Rigid Body Motion in Stereo 3D Simulation
ERIC Educational Resources Information Center
Zabunov, Svetoslav
2010-01-01
This paper addresses the difficulties experienced by first-grade students studying rigid body motion at Sofia University. Most quantities describing the rigid body are in relations that the students find hard to visualize and understand. They also lose the notion of cause-result relations between vector quantities, such as the relation between…
3-D rigid body tracking using vision and depth sensors.
Gedik, O Serdar; Alatan, A Aydn
2013-10-01
In robotics and augmented reality applications, model-based 3-D tracking of rigid objects is generally required. With the help of accurate pose estimates, it is required to increase reliability and decrease jitter in total. Among many solutions of pose estimation in the literature, pure vision-based 3-D trackers require either manual initializations or offline training stages. On the other hand, trackers relying on pure depth sensors are not suitable for AR applications. An automated 3-D tracking algorithm, which is based on fusion of vision and depth sensors via extended Kalman filter, is proposed in this paper. A novel measurement-tracking scheme, which is based on estimation of optical flow using intensity and shape index map data of 3-D point cloud, increases 2-D, as well as 3-D, tracking performance significantly. The proposed method requires neither manual initialization of pose nor offline training, while enabling highly accurate 3-D tracking. The accuracy of the proposed method is tested against a number of conventional techniques, and a superior performance is clearly observed in terms of both objectively via error metrics and subjectively for the rendered scenes. PMID:23955795
Rigid bodies for metal forming analysis with NIKE3D
Maker, B.N.
1995-01-25
Perhaps the most common approximation in engineering is that, relative to its neighbors, a system component is structurally rigid. This paper presents a development of the rigid assumption for use in nonlinear, implicit finite element codes. In this method, computational economy is gained by condensing the size of the associated linear system of equations, eliminating the processing of rigid elements, and reducing the overall nonlinearity of the problem.
A Computational Model for Suspended Large Rigid Bodies in 3D Unsteady Viscous Flows
NASA Astrophysics Data System (ADS)
Xiao, Feng
1999-11-01
A 3D numerical model for computing large rigid objects suspended in fluid flow has been developed. Rather than calculating the surface pressure upon the solid body, we evaluate the net force and torque based on a volume force formulation. The total effective force is obtained by summing up the forces at the Eulerian grids occupied by the rigid body. The effects of the moving bodies are coupled to the fluid flow by imposing the velocity field of the bodies to the fluid. A Poisson equation is used to compute the pressure over the whole domain. The objects are identified by color functions and calculated by the PPM scheme and a tangent function transformation which scales the transition region of the computed interface to a compact thickness. The model is then implemented on a parallel computer of distributed memory and validated with Stokes and low Reynolds number flows.
Borazjani, Iman; Ge, Liang; Sotiropoulos, Fotis
2008-08-10
The sharp-interface CURVIB approach of Ge and Sotiropoulos [L. Ge, F. Sotiropoulos, A Numerical Method for Solving the 3D Unsteady Incompressible Navier-Stokes Equations in Curvilinear Domains with Complex Immersed Boundaries, Journal of Computational Physics 225 (2007) 1782-1809] is extended to simulate fluid structure interaction (FSI) problems involving complex 3D rigid bodies undergoing large structural displacements. The FSI solver adopts the partitioned FSI solution approach and both loose and strong coupling strategies are implemented. The interfaces between immersed bodies and the fluid are discretized with a Lagrangian grid and tracked with an explicit front-tracking approach. An efficient ray-tracing algorithm is developed to quickly identify the relationship between the background grid and the moving bodies. Numerical experiments are carried out for two FSI problems: vortex induced vibration of elastically mounted cylinders and flow through a bileaflet mechanical heart valve at physiologic conditions. For both cases the computed results are in excellent agreement with benchmark simulations and experimental measurements. The numerical experiments suggest that both the properties of the structure (mass, geometry) and the local flow conditions can play an important role in determining the stability of the FSI algorithm. Under certain conditions unconditionally unstable iteration schemes result even when strong coupling FSI is employed. For such cases, however, combining the strong-coupling iteration with under-relaxation in conjunction with the Aitken's acceleration technique is shown to effectively resolve the stability problems. A theoretical analysis is presented to explain the findings of the numerical experiments. It is shown that the ratio of the added mass to the mass of the structure as well as the sign of the local time rate of change of the force or moment imparted on the structure by the fluid determine the stability and convergence of the FSI
Borazjani, Iman; Ge, Liang; Sotiropoulos, Fotis
2010-01-01
The sharp-interface CURVIB approach of Ge and Sotiropoulos [L. Ge, F. Sotiropoulos, A Numerical Method for Solving the 3D Unsteady Incompressible Navier-Stokes Equations in Curvilinear Domains with Complex Immersed Boundaries, Journal of Computational Physics 225 (2007) 1782–1809] is extended to simulate fluid structure interaction (FSI) problems involving complex 3D rigid bodies undergoing large structural displacements. The FSI solver adopts the partitioned FSI solution approach and both loose and strong coupling strategies are implemented. The interfaces between immersed bodies and the fluid are discretized with a Lagrangian grid and tracked with an explicit front-tracking approach. An efficient ray-tracing algorithm is developed to quickly identify the relationship between the background grid and the moving bodies. Numerical experiments are carried out for two FSI problems: vortex induced vibration of elastically mounted cylinders and flow through a bileaflet mechanical heart valve at physiologic conditions. For both cases the computed results are in excellent agreement with benchmark simulations and experimental measurements. The numerical experiments suggest that both the properties of the structure (mass, geometry) and the local flow conditions can play an important role in determining the stability of the FSI algorithm. Under certain conditions unconditionally unstable iteration schemes result even when strong coupling FSI is employed. For such cases, however, combining the strong-coupling iteration with under-relaxation in conjunction with the Aitken’s acceleration technique is shown to effectively resolve the stability problems. A theoretical analysis is presented to explain the findings of the numerical experiments. It is shown that the ratio of the added mass to the mass of the structure as well as the sign of the local time rate of change of the force or moment imparted on the structure by the fluid determine the stability and convergence of the
NASA Astrophysics Data System (ADS)
Xiao, Di; Zahra, David; Bourgeat, Pierrick; Berghofer, Paula; Acosta Tamayo, Oscar; Wimberley, Catriona; Gregoire, Marie C.; Salvado, Olivier
2011-03-01
Small animal image registration is challenging because of its joint structure, and posture and position difference in each acquisition without a standard scan protocol. In this paper, we face the issue of mouse whole-body skeleton registration from CT images. A novel method is developed for analyzing mouse hind-limb and fore-limb postures based on geodesic path descriptor and then registering the major skeletons and fore limb skeletons initially by thin-plate spline (TPS) transform based on the obtained geodesic paths and their enhanced correspondence fields. A target landmark correction method is proposed for improving the registration accuracy of the improved 3D shape context non-rigid registration method we previously proposed. A novel non-rigid registration framework, combining the skeleton posture analysis, geodesic path based initial alignment and 3D shape context model, is proposed for mouse whole-body skeleton registration. The performance of the proposed methods and framework was tested on 12 pairs of mouse whole-body skeletons. The experimental results demonstrated the flexibility, stability and accuracy of the proposed framework for automatic mouse whole body skeleton registration.
NASA Astrophysics Data System (ADS)
Wu, Shunguang; Hong, Lang
2008-04-01
A framework of simultaneously estimating the motion and structure parameters of a 3D object by using high range resolution (HRR) and ground moving target indicator (GMTI) measurements with template information is given. By decoupling the motion and structure information and employing rigid-body constraints, we have developed the kinematic and measurement equations of the problem. Since the kinematic system is unobservable by using only one scan HRR and GMTI measurements, we designed an architecture to run the motion and structure filters in parallel by using multi-scan measurements. Moreover, to improve the estimation accuracy in large noise and/or false alarm environments, an interacting multi-template joint tracking (IMTJT) algorithm is proposed. Simulation results have shown that the averaged root mean square errors for both motion and structure state vectors have been significantly reduced by using the template information.
NASA Astrophysics Data System (ADS)
Connolly, C. M.; Konik, A.; Dasari, P. K. R.; Segars, P.; Zheng, S.; Johnson, K. L.; Dey, J.; King, M. A.
2011-03-01
Patient motion can cause artifacts, which can lead to difficulty in interpretation. The purpose of this study is to create 3D digital anthropomorphic phantoms which model the location of the structures of the chest and upper abdomen of human volunteers undergoing a series of clinically relevant motions. The 3D anatomy is modeled using the XCAT phantom and based on MRI studies. The NURBS surfaces of the XCAT are interactively adapted to fit the MRI studies. A detailed XCAT phantom is first developed from an EKG triggered Navigator acquisition composed of sagittal slices with a 3 x 3 x 3 mm voxel dimension. Rigid body motion states are then acquired at breath-hold as sagittal slices partially covering the thorax, centered on the heart, with 9 mm gaps between them. For non-rigid body motion requiring greater sampling, modified Navigator sequences covering the entire thorax with 3 mm gaps between slices are obtained. The structures of the initial XCAT are then adapted to fit these different motion states. Simultaneous to MRI imaging the positions of multiple reflective markers on stretchy bands about the volunteer's chest and abdomen are optically tracked in 3D via stereo imaging. These phantoms with combined position tracking will be used to investigate both imaging-data-driven and motion-tracking strategies to estimate and correct for patient motion. Our initial application will be to cardiacperfusion SPECT imaging where the XCAT phantoms will be used to create patient activity and attenuation distributions for each volunteer with corresponding motion tracking data from the markers on the body-surface. Monte Carlo methods will then be used to simulate SPECT acquisitions, which will be used to evaluate various motion estimation and correction strategies.
NASA Astrophysics Data System (ADS)
Pathak, Ashish; Raessi, Mehdi
2016-04-01
We present a three-dimensional (3D) and fully Eulerian approach to capturing the interaction between two fluids and moving rigid structures by using the fictitious domain and volume-of-fluid (VOF) methods. The solid bodies can have arbitrarily complex geometry and can pierce the fluid-fluid interface, forming contact lines. The three-phase interfaces are resolved and reconstructed by using a VOF-based methodology. Then, a consistent scheme is employed for transporting mass and momentum, allowing for simulations of three-phase flows of large density ratios. The Eulerian approach significantly simplifies numerical resolution of the kinematics of rigid bodies of complex geometry and with six degrees of freedom. The fluid-structure interaction (FSI) is computed using the fictitious domain method. The methodology was developed in a message passing interface (MPI) parallel framework accelerated with graphics processing units (GPUs). The computationally intensive solution of the pressure Poisson equation is ported to GPUs, while the remaining calculations are performed on CPUs. The performance and accuracy of the methodology are assessed using an array of test cases, focusing individually on the flow solver and the FSI in surface-piercing configurations. Finally, an application of the proposed methodology in simulations of the ocean wave energy converters is presented.
An algorithm for studying rigidity in disordered 3D networks
NASA Astrophysics Data System (ADS)
Chubynsky, M. V.; Thorpe, M. F.
2004-03-01
Some physical systems, such as covalent glasses and proteins, can be modeled as elastic networks, by dividing the interactions between particles into strong and weak, representing the former as constraints and neglecting the latter. For low enough connectivities, motions maintaining the constraints and thus having zero energy cost are possible. The goal of rigidity analysis is finding the number of such zero energy modes, the rigid clusters and flexible joints between them, as well as stressed bonds. For a certain class of networks there is a very fast graph-theoretical algorithm (the Pebble Game) for doing this analysis, but for more general networks, there are known counterexamples. While generalizing the Pebble Game is the ultimate goal, we propose a slower algorithm capable of doing all the same analyses as the Pebble Game but applicable to any networks. We discuss the applications of this algorithm to specific examples of 3D networks, such as diluted central force lattices, colloidal glasses and proteins.
Interactive initialization of 2D/3D rigid registration
Gong, Ren Hui; Güler, Özgür; Kürklüoglu, Mustafa; Lovejoy, John; Yaniv, Ziv
2013-12-15
Purpose: Registration is one of the key technical components in an image-guided navigation system. A large number of 2D/3D registration algorithms have been previously proposed, but have not been able to transition into clinical practice. The authors identify the primary reason for the lack of adoption with the prerequisite for a sufficiently accurate initial transformation, mean target registration error of about 10 mm or less. In this paper, the authors present two interactive initialization approaches that provide the desired accuracy for x-ray/MR and x-ray/CT registration in the operating room setting. Methods: The authors have developed two interactive registration methods based on visual alignment of a preoperative image, MR, or CT to intraoperative x-rays. In the first approach, the operator uses a gesture based interface to align a volume rendering of the preoperative image to multiple x-rays. The second approach uses a tracked tool available as part of a navigation system. Preoperatively, a virtual replica of the tool is positioned next to the anatomical structures visible in the volumetric data. Intraoperatively, the physical tool is positioned in a similar manner and subsequently used to align a volume rendering to the x-ray images using an augmented reality (AR) approach. Both methods were assessed using three publicly available reference data sets for 2D/3D registration evaluation. Results: In the authors' experiments, the authors show that for x-ray/MR registration, the gesture based method resulted in a mean target registration error (mTRE) of 9.3 ± 5.0 mm with an average interaction time of 146.3 ± 73.0 s, and the AR-based method had mTREs of 7.2 ± 3.2 mm with interaction times of 44 ± 32 s. For x-ray/CT registration, the gesture based method resulted in a mTRE of 7.4 ± 5.0 mm with an average interaction time of 132.1 ± 66.4 s, and the AR-based method had mTREs of 8.3 ± 5.0 mm with interaction times of 58 ± 52 s. Conclusions: Based on the
Choi, Wuyong; Lee, Slgirim; Kim, Seung-Hyun; Jang, Jae-Hyung
2016-06-01
Designing versatile 3D interfaces that can precisely represent a biological environment is a prerequisite for the creation of artificial tissue structures. To this end, electrospun fibrous sponges, precisely mimicking an extracellular matrix and providing highly porous interfaces, have capabilities that can function as versatile physical cues to regenerate various tissues. However, their intrinsic features, such as sheet-like, thin, and weak structures, limit the design of a number of uses in tissue engineering applications. Herein, a highly facile methodology capable of fabricating rigid, sticky, spatially expanded fluffy electrospun fibrous sponges is proposed. A bio-inspired adhesive material, poly(dopamine) (pDA), is employed as a key mediator to provide rigidity and stickiness to the 3D poly(ε-caprolactone) (PCL) fibrous sponges, which are fabricated using a coaxial electrospinning with polystyrene followed by a selective leaching process. The iron ion induced oxidation of dopamine into pDA networks interwoven with PCL fibers results in significant increases in the rigidity of 3D fibrous sponges. Furthermore, the exposure of catecholamine groups on the fiber surfaces promotes the stable attachment of the sponges on wet organ surfaces and triggers the robust immobilization of biomolecules (e.g., proteins and gene vectors), demonstrating their potential for 3D scaffolds as well as drug delivery vehicles. Because fibrous structures are ubiquitous in the human body, these rigid, sticky, 3D fibrous sponges are good candidates for powerful biomaterial systems that functionally mimic a variety of tissue structures. PMID:26855375
Articulated Non-Rigid Point Set Registration for Human Pose Estimation from 3D Sensors
Ge, Song; Fan, Guoliang
2015-01-01
We propose a generative framework for 3D human pose estimation that is able to operate on both individual point sets and sequential depth data. We formulate human pose estimation as a point set registration problem, where we propose three new approaches to address several major technical challenges in this research. First, we integrate two registration techniques that have a complementary nature to cope with non-rigid and articulated deformations of the human body under a variety of poses. This unique combination allows us to handle point sets of complex body motion and large pose variation without any initial conditions, as required by most existing approaches. Second, we introduce an efficient pose tracking strategy to deal with sequential depth data, where the major challenge is the incomplete data due to self-occlusions and view changes. We introduce a visible point extraction method to initialize a new template for the current frame from the previous frame, which effectively reduces the ambiguity and uncertainty during registration. Third, to support robust and stable pose tracking, we develop a segment volume validation technique to detect tracking failures and to re-initialize pose registration if needed. The experimental results on both benchmark 3D laser scan and depth datasets demonstrate the effectiveness of the proposed framework when compared with state-of-the-art algorithms. PMID:26131673
Computing 3-D structure of rigid objects using stereo and motion
NASA Technical Reports Server (NTRS)
Nguyen, Thinh V.
1987-01-01
Work performed as a step toward an intelligent automatic machine vision system for 3-D imaging is discussed. The problem considered is the quantitative 3-D reconstruction of rigid objects. Motion and stereo are the two clues considered in this system. The system basically consists of three processes: the low level process to extract image features, the middle level process to establish the correspondence in the stereo (spatial) and motion (temporal) modalities, and the high level process to compute the 3-D coordinates of the corner points by integrating the spatial and temporal correspondences.
2D-3D rigid registration to compensate for prostate motion during 3D TRUS-guided biopsy
NASA Astrophysics Data System (ADS)
De Silva, Tharindu; Fenster, Aaron; Bax, Jeffrey; Gardi, Lori; Romagnoli, Cesare; Samarabandu, Jagath; Ward, Aaron D.
2012-02-01
Prostate biopsy is the clinical standard for prostate cancer diagnosis. To improve the accuracy of targeting suspicious locations, systems have been developed that can plan and record biopsy locations in a 3D TRUS image acquired at the beginning of the procedure. Some systems are designed for maximum compatibility with existing ultrasound equipment and are thus designed around the use of a conventional 2D TRUS probe, using controlled axial rotation of this probe to acquire a 3D TRUS reference image at the start of the biopsy procedure. Prostate motion during the biopsy procedure causes misalignments between the prostate in the live 2D TRUS images and the pre-acquired 3D TRUS image. We present an image-based rigid registration technique that aligns live 2D TRUS images, acquired immediately prior to biopsy needle insertion, with the pre-acquired 3D TRUS image to compensate for this motion. Our method was validated using 33 manually identified intrinsic fiducials in eight subjects and the target registration error was found to be 1.89 mm. We analysed the suitability of two image similarity metrics (normalized cross correlation and mutual information) for this task by plotting these metrics as a function of varying parameters in the six degree-of-freedom transformation space, with the ground truth plane obtained from registration as the starting point for the parameter exploration. We observed a generally convex behaviour of the similarity metrics. This encourages their use for this registration problem, and could assist in the design of a tool for the detection of misalignment, which could trigger the execution of a non-real-time registration, when needed during the procedure.
An improved 3D shape context registration method for non-rigid surface registration
NASA Astrophysics Data System (ADS)
Xiao, Di; Zahra, David; Bourgeat, Pierrick; Berghofer, Paula; Acosta Tamayo, Oscar; Wimberley, Catriona; Gregoire, Marie-Claude; Salvado, Olivier
2010-03-01
3D shape context is a method to define matching points between similar shapes as a pre-processing step to non-rigid registration. The main limitation of the approach is point mismatching, which includes long geodesic distance mismatch and neighbors crossing mismatch. In this paper, we propose a topological structure verification method to correct the long geodesic distance mismatch and a correspondence field smoothing method to correct the neighbors crossing mismatch. A robust 3D shape context model is proposed and further combined with thin-plate spline model for non-rigid surface registration. The method was tested on phantoms and rat hind limb skeletons from micro CT images. The results from experiments on mouse hind limb skeletons indicate that the approach is robust.
Direct numerical simulation of rigid bodies in multiphase flow within an Eulerian framework
NASA Astrophysics Data System (ADS)
Rauschenberger, P.; Weigand, B.
2015-06-01
A new method is presented to simulate rigid body motion in the Volume-of-Fluid based multiphase code Free Surface 3D. The specific feature of the new method is that it works within an Eulerian framework without the need for a Lagrangian representation of rigid bodies. Several test cases are shown to prove the validity of the numerical scheme. The technique is able to conserve the shape of arbitrarily shaped rigid bodies and predict terminal velocities of rigid spheres. The instability of a falling ellipsoid is captured. Multiple rigid bodies including collisions may be considered using only one Volume-of-Fluid variable which allows to simulate the drafting, kissing and tumbling phenomena of two rigid spheres. The method can easily be extended to rigid bodies undergoing phase change processes.
Quantum mechanics of a generalised rigid body
NASA Astrophysics Data System (ADS)
Gripaios, Ben; Sutherland, Dave
2016-05-01
We consider the quantum version of Arnold’s generalisation of a rigid body in classical mechanics. Thus, we quantise the motion on an arbitrary Lie group manifold of a particle whose classical trajectories correspond to the geodesics of any one-sided-invariant metric. We show how the derivation of the spectrum of energy eigenstates can be simplified by making use of automorphisms of the Lie algebra and (for groups of type I) by methods of harmonic analysis. We show how the method can be extended to cosets, generalising the linear rigid rotor. As examples, we consider all connected and simply connected Lie groups up to dimension 3. This includes the universal cover of the archetypical rigid body, along with a number of new exactly solvable models. We also discuss a possible application to the topical problem of quantising a perfect fluid.
Parametric modelling and segmentation of vertebral bodies in 3D CT and MR spine images
NASA Astrophysics Data System (ADS)
Štern, Darko; Likar, Boštjan; Pernuš, Franjo; Vrtovec, Tomaž
2011-12-01
Accurate and objective evaluation of vertebral deformations is of significant importance in clinical diagnostics and therapy of pathological conditions affecting the spine. Although modern clinical practice is focused on three-dimensional (3D) computed tomography (CT) and magnetic resonance (MR) imaging techniques, the established methods for evaluation of vertebral deformations are limited to measuring deformations in two-dimensional (2D) x-ray images. In this paper, we propose a method for quantitative description of vertebral body deformations by efficient modelling and segmentation of vertebral bodies in 3D. The deformations are evaluated from the parameters of a 3D superquadric model, which is initialized as an elliptical cylinder and then gradually deformed by introducing transformations that yield a more detailed representation of the vertebral body shape. After modelling the vertebral body shape with 25 clinically meaningful parameters and the vertebral body pose with six rigid body parameters, the 3D model is aligned to the observed vertebral body in the 3D image. The performance of the method was evaluated on 75 vertebrae from CT and 75 vertebrae from T2-weighted MR spine images, extracted from the thoracolumbar part of normal and pathological spines. The results show that the proposed method can be used for 3D segmentation of vertebral bodies in CT and MR images, as the proposed 3D model is able to describe both normal and pathological vertebral body deformations. The method may therefore be used for initialization of whole vertebra segmentation or for quantitative measurement of vertebral body deformations.
Particle Filters and Occlusion Handling for Rigid 2D-3D Pose Tracking.
Lee, Jehoon; Sandhu, Romeil; Tannenbaum, Allen
2013-08-01
In this paper, we address the problem of 2D-3D pose estimation. Specifically, we propose an approach to jointly track a rigid object in a 2D image sequence and to estimate its pose (position and orientation) in 3D space. We revisit a joint 2D segmentation/3D pose estimation technique, and then extend the framework by incorporating a particle filter to robustly track the object in a challenging environment, and by developing an occlusion detection and handling scheme to continuously track the object in the presence of occlusions. In particular, we focus on partial occlusions that prevent the tracker from extracting an exact region properties of the object, which plays a pivotal role for region-based tracking methods in maintaining the track. To this end, a dynamical choice of how to invoke the objective functional is performed online based on the degree of dependencies between predictions and measurements of the system in accordance with the degree of occlusion and the variation of the object's pose. This scheme provides the robustness to deal with occlusions of an obstacle with different statistical properties from that of the object of interest. Experimental results demonstrate the practical applicability and robustness of the proposed method in several challenging scenarios. PMID:24058277
New 3-D coordination polymers based on semi-rigid V-shape tetracarboxylates
Huang, Jing-Jing; Xu, Wei; Wang, Yan-Ning; Yu, Jie-Hui; Zhang, Ping; Xu, Ji-Qing
2015-03-15
Under the hydrothermal conditions, the reactions of transition-metal salts, tetracarboxylic acids and N,N′-donor ligands yielded three new coordination polymers as [Cu{sub 4}(fph){sub 2}(bpe){sub 3}(H{sub 2}O){sub 2}]·2H{sub 2}O (fph=4,4′-(hexafluoroisopropylidene)diphthalate, bpe=1,2-bis(pyridyl)ethylene) 1, [Co{sub 2}(fph)(bpa){sub 2}(H{sub 2}O){sub 2}]·3H{sub 2}O (bpa=1,2-bis(pyridyl)ethylane) 2, and [Ni(H{sub 2}O)(H{sub 2}oph)(bpa)] (oph=4,4′-oxydiphthalate) 3. X-ray single-crystal diffraction analysis revealed that the title three compounds all possess the three-dimensional (3-D) network structures. For compound 1, the fph molecules first link the Cu{sup 2+} ions into a two-dimensional (2-D) wave-like layer with a (4,4) topology. The bpe molecules act as the second linkers, extending the 2-D layers into a 3-D network. For compound 2, the fph molecules still serve as the first connectors, linking the Co{sup 2+} ions into a one-dimensional (1-D) tube-like chain. Then the bpa molecules propagate the chains into a 3-D (4,4,4)-connected network. In the formation of the 3-D network of compound 3, the oph molecule does not play a role. The bpa molecules as well as the water molecules act as a mixed bridge. Only a kind of 4-connected metal node is observed in compound 3. The magnetic properties of compounds 1–3 were investigated and all exhibit the predominant antiferromegnetic magnetic behaviors. - Graphical abstract: Structures of three semi-rigid V-shape tetracarboxylate-based coordination polymers were reported, and their magnetic properties were investigated. - Highlights: • Structures of three tetracarboxylate-based coordination polymers were reported. • Role of organic bases in metal–tetracarboxylate compounds was discussed. • Characters of V-shape and semi-rigidity for tetracarboxylate play a key role in crystal growth. • Their magnetic properties were investigated.
Bioinspired Tuning of Hydrogel Permeability-Rigidity Dependency for 3D Cell Culture
NASA Astrophysics Data System (ADS)
Lee, Min Kyung; Rich, Max H.; Baek, Kwanghyun; Lee, Jonghwi; Kong, Hyunjoon
2015-03-01
Hydrogels are being extensively used for three-dimensional immobilization and culture of cells in fundamental biological studies, biochemical processes, and clinical treatments. However, it is still a challenge to support viability and regulate phenotypic activities of cells in a structurally stable gel, because the gel becomes less permeable with increasing rigidity. To resolve this challenge, this study demonstrates a unique method to enhance the permeability of a cell-laden hydrogel while avoiding a significant change in rigidity of the gel. Inspired by the grooved skin textures of marine organisms, a hydrogel is assembled to present computationally optimized micro-sized grooves on the surface. Separately, a gel is engineered to preset aligned microchannels similar to a plant's vascular bundles through a uniaxial freeze-drying process. The resulting gel displays significantly increased water diffusivity with reduced changes of gel stiffness, exclusively when the microgrooves and microchannels are aligned together. No significant enhancement of rehydration is achieved when the microgrooves and microchannels are not aligned. Such material design greatly enhances viability and neural differentiation of stem cells and 3D neural network formation within the gel.
Bioinspired Tuning of Hydrogel Permeability-Rigidity Dependency for 3D Cell Culture
Lee, Min Kyung; Rich, Max H.; Baek, Kwanghyun; Lee, Jonghwi; Kong, Hyunjoon
2015-01-01
Hydrogels are being extensively used for three-dimensional immobilization and culture of cells in fundamental biological studies, biochemical processes, and clinical treatments. However, it is still a challenge to support viability and regulate phenotypic activities of cells in a structurally stable gel, because the gel becomes less permeable with increasing rigidity. To resolve this challenge, this study demonstrates a unique method to enhance the permeability of a cell-laden hydrogel while avoiding a significant change in rigidity of the gel. Inspired by the grooved skin textures of marine organisms, a hydrogel is assembled to present computationally optimized micro-sized grooves on the surface. Separately, a gel is engineered to preset aligned microchannels similar to a plant's vascular bundles through a uniaxial freeze-drying process. The resulting gel displays significantly increased water diffusivity with reduced changes of gel stiffness, exclusively when the microgrooves and microchannels are aligned together. No significant enhancement of rehydration is achieved when the microgrooves and microchannels are not aligned. Such material design greatly enhances viability and neural differentiation of stem cells and 3D neural network formation within the gel. PMID:25752700
Brownian dynamics of confined rigid bodies.
Delong, Steven; Balboa Usabiaga, Florencio; Donev, Aleksandar
2015-10-14
We introduce numerical methods for simulating the diffusive motion of rigid bodies of arbitrary shape immersed in a viscous fluid. We parameterize the orientation of the bodies using normalized quaternions, which are numerically robust, space efficient, and easy to accumulate. We construct a system of overdamped Langevin equations in the quaternion representation that accounts for hydrodynamic effects, preserves the unit-norm constraint on the quaternion, and is time reversible with respect to the Gibbs-Boltzmann distribution at equilibrium. We introduce two schemes for temporal integration of the overdamped Langevin equations of motion, one based on the Fixman midpoint method and the other based on a random finite difference approach, both of which ensure that the correct stochastic drift term is captured in a computationally efficient way. We study several examples of rigid colloidal particles diffusing near a no-slip boundary and demonstrate the importance of the choice of tracking point on the measured translational mean square displacement (MSD). We examine the average short-time as well as the long-time quasi-two-dimensional diffusion coefficient of a rigid particle sedimented near a bottom wall due to gravity. For several particle shapes, we find a choice of tracking point that makes the MSD essentially linear with time, allowing us to estimate the long-time diffusion coefficient efficiently using a Monte Carlo method. However, in general, such a special choice of tracking point does not exist, and numerical techniques for simulating long trajectories, such as the ones we introduce here, are necessary to study diffusion on long time scales. PMID:26472363
Brownian dynamics of confined rigid bodies
NASA Astrophysics Data System (ADS)
Delong, Steven; Balboa Usabiaga, Florencio; Donev, Aleksandar
2015-10-01
We introduce numerical methods for simulating the diffusive motion of rigid bodies of arbitrary shape immersed in a viscous fluid. We parameterize the orientation of the bodies using normalized quaternions, which are numerically robust, space efficient, and easy to accumulate. We construct a system of overdamped Langevin equations in the quaternion representation that accounts for hydrodynamic effects, preserves the unit-norm constraint on the quaternion, and is time reversible with respect to the Gibbs-Boltzmann distribution at equilibrium. We introduce two schemes for temporal integration of the overdamped Langevin equations of motion, one based on the Fixman midpoint method and the other based on a random finite difference approach, both of which ensure that the correct stochastic drift term is captured in a computationally efficient way. We study several examples of rigid colloidal particles diffusing near a no-slip boundary and demonstrate the importance of the choice of tracking point on the measured translational mean square displacement (MSD). We examine the average short-time as well as the long-time quasi-two-dimensional diffusion coefficient of a rigid particle sedimented near a bottom wall due to gravity. For several particle shapes, we find a choice of tracking point that makes the MSD essentially linear with time, allowing us to estimate the long-time diffusion coefficient efficiently using a Monte Carlo method. However, in general, such a special choice of tracking point does not exist, and numerical techniques for simulating long trajectories, such as the ones we introduce here, are necessary to study diffusion on long time scales.
Brownian dynamics of confined rigid bodies
Delong, Steven; Balboa Usabiaga, Florencio; Donev, Aleksandar
2015-10-14
We introduce numerical methods for simulating the diffusive motion of rigid bodies of arbitrary shape immersed in a viscous fluid. We parameterize the orientation of the bodies using normalized quaternions, which are numerically robust, space efficient, and easy to accumulate. We construct a system of overdamped Langevin equations in the quaternion representation that accounts for hydrodynamic effects, preserves the unit-norm constraint on the quaternion, and is time reversible with respect to the Gibbs-Boltzmann distribution at equilibrium. We introduce two schemes for temporal integration of the overdamped Langevin equations of motion, one based on the Fixman midpoint method and the other based on a random finite difference approach, both of which ensure that the correct stochastic drift term is captured in a computationally efficient way. We study several examples of rigid colloidal particles diffusing near a no-slip boundary and demonstrate the importance of the choice of tracking point on the measured translational mean square displacement (MSD). We examine the average short-time as well as the long-time quasi-two-dimensional diffusion coefficient of a rigid particle sedimented near a bottom wall due to gravity. For several particle shapes, we find a choice of tracking point that makes the MSD essentially linear with time, allowing us to estimate the long-time diffusion coefficient efficiently using a Monte Carlo method. However, in general, such a special choice of tracking point does not exist, and numerical techniques for simulating long trajectories, such as the ones we introduce here, are necessary to study diffusion on long time scales.
Rapid determination of RMSDs corresponding to macromolecular rigid body motions.
Popov, Petr; Grudinin, Sergei
2014-05-01
Finding the root mean sum of squared deviations (RMSDs) between two coordinate vectors that correspond to the rigid body motion of a macromolecule is an important problem in structural bioinformatics, computational chemistry, and molecular modeling. Standard algorithms compute the RMSD with time proportional to the number of atoms in the molecule. Here, we present RigidRMSD, a new algorithm that determines a set of RMSDs corresponding to a set of rigid body motions of a macromolecule in constant time with respect to the number of atoms in the molecule. Our algorithm is particularly useful for rigid body modeling applications, such as rigid body docking, and also for high-throughput analysis of rigid body modeling and simulation results. We also introduce a constant-time rotation RMSD as a similarity measure for rigid molecules. A C++ implementation of our algorithm is available at http://nano-d.inrialpes.fr/software/RigidRMSD. PMID:24615729
Unsteady 3D Turbulent Flow Separation around a ROV Body
NASA Astrophysics Data System (ADS)
Ungureanu, Costel; Lungu, Adrian
2009-09-01
Turbulent separated flows around ellipsoids of various aspect ratios are investigated using a numerical method. The Reynolds averaged equations for continuity and momentum are solved by cell-centered finite-volume method for the primitive variables to describe the 3D turbulent incompressible flow. The objectives of the study are: (a) to investigate the propulsive performances of a moving Remotely Operated Vehicle (ROV hereafter) ellipsoidal body; (b) to validate the computational solutions through comparisons with the experimental data; (c) to investigate the effects of the angle of attack on the separation pattern as well as on the hydrodynamic forces and moments.
3D measurement of human upper body for gesture recognition
NASA Astrophysics Data System (ADS)
Wan, Khairunizam; Sawada, Hideyuki
2007-10-01
Measurement of human motion is widely required for various applications, and a significant part of this task is to identify motion in the process of human motion recognition. There are several application purposes of doing this research such as in surveillance, entertainment, medical treatment and traffic applications as user interfaces that require the recognition of different parts of human body to identify an action or a motion. The most challenging task in human motion recognition is to achieve the ability and reliability of a motion capture system for tracking and recognizing dynamic movements, because human body structure has many degrees of freedom. Many attempts for recognizing body actions have been reported so far, in which gestural motions have to be measured by some sensors first, and the obtained data are processed in a computer. This paper introduces the 3D motion analysis of human upper body using an optical motion capture system for the purpose of gesture recognition. In this study, the image processing technique to track optical markers attached at feature points of human body is introduced for constructing a human upper body model and estimating its three dimensional motion.
Bomo, Jérémy; Ezan, Frédéric; Tiaho, François; Bellamri, Medjda; Langouët, Sophie; Theret, Nathalie; Baffet, Georges
2016-03-01
Mechanical forces influence the growth and shape of virtually all tissues and organs. Recent studies show that increased cell contractibility, growth and differentiation might be normalized by modulating cell tensions. Particularly, the role of these tensions applied by the extracellular matrix during liver fibrosis could influence the hepatocarcinogenesis process. The objective of this study is to determine if 3D stiffness could influence growth and phenotype of normal and transformed hepatocytes and to integrate extracellular matrix (ECM) stiffness to tensional homeostasis. We have developed an appropriate 3D culture model: hepatic cells within three-dimensional collagen matrices with varying rigidity. Our results demonstrate that the rigidity influenced the cell phenotype and induced spheroid clusters development whereas in soft matrices, Huh7 transformed cells were less proliferative, well-spread and flattened. We confirmed that ERK1 played a predominant role over ERK2 in cisplatin-induced death, whereas ERK2 mainly controlled proliferation. As compared to 2D culture, 3D cultures are associated with epithelial markers expression. Interestingly, proliferation of normal hepatocytes was also induced in rigid gels. Furthermore, biotransformation activities are increased in 3D gels, where CYP1A2 enzyme can be highly induced/activated in primary culture of human hepatocytes embedded in the matrix. In conclusion, we demonstrated that increasing 3D rigidity could promote proliferation and spheroid developments of liver cells demonstrating that 3D collagen gels are an attractive tool for studying rigidity-dependent homeostasis of the liver cells embedded in the matrix and should be privileged for both chronic toxicological and pharmacological drug screening. PMID:26331987
3D non-rigid surface-based MR-TRUS registration for image-guided prostate biopsy
NASA Astrophysics Data System (ADS)
Sun, Yue; Qiu, Wu; Romagnoli, Cesare; Fenster, Aaron
2014-03-01
Two dimensional (2D) transrectal ultrasound (TRUS) guided prostate biopsy is the standard approach for definitive diagnosis of prostate cancer (PCa). However, due to the lack of image contrast of prostate tumors needed to clearly visualize early-stage PCa, prostate biopsy often results in false negatives, requiring repeat biopsies. Magnetic Resonance Imaging (MRI) has been considered to be a promising imaging modality for noninvasive identification of PCa, since it can provide a high sensitivity and specificity for the detection of early stage PCa. Our main objective is to develop and validate a registration method of 3D MR-TRUS images, allowing generation of volumetric 3D maps of targets identified in 3D MR images to be biopsied using 3D TRUS images. Our registration method first makes use of an initial rigid registration of 3D MR images to 3D TRUS images using 6 manually placed approximately corresponding landmarks in each image. Following the manual initialization, two prostate surfaces are segmented from 3D MR and TRUS images and then non-rigidly registered using a thin-plate spline (TPS) algorithm. The registration accuracy was evaluated using 4 patient images by measuring target registration error (TRE) of manually identified corresponding intrinsic fiducials (calcifications and/or cysts) in the prostates. Experimental results show that the proposed method yielded an overall mean TRE of 2.05 mm, which is favorably comparable to a clinical requirement for an error of less than 2.5 mm.
Rigid body cable for virtual environments.
Servin, Martin; Lacoursière, Claude
2008-01-01
The present paper addresses real-time simulation of cables for virtual environments. A faithful physical model based on constrained rigid bodies is introduced and discretized. The performance and stability of the numerical method are analyzed in details and found to meet the requirements of interactive heavy hoisting simulations. The physical model is well behaved in the limit of infinite stiffness as well as in the elastic regime, and the tuning parameters correspond directly to conventional material constants. The integration scheme mixes the well known Störmer-Verlet method for the dynamics equations with the linearly implicit Euler method for the constraint equations and enables physical constraint relaxation and stabilization terms. The technique is shown to have superior numerical stability properties in comparison with either chain link systems, or spring and damper models. Experimental results are presented to show that the method results in stable, real-time simulations. Stability persists for moderately large fixed integration step of Delta t = 1/60 s, with hoisting loads of up to 10(5) times heavier than the elements of the cable. Further numerical experiments validating the physical model are also presented. PMID:18467754
3D body scanning technology for fashion and apparel industry
NASA Astrophysics Data System (ADS)
D'Apuzzo, Nicola
2007-01-01
This paper presents an overview of 3D body scanning technologies with applications to the fashion and apparel industry. Complete systems for the digitization of the human body exist since more than fifteen years. One of the main users of this technology with application in the textile field was the military industry. In fact, body scanning technology is being successfully employed since many years in military bases for a fast selection of the correct size of uniforms for the entire staff. Complete solutions were especially developed for this field of application. Many different research projects were issued for the exploitation of the same technology in the commercial field. Experiments were performed and start-up projects are to time running in different parts of the world by installing full body scanning systems in various locations such as shopping malls, boutiques or dedicated scanning centers. Everything is actually ready to be exploited and all the required hardware, software and solutions are available: full body scanning systems, software for the automatic and reliable extraction of body measurements, e-kiosk and web solutions for the presentation of garments, high-end and low-end virtual-try-on systems. However, complete solutions in this area have still not yet found the expected commercial success. Today, with the on-going large cost reduction given by the appearance of new competitors, methods for digitization of the human body becomes more interesting for the fashion and apparel industry. Therefore, a large expansion of these technologies is expected in the near future. To date, different methods are used commercially for the measurement of the human body. These can be divided into three major distinguished groups: laser-scanning, projection of light patterns, combination modeling and image processing. The different solutions have strengths and weaknesses that profile their suitability for specific applications. This paper gives an overview of their
Whole-body 3D scanner and scan data report
NASA Astrophysics Data System (ADS)
Addleman, Stephen R.
1997-03-01
With the first whole-body 3D scanner now available the next adventure confronting the user is what to do with all of the data. While the system was built for anthropologists, it has created interest among users from a wide variety of fields. Users with applications in the fields of anthropology, costume design, garment design, entertainment, VR and gaming have a need for the data in formats unique to their fields. Data from the scanner is being converted to solid models for art and design and NURBS for computer graphics applications. Motion capture has made scan data move and dance. The scanner has created a need for advanced application software just as other scanners have in the past.
Erer, Hakan; Yeşilel, Okan Zafer; Arıcı, Mürsel; Keskin, Seda; Büyükgüngör, Orhan
2014-02-15
Hydrothermal reactions of rigid 1,4-bis(imidazol-1-yl)benzene (dib) and 1,4-bis(imidazol-1-yl)-2,5-dimethylbenzene (dimb) with deprotonated thiophene-2,5-dicarboxylic acid (H{sub 2}tdc) in the presence of Zn(II) and Cd(II) salts in H{sub 2}O produced three new metal–organic frameworks, namely, [Zn(µ-tdc)(H{sub 2}O)(µ-dib)]{sub n} (1), [Cd(µ-tdc)(H{sub 2}O)(µ-dib)]{sub n} (2), and ([Cd{sub 2}(µ{sub 3}-tdc){sub 2}(µ-dimb){sub 2}]·(H{sub 2}O)){sub n}(3). These MOFs were characterized by FT-IR spectroscopy, elemental, thermal (TG, DTA, DTG and DSC), and single-crystal X-ray diffraction analyses. Isomorphous complexes 1 and 2 reveal polycatenated 2D+2D→3D framework based on an undulated (4,4)-sql layer. Complex 3 exhibits a new 4-fold interpenetrating 3D framework with the point symbol of 6{sup 6}. Molecular simulations were used to assess the potentials of the complexes for H{sub 2} storage application. Moreover, these coordination polymers exhibit blue fluorescent emission bands in the solid state at room temperature. - Graphical abstract: In this study, hydrothermal reactions of rigid 1,4-bis(imidazol-1-yl)benzene (dib) and 1,4-bis(imidazol-1-yl)-2,5-dimethylbenzene (dimb) with deprotonated thiophene-2,5-dicarboxylic acid (H{sub 2}tdc) in the presence of Zn(II) and Cd(II) salts in H{sub 2}O produced three new metal–organic frameworks. Isomorphous complexes 1 and 2 reveal polycatenated 2D+2D→3D framework based on an undulated (4,4)-sql layer. Complex 3 exhibits a new 4-fold interpenetrating 3D framework with the point symbol of 6{sup 6}. Molecular simulations were used to assess the potentials of the complexes for H{sub 2} storage application. These coordination polymers exhibit blue fluorescent emission bands in the solid state at room temperature. Display Omitted - Highlights: • Complexes 1 and 2 display polycatenated 2D+2D→3D framework. • Complex 3 exhibits a new 4-fold interpenetrating 3D framework. • Complex 1 adsorbs the highest amount of
Non-linear dynamic analysis of ancient masonry structures by 3D rigid block models
NASA Astrophysics Data System (ADS)
Orduña, Agustin; Ayala, A. Gustavo
2015-12-01
This work presents a formulation for non-linear dynamic analysis of unreinforced masonry structures using rigid block models. This procedure is akin to the distinct element family of methods, nevertheless, we assume that small displacements occur and, therefore, the formulation does not involve the search for new contacts between blocks. This proposal is also related to the rigid element method, although, in this case we use full three-dimensional models and a more robust interface formulation.
NASA Astrophysics Data System (ADS)
Yang, Xiaofeng; Akbari, Hamed; Halig, Luma; Fei, Baowei
2011-03-01
We present a 3D non-rigid registration algorithm for the potential use in combining PET/CT and transrectal ultrasound (TRUS) images for targeted prostate biopsy. Our registration is a hybrid approach that simultaneously optimizes the similarities from point-based registration and volume matching methods. The 3D registration is obtained by minimizing the distances of corresponding points at the surface and within the prostate and by maximizing the overlap ratio of the bladder neck on both images. The hybrid approach not only capture deformation at the prostate surface and internal landmarks but also the deformation at the bladder neck regions. The registration uses a soft assignment and deterministic annealing process. The correspondences are iteratively established in a fuzzy-to-deterministic approach. B-splines are used to generate a smooth non-rigid spatial transformation. In this study, we tested our registration with pre- and postbiopsy TRUS images of the same patients. Registration accuracy is evaluated using manual defined anatomic landmarks, i.e. calcification. The root-mean-squared (RMS) of the difference image between the reference and floating images was decreased by 62.6+/-9.1% after registration. The mean target registration error (TRE) was 0.88+/-0.16 mm, i.e. less than 3 voxels with a voxel size of 0.38×0.38×0.38 mm3 for all five patients. The experimental results demonstrate the robustness and accuracy of the 3D non-rigid registration algorithm.
Personalized x-ray reconstruction of the proximal femur via a non-rigid 2D-3D registration
NASA Astrophysics Data System (ADS)
Yu, Weimin; Zysset, Philippe; Zheng, Guoyan
2015-03-01
In this paper we present a new approach for a personalized X-ray reconstruction of the proximal femur via a non-rigid registration of a 3D volumetric template to 2D calibrated C-arm images. The 2D-3D registration is done with a hierarchical two-stage strategy: the global scaled rigid registration stage followed by a regularized deformable b-spline registration stage. In both stages, a set of control points with uniform spacing are placed over the domain of the 3D volumetric template and the registrations are driven by computing updated positions of these control points, which then allows to accurately register the 3D volumetric template to the reference space of the C-arm images. Comprehensive experiments on simulated images, on images of cadaveric femurs and on clinical datasets are designed and conducted to evaluate the performance of the proposed approach. Quantitative and qualitative evaluation results are given, which demonstrate the efficacy of the present approach.
Energy and momentum conserving algorithms for rigid body contact
Puso, M.A.; Zywicz, E.
1998-04-09
Energy-momentum conserving methods are developed for rigid body dynamics with contact. Because these methods are unconditionally stable, they are not time step dependent and, hence, are well suited for incorporation into structural mechanics finite element codes. Both penalty and Lagrange multiplier methods are developed herein and are the extension of the energy-momentum conserving integration schemes for rigid bodies given by Simo and Wong [1].
Non-Iterative Rigid 2D/3D Point-Set Registration Using Semidefinite Programming
NASA Astrophysics Data System (ADS)
Khoo, Yuehaw; Kapoor, Ankur
2016-07-01
We describe a convex programming framework for pose estimation in 2D/3D point-set registration with unknown point correspondences. We give two mixed-integer nonlinear program (MINP) formulations of the 2D/3D registration problem when there are multiple 2D images, and propose convex relaxations for both of the MINPs to semidefinite programs (SDP) that can be solved efficiently by interior point methods. Our approach to the 2D/3D registration problem is non-iterative in nature as we jointly solve for pose and correspondence. Furthermore, these convex programs can readily incorporate feature descriptors of points to enhance registration results. We prove that the convex programs exactly recover the solution to the original nonconvex 2D/3D registration problem under noiseless condition. We apply these formulations to the registration of 3D models of coronary vessels to their 2D projections obtained from multiple intra-operative fluoroscopic images. For this application, we experimentally corroborate the exact recovery property in the absence of noise and further demonstrate robustness of the convex programs in the presence of noise.
On the inertial motions of liquid-filled rigid bodies
NASA Astrophysics Data System (ADS)
Mazzone, Giusy; Galdi, Giovanni; Zunino, Paolo
2013-11-01
We consider a rigid body with a cavity completely filled by a viscous liquid and study the inertial motions of the system liquid-filled rigid body S . The equations governing the motion of this coupled system are given by the Navier-Stokes equations and the equations of the balance of the total angular momentum of S in absence of external forces and torques. Given any initial motion to the coupled system, characterized by an initial relative velocity of the fluid and an initial total angular momentum, we give a complete description of the behavior that the system liquid-filled rigid body will show at large times. From both analytical and numerical viewpoints, we are able to prove a longstanding conjecture stated by Zhukovskii, namely that S will eventually reach a steady state which is a rigid body permanent rotation. In other words, the liquid goes to rest with respect to the rigid body and the coupled system will rotate as a whole rigid body, with a constant angular velocity that is directed along one of the principal axes of inertia of the system.
Evaluation of low-dose limits in 3D-2D rigid registration for surgical guidance
NASA Astrophysics Data System (ADS)
Uneri, A.; Wang, A. S.; Otake, Y.; Kleinszig, G.; Vogt, S.; Khanna, A. J.; Gallia, G. L.; Gokaslan, Z. L.; Siewerdsen, J. H.
2014-09-01
An algorithm for intensity-based 3D-2D registration of CT and C-arm fluoroscopy is evaluated for use in surgical guidance, specifically considering the low-dose limits of the fluoroscopic x-ray projections. The registration method is based on a framework using the covariance matrix adaptation evolution strategy (CMA-ES) to identify the 3D patient pose that maximizes the gradient information similarity metric. Registration performance was evaluated in an anthropomorphic head phantom emulating intracranial neurosurgery, using target registration error (TRE) to characterize accuracy and robustness in terms of 95% confidence upper bound in comparison to that of an infrared surgical tracking system. Three clinical scenarios were considered: (1) single-view image + guidance, wherein a single x-ray projection is used for visualization and 3D-2D guidance; (2) dual-view image + guidance, wherein one projection is acquired for visualization, combined with a second (lower-dose) projection acquired at a different C-arm angle for 3D-2D guidance; and (3) dual-view guidance, wherein both projections are acquired at low dose for the purpose of 3D-2D guidance alone (not visualization). In each case, registration accuracy was evaluated as a function of the entrance surface dose associated with the projection view(s). Results indicate that images acquired at a dose as low as 4 μGy (approximately one-tenth the dose of a typical fluoroscopic frame) were sufficient to provide TRE comparable or superior to that of conventional surgical tracking, allowing 3D-2D guidance at a level of dose that is at most 10% greater than conventional fluoroscopy (scenario #2) and potentially reducing the dose to approximately 20% of the level in a conventional fluoroscopically guided procedure (scenario #3).
NASA Astrophysics Data System (ADS)
Stahr, Donald W.; Law, Richard D.
2014-11-01
We model the development of shape preferred orientation (SPO) of a large population of two- and three-dimensional (2D and 3D) rigid clasts suspended in a linear viscous matrix deformed by superposed steady and continuously non-steady plane strain flows to investigate the sensitivity of clasts to changing boundary conditions during a single or superposed deformation events. Resultant clast SPOs are compared to one developed by an identical initial population that experienced a steady flow history of constant kinematic vorticity and reached an identical finite strain state, allowing examination of SPO sensitivity to deformation path. Rotation paths of individual triaxial inclusions are complex, even for steady plane strain flow histories. It has been suggested that the 3D nature of the system renders predictions based on 2D models inadequate for applied clast-based kinematic vorticity gauges. We demonstrate that for a large population of clasts, simplification to a 2D model does provide a good approximation to the SPO predicted by full 3D analysis for steady and non-steady plane strain deformation paths. Predictions of shape fabric development from 2D models are not only qualitatively similar to the more complex 3D analysis, but they display the same limitations of techniques based on clast SPO commonly used as a quantitative kinematic vorticity gauge. Our model results from steady, superposed, and non-steady flow histories with a significant pure shearing component at a wide range of finite strain resemble predictions for an identical initial population that experienced a single steady simple shearing deformation. We conclude that individual 2D and 3D clasts respond instantaneously to changes in boundary conditions, however, in aggregate, the SPO of a population of rigid inclusions does not reflect the late-stage kinematics of deformation, nor is it an indicator of the unique 'mean' kinematic vorticity experienced by a deformed rock volume.
El-Hamidi, Hamid; Celli, Jonathan P.
2014-01-01
The mechanical microenvironment has been shown to act as a crucial regulator of tumor growth behavior and signaling, which is itself remodeled and modified as part of a set of complex, two-way mechanosensitive interactions. While the development of biologically-relevant 3D tumor models have facilitated mechanistic studies on the impact of matrix rheology on tumor growth, the inverse problem of mapping changes in the mechanical environment induced by tumors remains challenging. Here, we describe the implementation of particle-tracking microrheology (PTM) in conjunction with 3D models of pancreatic cancer as part of a robust and viable approach for longitudinally monitoring physical changes in the tumor microenvironment, in situ. The methodology described here integrates a system of preparing in vitro 3D models embedded in a model extracellular matrix (ECM) scaffold of Type I collagen with fluorescently labeled probes uniformly distributed for position- and time-dependent microrheology measurements throughout the specimen. In vitro tumors are plated and probed in parallel conditions using multiwell imaging plates. Drawing on established methods, videos of tracer probe movements are transformed via the Generalized Stokes Einstein Relation (GSER) to report the complex frequency-dependent viscoelastic shear modulus, G*(ω). Because this approach is imaging-based, mechanical characterization is also mapped onto large transmitted-light spatial fields to simultaneously report qualitative changes in 3D tumor size and phenotype. Representative results showing contrasting mechanical response in sub-regions associated with localized invasion-induced matrix degradation as well as system calibration, validation data are presented. Undesirable outcomes from common experimental errors and troubleshooting of these issues are also presented. The 96-well 3D culture plating format implemented in this protocol is conducive to correlation of microrheology measurements with therapeutic
NASA Astrophysics Data System (ADS)
Lee, Duhgoon; Nam, Woo Hyun; Lee, Jae Young; Ra, Jong Beom
2011-01-01
In order to utilize both ultrasound (US) and computed tomography (CT) images of the liver concurrently for medical applications such as diagnosis and image-guided intervention, non-rigid registration between these two types of images is an essential step, as local deformation between US and CT images exists due to the different respiratory phases involved and due to the probe pressure that occurs in US imaging. This paper introduces a voxel-based non-rigid registration algorithm between the 3D B-mode US and CT images of the liver. In the proposed algorithm, to improve the registration accuracy, we utilize the surface information of the liver and gallbladder in addition to the information of the vessels inside the liver. For an effective correlation between US and CT images, we treat those anatomical regions separately according to their characteristics in US and CT images. Based on a novel objective function using a 3D joint histogram of the intensity and gradient information, vessel-based non-rigid registration is followed by surface-based non-rigid registration in sequence, which improves the registration accuracy. The proposed algorithm is tested for ten clinical datasets and quantitative evaluations are conducted. Experimental results show that the registration error between anatomical features of US and CT images is less than 2 mm on average, even with local deformation due to different respiratory phases and probe pressure. In addition, the lesion registration error is less than 3 mm on average with a maximum of 4.5 mm that is considered acceptable for clinical applications.
NASA Astrophysics Data System (ADS)
Laurent, Gautier; Caumon, Guillaume; Jessell, Mark
2015-01-01
Numerical models of geological structures are generally built with a geometrical approach, which lacks an explicit representation of the deformation history and may lead to incompatible structures. We advocate that the deformation history should be investigated and represented from the very first steps of the modelling process, provided that a series of rapid, interactive or automated, deformation tools are available for local editing, forward modelling and restoration. In this paper, we define the specifications of such tools and emphasise the need for rapidity and robustness. We briefly review the different applications of deformation tools in geomodelling and the existing deformation algorithms. We select a deformation algorithm based on rigid elements, first presented in the Computer Graphics community, which we refer to as Reed. It is able to rapidly deform any kind of geometrical object, including points, lines or volumes, with an approximated mechanical behaviour. The objects to be deformed are embedded in rigid cells whose displacement is optimised by minimising a global cost function with respect to displacement boundary conditions. This cost function measures the difference in displacement between neighbouring elements. The embedded objects are then deformed based on their original position with respect to the rigid elements. We present the basis of our implementation of this algorithm and highlight its ability to fulfil the specifications we defined. Its application to geomodelling specific problems is illustrated through the construction of a synthetic structural model of multiply deformed layers with a forward modelling approach. A special boundary condition adapted to restore large folds is also presented and applied to the large anticline of Han-sur-Lesse, Belgium, which demonstrates the ability of this method to efficiently perform a volumetric restoration without global projections.
A non-rigid registration method for mouse whole body skeleton registration
NASA Astrophysics Data System (ADS)
Xiao, Di; Zahra, David; Bourgeat, Pierrick; Berghofer, Paula; Acosta Tamayo, Oscar; Wimberley, Catriona; Gregoire, Marie Claude; Salvado, Olivier
2010-03-01
Micro-CT/PET imaging scanner provides a powerful tool to study tumor in small rodents in response to therapy. Accurate image registration is a necessary step to quantify the characteristics of images acquired in longitudinal studies. Small animal registration is challenging because of the very deformable body of the animal often resulting in different postures despite physical restraints. In this paper, we propose a non-rigid registration approach for the automatic registration of mouse whole body skeletons, which is based on our improved 3D shape context non-rigid registration method. The whole body skeleton registration approach has been tested on 21 pairs of mouse CT images with variations of individuals and time-instances. The experimental results demonstrated the stability and accuracy of the proposed method for automatic mouse whole body skeleton registration.
NASA Astrophysics Data System (ADS)
Santasusana, Miquel; Irazábal, Joaquín; Oñate, Eugenio; Carbonell, Josep Maria
2016-07-01
In this work, we present a new methodology for the treatment of the contact interaction between rigid boundaries and spherical discrete elements (DE). Rigid body parts are present in most of large-scale simulations. The surfaces of the rigid parts are commonly meshed with a finite element-like (FE) discretization. The contact detection and calculation between those DE and the discretized boundaries is not straightforward and has been addressed by different approaches. The algorithm presented in this paper considers the contact of the DEs with the geometric primitives of a FE mesh, i.e. facet, edge or vertex. To do so, the original hierarchical method presented by Horner et al. (J Eng Mech 127(10):1027-1032, 2001) is extended with a new insight leading to a robust, fast and accurate 3D contact algorithm which is fully parallelizable. The implementation of the method has been developed in order to deal ideally with triangles and quadrilaterals. If the boundaries are discretized with another type of geometries, the method can be easily extended to higher order planar convex polyhedra. A detailed description of the procedure followed to treat a wide range of cases is presented. The description of the developed algorithm and its validation is verified with several practical examples. The parallelization capabilities and the obtained performance are presented with the study of an industrial application example.
NASA Astrophysics Data System (ADS)
Santasusana, Miquel; Irazábal, Joaquín; Oñate, Eugenio; Carbonell, Josep Maria
2016-04-01
In this work, we present a new methodology for the treatment of the contact interaction between rigid boundaries and spherical discrete elements (DE). Rigid body parts are present in most of large-scale simulations. The surfaces of the rigid parts are commonly meshed with a finite element-like (FE) discretization. The contact detection and calculation between those DE and the discretized boundaries is not straightforward and has been addressed by different approaches. The algorithm presented in this paper considers the contact of the DEs with the geometric primitives of a FE mesh, i.e. facet, edge or vertex. To do so, the original hierarchical method presented by Horner et al. (J Eng Mech 127(10):1027-1032, 2001) is extended with a new insight leading to a robust, fast and accurate 3D contact algorithm which is fully parallelizable. The implementation of the method has been developed in order to deal ideally with triangles and quadrilaterals. If the boundaries are discretized with another type of geometries, the method can be easily extended to higher order planar convex polyhedra. A detailed description of the procedure followed to treat a wide range of cases is presented. The description of the developed algorithm and its validation is verified with several practical examples. The parallelization capabilities and the obtained performance are presented with the study of an industrial application example.
Numerical simulation of a moving rigid body in a rarefied gas
NASA Astrophysics Data System (ADS)
Shrestha, Samir; Tiwari, Sudarshan; Klar, Axel; Hardt, Steffen
2015-07-01
In this paper we present a numerical scheme to simulate a moving rigid body with arbitrary shape suspended in a rarefied gas. The rarefied gas is simulated by solving the Boltzmann equation using a DSMC particle method. The motion of the rigid body is governed by the Newton-Euler equations, where the force and the torque on the rigid body are computed from the momentum transfer of the gas molecules colliding with the body. On the other hand, the motion of the rigid body influences the gas flow in its surroundings. We validate the numerical scheme by considering a moving piston problem in 1D and the Einstein relation for Brownian motion of the suspended particle in 3D. In the piston problem it is shown that the equilibrium position of the moving piston converges to the analytical solution for a wide range of Knudsen numbers. In the case of Brownian motion the translational as well as the rotational degrees of freedom are taken into account. In this case it is shown that the numerically computed translational and rotational diffusion coefficients converge to the theoretical values. Finally, the motion of an object of complex shape under the influence of a thermophoretic force is investigated.
Virtual rigid body: a new optical tracking paradigm in image-guided interventions
NASA Astrophysics Data System (ADS)
Cheng, Alexis; Lee, David S.; Deshmukh, Nishikant; Boctor, Emad M.
2015-03-01
Tracking technology is often necessary for image-guided surgical interventions. Optical tracking is one the options, but it suffers from line of sight and workspace limitations. Optical tracking is accomplished by attaching a rigid body marker, having a pattern for pose detection, onto a tool or device. A larger rigid body results in more accurate tracking, but at the same time large size limits its usage in a crowded surgical workspace. This work presents a prototype of a novel optical tracking method using a virtual rigid body (VRB). We define the VRB as a 3D rigid body marker in the form of pattern on a surface generated from a light source. Its pose can be recovered by observing the projected pattern with a stereo-camera system. The rigid body's size is no longer physically limited as we can manufacture small size light sources. Conventional optical tracking also requires line of sight to the rigid body. VRB overcomes these limitations by detecting a pattern projected onto the surface. We can project the pattern onto a region of interest, allowing the pattern to always be in the view of the optical tracker. This helps to decrease the occurrence of occlusions. This manuscript describes the method and results compared with conventional optical tracking in an experiment setup using known motions. The experiments are done using an optical tracker and a linear-stage, resulting in targeting errors of 0.38mm+/-0.28mm with our method compared to 0.23mm+/-0.22mm with conventional optical markers. Another experiment that replaced the linear stage with a robot arm resulted in rotational errors of 0.50+/-0.31° and 2.68+/-2.20° and the translation errors of 0.18+/-0.10 mm and 0.03+/-0.02 mm respectively.
New generalizations of the integrable problems in rigid body dynamics
NASA Astrophysics Data System (ADS)
Yehia, H. M.
1997-10-01
We consider the general problem of motion of a rigid body about a fixed point under the action of an axisymmetric combination of potential and gyroscopic forces. We introduce six cases of this problem which are completely integrable for arbitrary initial conditions. The new cases generalize by several parameters all, but one, of the known results in the subject of rigid body dynamics. Namely, we generalize all the results due to Euler, Lagrange, Clebsch, Kovalevskaya, Brun and Lyapunov and also their subsequent generalizations by Rubanovsky and the present author.
Scale Space Graph Representation and Kernel Matching for Non Rigid and Textured 3D Shape Retrieval.
Garro, Valeria; Giachetti, Andrea
2016-06-01
In this paper we introduce a novel framework for 3D object retrieval that relies on tree-based shape representations (TreeSha) derived from the analysis of the scale-space of the Auto Diffusion Function (ADF) and on specialized graph kernels designed for their comparison. By coupling maxima of the Auto Diffusion Function with the related basins of attraction, we can link the information at different scales encoding spatial relationships in a graph description that is isometry invariant and can easily incorporate texture and additional geometrical information as node and edge features. Using custom graph kernels it is then possible to estimate shape dissimilarities adapted to different specific tasks and on different categories of models, making the procedure a powerful and flexible tool for shape recognition and retrieval. Experimental results demonstrate that the method can provide retrieval scores similar or better than state-of-the-art on textured and non textured shape retrieval benchmarks and give interesting insights on effectiveness of different shape descriptors and graph kernels. PMID:26372206
A stable FSI algorithm for light rigid bodies in compressible flow
NASA Astrophysics Data System (ADS)
Banks, J. W.; Henshaw, W. D.; Sjögreen, B.
2013-07-01
In this article we describe a stable partitioned algorithm that overcomes the added mass instability arising in fluid-structure interactions of light rigid bodies and inviscid compressible flow. The new algorithm is stable even for bodies with zero mass and zero moments of inertia. The approach is based on a local characteristic projection of the force on the rigid body and is a natural extension of the recently developed algorithm for coupling compressible flow and deformable bodies [1-3]. The new algorithm advances the solution in the fluid domain with a standard upwind scheme and explicit time-stepping. The Newton-Euler system of ordinary differential equations governing the motion of the rigid body is augmented by added mass correction terms. This system, which is very stiff for light bodies, is solved with an A-stable diagonally implicit Runge-Kutta scheme. The implicit system (there is one independent system for each body) consists of only 3d+d2 scalar unknowns in d=2 or d=3 space dimensions and is fast to solve. The overall cost of the scheme is thus dominated by the cost of the explicit fluid solver. Normal mode analysis is used to prove the stability of the approximation for a one-dimensional model problem and numerical computations confirm these results. In multiple space dimensions the approach naturally reveals the form of the added mass tensors in the equations governing the motion of the rigid body. These tensors, which depend on certain surface integrals of the fluid impedance, couple the translational and angular velocities of the body. Numerical results in two space dimensions, based on the use of moving overlapping grids and adaptive mesh refinement, demonstrate the behavior and efficacy of the new scheme. These results include the simulation of the difficult problems of shock impingement on an ellipse and a more complex body with appendages, both with zero mass.
Knowledge-In-Action: An Example with Rigid Body Motion
ERIC Educational Resources Information Center
Da Costa, Sayonara Salvador Cabral; Moreira, Marco Antonio
2005-01-01
This paper reports the analysis of the resolution of a paper-and-pencil problem, by eight undergraduate students majoring in engineering (six) and physics (two) at the Pontifcia Universidade Catlica do Rio Grande do Sul, in Porto Alegre, Brazil. The problem concerns kinetics of a rigid body, and the analysis was done in the light of Johnson-Lairds…
Tracking 3-D body motion for docking and robot control
NASA Technical Reports Server (NTRS)
Donath, M.; Sorensen, B.; Yang, G. B.; Starr, R.
1987-01-01
An advanced method of tracking three-dimensional motion of bodies has been developed. This system has the potential to dynamically characterize machine and other structural motion, even in the presence of structural flexibility, thus facilitating closed loop structural motion control. The system's operation is based on the concept that the intersection of three planes defines a point. Three rotating planes of laser light, fixed and moving photovoltaic diode targets, and a pipe-lined architecture of analog and digital electronics are used to locate multiple targets whose number is only limited by available computer memory. Data collection rates are a function of the laser scan rotation speed and are currently selectable up to 480 Hz. The tested performance on a preliminary prototype designed for 0.1 in accuracy (for tracking human motion) at a 480 Hz data rate includes a worst case resolution of 0.8 mm (0.03 inches), a repeatability of plus or minus 0.635 mm (plus or minus 0.025 inches), and an absolute accuracy of plus or minus 2.0 mm (plus or minus 0.08 inches) within an eight cubic meter volume with all results applicable at the 95 percent level of confidence along each coordinate region. The full six degrees of freedom of a body can be computed by attaching three or more target detectors to the body of interest.
