conventional plan. A software package was developed to compute the cumulative dose distribution from all the phases. Since the intrafraction organ motion is reflected by the 4DCT images, the cumulative dose computed based on the 4DCT images should be closer to what the patient received during treatment. Various dosimetric parameters were obtained from the plan and 4D cumulative dose distribution for the target volume and heart, and were compared to deduce the motion-induced impacts. The studies were performed for both whole breast and partial breast treatment. In the whole breast treatment, the average intrafraction motion induced changes in D{sub 95}, D{sub 90}, V{sub 100}, V{sub 95}, and V{sub 90} of the target volume were -5.4%, -3.1%, -13.4%, -5.1%, and -3.2%, respectively, with the largest values at -26.2%, -14.1%, -91.0%, -15.1%, and -9.0%, respectively. Motion had little impact on the D{sub max} of the target volume, but its impact on the D{sub min} of the target volume was significant. For left breast treatment, the motion-induced D{sub max} change to the heart could be negative or positive, with the largest increase at about 6 Gy. In partial breast treatment, the only non-insignificant impact was in the D{sub min} of the CTV (ranging from -15.2% to 11.7%). The results showed that the intrafraction motion may compromise target dose coverage in breast treatments and the degree of that compromise was correlated with motion magnitude. However

  12. Analysis of 3-D Tongue Motion from Tagged and Cine Magnetic Resonance Images

    ERIC Educational Resources Information Center

    Xing, Fangxu; Woo, Jonghye; Lee, Junghoon; Murano, Emi Z.; Stone, Maureen; Prince, Jerry L.

    2016-01-01

    Purpose: Measuring tongue deformation and internal muscle motion during speech has been a challenging task because the tongue deforms in 3 dimensions, contains interdigitated muscles, and is largely hidden within the vocal tract. In this article, a new method is proposed to analyze tagged and cine magnetic resonance images of the tongue during…

  13. Motion Controllers for Learners to Manipulate and Interact with 3D Objects for Mental Rotation Training

    ERIC Educational Resources Information Center

    Yeh, Shih-Ching; Wang, Jin-Liang; Wang, Chin-Yeh; Lin, Po-Han; Chen, Gwo-Dong; Rizzo, Albert

    2014-01-01

    Mental rotation is an important spatial processing ability and an important element in intelligence tests. However, the majority of past attempts at training mental rotation have used paper-and-pencil tests or digital images. This study proposes an innovative mental rotation training approach using magnetic motion controllers to allow learners to…

  14. Combining marker-less patient setup and respiratory motion monitoring using low cost 3D camera technology

    NASA Astrophysics Data System (ADS)

    Tahavori, F.; Adams, E.; Dabbs, M.; Aldridge, L.; Liversidge, N.; Donovan, E.; Jordan, T.; Evans, PM.; Wells, K.

    2015-03-01

    Patient set-up misalignment/motion can be a significant source of error within external beam radiotherapy, leading to unwanted dose to healthy tissues and sub-optimal dose to the target tissue. Such inadvertent displacement or motion of the target volume may be caused by treatment set-up error, respiratory motion or an involuntary movement potentially decreasing therapeutic benefit. The conventional approach to managing abdominal-thoracic patient set-up is via skin markers (tattoos) and laser-based alignment. Alignment of the internal target volume with its position in the treatment plan can be achieved using Deep Inspiration Breath Hold (DIBH) in conjunction with marker-based respiratory motion monitoring. We propose a marker-less single system solution for patient set-up and respiratory motion management based on low cost 3D depth camera technology (such as the Microsoft Kinect). In this new work we assess this approach in a study group of six volunteer subjects. Separate simulated treatment mimic treatment "fractions" or set-ups are compared for each subject, undertaken using conventional laser-based alignment and with intrinsic depth images produced by Kinect. Microsoft Kinect is also compared with the well-known RPM system for respiratory motion management in terms of monitoring free-breathing and DIBH. Preliminary results suggest that Kinect is able to produce mm-level surface alignment and a comparable DIBH respiratory motion management when compared to the popular RPM system. Such an approach may also yield significant benefits in terms of patient throughput as marker alignment and respiratory motion can be automated in a single system.

  15. Using Fuzzy Gaussian Inference and Genetic Programming to Classify 3D Human Motions

    NASA Astrophysics Data System (ADS)

    Khoury, Mehdi; Liu, Honghai

    This research introduces and builds on the concept of Fuzzy Gaussian Inference (FGI) (Khoury and Liu in Proceedings of UKCI, 2008 and IEEE Workshop on Robotic Intelligence in Informationally Structured Space (RiiSS 2009), 2009) as a novel way to build Fuzzy Membership Functions that map to hidden Probability Distributions underlying human motions. This method is now combined with a Genetic Programming Fuzzy rule-based system in order to classify boxing moves from natural human Motion Capture data. In this experiment, FGI alone is able to recognise seven different boxing stances simultaneously with an accuracy superior to a GMM-based classifier. Results seem to indicate that adding an evolutionary Fuzzy Inference Engine on top of FGI improves the accuracy of the classifier in a consistent way.

  16. Free-breathing 3D cardiac MRI using iterative image-based respiratory motion correction.

    PubMed

    Moghari, Mehdi H; Roujol, Sébastien; Chan, Raymond H; Hong, Susie N; Bello, Natalie; Henningsson, Markus; Ngo, Long H; Goddu, Beth; Goepfert, Lois; Kissinger, Kraig V; Manning, Warren J; Nezafat, Reza

    2013-10-01

    Respiratory motion compensation using diaphragmatic navigator gating with a 5 mm gating window is conventionally used for free-breathing cardiac MRI. Because of the narrow gating window, scan efficiency is low resulting in long scan times, especially for patients with irregular breathing patterns. In this work, a new retrospective motion compensation algorithm is presented to reduce the scan time for free-breathing cardiac MRI that increasing the gating window to 15 mm without compromising image quality. The proposed algorithm iteratively corrects for respiratory-induced cardiac motion by optimizing the sharpness of the heart. To evaluate this technique, two coronary MRI datasets with 1.3 mm(3) resolution were acquired from 11 healthy subjects (seven females, 25 ± 9 years); one using a navigator with a 5 mm gating window acquired in 12.0 ± 2.0 min and one with a 15 mm gating window acquired in 7.1 ± 1.0 min. The images acquired with a 15 mm gating window were corrected using the proposed algorithm and compared to the uncorrected images acquired with the 5 and 15 mm gating windows. The image quality score, sharpness, and length of the three major coronary arteries were equivalent between the corrected images and the images acquired with a 5 mm gating window (P-value > 0.05), while the scan time was reduced by a factor of 1.7. PMID:23132549

  17. Spatial synchronization of an insole pressure distribution system with a 3D motion analysis system for center of pressure measurements.

    PubMed

    Fradet, Laetitia; Siegel, Johannes; Dahl, Marieke; Alimusaj, Merkur; Wolf, Sebastian I

    2009-01-01

    Insole pressure systems are often more appropriate than force platforms for analysing center of pressure (CoP) as they are more flexible in use and indicate the position of the CoP that characterizes the contact foot/shoe during gait with shoes. However, these systems are typically not synchronized with 3D motion analysis systems. The present paper proposes a direct method that does not require a force platform for synchronizing an insole pressure system with a 3D motion analysis system. The distance separating 24 different CoPs measured optically and their equivalents measured by the insoles and transformed in the global coordinate system did not exceed 2 mm, confirming the suitability of the method proposed. Additionally, during static single limb stance, distances smaller than 7 mm and correlations higher than 0.94 were found between CoP trajectories measured with insoles and force platforms. Similar measurements were performed during gait to illustrate the characteristics of the CoP measured with each system. The distance separating the two CoPs was below 19 mm and the coefficient of correlation above 0.86. The proposed method offers the possibility to conduct new experiments, such as the investigation of proprioception in climbing stairs or in the presence of obstacles.

  18. A 3D analysis of fore- and hindlimb motion during overground and ladder walking: comparison of control and unloaded rats.

    PubMed

    Canu, Marie-Hélène; Garnier, Cyril

    2009-07-01

    During locomotion, muscles are controlled by a network of neurones located in the spinal cord and by supraspinal structures. Alterations in that neuromuscular system have a functional impact, in particular on locomotion. The hindlimb unloading (HU) model in rat has been commonly used to generate disuse since it suppresses the hindlimb loading and limits movements. In consequence, it induces plastic mechanisms in the muscle, the spinal cord and the sensorimotor cortex. The aim of this study was to assess the locomotion in HU rats in two conditions: (1) on a runway and (2) in a challenging situation involving the participation of supraspinal structures (ladder walking). For that purpose, the motor pattern has been investigated by means of 3D motion analysis of the right fore- and hindlimbs as well as electromyographic recording of the soleus and tibialis anterior muscles. The 3D motion results show that HU induces a support-dependent alteration of the kinematics: increased duration of step, stance and swing; increased ankle flexion during stance and hyperextension at toe-off; lower protraction during swing. The electromyographic results show that whatever the support, the flexor and extensor burst duration was longer in HU rats. In addition, results show that ladder exacerbates some effects of HU. As ladder walking is a situation which requires precision, it is suggested that the control of hindlimb movement by supraspinal structures is affected in HU rats. PMID:19393236

  19. 3D PET image reconstruction including both motion correction and registration directly into an MR or stereotaxic spatial atlas

    NASA Astrophysics Data System (ADS)

    Gravel, Paul; Verhaeghe, Jeroen; Reader, Andrew J.

    2013-01-01

    This work explores the feasibility and impact of including both the motion correction and the image registration transformation parameters from positron emission tomography (PET) image space to magnetic resonance (MR), or stereotaxic, image space within the system matrix of PET image reconstruction. This approach is motivated by the fields of neuroscience and psychiatry, where PET is used to investigate differences in activation patterns between different groups of participants, requiring all images to be registered to a common spatial atlas. Currently, image registration is performed after image reconstruction which introduces interpolation effects into the final image. Furthermore, motion correction (also requiring registration) introduces a further level of interpolation, and the overall result of these operations can lead to resolution degradation and possibly artifacts. It is important to note that performing such operations on a post-reconstruction basis means, strictly speaking, that the final images are not ones which maximize the desired objective function (e.g. maximum likelihood (ML), or maximum a posteriori reconstruction (MAP)). To correctly seek parameter estimates in the desired spatial atlas which are in accordance with the chosen reconstruction objective function, it is necessary to include the transformation parameters for both motion correction and registration within the system modeling stage of image reconstruction. Such an approach not only respects the statistically chosen objective function (e.g. ML or MAP), but furthermore should serve to reduce the interpolation effects. To evaluate the proposed method, this work investigates registration (including motion correction) using 2D and 3D simulations based on the high resolution research tomograph (HRRT) PET scanner geometry, with and without resolution modeling, using the ML expectation maximization (MLEM) reconstruction algorithm. The quality of reconstruction was assessed using bias

  20. Modulated Magnetic Nanowires for Controlling Domain Wall Motion: Toward 3D Magnetic Memories.

    PubMed

    Ivanov, Yurii P; Chuvilin, Andrey; Lopatin, Sergei; Kosel, Jurgen

    2016-05-24

    Cylindrical magnetic nanowires are attractive materials for next generation data storage devices owing to the theoretically achievable high domain wall velocity and their efficient fabrication in highly dense arrays. In order to obtain control over domain wall motion, reliable and well-defined pinning sites are required. Here, we show that modulated nanowires consisting of alternating nickel and cobalt sections facilitate efficient domain wall pinning at the interfaces of those sections. By combining electron holography with micromagnetic simulations, the pinning effect can be explained by the interaction of the stray fields generated at the interface and the domain wall. Utilizing a modified differential phase contrast imaging, we visualized the pinned domain wall with a high resolution, revealing its three-dimensional vortex structure with the previously predicted Bloch point at its center. These findings suggest the potential of modulated nanowires for the development of high-density, three-dimensional data storage devices. PMID:27138460

  1. Dynamic force measurements for a high bar using 3D motion capturing.

    PubMed

    Cagran, C; Huber, P; Müller, W

    2010-03-01

    The displacement of a calibrated horizontal bar is used as a measure for forces acting on the bar itself during dynamic performances in artistic gymnastics. The high bar is loaded with known forces and the displacement is monitored by means of a Vicon motion capturing system. The calibration results are fitted according to the Euler-Bernoulli beam theory. After calibration, forces can straightforwardly be measured by multiplication of the bar displacement with the determined fit parameter. This approach is also able to account for non-central force application (two hands on the bar) and the effect of the bar's inertia. Uncertainties in measured forces are assessed to be +/-25 N plus an additional 1% for the unknown weight distribution between the two hands. PMID:19906379

  2. Modulated Magnetic Nanowires for Controlling Domain Wall Motion: Toward 3D Magnetic Memories.

    PubMed

    Ivanov, Yurii P; Chuvilin, Andrey; Lopatin, Sergei; Kosel, Jurgen

    2016-05-24

    Cylindrical magnetic nanowires are attractive materials for next generation data storage devices owing to the theoretically achievable high domain wall velocity and their efficient fabrication in highly dense arrays. In order to obtain control over domain wall motion, reliable and well-defined pinning sites are required. Here, we show that modulated nanowires consisting of alternating nickel and cobalt sections facilitate efficient domain wall pinning at the interfaces of those sections. By combining electron holography with micromagnetic simulations, the pinning effect can be explained by the interaction of the stray fields generated at the interface and the domain wall. Utilizing a modified differential phase contrast imaging, we visualized the pinned domain wall with a high resolution, revealing its three-dimensional vortex structure with the previously predicted Bloch point at its center. These findings suggest the potential of modulated nanowires for the development of high-density, three-dimensional data storage devices.

  3. Quantification of Ground Motion Reductions by Fault Zone Plasticity with 3D Spontaneous Rupture Simulations

    NASA Astrophysics Data System (ADS)

    Roten, D.; Olsen, K. B.; Cui, Y.; Day, S. M.

    2015-12-01

    We explore the effects of fault zone nonlinearity on peak ground velocities (PGVs) by simulating a suite of surface rupturing earthquakes in a visco-plastic medium. Our simulations, performed with the AWP-ODC 3D finite difference code, cover magnitudes from 6.5 to 8.0, with several realizations of the stochastic stress drop for a given magnitude. We test three different models of rock strength, with friction angles and cohesions based on criteria which are frequently applied to fractured rock masses in civil engineering and mining. We use a minimum shear-wave velocity of 500 m/s and a maximum frequency of 1 Hz. In rupture scenarios with average stress drop (~3.5 MPa), plastic yielding reduces near-fault PGVs by 15 to 30% in pre-fractured, low-strength rock, but less than 1% in massive, high quality rock. These reductions are almost insensitive to the scenario earthquake magnitude. In the case of high stress drop (~7 MPa), however, plasticity reduces near-fault PGVs by 38 to 45% in rocks of low strength and by 5 to 15% in rocks of high strength. Because plasticity reduces slip rates and static slip near the surface, these effects can partially be captured by defining a shallow velocity-strengthening layer. We also perform a dynamic nonlinear simulation of a high stress drop M 7.8 earthquake rupturing the southern San Andreas fault along 250 km from Indio to Lake Hughes. With respect to the viscoelastic solution (a), nonlinearity in the fault damage zone and in near-surface deposits would reduce long-period (> 1 s) peak ground velocities in the Los Angeles basin by 15-50% (b), depending on the strength of crustal rocks and shallow sediments. These simulation results suggest that nonlinear effects may be relevant even at long periods, especially for earthquakes with high stress drop.

  4. 3D optical imagery for motion compensation in a limb ultrasound system

    NASA Astrophysics Data System (ADS)

    Ranger, Bryan J.; Feigin, Micha; Zhang, Xiang; Mireault, Al; Raskar, Ramesh; Herr, Hugh M.; Anthony, Brian W.

    2016-04-01

    Conventional processes for prosthetic socket fabrication are heavily subjective, often resulting in an interface to the human body that is neither comfortable nor completely functional. With nearly 100% of amputees reporting that they experience discomfort with the wearing of their prosthetic limb, designing an effective interface to the body can significantly affect quality of life and future health outcomes. Active research in medical imaging and biomechanical tissue modeling of residual limbs has led to significant advances in computer aided prosthetic socket design, demonstrating an interest in moving toward more quantifiable processes that are still patient-specific. In our work, medical ultrasonography is being pursued to acquire data that may quantify and improve the design process and fabrication of prosthetic sockets while greatly reducing cost compared to an MRI-based framework. This paper presents a prototype limb imaging system that uses a medical ultrasound probe, mounted to a mechanical positioning system and submerged in a water bath. The limb imaging is combined with three-dimensional optical imaging for motion compensation. Images are collected circumferentially around the limb and combined into cross-sectional axial image slices, resulting in a compound image that shows tissue distributions and anatomical boundaries similar to magnetic resonance imaging. In this paper we provide a progress update on our system development, along with preliminary results as we move toward full volumetric imaging of residual limbs for prosthetic socket design. This demonstrates a novel multi-modal approach to residual limb imaging.

  5. Study of human body: Kinematics and kinetics of a martial arts (Silat) performers using 3D-motion capture

    NASA Astrophysics Data System (ADS)

    Soh, Ahmad Afiq Sabqi Awang; Jafri, Mohd Zubir Mat; Azraai, Nur Zaidi

    2015-04-01

    The Interest in this studies of human kinematics goes back very far in human history drove by curiosity or need for the understanding the complexity of human body motion. To find new and accurate information about the human movement as the advance computing technology became available for human movement that can perform. Martial arts (silat) were chose and multiple type of movement was studied. This project has done by using cutting-edge technology which is 3D motion capture to characterize and to measure the motion done by the performers of martial arts (silat). The camera will detect the markers (infrared reflection by the marker) around the performer body (total of 24 markers) and will show as dot in the computer software. The markers detected were analyzing using kinematic kinetic approach and time as reference. A graph of velocity, acceleration and position at time,t (seconds) of each marker was plot. Then from the information obtain, more parameters were determined such as work done, momentum, center of mass of a body using mathematical approach. This data can be used for development of the effectiveness movement in martial arts which is contributed to the people in arts. More future works can be implemented from this project such as analysis of a martial arts competition.

  6. How Plates Pull Transforms Apart: 3-D Numerical Models of Oceanic Transform Fault Response to Changes in Plate Motion Direction

    NASA Astrophysics Data System (ADS)

    Morrow, T. A.; Mittelstaedt, E. L.; Olive, J. A. L.

    2015-12-01

    Observations along oceanic fracture zones suggest that some mid-ocean ridge transform faults (TFs) previously split into multiple strike-slip segments separated by short (<~50 km) intra-transform spreading centers and then reunited to a single TF trace. This history of segmentation appears to correspond with changes in plate motion direction. Despite the clear evidence of TF segmentation, the processes governing its development and evolution are not well characterized. Here we use a 3-D, finite-difference / marker-in-cell technique to model the evolution of localized strain at a TF subjected to a sudden change in plate motion direction. We simulate the oceanic lithosphere and underlying asthenosphere at a ridge-transform-ridge setting using a visco-elastic-plastic rheology with a history-dependent plastic weakening law and a temperature- and stress-dependent mantle viscosity. To simulate the development of topography, a low density, low viscosity 'sticky air' layer is present above the oceanic lithosphere. The initial thermal gradient follows a half-space cooling solution with an offset across the TF. We impose an enhanced thermal diffusivity in the uppermost 6 km of lithosphere to simulate the effects of hydrothermal circulation. An initial weak seed in the lithosphere helps localize shear deformation between the two offset ridge axes to form a TF. For each model case, the simulation is run initially with TF-parallel plate motion until the thermal structure reaches a steady state. The direction of plate motion is then rotated either instantaneously or over a specified time period, placing the TF in a state of trans-tension. Model runs continue until the system reaches a new steady state. Parameters varied here include: initial TF length, spreading rate, and the rotation rate and magnitude of spreading obliquity. We compare our model predictions to structural observations at existing TFs and records of TF segmentation preserved in oceanic fracture zones.

  7. 3-D or median map? Earthquake scenario ground-motion maps from physics-based models versus maps from ground-motion prediction equations

    NASA Astrophysics Data System (ADS)

    Porter, K.

    2015-12-01

    There are two common ways to create a ground-motion map for a hypothetical earthquake: using ground motion prediction equations (by far the more common of the two) and using 3-D physics-based modeling. The former is very familiar to engineers, the latter much less so, and the difference can present a problem because engineers tend to trust the familiar and distrust novelty. Maps for essentially the same hypothetical earthquake using the two different methods can look very different, while appearing to present the same information. Using one or the other can lead an engineer or disaster planner to very different estimates of damage and risk. The reasons have to do with depiction of variability, spatial correlation of shaking, the skewed distribution of real-world shaking, and the upward-curving relationship between shaking and damage. The scientists who develop the two kinds of map tend to specialize in one or the other and seem to defend their turf, which can aggravate the problem of clearly communicating with engineers.The USGS Science Application for Risk Reduction's (SAFRR) HayWired scenario has addressed the challenge of explaining to engineers the differences between the two maps, and why, in a disaster planning scenario, one might want to use the less-familiar 3-D map.

  8. Usage of Underground Space for 3D Cadastre Purposes and Related Problems in Turkey

    PubMed Central

    Aydin, Cevdet C.

    2008-01-01

    Modern cities have been trying to meet their needs for space by using not only surface structures but also by considering subsurface space use. It is also anticipated that without planning of underground spaces for supporting surface city life in the years and generations to come, there will be serious and unavoidable problems with growing populations. The current Turkish cadastral system, including land right registrations, has been trying to meet users' needs in all aspects since 1924. Today Turkey's national cadastre services are carried out by the General Directorate of Land Titles and Cadastre (TKGM). The Cadastre Law, Number 3402, was approved in 1985 to eliminate problems by gathering all existing cadastral regulations under one law and also to produce 3D cadastral bases to include underground spaces and determine their legal status in Turkey. Although the mandate for 3D cadastre works is described and explained by the laws, until now the bases have been created in 2D and the reality is that legal gaps and deficiencies presently exist in them. In this study, the usage of underground spaces for the current cadastral system in Turkey was briefly evaluated, the concept of 3D cadastral data is examined and the need for using subsurface and 3D cadastre in addition to the traditional 2D register system, related problems and registration are mentioned with specific examples, but without focusing on a specific model.

  9. Hybrid MV-kV 3D respiratory motion tracking during radiation therapy with low imaging dose

    NASA Astrophysics Data System (ADS)

    Yan, Huagang; Li, Haiyun; Liu, Zhixiang; Nath, Ravinder; Liu, Wu

    2012-12-01

    A novel real-time adaptive MV-kV imaging framework for image-guided radiation therapy is developed to reduce the thoracic and abdominal tumor targeting uncertainty caused by respiration-induced intrafraction motion with ultra-low patient imaging dose. In our method, continuous stereoscopic MV-kV imaging is used at the beginning of a radiation therapy delivery for several seconds to measure the implanted marker positions. After this stereoscopic imaging period, the kV imager is switched off except for the times when no fiducial marker is detected in the cine-MV images. The 3D time-varying marker positions are estimated by combining the MV 2D projection data and the motion correlations between directional components of marker motion established from the stereoscopic imaging period and updated afterwards; in particular, the most likely position is assumed to be the position on the projection line that has the shortest distance to the first principal component line segment constructed from previous trajectory points. An adaptive windowed auto-regressive prediction is utilized to predict the marker position a short time later (310 ms and 460 ms in this study) to allow for tracking system latency. To demonstrate the feasibility and evaluate the accuracy of the proposed method, computer simulations were performed for both arc and fixed-gantry deliveries using 66 h of retrospective tumor motion data from 42 patients treated for thoracic or abdominal cancers. The simulations reveal that using our hybrid approach, a smaller than 1.2 mm or 1.5 mm root-mean-square tracking error can be achieved at a system latency of 310 ms or 460 ms, respectively. Because the kV imaging is only used for a short period of time in our method, extra patient imaging dose can be reduced by an order of magnitude compared to continuous MV-kV imaging, while the clinical tumor targeting accuracy for thoracic or abdominal cancers is maintained. Furthermore, no additional hardware is required with the

  10. Does fluid infiltration affect the motion of sediment grains? - A 3-D numerical modelling approach using SPH

    NASA Astrophysics Data System (ADS)

    Bartzke, Gerhard; Rogers, Benedict D.; Fourtakas, Georgios; Mokos, Athanasios; Huhn, Katrin

    2016-04-01

    The processes that cause the creation of a variety of sediment morphological features, e.g. laminated beds, ripples, or dunes, are based on the initial motion of individual sediment grains. However, with experimental techniques it is difficult to measure the flow characteristics, i.e., the velocity of the pore water flow in sediments, at a sufficient resolution and in a non-intrusive way. As a result, the role of fluid infiltration at the surface and in the interior affecting the initiation of motion of a sediment bed is not yet fully understood. Consequently, there is a strong need for numerical models, since these are capable of quantifying fluid driven sediment transport processes of complex sediment beds composed of irregular shapes. The numerical method Smoothed Particle Hydrodynamics (SPH) satisfies this need. As a meshless and Lagrangian technique, SPH is ideally suited to simulating flows in sediment beds composed of various grain shapes, but also flow around single grains at a high temporal and spatial resolution. The solver chosen is DualSPHysics (www.dual.sphysics.org) since this is validated for a range of flow conditions. For the present investigation a 3-D numerical flume model was generated using SPH with a length of 4.0 cm, a width of 0.05 cm and a height of 0.2 cm where mobile sediment particles were deposited in a recess. An experimental setup was designed to test sediment configurations composed of irregular grain shapes (grain diameter, D50=1000 μm). Each bed consisted of 3500 mobile objects. After the bed generation process, the entire domain was flooded with 18 million fluid particles. To drive the flow, an oscillating motion perpendicular to the bed was applied to the fluid, reaching a peak value of 0.3 cm/s, simulating 4 seconds of real time. The model results showed that flow speeds decreased logarithmically from the top of the domain towards the surface of the beds, indicating a fully developed boundary layer. Analysis of the fluid

  11. An evaluation of 3-D velocity models of the Kanto basin for long-period ground motion simulations

    NASA Astrophysics Data System (ADS)

    Dhakal, Yadab P.; Yamanaka, Hiroaki

    2013-07-01

    We performed three-dimensional (3-D) finite difference simulations of long-period ground motions (2-10 s) in the Kanto basin using the Japan Seismic Hazard Information Station (J-SHIS 2009), Yamada and Yamanaka (Exploration Geophysics 65(3):139-150, 2012) (YY), and Head Quarter for Earthquake Research Promotion (HERP 2012) velocity models for two intermediate depth (68-80 km) moderate earthquakes (Mw 5.8-5.9), which occurred beneath the Kanto basin. The models primarily differ in the basic data set used in the construction of the velocity models. The J-SHIS and HERP models are the results of integration of mainly geological, geophysical, and earthquake data. On the other hand, the YY model is oriented towards the microtremor-array-observation data. We obtained a goodness of fit between the observed and synthetic data based on three parameters, peak ground velocities (PGVs), smoothed Fourier spectra (FFT), and cross-correlations, using an algorithm proposed by Olsen and Mayhew (Seism Res Lett 81:715-723, 2010). We found that the three models reproduced the PGVs and FFT satisfactorily at most sites. However, the models performed poorly in terms of cross-correlations especially at the basin edges. We found that the synthetics using the YY model overestimate the observed waveforms at several sites located in the areas having V s 0.3 km/s in the top layer; on the other hand, the J-SHIS and HERP models explain the waveforms better at the sites and perform similarly at most sites. We also found that the J-SHIS and HERP models consist of thick sediments beneath some sites, where the YY model is preferable. Thus, we have concluded that the models require revisions for the reliable prediction of long-period ground motions from future large earthquakes.

  12. The relative motion of membranes

    NASA Astrophysics Data System (ADS)

    Roberts, Mark D.

    2010-12-01

    The relative classical motion of membranes is governed by the equation ( w {/β c α c } r βa ) a = R {/δγβ α } r gb x δa p {/a γ }, where w is the hessian. This is a generalization of the geodesic deviation equation and can be derived from the lagrangian p · ṙ. Quantum mechanically the picture is less clear. Some quantizations of the classical equations are attempted so that the question as to whether the Universe started with a quantum fluctuation can be addressed.

  13. The relative motion of membranes

    NASA Astrophysics Data System (ADS)

    Roberts, Mark

    2010-12-01

    The relative classical motion of membranes is governed by the equation (w β cα c r βa)a = R δγβα r gb x δa p aγ, where w is the hessian. This is a generalization of the geodesic deviation equation and can be derived from the lagrangian p · ṙ. Quantum mechanically the picture is less clear. Some quantizations of the classical equations are attempted so that the question as to whether the Universe started with a quantum fluctuation can be addressed.

  14. Shoulder 3D range of motion and humerus rotation in two volleyball spike techniques: injury prevention and performance.

    PubMed

    Seminati, Elena; Marzari, Alessandra; Vacondio, Oreste; Minetti, Alberto E

    2015-06-01

    Repetitive stresses and movements on the shoulder in the volleyball spike expose this joint to overuse injuries, bringing athletes to a career threatening injury. Assuming that specific spike techniques play an important role in injury risk, we compared the kinematic of the traditional (TT) and the alternative (AT) techniques in 21 elite athletes, evaluating their safety with respect to performance. Glenohumeral joint was set as the centre of an imaginary sphere, intersected by the distal end of the humerus at different angles. Shoulder range of motion and angular velocities were calculated and compared to the joint limits. Ball speed and jump height were also assessed. Results indicated the trajectory of the humerus to be different for the TT, with maximal flexion of the shoulder reduced by 10 degrees, and horizontal abduction 15 degrees higher. No difference was found for external rotation angles, while axial rotation velocities were significantly higher in AT, with a 5% higher ball speed. Results suggest AT as a potential preventive solution to shoulder chronic pathologies, reducing shoulder flexion during spiking. The proposed method allows visualisation of risks associated with different overhead manoeuvres, by depicting humerus angles and velocities with respect to joint limits in the same 3D space. PMID:26151344

  15. Feasibility of using PRESAGE® for relative 3D dosimetry of small proton fields

    PubMed Central

    Zhao, Li; Newton, Joseph; Oldham, Mark; Das, Indra J; Cheng, Chee-Wai; Adamovics, John

    2013-01-01

    Small field dosimetry is challenging due to the finite size of the conventional detectors that underestimate the dose distribution. With the fast development of the dynamic proton beam delivery system, it is essential to find a dosimeter which can be used for 3D dosimetry of small proton fields. We investigated the feasibility of using a proton formula PRESAGE® for 3D dosimetry of small fields in a uniform scanning proton beam delivery system with dose layer stacking technology. The relationship between optical density and the absorbed dose was found to be linear through small volume cuvette studies for both photon and proton irradiation. Two circular fields and three patient-specific fields were used for proton treatment planning calculation and beam delivery. The measured results were compared with the calculated results in the form of lateral dose profiles, depth dose, isodose plots and gamma index analysis. For the circular field study, lateral dose profile comparison showed that the relative PRESAGE® profile falls within ± 5% from the calculated profile for most of the spatial range. For unmodulated depth dose comparison, the agreement between the measured and calculated results was within 3% in the beam entrance region before the Bragg peak. However, at the Bragg peak, there was about 20% underestimation of the absorbed dose from PRESAGE®. For patient-specific field 3D dosimetry, most of the data points within the target volume passed gamma analysis for 3% relative dose difference and 3 mm distance to agreement criteria. Our results suggest that this proton formula PRESAGE® dosimeter has the potential for 3D dosimetry of small fields in proton therapy, but further investigation is needed to improve the dose under-response of the PRESAGE® in the Bragg peak region. PMID:23103526

  16. SU-E-J-80: Interplay Effect Between VMAT Intensity Modulation and Tumor Motion in Hypofractioned Lung Treatment, Investigated with 3D Pressage Dosimeter

    SciTech Connect

    Touch, M; Wu, Q; Oldham, M

    2014-06-01

    Purpose: To demonstrate an embedded tissue equivalent presage dosimeter for measuring 3D doses in moving tumors and to study the interplay effect between the tumor motion and intensity modulation in hypofractioned Volumetric Modulated Arc Therapy(VMAT) lung treatment. Methods: Motion experiments were performed using cylindrical Presage dosimeters (5cm diameter by 7cm length) mounted inside the lung insert of a CIRS thorax phantom. Two different VMAT treatment plans were created and delivered in three different scenarios with the same prescribed dose of 18 Gy. Plan1, containing a 2 centimeter spherical CTV with an additional 2mm setup margin, was delivered on a stationary phantom. Plan2 used the same CTV except expanded by 1 cm in the Sup-Inf direction to generate ITV and PTV respectively. The dosimeters were irradiated in static and variable motion scenarios on a Truebeam system. After irradiation, high resolution 3D dosimetry was performed using the Duke Large Field-of-view Optical-CT Scanner, and compared to the calculated dose from Eclipse. Results: In the control case (no motion), good agreement was observed between the planned and delivered dose distributions as indicated by 100% 3D Gamma (3% of maximum planned dose and 3mm DTA) passing rates in the CTV. In motion cases gamma passing rates was 99% in CTV. DVH comparisons also showed good agreement between the planned and delivered dose in CTV for both control and motion cases. However, differences of 15% and 5% in dose to PTV were observed in the motion and control cases respectively. Conclusion: With very high dose nature of a hypofraction treatment, significant effect was observed only motion is introduced to the target. This can be resulted from the motion of the moving target and the modulation of the MLC. 3D optical dosimetry can be of great advantage in hypofraction treatment dose validation studies.

  17. Calculating the Probability of Strong Ground Motions Using 3D Seismic Waveform Modeling - SCEC CyberShake

    NASA Astrophysics Data System (ADS)

    Gupta, N.; Callaghan, S.; Graves, R.; Mehta, G.; Zhao, L.; Deelman, E.; Jordan, T. H.; Kesselman, C.; Okaya, D.; Cui, Y.; Field, E.; Gupta, V.; Vahi, K.; Maechling, P. J.

    2006-12-01

    Researchers from the SCEC Community Modeling Environment (SCEC/CME) project are utilizing the CyberShake computational platform and a distributed high performance computing environment that includes USC High Performance Computer Center and the NSF TeraGrid facilities to calculate physics-based probabilistic seismic hazard curves for several sites in the Southern California area. Traditionally, probabilistic seismic hazard analysis (PSHA) is conducted using intensity measure relationships based on empirical attenuation relationships. However, a more physics-based approach using waveform modeling could lead to significant improvements in seismic hazard analysis. Members of the SCEC/CME Project have integrated leading-edge PSHA software tools, SCEC-developed geophysical models, validated anelastic wave modeling software, and state-of-the-art computational technologies on the TeraGrid to calculate probabilistic seismic hazard curves using 3D waveform-based modeling. The CyberShake calculations for a single probablistic seismic hazard curve require tens of thousands of CPU hours and multiple terabytes of disk storage. The CyberShake workflows are run on high performance computing systems including multiple TeraGrid sites (currently SDSC and NCSA), and the USC Center for High Performance Computing and Communications. To manage the extensive job scheduling and data requirements, CyberShake utilizes a grid-based scientific workflow system based on the Virtual Data System (VDS), the Pegasus meta-scheduler system, and the Globus toolkit. Probabilistic seismic hazard curves for spectral acceleration at 3.0 seconds have been produced for eleven sites in the Southern California region, including rock and basin sites. At low ground motion levels, there is little difference between the CyberShake and attenuation relationship curves. At higher ground motion (lower probability) levels, the curves are similar for some sites (downtown LA, I-5/SR-14 interchange) but different for

  18. Measurements of 3D relative locations of particles by Fourier Interferometry Imaging (FII).

    PubMed

    Briard, Paul; Saengkaew, Sawitree; Wu, Xuecheng; Meunier-Guttin-Cluzel, Siegfried; Chen, Linghong; Cen, Kefa; Grehan, Gérard

    2011-06-20

    In a large number of physical systems formed of discrete particles, a key parameter is the relative distance between the objects, as for example in studies of spray evaporation or droplets micro-explosion. This paper is devoted to the presentation of an approach where the relative 3D location of particles in the control volume is accurately extracted from the interference patterns recorded at two different angles. No reference beam is used and only ten (2 + 8) 2D-FFT have to be computed. PMID:21716513

  19. Development of the dynamic motion simulator of 3D micro-gravity with a combined passive/active suspension system

    NASA Technical Reports Server (NTRS)

    Yoshida, Kazuya; Hirose, Shigeo; Ogawa, Tadashi

    1994-01-01

    The establishment of those in-orbit operations like 'Rendez-Vous/Docking' and 'Manipulator Berthing' with the assistance of robotics or autonomous control technology, is essential for the near future space programs. In order to study the control methods, develop the flight models, and verify how the system works, we need a tool or a testbed which enables us to simulate mechanically the micro-gravity environment. There have been many attempts to develop the micro-gravity testbeds, but once the simulation goes into the docking and berthing operation that involves mechanical contacts among multi bodies, the requirement becomes critical. A group at the Tokyo Institute of Technology has proposed a method that can simulate the 3D micro-gravity producing a smooth response to the impact phenomena with relatively simple apparatus. Recently the group carried out basic experiments successfully using a prototype hardware model of the testbed. This paper will present our idea of the 3D micro-gravity simulator and report the results of our initial experiments.

  20. Predicting Strong Ground-Motion Seismograms for Magnitude 9 Cascadia Earthquakes Using 3D Simulations with High Stress Drop Sub-Events

    NASA Astrophysics Data System (ADS)

    Frankel, A. D.; Wirth, E. A.; Stephenson, W. J.; Moschetti, M. P.; Ramirez-Guzman, L.

    2015-12-01

    We have produced broadband (0-10 Hz) synthetic seismograms for magnitude 9.0 earthquakes on the Cascadia subduction zone by combining synthetics from simulations with a 3D velocity model at low frequencies (≤ 1 Hz) with stochastic synthetics at high frequencies (≥ 1 Hz). We use a compound rupture model consisting of a set of M8 high stress drop sub-events superimposed on a background slip distribution of up to 20m that builds relatively slowly. The 3D simulations were conducted using a finite difference program and the finite element program Hercules. The high-frequency (≥ 1 Hz) energy in this rupture model is primarily generated in the portion of the rupture with the M8 sub-events. In our initial runs, we included four M7.9-8.2 sub-events similar to those that we used to successfully model the strong ground motions recorded from the 2010 M8.8 Maule, Chile earthquake. At periods of 2-10 s, the 3D synthetics exhibit substantial amplification (about a factor of 2) for sites in the Puget Lowland and even more amplification (up to a factor of 5) for sites in the Seattle and Tacoma sedimentary basins, compared to rock sites outside of the Puget Lowland. This regional and more localized basin amplification found from the simulations is supported by observations from local earthquakes. There are substantial variations in the simulated M9 time histories and response spectra caused by differences in the hypocenter location, slip distribution, down-dip extent of rupture, coherence of the rupture front, and location of sub-events. We examined the sensitivity of the 3D synthetics to the velocity model of the Seattle basin. We found significant differences in S-wave focusing and surface wave conversions between a 3D model of the basin from a spatially-smoothed tomographic inversion of Rayleigh-wave phase velocities and a model that has an abrupt southern edge of the Seattle basin, as observed in seismic reflection profiles.

  1. Relative stereo 3-D vision sensor and its application for nursery plant transplanting

    NASA Astrophysics Data System (ADS)

    Hata, Seiji; Hayashi, Junichiro; Takahashi, Satoru; Hojo, Hirotaka

    2007-10-01

    Clone nursery plants production is one of the important applications of bio-technology. Most of the production processes of bio-production are highly automated, but the transplanting process of the small nursery plants cannot be automated because the figures of small nursery plants are not stable. In this research, a transplanting robot system for clone nursery plants production is under development. 3-D vision system using relative stereo method detects the shapes and positions of small nursery plants through transparent vessels. A force controlled robot picks up the plants and transplants into a vessels with artificial soil.

  2. Creation of 3D digital anthropomorphic phantoms which model actual patient non-rigid body motion as determined from MRI and position tracking studies of volunteers

    NASA Astrophysics Data System (ADS)

    Connolly, C. M.; Konik, A.; Dasari, P. K. R.; Segars, P.; Zheng, S.; Johnson, K. L.; Dey, J.; King, M. A.

    2011-03-01

    Patient motion can cause artifacts, which can lead to difficulty in interpretation. The purpose of this study is to create 3D digital anthropomorphic phantoms which model the location of the structures of the chest and upper abdomen of human volunteers undergoing a series of clinically relevant motions. The 3D anatomy is modeled using the XCAT phantom and based on MRI studies. The NURBS surfaces of the XCAT are interactively adapted to fit the MRI studies. A detailed XCAT phantom is first developed from an EKG triggered Navigator acquisition composed of sagittal slices with a 3 x 3 x 3 mm voxel dimension. Rigid body motion states are then acquired at breath-hold as sagittal slices partially covering the thorax, centered on the heart, with 9 mm gaps between them. For non-rigid body motion requiring greater sampling, modified Navigator sequences covering the entire thorax with 3 mm gaps between slices are obtained. The structures of the initial XCAT are then adapted to fit these different motion states. Simultaneous to MRI imaging the positions of multiple reflective markers on stretchy bands about the volunteer's chest and abdomen are optically tracked in 3D via stereo imaging. These phantoms with combined position tracking will be used to investigate both imaging-data-driven and motion-tracking strategies to estimate and correct for patient motion. Our initial application will be to cardiacperfusion SPECT imaging where the XCAT phantoms will be used to create patient activity and attenuation distributions for each volunteer with corresponding motion tracking data from the markers on the body-surface. Monte Carlo methods will then be used to simulate SPECT acquisitions, which will be used to evaluate various motion estimation and correction strategies.

  3. Respiratory motion compensation for simultaneous PET/MR based on a 3D-2D registration of strongly undersampled radial MR data: a simulation study

    NASA Astrophysics Data System (ADS)

    Rank, Christopher M.; Heußer, Thorsten; Flach, Barbara; Brehm, Marcus; Kachelrieß, Marc

    2015-03-01

    We propose a new method for PET/MR respiratory motion compensation, which is based on a 3D-2D registration of strongly undersampled MR data and a) runs in parallel with the PET acquisition, b) can be interlaced with clinical MR sequences, and c) requires less than one minute of the total MR acquisition time per bed position. In our simulation study, we applied a 3D encoded radial stack-of-stars sampling scheme with 160 radial spokes per slice and an acquisition time of 38 s. Gated 4D MR images were reconstructed using a 4D iterative reconstruction algorithm. Based on these images, motion vector fields were estimated using our newly-developed 3D-2D registration framework. A 4D PET volume of a patient with eight hot lesions in the lungs and upper abdomen was simulated and MoCo 4D PET images were reconstructed based on the motion vector fields derived from MR. For evaluation, average SUVmean values of the artificial lesions were determined for a 3D, a gated 4D, a MoCo 4D and a reference (with ten-fold measurement time) gated 4D reconstruction. Compared to the reference, 3D reconstructions yielded an underestimation of SUVmean values due to motion blurring. In contrast, gated 4D reconstructions showed the highest variation of SUVmean due to low statistics. MoCo 4D reconstructions were only slightly affected by these two sources of uncertainty resulting in a significant visual and quantitative improvement in terms of SUVmean values. Whereas temporal resolution was comparable to the gated 4D images, signal-to-noise ratio and contrast-to-noise ratio were close to the 3D reconstructions.

  4. The 3-D motion of the centre of gravity of the human body during level walking. II. Lower limb amputees.

    PubMed

    Tesio, L; Lanzi, D; Detrembleur, C

    1998-03-01

    OBJECTIVE: To analyse the motion of the centre of gravity (CG) of the body during gait in unilateral lower limb amputees with good kinematic patterns. DESIGN: Three transtibial (below-knee, BK) and four transfemoral (above-knee, AK) amputees were required to perform successive walks over a 2.4 m long force plate, at freely chosen cadence and speed. BACKGROUND: In previous studies it has been shown that in unilateral lower limb amputee gait, the motion of the CG can be more asymmetric than might be suspected from kinematic analysis. METHODS: The mechanical energy changes of the CG due to its motion in the vertical, forward and lateral direction were measured. Gait speed ranged 0.75-1.32 m s(-1) in the different subjects. This allowed calculation of (a) the positive work done by muscles to maintain the motion of the CG with respect to the ground ('external' work, W(ext)) and (b) the amount of the pendulum-like, energy-saving transfer between gravitational potential energy and kinetic energy of the CG during each step (percent recovery, R). Step length and vertical displacement of the CG were also measured. RESULTS: The recorded variables were kept within the normal limits, calculated in a previous work, when an average was made of the steps performed on the prosthetic (P) and on the normal (N) limb. Asymmetries were found, however, between the P and the N step. In BK amputees, the P step R was 5% greater and W(ext) was 21% lower than in the N step; in AK amputees, in the P step R was 54% greater and W(ext) was 66% lower than in the N step. Asymmetries were also found in the relative magnitude of the external work provided by each lower limb during the single stance as compared with the double stance: a marked deficit of work occurred at the P to N transition. PMID:11415775

  5. Identifying the origin of differences between 3D numerical simulations of ground motion in sedimentary basins: lessons from stringent canonical test models in the E2VP framework

    NASA Astrophysics Data System (ADS)

    Chaljub, Emmanuel; Maufroy, Emeline; Moczo, Peter; Kristek, Jozef; Priolo, Enrico; Klin, Peter; De Martin, Florent; Zhang, Zenghuo; Hollender, Fabrice; Bard, Pierre-Yves

    2013-04-01

    Numerical simulation is playing a role of increasing importance in the field of seismic hazard by providing quantitative estimates of earthquake ground motion, its variability, and its sensitivity to geometrical and mechanical properties of the medium. Continuous efforts to develop accurate and computationally efficient numerical methods, combined with increasing computational power have made it technically feasible to calculate seismograms in 3D realistic configurations and for frequencies of interest in seismic design applications. Now, in order to foster the use of numerical simulations in practical prediction of earthquake ground motion, it is important to evaluate the accuracy of current numerical methods when applied to realistic 3D sites. This process of verification is a necessary prerequisite to confrontation of numerical predictions and observations. Through the ongoing Euroseistest Verification and Validation Project (E2VP), which focuses on the Mygdonian basin (northern Greece), we investigated the capability of numerical methods to predict earthquake ground motion for frequencies up to 4 Hz. Numerical predictions obtained by several teams using a wide variety of methods were compared using quantitative goodness-of-fit criteria. In order to better understand the cause of misfits between different simulations, initially performed for the realistic geometry of the Mygdonian basin, we defined five stringent canonical configurations. The canonical models allow for identifying sources of misfits and quantify their importance. Detailed quantitative comparison of simulations in relation to dominant features of the models shows that even relatively simple heterogeneous models must be treated with maximum care in order to achieve sufficient level of accuracy. One important conclusion is that the numerical representation of models with strong variations (e.g. discontinuities) may considerably vary from one method to the other, and may become a dominant source of

  6. Projectile Motion in Special Relativity.

    ERIC Educational Resources Information Center

    Naddy, Cory J.; Dudley, Scott C.; Haaland, Ryan K.

