Science.gov

Sample records for 3d scalar field

  1. Texture splats for 3D vector and scalar field visualization

    SciTech Connect

    Crawfis, R.A.; Max, N.

    1993-04-06

    Volume Visualization is becoming an important tool for understanding large 3D datasets. A popular technique for volume rendering is known as splatting. With new hardware architectures offering substantial improvements in the performance of rendering texture mapped objects, we present textured splats. An ideal reconstruction function for 3D signals is developed which can be used as a texture map for a splat. Extensions to the basic splatting technique are then developed to additionally represent vector fields.

  2. New techniques in 3D scalar and vector field visualization

    SciTech Connect

    Max, N.; Crawfis, R.; Becker, B.

    1993-05-05

    At Lawrence Livermore National Laboratory (LLNL) we have recently developed several techniques for volume visualization of scalar and vector fields, all of which use back-to-front compositing. The first renders volume density clouds by compositing polyhedral volume cells or their faces. The second is a ``splatting`` scheme which composites textures used to reconstruct the scalar or vector fields. One version calculates the necessary texture values in software, and another takes advantage of hardware texture mapping. The next technique renders contour surface polygons using semi-transparent textures, which adjust appropriately when the surfaces deform in a flow, or change topology. The final one renders the ``flow volume`` of smoke or dye tracer swept out by a fluid flowing through a small generating polygon. All of these techniques are applied to a climate model data set, to visualize cloud density and wind velocity.

  3. Fast and Memory-Efficient Topological Denoising of 2D and 3D Scalar Fields.

    PubMed

    Günther, David; Jacobson, Alec; Reininghaus, Jan; Seidel, Hans-Peter; Sorkine-Hornung, Olga; Weinkauf, Tino

    2014-12-01

    Data acquisition, numerical inaccuracies, and sampling often introduce noise in measurements and simulations. Removing this noise is often necessary for efficient analysis and visualization of this data, yet many denoising techniques change the minima and maxima of a scalar field. For example, the extrema can appear or disappear, spatially move, and change their value. This can lead to wrong interpretations of the data, e.g., when the maximum temperature over an area is falsely reported being a few degrees cooler because the denoising method is unaware of these features. Recently, a topological denoising technique based on a global energy optimization was proposed, which allows the topology-controlled denoising of 2D scalar fields. While this method preserves the minima and maxima, it is constrained by the size of the data. We extend this work to large 2D data and medium-sized 3D data by introducing a novel domain decomposition approach. It allows processing small patches of the domain independently while still avoiding the introduction of new critical points. Furthermore, we propose an iterative refinement of the solution, which decreases the optimization energy compared to the previous approach and therefore gives smoother results that are closer to the input. We illustrate our technique on synthetic and real-world 2D and 3D data sets that highlight potential applications. PMID:26356972

  4. Combined magnetic vector-scalar potential finite element computation of 3D magnetic field and performance of modified Lundell alternators in Space Station applications. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Wang, Ren H.

    1991-01-01

    A method of combined use of magnetic vector potential (MVP) based finite element (FE) formulations and magnetic scalar potential (MSP) based FE formulations for computation of three-dimensional (3D) magnetostatic fields is developed. This combined MVP-MSP 3D-FE method leads to considerable reduction by nearly a factor of 3 in the number of unknowns in comparison to the number of unknowns which must be computed in global MVP based FE solutions. This method allows one to incorporate portions of iron cores sandwiched in between coils (conductors) in current-carrying regions. Thus, it greatly simplifies the geometries of current carrying regions (in comparison with the exclusive MSP based methods) in electric machinery applications. A unique feature of this approach is that the global MSP solution is single valued in nature, that is, no branch cut is needed. This is again a superiority over the exclusive MSP based methods. A Newton-Raphson procedure with a concept of an adaptive relaxation factor was developed and successfully used in solving the 3D-FE problem with magnetic material anisotropy and nonlinearity. Accordingly, this combined MVP-MSP 3D-FE method is most suited for solution of large scale global type magnetic field computations in rotating electric machinery with very complex magnetic circuit geometries, as well as nonlinear and anisotropic material properties.

  5. 3D field harmonics

    SciTech Connect

    Caspi, S.; Helm, M.; Laslett, L.J.

    1991-03-30

    We have developed an harmonic representation for the three dimensional field components within the windings of accelerator magnets. The form by which the field is presented is suitable for interfacing with other codes that make use of the 3D field components (particle tracking and stability). The field components can be calculated with high precision and reduced cup time at any location (r,{theta},z) inside the magnet bore. The same conductor geometry which is used to simulate line currents is also used in CAD with modifications more readily available. It is our hope that the format used here for magnetic fields can be used not only as a means of delivering fields but also as a way by which beam dynamics can suggest correction to the conductor geometry. 5 refs., 70 figs.

  6. Quaternion scalar field

    SciTech Connect

    De Leo, S. ); Rotelli, P. )

    1992-01-15

    We discuss the extension of a version of {ital quaternion} quantum mechanics to field theory and in particular to the simplest example, the free scalar field. A previous difficulty with the conservation of four-momentum for the anomalous'' bosonic particles is resolved.

  7. Visualization of 3-D tensor fields

    NASA Technical Reports Server (NTRS)

    Hesselink, L.

    1996-01-01

    Second-order tensor fields have applications in many different areas of physics, such as general relativity and fluid mechanics. The wealth of multivariate information in tensor fields makes them more complex and abstract than scalar and vector fields. Visualization is a good technique for scientists to gain new insights from them. Visualizing a 3-D continuous tensor field is equivalent to simultaneously visualizing its three eigenvector fields. In the past, research has been conducted in the area of two-dimensional tensor fields. It was shown that degenerate points, defined as points where eigenvalues are equal to each other, are the basic singularities underlying the topology of tensor fields. Moreover, it was shown that eigenvectors never cross each other except at degenerate points. Since we live in a three-dimensional world, it is important for us to understand the underlying physics of this world. In this report, we describe a new method for locating degenerate points along with the conditions for classifying them in three-dimensional space. Finally, we discuss some topological features of three-dimensional tensor fields, and interpret topological patterns in terms of physical properties.

  8. Spontaneous Scalarization of Massive Fields

    NASA Astrophysics Data System (ADS)

    Ramazanoglu, Fethi M.; Pretorius, Frans

    2014-03-01

    Spontaneous scalarization is a phenomenon in certain scalar-tensor theories where large deviations from general relativity can be observed inside compact stars, while the known observational bounds can also be satisfied far away. This scenario has been investigated for massless scalars and binary neutron stars using numerical relativity, but the parameter space for such theories have been severely restricted by recent observations. Here, we present our results on the spontaneous scalarization of massive scalars. We simulate cases with different equations of state and scalar field parameters, and comment on the detectability of the scalar field effects from the gravitational wave signal.

  9. Conformal scalar field wormholes

    NASA Technical Reports Server (NTRS)

    Halliwell, Jonathan J.; Laflamme, Raymond

    1989-01-01

    The Euclidian Einstein equations with a cosmological constant and a conformally coupled scalar field are solved, taking the metric to be of the Robertson-Walker type. In the case Lambda = 0, solutions are found which represent a wormhole connecting two asymptotically flat Euclidian regions. In the case Lambda greater than 0, the solutions represent tunneling from a small Tolman-like universe to a large Robertson-Walker universe.

  10. Imploding scalar fields

    SciTech Connect

    Roberts, M.D.

    1996-09-01

    Static spherically symmetric uncoupled scalar space{endash}times have no event horizon and a divergent Kretschmann singularity at the origin of the coordinates. The singularity is always present so that nonstatic solutions have been sought to see if the singularities can develop from an initially singular free space{endash}time. In flat space{endash}time the Klein{endash}Gordon equation {D`Alembertian}{var_phi}=0 has the nonstatic spherically symmetric solution {var_phi}={sigma}({ital v})/{ital r}, where {sigma}({ital v}) is a once differentiable function of the null coordinate {ital v}. In particular, the function {sigma}({ital v}) can be taken to be initially zero and then grow, thus producing a singularity in the scalar field. A similar situation occurs when the scalar field is coupled to gravity via Einstein{close_quote}s equations; the solution also develops a divergent Kretschmann invariant singularity, but it has no overall energy. To overcome this, Bekenstein{close_quote}s theorems are applied to give two corresponding conformally coupled solutions. One of these has positive ADM mass and has the following properties: (i) it develops a Kretschmann invariant singularity, (ii) it has no event horizon, (iii) it has a well-defined source, (iv) it has well-defined junction condition to Minkowski space{endash}time, and (v) it is asymptotically flat with positive overall energy. This paper presents this solution and several other nonstatic scalar solutions. The properties of these solutions which are studied are limited to the following three: (i) whether the solution can be joined to Minkowski space{endash}time, (ii) whether the solution is asymptotically flat, (iii) and, if so, what the solutions{close_quote} Bondi and ADM masses are. {copyright} {ital 1996 American Institute of Physics.}

  11. Palacios field: A 3-D case history

    SciTech Connect

    McWhorter, R.; Torguson, B.

    1994-12-31

    In late 1992, Mitchell Energy Corporation acquired a 7.75 sq mi (20.0 km{sup 2}) 3-D seismic survey over Palacios field. Matagorda County, Texas. The company shot the survey to help evaluate the field for further development by delineating the fault pattern of the producing Middle Oligocene Frio interval. They compare the mapping of the field before and after the 3-D survey. This comparison shows that the 3-D volume yields superior fault imaging and interpretability compared to the dense 2-D data set. The problems with the 2-D data set are improper imaging of small and oblique faults and insufficient coverage over a complex fault pattern. Whereas the 2-D data set validated a simple fault model, the 3-D volume revealed a more complex history of faulting that includes three different fault systems. This discovery enabled them to reconstruct the depositional and structural history of Palacios field.

  12. A 3D Vector/Scalar Visualization and Particle Tracking Package

    1999-08-19

    BOILERMAKER is an interactive visualization system consisting of three components: a visualization component, a particle tracking component, and a communication layer. The software, to date, has been used primarily in the visualization of vector and scalar fields associated with computational fluid dynamics (CFD) models of flue gas flows in industrial boilers and incinerators. Users can interactively request and toggle static vector fields, dynamic streamlines, and flowing vector fields. In addition, the user can interactively placemore » injector nozzles on boiler walls and visualize massed, evaporating sprays emanating from them. Some characteristics of the spray can be adjusted from within the visualization environment including spray shape and particle size. Also included with this release is software that supports 3D menu capabilities, scrollbars, communication and navigation.« less

  13. A 3D Vector/Scalar Visualization and Particle Tracking Package

    SciTech Connect

    Freitag, Lori; Disz, Terry; Papka, Mike; Heath, Daniel; Diachin, Darin; Herzog, Jim; Ryan, and Bob

    1999-08-19

    BOILERMAKER is an interactive visualization system consisting of three components: a visualization component, a particle tracking component, and a communication layer. The software, to date, has been used primarily in the visualization of vector and scalar fields associated with computational fluid dynamics (CFD) models of flue gas flows in industrial boilers and incinerators. Users can interactively request and toggle static vector fields, dynamic streamlines, and flowing vector fields. In addition, the user can interactively place injector nozzles on boiler walls and visualize massed, evaporating sprays emanating from them. Some characteristics of the spray can be adjusted from within the visualization environment including spray shape and particle size. Also included with this release is software that supports 3D menu capabilities, scrollbars, communication and navigation.

  14. Ultrarelativistic boost with scalar field

    NASA Astrophysics Data System (ADS)

    Svítek, O.; Tahamtan, T.

    2016-02-01

    We present the ultrarelativistic boost of the general global monopole solution which is parametrized by mass and deficit solid angle. The problem is addressed from two different perspectives. In the first one the primary object for performing the boost is the metric tensor while in the second one the energy momentum tensor is used. Since the solution is sourced by a triplet of scalar fields that effectively vanish in the boosting limit we investigate the behavior of a scalar field in a simpler setup. Namely, we perform the boosting study of the spherically symmetric solution with a free scalar field given by Janis, Newman and Winicour. The scalar field is again vanishing in the limit pointing to a broader pattern of scalar field behaviour during an ultrarelativistic boost in highly symmetric situations.

  15. Structured light field 3D imaging.

    PubMed

    Cai, Zewei; Liu, Xiaoli; Peng, Xiang; Yin, Yongkai; Li, Ameng; Wu, Jiachen; Gao, Bruce Z

    2016-09-01

    In this paper, we propose a method by means of light field imaging under structured illumination to deal with high dynamic range 3D imaging. Fringe patterns are projected onto a scene and modulated by the scene depth then a structured light field is detected using light field recording devices. The structured light field contains information about ray direction and phase-encoded depth, via which the scene depth can be estimated from different directions. The multidirectional depth estimation can achieve high dynamic 3D imaging effectively. We analyzed and derived the phase-depth mapping in the structured light field and then proposed a flexible ray-based calibration approach to determine the independent mapping coefficients for each ray. Experimental results demonstrated the validity of the proposed method to perform high-quality 3D imaging for highly and lowly reflective surfaces. PMID:27607639

  16. Spontaneous scalarization with massive fields

    NASA Astrophysics Data System (ADS)

    Ramazanoǧlu, Fethi M.; Pretorius, Frans

    2016-03-01

    We study the effect of a mass term in the spontaneous scalarization of neutron stars, for a wide range of scalar field parameters and neutron star equations of state. Even though massless scalars have been the focus of interest in spontaneous scalarization so far, recent observations of binary systems rule out most of their interesting parameter space. We point out that adding a mass term to the scalar field potential is a natural extension to the model that avoids these observational bounds if the Compton wavelength of the scalar is small compared to the binary separation. Our model is formally similar to the asymmetron scenario recently introduced in application to cosmology, though here we are interested in consequences for neutron stars and thus consider a mass term that does not modify the geometry on cosmological scales. We review the allowed values for the mass and scalarization parameters in the theory given current binary system observations and black hole spin measurements. We show that within the allowed ranges, spontaneous scalarization can have nonperturbative, strong effects that may lead to observable signatures in binary neutron star or black hole-neutron star mergers, or even in isolated neutron stars.

  17. Symmetry inheritance of scalar fields

    NASA Astrophysics Data System (ADS)

    Smolić, Ivica

    2015-07-01

    Matter fields do not necessarily have to share the symmetries with the spacetime they live in. When this happens, we speak of the symmetry inheritance of fields. In this paper we classify the obstructions of symmetry inheritance by the scalar fields, both real and complex, and look more closely at the special cases of stationary and axially symmetric spacetimes. Since the symmetry noninheritance is present in the scalar fields of boson stars and may enable the existence of the black hole scalar hair, our results narrow the possible classes of such solutions. Finally, we define and analyse the symmetry noninheritance contributions to the Komar mass and angular momentum of the black hole scalar hair.