3D prostate MR-TRUS non-rigid registration using dual optimization with volume-preserving constraint
NASA Astrophysics Data System (ADS)
Qiu, Wu; Yuan, Jing; Fenster, Aaron
2016-03-01
We introduce an efficient and novel convex optimization-based approach to the challenging non-rigid registration of 3D prostate magnetic resonance (MR) and transrectal ultrasound (TRUS) images, which incorporates a new volume preserving constraint to essentially improve the accuracy of targeting suspicious regions during the 3D TRUS guided prostate biopsy. Especially, we propose a fast sequential convex optimization scheme to efficiently minimize the employed highly nonlinear image fidelity function using the robust multi-channel modality independent neighborhood descriptor (MIND) across the two modalities of MR and TRUS. The registration accuracy was evaluated using 10 patient images by calculating the target registration error (TRE) using manually identified corresponding intrinsic fiducials in the whole prostate gland. We also compared the MR and TRUS manually segmented prostate surfaces in the registered images in terms of the Dice similarity coefficient (DSC), mean absolute surface distance (MAD), and maximum absolute surface distance (MAXD). Experimental results showed that the proposed method with the introduced volume-preserving prior significantly improves the registration accuracy comparing to the method without the volume-preserving constraint, by yielding an overall mean TRE of 2:0+/-0:7 mm, and an average DSC of 86:5+/-3:5%, MAD of 1:4+/-0:6 mm and MAXD of 6:5+/-3:5 mm.
Rigid 2D/3D registration of intraoperative digital x-ray images and preoperative CT and MR images
NASA Astrophysics Data System (ADS)
Tomazevic, Dejan; Likar, Bostjan; Pernus, Franjo
2002-05-01
This paper describes a novel approach to register 3D computed tomography (CT) or magnetic resonance (MR) images to a set of 2D X-ray images. Such a registration may be a valuable tool for intraoperative determination of the precise position and orientation of some anatomy of interest, defined in preoperative images. The registration is based solely on the information present in 2D and 3D images. It does not require fiducial markers, X-ray image segmentation, or construction of digitally reconstructed radiographs. The originality of the approach is in using normals to bone surfaces, preoperatively defined in 3D MR or CT data, and gradients of intraoperative X-ray images, which are back-projected towards the X-ray source. The registration is then concerned with finding that rigid transformation of a CT or MR volume, which provides the best match between surface normals and back projected gradients, considering their amplitudes and orientations. The method is tested on a lumbar spine phantom. Gold standard registration is obtained by fidicual markers attached to the phantom. Volumes of interest, containing single vertebrae, are registered to different pairs of X-ray images from different starting positions, chosen randomly and uniformly around the gold standard position. Target registration errors and rotation errors are in order of 0.3 mm and 0.35 degrees for the CT to X-ray registration and 1.3 mm and 1.5 degrees for MR to X-ray registration. The registration is shown to be fast and accurate.
Non-rigid registration of small animal skeletons from micro-CT using 3D shape context
NASA Astrophysics Data System (ADS)
Xiao, Di; Bourgeat, Pierrick; Fripp, Jurgen; Acosta Tamayo, Oscar; Gregoire, Marie Claude; Salvado, Olivier
2009-02-01
Small animal registration is an important step for molecular image analysis. Skeleton registration from whole-body or only partial micro Computerized Tomography (CT) image is often performed to match individual rats to atlases and templates, for example to identify organs in positron emission tomography (PET). In this paper, we extend the shape context matching technique for 3D surface registration and apply it for rat hind limb skeleton registration from CT images. Using the proposed method, after standard affine iterative closest point (ICP) registration, correspondences between the 3D points from sour and target objects were robustly found and used to deform the limb skeleton surface with thin-plate-spline (TPS). Experiments are described using phantoms and actual rat hind limb skeletons. On animals, mean square errors were decreased by the proposed registration compared to that of its initial alignment. Visually, skeletons were successfully registered even in cases of very different animal poses.
NASA Astrophysics Data System (ADS)
Pallozzi Lavorante, Luca; Dirk Ebert, Hans
2008-07-01
Tensor3D is a geometric modeling program with the capacity to simulate and visualize in real-time the deformation, specified through a tensor matrix and applied to triangulated models representing geological bodies. 3D visualization allows the study of deformational processes that are traditionally conducted in 2D, such as simple and pure shears. Besides geometric objects that are immediately available in the program window, the program can read other models from disk, thus being able to import objects created with different open-source or proprietary programs. A strain ellipsoid and a bounding box are simultaneously shown and instantly deformed with the main object. The principal axes of strain are visualized as well to provide graphical information about the orientation of the tensor's normal components. The deformed models can also be saved, retrieved later and deformed again, in order to study different steps of progressive strain, or to make this data available to other programs. The shape of stress ellipsoids and the corresponding Mohr circles defined by any stress tensor can also be represented. The application was written using the Visualization ToolKit, a powerful scientific visualization library in the public domain. This development choice, allied to the use of the Tcl/Tk programming language, which is independent on the host computational platform, makes the program a useful tool for the study of geometric deformations directly in three dimensions in teaching as well as research activities.
A method for measuring the inertia properties of rigid bodies
NASA Astrophysics Data System (ADS)
Gobbi, M.; Mastinu, G.; Previati, G.
2011-01-01
A method for the measurement of the inertia properties of rigid bodies is presented. Given a rigid body and its mass, the method allows to measure (identify) the centre of gravity location and the inertia tensor during a single test. The proposed technique is based on the analysis of the free motion of a multi-cable pendulum to which the body under consideration is connected. The motion of the pendulum and the forces acting on the system are recorded and the inertia properties are identified by means of a proper mathematical procedure based on a least square estimation. After the body is positioned on the test rig, the full identification procedure takes less than 10 min. The natural frequencies of the pendulum and the accelerations involved are quite low, making this method suitable for many practical applications. In this paper, the proposed method is described and two test rigs are presented: the first is developed for bodies up to 3500 kg and the second for bodies up to 400 kg. A validation of the measurement method is performed with satisfactory results. The test rig holds a third part quality certificate according to an ISO 9001 standard and could be scaled up to measure the inertia properties of huge bodies, such as trucks, airplanes or even ships.
Interactions between rigid-body and flexible-body motions in maneuvering spacecraft
NASA Technical Reports Server (NTRS)
Silverberg, Larry M.; Park, Sungtae
1990-01-01
The present consideration of the significant interactions between rigid-body and flexible-body motions in maneuvering spacecraft proceeds by distinguishing between the two types of motion on the basis of a tracking coordinate system which coincides with the rigid-body component of the motion, as well as by maintaining the motion relative to the tracking coordinate as orthogonal to the rigid-body motion. The elastic motion is excited by the rigid-body motion via Coriolis terms, angular acceleration terms, and centrifugal terms. These interactions are illustrated for spacecraft undergoing bidirectional elastic motions via the dynamics of constantly rotating free-free beams subject to combined bending and longitudinal vibration.
Segmentation of vertebral bodies in CT and MR images based on 3D deterministic models
NASA Astrophysics Data System (ADS)
Štern, Darko; Vrtovec, Tomaž; Pernuš, Franjo; Likar, Boštjan
2011-03-01
The evaluation of vertebral deformations is of great importance in clinical diagnostics and therapy of pathological conditions affecting the spine. Although modern clinical practice is oriented towards the computed tomography (CT) and magnetic resonance (MR) imaging techniques, as they can provide a detailed 3D representation of vertebrae, the established methods for the evaluation of vertebral deformations still provide only a two-dimensional (2D) geometrical description. Segmentation of vertebrae in 3D may therefore not only improve their visualization, but also provide reliable and accurate 3D measurements of vertebral deformations. In this paper we propose a method for 3D segmentation of individual vertebral bodies that can be performed in CT and MR images. Initialized with a single point inside the vertebral body, the segmentation is performed by optimizing the parameters of a 3D deterministic model of the vertebral body to achieve the best match of the model to the vertebral body in the image. The performance of the proposed method was evaluated on five CT (40 vertebrae) and five T2-weighted MR (40 vertebrae) spine images, among them five are normal and five are pathological. The results show that the proposed method can be used for 3D segmentation of vertebral bodies in CT and MR images and that the proposed model can describe a variety of vertebral body shapes. The method may be therefore used for initializing whole vertebra segmentation or reliably describing vertebral body deformations.
Stability characterizations of fixtured rigid bodies with Coulomb friction
PANG,J.S.; TRINKLE,JEFFREY C.
2000-02-15
This paper formally introduces several stability characterizations of fixtured three-dimensional rigid bodies initially at rest and in unilateral contact with Coulomb friction. These characterizations, weak stability and strong stability, arise naturally from the dynamic model of the system, formulated as a complementarity problem. Using the tools of complementarity theory, these characterizations are studied in detail to understand their properties and to develop techniques to identify the stability classifications of general systems subjected to known external loads.
Direct inversion of rigid-body rotational dynamics
NASA Technical Reports Server (NTRS)
Bach, Ralph; Paielli, Russell
1990-01-01
The global linearization (inversion) of rigid-body rotational dynamics is reviewed and representations in terms of quaternions and direction cosines are compared. Certain properties common to quaternions and direction cosines that make their use preferable to Euler angles and that simplify the inversion procedure are described. Applications of the inversion procedure for state estimation and attitude control are discussed. To avoid complexities caused by aerodynamics, an example of direct inversion for linear feedback control of spacecraft attitude is given.
Stabilization of the permanent rotations of a rigid body
NASA Astrophysics Data System (ADS)
Biiarov, T.; Krementulo, V. V.; Tazhekov, A.
1991-08-01
The problem of stabilization of the equilibrium and permanent rotations of a heavy rigid body with a fixed point is solved in the classical cases of Euler, Lagrange, and Kovalevskaya using methods of analytical control theory. In the above cases, the control moments obtained in explicit form provide for the asymptotic stability of the permanent rotation on the whole. The control moments are selected in the form of linear functions with respect to perturbations.
Lie-Poisson integrators for rigid body dynamics in the solar system
NASA Astrophysics Data System (ADS)
Touma, J.; Wisdom, J.
1994-03-01
The n-body mapping method of Wisdom & Holman (1991) is generalized to encompass rotational dynamics. The Lie-Poisson structure of rigid body dynamics is discussed. Integrators which preserve that structure are derived for the motion of a free rigid body and for the motion of rigid bodies interacting gravitationally with mass points.
Quantifying Rigid and Nonrigid Motion of Liver Tumors During Stereotactic Body Radiation Therapy
Xu, Qianyi; Hanna, George; Grimm, Jimm; Kubicek, Gregory; Pahlajani, Niraj; Asbell, Sucha; Fan, Jiajin; Chen, Yan; LaCouture, Tamara
2014-09-01
Purpose: To quantify rigid and nonrigid motion of liver tumors using reconstructed 3-dimensional (3D) fiducials from stereo imaging during CyberKnife-based stereotactic body radiation therapy (SBRT). Methods and Materials: Twenty-three liver patients treated with 3 fractions of SBRT were used in this study. After 2 orthogonal kilovoltage images were taken during treatment, the 3D locations of the fiducials were generated by the CyberKnife system and validated using geometric derivations. A total of 4824 pairs of kilovoltage images from start to end of treatment were analyzed. For rigid motion, the rotational angles and translational shifts were reported by aligning 3D fiducial groups from different image pairs, using least-squares fitting. For nonrigid motion, we quantified interfractional tumor volume variations by using the proportional volume derived from the fiducials, which correlates to the sum of interfiducial distances. The individual fiducial displacements were also reported (1) after rigid corrections and (2) without angle corrections. Results: The proportional volume derived by the fiducials demonstrated a volume-increasing trend in the second (101.9% ± 3.6%) and third (101.0 ± 5.9%) fractions among most patients, possibly due to radiation-induced edema. For all patients, the translational shifts in left-right, anteroposterior, and superoinferior directions were 2.1 ± 2.3 mm, 2.9 ± 2.8 mm, and 6.4 ± 5.5 mm, respectively. The greatest translational shifts occurred in the superoinferior direction, likely due to respiratory motion from the diaphragm. The rotational angles in roll, pitch, and yaw were 1.2° ± 1.8°, 1.8° ± 2.4°, and 1.7° ± 2.1°, respectively. The 3D individual fiducial displacements with rigid corrections were 0.2 ± 0.2 mm and increased to 0.5 ± 0.4 mm without rotational corrections. Conclusions: Accurate 3D locations of internal fiducials can be reconstructed from stereo imaging during treatment. As an
3D measurement of the human body for apparel mass customization
NASA Astrophysics Data System (ADS)
Xu, Bugao; Lin, Sheng; Chen, Tong
2000-12-01
An automatic body measurement system is essential for apparel mass customization. This paper introduces the development of a body-scanning system using the multi-line triangulation technique, and methods for body size extraction and body modeling. The scanning system can rapidly acquire the surface data of a body, provide accurate body dimensions, many of which are not measurable with conventional methods, and also construct a body form based on the scanned data as a digital model of the body for 3D garment design and for virtual try-on of a designed garment.
New Langevin and gradient thermostats for rigid body dynamics
NASA Astrophysics Data System (ADS)
Davidchack, R. L.; Ouldridge, T. E.; Tretyakov, M. V.
2015-04-01
We introduce two new thermostats, one of Langevin type and one of gradient (Brownian) type, for rigid body dynamics. We formulate rotation using the quaternion representation of angular coordinates; both thermostats preserve the unit length of quaternions. The Langevin thermostat also ensures that the conjugate angular momenta stay within the tangent space of the quaternion coordinates, as required by the Hamiltonian dynamics of rigid bodies. We have constructed three geometric numerical integrators for the Langevin thermostat and one for the gradient thermostat. The numerical integrators reflect key properties of the thermostats themselves. Namely, they all preserve the unit length of quaternions, automatically, without the need of a projection onto the unit sphere. The Langevin integrators also ensure that the angular momenta remain within the tangent space of the quaternion coordinates. The Langevin integrators are quasi-symplectic and of weak order two. The numerical method for the gradient thermostat is of weak order one. Its construction exploits ideas of Lie-group type integrators for differential equations on manifolds. We numerically compare the discretization errors of the Langevin integrators, as well as the efficiency of the gradient integrator compared to the Langevin ones when used in the simulation of rigid TIP4P water model with smoothly truncated electrostatic interactions. We observe that the gradient integrator is computationally less efficient than the Langevin integrators. We also compare the relative accuracy of the Langevin integrators in evaluating various static quantities and give recommendations as to the choice of an appropriate integrator.
New Langevin and gradient thermostats for rigid body dynamics.
Davidchack, R L; Ouldridge, T E; Tretyakov, M V
2015-04-14
We introduce two new thermostats, one of Langevin type and one of gradient (Brownian) type, for rigid body dynamics. We formulate rotation using the quaternion representation of angular coordinates; both thermostats preserve the unit length of quaternions. The Langevin thermostat also ensures that the conjugate angular momenta stay within the tangent space of the quaternion coordinates, as required by the Hamiltonian dynamics of rigid bodies. We have constructed three geometric numerical integrators for the Langevin thermostat and one for the gradient thermostat. The numerical integrators reflect key properties of the thermostats themselves. Namely, they all preserve the unit length of quaternions, automatically, without the need of a projection onto the unit sphere. The Langevin integrators also ensure that the angular momenta remain within the tangent space of the quaternion coordinates. The Langevin integrators are quasi-symplectic and of weak order two. The numerical method for the gradient thermostat is of weak order one. Its construction exploits ideas of Lie-group type integrators for differential equations on manifolds. We numerically compare the discretization errors of the Langevin integrators, as well as the efficiency of the gradient integrator compared to the Langevin ones when used in the simulation of rigid TIP4P water model with smoothly truncated electrostatic interactions. We observe that the gradient integrator is computationally less efficient than the Langevin integrators. We also compare the relative accuracy of the Langevin integrators in evaluating various static quantities and give recommendations as to the choice of an appropriate integrator. PMID:25877569
Human Body 3D Posture Estimation Using Significant Points and Two Cameras
Juang, Chia-Feng; Chen, Teng-Chang; Du, Wei-Chin
2014-01-01
This paper proposes a three-dimensional (3D) human posture estimation system that locates 3D significant body points based on 2D body contours extracted from two cameras without using any depth sensors. The 3D significant body points that are located by this system include the head, the center of the body, the tips of the feet, the tips of the hands, the elbows, and the knees. First, a linear support vector machine- (SVM-) based segmentation method is proposed to distinguish the human body from the background in red, green, and blue (RGB) color space. The SVM-based segmentation method uses not only normalized color differences but also included angle between pixels in the current frame and the background in order to reduce shadow influence. After segmentation, 2D significant points in each of the two extracted images are located. A significant point volume matching (SPVM) method is then proposed to reconstruct the 3D significant body point locations by using 2D posture estimation results. Experimental results show that the proposed SVM-based segmentation method shows better performance than other gray level- and RGB-based segmentation approaches. This paper also shows the effectiveness of the 3D posture estimation results in different postures. PMID:24883422
3D Visual Data-Driven Spatiotemporal Deformations for Non-Rigid Object Grasping Using Robot Hands
Mateo, Carlos M.; Gil, Pablo; Torres, Fernando
2016-01-01
Sensing techniques are important for solving problems of uncertainty inherent to intelligent grasping tasks. The main goal here is to present a visual sensing system based on range imaging technology for robot manipulation of non-rigid objects. Our proposal provides a suitable visual perception system of complex grasping tasks to support a robot controller when other sensor systems, such as tactile and force, are not able to obtain useful data relevant to the grasping manipulation task. In particular, a new visual approach based on RGBD data was implemented to help a robot controller carry out intelligent manipulation tasks with flexible objects. The proposed method supervises the interaction between the grasped object and the robot hand in order to avoid poor contact between the fingertips and an object when there is neither force nor pressure data. This new approach is also used to measure changes to the shape of an object’s surfaces and so allows us to find deformations caused by inappropriate pressure being applied by the hand’s fingers. Test was carried out for grasping tasks involving several flexible household objects with a multi-fingered robot hand working in real time. Our approach generates pulses from the deformation detection method and sends an event message to the robot controller when surface deformation is detected. In comparison with other methods, the obtained results reveal that our visual pipeline does not use deformations models of objects and materials, as well as the approach works well both planar and 3D household objects in real time. In addition, our method does not depend on the pose of the robot hand because the location of the reference system is computed from a recognition process of a pattern located place at the robot forearm. The presented experiments demonstrate that the proposed method accomplishes a good monitoring of grasping task with several objects and different grasping configurations in indoor environments. PMID
3D Visual Data-Driven Spatiotemporal Deformations for Non-Rigid Object Grasping Using Robot Hands.
Mateo, Carlos M; Gil, Pablo; Torres, Fernando
2016-01-01
Sensing techniques are important for solving problems of uncertainty inherent to intelligent grasping tasks. The main goal here is to present a visual sensing system based on range imaging technology for robot manipulation of non-rigid objects. Our proposal provides a suitable visual perception system of complex grasping tasks to support a robot controller when other sensor systems, such as tactile and force, are not able to obtain useful data relevant to the grasping manipulation task. In particular, a new visual approach based on RGBD data was implemented to help a robot controller carry out intelligent manipulation tasks with flexible objects. The proposed method supervises the interaction between the grasped object and the robot hand in order to avoid poor contact between the fingertips and an object when there is neither force nor pressure data. This new approach is also used to measure changes to the shape of an object's surfaces and so allows us to find deformations caused by inappropriate pressure being applied by the hand's fingers. Test was carried out for grasping tasks involving several flexible household objects with a multi-fingered robot hand working in real time. Our approach generates pulses from the deformation detection method and sends an event message to the robot controller when surface deformation is detected. In comparison with other methods, the obtained results reveal that our visual pipeline does not use deformations models of objects and materials, as well as the approach works well both planar and 3D household objects in real time. In addition, our method does not depend on the pose of the robot hand because the location of the reference system is computed from a recognition process of a pattern located place at the robot forearm. The presented experiments demonstrate that the proposed method accomplishes a good monitoring of grasping task with several objects and different grasping configurations in indoor environments. PMID:27164102
Adiabatic invariants, diffusion and acceleration in rigid body dynamics
NASA Astrophysics Data System (ADS)
Borisov, Alexey V.; Mamaev, Ivan S.
2016-03-01
The onset of adiabatic chaos in rigid body dynamics is considered. A comparison of the analytically calculated diffusion coefficient describing probabilistic effects in the zone of chaos with a numerical experiment is made. An analysis of the splitting of asymptotic surfaces is performed and uncertainty curves are constructed in the Poincaré-Zhukovsky problem. The application of Hamiltonian methods to nonholonomic systems is discussed. New problem statements are given which are related to the destruction of an adiabatic invariant and to the acceleration of the system (Fermi's acceleration).
Control of the rigid body and dynamics with symmetry
NASA Astrophysics Data System (ADS)
Lum, Kai-Yew
This dissertation explores various problems in the control of the rigid body and related dynamical systems with symmetry, utilizing various modeling approaches and control techniques. We first derive a control law that asymptotically stabilizes an unbalanced top to the sleeping motion. We rewrite the classical Euler-Poisson equations by projecting the phase space onto IRsp5. The control law is based on the Hamilton-Jacobi-Bellman theory with zero dynamics and partial stability. Lyapunov techniques are used in the analysis. Next, the control of rotor imbalance with magnetic bearings is considered in the adaptive virtual autobalancing and adaptive autocentering approaches. We derive single-plane and two-plane balancing control algorithms that provide asymptotic estimates of the rotor imbalance, and that guarantee consistent performance under varying spin rate. These algorithms are based on emulation of the mechanical autobalancer. We discuss the theory based on linear analysis, and simulation and experimental results. We go on to investigate symmetry properties associated with mechanical control systems and certain nonlinear control systems. First, we generalize the classical Serret-Andoyer transformation for the free rigid body to left-invariant, hyperregular Hamiltonian systems on Tsp*SO(3), employing the notion of symplectic (Marsden-Weinstein) reduction. We then apply this result to the controlled rigid body, and show that for Hamiltonian controls that preserve the rigid body structure, the generalized Serret-Andoyer transformation yields a two dimensional representation of the closed-loop motion in canonical form. Applications to the stability analysis of relative equilibria and numerical integration are also discussed. Finally, we apply the concept of reduction to certain regulation problems on smooth manifolds. Following the works of Van der Schaft (1981) and Grizzle and Marcus (1985), we show that an output feedback regulation problem possessing certain
Plane stress problems using hysteretic rigid body spring network models
NASA Astrophysics Data System (ADS)
Christos, Sofianos D.; Vlasis, Koumousis K.
2016-08-01
In this work, a discrete numerical scheme is presented capable of modeling the hysteretic behavior of 2D structures. Rigid Body Spring Network (RBSN) models that were first proposed by Kawai (Nucl Eng Des 48(1):29-207, 1978) are extended to account for hysteretic elastoplastic behavior. Discretization is based on Voronoi tessellation, as proposed specifically for RBSN models to ensure uniformity. As a result, the structure is discretized into convex polygons that form the discrete rigid bodies of the model. These are connected with three zero length, i.e., single-node springs in the middle of their common facets. The springs follow the smooth hysteretic Bouc-Wen model which efficiently incorporates classical plasticity with no direct reference to a yield surface. Numerical results for both static and dynamic loadings are presented, which validate the proposed simplified spring-mass formulation. In addition, they verify the model's applicability on determining primarily the displacement field and plastic zones compared to the standard elastoplastic finite element method.
Computational Fluid Dynamics Demonstration of Rigid Bodies in Motion
NASA Technical Reports Server (NTRS)
Camarena, Ernesto; Vu, Bruce T.
2011-01-01
The Design Analysis Branch (NE-Ml) at the Kennedy Space Center has not had the ability to accurately couple Rigid Body Dynamics (RBD) and Computational Fluid Dynamics (CFD). OVERFLOW-D is a flow solver that has been developed by NASA to have the capability to analyze and simulate dynamic motions with up to six Degrees of Freedom (6-DOF). Two simulations were prepared over the course of the internship to demonstrate 6DOF motion of rigid bodies under aerodynamic loading. The geometries in the simulations were based on a conceptual Space Launch System (SLS). The first simulation that was prepared and computed was the motion of a Solid Rocket Booster (SRB) as it separates from its core stage. To reduce computational time during the development of the simulation, only half of the physical domain with respect to the symmetry plane was simulated. Then a full solution was prepared and computed. The second simulation was a model of the SLS as it departs from a launch pad under a 20 knot crosswind. This simulation was reduced to Two Dimensions (2D) to reduce both preparation and computation time. By allowing 2-DOF for translations and 1-DOF for rotation, the simulation predicted unrealistic rotation. The simulation was then constrained to only allow translations.
Metrics and connections for rigid-body kinematics
Zefran, M.; Kumar, V.; Croke, C.
1999-02-01
The set of rigid-body motions forms a Lie group called SE(3), the special Euclidean group in three dimensions. In this paper, the authors investigate possible choices of Riemannian metrics and affine connections on SE(3) for applications to kinematic analysis and robot-trajectory planning. In the first part of the paper, they study metrics whose geodesics are screw motions. They prove that no Riemannian metric can have such geodesics, and they show that the metrics whose geodesics are screw motions from a two-parameter family of semi-Riemannian metrics. In the second part of the paper, they investigate affine connections which through the covariant derivative give the correct expression for the acceleration of a rigid body. They prove that there is a unique symmetric connection with this property. Furthermore, they show that there is a family of Riemannian metrics that are compatible with such a connection. These metrics are products of the bi-invariant metric on the group of rotations and a positive-definite constant metric on the group of translations.
Utilization of 3-D elastic transformation in the registration of chest x-ray CT and whole body PET
Tai, Yuan-Chuan; Hoh, C.K.; Hoffman, E.J.
1996-12-31
X-ray CT is widely used for detection and localization of lesions in the thorax. Whole Body PET with 18-FDG is becoming accepted for staging of cancer because of its ability to detect malignancy. Combining information from these two modalities has a significant value to improve lung cancer staging and treatment planning. Due to the non-rigid nature of the thorax and the differences in the acquisition conventions, the subject is stretched non-uniformly and the images of these two modalities requires non-rigid transformation for proper registration. Techniques to register chest x-ray CT and Whole Body PET images were developed and evaluated. Accuracy of 3-D elastic transformation was tested by phantom study. Studies on patients with lung carcinoma were used to validate the technique in localizing the 18-FDG uptake and in correlating PET to x-ray CT images. The fused images showed an accurate alignment and provided confident identification of the detailed anatomy of the CT with the functional information of the PET images.
NVision: A 3D Visualization Environment for N-Body Simulations
NASA Astrophysics Data System (ADS)
Markiel, J. A.
2000-05-01
NVision: A 3D Visualization Environment for N-Body Simulations We are developing a set of packages for 3D visualization and analysis of our numerical N-body simulations. These tools are intended to be generalizable to a wide range of related problems including cosmological, planetary dynamics, and molecular dynamics simulations. The applications and source code will be fully available to the community. To prototype this project we have adopted the Java platform with the newly released Java3D extension to take advantage of its portability, object-oriented environment, and availability of extensive documentation and class libraries. We will describe the goals and design principles of the project and demo the currently implemented features, including visualization of cosmological simulations and the simulated collision of two rubble-pile asteroids. This research is supported by NSF grants AST99-73209 and AST99-79891.
J-Asteroid, 3D Data Formats and Issues for the Visualization of Small Bodies
NASA Astrophysics Data System (ADS)
Hagee, W.; Anwar, S.; Noss, D.; Dickenshied, S.
2015-06-01
In adding support for 3D visualization of arbitrary data on small bodies, the J-Asteroid application has identified various pros and cons of existing data formats and issues rendering data in those formats. Key formats and issues will be presented.
Hurricane Balls: A rigid-body-motion project for undergraduates
NASA Astrophysics Data System (ADS)
Jackson, David P.; Mertens, David; Pearson, Brett J.
2015-11-01
We discuss a project on rigid-body motion that is appropriate for students in an upper-division course in classical mechanics. We analyze the motion of Hurricane Balls, two spheres that are welded (or glued) together so they act as a single object that can be spun like a top. The steady-state motion consists of purely rotational motion about the center of mass, such that only one ball is in contact with the table as it rolls without slipping. We give a qualitative explanation for why one ball rises into the air, and we theoretically analyze the system using multiple approaches. We also perform a high-speed video analysis to obtain experimental data on how the orientation depends on the spin rate, and find agreement within a few percent of the theory.
Absolute and relative choreographies in rigid body dynamics
NASA Astrophysics Data System (ADS)
Borisov, A. V.; Kilin, A. A.; Mamaev, I. S.
2008-06-01
For the classical problem of motion of a rigid body about a fixed point with zero area integral, we present a family of solutions that are periodic in the absolute space. Such solutions are known as choreographies. The family includes the well-known Delone solutions (for the Kovalevskaya case), some particular solutions for the Goryachev-Chaplygin case, and the Steklov solution. The “genealogy” of solutions of the family naturally appearing from the energy continuation and their connection with the Staude rotations are considered. It is shown that if the integral of areas is zero, the solutions are periodic with respect to a coordinate frame that rotates uniformly about the vertical (relative choreographies).
The computation of steady 3-D separated flows over aerodynamic bodies at incidence and yaw
NASA Technical Reports Server (NTRS)
Pulliam, T. H.; Pan, D.
1986-01-01
This paper describes the implementation of a general purpose 3-D NS code and its application to simulated 3-D separated vortical flows over aerodynamic bodies. The thin-layer Reynolds-averaged NS equations are solved by an implicit approximate factorization scheme. The pencil data structure enables the code to run on very fine grids using only limited incore memories. Solutions of a low subsonic flow over an inclined ellipsoid are compared with experimental data to validate the code. Transonic flows over a yawed elliptical wing at incidence are computed and separations occurred at different yaw angles are discussed.
Fluid-Structure Interactions with Flexible and Rigid Bodies
NASA Astrophysics Data System (ADS)
Daily, David Jesse
Fluid structure interactions occur to some extent in nearly every type of fluid flow. Understanding how structures interact with fluids and visa-versa is of vital importance in many engineering applications. The purpose of this research is to explore how fluids interact with flexible and rigid structures. A computational model was used to model the fluid structure interactions of vibrating synthetic vocal folds. The model simulated the coupling of the fluid and solid domains using a fluid-structure interface boundary condition. The fluid domain used a slightly compressible flow solver to allow for the possibility of acoustic coupling with the subglottal geometry and vibration of the vocal fold model. As the subglottis lengthened, the frequency of vibration decreased until a new acoustic mode could form in the subglottis. Synthetic aperture particle image velocimetry (SAPIV) is a three-dimensional particle tracking technique. SAPIV was used to image the jet of air that emerges from vibrating human vocal folds (glottal jet) during phonation. The three-dimensional reconstruction of the glottal jet found faint evidence of flow characteristics seen in previous research, such as axis-switching, but did not have sufficient resolution to detect small features. SAPIV was further applied to reconstruct the smaller flow characteristics of the glottal jet of vibrating synthetic vocal folds. Two- and four-layer synthetic vocal fold models were used to determine how the glottal jet from the synthetic models compared to the glottal jet from excised human vocal folds. The two- and four-layer models clearly exhibited axis-switching which has been seen in other 3D analyses of the glottal jet. Cavitation in a quiescent fluid can break a rigid structure such as a glass bottle. A new cavitation number was derived to include acceleration and pressure head at cavitation onset. A cavitation stick was used to validate the cavitation number by filling it with different depths and hitting
Ankh in the depth - Subdermal 3D art implants: Radiological identification with body modification.
Schaerli, Sarah; Berger, Florian; Thali, Michael J; Gascho, Dominic
2016-05-01
One of the core tasks in forensic medico-legal investigations is the identification of the deceased. Radiological identification using postmortem computed tomography (PMCT) is a powerful technique. In general, the implementation of forensic PMCT is rising worldwide. In addition to specific anatomical structures, medical implants or prostheses serve as markers for the comparison of antemortem and postmortem images to identify the deceased. However, non-medical implants, such as subdermal three-dimensional (3D) art implants, also allow for radiological identification. These implants are a type of body modification that have become increasingly popular over the last several decades and will therefore be employed more frequently in radiological identification in the future. To the best of our knowledge, this is the first case of radiological identification with a subdermal 3D art implant. Further, the present case shows the characteristics of a silicone 3D art implant on computed tomography, magnetic resonance imaging and X-rays. PMID:27161914
An N-body Tree Algorithm for the Cray T3D
NASA Technical Reports Server (NTRS)
Olson, Kevin M.; Packer, Charles V.
1996-01-01
We describe in this paper an algorithm for solving the gravitational N-body problem using tree data structures on the Cray T3D parallel supercomputer. This implementation is an adaptation of previous work where this problem was solved using an SIMD, fine-grained parallel computer. We show here that this approach lends itself, with small modifications, to more coarse-grained parallelism as well. We also show that the performance of the algorithm on the Cray T3D parallel architecture scales adequately with the number of processors (up to 256). Specific levels to be reached using the Cray T3D parallel architecture. A peak performance level of 9.6 Gflop/s is reached on 256 processors for the time critical gravity computation.
An N-body Tree Algorithm for the Cray T3D
NASA Astrophysics Data System (ADS)
Olson, Kevin M.; Packer, Charles V.
1996-05-01
We describe in this paper an algorithm for solving the gravitational N-body problem using tree data structures on the Cray T3D parallel supercomputer. This implementation is an adaptation of previous work where this problem was solved using an SIMD, fine-grained parallel computer. We show here that this approach lends itself, with small modifications, to more coarse-grained parallelism as well. We also show that the performance of the algorithm on the Cray T3D parallel architecture scales adequately with the number of processors (up to 256). Specific levels to be reached using the Cray T3D parallel architecture. A peak performance level of 9.6 Gflop/s is reached on 256 processors for the time critical gravity computation.
3D reconstruction of complex geological bodies: Examples from the Alps
NASA Astrophysics Data System (ADS)
Zanchi, Andrea; Francesca, Salvi; Stefano, Zanchetta; Simone, Sterlacchini; Graziano, Guerra
2009-01-01
Cartographic geological and structural data collected in the field and managed by Geographic Information Systems (GIS) technology can be used for 3D reconstruction of complex geological bodies. Using a link between GIS tools and gOcad, stratigraphic and tectonic surfaces can be reconstructed taking into account any geometrical constraint derived from field observations. Complex surfaces can be reconstructed using large data sets analysed by suitable geometrical techniques. Three main typologies of geometric features and related attributes are exported from a GIS-geodatabase: (1) topographic data as points from a digital elevation model; (2) stratigraphic and tectonic boundaries, and linear features as 2D polylines; (3) structural data as points. After having imported the available information into gOcad, the following steps should be performed: (1) construction of the topographic surface by interpolation of points; (2) 3D mapping of the linear geological boundaries and linear features by vertical projection on the reconstructed topographic surface; (3) definition of geometrical constraints from planar and linear outcrop data; (4) construction of a network of cross-sections based on field observations and geometrical constraints; (5) creation of 3D surfaces, closed volumes and grids from the constructed objects. Three examples of the reconstruction of complex geological bodies from the Italian Alps are presented here. The methodology demonstrates that although only outcrop data were available, 3D modelling has allows the checking of the geometrical consistency of the interpretative 2D sections and of the field geology, through a 3D visualisation of geometrical models. Application of a 3D geometrical model to the case studies can be very useful in geomechanical modelling for slope-stability or resource evaluation.
Subject-specific body segment parameter estimation using 3D photogrammetry with multiple cameras
Morris, Mark; Sellers, William I.
2015-01-01
Inertial properties of body segments, such as mass, centre of mass or moments of inertia, are important parameters when studying movements of the human body. However, these quantities are not directly measurable. Current approaches include using regression models which have limited accuracy: geometric models with lengthy measuring procedures or acquiring and post-processing MRI scans of participants. We propose a geometric methodology based on 3D photogrammetry using multiple cameras to provide subject-specific body segment parameters while minimizing the interaction time with the participants. A low-cost body scanner was built using multiple cameras and 3D point cloud data generated using structure from motion photogrammetric reconstruction algorithms. The point cloud was manually separated into body segments, and convex hulling applied to each segment to produce the required geometric outlines. The accuracy of the method can be adjusted by choosing the number of subdivisions of the body segments. The body segment parameters of six participants (four male and two female) are presented using the proposed method. The multi-camera photogrammetric approach is expected to be particularly suited for studies including populations for which regression models are not available in literature and where other geometric techniques or MRI scanning are not applicable due to time or ethical constraints. PMID:25780778
Zebrafish response to 3D printed shoals of conspecifics: the effect of body size.
Bartolini, Tiziana; Mwaffo, Violet; Showler, Ashleigh; Macrì, Simone; Butail, Sachit; Porfiri, Maurizio
2016-04-01
Recent progress in three-dimensional (3D) printing technology has enabled rapid prototyping of complex models at a limited cost. Virtually every research laboratory has access to a 3D printer, which can assist in the design and implementation of hypothesis-driven studies on animal behavior. In this study, we explore the possibility of using 3D printing technology to understand the role of body size in the social behavior of the zebrafish model organism. In a dichotomous preference test, we study the behavioral response of zebrafish to shoals of 3D printed replicas of varying size. We systematically vary the size of each replica without altering the coloration, aspect ratio, and stripe patterns, which are all selected to closely mimic zebrafish morphophysiology. The replicas are actuated through a robotic manipulator, mimicking the natural motion of live subjects. Zebrafish preference is assessed by scoring the time spent in the vicinity of the shoal of replicas, and the information theoretic construct of transfer entropy is used to further elucidate the influence of the replicas on zebrafish motion. Our results demonstrate that zebrafish adjust their behavior in response to variations in the size of the replicas. Subjects exhibit an avoidance reaction for larger replicas, and they are attracted toward and influenced by smaller replicas. The approach presented in this study, integrating 3D printing technology, robotics, and information theory, is expected to significantly aid preclinical research on zebrafish behavior. PMID:26891476
Pitching motion control of a butterfly-like 3D flapping wing-body model
NASA Astrophysics Data System (ADS)
Suzuki, Kosuke; Minami, Keisuke; Inamuro, Takaji
2014-11-01
Free flights and a pitching motion control of a butterfly-like flapping wing-body model are numerically investigated by using an immersed boundary-lattice Boltzmann method. The model flaps downward for generating the lift force and backward for generating the thrust force. Although the model can go upward against the gravity by the generated lift force, the model generates the nose-up torque, consequently gets off-balance. In this study, we discuss a way to control the pitching motion by flexing the body of the wing-body model like an actual butterfly. The body of the model is composed of two straight rigid rod connected by a rotary actuator. It is found that the pitching angle is suppressed in the range of +/-5° by using the proportional-plus-integral-plus-derivative (PID) control for the input torque of the rotary actuator.
Parallel Adaptive Computation of Blood Flow in a 3D ``Whole'' Body Model
NASA Astrophysics Data System (ADS)
Zhou, M.; Figueroa, C. A.; Taylor, C. A.; Sahni, O.; Jansen, K. E.
2008-11-01
Accurate numerical simulations of vascular trauma require the consideration of a larger portion of the vasculature than previously considered, due to the systemic nature of the human body's response. A patient-specific 3D model composed of 78 connected arterial branches extending from the neck to the lower legs is constructed to effectively represent the entire body. Recently developed outflow boundary conditions that appropriately represent the downstream vasculature bed which is not included in the 3D computational domain are applied at 78 outlets. In this work, the pulsatile blood flow simulations are started on a fairly uniform, unstructured mesh that is subsequently adapted using a solution-based approach to efficiently resolve the flow features. The adapted mesh contains non-uniform, anisotropic elements resulting in resolution that conforms with the physical length scales present in the problem. The effects of the mesh resolution on the flow field are studied, specifically on relevant quantities of pressure, velocity and wall shear stress.
SVD-GFD scheme to simulate complex moving body problems in 3D space
NASA Astrophysics Data System (ADS)
Wang, X. Y.; Yu, P.; Yeo, K. S.; Khoo, B. C.
2010-03-01
The present paper presents a hybrid meshfree-and-Cartesian grid method for simulating moving body incompressible viscous flow problems in 3D space. The method combines the merits of cost-efficient and accurate conventional finite difference approximations on Cartesian grids with the geometric freedom of generalized finite difference (GFD) approximations on meshfree grids. Error minimization in GFD is carried out by singular value decomposition (SVD). The Arbitrary Lagrangian-Eulerian (ALE) form of the Navier-Stokes equations on convecting nodes is integrated by a fractional-step projection method. The present hybrid grid method employs a relatively simple mode of nodal administration. Nevertheless, it has the geometrical flexibility of unstructured mesh-based finite-volume and finite element methods. Boundary conditions are precisely implemented on boundary nodes without interpolation. The present scheme is validated by a moving patch consistency test as well as against published results for 3D moving body problems. Finally, the method is applied on low-Reynolds number flapping wing applications, where large boundary motions are involved. The present study demonstrates the potential of the present hybrid meshfree-and-Cartesian grid scheme for solving complex moving body problems in 3D.
Perineal body anatomy in living women: 3-D analysis using thin-slice magnetic resonance imaging
Larson, Kindra A.; Yousuf, Aisha; Lewicky-Gaupp, Christina; Fenner, Dee E.; DeLancey, John O.L.
2012-01-01
Objective To describe a framework for visualizing the perineal body's complex anatomy using thin-slice MR imaging. Study Design Two mm-thick MR images were acquired in 11 women with normal pelvic support and no incontinence/prolapse symptoms. Anatomic structures were analyzed in axial, sagittal and coronal slices. 3-D models were generated from these images. Results Three distinct perineal body regions are visible on MRI: (1) a superficial region at the level of the vestibular bulb, (2) a mid region at the proximal end of the superficial transverse perineal muscle, and (3) a deep region at the level of the midurethra and puborectalis muscle. Structures are best visualized on axial scans while cranio-caudal relationships are appreciated on sagittal scans. The 3-D model further clarifies inter-relationships. Conclusion Advances in MR technology allow visualization of perineal body anatomy in living women and development of 3D models which enhance our understanding of its three different regions: superficial, mid and deep. PMID:21055513
NASA Astrophysics Data System (ADS)
Gilmanov, Anvar; Sotiropoulos, Fotis
2005-08-01
A numerical method is developed for solving the 3D, unsteady, incompressible Navier-Stokes equations in Cartesian domains containing immersed boundaries of arbitrary geometrical complexity moving with prescribed kinematics. The governing equations are discretized on a hybrid staggered/non-staggered grid layout using second-order accurate finite-difference formulas. The discrete equations are integrated in time via a second-order accurate dual-time-stepping, artificial compressibility iteration scheme. Unstructured, triangular meshes are employed to discretize complex immersed boundaries. The nodes of the surface mesh constitute a set of Lagrangian control points used to track the motion of the flexible body. At every instant in time, the influence of the body on the flow is accounted for by applying boundary conditions at Cartesian grid nodes located in the exterior but in the immediate vicinity of the body by reconstructing the solution along the local normal to the body surface. Grid convergence tests are carried out for the flow induced by an oscillating sphere in a cubic cavity, which show that the method is second-order accurate. The method is validated by applying it to calculate flow in a Cartesian domain containing a rigid sphere rotating at constant angular velocity as well as flow induced by a flapping wing. The ability of the method to simulate flows in domains with arbitrarily complex moving bodies is demonstrated by applying to simulate flow past an undulating fish-like body and flow past an anatomically realistic planktonic copepod performing an escape-like maneuver.
3D reconstruction of internal structure of animal body using near-infrared light
NASA Astrophysics Data System (ADS)
Tran, Trung Nghia; Yamamoto, Kohei; Namita, Takeshi; Kato, Yuji; Shimizu, Koichi
2014-03-01
To realize three-dimensional (3D) optical imaging of the internal structure of animal body, we have developed a new technique to reconstruct CT images from two-dimensional (2D) transillumination images. In transillumination imaging, the image is blurred due to the strong scattering in the tissue. We had developed a scattering suppression technique using the point spread function (PSF) for a fluorescent light source in the body. In this study, we have newly proposed a technique to apply this PSF for a light source to the image of unknown light-absorbing structure. The effectiveness of the proposed technique was examined in the experiments with a model phantom and a mouse. In the phantom experiment, the absorbers were placed in the tissue-equivalent medium to simulate the light-absorbing organs in mouse body. Near-infrared light was illuminated from one side of the phantom and the image was recorded with CMOS camera from another side. Using the proposed techniques, the scattering effect was efficiently suppressed and the absorbing structure can be visualized in the 2D transillumination image. Using the 2D images obtained in many different orientations, we could reconstruct the 3D image. In the mouse experiment, an anesthetized mouse was held in an acrylic cylindrical holder. We can visualize the internal organs such as kidneys through mouse's abdomen using the proposed technique. The 3D image of the kidneys and a part of the liver were reconstructed. Through these experimental studies, the feasibility of practical 3D imaging of the internal light-absorbing structure of a small animal was verified.
Dynamical analysis of an orbiting three-rigid-body system
Pagnozzi, Daniele E-mail: james.biggs@strath.ac.uk; Biggs, James D. E-mail: james.biggs@strath.ac.uk
2014-12-10
The development of multi-joint-spacecraft mission concepts calls for a deeper understanding of their nonlinear dynamics to inform and enhance system design. This paper presents a study of a three-finite-shape rigid-body system under the action of an ideal central gravitational field. The aim of this paper is to gain an insight into the natural dynamics of this system. The Hamiltonian dynamics is derived and used to identify relative attitude equilibria of the system with respect to the orbital reference frame. Then a numerical investigation of the behaviour far from the equilibria is provided using tools from modern dynamical systems theory such as energy methods, phase portraits and Poincarè maps. Results reveal a complex structure of the dynamics as well as the existence of connections between some of the equilibria. Stable equilibrium configurations appear to be surrounded by very narrow regions of regular and quasi-regular motions. Trajectories evolve on chaotic motions in the rest of the domain.
Rigid body dynamics approach to Stokesian dynamics simulations of nonspherical particles
NASA Astrophysics Data System (ADS)
Kutteh, Ramzi
2010-05-01
We describe an algorithm for performing Stokesian dynamics (SD) simulations of suspensions of arbitrary shape rigid particles with hydrodynamic interactions, modeled as rigid groups of spheres, the hydrodynamic mobility matrix of which is accurately computable by several established schemes for spheres. The algorithm is based on Stokesian rigid body equations of translational and rotational motion, which we have derived by an approach formally analogous to that of Newtonian rigid body dynamics. Particle orientation is represented in terms of Euler parameters (quaternion of rotation). This rigid body SD algorithm (RBSDA) complements recently described constraint SD algorithms [R. Kutteh, J. Chem. Phys. 119, 9280 (2003); R. Kutteh, Phys. Rev. E 69, 011406 (2004)], over which it offers the same computational advantages in imposing total rigidity that the basic rigid body molecular dynamics (MD) algorithm offers over constraint MD algorithms. We show that SD simulation results generated with the RBSDA, in bounded and unbounded geometries, agree very well with those from experiment and other SD and non-SD methods, and are numerically identical to those from a constraint SD algorithm, HSHAKE. Finally, for completeness we also describe a third (additional to the constraint SD and rigid body SD approaches) more traditional approach for SD simulations of arbitrary shape rigid particles modeled as rigid groups of spheres.
Rigid body dynamics approach to Stokesian dynamics simulations of nonspherical particles.
Kutteh, Ramzi
2010-05-01
We describe an algorithm for performing Stokesian dynamics (SD) simulations of suspensions of arbitrary shape rigid particles with hydrodynamic interactions, modeled as rigid groups of spheres, the hydrodynamic mobility matrix of which is accurately computable by several established schemes for spheres. The algorithm is based on Stokesian rigid body equations of translational and rotational motion, which we have derived by an approach formally analogous to that of Newtonian rigid body dynamics. Particle orientation is represented in terms of Euler parameters (quaternion of rotation). This rigid body SD algorithm (RBSDA) complements recently described constraint SD algorithms [R. Kutteh, J. Chem. Phys. 119, 9280 (2003); R. Kutteh, Phys. Rev. E 69, 011406 (2004)], over which it offers the same computational advantages in imposing total rigidity that the basic rigid body molecular dynamics (MD) algorithm offers over constraint MD algorithms. We show that SD simulation results generated with the RBSDA, in bounded and unbounded geometries, agree very well with those from experiment and other SD and non-SD methods, and are numerically identical to those from a constraint SD algorithm, HSHAKE. Finally, for completeness we also describe a third (additional to the constraint SD and rigid body SD approaches) more traditional approach for SD simulations of arbitrary shape rigid particles modeled as rigid groups of spheres. PMID:20459156
Equivalent Body Force Finite Elements Method and 3-D Earth Model Applied In 2004 Sumatra Earthquake
NASA Astrophysics Data System (ADS)
Qu, W.; Cheng, H.; Shi, Y.
2015-12-01
The 26 December 2004 Sumatra-Andaman earthquake with moment magnitude (Mw) of 9.1 to 9.3 is the first great earthquake recorded by digital broadband, high-dynamic-range seismometers and global positioning system (GPS) equipment, which recorded many high-quality geophysical data sets. The spherical curvature is not negligible in far field especially for large event and the real Earth is laterally inhomogeneity and the analytical results still are difficult to explain the geodetic measurements. We use equivalent body force finite elements method Zhang et al. (2015) and mesh the whole earth, to compute global co-seismic displacements using four fault slip models of the 2004 Sumatra earthquake provided by different authors. Comparisons of calculated co-seismic displacements and GPS show that the confidences are well in near field for four models, and the confidences are according to different models. In the whole four models, the Chlieh model (Chlieh et al., 2007) is the best as this slip model not only accord well with near field data but also far field data. And then we use the best slip model, Chlieh model to explore influence of three dimensional lateral earth structure on both layered spherically symmetric (PREM) and real 3-D heterogeneous earth model (Crust 1.0 model and GyPSuM). Results show that the effects of 3-D heterogeneous earth model are not negligible and decrease concomitantly with increasing distance from the epicenter. The relative effects of 3-D crust model are 23% and 40% for horizontal and vertical displacements, respectively. The effects of the 3-D mantle model are much smaller than that of 3-D crust model but with wider impacting area.
Wu Jian; Kim, Minho; Peters, Jorg; Chung, Heeteak; Samant, Sanjiv S.
2009-12-15
Purpose: Rigid 2D-3D registration is an alternative to 3D-3D registration for cases where largely bony anatomy can be used for patient positioning in external beam radiation therapy. In this article, the authors evaluated seven similarity measures for use in the intensity-based rigid 2D-3D registration using a variation in Skerl's similarity measure evaluation protocol. Methods: The seven similarity measures are partitioned intensity uniformity, normalized mutual information (NMI), normalized cross correlation (NCC), entropy of the difference image, pattern intensity (PI), gradient correlation (GC), and gradient difference (GD). In contrast to traditional evaluation methods that rely on visual inspection or registration outcomes, the similarity measure evaluation protocol probes the transform parameter space and computes a number of similarity measure properties, which is objective and optimization method independent. The variation in protocol offers an improved property in the quantification of the capture range. The authors used this protocol to investigate the effects of the downsampling ratio, the region of interest, and the method of the digitally reconstructed radiograph (DRR) calculation [i.e., the incremental ray-tracing method implemented on a central processing unit (CPU) or the 3D texture rendering method implemented on a graphics processing unit (GPU)] on the performance of the similarity measures. The studies were carried out using both the kilovoltage (kV) and the megavoltage (MV) images of an anthropomorphic cranial phantom and the MV images of a head-and-neck cancer patient. Results: Both the phantom and the patient studies showed the 2D-3D registration using the GPU-based DRR calculation yielded better robustness, while providing similar accuracy compared to the CPU-based calculation. The phantom study using kV imaging suggested that NCC has the best accuracy and robustness, but its slow function value change near the global maximum requires a
Web-based Three-dimensional Virtual Body Structures: W3D-VBS
Temkin, Bharti; Acosta, Eric; Hatfield, Paul; Onal, Erhan; Tong, Alex
2002-01-01
Major efforts are being made to improve the teaching of human anatomy to foster cognition of visuospatial relationships. The Visible Human Project of the National Library of Medicine makes it possible to create virtual reality-based applications for teaching anatomy. Integration of traditional cadaver and illustration-based methods with Internet-based simulations brings us closer to this goal. Web-based three-dimensional Virtual Body Structures (W3D-VBS) is a next-generation immersive anatomical training system for teaching human anatomy over the Internet. It uses Visible Human data to dynamically explore, select, extract, visualize, manipulate, and stereoscopically palpate realistic virtual body structures with a haptic device. Tracking user’s progress through evaluation tools helps customize lesson plans. A self-guided “virtual tour” of the whole body allows investigation of labeled virtual dissections repetitively, at any time and place a user requires it. PMID:12223495
Web-based three-dimensional Virtual Body Structures: W3D-VBS.
Temkin, Bharti; Acosta, Eric; Hatfield, Paul; Onal, Erhan; Tong, Alex
2002-01-01
Major efforts are being made to improve the teaching of human anatomy to foster cognition of visuospatial relationships. The Visible Human Project of the National Library of Medicine makes it possible to create virtual reality-based applications for teaching anatomy. Integration of traditional cadaver and illustration-based methods with Internet-based simulations brings us closer to this goal. Web-based three-dimensional Virtual Body Structures (W3D-VBS) is a next-generation immersive anatomical training system for teaching human anatomy over the Internet. It uses Visible Human data to dynamically explore, select, extract, visualize, manipulate, and stereoscopically palpate realistic virtual body structures with a haptic device. Tracking user's progress through evaluation tools helps customize lesson plans. A self-guided "virtual tour" of the whole body allows investigation of labeled virtual dissections repetitively, at any time and place a user requires it. PMID:12223495
NASA Astrophysics Data System (ADS)
Eisa, Fabian; Museyko, Oleg; Hess, Andreas; Kalender, Willi A.; Engelke, Klaus
2010-03-01
In this study we compared two approaches that have recently been used to minimize precision errors in 3D quantitative computed tomography (QCT) images of the hip and the spine in order to optimize the detection of longitudinal changes in bone mineral density (BMD). In 30 subjects we obtained baseline and 1 year follow-up 3D CT scans of the proximal femur and the spine. QCT analysis was applied to a variety of volumes of interest (VOIs) automatically positioned relative to anatomic coordinate systems (ACS). In the first approach (A1) baseline and follow-up scans were analyzed independently. In the second approach (A2) a 3D versor-based rigid intensity registration method was applied to match baseline and follow-up images, and the baseline ACS was mapped on the follow-up image using the registration transformation. Afterwards, the analysis VOIs were again independently calculated for baseline and follow-up images. There were no significant differences of percent BMD changes between baseline and follow-up images between A1 and A2 for any of the VOIs investigated. With advanced image processing methods a time-consuming 3D registration between baseline and follow-up images before the analysis does not improve analysis precision compared to the use of anatomical coordinate systems.
Fluid force and static symmetry breaking modes of 3D bluff bodies.
NASA Astrophysics Data System (ADS)
Cadot, Olivier; Evrard, Antoine; DFA Team
2015-11-01
A cavity at the base of the squareback Ahmed model at Re =6.106 is able to reduce the base suction by 18% and the drag coefficient by 9%, while the flow at the separation remains unaffected. Instantaneous pressure measurements at the body base, fluid force measurements and wake velocity measurements are investigated varying the cavity depth from 0 to 35% of the base height. Due to the reflectional symmetry of the rectangular base, there are two Reflectional Symmetry Breaking (RSB) mirror modes present in the natural wake that switch from one to the other randomly in accordance with the recent findings of Grandemange et al. (2013). It is shown that these modes exhibit an energetic 3D static vortex system close to the base of the body. A sufficiently deep cavity is able to stabilize the wake toward a symmetry preserved wake, thus suppressing the RSB modes and leading to a weaker elliptical toric recirculation. The stabilization can be modeled with a Langevin equation. The plausible mechanism for drag reduction with the base cavity is based on the interaction of the static 3D vortex system of the RSB modes with the base and their suppression by stabilization. There are some strong evidences that this mechanism may be generalized to axisymmetric bodies with base cavity.
Creation of 3D multi-body orthodontic models by using independent imaging sensors.
Barone, Sandro; Paoli, Alessandro; Razionale, Armando Viviano
2013-01-01
In the field of dental health care, plaster models combined with 2D radiographs are widely used in clinical practice for orthodontic diagnoses. However, complex malocclusions can be better analyzed by exploiting 3D digital dental models, which allow virtual simulations and treatment planning processes. In this paper, dental data captured by independent imaging sensors are fused to create multi-body orthodontic models composed of teeth, oral soft tissues and alveolar bone structures. The methodology is based on integrating Cone-Beam Computed Tomography (CBCT) and surface structured light scanning. The optical scanner is used to reconstruct tooth crowns and soft tissues (visible surfaces) through the digitalization of both patients' mouth impressions and plaster casts. These data are also used to guide the segmentation of internal dental tissues by processing CBCT data sets. The 3D individual dental tissues obtained by the optical scanner and the CBCT sensor are fused within multi-body orthodontic models without human supervisions to identify target anatomical structures. The final multi-body models represent valuable virtual platforms to clinical diagnostic and treatment planning. PMID:23385416
Digimouse: a 3D whole body mouse atlas from CT and cryosection data
Dogdas, Belma; Stout, David; Chatziioannou, Arion F; Leahy, Richard M
2010-01-01
We have constructed a three-dimensional (3D) whole body mouse atlas from coregistered x-ray CT and cryosection data of a normal nude male mouse. High quality PET, x-ray CT and cryosection images were acquired post mortem from a single mouse placed in a stereotactic frame with fiducial markers visible in all three modalities. The image data were coregistered to a common coordinate system using the fiducials and resampled to an isotropic 0.1 mm voxel size. Using interactive editing tools we segmented and labelled whole brain, cerebrum, cerebellum, olfactory bulbs, striatum, medulla, masseter muscles, eyes, lachrymal glands, heart, lungs, liver, stomach, spleen, pancreas, adrenal glands, kidneys, testes, bladder, skeleton and skin surface. The final atlas consists of the 3D volume, in which the voxels are labelled to define the anatomical structures listed above, with coregistered PET, x-ray CT and cryosection images. To illustrate use of the atlas we include simulations of 3D bioluminescence and PET image reconstruction. Optical scatter and absorption values are assigned to each organ to simulate realistic photon transport within the animal for bioluminescence imaging. Similarly, 511 keV photon attenuation values are assigned to each structure in the atlas to simulate realistic photon attenuation in PET. The Digimouse atlas and data are available at http://neuroimage.usc.edu/Digimouse.html. PMID:17228106
Digimouse: a 3D whole body mouse atlas from CT and cryosection data
NASA Astrophysics Data System (ADS)
Dogdas, Belma; Stout, David; Chatziioannou, Arion F.; Leahy, Richard M.
2007-02-01
We have constructed a three-dimensional (3D) whole body mouse atlas from coregistered x-ray CT and cryosection data of a normal nude male mouse. High quality PET, x-ray CT and cryosection images were acquired post mortem from a single mouse placed in a stereotactic frame with fiducial markers visible in all three modalities. The image data were coregistered to a common coordinate system using the fiducials and resampled to an isotropic 0.1 mm voxel size. Using interactive editing tools we segmented and labelled whole brain, cerebrum, cerebellum, olfactory bulbs, striatum, medulla, masseter muscles, eyes, lachrymal glands, heart, lungs, liver, stomach, spleen, pancreas, adrenal glands, kidneys, testes, bladder, skeleton and skin surface. The final atlas consists of the 3D volume, in which the voxels are labelled to define the anatomical structures listed above, with coregistered PET, x-ray CT and cryosection images. To illustrate use of the atlas we include simulations of 3D bioluminescence and PET image reconstruction. Optical scatter and absorption values are assigned to each organ to simulate realistic photon transport within the animal for bioluminescence imaging. Similarly, 511 keV photon attenuation values are assigned to each structure in the atlas to simulate realistic photon attenuation in PET. The Digimouse atlas and data are available at http://neuroimage.usc.edu/Digimouse.html.
4D VMAT, gated VMAT, and 3D VMAT for stereotactic body radiation therapy in lung
NASA Astrophysics Data System (ADS)
Chin, E.; Loewen, S. K.; Nichol, A.; Otto, K.
2013-02-01
Four-dimensional volumetric modulated arc therapy (4D VMAT) is a treatment strategy for lung cancers that aims to exploit relative target and tissue motion to improve organ at risk (OAR) sparing. The algorithm incorporates the entire patient respiratory cycle using 4D CT data into the optimization process. Resulting treatment plans synchronize the delivery of each beam aperture to a specific phase of target motion. Stereotactic body radiation therapy treatment plans for 4D VMAT, gated VMAT, and 3D VMAT were generated on three patients with non-small cell lung cancer. Tumour motion ranged from 1.4-3.4 cm. The dose and fractionation scheme was 48 Gy in four fractions. A B-spline transformation model registered the 4D CT images. 4D dose volume histograms (4D DVH) were calculated from total dose accumulated at the maximum exhalation. For the majority of OARs, gated VMAT achieved the most radiation sparing but treatment times were 77-148% longer than 3D VMAT. 4D VMAT plan qualities were comparable to gated VMAT, but treatment times were only 11-25% longer than 3D VMAT. 4D VMAT's improvement of healthy tissue sparing can allow for further dose escalation. Future study could potentially adapt 4D VMAT to irregular patient breathing patterns.
Ozakgul, Kadir
2008-07-08
In this study, it has been presented an algorithm for second-order elastoplastic dynamic time-history analysis of three dimensional frames that have steel members with semirigid joints. The proposed analysis accounts for material, geometric and connection nonlinearities. Material nonlinearity have been modeled by the Ramberg-Osgood relation. While the geometric nonlinearity caused by axial force has been described by the use of the geometric stiffness matrix, the nonlinearity caused by the interaction between the axial force and bending moment has been also described by the use of the stability functions. The independent hardening model has been used to describe the nonlinear behaviour of semi-rigid connections. Dynamic equation of motion has been solved by Newmark's constant acceleration method in time history domain.
An incompressible smoothed particle hydrodynamics method for the motion of rigid bodies in fluids
NASA Astrophysics Data System (ADS)
Tofighi, N.; Ozbulut, M.; Rahmat, A.; Feng, J. J.; Yildiz, M.
2015-09-01
A two-dimensional incompressible smoothed particle hydrodynamics scheme is presented for simulation of rigid bodies moving through Newtonian fluids. The scheme relies on combined usage of the rigidity constraints and the viscous penalty method to simulate rigid body motion. Different viscosity ratios and interpolation schemes are tested by simulating a rigid disc descending in quiescent medium. A viscosity ratio of 100 coupled with weighted harmonic averaging scheme has been found to provide satisfactory results. The performance of the resulting scheme is systematically tested for cases with linear motion, rotational motion and their combination. The test cases include sedimentation of a single and a pair of circular discs, sedimentation of an elliptic disc and migration and rotation of a circular disc in linear shear flow. Comparison with previous results at various Reynolds numbers indicates that the proposed method captures the motion of rigid bodies driven by flow or external body forces accurately.
Rapid and automatic 3D body measurement system based on a GPU-Steger line detector.
Liu, Xingjian; Zhao, Hengshuang; Zhan, Guomin; Zhong, Kai; Li, Zhongwei; Chao, Yuhjin; Shi, Yusheng
2016-07-20
This paper proposes a rapid and automatic measurement system to acquire a 3D shape of a human body. A flexible calibration method was developed to decrease the complexity in system calibration. To reduce the computation cost, a GPU-Steger line detector was proposed to more rapidly detect the center of the laser pattern and at subpixel level. The processing time of line detection is significantly shortened by the GPU-Steger line detector, which can be over 110 times faster than that by CPU. The key technologies are introduced, and the experimental results are presented in this paper to illustrate the performance of the proposed system. The system can be used to measure human body surfaces with nonuniform reflectance such as hair, skin, and clothes with rich texture. PMID:27463902
Povšič, K; Jezeršek, M; Možina, J
2015-07-01
Real-time 3D visualization of the breathing displacements can be a useful diagnostic tool in order to immediately observe the most active regions on the thoraco-abdominal surface. The developed method is capable of separating non-relevant torso movement and deformations from the deformations that are solely related to breathing. This makes it possible to visualize only the breathing displacements. The system is based on the structured laser triangulation principle, with simultaneous spatial and color data acquisition of the thoraco-abdominal region. Based on the tracking of the attached passive markers, the torso movement and deformation is compensated using rigid and non-rigid transformation models on the three-dimensional (3D) data. The total time of 3D data processing together with visualization equals 20 ms per cycle.In vitro verification of the rigid movement extraction was performed using the iterative closest point algorithm as a reference. Furthermore, a volumetric evaluation on a live subject was performed to establish the accuracy of the rigid and non-rigid model. The root mean square deviation between the measured and the reference volumes shows an error of ±0.08 dm(3) for rigid movement extraction. Similarly, the error was calculated to be ±0.02 dm(3) for torsional deformation extraction and ±0.11 dm(3) for lateral bending deformation extraction. The results confirm that during the torso movement and deformation, the proposed method is sufficiently accurate to visualize only the displacements related to breathing. The method can be used, for example, during the breathing exercise on an indoor bicycle or a treadmill. PMID:26020444
Spoerk, Jakob; Gendrin, Christelle; Weber, Christoph; Figl, Michael; Pawiro, Supriyanto Ardjo; Furtado, Hugo; Fabri, Daniella; Bloch, Christoph; Bergmann, Helmar; Gröller, Eduard; Birkfellner, Wolfgang
2012-01-01
A common problem in image-guided radiation therapy (IGRT) of lung cancer as well as other malignant diseases is the compensation of periodic and aperiodic motion during dose delivery. Modern systems for image-guided radiation oncology allow for the acquisition of cone-beam computed tomography data in the treatment room as well as the acquisition of planar radiographs during the treatment. A mid-term research goal is the compensation of tumor target volume motion by 2D/3D registration. In 2D/3D registration, spatial information on organ location is derived by an iterative comparison of perspective volume renderings, so-called digitally rendered radiographs (DRR) from computed tomography volume data, and planar reference x-rays. Currently, this rendering process is very time consuming, and real-time registration, which should at least provide data on organ position in less than a second, has not come into existence. We present two GPU-based rendering algorithms which generate a DRR of 512 × 512 pixels size from a CT dataset of 53 MB size at a pace of almost 100 Hz. This rendering rate is feasible by applying a number of algorithmic simplifications which range from alternative volume-driven rendering approaches – namely so-called wobbled splatting – to sub-sampling of the DRR-image by means of specialized raycasting techniques. Furthermore, general purpose graphics processing unit (GPGPU) programming paradigms were consequently utilized. Rendering quality and performance as well as the influence on the quality and performance of the overall registration process were measured and analyzed in detail. The results show that both methods are competitive and pave the way for fast motion compensation by rigid and possibly even non-rigid 2D/3D registration and, beyond that, adaptive filtering of motion models in IGRT. PMID:21782399
Error analysis of rigid body posture measurement system based on circular feature points
NASA Astrophysics Data System (ADS)
Huo, Ju; Cui, Jishan; Yang, Ning
2015-02-01
For monocular vision pose parameters determine the problem, feature-based target feature points on the plane quadrilateral, an improved two-stage iterative algorithm is proposed to improve the optimization of rigid body posture measurement calculating model. Monocular vision rigid body posture measurement system is designed; experimentally in each coordinate system determined coordinate a unified method to unify the each feature point measure coordinates; theoretical analysis sources of error from rigid body posture measurement system simulation experiments. Combined with the actual experimental analysis system under the condition of simulation error of pose accuracy of measurement, gives the comprehensive error of measurement system, for improving measurement precision of certain theoretical guiding significance.