    2000-01-01

    Explains the motion that occurs when a particle with an initial velocity to the right is acted upon by a constant downward force. Considers what happens when the speed of the particle approaches the speed of light in particular. (WRM)

  7. Effect of Task-Correlated Physiological Fluctuations and Motion in 2D and 3D Echo-Planar Imaging in a Higher Cognitive Level fMRI Paradigm

    PubMed Central

    Ladstein, Jarle; Evensmoen, Hallvard R.; Håberg, Asta K.; Kristoffersen, Anders; Goa, Pål E.

    2016-01-01

    Purpose: To compare 2D and 3D echo-planar imaging (EPI) in a higher cognitive level fMRI paradigm. In particular, to study the link between the presence of task-correlated physiological fluctuations and motion and the fMRI contrast estimates from either 2D EPI or 3D EPI datasets, with and without adding nuisance regressors to the model. A signal model in the presence of partly task-correlated fluctuations is derived, and predictions for contrast estimates with and without nuisance regressors are made. Materials and Methods: Thirty-one healthy volunteers were scanned using 2D EPI and 3D EPI during a virtual environmental learning paradigm. In a subgroup of 7 subjects, heart rate and respiration were logged, and the correlation with the paradigm was evaluated. FMRI analysis was performed using models with and without nuisance regressors. Differences in the mean contrast estimates were investigated by analysis-of-variance using Subject, Sequence, Day, and Run as factors. The distributions of group level contrast estimates were compared. Results: Partially task-correlated fluctuations in respiration, heart rate and motion were observed. Statistically significant differences were found in the mean contrast estimates between the 2D EPI and 3D EPI when using a model without nuisance regressors. The inclusion of nuisance regressors for cardiorespiratory effects and motion reduced the difference to a statistically non-significant level. Furthermore, the contrast estimate values shifted more when including nuisance regressors for 3D EPI compared to 2D EPI. Conclusion: The results are consistent with 3D EPI having a higher sensitivity to fluctuations compared to 2D EPI. In the presence partially task-correlated physiological fluctuations or motion, proper correction is necessary to get expectation correct contrast estimates when using 3D EPI. As such task-correlated physiological fluctuations or motion is difficult to avoid in paradigms exploring higher cognitive functions, 2

  8. Computer numerical control (CNC) lithography: light-motion synchronized UV-LED lithography for 3D microfabrication

    NASA Astrophysics Data System (ADS)

    Kim, Jungkwun; Yoon, Yong-Kyu; Allen, Mark G.

    2016-03-01

    This paper presents a computer-numerical-controlled ultraviolet light-emitting diode (CNC UV-LED) lithography scheme for three-dimensional (3D) microfabrication. The CNC lithography scheme utilizes sequential multi-angled UV light exposures along with a synchronized switchable UV light source to create arbitrary 3D light traces, which are transferred into the photosensitive resist. The system comprises a switchable, movable UV-LED array as a light source, a motorized tilt-rotational sample holder, and a computer-control unit. System operation is such that the tilt-rotational sample holder moves in a pre-programmed routine, and the UV-LED is illuminated only at desired positions of the sample holder during the desired time period, enabling the formation of complex 3D microstructures. This facilitates easy fabrication of complex 3D structures, which otherwise would have required multiple manual exposure steps as in the previous multidirectional 3D UV lithography approach. Since it is batch processed, processing time is far less than that of the 3D printing approach at the expense of some reduction in the degree of achievable 3D structure complexity. In order to produce uniform light intensity from the arrayed LED light source, the UV-LED array stage has been kept rotating during exposure. UV-LED 3D fabrication capability was demonstrated through a plurality of complex structures such as V-shaped micropillars, micropanels, a micro-‘hi’ structure, a micro-‘cat’s claw,’ a micro-‘horn,’ a micro-‘calla lily,’ a micro-‘cowboy’s hat,’ and a micro-‘table napkin’ array.

  9. Tracking immune-related cell responses to drug delivery microparticles in 3D dense collagen matrix.

    PubMed

    Obarzanek-Fojt, Magdalena; Curdy, Catherine; Loggia, Nicoletta; Di Lena, Fabio; Grieder, Kathrin; Bitar, Malak; Wick, Peter

    2016-10-01

    Beyond the therapeutic purpose, the impact of drug delivery microparticles on the local tissue and inflammatory responses remains to be further elucidated specifically for reactions mediated by the host immune cells. Such immediate and prolonged reactions may adversely influence the release efficacy and intended therapeutic pathway. The lack of suitable in vitro platforms limits our ability to gain insight into the nature of immune responses at a single cell level. In order to establish an in vitro 3D system mimicking the connective host tissue counterpart, we utilized reproducible, compressed, rat-tail collagen polymerized matrices. THP1 cells (human acute monocytic leukaemia cells) differentiated into macrophage-like cells were chosen as cell model and their functionality was retained in the dense rat-tail collagen matrix. Placebo microparticles were later combined in the immune cell seeded system during collagen polymerization and secreted pro-inflammatory factors: TNFα and IL-8 were used as immune response readout (ELISA). Our data showed an elevated TNFα and IL-8 secretion by macrophage THP1 cells indicating that Placebo microparticles trigger certain immune cell responses under 3D in vivo like conditions. Furthermore, we have shown that the system is sensitive to measure the differences in THP1 macrophage pro-inflammatory responses to Active Pharmaceutical Ingredient (API) microparticles with different API release kinetics. We have successfully developed a tissue-like, advanced, in vitro system enabling selective "readouts" of specific responses of immune-related cells. Such system may provide the basis of an advanced toolbox enabling systemic evaluation and prediction of in vivo microparticle reactions on human immune-related cells.

  10. From 1D to 2D via 3D: dynamics of surface motion segmentation for ocular tracking in primates.

    PubMed

    Masson, Guillaume S

    2004-01-01

    In primates, tracking eye movements help vision by stabilising onto the retinas the images of a moving object of interest. This sensorimotor transformation involves several stages of motion processing, from the local measurement of one-dimensional luminance changes up to the integration of first and higher-order local motion cues into a global two-dimensional motion immune to antagonistic motions arising from the surrounding. The dynamics of this surface motion segmentation is reflected into the various components of the tracking responses and its underlying neural mechanisms can be correlated with behaviour at both single-cell and population levels. I review a series of behavioural studies which demonstrate that the neural representation driving eye movements evolves over time from a fast vector average of the outputs of linear and non-linear spatio-temporal filtering to a progressive and slower accurate solution for global motion. Because of the sensitivity of earliest ocular following to binocular disparity, antagonistic visual motion from surfaces located at different depths are filtered out. Thus, global motion integration is restricted within the depth plane of the object to be tracked. Similar dynamics were found at the level of monkey extra-striate areas MT and MST and I suggest that several parallel pathways along the motion stream are involved albeit with different latencies to build-up this accurate surface motion representation. After 200-300 ms, most of the computational problems of early motion processing (aperture problem, motion integration, motion segmentation) are solved and the eye velocity matches the global object velocity to maintain a clear and steady retinal image. PMID:15477021

  11. Quantitative anatomical analysis of facial expression using a 3D motion capture system: Application to cosmetic surgery and facial recognition technology.

    PubMed

    Lee, Jae-Gi; Jung, Su-Jin; Lee, Hyung-Jin; Seo, Jung-Hyuk; Choi, You-Jin; Bae, Hyun-Sook; Park, Jong-Tae; Kim, Hee-Jin

    2015-09-01

    The topography of the facial muscles differs between males and females and among individuals of the same gender. To explain the unique expressions that people can make, it is important to define the shapes of the muscle, their associations with the skin, and their relative functions. Three-dimensional (3D) motion-capture analysis, often used to study facial expression, was used in this study to identify characteristic skin movements in males and females when they made six representative basic expressions. The movements of 44 reflective markers (RMs) positioned on anatomical landmarks were measured. Their mean displacement was large in males [ranging from 14.31 mm (fear) to 41.15 mm (anger)], and 3.35-4.76 mm smaller in females [ranging from 9.55 mm (fear) to 37.80 mm (anger)]. The percentages of RMs involved in the ten highest mean maximum displacement values in making at least one expression were 47.6% in males and 61.9% in females. The movements of the RMs were larger in males than females but were more limited. Expanding our understanding of facial expression requires morphological studies of facial muscles and studies of related complex functionality. Conducting these together with quantitative analyses, as in the present study, will yield data valuable for medicine, dentistry, and engineering, for example, for surgical operations on facial regions, software for predicting changes in facial features and expressions after corrective surgery, and the development of face-mimicking robots. PMID:25872024

  12. Quantitative anatomical analysis of facial expression using a 3D motion capture system: Application to cosmetic surgery and facial recognition technology.

    PubMed

    Lee, Jae-Gi; Jung, Su-Jin; Lee, Hyung-Jin; Seo, Jung-Hyuk; Choi, You-Jin; Bae, Hyun-Sook; Park, Jong-Tae; Kim, Hee-Jin

    2015-09-01

    The topography of the facial muscles differs between males and females and among individuals of the same gender. To explain the unique expressions that people can make, it is important to define the shapes of the muscle, their associations with the skin, and their relative functions. Three-dimensional (3D) motion-capture analysis, often used to study facial expression, was used in this study to identify characteristic skin movements in males and females when they made six representative basic expressions. The movements of 44 reflective markers (RMs) positioned on anatomical landmarks were measured. Their mean displacement was large in males [ranging from 14.31 mm (fear) to 41.15 mm (anger)], and 3.35-4.76 mm smaller in females [ranging from 9.55 mm (fear) to 37.80 mm (anger)]. The percentages of RMs involved in the ten highest mean maximum displacement values in making at least one expression were 47.6% in males and 61.9% in females. The movements of the RMs were larger in males than females but were more limited. Expanding our understanding of facial expression requires morphological studies of facial muscles and studies of related complex functionality. Conducting these together with quantitative analyses, as in the present study, will yield data valuable for medicine, dentistry, and engineering, for example, for surgical operations on facial regions, software for predicting changes in facial features and expressions after corrective surgery, and the development of face-mimicking robots.

  13. 3D Motions of Iron in Six-Coordinate {FeNO}(7) Hemes by Nuclear Resonance Vibration Spectroscopy.

    PubMed

    Peng, Qian; Pavlik, Jeffrey W; Silvernail, Nathan J; Alp, E Ercan; Hu, Michael Y; Zhao, Jiyong; Sage, J Timothy; Scheidt, W Robert

    2016-04-25

    The vibrational spectrum of a six-coordinate nitrosyl iron porphyrinate, monoclinic [Fe(TpFPP)(1-MeIm)(NO)] (TpFPP=tetra-para-fluorophenylporphyrin; 1-MeIm=1-methylimidazole), has been studied by oriented single-crystal nuclear resonance vibrational spectroscopy (NRVS). The crystal was oriented to give spectra perpendicular to the porphyrin plane and two in-plane spectra perpendicular or parallel to the projection of the FeNO plane. These enable assignment of the FeNO bending and stretching modes. The measurements reveal that the two in-plane spectra have substantial differences that result from the strongly bonded axial NO ligand. The direction of the in-plane iron motion is found to be largely parallel and perpendicular to the projection of the bent FeNO on the porphyrin plane. The out-of-plane Fe-N-O stretching and bending modes are strongly mixed with each other, as well as with porphyrin ligand modes. The stretch is mixed with v50 as was also observed for dioxygen complexes. The frequency of the assigned stretching mode of eight Fe-X-O (X=N, C, and O) complexes is correlated with the Fe-XO bond lengths. The nature of highest frequency band at ≈560 cm(-1) has also been examined in two additional new derivatives. Previously assigned as the Fe-NO stretch (by resonance Raman), it is better described as the bend, as the motion of the central nitrogen atom of the FeNO group is very large. There is significant mixing of this mode. The results emphasize the importance of mode mixing; the extent of mixing must be related to the peripheral phenyl substituents.

  14. QUANTIFYING UNCERTAINTIES IN GROUND MOTION SIMULATIONS FOR SCENARIO EARTHQUAKES ON THE HAYWARD-RODGERS CREEK FAULT SYSTEM USING THE USGS 3D VELOCITY MODEL AND REALISTIC PSEUDODYNAMIC RUPTURE MODELS

    SciTech Connect

    Rodgers, A; Xie, X

    2008-01-09

    This project seeks to compute ground motions for large (M>6.5) scenario earthquakes on the Hayward Fault using realistic pseudodynamic ruptures, the USGS three-dimensional (3D) velocity model and anelastic finite difference simulations on parallel computers. We will attempt to bound ground motions by performing simulations with suites of stochastic rupture models for a given scenario on a given fault segment. The outcome of this effort will provide the average, spread and range of ground motions that can be expected from likely large earthquake scenarios. The resulting ground motions will be based on first-principles calculations and include the effects of slip heterogeneity, fault geometry and directivity, however, they will be band-limited to relatively low-frequency (< 1 Hz).

  15. Imaging bacterial 3D motion using digital in-line holographic microscopy and correlation-based de-noising algorithm

    PubMed Central

    Molaei, Mehdi; Sheng, Jian

    2014-01-01

    Abstract: Better understanding of bacteria environment interactions in the context of biofilm formation requires accurate 3-dimentional measurements of bacteria motility. Digital Holographic Microscopy (DHM) has demonstrated its capability in resolving 3D distribution and mobility of particulates in a dense suspension. Due to their low scattering efficiency, bacteria are substantially difficult to be imaged by DHM. In this paper, we introduce a novel correlation-based de-noising algorithm to remove the background noise and enhance the quality of the hologram. Implemented in conjunction with DHM, we demonstrate that the method allows DHM to resolve 3-D E. coli bacteria locations of a dense suspension (>107 cells/ml) with submicron resolutions (<0.5 µm) over substantial depth and to obtain thousands of 3D cell trajectories. PMID:25607177

  16. Bedside assistance in freehand ultrasonic diagnosis by real-time visual feedback of 3D scatter diagram of pulsatile tissue-motion

    NASA Astrophysics Data System (ADS)

    Fukuzawa, M.; Kawata, K.; Nakamori, N.; Kitsunezuka, Y.

    2011-03-01

    By real-time visual feedback of 3D scatter diagram of pulsatile tissue-motion, freehand ultrasonic diagnosis of neonatal ischemic diseases has been assisted at the bedside. The 2D ultrasonic movie was taken with a conventional ultrasonic apparatus (ATL HDI5000) and ultrasonic probes of 5-7 MHz with the compact tilt-sensor to measure the probe orientation. The real-time 3D visualization was realized by developing an extended version of the PC-based visualization system. The software was originally developed on the DirectX platform and optimized with the streaming SIMD extensions. The 3D scatter diagram of the latest pulsatile tissues has been continuously generated and visualized as projection image with the ultrasonic movie in the current section more than 15 fps. It revealed the 3D structure of pulsatile tissues such as middle and posterior cerebral arteries, Willis ring and cerebellar arteries, in which pediatricians have great interests in the blood flow because asphyxiated and/or low-birth-weight neonates have a high risk of ischemic diseases such as hypoxic-ischemic encephalopathy and periventricular leukomalacia. Since the pulsatile tissue-motion is due to local blood flow, it can be concluded that the system developed in this work is very useful to assist freehand ultrasonic diagnosis of ischemic diseases in the neonatal cranium.

  17. Determining inter-fractional motion of the uterus using 3D ultrasound imaging during radiotherapy for cervical cancer

    NASA Astrophysics Data System (ADS)

    Baker, Mariwan; Jensen, Jørgen Arendt; Behrens, Claus F.

    2014-03-01

    Uterine positional changes can reduce the accuracy of radiotherapy for cervical cancer patients. The purpose of this study was to; 1) Quantify the inter-fractional uterine displacement using a novel 3D ultrasound (US) imaging system, and 2) Compare the result with the bone match shift determined by Cone- Beam CT (CBCT) imaging.Five cervical cancer patients were enrolled in the study. Three of them underwent weekly CBCT imaging prior to treatment and bone match shift was applied. After treatment delivery they underwent a weekly US scan. The transabdominal scans were conducted using a Clarity US system (Clarity® Model 310C00). Uterine positional shifts based on soft-tissue match using US was performed and compared to bone match shifts for the three directions. Mean value (+/-1 SD) of the US shifts were (mm); anterior-posterior (A/P): (3.8+/-5.5), superior-inferior (S/I) (-3.5+/-5.2), and left-right (L/R): (0.4+/-4.9). The variations were larger than the CBCT shifts. The largest inter-fractional displacement was from -2 mm to +14 mm in the AP-direction for patient 3. Thus, CBCT bone matching underestimates the uterine positional displacement due to neglecting internal uterine positional change to the bone structures. Since the US images were significantly better than the CBCT images in terms of soft-tissue visualization, the US system can provide an optional image-guided radiation therapy (IGRT) system. US imaging might be a better IGRT system than CBCT, despite difficulty in capturing the entire uterus. Uterine shifts based on US imaging contains relative uterus-bone displacement, which is not taken into consideration using CBCT bone match.

  18. Relative Scale Estimation and 3D Registration of Multi-Modal Geometry Using Growing Least Squares.

    PubMed

    Mellado, Nicolas; Dellepiane, Matteo; Scopigno, Roberto

    2016-09-01

    The advent of low cost scanning devices and the improvement of multi-view stereo techniques have made the acquisition of 3D geometry ubiquitous. Data gathered from different devices, however, result in large variations in detail, scale, and coverage. Registration of such data is essential before visualizing, comparing and archiving them. However, state-of-the-art methods for geometry registration cannot be directly applied due to intrinsic differences between the models, e.g., sampling, scale, noise. In this paper we present a method for the automatic registration of multi-modal geometric data, i.e., acquired by devices with different properties (e.g., resolution, noise, data scaling). The method uses a descriptor based on Growing Least Squares, and is robust to noise, variation in sampling density, details, and enables scale-invariant matching. It allows not only the measurement of the similarity between the geometry surrounding two points, but also the estimation of their relative scale. As it is computed locally, it can be used to analyze large point clouds composed of millions of points. We implemented our approach in two registration procedures (assisted and automatic) and applied them successfully on a number of synthetic and real cases. We show that using our method, multi-modal models can be automatically registered, regardless of their differences in noise, detail, scale, and unknown relative coverage.

  19. Integrating structure-from-motion photogrammetry with geospatial software as a novel technique for quantifying 3D ecological characteristics of coral reefs

    PubMed Central

    Delparte, D; Gates, RD; Takabayashi, M

    2015-01-01

    The structural complexity of coral reefs plays a major role in the biodiversity, productivity, and overall functionality of reef ecosystems. Conventional metrics with 2-dimensional properties are inadequate for characterization of reef structural complexity. A 3-dimensional (3D) approach can better quantify topography, rugosity and other structural characteristics that play an important role in the ecology of coral reef communities. Structure-from-Motion (SfM) is an emerging low-cost photogrammetric method for high-resolution 3D topographic reconstruction. This study utilized SfM 3D reconstruction software tools to create textured mesh models of a reef at French Frigate Shoals, an atoll in the Northwestern Hawaiian Islands. The reconstructed orthophoto and digital elevation model were then integrated with geospatial software in order to quantify metrics pertaining to 3D complexity. The resulting data provided high-resolution physical properties of coral colonies that were then combined with live cover to accurately characterize the reef as a living structure. The 3D reconstruction of reef structure and complexity can be integrated with other physiological and ecological parameters in future research to develop reliable ecosystem models and improve capacity to monitor changes in the health and function of coral reef ecosystems. PMID:26207190

  20. On the validity of 3D polymer gel dosimetry: III. MRI-related error sources

    NASA Astrophysics Data System (ADS)

    Vandecasteele, Jan; De Deene, Yves

    2013-01-01

    In MRI (PAGAT) polymer gel dosimetry, there exists some controversy on the validity of 3D dose verifications of clinical treatments. The relative contribution of important sources of uncertainty in MR scanning to the overall accuracy and precision of 3D MRI polymer gel dosimetry is quantified in this study. The performance in terms of signal-to-noise and imaging artefacts was evaluated on three different MR scanners (two 1.5 T and a 3 T scanner). These include: (1) B0-field inhomogeneity, (2) B1-field inhomogeneity, (3) dielectric effects (losses and standing waves) and (4) temperature inhomogeneity during scanning. B0-field inhomogeneities that amount to maximum 5 ppm result in dose deviations of up to 4.3% and deformations of up to 5 pixels. Compensation methods are proposed. B1-field inhomogeneities were found to induce R2 variations in large anthropomorphic phantoms both at 1.5 and 3 T. At 1.5 T these effects are mainly caused by the coil geometry resulting in dose deviations of up to 25%. After the correction of the R2 maps using a heuristic flip angle-R2 relation, these dose deviations are reduced to 2.4%. At 3 T, the dielectric properties of the gel phantoms are shown to strongly influence B1-field homogeneity, hence R2 homogeneity, especially of large anthropomorphic phantoms. The low electrical conductivity of polymer gel dosimeters induces standing wave patterns resulting in dose deviations up to 50%. Increasing the conductivity of the gel by adding NaCl reduces the dose deviation to 25% after which the post-processing is successful in reducing the remaining inhomogeneities caused by the coil geometry to within 2.4%. The measurements are supported by computational modelling of the B1-field. Finally, temperature fluctuations of 1 °C frequently encountered in clinical MRI scanners result in dose deviations up to 15%. It is illustrated that with adequate temperature stabilization, the dose uncertainty is reduced to within 2.58%. Both authors contributed

  1. Dynamic simulation and modeling of the motion modes produced during the 3D controlled manipulation of biological micro/nanoparticles based on the AFM.

    PubMed

    Saraee, Mahdieh B; Korayem, Moharam H

    2015-08-01

    Determining the motion modes and the exact position of a particle displaced during the manipulation process is of special importance. This issue becomes even more important when the studied particles are biological micro/nanoparticles and the goals of manipulation are the transfer of these particles within body cells, repair of cancerous cells and the delivery of medication to damaged cells. However, due to the delicate nature of biological nanoparticles and their higher vulnerability, by obtaining the necessary force of manipulation for the considered motion mode, we can prevent the sample from interlocking with or sticking to the substrate because of applying a weak force or avoid damaging the sample due to the exertion of excessive force. In this paper, the dynamic behaviors and the motion modes of biological micro/nanoparticles such as DNA, yeast, platelet and bacteria due to the 3D manipulation effect have been investigated. Since the above nanoparticles generally have a cylindrical shape, the cylindrical contact models have been employed in an attempt to more precisely model the forces exerted on the nanoparticle during the manipulation process. Also, this investigation has performed a comprehensive modeling and simulation of all the possible motion modes in 3D manipulation by taking into account the eccentricity of the applied load on the biological nanoparticle. The obtained results indicate that unlike the macroscopic scale, the sliding of nanoparticle on substrate in nano-scale takes place sooner than the other motion modes and that the spinning about the vertical and transverse axes and the rolling of nanoparticle occur later than the other motion modes. The simulation results also indicate that the applied force necessary for the onset of nanoparticle movement and the resulting motion mode depend on the size and aspect ratio of the nanoparticle.

  2. Interfacing graphene and related 2D materials with the 3D world.

    PubMed

    Tománek, David

    2015-04-10

    An important prerequisite to translating the exceptional intrinsic performance of 2D materials such as graphene and transition metal dichalcogenides into useful devices precludes their successful integration within the current 3D technology. This review provides theoretical insight into nontrivial issues arising from interfacing 2D materials with 3D systems including epitaxy and ways to accommodate lattice mismatch, the key role of contact resistance and the effect of defects in electrical and thermal transport.

  3. Validation and Comparison of 2D and 3D Codes for Nearshore Motion of Long Waves Using Benchmark Problems

    NASA Astrophysics Data System (ADS)

    Velioǧlu, Deniz; Cevdet Yalçıner, Ahmet; Zaytsev, Andrey

    2016-04-01

    Tsunamis are huge waves with long wave periods and wave lengths that can cause great devastation and loss of life when they strike a coast. The interest in experimental and numerical modeling of tsunami propagation and inundation increased considerably after the 2011 Great East Japan earthquake. In this study, two numerical codes, FLOW 3D and NAMI DANCE, that analyze tsunami propagation and inundation patterns are considered. Flow 3D simulates linear and nonlinear propagating surface waves as well as long waves by solving three-dimensional Navier-Stokes (3D-NS) equations. NAMI DANCE uses finite difference computational method to solve 2D depth-averaged linear and nonlinear forms of shallow water equations (NSWE) in long wave problems, specifically tsunamis. In order to validate these two codes and analyze the differences between 3D-NS and 2D depth-averaged NSWE equations, two benchmark problems are applied. One benchmark problem investigates the runup of long waves over a complex 3D beach. The experimental setup is a 1:400 scale model of Monai Valley located on the west coast of Okushiri Island, Japan. Other benchmark problem is discussed in 2015 National Tsunami Hazard Mitigation Program (NTHMP) Annual meeting in Portland, USA. It is a field dataset, recording the Japan 2011 tsunami in Hilo Harbor, Hawaii. The computed water surface elevation and velocity data are compared with the measured data. The comparisons showed that both codes are in fairly good agreement with each other and benchmark data. The differences between 3D-NS and 2D depth-averaged NSWE equations are highlighted. All results are presented with discussions and comparisons. Acknowledgements: Partial support by Japan-Turkey Joint Research Project by JICA on earthquakes and tsunamis in Marmara Region (JICA SATREPS - MarDiM Project), 603839 ASTARTE Project of EU, UDAP-C-12-14 project of AFAD Turkey, 108Y227, 113M556 and 213M534 projects of TUBITAK Turkey, RAPSODI (CONCERT_Dis-021) of CONCERT

  4. A GPU-based framework for modeling real-time 3D lung tumor conformal dosimetry with subject-specific lung tumor motion

    NASA Astrophysics Data System (ADS)

    Min, Yugang; Santhanam, Anand; Neelakkantan, Harini; Ruddy, Bari H.; Meeks, Sanford L.; Kupelian, Patrick A.

    2010-09-01

    In this paper, we present a graphics processing unit (GPU)-based simulation framework to calculate the delivered dose to a 3D moving lung tumor and its surrounding normal tissues, which are undergoing subject-specific lung deformations. The GPU-based simulation framework models the motion of the 3D volumetric lung tumor and its surrounding tissues, simulates the dose delivery using the dose extracted from a treatment plan using Pinnacle Treatment Planning System, Phillips, for one of the 3DCTs of the 4DCT and predicts the amount and location of radiation doses deposited inside the lung. The 4DCT lung datasets were registered with each other using a modified optical flow algorithm. The motion of the tumor and the motion of the surrounding tissues were simulated by measuring the changes in lung volume during the radiotherapy treatment using spirometry. The real-time dose delivered to the tumor for each beam is generated by summing the dose delivered to the target volume at each increase in lung volume during the beam delivery time period. The simulation results showed the real-time capability of the framework at 20 discrete tumor motion steps per breath, which is higher than the number of 4DCT steps (approximately 12) reconstructed during multiple breathing cycles.

  5. Cycloid kinematics of relative plate motion

    SciTech Connect

    Cronin, V.S.

    1987-11-01

    The trajectory of a point on one plate as observed from another plate is generally a complex curve and not a small circle around a single axis of relative motion, as is commonly assumed. The shape of the relative-motion path is given the general name spherical cycloid because of its morphological similarity to cycloid planetary trajectories described by early astronomers. The cycloid relative-motion model predicts that the following phenomena occur during finite displacements: (1) the relative velocity and the curvature of the trajectory of a point on one plate relative to another plate varies systematically; (2) plates wobble relative to one another; and (3) the angle of convergence and/or divergence varies systematically along the length of any given transform fault. The small-circle relative-motion model, whereby transform faults have been considered lines of pure slip along which crust is conserved, is not generally valid for finite relative displacements.

  6. Understanding the core-halo relation of quantum wave dark matter from 3D simulations.

    PubMed

    Schive, Hsi-Yu; Liao, Ming-Hsuan; Woo, Tak-Pong; Wong, Shing-Kwong; Chiueh, Tzihong; Broadhurst, Tom; Hwang, W-Y Pauchy

    2014-12-31

    We examine the nonlinear structure of gravitationally collapsed objects that form in our simulations of wavelike cold dark matter, described by the Schrödinger-Poisson (SP) equation with a particle mass ∼10(-22)  eV. A distinct gravitationally self-bound solitonic core is found at the center of every halo, with a profile quite different from cores modeled in the warm or self-interacting dark matter scenarios. Furthermore, we show that each solitonic core is surrounded by an extended halo composed of large fluctuating dark matter granules which modulate the halo density on a scale comparable to the diameter of the solitonic core. The scaling symmetry of the SP equation and the uncertainty principle tightly relate the core mass to the halo specific energy, which, in the context of cosmological structure formation, leads to a simple scaling between core mass (Mc) and halo mass (Mh), Mc∝a(-1/2)Mh(1/3), where a is the cosmic scale factor. We verify this scaling relation by (i) examining the internal structure of a statistical sample of virialized halos that form in our 3D cosmological simulations and by (ii) merging multiple solitons to create individual virialized objects. Sufficient simulation resolution is achieved by adaptive mesh refinement and graphic processing units acceleration. From this scaling relation, present dwarf satellite galaxies are predicted to have kiloparsec-sized cores and a minimum mass of ∼10(8)M⊙, capable of solving the small-scale controversies in the cold dark matter model. Moreover, galaxies of 2×10(12)M⊙ at z=8 should have massive solitonic cores of ∼2×10(9)M⊙ within ∼60  pc. Such cores can provide a favorable local environment for funneling the gas that leads to the prompt formation of early stellar spheroids and quasars.

  7. Understanding the core-halo relation of quantum wave dark matter from 3D simulations.

    PubMed

    Schive, Hsi-Yu; Liao, Ming-Hsuan; Woo, Tak-Pong; Wong, Shing-Kwong; Chiueh, Tzihong; Broadhurst, Tom; Hwang, W-Y Pauchy

    2014-12-31

    We examine the nonlinear structure of gravitationally collapsed objects that form in our simulations of wavelike cold dark matter, described by the Schrödinger-Poisson (SP) equation with a particle mass ∼10(-22)  eV. A distinct gravitationally self-bound solitonic core is found at the center of every halo, with a profile quite different from cores modeled in the warm or self-interacting dark matter scenarios. Furthermore, we show that each solitonic core is surrounded by an extended halo composed of large fluctuating dark matter granules which modulate the halo density on a scale comparable to the diameter of the solitonic core. The scaling symmetry of the SP equation and the uncertainty principle tightly relate the core mass to the halo specific energy, which, in the context of cosmological structure formation, leads to a simple scaling between core mass (Mc) and halo mass (Mh), Mc∝a(-1/2)Mh(1/3), where a is the cosmic scale factor. We verify this scaling relation by (i) examining the internal structure of a statistical sample of virialized halos that form in our 3D cosmological simulations and by (ii) merging multiple solitons to create individual virialized objects. Sufficient simulation resolution is achieved by adaptive mesh refinement and graphic processing units acceleration. From this scaling relation, present dwarf satellite galaxies are predicted to have kiloparsec-sized cores and a minimum mass of ∼10(8)M⊙, capable of solving the small-scale controversies in the cold dark matter model. Moreover, galaxies of 2×10(12)M⊙ at z=8 should have massive solitonic cores of ∼2×10(9)M⊙ within ∼60  pc. Such cores can provide a favorable local environment for funneling the gas that leads to the prompt formation of early stellar spheroids and quasars. PMID:25615301

  8. Automated 3D architecture reconstruction from photogrammetric structure-and-motion: A case study of the One Pilla pagoda, Hanoi, Vienam

    NASA Astrophysics Data System (ADS)

    To, T.; Nguyen, D.; Tran, G.

    2015-04-01

    Heritage system of Vietnam has decline because of poor-conventional condition. For sustainable development, it is required a firmly control, space planning organization, and reasonable investment. Moreover, in the field of Cultural Heritage, the use of automated photogrammetric systems, based on Structure from Motion techniques (SfM), is widely used. With the potential of high-resolution, low-cost, large field of view, easiness, rapidity and completeness, the derivation of 3D metric information from Structure-and- Motion images is receiving great attention. In addition, heritage objects in form of 3D physical models are recorded not only for documentation issues, but also for historical interpretation, restoration, cultural and educational purposes. The study suggests the archaeological documentation of the "One Pilla" pagoda placed in Hanoi capital, Vietnam. The data acquired through digital camera Cannon EOS 550D, CMOS APS-C sensor 22.3 x 14.9 mm. Camera calibration and orientation were carried out by VisualSFM, CMPMVS (Multi-View Reconstruction) and SURE (Photogrammetric Surface Reconstruction from Imagery) software. The final result represents a scaled 3D model of the One Pilla Pagoda and displayed different views in MeshLab software.

  9. Europeana and 3D

    NASA Astrophysics Data System (ADS)

    Pletinckx, D.

    2011-09-01

    The current 3D hype creates a lot of interest in 3D. People go to 3D movies, but are we ready to use 3D in our homes, in our offices, in our communication? Are we ready to deliver real 3D to a general public and use interactive 3D in a meaningful way to enjoy, learn, communicate? The CARARE project is realising this for the moment in the domain of monuments and archaeology, so that real 3D of archaeological sites and European monuments will be available to the general public by 2012. There are several aspects to this endeavour. First of all is the technical aspect of flawlessly delivering 3D content over all platforms and operating systems, without installing software. We have currently a working solution in PDF, but HTML5 will probably be the future. Secondly, there is still little knowledge on how to create 3D learning objects, 3D tourist information or 3D scholarly communication. We are still in a prototype phase when it comes to integrate 3D objects in physical or virtual museums. Nevertheless, Europeana has a tremendous potential as a multi-facetted virtual museum. Finally, 3D has a large potential to act as a hub of information, linking to related 2D imagery, texts, video, sound. We describe how to create such rich, explorable 3D objects that can be used intuitively by the generic Europeana user and what metadata is needed to support the semantic linking.

  10. Generation of fluoroscopic 3D images with a respiratory motion model based on an external surrogate signal.

    PubMed

    Hurwitz, Martina; Williams, Christopher L; Mishra, Pankaj; Rottmann, Joerg; Dhou, Salam; Wagar, Matthew; Mannarino, Edward G; Mak, Raymond H; Lewis, John H

    2015-01-21

    Respiratory motion during radiotherapy can cause uncertainties in definition of the target volume and in estimation of the dose delivered to the target and healthy tissue. In this paper, we generate volumetric images of the internal patient anatomy during treatment using only the motion of a surrogate signal. Pre-treatment four-dimensional CT imaging is used to create a patient-specific model correlating internal respiratory motion with the trajectory of an external surrogate placed on the chest. The performance of this model is assessed with digital and physical phantoms reproducing measured irregular patient breathing patterns. Ten patient breathing patterns are incorporated in a digital phantom. For each patient breathing pattern, the model is used to generate images over the course of thirty seconds. The tumor position predicted by the model is compared to ground truth information from the digital phantom. Over the ten patient breathing patterns, the average absolute error in the tumor centroid position predicted by the motion model is 1.4 mm. The corresponding error for one patient breathing pattern implemented in an anthropomorphic physical phantom was 0.6 mm. The global voxel intensity error was used to compare the full image to the ground truth and demonstrates good agreement between predicted and true images. The model also generates accurate predictions for breathing patterns with irregular phases or amplitudes.

  11. Hybrid 3-D rocket trajectory program. Part 1: Formulation and analysis. Part 2: Computer programming and user's instruction. [computerized simulation using three dimensional motion analysis

    NASA Technical Reports Server (NTRS)

    Huang, L. C. P.; Cook, R. A.

    1973-01-01

    Models utilizing various sub-sets of the six degrees of freedom are used in trajectory simulation. A 3-D model with only linear degrees of freedom is especially attractive, since the coefficients for the angular degrees of freedom are the most difficult to determine and the angular equations are the most time consuming for the computer to evaluate. A computer program is developed that uses three separate subsections to predict trajectories. A launch rail subsection is used until the rocket has left its launcher. The program then switches to a special 3-D section which computes motions in two linear and one angular degrees of freedom. When the rocket trims out, the program switches to the standard, three linear degrees of freedom model.

  12. A 3D analysis of fore- and hindlimb motion during locomotion: comparison of overground and ladder walking in rats.

    PubMed

    Garnier, Cyril; Falempin, Maurice; Canu, Marie-Hélène

    2008-01-10

    The locomotor pattern, generated by the central pattern generator, is under the dependence of descending and peripheral pathways. The afferent feedback from peripheral receptors allows the animal to correct for disturbances that occur during walking, while supraspinal structures are important for locomotion in demanding situations such as ladder walking. Such walking, by regards to the control needed for accuracy of movements, is now widely used for description of consequences of nervous system dysfunction on motor performance. It is important to have a good knowledge of the changes in kinematic parameters according to walking conditions, since it might reflect different neural mechanisms. The aim of this work was to perform a 3D kinematic analysis of both hind- and forelimb during overground and ladder walking, to study qualitative and quantitative locomotor characteristics in different modes of locomotion. The analysis was performed on 5 rats. Movements of the right hind- and forelimb were evaluated using a 3D optical analyser, and EMG of the soleus and tibialis anterior muscles was synchronously recorded. Results indicate that kinematic and electromyographic characteristics of locomotion are dependent on the type of support. Changes were more obvious for hindlimb than for forelimb. Velocity, stride length and tibialis anterior burst duration were lower on ladder than on runway. In addition, during ladder walking, a protraction was noticed, rats bring their feet more rostral at the end of the swing phase. All these changes constitute an adaptive strategy to allow a better tactile activity with forelimbs and to avoid foot misplacement. PMID:17764759

  13. Kinematic modeling the 2014 Mw6 South Napa, California, earthquake using near-fault strong-motion data and 3D Green's functions

    NASA Astrophysics Data System (ADS)

    Gallovic, F.; Imperatori, W.

    2015-12-01

    On 24 August 2014 an Mw 6.1 earthquake struck the Napa area in the north San Francisco Bay region. We perform slip inversion using method by Gallovič et al. (2015), employing low frequency data (0.05-0.5 Hz) recorded by 10 near-fault strong-motion stations and a 1D velocity model (GIL7). We reveal rupture propagating up-dip and unilaterally along the fault with dominant shallow asperity. While the fit of the data is good in terms of the first main pulses, the observed weaker secondary arrivals at some of the stations remain unexplained. We then perform forward simulation combining the revealed '1D' source model and detailed 3D USGS velocity model of the Bay region. While the 3D crustal model slightly improves the fit at stations located outside of major basin structures, it introduces strong spurious reverberations at stations inside the basins. These strong oscillations disappear when the 3D velocity model is smoothed. We also perform slip inversion using 3D Green's functions, obtaining a source model that effectively suppresses the oscillations, but also worsens the fit at stations outside the basins. Compared to the '1D' rupture model, the '3D' rupture model has longer rise times and lower peak slip rates, but it also contains more spurious features. Thus we conclude that the '1D' rupture model is more robust, suggesting that the 3D USGS velocity model for the Bay area should be improved in some of its parts. As a next step, based on the low-resolution slip models, we follow the approach of Ruiz (Ruiz et al., 2011) to build broadband kinematic source models to simulate deterministically ground motions up to 5Hz, including topography, intrinsic attenuation and random small-scale velocity heterogeneity. Calculations show an extremely complex wave field in comparison with 1D simulations. Finally, we check how our deterministic synthetics compare with those obtained using popular broadband hybrid techniques (e.g., Mai et al., 2010).

  14. A 3D magnetotelluric inversion model for the study of ore-forming related processes in the central Skellefte district

    NASA Astrophysics Data System (ADS)

    Garcia Juanatey, M. A.; Hübert, J.; Tryggvason, A.; Juhlin, C.; Pedersen, L. B.; Bauer, T. E.; Dehghannejad, M.

    2012-12-01

    Broadband MT data were acquired in the Skellefte district, an important mining area in northern Sweden, as part of the VINNOVA project "4D modeling of the Skellefte District". The project aims to provide a better understanding of the local and regional processes that took place in the past and, thus, provide a framework for new exploration strategies to target deeper deposits in the area. The new MT data, acquired in the central part of the district, consist of 36 stations along two parallel profiles that follow seismic reflection lines and potential field modeling studies in the area. The dimensionality and quality of the data set were carefully analyzed and 2D and 3D inversions were performed. 2D inversions provided a basis to compare with other MT surveys in the area and to some extent validate 3D inversion results. 3D inversion was deemed necessary given the complexity of the geological setting of the studied area. The algorithms used were the data space based REBOCC and WSINV3DMT methods. For the 2D inversion only the determinant of the impedance tensor was used, while for the 3D inversion all its elements were considered. Prior to 3D inversion, new error floors were calculated using individual 1D inversions of the off-diagonal components of the impedance tensor. The obtained models have an RMS value of ~2, and share the main regional features. A detailed comparison reveals the superiority of the 3D model, both in model structures and data fit. An interpretation of the 3D model is presented using also results from previous geophysical studies. The most interesting features in the model are conductors associated to prominent shear zones (from 1 to 12 km deep) and hydrothermally altered zones within the Skellefte Group rocks (between 250 and 6000 m depth). In addition, it is possible to identify faults associated to the transport of hydrothermal fluids that might be closely related to ore forming processes.

  15. Constraints on upper mantle rheology from modeling of plate motions with fully 3D visco-elasto-plastic lithosphere

    NASA Astrophysics Data System (ADS)

    Sobolev, S. V.; Popov, A.; Steinberger, B.

    2009-04-01

    The convection in deep Earth is linked to the surface through the heterogeneous and rheologically complex lithosphere and asthenosphere, which are usually strongly simplified in global geodynamic models. We use a newly developed 3D thermomechanical finite element numerical technique (Popov and Sobolev, PEPI 2008) to model a 300 km thick upper layer of the Earth in full 3D, coupled with the convecting mantle. The present day temperature distribution and crustal structure within the layer are taken from existing models. We also assume that the upper layer is composed from non-linear temperature- and stress-dependent visco-elastic rheology, corresponding to the dry or wet olivine (mantle) or naturally wet plagioclase (crust), combined with Mohr-Coulomb frictional plasticity. Plate boundaries are represented by the narrow zones of elasto-visco-plastic rheology with much lower frictional strength than within the plates. The mantle below the 300 km depth is modeled using Hager and O'Connell's mantle flow spectral modeling technique with present day density and viscosity distribution based on either interpretation of global seismic tomography or history of subduction. The upper layer and mantle modeling domains are coupled by iteratively achieved precise continuity of tractions and velocities at 300 km depth. Here we will show modeling results for the present day Earth structure focusing on the effect on the plate velocities of the frictional strength at plate boundaries, of mantle potential temperature and of rheology of the asthenosphere (dry versus wet). Modeling shows that deep convection generates plate tectonic-like velocity pattern only when effective friction at subduction plate boundaries becomes less than 0.1. Both magnitudes and directions of plate velocities are reproduced very well at friction in subduction zones around 0.005-0.05 and friction at other plate boundaries of 0.05-0.1. The best fit of the observed velocities is obtained assuming that

  16. Accuracy and precision of a custom camera-based system for 2D and 3D motion tracking during speech and nonspeech motor tasks

    PubMed Central

    Feng, Yongqiang; Max, Ludo

    2014-01-01

    Purpose Studying normal or disordered motor control requires accurate motion tracking of the effectors (e.g., orofacial structures). The cost of electromagnetic, optoelectronic, and ultrasound systems is prohibitive for many laboratories, and limits clinical applications. For external movements (lips, jaw), video-based systems may be a viable alternative, provided that they offer high temporal resolution and sub-millimeter accuracy. Method We examined the accuracy and precision of 2D and 3D data recorded with a system that combines consumer-grade digital cameras capturing 60, 120, or 240 frames per second (fps), retro-reflective markers, commercially-available computer software (APAS, Ariel Dynamics), and a custom calibration device. Results Overall mean error (RMSE) across tests was 0.15 mm for static tracking and 0.26 mm for dynamic tracking, with corresponding precision (SD) values of 0.11 and 0.19 mm, respectively. The effect of frame rate varied across conditions, but, generally, accuracy was reduced at 240 fps. The effect of marker size (3 vs. 6 mm diameter) was negligible at all frame rates for both 2D and 3D data. Conclusion Motion tracking with consumer-grade digital cameras and the APAS software can achieve sub-millimeter accuracy at frame rates that are appropriate for kinematic analyses of lip/jaw movements for both research and clinical purposes. PMID:24686484

  17. The birth of a dinosaur footprint: Subsurface 3D motion reconstruction and discrete element simulation reveal track ontogeny

    PubMed Central

    2014-01-01

    Locomotion over deformable substrates is a common occurrence in nature. Footprints represent sedimentary distortions that provide anatomical, functional, and behavioral insights into trackmaker biology. The interpretation of such evidence can be challenging, however, particularly for fossil tracks recovered at bedding planes below the originally exposed surface. Even in living animals, the complex dynamics that give rise to footprint morphology are obscured by both foot and sediment opacity, which conceals animal–substrate and substrate–substrate interactions. We used X-ray reconstruction of moving morphology (XROMM) to image and animate the hind limb skeleton of a chicken-like bird traversing a dry, granular material. Foot movement differed significantly from walking on solid ground; the longest toe penetrated to a depth of ∼5 cm, reaching an angle of 30° below horizontal before slipping backward on withdrawal. The 3D kinematic data were integrated into a validated substrate simulation using the discrete element method (DEM) to create a quantitative model of limb-induced substrate deformation. Simulation revealed that despite sediment collapse yielding poor quality tracks at the air–substrate interface, subsurface displacements maintain a high level of organization owing to grain–grain support. Splitting the substrate volume along “virtual bedding planes” exposed prints that more closely resembled the foot and could easily be mistaken for shallow tracks. DEM data elucidate how highly localized deformations associated with foot entry and exit generate specific features in the final tracks, a temporal sequence that we term “track ontogeny.” This combination of methodologies fosters a synthesis between the surface/layer-based perspective prevalent in paleontology and the particle/volume-based perspective essential for a mechanistic understanding of sediment redistribution during track formation. PMID:25489092

  18. The birth of a dinosaur footprint: subsurface 3D motion reconstruction and discrete element simulation reveal track ontogeny.

    PubMed

    Falkingham, Peter L; Gatesy, Stephen M

    2014-12-23

    Locomotion over deformable substrates is a common occurrence in nature. Footprints represent sedimentary distortions that provide anatomical, functional, and behavioral insights into trackmaker biology. The interpretation of such evidence can be challenging, however, particularly for fossil tracks recovered at bedding planes below the originally exposed surface. Even in living animals, the complex dynamics that give rise to footprint morphology are obscured by both foot and sediment opacity, which conceals animal-substrate and substrate-substrate interactions. We used X-ray reconstruction of moving morphology (XROMM) to image and animate the hind limb skeleton of a chicken-like bird traversing a dry, granular material. Foot movement differed significantly from walking on solid ground; the longest toe penetrated to a depth of ∼5 cm, reaching an angle of 30° below horizontal before slipping backward on withdrawal. The 3D kinematic data were integrated into a validated substrate simulation using the discrete element method (DEM) to create a quantitative model of limb-induced substrate deformation. Simulation revealed that despite sediment collapse yielding poor quality tracks at the air-substrate interface, subsurface displacements maintain a high level of organization owing to grain-grain support. Splitting the substrate volume along "virtual bedding planes" exposed prints that more closely resembled the foot and could easily be mistaken for shallow tracks. DEM data elucidate how highly localized deformations associated with foot entry and exit generate specific features in the final tracks, a temporal sequence that we term "track ontogeny." This combination of methodologies fosters a synthesis between the surface/layer-based perspective prevalent in paleontology and the particle/volume-based perspective essential for a mechanistic understanding of sediment redistribution during track formation.