  18. Are stealth scalar fields stable?

    SciTech Connect

    Faraoni, Valerio; Moreno, Andres F. Zambrano

    2010-06-15

    Nongravitating (stealth) scalar fields associated with Minkowski space in scalar-tensor gravity are examined. Analytical solutions for both nonminimally coupled scalar field theory and for Brans-Dicke gravity are studied and their stability with respect to tensor perturbations is assessed using a covariant and gauge-invariant formalism developed for alternative gravity. For Brans-Dicke solutions, the stability with respect to homogeneous perturbations is also studied. There are regions of parameter space corresponding to stability and other regions corresponding to instability.

  19. Area and volume coherence for efficient visualization of 3D scalar functions

    SciTech Connect

    Max, N. California Univ., Davis, CA ); Hanrahan, P. ); Crawfis, R. )

    1990-01-01

    We present an algorithm for compositing a combination of density clouds and contour surfaces used to represent a scalar function on a 3-D volume. The volume is divided into convex polyhedra, at whose vertices the function is known, and the polyhedra are sorted in depth before compositing. For data given at scattered 3-D points, we show that this sorting can be done in O(n) time if we chose the tetrahedra in the Delaunay triangulation as the polyhedra. The integrals for cloud opacity and visible cloud intensity along a ray through a convex polyhedron are computed analytically, and this computation is coherent across the polyhedron's area. 33 refs.

  20. Scalar fields and particle accelerators

    NASA Astrophysics Data System (ADS)

    Sultana, Joseph; Bose, Benjamin

    2015-06-01

    The phenomenon discovered in 2009 by Bañados, Silk and West where particle collisions can achieve arbitrary high center-of-mass (c.m.) energies close to the event horizon of an extreme Kerr black hole, has generated a lot of interest. Although rotation seemed to be an essential requirement, it was later shown that arbitrary high energies can also be achieved for collisions between radially moving particles near the horizon of the electrically charged extreme Reissner-Nordström black hole. Recently Patil and Joshi claimed that instead of spinning up the black hole one can also crank up the c.m. energy of particle collisions by "charging up" a static black hole with a massless scalar field. In this regard they showed that infinite energies can be attained in the vicinity of the naked singularity of the Janis-Newman-Wincour (JNW) spacetime, which contains a massless scalar field that also becomes infinite at the position of the curvature singularity. In this study we show that Patil and Joshi's claim does not apply for other static black hole systems endowed with a massless scalar field. In particular we consider the well-known Bekenstein black hole and the recently discovered Martínez-Troncoso-Zanelli black hole, and show that the expression of the c.m. energy for particle collisions near the event horizons of these black holes is no different than the corresponding case with vanishing scalar field represented by the Schwarzschild solution. Moreover by studying the motion of scalar test charges that interact with the background scalar field in these black hole spacetimes we show that the resulting c.m. energies are even smaller than in the case of free particles. This shows that the infinite energies obtained by Patil and Joshi may not be due to the fact that the black hole contains a massless scalar field, but may be instead related to the geometry of the naked singularity in the JNW spacetime. An analogous case of infinite c.m. energy in the vicinity of a naked

  1. Time-resolved, 3D, laser-induced fluorescence measurements of fine-structure passive scalar mixing in a tubular reactor

    NASA Astrophysics Data System (ADS)

    Van Vliet, E.; Van Bergen, S. M.; Derksen, J. J.; Portela, L. M.; Van den Akker, H. E. A.

    A three-dimensional, time-resolved, laser-induced fluorescence (3D-LIF) technique was developed to measure the turbulent (liquid-liquid) mixing of a conserved passive scalar in the wake of an injector inserted perpendicularly into a tubular reactor with Re=4,000. In this technique, a horizontal laser sheet was traversed in its normal direction through the measurement section. Three-dimensional scalar fields were reconstructed from the 2D images captured at consecutive, closely spaced levels by means of a high-speed CCD camera. The ultimate goal of the measurements was to assess the downstream development of the 3D scalar fields (in terms of the full scalar gradient vector field and its associated scalar energy dissipation rate) in an industrial flow with significant advection velocity. As a result of this advection velocity, the measured 3D scalar field is artificially ``skewed'' during a scan period. A method to correct for this skewing was developed, tested and applied. Analysis of the results show consistent physical behaviour.

  2. 3D scalar model as a 4D perfect conductor limit: Dimensional reduction and variational boundary conditions

    SciTech Connect

    Edery, Ariel; Graham, Noah; MacDonald, Ilana

    2009-06-15

    Under dimensional reduction, a system in D spacetime dimensions will not necessarily yield its D-1-dimensional analog version. Among other things, this result will depend on the boundary conditions and the dimension D of the system. We investigate this question for scalar and Abelian gauge fields under boundary conditions that obey the symmetries of the action. We apply our findings to the Casimir piston, an ideal system for detecting boundary effects. Our investigation is not limited to extra dimensions and we show that the original piston scenario proposed in 2004, a toy model involving a scalar field in 3D (2+1) dimensions, can be obtained via dimensional reduction from a more realistic 4D electromagnetic (EM) system. We show that for perfect conductor conditions, a D-dimensional EM field reduces to a D-1 scalar field and not its lower-dimensional version. For Dirichlet boundary conditions, no theory is recovered under dimensional reduction and the Casimir pressure goes to zero in any dimension. This ''zero Dirichlet'' result is useful for understanding the EM case. We then identify two special systems where the lower-dimensional version is recovered in any dimension: systems with perfect magnetic conductor (PMC) and Neumann boundary conditions. We show that these two boundary conditions can be obtained from a variational procedure in which the action vanishes outside the bounded region. The fields are free to vary on the surface and have zero modes, which survive after dimensional reduction.

  3. Entropic quantization of scalar fields

    SciTech Connect

    Ipek, Selman; Caticha, Ariel

    2015-01-13

    Entropic Dynamics is an information-based framework that seeks to derive the laws of physics as an application of the methods of entropic inference. The dynamics is derived by maximizing an entropy subject to constraints that represent the physically relevant information that the motion is continuous and non-dissipative. Here we focus on the quantum theory of scalar fields. We provide an entropic derivation of Hamiltonian dynamics and using concepts from information geometry derive the standard quantum field theory in the Schrödinger representation.

  4. Entropic quantization of scalar fields

    NASA Astrophysics Data System (ADS)

    Ipek, Selman; Caticha, Ariel

    2015-01-01

    Entropic Dynamics is an information-based framework that seeks to derive the laws of physics as an application of the methods of entropic inference. The dynamics is derived by maximizing an entropy subject to constraints that represent the physically relevant information that the motion is continuous and non-dissipative. Here we focus on the quantum theory of scalar fields. We provide an entropic derivation of Hamiltonian dynamics and using concepts from information geometry derive the standard quantum field theory in the Schrödinger representation.

  5. Light field display and 3D image reconstruction

    NASA Astrophysics Data System (ADS)

    Iwane, Toru

    2016-06-01

    Light field optics and its applications become rather popular in these days. With light field optics or light field thesis, real 3D space can be described in 2D plane as 4D data, which we call as light field data. This process can be divided in two procedures. First, real3D scene is optically reduced with imaging lens. Second, this optically reduced 3D image is encoded into light field data. In later procedure we can say that 3D information is encoded onto a plane as 2D data by lens array plate. This transformation is reversible and acquired light field data can be decoded again into 3D image with the arrayed lens plate. "Refocusing" (focusing image on your favorite point after taking a picture), light-field camera's most popular function, is some kind of sectioning process from encoded 3D data (light field data) to 2D image. In this paper at first I show our actual light field camera and our 3D display using acquired and computer-simulated light field data, on which real 3D image is reconstructed. In second I explain our data processing method whose arithmetic operation is performed not in Fourier domain but in real domain. Then our 3D display system is characterized by a few features; reconstructed image is of finer resolutions than density of arrayed lenses and it is not necessary to adjust lens array plate to flat display on which light field data is displayed.

  6. A note on perfect scalar fields

    NASA Astrophysics Data System (ADS)

    Unnikrishnan, Sanil; Sriramkumar, L.

    2010-05-01

    We derive a condition on the Lagrangian density describing a generic, single, noncanonical scalar field, by demanding that the intrinsic, nonadiabatic pressure perturbation associated with the scalar field vanishes identically. Based on the analogy with perfect fluids, we refer to such fields as perfect scalar fields. It is common knowledge that models that depend only on the kinetic energy of the scalar field (often referred to as pure kinetic models) possess no nonadiabatic pressure perturbation. While we are able to construct models that seemingly depend on the scalar field and also do not contain any nonadiabatic pressure perturbation, we find that all such models that we construct allow a redefinition of the field under which they reduce to pure kinetic models. We show that, if a perfect scalar field drives inflation, then, in such situations, the first slow roll parameter will always be a monotonically decreasing function of time. We point out that this behavior implies that these scalar fields cannot lead to features in the inflationary, scalar perturbation spectrum.

  7. A note on perfect scalar fields

    SciTech Connect

    Unnikrishnan, Sanil; Sriramkumar, L.

    2010-05-15

    We derive a condition on the Lagrangian density describing a generic, single, noncanonical scalar field, by demanding that the intrinsic, nonadiabatic pressure perturbation associated with the scalar field vanishes identically. Based on the analogy with perfect fluids, we refer to such fields as perfect scalar fields. It is common knowledge that models that depend only on the kinetic energy of the scalar field (often referred to as pure kinetic models) possess no nonadiabatic pressure perturbation. While we are able to construct models that seemingly depend on the scalar field and also do not contain any nonadiabatic pressure perturbation, we find that all such models that we construct allow a redefinition of the field under which they reduce to pure kinetic models. We show that, if a perfect scalar field drives inflation, then, in such situations, the first slow roll parameter will always be a monotonically decreasing function of time. We point out that this behavior implies that these scalar fields cannot lead to features in the inflationary, scalar perturbation spectrum.

  8. Research and implementation of visualization techniques for 3D explosion fields

    NASA Astrophysics Data System (ADS)

    Ning, Jianguo; Xu, Xiangzhao; Ma, Tianbao; Yu, Wen

    2015-12-01

    The visualization of scalar data in 3D explosion fields was devised to solve the problems of the complex physical and the huge data in numerical simulation of explosion mechanics problems. For enhancing the explosion effects and reducing the impacts of image analysis, the adjustment coefficient was added into original Phong illumination model. A variety of accelerated volume rendering algorithm and multithread technique were used to realize the fast rendering and real-time interactive control of 3D explosion fields. Cutaway view was implemented, so arbitrary section of 3D explosion fields can be seen conveniently. Slice can be extracted along three axes of 3D explosion fields, and the value at an arbitrary point on the slice can be gained. The experiment results show that the volume rendering acceleration algorithm can generate high quality images and can increase the speed of image generating, while achieve interactive control quickly.

  9. 3D touchable holographic light-field display.

    PubMed

    Yamaguchi, Masahiro; Higashida, Ryo

    2016-01-20

    We propose a new type of 3D user interface: interaction with a light field reproduced by a 3D display. The 3D display used in this work reproduces a 3D light field, and a real image can be reproduced in midair between the display and the user. When using a finger to touch the real image, the light field from the display will scatter. Then, the 3D touch sensing is realized by detecting the scattered light by a color camera. In the experiment, the light-field display is constructed with a holographic screen and a projector; thus, a preliminary implementation of a 3D touch is demonstrated. PMID:26835952

  10. Simulation of 3D infrared scenes using random fields model

    NASA Astrophysics Data System (ADS)

    Shao, Xiaopeng; Zhang, Jianqi

    2001-09-01

    Analysis and simulation of smart munitions requires imagery for the munition's sensor to view. The traditional infrared background simulations are always limited in the plane scene studies. A new method is described to synthesize the images in 3D view and with various terrains texture. We develop the random fields model and temperature fields to simulate 3D infrared scenes. Generalized long-correlation (GLC) model, one of random field models, will generate both the 3D terrains skeleton data and the terrains texture in this work. To build the terrain mesh with the random fields, digital elevation models (DEM) are introduced in the paper. And texture mapping technology will perform the task of pasting the texture in the concavo-convex surfaces of the 3D scene. The simulation using random fields model is a very available method to produce 3D infrared scene with great randomicity and reality.

  11. Static scalar field solutions in symmetric gravity

    NASA Astrophysics Data System (ADS)

    Hossenfelder, S.

    2016-09-01

    We study an extension of general relativity with a second metric and an exchange symmetry between the two metrics. Such an extension might help to address some of the outstanding problems with general relativity, for example the smallness of the cosmological constant. We here derive a family of exact solutions for this theory. In this two-parameter family of solutions the gravitational field is sourced by a time-independent massless scalar field. We find that the only limit in which the scalar field entirely vanishes is flat space. The regular Schwarzschild-solution is left with a scalar field hidden in the second metric’s sector.

  12. Cross Sections From Scalar Field Theory

    NASA Technical Reports Server (NTRS)

    Norbury, John W.; Dick, Frank; Norman, Ryan B.; Nasto, Rachel

    2008-01-01

    A one pion exchange scalar model is used to calculate differential and total cross sections for pion production through nucleon- nucleon collisions. The collisions involve intermediate delta particle production and decay to nucleons and a pion. The model provides the basic theoretical framework for scalar field theory and can be applied to particle production processes where the effects of spin can be neglected.

  13. On causality in polymer scalar field theory

    NASA Astrophysics Data System (ADS)

    García-Chung, Angel A.; Morales-Técotl, Hugo A.

    2011-10-01

    The properties of spacetime corresponding to a proposed quantum gravity theory might modify the high energy behavior of quantum fields. Motivated by loop quantum gravity, recently, Hossain et al [1] have considered a polymer field algebra that replaces the standard canonical one in order to calculate the propagator of a real scalar field in flat spacetime. This propagator features Lorentz violations. Motivated by the relation between Lorentz invariance and causality in standard Quantum Field Theory, in this work we investigate the causality behavior of the polymer scalar field.

  14. 3-D Flow Visualization with a Light-field Camera

    NASA Astrophysics Data System (ADS)

    Thurow, B.

    2012-12-01

    Light-field cameras have received attention recently due to their ability to acquire photographs that can be computationally refocused after they have been acquired. In this work, we describe the development of a light-field camera system for 3D visualization of turbulent flows. The camera developed in our lab, also known as a plenoptic camera, uses an array of microlenses mounted next to an image sensor to resolve both the position and angle of light rays incident upon the camera. For flow visualization, the flow field is seeded with small particles that follow the fluid's motion and are imaged using the camera and a pulsed light source. The tomographic MART algorithm is then applied to the light-field data in order to reconstruct a 3D volume of the instantaneous particle field. 3D, 3C velocity vectors are then determined from a pair of 3D particle fields using conventional cross-correlation algorithms. As an illustration of the concept, 3D/3C velocity measurements of a turbulent boundary layer produced on the wall of a conventional wind tunnel are presented. Future experiments are planned to use the camera to study the influence of wall permeability on the 3-D structure of the turbulent boundary layer.Schematic illustrating the concept of a plenoptic camera where each pixel represents both the position and angle of light rays entering the camera. This information can be used to computationally refocus an image after it has been acquired. Instantaneous 3D velocity field of a turbulent boundary layer determined using light-field data captured by a plenoptic camera.