A general purpose nonlinear rigid body mass finite element for application to rotary wing dynamics
NASA Technical Reports Server (NTRS)
Hamilton, B. K.; Straub, F. K.; Ruzicka, G. C.
1991-01-01
The Second Generation Comprehensive Helicopter Analysis System employs the present formulation of the general-purpose nonlinear rigid body mass finite element, which represents the hub masses, blade tip masses, and pendulum vibration absorbers. The rigid body mass element has six degrees of freedom, and accounts for gravitational as well as dynamic effects. A consequence of deriving the element's equations from various physical principles is that, prior to the transformation which couples the rigid body mass element to the rotor blade finite element, the forces obtained for each element are fundamentally different; this is true notwithstanding the degrees-of-freedom of each element are parameterized using the same coordinates.
Upper body balance control strategy during continuous 3D postural perturbation in young adults.
Amori, V; Petrarca, M; Patané, F; Castelli, E; Cappa, P
2015-01-01
We explored how changes in vision and perturbation frequency impacted upright postural control in healthy adults exposed to continuous multiaxial support-surface perturbation. Ten subjects were asked to maintain equilibrium in standing stance with eyes open (EO) and eyes closed (EC) during sinusoidal 3D rotations at 0.25 (L) and 0.50 Hz (H). We measured upper-body kinematics--head, trunk, and pelvis--and analyzed differences in horizontal displacements and roll, pitch, and yaw sways. The presence of vision significantly decreased upper-body displacements in the horizontal plane, especially at the head level, while in EC the head was the most unstable segment. H trials produced a greater segment stabilization compared to L ones in EO and EC. Analysis of sways showed that in EO participants stabilized their posture by reducing the variability of trunk angles; in H trials a sway decrease for the examined segments was observed in the yaw plane and, for the pelvis only, in the pitch plane. Our results suggest that, during continuous multiaxial perturbations, visual information induced: (i) in L condition, a continuous reconfiguration of multi-body-segments orientation to follow the perturbation; (ii) in H condition, a compensation for the ongoing perturbation. These findings were not confirmed in EC where the same strategy--that is, the use of the pelvis as a reference frame for the body balance was adopted both in L and H. PMID:25205381
NASA Astrophysics Data System (ADS)
Cramer, Gwendolyn; El-Hamidi, Hamid; Jafari, Seyedehrojin; Jones, Dustin P.; Celli, Jonathan P.
2016-03-01
The composition and mechanical compliance of the extracellular matrix (ECM) have been shown to serve as regulators of tumor growth and invasive behavior. These effects may be particularly relevant in tumors of the pancreas, noted for a profound desmoplastic reaction and an abundance of stroma rich in ECM. In view of recent progress in the clinical implementation of photodynamic therapy (PDT) for pancreatic tumors, in this report we examine how ECM composition and rheological properties impact upon invasive behavior and response to PDT in 3D multicellular pancreatic tumor spheroids in ECM environments with characterized rheological properties. Tumor spheroids were cultured initially in attachment-free conditions to form millimeter-sized spheroids that were transplanted into reconstituted ECM microenvironments (Matrigel and Type I Collagen) that were characterized using bulk oscillatory shear rheology. Analysis of growth behavior shows that the soft collagen ECM promoted growth and extensive invasion and this microenvironment was used in subsequent assessment of PDT and chemotherapy response. Evaluation of treatment response revealed that primary tumor nodule growth is inhibited more effectively with PDT, while verteporfin PDT response is significantly enhanced in the ECM-infiltrating populations that are non-responsive to oxaliplatin chemotherapy. This finding is potentially significant, suggesting the potential for PDT to target these clinically problematic invasive populations that are associated with aggressive metastatic progression and chemoresistance. Experiments to further validate and identify the mechanistic basis of this observation are ongoing.
Drag and lift reduction of a 3D bluff-body using active vortex generators
NASA Astrophysics Data System (ADS)
Aider, Jean-Luc; Beaudoin, Jean-François; Wesfreid, José Eduardo
2010-05-01
In this study, a passive flow control experiment on a 3D bluff-body using vortex generators (VGs) is presented. The bluff-body is a modified Ahmed body (Ahmed in J Fluids Eng 105:429-434 1983) with a curved rear part, instead of a slanted one, so that the location of the flow separation is no longer forced by the geometry. The influence of a line of non-conventional trapezoïdal VGs on the aerodynamic forces (drag and lift) induced on the bluff-body is investigated. The high sensitivity to many geometric (angle between the trapezoïdal element and the wall, spanwise spacing between the VGs, longitudinal location on the curved surface) and physical (freestream velocity) parameters is clearly demonstrated. The maximum drag reduction is -12%, while the maximum global lift reduction can reach more than -60%, with a strong dependency on the freestream velocity. For some configurations, the lift on the rear axle of the model can be inverted (-104%). It is also shown that the VGs are still efficient even downstream of the natural separation line. Finally, a dynamic parameter is chosen and a new set-up with motorized vortex generators is proposed. Thanks to this active device. The optimal configurations depending on two parameters are found more easily, and a significant drag and lift reduction (up to -14% drag reduction) can be reached for different freestream velocities. These results are then analyzed through wall pressure and velocity measurements in the near-wake of the bluff-body with and without control. It appears that the largest drag and lift reduction is clearly associated to a strong increase of the size of the recirculation bubble over the rear slant. Investigation of the velocity field in a cross-section downstream the model reveals that, in the same time, the intensity of the longitudinal trailing vortices is strongly reduced, suggesting that the drag reduction is due to the breakdown of the balance between the separation bubble and the longitudinal vortices
A fast rigid-registration method of inferior limb X-ray image and 3D CT images for TKA surgery
NASA Astrophysics Data System (ADS)
Ito, Fumihito; O. D. A, Prima; Uwano, Ikuko; Ito, Kenzo
2010-03-01
In this paper, we propose a fast rigid-registration method of inferior limb X-ray films (two-dimensional Computed Radiography (CR) images) and three-dimensional Computed Tomography (CT) images for Total Knee Arthroplasty (TKA) surgery planning. The position of the each bone, such as femur and tibia (shin bone), in X-ray film and 3D CT images is slightly different, and we must pay attention how to use the two different images, since X-ray film image is captured in the standing position, and 3D CT is captured in decubitus (face up) position, respectively. Though the conventional registration mainly uses cross-correlation function between two images,and utilizes optimization techniques, it takes enormous calculation time and it is difficult to use it in interactive operations. In order to solve these problems, we calculate the center line (bone axis) of femur and tibia (shin bone) automatically, and we use them as initial positions for the registration. We evaluate our registration method by using three patient's image data, and we compare our proposed method and a conventional registration, which uses down-hill simplex algorithm. The down-hill simplex method is an optimization algorithm that requires only function evaluations, and doesn't need the calculation of derivatives. Our registration method is more effective than the downhill simplex method in computational time and the stable convergence. We have developed the implant simulation system on a personal computer, in order to support the surgeon in a preoperative planning of TKA. Our registration method is implemented in the simulation system, and user can manipulate 2D/3D translucent templates of implant components on X-ray film and 3D CT images.
3D Measurement of Forearm and Upper Arm during Throwing Motion using Body Mounted Sensor
NASA Astrophysics Data System (ADS)
Koda, Hideharu; Sagawa, Koichi; Kuroshima, Kouta; Tsukamoto, Toshiaki; Urita, Kazutaka; Ishibashi, Yasuyuki
The aim of this study is to propose the measurement method of three-dimensional (3D) movement of forearm and upper arm during pitching motion of baseball using inertial sensors without serious consideration of sensor installation. Although high accuracy measurement of sports motion is achieved by using optical motion capture system at present, it has some disadvantages such as the calibration of cameras and limitation of measurement place. Whereas the proposed method for 3D measurement of pitching motion using body mounted sensors provides trajectory and orientation of upper arm by the integration of acceleration and angular velocity measured on upper limb. The trajectory of forearm is derived so that the elbow joint axis of forearm corresponds to that of upper arm. Spatial relation between upper limb and sensor system is obtained by performing predetermined movements of upper limb and utilizing angular velocity and gravitational acceleration. The integration error is modified so that the estimated final position, velocity and posture of upper limb agree with the actual ones. The experimental results of the measurement of pitching motion show that trajectories of shoulder, elbow and wrist estimated by the proposed method are highly correlated to those from the motion capture system within the estimation error of about 10 [%].
NASA Astrophysics Data System (ADS)
Gunga, Hanns-Christian; Suthau, Tim; Bellmann, Anke; Friedrich, Andreas; Schwanebeck, Thomas; Stoinski, Stefan; Trippel, Tobias; Kirsch, Karl; Hellwich, Olaf
2007-08-01
Both body mass and surface area are factors determining the essence of any living organism. This should also hold true for an extinct organism such as a dinosaur. The present report discusses the use of a new 3D laser scanner method to establish body masses and surface areas of an Asian elephant (Zoological Museum of Copenhagen, Denmark) and of Plateosaurus engelhardti, a prosauropod from the Upper Triassic, exhibited at the Paleontological Museum in Tübingen (Germany). This method was used to study the effect that slight changes in body shape had on body mass for P. engelhardti. It was established that body volumes varied between 0.79 m3 (slim version) and 1.14 m3 (robust version), resulting in a presumable body mass of 630 and 912 kg, respectively. The total body surface areas ranged between 8.8 and 10.2 m2, of which, in both reconstructions of P. engelhardti, ˜33% account for the thorax area alone. The main difference between the two models is in the tail and hind limb reconstruction. The tail of the slim version has a surface area of 1.98 m2, whereas that of the robust version has a surface area of 2.73 m2. The body volumes calculated for the slim version were as follows: head 0.006 m3, neck 0.016 m3, fore limbs 0.020 m3, hind limbs 0.08 m3, thoracic cavity 0.533 m3, and tail 0.136 m3. For the robust model, the following volumes were established: 0.01 m3 head, neck 0.026 m3, fore limbs 0.025 m3, hind limbs 0.18 m3, thoracic cavity 0.616 m3, and finally, tail 0.28 m3. Based on these body volumes, scaling equations were used to assess the size that the organs of this extinct dinosaur have.
Optoacoustic 3D whole-body tomography: experiments in nude mice
NASA Astrophysics Data System (ADS)
Brecht, Hans-Peter; Su, Richard; Fronheiser, Matt; Ermilov, Sergey A.; Conjusteau, André; Liopo, Anton; Motamedi, Massoud; Oraevsky, Alexander A.
2009-02-01
We developed a 3D whole-body optoacoustic tomography system for applications in preclinical research on mice. The system is capable of generating images with resolution better than 0.6 mm. Two pulsed lasers, an Alexandrite laser operating at 755 nm and a Nd:YAG laser operating at 532 nm and 1064nm were used for light delivery. The tomographic images were obtained while the objects of study (phantoms or mice) were rotated within a sphere outlined by a concave arc-shaped array of 64 piezo-composite transducers. During the scan, the mouse was illuminated orthogonally to the array with two wide beams of light from a bifurcated fiber bundle. Illumination at 532 nm showed superficial vasculature, but limited penetration depth at this wavelength prevented the detection of deeper structures. Illumination at 755 and 1064 nm showed organs and blood vessels, respectively. Filtering of the optoacoustic signals using high frequency enhancing wavelets further emphasized the smaller blood vessels.
BLUI: a body language user interface for 3D gestural drawing
NASA Astrophysics Data System (ADS)
Brody, Arthur W.; Hartman, Chris
1999-05-01
We are developing a system to implement gestural drawing in an immersive 3D environment. We present a virtual artist who draws expressive forms in virtual space. In the art world, the term 'gestural' commonly refers to mark making that drives from the richness of movement of the artist. This focus on the character of motion is much like a similar focus on follow-through in athletic activity. Accordingly, we base the appearance of the rendered image on the body language of the artists, hence the acronym BLUI. BLUI is developed on the ImmersaDESK, an immersive virtual reality environment where the artists wears head-tracking goggles and uses a wand. Information form video, wand, and head tracker is used to generate a virtual artist, whose brush tracks with the wand.
A protocol for evaluating the accuracy of 3D body scanners.
Kouchi, Makiko; Mochimaru, Masaaki; Bradtmiller, Bruce; Daanen, Hein; Li, Peng; Nacher, Beatriz; Nam, Yunja
2012-01-01
Scan-derived landmarks locations and surface shapes are more and more used, but there is no commonly accepted protocol for evaluating the accuracy of these measurements. Therefore we propose a protocol for evaluating the accuracy of surface shape and the repeatability of scan-derived landmark locations. According to existing Japanese and German domestic standards, we propose to use an artefact (e.g. sphere with diameter of about 120 mm) calibrated very accurately for evaluating the accuracy of scanner-systems. For evaluating the repeatability of landmark locations, we propose to use an anthropomorphic dummy with landmark locations premarked. These test objects are measured by a 3D body scanner to be evaluated. Evaluation parameters such as trueness, precision, and repeatability are calculated from the measured data. A round-robin test was conducted in six different institutes using 17 body/head/foot scanners produced by eight companies. The purposes of the roundrobin test were to evaluate the availability of test objects to different body scanners, and to examine the measurement locations of test objects and quality parameters to be reported. As a result, the proposed test objects could be measured and the data exported by all scanner systems except one, which could not export the ball measurement. For a comparative purpose, a figure of measured surface might be useful. PMID:22317336
State-variable models of structures having rigid-body modes
NASA Technical Reports Server (NTRS)
Craig, Roy R., Jr.; Su, Tsu-Jeng; Ni, Zhenhua
1990-01-01
In cases where the equations of motion of a structure having rigid-body freedom are cast in state-variable form, generalized state rigid-body modes may be needed. It is possible to find a linearly-independent set of generalized vectors which transform an n x n matrix into the almost-diagonal Jordan form. Attention is presently given to equations governing these generalized eigenvectors, together with illustrative examples of the damped and undamped structure cases.
NASA Astrophysics Data System (ADS)
Monnier, F.; Vallet, B.; Paparoditis, N.; Papelard, J.-P.; David, N.
2013-10-01
This article presents a generic and efficient method to register terrestrial mobile data with imperfect location on a geographic database with better overall accuracy but less details. The registration method proposed in this paper is based on a semi-rigid point to plane ICP ("Iterative Closest Point"). The main applications of such registration is to improve existing geographic databases, particularly in terms of accuracy, level of detail and diversity of represented objects. Other applications include fine geometric modelling and fine façade texturing, object extraction such as trees, poles, road signs marks, facilities, vehicles, etc. The geopositionning system of mobile mapping systems is affected by GPS masks that are only partially corrected by an Inertial Navigation System (INS) which can cause an important drift. As this drift varies non-linearly, but slowly in time, it will be modelled by a translation defined as a piecewise linear function of time which variation over time will be minimized (rigidity term). For each iteration of the ICP, the drift is estimated in order to minimise the distance between laser points and planar model primitives (data attachment term). The method has been tested on real data (a scan of the city of Paris of 3.6 million laser points registered on a 3D model of approximately 71,400 triangles).
Verhey, Janko F; Wisser, Josef; Warfield, Simon K; Rexilius, Jan; Kikinis, Ron
2005-01-01
Background The visual combination of different modalities is essential for many medical imaging applications in the field of Computer-Assisted medical Diagnosis (CAD) to enhance the clinical information content. Clinically, incontinence is a diagnosis with high clinical prevalence and morbidity rate. The search for a method to identify risk patients and to control the success of operations is still a challenging task. The conjunction of magnetic resonance (MR) and 3D ultrasound (US) image data sets could lead to a new clinical visual representation of the morphology as we show with corresponding data sets of the female anal canal with this paper. Methods We present a feasibility study for a non-rigid registration technique based on a biomechanical model for MR and US image data sets of the female anal canal as a base for a new innovative clinical visual representation. Results It is shown in this case study that the internal and external sphincter region could be registered elastically and the registration partially corrects the compression induced by the ultrasound transducer, so the MR data set showing the native anatomy is used as a frame for the US data set showing the same region with higher resolution but distorted by the transducer Conclusion The morphology is of special interest in the assessment of anal incontinence and the non-rigid registration of normal clinical MR and US image data sets is a new field of the adaptation of this method incorporating the advantages of both technologies. PMID:15777475
Joint inversion of 3D crustal structure with ambient noise and earthquake body wave travel time
NASA Astrophysics Data System (ADS)
Li, Z.; Ni, S.; Chong, J.; Wang, X.
2012-12-01
Surface wave tomography based on the noise correlation function of seismic ambient noise has been widely used in studies of crustal and mantle structure . However, the periods of surface wave dispersions in the ambient noise tomography are typically less than 40 s, which limits its resolution on the lower crust. Travel times of earthquake body waves, such as Sg and SmS, could provide additional constraints to the crustal structure, especially to the lower crust due to the ray paths of SmS traveling through the lower crust twice. Here, we proposed a joint inversion method for 3D crustal structure with ambient noise and earthquake body wave travel time data, with the goal of providing better constraints and resolutions on the whole crust. We constructed the linear equations for joint inversion of crustal S velocity structure with the surface wave dispersion and body wave travel time data, and solved the equations with LSQR algorithm. Different weighting and damping factors, together with smoothing constraints, are adopted for surface wave dispersion and body wave travel time data to fit both dataset simultaneously. Synthetics experiments showed that the joint inversion could resolve the crust structure better than sole tomography of ambient noise or body wave travel time. We conducted the joint inversion around the Yangtze block in the eastern China. Rayleigh wave dispersions are extracted from the seismic ambient noise tomography by Zheng et al (2011) in this area. The body waves (e.g., Sg, SmS, Sn) are coherent to be identified and their travel times are measured with accuracy from high quality waveforms of some recent local earthquakes in this area. In order to minimize the travel time uncertainties, the focal depth and epicenter of these local earthquakes were resolved by depth phases and temporary aftershock observations. The result from joint inversion suggests that the crustal velocity structure, especially the lower crust, was well improved, which not only
Measurements of the solid-body rotation of anisotropic particles in 3D turbulence
NASA Astrophysics Data System (ADS)
Marcus, Guy G.; Parsa, Shima; Kramel, Stefan; Ni, Rui; Voth, Greg A.
2014-10-01
We introduce a new method to measure Lagrangian vorticity and the rotational dynamics of anisotropic particles in a turbulent fluid flow. We use 3D printing technology to fabricate crosses (two perpendicular rods) and jacks (three mutually perpendicular rods). Time-resolved measurements of their orientation and solid-body rotation rate are obtained from four video images of their motion in a turbulent flow between oscillating grids with {{R}λ } = 91. The advected particles have a largest dimension of 6 times the Kolmogorov length, making them a good approximation to anisotropic tracer particles. Crosses rotate like disks and jacks rotate like spheres, so these measurements, combined with previous measurements of tracer rods, allow experimental study of axisymmetric ellipsoids across the full range of aspect ratios. The measured mean square tumbling rate, < {{\\dot{p}}i}{{\\dot{p}}i}> , confirms previous direct numerical simulations that indicate that disks tumble much more rapidly than rods. Measurements of the alignment of a unit vector defining the orientation of crosses with the direction of their solid-body rotation rate vector provide the first direct observation of the alignment of anisotropic particles by the velocity gradients in a turbulent flow.
NASA Astrophysics Data System (ADS)
Reaungamornrat, S.; Wang, A. S.; Uneri, A.; Otake, Y.; Zhao, Z.; Khanna, A. J.; Siewerdsen, J. H.
2014-03-01
Purpose: Deformable registration of preoperative and intraoperative images facilitates accurate localization of target and critical anatomy in image-guided spine surgery. However, conventional deformable registration fails to preserve the morphology of rigid bone anatomy and can impart distortions that confound high-precision intervention. We propose a constrained registration method that preserves rigid morphology while allowing deformation of surrounding soft tissues. Method: The registration method aligns preoperative 3D CT to intraoperative cone-beam CT (CBCT) using free-form deformation (FFD) with penalties on rigid body motion imposed according to a simple intensity threshold. The penalties enforced 3 properties of a rigid transformation - namely, constraints on affinity (AC), orthogonality (OC), and properness (PC). The method also incorporated an injectivity constraint (IC) to preserve topology. Physical experiments (involving phantoms, an ovine spine, and a human cadaver) as well as digital simulations were performed to evaluate the sensitivity to registration parameters, preservation of rigid body morphology, and overall registration accuracy of constrained FFD in comparison to conventional unconstrained FFD (denoted uFFD) and Demons registration. Result: FFD with orthogonality and injectivity constraints (denoted FFD+OC+IC) demonstrated improved performance compared to uFFD and Demons. Affinity and properness constraints offered little or no additional improvement. The FFD+OC+IC method preserved rigid body morphology at near-ideal values of zero dilatation (D = 0.05, compared to 0.39 and 0.56 for uFFD and Demons, respectively) and shear (S = 0.08, compared to 0.36 and 0.44 for uFFD and Demons, respectively). Target registration error (TRE) was similarly improved for FFD+OC+IC (0.7 mm), compared to 1.4 and 1.8 mm for uFFD and Demons. Results were validated in human cadaver studies using CT and CBCT images, with FFD+OC+IC providing excellent preservation
NASA Technical Reports Server (NTRS)
Fleischer, G. E.; Likins, P. W.
1975-01-01
Three computer subroutines designed to solve the vector-dyadic differential equations of rotational motion for systems that may be idealized as a collection of hinge-connected rigid bodies assembled in a tree topology, with an optional flexible appendage attached to each body are reported. Deformations of the appendages are mathematically represented by modal coordinates and are assumed small. Within these constraints, the subroutines provide equation solutions for (1) the most general case of unrestricted hinge rotations, with appendage base bodies nominally rotating at a constant speed, (2) the case of unrestricted hinge rotations between rigid bodies, with the restriction that those rigid bodies carrying appendages are nominally nonspinning, and (3) the case of small hinge rotations and nominally nonrotating appendages. Sample problems and their solutions are presented to illustrate the utility of the computer programs.
NASA Technical Reports Server (NTRS)
Kumar, D.
1980-01-01
The computer program AFTBDY generates a body fitted curvilinear coordinate system for a wedge curved after body. This wedge curved after body is being used in an experimental program. The coordinate system generated by AFTBDY is used to solve 3D compressible N.S. equations. The coordinate system in the physical plane is a cartesian x,y,z system, whereas, in the transformed plane a rectangular xi, eta, zeta system is used. The coordinate system generated is such that in the transformed plane coordinate spacing in the xi, eta, zeta direction is constant and equal to unity. The physical plane coordinate lines in the different regions are clustered heavily or sparsely depending on the regions where physical quantities to be solved for by the N.S. equations have high or low gradients. The coordinate distribution in the physical plane is such that x stays constant in eta and zeta direction, whereas, z stays constant in xi and eta direction. The desired distribution in x and z is input to the program. Consequently, only the y-coordinate is solved for by the program AFTBDY.
Identification of kimberlite bodies in Brazil from a 3D audio-magnetotelluric survey
NASA Astrophysics Data System (ADS)
De Lugao, P. P.; Eric, C. D. O.; Loureiro, F. O.; Arantes, P. R.; Pastana, A. F.
2015-12-01
We report on a succesfull identification of kimberlite bodies in Brazil through the use of the electromagnetic technique audio-magnetotelluric (AMT). Macnae (1979) writes that "In one large survey in South Africa, electromagnetic (EM) techniques have proven to be remarkably effective in detecting the presence of weathered clays or epiclastic kimberlite contained within the pipes." Full tensor AMT data were acquired at 65 points (stations) in a 3D configuration with frequencies ranging from 10kHz to 1Hz. The survey was located in the NW portion of the Mato Grosso state, Brazil, in na area of thick jungle coverage. During the AMT survey, few outcrops were seen because of the dense forest cover. Usually, the occurrences found were of sand deposits, indicating the occurence of Fazenda Casa Branca and Utiariti Formations and gravel from Salto das Nuvens Formation, widely used in paving trails n this region. In the area of the survey, three main targets were confirmed/identified: Kimberlite Area 1 - a classic kimberlite in the region, with the crater facies with different clasts and distinct size. We noted the occurrence of a red-brown soil and an unusual vegetation in this area. The resistivity model provided confirmed the presence of Kimberlite Area 1 and was used to identify other two areas. Area of Interest 1 - area with atypical vegetation along a trail. There is an excavation that displays soil of white color with several blocks present, there are small quartz crystal agglomerates in these blocks. The resistivity model cleary shows a conductive body here, indicative of the presence of a kimberlite. Area of Interest 2 - the presence of a kimberlite was confirmed, not exactly where the targeted Area 2 was, but the southwest of it. Close to this area, there was a very fine rock and a few blocks of pure silica, probably indicating a kimberlitic intrusion. In summary, the 3D resistivity model in depth obtained from inversion of the AMT data confirmed and identified
Development of AN Innovative Three-Dimensional Complete Body Screening Device - 3D-CBS
NASA Astrophysics Data System (ADS)
Crosetto, D. B.
2004-07-01
This article describes an innovative technological approach that increases the efficiency with which a large number of particles (photons) can be detected and analyzed. The three-dimensional complete body screening (3D-CBS) combines the functional imaging capability of the Positron Emission Tomography (PET) with those of the anatomical imaging capability of Computed Tomography (CT). The novel techniques provide better images in a shorter time with less radiation to the patient. A primary means of accomplishing this is the use of a larger solid angle, but this requires a new electronic technique capable of handling the increased data rate. This technique, combined with an improved and simplified detector assembly, enables executing complex real-time algorithms and allows more efficiently use of economical crystals. These are the principal features of this invention. A good synergy of advanced techniques in particle detection, together with technological progress in industry (latest FPGA technology) and simple, but cost-effective ideas provide a revolutionary invention. This technology enables over 400 times PET efficiency improvement at once compared to two to three times improvements achieved every five years during the past decades. Details of the electronics are provided, including an IBM PC board with a parallel-processing architecture implemented in FPGA, enabling the execution of a programmable complex real-time algorithm for best detection of photons.
Multicamera 3D modeling system to digitize human head and body
NASA Astrophysics Data System (ADS)
Fujimura, Kouta; Matsumoto, Yukinori; Emi, Tetsuichi
2001-04-01
A multi-camera 3D modeling system to digitize a human head and body is presented in this paper. The main features of this system are as follows: 1) Fast capturing: Both of texture images and pattern images can be taken within a few seconds using multiple digital still cameras which are set around the target human. Slide projectors are also set to provide a color line patterned light on the target for pattern image capturing, 2) Realistic Shape and Texture: The whole shape and photo-realistic textures of the human head including hair can be digitized at a time on a personal computer, and 3) Hybrid Algorithm: Our modeling algorithm is based on a hybrid method where the Shape-from-Silhouette technique and the Active-Stereo technique are combined. In the first step, the rough shape of the target is estimated in a voxel space using our Extended Shape-from-Silhouette method. In the next step, the shape is refined based on the depth-map data that is calculated using a multi-camera active stereo method. This combination makes up for the shortcomings of each method. Our system has been applied to the digitizing several Japanese people using sixteen cameras for texture image capturing and twelve cameras and two projectors for pattern image capturing. Its capturing time is approximately three seconds and calculation time is about 15-20 minutes on a personal computer with the Pentium-III processor (600MHz) and 512MB memory to digitize the whole shape as well as the texture of the human head and body.
NONUNIFORM FOURIER TRANSFORMS FOR RIGID-BODY AND MULTI-DIMENSIONAL ROTATIONAL CORRELATIONS
BAJAJ, CHANDRAJIT; BAUER, BENEDIKT; BETTADAPURA, RADHAKRISHNA; VOLLRATH, ANTJE
2013-01-01
The task of evaluating correlations is central to computational structural biology. The rigid-body correlation problem seeks the rigid-body transformation (R, t), R ∈ SO(3), t ∈ ℝ3 that maximizes the correlation between a pair of input scalar-valued functions representing molecular structures. Exhaustive solutions to the rigid-body correlation problem take advantage of the fast Fourier transform to achieve a speedup either with respect to the sought translation or rotation. We present PFcorr, a new exhaustive solution, based on the non-equispaced SO(3) Fourier transform, to the rigid-body correlation problem; unlike previous solutions, ours achieves a combination of translational and rotational speedups without requiring equispaced grids. PFcorr can be straightforwardly applied to a variety of problems in protein structure prediction and refinement that involve correlations under rigid-body motions of the protein. Additionally, we show how it applies, along with an appropriate flexibility model, to analogs of the above problems in which the flexibility of the protein is relevant. PMID:24379643
Stabilization of a fluid-rigid body system
NASA Astrophysics Data System (ADS)
Takahashi, Takéo; Tucsnak, Marius; Weiss, George
2015-12-01
We consider the mathematical model of a rigid ball moving in a viscous incompressible fluid occupying a bounded domain Ω, with an external force acting on the ball. We investigate in particular the case when the external force is what would be produced by a spring and a damper connecting the center of the ball h to a fixed point h1 ∈ Ω. If the initial fluid velocity is sufficiently small, and the initial h is sufficiently close to h1, then we prove the existence and uniqueness of global (in time) solutions for the model. Moreover, in this case, we show that h converges to h1, and all the velocities (of the fluid and of the ball) converge to zero. Based on this result, we derive a control law that will bring the ball asymptotically to the desired position h1 even if the initial value of h is far from h1, and the path leading to h1 is winding and complicated. Now, the idea is to use the force as described above, with one end of the spring and damper at h, while other end is jumping between a finite number of points in Ω, that depend on h (a switching feedback law).
Rigid-body molecular dynamics of DNA inside a nucleosome.
Fathizadeh, Arman; Berdy Besya, Azim; Reza Ejtehadi, Mohammad; Schiessel, Helmut
2013-03-01
The majority of eukaryotic DNA, about three quarter, is wrapped around histone proteins forming so-called nucleosomes. To study nucleosomal DNA we introduce a coarse-grained molecular dynamics model based on sequence-dependent harmonic rigid base pair step parameters of DNA and nucleosomal binding sites. Mixed parametrization based on all-atom molecular dynamics and crystallographic data of protein-DNA structures is used for the base pair step parameters. The binding site parameters are adjusted by experimental B-factor values of the nucleosome crystal structure. The model is then used to determine the energy cost for placing a twist defect into the nucleosomal DNA which allows us to use Kramers theory to calculate nucleosome sliding caused by such defects. It is shown that the twist defect scenario together with the sequence-dependent elasticity of DNA can explain the slow time scales observed for nucleosome mobility along DNA. With this method we also show how the twist defect mechanism leads to a higher mobility of DNA in the presence of sin mutations near the dyad axis. Finally, by performing simulations on 5s rDNA, 601, and telomeric base pair sequences, it is demonstrated that the current model is a powerful tool to predict nucleosome positioning. PMID:23475204
New 3D thermal evolution model for icy bodies application to trans-Neptunian objects
NASA Astrophysics Data System (ADS)
Guilbert-Lepoutre, A.; Lasue, J.; Federico, C.; Coradini, A.; Orosei, R.; Rosenberg, E. D.
2011-05-01
Context. Thermal evolution models have been developed over the years to investigate the evolution of thermal properties based on the transfer of heat fluxes or transport of gas through a porous matrix, among others. Applications of such models to trans-Neptunian objects (TNOs) and Centaurs has shown that these bodies could be strongly differentiated from the point of view of chemistry (i.e. loss of most volatile ices), as well as from physics (e.g. melting of water ice), resulting in stratified internal structures with differentiated cores and potential pristine material close to the surface. In this context, some observational results, such as the detection of crystalline water ice or volatiles, remain puzzling. Aims: In this paper, we would like to present a new fully three-dimensional thermal evolution model. With this model, we aim to improve determination of the temperature distribution inside icy bodies such as TNOs by accounting for lateral heat fluxes, which have been proven to be important for accurate simulations. We also would like to be able to account for heterogeneous boundary conditions at the surface through various albedo properties, for example, that might induce different local temperature distributions. Methods: In a departure from published modeling approaches, the heat diffusion problem and its boundary conditions are represented in terms of real spherical harmonics, increasing the numerical efficiency by roughly an order of magnitude. We then compare this new model and another 3D model recently published to illustrate the advantages and limits of the new model. We try to put some constraints on the presence of crystalline water ice at the surface of TNOs. Results: The results obtained with this new model are in excellent agreement with results obtained by different groups with various models. Small TNOs could remain primitive unless they are formed quickly (less than 2 Myr) or are debris from the disruption of larger bodies. We find that, for
Amabile, Celia; Choisne, Julie; Nérot, Agathe; Pillet, Hélène; Skalli, Wafa
2016-05-01
Body segment parameters (BSP) for each body׳s segment are needed for biomechanical analysis. To provide population-specific BSP, precise estimation of body׳s segments volume and density are needed. Widely used uniform densities, provided by cadavers׳ studies, did not consider the air present in the lungs when determining the thorax density. The purpose of this study was to propose a new uniform thorax density representative of the living population from 3D external body shape modeling. Bi-planar X-ray radiographies were acquired on 58 participants allowing 3D reconstructions of the spine, rib cage and human body shape. Three methods of computing the thorax mass were compared for 48 subjects: (1) the Dempster Uniform Density Method, currently in use for BSPs calculation, using Dempster density data, (2) the Personalized Method using full-description of the thorax based on 3D reconstruction of the rib cage and spine and (3) the Improved Uniform Density Method using a uniform thorax density resulting from the Personalized Method. For 10 participants, comparison was made between the body mass obtained from a force-plate and the body mass computed with each of the three methods. The Dempster Uniform Density Method presented a mean error of 4.8% in the total body mass compared to the force-plate vs 0.2% for the Personalized Method and 0.4% for the Improved Uniform Density Method. The adjusted thorax density found from the 3D reconstruction was 0.74g/cm(3) for men and 0.73g/cm(3) for women instead of the one provided by Dempster (0.92g/cm(3)), leading to a better estimate of the thorax mass and body mass. PMID:26976227
NASA Astrophysics Data System (ADS)
Pheiffer, Thomas S.; Ou, Jao J.; Miga, Michael I.
2010-02-01
Modality-independent elastography (MIE) is a method of elastography that reconstructs the elastic properties of tissue using images acquired under different loading conditions and a biomechanical model. Boundary conditions are a critical input to the algorithm, and are often determined by time-consuming point correspondence methods requiring manual user input. Unfortunately, generation of accurate boundary conditions for the biomechanical model is often difficult due to the challenge of accurately matching points between the source and target surfaces and consequently necessitates the use of large numbers of fiducial markers. This study presents a novel method of automatically generating boundary conditions by non-rigidly registering two image sets with a Demons diffusion-based registration algorithm. The use of this method was successfully performed in silico using magnetic resonance and X-ray computed tomography image data with known boundary conditions. These preliminary results have produced boundary conditions with accuracy of up to 80% compared to the known conditions. Finally, these boundary conditions were utilized within a 3D MIE reconstruction to determine an elasticity contrast ratio between tumor and normal tissue. Preliminary results show a reasonable characterization of the material properties on this first attempt and a significant improvement in the automation level and viability of the method.
In-body tissue-engineered aortic valve (Biovalve type VII) architecture based on 3D printer molding.
Nakayama, Yasuhide; Takewa, Yoshiaki; Sumikura, Hirohito; Yamanami, Masashi; Matsui, Yuichi; Oie, Tomonori; Kishimoto, Yuichiro; Arakawa, Mamoru; Ohmuma, Kentaro; Tajikawa, Tsutomu; Kanda, Keiichi; Tatsumi, Eisuke
2015-01-01
In-body tissue architecture--a novel and practical regeneration medicine technology--can be used to prepare a completely autologous heart valve, based on the shape of a mold. In this study, a three-dimensional (3D) printer was used to produce the molds. A 3D printer can easily reproduce the 3D-shape and size of native heart valves within several processing hours. For a tri-leaflet, valved conduit with a sinus of Valsalva (Biovalve type VII), the mold was assembled using two conduit parts and three sinus parts produced by the 3D printer. Biovalves were generated from completely autologous connective tissue, containing collagen and fibroblasts, within 2 months following the subcutaneous embedding of the molds (success rate, 27/30). In vitro evaluation, using a pulsatile circulation circuit, showed excellent valvular function with a durability of at least 10 days. Interposed between two expanded polytetrafluoroethylene grafts, the Biovalves (N = 3) were implanted in goats through an apico-aortic bypass procedure. Postoperative echocardiography showed smooth movement of the leaflets with minimal regurgitation under systemic circulation. After 1 month of implantation, smooth white leaflets were observed with minimal thrombus formation. Functional, autologous, 3D-shaped heart valves with clinical application potential were formed following in-body embedding of specially designed molds that were created within several hours by 3D printer. PMID:24764308
NASA Astrophysics Data System (ADS)
Nguyen, Trung Dac; Phillips, Carolyn L.; Anderson, Joshua A.; Glotzer, Sharon C.
2011-11-01
Molecular dynamics (MD) methods compute the trajectory of a system of point particles in response to a potential function by numerically integrating Newton's equations of motion. Extending these basic methods with rigid body constraints enables composite particles with complex shapes such as anisotropic nanoparticles, grains, molecules, and rigid proteins to be modeled. Rigid body constraints are added to the GPU-accelerated MD package, HOOMD-blue, version 0.10.0. The software can now simulate systems of particles, rigid bodies, or mixed systems in microcanonical (NVE), canonical (NVT), and isothermal-isobaric (NPT) ensembles. It can also apply the FIRE energy minimization technique to these systems. In this paper, we detail the massively parallel scheme that implements these algorithms and discuss how our design is tuned for the maximum possible performance. Two different case studies are included to demonstrate the performance attained, patchy spheres and tethered nanorods. In typical cases, HOOMD-blue on a single GTX 480 executes 2.5-3.6 times faster than LAMMPS executing the same simulation on any number of CPU cores in parallel. Simulations with rigid bodies may now be run with larger systems and for longer time scales on a single workstation than was previously even possible on large clusters.
Fish body surface data measurement based on 3D digital image correlation
NASA Astrophysics Data System (ADS)
Jiang, Ming; Qian, Chen; Yang, Wenkai
2016-01-01
To film the moving fish in the glass tank, light will be bent at the interface of air and glass, glass and water. Based on binocular stereo vision and refraction principle, we establish a mathematical model of 3D image correlation to reconstruct the 3D coordinates of samples in the water. Marking speckle in fish surface, a series of real-time speckle images of swimming fish will be obtained by two high-speed cameras, and instantaneous 3D shape, strain, displacement etc. of fish will be reconstructed.
NASA Astrophysics Data System (ADS)
Ford, Logan; Bajpayee, Abhishek; Techet, Alexandra
2015-11-01
3D particle image velocimetry (PIV) is becoming a popular technique to study biological flows. PIV images that contain fish or other animals around which flow is being studied, need to be appropriately masked in order to remove the animal body from the 3D reconstructed volumes prior to calculating particle displacement vectors. Presented here is a machine learning and synthetic aperture (SA) refocusing based approach for more accurate masking of fish from reconstructed intensity fields for 3D PIV purposes. Using prior knowledge about the 3D shape and appearance of the fish along with SA refocused images at arbitrarily oriented focal planes, the location and orientation of a fish in a reconstructed volume can be accurately determined. Once the location and orientation of a fish in a volume is determined, it can be masked out.
On the motion of a heavy rigid body in an ideal fluid with circulation.
Borisov, Alexey V; Mamaev, Ivan S
2006-03-01
We consider Chaplygin's equations [Izd. Akad. Nauk SSSR 3, 3 (1933)] describing the planar motion of a rigid body in an unbounded volume of an ideal fluid while circulation around the body is not zero. Hamiltonian structures and new integrable cases are revealed; certain remarkable partial solutions are found and their stability is examined. The nonintegrability of the system describing the motion of a body in the field of gravity is proved and the chaotic behavior of the system is illustrated. PMID:16599749
Physical pendulum—a simple experiment can give comprehensive information about a rigid body
NASA Astrophysics Data System (ADS)
Kladivová, Mária; Mucha, L'ubomír
2014-03-01
A simple experiment with a physical pendulum examining some aspects of rigid body motion is presented in this paper. The experiment consists of measuring the period of oscillation of a rod with non-homogeneous mass distribution used as a physical pendulum, dependent upon the position of the pivot axis. The obtained dependence provides sufficient information to calculate the position of the centre of mass, moment of inertia of the rigid body and local gravitational acceleration. This experiment is intended for secondary school and undergraduate students.
Explaining rigid dieting in normal-weight women: the key role of body image inflexibility.
Ferreira, Cláudia; Trindade, Inês A; Martinho, Ana
2016-03-01
Restrictive dieting is an increasing behavior presented by women in modern societies, independently of their weight. There are several known factors that motivate diet, namely a sense of dissatisfaction with one's body and unfavorable social comparisons based on physical appearance. However, dieting seems to have a paradoxical effect and has been considered a risk factor for weight gain and obesity in women and for maladaptive eating. Nevertheless, the study of the emotional regulation processes that explain the adoption of inflexible and rigid eating behaviors still remains little explored. In this line, the present study aims to explore why normal-weight women engage in highly rigid and inflexible diets. We hypothesize that body and weight dissatisfaction and unfavorable social comparisons based on physical appearance explain the adoption of inflexible eating rules, through the mechanisms of body image inflexibility. The current study comprised 508 normal-weight female college students. Path analyses were conducted to explore the study's hypotheses. Results revealed that the model explained 43 % of inflexible eating and revealed excellent fit indices. Furthermore, the unwillingness to experience unwanted events related to body image (body image inflexibility) mediated the impact of body dissatisfaction and unfavorable social comparisons on the adoption of inflexible eating rules. This study highlights the relevance of body image inflexibility to explain rigid eating attitudes, and it seems to be an important avenue for the development of interventions focusing on the promotion of adaptive attitudes towards body image and eating in young women. PMID:25753131
Compliant mechanism road bicycle brake: a rigid-body replacement case study
Olsen, Brian M; Howell, Larry L; Magleby, Spencer P
2011-01-19
The design of high-performance bicycle brakes is complicated by the competing design objectives of increased performance and low weight. But this challenge also provides a good case study to demonstrate the design of compliant mechanisms to replace current rigid-link mechanisms. This paper briefly reviews current road brake designs, demonstrates the use of rigid-body replacement synthesis to design a compliant mechanism, and illustrates the combination of compliant mechanism design tools. The resulting concept was generated from the modified dual-pivot brake design and is a partially compliant mechanism where one pin has the dual role of a joint and a mounting pin. The pseudo-rigid-body model, finite element analysis, and optimization algorithms are used to generate design dimensions, and designs are considered for both titanium and E-glass flexures. The resulting design has the potential of reducing the part count and overall weight while maintaining a performance similar to the benchmark.
A New Approach to Rigid Body Minimization with Application to Molecular Docking*
Mirzaei, Hanieh; Kozakov, Dima; Beglov, Dmitri; Paschalidis, Ioannis Ch.; Vajda, Sandor; Vakili, Pirooz
2013-01-01
Our work is motivated by energy minimization in the space of rigid affine transformations of macromolecules, an essential step in computational protein-protein docking. We introduce a novel representation of rigid body motion that leads to a natural formulation of the energy minimization problem as an optimization on the SO(3)×R3 manifold, rather than the commonly used SE(3). The new representation avoids the complications associated with optimization on the SE(3) manifold and provides additional flexibilities for optimization not available in that formulation. The approach is applicable to general rigid body minimization problems. Our computational results for a local optimization algorithm developed based on the new approach show that it is about an order of magnitude faster than a state of art local minimization algorithms for computational protein-protein docking. PMID:24763338
Synthesis of 3D Model of a Magnetic Field-Influenced Body from a Single Image
NASA Technical Reports Server (NTRS)
Wang, Cuilan; Newman, Timothy; Gallagher, Dennis
2006-01-01
A method for recovery of a 3D model of a cloud-like structure that is in motion and deforming but approximately governed by magnetic field properties is described. The method allows recovery of the model from a single intensity image in which the structure's silhouette can be observed. The method exploits envelope theory and a magnetic field model. Given one intensity image and the segmented silhouette in the image, the method proceeds without human intervention to produce the 3D model. In addition to allowing 3D model synthesis, the method's capability to yield a very compact description offers further utility. Application of the method to several real-world images is demonstrated.
A penalty immersed boundary method for a rigid body in fluid
NASA Astrophysics Data System (ADS)
Kim, Yongsam; Peskin, Charles S.
2016-03-01
We extend the penalty immersed boundary (pIB) method to the interaction between a rigid body and a surrounding fluid. The pIB method is based on the idea of splitting an immersed boundary, which here is a rigid body, notionally into two Lagrangian components: one is a massive component carrying all mass of the rigid body and the other is massless. These two components are connected by a system of stiff springs with 0 rest length. The massless component interacts with the surrounding fluid: it moves at the local fluid velocity and exerts force locally on the fluid. The massive component has no direct interaction with the surrounding fluid and behaves as though in a vacuum, following the dynamics of a rigid body, in which the acting forces and torques are generated from the system of stiff springs that connects the two Lagrangian components. We verify the pIB method by computing the drag coefficients of a cylinder and ball descending though a fluid under the influence of gravity and also by studying the interaction of two such descending cylinders and likewise the interaction of two such descending balls. The computational results are quite comparable to those in the literature. As a further example of an application, we include a freely falling maple seed with autorotation.
Lorentz Contraction, Bell's Spaceships and Rigid Body Motion in Special Relativity
ERIC Educational Resources Information Center
Franklin, Jerrold
2010-01-01
The meaning of Lorentz contraction in special relativity and its connection with Bell's spaceships parable is discussed. The motion of Bell's spaceships is then compared with the accelerated motion of a rigid body. We have tried to write this in a simple form that could be used to correct students' misconceptions due to conflicting earlier…
Periodic solutions in the Kovalevskaya case of a rigid body in rotation about a fixed point
NASA Astrophysics Data System (ADS)
El-Sabaa, F. M. F.
1992-07-01
The method of small parameters introduced by Poincare is used to obtain the period solution of the problem of a rigid body in the Kovalevskaya case with k (the Kovalevskaya constant of integration) as a small parameter. The asymptotic solution is obtained in terms of elliptic integrals for the (complete integrable) Kovalevskaya top.
NASA Astrophysics Data System (ADS)
Patrinopoulos, Matthaios; Kefalis, Chrysovalantis
2015-12-01
In this paper, we focus on smartphones as experimental tools; specifically we use the gyroscope sensor of a smartphone to study the turning motion of a rigid body. Taking into consideration recent work concerning that topic, we try to use the gyroscope sensor in studying the complex motion of a rolling cylinder on a slope.
Ahadian, Samad; Yamada, Shukuyo; Ramón-Azcón, Javier; Ino, Kosuke; Shiku, Hitoshi; Khademhosseini, Ali; Matsue, Tomokazu
2014-10-01
In this manuscript, we demonstrate the rapid formation of three-dimensional (3D) embryonic stem cell (ESC) aggregates with controllable sizes and shapes in hydrogels using dielectrophoresis (DEP). The ESCs encapsulated within a methacrylated gelatin (GelMA) prepolymer were introduced into a DEP device and, upon applying an electric field and crosslinking of the GelMA hydrogel, formed 3D ESC aggregates. Embryoid bodies (EBs) fabricated using this method showed high cellular viability and pluripotency. The proposed technique enables production of EBs on a large scale and in a high-throughput manner for potential cell therapy and tissue regeneration applications. PMID:25082412
VIRO 3D: fast three-dimensional full-body scanning for humans and other living objects
NASA Astrophysics Data System (ADS)
Stein, Norbert; Minge, Bernhard
1998-03-01
The development of a family of partial and whole body scanners provides a complete technology for fully three-dimensional and contact-free scans on human bodies or other living objects within seconds. This paper gives insight into the design and the functional principles of the whole body scanner VIRO 3D operating on the basis of the laser split-beam method. The arrangement of up to 24 camera/laser combinations, thus dividing the area into different camera fields and an all- around sensor configuration travelling in vertical direction allow the complete 360-degree-scan of an object within 6 - 20 seconds. Due to a special calibration process the different sensors are matched and the measured data are combined. Up to 10 million 3D measuring points with a resolution of approximately 1 mm are processed in all coordinate axes to generate a 3D model. By means of high-performance processors in combination with real-time image processing chips the image data from almost any number of sensors can be recorded and evaluated synchronously in video real-time. VIRO 3D scanning systems have already been successfully implemented in various applications and will open up new perspectives in different other fields, ranging from industry, orthopaedic medicine, plastic surgery to art and photography.
The mathematical description of the body centre of mass 3D path in human and animal locomotion.
Minetti, Alberto E; Cisotti, Caterina; Mian, Omar S
2011-05-17
Although the 3D trajectory of the body centre of mass during ambulation constitutes the 'locomotor signature' at different gaits and speeds for humans and other legged species, no quantitative method for its description has been proposed in the literature so far. By combining the mathematical discoveries of Jean Baptiste Joseph Fourier (1768-1830, analysis of periodic events) and of Jules Antoine Lissajous (1822-1880, parametric equation for closed loops) we designed a method simultaneously capturing the spatial and dynamical features of that 3D trajectory. The motion analysis of walking and running humans, and the re-processing of previously published data on trotting and galloping horses, as moving on a treadmill, allowed to obtain closed loops for the body centre of mass showing general and individual locomotor characteristics. The mechanical dynamics due to the different energy exchange, the asymmetry along each 3D axis, and the sagittal and lateral energy recovery, among other parameters, were evaluated for each gait according to the present methodology. The proposed mathematical description of the 3D trajectory of the body centre of mass could be used to better understand the physiology and biomechanics of normal locomotion, from monopods to octopods, and to evaluate individual deviations with respect to average values as resulting from gait pathologies and the restoration of a normal pattern after pharmacological, physiotherapeutic and surgical treatments. PMID:21463861
A constrained generalised- method for coupling rigid parallel chain kinematics and elastic bodies
NASA Astrophysics Data System (ADS)
Gransden, Derek I.; Bornemann, P. Burkhard; Rose, Michael; Nitzsche, Fred
2015-03-01
A problem arises from combining flexible rotorcraft blades with stiffer mechanical links, which form a parallel kinematic chain. This paper introduces a method for solving index-3 differential algebraic equations for coupled stiff and elastic body systems with closed-loop kinematics. Rigid body dynamics and elastic body mechanics are independently described according to convenient mathematical measures. Holonomic constraint equations couple both the parallel chain kinematics and describe the coupling between the rigid and continuum bodies. Lagrange multipliers enforce the kinetic conditions for both sets of constraints. Additionally, to prevent numerical inaccuracy from inverting stiff mechanical matrices, a scaling factor normalises the dynamic tangential stiffness matrix. Finally, example tests show the verification of the algorithm with respect to existing computational tests and the accuracy of the model for cases relevant to the problem definition.
Planar dynamics of a uniform beam with rigid bodies affixed to the ends
NASA Technical Reports Server (NTRS)
Storch, J.; Gates, S.
1983-01-01
The planar dynamics of a uniform elastic beam subject to a variety of geometric and natural boundary conditions and external excitations were analyzed. The beams are inextensible and capable of small transverse bending deformations only. Classical beam vibration eigenvalue problems for a cantilever with tip mass, a cantilever with tip body and an unconstrained beam with rigid bodies at each are examined. The characteristic equations, eigenfunctions and orthogonality relations for each are derived. The forced vibration of a cantilever with tip body subject to base acceleration is analyzed. The exact solution of the governing nonhomogeneous partial differential equation with time dependent boundary conditions is presented and compared with a Rayleigh-Ritz approximate solution. The arbitrary planar motion of an elastic beam with rigid bodies at the ends is addressed. Equations of motion are derived for two modal expansions of the beam deflection. The motion equations are cast in a first order form suitable for numerical integration. Selected FORTRAN programs are provided.
Stabilization of the rotational motion of a rigid body on a vibrating base
NASA Astrophysics Data System (ADS)
Krementulo, V. V.
1984-12-01
The problem of the optimum (in a certain sense) stabilization of the permanent rotation of a heavy rigid body on a vibrating base is solved in the context of analytical control theory. Stabilization is achieved by means of a gimbal-suspended balanced gyroscope controlled by three moments. The control moments, obtained in explicit form, ensure the asymptotic stability of the rotational motion of the body along all of its phase coordinates and a minimum of a certain integral functional.
Coupled motion of rigid bodies about their center of mass. [Shuttle/payload system
NASA Technical Reports Server (NTRS)
Jezewski, D. J.; Donaldson, J. D.
1979-01-01
Nontrivial analytical solutions for the coupled motion of two rigid bodies about their center of mass are obtained on the assumptions that the rigid bodies are coupled by a massless rigid boom and that no external forces are acting on the system. Both relative rotational and translational motions of the two bodies are considered. General equations of motion are derived by regarding the two bodies as consisting of two distinct systems of particles and by applying the principle of conservation of angular momentum. It is shown that a basic nontrivial solution can be obtained for the translational problem if an assumption is made concerning the relative orientation of one principal axis of inertia of each body and that fundamental nontrivial solutions are readily obtained for the rotational problem if an additional assumption is made with respect to the symmetry of one body. Certain stability criteria are found for some of these motions by defining regions of constraint for the relative translational and rotational elements.
Modularization and Validation of FUN3D as a CREATE-AV Helios Near-Body Solver
NASA Technical Reports Server (NTRS)
Jain, Rohit; Biedron, Robert T.; Jones, William T.; Lee-Rausch, Elizabeth M.
2016-01-01
Under a recent collaborative effort between the US Army Aeroflightdynamics Directorate (AFDD) and NASA Langley, NASA's general unstructured CFD solver, FUN3D, was modularized as a CREATE-AV Helios near-body unstructured grid solver. The strategies adopted in Helios/FUN3D integration effort are described. A validation study of the new capability is performed for rotorcraft cases spanning hover prediction, airloads prediction, coupling with computational structural dynamics, counter-rotating dual-rotor configurations, and free-flight trim. The integration of FUN3D, along with the previously integrated NASA OVERFLOW solver, lays the ground for future interaction opportunities where capabilities of one component could be leveraged with those of others in a relatively seamless fashion within CREATE-AV Helios.
Qi, Jin; Yang, Zhiyong
2014-01-01
Real-time human activity recognition is essential for human-robot interactions for assisted healthy independent living. Most previous work in this area is performed on traditional two-dimensional (2D) videos and both global and local methods have been used. Since 2D videos are sensitive to changes of lighting condition, view angle, and scale, researchers begun to explore applications of 3D information in human activity understanding in recently years. Unfortunately, features that work well on 2D videos usually don't perform well on 3D videos and there is no consensus on what 3D features should be used. Here we propose a model of human activity recognition based on 3D movements of body joints. Our method has three steps, learning dictionaries of sparse codes of 3D movements of joints, sparse coding, and classification. In the first step, space-time volumes of 3D movements of body joints are obtained via dense sampling and independent component analysis is then performed to construct a dictionary of sparse codes for each activity. In the second step, the space-time volumes are projected to the dictionaries and a set of sparse histograms of the projection coefficients are constructed as feature representations of the activities. Finally, the sparse histograms are used as inputs to a support vector machine to recognize human activities. We tested this model on three databases of human activities and found that it outperforms the state-of-the-art algorithms. Thus, this model can be used for real-time human activity recognition in many applications. PMID:25473850
Qi, Jin; Yang, Zhiyong
2014-01-01
Real-time human activity recognition is essential for human-robot interactions for assisted healthy independent living. Most previous work in this area is performed on traditional two-dimensional (2D) videos and both global and local methods have been used. Since 2D videos are sensitive to changes of lighting condition, view angle, and scale, researchers begun to explore applications of 3D information in human activity understanding in recently years. Unfortunately, features that work well on 2D videos usually don't perform well on 3D videos and there is no consensus on what 3D features should be used. Here we propose a model of human activity recognition based on 3D movements of body joints. Our method has three steps, learning dictionaries of sparse codes of 3D movements of joints, sparse coding, and classification. In the first step, space-time volumes of 3D movements of body joints are obtained via dense sampling and independent component analysis is then performed to construct a dictionary of sparse codes for each activity. In the second step, the space-time volumes are projected to the dictionaries and a set of sparse histograms of the projection coefficients are constructed as feature representations of the activities. Finally, the sparse histograms are used as inputs to a support vector machine to recognize human activities. We tested this model on three databases of human activities and found that it outperforms the state-of-the-art algorithms. Thus, this model can be used for real-time human activity recognition in many applications. PMID:25473850
Atomic identification of fluorescent Q-dots on tau-positive fibrils in 3D-reconstructed pick bodies.
Uematsu, Miho; Adachi, Eijiro; Nakamura, Ayako; Tsuchiya, Kuniaki; Uchihara, Toshiki
2012-04-01
Pick body disease, characterized by the presence of Pick bodies, is distinguished from neurofibrillary tangles in Alzheimer disease on the basis of their smooth, spherical shape. Quantum dots (QDs) are nanometer-scale, water-soluble fluorophores that are detectable both as a fluorescent signal by light microscopy and as electron-dense particles under electron microscopy. In this study, tau-positive Pick bodies were immunofluorescently labeled with QD nanocrystals composed of cadmium selenide for three-dimensional (3D) reconstruction and subsequently subjected to electron microscopic observation to identify QD immunolabeling on the same Pick body for comparison in detail. The identity of the QD nanocrystals, which label the tau-positive fibrils, was confirmed by the presence of both cadmium and selenium on these nanocrystals, demonstrated as parallel peaks corresponding to these atoms on energy-dispersive X-ray spot analysis under super-resolution scanning transmission electron microscopy. This confirmation of the specificity of the QD labeling through both its fluorescence and energy-dispersive X-ray spectra reinforces the reliability of the labeling. In addition, this exact comparison of the same structure by electron microscopy and 3D light microscopy demonstrates how its ultrastructural details are related to its surrounding structures on a 3D basis, providing further insights into how molecules woven into specific pathological ultrastructures are at work in situ. PMID:22322305
NASA Technical Reports Server (NTRS)
Likins, P. W.
1974-01-01
Equations of motion are derived for use in simulating a spacecraft or other complex electromechanical system amenable to idealization as a set of hinge-connected rigid bodies of tree topology, with rigid axisymmetric rotors and nonrigid appendages attached to each rigid body in the set. In conjunction with a previously published report on finite-element appendage vibration equations, this report provides a complete minimum-dimension formulation suitable for generic programming for digital computer numerical integration.
Clinically feasible reconstruction of 3D whole-body PET/CT data using blurred anatomical labels
NASA Astrophysics Data System (ADS)
Comtat, Claude; Kinahan, Paul E.; Fessler, Jeffrey A.; Beyer, Thomas; Townsend, David W.; Defrise, Michel; Michel, Christian
2002-01-01
We present the results of utilizing aligned anatomical information from CT images to locally adjust image smoothness during the reconstruction of three-dimensional (3D) whole-body positron emission tomography (PET) data. The ability of whole-body PET imaging to detect malignant neoplasms is becoming widely recognized. Potentially useful, however, is the role of whole-body PET in quantitative estimation of tracer uptake. The utility of PET in oncology is often limited by the high level of statistical noise in the images. Reduction in noise can be obtained by incorporating a priori image smoothness information from correlated anatomical information during the reconstruction of PET data. A combined PET/CT scanner allows the acquisition of accurately aligned PET and x-ray CT whole-body data. We use the Fourier rebinning algorithm (FORE) to accurately convert the 3D PET data to two-dimensional (2D) data to accelerate the image reconstruction process. The 2D datasets are reconstructed with successive over-relaxation of a penalized weighted least squares (PWLS) objective function to model the statistics of the acquisition, data corrections, and rebinning. A 3D voxel label model is presented that incorporates the anatomical information via the penalty weights of the PWLS objective function. This combination of FORE + PWLS + labels was developed as it allows for both reconstruction of 3D whole-body data sets in clinically feasible times and also the inclusion of anatomical information in such a way that convergence can be guaranteed. Since mismatches between anatomical (CT) and functional (PET) data are unavoidable in practice, the labels are 'blurred' to reflect the uncertainty associated with the anatomical information. Simulated and experimental results show the potential advantage of incorporating anatomical information by using blurred labels to calculate the penalty weights. We conclude that while the effect of this method on detection tasks is complicated and unclear
Torques on a nearly rigid body in a relativistic gravitational field
NASA Technical Reports Server (NTRS)
Caporali, A.
1980-01-01
The effect of post-Newtonian potentials on the rotation of a nearly rigid body is shown to consist of a precession and a torque. The frequency of the precession can be exactly represented by means of suitable differential operators. The relativistic torques in the quadrupole approximation depend on the instantaneous orientation of the principal axes of one body with respect to the position like the classical torque and velocity of the other. For a relatively low mass body, such as a gyroscope, these velocity-dependent torques have no observable consequences.
3-D Human body models in C.A.D. : Anthropometric Aspects
NASA Astrophysics Data System (ADS)
Renaud, C.; Steck, R.; Pineau, J. C.
1986-07-01
Modeling and simulation methods of man-machine systems are developed at the laboratory by interactive infography and C.A.D. technics. In order to better apprehend the morphological variability of populations we have enriched the 3-D model with a parametric function using classical anthropometric dimensions. We have selected reference, associate and complementary dimensions : lengths, breadths, circumferences and depths, which depend on operator's tasks and characteristics of workplaces. All anthropometric values come from the International Data Bank of Human Biometry of ERGODATA System. The utilization of the parametric function brings a quick and accurate description of morphology for theoretic subjects and can be used in C.A.D. analysis.
Rigid Bronchoscopy in Airway Foreign Bodies: Value of the Clinical and Radiological Signs
Acharya, Kunjan
2016-01-01
Introduction Foreign body in airway is a common emergency in ENT practice. As we know, Rigid Bronchoscopy is the method of choice for removing it, although at times it leads to specialists performing unnecessary bronchoscopy, exposing patients to hazards of general anesthesia. Objective The objective of my study is to calculate sensitivity, specificity, positive predictive value, odds ratio from the clinical and radiological signs, comparing with the gold standard, the rigid bronchoscope procedure. Method This is a prospective analytical study designed at University Teaching Hospital and conducted over a period of 18 months, from March 2011 to August 2012. Data collection was broadly classified into three different categories: (1) Symptomatology, such as presence or absence of choking, cyanosis, and difficulty in breathing; (2) Clinical signs, such as the presence or absence of air entry, crackles, and rhonchi 3. Chest X-ray findings were suggestive of a foreign body. Results There were a total of 40 rigid bronchoscopies performed under general anesthesia for the diagnosis and therapeutic reasons. Among 40 patients who underwent rigid bronchoscopy, 32 (80%) were found to have varieties of foreign bodies in their airway while 8 patients (20%) had negative bronchoscopy. The history of choking is the only clinical symptoms which came out to be statistically Significant (p = 0.043) with odds ratio of 5. Conclusion Rigid bronchoscopy is the gold standard technique for diagnosis and procedure of choice to remove FB from airway. Regardless, it still presents a small chance of negative result, especially when there is no history of aspiration. PMID:27413398
Rivera, Gabriel; Rivera, Angela R V; Dougherty, Erin E; Blob, Richard W
2006-11-01
The ability to capture prey and avoid predation in aquatic habitats depends strongly on the ability to perform unsteady maneuvers (e.g. turns), which itself depends strongly on body flexibility. Two previous studies of turning performance in rigid-bodied taxa have found either high maneuverability or high agility, but not both. However, examinations of aquatic turning performance in rigid-bodied animals have had limited taxonomic scope and, as such, the effects of many body shapes and designs on aquatic maneuverability and agility have yet to be examined. Turtles represent the oldest extant lineage of rigid-bodied vertebrates and the only aquatic rigid-bodied tetrapods. We evaluated the aquatic turning performance of painted turtles, Chrysemys picta (Schneider, 1783) using the minimum length-specific radius of the turning path (R/L) and the average turning rate (omega(avg)) as measures of maneuverability and agility, respectively. We filmed turtles conducting forward and backward turns in an aquatic arena. Each type of turn was executed using a different pattern of limb movements. During forward turns, turtles consistently protracted the inboard forelimb and held it stationary into the flow, while continuing to move the outboard forelimb and both hindlimbs as in rectilinear swimming. The limb movements of backward turns were more complex than those of forward turns, but involved near simultaneous retraction and protraction of contralateral fore- and hindlimbs, respectively. Forward turns had a minimum R/L of 0.0018 (the second single lowest value reported from any animal) and a maximum omega(avg) of 247.1 degrees. Values of R/L for backward turns (0.0091-0.0950 L) were much less variable than that of forward turns (0.0018-1.0442 L). The maneuverability of turtles is similar to that recorded previously for rigid-bodied boxfish. However, several morphological features of turtles (e.g. shell morphology and limb position) appear to increase agility relative to the body
Efficient time-symmetric simulation of torqued rigid bodies using Jacobi elliptic functions
NASA Astrophysics Data System (ADS)
Celledoni, E.; Säfström, N.
2006-05-01
If the three moments of inertia are distinct, the solution to the Euler equations for the free rigid body is given in terms of Jacobi elliptic functions. Using the arithmetic-geometric mean algorithm (Abramowitz and Stegun 1992 Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (New York: Dover)), these functions can be calculated efficiently and accurately. Compared to standard numerical ODE and Lie-Poisson solvers, the overall approach yields a faster and more accurate numerical solution to the Euler equations. This approach is designed for mass asymmetric rigid bodies. In the case of symmetric bodies, the exact solution is available in terms of trigonometric functions, see Dullweber et al (1997 J. Chem. Phys. 107 5840-51), Reich (1996 Fields Inst. Commun. 10 181-91) and Benettin et al (2001 SIAM J. Sci. Comp. 23 1189-203) for details. In this paper, we consider the case of asymmetric rigid bodies subject to external forces. We consider a strategy similar to the symplectic splitting method proposed in Reich (1996 Fields Inst. Commun. 10 181-91) and Dullweber et al (1997 J. Chem. Phys. 107 5840-51). The method proposed here is time-symmetric. We decompose the vector field of our problem into a free rigid body (FRB) problem and another completely integrable vector field. The FRB problem consists of the Euler equations and a differential equation for the 3 × 3 orientation matrix. The Euler equations are integrated exactly while the matrix equation is approximated using a truncated Magnus series. In our experiments, we observe that the overall numerical solution benefits greatly from the very accurate solution of the Euler equations. We apply the method to the heavy top and the simulation of artificial satellite attitude dynamics.
Choi, Jiyoung; Hong, Kyunghi
2015-05-01
With the advent of 3D technology in the design process, a tremendous amount of scanned data is available. However, it is difficult to trace the quantitative skin deformation of a designated location on the 3D body surface data during movement. Without identical landmarks or reflective markers, tracing the same reference points on the different body postures is not easy because of the complex shape change of the body. To find the least deformed location on the body, which is regarded as the optimal position of seams for the various lengths of functional compression pants, landmarks were directly marked on the skin of six subjects and scanned during knee joint flexion. Lines of non-extension (LoNE) and maximum stretch (LoMS) were searched for, both by tracing landmarks and newly drawn guidelines based on ratio division in various directions. Considering the waist as the anchoring position of the pants, holistic changes were quantified and visualized from the waistline in lengthwise and curvilinear deformation along the dermatomes of the lower body for various lengths of pants. Widthwise and unit area skin deformation data of the skin were also provided as guidelines for further use such as streamlined pants or design of other local wearing devices. PMID:25683546
Noninvasive MR to 3D Rotational x-ray registration of vetebral bodies
NASA Astrophysics Data System (ADS)
van de Kraats, Everine B.; van Walsum, Theo; Verlaan, Jorrit-Jan; Niessen, Wiro J.