  19. Multimodal visualization of 3D enhanced MRI and CT of acoustic schwannoma and related structures

    NASA Astrophysics Data System (ADS)

    Kucharski, Tomasz; Kujawinska, Malgorzata; Niemczyk, Kazimierz; Marchel, Andrzej

    2005-09-01

    According to the necessity of supporting vestibular schwannoma surgery, there is a demand to develop a convenient method of medical data visualization. The process of making choice of optimal operating access way has been uncomfortable for a surgeon so far, because there has been a necessity of analyzing two independent 3D images series (CT -bone tissues visible, MRI - soft tissues visible) in the region of ponto-cerebellar angle tumors. The authors propose a solution that will improve this process. The system used is equipped with stereoscopic helmet mounted display. It allows merged CT and MRI data representing tissues in the region of of ponto-cerebellar angle to be visualized in stereoscopic way. The process of data preparation for visualization includes: -automated segmentation algorithms, -different types of 3D images (CT, MRI) fusion. The authors focused on the development of novel algorithms for segmentation of vestibular schwannoma. It is important and difficult task due to different types of tumors and their inhomogeneous character dependent on growth models. The authors propose algorithms based on histogram spectrum and multimodal character of MRI imaging (T1 and T2 modes). However due to a variety of objects the library of algorithms with specific modifications matching to selected types of images is proposed. The applicability and functionality of the algorithms and library was proved on the series of data delivered by Warsaw Central Medical University Hospital.

  20. Robust patella motion tracking using intensity-based 2D-3D registration on dynamic bi-plane fluoroscopy: towards quantitative assessment in MPFL reconstruction surgery

    NASA Astrophysics Data System (ADS)

    Otake, Yoshito; Esnault, Matthieu; Grupp, Robert; Kosugi, Shinichi; Sato, Yoshinobu

    2016-03-01

    The determination of in vivo motion of multiple-bones using dynamic fluoroscopic images and computed tomography (CT) is useful for post-operative assessment of orthopaedic surgeries such as medial patellofemoral ligament reconstruction. We propose a robust method to measure the 3D motion of multiple rigid objects with high accuracy using a series of bi-plane fluoroscopic images and a multi-resolution, intensity-based, 2D-3D registration. A Covariance Matrix Adaptation Evolution Strategy (CMA-ES) optimizer was used with a gradient correlation similarity metric. Four approaches to register three rigid objects (femur, tibia-fibula and patella) were implemented: 1) an individual bone approach registering one bone at a time, each with optimization of a six degrees of freedom (6DOF) parameter, 2) a sequential approach registering one bone at a time but using the previous bone results as the background in DRR generation, 3) a simultaneous approach registering all the bones together (18DOF) and 4) a combination of the sequential and the simultaneous approaches. These approaches were compared in experiments using simulated images generated from the CT of a healthy volunteer and measured fluoroscopic images. Over the 120 simulated frames of motion, the simultaneous approach showed improved registration accuracy compared to the individual approach: with less than 0.68mm root-mean-square error (RMSE) for translation and less than 1.12° RMSE for rotation. A robustness evaluation was conducted with 45 trials of a randomly perturbed initialization showed that the sequential approach improved robustness significantly (74% success rate) compared to the individual bone approach (34% success) for patella registration (femur and tibia-fibula registration had a 100% success rate with each approach).

  1. Real-time prediction and gating of respiratory motion in 3D space using extended Kalman filters and Gaussian process regression network.

    PubMed

    Bukhari, W; Hong, S-M

    2016-03-01

    The prediction as well as the gating of respiratory motion have received much attention over the last two decades for reducing the targeting error of the radiation treatment beam due to respiratory motion. In this article, we present a real-time algorithm for predicting respiratory motion in 3D space and realizing a gating function without pre-specifying a particular phase of the patient's breathing cycle. The algorithm, named EKF-GPRN(+) , first employs an extended Kalman filter (EKF) independently along each coordinate to predict the respiratory motion and then uses a Gaussian process regression network (GPRN) to correct the prediction error of the EKF in 3D space. The GPRN is a nonparametric Bayesian algorithm for modeling input-dependent correlations between the output variables in multi-output regression. Inference in GPRN is intractable and we employ variational inference with mean field approximation to compute an approximate predictive mean and predictive covariance matrix. The approximate predictive mean is used to correct the prediction error of the EKF. The trace of the approximate predictive covariance matrix is utilized to capture the uncertainty in EKF-GPRN(+) prediction error and systematically identify breathing points with a higher probability of large prediction error in advance. This identification enables us to pause the treatment beam over such instances. EKF-GPRN(+) implements a gating function by using simple calculations based on the trace of the predictive covariance matrix. Extensive numerical experiments are performed based on a large database of 304 respiratory motion traces to evaluate EKF-GPRN(+) . The experimental results show that the EKF-GPRN(+) algorithm reduces the patient-wise prediction error to 38%, 40% and 40% in root-mean-square, compared to no prediction, at lookahead lengths of 192 ms, 384 ms and 576 ms, respectively. The EKF-GPRN(+) algorithm can further reduce the prediction error by employing the gating

  2. 3D and Education

    NASA Astrophysics Data System (ADS)

    Meulien Ohlmann, Odile

    2013-02-01

    Today the industry offers a chain of 3D products. Learning to "read" and to "create in 3D" becomes an issue of education of primary importance. 25 years professional experience in France, the United States and Germany, Odile Meulien set up a personal method of initiation to 3D creation that entails the spatial/temporal experience of the holographic visual. She will present some different tools and techniques used for this learning, their advantages and disadvantages, programs and issues of educational policies, constraints and expectations related to the development of new techniques for 3D imaging. Although the creation of display holograms is very much reduced compared to the creation of the 90ies, the holographic concept is spreading in all scientific, social, and artistic activities of our present time. She will also raise many questions: What means 3D? Is it communication? Is it perception? How the seeing and none seeing is interferes? What else has to be taken in consideration to communicate in 3D? How to handle the non visible relations of moving objects with subjects? Does this transform our model of exchange with others? What kind of interaction this has with our everyday life? Then come more practical questions: How to learn creating 3D visualization, to learn 3D grammar, 3D language, 3D thinking? What for? At what level? In which matter? for whom?

  3. 3D crustal structure and long-period ground motions from a M9.0 megathrust earthquake in the Pacific Northwest region

    USGS Publications Warehouse

    Olsen, K.B.; Stephenson, W.J.; Geisselmeyer, A.

    2008-01-01

    We have developed a community velocity model for the Pacific Northwest region from northern California to southern Canada and carried out the first 3D simulation of a Mw 9.0 megathrust earthquake rupturing along the Cascadia subduction zone using a parallel supercomputer. A long-period (<0.5 Hz) source model was designed by mapping the inversion results for the December 26, 2004 Sumatra–Andaman earthquake (Han et al., Science 313(5787):658–662, 2006) onto the Cascadia subduction zone. Representative peak ground velocities for the metropolitan centers of the region include 42 cm/s in the Seattle area and 8–20 cm/s in the Tacoma, Olympia, Vancouver, and Portland areas. Combined with an extended duration of the shaking up to 5 min, these long-period ground motions may inflict significant damage on the built environment, in particular on the highrises in downtown Seattle.

  4. From Monotonous Hop-and-Sink Swimming to Constant Gliding via Chaotic Motions in 3D: Is There Adaptive Behavior in Planktonic Micro-Crustaceans?

    NASA Astrophysics Data System (ADS)

    Strickler, J. R.

    2007-12-01

    Planktonic micro-crustaceans, such as Daphnia, Copepod, and Cyclops, swim in the 3D environment of water and feed on suspended material, mostly algae and bacteria. Their mechanisms for swimming differ; some use their swimming legs to produce one hop per second resulting in a speed of one body-length per second, while others scan water volumes with their mouthparts and glide through the water column at 1 to 10 body-lengths per second. However, our observations show that these speeds are modulated. The question to be discussed will be whether or not these modulations show adaptive behavior taking food quality and food abundance as criteria for the swimming performances. Additionally, we investigated the degree these temporal motion patterns are dependant on the sizes, and therefore, on the Reynolds number of the animals.

  5. A fusion of actual motion pictures of scenery and the 3D image constructed from GPS and gyro data and map database

    NASA Astrophysics Data System (ADS)

    Sumiya, Yasuto; Shirakawa, Masayuki; Ozeki, Shigeru

    2003-09-01

    EVS (Enhanced Vision System) and SVS (Synthesized Vision System) are known as effective tools for pilots to improve situation awareness. ENRI has developed an integrated EVS/SVS experimenta system to study the potential of both EVS and SVS in Japan. This paper presents the results of ground and flight experiments of the experimental system. It produces the three-dimensional (3D)artificial images. They are synthesized with the position data of GPS,the attitude data obtained by the gyro sensor and the digital map database,which is supplied from GSI (the Geographical Survey Institute)in Japan. The produced image is compared with the actual motion picture of scenery through HUD (Head Up Display) or a computer screen.The image uses the grid lines' expression for the simultaneous recognition of both the 3D image and the real picture. The picture is obtained from two sensors, that is, a visible ray co or sensor and an infrared sensor. These two kinds of the picture are recorded into respective video recorder. The image recording subsystems are equipped to the ENRI"s experimental aircraft with additional sensors for position and attitude data. The GPS receiver and gyro unit are chosen for additional sensors. Two methods are examined in the simulation of the fusion system.One is a method that the 3D image is overlapped with the picture of the time to acquire the image from video recorders and display it on a computer screen. The other is a method that the observer watches the image through HUD,where both the image and the picture are overlapped.This paper also discusses the difference of two methods for fusion systems and shows the results

  6. Estimating 3D L5/S1 moments and ground reaction forces during trunk bending using a full-body ambulatory inertial motion capture system.

    PubMed

    Faber, G S; Chang, C C; Kingma, I; Dennerlein, J T; van Dieën, J H

    2016-04-11

    Inertial motion capture (IMC) systems have become increasingly popular for ambulatory movement analysis. However, few studies have attempted to use these measurement techniques to estimate kinetic variables, such as joint moments and ground reaction forces (GRFs). Therefore, we investigated the performance of a full-body ambulatory IMC system in estimating 3D L5/S1 moments and GRFs during symmetric, asymmetric and fast trunk bending, performed by nine male participants. Using an ambulatory IMC system (Xsens/MVN), L5/S1 moments were estimated based on the upper-body segment kinematics using a top-down inverse dynamics analysis, and GRFs were estimated based on full-body segment accelerations. As a reference, a laboratory measurement system was utilized: GRFs were measured with Kistler force plates (FPs), and L5/S1 moments were calculated using a bottom-up inverse dynamics model based on FP data and lower-body kinematics measured with an optical motion capture system (OMC). Correspondence between the OMC+FP and IMC systems was quantified by calculating root-mean-square errors (RMSerrors) of moment/force time series and the interclass correlation (ICC) of the absolute peak moments/forces. Averaged over subjects, L5/S1 moment RMSerrors remained below 10Nm (about 5% of the peak extension moment) and 3D GRF RMSerrors remained below 20N (about 2% of the peak vertical force). ICCs were high for the peak L5/S1 extension moment (0.971) and vertical GRF (0.998). Due to lower amplitudes, smaller ICCs were found for the peak asymmetric L5/S1 moments (0.690-0.781) and horizontal GRFs (0.559-0.948). In conclusion, close correspondence was found between the ambulatory IMC-based and laboratory-based estimates of back load. PMID:26795123

  7. Estimating 3D L5/S1 moments and ground reaction forces during trunk bending using a full-body ambulatory inertial motion capture system.

    PubMed

    Faber, G S; Chang, C C; Kingma, I; Dennerlein, J T; van Dieën, J H

    2016-04-11

    Inertial motion capture (IMC) systems have become increasingly popular for ambulatory movement analysis. However, few studies have attempted to use these measurement techniques to estimate kinetic variables, such as joint moments and ground reaction forces (GRFs). Therefore, we investigated the performance of a full-body ambulatory IMC system in estimating 3D L5/S1 moments and GRFs during symmetric, asymmetric and fast trunk bending, performed by nine male participants. Using an ambulatory IMC system (Xsens/MVN), L5/S1 moments were estimated based on the upper-body segment kinematics using a top-down inverse dynamics analysis, and GRFs were estimated based on full-body segment accelerations. As a reference, a laboratory measurement system was utilized: GRFs were measured with Kistler force plates (FPs), and L5/S1 moments were calculated using a bottom-up inverse dynamics model based on FP data and lower-body kinematics measured with an optical motion capture system (OMC). Correspondence between the OMC+FP and IMC systems was quantified by calculating root-mean-square errors (RMSerrors) of moment/force time series and the interclass correlation (ICC) of the absolute peak moments/forces. Averaged over subjects, L5/S1 moment RMSerrors remained below 10Nm (about 5% of the peak extension moment) and 3D GRF RMSerrors remained below 20N (about 2% of the peak vertical force). ICCs were high for the peak L5/S1 extension moment (0.971) and vertical GRF (0.998). Due to lower amplitudes, smaller ICCs were found for the peak asymmetric L5/S1 moments (0.690-0.781) and horizontal GRFs (0.559-0.948). In conclusion, close correspondence was found between the ambulatory IMC-based and laboratory-based estimates of back load.

  8. Real-Time Motion Capture Toolbox (RTMocap): an open-source code for recording 3-D motion kinematics to study action-effect anticipations during motor and social interactions.

    PubMed

    Lewkowicz, Daniel; Delevoye-Turrell, Yvonne

    2016-03-01

    We present here a toolbox for the real-time motion capture of biological movements that runs in the cross-platform MATLAB environment (The MathWorks, Inc., Natick, MA). It provides instantaneous processing of the 3-D movement coordinates of up to 20 markers at a single instant. Available functions include (1) the setting of reference positions, areas, and trajectories of interest; (2) recording of the 3-D coordinates for each marker over the trial duration; and (3) the detection of events to use as triggers for external reinforcers (e.g., lights, sounds, or odors). Through fast online communication between the hardware controller and RTMocap, automatic trial selection is possible by means of either a preset or an adaptive criterion. Rapid preprocessing of signals is also provided, which includes artifact rejection, filtering, spline interpolation, and averaging. A key example is detailed, and three typical variations are developed (1) to provide a clear understanding of the importance of real-time control for 3-D motion in cognitive sciences and (2) to present users with simple lines of code that can be used as starting points for customizing experiments using the simple MATLAB syntax. RTMocap is freely available (http://sites.google.com/site/RTMocap/) under the GNU public license for noncommercial use and open-source development, together with sample data and extensive documentation.

  9. Real-Time Motion Capture Toolbox (RTMocap): an open-source code for recording 3-D motion kinematics to study action-effect anticipations during motor and social interactions.

    PubMed

    Lewkowicz, Daniel; Delevoye-Turrell, Yvonne

    2016-03-01

    We present here a toolbox for the real-time motion capture of biological movements that runs in the cross-platform MATLAB environment (The MathWorks, Inc., Natick, MA). It provides instantaneous processing of the 3-D movement coordinates of up to 20 markers at a single instant. Available functions include (1) the setting of reference positions, areas, and trajectories of interest; (2) recording of the 3-D coordinates for each marker over the trial duration; and (3) the detection of events to use as triggers for external reinforcers (e.g., lights, sounds, or odors). Through fast online communication between the hardware controller and RTMocap, automatic trial selection is possible by means of either a preset or an adaptive criterion. Rapid preprocessing of signals is also provided, which includes artifact rejection, filtering, spline interpolation, and averaging. A key example is detailed, and three typical variations are developed (1) to provide a clear understanding of the importance of real-time control for 3-D motion in cognitive sciences and (2) to present users with simple lines of code that can be used as starting points for customizing experiments using the simple MATLAB syntax. RTMocap is freely available (http://sites.google.com/site/RTMocap/) under the GNU public license for noncommercial use and open-source development, together with sample data and extensive documentation. PMID:25805426

  10. Relation Between the 3D-Geometry of the Coronal Wave and Associated CME During the 26 April 2008 Event

    NASA Technical Reports Server (NTRS)

    Temmer, M.; Veronig, A. M.; Gopalswamy, N.; Yashiro, S.

    2011-01-01

    We study the kinematical characteristics and 3D geometry of a large-scale coronal wave that occurred in association with the 26 April 2008 flare-CME event. The wave was observed with the EUVI instruments aboard both STEREO spacecraft (STEREO-A and STEREO-B) with a mean speed of approx 240 km/s. The wave is more pronounced in the eastern propagation direction, and is thus, better observable in STEREO-B images. From STEREO-B observations we derive two separate initiation centers for the wave, and their locations fit with the coronal dimming regions. Assuming a simple geometry of the wave we reconstruct its 3D nature from combined STEREO-A and STEREO-B observations. We find that the wave structure is asymmetric with an inclination toward East. The associated CME has a deprojected speed of approx 750 +/- 50 km/s, and it shows a non-radial outward motion toward the East with respect to the underlying source region location. Applying the forward fitting model developed by Thernisien, Howard, and Vourlidas we derive the CME flux rope position on the solar surface to be close to the dimming regions. We conclude that the expanding flanks of the CME most likely drive and shape the coronal wave.

  11. Mapping motion from 4D-MRI to 3D-CT for use in 4D dose calculations: A technical feasibility study

    SciTech Connect

    Boye, Dirk; Lomax, Tony; Knopf, Antje

    2013-06-15

    Purpose: Target sites affected by organ motion require a time resolved (4D) dose calculation. Typical 4D dose calculations use 4D-CT as a basis. Unfortunately, 4D-CT images have the disadvantage of being a 'snap-shot' of the motion during acquisition and of assuming regularity of breathing. In addition, 4D-CT acquisitions involve a substantial additional dose burden to the patient making many, repeated 4D-CT acquisitions undesirable. Here the authors test the feasibility of an alternative approach to generate patient specific 4D-CT data sets. Methods: In this approach motion information is extracted from 4D-MRI. Simulated 4D-CT data sets [which the authors call 4D-CT(MRI)] are created by warping extracted deformation fields to a static 3D-CT data set. The employment of 4D-MRI sequences for this has the advantage that no assumptions on breathing regularity are made, irregularities in breathing can be studied and, if necessary, many repeat imaging studies (and consequently simulated 4D-CT data sets) can be performed on patients and/or volunteers. The accuracy of 4D-CT(MRI)s has been validated by 4D proton dose calculations. Our 4D dose algorithm takes into account displacements as well as deformations on the originating 4D-CT/4D-CT(MRI) by calculating the dose of each pencil beam based on an individual time stamp of when that pencil beam is applied. According to corresponding displacement and density-variation-maps the position and the water equivalent range of the dose grid points is adjusted at each time instance. Results: 4D dose distributions, using 4D-CT(MRI) data sets as input were compared to results based on a reference conventional 4D-CT data set capturing similar motion characteristics. Almost identical 4D dose distributions could be achieved, even though scanned proton beams are very sensitive to small differences in the patient geometry. In addition, 4D dose calculations have been performed on the same patient, but using 4D-CT(MRI) data sets based on

  12. 3D Imaging.

    ERIC Educational Resources Information Center

    Hastings, S. K.

    2002-01-01

    Discusses 3 D imaging as it relates to digital representations in virtual library collections. Highlights include X-ray computed tomography (X-ray CT); the National Science Foundation (NSF) Digital Library Initiatives; output peripherals; image retrieval systems, including metadata; and applications of 3 D imaging for libraries and museums. (LRW)

  13. It's, Like, Relative Motion at the Mall

    NASA Astrophysics Data System (ADS)

    Robinett, R. W.

    2003-03-01

    Almost all introductory textbooks, both algebra- and calculus-based, include sections on relative motion and relative velocity, in both one and two dimensions. The most popular examples in discussions of 2-D relative velocity in such texts seem to be the motion of airplanes/blimps flying in the presence of wind or the conceptually identical cases of boats/rafts piloted across rivers/streams, including the effects of currents. These and similar cases are rather removed from the everyday experience of some students, and the use of simple lecture demonstrations to illustrate these concepts can be quite useful. For example, the motion of a simple toy "wind-up" car moving at constant speed across a horizontal tabletop, with a plastic sheet underneath providing the "moving frame of reference," can illustrate many aspects of such problems, including the need to "point" the plane/boat in an appropriate direction, just as illustrated in many textbook figures. On the other hand, it is also useful if students can directly experience concepts for themselves, especially in a kinesthetic manner, but there are seemingly far fewer human-sized lecture demonstrations on this topic. In this paper, we will point out one such example which might well be just a short drive away.

  14. Ultrastructure Organization of Human Trabeculae Assessed by 3D sSAXS and Relation to Bone Microarchitecture

    PubMed Central

    Guizar-Sicairos, Manuel; Gschwend, Oliver; Hangartner, Peter; Bunk, Oliver; Müller, Ralph; Schneider, Philipp

    2016-01-01

    Although the organization of bone ultrastructure, i.e. the orientation and arrangement of the mineralized collagen fibrils, has been in the focus of research for many years for cortical bone, and many models on the osteonal arrangement have been proposed, limited attention has been paid to trabecular bone ultrastructure. This is surprising because trabeculae play a crucial role for the mechanical strength of several bone sites, including the vertebrae and the femoral head. On this account, we first validated a recently developed method (3D sSAXS or 3D scanning small-angle X-ray scattering) for investigating bone ultrastructure in a quantitative and spatially resolved way, using conventional linearly polarized light microscopy as a gold standard. While both methods are used to analyze thin tissue sections, in contrast to polarized light microscopy, 3D sSAXS has the important advantage that it provides 3D information on the orientation and arrangement of bone ultrastructure. In this first study of its kind, we used 3D sSAXS to investigate the ultrastructural organization of 22 vertebral trabeculae of different alignment, types and sizes, obtained from 4 subjects of different ages. Maps of ultrastructure orientation and arrangement of the trabeculae were retrieved by stacking information from consecutive 20-μm-thick bone sections. The organization of the ultrastructure was analyzed in relation to trabecular microarchitecture obtained from computed tomography and to relevant parameters such as distance to trabecular surface, local curvature or local bone mineralization. We found that (i) ultrastructure organization is similar for all investigated trabeculae independent of their particular characteristics, (ii) bone ultrastructure exhibiting a high degree of orientation was arranged in domains, (iii) highly oriented ultrastructural areas were located closer to the bone surface, (iv) the ultrastructure of the human trabecular bone specimens followed the

  15. Ultrastructure Organization of Human Trabeculae Assessed by 3D sSAXS and Relation to Bone Microarchitecture.

    PubMed

    Georgiadis, Marios; Guizar-Sicairos, Manuel; Gschwend, Oliver; Hangartner, Peter; Bunk, Oliver; Müller, Ralph; Schneider, Philipp

    2016-01-01

    Although the organization of bone ultrastructure, i.e. the orientation and arrangement of the mineralized collagen fibrils, has been in the focus of research for many years for cortical bone, and many models on the osteonal arrangement have been proposed, limited attention has been paid to trabecular bone ultrastructure. This is surprising because trabeculae play a crucial role for the mechanical strength of several bone sites, including the vertebrae and the femoral head. On this account, we first validated a recently developed method (3D sSAXS or 3D scanning small-angle X-ray scattering) for investigating bone ultrastructure in a quantitative and spatially resolved way, using conventional linearly polarized light microscopy as a gold standard. While both methods are used to analyze thin tissue sections, in contrast to polarized light microscopy, 3D sSAXS has the important advantage that it provides 3D information on the orientation and arrangement of bone ultrastructure. In this first study of its kind, we used 3D sSAXS to investigate the ultrastructural organization of 22 vertebral trabeculae of different alignment, types and sizes, obtained from 4 subjects of different ages. Maps of ultrastructure orientation and arrangement of the trabeculae were retrieved by stacking information from consecutive 20-μm-thick bone sections. The organization of the ultrastructure was analyzed in relation to trabecular microarchitecture obtained from computed tomography and to relevant parameters such as distance to trabecular surface, local curvature or local bone mineralization. We found that (i) ultrastructure organization is similar for all investigated trabeculae independent of their particular characteristics, (ii) bone ultrastructure exhibiting a high degree of orientation was arranged in domains, (iii) highly oriented ultrastructural areas were located closer to the bone surface, (iv) the ultrastructure of the human trabecular bone specimens followed the

  16. Simulating Navigation with Virtual 3d Geovisualizations - a Focus on Memory Related Factors

    NASA Astrophysics Data System (ADS)

    Lokka, I.; Çöltekin, A.

    2016-06-01

    The use of virtual environments (VE) for navigation-related studies, such as spatial cognition and path retrieval has been widely adopted in cognitive psychology and related fields. What motivates the use of VEs for such studies is that, as opposed to real-world, we can control for the confounding variables in simulated VEs. When simulating a geographic environment as a virtual world with the intention to train navigational memory in humans, an effective and efficient visual design is important to facilitate the amount of recall. However, it is not yet clear what amount of information should be included in such visual designs intended to facilitate remembering: there can be too little or too much of it. Besides the amount of information or level of detail, the types of visual features (`elements' in a visual scene) that should be included in the representations to create memorable scenes and paths must be defined. We analyzed the literature in cognitive psychology, geovisualization and information visualization, and identified the key factors for studying and evaluating geovisualization designs for their function to support and strengthen human navigational memory. The key factors we identified are: i) the individual abilities and age of the users, ii) the level of realism (LOR) included in the representations and iii) the context in which the navigation is performed, thus specific tasks within a case scenario. Here we present a concise literature review and our conceptual development for follow-up experiments.

  17. Event-related potentials in response to 3-D auditory stimuli.

    PubMed

    Fuchigami, Tatsuo; Okubo, Osami; Fujita, Yukihiko; Kohira, Ryutaro; Arakawa, Chikako; Endo, Ayumi; Haruyama, Wakako; Imai, Yuki; Mugishima, Hideo

    2009-09-01

    To evaluate auditory spatial cognitive function, age correlations for event-related potentials (ERPs) in response to auditory stimuli with a Doppler effect were studied in normal children. A sound with a Doppler effect is perceived as a moving audio image. A total of 99 normal subjects (age range, 4-21 years) were tested. In the task-relevant oddball paradigm, P300 and key-press reaction time were elicited using auditory stimuli (1000 Hz fixed and enlarged tones with a Doppler effect). From the age of 4 years, the P300 latency for the enlarged tone with a Doppler effect shortened more rapidly with age than did the P300 latency for tone-pips, and the latencies for the different conditions became similar towards the late teens. The P300 of auditory stimuli with a Doppler effect may be used to evaluate auditory spatial cognitive function in children.

  18. Taming supersymmetric defects in 3d-3d correspondence

    NASA Astrophysics Data System (ADS)

    Gang, Dongmin; Kim, Nakwoo; Romo, Mauricio; Yamazaki, Masahito

    2016-07-01

    We study knots in 3d Chern-Simons theory with complex gauge group {SL}(N,{{C}}), in the context of its relation with 3d { N }=2 theory (the so-called 3d-3d correspondence). The defect has either co-dimension 2 or co-dimension 4 inside the 6d (2,0) theory, which is compactified on a 3-manifold \\hat{M}. We identify such defects in various corners of the 3d-3d correspondence, namely in 3d {SL}(N,{{C}}) CS theory, in 3d { N }=2 theory, in 5d { N }=2 super Yang-Mills theory, and in the M-theory holographic dual. We can make quantitative checks of the 3d-3d correspondence by computing partition functions at each of these theories. This Letter is a companion to a longer paper [1], which contains more details and more results.

  19. Haptic perception of force magnitude and its relation to postural arm dynamics in 3D.

    PubMed

    van Beek, Femke E; Bergmann Tiest, Wouter M; Mugge, Winfred; Kappers, Astrid M L

    2015-12-08

    In a previous study, we found the perception of force magnitude to be anisotropic in the horizontal plane. In the current study, we investigated this anisotropy in three dimensional space. In addition, we tested our previous hypothesis that the perceptual anisotropy was directly related to anisotropies in arm dynamics. In experiment 1, static force magnitude perception was studied using a free magnitude estimation paradigm. This experiment revealed a significant and consistent anisotropy in force magnitude perception, with forces exerted perpendicular to the line between hand and shoulder being perceived as 50% larger than forces exerted along this line. In experiment 2, postural arm dynamics were measured using stochastic position perturbations exerted by a haptic device and quantified through system identification. By fitting a mass-damper-spring model to the data, the stiffness, damping and inertia parameters could be characterized in all the directions in which perception was also measured. These results show that none of the arm dynamics parameters were oriented either exactly perpendicular or parallel to the perceptual anisotropy. This means that endpoint stiffness, damping or inertia alone cannot explain the consistent anisotropy in force magnitude perception.

  20. Lifetime of inner-shell hole states of Ar (2p) and Kr (3d) using equation-of-motion coupled cluster method

    SciTech Connect

    Ghosh, Aryya; Vaval, Nayana; Pal, Sourav

    2015-07-14

    Auger decay is an efficient ultrafast relaxation process of core-shell or inner-shell excited atom or molecule. Generally, it occurs in femto-second or even atto-second time domain. Direct measurement of lifetimes of Auger process of single ionized and double ionized inner-shell state of an atom or molecule is an extremely difficult task. In this paper, we have applied the highly correlated complex absorbing potential-equation-of-motion coupled cluster (CAP-EOMCC) approach which is a combination of CAP and EOMCC approach to calculate the lifetime of the states arising from 2p inner-shell ionization of an Ar atom and 3d inner-shell ionization of Kr atom. We have also calculated the lifetime of Ar{sup 2+}(2p{sup −1}3p{sup −1}) {sup 1}D, Ar{sup 2+}(2p{sup −1}3p{sup −1}) {sup 1}S, and Ar{sup 2+}(2p{sup −1}3s{sup −1}) {sup 1}P double ionized states. The predicted results are compared with the other theoretical results as well as experimental results available in the literature.

  1. The Stagger-grid: A grid of 3D stellar atmosphere models. III. The relation to mixing length convection theory

    NASA Astrophysics Data System (ADS)

    Magic, Z.; Weiss, A.; Asplund, M.

    2015-01-01

    Aims: We investigate the relation between 1D atmosphere models that rely on the mixing length theory and models based on full 3D radiative hydrodynamic (RHD) calculations to describe convection in the envelopes of late-type stars. Methods: The adiabatic entropy value of the deep convection zone, sbot, and the entropy jump, Δs, determined from the 3D RHD models, were matched with the mixing length parameter, αMLT, from 1D hydrostatic atmosphere models with identical microphysics (opacities and equation-of-state). We also derived the mass mixing length parameter, αm, and the vertical correlation length of the vertical velocity, C[vz,vz], directly from the 3D hydrodynamical simulations of stellar subsurface convection. Results: The calibrated mixing length parameter for the Sun is α๏MLT (Sbot) = 1.98. . For different stellar parameters, αMLT varies systematically in the range of 1.7 - 2.4. In particular, αMLT decreases towards higher effective temperature, lower surface gravity and higher metallicity. We find equivalent results for α๏MLT (ΔS). In addition, we find a tight correlation between the mixing length parameter and the inverse entropy jump. We derive an analytical expression from the hydrodynamic mean-field equations that motivates the relation to the mass mixing length parameter, αm, and find that it qualitatively shows a similar variation with stellar parameter (between 1.6 and 2.4) with the solar value of α๏m = 1.83.. The vertical correlation length scaled with the pressure scale height yields 1.71 for the Sun, but only displays a small systematic variation with stellar parameters, the correlation length slightly increases with Teff. Conclusions: We derive mixing length parameters for various stellar parameters that can be used to replace a constant value. Within any convective envelope, αm and related quantities vary strongly. Our results will help to replace a constant αMLT. Appendices are available in electronic form at http

  2. Rotating rigid motion in general relativity

    SciTech Connect

    Mason, D.P.; Pooe, C.A.

    1987-11-01

    Kinematic and dynamic expressions are derived for the Lie derivative of vorticity along a particle world line in a rigid motion. It is found that the evolution of vorticity in a rigid motion is governed by the electric part of the Weyl tensor. Necessary and sufficient kinematic and dynamic conditions are established for a rotating rigid motion to be isometric.

  3. Rotating columns: Relating structure-from-motion, accretion/deletion, and figure/ground

    PubMed Central

    Froyen, Vicky; Feldman, Jacob; Singh, Manish

    2013-01-01

    We present a novel phenomenon involving an interaction between accretion deletion, figure-ground interpretation, and structure-from-motion. Our displays contain alternating light and dark vertical regions in which random-dot textures moved horizontally at constant speed but in opposite directions in alternating regions. This motion is consistent with all the light regions in front, with the dark regions completing amodally into a single large surface moving in the background, or vice versa. Surprisingly, the regions that are perceived as figural are also perceived as 3-D volumes rotating in depth (like rotating columns)—despite the fact that dot motion is not consistent with 3-D rotation. In a series of experiments, we found we could manipulate which set of regions is perceived as rotating volumes simply by varying known geometric cues to figure ground, including convexity, parallelism, symmetry, and relative area. Subjects indicated which colored regions they perceived as rotating. For our displays we found convexity to be a stronger cue than either symmetry or parallelism. We furthermore found a smooth monotonic decay of the proportion by which subjects perceive symmetric regions as figural, as a function of their relative area. Our results reveal an intriguing new interaction between accretion-deletion, figure-ground, and 3-D motion that is not captured by existing models. They also provide an effective tool for measuring figure-ground perception. PMID:23946432

  4. Rotating columns: relating structure-from-motion, accretion/deletion, and figure/ground.

    PubMed

    Froyen, Vicky; Feldman, Jacob; Singh, Manish

    2013-08-14

    We present a novel phenomenon involving an interaction between accretion deletion, figure-ground interpretation, and structure-from-motion. Our displays contain alternating light and dark vertical regions in which random-dot textures moved horizontally at constant speed but in opposite directions in alternating regions. This motion is consistent with all the light regions in front, with the dark regions completing amodally into a single large surface moving in the background, or vice versa. Surprisingly, the regions that are perceived as figural are also perceived as 3-D volumes rotating in depth (like rotating columns)-despite the fact that dot motion is not consistent with 3-D rotation. In a series of experiments, we found we could manipulate which set of regions is perceived as rotating volumes simply by varying known geometric cues to figure ground, including convexity, parallelism, symmetry, and relative area. Subjects indicated which colored regions they perceived as rotating. For our displays we found convexity to be a stronger cue than either symmetry or parallelism. We furthermore found a smooth monotonic decay of the proportion by which subjects perceive symmetric regions as figural, as a function of their relative area. Our results reveal an intriguing new interaction between accretion-deletion, figure-ground, and 3-D motion that is not captured by existing models. They also provide an effective tool for measuring figure-ground perception.

  5. Development of 3D multimedia with advanced computer animation tools for outreach activities related to Meteor Science and Meteoritics

    NASA Astrophysics Data System (ADS)

    Madiedo, J. M.

    2012-09-01

    Documentaries related to Astronomy and Planetary Sciences are a common and very attractive way to promote the interest of the public in these areas. These educational tools can get benefit from new advanced computer animation software and 3D technologies, as these allow making these documentaries even more attractive. However, special care must be taken in order to guarantee that the information contained in them is serious and objective. In this sense, an additional value is given when the footage is produced by the own researchers. With this aim, a new documentary produced and directed by Prof. Madiedo has been developed. The documentary, which has been entirely developed by means of advanced computer animation tools, is dedicated to several aspects of Meteor Science and Meteoritics. The main features of this outreach and education initiative are exposed here.

  6. Relative stability of normal vs. inverse spinel for 3d transition metal oxides as lithium intercalation cathodes.

    PubMed

    Bhattacharya, Jishnu; Wolverton, C

    2013-05-01

    Spinel oxides represent an important class of cathode materials for Li-ion batteries. Two major variants of the spinel crystal structure are normal and inverse. The relative stability of normal and inverse ordering at different stages of lithiation has important consequences in lithium diffusivity, voltage, capacity retention and battery life. In this paper, we investigate the relative structural stability of normal and inverse structures of the 3d transition metal oxide spinels with first-principles DFT calculations. We have considered ternary spinel oxides LixM2O4 with M = Ti, V, Cr, Mn, Fe, Co and Ni in both lithiated (x = 1) and delithiated (x = 0) conditions. We find that for all lithiated spinels, the normal structure is preferred regardless of the metal. We observe that the normal structure for all these oxides has a lower size mismatch between octahedral cations compared to the inverse structure. With delithiation, many of the oxides undergo a change in stability with vanadium in particular, showing a tendency to occupy tetrahedral sites. We find that in the delithiated oxide, only vanadium ions can access a +5 oxidation state which prefers tetrahedral coordination. We have also calculated the average voltage of lithiation for these spinels. The calculated voltages agree well with the previously measured and calculated values, wherever available. For the yet to be characterized spinels, our calculation provides voltage values which can motivate further experimental attention. Lastly, we observe that all the normal spinel oxides of the 3d transition metal series have a driving force for a transformation to the non-spinel structure upon delithiation.

  7. Caribbean tectonics and relative plate motions

    NASA Technical Reports Server (NTRS)

    Burke, K.; Dewey, J. F.; Cooper, C.; Mann, P.; Pindell, J. L.

    1984-01-01

    During the last century, three different ways of interpreting the tectonic evolution of the Gulf of Mexico and the Caribbean have been proposed, taking into account the Bailey Willis School of a permanent pre-Jurassic deep sea basin, the Edward Suess School of a subsided continental terrain, and the Alfred Wegener School of continental separation. The present investigation is concerned with an outline of an interpretation which follows that of Pindell and Dewey (1982). An attempt is made to point out ways in which the advanced hypotheses can be tested. The fit of Africa, North America, and South America is considered along with aspects of relative motion between North and South America since the early Jurasic. Attention is given to a framework for reconstructing Caribbean plate evolution, the evolution of the Caribbean, the plate boundary zones of the northern and southern Caribbean, and the active deformation of the Caribbean plate.

  8. Gravitation in 3D Spacetime

    NASA Astrophysics Data System (ADS)

    Laubenstein, John; Cockream, Kandi

    2009-05-01

    3D spacetime was developed by the IWPD Scale Metrics (SM) team using a coordinate system that translates n dimensions to n-1. 4-vectors are expressed in 3D along with a scaling factor representing time. Time is not orthogonal to the three spatial dimensions, but rather in alignment with an object's axis-of-motion. We have defined this effect as the object's ``orientation'' (X). The SM orientation (X) is equivalent to the orientation of the 4-velocity vector positioned tangent to its worldline, where X-1=θ+1 and θ is the angle of the 4-vector relative to the axis-of -motion. Both 4-vectors and SM appear to represent valid conceptualizations of the relationship between space and time. Why entertain SM? Scale Metrics gravity is quantized and may suggest a path for the full unification of gravitation with quantum theory. SM has been tested against current observation and is in agreement with the age of the universe, suggests a physical relationship between dark energy and dark matter, is in agreement with the accelerating expansion rate of the universe, contributes to the understanding of the fine-structure constant and provides a physical explanation of relativistic effects.

  9. The Effect of 3D-Modeling Training on Students' Spatial Reasoning Relative to Gender and Grade

    ERIC Educational Resources Information Center

    Šafhalter, Andrej; Vukman, Karin Bakracevic; Glodež, Srecko

    2016-01-01

    The aim of this research was to establish whether gender and age have an impact on spatial reasoning and its development through the use of 3D modeling. The study was conducted on a sample of 196 children from sixth to ninth grade, of whom 95 represented the experimental group and 101 the control group. The experimental group received 3D modeling…

  10. A generalized Brownian motion model for turbulent relative particle dispersion

    NASA Astrophysics Data System (ADS)

    Shivamoggi, B. K.

    2016-08-01

    There is speculation that the difficulty in obtaining an extended range with Richardson-Obukhov scaling in both laboratory experiments and numerical simulations is due to the finiteness of the flow Reynolds number Re in these situations. In this paper, a generalized Brownian motion model has been applied to describe the relative particle dispersion problem in more realistic turbulent flows and to shed some light on this issue. The fluctuating pressure forces acting on a fluid particle are taken to be a colored noise and follow a stationary process and are described by the Uhlenbeck-Ornstein model while it appears plausible to take their correlation time to have a power-law dependence on Re, thus introducing a bridge between the Lagrangian quantities and the Eulerian parameters for this problem. This ansatz is in qualitative agreement with the possibility of a connection speculated earlier by Corrsin [26] between the white-noise representation for the fluctuating pressure forces and the large-Re assumption in the Kolmogorov [4] theory for the 3D fully developed turbulence (FDT) as well as a similar argument of Monin and Yaglom [23] and a similar result of Sawford [13] and Borgas and Sawford [24]. It also provides an insight into the result that the Richardson-Obukhov scaling holds only in the infinite-Re limit and disappears otherwise. This ansatz further provides a determination of the Richardson-Obukhov constant g as a function of Re, with an asymptotic constant value in the infinite-Re limit. It is shown to lead to full agreement, in the small-Re limit as well, with the Batchelor-Townsend [27] scaling for the rate of change of the mean square interparticle separation in 3D FDT, hence validating its soundness further.

  11. 3D Audio System

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Ames Research Center research into virtual reality led to the development of the Convolvotron, a high speed digital audio processing system that delivers three-dimensional sound over headphones. It consists of a two-card set designed for use with a personal computer. The Convolvotron's primary application is presentation of 3D audio signals over headphones. Four independent sound sources are filtered with large time-varying filters that compensate for motion. The perceived location of the sound remains constant. Possible applications are in air traffic control towers or airplane cockpits, hearing and perception research and virtual reality development.

  12. Quantitative Evaluation of 3D Mouse Behaviors and Motor Function in the Open-Field after Spinal Cord Injury Using Markerless Motion Tracking

    PubMed Central

    Sheets, Alison L.; Lai, Po-Lun; Fisher, Lesley C.; Basso, D. Michele

    2013-01-01

    Thousands of scientists strive to identify cellular mechanisms that could lead to breakthroughs in developing ameliorative treatments for debilitating neural and muscular conditions such as spinal cord injury (SCI). Most studies use rodent models to test hypotheses, and these are all limited by the methods available to evaluate animal motor function. This study’s goal was to develop a behavioral and locomotor assessment system in a murine model of SCI that enables quantitative kinematic measurements to be made automatically in the open-field by applying markerless motion tracking approaches. Three-dimensional movements of eight naïve, five mild, five moderate, and four severe SCI mice were recorded using 10 cameras (100 Hz). Background subtraction was used in each video frame to identify the animal’s silhouette, and the 3D shape at each time was reconstructed using shape-from-silhouette. The reconstructed volume was divided into front and back halves using k-means clustering. The animal’s front Center of Volume (CoV) height and whole-body CoV speed were calculated and used to automatically classify animal behaviors including directed locomotion, exploratory locomotion, meandering, standing, and rearing. More detailed analyses of CoV height, speed, and lateral deviation during directed locomotion revealed behavioral differences and functional impairments in animals with mild, moderate, and severe SCI when compared with naïve animals. Naïve animals displayed the widest variety of behaviors including rearing and crossing the center of the open-field, the fastest speeds, and tallest rear CoV heights. SCI reduced the range of behaviors, and decreased speed (r = .70 p<.005) and rear CoV height (r = .65 p<.01) were significantly correlated with greater lesion size. This markerless tracking approach is a first step toward fundamentally changing how rodent movement studies are conducted. By providing scientists with sensitive, quantitative measurement

  13. Radiochromic 3D Detectors

    NASA Astrophysics Data System (ADS)

    Oldham, Mark

    2015-01-01

    Radiochromic materials exhibit a colour change when exposed to ionising radiation. Radiochromic film has been used for clinical dosimetry for many years and increasingly so recently, as films of higher sensitivities have become available. The two principle advantages of radiochromic dosimetry include greater tissue equivalence (radiologically) and the lack of requirement for development of the colour change. In a radiochromic material, the colour change arises direct from ionising interactions affecting dye molecules, without requiring any latent chemical, optical or thermal development, with important implications for increased accuracy and convenience. It is only relatively recently however, that 3D radiochromic dosimetry has become possible. In this article we review recent developments and the current state-of-the-art of 3D radiochromic dosimetry, and the potential for a more comprehensive solution for the verification of complex radiation therapy treatments, and 3D dose measurement in general.

  14. 3-D Seismic Interpretation

    NASA Astrophysics Data System (ADS)

    Moore, Gregory F.

    2009-05-01

    This volume is a brief introduction aimed at those who wish to gain a basic and relatively quick understanding of the interpretation of three-dimensional (3-D) seismic reflection data. The book is well written, clearly illustrated, and easy to follow. Enough elementary mathematics are presented for a basic understanding of seismic methods, but more complex mathematical derivations are avoided. References are listed for readers interested in more advanced explanations. After a brief introduction, the book logically begins with a succinct chapter on modern 3-D seismic data acquisition and processing. Standard 3-D acquisition methods are presented, and an appendix expands on more recent acquisition techniques, such as multiple-azimuth and wide-azimuth acquisition. Although this chapter covers the basics of standard time processing quite well, there is only a single sentence about prestack depth imaging, and anisotropic processing is not mentioned at all, even though both techniques are now becoming standard.

  15. 3D Faulting Numerical Model Related To 2009 L'Aquila Earthquake Based On DInSAR Observations

    NASA Astrophysics Data System (ADS)

    Castaldo, Raffaele; Tizzani, Pietro; Solaro, Giuseppe; Pepe, Susi; Lanari, Riccardo

    2014-05-01

    We investigate the surface displacements in the area affected by the April 6, 2009 L'Aquila earthquake (Central Italy) through an advanced 3D numerical modeling approach, by exploiting DInSAR deformation velocity maps based on ENVISAT (Ascending and Descending orbits) and COSMO-SkyMed data (Ascending orbit). We benefited from the available geological and geophysical information to investigate the impact of known buried structures on the modulation of the observed ground deformation field; in this context we implemented the a priori information in a Finite Element (FE) Environment considering a structural mechanical physical approach. The performed analysis demonstrate that the displacement pattern associated with the Mw 6.3 main-shock event is consistent with the activation of several fault segments of the Paganica fault. In particular, we analyzed the seismic events in a structural mechanical context under the plane stress mode approximation to solve for the retrieved displacements. We defined the sub-domain setting of the 3D FEM model using the information derived from the CROOP M-15 seismic line. We assumed stationarity and linear elasticity of the involved materials by considering a solution of classical equilibrium mechanical equations. We evolved our model through two stages: the model compacted under the weight of the rock successions (gravity loading) until it reached a stable equilibrium. At the second stage (co-seismic), where the stresses were released through a slip along the faults, by using an optimization procedure we retrieved: (i) the active seismogenic structures responsible for the observed ground deformation, (ii) the effects of the different mechanical constraints on the ground deformation pattern and (iii) the spatial distribution of the retrieved stress field. We evaluated the boundary setting best fit configuration responsible for the observed ground deformation. To this aim, we first generated several forward structural mechanical models

  16. Combinatorial 3D Mechanical Metamaterials

    NASA Astrophysics Data System (ADS)

    Coulais, Corentin; Teomy, Eial; de Reus, Koen; Shokef, Yair; van Hecke, Martin

    2015-03-01

    We present a class of elastic structures which exhibit 3D-folding motion. Our structures consist of cubic lattices of anisotropic unit cells that can be tiled in a complex combinatorial fashion. We design and 3d-print this complex ordered mechanism, in which we combine elastic hinges and defects to tailor the mechanics of the material. Finally, we use this large design space to encode smart functionalities such as surface patterning and multistability.