  15. The use of harmonics in 3-D magnetic fields

    SciTech Connect

    Caspi, S.; Helm, M.; Laslett, L.J.

    1993-09-01

    Motivated by the need for new means for specification and determination of 3-D fields that are produced by electromagnetic lens elements in the region interior to coil windings and seeking to obtain techniques that will be convenient for accurate conductor placement and dynamical study of particle motion, the authors have generalized the representation of a 2-D magnetic field to 3-D. They have shown that the 3-D magnetic field components of a multipole magnet in the curl-free divergence-free region near the axis r = 0 can be derived from one dimensional functions A{sub n}(z) and their derivatives. In this report they apply both methods to the ``end`` region of a 40 mm bore SSC quadrupole, calculating first the field harmonics and then reconstructing the field comparing both results with direct Biot-Savart calculation.

  16. Intermediate inflation driven by DBI scalar field

    NASA Astrophysics Data System (ADS)

    Nazavari, N.; Mohammadi, A.; Ossoulian, Z.; Saaidi, Kh.

    2016-06-01

    Picking out a DBI scalar field as inflation, the slow-rolling inflationary scenario is studied by attributing an exponential time function to scale factor, known as intermediate inflation. The perturbation parameters of the model are estimated numerically for two different cases, and the final result is compared with Planck data. The diagram of tensor-to-scalar ratio r versus scalar spectra index ns is illustrated, and it is found that they are within an acceptable range as suggested by Planck. In addition, the acquired values for amplitude of scalar perturbation reveal the ability of the model to depict a good picture of the Universe in one of its earliest stages. As a further argument, the non-Gaussianity is investigated, displaying that the model prediction stands in a 68% C.L. regime according to the latest Planck data.

  17. Can dark matter be a scalar field?

    NASA Astrophysics Data System (ADS)

    Jesus, J. F.; Pereira, S. H.; Malatrasi, J. L. G.; Andrade-Oliveira, F.

    2016-08-01

    In this paper we study a real scalar field as a possible candidate to explain the dark matter in the universe. In the context of a free scalar field with quadratic potential, we have used Union 2.1 SN Ia observational data jointly with a Planck prior over the dark matter density parameter to set a lower limit on the dark matter mass as m>=0.12H0‑1 eV (c=hbar=1). For the recent value of the Hubble constant indicated by the Hubble Space Telescope, namely H0=73±1.8 km s‑1Mpc‑1, this leads to m>=1.56×10‑33 eV at 99.7% c.l. Such value is much smaller than m~ 10‑22 eV previously estimated for some models. Nevertheless, it is still in agreement with them once we have not found evidences for a upper limit on the scalar field dark matter mass from SN Ia analysis. In practice, it confirms free real scalar field as a viable candidate for dark matter in agreement with previous studies in the context of density perturbations, which include scalar field self interaction.

  18. Imaging 3D strain field monitoring during hydraulic fracturing processes

    NASA Astrophysics Data System (ADS)

    Chen, Rongzhang; Zaghloul, Mohamed A. S.; Yan, Aidong; Li, Shuo; Lu, Guanyi; Ames, Brandon C.; Zolfaghari, Navid; Bunger, Andrew P.; Li, Ming-Jun; Chen, Kevin P.

    2016-05-01

    In this paper, we present a distributed fiber optic sensing scheme to study 3D strain fields inside concrete cubes during hydraulic fracturing process. Optical fibers embedded in concrete were used to monitor 3D strain field build-up with external hydraulic pressures. High spatial resolution strain fields were interrogated by the in-fiber Rayleigh backscattering with 1-cm spatial resolution using optical frequency domain reflectometry. The fiber optics sensor scheme presented in this paper provides scientists and engineers a unique laboratory tool to understand the hydraulic fracturing processes in various rock formations and its impacts to environments.

  19. Field structure of collapsing wave packets in 3D strong Langmuir turbulence

    NASA Technical Reports Server (NTRS)

    Newman, D. L.; Robinson, P. A.; Goldman, M. V.

    1989-01-01

    A simple model is constructed for the electric fields in the collapsing wave packets found in 3D simulations of driven and damped isotropic strong Langmuir turbulence. This model, based on a spherical-harmonic decomposition of the electrostatic potential, accounts for the distribution of wave-packet shapes observed in the simulations, particularly the predominance of oblate wave packets. In contrast with predictions for undamped and undriven subsonic collapse of scalar fields, oblate vector-field wave packets do not flatten during collapse but, instead, remain approximately self-similar and rigid.

  20. Exploring scalar field dynamics with Gaussian processes

    SciTech Connect

    Nair, Remya; Jhingan, Sanjay; Jain, Deepak E-mail: sanjay.jhingan@gmail.com

    2014-01-01

    The origin of the accelerated expansion of the Universe remains an unsolved mystery in Cosmology. In this work we consider a spatially flat Friedmann-Robertson-Walker (FRW) Universe with non-relativistic matter and a single scalar field contributing to the energy density of the Universe. Properties of this scalar field, like potential, kinetic energy, equation of state etc. are reconstructed from Supernovae and BAO data using Gaussian processes. We also reconstruct energy conditions and kinematic variables of expansion, such as the jerk and the slow roll parameter. We find that the reconstructed scalar field variables and the kinematic quantities are consistent with a flat ΛCDM Universe. Further, we find that the null energy condition is satisfied for the redshift range of the Supernovae data considered in the paper, but the strong energy condition is violated.

  1. Halos of unified dark matter scalar field

    SciTech Connect

    Bertacca, Daniele; Bartolo, Nicola; Matarrese, Sabino E-mail: nicola.bartolo@pd.infn.it

    2008-05-15

    We investigate the static and spherically symmetric solutions of Einstein's equations for a scalar field with a non-canonical kinetic term, assumed to provide both the dark matter and dark energy components of the Universe. In particular, we give a prescription to obtain solutions (dark halos) whose rotation curve v{sub c}(r) is in good agreement with observational data. We show that there exist suitable scalar field Lagrangians that allow us to describe the cosmological background evolution and the static solutions with a single dark fluid.

  2. Astrophysical constraints on scalar field models

    SciTech Connect

    Bertolami, O.; Paramos, J.

    2005-01-15

    We use stellar structure dynamics arguments to extract bounds on the relevant parameters of two scalar field models: the putative scalar field mediator of a fifth force with a Yukawa potential and the new variable mass particle models. We also analyze the impact of a constant solar inbound acceleration, such as the one reported by the Pioneer anomaly, on stellar astrophysics. We consider the polytropic gas model to estimate the effect of these models on the hydrostatic equilibrium equation and fundamental quantities such as the central temperature. The current bound on the solar luminosity is used to constrain the relevant parameters of each model.

  3. 3D Magnetotelluric characterization of the COSO GeothermalField

    SciTech Connect

    Newman, Gregory A.; Hoversten, Michael; Gasperikova, Erika; Wannamaker, Philip E.

    2005-01-01

    Knowledge of the subsurface electrical resistivity/conductivity can contribute to a better understanding of complex hydrothermal systems, typified by Coso geothermal field, through mapping the geometry (bounds and controlling structures) over existing production. Three-dimensional magnetotelluric (MT) inversion is now an emerging technology for characterizing the resistivity structures of complex geothermal systems. The method appears to hold great promise, but histories exploiting truly 3D inversion that demonstrate the advantages that can be gained by acquiring and analyzing MT data in three dimensions are still few in number. This project will address said issue, by applying 3D MT forward modeling and inversion to a MT data set acquired over the Coso geothermal field. The goal of the project is to provide the capability to image large geothermal reservoirs in a single self-consistent model. Initial analysis of the Coso MT data has been carried out using 2D MT imaging technology to construct an initial 3D resistivity model from a series of 2D resistivity images obtained using the inline electric field measurements (Zxy impedance elements) along different measurement transects. This model will be subsequently refined through a 3D inversion process. The initial 3D resistivity model clearly shows the controlling geological structures possibly influencing well production at Coso. The field data however, also show clear three dimensionality below 1 Hz, demonstrating the limitations of 2D resistivity imaging. The 3D MT predicted data arising from this starting model show good correspondence in dominant components of the impedance tensor (Zxy and Zyx) above 1Hz. Below 1 Hz there is significant differences between the field data and the 2D model data.

  4. Generalized gravitational entropy of interacting scalar field and Maxwell field

    NASA Astrophysics Data System (ADS)

    Huang, Wung-Hong

    2014-12-01

    The generalized gravitational entropy proposed recently by Lewkowycz and Maldacena is extended to the interacting real scalar field and Maxwell field system. Using the BTZ geometry we first investigate the case of free real scalar field and then show a possible way to calculate the entropy of the interacting scalar field. Next, we investigate the Maxwell field system. We exactly solve the wave equation and calculate the analytic value of the generalized gravitational entropy. We also use the Einstein equation to find the effect of backreaction of the Maxwell field on the area of horizon. The associated modified area law is consistent with the generalized gravitational entropy.

  5. Anisotropic inflation from charged scalar fields

    SciTech Connect

    Emami, Razieh; Firouzjahi, Hassan; Movahed, S.M. Sadegh; Zarei, Moslem E-mail: firouz@ipm.ir E-mail: m.zarei@cc.iut.ac.ir

    2011-02-01

    We consider models of inflation with U(1) gauge fields and charged scalar fields including symmetry breaking potential, chaotic inflation and hybrid inflation. We show that there exist attractor solutions where the anisotropies produced during inflation becomes comparable to the slow-roll parameters. In the models where the inflaton field is a charged scalar field the gauge field becomes highly oscillatory at the end of inflation ending inflation quickly. Furthermore, in charged hybrid inflation the onset of waterfall phase transition at the end of inflation is affected significantly by the evolution of the background gauge field. Rapid oscillations of the gauge field and its coupling to inflaton can have interesting effects on preheating and non-Gaussianities.

  6. Electric field in 3D gravity with torsion

    SciTech Connect

    Blagojevic, M.; Cvetkovic, B.

    2008-08-15

    It is shown that in static and spherically symmetric configurations of the system of Maxwell field coupled to 3D gravity with torsion, at least one of the Maxwell field components has to vanish. Restricting our attention to the electric sector of the theory, we find an interesting exact solution, corresponding to the azimuthal electric field. Its geometric structure is to a large extent influenced by the values of two different central charges, associated to the asymptotic AdS structure of spacetime.

  7. 3D Hole Inspection Using Lens with High Field Curvature

    NASA Astrophysics Data System (ADS)

    Zavyalov, Petr

    2015-02-01

    One of the actual 3D measurement problems is the optical inspection of various holes. In this respect, the task of plane image formation of holes as extended 3D objects using optical methods turns out to be of primary importance. We have developed specialized lenses that perform such transformations due to specially increased aberrations (field curvature, astigmatism) for the formation of extended objects plane images. The calculations of the lens parameters are presented. The detail analysis of the imaging properties was carried out. The presented hole inspection lens has been designed, constructed and used for inspection of the fuel assembly spacer grids.

  8. A 3-D measurement of biomagnetic field and its application

    NASA Astrophysics Data System (ADS)

    Uchikawa, Yoshinori; Kim, Bong-Soo; Kobayashi, Koichiro

    2006-09-01

    This review paper focuses in the usefulness of three-dimensional (3-D) biomagnetic field measurement for discriminating multiple sources closely located and overlapped in time. We have developed a 3-D second-order gradiometer connected to 39-channel SQUIDs for vector measurement of magnetoencephalogram (MEG), which can simultaneously detect magnetic field components perpendicular and tangential to the scalp. To assess discrimination and separation of multiple sources overlapping in time, we showed both simulation study and 3-D vector measurement of MEG as following; (a) mixed auditory evoked field (AEF) and somatosensory evoked field (SEF), (b) separating second somatosensory (SII) activity from primary somatosensory (SI) activity in SEF. The magnetic field distribution perpendicular to the scalp was not helpful for estimating the location and number of sources, owing to the lack of a dipole pattern, but the magnetic field distribution tangential to the scalp can provide information about new constraint conditions by visual inspection and singular value decomposition (SVD) method. We estimated multiple sources of mixed AEF and SEF from the MEG data of the magnetic field tangential to the scalp, and also estimated multiple sources of SI and SII activity. These results were confirmed by comparison with superimposed source locations in MRI of subject's head.

  9. 3-D Numerical Field Calculations of CESR's Upgraded Superconducting Magnets

    NASA Astrophysics Data System (ADS)

    Greenwald, Zipi; Greenwald, Shlomo

    1997-05-01

    A 3-D numerical code( Z. Greenwald, ``BST.c 3-D Magnetic Field Calculation Numerical Code'', Cornell University Note 96-09) was used to calculate the spatial magnetic fields generated by a current carrying wire. In particular, the code calculates the fields of wire loops wrapped on a pipe similar to superconductive magnet structures. The arrangement and dimensions of the loops can be easily modified to create dipoles, quadrupoles, skew magnets etc., and combinations of the above. In this paper we show the calculated 3-D fields of ironless superconducting quadrupole dipole combination designed for CESR phase III upgrade (which will be manufactured by TESLA). Since the magnet poles are made of loops, the fields at the edges are not only distorted but have a component, B_z, in the z direction as well. This Bz field can cause X-Y coupling of the beam. In order to calculate the coupling, the particle trajectories through the whole magnet were computed. The code is also used to calculate local fields errors due to possible manufacturing imperfections. An example of a rotational error of one pole, and an example of an error in the winding width are shown.

  10. Slowly rotating neutron stars in scalar-tensor theories with a massive scalar field

    NASA Astrophysics Data System (ADS)

    Yazadjiev, Stoytcho S.; Doneva, Daniela D.; Popchev, Dimitar

    2016-04-01

    In the scalar-tensor theories with a massive scalar field, the coupling constants, and the coupling functions in general, which are observationally allowed, can differ significantly from those in the massless case. This fact naturally implies that the scalar-tensor neutron stars with a massive scalar field can have rather different structure and properties in comparison with their counterparts in the massless case and in general relativity. In the present paper, we study slowly rotating neutron stars in scalar-tensor theories with a massive gravitational scalar. Two examples of scalar-tensor theories are examined—the first example is the massive Brans-Dicke theory and the second one is a massive scalar-tensor theory indistinguishable from general relativity in the weak-field limit. In the latter case, we study the effect of the scalar field mass on the spontaneous scalarization of neutron stars. Our numerical results show that the inclusion of a mass term for the scalar field indeed changes the picture drastically compared to the massless case. It turns out that mass, radius, and moment of inertia for neutron stars in massive scalar-tensor theories can differ drastically from the pure general relativistic solutions if sufficiently large masses of the scalar field are considered.

  11. Continuity of scalar fields with logarithmic correlations

    NASA Astrophysics Data System (ADS)

    Rajeev, S. G.; Ranken, Evan

    2015-08-01

    We apply select ideas from the modern theory of stochastic processes in order to study the continuity/roughness of scalar quantum fields. A scalar field with logarithmic correlations (such as a massless field in 1 +1 spacetime dimensions) has the mildest of singularities, making it a logical starting point. Instead of the usual inner product of the field with a smooth function, we introduce a moving average on an interval which allows us to obtain explicit results and has a simple physical interpretation. Using the mathematical work of Dudley, we prove that the averaged random process is in fact continuous, and give a precise modulus of continuity bounding the short-distance variation.