2003-05-01
3D Rotational X-ray (3DRX) imaging can be used to intraoperatively acquire 3D volumes depicting bone structures in the patient. Registration of 3DRX to MR images, containing soft tissue information, facilitates image guided surgery on both soft tissue and bone tissue information simultaneously. In this paper, automated noninvasive registration using maximization of mutual information is compared to conventional interactive and invasive point-based registration using the least squares fit of corresponding point sets. Both methods were evaluated on 3DRX images (with a resolution of 0.62x0.62x0.62 mm3) and MRI images (with resolutions of 2x2x2 mm3, 1.5x1.5x1.5 mm3 and 1x1x1 mm3) of seven defrosted spinal segments implanted with six or seven markers. The markers were used for the evaluation of the registration transformations found by both point- and maximization of mutual information based registration. The root-mean-squared-error on markers that were left out during registration was calculated after transforming the marker set with the computed registration transformation. The results show that the noninvasive registration method performs significantly better (p<=0.01) for all MRI resolutions than point-based registration using four or five markers, which is the number of markers conventionally used in image guided surgery systems.
A virtual interface for interactions with 3D models of the human body.
De Paolis, Lucio T; Pulimeno, Marco; Aloisio, Giovanni
2009-01-01
The developed system is the first prototype of a virtual interface designed to avoid contact with the computer so that the surgeon is able to visualize 3D models of the patient's organs more effectively during surgical procedure or to use this in the pre-operative planning. The doctor will be able to rotate, to translate and to zoom in on 3D models of the patient's organs simply by moving his finger in free space; in addition, it is possible to choose to visualize all of the organs or only some of them. All of the interactions with the models happen in real-time using the virtual interface which appears as a touch-screen suspended in free space in a position chosen by the user when the application is started up. Finger movements are detected by means of an optical tracking system and are used to simulate touch with the interface and to interact by pressing the buttons present on the virtual screen. PMID:19377116
Bache, Steven T.; Juang, Titania; Belley, Matthew D.; Koontz, Bridget F.; Yoshizumi, Terry T.; Kirsch, David G.; Oldham, Mark; Adamovics, John
2015-02-15
Purpose: Sophisticated small animal irradiators, incorporating cone-beam-CT image-guidance, have recently been developed which enable exploration of the efficacy of advanced radiation treatments in the preclinical setting. Microstereotactic-body-radiation-therapy (microSBRT) is one technique of interest, utilizing field sizes in the range of 1–15 mm. Verification of the accuracy of microSBRT treatment delivery is challenging due to the lack of available methods to comprehensively measure dose distributions in representative phantoms with sufficiently high spatial resolution and in 3 dimensions (3D). This work introduces a potential solution in the form of anatomically accurate rodent-morphic 3D dosimeters compatible with ultrahigh resolution (0.3 mm{sup 3}) optical computed tomography (optical-CT) dose read-out. Methods: Rodent-morphic dosimeters were produced by 3D-printing molds of rodent anatomy directly from contours defined on x-ray CT data sets of rats and mice, and using these molds to create tissue-equivalent radiochromic 3D dosimeters from Presage. Anatomically accurate spines were incorporated into some dosimeters, by first 3D printing the spine mold, then forming a high-Z bone equivalent spine insert. This spine insert was then set inside the tissue equivalent body mold. The high-Z spinal insert enabled representative cone-beam CT IGRT targeting. On irradiation, a linear radiochromic change in optical-density occurs in the dosimeter, which is proportional to absorbed dose, and was read out using optical-CT in high-resolution (0.5 mm isotropic voxels). Optical-CT data were converted to absolute dose in two ways: (i) using a calibration curve derived from other Presage dosimeters from the same batch, and (ii) by independent measurement of calibrated dose at a point using a novel detector comprised of a yttrium oxide based nanocrystalline scintillator, with a submillimeter active length. A microSBRT spinal treatment was delivered consisting of a 180
Bache, Steven T.; Juang, Titania; Belley, Matthew D.; Koontz, Bridget F.; Adamovics, John; Yoshizumi, Terry T.; Kirsch, David G.; Oldham, Mark
2015-01-01
Purpose: Sophisticated small animal irradiators, incorporating cone-beam-CT image-guidance, have recently been developed which enable exploration of the efficacy of advanced radiation treatments in the preclinical setting. Microstereotactic-body-radiation-therapy (microSBRT) is one technique of interest, utilizing field sizes in the range of 1–15 mm. Verification of the accuracy of microSBRT treatment delivery is challenging due to the lack of available methods to comprehensively measure dose distributions in representative phantoms with sufficiently high spatial resolution and in 3 dimensions (3D). This work introduces a potential solution in the form of anatomically accurate rodent-morphic 3D dosimeters compatible with ultrahigh resolution (0.3 mm3) optical computed tomography (optical-CT) dose read-out. Methods: Rodent-morphic dosimeters were produced by 3D-printing molds of rodent anatomy directly from contours defined on x-ray CT data sets of rats and mice, and using these molds to create tissue-equivalent radiochromic 3D dosimeters from Presage. Anatomically accurate spines were incorporated into some dosimeters, by first 3D printing the spine mold, then forming a high-Z bone equivalent spine insert. This spine insert was then set inside the tissue equivalent body mold. The high-Z spinal insert enabled representative cone-beam CT IGRT targeting. On irradiation, a linear radiochromic change in optical-density occurs in the dosimeter, which is proportional to absorbed dose, and was read out using optical-CT in high-resolution (0.5 mm isotropic voxels). Optical-CT data were converted to absolute dose in two ways: (i) using a calibration curve derived from other Presage dosimeters from the same batch, and (ii) by independent measurement of calibrated dose at a point using a novel detector comprised of a yttrium oxide based nanocrystalline scintillator, with a submillimeter active length. A microSBRT spinal treatment was delivered consisting of a 180
Rigid Body Modes Influence On Microvibration Analysis-Application To Swarm
NASA Astrophysics Data System (ADS)
Laduree, G.; Fransen, S.; Baldesi, G.; Pflieger, I.
2012-07-01
Microvibrations are defined as low level mechanical disturbances affecting payload performance, generated by mobile parts or mechanism operating on-board the spacecraft, like momentum or reaction wheels, pointing mechanism, cryo-coolers or thrusters. The disturbances caused by these sources are transmitted through the spacecraft structure and excite modes of that structure or elements of the payload impacting its performance (e.g. Line of sight rotations inducing some image quality degradation). The dynamic interaction between these three elements (noise source, spacecraft structure and sensitive receiver) makes the microvibration prediction a delicate problem. Microvibration sources are generally of concern in the frequency range from a few Hz to 1000 Hz. However, in some specific cases, high stability at lower frequencies might be requested. This is the case of the SWARM mission, whose objectives are to provide the best ever survey of the geomagnetic field and its temporal evolution as well as supplementary information for studying the interaction of the magnetic field with other physical quantities describing the Earth system (e.g. ocean circulation). Among its instruments, SWARM is embarking a very sensitive 6-axis accelerometer in the low frequency range (10-8 m/s2 or rad/s2 between 10-4 and 0.1 Hz) located at its Centre of Gravity and an Absolute Scalar Magnetometer located at the tip of a boom far from the spacecraft body. The ASM performs its measurements by rotating an alternative magnetic field around its main axis thanks to a piezo-electric motor. This repeated disturbance might generate some pollution of the accelerometer science data. The objective of this work is to focus on the interaction of the rigid body mode calculation method with the elastic contribution of the normal modes excited by the noise source frequency content. It has indeed been reported in the past that NASTRAN Lanczos rigid body modes may lead to inaccurate rigid-body accelerations
The problem of exact interior solutions for rotating rigid bodies in general relativity
NASA Technical Reports Server (NTRS)
Wahlquist, H. D.
1993-01-01
The (3 + 1) dyadic formalism for timelike congruences is applied to derive interior solutions for stationary, axisymmetric, rigidly rotating bodies. In this approach the mathematics is formulated in terms of three-space-covariant, first-order, vector-dyadic, differential equations for a and Omega, the acceleration and angular velocity three-vectors of the rigid body; for T, the stress dyadic of the matter; and for A and B, the 'electric' and 'magnetic' Weyl curvature dyadics which describe the gravitational field. It is shown how an appropriate ansatz for the forms of these dyadics can be used to discover exact rotating interior solutions such as the perfect fluid solution first published in 1968. By incorporating anisotropic stresses, a generalization is found of that previous solution and, in addition, a very simple new solution that can only exist in toroidal configurations.
Topological classification of the Goryachev integrable case in rigid body dynamics
NASA Astrophysics Data System (ADS)
Nikolaenko, S. S.
2016-01-01
A topological analysis of the Goryachev integrable case in rigid body dynamics is made on the basis of the Fomenko-Zieschang theory. The invariants (marked molecules) which are obtained give a complete description, from the standpoint of Liouville classification, of the systems of Goryachev type on various level sets of the energy. It turns out that on appropriate energy levels the Goryachev case is Liouville equivalent to many classical integrable systems and, in particular, the Joukowski, Clebsch, Sokolov and Kovalevskaya-Yehia cases in rigid body dynamics, as well as to some integrable billiards in plane domains bounded by confocal quadrics -- in other words, the foliations given by the closures of generic solutions of these systems have the same structure. Bibliography: 15 titles.
Hamilton's Equations with Euler Parameters for Rigid Body Dynamics Modeling. Chapter 3
NASA Technical Reports Server (NTRS)
Shivarama, Ravishankar; Fahrenthold, Eric P.
2004-01-01
A combination of Euler parameter kinematics and Hamiltonian mechanics provides a rigid body dynamics model well suited for use in strongly nonlinear problems involving arbitrarily large rotations. The model is unconstrained, free of singularities, includes a general potential energy function and a minimum set of momentum variables, and takes an explicit state space form convenient for numerical implementation. The general formulation may be specialized to address particular applications, as illustrated in several three dimensional example problems.
Estimation of motion parameters for a rigid body from its orthogonal projection
NASA Technical Reports Server (NTRS)
Ganguly, S.; Ghosh, B.; Tarn, T. J.; Bejczy, A. K.
1989-01-01
An estimate is presented of the motion parameters, namely, linear and angular velocities of a rigid body rotating and translating in three-dimensional-space. It is assumed that the velocities are constant and that only the orthogonal projection of the motion is observable. In particular, if (x, y, z) is the Cartesian coordinate, it is assumed that the projection of the motion on the x-y plane is observed and the information along the z coordinate is lost.
Molina, John J; Yamamoto, Ryoichi
2013-12-21
An improved formulation of the "Smoothed Profile" method is introduced to perform direct numerical simulations of arbitrary rigid body dispersions in a Newtonian host solvent. Previous implementations of the method were restricted to spherical particles, severely limiting the types of systems that could be studied. The validity of the method is carefully examined by computing the friction/mobility tensors for a wide variety of geometries and comparing them to reference values obtained from accurate solutions to the Stokes-Equation. PMID:24359350
NASA Technical Reports Server (NTRS)
Fitzpatrick, P. M.; Harmon, G. R.; Cochran, J. E.; Shaw, W. A.
1974-01-01
Some methods of approaching a solution to the Hamilton-Jacobi equation are outlined and examples are given to illustrate particular methods. These methods may be used for cases where the Hamilton-Jacobi equation is not separable and have been particularly useful in solving the rigid body motion of an earth satellite subjected to gravity torques. These general applications may also have usefulness in studying the motion of satellites with aerodynamic torque and in studying space vehicle motion where thrusting is involved.
New conditional integrable cases of motion of a rigid body with Kovalevskaya's configuration
NASA Astrophysics Data System (ADS)
Yehia, H. M.; Elmandouh, A. A.
2011-01-01
We consider the general problem of motion of a rigid body about a fixed point under the action of an axisymmetric combination of potential and gyroscopic forces. We introduce two new cases of this problem which are integrable on the zero level of the cyclic integral. The new cases are combined generalizations of several previously known ones, namely those of Kovalevskaya, Yehia, Sokolov, Yehia and Bedweihi and Goriatchev, by the introduction of additional parameters to the structure of each.
The phase topology of a special case of Goryachev integrability in rigid body dynamics
NASA Astrophysics Data System (ADS)
Ryabov, P. E.
2014-07-01
The phase topology of a special case of Goryachev integrability in the problem of motion of a rigid body in a fluid is investigated using the method of Boolean functions, which was developed by Kharlamov for algebraically separated systems. The bifurcation diagram of the moment map is found and the Fomenko invariant, which classifies the systems up to rough Liouville equivalence, is specified. Bibliography: 15 titles.
The phase topology of a special case of Goryachev integrability in rigid body dynamics
Ryabov, P. E.
2014-07-31
The phase topology of a special case of Goryachev integrability in the problem of motion of a rigid body in a fluid is investigated using the method of Boolean functions, which was developed by Kharlamov for algebraically separated systems. The bifurcation diagram of the moment map is found and the Fomenko invariant, which classifies the systems up to rough Liouville equivalence, is specified. Bibliography: 15 titles. (paper)
A Microfluidic Bioreactor for Toxicity Testing of Stem Cell Derived 3D Cardiac Bodies.
Christoffersson, Jonas; Bergström, Gunnar; Schwanke, Kristin; Kempf, Henning; Zweigerdt, Robert; Mandenius, Carl-Fredrik
2016-01-01
Modeling tissues and organs using conventional 2D cell cultures is problematic as the cells rapidly lose their in vivo phenotype. In microfluidic bioreactors the cells reside in microstructures that are continuously perfused with cell culture medium to provide a dynamic environment mimicking the cells natural habitat. These micro scale bioreactors are sometimes referred to as organs-on-chips and are developed in order to improve and extend cell culture experiments. Here, we describe the two manufacturing techniques photolithography and soft lithography that are used in order to easily produce microfluidic bioreactors. The use of these bioreactors is exemplified by a toxicity assessment on 3D clustered human pluripotent stem cells (hPSC)-derived cardiomyocytes by beating frequency imaging. PMID:27052611
Progress Toward Overset-Grid Moving Body Capability for USM3D Unstructured Flow Solver
NASA Technical Reports Server (NTRS)
Pandyna, Mohagna J.; Frink, Neal T.; Noack, Ralph W.
2005-01-01
A static and dynamic Chimera overset-grid capability is added to an established NASA tetrahedral unstructured parallel Navier-Stokes flow solver, USM3D. Modifications to the solver primarily consist of a few strategic calls to the Donor interpolation Receptor Transaction library (DiRTlib) to facilitate communication of solution information between various grids. The assembly of multiple overlapping grids into a single-zone composite grid is performed by the Structured, Unstructured and Generalized Grid AssembleR (SUGGAR) code. Several test cases are presented to verify the implementation, assess overset-grid solution accuracy and convergence relative to single-grid solutions, and demonstrate the prescribed relative grid motion capability.
Selecting best-fit models for estimating the body mass from 3D data of the human calcaneus.
Jung, Go-Un; Lee, U-Young; Kim, Dong-Ho; Kwak, Dai-Soon; Ahn, Yong-Woo; Han, Seung-Ho; Kim, Yi-Suk
2016-05-01
Body mass (BM) estimation could facilitate the interpretation of skeletal materials in terms of the individual's body size and physique in forensic anthropology. However, few metric studies have tried to estimate BM by focusing on prominent biomechanical properties of the calcaneus. The purpose of this study was to prepare best-fit models for estimating BM from the 3D human calcaneus by two major linear regression analysis (the heuristic statistical and all-possible-regressions techniques) and validate the models through predicted residual sum of squares (PRESS) statistics. A metric analysis was conducted based on 70 human calcaneus samples (29 males and 41 females) taken from 3D models in the Digital Korean Database and 10 variables were measured for each sample. Three best-fit models were postulated by F-statistics, Mallows' Cp, and Akaike information criterion (AIC) and Bayes information criterion (BIC) for each available candidate models. Finally, the most accurate regression model yields lowest %SEE and 0.843 of R(2). Through the application of leave-one-out cross validation, the predictive power was indicated a high level of validation accuracy. This study also confirms that the equations for estimating BM using 3D models of human calcaneus will be helpful to establish identification in forensic cases with consistent reliability. PMID:26970867
NASA Astrophysics Data System (ADS)
Wang, Chengjie; Eldredge, Jeff D.
2015-08-01
A strong coupling algorithm is presented for simulating the dynamic interactions between incompressible viscous flows and rigid-body systems in both two- and three-dimensional problems. In this work, the Navier-Stokes equations for incompressible flow are solved on a uniform Cartesian grid by the vorticity-based immersed boundary projection method of Colonius and Taira. Dynamical equations for arbitrary rigid-body systems are also developed. The proposed coupling method attempts to unify the treatment of constraints in the fluid and structure-the incompressibility of the fluid, the linkages in the rigid-body system, and the conditions at the interface-through the use of Lagrange multipliers. The resulting partitioned system of equations is solved with a simple relaxation scheme, based on an identification of virtual inertia from the fluid. The scheme achieves convergence in only 2 to 5 iterations per time step for a wide variety of mass ratios. The formulation requires that only a subset of the discrete fluid equations be solved in each iteration. Several two- and three-dimensional numerical tests are conducted to validate and demonstrate the method, including a falling cylinder, flapping of flexible wings, self-excited oscillations of a system of many linked plates in a free stream, and passive pivoting of a finite aspect ratio plate under the influence of gravity in a free stream. The results from the current method are compared with previous experimental and numerical results and good agreement is achieved.
A new pre-loaded beam geometric stiffness matrix with full rigid body capabilities
NASA Technical Reports Server (NTRS)
Bosela, P. A.; Fertis, D. G.; Shaker, F. J.
1992-01-01
Space structures, such as the Space Station solar arrays, must be extremely light-weight, flexible structures. Accurate prediction of the natural frequencies and mode shapes is essential for determining the structural adequacy of components, and designing a controls system. The tension pre-load in the 'blanket' of photovoltaic solar collectors, and the free/free boundary conditions of a structure in space, causes serious reservations on the use of standard finite element techniques of solution. In particular, a phenomenon known as 'grounding', or false stiffening, of the stiffness matrix occurs during rigid body rotation. The authors have previously shown that the grounding phenomenon is caused by a lack of rigid body rotational capability, and is typical in beam geometric stiffness matrices formulated by others, including those which contain higher order effects. The cause of the problem was identified as the force imbalance inherent in the formulations. In this paper, the authors develop a beam geometric stiffness matrix for a directed force problem, and show that the resultant global stiffness matrix contains complete rigid body mode capabilities, and performs very well in the diagonalization methodology customarily used in dynamic analysis.
Limitations of rigid body descriptions for heavy-duty diesel engine vibration
Hoffman, D.M.W.; Dowling, D.R.
1999-04-01
Internal combustion engine vibration modeling commonly relies on assuming the engine is a linearly reacting rigid body, thereby ignoring rotating, reciprocating, and nonsolid engine components. Limitations of this approach are identified from a series of experiments on a heavy-duty in-line six-cylinder Diesel engine typical of Class VIII trucks. Measurement of all three orthogonal vibration force components were made at each of three engine mounts during standard impact-excitation modal identification tests on the quiescent engine and during engine operation. The running-engine vibration forces, measured throughout the test engine load and speed operating envelope, were projected onto the quiescent-engine rigid body modes to determine the modal content and residual vibration as a function of frequency. Modal decomposition results for the running engine show that the quiescent-engine rigid body modes, with modal frequencies between 5.6 and 26.3 Hz, account for 80 percent or more of the measured engine vibration forces for all engine speeds and loads in a bandwidth from zero to 200 Hz. The likely origins of the residual vibration within this bandwidth are discussed.
An Interface for Specifying Rigid-Body Motions for CFD Applications
NASA Technical Reports Server (NTRS)
Murman, Scott M.; Chan, William; Aftosmis, Michael; Meakin, Robert L.; Kwak, Dochan (Technical Monitor)
2003-01-01
An interface for specifying rigid-body motions for CFD applications is presented. This interface provides a means of describing a component hierarchy in a geometric configuration, as well as the motion (prescribed or six-degree-of-freedom) associated with any component. The interface consists of a general set of datatypes, along with rules for their interaction, and is designed to be flexible in order to evolve as future needs dictate. The specification is currently implemented with an XML file format which is portable across platforms and applications. The motion specification is capable of describing general rigid body motions, and eliminates the need to write and compile new code within the application software for each dynamic configuration, allowing client software to automate dynamic simulations. The interface is integrated with a GUI tool which allows rigid body motions to be prescribed and verified interactively, promoting access to non-expert users. Illustrative examples, as well as the raw XML source of the file specifications, are included.
Modeling the bacterial flagellum by an elastic network of rigid bodies
NASA Astrophysics Data System (ADS)
Speier, C.; Vogel, R.; Stark, H.
2011-08-01
Bacteria such as Escherichia coli propel themselves by rotating a bundle of helical filaments, each driven by a rotary motor embedded in the cell membrane. Each filament is an assembly of thousands of copies of the protein flagellin which assumes two different states. We model the filament by an elastic network of rigid bodies that form bonds with one another according to a scheme suggested by Namba and Vondervistz (1997 Q. Rev. Biophys. 30 1-65) and add additional binding sites at the inner part of the rigid body. Our model reproduces the helical parameters of the 12 possible polymorphic configurations very well. We demonstrate that its energetical ground state corresponds to the normal helical form, usually observed in nature, only when inner and outer binding sites of the rigid body have a large axial displacement. This finding correlates directly to the elongated shape of the flagellin molecule. An Ising Hamiltonian in our model directly addresses the two states of the flagellin protein. It contains an external field that represents external parameters which allow us to alter the ground state of the filament.
The acoustic far-field of rigid bodies in arbitrary motion
NASA Technical Reports Server (NTRS)
Farassat, F.
1974-01-01
The far-field sound produced by a rigid body in arbitrary motion, with shock discontinuities close to the body, is studied. The analysis is based on the work of Ffowcs Williams and Hawkings (1969). An expression for the far-field sound pressure is obtained in the form of surface and line integrals carried out over a contracting sphere and its intersection with the body and shock surfaces. It is also found that in addition to the quadrupole distribution, the discontinuities in Lighthill stress at the shock, the fluid stresses at the body surface, and the curvatures (principal and mean) of the body and shock surfaces contribute to the sound field. Two examples are worked out.
NASA Technical Reports Server (NTRS)
Kim, Kyu-Jung
2005-01-01
Over the past few years high precision three-dimensional (3D) full body laser scanners have been developed to be used as a powerful anthropometry tool for quantification of the morphology of the human body. The full body scanner can quickly extract body characteristics in non-contact fashion. It is required for the Anthropometry and Biomechanics Facility (ABF) to have capabilities for kinematics simulation of a digital human at various postures whereas the laser scanner only allows capturing a single static posture at each time. During this summer fellowship period a theoretical study has been conducted to estimate an arbitrary posture with a series of example postures through finite element (FE) approximation and found that four-point isoparametric FE approximation would result in reasonable maximum position errors less than 5%. Subsequent pilot scan experiments demonstrated that a bead marker with a nominal size of 6 mm could be used as a marker for digitizing 3-D coordinates of anatomical landmarks for further kinematic analysis. Two sessions of human subject testing were conducted for reconstruction of an arbitrary postures from a set of example postures for each joint motion for the forearm/hand complex and the whole upper extremity.
The Rufous Hummingbird in hovering flight -- full-body 3D immersed boundary simulation
NASA Astrophysics Data System (ADS)
Ferreira de Sousa, Paulo; Luo, Haoxiang; Bocanegra Evans, Humberto
2009-11-01
Hummingbirds are an interesting case study for the development of micro-air vehicles since they combine the high flight stability of insects with the low metabolic power per unit of body mass of bats, during hovering flight. In this study, simulations of a full-body hummingbird in hovering flight were performed at a Reynolds number around 3600. The simulations employ a versatile sharp-interface immersed boundary method recently enhanced at our lab that can treat thin membranes and solid bodies alike. Implemented on a Cartesian mesh, the numerical method allows us to capture the vortex dynamics of the wake accurately and efficiently. The whole-body simulation will allow us to clearly identify the three general patterns of flow velocity around the body of the hummingbird referred in Altshuler et al. (Exp Fluids 46 (5), 2009). One focus of the current study is to understand the interaction between the wakes of the two wings at the end of the upstroke, and how the tail actively defects the flow to contribute to pitch stability. Another focus of the study will be to identify the pair of unconnected loops underneath each wing.
Unsteady hydrodynamic effect of rotation on steady rigid-body motion
NASA Astrophysics Data System (ADS)
Bhattacharya, S.
2005-08-01
Owing to the inertial effect of the flow, an unsteady hydrodynamic force will act on a particle of arbitrary shape undergoing a steady rigid-body motion with small but finite Reynolds number if the axis of rotation of the particle is not its axis of rotational symmetry. Unsteady flow field is generated owing to such rotation of the body and as a result the particle experiences a time-dependent translational resistance. In this paper, we analyse this time-dependent hydrodynamic force and obtain its higher-order correction by systematically expanding the Navier Stokes equation in small Reynolds number.
On the identifiability of a rigid body moving in a stationary viscous fluid
NASA Astrophysics Data System (ADS)
Conca, Carlos; Schwindt, Erica L.; Takahashi, Takéo
2012-01-01
This paper is devoted to a geometrical inverse problem associated with a fluid-structure system. More precisely, we consider the interaction between a moving rigid body and a viscous and incompressible fluid. Assuming a low Reynolds regime, the inertial forces can be neglected and, therefore, the fluid motion is modelled by the Stokes system. We first prove the well posedness of the corresponding system. Then we show an identifiability result: with one measure of the Cauchy forces of the fluid on one given part of the boundary and at some positive time, the shape of a convex body and its initial position are identified.
Analytic Theory and Control of the Motion of Spinning Rigid Bodies
NASA Technical Reports Server (NTRS)
Tsiotras, Panagiotis
1993-01-01
Numerical simulations are often resorted to, in order to understand the attitude response and control characteristics of a rigid body. However, this approach in performing sensitivity and/or error analyses may be prohibitively expensive and time consuming, especially when a large number of problem parameters are involved. Thus, there is an important role for analytical models in obtaining an understanding of the complex dynamical behavior. In this dissertation, new analytic solutions are derived for the complete attitude motion of spinning rigid bodies, under minimal assumptions. Hence, we obtain the most general solutions reported in the literature so far. Specifically, large external torques and large asymmetries are included in the problem statement. Moreover, problems involving large angular excursions are treated in detail. A new tractable formulation of the kinematics is introduced which proves to be extremely helpful in the search for analytic solutions of the attitude history of such kinds of problems. The main utility of the new formulation becomes apparent however, when searching for feedback control laws for stabilization and/or reorientation of spinning spacecraft. This is an inherently nonlinear problem, where standard linear control techniques fail. We derive a class of control laws for spin axis stabilization of symmetric spacecraft using only two pairs of gas jet actuators. Practically, this could correspond to a spacecraft operating in failure mode, for example. Theoretically, it is also an important control problem which, because of its difficulty, has received little, if any, attention in the literature. The proposed control laws are especially simple and elegant. A feedback control law that achieves arbitrary reorientation of the spacecraft is also derived, using ideas from invariant manifold theory. The significance of this research is twofold. First, it provides a deeper understanding of the fundamental behavior of rigid bodies subject to body
Dynamical models for a spacecraft idealized as a set of multi-hinged rigid bodies
NASA Technical Reports Server (NTRS)
Larson, V.
1973-01-01
A brief description is presented of a canonical set of equations which governs the behavior of an n-body spacecraft. General results are given for the case in which the spacecraft is modeled in terms of n rigid bodies connected by dissipative elastic joints. The final equations are free from constraint torques and involve only r variables (r is the number of degrees of freedom of the system). An advantage which accompanies the elimination of the constraint torques is a decrease in the computer run time (especially when n is large).
Stewart, Arthur D; Klein, Susan; Young, Julie; Simpson, Susan; Lee, Amanda J; Harrild, Kirstin; Crockett, Philip; Benson, Philip J
2012-05-01
We piloted three-dimensional (3D) body scanning in eating disorder (ED) patients. Assessments of 22 ED patients (including nine anorexia nervosa (AN) patients, 12 bulimia nervosa (BN) patients, and one patient with eating disorder not otherwise specified) and 22 matched controls are presented. Volunteers underwent visual screening, two-dimensional (2D) digital photography to assess perception and dissatisfaction (via computerized image distortion), and adjunctive 3D full-body scanning. Patients and controls perceived themselves as bigger than their true shape (except in the chest region for controls and anorexia patients). All participants wished to be smaller across all body regions. Patients had poorer veridical perception and greater dissatisfaction than controls. Perception was generally poorer and dissatisfaction greater in bulimia compared with anorexia patients. 3D-volume:2D-area relationships showed that anorexia cases had least tissue on the torso and most on the arms and legs relative to frontal area. The engagement of patients with the scanning process suggests a validation study is viable. This would enable mental constructs of body image to be aligned with segmental volume of body areas, overcoming limitations, and errors associated with 2D instruments restricted to frontal (coronal) shapes. These novel data could inform the design of clinical trials in adjunctive treatments for eating disorders. PMID:22506746
Symmetry breaking in 3D wake of a bluff body generates rotation and drift
NASA Astrophysics Data System (ADS)
Lacis, Ugis; Brosse, Nicolas; Bagheri, Shervin; Lundell, Fredrik; Mazzino, Andrea; Olivieri, Stefano; Kellay, Hamid
2014-11-01
Bluff body wakes have historically been important for understanding nature and aiding industry. For Reynolds numbers above approximately Re ~ 10 , a recirculation bubble develops behind the bluff body. If a solid or elastic appendage is attached to the bluff body, it may exert a torque and a side force on the body. Previously we have used theory, numerical simulations and experiments to investigate and explain this phenomenon in two dimensions. Now we advance our investigation to three dimensional objects. More specifically, we consider a sphere and attach a sheet of given shape behind it for Re = 200 . We investigate the problem using numerical simulations and extend our theoretical model developed in two dimensions. Then we complement our findings with water tank experiments of freely falling cylinder with sheet of various mass behind it. We show that the torque and side force can be greatly changed if the density of the sheet is different compared to the cylinder. Finally we discuss the possibility of optimal configurations for propulsion generation.
Energy cost and body centre of mass' 3D intracycle velocity variation in swimming.
Figueiredo, Pedro; Barbosa, Tiago M; Vilas-Boas, João Paulo; Fernandes, Ricardo J
2012-09-01
The purpose of this study was to examine the relationship between the energy cost (C) and the 3D intracycle velocity variation (IVV; swimming direction--x, vertical--y and lateral--z axes) throughout the 200 m front crawl event. Ten international level swimmers performed a maximal 200 m front crawl swim followed by 50, 100 and 150 m bouts at the same pace as in the 200 m splits. Oxygen consumption was measured during the bouts and blood samples were collected before and after each one. The C was calculated for each 50 m lap as the ratio of the total energy expenditure (three energy pathways) to the distance. A respiratory snorkel and valve system with low hydrodynamic resistance was used to measure pulmonary ventilation and to collect breathing air samples. Two above water and four underwater cameras videotaped the swim bouts and thereafter APAS was used to assess the centre of mass IVV (x, y and z components). The increase in the C was significantly associated with the increase in the IVV in x for the first 50 m lap (R = -0.83, P < 0.01). It is concluded that the IVV relationship with C in a competitive event does not present the direct relationship found in the literature, revealing a great specificity, which suggests that the relation between these two parameters could not be used as a performance predictor in competitive events. PMID:22262010
Utilization of 3D imaging flash lidar technology for autonomous safe landing on planetary bodies
NASA Astrophysics Data System (ADS)
Amzajerdian, Farzin; Vanek, Michael; Petway, Larry; Pierrottet, Diego; Busch, George; Bulyshev, Alexander
2010-01-01
NASA considers Flash Lidar a critical technology for enabling autonomous safe landing of future large robotic and crewed vehicles on the surface of the Moon and Mars. Flash Lidar can generate 3-Dimensional images of the terrain to identify hazardous features such as craters, rocks, and steep slopes during the final stages of descent and landing. The onboard flight comptuer can use the 3-D map of terain to guide the vehicle to a safe site. The capabilities of Flash Lidar technology were evaluated through a series of static tests using a calibrated target and through dynamic tests aboard a helicopter and a fixed wing airctarft. The aircraft flight tests were perfomed over Moonlike terrain in the California and Nevada deserts. This paper briefly describes the Flash Lidar static and aircraft flight test results. These test results are analyzed against the landing application requirements to identify the areas of technology improvement. The ongoing technology advancement activities are then explained and their goals are described.
Utilization of 3-D Imaging Flash Lidar Technology for Autonomous Safe Landing on Planetary Bodies
NASA Technical Reports Server (NTRS)
Amzajerdian, Farzin; Vanek, Michael; Petway, Larry; Pierrotter, Diego; Busch, George; Bulyshev, Alexander
2010-01-01
NASA considers Flash Lidar a critical technology for enabling autonomous safe landing of future large robotic and crewed vehicles on the surface of the Moon and Mars. Flash Lidar can generate 3-Dimensional images of the terrain to identify hazardous features such as craters, rocks, and steep slopes during the final stages of descent and landing. The onboard flight computer can use the 3-D map of terrain to guide the vehicle to a safe site. The capabilities of Flash Lidar technology were evaluated through a series of static tests using a calibrated target and through dynamic tests aboard a helicopter and a fixed wing aircraft. The aircraft flight tests were performed over Moon-like terrain in the California and Nevada deserts. This paper briefly describes the Flash Lidar static and aircraft flight test results. These test results are analyzed against the landing application requirements to identify the areas of technology improvement. The ongoing technology advancement activities are then explained and their goals are described.
Wavelet-based adaptive numerical simulation of unsteady 3D flow around a bluff body
NASA Astrophysics Data System (ADS)
de Stefano, Giuliano; Vasilyev, Oleg
2012-11-01
The unsteady three-dimensional flow past a two-dimensional bluff body is numerically simulated using a wavelet-based method. The body is modeled by exploiting the Brinkman volume-penalization method, which results in modifying the governing equations with the addition of an appropriate forcing term inside the spatial region occupied by the obstacle. The volume-penalized incompressible Navier-Stokes equations are numerically solved by means of the adaptive wavelet collocation method, where the non-uniform spatial grid is dynamically adapted to the flow evolution. The combined approach is successfully applied to the simulation of vortex shedding flow behind a stationary prism with square cross-section. The computation is conducted at transitional Reynolds numbers, where fundamental unstable three-dimensional vortical structures exist, by well-predicting the unsteady forces arising from fluid-structure interaction.
NASA Technical Reports Server (NTRS)
Zimmermann, M.; Szedenits, E., Jr.
1979-01-01
An axially symmetric, torque-free rigid body, rotating and precessing, emits gravitational quadrupole radiation at two frequencies, omega and 2 omega, corresponding to the l = 2, m = 1,2 spherical harmonics. The paper presents explicitly the waveforms of the two polarizations at both frequencies. From observations of gravitational waves, one can derive information about the body's orientation and its precession amplitude. Electromagnetic radiation emitted by a spot fixed on the surface of the body arrives in pulses at a mean frequency Omega which is typically different from omega. If the body is not axially symmetric but the amplitude of the precession is small, the gravitational radiation at the lower frequency omega is split into two frequencies on either side of the electromagnetic pulse frequency. Explicit waveforms for the two polarizations in this case are also presented.
NASA Astrophysics Data System (ADS)
Nguyen, Trung D.; Phillips, Carolyn L.; Anderson, Joshua A.; Glotzer, Sharon C.
2011-03-01
Rigid body constraints are commonly used in a wide range of molecular modeling applications from the atomistic scale, modeling the bonds in molecules such as water, carbon dioxide, and benzene, to the colloidal scale, modeling macroscopic rods, plates and patchy nanoparticles. While the parallel implementations of rigid constraints for molecular dynamics simulations for distributed memory clusters have poor performance scaling, on shared memory systems, such as multi-core CPUs and many-core graphics processing units (GPUs), rigid body constraints can be parallelized so that significantly better performance is possible. We have designed a massively parallel rigid body constraint algorithm and implemented it in HOOMD-Blue, a GPU-accelerated, open-source, general purpose molecular dynamics simulation package. For typical simulations, the GPU implementation running on a single NVID IA GTX 480 card is twice as fast as LAMMPS running on 32 CPU cores. In the HOOMD-blue code package, rigid constraints can be used seamlessly with non-rigid parts of the system and with different integration methods, including NVE, NVT, NPT, and Brownian Dynamics. We have also incorporated the FIRE energy minimization algorithm, reformulated to be applicable to mixed systems of rigid bodies and non-rigid particles.
Nérot, Agathe; Choisne, Julie; Amabile, Célia; Travert, Christophe; Pillet, Hélène; Wang, Xuguang; Skalli, Wafa
2015-12-16
The aim of this study was to propose a novel method for reconstructing the external body envelope from the low dose biplanar X-rays of a person. The 3D body envelope was obtained by deforming a template to match the surface profiles in two X-rays images in three successive steps: global morphing to adopt the position of a person and scale the template׳s body segments, followed by a gross deformation and a fine deformation using two sets of pre-defined control points. To evaluate the method, a biplanar X-ray acquisition was obtained from head to foot for 12 volunteers in a standing posture. Up to 172 radio-opaque skin markers were attached to the body surface and used as reference positions. Each envelope was reconstructed three times by three operators. Results showed a bias lower than 7mm and a confidence interval (95%) of reproducibility lower than 6mm for all body parts, comparable to other existing methods matching a template onto stereographic photographs. The proposed method offers the possibility of reconstructing body shape in addition to the skeleton using a low dose biplanar X-rays system. PMID:26592437
Hribar, K C; Finlay, D; Ma, X; Qu, X; Ondeck, M G; Chung, P H; Zanella, F; Engler, A J; Sheikh, F; Vuori, K; Chen, S C
2015-06-01
Long-term culture and monitoring of individual multicellular spheroids and embryoid bodies (EBs) remains a challenge for in vitro cell propagation. Here, we used a continuous 3D projection printing approach - with an important modification of nonlinear exposure - to generate concave hydrogel microstructures that permit spheroid growth and long-term maintenance, without the need for spheroid transfer. Breast cancer spheroids grown to 10 d in the concave structures showed hypoxic cores and signs of necrosis using immunofluorescent and histochemical staining, key features of the tumor microenvironment in vivo. EBs consisting of induced pluripotent stem cells (iPSCs) grown on the hydrogels demonstrated narrow size distribution and undifferentiated markers at 3 d, followed by signs of differentiation by the presence of cavities and staining of the three germ layers at 10 d. These findings demonstrate a new method for long-term (e.g. beyond spheroid formation at day 2, and with media exchange) 3D cell culture that should be able to assist in cancer spheroid studies as well as embryogenesis and patient-derived disease modeling with iPSC EBs. PMID:25900329
Hribar, K.C; Finlay, D.; Ma, X.; Qu, X.; Ondeck, M. G.; Chung, P. H.; Zanella, F.; Engler, A. J.; Sheikh, F.; Vuori, K.; Chen, S.
2015-01-01
Long-term culture and monitoring of individual multicellular spheroids and embryoid bodies (EBs) remains a challenge for in vitro cell propogation. Here, we used a continuous 3D projection printing approach – with an important modification of nonlinear exposure — to generate concave hydrogel microstructures that permit spheroid growth and long-term maintenance, without the need for spheroid transfer. Breast cancer spheroids grown to 10 d in the concave structures showed hypoxic cores and signs of necrosis using immunofluorescent and histochemical staining, key features of the tumor microenvironment in vivo. EBs consisting of induced pluripotent stem cells (iPSCs) grown on the hydrogels demonstrated narrow size distribution and undifferentiated markers at 3 d, followed by signs of differentiation by the presence of cavities and staining of the three germ layers at 10 d. These findings demonstrate a new method for long-term (e.g. beyond spheroid formation at day 2, and with media exchange) 3D cell culture that should be able to assist in cancer spheroid studies as well as embryogenesis and patient-derived disease modeling with iPSC EBs. PMID:25900329
The Serret-Andoyer formalism in rigid-body dynamics: I. Symmetries and perturbations
NASA Astrophysics Data System (ADS)
Gurfil, P.; Elipe, A.; Tangren, W.; Efroimsky, M.
2007-08-01
This paper reviews the Serret-Andoyer (SA) canonical formalism in rigid-body dynamics, and presents some new results. As is well known, the problem of unsupported and unperturbed rigid rotator can be reduced. The availability of this reduction is offered by the underlying symmetry, that stems from conservation of the angular momentum and rotational kinetic energy. When a perturbation is turned on, these quantities are no longer preserved. Nonetheless, the language of reduced description remains extremely instrumental even in the perturbed case. We describe the canonical reduction performed by the Serret-Andoyer (SA) method, and discuss its applications to attitude dynamics and to the theory of planetary rotation. Specifically, we consider the case of angular-velocity-dependent torques, and discuss the variation-of-parameters-inherent antinomy between canonicity and osculation. Finally, we address the transformation of the Andoyer variables into action-angle ones, using the method of Sadov.
SHED: A program for three-dimensional, rigid body, shroud ejection dynamics
Segalman, D.J.
1988-03-01
The computer program SHED (for SHroud Ejection Dynamics) which calculates the exoatmospheric trajectory of a missile shroud is described. This rigid body dynamics program follows the motion of the shroud as its motors accelerate it ahead and away form the missile. Of particular interest is the ability of SHED to accommodate the forces produced by the motors which are ''fixed'' to the body in the sense that they both translate and rotate along with the body. The code as written has the following capabilities: The resulting program can accommodate an arbitrary number of motors, arranged in an arbitrary manner on the shroud, and each imposing an arbitrary schedule of thrust; The shroud may have any arbitrary shape; and Guides can be accommodated which protect the payload by preventing shroud rotation or lateral motion until the shroud has passed over the guide. Limitations are that all bodies are assumed to be rigid and aerodynamic loads are not included. SHED has proven itself sufficiently robust and versatile to permit a critical comparison of a large range of shroud separation strategies in selecting a separation strategy for the Strategic TARgeting System (STARS) funded by the Army SDI Office. 8 refs., 9 figs.
Aerodynamic heating on 3-D bodies including the effects of entropy-layer swallowing
NASA Technical Reports Server (NTRS)
Dejarnette, F. R.; Hamilton, H. H.
1974-01-01
A relatively simple method was developed previously (authors, 1973) for calculating laminar, transitional, and turbulent heating rates on three-dimensional bodies in hypersonic flows. This method was shown to yield reasonably accurate results for laminar heating on blunted circular and elliptical cones and an earlier version of the space shuttle vehicle. As the boundary layer along the surface grows, more and more of the inviscid-flow mass is entrained into the boundary layer, and the streamlines which passed through the nearly normal portion of the bow shock wave are 'swallowed' by the boundary layer. This phenomenon is often referred to as entropy-layer or streamline swallowing, and it can have a significant effect on the calculated heating rates. An approximate, yet simple, method for including the effects of entropy-layer swallowing in the heating-rate calculations is given.
Force sensing using 3D displacement measurements in linear elastic bodies
NASA Astrophysics Data System (ADS)
Feng, Xinzeng; Hui, Chung-Yuen
2016-07-01
In cell traction microscopy, the mechanical forces exerted by a cell on its environment is usually determined from experimentally measured displacement by solving an inverse problem in elasticity. In this paper, an innovative numerical method is proposed which finds the "optimal" traction to the inverse problem. When sufficient regularization is applied, we demonstrate that the proposed method significantly improves the widely used approach using Green's functions. Motivated by real cell experiments, the equilibrium condition of a slowly migrating cell is imposed as a set of equality constraints on the unknown traction. Our validation benchmarks demonstrate that the numeric solution to the constrained inverse problem well recovers the actual traction when the optimal regularization parameter is used. The proposed method can thus be applied to study general force sensing problems, which utilize displacement measurements to sense inaccessible forces in linear elastic bodies with a priori constraints.
Resonances in the forced turbulent wake past a 3D blunt body
NASA Astrophysics Data System (ADS)
Barros, Diogo; Borée, Jacques; Noack, Bernd R.; Spohn, Andreas
2016-06-01
We study the resonances of a forced turbulent wake past a flat-based bluff body using symmetric and antisymmetric actuation modes. The natural, unforced wake flow exhibits broadband dynamics superimposed on oscillatory motions linked to the reminiscent laminar Bénard-von Kármán instability in the turbulent flow. Harmonic and subharmonic resonances can be controlled by the phase relationship of periodic forcing and are linked to the symmetry properties of vortex shedding. Symmetric forcing leads to a strong subharmonic amplification of vortex shedding in the wake, but no harmonic excitation. The robustness of the subharmonic resonance is confirmed at different Reynolds numbers. Antisymmetric actuation, however, promotes a harmonic resonance with very similar wake and drag features.
Force sensing using 3D displacement measurements in linear elastic bodies
NASA Astrophysics Data System (ADS)
Feng, Xinzeng; Hui, Chung-Yuen
2016-04-01
In cell traction microscopy, the mechanical forces exerted by a cell on its environment is usually determined from experimentally measured displacement by solving an inverse problem in elasticity. In this paper, an innovative numerical method is proposed which finds the "optimal" traction to the inverse problem. When sufficient regularization is applied, we demonstrate that the proposed method significantly improves the widely used approach using Green's functions. Motivated by real cell experiments, the equilibrium condition of a slowly migrating cell is imposed as a set of equality constraints on the unknown traction. Our validation benchmarks demonstrate that the numeric solution to the constrained inverse problem well recovers the actual traction when the optimal regularization parameter is used. The proposed method can thus be applied to study general force sensing problems, which utilize displacement measurements to sense inaccessible forces in linear elastic bodies with a priori constraints.
ZIP3D: An elastic and elastic-plastic finite-element analysis program for cracked bodies
NASA Technical Reports Server (NTRS)
Shivakumar, K. N.; Newman, J. C., Jr.
1990-01-01
ZIP3D is an elastic and an elastic-plastic finite element program to analyze cracks in three dimensional solids. The program may also be used to analyze uncracked bodies or multi-body problems involving contacting surfaces. For crack problems, the program has several unique features including the calculation of mixed-mode strain energy release rates using the three dimensional virtual crack closure technique, the calculation of the J integral using the equivalent domain integral method, the capability to extend the crack front under monotonic or cyclic loading, and the capability to close or open the crack surfaces during cyclic loading. The theories behind the various aspects of the program are explained briefly. Line-by-line data preparation is presented. Input data and results for an elastic analysis of a surface crack in a plate and for an elastic-plastic analysis of a single-edge-crack-tension specimen are also presented.
Drag Prediction for the NASA CRM Wing-Body-Tail Using CFL3D and OVERFLOW on an Overset Mesh
NASA Technical Reports Server (NTRS)
Sclafani, Anthony J.; DeHaan, Mark A.; Vassberg, John C.; Rumsey, Christopher L.; Pulliam, Thomas H.
2010-01-01
In response to the fourth AIAA CFD Drag Prediction Workshop (DPW-IV), the NASA Common Research Model (CRM) wing-body and wing-body-tail configurations are analyzed using the Reynolds-averaged Navier-Stokes (RANS) flow solvers CFL3D and OVERFLOW. Two families of structured, overset grids are built for DPW-IV. Grid Family 1 (GF1) consists of a coarse (7.2 million), medium (16.9 million), fine (56.5 million), and extra-fine (189.4 million) mesh. Grid Family 2 (GF2) is an extension of the first and includes a superfine (714.2 million) and an ultra-fine (2.4 billion) mesh. The medium grid anchors both families with an established build process for accurate cruise drag prediction studies. This base mesh is coarsened and enhanced to form a set of parametrically equivalent grids that increase in size by a factor of roughly 3.4 from one level to the next denser level. Both CFL3D and OVERFLOW are run on GF1 using a consistent numerical approach. Additional OVERFLOW runs are made to study effects of differencing scheme and turbulence model on GF1 and to obtain results for GF2. All CFD results are post-processed using Richardson extrapolation, and approximate grid-converged values of drag are compared. The medium grid is also used to compute a trimmed drag polar for both codes.
Implementation of Kane's Method for a Spacecraft Composed of Multiple Rigid Bodies
NASA Technical Reports Server (NTRS)
Stoneking, Eric T.
2013-01-01
Equations of motion are derived for a general spacecraft composed of rigid bodies connected via rotary (spherical or gimballed) joints in a tree topology. Several supporting concepts are developed in depth. Basis dyads aid in the transition from basis-free vector equations to component-wise equations. Joint partials allow abstraction of 1-DOF, 2-DOF, 3-DOF gimballed and spherical rotational joints to a common notation. The basic building block consisting of an "inner" body and an "outer" body connected by a joint enables efficient organization of arbitrary tree structures. Kane's equation is recast in a form which facilitates systematic assembly of large systems of equations, and exposes a relationship of Kane's equation to Newton and Euler's equations which is obscured by the usual presentation. The resulting system of dynamic equations is of minimum dimension, and is suitable for numerical solution by computer. Implementation is ·discussed, and illustrative simulation results are presented.
NASA Technical Reports Server (NTRS)
Rodriguez, G.
1988-01-01
The inverse and forward dynamics problems for a set of rigid bodies connected by hinges to form a topological tree are solved by using recursive techniques from linear filtering and smoothing theory. An inward filtering sequence computes a set of constraint moments and forces. This is followed by an outward sequence to determine a corresponding set of angular and linear accelerations. An inward sequence begins at the tips of all of the terminal bodies of the tree and proceeds inwardly through all of the branches until it reaches the root. Similarly, an outward sequence begins at the root and propagates to all of the tree branches until it reaches the tips of the terminal bodies. The paper also provides an approach to evaluate recursively the composite multibody system inertia matrix and its inverse.
Attitude dynamics simulation subroutines for systems of hinge-connected rigid bodies
NASA Technical Reports Server (NTRS)
Fleischer, G. E.; Likins, P. W.
1974-01-01
Several computer subroutines are designed to provide the solution to minimum-dimension sets of discrete-coordinate equations of motion for systems consisting of an arbitrary number of hinge-connected rigid bodies assembled in a tree topology. In particular, these routines may be applied to: (1) the case of completely unrestricted hinge rotations, (2) the totally linearized case (all system rotations are small), and (3) the mixed, or partially linearized, case. The use of the programs in each case is demonstrated using a five-body spacecraft and attitude control system configuration. The ability of the subroutines to accommodate prescribed motions of system bodies is also demonstrated. Complete listings and user instructions are included for these routines (written in FORTRAN V) which are intended as multi- and general-purpose tools in the simulation of spacecraft and other complex electromechanical systems.
Three-Axis Time-Optimal Attitude Maneuvers of a Rigid-Body
NASA Astrophysics Data System (ADS)
Wang, Xijing; Li, Jisheng
With the development trends for modern satellites towards macro-scale and micro-scale, new demands are requested for its attitude adjustment. Precise pointing control and rapid maneuvering capabilities have long been part of many space missions. While the development of computer technology enables new optimal algorithms being used continuously, a powerful tool for solving problem is provided. Many papers about attitude adjustment have been published, the configurations of the spacecraft are considered rigid body with flexible parts or gyrostate-type systems. The object function always include minimum time or minimum fuel. During earlier satellite missions, the attitude acquisition was achieved by using the momentum ex change devices, performed by a sequential single-axis slewing strategy. Recently, the simultaneous three-axis minimum-time maneuver(reorientation) problems have been studied by many researchers. It is important to research the minimum-time maneuver of a rigid spacecraft within onboard power limits, because of potential space application such as surveying multiple targets in space and academic value. The minimum-time maneuver of a rigid spacecraft is a basic problem because the solutions for maneuvering flexible spacecraft are based on the solution to the rigid body slew problem. A new method for the open-loop solution for a rigid spacecraft maneuver is presented. Having neglected all perturbation torque, the necessary conditions of spacecraft from one state to another state can be determined. There is difference between single-axis with multi-axis. For single- axis analytical solution is possible and the switching line passing through the state-space origin belongs to parabolic. For multi-axis, it is impossible to get analytical solution due to the dynamic coupling between the axes and must be solved numerically. Proved by modern research, Euler axis rotations are quasi-time-optimal in general. On the basis of minimum value principles, a research for
NASA Astrophysics Data System (ADS)
Zhang, N.; Zong, Z.
2011-11-01
The dynamic elastic response of a floating ship hull girder to an underwater explosion bubble is normally composed of two parts: rigid-body motion and elastic deformation. However, the effects of rigid-body motion have consistently been neglected in the current literature based on the assumption that they are small. In this paper, our focus is on the study of rigid-body motion effects on the hull girder's elastic deformation, also known as the ‘whipping response’. A theory of interaction between a gas bubble and a hull girder is presented. The bubble dynamic equations combined with the bubble migration, free surface effect and drag force considerations are solved numerically using the Runge-Kutta method. The rigid-body and elastic responses of the hull that are induced by the impulsive pressure of a bubble are calculated using the methods presented herein. Two different examples of real ships are given to demonstrate the effect of rigid-body motion on whipping responses. The numerical results show that rigid-body motions reduce the amplitudes and vibration natural periods of the bending moments of the hull girder. These effects can be ignored for slender hulls, but must be taken into consideration for shorter/wider hulls so as not to underestimate the longitudinal strength.
NASA Technical Reports Server (NTRS)
Zimmerman, M.
1979-01-01
The classical mechanics results for free precession which are needed in order to calculate the weak field, slow-motion, quadrupole-moment gravitational waves are reviewed. Within that formalism, algorithms are given for computing the exact gravitational power radiated and waveforms produced by arbitrary rigid-body freely-precessing sources. The dominant terms are presented in series expansions of the waveforms for the case of an almost spherical object precessing with a small wobble angle. These series expansions, which retain the precise frequency dependence of the waves, may be useful for gravitational astronomers when freely-precessing sources begin to be observed.
The force function of two rigid celestial bodies in Delaunay-Andoyer variables
NASA Astrophysics Data System (ADS)
Zlenko, A. A.
2016-01-01
Two new expansions of the force function of two rigid celestial bodies of finite size and arbitrary shape are obtained in Delaunay-Andoyer variables with any degree of accuracy, in the form of a partial sum of an eight dimensional Fourier series. These expansions of the force function contain products of expressions for the momenta and Stokes constants in terms of sines and cosines, whose arguments are linear combinations of the Delaunay and Andoyer angular variables. These representations of the force function are compact and convenient for applications in various problems in celestial mechanics and astrodynamics.
Fast time-reversible algorithms for molecular dynamics of rigid-body systems.
Kajima, Yasuhiro; Hiyama, Miyabi; Ogata, Shuji; Kobayashi, Ryo; Tamura, Tomoyuki
2012-06-21
In this paper, we present time-reversible simulation algorithms for rigid bodies in the quaternion representation. By advancing a time-reversible algorithm [Y. Kajima, M. Hiyama, S. Ogata, and T. Tamura, J. Phys. Soc. Jpn. 80, 114002 (2011)] that requires iterations in calculating the angular velocity at each time step, we propose two kinds of iteration-free fast time-reversible algorithms. They are easily implemented in codes. The codes are compared with that of existing algorithms through demonstrative simulation of a nanometer-sized water droplet to find their stability of the total energy and computation speeds. PMID:22779579
Annihilation of angular momentum drift during spinning-up and thrusting maneuvers of rigid bodies
NASA Technical Reports Server (NTRS)
Longuski, J. M.; Kia, T.; Breckenridge, W. G.
1984-01-01
A very simple, yet accurate, heuristic solution for the spiral path of the angular momentum vector during spin-up and spin-down maneuvers of rigid body spacecraft is presented. A two-burn scheme is proposed consisting of a burn, a coast, and a second burn of the spin thruster. The appropriate burn times are found by a transcendental equation similar to Kepler's equation. Numerical results verify the accuracy of the burn, coast, and burn times given by closed form expressions. The scheme can also be applied to the problem of axial thrusting during constant spin.
An implicit time-stepping scheme for rigid body dynamics with Coulomb friction
STEWART,DAVID; TRINKLE,JEFFREY C.
2000-02-15
In this paper a new time-stepping method for simulating systems of rigid bodies is given. Unlike methods which take an instantaneous point of view, the method is based on impulse-momentum equations, and so does not need to explicitly resolve impulsive forces. On the other hand, the method is distinct from previous impulsive methods in that it does not require explicit collision checking and it can handle simultaneous impacts. Numerical results are given for one planar and one three-dimensional example, which demonstrate the practicality of the method, and its convergence as the step size becomes small.
NASA Astrophysics Data System (ADS)
Zhang, Rongchun; Nishiyama, Yusuke; Ramamoorthy, Ayyalusamy
2015-10-01
A proton-detected 3D 1H/13C/1H chemical shift correlation experiment is proposed for the assignment of chemical shift resonances, identification of 13C-1H connectivities, and proximities of 13C-1H and 1H-1H nuclei under ultrafast magic-angle-spinning (ultrafast-MAS) conditions. Ultrafast-MAS is used to suppress all anisotropic interactions including 1H-1H dipolar couplings, while the finite-pulse radio frequency driven dipolar recoupling (fp-RFDR) pulse sequence is used to recouple dipolar couplings among protons and the insensitive nuclei enhanced by polarization transfer technique is used to transfer magnetization between heteronuclear spins. The 3D experiment eliminates signals from non-carbon-bonded protons and non-proton-bonded carbons to enhance spectral resolution. The 2D (F1/F3) 1H/1H and 2D 13C/1H (F2/F3) chemical shift correlation spectra extracted from the 3D spectrum enable the identification of 1H-1H proximity and 13C-1H connectivity. In addition, the 2D (F1/F2) 1H/13C chemical shift correlation spectrum, incorporated with proton magnetization exchange via the fp-RFDR recoupling of 1H-1H dipolar couplings, enables the measurement of proximities between 13C and even the remote non-carbon-bonded protons. The 3D experiment also gives three-spin proximities of 1H-1H-13C chains. Experimental results obtained from powder samples of L-alanine and L-histidine ṡ H2O ṡ HCl demonstrate the efficiency of the 3D experiment.
Asuni, G; Beek, T van; Van Utyven, E; McCowan, P; McCurdy, B.M.C.
2014-08-15
Radical treatment techniques such as stereotactic body radiation therapy (SBRT) are becoming popular and they involve delivery of large doses in fewer fractions. Due to this feature of SBRT, a high-resolution, pre-treatment dose verification method that makes use of a 3D patient representation would be appropriate. Such a technique will provide additional information about dose delivered to the target volume(s) and organs-at-risk (OARs) in the patient volume compared to 2D verification methods. In this work, we investigate an electronic portal imaging device (EPID) based pre-treatment QA method which provides an accurate reconstruction of the 3D-dose distribution in the patient model. Customized patient plans are delivered ‘in air’ and the portal images are collected using the EPID in cine mode. The images are then analysed to determine an estimate of the incident energy fluence. This is then passed to a collapsed-cone convolution dose algorithm which reconstructs a 3D patient dose estimate on the CT imaging dataset. To date, the method has been applied to 5 SBRT patient plans. Reconstructed doses were compared to those calculated by the TPS. Reconstructed mean doses were mostly within 3% of those in the TPS. DVHs of target volumes and OARs compared well. The Chi pass rates using 3%/3mm in the high dose region are greater than 97% in all cases. These initial results demonstrate clinical feasibility and utility of a robust, efficient, effective and convenient pre-treatment QA method using EPID. Research sponsored in part by Varian Medical Systems.
Crossley, Kara L.; Cornelissen, Piers L.; Tovée, Martin J.
2012-01-01
What is the ideal body size and shape that we want for ourselves and our partners? What are the important physical features in this ideal? And do both genders agree on what is an attractive body? To answer these questions we used a 3D interactive software system which allows our participants to produce a photorealistic, virtual male or female body. Forty female and forty male heterosexual Caucasian observers (females mean age 19.10 years, s.d. 1.01; 40 males mean age 19.84, s.d. 1.66) set their own ideal size and shape, and the size and shape of their ideal partner using the DAZ studio image manipulation programme. In this programme the shape and size of a 3D body can be altered along 94 independent dimensions, allowing each participant to create the exact size and shape of the body they want. The volume (and thus the weight assuming a standard density) and the circumference of the bust, waist and hips of these 3D models can then be measured. The ideal female body set by women (BMI = 18.9, WHR = 0.70, WCR = 0.67) was very similar to the ideal partner set by men, particularly in their BMI (BMI = 18.8, WHR = 0.73, WCR = 0.69). This was a lower BMI than the actual BMI of 39 of the 40 women. The ideal male body set by the men (BMI = 25.9, WHR = 0.87, WCR = 0.74) was very similar to the ideal partner set by the women (BMI = 24.5, WHR = 0.86, WCR = 0.77). This was a lower BMI than the actual BMI of roughly half of the men and a higher BMI than the other half. The results suggest a consistent preference for an ideal male and female body size and shape across both genders. The results also suggest that both BMI and torso shape are important components for the creation of the ideal body. PMID:23209791
Crossley, Kara L; Cornelissen, Piers L; Tovée, Martin J
2012-01-01
What is the ideal body size and shape that we want for ourselves and our partners? What are the important physical features in this ideal? And do both genders agree on what is an attractive body? To answer these questions we used a 3D interactive software system which allows our participants to produce a photorealistic, virtual male or female body. Forty female and forty male heterosexual Caucasian observers (females mean age 19.10 years, s.d. 1.01; 40 males mean age 19.84, s.d. 1.66) set their own ideal size and shape, and the size and shape of their ideal partner using the DAZ studio image manipulation programme. In this programme the shape and size of a 3D body can be altered along 94 independent dimensions, allowing each participant to create the exact size and shape of the body they want. The volume (and thus the weight assuming a standard density) and the circumference of the bust, waist and hips of these 3D models can then be measured. The ideal female body set by women (BMI = 18.9, WHR = 0.70, WCR = 0.67) was very similar to the ideal partner set by men, particularly in their BMI (BMI = 18.8, WHR = 0.73, WCR = 0.69). This was a lower BMI than the actual BMI of 39 of the 40 women. The ideal male body set by the men (BMI = 25.9, WHR = 0.87, WCR = 0.74) was very similar to the ideal partner set by the women (BMI = 24.5, WHR = 0.86, WCR = 0.77). This was a lower BMI than the actual BMI of roughly half of the men and a higher BMI than the other half. The results suggest a consistent preference for an ideal male and female body size and shape across both genders. The results also suggest that both BMI and torso shape are important components for the creation of the ideal body. PMID:23209791
Duda, Sven; Dreyer, Lutz; Behrens, Peter; Wienecke, Soenke; Chakradeo, Tanmay; Glasmacher, Birgit; Haastert-Talini, Kirsten
2014-01-01
We report on the performance of composite nerve grafts with an inner 3D multichannel porous chitosan core and an outer electrospun polycaprolactone shell. The inner chitosan core provided multiple guidance channels for regrowing axons. To analyze the in vivo properties of the bare chitosan cores, we separately implanted them into an epineural sheath. The effects of both graft types on structural and functional regeneration across a 10 mm rat sciatic nerve gap were compared to autologous nerve transplantation (ANT). The mechanical biomaterial properties and the immunological impact of the grafts were assessed with histological techniques before and after transplantation in vivo. Furthermore during a 13-week examination period functional tests and electrophysiological recordings were performed and supplemented by nerve morphometry. The sheathing of the chitosan core with a polycaprolactone shell induced massive foreign body reaction and impairment of nerve regeneration. Although the isolated novel chitosan core did allow regeneration of axons in a similar size distribution as the ANT, the ANT was superior in terms of functional regeneration. We conclude that an outer polycaprolactone shell should not be used for the purpose of bioartificial nerve grafting, while 3D multichannel porous chitosan cores could be candidate scaffolds for structured nerve grafts. PMID:24818158
Behrens, Peter; Wienecke, Soenke; Chakradeo, Tanmay; Glasmacher, Birgit
2014-01-01
We report on the performance of composite nerve grafts with an inner 3D multichannel porous chitosan core and an outer electrospun polycaprolactone shell. The inner chitosan core provided multiple guidance channels for regrowing axons. To analyze the in vivo properties of the bare chitosan cores, we separately implanted them into an epineural sheath. The effects of both graft types on structural and functional regeneration across a 10 mm rat sciatic nerve gap were compared to autologous nerve transplantation (ANT). The mechanical biomaterial properties and the immunological impact of the grafts were assessed with histological techniques before and after transplantation in vivo. Furthermore during a 13-week examination period functional tests and electrophysiological recordings were performed and supplemented by nerve morphometry. The sheathing of the chitosan core with a polycaprolactone shell induced massive foreign body reaction and impairment of nerve regeneration. Although the isolated novel chitosan core did allow regeneration of axons in a similar size distribution as the ANT, the ANT was superior in terms of functional regeneration. We conclude that an outer polycaprolactone shell should not be used for the purpose of bioartificial nerve grafting, while 3D multichannel porous chitosan cores could be candidate scaffolds for structured nerve grafts. PMID:24818158
Rigid body mode identification of the PAH-2 helicopter using the eigensystem realization algorithm
NASA Technical Reports Server (NTRS)
Schenk, Axel; Pappa, Richard S.
1992-01-01
The rigid body modes of the PAH-2 'Tiger' helicopter were identified using the Eigensystem Realization Algorithm (ERA). This work complements ground vibration tests performed using DLR's traditional phase resonance technique and the ISSPA (Identification of Structural System Parameters) method. Rigid body modal parameters are important for ground resonance prediction. Time-domain data for ERA were obtained by inverse Fourier transformation of frequency response functions measured with stepped-sine excitation. Mode purity (based on the Phase Resonance Criterion) was generally equal to or greater than corresponding results obtained in the ground vibration tests. All identified natural frequencies and mode shapes correlate well with corresponding ground vibration test results. The modal identification approach discussed in this report has become increasingly attractive in recent years due to the steadily declining cost and increased performance of scientific computers. As illustrated in this application, modern time-domain methods can be successfully applied to data acquired using DLR's existing test equipment. Some suggestions are made for future applications of time domain modal identification in this manner.
Rotational kinematics of a rigid body about a fixed axis: development and analysis of an inventory
NASA Astrophysics Data System (ADS)
Mashood, K. K.; Singh, Vijay A.
2015-07-01
We present the development, administration, and analysis of a focused inventory on the rotational kinematics of a rigid body around a fixed axis. The inventory, which is made up of 13 multiple-choice questions, was developed on the basis of interactions with students and teachers. The systematic and iterative aspects of the construction of the inventory are illustrated. The questions, which were validated, were administered to a set of teachers (N = 25) and two groups of preuniversity students (N = 74 and 905) in India. Students, as well as teachers, exhibited difficulties in applying the operational definition of angular velocity to a rigid body. Many erroneously assumed that an angular acceleration cannot exist without a net torque. Patterns of reasoning resulting in errors were identified and categorized under four broad themes. These include inappropriate extensions of familiar procedural practices, reasoning cued by primitive elements in thought, lack of differentiation between related but distinct concepts, and indiscriminate use of equations. The inventory was also administered to introductory-level students (N = 384) at the University of Washington. Popular distractors to most items were similar to the Indian students.
Secular solution for delta-V during spin rate change maneuvers of rigid body spacecraft
NASA Technical Reports Server (NTRS)
Klumpe, E. W.; Longuski, J. M.
1984-01-01
Analytic expressions have been found for Euler's Equations of Motion and for the Eulerian Angles for both symmetric and near symmetric rigid bodies under the influence of arbitrary constant body-fixed torques. These solutions have been used to solve for the secular terms in the translational delta-V equations in inertial space. This secular delta-V solution is of interest in application to spinning spacecraft in that it describes the average direction of the delta-V of the spacecraft during a spin-up maneuver. Numerical integration of the governing differential equations has verified that the secular delta-V solution is valid for large time and is accurate in many physical situations including spin-up maneuvers of the Galileo spacecraft.