  17. Relating the 3D electrode morphology to Li-ion battery performance; a case for LiFePO4

    NASA Astrophysics Data System (ADS)

    Liu, Zhao; Verhallen, Tomas W.; Singh, Deepak P.; Wang, Hongqian; Wagemaker, Marnix; Barnett, Scott

    2016-08-01

    One of the main goals in lithium ion battery electrode design is to increase the power density. This requires insight in the relation between the complex heterogeneous microstructure existing of active material, conductive additive and electrolyte providing the required electronic and Li-ion transport. FIB-SEM is used to determine the three phase 3D morphology, and Li-ion concentration profiles obtained with Neutron Depth Profiling (NDP) are compared for two cases, conventional LiFePO4 electrodes and better performing carbonate templated LiFePO4 electrodes. This provides detailed understanding of the impact of key parameters such as the tortuosity for electron and Li-ion transport though the electrodes. The created hierarchical pore network of the templated electrodes, containing micron sized pores, appears to be effective only at high rate charge where electrolyte depletion is hindering fast discharge. Surprisingly the carbonate templating method results in a better electronic conductive CB network, enhancing the activity of LiFePO4 near the electrolyte-electrode interface as directly observed with NDP, which in a large part is responsible for the improved rate performance both during charge and discharge. The results demonstrate that standard electrodes have a far from optimal charge transport network and that significantly improved electrode performance should be possible by engineering the microstructure.

  18. A Bayesian mixture model relating dose to critical organs and functional complication in 3D conformal radiation therapy.

    PubMed

    Johnson, Timothy D; Taylor, Jeremy M G; Ten Haken, Randall K; Eisbruch, Avraham

    2005-10-01

    A goal of cancer radiation therapy is to deliver maximum dose to the target tumor while minimizing complications due to irradiation of critical organs. Technological advances in 3D conformal radiation therapy has allowed great strides in realizing this goal; however, complications may still arise. Critical organs may be adjacent to tumors or in the path of the radiation beam. Several mathematical models have been proposed that describe the relationship between dose and observed functional complication; however, only a few published studies have successfully fit these models to data using modern statistical methods which make efficient use of the data. One complication following radiation therapy of head and neck cancers is the patient's inability to produce saliva. Xerostomia (dry mouth) leads to high susceptibility to oral infection and dental caries and is, in general, unpleasant and an annoyance. We present a dose-damage-injury model that subsumes any of the various mathematical models relating dose to damage. The model is a nonlinear, longitudinal mixed effects model where the outcome (saliva flow rate) is modeled as a mixture of a Dirac measure at zero and a gamma distribution whose mean is a function of time and dose. Bayesian methods are used to estimate the relationship between dose delivered to the parotid glands and the observational outcome-saliva flow rate. A summary measure of the dose-damage relationship is modeled and assessed by a Bayesian chi(2) test for goodness-of-fit. PMID:15917377

  19. TU-F-17A-04: Respiratory Phase-Resolved 3D MRI with Isotropic High Spatial Resolution: Determination of the Average Breathing Motion Pattern for Abdominal Radiotherapy Planning

    SciTech Connect

    Deng, Z; Pang, J; Yang, W; Yue, Y; Tuli, R; Fraass, B; Li, D; Fan, Z

    2014-06-15

    Purpose: To develop a retrospective 4D-MRI technique (respiratory phase-resolved 3D-MRI) for providing an accurate assessment of tumor motion secondary to respiration. Methods: A 3D projection reconstruction (PR) sequence with self-gating (SG) was developed for 4D-MRI on a 3.0T MRI scanner. The respiration-induced shift of the imaging target was recorded by SG signals acquired in the superior-inferior direction every 15 radial projections (i.e. temporal resolution 98 ms). A total of 73000 radial projections obtained in 8-min were retrospectively sorted into 10 time-domain evenly distributed respiratory phases based on the SG information. Ten 3D image sets were then reconstructed offline. The technique was validated on a motion phantom (gadolinium-doped water-filled box, frequency of 10 and 18 cycles/min) and humans (4 healthy and 2 patients with liver tumors). Imaging protocol included 8-min 4D-MRI followed by 1-min 2D-realtime (498 ms/frame) MRI as a reference. Results: The multiphase 3D image sets with isotropic high spatial resolution (1.56 mm) permits flexible image reformatting and visualization. No intra-phase motion-induced blurring was observed. Comparing to 2D-realtime, 4D-MRI yielded similar motion range (phantom: 10.46 vs. 11.27 mm; healthy subject: 25.20 vs. 17.9 mm; patient: 11.38 vs. 9.30 mm), reasonable displacement difference averaged over the 10 phases (0.74mm; 3.63mm; 1.65mm), and excellent cross-correlation (0.98; 0.96; 0.94) between the two displacement series. Conclusion: Our preliminary study has demonstrated that the 4D-MRI technique can provide high-quality respiratory phase-resolved 3D images that feature: a) isotropic high spatial resolution, b) a fixed scan time of 8 minutes, c) an accurate estimate of average motion pattern, and d) minimal intra-phase motion artifact. This approach has the potential to become a viable alternative solution to assess the impact of breathing on tumor motion and determine appropriate treatment margins

  20. WORM - WINDOWED OBSERVATION OF RELATIVE MOTION

    NASA Technical Reports Server (NTRS)

    Bauer, F.

    1994-01-01

    The Windowed Observation of Relative Motion, WORM, program is primarily intended for the generation of simple X-Y plots from data created by other programs. It allows the user to label, zoom, and change the scale of various plots. Three dimensional contour and line plots are provided, although with more limited capabilities. The input data can be in binary or ASCII format, although all data must be in the same format. A great deal of control over the details of the plot is provided, such as gridding, size of tick marks, colors, log/semilog capability, time tagging, and multiple and phase plane plots. Many color and monochrome graphics terminals and hard copy printer/plotters are supported. The WORM executive commands, menu selections and macro files can be used to develop plots and tabular data, query the WORM Help library, retrieve data from input files, and invoke VAX DCL commands. WORM generated plots are displayed on local graphics terminals and can be copied using standard hard copy capabilities. Some of the graphics features of WORM include: zooming and dezooming various portions of the plot; plot documentation including curve labeling and function listing; multiple curves on the same plot; windowing of multiple plots and insets of the same plot; displaying a specific on a curve; and spinning the curve left, right, up, and down. WORM is written in PASCAL for interactive execution and has been implemented on a DEC VAX computer operating under VMS 4.7 with a virtual memory requirement of approximately 392K of 8 bit bytes. It uses the QPLOT device independent graphics library included with WORM. It was developed in 1988.

  1. Possible migration front of gas-related fluid inferred from 3D seismic in the eastern Nankai Trough

    NASA Astrophysics Data System (ADS)

    Otsuka, H.; Morita, S.; Tanahashi, M.; Ashi, J.; Nagakubo, S.

    2010-12-01

    High resolution 3D seismic survey, “Tokai-oki to Kumano-nada”, was conducted for methane hydrate exploration in the eastern Nankai Trough by METI in 2002. Our study focuses on a series of accordion-shaped reflectors with horizontal axis of fold back. They are connected to the edge of BSRs and alternate their polarities at every fold back hinge. We call the reflectors “Foldback Reflectors (FBRs)” in this study. Sedimentary horizons are successive across these series of reflectors with no fault displacement as a general rule. FBR generally corresponds to lateral seismic facies boundary between BSR distribution area and outside of the BSR area. The formation beneath the BSR shows dimmed facies characterized by relatively low amplitude and lack of high frequency components in contrast to outside of the BSR area with normal facies. Seismic velocity analysis suggests that FBRs correspond to velocity boundaries, where the dimmed faceis below the BSR coinsides with relatively low velocity. The polarities of FBRs are also consistent with such velocity changes. Such dimmed facies with low velocity and low amplitude anomaly suggests effects of gas components in the pore water. In this area, FBRs are mostly developed in the well-stratified formation but not in the area of frequent fractures and the area of major lateral lithological change. The observed FBRs are clustered in northern slope of the uplifted outer ridge, whereas few FBRs are developed in the southern slope of the outer ridge with frequent compressive and strike-slip deformations related to major fault systems including the Kodaiba faults and the Tokai faults. The estimated strike directions of each FBRs are probably controlled by the dip direction of crossing formation. Another important character of FBRs is that it never crosses major unconformities into lower strata. In addition, high amplitude layers are sometimes recognized at hinges of foldbacks convex to the outside of the BSR area. These high

  2. Examining In-Cloud Convective Turbulence in Relation to Total Lightning and the 3D Wind Field of Severe Thunderstorms

    NASA Astrophysics Data System (ADS)

    Al-Momar, S. A.; Deierling, W.; Williams, J. K.; Hoffman, E. G.

    2014-12-01

    Convectively induced turbulence (CIT) is commonly listed as a cause or factor in weather-related commercial aviation accidents. In-cloud CIT is generated in part by shears between convective updrafts and downdrafts. Total lightning is also dependent on a robust updraft and the resulting storm electrification. The relationship between total lightning and turbulence could prove useful in operational aviation settings with the use of future measurements from the geostationary lightning mapper (GLM) onboard the GOES-R satellite. Providing nearly hemispheric coverage of total lightning, the GLM could help identify CIT in otherwise data-sparse locations. For a severe thunderstorm case on 7 June 2012 in northeast Colorado, in-cloud eddy dissipation rate estimates from the NCAR/NEXRAD Turbulence Detection Algorithm were compared with cloud electrification data from the Colorado Lightning Mapping Array and radar products from the Denver, Colorado WSR-88D. These comparisons showed that high concentrations of very high frequency (VHF) source densities emitted by lightning occurred near and downstream of the storm's convective core. Severe turbulence was also shown to occur near this area, extending near the melting level of the storm and spreading upward and outward. Additionally, increases/decreases in VHF sources and turbulence volumes occurred within a few minutes of each other; although, light turbulence was shown to increase near one storm's dissipation. This may be due to increased shear from the now downdraft dominate storm. The 3D wind field from this case, obtained by either a dual-Doppler or a Variational Doppler Radar Assimilation System (VDRAS) analysis, will also be examined to further study the relationships between total lightning and thunderstorm kinematics. If these results prove to be robust, lightning may serve as a strong indicator of the location of moderate or greater turbulence.

  3. Automatic Reconstruction of Spacecraft 3D Shape from Imagery

    NASA Astrophysics Data System (ADS)

    Poelman, C.; Radtke, R.; Voorhees, H.

    We describe a system that computes the three-dimensional (3D) shape of a spacecraft from a sequence of uncalibrated, two-dimensional images. While the mathematics of multi-view geometry is well understood, building a system that accurately recovers 3D shape from real imagery remains an art. A novel aspect of our approach is the combination of algorithms from computer vision, photogrammetry, and computer graphics. We demonstrate our system by computing spacecraft models from imagery taken by the Air Force Research Laboratory's XSS-10 satellite and DARPA's Orbital Express satellite. Using feature tie points (each identified in two or more images), we compute the relative motion of each frame and the 3D location of each feature using iterative linear factorization followed by non-linear bundle adjustment. The "point cloud" that results from this traditional shape-from-motion approach is typically too sparse to generate a detailed 3D model. Therefore, we use the computed motion solution as input to a volumetric silhouette-carving algorithm, which constructs a solid 3D model based on viewpoint consistency with the image frames. The resulting voxel model is then converted to a facet-based surface representation and is texture-mapped, yielding realistic images from arbitrary viewpoints. We also illustrate other applications of the algorithm, including 3D mensuration and stereoscopic 3D movie generation.

  4. Assessment of relative brain-skull motion in quasistatic circumstances by magnetic resonance imaging.

    PubMed

    Monea, Aida Georgeta; Verpoest, Ignaas; Vander Sloten, Jos; Van der Perre, Georges; Goffin, Jan; Depreitere, Bart

    2012-09-01

    Brain-skull relative motion plays a pivotal role in the etiology of traumatic brain injury (TBI). The present study aims to assess brain-skull relative motion in quasistatic circumstances, and to correlate cortical regions with high motion amplitudes with sites prone to cerebral contusions. The study includes 30 healthy volunteers scanned using a clinical 3-T MR scanner in four different head positions. Through image processing and 3D model registration, pairwise comparisons were performed to calculate the brain shift between sagittal and coronal head positional change. Next, local brain deformation was evaluated by comparison between cortical and ventricular amplitudes. Finally, the influence of age, sex, and skull geometry on the cortical and ventricular motion was investigated. The results describe complex brain shift patterns, with high regional and inter-individual variations, outweighing age and sex patterns. Regions with maximum motion amplitudes were identified at the inferolateral aspects of the frontal and temporal lobes, congruent with predilection sites for contusions. No significant influences of age and sex on the cortical shift amplitudes were detected. The 3D cortical deviations varied from -7.86 mm to +5.71 mm for the sagittal head movement, and from -11.46 mm to +7.30 mm for head movement in the coronal plane, for a 95% confidence interval. The present study contributes to a better understanding of the mechanopathogenesis of frontotemporal contusions, and is useful for the optimization of finite-element head models and neurosurgical navigation procedures. Moreover, our results prove that in vivo MRI allows for accurate assessment of brain-skull relative motion in quasistatic conditions. PMID:22663153

  5. Probabilistic point source inversion of strong-motion data in 3-D media using pattern recognition: A case study for the 2008 Mw 5.4 Chino Hills earthquake

    NASA Astrophysics Data System (ADS)

    Käufl, Paul; Valentine, Andrew P.; Trampert, Jeannot

    2016-08-01

    Despite the ever increasing availability of computational power, real-time source inversions based on physical modeling of wave propagation in realistic media remain challenging. We investigate how a nonlinear Bayesian approach based on pattern recognition and synthetic 3-D Green's functions can be used to rapidly invert strong-motion data for point source parameters by means of a case study for a fault system in the Los Angeles Basin. The probabilistic inverse mapping is represented in compact form by a neural network which yields probability distributions over source parameters. It can therefore be evaluated rapidly and with very moderate CPU and memory requirements. We present a simulated real-time inversion of data for the 2008 Mw 5.4 Chino Hills event. Initial estimates of epicentral location and magnitude are available ˜14 s after origin time. The estimate can be refined as more data arrive: by ˜40 s, fault strike and source depth can also be determined with relatively high certainty.

  6. Surface motion relative to the irregular celestial bodies

    NASA Astrophysics Data System (ADS)

    Jiang, Yu; Zhang, Yun; Baoyin, Hexi

    2016-08-01

    We study the motion and equilibria of the grains on the surface of the irregular celestial body (hereafter called irregular bodies). Motions for the grains on the smooth and unsmooth surfaces are discussed, respectively. The linearized equations of motion relative to a surface equilibrium point and its characteristic equations are presented. Considering the stick-slip effect, the damping forces and the spring forces for the grain are calculated, then the linearized equations of motion and the characteristic equations relative to the surface equilibrium points are derived. The number of non-degenerate surface equilibria is an even number. We compute the motion of a grain released above three different regions relative to the irregular asteroid 6489 Golevka, including the flat surface, the concave region, and the convex region. Following the grain release and initial bounce, three kinds of motions exist: the orbital motion, the impact motion and the surface motion. We find that the maximum height of the next hop may be bigger than the maximum height of the current hopping. We also used Monte Carlo simulations to calculate 100 grains' hopping motions, the results shows that the stable surface equilibria are on the concave region and flat surface of the asteroid.

  7. BOOK REVIEW: Equations of Motion in General Relativity Equations of Motion in General Relativity

    NASA Astrophysics Data System (ADS)

    Schäfer, Gerhard

    2012-03-01

    Devoted exclusively to the problem of motion in general relativity, this book by H. Asada, T. Futamase, and P. A. Hogan is highly welcome to close up a gap in the book sector presenting a concise account of theoretical developments and results on gravitational equations of motion achieved since the discovery of the binary neutron star system PSR 1913+16 in 1974. For the most part, the book is concerned with the development and application of the important post-Newtonian approximation (PNA) framework which allows for highly efficient approximate analytic solutions of the Einstein field equations for many-body systems in terms of a slow-motion and weak-field ordering parameter. That approximation scheme is shown to be applicable also to the external motion of strongly self-gravitating objects if their internal dynamics is frozen in (strong field point particle limit) and the external conditions fit. Relying on the expertise of the authors, the PNA framework is presented in a form which, at the 1PNA level, had become famous through the work by Einstein, Infeld and Hoffmann in 1938; therein, surface integrals over gravitational field expressions in the outside-body regime play a crucial role. Other approaches which also succeeded with the highest achieved PNA level so far are mentioned too, if not fully exhaustively with respect to the highest, the 3.5PNA level which contains the inverse power of the speed of light to the seventh order. Regarding the 3PNA, the reader gains a clear understanding of how the equations of motion for binary systems with compact components come about. Remarkably, no deviation from four-dimensional space-time is needed. Various explicit analytic expressions are derived for binary systems: the periastron advance and the orbital period at the 2PNA, the orbital decay through gravitational radiation reaction at the 2.5PNA, and effects of the gravitational spin-orbit and spin-spin couplings on the orbital motion. Also the propagation of light

  8. Decrease of reactive oxygen species-related biomarkers in the tissue-mimic 3D spheroid culture of human lung cells exposed to zinc oxide nanoparticles.

    PubMed

    Kim, Eunjoo; Jeon, Won Bae; Kim, Soonhyun; Lee, Soo-Keun

    2014-05-01

    Common 2-dimensional (2D) cell cultures do not adequately represent cell-cell and cell-matrix signaling and substantially different diffusion/transport pathways. To obtain tissue-mimic information on nanoparticle toxicity from in vitro cell tests, we used a 3-dimensional (3D) culture of human lung cells (A549) prepared with elastin-like peptides modified with an arginine-glycine-aspartate motif. The 3D cells showed different cellular phenotypes, gene expression profiles, and functionalities compared to the 2D cultured cells. In gene array analysis, 3D cells displayed the induced extracellular matrix (ECM)-related biological functions such as cell-to-cell signaling and interaction, cellular function and maintenance, connective tissue development and function, molecular transport, and tissue morphology. Additionally, the expression of ECM-related molecules, such as laminin, fibronectin, and insulin-like growth factor binding protein 3 (IGFBP3), was simultaneously induced at both mRNA and protein levels. When 0.08-50 microg/ml zinc oxide nanoparticles (ZnO-NPs) were administered to 2D and 3D cells, the cell proliferation was not significantly changed. The level of molecular markers for oxidative stress, such as superoxide dismutase (SOD), Bcl-2, ATP synthase, and Complex IV (cytochrome C oxidase), was significantly reduced in 2D culture when exposed to 10 microg/ml ZnO-NPs, but no significant decrease was detected in 3D culture when exposed to the same concentration of ZnO-NPs. In conclusion, the tissue-mimic phenotype and functionality of 3D cells could be achieved through the elevated expression of ECM components. The 3D cells were expected to help to better predict the nanotoxicity of ZnO-NPs at tissue-level by increased cell-cell and cell-ECM adhesion and signaling. The tissue-mimic morphology would also be useful to simulate the diffusion/transport of the nanoparticles in vitro. PMID:24734552

  9. Decrease of reactive oxygen species-related biomarkers in the tissue-mimic 3D spheroid culture of human lung cells exposed to zinc oxide nanoparticles.

    PubMed

    Kim, Eunjoo; Jeon, Won Bae; Kim, Soonhyun; Lee, Soo-Keun

    2014-05-01

    Common 2-dimensional (2D) cell cultures do not adequately represent cell-cell and cell-matrix signaling and substantially different diffusion/transport pathways. To obtain tissue-mimic information on nanoparticle toxicity from in vitro cell tests, we used a 3-dimensional (3D) culture of human lung cells (A549) prepared with elastin-like peptides modified with an arginine-glycine-aspartate motif. The 3D cells showed different cellular phenotypes, gene expression profiles, and functionalities compared to the 2D cultured cells. In gene array analysis, 3D cells displayed the induced extracellular matrix (ECM)-related biological functions such as cell-to-cell signaling and interaction, cellular function and maintenance, connective tissue development and function, molecular transport, and tissue morphology. Additionally, the expression of ECM-related molecules, such as laminin, fibronectin, and insulin-like growth factor binding protein 3 (IGFBP3), was simultaneously induced at both mRNA and protein levels. When 0.08-50 microg/ml zinc oxide nanoparticles (ZnO-NPs) were administered to 2D and 3D cells, the cell proliferation was not significantly changed. The level of molecular markers for oxidative stress, such as superoxide dismutase (SOD), Bcl-2, ATP synthase, and Complex IV (cytochrome C oxidase), was significantly reduced in 2D culture when exposed to 10 microg/ml ZnO-NPs, but no significant decrease was detected in 3D culture when exposed to the same concentration of ZnO-NPs. In conclusion, the tissue-mimic phenotype and functionality of 3D cells could be achieved through the elevated expression of ECM components. The 3D cells were expected to help to better predict the nanotoxicity of ZnO-NPs at tissue-level by increased cell-cell and cell-ECM adhesion and signaling. The tissue-mimic morphology would also be useful to simulate the diffusion/transport of the nanoparticles in vitro.

  10. Casimir friction: relative motion more generally

    NASA Astrophysics Data System (ADS)

    Høye, Johan S.; Brevik, Iver

    2015-06-01

    This paper extends our recent study on Casimir friction forces for dielectric plates moving parallel to each other (Høye and Brevik 2014 Eur. Phys. J. D 68 61), to a case where the plates are no longer restricted to rectilinear motion. Part of the mathematical formalism thereby becomes more cumbersome, but reduces in the end to the form that we expected to be the natural one in advance. As an example, we calculate the Casimir torque on a planar disc rotating with constant angular velocity around its vertical symmetry axis next to another plate.

  11. Analysis of accelerated motion in the theory of relativity

    NASA Technical Reports Server (NTRS)

    Jones, R. T.

    1976-01-01

    Conventional treatments of accelerated motion in the theory of relativity have led to certain difficulties of interpretation. Certain reversals in the apparent gravitational field of an accelerated body may be avoided by simpler analysis based on the use of restricted conformal transformations. In the conformal theory the velocity of light remains constant even for experimenters in accelerated motion. The problem considered is that of rectilinear motion with a variable velocity. The motion takes place along the x or x' axis of two coordinate systems.

  12. Accuracy and Precision of a Custom Camera-Based System for 2-D and 3-D Motion Tracking during Speech and Nonspeech Motor Tasks

    ERIC Educational Resources Information Center

    Feng, Yongqiang; Max, Ludo

    2014-01-01

    Purpose: Studying normal or disordered motor control requires accurate motion tracking of the effectors (e.g., orofacial structures). The cost of electromagnetic, optoelectronic, and ultrasound systems is prohibitive for many laboratories and limits clinical applications. For external movements (lips, jaw), video-based systems may be a viable…

  13. Predation by the Dwarf Seahorse on Copepods: Quantifying Motion and Flows Using 3D High Speed Digital Holographic Cinematography - When Seahorses Attack!

    NASA Astrophysics Data System (ADS)

    Gemmell, Brad; Sheng, Jian; Buskey, Ed

    2008-11-01

    Copepods are an important planktonic food source for most of the world's fish species. This high predation pressure has led copepods to evolve an extremely effective escape response, with reaction times to hydrodynamic disturbances of less than 4 ms and escape speeds of over 500 body lengths per second. Using 3D high speed digital holographic cinematography (up to 2000 frames per second) we elucidate the role of entrainment flow fields generated by a natural visual predator, the dwarf seahorse (Hippocampus zosterae) during attacks on its prey, Acartia tonsa. Using phytoplankton as a tracer, we recorded and reconstructed 3D flow fields around the head of the seahorse and its prey during both successful and unsuccessful attacks to better understand how some attacks lead to capture with little or no detection from the copepod while others result in failed attacks. Attacks start with a slow approach to minimize the hydro-mechanical disturbance which is used by copepods to detect the approach of a potential predator. Successful attacks result in the seahorse using its pipette-like mouth to create suction faster than the copepod's response latency. As these characteristic scales of entrainment increase, a successful escape becomes more likely.

  14. A New Display Format Relating Azimuth-Scanning Radar Data and All-Sky Images in 3-D

    NASA Technical Reports Server (NTRS)

    Swartz, Wesley E.; Seker, Ilgin; Mathews, John D.; Aponte, Nestor

    2010-01-01

    Here we correlate features in a sequence of all-sky images of 630 nm airglow with the three-dimensional (3-D) structure of electron densities in the F region above Arecibo. Pairs of 180 azimuth scans (using the Gregorian and line feeds) of the two-beam incoherent scatter radar (ISR) have been plotted in cone pictorials of the line-of-sight electron densities. The plots include projections of the 630 nm airglow onto the ground using the same spatial scaling as for the ISR data. Selected sequential images from the night of 16-17 June 2004 correlate ionospheric plasma features with scales comparable to the ISR density-cone diameter. The entire set of over 100 images spanning about eight hours is available as a movie. The correlation between the airglow and the electron densities is not unexpected, but the new display format shows the 3-D structures better than separate 2-D plots in latitude and longitude for the airglow and in height and time for the electron densities. Furthermore, the animations help separate the bands of airglow from obscuring clouds and the star field.

  15. Miscellaneous artifacts relating to experiments with talking motion pictures about ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Miscellaneous artifacts relating to experiments with talking motion pictures about 1912 and to loudspeaking phonographs in the 1920s, third floor. - Thomas A. Edison Laboratories, Building No. 5, Main Street & Lakeside Avenue, West Orange, Essex County, NJ

  16. Speed discrimination in the far monocular periphery: A relative advantage for interocular comparisons consistent with self-motion

    PubMed Central

    Greer, Devon A.; Bonnen, Kathryn; Huk, Alexander C.; Cormack, Lawrence K.

    2016-01-01

    Some animals with lateral eyes (such as bees) control their navigation through the 3D world using velocity differences between the two eyes. Other animals with frontal eyes (such as primates, including humans) can perceive 3D motion based on the different velocities that a moving object projects upon the two retinae. Although one type of 3D motion perception involves a comparison between velocities from vastly different (monocular) portions of the visual field, and the other involves a comparison within overlapping (binocular) portions of the visual field, both compare velocities across the two eyes. Here we asked whether human interocular velocity comparisons, typically studied in the context of binocularly overlapping vision, operate in the far lateral (and hence, monocular) periphery and, if so, whether these comparisons were accordant with conventional interocular motion processing. We found that speed discrimination was indeed better between the two eyes' monocular visual fields, as compared to within a single eye's (monocular) visual field, but only when the velocities were consistent with commonly encountered motion. This intriguing finding suggests that mechanisms sensitive to relative motion information on opposite sides of an animal may have been retained, or at some point independently achieved, as the eyes became frontal in some animals. PMID:27548085

  17. Speed discrimination in the far monocular periphery: A relative advantage for interocular comparisons consistent with self-motion.

    PubMed

    Greer, Devon A; Bonnen, Kathryn; Huk, Alexander C; Cormack, Lawrence K

    2016-08-01

    Some animals with lateral eyes (such as bees) control their navigation through the 3D world using velocity differences between the two eyes. Other animals with frontal eyes (such as primates, including humans) can perceive 3D motion based on the different velocities that a moving object projects upon the two retinae. Although one type of 3D motion perception involves a comparison between velocities from vastly different (monocular) portions of the visual field, and the other involves a comparison within overlapping (binocular) portions of the visual field, both compare velocities across the two eyes. Here we asked whether human interocular velocity comparisons, typically studied in the context of binocularly overlapping vision, operate in the far lateral (and hence, monocular) periphery and, if so, whether these comparisons were accordant with conventional interocular motion processing. We found that speed discrimination was indeed better between the two eyes' monocular visual fields, as compared to within a single eye's (monocular) visual field, but only when the velocities were consistent with commonly encountered motion. This intriguing finding suggests that mechanisms sensitive to relative motion information on opposite sides of an animal may have been retained, or at some point independently achieved, as the eyes became frontal in some animals. PMID:27548085

  18. 3D for the people: multi-camera motion capture in the field with consumer-grade cameras and open source software.

    PubMed

    Jackson, Brandon E; Evangelista, Dennis J; Ray, Dylan D; Hedrick, Tyson L

    2016-01-01

    Ecological, behavioral and biomechanical studies often need to quantify animal movement and behavior in three dimensions. In laboratory studies, a common tool to accomplish these measurements is the use of multiple, calibrated high-speed cameras. Until very recently, the complexity, weight and cost of such cameras have made their deployment in field situations risky; furthermore, such cameras are not affordable to many researchers. Here, we show how inexpensive, consumer-grade cameras can adequately accomplish these measurements both within the laboratory and in the field. Combined with our methods and open source software, the availability of inexpensive, portable and rugged cameras will open up new areas of biological study by providing precise 3D tracking and quantification of animal and human movement to researchers in a wide variety of field and laboratory contexts. PMID:27444791

  19. 3D for the people: multi-camera motion capture in the field with consumer-grade cameras and open source software

    PubMed Central

    Evangelista, Dennis J.; Ray, Dylan D.; Hedrick, Tyson L.

    2016-01-01

    ABSTRACT Ecological, behavioral and biomechanical studies often need to quantify animal movement and behavior in three dimensions. In laboratory studies, a common tool to accomplish these measurements is the use of multiple, calibrated high-speed cameras. Until very recently, the complexity, weight and cost of such cameras have made their deployment in field situations risky; furthermore, such cameras are not affordable to many researchers. Here, we show how inexpensive, consumer-grade cameras can adequately accomplish these measurements both within the laboratory and in the field. Combined with our methods and open source software, the availability of inexpensive, portable and rugged cameras will open up new areas of biological study by providing precise 3D tracking and quantification of animal and human movement to researchers in a wide variety of field and laboratory contexts. PMID:27444791

  20. 3D for the people: multi-camera motion capture in the field with consumer-grade cameras and open source software.

    PubMed

    Jackson, Brandon E; Evangelista, Dennis J; Ray, Dylan D; Hedrick, Tyson L

    2016-09-15

    Ecological, behavioral and biomechanical studies often need to quantify animal movement and behavior in three dimensions. In laboratory studies, a common tool to accomplish these measurements is the use of multiple, calibrated high-speed cameras. Until very recently, the complexity, weight and cost of such cameras have made their deployment in field situations risky; furthermore, such cameras are not affordable to many researchers. Here, we show how inexpensive, consumer-grade cameras can adequately accomplish these measurements both within the laboratory and in the field. Combined with our methods and open source software, the availability of inexpensive, portable and rugged cameras will open up new areas of biological study by providing precise 3D tracking and quantification of animal and human movement to researchers in a wide variety of field and laboratory contexts.

  1. The equations of relative motion in the orbital reference frame

    NASA Astrophysics Data System (ADS)

    Casotto, Stefano

    2016-03-01

    The analysis of relative motion of two spacecraft in Earth-bound orbits is usually carried out on the basis of simplifying assumptions. In particular, the reference spacecraft is assumed to follow a circular orbit, in which case the equations of relative motion are governed by the well-known Hill-Clohessy-Wiltshire equations. Circular motion is not, however, a solution when the Earth's flattening is accounted for, except for equatorial orbits, where in any case the acceleration term is not Newtonian. Several attempts have been made to account for the J_2 effects, either by ingeniously taking advantage of their differential effects, or by cleverly introducing ad-hoc terms in the equations of motion on the basis of geometrical analysis of the J_2 perturbing effects. Analysis of relative motion about an unperturbed elliptical orbit is the next step in complexity. Relative motion about a J_2-perturbed elliptic reference trajectory is clearly a challenging problem, which has received little attention. All these problems are based on either the Hill-Clohessy-Wiltshire equations for circular reference motion, or the de Vries/Tschauner-Hempel equations for elliptical reference motion, which are both approximate versions of the exact equations of relative motion. The main difference between the exact and approximate forms of these equations consists in the expression for the angular velocity and the angular acceleration of the rotating reference frame with respect to an inertial reference frame. The rotating reference frame is invariably taken as the local orbital frame, i.e., the RTN frame generated by the radial, the transverse, and the normal directions along the primary spacecraft orbit. Some authors have tried to account for the non-constant nature of the angular velocity vector, but have limited their correction to a mean motion value consistent with the J_2 perturbation terms. However, the angular velocity vector is also affected in direction, which causes precession

  2. Tethered body problems and relative motion orbit determination

    NASA Technical Reports Server (NTRS)

    Eades, J. B., Jr.; Wolf, H.

    1972-01-01

    Selected problems dealing with orbiting tethered body systems have been studied. In addition, a relative motion orbit determination program was developed. Results from these tasks are described and discussed. The expected tethered body motions were examined, analytically, to ascertain what influence would be played by the physical parameters of the tether, the gravity gradient and orbit eccentricity. After separating the motion modes these influences were determined; and, subsequently, the effects of oscillations and/or rotations, on tether force, were described. A study was undertaken, by examining tether motions, to see what type of control actions would be needed to accurately place a mass particle at a prescribed position relative to a main vehicle. Other applications for tethers were studied. Principally these were concerned with the producing of low-level gee forces by means of stabilized tether configurations; and, the initiation of free transfer trajectories from tether supported vehicle relative positions.

  3. Single-plane versus three-plane methods for relative range error evaluation of medium-range 3D imaging systems

    NASA Astrophysics Data System (ADS)

    MacKinnon, David K.; Cournoyer, Luc; Beraldin, J.-Angelo

    2015-05-01

    Within the context of the ASTM E57 working group WK12373, we compare the two methods that had been initially proposed for calculating the relative range error of medium-range (2 m to 150 m) optical non-contact 3D imaging systems: the first is based on a single plane (single-plane assembly) and the second on an assembly of three mutually non-orthogonal planes (three-plane assembly). Both methods are evaluated for their utility in generating a metric to quantify the relative range error of medium-range optical non-contact 3D imaging systems. We conclude that the three-plane assembly is comparable to the single-plane assembly with regard to quantification of relative range error while eliminating the requirement to isolate the edges of the target plate face.

  4. The 3-D motion of the centre of gravity of the human body during level walking. I. Normal subjects at low and intermediate walking speeds.

    PubMed

    Tesio, L; Lanzi, D; Detrembleur, C

    1998-03-01

    OBJECTIVE: To measure the mechanical energy changes of the centre of gravity (CG) of the body in the forward, lateral and vertical direction during normal level walking at intermediate and low speeds. DESIGN: Eight healthy adults performed successive walks at speeds ranging from 0.25 to 1.75 m s(-1) over a dedicated force platform system. BACKGROUND: In previous studies, it was shown that the motion of the CG during gait can be altered more than the motion of individual segments. However, more detailed normative data are needed for clinical analysis. METHODS: The positive work done during the step to accelerate the body CG in the forward direction, W(f), to lift it, W(v), to accelerate it in the lateral direction, W(I), and the actual work done by the muscles to maintain its motion with respect to the ground ('external' work), W(ext), were measured. This allowed the calculation of the pendulum-like transfer between gravitational potential energy and kinetic energy of the CG, (percentage recovery, R). At the optimal speed of about 1.3 m s(-1), this transfer allows saving of as much as 65% of the muscular work which would have been otherwise needed to keep the body in motion with respect to the ground. The distance covered by the CG at each step either forward (step length, S(I)), or vertically (vertical displacement, S(v)) was also recorded. RESULTS: W(I) was, as a median, only 1.6-5.9% of W(ext). This ratio was higher, the lower the speed. At each step, W(ext) is needed to sustain two distinct increments of the total mechanical energy of the CG, E(tot). The increment a takes place during the double stance phase; the increment b takes place during the single stance phase. Both of these increments increased with speed. Over the speed range analyzed, the power spent to to sustain the a increment was 2.8-3.9 times higher than the power spent to sustain the b increment. PMID:11415774

  5. 3D printing in dentistry.

    PubMed

    Dawood, A; Marti Marti, B; Sauret-Jackson, V; Darwood, A

    2015-12-01

    3D printing has been hailed as a disruptive technology which will change manufacturing. Used in aerospace, defence, art and design, 3D printing is becoming a subject of great interest in surgery. The technology has a particular resonance with dentistry, and with advances in 3D imaging and modelling technologies such as cone beam computed tomography and intraoral scanning, and with the relatively long history of the use of CAD CAM technologies in dentistry, it will become of increasing importance. Uses of 3D printing include the production of drill guides for dental implants, the production of physical models for prosthodontics, orthodontics and surgery, the manufacture of dental, craniomaxillofacial and orthopaedic implants, and the fabrication of copings and frameworks for implant and dental restorations. This paper reviews the types of 3D printing technologies available and their various applications in dentistry and in maxillofacial surgery. PMID:26657435

  6. 3D printing in dentistry.

    PubMed

    Dawood, A; Marti Marti, B; Sauret-Jackson, V; Darwood, A

    2015-12-01

    3D printing has been hailed as a disruptive technology which will change manufacturing. Used in aerospace, defence, art and design, 3D printing is becoming a subject of great interest in surgery. The technology has a particular resonance with dentistry, and with advances in 3D imaging and modelling technologies such as cone beam computed tomography and intraoral scanning, and with the relatively long history of the use of CAD CAM technologies in dentistry, it will become of increasing importance. Uses of 3D printing include the production of drill guides for dental implants, the production of physical models for prosthodontics, orthodontics and surgery, the manufacture of dental, craniomaxillofacial and orthopaedic implants, and the fabrication of copings and frameworks for implant and dental restorations. This paper reviews the types of 3D printing technologies available and their various applications in dentistry and in maxillofacial surgery.

  7. Wireless, relative-motion computer input device

    DOEpatents

    Holzrichter, John F.; Rosenbury, Erwin T.

    2004-05-18

    The present invention provides a system for controlling a computer display in a workspace using an input unit/output unit. A train of EM waves are sent out to flood the workspace. EM waves are reflected from the input unit/output unit. A relative distance moved information signal is created using the EM waves that are reflected from the input unit/output unit. Algorithms are used to convert the relative distance moved information signal to a display signal. The computer display is controlled in response to the display signal.

  8. A multiple-shape memory polymer-metal composite actuator capable of programmable control, creating complex 3D motion of bending, twisting, and oscillation

    PubMed Central

    Shen, Qi; Trabia, Sarah; Stalbaum, Tyler; Palmre, Viljar; Kim, Kwang; Oh, Il-Kwon

    2016-01-01

    Development of biomimetic actuators has been an essential motivation in the study of smart materials. However, few materials are capable of controlling complex twisting and bending deformations simultaneously or separately using a dynamic control system. Here, we report an ionic polymer-metal composite actuator having multiple-shape memory effect, and is able to perform complex motion by two external inputs, electrical and thermal. Prior to the development of this type of actuator, this capability only could be realized with existing actuator technologies by using multiple actuators or another robotic system. This paper introduces a soft multiple-shape-memory polymer-metal composite (MSMPMC) actuator having multiple degrees-of-freedom that demonstrates high maneuverability when controlled by two external inputs, electrical and thermal. These multiple inputs allow for complex motions that are routine in nature, but that would be otherwise difficult to obtain with a single actuator. To the best of the authors’ knowledge, this MSMPMC actuator is the first solitary actuator capable of multiple-input control and the resulting deformability and maneuverability. PMID:27080134

  9. A multiple-shape memory polymer-metal composite actuator capable of programmable control, creating complex 3D motion of bending, twisting, and oscillation

    NASA Astrophysics Data System (ADS)

    Shen, Qi; Trabia, Sarah; Stalbaum, Tyler; Palmre, Viljar; Kim, Kwang; Oh, Il-Kwon

    2016-04-01

    Development of biomimetic actuators has been an essential motivation in the study of smart materials. However, few materials are capable of controlling complex twisting and bending deformations simultaneously or separately using a dynamic control system. Here, we report an ionic polymer-metal composite actuator having multiple-shape memory effect, and is able to perform complex motion by two external inputs, electrical and thermal. Prior to the development of this type of actuator, this capability only could be realized with existing actuator technologies by using multiple actuators or another robotic system. This paper introduces a soft multiple-shape-memory polymer-metal composite (MSMPMC) actuator having multiple degrees-of-freedom that demonstrates high maneuverability when controlled by two external inputs, electrical and thermal. These multiple inputs allow for complex motions that are routine in nature, but that would be otherwise difficult to obtain with a single actuator. To the best of the authors’ knowledge, this MSMPMC actuator is the first solitary actuator capable of multiple-input control and the resulting deformability and maneuverability.

  10. A multiple-shape memory polymer-metal composite actuator capable of programmable control, creating complex 3D motion of bending, twisting, and oscillation.

    PubMed

    Shen, Qi; Trabia, Sarah; Stalbaum, Tyler; Palmre, Viljar; Kim, Kwang; Oh, Il-Kwon

    2016-01-01

    Development of biomimetic actuators has been an essential motivation in the study of smart materials. However, few materials are capable of controlling complex twisting and bending deformations simultaneously or separately using a dynamic control system. Here, we report an ionic polymer-metal composite actuator having multiple-shape memory effect, and is able to perform complex motion by two external inputs, electrical and thermal. Prior to the development of this type of actuator, this capability only could be realized with existing actuator technologies by using multiple actuators or another robotic system. This paper introduces a soft multiple-shape-memory polymer-metal composite (MSMPMC) actuator having multiple degrees-of-freedom that demonstrates high maneuverability when controlled by two external inputs, electrical and thermal. These multiple inputs allow for complex motions that are routine in nature, but that would be otherwise difficult to obtain with a single actuator. To the best of the authors' knowledge, this MSMPMC actuator is the first solitary actuator capable of multiple-input control and the resulting deformability and maneuverability.

  11. A multiple-shape memory polymer-metal composite actuator capable of programmable control, creating complex 3D motion of bending, twisting, and oscillation.

    PubMed

    Shen, Qi; Trabia, Sarah; Stalbaum, Tyler; Palmre, Viljar; Kim, Kwang; Oh, Il-Kwon

    2016-01-01

    Development of biomimetic actuators has been an essential motivation in the study of smart materials. However, few materials are capable of controlling complex twisting and bending deformations simultaneously or separately using a dynamic control system. Here, we report an ionic polymer-metal composite actuator having multiple-shape memory effect, and is able to perform complex motion by two external inputs, electrical and thermal. Prior to the development of this type of actuator, this capability only could be realized with existing actuator technologies by using multiple actuators or another robotic system. This paper introduces a soft multiple-shape-memory polymer-metal composite (MSMPMC) actuator having multiple degrees-of-freedom that demonstrates high maneuverability when controlled by two external inputs, electrical and thermal. These multiple inputs allow for complex motions that are routine in nature, but that would be otherwise difficult to obtain with a single actuator. To the best of the authors' knowledge, this MSMPMC actuator is the first solitary actuator capable of multiple-input control and the resulting deformability and maneuverability. PMID:27080134

  12. 3d-3d correspondence revisited

    NASA Astrophysics Data System (ADS)

    Chung, Hee-Joong; Dimofte, Tudor; Gukov, Sergei; Sułkowski, Piotr

    2016-04-01

    In fivebrane compactifications on 3-manifolds, we point out the importance of all flat connections in the proper definition of the effective 3d {N}=2 theory. The Lagrangians of some theories with the desired properties can be constructed with the help of homological knot invariants that categorify colored Jones polynomials. Higgsing the full 3d theories constructed this way recovers theories found previously by Dimofte-Gaiotto-Gukov. We also consider the cutting and gluing of 3-manifolds along smooth boundaries and the role played by all flat connections in this operation.

  13. 3d-3d correspondence revisited

    DOE PAGES

    Chung, Hee -Joong; Dimofte, Tudor; Gukov, Sergei; Sułkowski, Piotr

    2016-04-21

    In fivebrane compactifications on 3-manifolds, we point out the importance of all flat connections in the proper definition of the effective 3d N = 2 theory. The Lagrangians of some theories with the desired properties can be constructed with the help of homological knot invariants that categorify colored Jones polynomials. Higgsing the full 3d theories constructed this way recovers theories found previously by Dimofte-Gaiotto-Gukov. As a result, we also consider the cutting and gluing of 3-manifolds along smooth boundaries and the role played by all flat connections in this operation.

  14. The ATLAS3D Project - XXX. Star formation histories and stellar population scaling relations of early-type galaxies

    NASA Astrophysics Data System (ADS)

    McDermid, Richard M.; Alatalo, Katherine; Blitz, Leo; Bournaud, Frédéric; Bureau, Martin; Cappellari, Michele; Crocker, Alison F.; Davies, Roger L.; Davis, Timothy A.; de Zeeuw, P. T.; Duc, Pierre-Alain; Emsellem, Eric; Khochfar, Sadegh; Krajnović, Davor; Kuntschner, Harald; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Scott, Nicholas; Serra, Paolo; Weijmans, Anne-Marie; Young, Lisa M.

    2015-04-01

    We present the stellar population content of early-type galaxies from the ATLAS3D survey. Using spectra integrated within apertures covering up to one effective radius, we apply two methods: one based on measuring line-strength indices and applying single stellar population (SSP) models to derive SSP-equivalent values of stellar age, metallicity, and alpha enhancement; and one based on spectral fitting to derive non-parametric star formation histories, mass-weighted average values of age, metallicity, and half-mass formation time-scales. Using homogeneously derived effective radii and dynamically determined galaxy masses, we present the distribution of stellar population parameters on the Mass Plane (MJAM, σe, R^maj_e), showing that at fixed mass, compact early-type galaxies are on average older, more metal-rich, and more alpha-enhanced than their larger counterparts. From non-parametric star formation histories, we find that the duration of star formation is systematically more extended in lower mass objects. Assuming that our sample represents most of the stellar content of today's local Universe, approximately 50 per cent of all stars formed within the first 2 Gyr following the big bang. Most of these stars reside today in the most massive galaxies (>1010.5 M⊙), which themselves formed 90 per cent of their stars by z ˜ 2. The lower mass objects, in contrast, have formed barely half their stars in this time interval. Stellar population properties are independent of environment over two orders of magnitude in local density, varying only with galaxy mass. In the highest density regions of our volume (dominated by the Virgo cluster), galaxies are older, alpha-enhanced, and have shorter star formation histories with respect to lower density regions.

  15. Performance assessment of HIFU lesion detection by harmonic motion imaging for focused ultrasound (HMIFU): a 3-D finite-element-based framework with experimental validation.

    PubMed

    Hou, Gary Y; Luo, Jianwen; Marquet, Fabrice; Maleke, Caroline; Vappou, Jonathan; Konofagou, Elisa E

    2011-12-01

    Harmonic motion imaging for focused ultrasound (HMIFU) is a novel high-intensity focused ultrasound (HIFU) therapy monitoring method with feasibilities demonstrated in vitro, ex vivo and in vivo. Its principle is based on amplitude-modulated (AM) - harmonic motion imaging (HMI), an oscillatory radiation force used for imaging the tissue mechanical response during thermal ablation. In this study, a theoretical framework of HMIFU is presented, comprising a customized nonlinear wave propagation model, a finite-element (FE) analysis module and an image-formation model. The objective of this study is to develop such a framework to (1) assess the fundamental performance of HMIFU in detecting HIFU lesions based on the change in tissue apparent elasticity, i.e., the increasing Young's modulus, and the HIFU lesion size with respect to the HIFU exposure time and (2) validate the simulation findings ex vivo. The same HMI and HMIFU parameters as in the experimental studies were used, i.e., 4.5-MHz HIFU frequency and 25 Hz AM frequency. For a lesion-to-background Young's modulus ratio of 3, 6 and 9, the FE and estimated HMI displacement ratios were equal to 1.83, 3.69 and 5.39 and 1.65, 3.19 and 4.59, respectively. In experiments, the HMI displacement followed a similar increasing trend of 1.19, 1.28 and 1.78 at 10-s, 20-s and 30-s HIFU exposure, respectively. In addition, moderate agreement in lesion size growth was found in both simulations (16.2, 73.1 and 334.7 mm(2)) and experiments (26.2, 94.2 and 206.2 mm(2)). Therefore, the feasibility of HMIFU for HIFU lesion detection based on the underlying tissue elasticity changes was verified through the developed theoretical framework, i.e., validation of the fundamental performance of the HMIFU system for lesion detection, localization and quantification, was demonstrated both theoretically and ex vivo.