  12. Noncommutative scalar fields from symplectic deformation

    SciTech Connect

    Daoud, M.; Hamama, A.

    2008-02-15

    This paper is concerned with the quantum theory of noncommutative scalar fields in two dimensional space-time. It is shown that the noncommutativity originates from the the deformation of symplectic structures. The quantization is performed and the modes expansions of the fields, in the presence of an electromagnetic background, are derived. The Hamiltonian of the theory is given and the degeneracies lifting, induced by the deformation, is also discussed.

  13. Dissipation element analysis of turbulent scalar fields

    NASA Astrophysics Data System (ADS)

    Wang, Lipo; Peters, Norbert

    2008-12-01

    Dissipation element analysis is a new approach for studying turbulent scalar fields. Gradient trajectories starting from each material point in a scalar field \\phi'(\\vec{x},t) in ascending directions will inevitably reach a maximal and a minimal point. The ensemble of material points sharing the same pair ending points is named a dissipation element. Dissipation elements can be parameterized by the length scale l and the scalar difference Δphi ', which are defined as the straight line connecting the two extremal points and the scalar difference at these points, respectively. The decomposition of a turbulent field into dissipation elements is space-filling. This allows us to reconstruct certain statistical quantities of fine scale turbulence which cannot be obtained otherwise. The marginal probability density function (PDF) of the length scale distribution based on a Poisson random cutting-reconnection process shows satisfactory agreement with the direct numerical simulation (DNS) results. In order to obtain the further information that is needed for the modeling of scalar mixing in turbulence, such as the marginal PDF of the length of elements and all conditional moments as well as their scaling exponents, there is a need to model the joint PDF of l and Δphi ' as well. A compensation-defect model is put forward in this work to show the dependence of Δphi ' on l. The agreement between the model prediction and DNS results is satisfactory, which may provide another explanation of the Kolmogorov scaling and help to improve turbulent mixing models. Furthermore, intermittency and cliff structure can also be related to and explained from the joint PDF.

  14. 3D temperature field reconstruction using ultrasound sensing system

    NASA Astrophysics Data System (ADS)

    Liu, Yuqian; Ma, Tong; Cao, Chengyu; Wang, Xingwei

    2016-04-01

    3D temperature field reconstruction is of practical interest to the power, transportation and aviation industries and it also opens up opportunities for real time control or optimization of high temperature fluid or combustion process. In our paper, a new distributed optical fiber sensing system consisting of a series of elements will be used to generate and receive acoustic signals. This system is the first active temperature field sensing system that features the advantages of the optical fiber sensors (distributed sensing capability) and the acoustic sensors (non-contact measurement). Signals along multiple paths will be measured simultaneously enabled by a code division multiple access (CDMA) technique. Then a proposed Gaussian Radial Basis Functions (GRBF)-based approach can approximate the temperature field as a finite summation of space-dependent basis functions and time-dependent coefficients. The travel time of the acoustic signals depends on the temperature of the media. On this basis, the Gaussian functions are integrated along a number of paths which are determined by the number and distribution of sensors. The inversion problem to estimate the unknown parameters of the Gaussian functions can be solved with the measured times-of-flight (ToF) of acoustic waves and the length of propagation paths using the recursive least square method (RLS). The simulation results show an approximation error less than 2% in 2D and 5% in 3D respectively. It demonstrates the availability and efficiency of our proposed 3D temperature field reconstruction mechanism.

  15. Advancing the field of 3D biomaterial printing.

    PubMed

    Jakus, Adam E; Rutz, Alexandra L; Shah, Ramille N

    2016-02-01

    3D biomaterial printing has emerged as a potentially revolutionary technology, promising to transform both research and medical therapeutics. Although there has been recent progress in the field, on-demand fabrication of functional and transplantable tissues and organs is still a distant reality. To advance to this point, there are two major technical challenges that must be overcome. The first is expanding upon the limited variety of available 3D printable biomaterials (biomaterial inks), which currently do not adequately represent the physical, chemical, and biological complexity and diversity of tissues and organs within the human body. Newly developed biomaterial inks and the resulting 3D printed constructs must meet numerous interdependent requirements, including those that lead to optimal printing, structural, and biological outcomes. The second challenge is developing and implementing comprehensive biomaterial ink and printed structure characterization combined with in vitro and in vivo tissue- and organ-specific evaluation. This perspective outlines considerations for addressing these technical hurdles that, once overcome, will facilitate rapid advancement of 3D biomaterial printing as an indispensable tool for both investigating complex tissue and organ morphogenesis and for developing functional devices for a variety of diagnostic and regenerative medicine applications. PMID:26752507

  16. Scalar field cosmologies with inverted potentials

    NASA Astrophysics Data System (ADS)

    Boisseau, B.; Giacomini, H.; Polarski, D.

    2015-10-01

    Regular bouncing solutions in the framework of a scalar-tensor gravity model were found in a recent work. We reconsider the problem in the Einstein frame (EF) in the present work. Singularities arising at the limit of physical viability of the model in the Jordan frame (JF) are either of the Big Bang or of the Big Crunch type in the EF. As a result we obtain integrable scalar field cosmological models in general relativity (GR) with inverted double-well potentials unbounded from below which possess solutions regular in the future, tending to a de Sitter space, and starting with a Big Bang. The existence of the two fixed points for the field dynamics at late times found earlier in the JF becomes transparent in the EF.

  17. Creation of the universe with a stealth scalar field

    NASA Astrophysics Data System (ADS)

    Maeda, Hideki; Maeda, Kei-ichi

    2012-12-01

    The stealth scalar field is a nontrivial configuration without any backreaction to geometry, which is characteristic for nonminimally coupled scalar fields. Studying the creation probability of the de Sitter universe with a stealth scalar field by Hartle and Hawking’s semiclassical method, we show that the effect of the stealth field can be significant. For the class of scalar fields we consider, creation with a stealth field is possible for a discrete value of the coupling constant, and its creation probability is always less than that with a trivial scalar field. However, those creation rates can be almost the same depending on the parameters of the theory.

  18. R3D: Reduction Package for Integral Field Spectroscopy

    NASA Astrophysics Data System (ADS)

    Sánchez, Sebastián. F.

    2011-06-01

    R3D was developed to reduce fiber-based integral field spectroscopy (IFS) data. The package comprises a set of command-line routines adapted for each of these steps, suitable for creating pipelines. The routines have been tested against simulations, and against real data from various integral field spectrographs (PMAS, PPAK, GMOS, VIMOS and INTEGRAL). Particular attention is paid to the treatment of cross-talk. R3D unifies the reduction techniques for the different IFS instruments to a single one, in order to allow the general public to reduce different instruments data in an homogeneus, consistent and simple way. Although still in its prototyping phase, it has been proved to be useful to reduce PMAS (both in the Larr and the PPAK modes), VIMOS and INTEGRAL data. The current version has been coded in Perl, using PDL, in order to speed-up the algorithm testing phase. Most of the time critical algorithms have been translated to C[float=][/float], and it is our intention to translate all of them. However, even in this phase R3D is fast enough to produce valuable science frames in reasonable time.

  19. Casimir effect for massive scalar field

    NASA Astrophysics Data System (ADS)

    Mobassem, S.

    2014-10-01

    The energy-momentum tensor is used to introduce the Casimir force of the massive scalar field acting on a nonpenetrating surface. This expression can be used to evaluate the vacuum force by employing the appropriate field operators. To simplify our formalism, we also relate the vacuum force expression to the imaginary part of the Green function via the fluctuation-dissipation theorem and Kubo's formula. This allows one to evaluate the vacuum force without resorting to the process of field quantization. These two approaches are used to calculate the attractive force between two nonpenetrating plates. Special attention is paid to the generalization of the formalism to D+1 spacetime dimensions.

  20. Widespread 3D seismic survey covers mature field in Gabon

    SciTech Connect

    Riley, D.; Fleming, M. ); Delvaux, J. )

    1993-12-06

    The exploration potential of the Port Gentil region, characterized by some of the earliest petroleum discoveries in Gabon, continues to be of important interest today. Available seismic data are of an older vintage (1974--82), recorded with low common mid-point (CMP) fold. They are critically void of coverage through the transition zone. The geology is highly complex, characterized by salt structures and strong tectonic activity. An intensive joint exploration and reservoir definition campaign is crucial to full evaluation of this area. This article describes the 3D survey conducted during 1992 and early 1993 over a mature oil field in an around Port Gentil and incorporating elements of land, transition zone, and shallow marine data acquisition -- the 3D Mandji program.

  1. Visualizing 3D velocity fields near contour surfaces

    SciTech Connect

    Max, N.; Crawfis, R.; Grant, C.

    1994-03-01

    Vector field rendering is difficult in 3D because the vector icons overlap and hide each other. We propose four different techniques for visualizing vector fields only near surfaces. The first uses motion blurred particles in a thickened region around the surface. The second uses a voxel grid to contain integral curves of the vector field. The third uses many antialiased lines through the surface, and the fourth uses hairs sprouting from the surface and then bending in the direction of the vector field. All the methods use the graphite pipeline, allowing real time rotation and interaction, and the first two methods can animate the texture to move in the flow determined by the velocity field.

  2. 3D deformation field throughout the interior of materials.

    SciTech Connect

    Jin, Huiqing; Lu, Wei-Yang

    2013-09-01

    This report contains the one-year feasibility study for our three-year LDRD proposal that is aimed to develop an experimental technique to measure the 3D deformation fields inside a material body. In this feasibility study, we first apply Digital Volume Correlation (DVC) algorithm to pre-existing in-situ Xray Computed Tomography (XCT) image sets with pure rigid body translation. The calculated displacement field has very large random errors and low precision that are unacceptable. Then we enhance these tomography images by setting threshold of the intensity of each slice. DVC algorithm is able to obtain accurate deformation fields from these enhanced image sets and the deformation fields are consistent with the global mechanical loading that is applied to the specimen. Through this study, we prove that the internal markers inside the pre-existing tomography images of aluminum alloy can be enhanced and are suitable for DVC to calculate the deformation field throughout the material body.

  3. Age Crises, Scalar Fields, and the Apocalypse

    NASA Astrophysics Data System (ADS)

    Jackson, J. C.

    Recent observations suggest that Hubble's constant is large, to the extent that the oldest stars appear to have ages which are greater than the Hubble time, and that the Hubble expansion is slowing down, so that according to conventional cosmology the age of the Universe is less than the Hubble time. The concepts of weak and strong age crises (respectively t0<1/H0 but longer than the age inferred from some lower limit on q0, and t0>1/H0 and q0>0) are introduced. These observations are reconciled in models which are dynamically dominated by a homogeneous scalar field, corresponding to an ultra-light boson whose Compton wavelength is of the same order as the Hubble radius. Two such models are considered, an open one with vacuum energy comprising a conventional cosmological term and a scalar field component, and a flat one with a scalar component only, aimed respectively at weak and strong age crises. Both models suggest that anti-gravity plays a significant role in the evolution of the Universe.

  4. Targeted infill drilling at Stratton field using 3-D seismic

    SciTech Connect

    Suydam, J.R.; Reitz, D.T.

    1994-12-31

    Stratton field is located on the Vicksburg flexure trend in Nueces and Kleberg Counties, South Texas. It has produced more than 2.8 Tcf of gas since 1937 from Frio fluvial/deltaic sandstones and Vicksburg shallow-marine sandstones. The field is a combination stratigraphic and faulted structural trap, and contains numerous highly compartmentalized sandstone reservoirs. Continuous infield drilling is required to keep the field producing, and 3-D seismic data have been used to select the best locations for these wells. In 1992, an 8-mi{sup 2} seismic survey was completed in the southern end of the field, and the resulting structural interpretation presented many more fault traps than were apparent in the 2-D seismic interpretation. So far, all of the new wells drilled within the survey have encountered untapped compartments enclosed by fault traps. Furthermore, fault cuts in the new wells have always been within 20 ft of the position predicted by seismic data.

  5. Targeted infill drilling at Stratton Field using 3-D seismic

    SciTech Connect

    Suydam, J.; Reitz, D.

    1994-09-01

    Stratton field is located on the Vicksburg flexure trend in Nueces and Kleberg counties, south Texas. It has produced over 2.8 tcf of gas since 1937 from Frio fluvial/deltaic sandstones and Vicksburg shallow marine sandstones. The field is a combination stratigraphic and faulted structural trap, and contains numerous highly compartmentalized sandstone reservoirs. Continuous infield drilling is required to keep the field producing, and 3-D seismic data have been used to select the best locations for these wells. In 1992, the Bureau of Economic Geology shot an 8-mi{sup 2} survey in the southern end of the field, and the resulting structural interpretation presented many more fault traps that were not apparent in the 2-D seismic interpretation. So far, all of the new wells drilled within the survey have encountered untapped compartments enclosed by fault traps. Furthermore, fault cuts in the new wells have always been within 20 ft of the position predicted by seismic data.

  6. The 3D Flow Field Around an Embedded Planet

    NASA Astrophysics Data System (ADS)

    Fung, Jeffrey; Artymowicz, Pawel; Wu, Yanqin

    2015-10-01

    3D modifications to the well-studied 2D flow topology around an embedded planet have the potential to resolve long-standing problems in planet formation theory. We present a detailed analysis of the 3D isothermal flow field around a 5 Earth-mass planet on a fixed circular orbit, simulated using our graphics processing unit hydrodynamics code PEnGUIn. We find that, overall, the horseshoe region has a columnar structure extending vertically much beyond the Hill sphere of the planet. This columnar structure is only broken for some of the widest horseshoe streamlines, along which high altitude fluid descends rapidly into the planet’s Bondi sphere, performs one horseshoe turn, and exits the Bondi sphere radially in the midplane. A portion of this flow exits the horseshoe region altogether, which we refer to as the “transient” horseshoe flow. The flow continues as it rolls up into a pair of up-down symmetric horizontal vortex lines shed into the wake of the planet. This flow, unique to 3D, affects both planet accretion and migration. It prevents the planet from sustaining a hydrostatic atmosphere due to its intrusion into the Bondi sphere, and leads to a significant corotation torque on the planet, unanticipated by 2D analysis. In the reported simulation, starting with a {{Σ }}˜ {r}-3/2 radial surface density profile, this torque is positive and partially cancels with the negative differential Lindblad torque, resulting in a factor of three slower planet migration rate. Finally, we report 3D effects can be suppressed by a sufficiently large disk viscosity, leading to results similar to 2D.