Dynamic Behavior of Wind Turbine by a Mixed Flexible-Rigid Multi-Body Model
NASA Astrophysics Data System (ADS)
Wang, Jianhong; Qin, Datong; Ding, Yi
A mixed flexible-rigid multi-body model is presented to study the dynamic behavior of a horizontal axis wind turbine. The special attention is given to flexible body: flexible rotor is modeled by a newly developed blade finite element, support bearing elasticities, variations in the number of teeth in contact as well as contact tooth's elasticities are mainly flexible components in the power train. The couple conditions between different subsystems are established by constraint equations. The wind turbine model is generated by coupling models of rotor, power train and generator with constraint equations together. Based on this model, an eigenproblem analysis is carried out to show the mode shape of rotor and power train at a few natural frequencies. The dynamic responses and contact forces among gears under constant wind speed and fixed pitch angle are analyzed.
NASA Astrophysics Data System (ADS)
Otake, Y.; Murphy, R. J.; Kutzer, M. D.; Taylor, R. H.; Armand, M.
2014-03-01
Background: Snake-like dexterous manipulators may offer significant advantages in minimally-invasive surgery in areas not reachable with conventional tools. Precise control of a wire-driven manipulator is challenging due to factors such as cable deformation, unknown internal (cable friction) and external forces, thus requiring correcting the calibration intraoperatively by determining the actual pose of the manipulator. Method: A method for simultaneously estimating pose and kinematic configuration of a piecewise-rigid object such as a snake-like manipulator from a single x-ray projection is presented. The method parameterizes kinematics using a small number of variables (e.g., 5), and optimizes them simultaneously with the 6 degree-of-freedom pose parameter of the base link using an image similarity between digitally reconstructed radiographs (DRRs) of the manipulator's attenuation model and the real x-ray projection. Result: Simulation studies assumed various geometric magnifications (1.2-2.6) and out-of-plane angulations (0°-90°) in a scenario of hip osteolysis treatment, which demonstrated the median joint angle error was 0.04° (for 2.0 magnification, +/-10° out-of-plane rotation). Average computation time was 57.6 sec with 82,953 function evaluations on a mid-range GPU. The joint angle error remained lower than 0.07° while out-of-plane rotation was 0°-60°. An experiment using video images of a real manipulator demonstrated a similar trend as the simulation study except for slightly larger error around the tip attributed to accumulation of errors induced by deformation around each joint not modeled with a simple pin joint. Conclusions: The proposed approach enables high precision tracking of a piecewise-rigid object (i.e., a series of connected rigid structures) using a single projection image by incorporating prior knowledge about the shape and kinematic behavior of the object (e.g., each rigid structure connected by a pin joint parameterized by a
NASA Astrophysics Data System (ADS)
Soh, Ahmad Afiq Sabqi Awang; Jafri, Mohd Zubir Mat; Azraai, Nur Zaidi
2015-04-01
The Interest in this studies of human kinematics goes back very far in human history drove by curiosity or need for the understanding the complexity of human body motion. To find new and accurate information about the human movement as the advance computing technology became available for human movement that can perform. Martial arts (silat) were chose and multiple type of movement was studied. This project has done by using cutting-edge technology which is 3D motion capture to characterize and to measure the motion done by the performers of martial arts (silat). The camera will detect the markers (infrared reflection by the marker) around the performer body (total of 24 markers) and will show as dot in the computer software. The markers detected were analyzing using kinematic kinetic approach and time as reference. A graph of velocity, acceleration and position at time,t (seconds) of each marker was plot. Then from the information obtain, more parameters were determined such as work done, momentum, center of mass of a body using mathematical approach. This data can be used for development of the effectiveness movement in martial arts which is contributed to the people in arts. More future works can be implemented from this project such as analysis of a martial arts competition.
Development of a numerical procedure to map a general 3-d body onto a near-circle
NASA Technical Reports Server (NTRS)
Hommel, M. J.
1986-01-01
Conformal mapping is a classical technique utilized for solving problems in aerodynamics and hydrodynamics. Conformal mapping is utilized in the construction of grids around airfoils, engine inlets and other aircraft configurations. These shapes are transformed onto a near-circle image for which the equations of fluid motion are discretized on the mapped plane and solved numerically by utilizing the appropriate techniques. In comparison to other grid-generation techniques such as algerbraic or differential type, conformal mapping offers an analytical and accurate form even if the grid deformation is large. One of the most appealing features is that the grid can be constrained to remain orthogonal to the body after the transformation. Hence, the grid is suitable for analyzing the supersonic flow past a blunt object. The associated shock as a coordinate surface adjusts its position in the course of computation until convergence is reached. The present work applied conformal mapping to 3-D bodies with no axis of symmetry such as the Aerobraking Flight Experiment (AFE) vehicle, transforming the AFE shape onto a near-circle image. A numerical procedure and code are used to generate grids around the AFE body.
NASA Astrophysics Data System (ADS)
Thienphrapa, Paul; Ramachandran, Bharat; Elhawary, Haytham; Taylor, Russell H.; Popovic, Aleksandra
2012-02-01
Free moving bodies in the heart pose a serious health risk as they may be released in the arteries causing blood flow disruption. These bodies may be the result of various medical conditions and trauma. The conventional approach to removing these objects involves open surgery with sternotomy, the use of cardiopulmonary bypass, and a wide resection of the heart muscle. We advocate a minimally invasive surgical approach using a flexible robotic end effector guided by 3D transesophageal echocardiography. In a phantom study, we track a moving body in a beating heart using a modified normalized cross-correlation method, with mean RMS errors of 2.3 mm. We previously found the foreign body motion to be fast and abrupt, rendering infeasible a retrieval method based on direct tracking. We proposed a strategy based on guiding a robot to the most spatially probable location of the fragment and securing it upon its reentry to said location. To improve efficacy in the context of a robotic retrieval system, we extend this approach by exploring multiple candidate capture locations. Salient locations are identified based on spatial probability, dwell time, and visit frequency; secondary locations are also examined. Aggregate results indicate that the location of highest spatial probability (50% occupancy) is distinct from the longest-dwelled location (0.84 seconds). Such metrics are vital in informing the design of a retrieval system and capture strategies, and they can be computed intraoperatively to select the best capture location based on constraints such as workspace, time, and device manipulability. Given the complex nature of fragment motion, the ability to analyze multiple capture locations is a desirable capability in an interventional system.
Quantitative Validation of a Human Body Finite Element Model Using Rigid Body Impacts.
Vavalle, Nicholas A; Davis, Matthew L; Stitzel, Joel D; Gayzik, F Scott
2015-09-01
Validation is a critical step in finite element model (FEM) development. This study focuses on the validation of the Global Human Body Models Consortium full body average male occupant FEM in five localized loading regimes-a chest impact, a shoulder impact, a thoracoabdominal impact, an abdominal impact, and a pelvic impact. Force and deflection outputs from the model were compared to experimental traces and corridors scaled to the 50th percentile male. Predicted fractures and injury severity measures were compared to evaluate the model's injury prediction capabilities. The methods of ISO/TS 18571 were used to quantitatively assess the fit of model outputs to experimental force and deflection traces. The model produced peak chest, shoulder, thoracoabdominal, abdominal, and pelvis forces of 4.8, 3.3, 4.5, 5.1, and 13.0 kN compared to 4.3, 3.2, 4.0, 4.0, and 10.3 kN in the experiments, respectively. The model predicted rib and pelvic fractures related to Abbreviated Injury Scale scores within the ranges found experimentally all cases except the abdominal impact. ISO/TS 18571 scores for the impacts studied had a mean score of 0.73 with a range of 0.57-0.83. Well-validated FEMs are important tools used by engineers in advancing occupant safety. PMID:25739950
Wanner, Gerhard; Schäfer, Tillman; Lütz-Meindl, Ursula
2013-01-01
In the present study we employ FIB/SEM tomography for analyzing 3-D architecture of dictyosomes and formation of multivesicular bodies (MVB) in high pressure frozen and cryo-substituted interphase cells of the green algal model system Micrasterias denticulata. The ability of FIB/SEM of milling very thin ‘slices’ (5–10 nm), viewing the block face and of capturing cytoplasmic volumes of several hundred μm3 provides new insight into the close spatial connection of the ER–Golgi machinery in an algal cell particularly in z-direction, complementary to informations obtained by TEM serial sectioning or electron tomography. Our FIB/SEM series and 3-D reconstructions show that interphase dictyosomes of Micrasterias are not only closely associated to an ER system at their cis-side which is common in various plant cells, but are surrounded by a huge “trans-ER” sheath leading to an almost complete enwrapping of dictyosomes by the ER. This is particularly interesting as the presence of a trans-dictyosomal ER system is well known from mammalian secretory cells but not from cells of higher plants to which the alga Micrasterias is closely related. In contrast to findings in plant storage tissue indicating that MVBs originate from the trans-Golgi network or its derivatives our investigations show that MVBs in Micrasterias are in direct spatial contact with both, trans-Golgi cisternae and the trans-ER sheath which provides evidence that both endomembrane compartments are involved in their formation. PMID:24135121
Wanner, Gerhard; Schäfer, Tillman; Lütz-Meindl, Ursula
2013-11-01
In the present study we employ FIB/SEM tomography for analyzing 3-D architecture of dictyosomes and formation of multivesicular bodies (MVB) in high pressure frozen and cryo-substituted interphase cells of the green algal model system Micrasterias denticulata. The ability of FIB/SEM of milling very thin 'slices' (5-10 nm), viewing the block face and of capturing cytoplasmic volumes of several hundred μm(3) provides new insight into the close spatial connection of the ER-Golgi machinery in an algal cell particularly in z-direction, complementary to informations obtained by TEM serial sectioning or electron tomography. Our FIB/SEM series and 3-D reconstructions show that interphase dictyosomes of Micrasterias are not only closely associated to an ER system at their cis-side which is common in various plant cells, but are surrounded by a huge "trans-ER" sheath leading to an almost complete enwrapping of dictyosomes by the ER. This is particularly interesting as the presence of a trans-dictyosomal ER system is well known from mammalian secretory cells but not from cells of higher plants to which the alga Micrasterias is closely related. In contrast to findings in plant storage tissue indicating that MVBs originate from the trans-Golgi network or its derivatives our investigations show that MVBs in Micrasterias are in direct spatial contact with both, trans-Golgi cisternae and the trans-ER sheath which provides evidence that both endomembrane compartments are involved in their formation. PMID:24135121
NASA Technical Reports Server (NTRS)
Damodaran, Murali
1988-01-01
Unsteady inviscid transonic flow over airfoils in arbitrary rigid body motion is analyzed numerically by solving the two-dimensional unsteady Euler equations in integral form using a finite volume scheme. The solution procedure is based on an explicit Runge-Kutta time-stepping scheme wherein the spatial terms are central-differenced and a combination of second- and fourth-differences in the flow variables are used to form the numerical dissipation terms to stabilize the scheme. Unsteady calculations are started from converged steady-state solutions as initial conditions. Nonreflective boundary conditions are imposed on the far-field boundaries. Results are presented and, where possible, validated against available numerical and experimental data for airfoils subjected to a step change in angle of attack, airfoils oscillating and plunging in transonic flow, and airfoils immersed in a time-varying free stream.
NASA Astrophysics Data System (ADS)
Weng, Shengxuan; Yue, Dong
2016-02-01
In this note, the distributed event-triggered cooperative attitude control of multiple rigid bodies with leader-follower architecture is investigated, where both the cases of static and dynamic leaders are all considered. Two distributed triggering procedures are first introduced for the followers and leaders, and then the distributed cooperative controllers are designed under the proposed triggering schemes. Under the designed controllers with the event-triggered strategies, it is shown that the orientations of followers converge to the convex hull formed by the desired leaders' orientations with zero angular velocities. Moreover, the communication pressure in network is reduced and the energy of each agent is saved. Simulation results show the effectiveness of the proposed method.
Identification of motion parameters of a rigid body from its orthogonal and perspective projections
NASA Technical Reports Server (NTRS)
Ganguly, S.; Ghosh, B.; Tarn, T. J.; Bejczy, A. K.
1989-01-01
An estimate is made of the motion parameters, namely, linear and angular velocities, of a rigid body rotating and translating in three-space. The authors assume that the velocities are constant and that the motion is not completely observable. They consider two separate cases of partial observations corresponding to the orthogonal and the perspective projections, respectively. If (x, y, z) is the Cartesian coordinate of the three-space, the authors assume in the first case that the projection of the motion on the x-y plane is observed. If (r, theta, phi) is the polar coordinates of the three-space, they assume in the second case that the parameter vector (theta, phi) is observed. The use of both of these cases to estimate the motion parameters is discussed.
Unsteady transonic flow past airfoils in rigid-body motion. [UFLO5
Chang, I C
1981-03-01
With the aim of developing a fast and accurate computer code for predicting the aerodynamic forces needed for a flutter analysis, some basic concepts in computational transonics are reviewed. The unsteady transonic flow past airfoils in rigid body motion is adequately described by the potential flow equation as long as the boundary layer remains attached. The two dimensional unsteady transonic potential flow equation in quasilinear form with first order radiation boundary conditions is solved by an alternating direction implicit scheme in an airfoil attached sheared parabolic coordinate system. Numerical experiments show that the scheme is very stable and is able to resolve the higher nonlinear transonic effects for filter analysis within the context of an inviscid theory.
In Silico Single-Molecule Manipulation of DNA with Rigid Body Dynamics
Carrivain, Pascal; Barbi, Maria; Victor, Jean-Marc
2014-01-01
We develop a new powerful method to reproduce in silico single-molecule manipulation experiments. We demonstrate that flexible polymers such as DNA can be simulated using rigid body dynamics thanks to an original implementation of Langevin dynamics in an open source library called Open Dynamics Engine. We moreover implement a global thermostat which accelerates the simulation sampling by two orders of magnitude. We reproduce force-extension as well as rotation-extension curves of reference experimental studies. Finally, we extend the model to simulations where the control parameter is no longer the torsional strain but instead the torque, and predict the expected behavior for this case which is particularly challenging theoretically and experimentally. PMID:24586127
Time-varying creeping flow in an elastic shell enveloping a slender rigid center-body
NASA Astrophysics Data System (ADS)
Elbaz, Shai; Gat, Amir
2014-11-01
Flows in contact with elastic structures apply stress at the fluid-solid interface and thus create deformation fields in the solid. We study the time-varying interaction between elastic structures, subject to external forces, and an internal viscous liquid. We neglect inertia in the liquid and solid and focus on axi-symmetric annular flow enclosed by a thin-walled slender elastic shell and internally bounded by a variable cross-section rigid center-body. We employ elastic shell theory and the lubrication approximation to show that the problem is governed by the forced porous medium equation with regard to fluid pressure. We present several solutions of the flow-field and solid-deformation for various time-varying inlet pressure and external forces. The presented interaction between viscosity and elasticity may be applied to fields such as soft-robotics and micro-swimmers. Israel Science Foundation 818/13.
In silico single-molecule manipulation of DNA with rigid body dynamics.
Carrivain, Pascal; Barbi, Maria; Victor, Jean-Marc
2014-02-01
We develop a new powerful method to reproduce in silico single-molecule manipulation experiments. We demonstrate that flexible polymers such as DNA can be simulated using rigid body dynamics thanks to an original implementation of Langevin dynamics in an open source library called Open Dynamics Engine. We moreover implement a global thermostat which accelerates the simulation sampling by two orders of magnitude. We reproduce force-extension as well as rotation-extension curves of reference experimental studies. Finally, we extend the model to simulations where the control parameter is no longer the torsional strain but instead the torque, and predict the expected behavior for this case which is particularly challenging theoretically and experimentally. PMID:24586127
NASA Astrophysics Data System (ADS)
Bolsinov, A. V.; Kozlov, V. V.; Fomenko, A. T.
1995-06-01
Contents Introduction §1. The general Maupertuis principle §2. The Maupertuis principle in the dynamics of a massive rigid body §3. The Maupertuis principle and the explicit form of the metric generated on the sphere by a quadratic Hamiltonian on the Lie algebra of the group of motions of R3 §4. Classical cases of integrability in rigid body dynamics and the corresponding geodesic flows on the sphere §5. Integrable metrics on the torus and on the sphere §6. Conjectures §7. The complexity of integrable geodesic flows of 1-2-metrics on the sphere and on the torus §8. A rougher conjecture: the complexities of non-singularly integrable metrics on the sphere or on the torus coincide with those of the known integrable 1-2-metrics §9. The geodesic flow on an ellipsoid is topologically orbitally equivalent to the Euler integral case in the dynamics of a rigid body Bibliography
O’Halloran, R; Aksoy, M; Aboussouan, E; Peterson, E; Van, A; Bammer, R
2014-01-01
Purpose Diffusion contrast in diffusion-weighted steady state free precession MRI is generated through the constructive addition of signal from many coherence pathways. Motion-induced phase causes destructive interference which results in loss of signal magnitude and diffusion contrast. In this work, a 3D navigator-based real-time correction of the rigid-body-motion-induced phase errors is developed for diffusion-weighted steady state free precession MRI. Methods The efficacy of the real-time prospective correction method in preserving phase coherence of the steady-state is tested in 3D phantom experiments and 3D scans of healthy human subjects. Results In nearly all experiments, the signal magnitude in images obtained with proposed prospective correction was higher than the signal magnitude in images obtained with no correction. In the human subjects the mean magnitude signal in the data was up to 30 percent higher with prospective motion correction than without. Prospective correction never resulted in a decrease in mean signal magnitude in either the data or in the images. Conclusions The proposed prospective motion correction method is shown to preserve the phase coherence of the steady state in diffusion-weighted steady state free precession MRI, thus mitigating signal magnitude losses that would confound the desired diffusion contrast. PMID:24715414
NASA Technical Reports Server (NTRS)
Kia, T.; Longuski, J. M.
1984-01-01
Analytic error bounds are presented for the solutions of approximate models for self-excited near-symmetric rigid bodies. The error bounds are developed for analytic solutions to Euler's equations of motion. The results are applied to obtain a simplified analytic solution for Eulerian rates and angles. The results of a sample application of the range and error bound expressions for the case of the Galileo spacecraft experiencing transverse torques demonstrate the use of the bounds in analyses of rigid body spin change maneuvers.
Computation of Flow Over a Drag Prediction Workshop Wing/Body Transport Configuration Using CFL3D
NASA Technical Reports Server (NTRS)
Rumsey, Christopher L.; Biedron, Robert T.
2001-01-01
A Drag Prediction Workshop was held in conjunction with the 19th AIAA Applied Aerodynamics Conference in June 2001. The purpose of the workshop was to assess the prediction of drag by computational methods for a wing/body configuration (DLR-F4) representative of subsonic transport aircraft. This report details computed results submitted to this workshop using the Reynolds-averaged Navier-Stokes code CFL3D. Two supplied grids were used: a point-matched 1-to-1 multi-block grid, and an overset multi-block grid. The 1-to-1 grid, generally of much poorer quality and with less streamwise resolution than the overset grid, is found to be too coarse to adequately resolve the surface pressures. However, the global forces and moments are nonetheless similar to those computed using the overset grid. The effect of three different turbulence models is assessed using the 1-to-1 grid. Surface pressures are very similar overall, and the drag variation due to turbulence model is 18 drag counts. Most of this drag variation is in the friction component, and is attributed in part to insufficient grid resolution of the 1-to-1 grid. The misnomer of 'fully turbulent' computations is discussed; comparisons are made using different transition locations and their effects on the global forces and moments are quantified. Finally, the effect of two different versions of a widely used one-equation turbulence model is explored.
NASA Technical Reports Server (NTRS)
Shareef, N. H.; Amirouche, F. M. L.
1991-01-01
A computational algorithmic procedure is developed and implemented for the dynamic analysis of a multibody system with rigid/flexible interconnected bodies. The algorithm takes into consideration the large rotation/translation and small elastic deformations associated with the rigid-body degrees of freedom and the flexibility of the bodies in the system respectively. Versatile three-dimensional isoparametric brick elements are employed for the modeling of the geometric configurations of the bodies. The formulation of the recursive dynamical equations of motion is based on the recursive Kane's equations, strain energy concepts, and the techniques of component mode synthesis. In order to minimize CPU-intensive matrix multiplication operations and speed up the execution process, the concepts of indexed arrays is utilized in the formulation of the equations of motion. A spin-up maneuver of a space robot with three flexible links carrying a solar panel is used as an illustrative example.
NASA Astrophysics Data System (ADS)
Elshaboury, S. M.; Abouelmagd, Elbaz I.; Kalantonis, V. S.; Perdios, E. A.
2016-09-01
The restricted three-body problem when the primaries are triaxial rigid bodies is considered and its basic dynamical features are studied. In particular, the equilibrium points are identified as well as their stability is determined in the special case when the Euler angles of rotational motion are accordingly θi = ψi = π/2 and φi = π/2, i = 1, 2. It is found that three unstable collinear equilibrium points exist and two triangular such points which may be stable. Special attention has also been paid to the study of simple symmetric periodic orbits and 31 families consisting of such orbits have been determined. It has been found that only one of these families consists entirely of unstable members while the remaining families contain stable parts indicating that other families bifurcate from them. Finally, using the grid-search technique a global solution in the space of initial conditions is obtained which comprises simple and of higher multiplicities symmetric periodic orbits as well as escape and collision orbits.
NASA Astrophysics Data System (ADS)
Romano, Marcello
2008-08-01
New exact analytic solutions are introduced for the rotational motion of a rigid body having two equal principal moments of inertia and subjected to an external torque which is constant in magnitude. In particular, the solutions are obtained for the following cases: (1) Torque parallel to the symmetry axis and arbitrary initial angular velocity; (2) Torque perpendicular to the symmetry axis and such that the torque is rotating at a constant rate about the symmetry axis, and arbitrary initial angular velocity; (3) Torque and initial angular velocity perpendicular to the symmetry axis, with the torque being fixed with the body. In addition to the solutions for these three forced cases, an original solution is introduced for the case of torque-free motion, which is simpler than the classical solution as regards its derivation and uses the rotation matrix in order to describe the body orientation. This paper builds upon the recently discovered exact solution for the motion of a rigid body with a spherical ellipsoid of inertia. In particular, by following Hestenes’ theory, the rotational motion of an axially symmetric rigid body is seen at any instant in time as the combination of the motion of a “virtual” spherical body with respect to the inertial frame and the motion of the axially symmetric body with respect to this “virtual” body. The kinematic solutions are presented in terms of the rotation matrix. The newly found exact analytic solutions are valid for any motion time length and rotation amplitude. The present paper adds further elements to the small set of special cases for which an exact solution of the rotational motion of a rigid body exists.
NASA Technical Reports Server (NTRS)
Fitzpatrick, P. M.; Harmon, G. R.; Liu, J. J. F.; Cochran, J. E.
1974-01-01
The formalism for studying perturbations of a triaxial rigid body within the Hamilton-Jacobi framework is developed. The motion of a triaxial artificial earth satellite about its center of mass is studied. Variables are found which permit separation, and the Euler angles and associated conjugate momenta are obtained as functions of canonical constants and time.
NASA Astrophysics Data System (ADS)
Lācis, Uǧis; Taira, Kunihiko; Bagheri, Shervin
2016-01-01
Dispersion of low-density rigid particles with complex geometries is ubiquitous in both natural and industrial environments. We show that while explicit methods for coupling the incompressible Navier-Stokes equations and Newton's equations of motion are often sufficient to solve for the motion of cylindrical particles with low density ratios, for more complex particles - such as a body with a protrusion - they become unstable. We present an implicit formulation of the coupling between rigid body dynamics and fluid dynamics within the framework of the immersed boundary projection method. Similarly to previous work on this method, the resulting matrix equation in the present approach is solved using a block-LU decomposition. Each step of the block-LU decomposition is modified to incorporate the rigid body dynamics. We show that our method achieves second-order accuracy in space and first-order in time (third-order for practical settings), only with a small additional computational cost to the original method. Our implicit coupling yields stable solution for density ratios as low as 10-4. We also consider the influence of fictitious fluid located inside the rigid bodies on the accuracy and stability of our method.
Nagata, Yasushi Hiraoka, Masahiro; Mizowaki, Takashi; Narita, Yuichiro; Matsuo, Yukinori; Norihisa, Yoshiki; Onishi, Hiroshi; Shirato, Hiroki
2009-10-01
Purpose: To recognize the current status of stereotactic body radiotherapy (SBRT) in Japan, using a nationwide survey conducted by the Japan 3-D Conformal External Beam Radiotherapy Group. Methods and Materials: The questionnaire was sent by mail to 117 institutions. Ninety-four institutions (80%) responded by the end of November 2005. Fifty-three institutions indicated that they have already started SBRT, and 38 institutions had been reimbursed by insurance. Results: A total of 1111 patients with histologically confirmed lung cancer were treated. Among these patients, 637 had T1N0M0 and 272 had T2N0M0 lung cancer. Metastatic lung cancer was found in 702 and histologically unconfirmed lung tumor in 291 patients. Primary liver cancer was found in 207 and metastatic liver cancer in 76 patients. The most frequent schedule used for primary lung cancer was 48Gy in 4 fractions at 22 institutions (52%), followed by 50Gy in 5 fractions at 11 institutions (26%) and 60Gy in 8 fractions at 4 institutions (10%). The tendency was the same for metastatic lung cancer. The average number of personnel involved in SBRT was 1.8 radiation oncologists, including 1.1 certified radiation oncologists, 2.8 technologists, 0.7 nurses, and 0.6 certified quality assurance personnel and 0.3 physicists. The most frequent amount of time for treatment planning was 61-120min, for quality assurance was 50-60min, and for treatment was 30min. There were 14 (0.6% of all cases) reported Grade 5 complications: 11 cases of radiation pneumonitis, 2 cases of hemoptysis, and 1 case of radiation esophagitis. Conclusion: The current status of SBRT in Japan was surveyed.
Efficient framework for deformable 2D-3D registration
NASA Astrophysics Data System (ADS)
Fluck, Oliver; Aharon, Shmuel; Khamene, Ali
2008-03-01
Using 2D-3D registration it is possible to extract the body transformation between the coordinate systems of X-ray and volumetric CT images. Our initial motivation is the improvement of accuracy of external beam radiation therapy, an effective method for treating cancer, where CT data play a central role in radiation treatment planning. Rigid body transformation is used to compute the correct patient setup. The drawback of such approaches is that the rigidity assumption on the imaged object is not valid for most of the patient cases, mainly due to respiratory motion. In the present work, we address this limitation by proposing a flexible framework for deformable 2D-3D registration consisting of a learning phase incorporating 4D CT data sets and hardware accelerated free form DRR generation, 2D motion computation, and 2D-3D back projection.
Parker, Jason G; Mair, Bernard A; Gilland, David R
2009-10-01
In this article, a new method is introduced for estimating the motion of the heart due to respiration in gated cardiac SPECT using a rigid-body model with rotation parametrized by a unit quaternion. The method is based on minimizing the sum of squared errors between the reference and the deformed frames resulting from the usual optical flow constraint by using an optimized conjugate gradient routine. This method does not require any user-defined parameters or penalty terms, which simplifies its use in a clinical setting. Using a mathematical phantom, the method was quantitatively compared to the principal axis method, as well as an iterative method in which the rotation matrix was represented by Euler angles. The quaternion-based method was shown to be substantially more accurate and robust across a wide range of extramyocardial activity levels than the principal axis method. Compared with the Euler angle representation, the quaternion-based method resulted in similar accuracy but a significant reduction in computation times. Finally, the quaternion-based method was investigated using a respiratory-gated cardiac SPECT acquisition of a human subject. The motion-corrected image has increased sharpness and myocardial uniformity compared to the uncorrected image. PMID:19928105
Inertial Motions of a Rigid Body with a Cavity Filled with a Viscous Liquid
NASA Astrophysics Data System (ADS)
Disser, Karoline; Galdi, Giovanni P.; Mazzone, Giusy; Zunino, Paolo
2016-07-01
We study inertial motions of the coupled system, {S}, constituted by a rigid body containing a cavity entirely filled with a viscous liquid. We show that for arbitrary initial data having only finite kinetic energy, every corresponding weak solution (à la Leray-Hopf) converges, as time goes to infinity, to a uniform rotation, unless two central moments of inertia of {S} coincide and are strictly greater than the third one. This corroborates a famous "conjecture" of N.Ye. Zhukovskii in several physically relevant cases. Moreover, we show that, in a known range of initial data, this rotation may only occur along the central axis of inertia of {S} with the larger moment of inertia. We also provide necessary and sufficient conditions for the rigorous nonlinear stability of permanent rotations, which improve and/or generalize results previously given by other authors under different types of approximation. Finally, we present results obtained by a targeted numerical simulation that, on the one hand, complement the analytical findings, whereas, on the other hand, point out new features that the analysis is yet not able to catch, and, as such, lay the foundation for interesting and challenging future investigation.
Phase topology of one irreducible integrable problem in the dynamics of a rigid body
NASA Astrophysics Data System (ADS)
Ryabov, P. E.
2013-08-01
We consider the integrable system with three degrees of freedom for which V. V. Sokolov and A. V. Tsiganov specified the Lax pair. The Lax representation generalizes the L-A pair found by A. G. Reyman and M. A. Semenov-Tian-Shansky for the Kovalevskaya gyrostat in a double field. We give explicit formulas for the additional first integrals K and G (independent almost everywhere), which are functionally related to the coefficients of the spectral curve for the Sokolov-Tsiganov L-A pair. Using this form of the additional integrals K and G and the Kharlamov parametric reduction, we analytically present two invariant four-dimensional submanifolds where the induced dynamical system is Hamiltonian (almost everywhere) with two degrees of freedom. The system of equations specifying one of the invariant submanifolds is a generalization of the invariant relations for the integrable Bogoyavlensky case (rotation of a magnetized rigid body in homogeneous gravitational and magnetic fields). We use the method of critical subsystems to describe the phase topology of the whole system. For each subsystem, we construct the bifurcation diagrams and specify the bifurcations of the Liouville tori both inside the subsystems and in the whole system.
Generalized Predictive Control of Dynamic Systems with Rigid-Body Modes
NASA Technical Reports Server (NTRS)
Kvaternik, Raymond G.
2013-01-01
Numerical simulations to assess the effectiveness of Generalized Predictive Control (GPC) for active control of dynamic systems having rigid-body modes are presented. GPC is a linear, time-invariant, multi-input/multi-output predictive control method that uses an ARX model to characterize the system and to design the controller. Although the method can accommodate both embedded (implicit) and explicit feedforward paths for incorporation of disturbance effects, only the case of embedded feedforward in which the disturbances are assumed to be unknown is considered here. Results from numerical simulations using mathematical models of both a free-free three-degree-of-freedom mass-spring-dashpot system and the XV-15 tiltrotor research aircraft are presented. In regulation mode operation, which calls for zero system response in the presence of disturbances, the simulations showed reductions of nearly 100%. In tracking mode operations, where the system is commanded to follow a specified path, the GPC controllers produced the desired responses, even in the presence of disturbances.
Aoun, Bachir
2016-05-01
A new Reverse Monte Carlo (RMC) package "fullrmc" for atomic or rigid body and molecular, amorphous, or crystalline materials is presented. fullrmc main purpose is to provide a fully modular, fast and flexible software, thoroughly documented, complex molecules enabled, written in a modern programming language (python, cython, C and C++ when performance is needed) and complying to modern programming practices. fullrmc approach in solving an atomic or molecular structure is different from existing RMC algorithms and software. In a nutshell, traditional RMC methods and software randomly adjust atom positions until the whole system has the greatest consistency with a set of experimental data. In contrast, fullrmc applies smart moves endorsed with reinforcement machine learning to groups of atoms. While fullrmc allows running traditional RMC modeling, the uniqueness of this approach resides in its ability to customize grouping atoms in any convenient way with no additional programming efforts and to apply smart and more physically meaningful moves to the defined groups of atoms. In addition, fullrmc provides a unique way with almost no additional computational cost to recur a group's selection, allowing the system to go out of local minimas by refining a group's position or exploring through and beyond not allowed positions and energy barriers the unrestricted three dimensional space around a group. PMID:26800289
A simple molecular mechanics integrator in mixed rigid body and dihedral angle space
Vitalis, Andreas; Pappu, Rohit V.
2014-07-21
We propose a numerical scheme to integrate equations of motion in a mixed space of rigid-body and dihedral angle coordinates. The focus of the presentation is biomolecular systems and the framework is applicable to polymers with tree-like topology. By approximating the effective mass matrix as diagonal and lumping all bias torques into the time dependencies of the diagonal elements, we take advantage of the formal decoupling of individual equations of motion. We impose energy conservation independently for every degree of freedom and this is used to derive a numerical integration scheme. The cost of all auxiliary operations is linear in the number of atoms. By coupling the scheme to one of two popular thermostats, we extend the method to sample constant temperature ensembles. We demonstrate that the integrator of choice yields satisfactory stability and is free of mass-metric tensor artifacts, which is expected by construction of the algorithm. Two fundamentally different systems, viz., liquid water and an α-helical peptide in a continuum solvent are used to establish the applicability of our method to a wide range of problems. The resultant constant temperature ensembles are shown to be thermodynamically accurate. The latter relies on detailed, quantitative comparisons to data from reference sampling schemes operating on exactly the same sets of degrees of freedom.
NASA Technical Reports Server (NTRS)
Abdallah, Ayman A.; Barnett, Alan R.; Widrick, Timothy W.; Manella, Richard T.; Miller, Robert P.
1994-01-01
When using all MSC/NASTRAN eigensolution methods except Lanczos, the analyst can replace the coupled system rigid-body modes calculated within DMAP module READ with mass orthogonalized and normalized rigid-body modes generated from the system stiffness. This option is invoked by defining MSC/NASTRAN r-set degrees of freedom via the SUPORT bulk data card. The newly calculated modes are required if the rigid-body modes calculated by the eigensolver are not 'clean' due to numerical roundoffs in the solution. When performing transient structural dynamic load analysis, the numerical roundoffs can result in inaccurate rigid-body accelerations which affect steady-state responses. Unfortunately, when using the Lanczos method and defining r-set degrees of freedom, the rigid-body modes calculated within DMAP module REIGL are retained. To overcome this limitation and to allow MSC/NASTRAN to handle SUPORT degrees of freedom identically for all eigensolvers, a DMAP Alter has been written which replaces Lanczos-calculated rigid-body modes with stiffness-generated rigid-body modes. The newly generated rigid-body modes are normalized with respect to the system mass and orthogonalized using the Gram-Schmidt technique. This algorithm has been implemented as an enhancement to an existing coupled loads methodology.
Feng, Bing; Gifford, Howard C.; Beach, Richard D.; Boening, Guido; Gennert, Michael A.; King, Michael A.
2008-01-01
Due to the extended imaging times employed in SPECT and PET, patient motion during imaging is a common clinical occurrence. The fast and accurate correction of the three-dimensional (3D) translational and rotational patient motion in iterative reconstruction is thus necessary to address this important cause of artifacts. We propose a method of incorporating 3D Gaussian interpolation in the projector/backprojector pair to facilitate compensation for rigid-body motion in addition to attenuation and distance-dependent blurring. The method works as the interpolation step for moving the current emission voxel estimates and attenuation maps in the global coordinate system to the new patient location in the rotating coordinate system when calculating the expected projection. It also is employed for moving back the backprojection of the ratio of the measured projection to the expected projection and backprojection of the unit value (sensitivity factor) to the original location. MCAT simulations with known six-degree-of-freedom (6DOF) motion were employed to evaluate the accuracy of our method of motion compensation. We also tested the method with acquisitions of the Data Spectrum Anthropomorphic phantom where motion during SPECT acquisition was measured using the Polaris IR motion tracking system. No motion artifacts were seen on the reconstructions with the motion compensation. PMID:16827485
Arterial Mechanical Motion Estimation Based on a Semi-Rigid Body Deformation Approach
Guzman, Pablo; Hamarneh, Ghassan; Ros, Rafael; Ros, Eduardo
2014-01-01
Arterial motion estimation in ultrasound (US) sequences is a hard task due to noise and discontinuities in the signal derived from US artifacts. Characterizing the mechanical properties of the artery is a promising novel imaging technique to diagnose various cardiovascular pathologies and a new way of obtaining relevant clinical information, such as determining the absence of dicrotic peak, estimating the Augmentation Index (AIx), the arterial pressure or the arterial stiffness. One of the advantages of using US imaging is the non-invasive nature of the technique unlike Intra Vascular Ultra Sound (IVUS) or angiography invasive techniques, plus the relative low cost of the US units. In this paper, we propose a semi rigid deformable method based on Soft Bodies dynamics realized by a hybrid motion approach based on cross-correlation and optical flow methods to quantify the elasticity of the artery. We evaluate and compare different techniques (for instance optical flow methods) on which our approach is based. The goal of this comparative study is to identify the best model to be used and the impact of the accuracy of these different stages in the proposed method. To this end, an exhaustive assessment has been conducted in order to decide which model is the most appropriate for registering the variation of the arterial diameter over time. Our experiments involved a total of 1620 evaluations within nine simulated sequences of 84 frames each and the estimation of four error metrics. We conclude that our proposed approach obtains approximately 2.5 times higher accuracy than conventional state-of-the-art techniques. PMID:24871987
Arterial mechanical motion estimation based on a semi-rigid body deformation approach.
Guzman, Pablo; Hamarneh, Ghassan; Ros, Rafael; Ros, Eduardo
2014-01-01
Arterial motion estimation in ultrasound (US) sequences is a hard task due to noise and discontinuities in the signal derived from US artifacts. Characterizing the mechanical properties of the artery is a promising novel imaging technique to diagnose various cardiovascular pathologies and a new way of obtaining relevant clinical information, such as determining the absence of dicrotic peak, estimating the Augmentation Index (AIx), the arterial pressure or the arterial stiffness. One of the advantages of using US imaging is the non-invasive nature of the technique unlike Intra Vascular Ultra Sound (IVUS) or angiography invasive techniques, plus the relative low cost of the US units. In this paper, we propose a semi rigid deformable method based on Soft Bodies dynamics realized by a hybrid motion approach based on cross-correlation and optical flow methods to quantify the elasticity of the artery. We evaluate and compare different techniques (for instance optical flow methods) on which our approach is based. The goal of this comparative study is to identify the best model to be used and the impact of the accuracy of these different stages in the proposed method. To this end, an exhaustive assessment has been conducted in order to decide which model is the most appropriate for registering the variation of the arterial diameter over time. Our experiments involved a total of 1620 evaluations within nine simulated sequences of 84 frames each and the estimation of four error metrics. We conclude that our proposed approach obtains approximately 2.5 times higher accuracy than conventional state-of-the-art techniques. PMID:24871987
A comparison of seven methods of within-subjects rigid-body pedobarographic image registration.
Pataky, Todd C; Goulermas, John Y; Crompton, Robin H
2008-10-20
Image registration, the process of transforming images such that homologous structures optimally overlap, provides the pre-processing foundation for pixel-level functional image analysis. The purpose of this study was to compare the performances of seven methods of within-subjects pedobarographic image registration: (1) manual, (2) principal axes, (3) centre of pressure trajectory, (4) mean squared error, (5) probability-weighted variance, (6) mutual information, and (7) exclusive OR. We assumed that foot-contact geometry changes were negligibly small trial-to-trial and thus that a rigid-body transformation could yield optimum registration performance. Thirty image pairs were randomly selected from our laboratory database and were registered using each method. To compensate for inter-rater variability, the mean registration parameters across 10 raters were taken as representative of manual registration. Registration performance was assessed using four dissimilarity metrics (#4-7 above). One-way MANOVA found significant differences between the methods (p<0.001). Bonferroni post-hoc tests revealed that the centre of pressure method performed the poorest (p<0.001) and that the principal axes method tended to perform more poorly than remaining methods (p<0.070). Average manual registration was not different from the remaining methods (p=1.000). The results suggest that a variety of linear registration methods are appropriate for within-subjects pedobarographic images, and that manual image registration is a viable alternative to algorithmic registration when parameters are averaged across raters. The latter finding, in particular, may be useful for cases of image peculiarities resulting from outlier trials or from experimental manipulations that induce substantial changes in contact area or pressure profile geometry. PMID:18790481
NASA Astrophysics Data System (ADS)
Lohr, M. B.
2008-10-01
The rotational motion of a torque-free axisymmetric rigid body is precession. This motion has been expressed analytically in the literature given the body's initial orientation and rotational dynamics parameters, i.e. inertia ratio and initial angular velocities or precession parameters. The inverse problem of deriving these dynamics parameters given orientation in time has been implemented numerically but has not yet been solved analytically. If a rigid body is precessing, and its orientation with respect to an arbitrary inertial frame is provided at three equally spaced points in time such that the rotational motion is not undersampled, an analytical inverse solution is presented for the precession rate, relative spin rate, coning angle and angular velocities; if the precessional motion is due to inertial axisymmetry and torque-free motion, the inertia ratio is also derived. Additionally, an analytical methodology is presented to test for non-precessional motion. These techniques are applicable to various problems in space science and astronomy, where non-precessional motion or the rotational dynamics parameters of this type of rigid body must be accurately derived from its orientation or relative orientation in time.
Ma, M; Rouabhi, O; Flynn, R; Xia, J; Bayouth, J
2014-06-01
Purpose: To evaluate the dosimetric difference between 3D and 4Dweighted dose calculation using patient specific respiratory trace and deformable image registration for stereotactic body radiation therapy in lung tumors. Methods: Two dose calculation techniques, 3D and 4D-weighed dose calculation, were used for dosimetric comparison for 9 lung cancer patients. The magnitude of the tumor motion varied from 3 mm to 23 mm. Breath-hold exhale CT was used for 3D dose calculation with ITV generated from the motion observed from 4D-CT. For 4D-weighted calculation, dose of each binned CT image from the ten breathing amplitudes was first recomputed using the same planning parameters as those used in the 3D calculation. The dose distribution of each binned CT was mapped to the breath-hold CT using deformable image registration. The 4D-weighted dose was computed by summing the deformed doses with the temporal probabilities calculated from their corresponding respiratory traces. Dosimetric evaluation criteria includes lung V20, mean lung dose, and mean tumor dose. Results: Comparing with 3D calculation, lung V20, mean lung dose, and mean tumor dose using 4D-weighted dose calculation were changed by −0.67% ± 2.13%, −4.11% ± 6.94% (−0.36 Gy ± 0.87 Gy), −1.16% ± 1.36%(−0.73 Gy ± 0.85 Gy) accordingly. Conclusion: This work demonstrates that conventional 3D dose calculation method may overestimate the lung V20, MLD, and MTD. The absolute difference between 3D and 4D-weighted dose calculation in lung tumor may not be clinically significant. This research is supported by Siemens Medical Solutions USA, Inc and Iowa Center for Research By Undergraduates.
A vector-dyadic development of the equations of motion for N-coupled rigid bodies and point masses
NASA Technical Reports Server (NTRS)
Frisch, H. P.
1974-01-01
The equations of motion are derived, in vector-dyadic format, for a topological tree of coupled rigid bodies, point masses, and symmetrical momentum wheels. These equations were programmed, and form the basis for the general-purpose digital computer program N-BOD. A complete derivation of the equations of motion is included along with a description of the methods used for kinematics, constraint elimination, and for the inclusion of nongyroscope forces and torques acting external or internal to the system.
Chandra, Rohit; Balasingham, Ilangko
2015-08-01
A microwave imaging-based technique for 3D localization of an in-body RF source is presented. Such a technique can be useful for localization of an RF source as in wireless capsule endoscopes for positioning of any abnormality in the gastrointestinal tract. Microwave imaging is used to determine the dielectric properties (relative permittivity and conductivity) of the tissues that are required for a precise localization. A 2D microwave imaging algorithm is used for determination of the dielectric properties. Calibration method is developed for removing any error due to the used 2D imaging algorithm on the imaging data of a 3D body. The developed method is tested on a simple 3D heterogeneous phantom through finite-difference-time-domain simulations. Additive white Gaussian noise at the signal-to-noise ratio of 30 dB is added to the simulated data to make them more realistic. The developed calibration method improves the imaging and the localization accuracy. Statistics on the localization accuracy are generated by randomly placing the RF source at various positions inside the small intestine of the phantom. The cumulative distribution function of the localization error is plotted. In 90% of the cases, the localization accuracy was found within 1.67 cm, showing the capability of the developed method for 3D localization. PMID:26737194
3D medical thermography device
NASA Astrophysics Data System (ADS)
Moghadam, Peyman
2015-05-01
In this paper, a novel handheld 3D medical thermography system is introduced. The proposed system consists of a thermal-infrared camera, a color camera and a depth camera rigidly attached in close proximity and mounted on an ergonomic handle. As a practitioner holding the device smoothly moves it around the human body parts, the proposed system generates and builds up a precise 3D thermogram model by incorporating information from each new measurement in real-time. The data is acquired in motion, thus it provides multiple points of view. When processed, these multiple points of view are adaptively combined by taking into account the reliability of each individual measurement which can vary due to a variety of factors such as angle of incidence, distance between the device and the subject and environmental sensor data or other factors influencing a confidence of the thermal-infrared data when captured. Finally, several case studies are presented to support the usability and performance of the proposed system.
2011-01-01
Purpose Frequently, three-dimensional (3D) conformal beams are used in lung cancer stereotactic body radiotherapy (SBRT). Recently, volumetric modulated arc therapy (VMAT) was introduced as a new treatment modality. VMAT techniques shorten delivery time, reducing the possibility of intrafraction target motion. However dose distributions can be quite different from standard 3D therapy. This study quantifies those differences, with focus on VMAT plans using unflattened photon beams. Methods A total of 15 lung cancer patients previously treated with 3D or VMAT SBRT were randomly selected. For each patient, non-coplanar 3D, coplanar and non-coplanar VMAT and flattening filter free VMAT (FFF-VMAT) plans were generated to meet the same objectives with 50 Gy covering 95% of the PTV. Two dynamic arcs were used in each VMAT plan. The couch was set at ± 5° to the 0° straight position for the two non-coplanar arcs. Pinnacle version 9.0 (Philips Radiation Oncology, Fitchburg WI) treatment planning system with VMAT capabilities was used. We analyzed the conformity index (CI), which is the ratio of the total volume receiving at least the prescription dose to the target volume receiving at least the prescription dose; the conformity number (CN) which is the ratio of the target coverage to CI; and the gradient index (GI) which is the ratio of the volume of 50% of the prescription isodose to the volume of the prescription isodose; as well as the V20, V5, and mean lung dose (MLD). Paired non-parametric analysis of variance tests with post-tests were performed to examine the statistical significance of the differences of the dosimetric indices. Results Dosimetric indices CI, CN and MLD all show statistically significant improvement for all studied VMAT techniques compared with 3D plans (p < 0.05). V5 and V20 show statistically significant improvement for the FFF-VMAT plans compared with 3D (p < 0.001). GI is improved for the FFF-VMAT and the non-coplanar VMAT plans (p < 0.01 and p
Clarkson, Sean; Wheat, Jon; Heller, Ben; Choppin, Simon
2016-06-01
Use of anthropometric data to infer sporting performance is increasing in popularity, particularly within elite sport programmes. Measurement typically follows standards set by the International Society for the Advancement of Kinanthropometry (ISAK). However, such techniques are time consuming, which reduces their practicality. Schranz et al. recently suggested 3D body scanners could replace current measurement techniques; however, current systems are costly. Recent interest in natural user interaction has led to a range of low-cost depth cameras capable of producing 3D body scans, from which anthropometrics can be calculated. A scanning system comprising 4 depth cameras was used to scan 4 cylinders, representative of the body segments. Girth measurements were calculated from the 3D scans and compared to gold standard measurements. Requirements of a Level 1 ISAK practitioner were met in all 4 cylinders, and ISO standards for scan-derived girth measurements were met in the 2 larger cylinders only. A fixed measurement bias was identified that could be corrected with a simple offset factor. Further work is required to determine comparable performance across a wider range of measurements performed upon living participants. Nevertheless, findings of the study suggest such a system offers many advantages over current techniques, having a range of potential applications. PMID:26358314
Könik, Arda; Connolly, Caitlin M; Johnson, Karen L; Dasari, Paul; Segars, Paul W; Pretorius, P H; Lindsay, Clifford; Dey, Joyoni; King, Michael A
2014-01-01
The development of methods for correcting patient motion in emission tomography has been receiving increased attention. Often performance of these methods is evaluated through simulations using digital anthropomorphic phantoms, such as the commonly used XCAT phantom, which models both respiratory and cardiac motion based on human studies. However, non-rigid body motion, which is frequently seen in clinical studies, is not present in the standard XCAT phantom. In addition, respiratory motion in the standard phantom is limited to a single generic trend. In this work, to obtain more realistic representation of motion, we developed a series of individual-specific XCAT phantoms modeling non-rigid respiratory and non-rigid body motions derived from the MRI acquisitions of volunteers. Acquisitions were performed in the sagittal orientation using the Navigator methodology. Baseline (no motion) acquisitions at end-expiration were obtained at the beginning of each imaging session for each volunteer. For the body motion studies, MRI was again acquired only at end-expiration for five body motion poses (shoulder stretch, shoulder twist, lateral bend, side roll, and axial slide). For the respiratory motion studies, MRI was acquired during free/regular breathing. The MR slices were then retrospectively sorted into 14 amplitude-binned respiratory states, end-expiration, end-inspiration, six intermediary states during inspiration, and six during expiration using the recorded Navigator signal. XCAT phantoms were then generated based on these MRI data by interactive alignment of the organ contours of the XCAT with the MRI slices using a GUI. Thus far we have created 5 body motion and 5 respiratory motion XCAT phantoms from MRI acquisitions of 6 healthy volunteers (3 males and 3 females). Non-rigid motion exhibited by the volunteers was reflected in both respiratory and body motion phantoms with a varying extent and character for each individual. In addition to these phantoms, we
NASA Astrophysics Data System (ADS)
Könik, Arda; Connolly, Caitlin M.; Johnson, Karen L.; Dasari, Paul; Segars, Paul W.; Pretorius, P. H.; Lindsay, Clifford; Dey, Joyoni; King, Michael A.
2014-07-01
The development of methods for correcting patient motion in emission tomography has been receiving increased attention. Often the performance of these methods is evaluated through simulations using digital anthropomorphic phantoms, such as the commonly used extended cardiac torso (XCAT) phantom, which models both respiratory and cardiac motion based on human studies. However, non-rigid body motion, which is frequently seen in clinical studies, is not present in the standard XCAT phantom. In addition, respiratory motion in the standard phantom is limited to a single generic trend. In this work, to obtain a more realistic representation of motion, we developed a series of individual-specific XCAT phantoms, modeling non-rigid respiratory and non-rigid body motions derived from the magnetic resonance imaging (MRI) acquisitions of volunteers. Acquisitions were performed in the sagittal orientation using the Navigator methodology. Baseline (no motion) acquisitions at end-expiration were obtained at the beginning of each imaging session for each volunteer. For the body motion studies, MRI was again acquired only at end-expiration for five body motion poses (shoulder stretch, shoulder twist, lateral bend, side roll, and axial slide). For the respiratory motion studies, an MRI was acquired during free/regular breathing. The magnetic resonance slices were then retrospectively sorted into 14 amplitude-binned respiratory states, end-expiration, end-inspiration, six intermediary states during inspiration, and six during expiration using the recorded Navigator signal. XCAT phantoms were then generated based on these MRI data by interactive alignment of the organ contours of the XCAT with the MRI slices using a graphical user interface. Thus far we have created five body motion and five respiratory motion XCAT phantoms from the MRI acquisitions of six healthy volunteers (three males and three females). Non-rigid motion exhibited by the volunteers was reflected in both respiratory
Lee, M; Suh, T; Han, B; Xing, L; Jenkins, C
2015-06-15
Purpose: To develop and validate an innovative method of using depth sensing cameras and 3D printing techniques for Total Body Irradiation (TBI) treatment planning and compensator fabrication. Methods: A tablet with motion tracking cameras and integrated depth sensing was used to scan a RANDOTM phantom arranged in a TBI treatment booth to detect and store the 3D surface in a point cloud (PC) format. The accuracy of the detected surface was evaluated by comparison to extracted measurements from CT scan images. The thickness, source to surface distance and off-axis distance of the phantom at different body section was measured for TBI treatment planning. A 2D map containing a detailed compensator design was calculated to achieve uniform dose distribution throughout the phantom. The compensator was fabricated using a 3D printer, silicone molding and tungsten powder. In vivo dosimetry measurements were performed using optically stimulated luminescent detectors (OSLDs). Results: The whole scan of the anthropomorphic phantom took approximately 30 seconds. The mean error for thickness measurements at each section of phantom compare to CT was 0.44 ± 0.268 cm. These errors resulted in approximately 2% dose error calculation and 0.4 mm tungsten thickness deviation for the compensator design. The accuracy of 3D compensator printing was within 0.2 mm. In vivo measurements for an end-to-end test showed the overall dose difference was within 3%. Conclusion: Motion cameras and depth sensing techniques proved to be an accurate and efficient tool for TBI patient measurement and treatment planning. 3D printing technique improved the efficiency and accuracy of the compensator production and ensured a more accurate treatment delivery.
NASA Technical Reports Server (NTRS)
Longuski, J. M.
1980-01-01
Analytic expressions are found for Euler's Equations of Motion and for the Eulerian Angles for both symmetric and near symmetric rigid bodies under the influence of arbitrary constant body-fixed torques. These solutions provide the body-fixed angular velocities and the attitude of the body, respectively, as functions of time. They are of special interest in applications to spinning spacecraft (such as the Galileo Spacecraft to be launched in 1984) because they include the effect of time-varying spin rate. Thus they can be applied to spin-up and spin-down maneuvers as well as to error analysis for thruster misalignments. The solutions are given for arbitrary initial conditions in terms of Fresnel, Sine and Cosine Integrals. Numerical integration of the governing differential equations has verified that the approximate analytic solutions are very accurate in many physical situations of interest.
Internal waves patterns in the wake of a 3D body towed in a two-layer fluid
NASA Astrophysics Data System (ADS)
Lacaze, Laurent; Mercier, Matthieu; Thual, Olivier; Paci, Alexandre
2014-11-01
Stratified flows over obstacles are important features in meteorology and oceanography. The characterization of these flows is crucial in order to propose models of geophysical processes such as mixing and ocean circulation or orographic drag in the atmosphere. For some specific stratification profiles, the energy of internal waves generated by the obstacle can be trapped at a given depth, at the base of the oceanic mixing layer or at the top of the atmospheric boundary layer for instance. This scenario can be modelled by a two-layer stratified fluid for which gravity waves spread at the interface between the two layers. The work presented here focuses on a two-layer flow over a 3D obstacle, or equivalently, an obstacle towed in a fluid at rest. Experiments performed both in the large-scale flume of CNRM-GAME Toulouse (METEO-FRANCE & CNRS) and in a smaller tank apparatus, are presented with a specific attention on the measurement of the 3D wave patterns. A non-hydrostatic linear analysis is used to describe the observed wave patterns. The experiments highlight the strong influence of the Froude number on the generated waves. More specifically, we investigate the nature of the wake angle obtained from the wave pattern, and discuss a transition from Kelvin to Mach angle.
Chu, Chengwen; Belavý, Daniel L.; Armbrecht, Gabriele; Bansmann, Martin; Felsenberg, Dieter; Zheng, Guoyan
2015-01-01
In this paper, we address the problems of fully automatic localization and segmentation of 3D vertebral bodies from CT/MR images. We propose a learning-based, unified random forest regression and classification framework to tackle these two problems. More specifically, in the first stage, the localization of 3D vertebral bodies is solved with random forest regression where we aggregate the votes from a set of randomly sampled image patches to get a probability map of the center of a target vertebral body in a given image. The resultant probability map is then further regularized by Hidden Markov Model (HMM) to eliminate potential ambiguity caused by the neighboring vertebral bodies. The output from the first stage allows us to define a region of interest (ROI) for the segmentation step, where we use random forest classification to estimate the likelihood of a voxel in the ROI being foreground or background. The estimated likelihood is combined with the prior probability, which is learned from a set of training data, to get the posterior probability of the voxel. The segmentation of the target vertebral body is then done by a binary thresholding of the estimated probability. We evaluated the present approach on two openly available datasets: 1) 3D T2-weighted spine MR images from 23 patients and 2) 3D spine CT images from 10 patients. Taking manual segmentation as the ground truth (each MR image contains at least 7 vertebral bodies from T11 to L5 and each CT image contains 5 vertebral bodies from L1 to L5), we evaluated the present approach with leave-one-out experiments. Specifically, for the T2-weighted MR images, we achieved for localization a mean error of 1.6 mm, and for segmentation a mean Dice metric of 88.7% and a mean surface distance of 1.5 mm, respectively. For the CT images we achieved for localization a mean error of 1.9 mm, and for segmentation a mean Dice metric of 91.0% and a mean surface distance of 0.9 mm, respectively. PMID:26599505
Chu, Chengwen; Belavý, Daniel L; Armbrecht, Gabriele; Bansmann, Martin; Felsenberg, Dieter; Zheng, Guoyan
2015-01-01
In this paper, we address the problems of fully automatic localization and segmentation of 3D vertebral bodies from CT/MR images. We propose a learning-based, unified random forest regression and classification framework to tackle these two problems. More specifically, in the first stage, the localization of 3D vertebral bodies is solved with random forest regression where we aggregate the votes from a set of randomly sampled image patches to get a probability map of the center of a target vertebral body in a given image. The resultant probability map is then further regularized by Hidden Markov Model (HMM) to eliminate potential ambiguity caused by the neighboring vertebral bodies. The output from the first stage allows us to define a region of interest (ROI) for the segmentation step, where we use random forest classification to estimate the likelihood of a voxel in the ROI being foreground or background. The estimated likelihood is combined with the prior probability, which is learned from a set of training data, to get the posterior probability of the voxel. The segmentation of the target vertebral body is then done by a binary thresholding of the estimated probability. We evaluated the present approach on two openly available datasets: 1) 3D T2-weighted spine MR images from 23 patients and 2) 3D spine CT images from 10 patients. Taking manual segmentation as the ground truth (each MR image contains at least 7 vertebral bodies from T11 to L5 and each CT image contains 5 vertebral bodies from L1 to L5), we evaluated the present approach with leave-one-out experiments. Specifically, for the T2-weighted MR images, we achieved for localization a mean error of 1.6 mm, and for segmentation a mean Dice metric of 88.7% and a mean surface distance of 1.5 mm, respectively. For the CT images we achieved for localization a mean error of 1.9 mm, and for segmentation a mean Dice metric of 91.0% and a mean surface distance of 0.9 mm, respectively. PMID:26599505
Faceless identification: a model for person identification using the 3D shape and 3D motion as cues
NASA Astrophysics Data System (ADS)
Klasen, Lena M.; Li, Haibo
1999-02-01
Person identification by using biometric methods based on image sequences, or still images, often requires a controllable and cooperative environment during the image capturing stage. In the forensic case the situation is more likely to be the opposite. In this work we propose a method that makes use of the anthropometry of the human body and human actions as cues for identification. Image sequences from surveillance systems are used, which can be seen as monocular image sequences. A 3D deformable wireframe body model is used as a platform to handle the non-rigid information of the 3D shape and 3D motion of the human body from the image sequence. A recursive method for estimating global motion and local shape variations is presented, using two recursive feedback systems.
Chan, Mark K. H.; Kwong, Dora L. W.; Ng, Sherry C. Y.; Tong, Anthony S. M.; Tam, Eric K. W.
2013-04-15
Purpose: Due to the complexity of 4D target tracking radiotherapy, the accuracy of this treatment strategy should be experimentally validated against established standard 3D technique. This work compared the accuracy of 3D and 4D dose calculations in respiration tracking stereotactic body radiotherapy (SBRT). Methods: Using the 4D planning module of the CyberKnife treatment planning system, treatment plans for a moving target and a static off-target cord structure were created on different four-dimensional computed tomography (4D-CT) datasets of a thorax phantom moving in different ranges. The 4D planning system used B-splines deformable image registrations (DIR) to accumulate dose distributions calculated on different breathing geometries, each corresponding to a static 3D-CT image of the 4D-CT dataset, onto a reference image to compose a 4D dose distribution. For each motion, 4D optimization was performed to generate a 4D treatment plan of the moving target. For comparison with standard 3D planning, each 4D plan was copied to the reference end-exhale images and a standard 3D dose calculation was followed. Treatment plans of the off-target structure were first obtained by standard 3D optimization on the end-exhale images. Subsequently, they were applied to recalculate the 4D dose distributions using DIRs. All dose distributions that were initially obtained using the ray-tracing algorithm with equivalent path-length heterogeneity correction (3D{sub EPL} and 4D{sub EPL}) were recalculated by a Monte Carlo algorithm (3D{sub MC} and 4D{sub MC}) to further investigate the effects of dose calculation algorithms. The calculated 3D{sub EPL}, 3D{sub MC}, 4D{sub EPL}, and 4D{sub MC} dose distributions were compared to measurements by Gafchromic EBT2 films in the axial and coronal planes of the moving target object, and the coronal plane for the static off-target object based on the {gamma} metric at 5%/3mm criteria ({gamma}{sub 5%/3mm}). Treatment plans were considered
A discrete momentum-conserving explicit algorithm for rigid body dynamics analysis
NASA Technical Reports Server (NTRS)
Park, K. C.; Chiou, J. C.
1993-01-01
A discrete momentum-conserving explicit time integration is presented. The accurate feature and simplicity of the present algorithm are realized by a mid-point implicit formula for integrating the Euler parameters and a second-order discrete momentum-conserving form of the central difference algorithm, respectively. The accuracy and robustness of the algorithm is demonstrated by example problems which exhibit large overall rigid motions under holonomic constraints.
NASA Technical Reports Server (NTRS)
Lindsey, Patricia F.
1994-01-01
In microgravity conditions mobility is greatly enhanced and body stability is difficult to achieve. Because of these difficulties, optimum placement and accessibility of objects and controls can be critical to required tasks on board shuttle flights or on the proposed space station. Anthropometric measurement of the maximum reach of occupants of a microgravity environment provide knowledge about maximum functional placement for tasking situations. Calculations for a full body, functional reach envelope for microgravity environments are imperative. To this end, three dimensional computer modeled human figures, providing a method of anthropometric measurement, were used to locate the data points that define the full body, functional reach envelope. Virtual reality technology was utilized to enable an occupant of the microgravity environment to experience movement within the reach envelope while immersed in a simulated microgravity environment.
Self-propulsion of a body with rigid surface and variable coefficient of lift in a perfect fluid
NASA Astrophysics Data System (ADS)
Ramodanov, Sergey M.; Tenenev, Valentin A.; Treschev, Dmitry V.
2012-11-01
We study the system of a 2D rigid body moving in an unbounded volume of incompressible, vortex-free perfect fluid which is at rest at infinity. The body is equipped with a gyrostat and a so-called Flettner rotor. Due to the latter the body is subject to a lifting force (Magnus effect). The rotational velocities of the gyrostat and the rotor are assumed to be known functions of time (control inputs). The equations of motion are presented in the form of the Kirchhoff equations. The integrals of motion are given in the case of piecewise continuous control. Using these integrals we obtain a (reduced) system of first-order differential equations on the configuration space. Then an optimal control problem for several types of the inputs is solved using genetic algorithms.
NASA Astrophysics Data System (ADS)
Dobson, G. J.
1998-07-01
Newton's treatment of the precession of the equinoxes in his Philosophiae Naturalis Principia Mathematica was recognised by d'Alembert in 1749 as being faulty, despite the very close agreement between Newton's calculated value for the rate of precesion and the observed value. Here, the author presents an analysis of Newton's geometrical methods applied in his treatment of precession and claims that it was basically flawed because Newton lacked knowledge of the principles of rigid body dynamics and, in particular, was unaware of the idea of angular momentum.
NASA Technical Reports Server (NTRS)
Knauber, R. N.
1982-01-01
A FORTRAN coded computer program and method for evaluation of the rigid body disturbing moments for a launch vehicle first stage based on post-flight measurements is described. The technique is a straightforward deterministic approach. Residual moments are computed to satisfy the equations of motion. Residuals are expressed in terms of altered vehicle characteristics; the aerodynamic coefficients, thrust misalignment, and control effectiveness. This method was used on the Scout launch vehicle and uncovered several significant differences between flight data and wind tunnel data. The computer program is written in FORTRAN IV for a CDC CYBER 173 computer system.
NASA Astrophysics Data System (ADS)
McBride, Carl; Noya, Eva G.; Vega, Carlos
2013-03-01
Here we provide FORTRAN source code to facilitate the calculation of the “Noya-Vega-McBride” (NVM) rotational propagator for asymmetric tops [E.G. Noya, C. Vega, C. McBride, J. Chem. Phys. 134 (2011) 054117] for a given value of PT and A, B and C, where P is the number of beads, T is the temperature, and A, B and C are the rotational constants for the system in question. The resulting NVM propagator calculated by the code provided can then be used to obtain the quantum rotational energy during a path integral Monte Carlo simulation of rigid bodies. Catalogue identifier: AEOA_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEOA_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 624734 No. of bytes in distributed program, including test data, etc.: 9890026 Distribution format: tar.gz Programming language: Fortran. Computer: Any. Operating system: Any. RAM: <2 Mbytes Classification: 16.13. External routines: Lapack routine, dsyev (code included in the distribution package). Nature of problem: Calculation of the NVM rotational propagator Solution method: Fortran implementation of the NVM propagator equation. Additional comments: Example and test calculations are provided. Running time: 2-200 hours. Two examples are provided. The PT_1497 example will take approximately 11 hours to run. The quick_test should only take a few minutes.
Fonseca, T C Ferreira; Bogaerts, R; Lebacq, A L; Mihailescu, C L; Vanhavere, F
2014-04-01
A realistic computational 3D human body library, called MaMP and FeMP (Male and Female Mesh Phantoms), based on polygonal mesh surface geometry, has been created to be used for numerical calibration of the whole body counter (WBC) system of the nuclear power plant (NPP) in Doel, Belgium. The main objective was to create flexible computational models varying in gender, body height, and mass for studying the morphology-induced variation of the detector counting efficiency (CE) and reducing the measurement uncertainties. First, the counting room and an HPGe detector were modeled using MCNPX (Monte Carlo radiation transport code). The validation of the model was carried out for different sample-detector geometries with point sources and a physical phantom. Second, CE values were calculated for a total of 36 different mesh phantoms in a seated position using the validated Monte Carlo model. This paper reports on the validation process of the in vivo whole body system and the CE calculated for different body heights and weights. The results reveal that the CE is strongly dependent on the individual body shape, size, and gender and may vary by a factor of 1.5 to 3 depending on the morphology aspects of the individual to be measured. PMID:24562069
Closed formulae to determine the angular velocity of a body-segment based on 3D measurements.
Kocsis, L; Béda, G
2001-01-01
This paper suggests a simple method to determine the global coordinates of the angular velocity and the angular acceleration of a body segment determined by the coordinates of minimum three markers. There are commonly used calculations for the angular quantities basing on the "hypothesis" of planar motion. The usage of approximate methods can result in quantitative and qualitative errors that may completely disort the reality. The method mentioned here is theoretically absolutely correct and can be well used for smoothing noisy data. PMID:11811842
Asymmetric steady streaming as a mechanism for acoustic propulsion of rigid bodies
NASA Astrophysics Data System (ADS)
Nadal, François; Lauga, Eric
2014-08-01
Recent experiments showed that standing acoustic waves could be exploited to induce self-propulsion of rigid metallic particles in the direction perpendicular to the acoustic wave. We propose in this paper a physical mechanism for these observations based on the interplay between inertial forces in the fluid and the geometrical asymmetry of the particle shape. We consider an axisymmetric rigid near-sphere oscillating in a quiescent fluid along a direction perpendicular to its symmetry axis. The kinematics of oscillations can be either prescribed or can result dynamically from the presence of an external oscillating velocity field. Steady streaming in the fluid, the inertial rectification of the time-periodic oscillating flow, generates steady stresses on the particle which, in general, do not average to zero, resulting in a finite propulsion speed along the axis of the symmetry of the particle and perpendicular to the oscillation direction. Our derivation of the propulsion speed is obtained at leading order in the Reynolds number and the deviation of the shape from that of a sphere. The results of our model are consistent with the experimental measurements, and more generally explains how time periodic forcing from an acoustic field can be harnessed to generate autonomous motion.