  16. The Feasibility of 3d Point Cloud Generation from Smartphones

    NASA Astrophysics Data System (ADS)

    Alsubaie, N.; El-Sheimy, N.

    2016-06-01

    This paper proposes a new technique for increasing the accuracy of direct geo-referenced image-based 3D point cloud generated from low-cost sensors in smartphones. The smartphone's motion sensors are used to directly acquire the Exterior Orientation Parameters (EOPs) of the captured images. These EOPs, along with the Interior Orientation Parameters (IOPs) of the camera/ phone, are used to reconstruct the image-based 3D point cloud. However, because smartphone motion sensors suffer from poor GPS accuracy, accumulated drift and high signal noise, inaccurate 3D mapping solutions often result. Therefore, horizontal and vertical linear features, visible in each image, are extracted and used as constraints in the bundle adjustment procedure. These constraints correct the relative position and orientation of the 3D mapping solution. Once the enhanced EOPs are estimated, the semi-global matching algorithm (SGM) is used to generate the image-based dense 3D point cloud. Statistical analysis and assessment are implemented herein, in order to demonstrate the feasibility of 3D point cloud generation from the consumer-grade sensors in smartphones.

  17. Measurement of 3-D Vibrational Motion by Dynamic Photogrammetry Using Least-Square Image Matching for Sub-Pixel Targeting to Improve Accuracy

    PubMed Central

    Lee, Hyoseong; Rhee, Huinam; Oh, Jae Hong; Park, Jin Ho

    2016-01-01

    This paper deals with an improved methodology to measure three-dimensional dynamic displacements of a structure by digital close-range photogrammetry. A series of stereo images of a vibrating structure installed with targets are taken at specified intervals by using two daily-use cameras. A new methodology is proposed to accurately trace the spatial displacement of each target in three-dimensional space. This method combines the correlation and the least-square image matching so that the sub-pixel targeting can be obtained to increase the measurement accuracy. Collinearity and space resection theory are used to determine the interior and exterior orientation parameters. To verify the proposed method, experiments have been performed to measure displacements of a cantilevered beam excited by an electrodynamic shaker, which is vibrating in a complex configuration with mixed bending and torsional motions simultaneously with multiple frequencies. The results by the present method showed good agreement with the measurement by two laser displacement sensors. The proposed methodology only requires inexpensive daily-use cameras, and can remotely detect the dynamic displacement of a structure vibrating in a complex three-dimensional defection shape up to sub-pixel accuracy. It has abundant potential applications to various fields, e.g., remote vibration monitoring of an inaccessible or dangerous facility. PMID:26978366

  18. Accuracy Assessment in Structure from Motion 3d Reconstruction from Uav-Born Images: the Influence of the Data Processing Methods

    NASA Astrophysics Data System (ADS)

    Caroti, G.; Martínez-Espejo Zaragoza, I.; Piemonte, A.

    2015-08-01

    The evolution of Structure from Motion (SfM) techniques and their integration with the established procedures of classic stereoscopic photogrammetric survey have provided a very effective tool for the production of three-dimensional textured models. Such models are not only aesthetically pleasing but can also contain metric information, the quality of which depends on both survey type and applied processing methodologies. An open research topic in this area refers to checking attainable accuracy levels. The knowledge of such accuracy is essential, especially in the integration of models obtained through SfM with other models derived from different sensors or methods (laser scanning, classic photogrammetry ...). Accuracy checks may be conducted by either comparing SfM models against a reference one or measuring the deviation of control points identified on models and measured with classic topographic instrumentation and methodologies. This paper presents an analysis of attainable accuracy levels, according to different approaches of survey and data processing. For this purpose, a survey of the Church of San Miniato in Marcianella (Pisa, Italy), has been used. The dataset is an integration of laser scanning with terrestrial and UAV-borne photogrammetric surveys; in addition, a high precision topographic network was established for the specific purpose. In particular, laser scanning has been used for the interior and the exterior of the church, with the exclusion of the roof, while UAVs have been used for the photogrammetric survey of both roof, with horizontal strips, and façade, with vertical strips.

  19. Measurement of 3-D Vibrational Motion by Dynamic Photogrammetry Using Least-Square Image Matching for Sub-Pixel Targeting to Improve Accuracy.

    PubMed

    Lee, Hyoseong; Rhee, Huinam; Oh, Jae Hong; Park, Jin Ho

    2016-01-01

    This paper deals with an improved methodology to measure three-dimensional dynamic displacements of a structure by digital close-range photogrammetry. A series of stereo images of a vibrating structure installed with targets are taken at specified intervals by using two daily-use cameras. A new methodology is proposed to accurately trace the spatial displacement of each target in three-dimensional space. This method combines the correlation and the least-square image matching so that the sub-pixel targeting can be obtained to increase the measurement accuracy. Collinearity and space resection theory are used to determine the interior and exterior orientation parameters. To verify the proposed method, experiments have been performed to measure displacements of a cantilevered beam excited by an electrodynamic shaker, which is vibrating in a complex configuration with mixed bending and torsional motions simultaneously with multiple frequencies. The results by the present method showed good agreement with the measurement by two laser displacement sensors. The proposed methodology only requires inexpensive daily-use cameras, and can remotely detect the dynamic displacement of a structure vibrating in a complex three-dimensional defection shape up to sub-pixel accuracy. It has abundant potential applications to various fields, e.g., remote vibration monitoring of an inaccessible or dangerous facility. PMID:26978366

  20. Wear of connector contacts exposed to relative motion

    NASA Astrophysics Data System (ADS)

    Wilk, R. A.

    Connectors play a significant role in the performance, cost, and reliability of electronic equipment. In connection with the development of the system interconnection design, a factor which is often overlooked is related to the importance of connector selection and mounting to minimize relative motion between contacts during vibration encountered in handling, transportation, and service. This motion can lead to the loss of protective coatings (gold and nickel) due to frictional wear. If this happens, fretting corrosion of the base metals may occur. The produced damage can adversely affect performance due to increased joint resistance, eventually causing intermittent contacts. The present investigation is concerned with the study of different style contacts (tuning fork, box, and circular) to determine their endurance and wear characteristics when exposed to relative motion created by vibration. All contacts investigated were fabricated from brass, beryllium copper, or phosphor bronze, and had .00127 mm minimum gold plating over .00127 mm minimum nickel plating.

  1. Acquisition-related motion compensation for digital subtraction angiography.

    PubMed

    Ionasec, Razvan Ioan; Heigl, Benno; Hornegger, Joachim

    2009-06-01

    Subtraction methods in angiography are generally applied in order to enhance the visualization of blood vessels by eliminating bones and surrounding tissues from X-ray images. The main limitation of these methods is the sensitivity to patient movement, which leads to artifacts and reduces the clinical value of the subtraction images. In this paper we present a novel method for rigid motion compensation with primary application to road mapping, frequently used in image-guided interventions. Using the general concept of image-based registration, we optimize the physical position and orientation of the C-arm X-ray device, thought of as the rigid 3D transformation accounting for the patient movement. The registration is carried out using a hierarchical optimization strategy and a similarity measure based on the variance of intensity differences, which has been shown to be most suitable for fluoroscopic images. Performance evaluation demonstrated the capabilities of the proposed approach to compensate for potential intra-operative patient motion, being more resilient to the fundamental problems of pure image-based registration.

  2. Equations of motion in general relativity and quantum mechanics

    NASA Astrophysics Data System (ADS)

    O'Hara, Paul

    2011-12-01

    In a previous article a relationship was established between the linearized metrics of General Relativity associated with geodesics and the Dirac Equation of quantum mechanics. In this paper the extension of that result to arbitrary curves is investigated. A generalized Dirac equation is derived and shown to be related to the Lie derivative of the momentum along the curve. In addition,the equations of motion are derived from the Hamilton-Jacobi equation associated with the metric and the wave equation associated with the Hamiltonian is then shown not to commute with the Dirac operator. Finally, the Maxwell-Boltzmann distribution is shown to be a consequence of geodesic motion.

  3. GPS Measurements Of The Relative Motion Between India And Sundaland

    NASA Astrophysics Data System (ADS)

    Socquet, A.; Vigny, C.; Pubellier, M.; Chamot-Rooke, N.; Rangin, C.

    GPS measurements acquired in the framework of the GEODYSSEA project have pro- vided significant new information on the present day plate tectonics in South East Asia. In order to further investigate the relative motion between India and South East Asia, we have performed a combined processing the THAICA, APRGP, MYANMAR, GEODYSSEA and RTSD data (10 GPS campaigns from 1994 to 2000) including 90 stations in South East Asia. Global plate motion model Nuvel-1A [DeMets et al., 1994] predicts a relative motion of India with respect to Eurasia of about 5.5 cm/yr oriented around N20rE on the east- ern border of the Indian plate in Myanmar. Our geodetic results allow us to confirm That India motion is actually slower than this value in agreement with the results ob- tained by Paul et al., 2001. In addition, since the block along which India is sliding is not stable Eurasia but rather the Sundaland block [Michel et al., 2001], the relative motion expected between India and Sundaland on the Myanmar boundary reduces to about 4.5 cm/yr and rotates towards North. The local Myanmar velocity field [Vigny et al.,2001] show that, out of the 4.5 cm/yr of India versus Sundaland rate, only 3 cm/yr are accommodated in Myanmar, distributed between 2 cm/yr on the Sagaing fault and 1 cm/yr in the Myanmar Central Basins. Therefore, 1.5 cm/yr have to be taken elsewhere. Our results indicate that about 0.5 cm/yr can be accommodated in a large shear zone in Indochina, the remaining motion being accommodated in the Andaman trench. DeMets, C., R. G. Gordon, D. Argus, and S. Stein, Effect of recent revisions to the geomagnetic reversal time scale on estimates of current plate motions, Geophys. Res. Letters., 21, 2191-2194, 1994. Michel, G., Y. Yu, S. Zhu, C. Reigber, M. Becker, E. Reinhart, W. Simons, B. Am- brosius, C. Vigny, N. Chamot-Rooke, X. LePichon, P. Morgan, and S. Matheussen, Crustal motion and block behavior in SE-Asia from GPS measurements,.Earth and Physics Science letters, 187, 289

  4. Relating a Prominence Observed from the Solar Optical Telescope on the Hinode Satellite to Known 3-D Structures of Filaments

    NASA Astrophysics Data System (ADS)

    Martin, S. F.; Panasenco, O.; Agah, Y.; Engvold, O.; Lin, Y.

    2009-12-01

    We address only a first step in relating limb and disk observations by illustrating and comparing the spines and barbs of three different quiescent prominences and filaments observed in Hα by three different telescopes. Although the appearance of the three quiescent prominences is quite different, we show that each consists of a spine, barbs extending from the spine, and arcs at the base of some of the curtains of barb threads.

  5. Validation of a new method for finding the rotational axes of the knee using both marker-based roentgen stereophotogrammetric analysis and 3D video-based motion analysis for kinematic measurements.

    PubMed

    Roland, Michelle; Hull, M L; Howell, S M

    2011-05-01

    In a previous paper, we reported the virtual axis finder, which is a new method for finding the rotational axes of the knee. The virtual axis finder was validated through simulations that were subject to limitations. Hence, the objective of the present study was to perform a mechanical validation with two measurement modalities: 3D video-based motion analysis and marker-based roentgen stereophotogrammetric analysis (RSA). A two rotational axis mechanism was developed, which simulated internal-external (or longitudinal) and flexion-extension (FE) rotations. The actual axes of rotation were known with respect to motion analysis and RSA markers within ± 0.0006 deg and ± 0.036 mm and ± 0.0001 deg and ± 0.016 mm, respectively. The orientation and position root mean squared errors for identifying the longitudinal rotation (LR) and FE axes with video-based motion analysis (0.26 deg, 0.28 m, 0.36 deg, and 0.25 mm, respectively) were smaller than with RSA (1.04 deg, 0.84 mm, 0.82 deg, and 0.32 mm, respectively). The random error or precision in the orientation and position was significantly better (p=0.01 and p=0.02, respectively) in identifying the LR axis with video-based motion analysis (0.23 deg and 0.24 mm) than with RSA (0.95 deg and 0.76 mm). There was no significant difference in the bias errors between measurement modalities. In comparing the mechanical validations to virtual validations, the virtual validations produced comparable errors to those of the mechanical validation. The only significant difference between the errors of the mechanical and virtual validations was the precision in the position of the LR axis while simulating video-based motion analysis (0.24 mm and 0.78 mm, p=0.019). These results indicate that video-based motion analysis with the equipment used in this study is the superior measurement modality for use with the virtual axis finder but both measurement modalities produce satisfactory results. The lack of significant differences between

  6. Human heart rate variability relation is unchanged during motion sickness

    NASA Technical Reports Server (NTRS)

    Mullen, T. J.; Berger, R. D.; Oman, C. M.; Cohen, R. J.

    1998-01-01

    In a study of 18 human subjects, we applied a new technique, estimation of the transfer function between instantaneous lung volume (ILV) and instantaneous heart rate (HR), to assess autonomic activity during motion sickness. Two control recordings of ILV and electrocardiogram (ECG) were made prior to the development of motion sickness. During the first, subjects were seated motionless, and during the second they were seated rotating sinusoidally about an earth vertical axis. Subjects then wore prism goggles that reverse the left-right visual field and performed manual tasks until they developed moderate motion sickness. Finally, ILV and ECG were recorded while subjects maintained a relatively constant level of sickness by intermittent eye closure during rotation with the goggles. Based on analyses of ILV to HR transfer functions from the three conditions, we were unable to demonstrate a change in autonomic control of heart rate due to rotation alone or due to motion sickness. These findings do not support the notion that moderate motion sickness is manifested as a generalized autonomic response.

  7. Relative motion characteristics of 2 near-Earth Satellites

    NASA Technical Reports Server (NTRS)

    Schutz, B. E.

    1984-01-01

    The stability of the nonlinear dynamical system of two GRAVSAT - type satellites was investigated by performing several numerical experiments which provide the simulations of the relative motion characteristics between the two satellites for various specified time intervals. The simulations included the relative range, range-rate, and relative acceleration magnitude. These simulations were generated with respect to appropriate initial orbital elements which were obtained such that the instantaneous separation distance between the two satellites has small fluctuations from a specified constant separation distance. The simulation results indicate that the behavior of the relative motions is very sensitive to the initial orbital elements of the satellites and that for a specified time interval of interest. A stable behavior is possible only with the use of an appropriate set of initial orbital elements compatible with the gravity field used to derive them.

  8. The 3D structure of the collagen fibril network in human trabecular bone: relation to trabecular organization.

    PubMed

    Reznikov, Natalie; Chase, Hila; Brumfeld, Vlad; Shahar, Ron; Weiner, Steve

    2015-02-01

    Trabecular bone is morphologically and functionally different from compact bone at the tissue level, but both are composed of lamellae at the micrometer-scale level. We present a three-dimensional study of the collagenous network of human trabecular lamellar bone from the proximal femur using the FIB-SEM serial surface view method. The results are compared to human compact lamellar bone of the femoral shaft, studied by the same method. Both demineralized trabecular and compact lamellar bone display the same overall structural organization, namely the presence of ordered and disordered materials and the confinement of the canalicular network to the disordered material. However, in trabecular bone lamellae a significant proportion of the ordered collagen fibril arrays is aligned with the long axis of the trabecula and, unlike in compact bone, is not related to the anatomical axis of the whole femur. The remaining ordered collagen fibrils are offset from the axis of a trabecula either by about 30° or 70°. Interestingly, at the tissue scale of millimeters, the most abundant angles between any two connected trabeculae - the inter-trabecular angles - center around 30° and 70°. This implies that within a framework of interconnected trabeculae the same lamellar structure will always have a significant component of the fibrils aligned with the long axes of connected trabeculae. This structural complementarity at different hierarchical levels presumably reflects an adaptation of trabecular bone to function.

  9. 3D reconstruction of tensors and vectors

    SciTech Connect

    Defrise, Michel; Gullberg, Grant T.

    2005-02-17

    Here we have developed formulations for the reconstruction of 3D tensor fields from planar (Radon) and line-integral (X-ray) projections of 3D vector and tensor fields. Much of the motivation for this work is the potential application of MRI to perform diffusion tensor tomography. The goal is to develop a theory for the reconstruction of both Radon planar and X-ray or line-integral projections because of the flexibility of MRI to obtain both of these type of projections in 3D. The development presented here for the linear tensor tomography problem provides insight into the structure of the nonlinear MRI diffusion tensor inverse problem. A particular application of tensor imaging in MRI is the potential application of cardiac diffusion tensor tomography for determining in vivo cardiac fiber structure. One difficulty in the cardiac application is the motion of the heart. This presents a need for developing future theory for tensor tomography in a motion field. This means developing a better understanding of the MRI signal for diffusion processes in a deforming media. The techniques developed may allow the application of MRI tensor tomography for the study of structure of fiber tracts in the brain, atherosclerotic plaque, and spine in addition to fiber structure in the heart. However, the relations presented are also applicable to other fields in medical imaging such as diffraction tomography using ultrasound. The mathematics presented can also be extended to exponential Radon transform of tensor fields and to other geometric acquisitions such as cone beam tomography of tensor fields.

  10. Design of relative motion and attitude profiles for three-dimensional resident space object imaging with a laser rangefinder

    NASA Astrophysics Data System (ADS)

    Nayak, M.; Beck, J.; Udrea, B.

    This paper focuses on the aerospace application of a single beam laser rangefinder (LRF) for 3D imaging, shape detection, and reconstruction in the context of a space-based space situational awareness (SSA) mission scenario. The primary limitation to 3D imaging from LRF point clouds is the one-dimensional nature of the single beam measurements. A method that combines relative orbital motion and scanning attitude motion to generate point clouds has been developed and the design and characterization of multiple relative motion and attitude maneuver profiles are presented. The target resident space object (RSO) has the shape of a generic telecommunications satellite. The shape and attitude of the RSO are unknown to the chaser satellite however, it is assumed that the RSO is un-cooperative and has fixed inertial pointing. All sensors in the metrology chain are assumed ideal. A previous study by the authors used pure Keplerian motion to perform a similar 3D imaging mission at an asteroid. A new baseline for proximity operations maneuvers for LRF scanning, based on a waypoint adaptation of the Hill-Clohessy-Wiltshire (HCW) equations is examined. Propellant expenditure for each waypoint profile is discussed and combinations of relative motion and attitude maneuvers that minimize the propellant used to achieve a minimum required point cloud density are studied. Both LRF strike-point coverage and point cloud density are maximized; the capability for 3D shape registration and reconstruction from point clouds generated with a single beam LRF without catalog comparison is proven. Next, a method of using edge detection algorithms to process a point cloud into a 3D modeled image containing reconstructed shapes is presented. Weighted accuracy of edge reconstruction with respect to the true model is used to calculate a qualitative “ metric” that evaluates effectiveness of coverage. Both edge recognition algorithms and the metric are independent of point cloud densit

  11. YouDash3D: exploring stereoscopic 3D gaming for 3D movie theaters

    NASA Astrophysics Data System (ADS)

    Schild, Jonas; Seele, Sven; Masuch, Maic

    2012-03-01

    Along with the success of the digitally revived stereoscopic cinema, events beyond 3D movies become attractive for movie theater operators, i.e. interactive 3D games. In this paper, we present a case that explores possible challenges and solutions for interactive 3D games to be played by a movie theater audience. We analyze the setting and showcase current issues related to lighting and interaction. Our second focus is to provide gameplay mechanics that make special use of stereoscopy, especially depth-based game design. Based on these results, we present YouDash3D, a game prototype that explores public stereoscopic gameplay in a reduced kiosk setup. It features live 3D HD video stream of a professional stereo camera rig rendered in a real-time game scene. We use the effect to place the stereoscopic effigies of players into the digital game. The game showcases how stereoscopic vision can provide for a novel depth-based game mechanic. Projected trigger zones and distributed clusters of the audience video allow for easy adaptation to larger audiences and 3D movie theater gaming.

  12. Analysis of Age-Related Changes in Asian Facial Skeletons Using 3D Vector Mathematics on Picture Archiving and Communication System Computed Tomography

    PubMed Central

    Kim, Soo Jin; Kim, So Jung; Park, Jee Soo; Byun, Sung Wan

    2015-01-01

    Purpose There are marked differences in facial skeletal characteristics between Asian and Caucasian. However, ethnic differences in age-related facial skeletal changes have not yet been fully established. The aims of this study were to evaluate age-related changes in Asian midfacial skeletons and to explore ethnic differences in facial skeletal structures with aging between Caucasian and Asian. Materials and Methods The study included 108 men (aged 20-79 years) and 115 women (aged 20-81 years). Axial CT images with a gantry tilt angle of 0 were analyzed. We measured three-dimensional (3D) coordinates at each point with a pixel lens cursor in a picture archiving and communication system (PACS), and angles and widths between the points were calculated using 3D vector mathematics. We analyzed angular changes in 4 bony regions, including the glabellar, orbital, maxillary, and pyriform aperture regions, and changes in the orbital aperture width (distance from the posterior lacrimal crest to the frontozygomatic suture) and the pyriform width (between both upper margins of the pyriform aperture). Results All 4 midfacial angles in females and glabellar and maxillary angles in males showed statistically significant decreases with aging. On the other hand, the orbital and pyriform widths did not show statistically significant changes with aging. Conclusion The results of this study suggest that Asian midfacial skeletons may change continuously throughout life, and that there may be significant differences in the midfacial skeleton between both sexes and between ethnic groups. PMID:26256986

  13. Relative-Motion Sensors and Actuators for Two Optical Tables

    NASA Technical Reports Server (NTRS)

    Gursel, Yekta; McKenney, Elizabeth

    2004-01-01

    Optoelectronic sensors and magnetic actuators have been developed as parts of a system for controlling the relative position and attitude of two massive optical tables that float on separate standard air suspensions that attenuate ground vibrations. In the specific application for which these sensors and actuators were developed, one of the optical tables holds an optical system that mimics distant stars, while the other optical table holds a test article that simulates a spaceborne stellar interferometer that would be used to observe the stars. The control system is designed to suppress relative motion of the tables or, on demand, to impose controlled relative motion between the tables. The control system includes a sensor system that detects relative motion of the tables in six independent degrees of freedom and a drive system that can apply force to the star-simulator table in the six degrees of freedom. The sensor system includes (1) a set of laser heterodyne gauges and (2) a set of four diode lasers on the star-simulator table, each aimed at one of four quadrant photodiodes at nominal corresponding positions on the test-article table. The heterodyne gauges are used to measure relative displacements along the x axis.

  14. High precision analysis of an embryonic extensional fault-related fold using 3D orthorectified virtual outcrops: The viewpoint importance in structural geology

    NASA Astrophysics Data System (ADS)

    Tavani, Stefano; Corradetti, Amerigo; Billi, Andrea

    2016-05-01

    Image-based 3D modeling has recently opened the way to the use of virtual outcrop models in geology. An intriguing application of this method involves the production of orthorectified images of outcrops using almost any user-defined point of view, so that photorealistic cross-sections suitable for numerous geological purposes and measurements can be easily generated. These purposes include the accurate quantitative analysis of fault-fold relationships starting from imperfectly oriented and partly inaccessible real outcrops. We applied the method of image-based 3D modeling and orthorectification to a case study from the northern Apennines, Italy, where an incipient extensional fault affecting well-layered limestones is exposed on a 10-m-high barely accessible cliff. Through a few simple steps, we constructed a high-quality image-based 3D model of the outcrop. In the model, we made a series of measurements including fault and bedding attitudes, which allowed us to derive the bedding-fault intersection direction. We then used this direction as viewpoint to obtain a distortion-free photorealistic cross-section, on which we measured bed dips and thicknesses as well as fault stratigraphic separations. These measurements allowed us to identify a slight difference (i.e. only 0.5°) between the hangingwall and footwall cutoff angles. We show that the hangingwall strain required to compensate the upward-decreasing displacement of the fault was accommodated by this 0.5° rotation (i.e. folding) and coeval 0.8% thickening of strata in the hangingwall relatively to footwall strata. This evidence is consistent with trishear fault-propagation folding. Our results emphasize the viewpoint importance in structural geology and therefore the potential of using orthorectified virtual outcrops.

  15. Evaluation of the Quantitative Accuracy of 3D Reconstruction of Edentulous Jaw Models with Jaw Relation Based on Reference Point System Alignment

    PubMed Central

    Li, Weiwei; Yuan, Fusong; Lv, Peijun; Wang, Yong; Sun, Yuchun

    2015-01-01

    Objectives To apply contact measurement and reference point system (RPS) alignment techniques to establish a method for 3D reconstruction of the edentulous jaw models with centric relation and to quantitatively evaluate its accuracy. Methods Upper and lower edentulous jaw models were clinically prepared, 10 pairs of resin cylinders with same size were adhered to axial surfaces of upper and lower models. The occlusal bases and the upper and lower jaw models were installed in the centric relation position. Faro Edge 1.8m was used to directly obtain center points of the base surface of the cylinders (contact method). Activity 880 dental scanner was used to obtain 3D data of the cylinders and the center points were fitted (fitting method). 3 pairs of center points were used to align the virtual model to centric relation. An observation coordinate system was interactively established. The straight-line distances in the X (horizontal left/right), Y (horizontal anterior/posterior), and Z (vertical) between the remaining 7 pairs of center points derived from contact method and fitting method were measured respectively and analyzed using a paired t-test. Results The differences of the straight-line distances of the remaining 7 pairs of center points between the two methods were X: 0.074 ± 0.107 mm, Y: 0.168 ± 0.176 mm, and Z: −0.003± 0.155 mm. The results of paired t-test were X and Z: p >0.05, Y: p <0.05. Conclusion By using contact measurement and the reference point system alignment technique, highly accurate reconstruction of the vertical distance and centric relation of a digital edentulous jaw model can be achieved, which meets the design and manufacturing requirements of the complete dentures. The error of horizontal anterior/posterior jaw relation was relatively large. PMID:25659133

  16. Supernova Remnant in 3-D

    NASA Technical Reports Server (NTRS)

    2009-01-01

    wavelengths. Since the amount of the wavelength shift is related to the speed of motion, one can determine how fast the debris are moving in either direction. Because Cas A is the result of an explosion, the stellar debris is expanding radially outwards from the explosion center. Using simple geometry, the scientists were able to construct a 3-D model using all of this information. A program called 3-D Slicer modified for astronomical use by the Astronomical Medicine Project at Harvard University in Cambridge, Mass. was used to display and manipulate the 3-D model. Commercial software was then used to create the 3-D fly-through.

    The blue filaments defining the blast wave were not mapped using the Doppler effect because they emit a different kind of light synchrotron radiation that does not emit light at discrete wavelengths, but rather in a broad continuum. The blue filaments are only a representation of the actual filaments observed at the blast wave.

    This visualization shows that there are two main components to this supernova remnant: a spherical component in the outer parts of the remnant and a flattened (disk-like) component in the inner region. The spherical component consists of the outer layer of the star that exploded, probably made of helium and carbon. These layers drove a spherical blast wave into the diffuse gas surrounding the star. The flattened component that astronomers were unable to map into 3-D prior to these Spitzer observations consists of the inner layers of the star. It is made from various heavier elements, not all shown in the visualization, such as oxygen, neon, silicon, sulphur, argon and iron.

    High-velocity plumes, or jets, of this material are shooting out from the explosion in the plane of the disk-like component mentioned above. Plumes of silicon appear in the northeast and southwest, while those of iron are seen in the southeast and north. These jets were already known and Doppler velocity measurements have been made for these

  17. Relative motions between oceanic plates of the Pacific Basin

    NASA Astrophysics Data System (ADS)

    Engebretson, David C.; Cox, Allan; Gordon, Richard G.

    1984-11-01

    Appendix tables are available with entire article on microfiche. Order from American Geophysical Union, 2000 Florida Avenue, N.W., Washington, D.C., 20009. Document B84-012; $2.50. Payment must accompany order. Relative motion poles describing the displacement histories between the Pacific plate and once adjacent oceanic plates (Farallon, Kula, Izanagi I, Izanagi II, and Phoenix) were derived for the late Mesozoic and Cenozoic eras. Because fracture zone and magnetic anomaly data are generally available from the Pacific plate but not from adjacent plates, a new method of analysis for onesided data was required. This analysis produced stage poles and rates of relative plate motion and estimates of their confidence regions. The following are the main conclusions drawn from our analysis: (1) For time intervals of the order of 107 years, termed stages, relative motion poles for plate pairs remained nearly fixed. Between stages, shifts in poles were commonly both large and abrupt. Within stages, rates of plate motion were commonly observed to change markedly, indicating that plates changed speed more frequently than they changed direction. (2) The relative motions of all of the plates analyzed changed at about chron M11 (135 Ma), chron 34 (85 Ma), and chron 25 (56 Ma). (3) During the Early Cretaceous there were five oceanic plates in the Pacific basin rather than the four recognized by previous workers. (4) To determine the number of Farallon plates that existed to the east of the Pacific plate during the time interval from chron 34 (85 Ma) to chron 25 (56 Ma), fracture zones and magnetic anomalies that record Pacific-Farallon spreading from the northern, central, and southern Pacific plate were analyzed separately and collectively. The analysis shows that a single Pacific-Farallon relative motion pole and a single rate are consistent with all of the data. (5) Spreading rates along the Pacific-Kula ridge decreased markedly between chrons 32b and 25 (72-56 Ma), probably

  18. Relative role of motion and PSF compensation in whole-body oncologic PET-MR imaging

    SciTech Connect

    Petibon, Yoann; Syrkina, Aleksandra; Huang, Chuan; Ouyang, Jinsong; Li, Quanzheng; El Fakhri, Georges; Reese, Timothy G.; Chen, Yen-Lin

    2014-04-15

    Purpose: Respiratory motion and partial-volume effects are the two main sources of image degradation in whole-body PET imaging. Simultaneous PET-MR allows measurement of respiratory motion using MRI while collecting PET events. Improved PET images may be obtained by modeling respiratory motion and point spread function (PSF) within the PET iterative reconstruction process. In this study, the authors assessed the relative impact of PSF modeling and MR-based respiratory motion correction in phantoms and patient studies using a whole-body PET-MR scanner. Methods: An asymmetric exponential PSF model accounting for radially varying and axial detector blurring effects was obtained from point source acquisitions performed in the PET-MR scanner. A dedicated MRI acquisition protocol using single-slice steady state free-precession MR acquisitions interleaved with pencil-beam navigator echoes was developed to track respiratory motion during PET-MR studies. An iterative ordinary Poisson fully 3D OSEM PET reconstruction algorithm modeling all the physical effects of the acquisition (attenuation, scatters, random events, detectors efficiencies, PSF), as well as MR-based nonrigid respiratory deformations of tissues (in both emission and attenuation maps) was developed. Phantom and{sup 18}F-FDG PET-MR patient studies were performed to evaluate the proposed quantitative PET-MR methods. Results: The phantom experiment results showed that PSF modeling significantly improved contrast recovery while limiting noise propagation in the reconstruction process. In patients with soft-tissue static lesions, PSF modeling improved lesion contrast by 19.7%–109%, enhancing the detectability and assessment of small tumor foci. In a patient study with small moving hepatic lesions, the proposed reconstruction technique improved lesion contrast by 54.4%–98.1% and reduced apparent lesion size by 21.8%–34.2%. Improvements were particularly important for the smallest lesion undergoing large motion

  19. 3D ultrafast ultrasound imaging in vivo.

    PubMed

    Provost, Jean; Papadacci, Clement; Arango, Juan Esteban; Imbault, Marion; Fink, Mathias; Gennisson, Jean-Luc; Tanter, Mickael; Pernot, Mathieu

    2014-10-01

    Very high frame rate ultrasound imaging has recently allowed for the extension of the applications of echography to new fields of study such as the functional imaging of the brain, cardiac electrophysiology, and the quantitative imaging of the intrinsic mechanical properties of tumors, to name a few, non-invasively and in real time. In this study, we present the first implementation of Ultrafast Ultrasound Imaging in 3D based on the use of either diverging or plane waves emanating from a sparse virtual array located behind the probe. It achieves high contrast and resolution while maintaining imaging rates of thousands of volumes per second. A customized portable ultrasound system was developed to sample 1024 independent channels and to drive a 32  ×  32 matrix-array probe. Its ability to track in 3D transient phenomena occurring in the millisecond range within a single ultrafast acquisition was demonstrated for 3D Shear-Wave Imaging, 3D Ultrafast Doppler Imaging, and, finally, 3D Ultrafast combined Tissue and Flow Doppler Imaging. The propagation of shear waves was tracked in a phantom and used to characterize its stiffness. 3D Ultrafast Doppler was used to obtain 3D maps of Pulsed Doppler, Color Doppler, and Power Doppler quantities in a single acquisition and revealed, at thousands of volumes per second, the complex 3D flow patterns occurring in the ventricles of the human heart during an entire cardiac cycle, as well as the 3D in vivo interaction of blood flow and wall motion during the pulse wave in the carotid at the bifurcation. This study demonstrates the potential of 3D Ultrafast Ultrasound Imaging for the 3D mapping of stiffness, tissue motion, and flow in humans in vivo and promises new clinical applications of ultrasound with reduced intra--and inter-observer variability.

  20. 3D ultrafast ultrasound imaging in vivo

    NASA Astrophysics Data System (ADS)

    Provost, Jean; Papadacci, Clement; Esteban Arango, Juan; Imbault, Marion; Fink, Mathias; Gennisson, Jean-Luc; Tanter, Mickael; Pernot, Mathieu

    2014-10-01

    Very high frame rate ultrasound imaging has recently allowed for the extension of the applications of echography to new fields of study such as the functional imaging of the brain, cardiac electrophysiology, and the quantitative imaging of the intrinsic mechanical properties of tumors, to name a few, non-invasively and in real time. In this study, we present the first implementation of Ultrafast Ultrasound Imaging in 3D based on the use of either diverging or plane waves emanating from a sparse virtual array located behind the probe. It achieves high contrast and resolution while maintaining imaging rates of thousands of volumes per second. A customized portable ultrasound system was developed to sample 1024 independent channels and to drive a 32  ×  32 matrix-array probe. Its ability to track in 3D transient phenomena occurring in the millisecond range within a single ultrafast acquisition was demonstrated for 3D Shear-Wave Imaging, 3D Ultrafast Doppler Imaging, and, finally, 3D Ultrafast combined Tissue and Flow Doppler Imaging. The propagation of shear waves was tracked in a phantom and used to characterize its stiffness. 3D Ultrafast Doppler was used to obtain 3D maps of Pulsed Doppler, Color Doppler, and Power Doppler quantities in a single acquisition and revealed, at thousands of volumes per second, the complex 3D flow patterns occurring in the ventricles of the human heart during an entire cardiac cycle, as well as the 3D in vivo interaction of blood flow and wall motion during the pulse wave in the carotid at the bifurcation. This study demonstrates the potential of 3D Ultrafast Ultrasound Imaging for the 3D mapping of stiffness, tissue motion, and flow in humans in vivo and promises new clinical applications of ultrasound with reduced intra—and inter-observer variability.

  1. 3D ultrafast ultrasound imaging in vivo.

    PubMed

    Provost, Jean; Papadacci, Clement; Arango, Juan Esteban; Imbault, Marion; Fink, Mathias; Gennisson, Jean-Luc; Tanter, Mickael; Pernot, Mathieu

    2014-10-01

    Very high frame rate ultrasound imaging has recently allowed for the extension of the applications of echography to new fields of study such as the functional imaging of the brain, cardiac electrophysiology, and the quantitative imaging of the intrinsic mechanical properties of tumors, to name a few, non-invasively and in real time. In this study, we present the first implementation of Ultrafast Ultrasound Imaging in 3D based on the use of either diverging or plane waves emanating from a sparse virtual array located behind the probe. It achieves high contrast and resolution while maintaining imaging rates of thousands of volumes per second. A customized portable ultrasound system was developed to sample 1024 independent channels and to drive a 32  ×  32 matrix-array probe. Its ability to track in 3D transient phenomena occurring in the millisecond range within a single ultrafast acquisition was demonstrated for 3D Shear-Wave Imaging, 3D Ultrafast Doppler Imaging, and, finally, 3D Ultrafast combined Tissue and Flow Doppler Imaging. The propagation of shear waves was tracked in a phantom and used to characterize its stiffness. 3D Ultrafast Doppler was used to obtain 3D maps of Pulsed Doppler, Color Doppler, and Power Doppler quantities in a single acquisition and revealed, at thousands of volumes per second, the complex 3D flow patterns occurring in the ventricles of the human heart during an entire cardiac cycle, as well as the 3D in vivo interaction of blood flow and wall motion during the pulse wave in the carotid at the bifurcation. This study demonstrates the potential of 3D Ultrafast Ultrasound Imaging for the 3D mapping of stiffness, tissue motion, and flow in humans in vivo and promises new clinical applications of ultrasound with reduced intra--and inter-observer variability. PMID:25207828

  2. Relative motion of formation flying satellites in elliptic orbit

    NASA Astrophysics Data System (ADS)

    Owis, Ashraf

    2012-07-01

    The work presents a solution of the relative motion of formation flying satellites using the feedback optimal control approach. to obtain such a solution, the Taschauner-Hempel equations are used and techniques of feedback control via solving the Hamilton-Jacobi- Bellman equation. A generating function technique will be implemented to solvethe Hamilton-Jacobi- Bellman equation. we will find the solutions for both soft and hard constraints.

  3. Unsteady aerodynamic simulation of multiple bodies in relative motion

    NASA Technical Reports Server (NTRS)

    Meakin, Robert L.; Suhs, Norman E.

    1989-01-01

    A prototype method for time-accurate simulation of multiple aerodynamic bodies in relative motion is presented. The method is general and features unsteady chimera domain decomposition techniques and an implicit approximately factored finite-difference procedure to solve the time-dependent thin-layer Navier-Stokes equations. The method is applied to a set of two- and three-dimensional test problems to establish spatial and temporal accuracy, quantify computational efficiency, and begin to test overall code robustness.

  4. Intrinsic Feature Motion Tracking

    SciTech Connect

    Goddard, Jr., James S.

    2013-03-19

    Subject motion during 3D medical scanning can cause blurring and artifacts in the 3D images resulting in either rescans or poor diagnosis. Anesthesia or physical restraints may be used to eliminate motion but are undesirable and can affect results. This software measures the six degree of freedom 3D motion of the subject during the scan under a rigidity assumption using only the intrinsic features present on the subject area being monitored. This movement over time can then be used to correct the scan data removing the blur and artifacts. The software acquires images from external cameras or images stored on disk for processing. The images are from two or three calibrated cameras in a stereo arrangement. Algorithms extract and track the features over time and calculate position and orientation changes relative to an initial position. Output is the 3D position and orientation change measured at each image.

  5. Intrinsic Feature Motion Tracking

    2013-03-19

    Subject motion during 3D medical scanning can cause blurring and artifacts in the 3D images resulting in either rescans or poor diagnosis. Anesthesia or physical restraints may be used to eliminate motion but are undesirable and can affect results. This software measures the six degree of freedom 3D motion of the subject during the scan under a rigidity assumption using only the intrinsic features present on the subject area being monitored. This movement over timemore » can then be used to correct the scan data removing the blur and artifacts. The software acquires images from external cameras or images stored on disk for processing. The images are from two or three calibrated cameras in a stereo arrangement. Algorithms extract and track the features over time and calculate position and orientation changes relative to an initial position. Output is the 3D position and orientation change measured at each image.« less

  6. Age-related changes of vertical and horizontal lumbar vertebral trabecular 3D bone microstructure is different in women and men.

    PubMed

    Thomsen, Jesper Skovhus; Niklassen, Andreas Steenholt; Ebbesen, Ebbe Nils; Brüel, Annemarie

    2013-11-01

    The study presents a 3D method for subdividing a trabecular network into horizontal and vertical oriented bone. This method was used to investigate the age related changes of the bone volume fraction and thickness of horizontal and vertical trabeculae in human lumbar vertebral bone estimated with unbiased 3D methods in women and men over a large age-range. The study comprised second lumbar vertebral body bone samples from 40 women (aged 21.7-96.4years, median 56.6years) and 39 men (aged 22.6-94.6years, median 55.6years). The bone samples were μCT scanned and the 3D microstructure was quantified. A voxel based algorithm inspecting the local neighborhood is presented and used to segment the trabecular network into horizontal and vertical oriented bone. For both women and men BV/TV decreased significantly with age, Tb.Th* was independent of age, while SMI increased significantly with age. Vertical (BV.vert/TV) and horizontal (BV.horz/TV) bone volume fraction decreased significantly with age for both sexes. BV.vert/TV decreased significantly faster with age for women than for men. Vertical (Tb.Th*.vert) and horizontal (Tb.Th*.horz) trabecular thickness were independent of age, while Tb.Th*.horz/Tb.Th*.vert decreased significantly with age for both sexes. Additionally, the 95th percentile of the trabecular thickness distribution increased significantly with age for vertical trabeculae in women, whereas it was independent of age in men. In conclusion, we have shown that vertical and horizontal oriented bone density decreases with age in both women and men, and that vertical oriented bone is lost more quickly in women than in men. Furthermore, vertical and horizontal trabecular thickness were independent of age, whereas the horizontal to vertical trabecular thickness ratio decreased significantly with age indicating a relatively more pronounced thinning of horizontal trabeculae. Finally, the age-related loss of trabecular elements appeared to result in a compensatory

  7. Intra-event and Inter-event Ground Motion Variability from 3-D Broadband (0-8 Hz) Ensemble Simulations of Mw 6.7 Thrust Events Including Rough Fault Descriptions, Small-Scale Heterogeneities and Q(f)

    NASA Astrophysics Data System (ADS)

    Withers, K.; Olsen, K. B.; Shi, Z.; Day, S. M.

    2015-12-01

    We model blind thrust scenario earthquakes matching the fault geometry of 1994 Mw 6.7 Northridge earthquake up to 8 Hz by first performing dynamic rupture propagation using a support operator method (SORD). We extend the ground motion by converting the slip-rate data to a kinematic source for the finite difference wave propagation code AWP-ODC, which incorporates an improved frequency-dependent attenuation approach. This technique has high accuracy for Q values down to 15. The desired Q function is fit to the 'effective' Q over the coarse grained-cell for low Q, and a simple interpolation formula is used to interpolate the weights for arbitrary Q. Here, we use a power-law model Q above a reference frequency in the form Q 0 f^n with exponents ranging from 0.0-0.9. We find envelope and phase misfits only slightly larger than that of the elastic case when compared with that of the frequency-wavenumber solution for both a homogenous and a layered model with a large-velocity contrast. We also include small-scale medium complexity in both a 1D layered model and a 3D medium extracted from SCEC CVM-S4 including a surface geotechnical layer (GTL). We model additional realizations of the scenario by varying the hypocenter location, and find that similar moment magnitudes are generated. We observe that while the ground motion pattern changes, the median ground motion is not affected significantly, when binned as a function of distance, and is within 1 interevent standard deviation from the median GMPEs. We find that intra-event variability for the layered model simulations is similar to observed values of single-station standard deviation. We show that small-scale heterogeneity can significantly affect the intra-event variability at frequencies greater than ~1 Hz, becoming increasingly important at larger distances from the source. We perform a parameter space study by varying statistical parameters and find that the variability is fairly independent of the correlation length

  8. Measuring the Stellar Halo Velocity Anisotropy With 3D Kinematics

    NASA Astrophysics Data System (ADS)

    Cunningham, Emily C.; Deason, Alis J.; Guhathakurta, Puragra; Rockosi, Constance M.; van der Marel, Roeland P.; Sohn, S. Tony

    2016-08-01

    We present the first measurement of the anisotropy parameter β using 3D kinematic information outside of the solar neighborhood. Our sample consists of 13 Milky Way halo stars with measured proper motions and radial velocities in the line of sight of M31. Proper motions were measured using deep, multi-epoch HST imaging, and radial velocities were measured from Keck II/DEIMOS spectra. We measure β = -0.3-0.9 +0.4, which is consistent with isotropy, and inconsistent with measurements in the solar neighborhood. We suggest that this may be the kinematic signature of a relatively early, massive accretion event, or perhaps several such events.

  9. Supernova Remnant in 3-D

    NASA Technical Reports Server (NTRS)

    2009-01-01

    wavelengths. Since the amount of the wavelength shift is related to the speed of motion, one can determine how fast the debris are moving in either direction. Because Cas A is the result of an explosion, the stellar debris is expanding radially outwards from the explosion center. Using simple geometry, the scientists were able to construct a 3-D model using all of this information. A program called 3-D Slicer modified for astronomical use by the Astronomical Medicine Project at Harvard University in Cambridge, Mass. was used to display and manipulate the 3-D model. Commercial software was then used to create the 3-D fly-through.

    The blue filaments defining the blast wave were not mapped using the Doppler effect because they emit a different kind of light synchrotron radiation that does not emit light at discrete wavelengths, but rather in a broad continuum. The blue filaments are only a representation of the actual filaments observed at the blast wave.

    This visualization shows that there are two main components to this supernova remnant: a spherical component in the outer parts of the remnant and a flattened (disk-like) component in the inner region. The spherical component consists of the outer layer of the star that exploded, probably made of helium and carbon. These layers drove a spherical blast wave into the diffuse gas surrounding the star. The flattened component that astronomers were unable to map into 3-D prior to these Spitzer observations consists of the inner layers of the star. It is made from various heavier elements, not all shown in the visualization, such as oxygen, neon, silicon, sulphur, argon and iron.

    High-velocity plumes, or jets, of this material are shooting out from the explosion in the plane of the disk-like component mentioned above. Plumes of silicon appear in the northeast and southwest, while those of iron are seen in the southeast and north. These jets were already known and Doppler velocity measurements have been made for these

  10. Ground Motion Relations While TBM Drilling in Unconsolidated Sediments

    NASA Astrophysics Data System (ADS)

    Grund, Michael; Ritter, Joachim R. R.; Gehrig, Manuel

    2016-05-01

    The induced ground motions due to the tunnel boring machine (TBM), which has been used for the drilling of the urban metro tunnel in Karlsruhe (SW Germany), has been studied using the continuous recordings of seven seismological monitoring stations. The drilling has been undertaken in unconsolidated sediments of the Rhine River system, relatively close to the surface at 6-20 m depth and in the vicinity of many historic buildings. Compared to the reference values of DIN 4150-3 (1-80 Hz), no exceedance of the recommended peak ground velocity (PGV) limits (3-5 mm/s) was observed at the single recording site locations on building basements during the observation period between October 2014 and February 2015. Detailed analyses in the time and frequency domains helped with the detection of the sources of several specific shaking signals in the recorded time series and with the comparison of the aforementioned TBM-induced signals. The amplitude analysis allowed for the determination of a PGV attenuation relation (quality factor Q ~ 30-50) and the comparison of the TBM-induced ground motion with other artificially induced and natural ground motions of similar amplitudes.