  7. 3-D flame temperature field reconstruction with multiobjective neural network

    NASA Astrophysics Data System (ADS)

    Wan, Xiong; Gao, Yiqing; Wang, Yuanmei

    2003-02-01

    A novel 3-D temperature field reconstruction method is proposed in this paper, which is based on multiwavelength thermometry and Hopfield neural network computed tomography. A mathematical model of multi-wavelength thermometry is founded, and a neural network algorithm based on multiobjective optimization is developed. Through computer simulation and comparison with the algebraic reconstruction technique (ART) and the filter back-projection algorithm (FBP), the reconstruction result of the new method is discussed in detail. The study shows that the new method always gives the best reconstruction results. At last, temperature distribution of a section of four peaks candle flame is reconstructed with this novel method.

  8. A full field, 3-D velocimeter for microgravity crystallization experiments

    NASA Technical Reports Server (NTRS)

    Brodkey, Robert S.; Russ, Keith M.

    1991-01-01

    The programming and algorithms needed for implementing a full-field, 3-D velocimeter for laminar flow systems and the appropriate hardware to fully implement this ultimate system are discussed. It appears that imaging using a synched pair of video cameras and digitizer boards with synched rails for camera motion will provide a viable solution to the laminar tracking problem. The algorithms given here are simple, which should speed processing. On a heavily loaded VAXstation 3100 the particle identification can take 15 to 30 seconds, with the tracking taking less than one second. It seeems reasonable to assume that four image pairs can thus be acquired and analyzed in under one minute.

  9. Gravitational collapse of a scalar field

    SciTech Connect

    Maithreyan, T.

    1985-01-01

    A self-similar collapse of massless scalar waves is considered, and the Einstein field equations in classical general relativity are solved to obtain the metric for the collapse. These scalar waves satisfy the massless wave equation and the energy momentum tensor associated with them is derived from their Lagrangian density. The collapse begins at t = 0 before which spacetime is flat, empty spacetime described by the Minkowski metric. Self similarity assumes that a homothetic Killing vector exists for the collapse, which satisfies the corresponding homothetic Killing equation. The solution obtained contains a constant c/sup 2/ whose value determines the nature of the collapse and the kind of singularity formed by the collapsing scalar waves. The three different cases are outlined and the corresponding Penrose diagrams are given. The apparent horizons, defined by Hawking as the limit of the trapped surfaces surrounding the singularity, are calculated for each case. A quantum correction is given for the above classical picture using the method developed originally by Hawking, to study particle creation by a black hole.

  10. 3-D magnetic field calculations for wiggglers using MAGNUS-3D

    SciTech Connect

    Pissanetzky, S.; Tompkins, P.

    1988-01-01

    The recent but steady trend toward increased magnetic and geometric complexity in the design of wigglers and undulators, of which tapered wigglers, hybrid structures, laced electromagnetic wigglers, magnetic cladding, twisters and magic structures are examples, has caused a need for reliable 3-D computer models and a better understanding of the behavior of magnetic systems in three dimensions. The capabilities of the MAGNUS-3D Group of Programs are ideally suited to solve this class of problems and provide insight into 3-D effects. MAGNUS-3D can solve any problem of Magnetostatics involving permanent magnets, linear or nonlinear ferromagnetic materials and electric conductors of any shape in space. The magnetic properties of permanent magnets are described by the complete nonlinear demagnetization curve as provided by the manufacturer, or, at the user's choice, by a simpler approximation involving the coercive force, the residual induction and the direction of magnetization. The ferromagnetic materials are described by a magnetization table and an accurate interpolation relation. An internal library with properties of common industrial steels is available. The conductors are independent of the mesh and are described in terms of conductor elements from an internal library.

  11. General Relativity, Scalar Fields and Cosmic Strings.

    NASA Astrophysics Data System (ADS)

    Burd, Adrian Benedict

    1987-09-01

    Available from UMI in association with The British Library. This thesis is divided into three, essentially self-contained, parts. In the first part we examine the structure of classical three-dimensional space-times. Here, we review and extend what is known about the gravitational theories in these models. We investigate the non-existence of a Newtonian limit to the relativistic theories showing that in the presence of certain matter terms, Newtonian gravity can be obtained as a suitable weak-field limit. We present a number of new, exact static and non-static solutions to the equations of three-dimensional general relativity with scalar field and perfect fluid sources. We comment on the relationship between the stiff perfect fluid and the scalar field. Motivated by the Kaluza-Klein procedure of dimensional reduction we find some exact scalar field solutions which have analogues in four-dimensions. We also present classification schemes based on the group of motions of homogeneous space-times and on the Cotton -York tensor. The description of the general cosmological solution in the vicinity of the singularity is given in terms of the number of arbitrary spatial functions independently specified on a space-like hypersurface. We also study a series approximation to the space-time in the vicinity of the cosmological singularity. Some conjectures are made concerning the space-time singularities. We present two exact cosmological solutions containing self-interacting scalar fields. The models exhibit an inflationary behaviour. We also present an anisotropic cosmological model. The second part of the thesis contains a study of certain cosmological models which have self-interacting scalar fields obeying an exponential potential. We use the techniques of phase portrait analysis to study the N-dimensional cosmological models as well as certain anisotropic models. The latter involves the analysis of a three-dimensional system of equations and we review the relevant theory

  12. Scalar-field theory of dark matter

    NASA Astrophysics Data System (ADS)

    Huang, Kerson; Xiong, Chi; Zhao, Xiaofei

    2014-05-01

    We develop a theory of dark matter based on a previously proposed picture, in which a complex vacuum scalar field makes the universe a superfluid, with the energy density of the superfluid giving rise to dark energy, and variations from vacuum density giving rise to dark matter. We formulate a nonlinear Klein-Gordon equation to describe the superfluid, treating galaxies as external sources. We study the response of the superfluid to the galaxies, in particular, the emergence of the dark-matter galactic halo, contortions during galaxy collisions and the creation of vortices due to galactic rotation.

  13. Global integrability of cosmological scalar fields

    NASA Astrophysics Data System (ADS)

    Maciejewski, Andrzej J.; Przybylska, Maria; Stachowiak, Tomasz; Szydłowski, Marek

    2008-11-01

    We investigate the Liouvillian integrability of Hamiltonian systems describing a universe filled with a scalar field (possibly complex). The tool used is the differential Galois group approach, as introduced by Morales-Ruiz and Ramis. The main result is that the generic systems with minimal coupling are non-integrable, although there still exist some values of parameters for which integrability remains undecided; the conformally coupled systems are only integrable in four known cases. We also draw a connection with the chaos present in such cosmological models, and the issues of the integrability restricted to the real domain.

  14. Induced gravity I: real scalar field

    NASA Astrophysics Data System (ADS)

    Einhorn, Martin B.; Jones, D. R. Timothy

    2016-01-01

    We show that classically scale invariant gravity coupled to a single scalar field can undergo dimensional transmutation and generate an effective Einstein-Hilbert action for gravity, coupled to a massive dilaton. The same theory has an ultraviolet fixed point for coupling constant ratios such that all couplings are asymptotically free. However the catchment basin of this fixed point does not include regions of coupling constant parameter space compatible with locally stable dimensional transmutation. In a companion paper, we will explore whether this more desirable outcome does obtain in more complicated theories with non-Abelian gauge interactions.

  15. Scalar field collapse with negative cosmological constant

    NASA Astrophysics Data System (ADS)

    Baier, R.; Nishimura, H.; Stricker, S. A.

    2015-07-01

    The formation of black holes or naked singularities is studied in a model in which a homogeneous time-dependent scalar field with an exponential potential couples to four-dimensional gravity with negative cosmological constant. An analytic solution is derived and its consequences are discussed. The model depends only on one free parameter, which determines the equation of state and decides the fate of the spacetime. Without fine tuning the value of this parameter the collapse ends in a generic formation of a black hole or a naked singularity. The latter case violates the cosmic censorship conjecture.

  16. View-dependent streamlines for 3D vector fields.

    PubMed

    Marchesin, Stéphane; Chen, Cheng-Kai; Ho, Chris; Ma, Kwan-Liu

    2010-01-01

    This paper introduces a new streamline placement and selection algorithm for 3D vector fields. Instead of considering the problem as a simple feature search in data space, we base our work on the observation that most streamline fields generate a lot of self-occlusion which prevents proper visualization. In order to avoid this issue, we approach the problem in a view-dependent fashion and dynamically determine a set of streamlines which contributes to data understanding without cluttering the view. Since our technique couples flow characteristic criteria and view-dependent streamline selection we are able achieve the best of both worlds: relevant flow description and intelligible, uncluttered pictures. We detail an efficient GPU implementation of our algorithm, show comprehensive visual results on multiple datasets and compare our method with existing flow depiction techniques. Our results show that our technique greatly improves the readability of streamline visualizations on different datasets without requiring user intervention. PMID:20975200

  17. A Reconstruction Approach for Imaging in 3D Cone Beam Vector Field Tomography

    PubMed Central

    Schuster, T.; Theis, D.; Louis, A. K.

    2008-01-01

    3D cone beam vector field tomography (VFT) aims for reconstructing and visualizing the velocity field of a moving fluid by measuring line integrals of projections of the vector field. The data are obtained by ultrasound measurements along a scanning curve which surrounds the object. From a mathematical point of view, we have to deal with the inversion of the vectorial cone beam transform. Since the vectorial cone beam transform of any gradient vector field with compact support is identically equal to zero, we can only hope to reconstruct the solenoidal part of an arbitrary vector field. In this paper we will at first summarize important properties of the cone beam transform for three-dimensional solenoidal vector fields and then propose a solution approach based on the method of approximate inverse. In this context, we intensively make use of results from scalar 3D computerized tomography. The findings presented in the paper will continuously be illustrated by pictures from first numerical experiments done with exact, simulated data. PMID:19197391

  18. Tuning the 3D plasmon field of nanohole arrays

    NASA Astrophysics Data System (ADS)

    Couture, Maxime; Liang, Yuzhang; Poirier Richard, Hugo-Pierre; Faid, Rita; Peng, Wei; Masson, Jean-Francois

    2013-11-01

    Modern photonics is being revolutionized through the use of nanostructured plasmonic materials, which confine light to sub-diffraction limit resolution providing universal, sensitive, and simple transducers for molecular sensors. Understanding the mechanisms by which light interacts with plasmonic crystals is essential for developing application-focussed devices. The strong influence of grating coupling on electromagnetic field distribution, frequency and degeneracy of plasmon bands has now been characterized using hexagonal nanohole arrays. An equation for nanohole arrays was derived to demonstrate the strong influence of incidence and rotation angle on optical properties of 2D plasmonic crystals such as nanohole arrays. Consequently, we report experimental data that are in strong agreement with finite difference time-domain (FDTD) simulations that clearly demonstrate the influence of the grating coupling conditions on the optical properties (such as plasmon degeneracy and bandwidth), and on the distribution of the plasmon field around nanohole arrays (including tuneable penetration depths and highly localized fields). The tuneable 3D plasmon field allowed for controlled sensing properties and by increasing the angle of incidence to 30 degrees, the resonance wavelength was tuned from 1000 to 600 nm, and the sensitivity was enhanced by nearly 300% for a protein assay using surface plasmon resonance (SPR) and by 40% with surface-enhanced Raman scattering (SERS) sensors.Modern photonics is being revolutionized through the use of nanostructured plasmonic materials, which confine light to sub-diffraction limit resolution providing universal, sensitive, and simple transducers for molecular sensors. Understanding the mechanisms by which light interacts with plasmonic crystals is essential for developing application-focussed devices. The strong influence of grating coupling on electromagnetic field distribution, frequency and degeneracy of plasmon bands has now been

  19. Scalar field dark matter and the Higgs field

    NASA Astrophysics Data System (ADS)

    Bertolami, O.; Cosme, Catarina; Rosa, João G.

    2016-08-01

    We discuss the possibility that dark matter corresponds to an oscillating scalar field coupled to the Higgs boson. We argue that the initial field amplitude should generically be of the order of the Hubble parameter during inflation, as a result of its quasi-de Sitter fluctuations. This implies that such a field may account for the present dark matter abundance for masses in the range 10-6-10-4eV, if the tensor-to-scalar ratio is within the range of planned CMB experiments. We show that such mass values can naturally be obtained through either Planck-suppressed non-renormalizable interactions with the Higgs boson or, alternatively, through renormalizable interactions within the Randall-Sundrum scenario, where the dark matter scalar resides in the bulk of the warped extra-dimension and the Higgs is confined to the infrared brane.

  20. Searching for Chameleon-Like Scalar Fields

    NASA Astrophysics Data System (ADS)

    Levshakov, S. A.; Molaro, P.; Kozlov, M. G.; Lapinov, A. V.; Henkel, Ch.; Reimersi, D.; Sakai, T.; Agafonova, I. I.

    Using the 32-m Medicina, 45-m Nobeyama, and 100-m Effelsberg telescopes we found a statistically significant velocity offset ΔV ≈ 27 ± 3 m s - 1 (1σ) between the inversion transition in NH3(1,1) and low-J rotational transitions in N2H + (1-0) and HC3N(2-1) arising in cold and dense molecular cores in the Milky Way. Systematic shifts of the line centers caused by turbulent motions and velocity gradients, possible non-thermal hyperfine structure populations, pressure and optical depth effects are shown to be lower than or about 1 m s - 1 and thus can be neglected in the total error budget. The reproducibility of ΔV at the same facility (Effelsberg telescope) on a year-to-year basis is found to be very good. Since the frequencies of the inversion and rotational transitions have different sensitivities to variations in μ ≡ m e / m p, the revealed non-zero ΔV may imply that μ changes when measured at high (terrestrial) and low (interstellar) matter densities as predicted by chameleon-like scalar field models - candidates to the dark energy carrier. Thus we are testing whether scalar field models have chameleon-type interactions with ordinary matter. The measured velocity offset corresponds to the ratio Δμ / μ ≡ (μspace - μlab) / μlab of (26 ± 3) ×10 - 9 (1σ).

  1. Scalar field theory on noncommutative Snyder spacetime

    SciTech Connect

    Battisti, Marco Valerio; Meljanac, Stjepan

    2010-07-15

    We construct a scalar field theory on the Snyder noncommutative space-time. The symmetry underlying the Snyder geometry is deformed at the co-algebraic level only, while its Poincare algebra is undeformed. The Lorentz sector is undeformed at both the algebraic and co-algebraic level, but the coproduct for momenta (defining the star product) is non-coassociative. The Snyder-deformed Poincare group is described by a non-coassociative Hopf algebra. The definition of the interacting theory in terms of a nonassociative star product is thus questionable. We avoid the nonassociativity by the use of a space-time picture based on the concept of the realization of a noncommutative geometry. The two main results we obtain are (i) the generic (namely, for any realization) construction of the co-algebraic sector underlying the Snyder geometry and (ii) the definition of a nonambiguous self-interacting scalar field theory on this space-time. The first-order correction terms of the corresponding Lagrangian are explicitly computed. The possibility to derive Noether charges for the Snyder space-time is also discussed.