Exploring the effects of a rigid body on the evolution of the Rayleigh Taylor instability
NASA Astrophysics Data System (ADS)
Brown, Christopher; Dalziel, Stuart B.
2014-11-01
This talk discusses the effects of a rigid solid boundary impeding the evolution of the Rayleigh-Taylor (RT) instability. Previous experimental studies e.g. those of Linden, Dalziel and Davies Wykes, amongst others, used a solid rigid barrier to separate the two layers which when removed revealed the RT unstable interface. But what happens if the barrier is only partially removed? Initially the interface grows classically, however, this is soon replaced by two circulation cells, one either side of the barrier. The circulation forces fluid from both layers onto the interface at z = 0 , resulting in a RT mixing zone superimposed onto the circulation cells. This RT mixing zone grows in a manner similar to that found by Andrews et al. for RT in water tunnels, except here the flow is modified by the end wall. Near to the end wall the two circulation cells are deflected vertically, stretching the mixing zone vertically along the end wall rapidly. Using a combination of ILES simulations and low Atwood number experiments this talk will present a model for a multi-stage mixing process, discussing the effects of the opening size on the density change of each layer, buoyancy driven flux through the opening and mixing efficiency. ©British Crown Owned Copyright 2014/AWE.
Many body calculations of the optoelectronic properties of h-AlN: from 3D to 2D
NASA Astrophysics Data System (ADS)
Kecik, Deniz; Bacaksiz, Cihan; Durgun, Engin; Senger, Tugrul
Outstanding electronic and optical properties of graphene, h-BN, MoS2 etc. motivate the further discovery of novel 2D materials such as AlN, a III-V compound, with remarkable features for potential optoelectronic applications, due to its wide indirect band gap. The layer and strain dependent optoelectronic properties of the recently synthesized monolayer hexagonal AlN (h-AlN) were investigated using density functional and many body perturbation theories, where RPA and BSE were employed on top of the QPG0W0 method. The optical spectra of 1-4 layered h-AlN revealed prominent absorption beyond the visible light regime; absorbance within the UV range increasing with the number of layers. In addition, the applied tensile strain (1 - 7 %) was observed to gradually redshift the absorption spectra. While the many body corrections induced significant blueshift to the optical spectra, evidence of bound excitons were also found for the layered structures. Hence, the optoelectronic properties of layered h-AlN can be tuned by modifying their structure and applying strain, moreover are greatly altered when electron-hole interactions are considered. This work was supported by the Scientific and Technological Research Council of Turkey (TUBITAK, Project No. 113T050).
da Silva, Julio C; Mader, Kevin; Holler, Mirko; Haberthür, David; Diaz, Ana; Guizar-Sicairos, Manuel; Cheng, Wu-Cheng; Shu, Yuying; Raabe, Jörg; Menzel, Andreas; van Bokhoven, Jeroen A
2015-01-01
Porosity in catalyst particles is essential because it enables reactants to reach the active sites and it enables products to leave the catalyst. The engineering of composite-particle catalysts through the tuning of pore-size distribution and connectivity is hampered by the inability to visualize structure and porosity at critical-length scales. Herein, it is shown that the combination of phase-contrast X-ray microtomography and high-resolution ptychographic X-ray tomography allows the visualization and characterization of the interparticle pores at micro- and nanometer-length scales. Furthermore, individual components in preshaped catalyst bodies used in fluid catalytic cracking, one of the most used catalysts, could be visualized and identified. The distribution of pore sizes, as well as enclosed pores, which cannot be probed by traditional methods, such as nitrogen physisorption and isotherm analysis, were determined. PMID:26191088
Rigid-body rotation of an electron cloud in divergent magnetic fields
Fruchtman, A.; Gueroult, R.; Fisch, N. J.
2013-07-10
For a given voltage across a divergent poloidal magnetic field, two electric potential distributions, each supported by a rigid-rotor electron cloud rotating with a different frequency, are found analytically. The two rotation frequencies correspond to the slow and fast rotation frequencies known in uniform plasma. Due to the centrifugal force, the equipotential surfaces, that correspond to the two electric potential distributions, diverge more than the magnetic surfaces do, the equipotential surfaces in the fast mode diverge largely in particular. The departure of the equipotential surfaces from the magnetic field surfaces may have a significant focusing effect on the ions accelerated by the electric field. Furthermore, the focusing effect could be important for laboratory plasma accelerators as well as for collimation of astrophysical jets.
Rigid-body rotation of an electron cloud in divergent magnetic fields
Fruchtman, A.; Gueroult, R.; Fisch, N. J.
2013-07-10
For a given voltage across a divergent poloidal magnetic field, two electric potential distributions, each supported by a rigid-rotor electron cloud rotating with a different frequency, are found analytically. The two rotation frequencies correspond to the slow and fast rotation frequencies known in uniform plasma. Due to the centrifugal force, the equipotential surfaces, that correspond to the two electric potential distributions, diverge more than the magnetic surfaces do, the equipotential surfaces in the fast mode diverge largely in particular. The departure of the equipotential surfaces from the magnetic field surfaces may have a significant focusing effect on the ions acceleratedmore » by the electric field. Furthermore, the focusing effect could be important for laboratory plasma accelerators as well as for collimation of astrophysical jets.« less
Faber, G S; Chang, C C; Kingma, I; Dennerlein, J T; van Dieën, J H
2016-04-11
Inertial motion capture (IMC) systems have become increasingly popular for ambulatory movement analysis. However, few studies have attempted to use these measurement techniques to estimate kinetic variables, such as joint moments and ground reaction forces (GRFs). Therefore, we investigated the performance of a full-body ambulatory IMC system in estimating 3D L5/S1 moments and GRFs during symmetric, asymmetric and fast trunk bending, performed by nine male participants. Using an ambulatory IMC system (Xsens/MVN), L5/S1 moments were estimated based on the upper-body segment kinematics using a top-down inverse dynamics analysis, and GRFs were estimated based on full-body segment accelerations. As a reference, a laboratory measurement system was utilized: GRFs were measured with Kistler force plates (FPs), and L5/S1 moments were calculated using a bottom-up inverse dynamics model based on FP data and lower-body kinematics measured with an optical motion capture system (OMC). Correspondence between the OMC+FP and IMC systems was quantified by calculating root-mean-square errors (RMSerrors) of moment/force time series and the interclass correlation (ICC) of the absolute peak moments/forces. Averaged over subjects, L5/S1 moment RMSerrors remained below 10Nm (about 5% of the peak extension moment) and 3D GRF RMSerrors remained below 20N (about 2% of the peak vertical force). ICCs were high for the peak L5/S1 extension moment (0.971) and vertical GRF (0.998). Due to lower amplitudes, smaller ICCs were found for the peak asymmetric L5/S1 moments (0.690-0.781) and horizontal GRFs (0.559-0.948). In conclusion, close correspondence was found between the ambulatory IMC-based and laboratory-based estimates of back load. PMID:26795123
NASA Astrophysics Data System (ADS)
Peters, Meike; Hellmann, André; Meyer, Franz Michael
2013-04-01
The Siegerland district is located in the fold-and thrust-belt of the Rhenish Massif and hosts diverse syn-to late orogenic mineralization styles. Peak-metamorphism and deformation occurred at 312-316±10 Ma (Ahrendt et al., 1978) at temperature-pressure conditions of 280-320°C and 0.7-1.4 kbar (Hein, 1993). In addition to syn-orogenic siderite-quartz mineralization at least four different syn-to late orogenic mineralization stages are identified comprising Co-Ni-Cu-Au, Pb-Zn-Cu, Sb-Au, and hematite-digenite-bornite ores (Hellmann et al., 2012). The earliest type of syn-orogenic ore mineralization is formed by siderite-quartz veins, trending N-S, E-W and NE-SW. The vein systems are closely related to fold and reverse fault geometries (Hellmann et al., 2012). The most important structural feature is the first-order Siegen main reverse fault showing an offset into three major faults (Peters et al., 2012). The structural control on ore formation is demonstrated by the Co-Ni-Cu-Au mineralization generally hosted by NE-ENE trending reverse faults and associated imbrication zones that have reactivated the older siderite-quartz veins. In this study, we developed a 3-D model of the Alte Buntekuh ore bodies in the Siegerland district, using Datamine Studio3 to investigate the structural setting of Co-Ni-Cu-Au mineralization. The salient structural and spatial data for the 3-D model were taken from old mine level plans as well as from geological and topographical maps. The ore bodies are located immediately in the hanging wall of the southern branch of the Siegen main reverse fault (Peters et al., 2012). From the model it becomes obvious, that the earlier siderite-quartz veins, dipping steeply to the NW, are cross-cut and segmented by oppositely dipping oblique reverse faults. Individual ore body segments are rotated and displaced, showing a plunge direction to the SW. The 3-D model further reveals the presence of hook-like, folded vein arrays, highly enriched in cobalt
Tesio, L; Lanzi, D; Detrembleur, C
1998-03-01
OBJECTIVE: To analyse the motion of the centre of gravity (CG) of the body during gait in unilateral lower limb amputees with good kinematic patterns. DESIGN: Three transtibial (below-knee, BK) and four transfemoral (above-knee, AK) amputees were required to perform successive walks over a 2.4 m long force plate, at freely chosen cadence and speed. BACKGROUND: In previous studies it has been shown that in unilateral lower limb amputee gait, the motion of the CG can be more asymmetric than might be suspected from kinematic analysis. METHODS: The mechanical energy changes of the CG due to its motion in the vertical, forward and lateral direction were measured. Gait speed ranged 0.75-1.32 m s(-1) in the different subjects. This allowed calculation of (a) the positive work done by muscles to maintain the motion of the CG with respect to the ground ('external' work, W(ext)) and (b) the amount of the pendulum-like, energy-saving transfer between gravitational potential energy and kinetic energy of the CG during each step (percent recovery, R). Step length and vertical displacement of the CG were also measured. RESULTS: The recorded variables were kept within the normal limits, calculated in a previous work, when an average was made of the steps performed on the prosthetic (P) and on the normal (N) limb. Asymmetries were found, however, between the P and the N step. In BK amputees, the P step R was 5% greater and W(ext) was 21% lower than in the N step; in AK amputees, in the P step R was 54% greater and W(ext) was 66% lower than in the N step. Asymmetries were also found in the relative magnitude of the external work provided by each lower limb during the single stance as compared with the double stance: a marked deficit of work occurred at the P to N transition. PMID:11415775
Correcting a Widespread Error concerning the Angular Velocity of a Rotating Rigid Body.
ERIC Educational Resources Information Center
Leubner, C.
1981-01-01
Since many texts use an incorrect argument in obtaining the instantaneous velocity of a rotating body, a correct and concise derivation of this quantity for a rather general case is given. (Author/SK)
SOFT ROBOTICS. A 3D-printed, functionally graded soft robot powered by combustion.
Bartlett, Nicholas W; Tolley, Michael T; Overvelde, Johannes T B; Weaver, James C; Mosadegh, Bobak; Bertoldi, Katia; Whitesides, George M; Wood, Robert J
2015-07-10
Roboticists have begun to design biologically inspired robots with soft or partially soft bodies, which have the potential to be more robust and adaptable, and safer for human interaction, than traditional rigid robots. However, key challenges in the design and manufacture of soft robots include the complex fabrication processes and the interfacing of soft and rigid components. We used multimaterial three-dimensional (3D) printing to manufacture a combustion-powered robot whose body transitions from a rigid core to a soft exterior. This stiffness gradient, spanning three orders of magnitude in modulus, enables reliable interfacing between rigid driving components (controller, battery, etc.) and the primarily soft body, and also enhances performance. Powered by the combustion of butane and oxygen, this robot is able to perform untethered jumping. PMID:26160940
The dynamics of a rigid body on an absolutely rough plane
NASA Astrophysics Data System (ADS)
Markeev, A. P.
1983-08-01
An attempt is made to explain certain dynamic effects associated with the rattleback, with particular emphasis placed on the oscillations of the body near the equilibrium position or near stationary rotation. The small oscillations of the body in the neighborhood of its stationary rotation about the vertical are analyzed; an approximate system of equations describing the nonlinear oscillations of the rattleback near its equilibrium position on a plane is derived; and a complete analysis of this system is given. The results agree with experimentally observed variations of the direction of the rotation of the body about the vertical in the absence of external influence and the appearance of rotation in both directions due to oscillations about the horizontal axis.
The Advanced Part of a Treatise on the Dynamics of a System of Rigid Bodies
NASA Astrophysics Data System (ADS)
Routh, Edward John
2013-03-01
Preface; 1. Moving axes and relative motion; 2. Oscillations about equilibrium; 3. Oscillations about a state of motion; 4. Motion of a body under no forces; 5. Motion of a body under any forces; 6. Nature of the motion given by linear equations and the conditions of stability; 7. Free and forced oscillations; 8. Determination of the constants of integration in terms of the initial conditions; 9. Calculus of finite differences; 10. Calculus of variations; 11. Precession and nutation; 12. Motion of the moon about its centre; 13. Motion of a string or chain; 14. Motion of a membrane; Notes.
NASA Astrophysics Data System (ADS)
Barnoud, A.; Coutant, O.; Bouligand, C.
2013-12-01
We propose to use a Bayesian methodology combined with a grid node discretization to invert linearly for 3D density distributions. The inversion and the forward modeling are derived from seismological travel-time inversion techniques in order to facilitate joint inversion or interpretation of density and seismic velocity models. The Bayesian method (Tarantola, 2005) introduces covariance matrices to regularize this ill-posed problem and reduce the non-uniqueness of the solution. Spatial covariances and grid discretization favor smooth and compact solutions that compare to usual seismic tomographic results. Compared to similar approaches our development includes i) the computation of the gravity field for linear vertical gradients and layers, including surface topography, a standard model description in seismology, ii) an explicit formulation of the a-priori covariance matrix. This last point allows to easily modify the spatial a-priori covariance (or scale, or wavelength) and hence, to perform successive linear inversions at different wavelengths. A series of synthetic tests is performed for validation, and used to show the advantage and limitation of this methodology. The method is appropriate for crustal and volcanological area studies, and allows a natural coupling with seismological inversions (Coutant et al., 2012). We present here two case studies for 3D gravity inversions. First, the inversion is performed in a crustal alpine context, the area of the well studied Ivrea Body in Italy. Secondly, we apply the inversion to gravity data from the volcanic island of Basse-Terre whose internal structure is badly constrained. We use data from previous studies supplemented with new high quality data acquired in 2012 within the frame of the Domoscan project. A 3D density model of the island of Basse-Terre is derived for the first time.
Valdes, Gilmer; Robinson, Clifford; Lee, Percy; Morel, Delphine; Low, Daniel; Iwamoto, Keisuke S.; Lamb, James M.
2015-04-01
Four-dimensional (4D) dose calculations for lung cancer radiotherapy have been technically feasible for a number of years but have not become standard clinical practice. The purpose of this study was to determine if clinically significant differences in tumor control probability (TCP) exist between 3D and 4D dose calculations so as to inform the decision whether 4D dose calculations should be used routinely for treatment planning. Radiotherapy plans for Stage I-II lung cancer were created for 8 patients. Clinically acceptable treatment plans were created with dose calculated on the end-exhale 4D computed tomography (CT) phase using a Monte Carlo algorithm. Dose was then projected onto the remaining 9 phases of 4D-CT using the Monte Carlo algorithm and accumulated onto the end-exhale phase using commercially available deformable registration software. The resulting dose-volume histograms (DVH) of the gross tumor volume (GTV), planning tumor volume (PTV), and PTV{sub setup} were compared according to target coverage and dose. The PTV{sub setup} was defined as a volume including the GTV and a margin for setup uncertainties but not for respiratory motion. TCPs resulting from these DVHs were estimated using a wide range of alphas, betas, and tumor cell densities. Differences of up to 5 Gy were observed between 3D and 4D calculations for a PTV with highly irregular shape. When the TCP was calculated using the resulting DVHs for fractionation schedules typically used in stereotactic body radiation therapy (SBRT), the TCP differed at most by 5% between 4D and 3D cases, and in most cases, it was by less than 1%. We conclude that 4D dose calculations are not necessary for most cases treated with SBRT, but they might be valuable for irregularly shaped target volumes. If 4D calculations are used, 4D DVHs should be evaluated on volumes that include margin for setup uncertainty but not respiratory motion.
NASA Astrophysics Data System (ADS)
Suleiman, Adamu; Jackson, Christopher; Magee, Craig; Fraser, Alastair
2016-04-01
Recent studies of regional unconformities in the circum-South Atlantic tectonic plates have linked unconformity age to the timing of changes in the azimuth of oceanic fracture zones, caused by plate interactions during opening of the South Atlantic. This observation is significant, proposing that a plate boundary geodynamic processes are transmitted into and expressed in plate interiors. However, it is not yet clear if and how other geologic events, such as intra-plate magmatism, may be linked to changes in the oceanic fracture azimuthal geometry. Here we use 2D and 3D seismic reflection, geochemical, borehole datasets and outcrop observations from the Bornu Basin, one of several intra-continental rift basins located in NE Nigeria to constrain the 3D geometry of igneous bodies and magmatic emplacement processes. This allows us to link South Atlantic plate boundary geodynamics and magmatism in the surrounding continental rift basins. Seismic attributes, reflection intensity, relative acoustic impedance, were used to identify and map igneous intrusions. Saucer-shaped sills are the most common type of intrusion, although en-echelon sills, up to 1.4 km in length, were also identified. The 3D geometry of the sills reveals the detailed structural components like inner sill, inclined sheets and outer sill. A mapped bifurcating network of the sills suggests magma emplacement process through upward and outward propagation. Seismic-stratigraphic observations indicate that igneous activity occurred in the Early Cretaceous, Late Cretaceous and Paleogene corresponding to the timing of major azimuth changes observed in the Kane Oceanic fracture zone in the South Atlantic Ocean. Overall, our study, suggests a possible influence of plate boundary geodynamics on intra-plate magmatism as reflected in the link between the time of changes in the azimuth of oceanic fracture zones and magmatic emplacement observed in the tectono-stratigraphy of the intra-continental rift basins.
NASA Astrophysics Data System (ADS)
Suleiman, A. A.; Jackson, C. A. L.; Magee, C.; Fraser, A.
2015-12-01
Recent studies of regional unconformities in the circum-South Atlantic tectonic plates have linked unconformity age to the timing of changes in the azimuth of oceanic fracture zones, caused by plate interactions during opening of the South Atlantic. This observation is significant, proposing that a plate boundary geodynamic processes are transmitted into and expressed in plate interiors. However, it is not yet clear if and how other geologic events, such as intra-plate magmatism, may be linked to changes in the oceanic fracture azimuthal geometry. Here we use 2D and 3D seismic reflection, geochemical, borehole datasets and outcrop observations from the Bornu Basin, one of several intra-continental rift basins located in NE Nigeria to constrain the 3D geometry of igneous bodies and magmatic emplacement processes. This allows us to link South Atlantic plate boundary geodynamics and magmatism in the surrounding continental rift basins. Seismic attributes, reflection intensity, relative acoustic impedance, were used to identify and map igneous intrusions. Saucer-shaped sills are the most common type of intrusion, although en-echelon sills, up to 1.4 km in length, were also identified. The 3D geometry of the sills reveals the detailed structural components like inner sill, inclined sheets and outer sill (Fig.1). A mapped bifurcating network of the sills suggests magma emplacement process through upward and outward propagation. Seismic-stratigraphic observations indicate that igneous activity occurred in the Early Cretaceous, Late Cretaceous and Paleogene corresponding to the timing of major azimuth changes observed in the Kane Oceanic fracture zone in the South Atlantic Ocean. Overall, our study, suggests a possible influence of plate boundary geodynamics on intra-plate magmatism as reflected in the link between the time of changes in the azimuth of oceanic fracture zones and magmatic emplacement observed in the tectono-stratigraphy of the intra-continental rift basins.
A boundary integral approach to analyze the viscous scattering of a pressure wave by a rigid body
Homentcovschi, Dorel; Miles, Ronald N.
2008-01-01
The paper provides boundary integral equations for solving the problem of viscous scattering of a pressure wave by a rigid body. By using this mathematical tool uniqueness and existence theorems are proved. Since the boundary conditions are written in terms of velocities, vector boundary integral equations are obtained for solving the problem. The paper introduces single-layer viscous potentials and also a stress tensor. Correspondingly, a viscous double-layer potential is defined. The properties of all these potentials are investigated. By representing the scattered field as a combination of a single-layer viscous potential and a double-layer viscous potential the problem is reduced to the solution of a singular vectorial integral equation of Fredholm type of the second kind. In the case where the stress vector on the boundary is the main quantity of interest the corresponding boundary singular integral equation is proved to have a unique solution. PMID:18709178
NASA Astrophysics Data System (ADS)
Hagelueken, Gregor; Abdullin, Dinar; Ward, Richard; Schiemann, Olav
2013-10-01
Nanometer distance measurements based on electron paramagnetic resonance methods in combination with site-directed spin labelling are powerful tools for the structural analysis of macromolecules. The software package mtsslSuite provides scientists with a set of tools for the translation of experimental distance distributions into structural information. The package is based on the previously published mtsslWizard software for in silico spin labelling. The mtsslSuite includes a new version of MtsslWizard that has improved performance and now includes additional types of spin labels. Moreover, it contains applications for the trilateration of paramagnetic centres in biomolecules and for rigid-body docking of subdomains of macromolecular complexes. The mtsslSuite is tested on a number of challenging test cases and its strengths and weaknesses are evaluated.
A Comparison of a Multi-body Model and 3D Kinematics and EMG ofDouble-leg Circle on Pommel Horse
Qian, Jing-guang; Su, Yang; Song, Ya-wei; Qiang, Ye; Zhang, Songning
2012-01-01
The purpose of this study was to establish a multi-segment dynamic model in the LifeMOD to examine kinematics of the center of mass and foot, and muscle forces of selected upper extremity muslces during a double-leg circle (DLC) movement on pommel horse in gymnastics and compared with three-dimensional kinematics of the movement and surface electromyographic (sEMG) activity of the muscles. The DLC movement of one elite male gymnast was collected. The three-dimensional (3D) data was imported in the Lifemod to create a full-body human model. A 16-Channel surface electromyography system was used to collect sEMG signals of middle deltoid, biceps brachii, triceps brachii, latissimusdorsi, and pectoralis major. The 3D center of mass and foot displacement showed a good match with the computer simulated results. The muscle force estimations from the model during the four DLC phases were also generally supported by the integrated sEMG results, suggesting that the model was valid. A potential application of this model is to help identify shortcomings of athletes and help establish appropriate training plans errors in the DLC technique during training. PMID:23487347
A Comparison of a Multi-body Model and 3D Kinematics and EMG ofDouble-leg Circle on Pommel Horse.
Qian, Jing-Guang; Su, Yang; Song, Ya-Wei; Qiang, Ye; Zhang, Songning
2012-03-01
The purpose of this study was to establish a multi-segment dynamic model in the LifeMOD to examine kinematics of the center of mass and foot, and muscle forces of selected upper extremity muslces during a double-leg circle (DLC) movement on pommel horse in gymnastics and compared with three-dimensional kinematics of the movement and surface electromyographic (sEMG) activity of the muscles. The DLC movement of one elite male gymnast was collected. The three-dimensional (3D) data was imported in the Lifemod to create a full-body human model. A 16-Channel surface electromyography system was used to collect sEMG signals of middle deltoid, biceps brachii, triceps brachii, latissimusdorsi, and pectoralis major. The 3D center of mass and foot displacement showed a good match with the computer simulated results. The muscle force estimations from the model during the four DLC phases were also generally supported by the integrated sEMG results, suggesting that the model was valid. A potential application of this model is to help identify shortcomings of athletes and help establish appropriate training plans errors in the DLC technique during training. PMID:23487347
Drag Prediction for the DLR-F4 Wing/Body using OVERFLOW and CFL3D on an Overset Mesh
NASA Technical Reports Server (NTRS)
Vassberg, John C.; Buning, Pieter G.; Rumsey, Christopher L.
2002-01-01
This paper reviews the importance of numerical drag prediction in an aircraft design environment. A chronicle of collaborations between the authors and colleagues is discussed. This retrospective provides a road-map which illustrates some of the actions taken in the past seven years in pursuit of accurate drag prediction. The advances made possible through these collaborations have changed the manner in which business is conducted during the design of all-new aircraft. The subject of this study is the DLR-F4 wing/body transonic model. Specifically, the work conducted herein was in support of the 1st CFD Drag Prediction Workshop, which was held in conjunction with the 19th Applied Aerodynamics Conference in Anaheim, CA during June, 2001. Comprehensive sets of OVERFLOW simulations were independently performed by several users on a variety of computational platforms. CFL3D was used on a limited basis for additional comparison on the same overset mesh. Drag polars based on this database were constructed with a CFD-to-Test correction applied and compared with test data from three facilities. These comparisons show that the predicted drag polars fall inside the scatter band of the test data, at least for pre-buffet conditions. This places the corrected drag levels within 1% of the averaged experimental values. At the design point, the OVERFLOW and CFL3D drag predictions are within 1-2% of each other. In addition, drag-rise characteristics and a boundary of drag-divergence Mach number are presented.
Mondal, Manas; Halder, Sukanya; Chakrabarti, Jaydeb; Bhattacharyya, Dhananjay
2016-04-01
Stacking interaction between the aromatic heterocyclic bases plays an important role in the double helical structures of nucleic acids. Considering the base as rigid body, there are total of 18 degrees of freedom of a dinucleotide step. Some of these parameters show sequence preferences, indicating that the detailed atomic interactions are important in the stacking. Large variants of non-canonical base pairs have been seen in the crystallographic structures of RNA. However, their stacking preferences are not thoroughly deciphered yet from experimental results. The current theoretical approaches use either the rigid body degrees of freedom where the atomic information are lost or computationally expensive all atom simulations. We have used a hybrid simulation approach incorporating Monte-Carlo Metropolis sampling in the hyperspace of 18 stacking parameters where the interaction energies using AMBER-parm99bsc0 and CHARMM-36 force-fields were calculated from atomic positions. We have also performed stacking energy calculations for structures from Monte-Carlo ensemble by Dispersion corrected density functional theory. The available experimental data with Watson-Crick base pairs are compared to establish the validity of the method. Stacking interaction involving A:U and G:C base pairs with non-canonical G:U base pairs also were calculated and showed that these structures were also sequence dependent. This approach could be useful to generate multiscale modeling of nucleic acids in terms of coarse-grained parameters where the atomic interactions are preserved. This method would also be useful to predict structure and dynamics of different base pair steps containing non Watson-Crick base pairs, as found often in the non-coding RNA structures. © 2015 Wiley Periodicals, Inc. Biopolymers 105: 212-226, 2016. PMID:26600167
3D-dynamic representation of DNA sequences.
Wąż, Piotr; Bielińska-Wąż, Dorota
2014-03-01
A new 3D graphical representation of DNA sequences is introduced. This representation is called 3D-dynamic representation. It is a generalization of the 2D-dynamic dynamic representation. The sequences are represented by sets of "material points" in the 3D space. The resulting 3D-dynamic graphs are treated as rigid bodies. The descriptors characterizing the graphs are analogous to the ones used in the classical dynamics. The classification diagrams derived from this representation are presented and discussed. Due to the third dimension, "the history of the graph" can be recognized graphically because the 3D-dynamic graph does not overlap with itself. Specific parts of the graphs correspond to specific parts of the sequence. This feature is essential for graphical comparisons of the sequences. Numerically, both 2D and 3D approaches are of high quality. In particular, a difference in a single base between two sequences can be identified and correctly described (one can identify which base) by both 2D and 3D methods. PMID:24567158
Nakamoto, Takahiro; Arimura, Hidetaka; Nakamura, Katsumasa; Shioyama, Yoshiyuki; Mizoguchi, Asumi; Hirose, Taka-Aki; Honda, Hiroshi; Umezu, Yoshiyuki; Nakamura, Yasuhiko; Hirata, Hideki
2015-03-01
A computerized framework for monitoring four-dimensional (4D) dose distributions during stereotactic body radiation therapy based on a portal dose image (PDI)-based 2D/3D registration approach has been proposed in this study. Using the PDI-based registration approach, simulated 4D "treatment" CT images were derived from the deformation of 3D planning CT images so that a 2D planning PDI could be similar to a 2D dynamic clinical PDI at a breathing phase. The planning PDI was calculated by applying a dose calculation algorithm (a pencil beam convolution algorithm) to the geometry of the planning CT image and a virtual water equivalent phantom. The dynamic clinical PDIs were estimated from electronic portal imaging device (EPID) dynamic images including breathing phase data obtained during a treatment. The parameters of the affine transformation matrix were optimized based on an objective function and a gamma pass rate using a Levenberg-Marquardt (LM) algorithm. The proposed framework was applied to the EPID dynamic images of ten lung cancer patients, which included 183 frames (mean: 18.3 per patient). The 4D dose distributions during the treatment time were successfully obtained by applying the dose calculation algorithm to the simulated 4D "treatment" CT images. The mean±standard deviation (SD) of the percentage errors between the prescribed dose and the estimated dose at an isocenter for all cases was 3.25±4.43%. The maximum error for the ten cases was 14.67% (prescribed dose: 1.50Gy, estimated dose: 1.72Gy), and the minimum error was 0.00%. The proposed framework could be feasible for monitoring the 4D dose distribution and dose errors within a patient's body during treatment. PMID:25592290
Klauda, Jeffery B.; Roberts, Mary F.; Redfield, Alfred G.; Brooks, Bernard R.; Pastor, Richard W.
2008-01-01
Molecular dynamics simulations and 31P-NMR spin-lattice (\\documentclass[10pt]{article} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{pmc} \\usepackage[Euler]{upgreek} \\pagestyle{empty} \\oddsidemargin -1.0in \\begin{document} \\begin{equation*}R_{1}\\end{equation*}\\end{document}) relaxation rates from 0.022 to 21.1 T of fluid phase dipalmitoylphosphatidylcholine bilayers are compared. Agreement between experiment and direct prediction from simulation indicates that the dominant slow relaxation (correlation) times of the dipolar and chemical shift anisotropy spin-lattice relaxation are ∼10 ns and 3 ns, respectively. Overall reorientation of the lipid body, consisting of the phosphorus, glycerol, and acyl chains, is well described within a rigid-body model. Wobble, with \\documentclass[10pt]{article} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{pmc} \\usepackage[Euler]{upgreek} \\pagestyle{empty} \\oddsidemargin -1.0in \\begin{document} \\begin{equation*}D_{{\\bot}}=\\end{equation*}\\end{document} 1–2 × 108 s−1, is the primary component of the 10 ns relaxation; this timescale is consistent with the tumbling of a lipid-sized cylinder in a medium with the viscosity of liquid hexadecane. The value for \\documentclass[10pt]{article} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{pmc} \\usepackage[Euler]{upgreek} \\pagestyle{empty} \\oddsidemargin -1.0in \\begin{document} \\begin{equation*}D_{{\\Vert}},\\end{equation*}\\end{document} the diffusion constant for rotation about the long axis of the lipid body, is difficult to determine precisely because of averaging by fast motions and wobble; it is tentatively estimated to be 1 × 107 s−1. The resulting D‖/D⊥
Boda-Heggemann, Judit . E-mail: judit.boda-heggemann@radonk.ma.uni-heidelberg.de; Walter, Cornelia; Rahn, Angelika; Wertz, Hansjoerg; Loeb, Iris; Lohr, Frank; Wenz, Frederik
2006-12-01
Purpose: The repositioning accuracy of mask-based fixation systems has been assessed with two-dimensional/two-dimensional or two-dimensional/three-dimensional (3D) matching. We analyzed the accuracy of commercially available head mask systems, using true 3D/3D matching, with X-ray volume imaging and cone-beam CT. Methods and Materials: Twenty-one patients receiving radiotherapy (intracranial/head-and-neck tumors) were evaluated (14 patients with rigid and 7 with thermoplastic masks). X-ray volume imaging was analyzed online and offline separately for the skull and neck regions. Translation/rotation errors of the target isocenter were analyzed. Four patients were treated to neck sites. For these patients, repositioning was aided by additional body tattoos. A separate analysis of the setup error on the basis of the registration of the cervical vertebra was performed. The residual error after correction and intrafractional motility were calculated. Results: The mean length of the displacement vector for rigid masks was 0.312 {+-} 0.152 cm (intracranial) and 0.586 {+-} 0.294 cm (neck). For the thermoplastic masks, the value was 0.472 {+-} 0.174 cm (intracranial) and 0.726 {+-} 0.445 cm (neck). Rigid masks with body tattoos had a displacement vector length in the neck region of 0.35 {+-} 0.197 cm. The intracranial residual error and intrafractional motility after X-ray volume imaging correction for rigid masks was 0.188 {+-} 0.074 cm, and was 0.134 {+-} 0.14 cm for thermoplastic masks. Conclusions: The results of our study have demonstrated that rigid masks have a high intracranial repositioning accuracy per se. Given the small residual error and intrafractional movement, thermoplastic masks may also be used for high-precision treatments when combined with cone-beam CT. The neck region repositioning accuracy was worse than the intracranial accuracy in both cases. However, body tattoos and image guidance improved the accuracy. Finally, the combination of both mask
Efficient Lie-Poisson Integrator for Secular Spin Dynamics of Rigid Bodies
NASA Astrophysics Data System (ADS)
Breiter, Sławomir; Nesvorný, David; Vokrouhlický, David
2005-09-01
A fast and efficient numerical integration algorithm is presented for the problem of the secular evolution of the spin axis. Under the assumption that a celestial body rotates around its maximum moment of inertia, the equations of motion are reduced to the Hamiltonian form with a Lie-Poisson bracket. The integration method is based on the splitting of the Hamiltonian function, and so it conserves the Lie-Poisson structure. Two alternative partitions of the Hamiltonian are investigated, and second-order leapfrog integrators are provided for both cases. Non-Hamiltonian torques can be incorporated into the integrators with a combination of Euler and Lie-Euler approximations. Numerical tests of the methods confirm their useful properties of short computation time and reliability on long integration intervals.
On relative equilibria of mutually gravitating massive point and triangular rigid body
NASA Astrophysics Data System (ADS)
Nikonov, Vasily I.
2014-07-01
Planar motions of a triangular body and a massive point under the action of mutual Newtonian attraction are studied. For the first formulation the triangle is assumed to be composed of three massive points. For the second formulation it is constructed with three homogeneous rods. Some partial solutions are observed within the analysis of the geometry of mass distribution. The investigation is motivated by the problem of motion of spacecrafts near asteroid-like celestial objects possessing irregular mass distribution. Comparison of dynamical effects for two types of mass distribution is another goal of the research. Problems appearing because of irregularities in mass distributions have been known for a long time. Certain approaches to the description of motions under attraction as well as qualitative particulars of dynamics are discussed by Demin (1963), Burov & Karapetyan (1995), Buchin & Burov & Troger (2008), Burov & Guerman & Sulikashvili (2010), Kholshevnikov & Kuznetsov (2011), Beletsky & Rodnikov (2011) and Scheeres (2012).
Pseudo-Rigid-Body Model and Kinematic Analysis of MRI-Actuated Catheters
Greigarn, Tipakorn; Çavuşoğlu, M. Cenk
2015-01-01
This paper presents a kinematic study of a pseudorigid-body model (PRBM) of MRI-compatible, magnetically actuated, steerable catheters. It includes a derivation of a mathematical model of the PRBM of the catheter, singularity studies of the model, and a new manipulability measure. While the forward kinematics of the model presented here is applicable to PRBMs for other applications, actuation method is unique to the particular design. Hence, a careful study of singularities and manipulability of the model is required. The singularities are studied from the underlying equations of motion with intuitive interpretations. The proposed manipulability measure is a generalization of the inverse condition number manipulability measure of robotic manipulators. While the PRBM is an approximation of the flexible catheter, kinematic studies of the PRBM still provide some insight into feasibility and limitations of the catheter, which is beneficial to the design and motion planning of the catheter. PMID:26413380
Comparison between single and multi-camera view videogrammetry for estimating 6DOF of a rigid body
NASA Astrophysics Data System (ADS)
Nocerino, Erica; Menna, Fabio; Remondino, Fabio
2015-05-01
Motion capture (MOCAP) systems are used in many fields of application (e.g., machine vision, navigation, industrial measurements, medicine) for tracking and measuring the 6DOF (Degrees-Of-Freedom) of bodies. A variety of systems has been developed in the commercial, as well as research domain, exploiting different sensors and techniques, among which optical methods, based on multi-epoch photogrammetry, are the most common. The authors have developed an off-line low-cost MOCAP system made up of three consumer-grade video cameras, i.e. a multi-view camera system. The system was employed in two different case studies for measuring the motion of personnel working onboard a fishing boat and of a ship model in a towing tank (or model basin) subjected to different sea conditions. In this contribution, the same three single cameras are separately processed to evaluate the performances of a sequential space resection method for estimated the 6DOF of a rigid body (a ship model during high frequency tests in a model basin). The results from each video camera are compared with the motion estimated using the multi-view approach, with the aim of providing a quantitative assessment of the performances obtainable.
Drag Prediction for the DLR-F6 Wing/Body and DPW Wing using CFL3D and OVERFLOW Overset Mesh
NASA Technical Reports Server (NTRS)
Sclanfani, Anthony J.; Vassberg, John C.; Harrison, Neal A.; DeHaan, Mark A.; Rumsey, Christopher L.; Rivers, S. Melissa; Morrison, Joseph H.
2007-01-01
A series of overset grids was generated in response to the 3rd AIAA CFD Drag Prediction Workshop (DPW-III) which preceded the 25th Applied Aerodynamics Conference in June 2006. DPW-III focused on accurate drag prediction for wing/body and wing-alone configurations. The grid series built for each configuration consists of a coarse, medium, fine, and extra-fine mesh. The medium mesh is first constructed using the current state of best practices for overset grid generation. The medium mesh is then coarsened and enhanced by applying a factor of 1.5 to each (I,J,K) dimension. The resulting set of parametrically equivalent grids increase in size by a factor of roughly 3.5 from one level to the next denser level. CFD simulations were performed on the overset grids using two different RANS flow solvers: CFL3D and OVERFLOW. The results were post-processed using Richardson extrapolation to approximate grid converged values of lift, drag, pitching moment, and angle-of-attack at the design condition. This technique appears to work well if the solution does not contain large regions of separated flow (similar to that seen n the DLR-F6 results) and appropriate grid densities are selected. The extra-fine grid data helped to establish asymptotic grid convergence for both the OVERFLOW FX2B wing/body results and the OVERFLOW DPW-W1/W2 wing-alone results. More CFL3D data is needed to establish grid convergence trends. The medium grid was utilized beyond the grid convergence study by running each configuration at several angles-of-attack so drag polars and lift/pitching moment curves could be evaluated. The alpha sweep results are used to compare data across configurations as well as across flow solvers. With the exception of the wing/body drag polar, the two codes compare well qualitatively showing consistent incremental trends and similar wing pressure comparisons.
NASA Astrophysics Data System (ADS)
Liang, Xiaofeng; Chen, Yun; Tian, Xiaobo; Chen, Yongshun John; Ni, James; Gallegos, Andrea; Klemperer, Simon L.; Wang, Minling; Xu, Tao; Sun, Changqing; Si, Shaokun; Lan, Haiqiang; Teng, Jiwen
2016-06-01
We perform a finite-frequency tomographic inversion to image 3D velocity structures beneath southern and central Tibet using teleseismic body-wave data recorded by the TIBET-31N passive seismic array as well as waveforms from previous temporary seismic arrays. High-velocity bodies dip ∼40° northward beneath the Himalaya and the Lhasa Terrane. We interpret these high-velocity anomalies as subducting Indian Continental Lithosphere (ICL). The ICL appears to extend further north in central Tibet than in eastern Tibet, reaching 350 km depth at ∼31°N along 85°E but at ∼30°N along 91°E. Low P- and S-wave velocity anomalies extend from the lower crust to ≥180 km depth beneath the Tangra Yum Co Rift, Yadong-Gulu Rift, and the Cona Rift, suggesting that rifting in southern Tibet may involve the entire lithosphere. The anomaly beneath Tangra Yum Co Rift extends down to about 180 km, whereas the anomalies west of the Yadong-Gulu Rift and east of the Cona Rift extend to more than 300 km depth. The low-velocity upper mantle west of the Yadong-Gulu Rift extends furthest north and appears to connect with the extensive upper-mantle low-velocity region beneath central Tibet. Thus the northward-subducting Indian Plate is fragmented along north-south breaks that permit or induce asthenospheric upwellings indistinguishable from the upper mantle of northern Tibet.
NASA Astrophysics Data System (ADS)
Chaput, J. A.; Zandomeneghi, D.; Aster, R. C.; Knox, H. A.; Kyle, P. R.
2011-12-01
Erebus volcano, Antarctica hosts a long-lived convecting phonolitic lava lake, and produces frequent VE0 Strombolian eruptions from large gas slugs rising through the conduit system. We present a novel application of body wave seismic interferometry using Strombolian eruption seismic coda to recover a 3-D impedance contrast image of the shallow magmatic system. Exploiting the extreme scattering of volcanic media, we use correlations of equipartioned eruption coda wavefields to extract single-station multicomponent Green's functions at 31 broadband and 78 short period seismic stations deployed on the upper volcano during 2007-2009. Using a novel rotation technique, we migrated Green's function maxima into a 3-D volume to yield a scattering map of the volcano. Results suggest a complex, bifurcating shallow conduit system that transitions into a more centralized structure near ~1.2 km depth. The shape of the imaged shallow conduit system helps explain the gas slug generation mechanism at Erebus volcano, which likely requires a low angle shallow roof at which to accrete gas bubbles. Other strong scattering features are also imaged, suggesting possible multipathing of the magmatic system as well as deeper small magma chambers. Principal shallow features observed in this study are corroborated by a concurrent active source tomographic study of the upper ~1 km of the volcanic edifice (Zandomeneghi et al. 2011), thus laying credence to the success of the method as well as its future potential. This study paves the way for real time structural monitoring of persistently active volcanoes. Given sufficiently energetic and broadband sources and a sufficiently dense network of sensors, it should be possible to calculate such correlograms and associated images at many volcanoes.
Gu, Angel; Tsark, Walter; Holmes, Kathryn V.; Shively, John E.
2009-06-10
CEACAM1 (carcinoembryonic antigen-related cell adhesion molecule 1), a type I transmembrane glycoprotein involved in cell-cell adhesion has been shown to act as an angiogenic factor for mouse and human endothelial cells. Based on the ability of CEACAM1 to initiate lumen formation in human mammary epithelial cells grown in 3D culture (Matrigel), we hypothesized that murine CEACAM1 may play a similar role in vasculogenesis. In order to test this hypothesis, murine embryonic stem (ES) cells stimulated with VEGF were differentiated into embryoid bodies (EB) for 8 days (- 8-0 d) and transferred to Matrigel in the presence or absence of anti-CEACAM1 antibody for an additional 12 days (0-12 d). In the absence of anti-CEACAM1 antibody or in the presence of an isotype control antibody, the EB in Matrigel underwent extensive sprouting, generating lengthy vascular structures with well-defined lumina as demonstrated by confocal microscopy, electron microscopy, and immunohistochemical analysis. Both the length and architecture of the vascular tubes were inhibited by anti-CEACAM1 mAb CC1, a mAb that blocks the cell-cell adhesion functions of CEACAM1, thus demonstrating a critical role for this cell-cell adhesion molecule in generating and maintaining vasculogenesis. QRT-PCR analysis of the VEGF treated ES cells grown under conditions that convert them to EB revealed expression of Ceacam1 as early as - 5 to - 3 d reaching a maximum at day 0 at which time EBs were transferred to Matrigel, thereafter levels at first declined and then increased over time. Other markers of vasculogenesis including Pecam1, VE-Cad, and Tie-1 were not detected until day 0 when EBs were transferred to Matrigel followed by a steady increase in levels, indicating later roles in vasculogenesis. In contrast, Tie-2 and Flk-1 (VEGFR2) were detected on day five of EB formation reaching a maximum at day 0 on transfer to Matrigel, similar to Ceacam1, but after which Tie-2 declined over time, while Flk-1 increased
Tesio, Luigi; Rota, Viviana; Perucca, Laura
2011-02-24
During straight walking, the body centre of mass (CM) follows a 3D figure-of-eight ("bow-tie") trajectory about 0.2 m long and with sizes around 0.05 m on each orthogonal axis. This was shown in 18 healthy adults walking at 0.3 to 1.4 ms⁻¹ on a force-treadmill (Tesio and Rota, 2008). Double integration of force signals can provide both the changes of mechanical energy of the CM and its 3D displacements (Tesio et al., 2010). In the same subjects, the relationship between the tangential speed of the CM, Vt, the curvature, C, and its inverse--the radius of curvature, r(c), were analyzed. A "power law" (PL) model was applied, i.e. logVt was regressed over logr(c). A PL is known to apply to the most various goal-directed planar movements (e.g. drawing), where the coefficient of logr(c), β, usually takes values around 13. When the PL was fitted to the whole dataset, β was 0.346 and variance explanation, R², was 59.8%. However, when the data were split into low- and high-curvature subsets (LC, HC, arbitrary cut-off of C=0.05 mm⁻¹, r(c)=20mm), β was 0.185 in the LC (R² 0.214) and 0.486 in the HC (R² 0.536) tracts. R² on the whole dataset increased to 0.763 if the LC-HC classification of the forward speed and their interaction entered the model. The β coefficient, the curvature C, and the pendulum-like recovery of mechanical energy were lower during the double foot-ground contact phase, compared to the single contact. Along the CM trajectory, curvature and muscle power output peaked together around the inversions of lateral direction. Non-zero torsion values were randomly distributed along 60% of the trajectory, suggesting that this is not segmented into piecewise planar tracts. It is proposed that the trajectory can be segmented into one tract that is more actively controlled (tie) where a PL fits poorly and another tract which is more ballistic (bow) where a PL fits well. Results need confirmation through more appropriate 3D PL modelling. PMID:21075377
Regular and chaotic motions in applied dynamics of a rigid body.
Beletskii, V. V.; Pivovarov, M. L.; Starostin, E. L.
1996-06-01
Periodic and regular motions, having a predictable functioning mode, play an important role in many problems of dynamics. The achievements of mathematics and mechanics (beginning with Poincare) have made it possible to establish that such motion modes, generally speaking, are local and form "islands" of regularity in a "chaotic sea" of essentially unpredictable trajectories. The development of computer techniques together with theoretical investigations makes it possible to study the global structure of the phase space of many problems having applied significance. A review of a number of such problems, considered by the authors in the past four or five years, is given in this paper. These include orientation and rotation problems of artificial and natural celestial bodies and the problem of controlling the motion of a locomotion robot. The structure of phase space is investigated for these problems. The phase trajectories of the motion are constructed by a numerical implementation of the Poincare point map method. Distinctions are made between regular (or resonance), quasiregular (or conditionally periodic), and chaotic trajectories. The evolution of the phase picture as the parameters are varied is investigated. A large number of "phase portraits" gives a notion of the arrangement and size of the stability islands in the "sea" of chaotic motions, about the appearance and disappearance of these islands as the parameters are varied, etc. (c) 1996 American Institute of Physics. PMID:12780243
Bull, Diana L.
2015-09-23
The fundamental interactions between waves, a floating rigid-body, and a moonpool that is selectively open to atmosphere or enclosed to purposefully induce pressure fluctuations are investigated. The moonpool hydrodynamic characteristics and the hydrodynamic coupling to the rigid-body are derived implicitly through reciprocity relations on an array of field points. By modeling the free surface of the moonpool in this manner, an explicit hydrodynamic coupling term is included in the equations of motion. This coupling results in the migration of the moonpool's natural resonance frequency from the piston frequency to a new frequency when enclosed in a floating rigid-body. Two geometries that highlight distinct aspects of marine vessels and oscillating water column (OWC) renewable energy devices are analyzed to reveal the coupled natural resonance migration. The power performance of these two OWCs in regular waves is also investigated. The air chamber is enclosed and a three-dimensional, linear, frequency domain performance model that links the rigid-body to the moonpool through a linear resistive control strategy is detailed. Furthermore, an analytic expression for the optimal linear resistive control values in regular waves is presented.
Bull, Diana L.
2015-09-23
The fundamental interactions between waves, a floating rigid-body, and a moonpool that is selectively open to atmosphere or enclosed to purposefully induce pressure fluctuations are investigated. The moonpool hydrodynamic characteristics and the hydrodynamic coupling to the rigid-body are derived implicitly through reciprocity relations on an array of field points. By modeling the free surface of the moonpool in this manner, an explicit hydrodynamic coupling term is included in the equations of motion. This coupling results in the migration of the moonpool's natural resonance frequency from the piston frequency to a new frequency when enclosed in a floating rigid-body. Two geometriesmore » that highlight distinct aspects of marine vessels and oscillating water column (OWC) renewable energy devices are analyzed to reveal the coupled natural resonance migration. The power performance of these two OWCs in regular waves is also investigated. The air chamber is enclosed and a three-dimensional, linear, frequency domain performance model that links the rigid-body to the moonpool through a linear resistive control strategy is detailed. Furthermore, an analytic expression for the optimal linear resistive control values in regular waves is presented.« less
ERIC Educational Resources Information Center
Bellver-Cebreros, Consuelo; Rodriguez-Danta, Marcelo
2009-01-01
An apparently unnoticed analogy between the torque-free motion of a rotating rigid body about a fixed point and the propagation of light in anisotropic media is stated. First, a new plane construction for visualizing this torque-free motion is proposed. This method uses an intrinsic representation alternative to angular momentum and independent of…
NASA Astrophysics Data System (ADS)
Varkhalev, Iu. P.
1988-07-01
The first Liapunov method is used to investigate sufficient conditions for the existence of asymptotically pendulum motions of a rigid body with a single fixed point. A region of permissible values of the parameters characterizing the body mass corresponding to the asymptotically pendulum motions is defined. The existence of such motions in the case of the Kovalevskii solution and their absence in the Goriachev-Chapolygin solution are demonstrated.
Zhang, Rongchun; Ramamoorthy, Ayyalusamy; Nishiyama, Yusuke
2015-10-28
A proton-detected 3D {sup 1}H/{sup 13}C/{sup 1}H chemical shift correlation experiment is proposed for the assignment of chemical shift resonances, identification of {sup 13}C-{sup 1}H connectivities, and proximities of {sup 13}C-{sup 1}H and {sup 1}H-{sup 1}H nuclei under ultrafast magic-angle-spinning (ultrafast-MAS) conditions. Ultrafast-MAS is used to suppress all anisotropic interactions including {sup 1}H-{sup 1}H dipolar couplings, while the finite-pulse radio frequency driven dipolar recoupling (fp-RFDR) pulse sequence is used to recouple dipolar couplings among protons and the insensitive nuclei enhanced by polarization transfer technique is used to transfer magnetization between heteronuclear spins. The 3D experiment eliminates signals from non-carbon-bonded protons and non-proton-bonded carbons to enhance spectral resolution. The 2D (F1/F3) {sup 1}H/{sup 1}H and 2D {sup 13}C/{sup 1}H (F2/F3) chemical shift correlation spectra extracted from the 3D spectrum enable the identification of {sup 1}H-{sup 1}H proximity and {sup 13}C-{sup 1}H connectivity. In addition, the 2D (F1/F2) {sup 1}H/{sup 13}C chemical shift correlation spectrum, incorporated with proton magnetization exchange via the fp-RFDR recoupling of {sup 1}H-{sup 1}H dipolar couplings, enables the measurement of proximities between {sup 13}C and even the remote non-carbon-bonded protons. The 3D experiment also gives three-spin proximities of {sup 1}H-{sup 1}H-{sup 13}C chains. Experimental results obtained from powder samples of L-alanine and L-histidine ⋅ H{sub 2}O ⋅ HCl demonstrate the efficiency of the 3D experiment.
A heterogeneous system based on GPU and multi-core CPU for real-time fluid and rigid body simulation
NASA Astrophysics Data System (ADS)
da Silva Junior, José Ricardo; Gonzalez Clua, Esteban W.; Montenegro, Anselmo; Lage, Marcos; Dreux, Marcelo de Andrade; Joselli, Mark; Pagliosa, Paulo A.; Kuryla, Christine Lucille
2012-03-01
Computational fluid dynamics in simulation has become an important field not only for physics and engineering areas but also for simulation, computer graphics, virtual reality and even video game development. Many efficient models have been developed over the years, but when many contact interactions must be processed, most models present difficulties or cannot achieve real-time results when executed. The advent of parallel computing has enabled the development of many strategies for accelerating the simulations. Our work proposes a new system which uses some successful algorithms already proposed, as well as a data structure organisation based on a heterogeneous architecture using CPUs and GPUs, in order to process the simulation of the interaction of fluids and rigid bodies. This successfully results in a two-way interaction between them and their surrounding objects. As far as we know, this is the first work that presents a computational collaborative environment which makes use of two different paradigms of hardware architecture for this specific kind of problem. Since our method achieves real-time results, it is suitable for virtual reality, simulation and video game fluid simulation problems.
Taylor, L.M.; Preece, D.S.
1989-07-01
The computer program DMC (Distinct Motion Code) determines the two-dimensional planar rigid body motion of an arbitrary number of spherical shaped particles. The code uses an explicit central difference time integration algorithm to calculate the motion of the particles. Contact constraints between the particles are enforced using the penalty method. Coulomb friction and viscous damping are included in the collisions. The explicit time integration is conditionally stable with a time increment size which is dependent on the mass of the smallest particle in the mesh and the penalty stiffness used for the contact forces. The code chooses the spring stiffness based on the Young's modulus and Poisson's ratio of the material. The ability to tie spheres in pairs with a constraint condition is included in the code. The code has been written in an extremely efficient manner with particular emphasis placed on vector processing. While this does not impose any restrictions on non-vector processing computers, it does provide extremely fast results on vector processing computers. A bucket sorting or boxing algorithm is used to reduce the number of comparisons which must be made between spheres to determine the contact pairs. The sorting algorithm is completely algebraic and contains no logical branching. 13 refs., 14 figs., 4 tabs.
NASA Astrophysics Data System (ADS)
Taylor, L. M.; Preece, D. S.
1989-07-01
The computer program Distinct Motion Code (DMC) determines the two-dimensional planar rigid body motion of an arbitrary number of spherical shaped particles. The code uses an explicit central difference time integration algorithm to calculate the motion of the particles. Contact constraints between the particles are enforced using the penalty method. Coulomb friction and viscous damping are included in the collisions. The explicit time integration is conditionally stable with a time increment size which is dependent on the mass of the smallest particle in the mesh and the penalty stiffness used for the contact forces. The code chooses the spring stiffness based on the Young's modulus and Poisson's ratio of the material. The ability to tie spheres in pairs with a constraint condition is included in the code. The code has been written in an extremely efficient manner with particular emphasis placed on vector processing. While this does not impose any restrictions on non-vector processing computers, it does provide extremely fast results on vector processing computers. A bucket sorting or boxing algorithm is used to reduce the number of comparisons which must be made between spheres to determine the contact pairs. The sorting algorithm is completely algebraic and contains no logical branching.
NASA Astrophysics Data System (ADS)
Rupnik, Ewelina; Jansa, Josef
2013-04-01
Central to our investigation is determination of dynamic behaviour of a highly reflective platform floating on water, as well as derivation of parameters defining instantaneous water state. The employed imaging setup consists of three off-the-shelf dSLR cameras capable of video recording at a 30Hz frame rate. In order to observe a change, the non-rigid and non-diffuse bodies impose the adoption of artificial targetting and custom measurement algorithms. Attention will be given to an in-house software tool implemented to carry out point measurement, correspondence search, tracking and outlier detection methods in the presence of specular reflections and a multimedia scene. A methodology for retrieval of wave parameters in regular wave conditions is also automatically handled by the software and will be discussed. In the context of performed measurements and achieved results, we will point out the extent to which consumer grade camera can fulfil automation and accuracy demands of industrial applications and the pitfalls entailed. Lastly, we will elaborate on visual representation of computed motion and deformations.
NASA Astrophysics Data System (ADS)
Im, Chang-Hwan; Park, Ji-Hye; Shim, Miseon; Chang, Won Hyuk; Kim, Yun-Hee
2012-04-01
In this study, local electric field distributions generated by transcranial direct current stimulation (tDCS) with an extracephalic reference electrode were evaluated to address extracephalic tDCS safety issues. To this aim, we generated a numerical model of an adult male human upper body and applied the 3D finite element method to electric current conduction analysis. In our simulations, the active electrode was placed over the left primary motor cortex (M1) and the reference electrode was placed at six different locations: over the right temporal lobe, on the right supraorbital region, on the right deltoid, on the left deltoid, under the chin, and on the right buccinator muscle. The maximum current density and electric field intensity values in the brainstem generated by the extracephalic reference electrodes were comparable to, or even less than, those generated by the cephalic reference electrodes. These results suggest that extracephalic reference electrodes do not lead to unwanted modulation of the brainstem cardio-respiratory and autonomic centers, as indicated by recent experimental studies. The volume energy density was concentrated at the neck area by the use of deltoid reference electrodes, but was still smaller than that around the active electrode locations. In addition, the distributions of elicited cortical electric fields demonstrated that the use of extracephalic reference electrodes might allow for the robust prediction of cortical modulations with little dependence on the reference electrode locations.
Nonrigid Autofocus Motion Correction for Coronary MR Angiography with a 3D Cones Trajectory
Ingle, R. Reeve; Wu, Holden H.; Addy, Nii Okai; Cheng, Joseph Y.; Yang, Phillip C.; Hu, Bob S.; Nishimura, Dwight G.
2014-01-01
Purpose: To implement a nonrigid autofocus motion correction technique to improve respiratory motion correction of free-breathing whole-heart coronary magnetic resonance angiography (CMRA) acquisitions using an image-navigated 3D cones sequence. Methods: 2D image navigators acquired every heartbeat are used to measure superior-inferior, anterior-posterior, and right-left translation of the heart during a free-breathing CMRA scan using a 3D cones readout trajectory. Various tidal respiratory motion patterns are modeled by independently scaling the three measured displacement trajectories. These scaled motion trajectories are used for 3D translational compensation of the acquired data, and a bank of motion-compensated images is reconstructed. From this bank, a gradient entropy focusing metric is used to generate a nonrigid motion-corrected image on a pixel-by-pixel basis. The performance of the autofocus motion correction technique is compared with rigid-body translational correction and no correction in phantom, volunteer, and patient studies. Results: Nonrigid autofocus motion correction yields improved image quality compared to rigid-body-corrected images and uncorrected images. Quantitative vessel sharpness measurements indicate superiority of the proposed technique in 14 out of 15 coronary segments from three patient and two volunteer studies. Conclusion: The proposed technique corrects nonrigid motion artifacts in free-breathing 3D cones acquisitions, improving image quality compared to rigid-body motion correction. PMID:24006292
NASA Astrophysics Data System (ADS)
Irschik, H.; Krommer, M.; Nader, M.; Vetyukov, Y.; von Garssen, H.-G.
2015-01-01
The present paper is concerned with Lagrange's Equations, applied to a deformable body in the presence of rigid body degrees of freedom. The Lagrange description of Continuum Mechanics is used. An exact version of the Equations is derived first. This version, which represents an identical extension of the Fundamental Law of Dynamics, does involve the idea of virtual motions. The virtual motion is described in the framework of the Ritz-Ansatz, but our derivation does not make use of D'Alemberts principle, the principle of virtual work, or variational principles. From the exact version, by involving arguments related to the Galerkin approximation technique, we derive an approximate Ritz type version of Lagrange's Equations. This approximate version coincides with the traditional one, which is based on the notion of kinetic energy. However, since our derivation stems from the Fundamental Law of Dynamics, we have at our disposal an alternative formulation, which is based on the notion of local momentum. This momentum based version, which is the main topic of the present contribution, can be used for the purpose of performing independent checks of the energy based version of Lagrange's Equations. The momentum based version also clarifies that and how certain terms in the energy based version do cancel out. The momentum based version is worked out in the framework of the Floating Frame of Reference Formulation of Multibody Dynamics. Explicit formulas for the single terms of Lagrange's Equations are derived for the translational, rotational and flexible degrees of freedom of the deformable body, respectively. Corresponding Lagrange's Equations are explained in the light of the relations of Balance of Total Momentum, Balance of Total Moment of Momentum, of the Mean Stress Theorem and the notion of Virial of Forces. An embedding into the literature is given.
NASA Astrophysics Data System (ADS)
Massoud, Usama; Soliman, Mamdouh; Taha, Ayman; Khozym, Ashraf; Salah, Hany
2015-12-01
Seawater intrusion is a widespread environmental problem in the Egyptian coastal aquifers. It affects the groundwater used in domestic and agricultural activities along these coasts. In this study, resistivity survey in the form of Vertical Electrical Sounding (VES) was conducted at ZAWYET EL HAWALA cultivated site, northwest coast of Egypt to outline a freshwater zone overlies the main saltwater body, and to determine the most suitable location for drilling water well for irrigation purposes. The VES data were measured at 11 stations in the studied site. After processing, the data were inverted in 1-D and 3-D schemes and the final model was presented as resistivity slices with depth. The results indicate that the effect of saltwater intrusion was observed, as low resistivity values, at 7.5 m below ground surface (bgs) at the northern part of the study area (toward the Mediterranean Sea), and extends southward with increasing depth covering the whole area at about 30 m bgs. The fresh water zone shows a minimum thickness of less than 7.5 m at the northern side and a maximum thickness of about 20 m at the southern side of the area. The proper site for drilling water well tap and the freshwater zone is the location of VES6 or VES9 with a maximum well depth of about 20 m bgs. The water withdrawal from the proposed well should be controlled not to raise the main saline water table in the well site. The main sources of the freshwater zone are the rainfall and surface runoff descending from the southern tableland. Excess rainfall and surface runoff can be avoided from direct discharge to the sea by collecting them in man-made outlined trenches and re-using the stored water in irrigation during the dry seasons.
NASA Astrophysics Data System (ADS)
Pletinckx, D.
2011-09-01
The current 3D hype creates a lot of interest in 3D. People go to 3D movies, but are we ready to use 3D in our homes, in our offices, in our communication? Are we ready to deliver real 3D to a general public and use interactive 3D in a meaningful way to enjoy, learn, communicate? The CARARE project is realising this for the moment in the domain of monuments and archaeology, so that real 3D of archaeological sites and European monuments will be available to the general public by 2012. There are several aspects to this endeavour. First of all is the technical aspect of flawlessly delivering 3D content over all platforms and operating systems, without installing software. We have currently a working solution in PDF, but HTML5 will probably be the future. Secondly, there is still little knowledge on how to create 3D learning objects, 3D tourist information or 3D scholarly communication. We are still in a prototype phase when it comes to integrate 3D objects in physical or virtual museums. Nevertheless, Europeana has a tremendous potential as a multi-facetted virtual museum. Finally, 3D has a large potential to act as a hub of information, linking to related 2D imagery, texts, video, sound. We describe how to create such rich, explorable 3D objects that can be used intuitively by the generic Europeana user and what metadata is needed to support the semantic linking.
A topological classification of the Chaplygin systems in the dynamics of a rigid body in a fluid
Nikolaenko, S S
2014-02-28
The paper is concerned with the topological analysis of the Chaplygin integrable case in the dynamics of a rigid body in a fluid. A full list of the topological types of Chaplygin systems in their dependence on the energy level is compiled on the basis of the Fomenko-Zieschang theory. An effective description of the topology of the Liouville foliation in terms of natural coordinate variables is also presented, which opens a direct way to calculating topological invariants. It turns out that on all nonsingular energy levels Chaplygin systems are Liouville equivalent to the well-known Euler case in the dynamics of a rigid body with fixed point. Bibliography: 23 titles.
Unseren, M.A.
1997-04-20
The paper reviews a method for modeling and controlling two serial link manipulators which mutually lift and transport a rigid body object in a three dimensional workspace. A new vector variable is introduced which parameterizes the internal contact force controlled degrees of freedom. A technique for dynamically distributing the payload between the manipulators is suggested which yields a family of solutions for the contact forces and torques the manipulators impart to the object. A set of rigid body kinematic constraints which restrict the values of the joint velocities of both manipulators is derived. A rigid body dynamical model for the closed chain system is first developed in the joint space. The model is obtained by generalizing the previous methods for deriving the model. The joint velocity and acceleration variables in the model are expressed in terms of independent pseudovariables. The pseudospace model is transformed to obtain reduced order equations of motion and a separate set of equations governing the internal components of the contact forces and torques. A theoretic control architecture is suggested which explicitly decouples the two sets of equations comprising the model. The controller enables the designer to develop independent, non-interacting control laws for the position control and internal force control of the system.
3D deformation field throughout the interior of materials.
Jin, Huiqing; Lu, Wei-Yang
2013-09-01
This report contains the one-year feasibility study for our three-year LDRD proposal that is aimed to develop an experimental technique to measure the 3D deformation fields inside a material body. In this feasibility study, we first apply Digital Volume Correlation (DVC) algorithm to pre-existing in-situ Xray Computed Tomography (XCT) image sets with pure rigid body translation. The calculated displacement field has very large random errors and low precision that are unacceptable. Then we enhance these tomography images by setting threshold of the intensity of each slice. DVC algorithm is able to obtain accurate deformation fields from these enhanced image sets and the deformation fields are consistent with the global mechanical loading that is applied to the specimen. Through this study, we prove that the internal markers inside the pre-existing tomography images of aluminum alloy can be enhanced and are suitable for DVC to calculate the deformation field throughout the material body.