  11. Bootstrapping 3D fermions

    DOE PAGES

    Iliesiu, Luca; Kos, Filip; Poland, David; Pufu, Silviu S.; Simmons-Duffin, David; Yacoby, Ran

    2016-03-17

    We study the conformal bootstrap for a 4-point function of fermions <ψψψψ> in 3D. We first introduce an embedding formalism for 3D spinors and compute the conformal blocks appearing in fermion 4-point functions. Using these results, we find general bounds on the dimensions of operators appearing in the ψ × ψ OPE, and also on the central charge CT. We observe features in our bounds that coincide with scaling dimensions in the GrossNeveu models at large N. Finally, we also speculate that other features could coincide with a fermionic CFT containing no relevant scalar operators.

  12. 3D dynamic roadmapping for abdominal catheterizations.

    PubMed

    Bender, Frederik; Groher, Martin; Khamene, Ali; Wein, Wolfgang; Heibel, Tim Hauke; Navab, Nassir

    2008-01-01

    Despite rapid advances in interventional imaging, the navigation of a guide wire through abdominal vasculature remains, not only for novice radiologists, a difficult task. Since this navigation is mostly based on 2D fluoroscopic image sequences from one view, the process is slowed down significantly due to missing depth information and patient motion. We propose a novel approach for 3D dynamic roadmapping in deformable regions by predicting the location of the guide wire tip in a 3D vessel model from the tip's 2D location, respiratory motion analysis, and view geometry. In a first step, the method compensates for the apparent respiratory motion in 2D space before backprojecting the 2D guide wire tip into three dimensional space, using a given projection matrix. To countervail the error connected to the projection parameters and the motion compensation, as well as the ambiguity caused by vessel deformation, we establish a statistical framework, which computes a reliable estimate of the guide wire tip location within the 3D vessel model. With this 2D-to-3D transfer, the navigation can be performed from arbitrary viewing angles, disconnected from the static perspective view of the fluoroscopic sequence. Tests on a realistic breathing phantom and on synthetic data with a known ground truth clearly reveal the superiority of our approach compared to naive methods for 3D roadmapping. The concepts and information presented in this paper are based on research and are not commercially available. PMID:18982662

  13. Relative Motion of the WDS 05110+3203 STF 648 System, With a Protocol for Calculating Relative Motion

    NASA Astrophysics Data System (ADS)

    Wiley, E. O.

    2010-07-01

    Relative motion studies of visual double stars can be investigated using least squares regression techniques and readily accessible programs such as Microsoft Excel and a calculator. Optical pairs differ from physical pairs under most geometries in both their simple scatter plots and their regression models. A step-by-step protocol for estimating the rectilinear elements of an optical pair is presented. The characteristics of physical pairs using these techniques are discussed.

  14. 3D Ultrafast Ultrasound Imaging In Vivo

    PubMed Central

    Provost, Jean; Papadacci, Clement; Arango, Juan Esteban; Imbault, Marion; Gennisson, Jean-Luc; Tanter, Mickael; Pernot, Mathieu

    2014-01-01

    Very high frame rate ultrasound imaging has recently allowed for the extension of the applications of echography to new fields of study such as the functional imaging of the brain, cardiac electrophysiology, and the quantitative real-time imaging of the intrinsic mechanical properties of tumors, to name a few, non-invasively and in real time. In this study, we present the first implementation of Ultrafast Ultrasound Imaging in three dimensions based on the use of either diverging or plane waves emanating from a sparse virtual array located behind the probe. It achieves high contrast and resolution while maintaining imaging rates of thousands of volumes per second. A customized portable ultrasound system was developed to sample 1024 independent channels and to drive a 32×32 matrix-array probe. Its capability to track in 3D transient phenomena occurring in the millisecond range within a single ultrafast acquisition was demonstrated for 3-D Shear-Wave Imaging, 3-D Ultrafast Doppler Imaging and finally 3D Ultrafast combined Tissue and Flow Doppler. The propagation of shear waves was tracked in a phantom and used to characterize its stiffness. 3-D Ultrafast Doppler was used to obtain 3-D maps of Pulsed Doppler, Color Doppler, and Power Doppler quantities in a single acquisition and revealed, for the first time, the complex 3-D flow patterns occurring in the ventricles of the human heart during an entire cardiac cycle, and the 3-D in vivo interaction of blood flow and wall motion during the pulse wave in the carotid at the bifurcation. This study demonstrates the potential of 3-D Ultrafast Ultrasound Imaging for the 3-D real-time mapping of stiffness, tissue motion, and flow in humans in vivo and promises new clinical applications of ultrasound with reduced intra- and inter-observer variability. PMID:25207828

  15. Venus in 3D

    NASA Astrophysics Data System (ADS)

    Plaut, J. J.

    1993-08-01

    Stereographic images of the surface of Venus which enable geologists to reconstruct the details of the planet's evolution are discussed. The 120-meter resolution of these 3D images make it possible to construct digital topographic maps from which precise measurements can be made of the heights, depths, slopes, and volumes of geologic structures.

  16. 3D reservoir visualization

    SciTech Connect

    Van, B.T.; Pajon, J.L.; Joseph, P. )

    1991-11-01

    This paper shows how some simple 3D computer graphics tools can be combined to provide efficient software for visualizing and analyzing data obtained from reservoir simulators and geological simulations. The animation and interactive capabilities of the software quickly provide a deep understanding of the fluid-flow behavior and an accurate idea of the internal architecture of a reservoir.

  17. Possible migration front of gas-related fluid inferred from interpretation on 3D-seismic data in the eastern Nankai Trough

    NASA Astrophysics Data System (ADS)

    Otsuka, H.; Morita, S.; Tanahashi, M.; Ashi, J.; Nagakubo, S.; Fujii, T.

    2008-12-01

    High resolution 3D seismic survey, "Tokai-oki to Kumano-nada", was conducted for methane hydrate exploration in the eastern Nankai Trough by METI in 2002. Our study focuses on zigzag-shaped specific reflectors on BSR margins, which have been recognized by JOGMEC on the 3D data. We call the reflectors "gFoldback Reflectors (FBRs)"h in this study. From the edge of BSR, the 1st FBR generally extends down to lower formation below the BSR crossing sedimentary horizons. The following FBRs (often the 2nd, sometimes 3rd and above) extend down from the edge of the last FBR forming bellows-like shape. The 1st FBR indicates normal polarity (antiphase of BSR), and the following FBRs change their polarities alternately. FBRs are mostly developed in the well-stratified formation but not in the area of frequent fractures and the area of major lateral lithological change. FBR generally corresponds to lateral seismic facies boundary between BSR distribution area and outside the BSR area. The formation beneath the BSR shows dimmed facies characterized by relatively low amplitude and lack of high frequency components in contrast to outside the BSR area of normal facies. Seismic velocity analysis (JOGMEC, personal communication) suggests that FBRs correspond to velocity boundaries, where the dimmed faceis below the BSR coinsides with relatively low velocity. The polarities of FBRs are also consistent with such velocity changes. Such dimmed facies with low velocity and low amplitude anomaly suggests relation to gas components in the formation water. The lowest FBR does not cross major unconformities, which often exhibit negative polarity suggesting fluid migration from the lower unit. In this case, the lowest FBR which shows negative polarity and reaches the unconformity is to be merged to the negative reflection of the unconformity. In addition, high amplitude layers are sometimes recognized at foldbacks convex to the outside the BSR area. These high amplitude layers probably having

  18. Preparation and 3D Tracking of Catalytic Swimming Devices

    PubMed Central

    Campbell, Andrew; Archer, Richard; Ebbens, Stephen

    2016-01-01

    We report a method to prepare catalytically active Janus colloids that "swim" in fluids and describe how to determine their 3D motion using fluorescence microscopy. One commonly deployed method for catalytically active colloids to produce enhanced motion is via an asymmetrical distribution of catalyst. Here this is achieved by spin coating a dispersed layer of fluorescent polymeric colloids onto a flat planar substrate, and then using directional platinum vapor deposition to half coat the exposed colloid surface, making a two faced "Janus" structure. The Janus colloids are then re-suspended from the planar substrate into an aqueous solution containing hydrogen peroxide. Hydrogen peroxide serves as a fuel for the platinum catalyst, which is decomposed into water and oxygen, but only on one side of the colloid. The asymmetry results in gradients that produce enhanced motion, or "swimming". A fluorescence microscope, together with a video camera is used to record the motion of individual colloids. The center of the fluorescent emission is found using image analysis to provide an x and y coordinate for each frame of the video. While keeping the microscope focal position fixed, the fluorescence emission from the colloid produces a characteristic concentric ring pattern which is subject to image analysis to determine the particles relative z position. In this way 3D trajectories for the swimming colloid are obtained, allowing swimming velocity to be accurately measured, and physical phenomena such as gravitaxis, which may bias the colloids motion to be detected. PMID:27404327

  19. 3-D Television Without Glasses: On Standard Bandwidth

    NASA Astrophysics Data System (ADS)

    Collender, Robert B.

    1983-10-01

    This system for stereoscopic television uses relative camera to scene translating motion and does not require optical aids at the observer's eyes, presents a horizontal parallax (hologram like) 3-D full motion scene to a wide audience, has no dead zones or pseudo 3-D zones over the entire horizontal viewing field and operates on standard telecast signals requiring no changes to the television studio equipment or the home television antenna. The only change required at the receiving end is a special television projector. The system is compatible with pre-recorded standard color television signals. The cathode ray tube is eliminated by substituting an array of solid state charge couple device liquid crystal light valves which have the property to receive television fields in parallel from memory and which are arrayed in an arc for scanning purposes. The array contains a scrolled sequence of successive television frames which serve as the basis for 3-D horizontal viewing parallax. These light valves reflect polarized light with the degree of polarization made a function of the scene brightness. The array is optically scanned and the sequence rapidly projected onto a cylindrical concaved semi-specular screen that returns all of the light to a rapidly translating vertical "aerial" exit slit of light through which the audience views the reconstructed 3-D scene.

  20. A Closed Form Vectorial Solution to the Relative Orbital Motion

    NASA Astrophysics Data System (ADS)

    Condurache, C.; Martinuşi, V.

    2007-05-01

    Time-explicit solutions for relative Keplerian dynamics are presented for the general case in which the reference trajectory is elliptic, parabolic or hyperbolic. The non-linear differential equation modeling the motion is solved by means of tensorial and vectorial regularization methods. This regularizing procedure extends the approaches of Levi-Civita and Kustaanheimo-Stiefel in the case of Kepler problem in rotating reference frames. The solution generalizes the approximate results obtained from Hill-Clohessy-Wiltshire, Lawden and Tschauner-Hempel equations. The approximate solutions derived from the liniarized models are in fact the first linear approximation of the exact solution the authors have found.

  1. Determination of Relative Tensor Orientations by γ-encoded Chemical Shift Anisotropy/Heteronuclear Dipolar Coupling 3D NMR Spectroscopy in Biological Solids

    PubMed Central

    Hou, Guangjin; Paramasivam, Sivakumar; Byeon, In-Ja L.; Gronenborn, Angela M.

    2011-01-01

    In this paper, we present 3D chemical shift anisotropy (CSA)/dipolar coupling correlation experiments, based on γ-encoded R-type symmetry sequences. The γ-encoded correlation spectra are exquisitely sensitive to the relative orientation of the CSA and dipolar tensors and can provide important structural and dynamic information in peptides and proteins. We show that the first-order (m = ±1) and second-order (m = ±2) Hamiltonians in the R-symmetry recoupling sequences give rise to different correlation patterns due to their different dependencies on the crystallite orientation. The relative orientation between CSA and dipolar tensors can be determined by fitting the corresponding correlation patterns. The orientation of 15N CSA tensor in the quasi-molecular frame is determined by the relative Euler angles, αNH and βNH, when the combined symmetry schemes are applied for orientational studies of 1H-15N dipolar and 15N CSA tensors. The correlation experiments introduced here work at moderate magic angle spinning frequencies (10-20 kHz) and allow for simultaneous measurement of multiple sites of interest. We studied the orientational sensitivity of γ-encoded symmetry-based recoupling techniques numerically and experimentally. The results are demonstrated on [15N]-N-acetyl-valine (NAV) and N-formyl-Met-Leu-Phe (MLF) tripeptide. PMID:20936218

  2. Evaluation of surface/interface-related physicochemical and microstructural properties of gelatin 3D scaffolds, and their influence on fibroblast growth and morphology.

    PubMed

    Gorgieva, Selestina; Štrancar, Janez; Kokol, Vanja

    2014-11-01

    This article present new insights in complex relation between surface- and interface-related physicochemical properties and microstructuring of three-dimensional (3D) gelatin scaffolds, being fabricated by simultaneous temperature-controlled freeze-thawing cycle and in situ cross-linking using variable conditions (pH) and molarity of carbodiimide reagents, on the seeding and growth of fibroblast cells with subsequent tracking of their spreading and morphology. Rarely populated cells with rounded morphology and small elongations are observed on negative charge-rich scaffold surface with a lower cross-linking degree (CD), and consequently higher molecular mobility and availability of cell-recognition sequences, in comparison with the prominently elongated and densely populated cells on a positively charged scaffold's surface with higher CD and low mobility. Surface microstructure effect was demonstrated by cell vacuolization and their pure intercommunication being present on scaffold's bottom side with smaller pores (25 ± 19 µm) and pore wall thickness (9 ± 5 µm), over the air-exposed side with twice bigger pores (56 ± 38 µm) and pore wall thicknesses (12 ± 6 µm). Strong correlations of CD (r(2) = 0.96) and local molecular mobility (r(2)  = -0.44) with pH and reagents molarity, as well as microstructure features being related to temperature gradient, imply on possibility to modulate scaffold's properties in a direction to guide cell viability and most likely its genotype development.

  3. 3D Geomodeling of the Venezuelan Andes

    NASA Astrophysics Data System (ADS)

    Monod, B.; Dhont, D.; Hervouet, Y.; Backé, G.; Klarica, S.; Choy, J. E.

    2010-12-01

    The crustal structure of the Venezuelan Andes is investigated thanks to a geomodel. The method integrates surface structural data, remote sensing imagery, crustal scale balanced cross-sections, earthquake locations and focal mechanism solutions to reconstruct fault surfaces at the scale of the mountain belt into a 3D environment. The model proves to be essential for understanding the basic processes of both the orogenic float and the tectonic escape involved in the Plio-Quaternary evolution of the orogen. The reconstruction of the Bocono and Valera faults reveals the 3D shape of the Trujillo block whose geometry can be compared to a boat bow floating over a mid-crustal detachment horizon emerging at the Bocono-Valera triple junction. Motion of the Trujillo block is accompanied by a generalized extension in the upper crust accommodated by normal faults with listric geometries such as for the Motatan, Momboy and Tuñame faults. Extension may be related to the lateral spreading of the upper crust, suggesting that gravity forces play an important role in the escape process.

  4. Do fault-related folds follow the same scaling law as their associated faults? A study using 3D seismic reflection data

    NASA Astrophysics Data System (ADS)

    Pitcher, Eleanor; Imber, Jonathan

    2016-04-01

    Fractal distributions are largely agreed to follow a power-law distribution. Power-law scaling relationships describe the size distribution of fault lengths or displacements. Being able to identify these scaling properties provides a powerful tool for predicting the numbers of geological structures, such as small-scale faults in sedimentary basins that are below the resolution of seismic reflection data. The aim of this study is to determine whether fault-related folds follow the same power law scaling properties, or if they follow a different scaling law. We use TrapTester to interpret a 3D seismic volume from the Gulf of Mexico to construct fault planes and cut-off lines along selected horizons in the vicinity of fault upper tip lines. Fault-related folds are particularly well developed above steeply plunging tip lines, but are discontinuous along the strike of the fault plane. Folding is less well developed on horizons that intersect, or lie close to, the locus of maximum throw (bullseye) of the fault plane. We then measured fold amplitudes and fault throws across these same horizons using a one-dimensional multi-line sampling approach. Graphs of fault throw and fold amplitude vs. distance parallel to fault strike show that folds occur where there is no resolvable fault throw, and that fault throw and fold amplitudes show an approximately inverse relationship. Close to the locus of maximum throw, there is largely just faulting, whilst at the upper tip line folding predominates. By plotting cumulative frequency against throw for the fault and fold data we can investigate whether the data follow a power law, log normal or exponential distribution. Plotting the data on log vs. log (power law), linear vs. log (log normal) and log vs. linear (exponential) axes allow us to establish which displays the best "straight-line fit". We observed that the fault throw data satisfied a straight-line on a log vs. log graph - implying a power law distribution - and also returned

  5. RELATIVE PROPER MOTIONS IN THE RHO OPHIUCHI CLUSTER

    SciTech Connect

    Wilking, Bruce A.; Sullivan, Timothy; Vrba, Frederick J. E-mail: tsullivan@umsl.edu

    2015-12-10

    Near-infrared images optimized for astrometry have been obtained for four fields in the high-density L 1688 cloud core over a 12 year period. The targeted regions include deeply embedded young stellar objects (YSOs) and very low luminosity objects too faint and/or heavily veiled for spectroscopy. Relative proper motions in R.A. and decl. were computed for 111 sources and again for a subset of 65 YSOs, resulting in a mean proper motion of (0,0) for each field. Assuming each field has the same mean proper motion, YSOs in the four fields were combined to yield estimates of the velocity dispersions in R.A. and decl. that are consistent with 1.0 km s{sup −1}. These values appear to be independent of the evolutionary state of the YSOs. The observed velocity dispersions are consistent with the dispersion in radial velocity derived for optically visible YSOs at the periphery of the cloud core and are consistent with virial equilibrium. The higher velocity dispersion of the YSOs in the plane of the sky relative to that of dense cores may be a consequence of stellar encounters due to dense cores and filaments fragmenting to form small groups of stars or the global collapse of the L 1688 cloud core. An analysis of the differential magnitudes of objects over the 12 year baseline has not only confirmed the near-infrared variability for 29 YSOs established by prior studies, but has also identified 18 new variability candidates. Four of these have not been previously identified as YSOs and may be newly identified cluster members.

  6. 3D rapid mapping

    NASA Astrophysics Data System (ADS)

    Isaksson, Folke; Borg, Johan; Haglund, Leif

    2008-04-01

    In this paper the performance of passive range measurement imaging using stereo technique in real time applications is described. Stereo vision uses multiple images to get depth resolution in a similar way as Synthetic Aperture Radar (SAR) uses multiple measurements to obtain better spatial resolution. This technique has been used in photogrammetry for a long time but it will be shown that it is now possible to do the calculations, with carefully designed image processing algorithms, in e.g. a PC in real time. In order to get high resolution and quantitative data in the stereo estimation a mathematical camera model is used. The parameters to the camera model are settled in a calibration rig or in the case of a moving camera the scene itself can be used for calibration of most of the parameters. After calibration an ordinary TV camera has an angular resolution like a theodolite, but to a much lower price. The paper will present results from high resolution 3D imagery from air to ground. The 3D-results from stereo calculation of image pairs are stitched together into a large database to form a 3D-model of the area covered.

  7. 3D medical thermography device

    NASA Astrophysics Data System (ADS)

    Moghadam, Peyman

    2015-05-01

    In this paper, a novel handheld 3D medical thermography system is introduced. The proposed system consists of a thermal-infrared camera, a color camera and a depth camera rigidly attached in close proximity and mounted on an ergonomic handle. As a practitioner holding the device smoothly moves it around the human body parts, the proposed system generates and builds up a precise 3D thermogram model by incorporating information from each new measurement in real-time. The data is acquired in motion, thus it provides multiple points of view. When processed, these multiple points of view are adaptively combined by taking into account the reliability of each individual measurement which can vary due to a variety of factors such as angle of incidence, distance between the device and the subject and environmental sensor data or other factors influencing a confidence of the thermal-infrared data when captured. Finally, several case studies are presented to support the usability and performance of the proposed system.

  8. 3D holoscopic video imaging system

    NASA Astrophysics Data System (ADS)

    Steurer, Johannes H.; Pesch, Matthias; Hahne, Christopher

    2012-03-01

    Since many years, integral imaging has been discussed as a technique to overcome the limitations of standard still photography imaging systems where a three-dimensional scene is irrevocably projected onto two dimensions. With the success of 3D stereoscopic movies, a huge interest in capturing three-dimensional motion picture scenes has been generated. In this paper, we present a test bench integral imaging camera system aiming to tailor the methods of light field imaging towards capturing integral 3D motion picture content. We estimate the hardware requirements needed to generate high quality 3D holoscopic images and show a prototype camera setup that allows us to study these requirements using existing technology. The necessary steps that are involved in the calibration of the system as well as the technique of generating human readable holoscopic images from the recorded data are discussed.

  9. Relative motion of orbiting particles under the influence of perturbing forces. Volume 3: Construction of relative motion traces

    NASA Technical Reports Server (NTRS)

    Eades, J. B., Jr.

    1973-01-01

    Geometric traces can be simply constructed to illustrate the relative motions experienced by particles in a number of problem situations. These diagrams describe the displacements and hodographs which arise as a consequence of initial value inputs and selected disturbance (force) conditions. Due to the linearization which is imposed on the mathematical formulation there is a separation of the in-plane and out-of-plane coordinate solutions. The construction of in-plane traces is easier to represent and to visualize. The out-of-plane geometries are the more complicated cases and generally need some added specializations in order to acquire figures which have some degree of symmetry and simplicity.

  10. Magmatic Systems in 3-D

    NASA Astrophysics Data System (ADS)

    Kent, G. M.; Harding, A. J.; Babcock, J. M.; Orcutt, J. A.; Bazin, S.; Singh, S.; Detrick, R. S.; Canales, J. P.; Carbotte, S. M.; Diebold, J.

    2002-12-01

    Multichannel seismic (MCS) images of crustal magma chambers are ideal targets for advanced visualization techniques. In the mid-ocean ridge environment, reflections originating at the melt-lens are well separated from other reflection boundaries, such as the seafloor, layer 2A and Moho, which enables the effective use of transparency filters. 3-D visualization of seismic reflectivity falls into two broad categories: volume and surface rendering. Volumetric-based visualization is an extremely powerful approach for the rapid exploration of very dense 3-D datasets. These 3-D datasets are divided into volume elements or voxels, which are individually color coded depending on the assigned datum value; the user can define an opacity filter to reject plotting certain voxels. This transparency allows the user to peer into the data volume, enabling an easy identification of patterns or relationships that might have geologic merit. Multiple image volumes can be co-registered to look at correlations between two different data types (e.g., amplitude variation with offsets studies), in a manner analogous to draping attributes onto a surface. In contrast, surface visualization of seismic reflectivity usually involves producing "fence" diagrams of 2-D seismic profiles that are complemented with seafloor topography, along with point class data, draped lines and vectors (e.g. fault scarps, earthquake locations and plate-motions). The overlying seafloor can be made partially transparent or see-through, enabling 3-D correlations between seafloor structure and seismic reflectivity. Exploration of 3-D datasets requires additional thought when constructing and manipulating these complex objects. As numbers of visual objects grow in a particular scene, there is a tendency to mask overlapping objects; this clutter can be managed through the effective use of total or partial transparency (i.e., alpha-channel). In this way, the co-variation between different datasets can be investigated

  11. Relative dynamics and motion control of nanosatellite formation flying

    NASA Astrophysics Data System (ADS)

    Pimnoo, Ammarin; Hiraki, Koju

    2016-04-01

    Orbit selection is a necessary factor in nanosatellite formation mission design/meanwhile, to keep the formation, it is necessary to consume fuel. Therefore, the best orbit design for nanosatellite formation flying should be one that requires the minimum fuel consumption. The purpose of this paper is to analyse orbit selection with respect to the minimum fuel consumption, to provide a convenient way to estimate the fuel consumption for keeping nanosatellite formation flying and to present a simplified method of formation control. The formation structure is disturbed by J2 gravitational perturbation and other perturbing accelerations such as atmospheric drag. First, Gauss' Variation Equations (GVE) are used to estimate the essential ΔV due to the J2 perturbation and atmospheric drag. The essential ΔV presents information on which orbit is good with respect to the minimum fuel consumption. Then, the linear equations which account for J2 gravitational perturbation of Schweighart-Sedwick are presented and used to estimate the fuel consumption to maintain the formation structure. Finally, the relative dynamics motion is presented as well as a simplified motion control of formation structure by using GVE.

  12. Scaling relations between bone volume and bone structure as found using 3D µCT images of the trabecular bone taken from different skeletal sites

    NASA Astrophysics Data System (ADS)

    Raeth, Christoph; Müller, Dirk; Sidorenko, Irina; Monetti, Roberto; Eckstein, Felix; Matsuura, Maiko; Lochmüller, Eva-Maria; Zysset, Philippe K.; Bauer, Jan

    2010-03-01

    According to Wolff's law bone remodels in response to the mechanical stresses it experiences so as to produce a minimal-weight structure that is adapted to its applied stresses. Here, we investigate the relations between bone volume and structure for the trabecular bone using 3D μCT images taken from different skeletal sites in vitro, namely from the distal radii (96 specimens), thoracic (73 specimens) and lumbar vertebrae (78 specimens). We determine the local structure of the trabecular network by calculating isotropic and anisotropic scaling indices (α, αz). These measures have been proven to be able to discriminate rod- from sheet-like structures and to quantify the alignment of structures with respect to a preferential direction as given by the direction of the external force. Comparing global structure measures derived from the scaling indices (mean, standard deviation) with the bone mass (BV/TV) we find that all correlations obey very accurately power laws with scaling exponents of 0.14, 0.12, 0.15 (<α>~), -0.2, -017, -0.17 (σ(αz)), 0.09, 0.05, 0.07 (<~αz>~) and -0.20, -0.11 ,-0.13 (σ(αz)) distal radius, thoracic vertebra and lumbar vertebra respectively. Thus, these relations turn out to be site-independent, albeit the mechanical stresses to which the bones of the forearm and the spine are exposed, are quite different. The similar alignment might not be in agreement with a universal validity of Wolff's law. On the other hand, such universal power law relations may allow to develop additional diagnostic means to better assess healthy and osteoporotic bone.

  13. Forensic 3D scene reconstruction

    NASA Astrophysics Data System (ADS)

    Little, Charles Q.; Small, Daniel E.; Peters, Ralph R.; Rigdon, J. B.

    2000-05-01

    Traditionally law enforcement agencies have relied on basic measurement and imaging tools, such as tape measures and cameras, in recording a crime scene. A disadvantage of these methods is that they are slow and cumbersome. The development of a portable system that can rapidly record a crime scene with current camera imaging, 3D geometric surface maps, and contribute quantitative measurements such as accurate relative positioning of crime scene objects, would be an asset to law enforcement agents in collecting and recording significant forensic data. The purpose of this project is to develop a fieldable prototype of a fast, accurate, 3D measurement and imaging system that would support law enforcement agents to quickly document and accurately record a crime scene.

  14. Forensic 3D Scene Reconstruction

    SciTech Connect

    LITTLE,CHARLES Q.; PETERS,RALPH R.; RIGDON,J. BRIAN; SMALL,DANIEL E.

    1999-10-12

    Traditionally law enforcement agencies have relied on basic measurement and imaging tools, such as tape measures and cameras, in recording a crime scene. A disadvantage of these methods is that they are slow and cumbersome. The development of a portable system that can rapidly record a crime scene with current camera imaging, 3D geometric surface maps, and contribute quantitative measurements such as accurate relative positioning of crime scene objects, would be an asset to law enforcement agents in collecting and recording significant forensic data. The purpose of this project is to develop a feasible prototype of a fast, accurate, 3D measurement and imaging system that would support law enforcement agents to quickly document and accurately record a crime scene.

  15. Dynamics and control of satellite relative motion in proximity operations

    NASA Astrophysics Data System (ADS)

    Okasha, Mohamed Elsayed Aly Abd Elaziz

    In this dissertation, the development of relative navigation, guidance, and control algorithms of an autonomous space rendezvous and docking system are presented. These algorithms are based on innovative formulations of the relative motion equations that are completely explicit in time. The navigation system uses an extended Kalman filter based on these formulations to estimate the relative position and velocity of the chaser vehicle with respect to the target vehicle and the chaser attitude and gyro biases. This filter uses the range and angle measurements of the target relative to the chaser from a simulated LIDAR system, along with the star tracker and gyro measurements of the chaser. The corresponding measurement models, process noise matrix, and other filter parameters are provided. The guidance and control algorithms are based on the glideslope used in the past for rendezvous and proximity operations of the Space Shuttle with other vehicles. These algorithms are used to approach, flyaround, and to depart from a target vehicle in elliptic orbits. The algorithms are general and able to translate the chaser vehicle in any direction, decelerate while approaching the target vehicle, and accelerate when moving away. Numerical nonlinear simulations that illustrate the relative navigation, attitude estimation, guidance, and control algorithm's, as well as performance and accuracy are evaluated in the research study.

  16. Detection of subjects and brain regions related to Alzheimer's disease using 3D MRI scans based on eigenbrain and machine learning

    PubMed Central

    Zhang, Yudong; Dong, Zhengchao; Phillips, Preetha; Wang, Shuihua; Ji, Genlin; Yang, Jiquan; Yuan, Ti-Fei

    2015-01-01

    Purpose: Early diagnosis or detection of Alzheimer's disease (AD) from the normal elder control (NC) is very important. However, the computer-aided diagnosis (CAD) was not widely used, and the classification performance did not reach the standard of practical use. We proposed a novel CAD system for MR brain images based on eigenbrains and machine learning with two goals: accurate detection of both AD subjects and AD-related brain regions. Method: First, we used maximum inter-class variance (ICV) to select key slices from 3D volumetric data. Second, we generated an eigenbrain set for each subject. Third, the most important eigenbrain (MIE) was obtained by Welch's t-test (WTT). Finally, kernel support-vector-machines with different kernels that were trained by particle swarm optimization, were used to make an accurate prediction of AD subjects. Coefficients of MIE with values higher than 0.98 quantile were highlighted to obtain the discriminant regions that distinguish AD from NC. Results: The experiments showed that the proposed method can predict AD subjects with a competitive performance with existing methods, especially the accuracy of the polynomial kernel (92.36 ± 0.94) was better than the linear kernel of 91.47 ± 1.02 and the radial basis function (RBF) kernel of 86.71 ± 1.93. The proposed eigenbrain-based CAD system detected 30 AD-related brain regions (Anterior Cingulate, Caudate Nucleus, Cerebellum, Cingulate Gyrus, Claustrum, Inferior Frontal Gyrus, Inferior Parietal Lobule, Insula, Lateral Ventricle, Lentiform Nucleus, Lingual Gyrus, Medial Frontal Gyrus, Middle Frontal Gyrus, Middle Occipital Gyrus, Middle Temporal Gyrus, Paracentral Lobule, Parahippocampal Gyrus, Postcentral Gyrus, Posterial Cingulate, Precentral Gyrus, Precuneus, Subcallosal Gyrus, Sub-Gyral, Superior Frontal Gyrus, Superior Parietal Lobule, Superior Temporal Gyrus, Supramarginal Gyrus, Thalamus, Transverse Temporal Gyrus, and Uncus). The results were coherent with existing

  17. Quiescent Galaxies in the 3D-HST Survey: Spectroscopic Confirmation of a Large Number of Galaxies with Relatively Old Stellar Populations at Z approx. 2

    NASA Technical Reports Server (NTRS)

    Tease, Katherine Whitaker; VanDokkum, Pieter G.; Brammer, Gabriel; Momcheva, Ivelina G.; Skelton, Rosalind; Franx, Marijn; Kriek, Mariska; Labbe, Ivo; Fumagalli, Mattia; Lundgren, Britt F.; Nelson, Erica J.; Patel, Shannon G.; Rix, Hans-Walter

    2013-01-01

    Quiescent galaxies at zeta approximately 2 have been identified in large numbers based on rest-frame colors, but only a small number of these galaxies have been spectroscopically confirmed to show that their rest-frame optical spectra show either strong Balmer or metal absorption lines. Here, we median stack the rest-frame optical spectra for 171 photometrically quiescent galaxies at 1.4 less than z less than 2.2 from the 3D-HST grism survey. In addition to H(Beta) (lambda 4861 Angstroms), we unambiguously identify metal absorption lines in the stacked spectrum, including the G band (lambda 4304 Angstroms), Mg I (lambda 5175 Angstroms), and Na i (lambda 5894 Angstroms). This finding demonstrates that galaxies with relatively old stellar populations already existed when the universe was approximately 3 Gyr old, and that rest-frame color selection techniques can efficiently select them. We find an average age of 1.3(+0.1/-0.3) Gyr when fitting a simple stellar population to the entire stack. We confirm our previous result from medium-band photometry that the stellar age varies with the colors of quiescent galaxies: the reddest 80% of galaxies are dominated by metal lines and have a relatively old mean age of 1.6(+0.5/-0.4) Gyr, whereas the bluest (and brightest) galaxies have strong Balmer lines and a spectroscopic age of 0.9(+0.2/-0.1) Gyr. Although the spectrum is dominated by an evolved stellar population, we also find [O III] and Hß emission. Interestingly, this emission is more centrally concentrated than the continuum with L(sub OIII) = 1.7 +/- 0.3 × 10(exp 40 erg s-1, indicating residual central star formation or nuclear activity.

  18. Quiescent Galaxies in the 3D-HST Survey: Spectroscopic Confirmation of a Large Number of Galaxies With Relatively Old Stellar Populations at z Approx. 2

    NASA Technical Reports Server (NTRS)

    Tease, Katherine Whitaker; vanDokkum, Pieter G.; Brammer, Gabriel; Momcheva, Ivelina; Skelton, Rosalind; Franx, Marijin; Kriek, Mariska; Labbe, Ivo; Fumagalli, Mattia; Lundgren, Britt F.; Nelson, Erica J.; Patel, Shannon G.; Rix, Hans-Walter

    2013-01-01

    Quiescent galaxies at z approx. 2 have been identified in large numbers based on rest-frame colors, but only a small number of these galaxies have been spectroscopically confirmed to show that their rest-frame optical spectra show either strong Balmer or metal absorption lines. Here, we median stack the rest-frame optical spectra for 171 photometrically quiescent galaxies at 1.4 < z < 2.2 from the 3D-HST grism survey. In addition to H (4861 ),we unambiguously identify metal absorption lines in the stacked spectrum, including the G band (4304 ),Mgi (5175 ), and Na i (5894 ). This finding demonstrates that galaxies with relatively old stellar populations already existed when the universe was approx. 3 Gyr old, and that rest-frame color selection techniques can efficiently select them. We find an average age of 1.3+0.10.3 Gyr when fitting a simple stellar population to the entire stack. We confirm our previous result from medium-band photometry that the stellar age varies with the colors of quiescent galaxies: the reddest 80 of galaxies are dominated by metal lines and have a relatively old mean age of 1.6+0.50.4 Gyr, whereas the bluest (and brightest) galaxies have strong Balmer lines and a spectroscopic age of 0.9+0.20.1 Gyr. Although the spectrum is dominated by an evolved stellar population, we also find [O iii] and H emission. Interestingly, this emission is more centrally concentrated than the continuum with LOiii = 1.7+/- 0.3 x 10(exp 40) erg/s, indicating residual central star formation or nuclear activity.

  19. QUIESCENT GALAXIES IN THE 3D-HST SURVEY: SPECTROSCOPIC CONFIRMATION OF A LARGE NUMBER OF GALAXIES WITH RELATIVELY OLD STELLAR POPULATIONS AT z {approx} 2

    SciTech Connect

    Whitaker, Katherine E.; Van Dokkum, Pieter G.; Momcheva, Ivelina G.; Skelton, Rosalind; Nelson, Erica J.; Brammer, Gabriel; Franx, Marijn; Labbe, Ivo; Fumagalli, Mattia; Patel, Shannon G.; Kriek, Mariska; Lundgren, Britt F.; Rix, Hans-Walter

    2013-06-20

    Quiescent galaxies at z {approx} 2 have been identified in large numbers based on rest-frame colors, but only a small number of these galaxies have been spectroscopically confirmed to show that their rest-frame optical spectra show either strong Balmer or metal absorption lines. Here, we median stack the rest-frame optical spectra for 171 photometrically quiescent galaxies at 1.4 < z < 2.2 from the 3D-HST grism survey. In addition to H{beta} ({lambda}4861 A), we unambiguously identify metal absorption lines in the stacked spectrum, including the G band ({lambda}4304 A), Mg I ({lambda}5175 A), and Na I ({lambda}5894 A). This finding demonstrates that galaxies with relatively old stellar populations already existed when the universe was {approx}3 Gyr old, and that rest-frame color selection techniques can efficiently select them. We find an average age of 1.3{sup +0.1}{sub -0.3} Gyr when fitting a simple stellar population to the entire stack. We confirm our previous result from medium-band photometry that the stellar age varies with the colors of quiescent galaxies: the reddest 80% of galaxies are dominated by metal lines and have a relatively old mean age of 1.6{sup +0.5}{sub -0.4} Gyr, whereas the bluest (and brightest) galaxies have strong Balmer lines and a spectroscopic age of 0.9{sup +0.2}{sub -0.1} Gyr. Although the spectrum is dominated by an evolved stellar population, we also find [O III] and H{beta} emission. Interestingly, this emission is more centrally concentrated than the continuum with L{sub OIII}=1.7{+-}0.3 Multiplication-Sign 10{sup 40} erg s{sup -1}, indicating residual central star formation or nuclear activity.

  20. GPU-Accelerated Denoising in 3D (GD3D)

    2013-10-01

    The raw computational power GPU Accelerators enables fast denoising of 3D MR images using bilateral filtering, anisotropic diffusion, and non-local means. This software addresses two facets of this promising application: what tuning is necessary to achieve optimal performance on a modern GPU? And what parameters yield the best denoising results in practice? To answer the first question, the software performs an autotuning step to empirically determine optimal memory blocking on the GPU. To answer themore » second, it performs a sweep of algorithm parameters to determine the combination that best reduces the mean squared error relative to a noiseless reference image.« less

  1. The yearly rate of Relative Thalamic Atrophy (yrRTA): a simple 2D/3D method for estimating deep gray matter atrophy in Multiple Sclerosis

    PubMed Central

    Menéndez-González, Manuel; Salas-Pacheco, José M.; Arias-Carrión, Oscar

    2014-01-01

    Despite a strong correlation to outcome, the measurement of gray matter (GM) atrophy is not being used in daily clinical practice as a prognostic factor and monitor the effect of treatments in Multiple Sclerosis (MS). This is mainly because the volumetric methods available to date are sophisticated and difficult to implement for routine use in most hospitals. In addition, the meanings of raw results from volumetric studies on regions of interest are not always easy to understand. Thus, there is a huge need of a methodology suitable to be applied in daily clinical practice in order to estimate GM atrophy in a convenient and comprehensive way. Given the thalamus is the brain structure found to be more consistently implied in MS both in terms of extent of atrophy and in terms of prognostic value, we propose a solution based in this structure. In particular, we propose to compare the extent of thalamus atrophy with the extent of unspecific, global brain atrophy, represented by ventricular enlargement. We name this ratio the “yearly rate of Relative Thalamic Atrophy” (yrRTA). In this report we aim to describe the concept of yrRTA and the guidelines for computing it under 2D and 3D approaches and explain the rationale behind this method. We have also conducted a very short crossectional retrospective study to proof the concept of yrRTA. However, we do not seek to describe here the validity of this parameter since these researches are being conducted currently and results will be addressed in future publications. PMID:25206331

  2. The yearly rate of Relative Thalamic Atrophy (yrRTA): a simple 2D/3D method for estimating deep gray matter atrophy in Multiple Sclerosis.

    PubMed

    Menéndez-González, Manuel; Salas-Pacheco, José M; Arias-Carrión, Oscar

    2014-01-01

    Despite a strong correlation to outcome, the measurement of gray matter (GM) atrophy is not being used in daily clinical practice as a prognostic factor and monitor the effect of treatments in Multiple Sclerosis (MS). This is mainly because the volumetric methods available to date are sophisticated and difficult to implement for routine use in most hospitals. In addition, the meanings of raw results from volumetric studies on regions of interest are not always easy to understand. Thus, there is a huge need of a methodology suitable to be applied in daily clinical practice in order to estimate GM atrophy in a convenient and comprehensive way. Given the thalamus is the brain structure found to be more consistently implied in MS both in terms of extent of atrophy and in terms of prognostic value, we propose a solution based in this structure. In particular, we propose to compare the extent of thalamus atrophy with the extent of unspecific, global brain atrophy, represented by ventricular enlargement. We name this ratio the "yearly rate of Relative Thalamic Atrophy" (yrRTA). In this report we aim to describe the concept of yrRTA and the guidelines for computing it under 2D and 3D approaches and explain the rationale behind this method. We have also conducted a very short crossectional retrospective study to proof the concept of yrRTA. However, we do not seek to describe here the validity of this parameter since these researches are being conducted currently and results will be addressed in future publications.

  3. The yearly rate of Relative Thalamic Atrophy (yrRTA): a simple 2D/3D method for estimating deep gray matter atrophy in Multiple Sclerosis.

    PubMed

    Menéndez-González, Manuel; Salas-Pacheco, José M; Arias-Carrión, Oscar

    2014-01-01

    Despite a strong correlation to outcome, the measurement of gray matter (GM) atrophy is not being used in daily clinical practice as a prognostic factor and monitor the effect of treatments in Multiple Sclerosis (MS). This is mainly because the volumetric methods available to date are sophisticated and difficult to implement for routine use in most hospitals. In addition, the meanings of raw results from volumetric studies on regions of interest are not always easy to understand. Thus, there is a huge need of a methodology suitable to be applied in daily clinical practice in order to estimate GM atrophy in a convenient and comprehensive way. Given the thalamus is the brain structure found to be more consistently implied in MS both in terms of extent of atrophy and in terms of prognostic value, we propose a solution based in this structure. In particular, we propose to compare the extent of thalamus atrophy with the extent of unspecific, global brain atrophy, represented by ventricular enlargement. We name this ratio the "yearly rate of Relative Thalamic Atrophy" (yrRTA). In this report we aim to describe the concept of yrRTA and the guidelines for computing it under 2D and 3D approaches and explain the rationale behind this method. We have also conducted a very short crossectional retrospective study to proof the concept of yrRTA. However, we do not seek to describe here the validity of this parameter since these researches are being conducted currently and results will be addressed in future publications. PMID:25206331

  4. Vection and visually induced motion sickness: how are they related?

    PubMed Central

    Keshavarz, Behrang; Riecke, Bernhard E.; Hettinger, Lawrence J.; Campos, Jennifer L.

    2015-01-01

    The occurrence of visually induced motion sickness has been frequently linked to the sensation of illusory self-motion (vection), however, the precise nature of this relationship is still not fully understood. To date, it is still a matter of debate as to whether vection is a necessary prerequisite for visually induced motion sickness (VIMS). That is, can there be VIMS without any sensation of self-motion? In this paper, we will describe the possible nature of this relationship, review the literature that addresses this relationship (including theoretical accounts of vection and VIMS), and offer suggestions with respect to operationally defining and reporting these phenomena in future. PMID:25941509

  5. Motion sickness susceptibility related to ACTH, ADH and TSH

    NASA Technical Reports Server (NTRS)

    Kohl, R. L.; Leach, C.; Homick, J. L.; Larochelle, F. T.

    1983-01-01

    The hypothesis that endogenous levels of certain hormones might be indicative of an individual's susceptibility to stressful motion is tested in a comparison of subjects classified as less prone to motion sickness with those of higher susceptibility. The levels of ACTH and vasopressin measured before exposure to stressful motion were twice as high in the less-suceptible group. No significant differences were noted in the levels of angiotensin, aldosterone, or TSH. The differences between the two groups were greater for a given hormone than for any of the changes induced by exposure to stressful motion.

  6. Dimensional accuracy of 3D printed vertebra

    NASA Astrophysics Data System (ADS)

    Ogden, Kent; Ordway, Nathaniel; Diallo, Dalanda; Tillapaugh-Fay, Gwen; Aslan, Can

    2014-03-01

    3D printer applications in the biomedical sciences and medical imaging are expanding and will have an increasing impact on the practice of medicine. Orthopedic and reconstructive surgery has been an obvious area for development of 3D printer applications as the segmentation of bony anatomy to generate printable models is relatively straightforward. There are important issues that should be addressed when using 3D printed models for applications that may affect patient care; in particular the dimensional accuracy of the printed parts needs to be high to avoid poor decisions being made prior to surgery or therapeutic procedures. In this work, the dimensional accuracy of 3D printed vertebral bodies derived from CT data for a cadaver spine is compared with direct measurements on the ex-vivo vertebra and with measurements made on the 3D rendered vertebra using commercial 3D image processing software. The vertebra was printed on a consumer grade 3D printer using an additive print process using PLA (polylactic acid) filament. Measurements were made for 15 different anatomic features of the vertebral body, including vertebral body height, endplate width and depth, pedicle height and width, and spinal canal width and depth, among others. It is shown that for the segmentation and printing process used, the results of measurements made on the 3D printed vertebral body are substantially the same as those produced by direct measurement on the vertebra and measurements made on the 3D rendered vertebra.

  7. The ATLAS3D project - VII. A new look at the morphology of nearby galaxies: the kinematic morphology-density relation

    NASA Astrophysics Data System (ADS)

    Cappellari, Michele; Emsellem, Eric; Krajnović, Davor; McDermid, Richard M.; Serra, Paolo; Alatalo, Katherine; Blitz, Leo; Bois, Maxime; Bournaud, Frédéric; Bureau, M.; Davies, Roger L.; Davis, Timothy A.; de Zeeuw, P. T.; Khochfar, Sadegh; Kuntschner, Harald; Lablanche, Pierre-Yves; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Scott, Nicholas; Weijmans, Anne-Marie; Young, Lisa M.

    2011-09-01

    In Paper I of this series we introduced a volume-limited parent sample of 871 galaxies from which we extracted the ATLAS3D sample of 260 early-type galaxies (ETGs). In Papers II and III we classified the ETGs using their stellar kinematics, in a way that is nearly insensitive to the projection effects, and we separated them into fast and slow rotators. Here we look at galaxy morphology and note that the edge-on fast rotators generally are lenticular galaxies. They appear like spiral galaxies with the gas and dust removed, and in some cases are flat ellipticals (E5 or flatter) with discy isophotes. Fast rotators are often barred and span the same full range of bulge fractions as spiral galaxies. The slow rotators are rounder (E4 or rounder, except for counter-rotating discs) and are generally consistent with being genuine, namely spheroidal-like, elliptical galaxies. We propose a revision to the tuning-fork diagram by Hubble as it gives a misleading description of ETGs by ignoring the large variation in the bulge sizes of fast rotators. Motivated by the fact that only one third (34 per cent) of the ellipticals in our sample are slow rotators, we study for the first time the kinematic morphology-density T-Σ relation using fast and slow rotators to replace lenticulars and ellipticals. We find that our relation is cleaner than using classic morphology. Slow rotators are nearly absent at the lowest density environments [? per cent] and generally constitute a small fraction [f(SR) ≈ 4 per cent] of the total galaxy population in the relatively low-density environments explored by our survey, with the exception of the densest core of the Virgo cluster [f(SR) ≈ 20 per cent]. This contrasts with the classic studies that invariably find significant fractions of (misclassified) ellipticals down to the lowest environmental densities. We find a clean log-linear relation between the fraction f(Sp) of spiral galaxies and the local galaxy surface density Σ3, within a cylinder

  8. Learning Grasp Strategies Composed of Contact Relative Motions

    NASA Technical Reports Server (NTRS)

    Platt, Robert, Jr.