  2. Exploration 3-D Seismic Field Test/Native Tribes Initiative

    SciTech Connect

    Carroll, Herbert B.; Chen, K.C.; Guo, Genliang; Johnson, W.I.; Reeves,T.K.; Sharma,Bijon

    1999-04-27

    To determine current acquisition procedures and costs and to further the goals of the President's Initiative for Native Tribes, a seismic-survey project is to be conducted on Osage tribal lands. The goals of the program are to demonstrate the capabilities, costs, and effectiveness of 3-D seismic work in a small-operator setting and to determine the economics of such a survey. For these purposes, typical small-scale independent-operator practices are being followed and a shallow target chose in an area with a high concentration of independent operators. The results will be analyzed in detail to determine if there are improvements and/or innovations which can be easily introduced in field-acquisition procedures, in processing, or in data manipulation and interpretation to further reduce operating costs and to make the system still more active to the small-scale operator.

  3. Advanced prior modeling for 3D bright field electron tomography

    NASA Astrophysics Data System (ADS)

    Sreehari, Suhas; Venkatakrishnan, S. V.; Drummy, Lawrence F.; Simmons, Jeffrey P.; Bouman, Charles A.

    2015-03-01

    Many important imaging problems in material science involve reconstruction of images containing repetitive non-local structures. Model-based iterative reconstruction (MBIR) could in principle exploit such redundancies through the selection of a log prior probability term. However, in practice, determining such a log prior term that accounts for the similarity between distant structures in the image is quite challenging. Much progress has been made in the development of denoising algorithms like non-local means and BM3D, and these are known to successfully capture non-local redundancies in images. But the fact that these denoising operations are not explicitly formulated as cost functions makes it unclear as to how to incorporate them in the MBIR framework. In this paper, we formulate a solution to bright field electron tomography by augmenting the existing bright field MBIR method to incorporate any non-local denoising operator as a prior model. We accomplish this using a framework we call plug-and-play priors that decouples the log likelihood and the log prior probability terms in the MBIR cost function. We specifically use 3D non-local means (NLM) as the prior model in the plug-and-play framework, and showcase high quality tomographic reconstructions of a simulated aluminum spheres dataset, and two real datasets of aluminum spheres and ferritin structures. We observe that streak and smear artifacts are visibly suppressed, and that edges are preserved. Also, we report lower RMSE values compared to the conventional MBIR reconstruction using qGGMRF as the prior model.

  4. Study of Several Potentials as Scalar Field Dark Matter Candidates

    SciTech Connect

    Matos, Tonatiuh; Vazquez-Gonzalez, Alberto; Magan a, Juan

    2008-12-04

    In this work we study several scalar field potentials as a plausible candidate to be the dark matter in the universe. The main idea is the following; if the scalar field is an ultralight boson particle, it condensates like a Bose-Einstein system at very early times and forms the basic structure of the Universe. Real scalar fields collapse in equilibrium configurations which oscillate in space-time (oscillatons). The cosmological behavior of the field equations are solved using the dynamical system formalism. We use the current cosmological parameters as constraints for the free parameters of the scalar field potentials. We are able to reproduce very well the cosmological predictions of the standard {lambda}CDM model with some scalar field potentials. Therefore, scalar field dark matter seems to be a good alternative to be the nature of the dark matter of the universe.

  5. Pipe3D, a pipeline to analyze Integral Field Spectroscopy Data: I. New fitting philosophy of FIT3D

    NASA Astrophysics Data System (ADS)

    Sánchez, S. F.; Pérez, E.; Sánchez-Blázquez, P.; González, J. J.; Rosález-Ortega, F. F.; Cano-Dí az, M.; López-Cobá, C.; Marino, R. A.; Gil de Paz, A.; Mollá, M.; López-Sánchez, A. R.; Ascasibar, Y.; Barrera-Ballesteros, J.

    2016-04-01

    We present an improved version of FIT3D, a fitting tool for the analysis of the spectroscopic properties of the stellar populations and the ionized gas derived from moderate resolution spectra of galaxies. This tool was developed to analyze integral field spectroscopy data and it is the basis of Pipe3D, a pipeline used in the analysis of CALIFA, MaNGA, and SAMI data. We describe the philosophy and each step of the fitting procedure. We present an extensive set of simulations in order to estimate the precision and accuracy of the derived parameters for the stellar populations and the ionized gas. We report on the results of those simulations. Finally, we compare the results of the analysis using FIT3D with those provided by other widely used packages, and we find that the parameters derived by FIT3D are fully compatible with those derived using these other tools.

  6. Electromagnetic fields with vanishing scalar invariants

    NASA Astrophysics Data System (ADS)

    Ortaggio, Marcello; Pravda, Vojtěch

    2016-06-01

    We determine the class of p-forms {\\boldsymbol{F}} that possess vanishing scalar invariants (VSIs) at arbitrary order in an n-dimensional spacetime. Namely, we prove that {\\boldsymbol{F}} is a VSI if and only if if it is of type N, its multiple null direction {\\boldsymbol{\\ell }} is ‘degenerate Kundt’, and {\\pounds }{\\boldsymbol{\\ell }}{\\boldsymbol{F}}=0. The result is theory-independent. Next, we discuss the special case of Maxwell fields, both at the level of test fields and of the full Einstein-Maxwell equations. These describe electromagnetic non-expanding waves propagating in various Kundt spacetimes. We further point out that a subset of these solutions possesses a universal property, i.e. they also solve (virtually) any generalized (non-linear and with higher derivatives) electrodynamics, possibly also coupled to Einstein’s gravity.

  7. Massively parallel regularized 3D inversion of potential fields on CPUs and GPUs

    NASA Astrophysics Data System (ADS)

    Čuma, Martin; Zhdanov, Michael S.

    2014-01-01

    We have recently introduced a massively parallel regularized 3D inversion of potential fields data. This program takes as an input gravity or magnetic vector, tensor and Total Magnetic Intensity (TMI) measurements and produces 3D volume of density, susceptibility, or three dimensional magnetization vector, the latest also including magnetic remanence information. The code uses combined MPI and OpenMP approach that maps well onto current multiprocessor multicore clusters and exhibits nearly linear strong and weak parallel scaling. It has been used to invert regional to continental size data sets with up to billion cells of the 3D Earth's volume on large clusters for interpretation of large airborne gravity and magnetics surveys. In this paper we explain the features that made this massive parallelization feasible and extend the code to add GPU support in the form of the OpenACC directives. This implementation resulted in up to a 22x speedup as compared to the scalar multithreaded implementation on a 12 core Intel CPU based computer node. Furthermore, we also introduce a mixed single-double precision approach, which allows us to perform most of the calculation at a single floating point number precision while keeping the result as precise as if the double precision had been used. This approach provides an additional 40% speedup on the GPUs, as compared to the pure double precision implementation. It also has about half of the memory footprint of the fully double precision version.

  8. Releasing scalar fields: cosmological simulations of scalar-tensor theories for gravity beyond the static approximation.

    PubMed

    Llinares, Claudio; Mota, David F

    2013-04-19

    Several extensions of general relativity and high energy physics include scalar fields as extra degrees of freedom. In the search for predictions in the nonlinear regime of cosmological evolution, the community makes use of numerical simulations in which the quasistatic limit is assumed when solving the equation of motion of the scalar field. In this Letter, we propose a method to solve the full equations of motion for scalar degrees of freedom coupled to matter. We run cosmological simulations which track the full time and space evolution of the scalar field, and find striking differences with respect to the commonly used quasistatic approximation. This novel procedure reveals new physical properties of the scalar field and uncovers concealed astrophysical phenomena which were hidden in the old approach. PMID:23679591

  9. Massive basketball diagram for a thermal scalar field theory

    NASA Astrophysics Data System (ADS)

    Andersen, Jens O.; Braaten, Eric; Strickland, Michael

    2000-08-01

    The ``basketball diagram'' is a three-loop vacuum diagram for a scalar field theory that cannot be expressed in terms of one-loop diagrams. We calculate this diagram for a massive scalar field at nonzero temperature, reducing it to expressions involving three-dimensional integrals that can be easily evaluated numerically. We use this result to calculate the free energy for a massive scalar field with a φ4 interaction to three-loop order.

  10. 3D Magnetotelluic characterization of the Coso GeothermalField

    SciTech Connect

    Newman, Gregory A.; Hoversten, G. Michael; Wannamaker, Philip E.; Gasperikova, Erika

    2007-04-23

    -dimensional conductivitymodel. Initial analysis of the Coso MT data was carried out using 2D MTimaging. An initial 3D conductivity model was constructed from a seriesof 2D resistivity images obtained using the inline electric fieldmeasurements (Zyx impedance elements) along several measurementtransects. This model was then refined through a 3D inversion process.This model shows the controlling geological structures possiblyinfluencing well production at Coso and correlations with mapped surfacefeatures such as faults and regional geoelectric strike. The 3D modelalso illustrates the refinement in positioning of conductivity contactswhen compared to isolated 2D inversion transects. The conductivity modelhas also been correlated with microearthquake locations, well fluidproduction intervals and most importantly with an acoustic and shearvelocity model derived by Wu and Lees (1999). This later correlationshows the near-vertical high conductivity structure on the eastern flankof the producing field is also a zone of increased acoustic velocity andincreased Vp/Vs ratio bounded by mapped fault traces. South of theDevil's Kitchen is an area of high geothermal well density, where highlyconductive near surface material is interpreted as a clay cap alterationzone manifested from the subsurface geothermal fluids and relatedgeochemistry. Beneath the clay cap, however, the conductivity isnondescript, whereas the Vp/Vs ratio is enhanced over the productionintervals. It is recommended that more MT data sites be acquired to thesouthwest of the Devil's Kitchen area to better refine the conductivitymodel in that area.

  11. 3D crack tip fields for FCC single crystals

    SciTech Connect

    Cuitino, A.M.; Ortiz, M.

    1995-12-31

    Cracks in single crystals are of concern in a number of structural and non-structural applications, ranging form single-crystal turbine blades and rotors to metal interconnect lines in microcircuits. In this paper we present 3D numerical simulations of the crack-tip fields of a Cu single crystal, including stress, strain and slip activity patterns. The orientation of the crack tip is along the crystallographic orientation (101), while the crack plane is (010). A material model based on dislocation mechanics is used in these simulations. This model correctly predicts the observed behavior of Cu, including the basic hardening characteristics of single crystals, orientation dependence and stage I-II-III structure of the stress-strain curves, the observed levels of latent hardening and their variation with orientation and deformation in the primary system and slip activities and dislocation densities. We use the FEM within the context of finite deformation plasticity. In the figure below, we show the finite element mesh composed by 12-noded tetrahedrons with 6-noded triangular faces. The model simulates half of a beam, which is subjected to a concentrated load at 1/8 of total length from the support. Detailed results of the stress, deformation and slip activity are presented at different radii from crack tip and at different depths from the surface. In general, the results show a strong difference in the slip activity pattern form the interior to the exterior, while smaller differences are encountered in the stress and strain fields.

  12. 3-D Finite Element Analyses of the Egan Cavern Field

    SciTech Connect

    Klamerus, E.W.; Ehgartner, B.L.

    1999-02-01

    Three-dimensional finite element analyses were performed for the two gas-filled storage caverns at the Egan field, Jennings dome, Louisiana. The effects of cavern enlargement on surface subsidence, storage loss, and cavern stability were investigated. The finite element model simulated the leaching of caverns to 6 and 8 billion cubic feet (BCF) and examined their performance at various operating conditions. Operating pressures varied from 0.15 psi/ft to 0.9 psi/ft at the bottom of the lowest cemented casing. The analysis also examined the stability of the web or pillar of salt between the caverns under differential pressure loadings. The 50-year simulations were performed using JAC3D, a three dimensional finite element analysis code for nonlinear quasistatic solids. A damage criterion based on onset of dilatancy was used to evaluate cavern instability. Dilation results from the development of microfractures in salt and, hence, potential increases in permeability onset occurs well before large scale failure. The analyses predicted stable caverns throughout the 50-year period for the range of pressures investigated. Some localized salt damage was predicted near the bottom walls of the caverns if the caverns are operated at minimum pressure for long periods of time. Volumetric cavern closures over time due to creep were moderate to excessive depending on the salt creep properties and operating pressures. However, subsidence above the cavern field was small and should pose no problem, to surface facilities.

  13. Duality linking standard and tachyon scalar field cosmologies

    SciTech Connect

    Avelino, P. P.; Bazeia, D.; Losano, L.; Oliveira, J. C. R. E.; Pavan, A. B.

    2010-09-15

    In this work we investigate the duality linking standard and tachyon scalar field homogeneous and isotropic cosmologies in N+1 dimensions. We determine the transformation between standard and tachyon scalar fields and between their associated potentials, corresponding to the same background evolution. We show that, in general, the duality is broken at a perturbative level, when deviations from a homogeneous and isotropic background are taken into account. However, we find that for slow-rolling fields the duality is still preserved at a linear level. We illustrate our results with specific examples of cosmological relevance, where the correspondence between scalar and tachyon scalar field models can be calculated explicitly.

  14. Scalar Field Theories with Polynomial Shift Symmetries

    NASA Astrophysics Data System (ADS)

    Griffin, Tom; Grosvenor, Kevin T.; Hořava, Petr; Yan, Ziqi

    2015-12-01

    We continue our study of naturalness in nonrelativistic QFTs of the Lifshitz type, focusing on scalar fields that can play the role of Nambu-Goldstone (NG) modes associated with spontaneous symmetry breaking. Such systems allow for an extension of the constant shift symmetry to a shift by a polynomial of degree P in spatial coordinates. These "polynomial shift symmetries" in turn protect the technical naturalness of modes with a higher-order dispersion relation, and lead to a refinement of the proposed classification of infrared Gaussian fixed points available to describe NG modes in nonrelativistic theories. Generic interactions in such theories break the polynomial shift symmetry explicitly to the constant shift. It is thus natural to ask: Given a Gaussian fixed point with polynomial shift symmetry of degree P, what are the lowest-dimension operators that preserve this symmetry, and deform the theory into a self-interacting scalar field theory with the shift symmetry of degree P? To answer this (essentially cohomological) question, we develop a new graph-theoretical technique, and use it to prove several classification theorems. First, in the special case of P = 1 (essentially equivalent to Galileons), we reproduce the known Galileon N-point invariants, and find their novel interpretation in terms of graph theory, as an equal-weight sum over all labeled trees with N vertices. Then we extend the classification to P > 1 and find a whole host of new invariants, including those that represent the most relevant (or least irrelevant) deformations of the corresponding Gaussian fixed points, and we study their uniqueness.

  15. Geometrization conditions for perfect fluids, scalar fields, and electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Krongos, D. S.; Torre, C. G.