2013-01-01
Background Gastropods are among the most diverse animal clades, and have successfully colonized special habitats such as the marine sand interstitial. Specialized meiofaunal snails and slugs are tiny and worm-shaped. They combine regressive features – argued to be due to progenetic tendencies – with convergent adaptations. Microscopic size and concerted convergences make morphological examination non-trivial and hamper phylogenetic reconstructions. The enigmatic turbellarian-like Rhodopemorpha are a small group that has puzzled systematists for over a century. A preliminary molecular framework places the group far closer to the root of Heterobranchia – one of the major gastropod groups – than previously suggested. The poorly known meiofaunal Helminthope psammobionta Salvini-Plawen, 1991 from Bermuda is the most worm-shaped free-living gastropod and shows apparently aberrant aspects of anatomy. Its study may give important clues to understand the evolution of rhodopemorphs among basal heterobranchs versus their previously thought origin among ‘higher’ euthyneuran taxa. Results We describe the 3D-microanatomy of H. psammobionta using three-dimensional digital reconstruction based on serial semithin histological sections. The new dataset expands upon the original description and corrects several aspects. Helminthope shows a set of typical adaptations and regressive characters present in other mesopsammic slugs (called ‘meiofaunal syndrome’ herein). The taxonomically important presence of five separate visceral loop ganglia is confirmed, but considerable further detail of the complex nervous system are corrected and revealed. The digestive and reproductive systems are simple and modified to the thread-like morphology of the animal; the anus is far posterior. There is no heart; the kidney resembles a protonephridium. Data on all organ systems are compiled and compared to Rhodope. Conclusions Helminthope is related to Rhodope sharing unique apomorphies
Matheoud, R; Secco, C; Della Monica, P; Leva, L; Sacchetti, G; Inglese, E; Brambilla, M
2009-10-01
The purpose of this study was to quantify the influence of outside field of view (FOV) activity concentration (A(c)(,out)) on the noise equivalent count rate (NECR), scatter fraction (SF) and image quality of a 3D LSO whole-body PET/CT scanner. The contrast-to-noise ratio (CNR) was the figure of merit used to characterize the image quality of PET scans. A modified International Electrotechnical Commission (IEC) phantom was used to obtain SF and counting rates similar to those found in average patients. A scatter phantom was positioned at the end of the modified IEC phantom to simulate an activity that extends beyond the scanner. The modified IEC phantom was filled with (18)F (11 kBq mL(-1)) and the spherical targets, with internal diameter (ID) ranging from 10 to 37 mm, had a target-to-background ratio of 10. PET images were acquired with background activity concentrations into the FOV (A(c)(,bkg)) about 11, 9.2, 6.6, 5.2 and 3.5 kBq mL(-1). The emission scan duration (ESD) was set to 1, 2, 3 and 4 min. The tube inside the scatter phantom was filled with activities to provide A(c)(,out) in the whole scatter phantom of zero, half, unity, twofold and fourfold the one of the modified IEC phantom. Plots of CNR versus the various parameters are provided. Multiple linear regression was employed to study the effects of A(c)(,out) on CNR, adjusted for the presence of variables (sphere ID, A(c)(,bkg) and ESD) related to CNR. The presence of outside FOV activity at the same concentration as the one inside the FOV reduces peak NECR of 30%. The increase in SF is marginal (1.2%). CNR diminishes significantly with increasing outside FOV activity, in the range explored. ESD and A(c)(,out) have a similar weight in accounting for CNR variance. Thus, an experimental law that adjusts the scan duration to the outside FOV activity can be devised. Recovery of CNR loss due to an elevated A(c)(,out) activity seems feasible by modulating the ESD in individual bed positions according to A
NASA Astrophysics Data System (ADS)
Dima, M.; Farisato, G.; Bergomi, M.; Viotto, V.; Magrin, D.; Greggio, D.; Farinato, J.; Marafatto, L.; Ragazzoni, R.; Piazza, D.
2014-08-01
In the last few years 3D printing is getting more and more popular and used in many fields going from manufacturing to industrial design, architecture, medical support and aerospace. 3D printing is an evolution of bi-dimensional printing, which allows to obtain a solid object from a 3D model, realized with a 3D modelling software. The final product is obtained using an additive process, in which successive layers of material are laid down one over the other. A 3D printer allows to realize, in a simple way, very complex shapes, which would be quite difficult to be produced with dedicated conventional facilities. Thanks to the fact that the 3D printing is obtained superposing one layer to the others, it doesn't need any particular work flow and it is sufficient to simply draw the model and send it to print. Many different kinds of 3D printers exist based on the technology and material used for layer deposition. A common material used by the toner is ABS plastics, which is a light and rigid thermoplastic polymer, whose peculiar mechanical properties make it diffusely used in several fields, like pipes production and cars interiors manufacturing. I used this technology to create a 1:1 scale model of the telescope which is the hardware core of the space small mission CHEOPS (CHaracterising ExOPlanets Satellite) by ESA, which aims to characterize EXOplanets via transits observations. The telescope has a Ritchey-Chrétien configuration with a 30cm aperture and the launch is foreseen in 2017. In this paper, I present the different phases for the realization of such a model, focusing onto pros and cons of this kind of technology. For example, because of the finite printable volume (10×10×12 inches in the x, y and z directions respectively), it has been necessary to split the largest parts of the instrument in smaller components to be then reassembled and post-processed. A further issue is the resolution of the printed material, which is expressed in terms of layers
NASA Technical Reports Server (NTRS)
Liu, J. J. F.; Fitzpatrick, P. M.
1973-01-01
Variational equations were applied to the case of a rapidly spinning triaxial body moving in an elliptic orbit, in which the orbital plane is regressing at a constant rate. The explicit differential equations obtained in this application were integrated by the method of averaging to develop secular analytical expressions, which, to first-order in a small parameter, describe the complete space motions of the rigid body under the influence of nonresonant gravity-gradient perturbations. The effects of aerodynamic torque on the rotational motion of an orbiting satellite are studied, as another example of the application of the variational equations derived and the method of averaging.
NASA Technical Reports Server (NTRS)
Macala, G. A.
1983-01-01
A computer program is described that can automatically generate symbolic equations of motion for systems of hinge-connected rigid bodies with tree topologies. The dynamical formulation underlying the program is outlined, and examples are given to show how a symbolic language is used to code the formulation. The program is applied to generate the equations of motion for a four-body model of the Galileo spacecraft. The resulting equations are shown to be a factor of three faster in execution time than conventional numerical subroutines.
3d-3d correspondence revisited
NASA Astrophysics Data System (ADS)
Chung, Hee-Joong; Dimofte, Tudor; Gukov, Sergei; Sułkowski, Piotr
2016-04-01
In fivebrane compactifications on 3-manifolds, we point out the importance of all flat connections in the proper definition of the effective 3d {N}=2 theory. The Lagrangians of some theories with the desired properties can be constructed with the help of homological knot invariants that categorify colored Jones polynomials. Higgsing the full 3d theories constructed this way recovers theories found previously by Dimofte-Gaiotto-Gukov. We also consider the cutting and gluing of 3-manifolds along smooth boundaries and the role played by all flat connections in this operation.
A practical salient region feature based 3D multi-modality registration method for medical images
NASA Astrophysics Data System (ADS)
Hahn, Dieter A.; Wolz, Gabriele; Sun, Yiyong; Hornegger, Joachim; Sauer, Frank; Kuwert, Torsten; Xu, Chenyang
2006-03-01
We present a novel representation of 3D salient region features and its integration into a hybrid rigid-body registration framework. We adopt scale, translation and rotation invariance properties of those intrinsic 3D features to estimate a transform between underlying mono- or multi-modal 3D medical images. Our method combines advantageous aspects of both feature- and intensity-based approaches and consists of three steps: an automatic extraction of a set of 3D salient region features on each image, a robust estimation of correspondences and their sub-pixel accurate refinement with outliers elimination. We propose a region-growing based approach for the extraction of 3D salient region features, a solution to the problem of feature clustering and a reduction of the correspondence search space complexity. Results of the developed algorithm are presented for both mono- and multi-modal intra-patient 3D image pairs (CT, PET and SPECT) that have been acquired for change detection, tumor localization, and time based intra-person studies. The accuracy of the method is clinically evaluated by a medical expert with an approach that measures the distance between a set of selected corresponding points consisting of both anatomical and functional structures or lesion sites. This demonstrates the robustness of the proposed method to image overlap, missing information and artefacts. We conclude by discussing potential medical applications and possibilities for integration into a non-rigid registration framework.
NASA Astrophysics Data System (ADS)
Meulien Ohlmann, Odile
2013-02-01
Today the industry offers a chain of 3D products. Learning to "read" and to "create in 3D" becomes an issue of education of primary importance. 25 years professional experience in France, the United States and Germany, Odile Meulien set up a personal method of initiation to 3D creation that entails the spatial/temporal experience of the holographic visual. She will present some different tools and techniques used for this learning, their advantages and disadvantages, programs and issues of educational policies, constraints and expectations related to the development of new techniques for 3D imaging. Although the creation of display holograms is very much reduced compared to the creation of the 90ies, the holographic concept is spreading in all scientific, social, and artistic activities of our present time. She will also raise many questions: What means 3D? Is it communication? Is it perception? How the seeing and none seeing is interferes? What else has to be taken in consideration to communicate in 3D? How to handle the non visible relations of moving objects with subjects? Does this transform our model of exchange with others? What kind of interaction this has with our everyday life? Then come more practical questions: How to learn creating 3D visualization, to learn 3D grammar, 3D language, 3D thinking? What for? At what level? In which matter? for whom?
NASA Astrophysics Data System (ADS)
Carton, H. D.; Carbotte, S. M.; Mutter, J. C.; Canales, J.; Nedimovic, M. R.; Marjanovic, M.; Aghaei, O.; Xu, M.; Han, S.; Stowe, L.
2009-12-01
In the summer of 2008 a large 3D multi-channel seismic dataset (expedition MGL0812) was collected over the 9°50’N Integrated Study Site at the East Pacific Rise, providing insight into the architecture of the magmatic system and its relationship with hydrothermal activity and volcanic/dyking events associated with the 2005-06 eruption. The main area of 3D coverage is located between 9°42’N and 9°57’N, spanning ~28km along-axis, and was acquired along 94 (1 partial) prime lines shot across-axis and each ~24km-long. Pre-processing of the data acquired in this area is now well under way, with significant efforts targeted at amplitude spike removal. Current work focuses on setting up the 3D processing sequence up to the stack stage for a small group of inlines (axis-perpendicular grid lines spaced 37.5m apart) located over the “bull’s eye” site at 9°50’N, a sequence that will subsequently be applied to the whole dataset. At the meeting we will present stacked and migrated sections - inlines, crosslines, time slices - obtained through 3D processing. We will discuss results focusing on the characteristics of the axial magma body, whose detailed structure and along-axis segmentation will be resolved by the 3D data.
Arumugam, Sankar; Xing Aitang; Jameson, Michael G.; Holloway, Lois
2013-03-15
Purpose: Image guided radiotherapy (IGRT) using cone beam computed tomography (CBCT) images greatly reduces interfractional patient positional uncertainties. An understanding of uncertainties in the IGRT process itself is essential to ensure appropriate use of this technology. The purpose of this study was to develop a phantom capable of assessing the accuracy of IGRT hardware and software including a 6 degrees of freedom patient positioning system and to investigate the accuracy of the Elekta XVI system in combination with the HexaPOD robotic treatment couch top. Methods: The constructed phantom enabled verification of the three automatic rigid body registrations (gray value, bone, seed) available in the Elekta XVI software and includes an adjustable mount that introduces known rotational offsets to the phantom from its reference position. Repeated positioning of the phantom was undertaken to assess phantom rotational accuracy. Using this phantom the accuracy of the XVI registration algorithms was assessed considering CBCT hardware factors and image resolution together with the residual error in the overall image guidance process when positional corrections were performed through the HexaPOD couch system. Results: The phantom positioning was found to be within 0.04 ({sigma}= 0.12) Degree-Sign , 0.02 ({sigma}= 0.13) Degree-Sign , and -0.03 ({sigma}= 0.06) Degree-Sign in X, Y, and Z directions, respectively, enabling assessment of IGRT with a 6 degrees of freedom patient positioning system. The gray value registration algorithm showed the least error in calculated offsets with maximum mean difference of -0.2({sigma}= 0.4) mm in translational and -0.1({sigma}= 0.1) Degree-Sign in rotational directions for all image resolutions. Bone and seed registration were found to be sensitive to CBCT image resolution. Seed registration was found to be most sensitive demonstrating a maximum mean error of -0.3({sigma}= 0.9) mm and -1.4({sigma}= 1.7) Degree-Sign in translational
NASA Astrophysics Data System (ADS)
Romano, Marcello
2008-03-01
The exact analytic solution is introduced for the rotational motion of a rigid body having three equal principal moments of inertia and subjected to an external torque vector which is constant for an observer fixed with the body, and to arbitrary initial angular velocity. In the paper a parametrization of the rotation by three complex numbers is used. In particular, the rows of the rotation matrix are seen as elements of the unit sphere and projected, by stereographic projection, onto points on the complex plane. In this representation, the kinematic differential equation reduces to an equation of Riccati type, which is solved through appropriate choices of substitutions, thereby yielding an analytic solution in terms of confluent hypergeometric functions. The rotation matrix is recovered from the three complex rotation variables by inverse stereographic map. The results of a numerical experiment confirming the exactness of the analytic solution are reported. The newly found analytic solution is valid for any motion time length and rotation amplitude. The present paper adds a further element to the small set of special cases for which an exact solution of the rotational motion of a rigid body exists.
Bao, Zhaosheng; Hong, Jeong-Mo; Teran, Joseph; Fedkiw, Ronald
2007-01-01
We propose a novel approach to fracturing (and denting) brittle materials. To avoid the computational burden imposed by the stringent time step restrictions of explicit methods or with solving nonlinear systems of equations for implicit methods, we treat the material as a fully rigid body in the limit of infinite stiffness. In addition to a triangulated surface mesh and level set volume for collisions, each rigid body is outfitted with a tetrahedral mesh upon which finite element analysis can be carried out to provide a stress map for fracture criteria. We demonstrate that the commonly used stress criteria can lead to arbitrary fracture (especially for stiff materials) and instead propose the notion of a time averaged stress directly into the FEM analysis. When objects fracture, the virtual node algorithm provides new triangle and tetrahedral meshes in a straightforward and robust fashion. Although each new rigid body can be rasterized to obtain a new level set, small shards can be difficult to accurately resolve. Therefore, we propose a novel collision handling technique for treating both rigid bodies and rigid body thin shells represented by only a triangle mesh. PMID:17218752
Dimensional accuracy of 3D printed vertebra
NASA Astrophysics Data System (ADS)
Ogden, Kent; Ordway, Nathaniel; Diallo, Dalanda; Tillapaugh-Fay, Gwen; Aslan, Can
2014-03-01
3D printer applications in the biomedical sciences and medical imaging are expanding and will have an increasing impact on the practice of medicine. Orthopedic and reconstructive surgery has been an obvious area for development of 3D printer applications as the segmentation of bony anatomy to generate printable models is relatively straightforward. There are important issues that should be addressed when using 3D printed models for applications that may affect patient care; in particular the dimensional accuracy of the printed parts needs to be high to avoid poor decisions being made prior to surgery or therapeutic procedures. In this work, the dimensional accuracy of 3D printed vertebral bodies derived from CT data for a cadaver spine is compared with direct measurements on the ex-vivo vertebra and with measurements made on the 3D rendered vertebra using commercial 3D image processing software. The vertebra was printed on a consumer grade 3D printer using an additive print process using PLA (polylactic acid) filament. Measurements were made for 15 different anatomic features of the vertebral body, including vertebral body height, endplate width and depth, pedicle height and width, and spinal canal width and depth, among others. It is shown that for the segmentation and printing process used, the results of measurements made on the 3D printed vertebral body are substantially the same as those produced by direct measurement on the vertebra and measurements made on the 3D rendered vertebra.
ERIC Educational Resources Information Center
Hastings, S. K.
2002-01-01
Discusses 3 D imaging as it relates to digital representations in virtual library collections. Highlights include X-ray computed tomography (X-ray CT); the National Science Foundation (NSF) Digital Library Initiatives; output peripherals; image retrieval systems, including metadata; and applications of 3 D imaging for libraries and museums. (LRW)
NASA Technical Reports Server (NTRS)
Glukharev, K. K.; Morozova, N. I.; Potemkin, B. A.; Solovyev, V. S.; Frolov, K. V.
1973-01-01
A mathematical model of the human body was constructed, under the action of harmonic vibrations, in the 2.5-7 Hz frequency range. In this frequency range, the model of the human body as a vibrating system, with concentrated parameters is considered. Vertical movements of the seat and vertical components of vibrations of the human body are investigated.
Mitiche, Amar; Sekkati, Hicham
2006-11-01
This study investigates a variational, active curve evolution method for dense three-dimentional (3D) segmentation and interpretation of optical flow in an image sequence of a scene containing moving rigid objects viewed by a possibly moving camera. This method jointly performs 3D motion segmentation, 3D interpretation (recovery of 3D structure and motion), and optical flow estimation. The objective functional contains two data terms for each segmentation region, one based on the motion-only equation which relates the essential parameters of 3D rigid body motion to optical flow, and the other on the Horn and Schunck optical flow constraint. It also contains two regularization terms for each region, one for optical flow, the other for the region boundary. The necessary conditions for a minimum of the functional result in concurrent 3D-motion segmentation, by active curve evolution via level sets, and linear estimation of each region essential parameters and optical flow. Subsequently, the screw of 3D motion and regularized relative depth are recovered analytically for each region from the estimated essential parameters and optical flow. Examples are provided which verify the method and its implementation. PMID:17063686
ERIC Educational Resources Information Center
Norbury, Keith
2012-01-01
It may be too soon for students to be showing up for class with popcorn and gummy bears, but technology similar to that behind the 3D blockbuster movie "Avatar" is slowly finding its way into college classrooms. 3D classroom projectors are taking students on fantastic voyages inside the human body, to the ruins of ancient Greece--even to faraway…
Static & Dynamic Response of 3D Solids
1996-07-15
NIKE3D is a large deformations 3D finite element code used to obtain the resulting displacements and stresses from multi-body static and dynamic structural thermo-mechanics problems with sliding interfaces. Many nonlinear and temperature dependent constitutive models are available.
Crandall, K.R.
1987-08-01
TRACE 3-D is an interactive beam-dynamics program that calculates the envelopes of a bunched beam, including linear space-charge forces, through a user-defined transport system. TRACE 3-D provides an immediate graphics display of the envelopes and the phase-space ellipses and allows nine types of beam-matching options. This report describes the beam-dynamics calculations and gives detailed instruction for using the code. Several examples are described in detail.
Rigidity of the abdomen ... is a sore area inside the belly or abdomen, the pain will get worse when a hand ... Causes can include: Abscess inside the abdomen Appendicitis ... small intestine, large bowel, or gallbladder ( gastrointestinal ...
Hutchinson, John R; Ng-Thow-Hing, Victor; Anderson, Frank C
2007-06-21
We developed a method based on interactive B-spline solids for estimating and visualizing biomechanically important parameters for animal body segments. Although the method is most useful for assessing the importance of unknowns in extinct animals, such as body contours, muscle bulk, or inertial parameters, it is also useful for non-invasive measurement of segmental dimensions in extant animals. Points measured directly from bodies or skeletons are digitized and visualized on a computer, and then a B-spline solid is fitted to enclose these points, allowing quantification of segment dimensions. The method is computationally fast enough so that software implementations can interactively deform the shape of body segments (by warping the solid) or adjust the shape quantitatively (e.g., expanding the solid boundary by some percentage or a specific distance beyond measured skeletal coordinates). As the shape changes, the resulting changes in segment mass, center of mass (CM), and moments of inertia can be recomputed immediately. Volumes of reduced or increased density can be embedded to represent lungs, bones, or other structures within the body. The method was validated by reconstructing an ostrich body from a fleshed and defleshed carcass and comparing the estimated dimensions to empirically measured values from the original carcass. We then used the method to calculate the segmental masses, centers of mass, and moments of inertia for an adult Tyrannosaurus rex, with measurements taken directly from a complete skeleton. We compare these results to other estimates, using the model to compute the sensitivities of unknown parameter values based upon 30 different combinations of trunk, lung and air sac, and hindlimb dimensions. The conclusion that T. rex was not an exceptionally fast runner remains strongly supported by our models-the main area of ambiguity for estimating running ability seems to be estimating fascicle lengths, not body dimensions. Additionally, the
NASA Astrophysics Data System (ADS)
Kang, Yu-Bong; Jung, Duk-Young; Tanaka, Masatoshi; Yoshino, Nobuyuki; Tsutsumi, Sadami; Ikeuchi, Ken
Whiplash injuries are most common disorders in rear-end car accidents, while the injury mechanism is yet unknown. Many numerical and experimental approaches have conducted to investigate the cervical behaviors with solely two-dimensional analyses in the sagittal plane. In real accidents, however, as impacts may affect several directions, the cervical behaviors should be evaluated three-dimensionally. Therefore, we evaluated the cervical behaviors under assumption of the posterior-oblique impacts depending on the impact angles with 3-D FE analysis. In addition, we analyzed the stresses occurred in the facet joints considering the relationship with a whiplash disorders. The cervical behaviors showed complex motion combined with axial torsion and lateral bending. The bending angle peaked in the impact at the angle of 15°, and the peak compressive and shear stress on the facet cartilage at C6-C7 increased by 11% and 14%. In the impact at the angle of 30°, the torsion angle peaked at C2-C3, the peak shear stress in the facet cartilage increased by 27%. It showed that the torsion and lateral bending affected the cervical behaviors, and caused the increase of peak stresses on the soft tissues. It is assumed as one of important causes of whiplash injury.
3-D Packaging: A Technology Review
NASA Technical Reports Server (NTRS)
Strickland, Mark; Johnson, R. Wayne; Gerke, David
2005-01-01
Traditional electronics are assembled as a planar arrangement of components on a printed circuit board (PCB) or other type of substrate. These planar assemblies may then be plugged into a motherboard or card cage creating a volume of electronics. This architecture is common in many military and space electronic systems as well as large computer and telecommunications systems and industrial electronics. The individual PCB assemblies can be replaced if defective or for system upgrade. Some applications are constrained by the volume or the shape of the system and are not compatible with the motherboard or card cage architecture. Examples include missiles, camcorders, and digital cameras. In these systems, planar rigid-flex substrates are folded to create complex 3-D shapes. The flex circuit serves the role of motherboard, providing interconnection between the rigid boards. An example of a planar rigid - flex assembly prior to folding is shown. In both architectures, the interconnection is effectively 2-D.
SU-E-J-209: Verification of 3D Surface Registration Between Stereograms and CT Images
Han, T; Gifford, K; Smith, B; Salehpour, M
2014-06-01
Purpose: Stereography can provide a visualization of the skin surface for radiation therapy patients. The aim of this study was to verify the registration algorithm in a commercial image analysis software, 3dMDVultus, for the fusion of stereograms and CT images. Methods: CT and stereographic scans were acquired of a head phantom and a deformable phantom. CT images were imported in 3dMDVultus and the surface contours were generated by threshold segmentation. Stereograms were reconstructed in 3dMDVultus. The resulting surfaces were registered with Vultus algorithm and then exported to in-house registration software and compared with four algorithms: rigid, affine, non-rigid iterative closest point (ICP) and b-spline algorithm. RMS (root-mean-square residuals of the surface point distances) error between the registered CT and stereogram surfaces was calculated and analyzed. Results: For the head phantom, the maximum RMS error between registered CT surfaces to stereogram was 6.6 mm for Vultus algorithm, whereas the mean RMS error was 0.7 mm. For the deformable phantom, the maximum RMS error was 16.2 mm for Vultus algorithm, whereas the mean RMS error was 4.4 mm. Non-rigid ICP demonstrated the best registration accuracy, as the mean of RMS errors were both within 1 mm. Conclusion: The accuracy of registration algorithm in 3dMDVultus was verified and exceeded RMS of 2 mm for deformable cases. Non-rigid ICP and b-spline algorithms improve the registration accuracy for both phantoms, especially in deformable one. For those patients whose body habitus deforms during radiation therapy, more advanced nonrigid algorithms need to be used.
NASA Astrophysics Data System (ADS)
Oldham, Mark
2015-01-01
Radiochromic materials exhibit a colour change when exposed to ionising radiation. Radiochromic film has been used for clinical dosimetry for many years and increasingly so recently, as films of higher sensitivities have become available. The two principle advantages of radiochromic dosimetry include greater tissue equivalence (radiologically) and the lack of requirement for development of the colour change. In a radiochromic material, the colour change arises direct from ionising interactions affecting dye molecules, without requiring any latent chemical, optical or thermal development, with important implications for increased accuracy and convenience. It is only relatively recently however, that 3D radiochromic dosimetry has become possible. In this article we review recent developments and the current state-of-the-art of 3D radiochromic dosimetry, and the potential for a more comprehensive solution for the verification of complex radiation therapy treatments, and 3D dose measurement in general.
Electrotactile vision substitution for 3D trajectory following.
Chekhchoukh, A; Goumidi, M; Vuillerme, N; Payan, Y; Glade, N
2013-01-01
Navigation for blind persons represents a challenge for researchers in vision substitution. In this field, one of the used techniques to navigate is guidance. In this study, we develop a new approach for 3D trajectory following in which the requested task is to track a light path using computer input devices (keyboard and mouse) or a rigid body handled in front of a stereoscopic camera. The light path is visualized either on direct vision or by way of a electro-stimulation device, the Tongue Display Unit, a 12 × 12 matrix of electrodes. We improve our method by a series of experiments in which the effect of the modality of perception and that of the input device. Preliminary results indicated a close correlation between the stimulated and recorded trajectories. PMID:24111209
NASA Astrophysics Data System (ADS)
Almesallmy, Mohammed
Methodologies are developed for dynamic analysis of mechanical systems with emphasis on inertial propulsion systems. This work adopted the Lagrangian methodology. Lagrangian methodology is the most efficient classical computational technique, which we call Equations of Motion Code (EOMC). The EOMC is applied to several simple dynamic mechanical systems for easier understanding of the method and to aid other investigators in developing equations of motion of any dynamic system. In addition, it is applied to a rigid multibody system, such as Thomson IPS [Thomson 1986]. Furthermore, a simple symbolic algorithm is developed using Maple software, which can be used to convert any nonlinear n-order ordinary differential equation (ODE) systems into 1st-order ODE system in ready format to be used in Matlab software. A side issue, but equally important, we have started corresponding with the U.S. Patent office to persuade them that patent applications, claiming gross linear motion based on inertial propulsion systems should be automatically rejected. The precedent is rejection of patent applications involving perpetual motion machines.
NASA Astrophysics Data System (ADS)
Iliesiu, Luca; Kos, Filip; Poland, David; Pufu, Silviu S.; Simmons-Duffin, David; Yacoby, Ran
2016-03-01
We study the conformal bootstrap for a 4-point function of fermions < ψψψψ> in 3D. We first introduce an embedding formalism for 3D spinors and compute the conformal blocks appearing in fermion 4-point functions. Using these results, we find general bounds on the dimensions of operators appearing in the ψ × ψ OPE, and also on the central charge C T . We observe features in our bounds that coincide with scaling dimensions in the GrossNeveu models at large N . We also speculate that other features could coincide with a fermionic CFT containing no relevant scalar operators.
Esch, Mandy B; Ueno, Hidetaka; Applegate, Dawn R; Shuler, Michael L
2016-07-01
We have developed an expandable modular body-on-a-chip system that allows for a plug-and-play approach with several in vitro tissues. The design consists of single-organ chips that are combined with each other to yield a multi-organ body-on-a-chip system. Fluidic flow through the organ chips is driven via gravity and controlled passively via hydraulic resistances of the microfluidic channel network. Such pumpless body-on-a-chip devices are inexpensive and easy to use. We tested the device by culturing GI tract tissue and liver tissue within the device. Integrated Ag/AgCl electrodes were used to measure the resistance across the GI tract cell layer. The transepithelial resistance (TEER) reached values between 250 to 650 Ω cm(2) throughout the 14 day co-culture period. These data indicate that the GI tract cells retained their viability and the GI tract layer as a whole retained its barrier function. Throughout the 14 day co-culture period we measured low amounts of aspartate aminotransferase (AST, ∼10-17.5 U L(-1)), indicating low rates of liver cell death. Metabolic rates of hepatocytes were comparable to those of hepatocytes in single-organ fluidic cell culture systems (albumin production ranged between 3-6 μg per day per million hepatocytes and urea production ranged between 150-200 μg per day per million hepatocytes). Induced CYP activities were higher than previously measured with microfluidic liver only systems. PMID:27332143
Software-based geometry operations for 3D computer graphics
NASA Astrophysics Data System (ADS)
Sima, Mihai; Iancu, Daniel; Glossner, John; Schulte, Michael; Mamidi, Suman
2006-02-01
In order to support a broad dynamic range and a high degree of precision, many of 3D renderings fundamental algorithms have been traditionally performed in floating-point. However, fixed-point data representation is preferable over floating-point representation in graphics applications on embedded devices where performance is of paramount importance, while the dynamic range and precision requirements are limited due to the small display sizes (current PDA's are 640 × 480 (VGA), while cell-phones are even smaller). In this paper we analyze the efficiency of a CORDIC-augmented Sandbridge processor when implementing a vertex processor in software using fixed-point arithmetic. A CORDIC-based solution for vertex processing exhibits a number of advantages over classical Multiply-and-Acumulate solutions. First, since a single primitive is used to describe the computation, the code can easily be vectorized and multithreaded, and thus fits the major Sandbridge architectural features. Second, since a CORDIC iteration consists of only a shift operation followed by an addition, the computation may be deeply pipelined. Initially, we outline the Sandbridge architecture extension which encompasses a CORDIC functional unit and the associated instructions. Then, we consider rigid-body rotation, lighting, exponentiation, vector normalization, and perspective division (which are some of the most important data-intensive 3D graphics kernels) and propose a scheme to implement them on the CORDIC-augmented Sandbridge processor. Preliminary results indicate that the performance improvement within the extended instruction set ranges from 3× to 10× (with the exception of rigid body rotation).
van Zundert, G C P; Bonvin, A M J J
2016-08-01
Cryo-electron microscopy provides fascinating structural insight into large macromolecular machines at increasing detail. Despite significant advances in the field, the resolution of the resulting three-dimensional images is still typically insufficient for de novo model building. To bridge the resolution gap and give an atomic interpretation to the data, high-resolution models are typically placed into the density as rigid bodies. Unfortunately, this is often done manually using graphics software, a subjective method that can lead to over-interpretation of the data. A more objective approach is to perform an exhaustive cross-correlation-based search to fit subunits into the density. Here we show, using five experimental ribosome maps ranging in resolution from 5.5 to 6.9Å, that cross-correlation-based fitting is capable of successfully fitting subunits correctly in the density for over 90% of the cases. Importantly, we provide indicators for the reliability and ambiguity of a fit, using the Fisher z-transformation and its associated confidence intervals, giving a formal approach to identify over-interpreted regions in the density. In addition, we quantify the resolution requirement for a successful fit as a function of the subunit size. For larger subunits the resolution of the data can be down-filtered to 20Å while still retaining an unambiguous fit. We leverage this information through the use of multi-scale image pyramids to accelerate the search up to 30-fold on CPUs and 40-fold on GPUs at a negligible loss in success rate. We implemented this approach in our rigid-body fitting software PowerFit, which can be freely downloaded from https://github.com/haddocking/powerfit. PMID:27318041
Iwakiri, Junichi; Hamada, Michiaki; Asai, Kiyoshi; Kameda, Tomoshi
2016-09-13
RNA-protein interactions play fundamental roles in many biological processes. To understand these interactions, it is necessary to know the three-dimensional structures of RNA-protein complexes. However, determining the tertiary structure of these complexes is often difficult, suggesting that an accurate rigid body docking for RNA-protein complexes is needed. In general, the rigid body docking process is divided into two steps: generating candidate structures from the individual RNA and protein structures and then narrowing down the candidates. In this study, we focus on the former problem to improve the prediction accuracy in RNA-protein docking. Our method is based on the integration of physicochemical information about RNA into ZDOCK, which is known as one of the most successful computer programs for protein-protein docking. Because recent studies showed the current force field for molecular dynamics simulation of protein and nucleic acids is quite accurate, we modeled the physicochemical information about RNA by force fields such as AMBER and CHARMM. A comprehensive benchmark of RNA-protein docking, using three recently developed data sets, reveals the remarkable prediction accuracy of the proposed method compared with existing programs for docking: the highest success rate is 34.7% for the predicted structure of the RNA-protein complex with the best score and 79.2% for 3,600 predicted ones. Three full atomistic force fields for RNA (AMBER94, AMBER99, and CHARMM22) produced almost the same accurate result, which showed current force fields for nucleic acids are quite accurate. In addition, we found that the electrostatic interaction and the representation of shape complementary between protein and RNA plays the important roles for accurate prediction of the native structures of RNA-protein complexes. PMID:27494732
Tesio, L; Lanzi, D; Detrembleur, C
1998-03-01
OBJECTIVE: To measure the mechanical energy changes of the centre of gravity (CG) of the body in the forward, lateral and vertical direction during normal level walking at intermediate and low speeds. DESIGN: Eight healthy adults performed successive walks at speeds ranging from 0.25 to 1.75 m s(-1) over a dedicated force platform system. BACKGROUND: In previous studies, it was shown that the motion of the CG during gait can be altered more than the motion of individual segments. However, more detailed normative data are needed for clinical analysis. METHODS: The positive work done during the step to accelerate the body CG in the forward direction, W(f), to lift it, W(v), to accelerate it in the lateral direction, W(I), and the actual work done by the muscles to maintain its motion with respect to the ground ('external' work), W(ext), were measured. This allowed the calculation of the pendulum-like transfer between gravitational potential energy and kinetic energy of the CG, (percentage recovery, R). At the optimal speed of about 1.3 m s(-1), this transfer allows saving of as much as 65% of the muscular work which would have been otherwise needed to keep the body in motion with respect to the ground. The distance covered by the CG at each step either forward (step length, S(I)), or vertically (vertical displacement, S(v)) was also recorded. RESULTS: W(I) was, as a median, only 1.6-5.9% of W(ext). This ratio was higher, the lower the speed. At each step, W(ext) is needed to sustain two distinct increments of the total mechanical energy of the CG, E(tot). The increment a takes place during the double stance phase; the increment b takes place during the single stance phase. Both of these increments increased with speed. Over the speed range analyzed, the power spent to to sustain the a increment was 2.8-3.9 times higher than the power spent to sustain the b increment. PMID:11415774
NASA Astrophysics Data System (ADS)
Frener, Gernot; Thum, Katharina; Hirz, Mario; Harrich, Alexander
2012-06-01
State of the art automotive development processes are based on virtual product models, which include a digital representation of complete vehicle geometry and structures. Increasing computation performance and continuously growing demands on virtual development processes lead to the application of precise product representation within common CAD software packages. A specific challenge represents the creation of PVC-seams, which are used for corrosion protection of sheet metal components in automotive body in white design. Besides the high requirements of accurate geometric modeling in digital representation, modern development processes call for an increasing level of design automation. To fit both, the present approach introduces a method for an automatic generation of PVC-seams using the functionalities of commercial CAD software. [Figure not available: see fulltext.
NASA Technical Reports Server (NTRS)
Kumar, D.
1980-01-01
The computer program COORDC generates a body fitted curvilinear coordinate system for corner geometry with or without corner fillets. It is assumed that at any given xi, x remains constant; consequently the only variation is in y and z. It is also assumed that for all xi's in the physical plane the coordinate system in y-z plane is similar. This enables solution of coordinate system for one particular xi = 1 (x for xi = 1 is arbitrarily chosen to be 0.0) and the solution for all other xi plane can be easily specified once the coordinates in the physical plane on the line 1 or = to xi or = to IMAX, eta = 1, zeta = 1 are specified.
NASA Astrophysics Data System (ADS)
Moulik, P.; Ekstrom, G.
2012-12-01
We have developed a framework that can be used to investigate anisotropic velocity, density and anelastic heterogeneity in the Earth's mantle using a wide spectrum (0.3-50 mHz) of seismological observables. We start with the extensive dataset of surface-wave phase anomalies, long-period waveforms, and body-wave travel times collected by Kustowski et al. (2008) for the development of the global model S362ANI. The additional data included in our analysis are splitting functions of spheroidal and toroidal modes, which are analogous to phase velocity maps at low frequencies. We include in this set of observations a new dataset containing the splitting functions of 56 spheroidal fundamental modes and overtones, measured by Deuss et al. (2011, 2012) using data from large recent earthquakes. Apart from providing unique constraints on the long-wavelength elastic and density structure in the mantle, the overtone splitting data are especially sensitive to the velocity (and anisotropic) structure in the transition zone and in the deeper mantle. The detection of anisotropy, a marker of flow, in the transition zone has implications for our understanding of mantle convection. Our forward modeling of the splitting functions, like the other types of data, includes the effects of radial anisotropy (Mochizuki, 1986). We show that the upper-mantle shear-wave anisotropy of S362ANI generates a clear contribution to the splitting functions of the modes that are sensitive to the upper-mantle structure. We explore the tradeoffs between fitting the mode splitting functions and the travel-times of body waves that turn in the transition zone or in the lower mantle (e.g. SS), while observing that the waveforms and the surface wave phase-anomalies provide complementary information about the mantle. Our experiments suggest that the splitting data are sufficiently sensitive to the anisotropy in the mantle such that their inclusion may provide a better depth resolution of the anisotropic shear
Frog: a FRee Online druG 3D conformation generator.
Leite, T Bohme; Gomes, D; Miteva, M A; Chomilier, J; Villoutreix, B O; Tufféry, P
2007-07-01
In silico screening methods based on the 3D structures of the ligands or of the proteins have become an essential tool to facilitate the drug discovery process. To achieve such process, the 3D structures of the small chemical compounds have to be generated. In addition, for ligand-based screening computations or hierarchical structure-based screening projects involving a rigid-body docking step, it is necessary to generate multi-conformer 3D models for each input ligand to increase the efficiency of the search. However, most academic or commercial compound collections are delivered in 1D SMILES (simplified molecular input line entry system) format or in 2D SDF (structure data file), highlighting the need for free 1D/2D to 3D structure generators. Frog is an on-line service aimed at generating 3D conformations for drug-like compounds starting from their 1D or 2D descriptions. Given the atomic constitution of the molecules and connectivity information, Frog can identify the different unambiguous isomers corresponding to each compound, and generate single or multiple low-to-medium energy 3D conformations, using an assembly process that does not presently consider ring flexibility. Tests show that Frog is able to generate bioactive conformations close to those observed in crystallographic complexes. Frog can be accessed at http://bioserv.rpbs.jussieu.fr/Frog.html. PMID:17485475
3D scanning modeling method application in ancient city reconstruction
NASA Astrophysics Data System (ADS)
Ren, Pu; Zhou, Mingquan; Du, Guoguang; Shui, Wuyang; Zhou, Pengbo
2015-07-01
With the development of optical engineering technology, the precision of 3D scanning equipment becomes higher, and its role in 3D modeling is getting more distinctive. This paper proposed a 3D scanning modeling method that has been successfully applied in Chinese ancient city reconstruction. On one hand, for the existing architectures, an improved algorithm based on multiple scanning is adopted. Firstly, two pieces of scanning data were rough rigid registered using spherical displacers and vertex clustering method. Secondly, a global weighted ICP (iterative closest points) method is used to achieve a fine rigid registration. On the other hand, for the buildings which have already disappeared, an exemplar-driven algorithm for rapid modeling was proposed. Based on the 3D scanning technology and the historical data, a system approach was proposed for 3D modeling and virtual display of ancient city.
Automatic 3D image registration using voxel similarity measurements based on a genetic algorithm
NASA Astrophysics Data System (ADS)
Huang, Wei; Sullivan, John M., Jr.; Kulkarni, Praveen; Murugavel, Murali
2006-03-01
An automatic 3D non-rigid body registration system based upon the genetic algorithm (GA) process is presented. The system has been successfully applied to 2D and 3D situations using both rigid-body and affine transformations. Conventional optimization techniques and gradient search strategies generally require a good initial start location. The GA approach avoids the local minima/maxima traps of conventional optimization techniques. Based on the principles of Darwinian natural selection (survival of the fittest), the genetic algorithm has two basic steps: 1. Randomly generate an initial population. 2. Repeated application of the natural selection operation until a termination measure is satisfied. The natural selection process selects individuals based on their fitness to participate in the genetic operations; and it creates new individuals by inheritance from both parents, genetic recombination (crossover) and mutation. Once the termination criteria are satisfied, the optimum is selected from the population. The algorithm was applied on 2D and 3D magnetic resonance images (MRI). It does not require any preprocessing such as threshold, smoothing, segmentation, or definition of base points or edges. To evaluate the performance of the GA registration, the results were compared with results of the Automatic Image Registration technique (AIR) and manual registration which was used as the gold standard. Results showed that our GA implementation was a robust algorithm and gives very close results to the gold standard. A pre-cropping strategy was also discussed as an efficient preprocessing step to enhance the registration accuracy.
NASA Astrophysics Data System (ADS)
Libert, Anne-Sophie; Henrard, Jacques
2007-11-01
On the basis of a high-order (order 12) expansion of the perturbative potential in powers of the eccentricities and the inclinations, we analyze the secular interactions of two non-coplanar planets which are not in mean-motion resonance. The model is based on the planetary three-body problem which can be reduced to two degrees of freedom by the well-known elimination of the nodes [Jacobi, C.G.J., 1842. Astron. Nachr. XX, 81-102]. We introduce non-singular canonical variables which bring forward the symmetries of the problem. The main dynamical features depend on the location and stability of the equilibria which are easily found with our analytical model. We find that there exists an equilibrium when both eccentricities are zero. When the mutual inclination is small, this equilibrium is stable, but for larger mutual inclination it becomes unstable, generating a large chaotic zone and, by bifurcation, two regular regions, the so-called Kozai resonances. This analytical study which depends on only two parameters (the ratio of the semi-major axes and the mass ratio of the planets) makes possible a large survey of the problem and enables us to identify and quantify its main dynamical features, periodic orbits, regular and chaotic zones, etc. The results of our analytical model are illustrated and confirmed by numerical integrations.
Liu, Houguang; Rao, Zhushi; Huang, Xinsheng; Cheng, Gang; Tian, Jiabin; Ta, Na
2014-01-01
A new incus-body driving type transducer relying on piezoelectric stack, with broad frequency bandwidth, is proposed for use in a middle ear implant. To aid the design process of this transducer, a coupling biomechanical model of the human middle ear and the piezoelectric transducer was established by reverse engineering technology. The validity of this model was confirmed by comparing model predicted motions with experimental measurements. Based on this verified biomechanical model, the main parameters of the transducer were determined. And its power consumption was calculated. Finally, to verify the capability of the designed piezoelectric transducer, a human temporal bone experimental platform was built. And the dynamic characteristics and the stimulated performance of the piezoelectric transducer were tested. The result showed that stapes displacement stimulated by the transducer excitation at 10.5 V RMS was equivalent to that from acoustic stimulation at 100 dB SPL, which is an adequate stimulation to the ossicular chain. The corresponding power consumption is 0.31 mW per volt of excitation at 1 kHz, which is low enough for the transducer to be used in a middle ear implant. Besides, this transducer demonstrates high performance at high frequencies. PMID:25045723
3D reconstruction with two webcams and a laser line projector
NASA Astrophysics Data System (ADS)
Li, Dongdong; Hui, Bingwei; Qiu, Shaohua; Wen, Gongjian
2014-09-01
Three-dimensional (3D) reconstruction is one of the most attractive research topics in photogrammetry and computer vision. Nowadays 3D reconstruction with simple and consumable equipment plays an important role. In this paper, a 3D reconstruction desktop system is built based on binocular stereo vision using a laser scanner. The hardware requirements are a simple commercial hand-held laser line projector and two common webcams for image acquisition. Generally, 3D reconstruction based on passive triangulation methods requires point correspondences among various viewpoints. The development of matching algorithms remains a challenging task in computer vision. In our proposal, with the help of a laser line projector, stereo correspondences are established robustly from epipolar geometry and the laser shadow on the scanned object. To establish correspondences more conveniently, epipolar rectification is employed using Bouguet's method after stereo calibration with a printed chessboard. 3D coordinates of the observed points are worked out with rayray triangulation and reconstruction outliers are removed with the planarity constraint of the laser plane. Dense 3D point clouds are derived from multiple scans under different orientations. Each point cloud is derived by sweeping the laser plane across the object requiring 3D reconstruction. The Iterative Closest Point algorithm is employed to register the derived point clouds. Rigid body transformation between neighboring scans is obtained to get the complete 3D point cloud. Finally polygon meshes are reconstructed from the derived point cloud and color images are used in texture mapping to get a lifelike 3D model. Experiments show that our reconstruction method is simple and efficient.
NASA Astrophysics Data System (ADS)
Iizuka, Keigo
2008-02-01
In order to circumvent the fact that only one observer can view the image from a stereoscopic microscope, an attachment was devised for displaying the 3D microscopic image on a large LCD monitor for viewing by multiple observers in real time. The principle of operation, design, fabrication, and performance are presented, along with tolerance measurements relating to the properties of the cellophane half-wave plate used in the design.
Lübben, Jens; Bourhis, Luc J.; Dittrich, Birger
2015-01-01
Invariom partitioning and notation are used to estimate anisotropic hydrogen displacements for incorporation in crystallographic refinement models. Optimized structures of the generalized invariom database and their frequency computations provide the information required: frequencies are converted to internal atomic displacements and combined with the results of a TLS (translation–libration–screw) fit of experimental non-hydrogen anisotropic displacement parameters to estimate those of H atoms. Comparison with TLS+ONIOM and neutron diffraction results for four example structures where high-resolution X-ray and neutron data are available show that electron density transferability rules established in the invariom approach are also suitable for streamlining the transfer of atomic vibrations. A new segmented-body TLS analysis program called APD-Toolkit has been coded to overcome technical limitations of the established program THMA. The influence of incorporating hydrogen anisotropic displacement parameters on conventional refinement is assessed. PMID:26664341
Lifting Object Detection Datasets into 3D.
Carreira, Joao; Vicente, Sara; Agapito, Lourdes; Batista, Jorge
2016-07-01
While data has certainly taken the center stage in computer vision in recent years, it can still be difficult to obtain in certain scenarios. In particular, acquiring ground truth 3D shapes of objects pictured in 2D images remains a challenging feat and this has hampered progress in recognition-based object reconstruction from a single image. Here we propose to bypass previous solutions such as 3D scanning or manual design, that scale poorly, and instead populate object category detection datasets semi-automatically with dense, per-object 3D reconstructions, bootstrapped from:(i) class labels, (ii) ground truth figure-ground segmentations and (iii) a small set of keypoint annotations. Our proposed algorithm first estimates camera viewpoint using rigid structure-from-motion and then reconstructs object shapes by optimizing over visual hull proposals guided by loose within-class shape similarity assumptions. The visual hull sampling process attempts to intersect an object's projection cone with the cones of minimal subsets of other similar objects among those pictured from certain vantage points. We show that our method is able to produce convincing per-object 3D reconstructions and to accurately estimate cameras viewpoints on one of the most challenging existing object-category detection datasets, PASCAL VOC. We hope that our results will re-stimulate interest on joint object recognition and 3D reconstruction from a single image. PMID:27295458
NASA Astrophysics Data System (ADS)
Kostrzewski, Andrew A.; Aye, Tin M.; Kim, Dai Hyun; Esterkin, Vladimir; Savant, Gajendra D.
1998-09-01
Physical Optics Corporation has developed an advanced 3-D virtual reality system for use with simulation tools for training technical and military personnel. This system avoids such drawbacks of other virtual reality (VR) systems as eye fatigue, headaches, and alignment for each viewer, all of which are due to the need to wear special VR goggles. The new system is based on direct viewing of an interactive environment. This innovative holographic multiplexed screen technology makes it unnecessary for the viewer to wear special goggles.
NASA Technical Reports Server (NTRS)
1992-01-01
Ames Research Center research into virtual reality led to the development of the Convolvotron, a high speed digital audio processing system that delivers three-dimensional sound over headphones. It consists of a two-card set designed for use with a personal computer. The Convolvotron's primary application is presentation of 3D audio signals over headphones. Four independent sound sources are filtered with large time-varying filters that compensate for motion. The perceived location of the sound remains constant. Possible applications are in air traffic control towers or airplane cockpits, hearing and perception research and virtual reality development.
NASA Astrophysics Data System (ADS)
Ridene, T.; Goulette, F.; Chendeb, S.
2013-08-01
The production of realistic 3D map databases is continuously growing. We studied an approach of 3D mapping database producing based on the fusion of heterogeneous 3D data. In this term, a rigid registration process was performed. Before starting the modeling process, we need to validate the quality of the registration results, and this is one of the most difficult and open research problems. In this paper, we suggest a new method of evaluation of 3D point clouds based on feature extraction and comparison with a 2D reference model. This method is based on tow metrics: binary and fuzzy.
Concurrent 3-D motion segmentation and 3-D interpretation of temporal sequences of monocular images.
Sekkati, Hicham; Mitiche, Amar
2006-03-01
The purpose of this study is to investigate a variational method for joint multiregion three-dimensional (3-D) motion segmentation and 3-D interpretation of temporal sequences of monocular images. Interpretation consists of dense recovery of 3-D structure and motion from the image sequence spatiotemporal variations due to short-range image motion. The method is direct insomuch as it does not require prior computation of image motion. It allows movement of both viewing system and multiple independently moving objects. The problem is formulated following a variational statement with a functional containing three terms. One term measures the conformity of the interpretation within each region of 3-D motion segmentation to the image sequence spatiotemporal variations. The second term is of regularization of depth. The assumption that environmental objects are rigid accounts automatically for the regularity of 3-D motion within each region of segmentation. The third and last term is for the regularity of segmentation boundaries. Minimization of the functional follows the corresponding Euler-Lagrange equations. This results in iterated concurrent computation of 3-D motion segmentation by curve evolution, depth by gradient descent, and 3-D motion by least squares within each region of segmentation. Curve evolution is implemented via level sets for topology independence and numerical stability. This algorithm and its implementation are verified on synthetic and real image sequences. Viewers presented with anaglyphs of stereoscopic images constructed from the algorithm's output reported a strong perception of depth. PMID:16519351
Cevidanes, Lucia; Tucker, Scott; Styner, Martin; Kim, Hyungmin; Chapuis, Jonas; Reyes, Mauricio; Proffit, William; Turvey, Timothy; Jaskolka, Michael
2009-01-01
This paper discusses the development of methods for computer-aided jaw surgery. Computer-aided jaw surgery allows us to incorporate the high level of precision necessary for transferring virtual plans into the operating room. We also present a complete computer-aided surgery (CAS) system developed in close collaboration with surgeons. Surgery planning and simulation include construction of 3D surface models from Cone-beam CT (CBCT), dynamic cephalometry, semi-automatic mirroring, interactive cutting of bone and bony segment repositioning. A virtual setup can be used to manufacture positioning splints for intra-operative guidance. The system provides further intra-operative assistance with the help of a computer display showing jaw positions and 3D positioning guides updated in real-time during the surgical procedure. The CAS system aids in dealing with complex cases with benefits for the patient, with surgical practice, and for orthodontic finishing. Advanced software tools for diagnosis and treatment planning allow preparation of detailed operative plans, osteotomy repositioning, bone reconstructions, surgical resident training and assessing the difficulties of the surgical procedures prior to the surgery. CAS has the potential to make the elaboration of the surgical plan a more flexible process, increase the level of detail and accuracy of the plan, yield higher operative precision and control, and enhance documentation of cases. Supported by NIDCR DE017727, and DE018962 PMID:20816308
Lattice Boltzmann simulation of dynamics of plunge and pitch of 3D flexible wing
NASA Astrophysics Data System (ADS)
Qi, Dewei; Shyy, Wei
2008-11-01
The method of lattice Boltzmann (LB) simulation has been used to simulate fluid structures and motion of a flexible insect wing in a 3D space. In the method, a beam has been discretized into a chain of rigid segments. Each segment is connected through ball and socket joints at its ends. One segment may be bent and twisted with its neighboring segment. A constraint force is applied to each joint to ensure the solid structure moving as a whole flexible elastic body.We have demonstrated that the LB method is suitable for modeling of aerodynamics of insects flight at low Reynolds numbers. First, a simulation of plunging and pitching of a rigid wing is performed at Re=75 in a 2D space and the results of lift forces and flow structures are in excellent agreement with the previous results. Second, plunging and pitching of a flexible wing in span-wise direction is simulated at Re=136 in a 3D space. We found that when twisting elasticity is large enough the twisting angle could be controlled at a level of smaller than 0.2 degree. It is shown that as bending and twisting elasticity is large enough, the motion of flexible wing approaches that of a rigid membrane wing. The simulation results show that the optimization of flexibility in span-wise direction will benefit thrust and an intermediate level is favorable. The results are consistent with experimental finding.
NASA Astrophysics Data System (ADS)
Gil, José J.; San José, Ignacio
2010-11-01
From our previous definition of the indices of polarimetric purity for 3D light beams [J.J. Gil, J.M. Correas, P.A. Melero and C. Ferreira, Monogr. Semin. Mat. G. de Galdeano 31, 161 (2004)], an analysis of their geometric and physical interpretation is presented. It is found that, in agreement with previous results, the first parameter is a measure of the degree of polarization, whereas the second parameter (called the degree of directionality) is a measure of the mean angular aperture of the direction of propagation of the corresponding light beam. This pair of invariant, non-dimensional, indices of polarimetric purity contains complete information about the polarimetric purity of a light beam. The overall degree of polarimetric purity is obtained as a weighted quadratic average of the degree of polarization and the degree of directionality.
Caspi, S.; Helm, M.; Laslett, L.J.
1991-03-30
We have developed an harmonic representation for the three dimensional field components within the windings of accelerator magnets. The form by which the field is presented is suitable for interfacing with other codes that make use of the 3D field components (particle tracking and stability). The field components can be calculated with high precision and reduced cup time at any location (r,{theta},z) inside the magnet bore. The same conductor geometry which is used to simulate line currents is also used in CAD with modifications more readily available. It is our hope that the format used here for magnetic fields can be used not only as a means of delivering fields but also as a way by which beam dynamics can suggest correction to the conductor geometry. 5 refs., 70 figs.
NASA Technical Reports Server (NTRS)
2004-01-01
The Mars Exploration Rover Spirit took this 3-D navigation camera mosaic of the crater called 'Bonneville' after driving approximately 13 meters (42.7 feet) to get a better vantage point. Spirit's current position is close enough to the edge to see the interior of the crater, but high enough and far enough back to get a view of all of the walls. Because scientists and rover controllers are so pleased with this location, they will stay here for at least two more martian days, or sols, to take high resolution panoramic camera images of 'Bonneville' in its entirety. Just above the far crater rim, on the left side, is the rover's heatshield, which is visible as a tiny reflective speck.
NASA Astrophysics Data System (ADS)
Lin, Zone-Ching; Huang, Jen-Ching
2004-11-01
A rigid body boundary layer interface force (RIF) model for stress calculation on the nanoscale is proposed in this paper for calculating stress based on molecular dynamics. The RIF model is used to study the stress-stain behaviour when nanoscale single crystal copper is under uniaxial tension, and is used for 15 tensile simulations each with different strain rate. The stress-strain curve established from simulation was first converted into a true stress-strain curve; a regression analysis was then applied in order to find the flow curve. From simulation results, it is found that the strain rate has large influence on both K and n values of the flow curve. At low strain rate (less than 1 × 1012 s-1), both K and n values decrease with the increase of strain rate. When the strain rate exceeds 1 × 1012 s-1, the strain rate against the K and n values of the flow curve approaches a constant. Flow curve equations considering the influence of strain rate are derived; both complete and simplified forms of flow curve equations are also derived. It is observed that the lower the strain rates, the higher the fluctuations of the stress-strain curve. Furthermore, the increase of strain rate resulting in a smoother stress-strain curve is also found.
Motion-induced phase error estimation and correction in 3D diffusion tensor imaging.
Van, Anh T; Hernando, Diego; Sutton, Bradley P
2011-11-01
A multishot data acquisition strategy is one way to mitigate B0 distortion and T2∗ blurring for high-resolution diffusion-weighted magnetic resonance imaging experiments. However, different object motions that take place during different shots cause phase inconsistencies in the data, leading to significant image artifacts. This work proposes a maximum likelihood estimation and k-space correction of motion-induced phase errors in 3D multishot diffusion tensor imaging. The proposed error estimation is robust, unbiased, and approaches the Cramer-Rao lower bound. For rigid body motion, the proposed correction effectively removes motion-induced phase errors regardless of the k-space trajectory used and gives comparable performance to the more computationally expensive 3D iterative nonlinear phase error correction method. The method has been extended to handle multichannel data collected using phased-array coils. Simulation and in vivo data are shown to demonstrate the performance of the method. PMID:21652284
Metrological characterization of 3D imaging devices
NASA Astrophysics Data System (ADS)
Guidi, G.
2013-04-01
Manufacturers often express the performance of a 3D imaging device in various non-uniform ways for the lack of internationally recognized standard requirements for metrological parameters able to identify the capability of capturing a real scene. For this reason several national and international organizations in the last ten years have been developing protocols for verifying such performance. Ranging from VDI/VDE 2634, published by the Association of German Engineers and oriented to the world of mechanical 3D measurements (triangulation-based devices), to the ASTM technical committee E57, working also on laser systems based on direct range detection (TOF, Phase Shift, FM-CW, flash LADAR), this paper shows the state of the art about the characterization of active range devices, with special emphasis on measurement uncertainty, accuracy and resolution. Most of these protocols are based on special objects whose shape and size are certified with a known level of accuracy. By capturing the 3D shape of such objects with a range device, a comparison between the measured points and the theoretical shape they should represent is possible. The actual deviations can be directly analyzed or some derived parameters can be obtained (e.g. angles between planes, distances between barycenters of spheres rigidly connected, frequency domain parameters, etc.). This paper shows theoretical aspects and experimental results of some novel characterization methods applied to different categories of active 3D imaging devices based on both principles of triangulation and direct range detection.
NASA Technical Reports Server (NTRS)
1997-01-01
Many prominent rocks near the Sagan Memorial Station are featured in this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. Wedge is at lower left; Shark, Half-Dome, and Pumpkin are at center. Flat Top, about four inches high, is at lower right. The horizon in the distance is one to two kilometers away.
Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.
Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right
NASA Technical Reports Server (NTRS)
2004-01-01
This 3-D, microscopic imager mosaic of a target area on a rock called 'Diamond Jenness' was taken after NASA's Mars Exploration Rover Opportunity ground into the surface with its rock abrasion tool for a second time.
Opportunity has bored nearly a dozen holes into the inner walls of 'Endurance Crater.' On sols 177 and 178 (July 23 and July 24, 2004), the rover worked double-duty on Diamond Jenness. Surface debris and the bumpy shape of the rock resulted in a shallow and irregular hole, only about 2 millimeters (0.08 inch) deep. The final depth was not enough to remove all the bumps and leave a neat hole with a smooth floor. This extremely shallow depression was then examined by the rover's alpha particle X-ray spectrometer.
On Sol 178, Opportunity's 'robotic rodent' dined on Diamond Jenness once again, grinding almost an additional 5 millimeters (about 0.2 inch). The rover then applied its Moessbauer spectrometer to the deepened hole. This double dose of Diamond Jenness enabled the science team to examine the rock at varying layers. Results from those grindings are currently being analyzed.
The image mosaic is about 6 centimeters (2.4 inches) across.
2D/3D Visual Tracker for Rover Mast
NASA Technical Reports Server (NTRS)
Bajracharya, Max; Madison, Richard W.; Nesnas, Issa A.; Bandari, Esfandiar; Kunz, Clayton; Deans, Matt; Bualat, Maria
2006-01-01
A visual-tracker computer program controls an articulated mast on a Mars rover to keep a designated feature (a target) in view while the rover drives toward the target, avoiding obstacles. Several prior visual-tracker programs have been tested on rover platforms; most require very small and well-estimated motion between consecutive image frames a requirement that is not realistic for a rover on rough terrain. The present visual-tracker program is designed to handle large image motions that lead to significant changes in feature geometry and photometry between frames. When a point is selected in one of the images acquired from stereoscopic cameras on the mast, a stereo triangulation algorithm computes a three-dimensional (3D) location for the target. As the rover moves, its body-mounted cameras feed images to a visual-odometry algorithm, which tracks two-dimensional (2D) corner features and computes their old and new 3D locations. The algorithm rejects points, the 3D motions of which are inconsistent with a rigid-world constraint, and then computes the apparent change in the rover pose (i.e., translation and rotation). The mast pan and tilt angles needed to keep the target centered in the field-of-view of the cameras (thereby minimizing the area over which the 2D-tracking algorithm must operate) are computed from the estimated change in the rover pose, the 3D position of the target feature, and a model of kinematics of the mast. If the motion between the consecutive frames is still large (i.e., 3D tracking was unsuccessful), an adaptive view-based matching technique is applied to the new image. This technique uses correlation-based template matching, in which a feature template is scaled by the ratio between the depth in the original template and the depth of pixels in the new image. This is repeated over the entire search window and the best correlation results indicate the appropriate match. The program could be a core for building application programs for systems
CFL3D, FUN3d, and NSU3D Contributions to the Fifth Drag Prediction Workshop
NASA Technical Reports Server (NTRS)
Park, Michael A.; Laflin, Kelly R.; Chaffin, Mark S.; Powell, Nicholas; Levy, David W.
2013-01-01
Results presented at the Fifth Drag Prediction Workshop using CFL3D, FUN3D, and NSU3D are described. These are calculations on the workshop provided grids and drag adapted grids. The NSU3D results have been updated to reflect an improvement to skin friction calculation on skewed grids. FUN3D results generated after the workshop are included for custom participant generated grids and a grid from a previous workshop. Uniform grid refinement at the design condition shows a tight grouping in calculated drag, where the variation in the pressure component of drag is larger than the skin friction component. At this design condition, A fine-grid drag value was predicted with a smaller drag adjoint adapted grid via tetrahedral adaption to a metric and mixed-element subdivision. The buffet study produced larger variation than the design case, which is attributed to large differences in the predicted side-of-body separation extent. Various modeling and discretization approaches had a strong impact on predicted side-of-body separation. This large wing root separation bubble was not observed in wind tunnel tests indicating that more work is necessary in modeling wing root juncture flows to predict experiments.
2D/3D registration algorithm for lung brachytherapy
Zvonarev, P. S.; Farrell, T. J.; Hunter, R.; Wierzbicki, M.; Hayward, J. E.; Sur, R. K.
2013-02-15
Purpose: A 2D/3D registration algorithm is proposed for registering orthogonal x-ray images with a diagnostic CT volume for high dose rate (HDR) lung brachytherapy. Methods: The algorithm utilizes a rigid registration model based on a pixel/voxel intensity matching approach. To achieve accurate registration, a robust similarity measure combining normalized mutual information, image gradient, and intensity difference was developed. The algorithm was validated using a simple body and anthropomorphic phantoms. Transfer catheters were placed inside the phantoms to simulate the unique image features observed during treatment. The algorithm sensitivity to various degrees of initial misregistration and to the presence of foreign objects, such as ECG leads, was evaluated. Results: The mean registration error was 2.2 and 1.9 mm for the simple body and anthropomorphic phantoms, respectively. The error was comparable to the interoperator catheter digitization error of 1.6 mm. Preliminary analysis of data acquired from four patients indicated a mean registration error of 4.2 mm. Conclusions: Results obtained using the proposed algorithm are clinically acceptable especially considering the complications normally encountered when imaging during lung HDR brachytherapy.
Inoue, Minoru; Yoshimura, Michio Sato, Sayaka; Nakamura, Mitsuhiro; Yamada, Masahiro; Hirata, Kimiko; Ogura, Masakazu; Hiraoka, Masahiro; Sasaki, Makoto; Fujimoto, Takahiro
2015-04-15
Purpose: To investigate image-registration errors when using fiducial markers with a manual method and the point-based rigid-body registration (PRBR) algorithm in accelerated partial breast irradiation (APBI) patients, with accompanying fiducial deviations. Methods: Twenty-two consecutive patients were enrolled in a prospective trial examining 10-fraction APBI. Titanium clips were implanted intraoperatively around the seroma in all patients. For image-registration, the positions of the clips in daily kV x-ray images were matched to those in the planning digitally reconstructed radiographs. Fiducial and gravity registration errors (FREs and GREs, respectively), representing resulting misalignments of the edge and center of the target, respectively, were compared between the manual and algorithm-based methods. Results: In total, 218 fractions were evaluated. Although the mean FRE/GRE values for the manual and algorithm-based methods were within 3 mm (2.3/1.7 and 1.3/0.4 mm, respectively), the percentages of fractions where FRE/GRE exceeded 3 mm using the manual and algorithm-based methods were 18.8%/7.3% and 0%/0%, respectively. Manual registration resulted in 18.6% of patients with fractions of FRE/GRE exceeding 5 mm. The patients with larger clip deviation had significantly more fractions showing large FRE/GRE using manual registration. Conclusions: For image-registration using fiducial markers in APBI, the manual registration results in more fractions with considerable registration error due to loss of fiducial objectivity resulting from their deviation. The authors recommend the PRBR algorithm as a safe and effective strategy for accurate, image-guided registration and PTV margin reduction.
Alraiyes, Abdul Hamid; Machuzak, Michael S
2014-12-01
The purpose of this article is to provide an introduction to rigid bronchoscopy (RB). We will briefly discuss its history, evolution, and resurgence while we highlight its versatility and usefulness for today's interventional pulmonologist and thoracic surgeon. Despite being one of the earliest pulmonary procedures described, RB is still an important technique. Advances in thoracic medicine have made this skill critical for a fully functional interventional pulmonary program. If the interventional pulmonologist of this century is to be successful, he or she should be facile in this technique. Despite the availability of RB for decades, the invention of flexible bronchoscopy in 1966 led to a significant downturn in its usage. The growth of the interventional pulmonology field brought RB back into the spot light. Apart from the historic role of RB in treatment of central airway lesions and mechanical debulking of endobronchial lesions, RB is the key instrument that can adapt modern therapeutic tools such as laser, argon plasma coagulation, electrocautery, cryotherapy, and stent deployment. Performing RB requires proper preprocedure preparation, exceptional understanding of upper airway anatomy, specific hand-eye coordination, and open communication between the bronchoscopist and the anesthesiologist. These skills can be primarily learned and maintained with repetition. This article will review information relevant to this technique and lay a foundation to be built upon for years to come. PMID:25463158
NASA Technical Reports Server (NTRS)
Grant, John; Cheng, Andrew; Delamere, Allen; Gorevan, Steven; Korotev, Randy; McKay, David; Schmitt, Harrison; Zarnecki, John
1996-01-01
A planetary regolith is any layer of fragments, unconsolidated material that may or may not be textually or compositionally altered relative to underlying substrate and occurs on the outer surface of a solar system body. This includes fragmented material from volcanic, sedimentary, and meteoritic infall sources, and derived by any process (e.g. impact and all other endogenic or exogenic processes). Many measurements that can be made from orbit or from Earth-based observations provide information only about the uppermost portions of a regolith and not the underlying substrate(s). Thus an understanding of the formation processes, physical properties, composition, and evolution of planetary regoliths is essential in answering scientific questions posed by the Committee on Planetary and Lunar Exploration (COMPLEX). This paper provides examples of measurements required to answer these critical science questions.
An Automatic Registration Algorithm for 3D Maxillofacial Model
NASA Astrophysics Data System (ADS)
Qiu, Luwen; Zhou, Zhongwei; Guo, Jixiang; Lv, Jiancheng
2016-09-01
3D image registration aims at aligning two 3D data sets in a common coordinate system, which has been widely used in computer vision, pattern recognition and computer assisted surgery. One challenging problem in 3D registration is that point-wise correspondences between two point sets are often unknown apriori. In this work, we develop an automatic algorithm for 3D maxillofacial models registration including facial surface model and skull model. Our proposed registration algorithm can achieve a good alignment result between partial and whole maxillofacial model in spite of ambiguous matching, which has a potential application in the oral and maxillofacial reparative and reconstructive surgery. The proposed algorithm includes three steps: (1) 3D-SIFT features extraction and FPFH descriptors construction; (2) feature matching using SAC-IA; (3) coarse rigid alignment and refinement by ICP. Experiments on facial surfaces and mandible skull models demonstrate the efficiency and robustness of our algorithm.