    2007-01-01

    Of central importance to grasp synthesis algorithms are the assumptions made about the object to be grasped and the sensory information that is available. Many approaches avoid the issue of sensing entirely by assuming that complete information is available. In contrast, this paper proposes an approach to grasp synthesis expressed in terms of units of control that simultaneously change the contact configuration and sense information about the object and the relative manipulator-object pose. These units of control, known as contact relative motions (CRMs), allow the grasp synthesis problem to be recast as an optimal control problem where the goal is to find a strategy for executing CRMs that leads to a grasp in the shortest number of steps. An experiment is described that uses Robonaut, the NASA-JSC space humanoid, to show that CRMs are a viable means of synthesizing grasps. However, because of the limited amount of information that a single CRM can sense, the optimal control problem may be partially observable. This paper proposes expressing the problem as a k-order Markov Decision Process (MDP) and solving it using Reinforcement Learning. This approach is tested in a simulation of a two-contact manipulator that learns to grasp an object. Grasp strategies learned in simulation are tested on the physical Robonaut platform and found to lead to grasp configurations consistently.

  9. Relative contributions of 2D and 3D cues in a texture segmentation task, implications for the roles of striate and extrastriate cortex in attentional selection.

    PubMed

    Zhaoping, Li; Guyader, Nathalie; Lewis, Alex

    2009-01-01

    Experimental evidence has given strong support to the theory that the primary visual cortex (V1) realizes a bottom-up saliency map (A. R. Koene & L. Zhaoping, 2007; Z. Li, 2002; L. Zhaoping, 2008a; L. Zhaoping & K. A. May, 2007). Unlike the conventional models of texture segmentation, this theory predicted that segmenting two textures in an image I(rel) comprising obliquely oriented bars would become much more difficult when a task-irrelevant texture I(ir) of spatially alternating horizontal and vertical bars is superposed on the original texture I(rel). The irrelevant texture I(ir) interferes with I(rel)'s ability to direct attention. This predicted interference was confirmed (L. Zhaoping & K. A. May, 2007) in the form of a prolonged task reaction time (RT). In this study, we investigate whether and how 3D depth perception, believed to be processed mostly beyond V1 and starting in V2 (J. S. Bakin, K. Nakayama, & C. D. Gilbert, 2000; B. G. Cumming & A. J. Parker, 2000; F. T. Qiu & R. von der Heydt, 2005; R. von der Heydt, H. Zhou, & H. S. Friedman, 2000), contribute additionally to direct attention. We measured the reduction of the interference or the RT when the position of the texture grid for I(ir) was offset horizontally from that for I(rel), forming an offset, 2D, stimulus. This reduction was compared with that when this positional offset was only present in the input image to one eye, or when it was in the opposite directions in the images for the two eyes, creating a 3D stimulus with a depth separation between I(ir) and I(rel). The contribution by 3D processes to attentional guidance would be manifested by any extra RT reduction associated with the 3D stimulus over the offset 2D stimulus. This 3D contribution was not present unless the task was so difficult that RT (by button press) based on 2D cues alone was longer than about 1 second. Our findings suggest that, without other top-down factors, V1 plays a dominant role in attentional guidance during an

  10. Prominent rocks - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Many prominent rocks near the Sagan Memorial Station are featured in this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. Wedge is at lower left; Shark, Half-Dome, and Pumpkin are at center. Flat Top, about four inches high, is at lower right. The horizon in the distance is one to two kilometers away.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  11. 'Diamond' in 3-D

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This 3-D, microscopic imager mosaic of a target area on a rock called 'Diamond Jenness' was taken after NASA's Mars Exploration Rover Opportunity ground into the surface with its rock abrasion tool for a second time.

    Opportunity has bored nearly a dozen holes into the inner walls of 'Endurance Crater.' On sols 177 and 178 (July 23 and July 24, 2004), the rover worked double-duty on Diamond Jenness. Surface debris and the bumpy shape of the rock resulted in a shallow and irregular hole, only about 2 millimeters (0.08 inch) deep. The final depth was not enough to remove all the bumps and leave a neat hole with a smooth floor. This extremely shallow depression was then examined by the rover's alpha particle X-ray spectrometer.

    On Sol 178, Opportunity's 'robotic rodent' dined on Diamond Jenness once again, grinding almost an additional 5 millimeters (about 0.2 inch). The rover then applied its Moessbauer spectrometer to the deepened hole. This double dose of Diamond Jenness enabled the science team to examine the rock at varying layers. Results from those grindings are currently being analyzed.

    The image mosaic is about 6 centimeters (2.4 inches) across.

  12. Martian terrain - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This area of terrain near the Sagan Memorial Station was taken on Sol 3 by the Imager for Mars Pathfinder (IMP). 3D glasses are necessary to identify surface detail.

    The IMP is a stereo imaging system with color capability provided by 24 selectable filters -- twelve filters per 'eye.' It stands 1.8 meters above the Martian surface, and has a resolution of two millimeters at a range of two meters.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  13. Relation of motion sickness susceptibility to vestibular and behavioral measures of orientation

    NASA Technical Reports Server (NTRS)

    Peterka, Robert J.

    1995-01-01

    The objective is to determine the relationship of motion sickness susceptibility to vestibulo-ocular reflexes (VOR), motion perception, and behavioral utilization of sensory orientation cues for the control of postural equilibrium. The work is focused on reflexes and motion perception associated with pitch and roll movements that stimulate the vertical semicircular canals and otolith organs of the inner ear. This work is relevant to the space motion sickness problem since 0 g related sensory conflicts between vertical canal and otolith motion cues are a likely cause of space motion sickness.

  14. Motion.

    ERIC Educational Resources Information Center

    Brand, Judith, Ed.

    2002-01-01

    This issue of Exploratorium Magazine focuses on the topic of motion. Contents include: (1) "First Word" (Zach Tobias); (2) "Cosmic Collisions" (Robert Irion); (3) "The Mobile Cell" (Karen E. Kalumuck); (4) "The Paths of Paths" (Steven Vogel); (5) "Fragments" (Pearl Tesler); (6) "Moving Pictures" (Amy Snyder); (7) "Plants on the Go" (Katharine…

  15. Gesture Interaction Browser-Based 3D Molecular Viewer.

    PubMed

    Virag, Ioan; Stoicu-Tivadar, Lăcrămioara; Crişan-Vida, Mihaela

    2016-01-01

    The paper presents an open source system that allows the user to interact with a 3D molecular viewer using associated hand gestures for rotating, scaling and panning the rendered model. The novelty of this approach is that the entire application is browser-based and doesn't require installation of third party plug-ins or additional software components in order to visualize the supported chemical file formats. This kind of solution is suitable for instruction of users in less IT oriented environments, like medicine or chemistry. For rendering various molecular geometries our team used GLmol (a molecular viewer written in JavaScript). The interaction with the 3D models is made with Leap Motion controller that allows real-time tracking of the user's hand gestures. The first results confirmed that the resulting application leads to a better way of understanding various types of translational bioinformatics related problems in both biomedical research and education. PMID:27350455

  16. Gesture Interaction Browser-Based 3D Molecular Viewer.

    PubMed

    Virag, Ioan; Stoicu-Tivadar, Lăcrămioara; Crişan-Vida, Mihaela

    2016-01-01

    The paper presents an open source system that allows the user to interact with a 3D molecular viewer using associated hand gestures for rotating, scaling and panning the rendered model. The novelty of this approach is that the entire application is browser-based and doesn't require installation of third party plug-ins or additional software components in order to visualize the supported chemical file formats. This kind of solution is suitable for instruction of users in less IT oriented environments, like medicine or chemistry. For rendering various molecular geometries our team used GLmol (a molecular viewer written in JavaScript). The interaction with the 3D models is made with Leap Motion controller that allows real-time tracking of the user's hand gestures. The first results confirmed that the resulting application leads to a better way of understanding various types of translational bioinformatics related problems in both biomedical research and education.

  17. Event-related alpha suppression in response to facial motion.

    PubMed

    Girges, Christine; Wright, Michael J; Spencer, Janine V; O'Brien, Justin M D

    2014-01-01

    While biological motion refers to both face and body movements, little is known about the visual perception of facial motion. We therefore examined alpha wave suppression as a reduction in power is thought to reflect visual activity, in addition to attentional reorienting and memory processes. Nineteen neurologically healthy adults were tested on their ability to discriminate between successive facial motion captures. These animations exhibited both rigid and non-rigid facial motion, as well as speech expressions. The structural and surface appearance of these facial animations did not differ, thus participants decisions were based solely on differences in facial movements. Upright, orientation-inverted and luminance-inverted facial stimuli were compared. At occipital and parieto-occipital regions, upright facial motion evoked a transient increase in alpha which was then followed by a significant reduction. This finding is discussed in terms of neural efficiency, gating mechanisms and neural synchronization. Moreover, there was no difference in the amount of alpha suppression evoked by each facial stimulus at occipital regions, suggesting early visual processing remains unaffected by manipulation paradigms. However, upright facial motion evoked greater suppression at parieto-occipital sites, and did so in the shortest latency. Increased activity within this region may reflect higher attentional reorienting to natural facial motion but also involvement of areas associated with the visual control of body effectors.

  18. An aerial 3D printing test mission

    NASA Astrophysics Data System (ADS)

    Hirsch, Michael; McGuire, Thomas; Parsons, Michael; Leake, Skye; Straub, Jeremy

    2016-05-01

    This paper provides an overview of an aerial 3D printing technology, its development and its testing. This technology is potentially useful in its own right. In addition, this work advances the development of a related in-space 3D printing technology. A series of aerial 3D printing test missions, used to test the aerial printing technology, are discussed. Through completing these test missions, the design for an in-space 3D printer may be advanced. The current design for the in-space 3D printer involves focusing thermal energy to heat an extrusion head and allow for the extrusion of molten print material. Plastics can be used as well as composites including metal, allowing for the extrusion of conductive material. A variety of experiments will be used to test this initial 3D printer design. High altitude balloons will be used to test the effects of microgravity on 3D printing, as well as parabolic flight tests. Zero pressure balloons can be used to test the effect of long 3D printing missions subjected to low temperatures. Vacuum chambers will be used to test 3D printing in a vacuum environment. The results will be used to adapt a current prototype of an in-space 3D printer. Then, a small scale prototype can be sent into low-Earth orbit as a 3-U cube satellite. With the ability to 3D print in space demonstrated, future missions can launch production hardware through which the sustainability and durability of structures in space will be greatly improved.

  19. Effect of viewing distance on 3D fatigue caused by viewing mobile 3D content

    NASA Astrophysics Data System (ADS)

    Mun, Sungchul; Lee, Dong-Su; Park, Min-Chul; Yano, Sumio

    2013-05-01

    With an advent of autostereoscopic display technique and increased needs for smart phones, there has been a significant growth in mobile TV markets. The rapid growth in technical, economical, and social aspects has encouraged 3D TV manufacturers to apply 3D rendering technology to mobile devices so that people have more opportunities to come into contact with many 3D content anytime and anywhere. Even if the mobile 3D technology leads to the current market growth, there is an important thing to consider for consistent development and growth in the display market. To put it briefly, human factors linked to mobile 3D viewing should be taken into consideration before developing mobile 3D technology. Many studies have investigated whether mobile 3D viewing causes undesirable biomedical effects such as motion sickness and visual fatigue, but few have examined main factors adversely affecting human health. Viewing distance is considered one of the main factors to establish optimized viewing environments from a viewer's point of view. Thus, in an effort to determine human-friendly viewing environments, this study aims to investigate the effect of viewing distance on human visual system when exposing to mobile 3D environments. Recording and analyzing brainwaves before and after watching mobile 3D content, we explore how viewing distance affects viewing experience from physiological and psychological perspectives. Results obtained in this study are expected to provide viewing guidelines for viewers, help ensure viewers against undesirable 3D effects, and lead to make gradual progress towards a human-friendly mobile 3D viewing.

  20. Does motion-related brain functional connectivity reflect both artifacts and genuine neural activity?

    PubMed

    Pujol, Jesus; Macià, Dídac; Blanco-Hinojo, Laura; Martínez-Vilavella, Gerard; Sunyer, Jordi; de la Torre, Rafael; Caixàs, Assumpta; Martín-Santos, Rocío; Deus, Joan; Harrison, Ben J

    2014-11-01

    Imaging research on functional connectivity is uniquely contributing to characterize the functional organization of the human brain. Functional connectivity measurements, however, may be significantly influenced by head motion that occurs during image acquisition. The identification of how motion influences such measurements is therefore highly relevant to the interpretation of a study's results. We have mapped the effect of head motion on functional connectivity in six different populations representing a wide range of potential influences of motion on functional connectivity. Group-level voxel-wise maps of the correlation between a summary head motion measurement and functional connectivity degree were estimated in 80 young adults, 71 children, 53 older adults, 20 patients with Down syndrome, 24 with Prader-Willi syndrome and 20 with Williams syndrome. In highly compliant young adults, motion correlated with functional connectivity measurements showing a system-specific anatomy involving the sensorimotor cortex, visual areas and default mode network. Further characterization was strongly indicative of these changes expressing genuine neural activity related to motion, as opposed to pure motion artifact. In the populations with larger head motion, results were more indicative of widespread artifacts, but showing notably distinct spatial distribution patterns. Group-level regression of motion effects was efficient in removing both generalized changes and changes putatively related to neural activity. Overall, this study endorses a relatively simple approach for mapping distinct effects of head motion on functional connectivity. Importantly, our findings support the intriguing hypothesis that a component of motion-related changes may reflect system-specific neural activity.

  1. HII Galaxies in 3D

    NASA Astrophysics Data System (ADS)

    Telles, E.

    2016-06-01

    In this contribution I review some results of the integral field spectroscopy of HII galaxies. The two main topics are related to their internal kinematics and the distribution of physical conditions. HII galaxies present a L-σ relation similar to elliptical galaxies. However, the origin of supersonic motions of the ionized gas (σ) is still a matter of debate. We show that the core of the star forming region dominates the internal kinematics and probes the underlying turbulent motions. The show our latest calibration of the L-sigma relation of local HII galaxies. We also show that the physical conditions are very uniform throughout the whole extent of the star forming region, once you account for the levels of ionization. HII galaxies are excellent laboratories for constraining the ionization power of high mass stars at low metallicities.

  2. 3D ultrafast laser scanner

    NASA Astrophysics Data System (ADS)

    Mahjoubfar, A.; Goda, K.; Wang, C.; Fard, A.; Adam, J.; Gossett, D. R.; Ayazi, A.; Sollier, E.; Malik, O.; Chen, E.; Liu, Y.; Brown, R.; Sarkhosh, N.; Di Carlo, D.; Jalali, B.

    2013-03-01

    Laser scanners are essential for scientific research, manufacturing, defense, and medical practice. Unfortunately, often times the speed of conventional laser scanners (e.g., galvanometric mirrors and acousto-optic deflectors) falls short for many applications, resulting in motion blur and failure to capture fast transient information. Here, we present a novel type of laser scanner that offers roughly three orders of magnitude higher scan rates than conventional methods. Our laser scanner, which we refer to as the hybrid dispersion laser scanner, performs inertia-free laser scanning by dispersing a train of broadband pulses both temporally and spatially. More specifically, each broadband pulse is temporally processed by time stretch dispersive Fourier transform and further dispersed into space by one or more diffractive elements such as prisms and gratings. As a proof-of-principle demonstration, we perform 1D line scans at a record high scan rate of 91 MHz and 2D raster scans and 3D volumetric scans at an unprecedented scan rate of 105 kHz. The method holds promise for a broad range of scientific, industrial, and biomedical applications. To show the utility of our method, we demonstrate imaging, nanometer-resolved surface vibrometry, and high-precision flow cytometry with real-time throughput that conventional laser scanners cannot offer due to their low scan rates.

  3. 3D Spray Droplet Distributions in Sneezes

    NASA Astrophysics Data System (ADS)

    Techet, Alexandra; Scharfman, Barry; Bourouiba, Lydia

    2015-11-01

    3D spray droplet clouds generated during human sneezing are investigated using the Synthetic Aperture Feature Extraction (SAFE) method, which relies on light field imaging (LFI) and synthetic aperture (SA) refocusing computational photographic techniques. An array of nine high-speed cameras are used to image sneeze droplets and tracked the droplets in 3D space and time (3D + T). An additional high-speed camera is utilized to track the motion of the head during sneezing. In the SAFE method, the raw images recorded by each camera in the array are preprocessed and binarized, simplifying post processing after image refocusing and enabling the extraction of feature sizes and positions in 3D + T. These binary images are refocused using either additive or multiplicative methods, combined with thresholding. Sneeze droplet centroids, radii, distributions and trajectories are determined and compared with existing data. The reconstructed 3D droplet centroids and radii enable a more complete understanding of the physical extent and fluid dynamics of sneeze ejecta. These measurements are important for understanding the infectious disease transmission potential of sneezes in various indoor environments.

  4. Lifting Object Detection Datasets into 3D.

    PubMed

    Carreira, Joao; Vicente, Sara; Agapito, Lourdes; Batista, Jorge

    2016-07-01

    While data has certainly taken the center stage in computer vision in recent years, it can still be difficult to obtain in certain scenarios. In particular, acquiring ground truth 3D shapes of objects pictured in 2D images remains a challenging feat and this has hampered progress in recognition-based object reconstruction from a single image. Here we propose to bypass previous solutions such as 3D scanning or manual design, that scale poorly, and instead populate object category detection datasets semi-automatically with dense, per-object 3D reconstructions, bootstrapped from:(i) class labels, (ii) ground truth figure-ground segmentations and (iii) a small set of keypoint annotations. Our proposed algorithm first estimates camera viewpoint using rigid structure-from-motion and then reconstructs object shapes by optimizing over visual hull proposals guided by loose within-class shape similarity assumptions. The visual hull sampling process attempts to intersect an object's projection cone with the cones of minimal subsets of other similar objects among those pictured from certain vantage points. We show that our method is able to produce convincing per-object 3D reconstructions and to accurately estimate cameras viewpoints on one of the most challenging existing object-category detection datasets, PASCAL VOC. We hope that our results will re-stimulate interest on joint object recognition and 3D reconstruction from a single image. PMID:27295458

  5. The psychology of the 3D experience

    NASA Astrophysics Data System (ADS)

    Janicke, Sophie H.; Ellis, Andrew

    2013-03-01

    With 3D televisions expected to reach 50% home saturation as early as 2016, understanding the psychological mechanisms underlying the user response to 3D technology is critical for content providers, educators and academics. Unfortunately, research examining the effects of 3D technology has not kept pace with the technology's rapid adoption, resulting in large-scale use of a technology about which very little is actually known. Recognizing this need for new research, we conducted a series of studies measuring and comparing many of the variables and processes underlying both 2D and 3D media experiences. In our first study, we found narratives within primetime dramas had the power to shift viewer attitudes in both 2D and 3D settings. However, we found no difference in persuasive power between 2D and 3D content. We contend this lack of effect was the result of poor conversion quality and the unique demands of 3D production. In our second study, we found 3D technology significantly increased enjoyment when viewing sports content, yet offered no added enjoyment when viewing a movie trailer. The enhanced enjoyment of the sports content was shown to be the result of heightened emotional arousal and attention in the 3D condition. We believe the lack of effect found for the movie trailer may be genre-related. In our final study, we found 3D technology significantly enhanced enjoyment of two video games from different genres. The added enjoyment was found to be the result of an increased sense of presence.

  6. Radiologists' interpretive efficiency and variability in true- and false-positive detection when screen-reading with tomosynthesis (3D-mammography) relative to standard mammography in population screening.

    PubMed

    Svahn, Tony M; Macaskill, Petra; Houssami, Nehmat

    2015-12-01

    We examined interpretive efficiency and variability in true- and false-positive detection (TP, FP) for radiologists screen-reading with digital breast tomosynthesis as adjunct to full-field digital mammography (2D/3D) relative to 2D alone in population-based screening studies. A systematic literature search was performed to identify screening studies that provided radiologist-specific data for TP and FP detection. Radiologist interpretive efficiency (trade-off between TPs and FPs) was calculated using the FP:TP ratio which expresses the number of FP recalls for each screen-detected breast cancer. We modeled a pooled FP:TP ratio to assess variability in radiologists' interpretive efficiency at study-level using random effects logistic regression. FP:TP ratio improved (ratio decreased) for 2D/3D screen-reading (relative to 2D) for a majority of radiologists (18 of 22) across all studies. Variability in radiologists' FP:TP ratio was consistently lower in all studies for 2D/3D screen-reading, as suggested by lower variance in ratios. Study-level pooled FP:TP ratio for 2D- and 2D/3D-mammography respectively, were 5.96 (95%CI: 4.08 to 8.72) and 3.17 (95%CI: 2.25 to 4.47) for the STORM trial; 10.25 (95%CI: 6.42 to 16.35) and 7.07 (95%CI: 4.99 to 10.02) for the Oslo trial; and 20.84 (95%CI: 13.95 to 31.12) and 8.37 (95%CI: 5.87 to 11.93) for the Houston study. This transfers into study-level improved interpretative efficiencies of 48%, 30% and 55%, respectively, for 2D/3D screen-reading (relative to 2D). In summary, study-level FP:TP trade-off improved using 2D/3D-mammography for all studies, which was also seen for most individual radiologists. There was variability in the FP:TP trade-off between readers and studies for 2D-as well as for 2D/3D-interpretations but variability in radiologists' interpretive efficiency was relatively lower using 2D/3D-mammography.

  7. Radiologists' interpretive efficiency and variability in true- and false-positive detection when screen-reading with tomosynthesis (3D-mammography) relative to standard mammography in population screening.

    PubMed

    Svahn, Tony M; Macaskill, Petra; Houssami, Nehmat

    2015-12-01

    We examined interpretive efficiency and variability in true- and false-positive detection (TP, FP) for radiologists screen-reading with digital breast tomosynthesis as adjunct to full-field digital mammography (2D/3D) relative to 2D alone in population-based screening studies. A systematic literature search was performed to identify screening studies that provided radiologist-specific data for TP and FP detection. Radiologist interpretive efficiency (trade-off between TPs and FPs) was calculated using the FP:TP ratio which expresses the number of FP recalls for each screen-detected breast cancer. We modeled a pooled FP:TP ratio to assess variability in radiologists' interpretive efficiency at study-level using random effects logistic regression. FP:TP ratio improved (ratio decreased) for 2D/3D screen-reading (relative to 2D) for a majority of radiologists (18 of 22) across all studies. Variability in radiologists' FP:TP ratio was consistently lower in all studies for 2D/3D screen-reading, as suggested by lower variance in ratios. Study-level pooled FP:TP ratio for 2D- and 2D/3D-mammography respectively, were 5.96 (95%CI: 4.08 to 8.72) and 3.17 (95%CI: 2.25 to 4.47) for the STORM trial; 10.25 (95%CI: 6.42 to 16.35) and 7.07 (95%CI: 4.99 to 10.02) for the Oslo trial; and 20.84 (95%CI: 13.95 to 31.12) and 8.37 (95%CI: 5.87 to 11.93) for the Houston study. This transfers into study-level improved interpretative efficiencies of 48%, 30% and 55%, respectively, for 2D/3D screen-reading (relative to 2D). In summary, study-level FP:TP trade-off improved using 2D/3D-mammography for all studies, which was also seen for most individual radiologists. There was variability in the FP:TP trade-off between readers and studies for 2D-as well as for 2D/3D-interpretations but variability in radiologists' interpretive efficiency was relatively lower using 2D/3D-mammography. PMID:26433751

  8. A kinematic model for 3-D head-free gaze-shifts

    PubMed Central

    Daemi, Mehdi; Crawford, J. Douglas

    2015-01-01

    Rotations of the line of sight are mainly implemented by coordinated motion of the eyes and head. Here, we propose a model for the kinematics of three-dimensional (3-D) head-unrestrained gaze-shifts. The model was designed to account for major principles in the known behavior, such as gaze accuracy, spatiotemporal coordination of saccades with vestibulo-ocular reflex (VOR), relative eye and head contributions, the non-commutativity of rotations, and Listing's and Fick constraints for the eyes and head, respectively. The internal design of the model was inspired by known and hypothesized elements of gaze control physiology. Inputs included retinocentric location of the visual target and internal representations of initial 3-D eye and head orientation, whereas outputs were 3-D displacements of eye relative to the head and head relative to shoulder. Internal transformations decomposed the 2-D gaze command into 3-D eye and head commands with the use of three coordinated circuits: (1) a saccade generator, (2) a head rotation generator, (3) a VOR predictor. Simulations illustrate that the model can implement: (1) the correct 3-D reference frame transformations to generate accurate gaze shifts (despite variability in other parameters), (2) the experimentally verified constraints on static eye and head orientations during fixation, and (3) the experimentally observed 3-D trajectories of eye and head motion during gaze-shifts. We then use this model to simulate how 2-D eye-head coordination strategies interact with 3-D constraints to influence 3-D orientations of the eye-in-space, and the implications of this for spatial vision. PMID:26113816

  9. Cue combination for 3D location judgements.

    PubMed

    Svarverud, Ellen; Gilson, Stuart J; Glennerster, Andrew

    2010-01-01

    Cue combination rules have often been applied to the perception of surface shape but not to judgements of object location. Here, we used immersive virtual reality to explore the relationship between different cues to distance. Participants viewed a virtual scene and judged the change in distance of an object presented in two intervals, where the scene changed in size between intervals (by a factor of between 0.25 and 4). We measured thresholds for detecting a change in object distance when there were only 'physical' (stereo and motion parallax) or 'texture-based' cues (independent of the scale of the scene) and used these to predict biases in a distance matching task. Under a range of conditions, in which the viewing distance and position of the target relative to other objects was varied, the ratio of 'physical' to 'texture-based' thresholds was a good predictor of biases in the distance matching task. The cue combination approach, which successfully accounts for our data, relies on quite different principles from those underlying traditional models of 3D reconstruction. PMID:20143898

  10. Cue combination for 3D location judgements

    PubMed Central

    Svarverud, Ellen; Gilson, Stuart J.; Glennerster, Andrew

    2010-01-01

    Cue combination rules have often been applied to the perception of surface shape but not to judgements of object location. Here, we used immersive virtual reality to explore the relationship between different cues to distance. Participants viewed a virtual scene and judged the change in distance of an object presented in two intervals, where the scene changed in size between intervals (by a factor of between 0.25 and 4). We measured thresholds for detecting a change in object distance when there were only ‘physical’ (stereo and motion parallax) or ‘texture-based’ cues (independent of the scale of the scene) and used these to predict biases in a distance matching task. Under a range of conditions, in which the viewing distance and position of the target relative to other objects was varied, the ratio of ‘physical’ to ‘texture-based’ thresholds was a good predictor of biases in the distance matching task. The cue combination approach, which successfully accounts for our data, relies on quite different principles from those underlying traditional models of 3D reconstruction. PMID:20143898

  11. [3D real time contrast enhanced ultrasonography,a new technique].

    PubMed

    Dietrich, C F

    2002-02-01

    While 3D sonography has become established in gynecology, abdominal applications have been mainly restricted to case reports. However, recent advances in computer technology have supported the development of new systems with motion detection methods and image registration algorithms - making it possible to acquire 3D data without position sensors, before and after administration of contrast enhancing agents. Hepatic (and also splenic) applications involve the topographic localization of masses in relation to the vessels, e.g. hepatic veins and portal vein branches prior to surgical procedures (segment localization). 3D imaging in the characterization of liver tumors after administration of contrast enhancing agents could become of special importance. We report on the first use of 3D imaging of the liver and spleen under real time conditions in 10 patients, using contrast enhanced phase inversion imaging with low mechanical index, which may improve the detection rate and characterization of liver and splenic tumors. PMID:11898076

  12. 3D-printed bioanalytical devices.

    PubMed

    Bishop, Gregory W; Satterwhite-Warden, Jennifer E; Kadimisetty, Karteek; Rusling, James F

    2016-07-15

    While 3D printing technologies first appeared in the 1980s, prohibitive costs, limited materials, and the relatively small number of commercially available printers confined applications mainly to prototyping for manufacturing purposes. As technologies, printer cost, materials, and accessibility continue to improve, 3D printing has found widespread implementation in research and development in many disciplines due to ease-of-use and relatively fast design-to-object workflow. Several 3D printing techniques have been used to prepare devices such as milli- and microfluidic flow cells for analyses of cells and biomolecules as well as interfaces that enable bioanalytical measurements using cellphones. This review focuses on preparation and applications of 3D-printed bioanalytical devices.

  13. 3D-printed bioanalytical devices

    NASA Astrophysics Data System (ADS)

    Bishop, Gregory W.; Satterwhite-Warden, Jennifer E.; Kadimisetty, Karteek; Rusling, James F.

    2016-07-01

    While 3D printing technologies first appeared in the 1980s, prohibitive costs, limited materials, and the relatively small number of commercially available printers confined applications mainly to prototyping for manufacturing purposes. As technologies, printer cost, materials, and accessibility continue to improve, 3D printing has found widespread implementation in research and development in many disciplines due to ease-of-use and relatively fast design-to-object workflow. Several 3D printing techniques have been used to prepare devices such as milli- and microfluidic flow cells for analyses of cells and biomolecules as well as interfaces that enable bioanalytical measurements using cellphones. This review focuses on preparation and applications of 3D-printed bioanalytical devices.

  14. 3D-printed bioanalytical devices.

    PubMed

    Bishop, Gregory W; Satterwhite-Warden, Jennifer E; Kadimisetty, Karteek; Rusling, James F

    2016-07-15

    While 3D printing technologies first appeared in the 1980s, prohibitive costs, limited materials, and the relatively small number of commercially available printers confined applications mainly to prototyping for manufacturing purposes. As technologies, printer cost, materials, and accessibility continue to improve, 3D printing has found widespread implementation in research and development in many disciplines due to ease-of-use and relatively fast design-to-object workflow. Several 3D printing techniques have been used to prepare devices such as milli- and microfluidic flow cells for analyses of cells and biomolecules as well as interfaces that enable bioanalytical measurements using cellphones. This review focuses on preparation and applications of 3D-printed bioanalytical devices. PMID:27250897

  15. Medical 3D Printing for the Radiologist.

    PubMed

    Mitsouras, Dimitris; Liacouras, Peter; Imanzadeh, Amir; Giannopoulos, Andreas A; Cai, Tianrun; Kumamaru, Kanako K; George, Elizabeth; Wake, Nicole; Caterson, Edward J; Pomahac, Bohdan; Ho, Vincent B; Grant, Gerald T; Rybicki, Frank J

    2015-01-01

    While use of advanced visualization in radiology is instrumental in diagnosis and communication with referring clinicians, there is an unmet need to render Digital Imaging and Communications in Medicine (DICOM) images as three-dimensional (3D) printed models capable of providing both tactile feedback and tangible depth information about anatomic and pathologic states. Three-dimensional printed models, already entrenched in the nonmedical sciences, are rapidly being embraced in medicine as well as in the lay community. Incorporating 3D printing from images generated and interpreted by radiologists presents particular challenges, including training, materials and equipment, and guidelines. The overall costs of a 3D printing laboratory must be balanced by the clinical benefits. It is expected that the number of 3D-printed models generated from DICOM images for planning interventions and fabricating implants will grow exponentially. Radiologists should at a minimum be familiar with 3D printing as it relates to their field, including types of 3D printing technologies and materials used to create 3D-printed anatomic models, published applications of models to date, and clinical benefits in radiology. Online supplemental material is available for this article.

  16. NUBEAM developments and 3d halo modeling

    NASA Astrophysics Data System (ADS)

    Gorelenkova, M. V.; Medley, S. S.; Kaye, S. M.

    2012-10-01

    Recent developments related to the 3D halo model in NUBEAM code are described. To have a reliable halo neutral source for diagnostic simulation, the TRANSP/NUBEAM code has been enhanced with full implementation of ADAS atomic physic ground state and excited state data for hydrogenic beams and mixed species plasma targets. The ADAS codes and database provide the density and temperature dependence of the atomic data, and the collective nature of the state excitation process. To be able to populate 3D halo output with sufficient statistical resolution, the capability to control the statistics of fast ion CX modeling and for thermal halo launch has been added to NUBEAM. The 3D halo neutral model is based on modification and extension of the ``beam in box'' aligned 3d Cartesian grid that includes the neutral beam itself, 3D fast neutral densities due to CX of partially slowed down fast ions in the beam halo region, 3D thermal neutral densities due to CX deposition and fast neutral recapture source. More details on the 3D halo simulation design will be presented.

  17. Medical 3D Printing for the Radiologist.

    PubMed

    Mitsouras, Dimitris; Liacouras, Peter; Imanzadeh, Amir; Giannopoulos, Andreas A; Cai, Tianrun; Kumamaru, Kanako K; George, Elizabeth; Wake, Nicole; Caterson, Edward J; Pomahac, Bohdan; Ho, Vincent B; Grant, Gerald T; Rybicki, Frank J

    2015-01-01

    While use of advanced visualization in radiology is instrumental in diagnosis and communication with referring clinicians, there is an unmet need to render Digital Imaging and Communications in Medicine (DICOM) images as three-dimensional (3D) printed models capable of providing both tactile feedback and tangible depth information about anatomic and pathologic states. Three-dimensional printed models, already entrenched in the nonmedical sciences, are rapidly being embraced in medicine as well as in the lay community. Incorporating 3D printing from images generated and interpreted by radiologists presents particular challenges, including training, materials and equipment, and guidelines. The overall costs of a 3D printing laboratory must be balanced by the clinical benefits. It is expected that the number of 3D-printed models generated from DICOM images for planning interventions and fabricating implants will grow exponentially. Radiologists should at a minimum be familiar with 3D printing as it relates to their field, including types of 3D printing technologies and materials used to create 3D-printed anatomic models, published applications of models to date, and clinical benefits in radiology. Online supplemental material is available for this article. PMID:26562233

  18. 3D bioprinting of tissues and organs.

    PubMed

    Murphy, Sean V; Atala, Anthony

    2014-08-01

    Additive manufacturing, otherwise known as three-dimensional (3D) printing, is driving major innovations in many areas, such as engineering, manufacturing, art, education and medicine. Recent advances have enabled 3D printing of biocompatible materials, cells and supporting components into complex 3D functional living tissues. 3D bioprinting is being applied to regenerative medicine to address the need for tissues and organs suitable for transplantation. Compared with non-biological printing, 3D bioprinting involves additional complexities, such as the choice of materials, cell types, growth and differentiation factors, and technical challenges related to the sensitivities of living cells and the construction of tissues. Addressing these complexities requires the integration of technologies from the fields of engineering, biomaterials science, cell biology, physics and medicine. 3D bioprinting has already been used for the generation and transplantation of several tissues, including multilayered skin, bone, vascular grafts, tracheal splints, heart tissue and cartilaginous structures. Other applications include developing high-throughput 3D-bioprinted tissue models for research, drug discovery and toxicology. PMID:25093879

  19. Medical 3D Printing for the Radiologist

    PubMed Central

    Mitsouras, Dimitris; Liacouras, Peter; Imanzadeh, Amir; Giannopoulos, Andreas A.; Cai, Tianrun; Kumamaru, Kanako K.; George, Elizabeth; Wake, Nicole; Caterson, Edward J.; Pomahac, Bohdan; Ho, Vincent B.; Grant, Gerald T.

    2015-01-01

    While use of advanced visualization in radiology is instrumental in diagnosis and communication with referring clinicians, there is an unmet need to render Digital Imaging and Communications in Medicine (DICOM) images as three-dimensional (3D) printed models capable of providing both tactile feedback and tangible depth information about anatomic and pathologic states. Three-dimensional printed models, already entrenched in the nonmedical sciences, are rapidly being embraced in medicine as well as in the lay community. Incorporating 3D printing from images generated and interpreted by radiologists presents particular challenges, including training, materials and equipment, and guidelines. The overall costs of a 3D printing laboratory must be balanced by the clinical benefits. It is expected that the number of 3D-printed models generated from DICOM images for planning interventions and fabricating implants will grow exponentially. Radiologists should at a minimum be familiar with 3D printing as it relates to their field, including types of 3D printing technologies and materials used to create 3D-printed anatomic models, published applications of models to date, and clinical benefits in radiology. Online supplemental material is available for this article. ©RSNA, 2015 PMID:26562233

  20. 3-D MAPPING TECHNOLOGIES FOR HIGH LEVEL WASTE TANKS

    SciTech Connect

    Marzolf, A.; Folsom, M.

    2010-08-31

    This research investigated four techniques that could be applicable for mapping of solids remaining in radioactive waste tanks at the Savannah River Site: stereo vision, LIDAR, flash LIDAR, and Structure from Motion (SfM). Stereo vision is the least appropriate technique for the solids mapping application. Although the equipment cost is low and repackaging would be fairly simple, the algorithms to create a 3D image from stereo vision would require significant further development and may not even be applicable since stereo vision works by finding disparity in feature point locations from the images taken by the cameras. When minimal variation in visual texture exists for an area of interest, it becomes difficult for the software to detect correspondences for that object. SfM appears to be appropriate for solids mapping in waste tanks. However, equipment development would be required for positioning and movement of the camera in the tank space to enable capturing a sequence of images of the scene. Since SfM requires the identification of distinctive features and associates those features to their corresponding instantiations in the other image frames, mockup testing would be required to determine the applicability of SfM technology for mapping of waste in tanks. There may be too few features to track between image frame sequences to employ the SfM technology since uniform appearance may exist when viewing the remaining solids in the interior of the waste tanks. Although scanning LIDAR appears to be an adequate solution, the expense of the equipment ($80,000-$120,000) and the need for further development to allow tank deployment may prohibit utilizing this technology. The development would include repackaging of equipment to permit deployment through the 4-inch access ports and to keep the equipment relatively uncontaminated to allow use in additional tanks. 3D flash LIDAR has a number of advantages over stereo vision, scanning LIDAR, and SfM, including full frame

  1. 3D Elevation Program—Virtual USA in 3D

    USGS Publications Warehouse

    Lukas, Vicki; Stoker, J.M.

    2016-01-01

    The U.S. Geological Survey (USGS) 3D Elevation Program (3DEP) uses a laser system called ‘lidar’ (light detection and ranging) to create a virtual reality map of the Nation that is very accurate. 3D maps have many uses with new uses being discovered all the time.  

  2. 3D Elevation Program—Virtual USA in 3D

    USGS Publications Warehouse

    Lukas, Vicki; Stoker, J.M.

    2016-04-14

    The U.S. Geological Survey (USGS) 3D Elevation Program (3DEP) uses a laser system called ‘lidar’ (light detection and ranging) to create a virtual reality map of the Nation that is very accurate. 3D maps have many uses with new uses being discovered all the time.  

  3. Basin-related effects on ground motion for earthquake scenarios in the Lower Rhine Embayment

    NASA Astrophysics Data System (ADS)

    Ewald, Michael; Igel, Heiner; Hinzen, Klaus-Günter; Scherbaum, Frank

    2006-07-01

    The deterministic calculation of earthquake scenarios using complete waveform modelling plays an increasingly important role in estimating shaking hazard in seismically active regions. Here we apply 3-D numerical modelling of seismic wave propagation to M 6+ earthquake scenarios in the area of the Lower Rhine Embayment, one of the seismically most active regions in central Europe. Using a 3-D basin model derived from geology, borehole information and seismic experiments, we aim at demonstrating the strong dependence of ground shaking on hypocentre location and basin structure. The simulations are carried out up to frequencies of ca. 1 Hz. As expected, the basin structure leads to strong lateral variations in peak ground motion, amplification and shaking duration. Depending on source-basin-receiver geometry, the effects correlate with basin depth and the slope of the basin flanks; yet, the basin also affects peak ground motion and estimated shaking hazard thereof outside the basin. Comparison with measured seismograms for one of the earthquakes shows that some of the main characteristics of the wave motion are reproduced. Cumulating the derived seismic intensities from the three modelled earthquake scenarios leads to a predominantly basin correlated intensity distribution for our study area.

  4. Testing long-period ground-motion simulations of scenario earthquakes using the Mw 7.2 El Mayor-Cucapah mainshock: Evaluation of finite-fault rupture characterization and 3D seismic velocity models

    USGS Publications Warehouse

    Graves, Robert W.; Aagaard, Brad T.

    2011-01-01

    Using a suite of five hypothetical finite-fault rupture models, we test the ability of long-period (T>2.0 s) ground-motion simulations of scenario earthquakes to produce waveforms throughout southern California consistent with those recorded during the 4 April 2010 Mw 7.2 El Mayor-Cucapah earthquake. The hypothetical ruptures are generated using the methodology proposed by Graves and Pitarka (2010) and require, as inputs, only a general description of the fault location and geometry, event magnitude, and hypocenter, as would be done for a scenario event. For each rupture model, two Southern California Earthquake Center three-dimensional community seismic velocity models (CVM-4m and CVM-H62) are used, resulting in a total of 10 ground-motion simulations, which we compare with recorded ground motions. While the details of the motions vary across the simulations, the median levels match the observed peak ground velocities reasonably well, with the standard deviation of the residuals generally within 50% of the median. Simulations with the CVM-4m model yield somewhat lower variance than those with the CVM-H62 model. Both models tend to overpredict motions in the San Diego region and underpredict motions in the Mojave desert. Within the greater Los Angeles basin, the CVM-4m model generally matches the level of observed motions, whereas the CVM-H62 model tends to overpredict the motions, particularly in the southern portion of the basin. The variance in the peak velocity residuals is lowest for a rupture that has significant shallow slip (<5 km depth), whereas the variance in the residuals is greatest for ruptures with large asperities below 10 km depth. Overall, these results are encouraging and provide confidence in the predictive capabilities of the simulation methodology, while also suggesting some regions in which the seismic velocity models may need improvement.

  5. Learning Relative Motion Concepts in Immersive and Non-Immersive Virtual Environments

    ERIC Educational Resources Information Center

    Kozhevnikov, Michael; Gurlitt, Johannes; Kozhevnikov, Maria

    2013-01-01

    The focus of the current study is to understand which unique features of an immersive virtual reality environment have the potential to improve learning relative motion concepts. Thirty-seven undergraduate students learned relative motion concepts using computer simulation either in immersive virtual environment (IVE) or non-immersive desktop…

  6. Use of a Computer Simulation To Develop Mental Simulations for Understanding Relative Motion Concepts.

    ERIC Educational Resources Information Center

    Monaghan, James M.; Clement, John

    1999-01-01

    Presents evidence for students' qualitative and quantitative difficulties with apparently simple one-dimensional relative-motion problems, students' spontaneous visualization of relative-motion problems, the visualizations facilitating solution of these problems, and students' memories of the online computer simulation used as a framework for…

  7. The 3D structure of the defense-related rice protein Pir7b predicted by homology modeling and ligand binding studies.

    PubMed

    Luo, Quan; Han, Wei-Wei; Zhou, Yi-Han; Yao, Yuan; Li, Ze-Sheng

    2008-07-01

    To better understand the ligand-binding mechanism of protein Pir7b, important part in detoxification of a pathogen-derived compound against Pyricularia oryzae, a 3D structure model of protein Pir7b was constructed based on the structure of the template SABP2. Three substrates were docking to this protein, two of them were proved to be active, and some critical residues are identified, which had not been confirmed by the experiments. His87 and Leu17 considered as 'oxyanion hole' contribute to initiating the Ser86 nucleophilic attack. Gln187 and Asp139 can form hydrogen bonds with the anilid group to maintain the active binding orientation with the substrates. The docking model can well interpret the specificity of protein Pir7b towards the anilid moiety of the substrates and provide valuable structure information about the ligand binding to protein Pir7b. PMID:18449577

  8. How to relate the 3D wavevector spectrum of Alfvenic fluctuations to the frequency spectrum observed by a single spacecraft when Taylor's hypothesis is not valid

    NASA Astrophysics Data System (ADS)

    Podesta, J. J.; Bhattacharjee, A.

    2008-12-01

    A longstanding problem is to discover the nature of the three-dimensional (3D) wavevector spectrum of Alfvenic fluctuations in the solar wind. Although some progress has been made using structure function analysis and also the wave telescope technique, we currently have very little knowledge of the scale dependent anisotropy of the fluctuations in wavevector space, a quantity that is central to existing phenomenological theories of MHD turbulence. To make progress in this area, a simple method has been developed that allows the frequency spectrum in the spacecraft frame to be computed for any 3D wavevector spectrum in Fourier space. The technique is based on the well known formula for the doppler shift in a moving medium together with the random phase approximation of turbulence theory. Because the method does not rely on Taylor's hypothesis, it also applies when the Alfven speed is large compared to the solar wind speed, a circumstance that occurs close to the sun at heliocentric distances less than 20 solar radii or so (0.1 AU). Different model wavevector spectra are used to investigate the effects of wavevector anisotropy on single spacecraft measurements. It is shown, for example, that for typical solar wind and Alfven speeds at 1 AU, wavevector spectra that are anisotropic power laws with Goldreich-Sridhar-like scaling can produce spectral exponents in the spacecraft frame that appear unrelated to the power law behaviors in k-space. In particular, a wavevector spectrum with an Iroshnikov-Kraichnan-like spectral index in the perpendicular direction could be seen by a spacecraft observer as a 5/3 spectrum.

  9. 3D Imaging with Structured Illumination for Advanced Security Applications

    SciTech Connect

    Birch, Gabriel Carisle; Dagel, Amber Lynn; Kast, Brian A.; Smith, Collin S.

    2015-09-01

    Three-dimensional (3D) information in a physical security system is a highly useful dis- criminator. The two-dimensional data from an imaging systems fails to provide target dis- tance and three-dimensional motion vector, which can be used to reduce nuisance alarm rates and increase system effectiveness. However, 3D imaging devices designed primarily for use in physical security systems are uncommon. This report discusses an architecture favorable to physical security systems; an inexpensive snapshot 3D imaging system utilizing a simple illumination system. The method of acquiring 3D data, tests to understand illumination de- sign, and software modifications possible to maximize information gathering capability are discussed.

  10. Modeling Cellular Processes in 3-D

    PubMed Central

    Mogilner, Alex; Odde, David

    2011-01-01

    Summary Recent advances in photonic imaging and fluorescent protein technology offer unprecedented views of molecular space-time dynamics in living cells. At the same time, advances in computing hardware and software enable modeling of ever more complex systems, from global climate to cell division. As modeling and experiment become more closely integrated, we must address the issue of modeling cellular processes in 3-D. Here, we highlight recent advances related to 3-D modeling in cell biology. While some processes require full 3-D analysis, we suggest that others are more naturally described in 2-D or 1-D. Keeping the dimensionality as low as possible reduces computational time and makes models more intuitively comprehensible; however, the ability to test full 3-D models will build greater confidence in models generally and remains an important emerging area of cell biological modeling. PMID:22036197

  11. Regoliths in 3-D

    NASA Technical Reports Server (NTRS)

    Grant, John; Cheng, Andrew; Delamere, Allen; Gorevan, Steven; Korotev, Randy; McKay, David; Schmitt, Harrison; Zarnecki, John

    1996-01-01

    A planetary regolith is any layer of fragments, unconsolidated material that may or may not be textually or compositionally altered relative to underlying substrate and occurs on the outer surface of a solar system body. This includes fragmented material from volcanic, sedimentary, and meteoritic infall sources, and derived by any process (e.g. impact and all other endogenic or exogenic processes). Many measurements that can be made from orbit or from Earth-based observations provide information only about the uppermost portions of a regolith and not the underlying substrate(s). Thus an understanding of the formation processes, physical properties, composition, and evolution of planetary regoliths is essential in answering scientific questions posed by the Committee on Planetary and Lunar Exploration (COMPLEX). This paper provides examples of measurements required to answer these critical science questions.