    2015-07-01

    Rainich-type conditions giving a spacetime "geometrization" of matter fields in general relativity are reviewed and extended. Three types of matter are considered: perfect fluids, scalar fields, and electromagnetic fields. Necessary and sufficient conditions on a spacetime metric for it to be part of a perfect fluid solution of the Einstein equations are given. Formulas for constructing the fluid from the metric are obtained. All fluid results hold for any spacetime dimension. Geometric conditions on a metric which are necessary and sufficient for it to define a solution of the Einstein-scalar field equations and formulas for constructing the scalar field from the metric are unified and extended to arbitrary dimensions, to include a cosmological constant, and to include any self-interaction potential. Necessary and sufficient conditions on a four-dimensional spacetime metric for it to be an electrovacuum and formulas for constructing the electromagnetic field from the metric are generalized to include a cosmological constant. Both null and non-null electromagnetic fields are treated. A number of examples and applications of these results are presented.

  16. Determining 3D Flow Fields via Multi-camera Light Field Imaging

    PubMed Central

    Truscott, Tadd T.; Belden, Jesse; Nielson, Joseph R.; Daily, David J.; Thomson, Scott L.

    2013-01-01

    In the field of fluid mechanics, the resolution of computational schemes has outpaced experimental methods and widened the gap between predicted and observed phenomena in fluid flows. Thus, a need exists for an accessible method capable of resolving three-dimensional (3D) data sets for a range of problems. We present a novel technique for performing quantitative 3D imaging of many types of flow fields. The 3D technique enables investigation of complicated velocity fields and bubbly flows. Measurements of these types present a variety of challenges to the instrument. For instance, optically dense bubbly multiphase flows cannot be readily imaged by traditional, non-invasive flow measurement techniques due to the bubbles occluding optical access to the interior regions of the volume of interest. By using Light Field Imaging we are able to reparameterize images captured by an array of cameras to reconstruct a 3D volumetric map for every time instance, despite partial occlusions in the volume. The technique makes use of an algorithm known as synthetic aperture (SA) refocusing, whereby a 3D focal stack is generated by combining images from several cameras post-capture 1. Light Field Imaging allows for the capture of angular as well as spatial information about the light rays, and hence enables 3D scene reconstruction. Quantitative information can then be extracted from the 3D reconstructions using a variety of processing algorithms. In particular, we have developed measurement methods based on Light Field Imaging for performing 3D particle image velocimetry (PIV), extracting bubbles in a 3D field and tracking the boundary of a flickering flame. We present the fundamentals of the Light Field Imaging methodology in the context of our setup for performing 3DPIV of the airflow passing over a set of synthetic vocal folds, and show representative results from application of the technique to a bubble-entraining plunging jet. PMID:23486112

  17. Inflationary solutions in the nonminimally coupled scalar field theory

    NASA Astrophysics Data System (ADS)

    Koh, Seoktae; Kim, Sang Pyo; Song, Doo Jong

    2005-08-01

    We study analytically and numerically the inflationary solutions for various type scalar potentials in the nonminimally coupled scalar field theory. The Hamilton-Jacobi equation is used to deal with nonlinear evolutions of inhomogeneous spacetimes and the long-wavelength approximation is employed to find the homogeneous solutions during an inflation period. The constraints that lead to a sufficient number of e-folds, a necessary condition for inflation, are found for the nonminimal coupling constant and initial conditions of the scalar field for inflation potentials. In particular, we numerically find an inflationary solution in the new inflation model of a nonminimal scalar field.

  18. Scalar field dark matter: behavior around black holes

    SciTech Connect

    Cruz-Osorio, Alejandro; Guzmán, F. Siddhartha; Lora-Clavijo, Fabio D. E-mail: guzman@ifm.umich.mx

    2011-06-01

    We present the numerical evolution of a massive test scalar fields around a Schwarzschild space-time. We proceed by using hyperboloidal slices that approach future null infinity, which is the boundary of scalar fields, and also demand the slices to penetrate the event horizon of the black hole. This approach allows the scalar field to be accreted by the black hole and to escape toward future null infinity. We track the evolution of the energy density of the scalar field, which determines the rate at which the scalar field is being diluted. We find polynomial decay of the energy density of the scalar field, and use it to estimate the rate of dilution of the field in time. Our findings imply that the energy density of the scalar field decreases even five orders of magnitude in time scales smaller than a year. This implies that if a supermassive black hole is the Schwarzschild solution, then scalar field dark matter would be diluted extremely fast.

  19. Entanglement entropy in scalar field theory

    NASA Astrophysics Data System (ADS)

    Hertzberg, Mark P.

    2013-01-01

    Understanding the dependence of entanglement entropy on the renormalized mass in quantum field theories can provide insight into phenomena such as quantum phase transitions, since the mass varies in a singular way near the transition. Here we perturbatively calculate the entanglement entropy in interacting scalar field theory, focusing on the dependence on the field’s mass. We study λϕ4 and gϕ3 theories in their ground state. By tracing over a half space, using the replica trick and position space Green’s functions on the cone, we show that spacetime volume divergences cancel and renormalization can be consistently performed in this conical geometry. We establish finite contributions to the entanglement entropy up to two-loop order, involving a finite area law. The resulting entropy is simple and intuitive: the free theory result in d = 3 (that we included in an earlier publication) ΔS ˜ A m2ln (m2) is altered, to leading order, by replacing the bare mass m by the renormalized mass mr evaluated at the renormalization scale of zero momentum.

  20. Bose-Einstein condensates from scalar field dark matter

    SciTech Connect

    Urena-Lopez, L. Arturo

    2010-12-07

    We review the properties of astrophysical and cosmological relevance that may arise from the bosonic nature of scalar field dark matter models. The key property is the formation of Bose-Einstein condensates, but we also consider the presence of non-empty excited states that may be relevant for the description of scalar field galaxy halos and the properties of rotation curves.

  1. Fundamental scalar fields and the dark side of the universe

    NASA Astrophysics Data System (ADS)

    Mychelkin, Eduard G.; Makukov, Maxim A.

    2015-11-01

    Starting with geometrical premises, we infer the existence of fundamental cosmological scalar fields. We then consider physically relevant situations in which spacetime metric is induced by one or, in general, by two scalar fields, in accord with the Papapetrou algorithm. The first of these fields, identified with dark energy (DE), has exceedingly small but finite (subquantum) Hubble mass scale ( ≈ 10-33 eV), and might be represented as a neutral superposition of quasi-static electric fields. The second field is identified with dark matter (DM) as an effectively scalar conglomerate composed of primordial neutrinos and antineutrinos in a special tachyonic state.

  2. On the entanglement between interacting scalar field theories

    NASA Astrophysics Data System (ADS)

    Mozaffar, M. Reza Mohammadi; Mollabashi, Ali

    2016-03-01

    We study "field space entanglement" in certain quantum field theories consisting of N number of free scalar fields interacting with each other via kinetic mixing terms. We present exact analytic expressions for entanglement and Renyi entropies between arbitrary numbers of scalar fields by which we could explore certain entanglement inequalities. Other entanglement measures such as mutual information and entanglement negativity have also been studied. We also give some comments about possible holographic realizations of such models.

  3. Dynamic scattering theory for dark-field electron holography of 3D strain fields.

    PubMed

    Lubk, Axel; Javon, Elsa; Cherkashin, Nikolay; Reboh, Shay; Gatel, Christophe; Hÿtch, Martin

    2014-01-01

    Dark-field electron holography maps strain in crystal lattices into reconstructed phases over large fields of view. Here we investigate the details of the lattice strain-reconstructed phase relationship by applying dynamic scattering theory both analytically and numerically. We develop efficient analytic linear projection rules for 3D strain fields, facilitating a straight-forward calculation of reconstructed phases from 3D strained materials. They are used in the following to quantify the influence of various experimental parameters like strain magnitude, specimen thickness, excitation error and surface relaxation. PMID:24012934

  4. Massive basketball diagram for a thermal scalar field theory

    SciTech Connect

    Andersen, Jens O.; Braaten, Eric; Strickland, Michael

    2000-08-15

    The ''basketball diagram'' is a three-loop vacuum diagram for a scalar field theory that cannot be expressed in terms of one-loop diagrams. We calculate this diagram for a massive scalar field at nonzero temperature, reducing it to expressions involving three-dimensional integrals that can be easily evaluated numerically. We use this result to calculate the free energy for a massive scalar field with a {phi}{sup 4} interaction to three-loop order. (c) 2000 The American Physical Society.

  5. General analytic solutions of scalar field cosmology with arbitrary potential

    NASA Astrophysics Data System (ADS)

    Dimakis, N.; Karagiorgos, A.; Zampeli, Adamantia; Paliathanasis, Andronikos; Christodoulakis, T.; Terzis, Petros A.

    2016-06-01

    We present the solution space for the case of a minimally coupled scalar field with arbitrary potential in a Friedmann-Lemaître-Robertson-Walker metric. This is made possible due to the existence of a nonlocal integral of motion corresponding to the conformal Killing field of the two-dimensional minisuperspace metric. Both the spatially flat and nonflat cases are studied first in the presence of only the scalar field and subsequently with the addition of noninteracting perfect fluids. It is verified that this addition does not change the general form of the solution, but only the particular expressions of the scalar field and the potential. The results are applied in the case of parametric dark energy models where we derive the scalar field equivalence solution for some proposed models in the literature.

  6. Scalar field radiation from dilatonic black holes

    NASA Astrophysics Data System (ADS)

    Gohar, H.; Saifullah, K.

    2012-12-01

    We study radiation of scalar particles from charged dilaton black holes. The Hamilton-Jacobi method has been used to work out the tunneling probability of outgoing particles from the event horizon of dilaton black holes. For this purpose we use WKB approximation to solve the charged Klein-Gordon equation. The procedure gives Hawking temperature for these black holes as well.

  7. Automated objective characterization of visual field defects in 3D

    NASA Technical Reports Server (NTRS)

    Fink, Wolfgang (Inventor)

    2006-01-01

    A method and apparatus for electronically performing a visual field test for a patient. A visual field test pattern is displayed to the patient on an electronic display device and the patient's responses to the visual field test pattern are recorded. A visual field representation is generated from the patient's responses. The visual field representation is then used as an input into a variety of automated diagnostic processes. In one process, the visual field representation is used to generate a statistical description of the rapidity of change of a patient's visual field at the boundary of a visual field defect. In another process, the area of a visual field defect is calculated using the visual field representation. In another process, the visual field representation is used to generate a statistical description of the volume of a patient's visual field defect.

  8. Integration of real-time 3D capture, reconstruction, and light-field display

    NASA Astrophysics Data System (ADS)

    Zhang, Zhaoxing; Geng, Zheng; Li, Tuotuo; Pei, Renjing; Liu, Yongchun; Zhang, Xiao

    2015-03-01

    Effective integration of 3D acquisition, reconstruction (modeling) and display technologies into a seamless systems provides augmented experience of visualizing and analyzing real objects and scenes with realistic 3D sensation. Applications can be found in medical imaging, gaming, virtual or augmented reality and hybrid simulations. Although 3D acquisition, reconstruction, and display technologies have gained significant momentum in recent years, there seems a lack of attention on synergistically combining these components into a "end-to-end" 3D visualization system. We designed, built and tested an integrated 3D visualization system that is able to capture in real-time 3D light-field images, perform 3D reconstruction to build 3D model of the objects, and display the 3D model on a large autostereoscopic screen. In this article, we will present our system architecture and component designs, hardware/software implementations, and experimental results. We will elaborate on our recent progress on sparse camera array light-field 3D acquisition, real-time dense 3D reconstruction, and autostereoscopic multi-view 3D display. A prototype is finally presented with test results to illustrate the effectiveness of our proposed integrated 3D visualization system.

  9. Nonrelativistic approach for cosmological scalar field dark matter

    NASA Astrophysics Data System (ADS)

    Ureña-López, L. Arturo

    2014-07-01

    We derive nonrelativistic equations of motion for the formation of cosmological structure in a scalar field dark matter (SFDM) model corresponding to a complex scalar field endowed with a quadratic scalar potential. Starting with the equations of motion written in the Newtonian gauge of scalar perturbations, we separate out the involved fields into relativistic and nonrelativistic parts and find the equations of motion for the latter that can be used to build up the full solution. One important assumption will be that the SFDM field is in the regime of fast oscillations, under which its behavior in the homogeneous regime is exactly that of cold dark matter. The resultant equations are quite similar to the Schrödinger-Poisson system of Newtonian boson stars plus relativistic leftovers, and they can be used to study the formation of cosmological structure in SFDM models, and others alike, to ultimately prove their viability as complete dark matter models.

  10. Bianchi type-I models with conformally invariant scalar field

    SciTech Connect

    Accioly, A.J.; Vaidya, A.N.; Som, M.M.

    1983-05-15

    The solutions of the Einstein equations with the trace-free energy-momentum tensor of conformally invariant scalar field as source are obtained in a spatially homogeneous anisotropic space-time. Some interesting features of the solutions are discussed.

  11. Noncommutative scalar field minimally coupled to nonsymmetric gravity

    SciTech Connect

    Kouadik, S.; Sefai, D.

    2012-06-27

    We construct a non-commutative non symmetric gravity minimally coupled model (the star product only couples matter). We introduce the action for the system considered namely a non-commutative scalar field propagating in a nontrivial gravitational background. We expand the action in powers of the anti-symmetric field and the graviton to second order adopting the assumption that the scalar is weekly coupled to the graviton. We compute the one loop radiative corrections to the self-energy of a scalar particle.

  12. Wormhole-induced operators for a massless scalar field

    SciTech Connect

    Goto, T.; Okada, Y. )

    1991-05-15

    Bilocal operators induced by an axionic wormhole solution are obtained in the case of a massless scalar field. For this purpose, we first show that the calculation of a Green's function for the scalar field on the wormhole background is reduced to a one-dimensional potential-barrier problem. We then evaluate numerically the asymptotic behavior of the Green's function and identify the effective interaction induced by the wormhole.

  13. Unimodular metagravity vs. general relativity with a scalar field

    SciTech Connect

    Pirogov, Yu. F.

    2010-01-15

    The unimodular metagravity, with the graviscalar as a dark matter, is compared with General Relativity (GR) in the presence of a scalar field. The effect of the graviscalar on the static spherically symmetric metric is studied. An exact limit solution representing a new cosmic object, the (harmonic) graviscalar black hole, is given. The relation with the black hole in the environment of a scalar field in GR is discussed.

  14. Nonlocal Stochastic Model for the Free Scalar Field Theory

    NASA Astrophysics Data System (ADS)

    Namsrai, Kh.

    1981-05-01

    The free scalar field is investigated within the framework of the Davidson stochastic model and of the hypothesis on space-time stochasticity. It is shown that the resulting Markov field obtained by averaging in this space-time is equivalent to a nonlocal Euclidean Markov field with the times scaled by a common factor which depends on the diffusion parameter ν. Our result generalizes Guerra and Ruggiero's procedure of stochastic quantization of scalar fields. On the basis of the assumption about unobservability of ν in quantum field theory, the Efimov nonlocal theory is obtained from Euclidean Markov field with form factors of the class of entire analytical functions.