FARGO3D: Hydrodynamics/magnetohydrodynamics code
NASA Astrophysics Data System (ADS)
Benítez Llambay, Pablo; Masset, Frédéric
2015-09-01
A successor of FARGO (ascl:1102.017), FARGO3D is a versatile HD/MHD code that runs on clusters of CPUs or GPUs, with special emphasis on protoplanetary disks. FARGO3D offers Cartesian, cylindrical or spherical geometry; 1-, 2- or 3-dimensional calculations; and orbital advection (aka FARGO) for HD and MHD calculations. As in FARGO, a simple Runge-Kutta N-body solver may be used to describe the orbital evolution of embedded point-like objects. There is no need to know CUDA; users can develop new functions in C and have them translated to CUDA automatically to run on GPUs.
3D surface imaging of the human female torso in upright to supine positions.
Reece, Gregory P; Merchant, Fatima; Andon, Johnny; Khatam, Hamed; Ravi-Chandar, K; Weston, June; Fingeret, Michelle C; Lane, Chris; Duncan, Kelly; Markey, Mia K
2015-04-01
Three-dimensional (3D) surface imaging of breasts is usually done with the patient in an upright position, which does not permit comparison of changes in breast morphology with changes in position of the torso. In theory, these limitations may be eliminated if the 3D camera system could remain fixed relative to the woman's torso as she is tilted from 0 to 90°. We mounted a 3dMDtorso imaging system onto a bariatric tilt table to image breasts at different tilt angles. The images were validated using a rigid plastic mannequin and the metrics compared to breast metrics obtained from five subjects with diverse morphology. The differences between distances between the same fiducial marks differed between the supine and upright positions by less than 1% for the mannequin, whereas the differences for distances between the same fiducial marks on the breasts of the five subjects differed significantly and could be correlated with body mass index and brassiere cup size for each position change. We show that a tilt table-3D imaging system can be used to determine quantitative changes in the morphology of ptotic breasts when the subject is tilted to various angles. PMID:25703742
3D Surface Imaging of the Human Female Torso in Upright to Supine Positions
Reece, Gregory P.; Merchant, Fatima; Andon, Johnny; Khatam, Hamed; Ravi-Chandar, K.; Weston, June; Fingeret, Michelle C.; Lane, Chris; Duncan, Kelly; Markey, Mia K.
2015-01-01
Three-dimensional (3D) surface imaging of breasts is usually done with the patient in an upright position, which does not permit comparison of changes in breast morphology with changes in position of the torso. In theory, these limitations may be eliminated if the 3D camera system could remain fixed relative to the woman’s torso as she is tilted from 0 to 90 degrees. We mounted a 3dMDtorso imaging system onto a bariatric tilt table to image breasts at different tilt angles. The images were validated using a rigid plastic mannequin and the metrics compared to breast metrics obtained from 5 subjects with diverse morphology. The differences between distances between the same fiducial marks differed between the supine and upright positions by less than one percent for the mannequin, whereas the differences for distances between the same fiducial marks on the breasts of the 5 subjects differed significantly and could be correlated with body mass index and brassiere cup size for each position change. We show that a tilt table - 3D imaging system can be used to determine quantitative changes in the morphology of ptotic breasts when the subject is tilted to various angles. PMID:25703742
Unseren, M.A.
1997-09-01
The report reviews a method for modeling and controlling two serial link manipulators which mutually lift and transport a rigid body object in a three dimensional workspace. A new vector variable is introduced which parameterizes the internal contact force controlled degrees of freedom. A technique for dynamically distributing the payload between the manipulators is suggested which yields a family of solutions for the contact forces and torques the manipulators impart to the object. A set of rigid body kinematic constraints which restricts the values of the joint velocities of both manipulators is derived. A rigid body dynamical model for the closed chain system is first developed in the joint space. The model is obtained by generalizing the previous methods for deriving the model. The joint velocity and acceleration variables in the model are expressed in terms of independent pseudovariables. The pseudospace model is transformed to obtain reduced order equations of motion and a separate set of equations governing the internal components of the contact forces and torques. A theoretic control architecture is suggested which explicitly decouples the two sets of equations comprising the model. The controller enables the designer to develop independent, non-interacting control laws for the position control and internal force control of the system.
Mobile glasses-free 3D using compact waveguide hologram
NASA Astrophysics Data System (ADS)
Pyun, K.; Choi, C.; Morozov, A.; Putilin, A.; Bovsunovskiy, I.; Kim, S.; Ahn, J.; Lee, H.-S.; Lee, S.
2013-02-01
The exploding mobile communication devices make 3D data available anywhere anytime. However, to record and reconstruct 3D, the huge number of optical components is often required, which makes overall device size bulky and image quality degraded due to the error-prone tuning. In addition, if additional glass is required, then user experience of 3D is exhausting and unpleasant. Holography is the ultimate 3D that users experience natural 3D in every direction. For mobile glasses-free 3D experience, it is critical to make holography device that can be as compact and integrated as possible. For reliable and economical mass production, integrated optics is needed as integrated circuits in semiconductor industry. Thus, we propose mobile glasses-free 3D using compact waveguide hologram in terms of overall device sizes, quantity of elements and combined functionality of each element. The main advantages of proposed solution are as follows: First, this solution utilizes various integral optical elements, where each of them is a united not adjustable optical element, replacing separate and adjustable optical elements with various forms and configurations. Second, geometrical form of integral elements provides small sizes of whole device. Third, geometrical form of integral elements allows creating flat device. And finally, absence of adjustable elements provide rigidly of whole device. The usage of integrated optical means based on waveguide holographic elements allows creating a new type of compact and high functional devices for mobile glasses-free 3D applications such as mobile medical 3D data visualization.
A 3-D chimera grid embedding technique
NASA Technical Reports Server (NTRS)
Benek, J. A.; Buning, P. G.; Steger, J. L.
1985-01-01
A three-dimensional (3-D) chimera grid-embedding technique is described. The technique simplifies the construction of computational grids about complex geometries. The method subdivides the physical domain into regions which can accommodate easily generated grids. Communication among the grids is accomplished by interpolation of the dependent variables at grid boundaries. The procedures for constructing the composite mesh and the associated data structures are described. The method is demonstrated by solution of the Euler equations for the transonic flow about a wing/body, wing/body/tail, and a configuration of three ellipsoidal bodies.
NASA Astrophysics Data System (ADS)
Mediavilla, Evencio; Arribas, Santiago; Roth, Martin; Cepa-Nogué, Jordi; Sánchez, Francisco
2011-09-01
Preface; Acknowledgements; 1. Introductory review and technical approaches Martin M. Roth; 2. Observational procedures and data reduction James E. H. Turner; 3. 3D Spectroscopy instrumentation M. A. Bershady; 4. Analysis of 3D data Pierre Ferruit; 5. Science motivation for IFS and galactic studies F. Eisenhauer; 6. Extragalactic studies and future IFS science Luis Colina; 7. Tutorials: how to handle 3D spectroscopy data Sebastian F. Sánchez, Begona García-Lorenzo and Arlette Pécontal-Rousset.
3D Elevation Program—Virtual USA in 3D
Lukas, Vicki; Stoker, J.M.
2016-01-01
The U.S. Geological Survey (USGS) 3D Elevation Program (3DEP) uses a laser system called ‘lidar’ (light detection and ranging) to create a virtual reality map of the Nation that is very accurate. 3D maps have many uses with new uses being discovered all the time.
Nearly automatic motion capture system for tracking octopus arm movements in 3D space.
Zelman, Ido; Galun, Meirav; Akselrod-Ballin, Ayelet; Yekutieli, Yoram; Hochner, Binyamin; Flash, Tamar
2009-08-30
Tracking animal movements in 3D space is an essential part of many biomechanical studies. The most popular technique for human motion capture uses markers placed on the skin which are tracked by a dedicated system. However, this technique may be inadequate for tracking animal movements, especially when it is impossible to attach markers to the animal's body either because of its size or shape or because of the environment in which the animal performs its movements. Attaching markers to an animal's body may also alter its behavior. Here we present a nearly automatic markerless motion capture system that overcomes these problems and successfully tracks octopus arm movements in 3D space. The system is based on three successive tracking and processing stages. The first stage uses a recently presented segmentation algorithm to detect the movement in a pair of video sequences recorded by two calibrated cameras. In the second stage, the results of the first stage are processed to produce 2D skeletal representations of the moving arm. Finally, the 2D skeletons are used to reconstruct the octopus arm movement as a sequence of 3D curves varying in time. Motion tracking, segmentation and reconstruction are especially difficult problems in the case of octopus arm movements because of the deformable, non-rigid structure of the octopus arm and the underwater environment in which it moves. Our successful results suggest that the motion-tracking system presented here may be used for tracking other elongated objects. PMID:19505502
Feng, Bing; King, Michael A
2006-11-01
We developed a unique method for estimating and compensating rigid-body translations and rotations from scatter and-attenuation-compensated projection data in iterative reconstruction when multiple projection angles are acquired at the same time. During reconstruction, both the non-attenuated and attenuated line-integrals are calculated. Their ratios are then multiplied to the scatter-corrected projection data to estimate scatter-and-attenuation- compensated projection data. At the end of each iteration, the sets of compensated projection data for the angles acquired at the same time are employed to calculate the center-of mass and the inertia tensor, which are used to estimate the location and orientation of the imaging object by the principle-axes method. The estimated motion is applied in the next iteration to reposition the estimated slices and attenuation map in the projector and back-projector to match the pose of the patient at time the projections were acquired. To evaluate our method, we simulated an acquisition of the MCAT phantom with a 3-head SPECT system and imaged the Data Spectrum anthropomorphic phantom on a 3-head IRIX SPECT system. In simulations the phantom translated and rotated by the same amount 9 times. A numerical projector modeling the motion, attenuation, and distance-dependent blurring was used to generate the projection data. Poisson noise was added and 30 noise-realizations were generated. In the experiment with the anthropomorphic phantom, four 360-degree acquisitions were performed with the phantom translated or rotated beforehand. A motion-present dataset was made by mixing the 4 acquisitions. For both the MCAT phantom simulations and anthropomorphic phantom experiment, the motion-present data were reconstructed with 10 iterations of the OSEM which estimates and corrects the motion as described above. Our method obtained visually artifact-free reconstructions, while the reconstruction with no motion correction showed severe artifacts
Bettadapura, Radhakrishna; Rasheed, Muhibur; Vollrath, Antje; Bajaj, Chandrajit
2015-10-01
There continue to be increasing occurrences of both atomistic structure models in the PDB (possibly reconstructed from X-ray diffraction or NMR data), and 3D reconstructed cryo-electron microscopy (3D EM) maps (albeit at coarser resolution) of the same or homologous molecule or molecular assembly, deposited in the EMDB. To obtain the best possible structural model of the molecule at the best achievable resolution, and without any missing gaps, one typically aligns (match and fits) the atomistic structure model with the 3D EM map. We discuss a new algorithm and generalized framework, named PF(2) fit (Polar Fast Fourier Fitting) for the best possible structural alignment of atomistic structures with 3D EM. While PF(2) fit enables only a rigid, six dimensional (6D) alignment method, it augments prior work on 6D X-ray structure and 3D EM alignment in multiple ways: Scoring. PF(2) fit includes a new scoring scheme that, in addition to rewarding overlaps between the volumes occupied by the atomistic structure and 3D EM map, rewards overlaps between the volumes complementary to them. We quantitatively demonstrate how this new complementary scoring scheme improves upon existing approaches. PF(2) fit also includes two scoring functions, the non-uniform exterior penalty and the skeleton-secondary structure score, and implements the scattering potential score as an alternative to traditional Gaussian blurring. Search. PF(2) fit utilizes a fast polar Fourier search scheme, whose main advantage is the ability to search over uniformly and adaptively sampled subsets of the space of rigid-body motions. PF(2) fit also implements a new reranking search and scoring methodology that considerably improves alignment metrics in results obtained from the initial search. PMID:26469938
Bettadapura, Radhakrishna; Rasheed, Muhibur; Vollrath, Antje; Bajaj, Chandrajit
2015-01-01
There continue to be increasing occurrences of both atomistic structure models in the PDB (possibly reconstructed from X-ray diffraction or NMR data), and 3D reconstructed cryo-electron microscopy (3D EM) maps (albeit at coarser resolution) of the same or homologous molecule or molecular assembly, deposited in the EMDB. To obtain the best possible structural model of the molecule at the best achievable resolution, and without any missing gaps, one typically aligns (match and fits) the atomistic structure model with the 3D EM map. We discuss a new algorithm and generalized framework, named PF2 fit (Polar Fast Fourier Fitting) for the best possible structural alignment of atomistic structures with 3D EM. While PF2 fit enables only a rigid, six dimensional (6D) alignment method, it augments prior work on 6D X-ray structure and 3D EM alignment in multiple ways: Scoring. PF2 fit includes a new scoring scheme that, in addition to rewarding overlaps between the volumes occupied by the atomistic structure and 3D EM map, rewards overlaps between the volumes complementary to them. We quantitatively demonstrate how this new complementary scoring scheme improves upon existing approaches. PF2 fit also includes two scoring functions, the non-uniform exterior penalty and the skeleton-secondary structure score, and implements the scattering potential score as an alternative to traditional Gaussian blurring. Search. PF2 fit utilizes a fast polar Fourier search scheme, whose main advantage is the ability to search over uniformly and adaptively sampled subsets of the space of rigid-body motions. PF2 fit also implements a new reranking search and scoring methodology that considerably improves alignment metrics in results obtained from the initial search. PMID:26469938
MT3D was first developed by Chunmiao Zheng in 1990 at S.S. Papadopulos & Associates, Inc. with partial support from the U.S. Environmental Protection Agency (USEPA). Starting in 1990, MT3D was released as a pubic domain code from the USEPA. Commercial versions with enhanced capab...
NASA Technical Reports Server (NTRS)
1977-01-01
A market study of a proposed version of a 3-D eyetracker for initial use at NASA's Ames Research Center was made. The commercialization potential of a simplified, less expensive 3-D eyetracker was ascertained. Primary focus on present and potential users of eyetrackers, as well as present and potential manufacturers has provided an effective means of analyzing the prospects for commercialization.
2013-10-01
Earth3D is a computer code designed to allow fast calculation of seismic rays and travel times through a 3D model of the Earth. LLNL is using this for earthquake location and global tomography efforts and such codes are of great interest to the Earth Science community.
[3-D ultrasound in gastroenterology].
Zoller, W G; Liess, H
1994-06-01
Three-dimensional (3D) sonography represents a development of noninvasive diagnostic imaging by real-time two-dimensional (2D) sonography. The use of transparent rotating scans, comparable to a block of glass, generates a 3D effect. The objective of the present study was to optimate 3D presentation of abdominal findings. Additional investigations were made with a new volumetric program to determine the volume of selected findings of the liver. The results were compared with the estimated volumes of 2D sonography and 2D computer tomography (CT). For the processing of 3D images, typical parameter constellations were found for the different findings, which facilitated processing of 3D images. In more than 75% of the cases examined we found an optimal 3D presentation of sonographic findings with respect to the evaluation criteria developed by us for the 3D imaging of processed data. Great differences were found for the estimated volumes of the findings of the liver concerning the three different techniques applied. 3D ultrasound represents a valuable method to judge morphological appearance in abdominal findings. The possibility of volumetric measurements enlarges its potential diagnostic significance. Further clinical investigations are necessary to find out if definite differentiation between benign and malign findings is possible. PMID:7919882
2013-10-30
This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.
None
2014-02-26
This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.
NASA Astrophysics Data System (ADS)
Walsh, J. R.
2004-02-01
The Euro3D RTN is an EU funded Research Training Network to foster the exploitation of 3D spectroscopy in Europe. 3D spectroscopy is a general term for spectroscopy of an area of the sky and derives its name from its two spatial + one spectral dimensions. There are an increasing number of instruments which use integral field devices to achieve spectroscopy of an area of the sky, either using lens arrays, optical fibres or image slicers, to pack spectra of multiple pixels on the sky (``spaxels'') onto a 2D detector. On account of the large volume of data and the special methods required to reduce and analyse 3D data, there are only a few centres of expertise and these are mostly involved with instrument developments. There is a perceived lack of expertise in 3D spectroscopy spread though the astronomical community and its use in the armoury of the observational astronomer is viewed as being highly specialised. For precisely this reason the Euro3D RTN was proposed to train young researchers in this area and develop user tools to widen the experience with this particular type of data in Europe. The Euro3D RTN is coordinated by Martin M. Roth (Astrophysikalisches Institut Potsdam) and has been running since July 2002. The first Euro3D science conference was held in Cambridge, UK from 22 to 23 May 2003. The main emphasis of the conference was, in keeping with the RTN, to expose the work of the young post-docs who are funded by the RTN. In addition the team members from the eleven European institutes involved in Euro3D also presented instrumental and observational developments. The conference was organized by Andy Bunker and held at the Institute of Astronomy. There were over thirty participants and 26 talks covered the whole range of application of 3D techniques. The science ranged from Galactic planetary nebulae and globular clusters to kinematics of nearby galaxies out to objects at high redshift. Several talks were devoted to reporting recent observations with newly
NASA Technical Reports Server (NTRS)
Walatka, Pamela P.; Buning, Pieter G.; Pierce, Larry; Elson, Patricia A.
1990-01-01
PLOT3D is a computer graphics program designed to visualize the grids and solutions of computational fluid dynamics. Seventy-four functions are available. Versions are available for many systems. PLOT3D can handle multiple grids with a million or more grid points, and can produce varieties of model renderings, such as wireframe or flat shaded. Output from PLOT3D can be used in animation programs. The first part of this manual is a tutorial that takes the reader, keystroke by keystroke, through a PLOT3D session. The second part of the manual contains reference chapters, including the helpfile, data file formats, advice on changing PLOT3D, and sample command files.
Dawood, A; Marti Marti, B; Sauret-Jackson, V; Darwood, A
2015-12-01
3D printing has been hailed as a disruptive technology which will change manufacturing. Used in aerospace, defence, art and design, 3D printing is becoming a subject of great interest in surgery. The technology has a particular resonance with dentistry, and with advances in 3D imaging and modelling technologies such as cone beam computed tomography and intraoral scanning, and with the relatively long history of the use of CAD CAM technologies in dentistry, it will become of increasing importance. Uses of 3D printing include the production of drill guides for dental implants, the production of physical models for prosthodontics, orthodontics and surgery, the manufacture of dental, craniomaxillofacial and orthopaedic implants, and the fabrication of copings and frameworks for implant and dental restorations. This paper reviews the types of 3D printing technologies available and their various applications in dentistry and in maxillofacial surgery. PMID:26657435
Registration of 3D spectral OCT volumes using 3D SIFT feature point matching
NASA Astrophysics Data System (ADS)
Niemeijer, Meindert; Garvin, Mona K.; Lee, Kyungmoo; van Ginneken, Bram; Abràmoff, Michael D.; Sonka, Milan
2009-02-01
The recent introduction of next generation spectral OCT scanners has enabled routine acquisition of high resolution, 3D cross-sectional volumetric images of the retina. 3D OCT is used in the detection and management of serious eye diseases such as glaucoma and age-related macular degeneration. For follow-up studies, image registration is a vital tool to enable more precise, quantitative comparison of disease states. This work presents a registration method based on a recently introduced extension of the 2D Scale-Invariant Feature Transform (SIFT) framework1 to 3D.2 The SIFT feature extractor locates minima and maxima in the difference of Gaussian scale space to find salient feature points. It then uses histograms of the local gradient directions around each found extremum in 3D to characterize them in a 4096 element feature vector. Matching points are found by comparing the distance between feature vectors. We apply this method to the rigid registration of optic nerve head- (ONH) and macula-centered 3D OCT scans of the same patient that have only limited overlap. Three OCT data set pairs with known deformation were used for quantitative assessment of the method's robustness and accuracy when deformations of rotation and scaling were considered. Three-dimensional registration accuracy of 2.0+/-3.3 voxels was observed. The accuracy was assessed as average voxel distance error in N=1572 matched locations. The registration method was applied to 12 3D OCT scans (200 x 200 x 1024 voxels) of 6 normal eyes imaged in vivo to demonstrate the clinical utility and robustness of the method in a real-world environment.
Development of 3D holographic endoscope
NASA Astrophysics Data System (ADS)
Özcan, Meriç; Önal Tayyar, Duygu
2016-03-01
Here we present the development of a 3D holographic endoscope with an interferometer built around a commercial rigid endoscope. We consider recording the holograms with coherent and incoherent light separately without compromising the white light imaging capacity of the endoscope. In coherent light based recording, reference wave required for the hologram is obtained in two different ways. First, as in the classical holography, splitting the laser beam before the object illumination, and secondly creating the reference beam from the object beam itself. This second method does not require path-length matching between the object wave and the reference wave, and it allows the usage of short coherence length light sources. For incoherent light based holographic recordings various interferometric configurations are considered. Experimental results on both illumination conditions are presented.
Fabricating 3D figurines with personalized faces.
Tena, J Rafael; Mahler, Moshe; Beeler, Thabo; Grosse, Max; Hengchin Yeh; Matthews, Iain
2013-01-01
We present a semi-automated system for fabricating figurines with faces that are personalised to the individual likeness of the customer. The efficacy of the system has been demonstrated by commercial deployments at Walt Disney World Resort and Star Wars Celebration VI in Orlando Florida. Although the system is semi automated, human intervention is limited to a few simple tasks to maintain the high throughput and consistent quality required for commercial application. In contrast to existing systems that fabricate custom heads that are assembled to pre-fabricated plastic bodies, our system seamlessly integrates 3D facial data with a predefined figurine body into a unique and continuous object that is fabricated as a single piece. The combination of state-of-the-art 3D capture, modelling, and printing that are the core of our system provide the flexibility to fabricate figurines whose complexity is only limited by the creativity of the designer. PMID:24808129
A 3D surface imaging system for assessing human obesity
NASA Astrophysics Data System (ADS)
Xu, B.; Yu, W.; Yao, M.; Yao, X.; Li, Q.; Pepper, M. R.; Freeland-Graves, J. H.
2009-08-01
The increasing prevalence of obesity suggests a need to develop a convenient, reliable and economical tool for assessment of this condition. Three-dimensional (3D) body surface imaging has emerged as an exciting technology for estimation of body composition. This paper presents a new 3D body imaging system, which was designed for enhanced portability, affordability, and functionality. In this system, stereo vision technology was used to satisfy the requirements for a simple hardware setup and fast image acquisitions. The portability of the system was created via a two-stand configuration, and the accuracy of body volume measurements was improved by customizing stereo matching and surface reconstruction algorithms that target specific problems in 3D body imaging. Body measurement functions dedicated to body composition assessment also were developed. The overall performance of the system was evaluated in human subjects by comparison to other conventional anthropometric methods, as well as air displacement plethysmography, for body fat assessment.
PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITH TURB3D)
NASA Technical Reports Server (NTRS)
Buning, P.
1994-01-01
PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into
PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITHOUT TURB3D)
NASA Technical Reports Server (NTRS)
Buning, P.
1994-01-01
PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into
Stanton, M M; Samitier, J; Sánchez, S
2015-08-01
Three-dimensional (3D) bioprinting has recently emerged as an extension of 3D material printing, by using biocompatible or cellular components to build structures in an additive, layer-by-layer methodology for encapsulation and culture of cells. These 3D systems allow for cell culture in a suspension for formation of highly organized tissue or controlled spatial orientation of cell environments. The in vitro 3D cellular environments simulate the complexity of an in vivo environment and natural extracellular matrices (ECM). This paper will focus on bioprinting utilizing hydrogels as 3D scaffolds. Hydrogels are advantageous for cell culture as they are highly permeable to cell culture media, nutrients, and waste products generated during metabolic cell processes. They have the ability to be fabricated in customized shapes with various material properties with dimensions at the micron scale. 3D hydrogels are a reliable method for biocompatible 3D printing and have applications in tissue engineering, drug screening, and organ on a chip models. PMID:26066320
Unassisted 3D camera calibration
NASA Astrophysics Data System (ADS)
Atanassov, Kalin; Ramachandra, Vikas; Nash, James; Goma, Sergio R.
2012-03-01
With the rapid growth of 3D technology, 3D image capture has become a critical part of the 3D feature set on mobile phones. 3D image quality is affected by the scene geometry as well as on-the-device processing. An automatic 3D system usually assumes known camera poses accomplished by factory calibration using a special chart. In real life settings, pose parameters estimated by factory calibration can be negatively impacted by movements of the lens barrel due to shaking, focusing, or camera drop. If any of these factors displaces the optical axes of either or both cameras, vertical disparity might exceed the maximum tolerable margin and the 3D user may experience eye strain or headaches. To make 3D capture more practical, one needs to consider unassisted (on arbitrary scenes) calibration. In this paper, we propose an algorithm that relies on detection and matching of keypoints between left and right images. Frames containing erroneous matches, along with frames with insufficiently rich keypoint constellations, are detected and discarded. Roll, pitch yaw , and scale differences between left and right frames are then estimated. The algorithm performance is evaluated in terms of the remaining vertical disparity as compared to the maximum tolerable vertical disparity.
Arena3D: visualization of biological networks in 3D
Pavlopoulos, Georgios A; O'Donoghue, Seán I; Satagopam, Venkata P; Soldatos, Theodoros G; Pafilis, Evangelos; Schneider, Reinhard
2008-01-01
Background Complexity is a key problem when visualizing biological networks; as the number of entities increases, most graphical views become incomprehensible. Our goal is to enable many thousands of entities to be visualized meaningfully and with high performance. Results We present a new visualization tool, Arena3D, which introduces a new concept of staggered layers in 3D space. Related data – such as proteins, chemicals, or pathways – can be grouped onto separate layers and arranged via layout algorithms, such as Fruchterman-Reingold, distance geometry, and a novel hierarchical layout. Data on a layer can be clustered via k-means, affinity propagation, Markov clustering, neighbor joining, tree clustering, or UPGMA ('unweighted pair-group method with arithmetic mean'). A simple input format defines the name and URL for each node, and defines connections or similarity scores between pairs of nodes. The use of Arena3D is illustrated with datasets related to Huntington's disease. Conclusion Arena3D is a user friendly visualization tool that is able to visualize biological or any other network in 3D space. It is free for academic use and runs on any platform. It can be downloaded or lunched directly from . Java3D library and Java 1.5 need to be pre-installed for the software to run. PMID:19040715
NASA Astrophysics Data System (ADS)
Otis, Collin; Ferrero, Pietro; Candler, Graham; Givi, Peyman
2013-11-01
The scalar filtered mass density function (SFMDF) methodology is implemented into the computer code US3D. This is an unstructured Eulerian finite volume hydrodynamic solver and has proven very effective for simulation of compressible turbulent flows. The resulting SFMDF-US3D code is employed for large eddy simulation (LES) on unstructured meshes. Simulations are conducted of subsonic and supersonic flows under non-reacting and reacting conditions. The consistency and the accuracy of the simulated results are assessed along with appraisal of the overall performance of the methodology. The SFMDF-US3D is now capable of simulating high speed flows in complex configurations.
Chilcoat, S.R. Hildebrand, S.T.
1995-12-31
Travel time computation in inhomogeneous media is essential for pre-stack Kirchhoff imaging in areas such as the sub-salt province in the Gulf of Mexico. The 2D algorithm published by Vinje, et al, has been extended to 3D to compute wavefronts in complicated inhomogeneous media. The 3D wavefront construction algorithm provides many advantages over conventional ray tracing and other methods of computing travel times in 3D. The algorithm dynamically maintains a reasonably consistent ray density without making a priori guesses at the number of rays to shoot. The determination of caustics in 3D is a straight forward geometric procedure. The wavefront algorithm also enables the computation of multi-valued travel time surfaces.
NASA Astrophysics Data System (ADS)
Yang, Xu; Zhang, Yong; Yang, Chenghua; Xu, Lu; Wang, Qiang; Zhao, Yuan
2016-06-01
Conventional three dimensional (3D) ghost imaging measures range of target based on pulse fight time measurement method. Due to the limit of data acquisition system sampling rate, range resolution of the conventional 3D ghost imaging is usually low. In order to take off the effect of sampling rate to range resolution of 3D ghost imaging, a heterodyne 3D ghost imaging (HGI) system is presented in this study. The source of HGI is a continuous wave laser instead of pulse laser. Temporal correlation and spatial correlation of light are both utilized to obtain the range image of target. Through theory analysis and numerical simulations, it is demonstrated that HGI can obtain high range resolution image with low sampling rate.
Elastic image registration via rigid object motion induced deformation
NASA Astrophysics Data System (ADS)
Zheng, Xiaofen; Udupa, Jayaram K.; Hirsch, Bruce E.
2011-03-01
In this paper, we estimate the deformations induced on soft tissues by the rigid independent movements of hard objects and create an admixture of rigid and elastic adaptive image registration transformations. By automatically segmenting and independently estimating the movement of rigid objects in 3D images, we can maintain rigidity in bones and hard tissues while appropriately deforming soft tissues. We tested our algorithms on 20 pairs of 3D MRI datasets pertaining to a kinematic study of the flexibility of the ankle complex of normal feet as well as ankles affected by abnormalities in foot architecture and ligament injuries. The results show that elastic image registration via rigid object-induced deformation outperforms purely rigid and purely nonrigid approaches.
Combinatorial 3D Mechanical Metamaterials
NASA Astrophysics Data System (ADS)
Coulais, Corentin; Teomy, Eial; de Reus, Koen; Shokef, Yair; van Hecke, Martin
2015-03-01
We present a class of elastic structures which exhibit 3D-folding motion. Our structures consist of cubic lattices of anisotropic unit cells that can be tiled in a complex combinatorial fashion. We design and 3d-print this complex ordered mechanism, in which we combine elastic hinges and defects to tailor the mechanics of the material. Finally, we use this large design space to encode smart functionalities such as surface patterning and multistability.
Unbiased rigid registration using transfer functions
NASA Astrophysics Data System (ADS)
Hahn, Dieter A.; Hornegger, Joachim; Bautz, Werner; Kuwert, Torsten; Roemer, Wolfgang
2005-04-01
The evaluation of tumor growth as regression under therapy is an important clinical issue. Rigid registration of sequentially acquired 3D-images has proven its value for this purpose. Existing approaches to rigid image registration use the whole volume for the estimation of the rigid transform. Non-rigid soft tissue deformation, however, will imply a bias to the registration result, because local deformations cannot be modeled by rigid transforms. Anatomical substructures, like bones or teeth, are not affected by these deformations, but follow a rigid transform. This important observation is incorporated in the proposed registration algorithm. The selection of anatomical substructure is done by manual interaction of medical experts adjusting the transfer function of the volume rendering software. The parameters of the transfer function are used to identify the voxels that are considered for registration. A rigid transform is estimated by a quaternion gradient descent algorithm based on the intensity values of the specified tissue classes. Commonly used voxel intensity measures are adjusted to the modified registration algorithm. The contribution describes the mathematical framework of the proposed registration method and its implementation in a commercial software package. The experimental evaluation includes the discussion of different similarity measures, the comparison of the proposed method to established rigid registration techniques and the evaluation of the efficiency of the new method. We conclude with the discussion of potential medical applications of the proposed registration algorithm.
Robust 3D Position Estimation in Wide and Unconstrained Indoor Environments
Mossel, Annette
2015-01-01
In this paper, a system for 3D position estimation in wide, unconstrained indoor environments is presented that employs infrared optical outside-in tracking of rigid-body targets with a stereo camera rig. To overcome limitations of state-of-the-art optical tracking systems, a pipeline for robust target identification and 3D point reconstruction has been investigated that enables camera calibration and tracking in environments with poor illumination, static and moving ambient light sources, occlusions and harsh conditions, such as fog. For evaluation, the system has been successfully applied in three different wide and unconstrained indoor environments, (1) user tracking for virtual and augmented reality applications, (2) handheld target tracking for tunneling and (3) machine guidance for mining. The results of each use case are discussed to embed the presented approach into a larger technological and application context. The experimental results demonstrate the system’s capabilities to track targets up to 100 m. Comparing the proposed approach to prior art in optical tracking in terms of range coverage and accuracy, it significantly extends the available tracking range, while only requiring two cameras and providing a relative 3D point accuracy with sub-centimeter deviation up to 30 m and low-centimeter deviation up to 100 m. PMID:26694388
Octree-Based SIMD Strategy for Icp Registration and Alignment of 3d Point Clouds
NASA Astrophysics Data System (ADS)
Eggert, D.; Dalyot, S.
2012-07-01
Matching and fusion of 3D point clouds, such as close range laser scans, is important for creating an integrated 3D model data infrastructure. The Iterative Closest Point algorithm for alignment of point clouds is one of the most commonly used algorithms for matching of rigid bodies. Evidently, scans are acquired from different positions and might present different data characterization and accuracies, forcing complex data-handling issues. The growing demand for near real-time applications also introduces new computational requirements and constraints into such processes. This research proposes a methodology to solving the computational and processing complexities in the ICP algorithm by introducing specific performance enhancements to enable more efficient analysis and processing. An Octree data structure together with the caching of localized Delaunay triangulation-based surface meshes is implemented to increase computation efficiency and handling of data. Parallelization of the ICP process is carried out by using the Single Instruction, Multiple Data processing scheme - based on the Divide and Conquer multi-branched paradigm - enabling multiple processing elements to be performed on the same operation on multiple data independently and simultaneously. When compared to the traditional non-parallel list processing the Octree-based SIMD strategy showed a sharp increase in computation performance and efficiency, together with a reliable and accurate alignment of large 3D point clouds, contributing to a qualitative and efficient application.
YouDash3D: exploring stereoscopic 3D gaming for 3D movie theaters
NASA Astrophysics Data System (ADS)
Schild, Jonas; Seele, Sven; Masuch, Maic
2012-03-01
Along with the success of the digitally revived stereoscopic cinema, events beyond 3D movies become attractive for movie theater operators, i.e. interactive 3D games. In this paper, we present a case that explores possible challenges and solutions for interactive 3D games to be played by a movie theater audience. We analyze the setting and showcase current issues related to lighting and interaction. Our second focus is to provide gameplay mechanics that make special use of stereoscopy, especially depth-based game design. Based on these results, we present YouDash3D, a game prototype that explores public stereoscopic gameplay in a reduced kiosk setup. It features live 3D HD video stream of a professional stereo camera rig rendered in a real-time game scene. We use the effect to place the stereoscopic effigies of players into the digital game. The game showcases how stereoscopic vision can provide for a novel depth-based game mechanic. Projected trigger zones and distributed clusters of the audience video allow for easy adaptation to larger audiences and 3D movie theater gaming.
FR3D: finding local and composite recurrent structural motifs in RNA 3D structures.
Sarver, Michael; Zirbel, Craig L; Stombaugh, Jesse; Mokdad, Ali; Leontis, Neocles B
2008-01-01
New methods are described for finding recurrent three-dimensional (3D) motifs in RNA atomic-resolution structures. Recurrent RNA 3D motifs are sets of RNA nucleotides with similar spatial arrangements. They can be local or composite. Local motifs comprise nucleotides that occur in the same hairpin or internal loop. Composite motifs comprise nucleotides belonging to three or more different RNA strand segments or molecules. We use a base-centered approach to construct efficient, yet exhaustive search procedures using geometric, symbolic, or mixed representations of RNA structure that we implement in a suite of MATLAB programs, "Find RNA 3D" (FR3D). The first modules of FR3D preprocess structure files to classify base-pair and -stacking interactions. Each base is represented geometrically by the position of its glycosidic nitrogen in 3D space and by the rotation matrix that describes its orientation with respect to a common frame. Base-pairing and base-stacking interactions are calculated from the base geometries and are represented symbolically according to the Leontis/Westhof basepairing classification, extended to include base-stacking. These data are stored and used to organize motif searches. For geometric searches, the user supplies the 3D structure of a query motif which FR3D uses to find and score geometrically similar candidate motifs, without regard to the sequential position of their nucleotides in the RNA chain or the identity of their bases. To score and rank candidate motifs, FR3D calculates a geometric discrepancy by rigidly rotating candidates to align optimally with the query motif and then comparing the relative orientations of the corresponding bases in the query and candidate motifs. Given the growing size of the RNA structure database, it is impossible to explicitly compute the discrepancy for all conceivable candidate motifs, even for motifs with less than ten nucleotides. The screening algorithm that we describe finds all candidate motifs whose
3D/3D registration of coronary CTA and biplane XA reconstructions for improved image guidance
Dibildox, Gerardo Baka, Nora; Walsum, Theo van; Punt, Mark; Aben, Jean-Paul; Schultz, Carl; Niessen, Wiro
2014-09-15
Purpose: The authors aim to improve image guidance during percutaneous coronary interventions of chronic total occlusions (CTO) by providing information obtained from computed tomography angiography (CTA) to the cardiac interventionist. To this end, the authors investigate a method to register a 3D CTA model to biplane reconstructions. Methods: The authors developed a method for registering preoperative coronary CTA with intraoperative biplane x-ray angiography (XA) images via 3D models of the coronary arteries. The models are extracted from the CTA and biplane XA images, and are temporally aligned based on CTA reconstruction phase and XA ECG signals. Rigid spatial alignment is achieved with a robust probabilistic point set registration approach using Gaussian mixture models (GMMs). This approach is extended by including orientation in the Gaussian mixtures and by weighting bifurcation points. The method is evaluated on retrospectively acquired coronary CTA datasets of 23 CTO patients for which biplane XA images are available. Results: The Gaussian mixture model approach achieved a median registration accuracy of 1.7 mm. The extended GMM approach including orientation was not significantly different (P > 0.1) but did improve robustness with regards to the initialization of the 3D models. Conclusions: The authors demonstrated that the GMM approach can effectively be applied to register CTA to biplane XA images for the purpose of improving image guidance in percutaneous coronary interventions.
3D printing of liquid metals as fugitive inks for fabrication of 3D microfluidic channels.
Parekh, Dishit P; Ladd, Collin; Panich, Lazar; Moussa, Khalil; Dickey, Michael D
2016-05-21
This paper demonstrates a simple method to fabricate 3D microchannels and microvasculature at room temperature by direct-writing liquid metal as a sacrificial template. The formation of a surface oxide skin on the low-viscosity liquid metal stabilizes the shape of the printed metal for planar and out-of-plane structures. The printed structures can be embedded in a variety of soft (e.g. elastomeric) and rigid (e.g. thermoset) polymers. Both acid and electrochemical reduction are capable of removing the oxide skin that forms on the metal, which destabilizes the ink so that it withdraws from the encapsulating material due to capillary forces, resulting in nearly full recovery of the fugitive ink at room temperature. Whereas conventional fabrication procedures typically confine microchannels to 2D planes, the geometry of the printed microchannels can be varied from a simple 2D network to complex 3D architectures without using lithography. The method produces robust monolithic structures without the need for any bonding or assembling techniques that often limit the materials of construction of conventional microchannels. Removing select portions of the metal leaves behind 3D metal features that can be used as antennas, interconnects, or electrodes for interfacing with lab-on-a-chip devices. This paper describes the capabilities and limitations of this simple process. PMID:27025537
Practical pseudo-3D registration for large tomographic images
NASA Astrophysics Data System (ADS)
Liu, Xuan; Laperre, Kjell; Sasov, Alexander
2014-09-01
Image registration is a powerful tool in various tomographic applications. Our main focus is on microCT applications in which samples/animals can be scanned multiple times under different conditions or at different time points. For this purpose, a registration tool capable of handling fairly large volumes has been developed, using a novel pseudo-3D method to achieve fast and interactive registration with simultaneous 3D visualization. To reduce computation complexity in 3D registration, we decompose it into several 2D registrations, which are applied to the orthogonal views (transaxial, sagittal and coronal) sequentially and iteratively. After registration in each view, the next view is retrieved with the new transformation matrix for registration. This reduces the computation complexity significantly. For rigid transform, we only need to search for 3 parameters (2 shifts, 1 rotation) in each of the 3 orthogonal views instead of 6 (3 shifts, 3 rotations) for full 3D volume. In addition, the amount of voxels involved is also significantly reduced. For the proposed pseudo-3D method, image-based registration is employed, with Sum of Square Difference (SSD) as the similarity measure. The searching engine is Powell's conjugate direction method. In this paper, only rigid transform is used. However, it can be extended to affine transform by adding scaling and possibly shearing to the transform model. We have noticed that more information can be used in the 2D registration if Maximum Intensity Projections (MIP) or Parallel Projections (PP) is used instead of the orthogonal views. Also, other similarity measures, such as covariance or mutual information, can be easily incorporated. The initial evaluation on microCT data shows very promising results. Two application examples are shown: dental samples before and after treatment and structural changes in materials before and after compression. Evaluation on registration accuracy between pseudo-3D method and true 3D method has
Remote 3D Medical Consultation
NASA Astrophysics Data System (ADS)
Welch, Greg; Sonnenwald, Diane H.; Fuchs, Henry; Cairns, Bruce; Mayer-Patel, Ketan; Yang, Ruigang; State, Andrei; Towles, Herman; Ilie, Adrian; Krishnan, Srinivas; Söderholm, Hanna M.
Two-dimensional (2D) video-based telemedical consultation has been explored widely in the past 15-20 years. Two issues that seem to arise in most relevant case studies are the difficulty associated with obtaining the desired 2D camera views, and poor depth perception. To address these problems we are exploring the use of a small array of cameras to synthesize a spatially continuous range of dynamic three-dimensional (3D) views of a remote environment and events. The 3D views can be sent across wired or wireless networks to remote viewers with fixed displays or mobile devices such as a personal digital assistant (PDA). The viewpoints could be specified manually or automatically via user head or PDA tracking, giving the remote viewer virtual head- or hand-slaved (PDA-based) remote cameras for mono or stereo viewing. We call this idea remote 3D medical consultation (3DMC). In this article we motivate and explain the vision for 3D medical consultation; we describe the relevant computer vision/graphics, display, and networking research; we present a proof-of-concept prototype system; and we present some early experimental results supporting the general hypothesis that 3D remote medical consultation could offer benefits over conventional 2D televideo.
NASA Technical Reports Server (NTRS)
2002-01-01
In 1999, Genex submitted a proposal to Stennis Space Center for a volumetric 3-D display technique that would provide multiple users with a 360-degree perspective to simultaneously view and analyze 3-D data. The futuristic capabilities of the VolumeViewer(R) have offered tremendous benefits to commercial users in the fields of medicine and surgery, air traffic control, pilot training and education, computer-aided design/computer-aided manufacturing, and military/battlefield management. The technology has also helped NASA to better analyze and assess the various data collected by its satellite and spacecraft sensors. Genex capitalized on its success with Stennis by introducing two separate products to the commercial market that incorporate key elements of the 3-D display technology designed under an SBIR contract. The company Rainbow 3D(R) imaging camera is a novel, three-dimensional surface profile measurement system that can obtain a full-frame 3-D image in less than 1 second. The third product is the 360-degree OmniEye(R) video system. Ideal for intrusion detection, surveillance, and situation management, this unique camera system offers a continuous, panoramic view of a scene in real time.
Java 3D Interactive Visualization for Astrophysics
NASA Astrophysics Data System (ADS)
Chae, K.; Edirisinghe, D.; Lingerfelt, E. J.; Guidry, M. W.
2003-05-01
We are developing a series of interactive 3D visualization tools that employ the Java 3D API. We have applied this approach initially to a simple 3-dimensional galaxy collision model (restricted 3-body approximation), with quite satisfactory results. Running either as an applet under Web browser control, or as a Java standalone application, this program permits real-time zooming, panning, and 3-dimensional rotation of the galaxy collision simulation under user mouse and keyboard control. We shall also discuss applications of this technology to 3-dimensional visualization for other problems of astrophysical interest such as neutron star mergers and the time evolution of element/energy production networks in X-ray bursts. *Managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725.
Recognition methods for 3D textured surfaces
NASA Astrophysics Data System (ADS)
Cula, Oana G.; Dana, Kristin J.
2001-06-01
Texture as a surface representation is the subject of a wide body of computer vision and computer graphics literature. While texture is always associated with a form of repetition in the image, the repeating quantity may vary. The texture may be a color or albedo variation as in a checkerboard, a paisley print or zebra stripes. Very often in real-world scenes, texture is instead due to a surface height variation, e.g. pebbles, gravel, foliage and any rough surface. Such surfaces are referred to here as 3D textured surfaces. Standard texture recognition algorithms are not appropriate for 3D textured surfaces because the appearance of these surfaces changes in a complex manner with viewing direction and illumination direction. Recent methods have been developed for recognition of 3D textured surfaces using a database of surfaces observed under varied imaging parameters. One of these methods is based on 3D textons obtained using K-means clustering of multiscale feature vectors. Another method uses eigen-analysis originally developed for appearance-based object recognition. In this work we develop a hybrid approach that employs both feature grouping and dimensionality reduction. The method is tested using the Columbia-Utrecht texture database and provides excellent recognition rates. The method is compared with existing recognition methods for 3D textured surfaces. A direct comparison is facilitated by empirical recognition rates from the same texture data set. The current method has key advantages over existing methods including requiring less prior information on both the training and novel images.
Au, Anthony K; Huynh, Wilson; Horowitz, Lisa F; Folch, Albert
2016-03-14
The advent of soft lithography allowed for an unprecedented expansion in the field of microfluidics. However, the vast majority of PDMS microfluidic devices are still made with extensive manual labor, are tethered to bulky control systems, and have cumbersome user interfaces, which all render commercialization difficult. On the other hand, 3D printing has begun to embrace the range of sizes and materials that appeal to the developers of microfluidic devices. Prior to fabrication, a design is digitally built as a detailed 3D CAD file. The design can be assembled in modules by remotely collaborating teams, and its mechanical and fluidic behavior can be simulated using finite-element modeling. As structures are created by adding materials without the need for etching or dissolution, processing is environmentally friendly and economically efficient. We predict that in the next few years, 3D printing will replace most PDMS and plastic molding techniques in academia. PMID:26854878
3D X-ray tomography to evaluate volumetric objects
NASA Astrophysics Data System (ADS)
de Oliveira, Luís. F.; Lopes, Ricardo T.; de Jesus, Edgar F. O.; Braz, Delson
2003-06-01
The 3D-CT and stereological techniques are used concomitantly. The quantitative stereology yields measurements that reflects areas, volumes, lengths, rates and frequencies of the test body. Two others quantification, connectivity and anisotropy, can be used as well to complete the analysis. In this paper, it is presented the application of 3D-CT and the stereological quantification to analyze a special kind of test body: ceramic filters which have an internal structure similar to cancellous bone. The stereology is adapted to work with the 3D nature of the tomographic data. It is presented too the results of connectivity and anisotropy.
Imaging knee position using MRI, RSA/CT and 3D digitisation.
McPherson, A; Kärrholm, J; Pinskerova, V; Sosna, A; Martelli, S
2005-02-01
The purpose of this study was to compare 3 methods of imaging knee position. Three fresh cadaver knees were imaged at 6 flexion angles between 0 degrees and 120 degrees by MRI, a combination of RSA and CT and 3D digitisation (in two knees). Virtual models of all 42 positions were created using suitable computer software. Each virtual model was aligned to a newly defined anatomically based Cartesian coordinate system. The angular rotations around the 3 coordinate system axes were calculated directly from the aligned virtual models using rigid body kinematics and found to be equally accurate for the 3 methods. The 3 rotations in each knee could be depicted using anatomy-based diagrams for all 3 methods. We conclude that the 3 methods of data acquisition are equally and adequately accurate in vitro. MRI may be the most useful in vivo. PMID:15598452
3D Computations and Experiments
Couch, R; Faux, D; Goto, D; Nikkel, D
2004-04-05
This project consists of two activities. Task A, Simulations and Measurements, combines all the material model development and associated numerical work with the materials-oriented experimental activities. The goal of this effort is to provide an improved understanding of dynamic material properties and to provide accurate numerical representations of those properties for use in analysis codes. Task B, ALE3D Development, involves general development activities in the ALE3D code with the focus of improving simulation capabilities for problems of mutual interest to DoD and DOE. Emphasis is on problems involving multi-phase flow, blast loading of structures and system safety/vulnerability studies.
3D Computations and Experiments
Couch, R; Faux, D; Goto, D; Nikkel, D
2003-05-12
This project is in its first full year after the combining of two previously funded projects: ''3D Code Development'' and ''Dynamic Material Properties''. The motivation behind this move was to emphasize and strengthen the ties between the experimental work and the computational model development in the materials area. The next year's activities will indicate the merging of the two efforts. The current activity is structured in two tasks. Task A, ''Simulations and Measurements'', combines all the material model development and associated numerical work with the materials-oriented experimental activities. Task B, ''ALE3D Development'', is a continuation of the non-materials related activities from the previous project.
Rigid particulate matter sensor
Hall, Matthew
2011-02-22
A sensor to detect particulate matter. The sensor includes a first rigid tube, a second rigid tube, a detection surface electrode, and a bias surface electrode. The second rigid tube is mounted substantially parallel to the first rigid tube. The detection surface electrode is disposed on an outer surface of the first rigid tube. The detection surface electrode is disposed to face the second rigid tube. The bias surface electrode is disposed on an outer surface of the second rigid tube. The bias surface electrode is disposed to face the detection surface electrode on the first rigid tube. An air gap exists between the detection surface electrode and the bias surface electrode to allow particulate matter within an exhaust stream to flow between the detection and bias surface electrodes.
Pneumatically erected rigid habitat
NASA Technical Reports Server (NTRS)
Salles, Bradley
1992-01-01
The pneumatically erected rigid habitat concept consists of a structure based on an overexpanded metal bellows. The basic concept incorporates the advantages of both inflatable and rigid structures. The design and erection detail are presented with viewgraphs.
FR3D: finding local and composite recurrent structural motifs in RNA 3D structures
Sarver, Michael; Stombaugh, Jesse; Mokdad, Ali; Leontis, Neocles B.
2010-01-01
New methods are described for finding recurrent three-dimensional (3D) motifs in RNA atomic-resolution structures. Recurrent RNA 3D motifs are sets of RNA nucleotides with similar spatial arrangements. They can be local or composite. Local motifs comprise nucleotides that occur in the same hairpin or internal loop. Composite motifs comprise nucleotides belonging to three or more different RNA strand segments or molecules. We use a base-centered approach to construct efficient, yet exhaustive search procedures using geometric, symbolic, or mixed representations of RNA structure that we implement in a suite of MATLAB programs, “Find RNA 3D” (FR3D). The first modules of FR3D preprocess structure files to classify base-pair and -stacking interactions. Each base is represented geometrically by the position of its glycosidic nitrogen in 3D space and by the rotation matrix that describes its orientation with respect to a common frame. Base-pairing and base-stacking interactions are calculated from the base geometries and are represented symbolically according to the Leontis/Westhof basepairing classification, extended to include base-stacking. These data are stored and used to organize motif searches. For geometric searches, the user supplies the 3D structure of a query motif which FR3D uses to find and score geometrically similar candidate motifs, without regard to the sequential position of their nucleotides in the RNA chain or the identity of their bases. To score and rank candidate motifs, FR3D calculates a geometric discrepancy by rigidly rotating candidates to align optimally with the query motif and then comparing the relative orientations of the corresponding bases in the query and candidate motifs. Given the growing size of the RNA structure database, it is impossible to explicitly compute the discrepancy for all conceivable candidate motifs, even for motifs with less than ten nucleotides. The screening algorithm that we describe finds all candidate motifs
Lift and thrust generation by a butterfly-like 3D flapping wing model
NASA Astrophysics Data System (ADS)
Suzuki, Kosuke; Inamuro, Takaji
2013-11-01
The flapping flight of tiny insects such as a butterfly is of fundamental interest not only in biology itself but also in its practical use for the development of micro air vehicles. It is known that a butterfly flaps downward for generating lift force and backward for generating thrust force. In this study, we consider a simple butterfly-like 3D flapping wing model whose body is a thin rod, wings are rigid and rectangular, and wing motion is simplified. We investigate the lift and thrust generation by the butterfly-like flapping wing model by using the immersed boundary-lattice Boltzmann method. Firstly, we compute the lift and thrust forces when the body of the model is fixed for Reynolds numbers in the range of 50 - 1000. In addition, we evaluate the supportable mass for each Reynolds number by using the computed lift force. Secondly, we simulate the free flight where the body can move translationally but cannot rotate. As results, we find that the evaluated supportable mass can be supported even in the free flight, and the wing model with the mass and the Reynolds number of a fruit fly can go upward against the gravity. Finally, we simulate the effect of the rotation of the body. As results, we find that the body has a large pitching motion and consequently gets off-balance.
Takayama, Yuki; Schwieters, Charles D.; Grishaev, Alexander; Ghirlando, Rodolfo; Clore, G. Marius
2012-10-23
The first component of the bacterial phosphotransferase system, enzyme I (EI), is a multidomain 128 kDa dimer that undergoes large rigid-body conformational transitions during the course of its catalytic cycle. Here we investigate the solution structure of a non-phosphorylatable active-site mutant in which the active-site histidine is substituted by glutamine. We show that perturbations in the relative orientations and positions of the domains and subdomains can be rapidly and reliably determined by conjoined rigid-body/torsion angle/Cartesian simulated annealing calculations driven by orientational restraints from residual dipolar couplings and shape and translation information afforded by small- and wide-angle X-ray scattering. Although histidine and glutamine are isosteric, the conformational space available to a Gln side chain is larger than that for the imidazole ring of His. An additional hydrogen bond between the side chain of Gln189 located on the EIN{sup {alpha}/{beta}} subdomain and an aspartate (Asp129) on the EIN{sup {alpha}} subdomain results in a small ({approx}9{sup o}) reorientation of the EIN{sup {alpha}} and EIN{sup {alpha}/{beta}} subdomains that is in turn propagated to a larger reorientation ({approx}26{sup o}) of the EIN domain relative to the EIC dimerization domain, illustrating the positional sensitivity of the EIN domain and its constituent subdomains to small structural perturbations.
A 3D undulatory locomotion system inspired by nematode C. elegans.
Deng, Xin; Xu, Jian-Xin
2014-01-01
This paper provides an undulatory locomotion model inspired by C. elegans, whose nervous system and muscular structure are well studied. C. elegans is divided into 11 muscle segments according to its anatomical structure, and represented as a multi-joint rigid link model in this work. In each muscle segment, there are four pieces of muscles located in four quadrants. The muscles change their lengths according to the outputs of nervous system. In this work, the dynamic neural networks (DNN) are adopted to represent the nervous system. The DNN are divided into the head DNN and the body DNN. The head DNN produces the sinusoid waves to generate the forward and backward undulatory movements. The body DNN with 11 segments is responsible for passing the sinusoid wave and creating the phase lag. The 3D locomotion of this system are implemented by using the DNN to control the muscle lengths, and then using the muscle lengths to control the angles between two consecutive links on both horizontal and vertical planes. The test results show good performances of this model in both forward and backward locomotion in 3D, which could serve as a prototype of the micro-robot for clinical use. PMID:24211936
Constructing 3D microtubule networks using holographic optical trapping
Bergman, J.; Osunbayo, O.; Vershinin, M.
2015-01-01
Developing abilities to assemble nanoscale structures is a major scientific and engineering challenge. We report a technique which allows precise positioning and manipulation of individual rigid filaments, enabling construction of custom-designed 3D filament networks. This approach uses holographic optical trapping (HOT) for nano-positioning and microtubules (MTs) as network building blocks. MTs are desirable engineering components due to their high aspect ratio, rigidity, and their ability to serve as substrate for directed nano-transport, reflecting their roles in the eukaryotic cytoskeleton. The 3D architecture of MT cytoskeleton is a significant component of its function, however experimental tools to study the roles of this geometric complexity in a controlled environment have been lacking. We demonstrate the broad capabilities of our system by building a self-supporting 3D MT-based nanostructure and by conducting a MT-based transport experiment on a dynamically adjustable 3D MT intersection. Our methodology not only will advance studies of cytoskeletal networks (and associated processes such as MT-based transport) but will also likely find use in engineering nanostructures and devices. PMID:26657337
2007-07-20
This software distribution contains MATLAB and C++ code to enable identity verification using 3D images that may or may not contain a texture component. The code is organized to support system performance testing and system capability demonstration through the proper configuration of the available user interface. Using specific algorithm parameters the face recognition system has been demonstrated to achieve a 96.6% verification rate (Pd) at 0.001 false alarm rate. The system computes robust facial featuresmore » of a 3D normalized face using Principal Component Analysis (PCA) and Fisher Linear Discriminant Analysis (FLDA). A 3D normalized face is obtained by alighning each face, represented by a set of XYZ coordinated, to a scaled reference face using the Iterative Closest Point (ICP) algorithm. The scaled reference face is then deformed to the input face using an iterative framework with parameters that control the deformed surface regulation an rate of deformation. A variety of options are available to control the information that is encoded by the PCA. Such options include the XYZ coordinates, the difference of each XYZ coordinates from the reference, the Z coordinate, the intensity/texture values, etc. In addition to PCA/FLDA feature projection this software supports feature matching to obtain similarity matrices for performance analysis. In addition, this software supports visualization of the STL, MRD, 2D normalized, and PCA synthetic representations in a 3D environment.« less
ERIC Educational Resources Information Center
Manos, Harry
2016-01-01
Visual aids are important to student learning, and they help make the teacher's job easier. Keeping with the "TPT" theme of "The Art, Craft, and Science of Physics Teaching," the purpose of this article is to show how teachers, lacking equipment and funds, can construct a durable 3-D model reference frame and a model gravity…
Russ, Trina; Koch, Mark; Koudelka, Melissa; Peters, Ralph; Little, Charles; Boehnen, Chris; Peters, Tanya
2007-07-20
This software distribution contains MATLAB and C++ code to enable identity verification using 3D images that may or may not contain a texture component. The code is organized to support system performance testing and system capability demonstration through the proper configuration of the available user interface. Using specific algorithm parameters the face recognition system has been demonstrated to achieve a 96.6% verification rate (Pd) at 0.001 false alarm rate. The system computes robust facial features of a 3D normalized face using Principal Component Analysis (PCA) and Fisher Linear Discriminant Analysis (FLDA). A 3D normalized face is obtained by alighning each face, represented by a set of XYZ coordinated, to a scaled reference face using the Iterative Closest Point (ICP) algorithm. The scaled reference face is then deformed to the input face using an iterative framework with parameters that control the deformed surface regulation an rate of deformation. A variety of options are available to control the information that is encoded by the PCA. Such options include the XYZ coordinates, the difference of each XYZ coordinates from the reference, the Z coordinate, the intensity/texture values, etc. In addition to PCA/FLDA feature projection this software supports feature matching to obtain similarity matrices for performance analysis. In addition, this software supports visualization of the STL, MRD, 2D normalized, and PCA synthetic representations in a 3D environment.
3D Printing: Exploring Capabilities
ERIC Educational Resources Information Center
Samuels, Kyle; Flowers, Jim
2015-01-01
As 3D printers become more affordable, schools are using them in increasing numbers. They fit well with the emphasis on product design in technology and engineering education, allowing students to create high-fidelity physical models to see and test different iterations in their product designs. They may also help students to "think in three…
3D affine registration using teaching-learning based optimization
NASA Astrophysics Data System (ADS)
Jani, Ashish; Savsani, Vimal; Pandya, Abhijit
2013-09-01
3D image registration is an emerging research field in the study of computer vision. In this paper, two effective global optimization methods are considered for the 3D registration of point clouds. Experiments were conducted by applying each algorithm and their performance was evaluated with respect to rigidity, similarity and affine transformations. Comparison of algorithms and its effectiveness was tested for the average performance to find the global solution for minimizing the error in the terms of distance between the model cloud and the data cloud. The parameters for the transformation matrix were considered as the design variables. Further comparisons of the considered methods were done for the computational effort, computational time and the convergence of the algorithm. The results reveal that the use of TLBO was outstanding for image processing application involving 3D registration. [Figure not available: see fulltext.
TACO3D. 3-D Finite Element Heat Transfer Code
Mason, W.E.
1992-03-04
TACO3D is a three-dimensional, finite-element program for heat transfer analysis. An extension of the two-dimensional TACO program, it can perform linear and nonlinear analyses and can be used to solve either transient or steady-state problems. The program accepts time-dependent or temperature-dependent material properties, and materials may be isotropic or orthotropic. A variety of time-dependent and temperature-dependent boundary conditions and loadings are available including temperature, flux, convection, and radiation boundary conditions and internal heat generation. Additional specialized features treat enclosure radiation, bulk nodes, and master/slave internal surface conditions (e.g., contact resistance). Data input via a free-field format is provided. A user subprogram feature allows for any type of functional representation of any independent variable. A profile (bandwidth) minimization option is available. The code is limited to implicit time integration for transient solutions. TACO3D has no general mesh generation capability. Rows of evenly-spaced nodes and rows of sequential elements may be generated, but the program relies on separate mesh generators for complex zoning. TACO3D does not have the ability to calculate view factors internally. Graphical representation of data in the form of time history and spatial plots is provided through links to the POSTACO and GRAPE postprocessor codes.
2012-01-04
GEN3D is a three-dimensional mesh generation program. The three-dimensional mesh is generated by mapping a two-dimensional mesh into threedimensions according to one of four types of transformations: translating, rotating, mapping onto a spherical surface, and mapping onto a cylindrical surface. The generated three-dimensional mesh can then be reoriented by offsetting, reflecting about an axis, and revolving about an axis. GEN3D can be used to mesh geometries that are axisymmetric or planar, but, due to three-dimensionalmore » loading or boundary conditions, require a three-dimensional finite element mesh and analysis. More importantly, it can be used to mesh complex three-dimensional geometries composed of several sections when the sections can be defined in terms of transformations of two dimensional geometries. The code GJOIN is then used to join the separate sections into a single body. GEN3D reads and writes twodimensional and threedimensional mesh databases in the GENESIS database format; therefore, it is compatible with the preprocessing, postprocessing, and analysis codes used by the Engineering Analysis Department at Sandia National Laboratories, Albuquerque, NM.« less
Optoplasmonics: hybridization in 3D
NASA Astrophysics Data System (ADS)
Rosa, L.; Gervinskas, G.; Žukauskas, A.; Malinauskas, M.; Brasselet, E.; Juodkazis, S.
2013-12-01
Femtosecond laser fabrication has been used to make hybrid refractive and di ractive micro-optical elements in photo-polymer SZ2080. For applications in micro- uidics, axicon lenses were fabricated (both single and arrays), for generation of light intensity patterns extending through the entire depth of a typically tens-of-micrometers deep channel. Further hybridisation of an axicon with a plasmonic slot is fabricated and demonstrated nu- merically. Spiralling chiral grooves were inscribed into a 100-nm-thick gold coating sputtered over polymerized micro-axicon lenses, using a focused ion beam. This demonstrates possibility of hybridisation between optical and plasmonic 3D micro-optical elements. Numerical modelling of optical performance by 3D-FDTD method is presented.
3-D Relativistic MHD Simulations
NASA Astrophysics Data System (ADS)
Nishikawa, K.-I.; Frank, J.; Koide, S.; Sakai, J.-I.; Christodoulou, D. M.; Sol, H.; Mutel, R. L.
1998-12-01
We present 3-D numerical simulations of moderately hot, supersonic jets propagating initially along or obliquely to the field lines of a denser magnetized background medium with Lorentz factors of W = 4.56 and evolving in a four-dimensional spacetime. The new results are understood as follows: Relativistic simulations have consistently shown that these jets are effectively heavy and so they do not suffer substantial momentum losses and are not decelerated as efficiently as their nonrelativistic counterparts. In addition, the ambient magnetic field, however strong, can be pushed aside with relative ease by the beam, provided that the degrees of freedom associated with all three spatial dimensions are followed self-consistently in the simulations. This effect is analogous to pushing Japanese ``noren'' or vertical Venetian blinds out of the way while the slats are allowed to bend in 3-D space rather than as a 2-D slab structure.
Forensic 3D Scene Reconstruction
LITTLE,CHARLES Q.; PETERS,RALPH R.; RIGDON,J. BRIAN; SMALL,DANIEL E.
1999-10-12
Traditionally law enforcement agencies have relied on basic measurement and imaging tools, such as tape measures and cameras, in recording a crime scene. A disadvantage of these methods is that they are slow and cumbersome. The development of a portable system that can rapidly record a crime scene with current camera imaging, 3D geometric surface maps, and contribute quantitative measurements such as accurate relative positioning of crime scene objects, would be an asset to law enforcement agents in collecting and recording significant forensic data. The purpose of this project is to develop a feasible prototype of a fast, accurate, 3D measurement and imaging system that would support law enforcement agents to quickly document and accurately record a crime scene.
Forensic 3D scene reconstruction
NASA Astrophysics Data System (ADS)
Little, Charles Q.; Small, Daniel E.; Peters, Ralph R.; Rigdon, J. B.
2000-05-01
Traditionally law enforcement agencies have relied on basic measurement and imaging tools, such as tape measures and cameras, in recording a crime scene. A disadvantage of these methods is that they are slow and cumbersome. The development of a portable system that can rapidly record a crime scene with current camera imaging, 3D geometric surface maps, and contribute quantitative measurements such as accurate relative positioning of crime scene objects, would be an asset to law enforcement agents in collecting and recording significant forensic data. The purpose of this project is to develop a fieldable prototype of a fast, accurate, 3D measurement and imaging system that would support law enforcement agents to quickly document and accurately record a crime scene.
NASA Astrophysics Data System (ADS)
Song, Yuanhe; Zhao, Hong; Chen, Wenyi; Tan, Yushan
1997-12-01
A new method of 360 degree turning 3D shape measurement in which light sectioning and phase shifting techniques are both used is presented in this paper. A sine light field is applied in the projected light stripe, meanwhile phase shifting technique is used to calculate phases of the light slit. Thereafter wrapped phase distribution of the slit is formed and the unwrapping process is made by means of the height information based on the light sectioning method. Therefore phase measuring results with better precision can be obtained. At last the target 3D shape data can be produced according to geometric relationships between phases and the object heights. The principles of this method are discussed in detail and experimental results are shown in this paper.
3D Printable Graphene Composite.
Wei, Xiaojun; Li, Dong; Jiang, Wei; Gu, Zheming; Wang, Xiaojuan; Zhang, Zengxing; Sun, Zhengzong
2015-01-01
In human being's history, both the Iron Age and Silicon Age thrived after a matured massive processing technology was developed. Graphene is the most recent superior material which could potentially initialize another new material Age. However, while being exploited to its full extent, conventional processing methods fail to provide a link to today's personalization tide. New technology should be ushered in. Three-dimensional (3D) printing fills the missing linkage between graphene materials and the digital mainstream. Their alliance could generate additional stream to push the graphene revolution into a new phase. Here we demonstrate for the first time, a graphene composite, with a graphene loading up to 5.6 wt%, can be 3D printable into computer-designed models. The composite's linear thermal coefficient is below 75 ppm·°C(-1) from room temperature to its glass transition temperature (Tg), which is crucial to build minute thermal stress during the printing process. PMID:26153673
NASA Technical Reports Server (NTRS)
Pizarro, Yaritzmar Rosario; Schuler, Jason M.; Lippitt, Thomas C.
2013-01-01
Dexterous robotic hands are changing the way robots and humans interact and use common tools. Unfortunately, the complexity of the joints and actuations drive up the manufacturing cost. Some cutting edge and commercially available rapid prototyping machines now have the ability to print multiple materials and even combine these materials in the same job. A 3D model of a robotic hand was designed using Creo Parametric 2.0. Combining "hard" and "soft" materials, the model was printed on the Object Connex350 3D printer with the purpose of resembling as much as possible the human appearance and mobility of a real hand while needing no assembly. After printing the prototype, strings where installed as actuators to test mobility. Based on printing materials, the manufacturing cost of the hand was $167, significantly lower than other robotic hands without the actuators since they have more complex assembly processes.