  12. 3-D model-based vehicle tracking.

    PubMed

    Lou, Jianguang; Tan, Tieniu; Hu, Weiming; Yang, Hao; Maybank, Steven J

    2005-10-01

    This paper aims at tracking vehicles from monocular intensity image sequences and presents an efficient and robust approach to three-dimensional (3-D) model-based vehicle tracking. Under the weak perspective assumption and the ground-plane constraint, the movements of model projection in the two-dimensional image plane can be decomposed into two motions: translation and rotation. They are the results of the corresponding movements of 3-D translation on the ground plane (GP) and rotation around the normal of the GP, which can be determined separately. A new metric based on point-to-line segment distance is proposed to evaluate the similarity between an image region and an instantiation of a 3-D vehicle model under a given pose. Based on this, we provide an efficient pose refinement method to refine the vehicle's pose parameters. An improved EKF is also proposed to track and to predict vehicle motion with a precise kinematics model. Experimental results with both indoor and outdoor data show that the algorithm obtains desirable performance even under severe occlusion and clutter.

  13. 3-D model-based vehicle tracking.

    PubMed

    Lou, Jianguang; Tan, Tieniu; Hu, Weiming; Yang, Hao; Maybank, Steven J

    2005-10-01

    This paper aims at tracking vehicles from monocular intensity image sequences and presents an efficient and robust approach to three-dimensional (3-D) model-based vehicle tracking. Under the weak perspective assumption and the ground-plane constraint, the movements of model projection in the two-dimensional image plane can be decomposed into two motions: translation and rotation. They are the results of the corresponding movements of 3-D translation on the ground plane (GP) and rotation around the normal of the GP, which can be determined separately. A new metric based on point-to-line segment distance is proposed to evaluate the similarity between an image region and an instantiation of a 3-D vehicle model under a given pose. Based on this, we provide an efficient pose refinement method to refine the vehicle's pose parameters. An improved EKF is also proposed to track and to predict vehicle motion with a precise kinematics model. Experimental results with both indoor and outdoor data show that the algorithm obtains desirable performance even under severe occlusion and clutter. PMID:16238061

  14. The extraction of 3D shape from texture and shading in the human brain.

    PubMed

    Georgieva, Svetlana S; Todd, James T; Peeters, Ronald; Orban, Guy A

    2008-10-01

    We used functional magnetic resonance imaging to investigate the human cortical areas involved in processing 3-dimensional (3D) shape from texture (SfT) and shading. The stimuli included monocular images of randomly shaped 3D surfaces and a wide variety of 2-dimensional (2D) controls. The results of both passive and active experiments reveal that the extraction of 3D SfT involves the bilateral caudal inferior temporal gyrus (caudal ITG), lateral occipital sulcus (LOS) and several bilateral sites along the intraparietal sulcus. These areas are largely consistent with those involved in the processing of 3D shape from motion and stereo. The experiments also demonstrate, however, that the analysis of 3D shape from shading is primarily restricted to the caudal ITG areas. Additional results from psychophysical experiments reveal that this difference in neuronal substrate cannot be explained by a difference in strength between the 2 cues. These results underscore the importance of the posterior part of the lateral occipital complex for the extraction of visual 3D shape information from all depth cues, and they suggest strongly that the importance of shading is diminished relative to other cues for the analysis of 3D shape in parietal regions.

  15. Market study: 3-D eyetracker

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A market study of a proposed version of a 3-D eyetracker for initial use at NASA's Ames Research Center was made. The commercialization potential of a simplified, less expensive 3-D eyetracker was ascertained. Primary focus on present and potential users of eyetrackers, as well as present and potential manufacturers has provided an effective means of analyzing the prospects for commercialization.

  16. 3D World Building System

    ScienceCinema

    None

    2016-07-12

    This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.

  17. 3D World Building System

    SciTech Connect

    2013-10-30

    This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.

  18. LLNL-Earth3D

    SciTech Connect

    2013-10-01

    Earth3D is a computer code designed to allow fast calculation of seismic rays and travel times through a 3D model of the Earth. LLNL is using this for earthquake location and global tomography efforts and such codes are of great interest to the Earth Science community.

  19. [3-D ultrasound in gastroenterology].

    PubMed

    Zoller, W G; Liess, H

    1994-06-01

    Three-dimensional (3D) sonography represents a development of noninvasive diagnostic imaging by real-time two-dimensional (2D) sonography. The use of transparent rotating scans, comparable to a block of glass, generates a 3D effect. The objective of the present study was to optimate 3D presentation of abdominal findings. Additional investigations were made with a new volumetric program to determine the volume of selected findings of the liver. The results were compared with the estimated volumes of 2D sonography and 2D computer tomography (CT). For the processing of 3D images, typical parameter constellations were found for the different findings, which facilitated processing of 3D images. In more than 75% of the cases examined we found an optimal 3D presentation of sonographic findings with respect to the evaluation criteria developed by us for the 3D imaging of processed data. Great differences were found for the estimated volumes of the findings of the liver concerning the three different techniques applied. 3D ultrasound represents a valuable method to judge morphological appearance in abdominal findings. The possibility of volumetric measurements enlarges its potential diagnostic significance. Further clinical investigations are necessary to find out if definite differentiation between benign and malign findings is possible.

  20. Euro3D Science Conference

    NASA Astrophysics Data System (ADS)

    Walsh, J. R.

    2004-02-01

    The Euro3D RTN is an EU funded Research Training Network to foster the exploitation of 3D spectroscopy in Europe. 3D spectroscopy is a general term for spectroscopy of an area of the sky and derives its name from its two spatial + one spectral dimensions. There are an increasing number of instruments which use integral field devices to achieve spectroscopy of an area of the sky, either using lens arrays, optical fibres or image slicers, to pack spectra of multiple pixels on the sky (``spaxels'') onto a 2D detector. On account of the large volume of data and the special methods required to reduce and analyse 3D data, there are only a few centres of expertise and these are mostly involved with instrument developments. There is a perceived lack of expertise in 3D spectroscopy spread though the astronomical community and its use in the armoury of the observational astronomer is viewed as being highly specialised. For precisely this reason the Euro3D RTN was proposed to train young researchers in this area and develop user tools to widen the experience with this particular type of data in Europe. The Euro3D RTN is coordinated by Martin M. Roth (Astrophysikalisches Institut Potsdam) and has been running since July 2002. The first Euro3D science conference was held in Cambridge, UK from 22 to 23 May 2003. The main emphasis of the conference was, in keeping with the RTN, to expose the work of the young post-docs who are funded by the RTN. In addition the team members from the eleven European institutes involved in Euro3D also presented instrumental and observational developments. The conference was organized by Andy Bunker and held at the Institute of Astronomy. There were over thirty participants and 26 talks covered the whole range of application of 3D techniques. The science ranged from Galactic planetary nebulae and globular clusters to kinematics of nearby galaxies out to objects at high redshift. Several talks were devoted to reporting recent observations with newly

  1. Temporal tracking of 3D coronary arteries in projection angiograms

    NASA Astrophysics Data System (ADS)

    Shechter, Guy; Devernay, Frederic; Coste-Maniere, Eve; McVeigh, Elliot R.

    2002-05-01

    A method for 3D temporal tracking of a 3D coronary tree model through a sequence of biplane cineangiography images has been developed. A registration framework is formulated in which the coronary tree centerline model deforms in an external potential field defined by a multiscale analysis response map computed from the angiogram images. To constrain the procedure and to improve convergence, a set of three motion models is hierarchically used: a 3D rigid-body transformation, a 3D affine transformation, and a 3D B-spline deformation field. This 3D motion tracking approach has significant advantages over 2D methods: (1) coherent deformation of a single 3D coronary reconstruction preserves the topology of the arterial tree; (2) constraints on arterial length and regularity, which lack meaning in 2D projection space, are directly applicable in 3D; and (3) tracking arterial segments through occlusions and crossings in the projection images is simplified with knowledge of the 3D relationship of the arteries. The method has been applied to patient data and results are presented.

  2. PLOT3D user's manual

    NASA Technical Reports Server (NTRS)

    Walatka, Pamela P.; Buning, Pieter G.; Pierce, Larry; Elson, Patricia A.

    1990-01-01

    PLOT3D is a computer graphics program designed to visualize the grids and solutions of computational fluid dynamics. Seventy-four functions are available. Versions are available for many systems. PLOT3D can handle multiple grids with a million or more grid points, and can produce varieties of model renderings, such as wireframe or flat shaded. Output from PLOT3D can be used in animation programs. The first part of this manual is a tutorial that takes the reader, keystroke by keystroke, through a PLOT3D session. The second part of the manual contains reference chapters, including the helpfile, data file formats, advice on changing PLOT3D, and sample command files.

  3. 3D Elastic Wavefield Tomography

    NASA Astrophysics Data System (ADS)

    Guasch, L.; Warner, M.; Stekl, I.; Umpleby, A.; Shah, N.

    2010-12-01

    or less than 300x300x300 nodes, and it under-samples the wavefield reducing the number of stored time-steps by an order of magnitude. For bigger models the wavefield is stored only at the boundaries of the model and then re-injected while the residuals are backpropagated allowing to compute the correlation 'on the fly'. In terms of computational resource, the elastic code is an order of magnitude more demanding than the equivalent acoustic code. We have combined shared memory with distributed memory parallelisation using OpenMP and MPI respectively. Thus, we take advantage of the increasingly common multi-core architecture processors. We have successfully applied our inversion algorithm to different realistic complex 3D models. The models had non-linear relations between pressure and shear wave velocities. The shorter wavelengths of the shear waves improve the resolution of the images obtained with respect to a purely acoustic approach.

  4. PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITHOUT TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into

  5. PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITH TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into

  6. HEMP 3D -- a finite difference program for calculating elastic-plastic flow

    SciTech Connect

    Wilkins, M.L.

    1993-05-26

    The HEMP 3D program can be used to solve problems in solid mechanics involving dynamic plasticity and time dependent material behavior and problems in gas dynamics. The equations of motion, the conservation equations, and the constitutive relations are solved by finite difference methods following the format of the HEMP computer simulation program formulated in two space dimensions and time. Presented here is an update of the 1975 report on the HEMP 3D numerical technique. The present report includes the sliding surface routines programmed by Robert Gulliford.

  7. 3D imaging: how to achieve highest accuracy

    NASA Astrophysics Data System (ADS)

    Luhmann, Thomas

    2011-07-01

    The generation of 3D information from images is a key technology in many different areas, e.g. in 3D modeling and representation of architectural or heritage objects, in human body motion tracking and scanning, in 3D scene analysis of traffic scenes, in industrial applications and many more. The basic concepts rely on mathematical representations of central perspective viewing as they are widely known from photogrammetry or computer vision approaches. The objectives of these methods differ, more or less, from high precision and well-structured measurements in (industrial) photogrammetry to fully-automated non-structured applications in computer vision. Accuracy and precision is a critical issue for the 3D measurement of industrial, engineering or medical objects. As state of the art, photogrammetric multi-view measurements achieve relative precisions in the order of 1:100000 to 1:200000, and relative accuracies with respect to retraceable lengths in the order of 1:50000 to 1:100000 of the largest object diameter. In order to obtain these figures a number of influencing parameters have to be optimized. These are, besides others: physical representation of object surface (targets, texture), illumination and light sources, imaging sensors, cameras and lenses, calibration strategies (camera model), orientation strategies (bundle adjustment), image processing of homologue features (target measurement, stereo and multi-image matching), representation of object or workpiece coordinate systems and object scale. The paper discusses the above mentioned parameters and offers strategies for obtaining highest accuracy in object space. Practical examples of high-quality stereo camera measurements and multi-image applications are used to prove the relevance of high accuracy in different applications, ranging from medical navigation to static and dynamic industrial measurements. In addition, standards for accuracy verifications are presented and demonstrated by practical examples

  8. Doppler shift and ambiguity velocity caused by relative motion in quantum-enhanced measurement.

    PubMed

    Shen, Yanghe; Xu, Luping; Zhang, Hua; Yang, Peng

    2015-07-13

    We study the effect of relative motion on a frequency-entangled-based ranging scheme. Two major puzzles arise, i.e., Doppler shift and ambiguity velocity. During condition of rapid relative motion, Doppler shift invalidates the measurement result of this scheme; while during condition of slow relative motion, the ambiguity velocity turns into a major limitation. If relative speed between targets and measurement platform exceeds the ambiguity velocity, an accumulated profile obtained by the coincidence measurement will be distorted, which causes a lower ranging accuracy. Theoretical analysis shows a time-varying delay can be introduced to solve the two major puzzles. PMID:26191903

  9. 3D Shape Perception in Posterior Cortical Atrophy: A Visual Neuroscience Perspective

    PubMed Central

    Gillebert, Céline R.; Schaeverbeke, Jolien; Bastin, Christine; Neyens, Veerle; Bruffaerts, Rose; De Weer, An-Sofie; Seghers, Alexandra; Sunaert, Stefan; Van Laere, Koen; Versijpt, Jan; Vandenbulcke, Mathieu; Salmon, Eric; Todd, James T.; Orban, Guy A.

    2015-01-01

    Posterior cortical atrophy (PCA) is a rare focal neurodegenerative syndrome characterized by progressive visuoperceptual and visuospatial deficits, most often due to atypical Alzheimer's disease (AD). We applied insights from basic visual neuroscience to analyze 3D shape perception in humans affected by PCA. Thirteen PCA patients and 30 matched healthy controls participated, together with two patient control groups with diffuse Lewy body dementia (DLBD) and an amnestic-dominant phenotype of AD, respectively. The hierarchical study design consisted of 3D shape processing for 4 cues (shading, motion, texture, and binocular disparity) with corresponding 2D and elementary feature extraction control conditions. PCA and DLBD exhibited severe 3D shape-processing deficits and AD to a lesser degree. In PCA, deficient 3D shape-from-shading was associated with volume loss in the right posterior inferior temporal cortex. This region coincided with a region of functional activation during 3D shape-from-shading in healthy controls. In PCA patients who performed the same fMRI paradigm, response amplitude during 3D shape-from-shading was reduced in this region. Gray matter volume in this region also correlated with 3D shape-from-shading in AD. 3D shape-from-disparity in PCA was associated with volume loss slightly more anteriorly in posterior inferior temporal cortex as well as in ventral premotor cortex. The findings in right posterior inferior temporal cortex and right premotor cortex are consistent with neurophysiologically based models of the functional anatomy of 3D shape processing. However, in DLBD, 3D shape deficits rely on mechanisms distinct from inferior temporal structural integrity. SIGNIFICANCE STATEMENT Posterior cortical atrophy (PCA) is a neurodegenerative syndrome characterized by progressive visuoperceptual dysfunction and most often an atypical presentation of Alzheimer's disease (AD) affecting the ventral and dorsal visual streams rather than the medial

  10. Unassisted 3D camera calibration

    NASA Astrophysics Data System (ADS)

    Atanassov, Kalin; Ramachandra, Vikas; Nash, James; Goma, Sergio R.

    2012-03-01

    With the rapid growth of 3D technology, 3D image capture has become a critical part of the 3D feature set on mobile phones. 3D image quality is affected by the scene geometry as well as on-the-device processing. An automatic 3D system usually assumes known camera poses accomplished by factory calibration using a special chart. In real life settings, pose parameters estimated by factory calibration can be negatively impacted by movements of the lens barrel due to shaking, focusing, or camera drop. If any of these factors displaces the optical axes of either or both cameras, vertical disparity might exceed the maximum tolerable margin and the 3D user may experience eye strain or headaches. To make 3D capture more practical, one needs to consider unassisted (on arbitrary scenes) calibration. In this paper, we propose an algorithm that relies on detection and matching of keypoints between left and right images. Frames containing erroneous matches, along with frames with insufficiently rich keypoint constellations, are detected and discarded. Roll, pitch yaw , and scale differences between left and right frames are then estimated. The algorithm performance is evaluated in terms of the remaining vertical disparity as compared to the maximum tolerable vertical disparity.

  11. Transderm scopolamine efficacy related to time of application prior to the onset of motion.

    PubMed

    Levy, G D; Rapaport, M H

    1985-06-01

    We evaluated Transdermal Scopolamine related to the time of application prior to the onset of motion. In this study 44 subjects participated. The first group applied the transdermal disc within 4 h and the second group 8 h or more prior to the onset of motion. We observed a significant decrease in the incidence and the degree of motion sickness for the group with at least 8 h of scopolamine application prior to sea travel. Therefore, the transdermal scopolamine system should be applied at least 8 h before potentially disturbing motion to provide adequate prophylaxis against motion sickness. We found no significant difference in motion sickness susceptibility between men and women, in contrast to earlier reports.

  12. Relation of motion sickness susceptibility to vestibular and behavioral measures of orientation

    NASA Technical Reports Server (NTRS)

    Peterka, Robert J.

    1994-01-01

    The objective of this proposal is to determine the relationship of motion sickness susceptibility to vestibulo-ocular reflexes (VOR), motion perception, and behavioral utilization of sensory orientation cues for the control of postural equilibrium. The work is focused on reflexes and motion perception associated with pitch and roll movements that stimulate the vertical semicircular canals and otolith organs of the inner ear. This work is relevant to the space motion sickness problem since 0 g related sensory conflicts between vertical canal and otolith motion cues are a likely cause of space motion sickness. Results of experimentation are summarized and modifications to a two-axis rotation device are described. Abstracts of a number of papers generated during the reporting period are appended.

  13. Learning Relative Motion Concepts in Immersive and Non-immersive Virtual Environments

    NASA Astrophysics Data System (ADS)

    Kozhevnikov, Michael; Gurlitt, Johannes; Kozhevnikov, Maria

    2013-12-01

    The focus of the current study is to understand which unique features of an immersive virtual reality environment have the potential to improve learning relative motion concepts. Thirty-seven undergraduate students learned relative motion concepts using computer simulation either in immersive virtual environment (IVE) or non-immersive desktop virtual environment (DVE) conditions. Our results show that after the simulation activities, both IVE and DVE groups exhibited a significant shift toward a scientific understanding in their conceptual models and epistemological beliefs about the nature of relative motion, and also a significant improvement on relative motion problem-solving tests. In addition, we analyzed students' performance on one-dimensional and two-dimensional questions in the relative motion problem-solving test separately and found that after training in the simulation, the IVE group performed significantly better than the DVE group on solving two-dimensional relative motion problems. We suggest that egocentric encoding of the scene in IVE (where the learner constitutes a part of a scene they are immersed in), as compared to allocentric encoding on a computer screen in DVE (where the learner is looking at the scene from "outside"), is more beneficial than DVE for studying more complex (two-dimensional) relative motion problems. Overall, our findings suggest that such aspects of virtual realities as immersivity, first-hand experience, and the possibility of changing different frames of reference can facilitate understanding abstract scientific phenomena and help in displacing intuitive misconceptions with more accurate mental models.

  14. The dimension added by 3D scanning and 3D printing of meteorites

    NASA Astrophysics Data System (ADS)

    de Vet, S. J.

    2016-01-01

    An overview for the 3D photodocumentation of meteorites is presented, focussing on two 3D scanning methods in relation to 3D printing. The 3D photodocumention of meteorites provides new ways for the digital preservation of culturally, historically or scientifically unique meteorites. It has the potential for becoming a new documentation standard of meteorites that can exist complementary to traditional photographic documentation. Notable applications include (i.) use of physical properties in dark flight-, strewn field-, or aerodynamic modelling; (ii.) collection research of meteorites curated by different museum collections, and (iii.) public dissemination of meteorite models as a resource for educational users. The possible applications provided by the additional dimension of 3D illustrate the benefits for the meteoritics community.

  15. Lorentz Contraction, Bell's Spaceships and Rigid Body Motion in Special Relativity

    ERIC Educational Resources Information Center

    Franklin, Jerrold

    2010-01-01

    The meaning of Lorentz contraction in special relativity and its connection with Bell's spaceships parable is discussed. The motion of Bell's spaceships is then compared with the accelerated motion of a rigid body. We have tried to write this in a simple form that could be used to correct students' misconceptions due to conflicting earlier…

  16. Audiovisual biofeedback improves image quality and reduces scan time for respiratory-gated 3D MRI

    NASA Astrophysics Data System (ADS)

    Lee, D.; Greer, P. B.; Arm, J.; Keall, P.; Kim, T.

    2014-03-01

    The purpose of this study was to test the hypothesis that audiovisual (AV) biofeedback can improve image quality and reduce scan time for respiratory-gated 3D thoracic MRI. For five healthy human subjects respiratory motion guidance in MR scans was provided using an AV biofeedback system, utilizing real-time respiratory motion signals. To investigate the improvement of respiratory-gated 3D MR images between free breathing (FB) and AV biofeedback (AV), each subject underwent two imaging sessions. Respiratory-related motion artifacts and imaging time were qualitatively evaluated in addition to the reproducibility of external (abdominal) motion. In the results, 3D MR images in AV biofeedback showed more anatomic information such as a clear distinction of diaphragm, lung lobes and sharper organ boundaries. The scan time was reduced from 401±215 s in FB to 334±94 s in AV (p-value 0.36). The root mean square variation of the displacement and period of the abdominal motion was reduced from 0.4±0.22 cm and 2.8±2.5 s in FB to 0.1±0.15 cm and 0.9±1.3 s in AV (p-value of displacement <0.01 and p-value of period 0.12). This study demonstrated that audiovisual biofeedback improves image quality and reduces scan time for respiratory-gated 3D MRI. These results suggest that AV biofeedback has the potential to be a useful motion management tool in medical imaging and radiation therapy procedures.

  17. Analysis of the energy distribution of interface traps related to tunnel oxide degradation using charge pumping techniques for 3D NAND flash applications

    SciTech Connect

    An, Ho-Myoung; Kim, Hee-Dong; Kim, Tae Geun

    2013-12-15

    Graphical abstract: The degradation tendency extracted by CP technique was almost the same in both the bulk-type and TFT-type cells. - Highlights: • D{sub it} is directly investigated from bulk-type and TFT-type CTF memory. • Charge pumping technique was employed to analyze the D{sub it} information. • To apply the CP technique to monitor the reliability of the 3D NAND flash. - Abstract: The energy distribution and density of interface traps (D{sub it}) are directly investigated from bulk-type and thin-film transistor (TFT)-type charge trap flash memory cells with tunnel oxide degradation, under program/erase (P/E) cycling using a charge pumping (CP) technique, in view of application in a 3-demension stackable NAND flash memory cell. After P/E cycling in bulk-type devices, the interface trap density gradually increased from 1.55 × 10{sup 12} cm{sup −2} eV{sup −1} to 3.66 × 10{sup 13} cm{sup −2} eV{sup −1} due to tunnel oxide damage, which was consistent with the subthreshold swing and transconductance degradation after P/E cycling. Its distribution moved toward shallow energy levels with increasing cycling numbers, which coincided with the decay rate degradation with short-term retention time. The tendency extracted with the CP technique for D{sub it} of the TFT-type cells was similar to those of bulk-type cells.

  18. A Late Paleozoic sill complex and related paleo-topography in the eastern North Sea analyzed using 3D seismic data

    NASA Astrophysics Data System (ADS)

    Clausen, Ole Rønø; Andresen, Katrine Juul; Rasmussen, Jens Andreas

    2016-04-01

    In this paper, we utilize large igneous intrusions as a key to a detailed analysis and understanding of the late Paleozoic evolution of the Ringkøbing-Fyn High, an important structural element in the North West European Craton. The study takes advantage of high-quality 3D seismic data and boreholes to map the geometry and lateral distribution of intrusive sills cross-cutting the sedimentary strata at a low angle (transgressive sills). Our analysis shows that the transgressive sills most likely sourced the vast extrusion of volcanics, which covered most of the Early Permian Northern Basin and which is associated to the Skagerak-Centered Large Igneous Province (SCLIP). Furthermore, a geometrical analysis of the sills demonstrates that the magmatic source for the sills was located SE of the studied area, suggesting a correlation with geophysically inferred lower crust intrusions. Hence, we are in this study able to constrain the full magmatic system from the lower crust intrusions to the surface volcanics. Intrusion of the sills occurred prior to an Early Permian faulting event, which created rotated fault blocks outlining the present Ringkøbing-Fyn High. The sills exposed for erosion at the crest of the footwall in turn controlled the Late Permian paleo-topography and the distribution of the Zechstein evaporites due to the fact that they are harder to erode. Hence, we are able to demonstrate a topography controlled thickness variation of the Zechstein evaporites. The study furthermore emphasizes that an understanding of the deepest parts of the North Sea Basin is crucial when evaluating the potential for yet unrecognized hydrocarbon plays.

  19. Laser printing of 3D metallic interconnects

    NASA Astrophysics Data System (ADS)

    Beniam, Iyoel; Mathews, Scott A.; Charipar, Nicholas A.; Auyeung, Raymond C. Y.; Piqué, Alberto

    2016-04-01

    The use of laser-induced forward transfer (LIFT) techniques for the printing of functional materials has been demonstrated for numerous applications. The printing gives rise to patterns, which can be used to fabricate planar interconnects. More recently, various groups have demonstrated electrical interconnects from laser-printed 3D structures. The laser printing of these interconnects takes place through aggregation of voxels of either molten metal or of pastes containing dispersed metallic particles. However, the generated 3D structures do not posses the same metallic conductivity as a bulk metal interconnect of the same cross-section and length as those formed by wire bonding or tab welding. An alternative is to laser transfer entire 3D structures using a technique known as lase-and-place. Lase-and-place is a LIFT process whereby whole components and parts can be transferred from a donor substrate onto a desired location with one single laser pulse. This paper will describe the use of LIFT to laser print freestanding, solid metal foils or beams precisely over the contact pads of discrete devices to interconnect them into fully functional circuits. Furthermore, this paper will also show how the same laser can be used to bend or fold the bulk metal foils prior to transfer, thus forming compliant 3D structures able to provide strain relief for the circuits under flexing or during motion from thermal mismatch. These interconnect "ridges" can span wide gaps (on the order of a millimeter) and accommodate height differences of tens of microns between adjacent devices. Examples of these laser printed 3D metallic bridges and their role in the development of next generation electronics by additive manufacturing will be presented.

  20. Visual acuity for optotypes made visible by relative motion.

    PubMed

    Regan, D; Hong, X H

    1990-01-01

    There are several visual mechanisms for analyzing spatial information additional to the much researched mechanism sensitive to luminance contrast. We describe a Snellen-type acuity test for motion-defined (MD) letters. Acuity for these MD letters collapsed at dot speeds slower than 0.05 deg/s, but acuity for contrast-defined (CD) letters was unaffected by speed over the entire 0 to 0.3 deg/s range used. Acuity was a power function of presentation duration for both kinds of letter, but the exponent was higher for MD than for CD letters. Acuity for MD letters was comparatively unaffected by dot density from 50 to 0.05%, below which it suddenly collapsed to zero. On the other hand, acuity for CD letters progressively fell as dot density was reduced from 50%, and below about 0.5% approximated acuity for MD letters.

  1. Flux-motion related ac losses in high Tc superconductors

    NASA Astrophysics Data System (ADS)

    Chen, Q. Y.

    1993-03-01

    The ac losses of high-temperature superconductors in the flux-depinned mixed-state have been treated using the classical magnetic diffusion equation in conjunction with various models of flux-motion. With the imaginary part representing the ac losses, the field- and frequency-dependent ac susceptibilities were investigated. The imaginary component was found to obey a scaling rule with a characteristic frequency, estimated to be about 10 exp 5-10 exp 9 Hz, that depended on the sample size and normal state resistivity. This frequency range agrees with earlier experimental results, which could not be accounted for previously based upon the notion of thermally activated hopping of vortices. The frequency scaling behaviors using flux-creep and flux-flow models are presented.

  2. Alignment of continuous video onto 3D point clouds.

    PubMed

    Zhao, Wenyi; Nister, David; Hsu, Steve

    2005-08-01

    We propose a general framework for aligning continuous (oblique) video onto 3D sensor data. We align a point cloud computed from the video onto the point cloud directly obtained from a 3D sensor. This is in contrast to existing techniques where the 2D images are aligned to a 3D model derived from the 3D sensor data. Using point clouds enables the alignment for scenes full of objects that are difficult to model; for example, trees. To compute 3D point clouds from video, motion stereo is used along with a state-of-the-art algorithm for camera pose estimation. Our experiments with real data demonstrate the advantages of the proposed registration algorithm for texturing models in large-scale semiurban environments. The capability to align video before a 3D model is built from the 3D sensor data offers new practical opportunities for 3D modeling. We introduce a novel modeling-through-registration approach that fuses 3D information from both the 3D sensor and the video. Initial experiments with real data illustrate the potential of the proposed approach.

  3. Spatially resolved 3D noise

    NASA Astrophysics Data System (ADS)

    Haefner, David P.; Preece, Bradley L.; Doe, Joshua M.; Burks, Stephen D.

    2016-05-01

    When evaluated with a spatially uniform irradiance, an imaging sensor exhibits both spatial and temporal variations, which can be described as a three-dimensional (3D) random process considered as noise. In the 1990s, NVESD engineers developed an approximation to the 3D power spectral density (PSD) for noise in imaging systems known as 3D noise. In this correspondence, we describe how the confidence intervals for the 3D noise measurement allows for determination of the sampling necessary to reach a desired precision. We then apply that knowledge to create a smaller cube that can be evaluated spatially across the 2D image giving the noise as a function of position. The method presented here allows for both defective pixel identification and implements the finite sampling correction matrix. In support of the reproducible research effort, the Matlab functions associated with this work can be found on the Mathworks file exchange [1].

  4. Autofocus for 3D imaging

    NASA Astrophysics Data System (ADS)

    Lee-Elkin, Forest

    2008-04-01

    Three dimensional (3D) autofocus remains a significant challenge for the development of practical 3D multipass radar imaging. The current 2D radar autofocus methods are not readily extendable across sensor passes. We propose a general framework that allows a class of data adaptive solutions for 3D auto-focus across passes with minimal constraints on the scene contents. The key enabling assumption is that portions of the scene are sparse in elevation which reduces the number of free variables and results in a system that is simultaneously solved for scatterer heights and autofocus parameters. The proposed method extends 2-pass interferometric synthetic aperture radar (IFSAR) methods to an arbitrary number of passes allowing the consideration of scattering from multiple height locations. A specific case from the proposed autofocus framework is solved and demonstrates autofocus and coherent multipass 3D estimation across the 8 passes of the "Gotcha Volumetric SAR Data Set" X-Band radar data.

  5. Accepting the T3D

    SciTech Connect

    Rich, D.O.; Pope, S.C.; DeLapp, J.G.

    1994-10-01

    In April, a 128 PE Cray T3D was installed at Los Alamos National Laboratory`s Advanced Computing Laboratory as part of the DOE`s High-Performance Parallel Processor Program (H4P). In conjunction with CRI, the authors implemented a 30 day acceptance test. The test was constructed in part to help them understand the strengths and weaknesses of the T3D. In this paper, they briefly describe the H4P and its goals. They discuss the design and implementation of the T3D acceptance test and detail issues that arose during the test. They conclude with a set of system requirements that must be addressed as the T3D system evolves.

  6. Approximate solutions of non-linear circular orbit relative motion in curvilinear coordinates

    NASA Astrophysics Data System (ADS)

    Bombardelli, Claudio; Gonzalo, Juan Luis; Roa, Javier

    2016-07-01

    A compact, time-explicit, approximate solution of the highly non-linear relative motion in curvilinear coordinates is provided under the assumption of circular orbit for the chief spacecraft. The rather compact, three-dimensional solution is obtained by algebraic manipulation of the individual Keplerian motions in curvilinear, rather than Cartesian coordinates, and provides analytical expressions for the secular, constant and periodic terms of each coordinate as a function of the initial relative motion conditions or relative orbital elements. Numerical test cases are conducted to show that the approximate solution can be effectively employed to extend the classical linear Clohessy-Wiltshire solution to include non-linear relative motion without significant loss of accuracy up to a limit of 0.4-0.45 in eccentricity and 40-45° in relative inclination for the follower. A very simple, quadratic extension of the classical Clohessy-Wiltshire solution in curvilinear coordinates is also presented.

  7. Full-color holographic 3D printer

    NASA Astrophysics Data System (ADS)

    Takano, Masami; Shigeta, Hiroaki; Nishihara, Takashi; Yamaguchi, Masahiro; Takahashi, Susumu; Ohyama, Nagaaki; Kobayashi, Akihiko; Iwata, Fujio

    2003-05-01

    A holographic 3D printer is a system that produces a direct hologram with full-parallax information using the 3-dimensional data of a subject from a computer. In this paper, we present a proposal for the reproduction of full-color images with the holographic 3D printer. In order to realize the 3-dimensional color image, we selected the 3 laser wavelength colors of red (λ=633nm), green (λ=533nm), and blue (λ=442nm), and we built a one-step optical system using a projection system and a liquid crystal display. The 3-dimensional color image is obtained by synthesizing in a 2D array the multiple exposure with these 3 wavelengths made on each 250mm elementary hologram, and moving recording medium on a x-y stage. For the natural color reproduction in the holographic 3D printer, we take the approach of the digital processing technique based on the color management technology. The matching between the input and output colors is performed by investigating first, the relation between the gray level transmittance of the LCD and the diffraction efficiency of the hologram and second, by measuring the color displayed by the hologram to establish a correlation. In our first experimental results a non-linear functional relation for single and multiple exposure of the three components were found. These results are the first step in the realization of a natural color 3D image produced by the holographic color 3D printer.

  8. Measures and Relative Motions of Some Mostly F. G. W. Struve Doubles

    NASA Astrophysics Data System (ADS)

    Wiley, E. O.

    2012-04-01

    Measures of 59 pairs of double stars with long observational histories using "lucky imaging" techniques are reported. Relative motions of 59 pairs are investigated using histories of observation, scatter plots of relative motion, ordinary least-squares (OLS) and total proper motion analyses performed in "R," an open source programming language. A scatter plot of the coefficient of determinations derived from the OLS y|epoch and OLS x|epoch clearly separates common proper motion pairs from optical pairs and what are termed "long-period binary candidates." Differences in proper motion separate optical pairs from long-term binary candidates. An Appendix is provided that details how to use known rectilinear pairs as calibration pairs for the program REDUC.

  9. 2001 Bhuj, India, earthquake engineering seismoscope recordings and Eastern North America ground-motion attenuation relations

    USGS Publications Warehouse

    Cramer, C.H.; Kumar, A.

    2003-01-01

    Engineering seismoscope data collected at distances less than 300 km for the M 7.7 Bhuj, India, mainshock are compatible with ground-motion attenuation in eastern North America (ENA). The mainshock ground-motion data have been corrected to a common geological site condition using the factors of Joyner and Boore (2000) and a classification scheme of Quaternary or Tertiary sediments or rock. We then compare these data to ENA ground-motion attenuation relations. Despite uncertainties in recording method, geological site corrections, common tectonic setting, and the amount of regional seismic attenuation, the corrected Bhuj dataset agrees with the collective predictions by ENA ground-motion attenuation relations within a factor of 2. This level of agreement is within the dataset uncertainties and the normal variance for recorded earthquake ground motions.

  10. Identification of an exo-ß-1,3-D-galactanase from Fusarium oxysporum and the synergistic effect with related enzymes on degradation of type II arabinogalactan.

    PubMed

    Okawa, Mizuho; Fukamachi, Keiko; Tanaka, Hiromasa; Sakamoto, Tatsuji

    2013-11-01

    An exo-ß-1,3-D-galactanase (Fo/1,3Gal) was purified from the culture filtrate of Fusarium oxysporum 12S. A cDNA encoding Fo/1,3Gal was isolated by in vitro cloning. Module sequence analysis revealed a "GH43_6" domain and a "CBM35_galactosidase-like" domain in Fo/1,3Gal. The recombinant enzyme (rFo/1,3Gal) expressed in Pichia pastoris degraded ß-1,3-galactan and ß-1,3-galactobiose (Gal2), and released only galactose (Gal). In contrast, the enzyme did not hydrolyze p-nitrophenyl ß-D-galactopyranoside, ß-1,4-Gal2, or ß-1,6-Gal2. The enzyme also showed low activity towards native type II arabinogalactans such as larchwood arabinogalactan (LWAG) and gum arabic. Using LWAG as substrate, rFo/1,3Gal released Gal, ß-1,6-Gal2, ß-1,6-galactotriose (Gal3), and ß-1,6-Gal3 substituted with a single arabinofuranose residue accompanied with unidentified oligosaccharides, indicating that the enzyme can by-pass the branching points of ß-1,3-galactan backbones. A time course analysis of products released by rFo/1,3Gal on LWAG revealed that ß-1,6-Gal2 is the main side chain in LWAG and that the activity of rFo/1,3Gal was decreased when degrees of polymerization of side chains increase. rFo/1,3Gal worked synergistically with three other recombinant F. oxysporum enzymes (ß-1,6-galactanase, ß-L-arabinopyranosidase, and α-L-arabinofuranosidase) that degrade side chains, on the degradation of LWAG. However, the synergism was much lower than anticipated, probably because LWAG have longer side chains than the three enzymes used are able to remove or ß-1,3-galactan main chain is interrupted with glycosidic linkages that are different from the ß-1,3-galactosyl linkage. Affinity gel electrophoresis revealed that rFo/1,3Gal specifically bound to ß-1,3-galactan.

  11. In vivo isotropic 3D diffusion tensor mapping of the rat brain using diffusion-weighted 3D MP-RAGE MRI.

    PubMed

    Numano, Tomokazu; Homma, Kazuhiro; Iwasaki, Nobuaki; Hyodo, Koji; Nitta, Naotaka; Hirose, Takeshi

    2006-04-01

    The purpose of this study was to examine the potential of diffusion-weighted (DW) three-dimensional (3D) MP-RAGE MRI for diffusion-tensor mapping of the rat brain in vivo. A DW-3D-MP-RAGE (3D-DWI) sequence was implemented at 2.0 T using six gradient orientations and a b value of 1000 s/mm2. In this sequence, the preparation sequence with a "90 degrees RF-motion proving gradient (MPG): MPG-180 degrees RF-MPG-90 degrees RF" pulse train (DW driven equilibrium Fourier transform) was used to sensitize the magnetization to diffusion. A centric k-space acquisition order was necessary to minimize saturation effects (T1 contamination) from tissues with short relaxation time. The image matrix was 128x128x128 (interpolated from 64x64x64 acquisitions), which resulted in small isotropic DW image data (voxel size: 0.273x0.273x0.273 mm3). Moreover, 3D-DWI-derived maps of the fractional anisotropy (FA), relative anisotropy (RA) and main-diffusion direction were completely free of susceptibility-induced signal losses and geometric distortions. Two well-known commissural fibers, the corpus callosum and anterior commissure, were indicated and shown to be in agreement with the locations of these known stereotaxic atlases. The experiment took 45 min, and shorter times should be possible in clinical application. The 3D-DWI sequence allows for in vivo 3D diffusion-tensor mapping of the rat brain without motion artifacts and susceptibility to distortion. PMID:16563958

  12. Dynamics of 3D isolated thermal filaments

    NASA Astrophysics Data System (ADS)

    Walkden, N. R.; Easy, L.; Militello, F.; Omotani, J. T.

    2016-11-01

    Simulations have been carried out to establish how electron thermal physics, introduced in the form of a dynamic electron temperature, affects isolated filament motion and dynamics in 3D. It is found that thermal effects impact filament motion in two major ways when the pressure perturbation within the filament is supported primarily through a temperature increase as opposed to density: they lead to a strong increase in filament propagation in the bi-normal direction and a significant decrease in net radial propagation. Both effects arise from the temperature dependence of the sheath current which leads to a non-uniform floating potential, with the latter effect supplemented by faster pressure loss. The reduction in radial velocity can only occur when the filament cross-section loses angular symmetry. The behaviour is observed across different filament sizes and suggests that filaments with much larger temperature perturbations than density perturbations are more strongly confined to the near SOL region.

  13. 3D Kitaev spin liquids

    NASA Astrophysics Data System (ADS)

    Hermanns, Maria

    The Kitaev honeycomb model has become one of the archetypal spin models exhibiting topological phases of matter, where the magnetic moments fractionalize into Majorana fermions interacting with a Z2 gauge field. In this talk, we discuss generalizations of this model to three-dimensional lattice structures. Our main focus is the metallic state that the emergent Majorana fermions form. In particular, we discuss the relation of the nature of this Majorana metal to the details of the underlying lattice structure. Besides (almost) conventional metals with a Majorana Fermi surface, one also finds various realizations of Dirac semi-metals, where the gapless modes form Fermi lines or even Weyl nodes. We introduce a general classification of these gapless quantum spin liquids using projective symmetry analysis. Furthermore, we briefly outline why these Majorana metals in 3D Kitaev systems provide an even richer variety of Dirac and Weyl phases than possible for electronic matter and comment on possible experimental signatures. Work done in collaboration with Kevin O'Brien and Simon Trebst.

  14. Lithospheric deformation and mantle/crust coupling related to slab roll-back and tearing processes: the role of magma-related rheological weakening highlighted by 3D numerical modeling

    NASA Astrophysics Data System (ADS)

    Menant, Armel; Jolivet, Laurent; Guillou-Frottier, Laurent; Sternai, Pietro; Gerya, Taras

    2016-04-01

    Active convergent margins are the locus of various large-scale lithospheric processes including subduction, back-arc opening, lithospheric delamination, slab tearing and break-off. Coexistence of such processes results in a complex lithospheric deformation pattern through the rheological stratification of the overriding lithosphere. In this context, another major feature is the development of an intense arc- and back-arc-related magmatism whose effects on lithospheric deformation by rheological weakening are largely unknown. Quantifying this magma-related weakening effect and integrating the three-dimensional (3D) natural complexity of subduction system is however challenging because of the large number of physico-chemical processes involved (e.g. heat advection, dehydration of subducted material, partial melting of the mantle wedge). We present here a set of 3D high-resolution petrological and thermo-mechanical numerical experiments to assess the role of low-viscosity magmatic phases on lithospheric deformation associated with coeval oceanic and continental subduction, followed by slab retreat and tearing processes. Results in terms of crustal kinematics, patterns of lithospheric deformation and distribution and composition of magmatic phases are then compared to a natural example displaying a similar geodynamical evolution: the eastern Mediterranean subduction zone. Our modeling results suggest that the asthenospheric flow controls the ascending trajectories of mantle-derived magmatic sources developed in the mantle wedge in response to dehydration of oceanic slab. Once stored at the base of the overriding continental crust, low-viscosity mantle- and crustal-derived magmatic phases allow to decrease the lithospheric strength. This weakening then enhances the propagation of localized extensional and strike-slip deformation in response to slab roll-back and extrusion tectonics respectively. In addition, we show that storage of large amounts of low-viscosity magmas

  15. STAR3D: a stack-based RNA 3D structural alignment tool

    PubMed Central

    Ge, Ping; Zhang, Shaojie

    2015-01-01

    The various roles of versatile non-coding RNAs typically require the attainment of complex high-order structures. Therefore, comparing the 3D structures of RNA molecules can yield in-depth understanding of their functional conservation and evolutionary history. Recently, many powerful tools have been developed to align RNA 3D structures. Although some methods rely on both backbone conformations and base pairing interactions, none of them consider the entire hierarchical formation of the RNA secondary structure. One of the major issues is that directly applying the algorithms of matching 2D structures to the 3D coordinates is particularly time-consuming. In this article, we propose a novel RNA 3D structural alignment tool, STAR3D, to take into full account the 2D relations between stacks without the complicated comparison of secondary structures. First, the 3D conserved stacks in the inputs are identified and then combined into a tree-like consensus. Afterward, the loop regions are compared one-to-one in accordance with their relative positions in the consensus tree. The experimental results show that the prediction of STAR3D is more accurate for both non-homologous and homologous RNAs than other state-of-the-art tools with shorter running time. PMID:26184875

  16. Gravity and spatial orientation in virtual 3D-mazes.

    PubMed

    Vidal, Manuel; Lipshits, Mark; McIntyre, Joseph; Berthoz, Alain

    2003-01-01

    In order to bring new insights into the processing of 3D spatial information, we conducted experiments on the capacity of human subjects to memorize 3D-structured environments, such as buildings with several floors or the potentially complex 3D structure of an orbital space station. We had subjects move passively in one of two different exploration modes, through a visual virtual environment that consisted of a series of connected tunnels. In upright displacement, self-rotation when going around corners in the tunnels was limited to yaw rotations. For horizontal translations, subjects faced forward in the direction of motion. When moving up or down through vertical segments of the 3D tunnels, however, subjects facing the tunnel wall, remaining upright as if moving up and down in a glass elevator. In the unconstrained displacement mode, subjects would appear to climb or dive face-forward when moving vertically; thus, in this mode subjects could experience visual flow consistent with rotations about any of the 3 canonical axes. In a previous experiment, subjects were asked to determine whether a static, outside view of a test tunnel corresponded or not to the tunnel through which they had just passed. Results showed that performance was better on this task for the upright than for the unconstrained displacement mode; i.e. when subjects remained "upright" with respect to the virtual environment as defined by subject's posture in the first segment. This effect suggests that gravity may provide a key reference frame used in the shift between egocentric and allocentric representations of the 3D virtual world. To check whether it is the polarizing effects of gravity that leads to the favoring of the upright displacement mode, the experimental paradigm was adapted for orbital flight and performed by cosmonauts onboard the International Space Station. For these flight experiments the previous recognition task was replaced by a computerized reconstruction task, which proved

  17. Ossicular motion related to middle ear transmission delay in gerbil.

    PubMed

    de La Rochefoucauld, Ombeline; Kachroo, Puja; Olson, Elizabeth S

    2010-12-01

    The middle ear transmits sound efficiently from the air in the ear canal (EC) to the fluid filled cochlea. In gerbil, middle ear transmission produces a constant pressure gain between the EC and the cochlea of ∼25 dB from 2 to 40 kHz, and a delay-like phase corresponding to a ∼25-30 μs delay. The mechanisms by which the air-born signal is collected and delivered to the cochlea are not thoroughly understood, and the source of the delay is controversial. We investigated these issues by observing ossicular motion along a single line of sight, roughly parallel to the EC and perpendicular to the stapes footplate. Measurements were made at the umbo, the long process of the manubrium, across the malleus-incus joint, at the long process of the incus, and the stapes head. While the overall delay between EC pressure and stapes velocity was fairly constant with frequency, subcomponents of the delay were frequency dependent. Up to ∼17 kHz, most of the overall delay was between the EC and umbo with a much smaller contribution along the ossicles, whereas in the range from ∼17 to 30 kHz, more of the overall delay was along the ossicles.