  15. Generalized cosmic Chaplygin gas inspired intermediate standard scalar field inflation

    NASA Astrophysics Data System (ADS)

    Jawad, Abdul; Rani, Shamaila; Mohsaneen, Sidra

    2016-08-01

    We study the warm intermediate inflationary regime in the presence of generalized cosmic Chaplygin gas and an inflaton decay rate proportional to the temperature. For this purpose, we consider standard scalar field model during weak and strong dissipative regimes. We explore inflationary parameters like spectral index, scalar and tensor power spectra, tensor to scalar ratio and decay rate in order to compare the present model with recent observational data. The physical behavior of inflationary parameters is presented and found that all the results are agreed with recent observational data such as WMAP7, WMAP9 and Planck 2015.

  16. Scalar-field coordinates and the spherically symmetric Einstein equations for a zero-mass scalar field

    NASA Astrophysics Data System (ADS)

    Berberian, John Edwin

    1999-01-01

    A new framework is presented for analysing the spherically symmetric Einstein field equations for a zero-mass scalar field. The framework consists of a coordinate system (p, q), where the coordinate p is the scalar field, and q is a coordinate chosen to be orthogonal to p. This idea allows for a reduction of the field equations into a system of two first order partial differential equations for the areal metric function gqq and a mass function m . The metric coefficients in this coordinate system then take on values which are simply related to the scalars of the problem: 1->f˙1 ->f,gq q and-via the field equations-the scalar curvature R as well. The scalar field coordinate system is shown to have many advantages. Many of the known exact solutions (e.g. static, Roberts) are represented simply, and new self- similar solutions are derived. The framework is then applied to the problem of matching spherically symmetric scalar-tensor vacuum solutions to a homogeneous and isotropic dust solution (e.g. scalar- tensor Einstein-Straus swiss cheese solutions, scalar- tensor Oppenheimer-Snyder dust ball collapse). Scalar field coordinates are shown to be ideal for such an application. We derive the necessary matching conditions in scalar field coordinates, and show how they imply a natural extension of the Schücking condition for spherically symmetric vacuum in general relativity. The problem of finding a vacuum solution which matches a given homogeneous and isotropic solution is examined. It is found that the matching conditions are sufficient to guarantee local existence and uniqueness of the vacuum solution if it is assumed that the scalar field has neither maxima nor minima on the matching interface. In order to find explicit matched solutions, criteria are developed to screen known exact vacuum solutions for matchability, and procedures are given for determining the details of the homogeneous and isotropic solution (curvature constant, comoving radial coordinate of the

  17. 3D fingerprint imaging system based on full-field fringe projection profilometry

    NASA Astrophysics Data System (ADS)

    Huang, Shujun; Zhang, Zonghua; Zhao, Yan; Dai, Jie; Chen, Chao; Xu, Yongjia; Zhang, E.; Xie, Lili

    2014-01-01

    As an unique, unchangeable and easily acquired biometrics, fingerprint has been widely studied in academics and applied in many fields over the years. The traditional fingerprint recognition methods are based on the obtained 2D feature of fingerprint. However, fingerprint is a 3D biological characteristic. The mapping from 3D to 2D loses 1D information and causes nonlinear distortion of the captured fingerprint. Therefore, it is becoming more and more important to obtain 3D fingerprint information for recognition. In this paper, a novel 3D fingerprint imaging system is presented based on fringe projection technique to obtain 3D features and the corresponding color texture information. A series of color sinusoidal fringe patterns with optimum three-fringe numbers are projected onto a finger surface. From another viewpoint, the fringe patterns are deformed by the finger surface and captured by a CCD camera. 3D shape data of the finger can be obtained from the captured fringe pattern images. This paper studies the prototype of the 3D fingerprint imaging system, including principle of 3D fingerprint acquisition, hardware design of the 3D imaging system, 3D calibration of the system, and software development. Some experiments are carried out by acquiring several 3D fingerprint data. The experimental results demonstrate the feasibility of the proposed 3D fingerprint imaging system.

  18. Unified description of the dynamics of quintessential scalar fields

    SciTech Connect

    Ureña-López, L. Arturo

    2012-03-01

    Using the dynamical system approach, we describe the general dynamics of cosmological scalar fields in terms of critical points and heteroclinic lines. It is found that critical points describe the initial and final states of the scalar field dynamics, but that heteroclinic lines give a more complete description of the evolution in between the critical points. In particular, the heteroclinic line that departs from the (saddle) critical point of perfect fluid-domination is the representative path in phase space of quintessence fields that may be viable dark energy candidates. We also discuss the attractor properties of the heteroclinic lines, and their importance for the description of thawing and freezing fields.

  19. Thermodynamics of perfect fluids from scalar field theory

    NASA Astrophysics Data System (ADS)

    Ballesteros, Guillermo; Comelli, Denis; Pilo, Luigi

    2016-07-01

    The low-energy dynamics of relativistic continuous media is given by a shift-symmetric effective theory of four scalar fields. These scalars describe the embedding in spacetime of the medium and play the role of Stückelberg fields for spontaneously broken spatial and time translations. Perfect fluids are selected imposing a stronger symmetry group or reducing the field content to a single scalar. We explore the relation between the field theory description of perfect fluids to thermodynamics. By drawing the correspondence between the allowed operators at leading order in derivatives and the thermodynamic variables, we find that a complete thermodynamic picture requires the four Stückelberg fields. We show that thermodynamic stability plus the null-energy condition imply dynamical stability. We also argue that a consistent thermodynamic interpretation is not possible if any of the shift symmetries is explicitly broken.

  20. Bayesian 3D velocity field reconstruction with VIRBIUS

    NASA Astrophysics Data System (ADS)

    Lavaux, Guilhem

    2016-03-01

    I describe a new Bayesian-based algorithm to infer the full three dimensional velocity field from observed distances and spectroscopic galaxy catalogues. In addition to the velocity field itself, the algorithm reconstructs true distances, some cosmological parameters and specific non-linearities in the velocity field. The algorithm takes care of selection effects, miscalibration issues and can be easily extended to handle direct fitting of e.g. the inverse Tully-Fisher relation. I first describe the algorithm in details alongside its performances. This algorithm is implemented in the VIRBIUS (VelocIty Reconstruction using Bayesian Inference Software) software package. I then test it on different mock distance catalogues with a varying complexity of observational issues. The model proved to give robust measurement of velocities for mock catalogues of 3000 galaxies. I expect the core of the algorithm to scale to tens of thousands galaxies. It holds the promises of giving a better handle on future large and deep distance surveys for which individual errors on distance would impede velocity field inference.

  1. Inflation with an extra light scalar field after Planck

    NASA Astrophysics Data System (ADS)

    Vennin, Vincent; Koyama, Kazuya; Wands, David

    2016-03-01

    Bayesian inference techniques are used to investigate situations where an additional light scalar field is present during inflation and reheating. This includes (but is not limited to) curvaton-type models. We design a numerical pipeline where simeq 200 inflaton setups × 10 reheating scenarios = 2000 models are implemented and we present the results for a few prototypical potentials. We find that single-field models are remarkably robust under the introduction of light scalar degrees of freedom. Models that are ruled out at the single-field level are not improved in general, because good values of the spectral index and the tensor-to-scalar ratio can only be obtained for very fine-tuned values of the extra field parameters and/or when large non-Gaussianities are produced. The only exception is quartic large-field inflation, so that the best models after Planck are of two kinds: plateau potentials, regardless of whether an extra field is added or not, and quartic large-field inflation with an extra light scalar field, in some specific reheating scenarios. Using Bayesian complexity, we also find that more parameters are constrained for the models we study than for their single-field versions. This is because the added parameters not only contribute to the reheating kinematics but also to the cosmological perturbations themselves, to which the added field contributes. The interplay between these two effects lead to a suppression of degeneracies that is responsible for having more constrained parameters.

  2. N-body simulations for coupled scalar-field cosmology

    SciTech Connect

    Li Baojiu; Barrow, John D.

    2011-01-15

    We describe in detail the general methodology and numerical implementation of consistent N-body simulations for coupled-scalar-field models, including background cosmology and the generation of initial conditions (with the different couplings to different matter species taken into account). We perform fully consistent simulations for a class of coupled-scalar-field models with an inverse power-law potential and negative coupling constant, for which the chameleon mechanism does not work. We find that in such cosmological models the scalar-field potential plays a negligible role except in the background expansion, and the fifth force that is produced is proportional to gravity in magnitude, justifying the use of a rescaled gravitational constant G in some earlier N-body simulation works for similar models. We then study the effects of the scalar coupling on the nonlinear matter power spectra and compare with linear perturbation calculations to see the agreement and places where the nonlinear treatment deviates from the linear approximation. We also propose an algorithm to identify gravitationally virialized matter halos, trying to take account of the fact that the virialization itself is also modified by the scalar-field coupling. We use the algorithm to measure the mass function and study the properties of dark-matter halos. We find that the net effect of the scalar coupling helps produce more heavy halos in our simulation boxes and suppresses the inner (but not the outer) density profile of halos compared with the {Lambda}CDM prediction, while the suppression weakens as the coupling between the scalar field and dark-matter particles increases in strength.

  3. Constraining scalar fields with stellar kinematics and collisional dark matter

    SciTech Connect

    Amaro-Seoane, Pau; Barranco, Juan; Bernal, Argelia; Rezzolla, Luciano E-mail: jbarranc@aei.mpg.de E-mail: rezzolla@aei.mpg.de

    2010-11-01

    The existence and detection of scalar fields could provide solutions to long-standing puzzles about the nature of dark matter, the dark compact objects at the centre of most galaxies, and other phenomena. Yet, self-interacting scalar fields are very poorly constrained by astronomical observations, leading to great uncertainties in estimates of the mass m{sub φ} and the self-interacting coupling constant λ of these fields. To counter this, we have systematically employed available astronomical observations to develop new constraints, considerably restricting this parameter space. In particular, by exploiting precise observations of stellar dynamics at the centre of our Galaxy and assuming that these dynamics can be explained by a single boson star, we determine an upper limit for the boson star compactness and impose significant limits on the values of the properties of possible scalar fields. Requiring the scalar field particle to follow a collisional dark matter model further narrows these constraints. Most importantly, we find that if a scalar dark matter particle does exist, then it cannot account for both the dark-matter halos and the existence of dark compact objects in galactic nuclei.

  4. Quasistationary solutions of scalar fields around accreting black holes

    NASA Astrophysics Data System (ADS)

    Sanchis-Gual, Nicolas; Degollado, Juan Carlos; Izquierdo, Paula; Font, José A.; Montero, Pedro J.

    2016-08-01

    Massive scalar fields can form long-lived configurations around black holes. These configurations, dubbed quasibound states, have been studied both in the linear and nonlinear regimes. In this paper, we show that quasibound states can form in a dynamical scenario in which the mass of the black hole grows significantly due to the capture of infalling matter. We solve the Klein-Gordon equation numerically in spherical symmetry, mimicking the evolution of the spacetime through a sequence of analytic Schwarzschild black hole solutions of increasing mass. It is found that the frequency of oscillation of the quasibound states decreases as the mass of the black hole increases. In addition, accretion leads to an increase of the exponential decay of the scalar field energy. We compare the black hole mass growth rates used in our study with estimates from observational surveys and extrapolate our results to values of the scalar field masses consistent with models that propose scalar fields as dark matter in the universe. We show that, even for unrealistically large mass accretion rates, quasibound states around accreting black holes can survive for cosmological time scales. Our results provide further support to the intriguing possibility of the existence of dark matter halos based on (ultralight) scalar fields surrounding supermassive black holes in galactic centers.

  5. Increasing the depth of field in Multiview 3D images

    NASA Astrophysics Data System (ADS)

    Lee, Beom-Ryeol; Son, Jung-Young; Yano, Sumio; Jung, Ilkwon

    2016-06-01

    A super-multiview condition simulator which can project up to four different view images to each eye is introduced. This simulator with the image having both disparity and perspective informs that the depth of field (DOF) will be extended to more than the default DOF values as the number of simultaneously but separately projected different view images to each eye increase. The DOF range can be extended to near 2 diopters with the four simultaneous view images. However, the DOF value increments are not prominent as the image with both disparity and perspective with the image with disparity only.

  6. Carbon-proton scalar couplings in RNA. 3D heteronuclear and 2D isotope-edited NMR of a [sup 13]C-labeled extra-stable hairpin

    SciTech Connect

    Hines, J.V.; Landry, S.M.; Varani, G.; Tinoco, I. Jr. Lawrence Berkeley Lab., CA )

    1994-06-29

    Long range carbon-proton scalar couplings were measured for an RNA hairpin of 12 nucleotides using 3D and [sup 13]C-edited 2D NMR. The large one-bond carbon-proton scalar couplings ([sup 1]J[sub CH]) and small n-bond couplings ([sup 1]J[sub CH]) produce ECOSY type cross-peaks, thus facilitating the determination of the sign and magnitude of the smaller [sup 2]J[sub CH] or [sup 3]J[sub CH]. The UUCGRNA hairpin (5[prime]-rGGACUUCGGUCC-3[prime]), whose structure has been determined by our laboratory, was uniformly [sup 13]C-labeled at 30% isotopic enrichment. The observed [sup 1]J[sub CH] couplings were then correlated to the known structure. The signs of [sup 2]J[sub C4[prime]H5[prime

  7. Heat pulse propagation is 3-D chaotic magnetic fields

    NASA Astrophysics Data System (ADS)

    Del-Castillo-Negrete, D.; Blazevski, D.

    2013-10-01

    Perturbative transport studies provide valuable time dependent information to construct and test transport models in magnetically confined plasmas. In these studies, the transient response of the plasma to externally applied small perturbations is followed in time. Here we present a numerical study of the radial propagation of edge heat pulse perturbations in the presence of 3-dimensional chaotic magnetic fields in cylindrical geometry. Based on the strong transport anisotropy encountered in magnetized plasmas (χ∥ /χ⊥ ~1010 in fusion plasmas, where χ∥ and χ⊥ are the parallel and perpendicular conductivities) we limit attention to the extreme anisotropic, purely parallel, χ⊥ = 0 , case. Using the Lagrangian-Green's function method we study the dependence of the pulse speed and radial penetration on the level of stochasticity of the magnetic field in regular, and reversed magnetic shear configurations. Of particular interest is the slowing down of the heat pulse due to weak chaos, islands, and shearless cantori. Work supported by the USA Department of Energy.

  8. Resolving stellar populations with crowded field 3D spectroscopy

    NASA Astrophysics Data System (ADS)

    Kamann, S.; Wisotzki, L.; Roth, M. M.

    2013-01-01

    We describe a new method of extracting the spectra of stars from observations of crowded stellar fields with integral field spectroscopy (IFS). Our approach extends the well-established concept of crowded field photometry in images into the domain of 3-dimensional spectroscopic datacubes. The main features of our algorithm follow. (1) We assume that a high-fidelity input source catalogue already exists, e.g. from HST data, and that it is not needed to perform sophisticated source detection in the IFS data. (2) Source positions and properties of the point spread function (PSF) vary smoothly between spectral layers of the datacube, and these variations can be described by simple fitting functions. (3) The shape of the PSF can be adequately described by an analytical function. Even without isolated PSF calibrator stars we can therefore estimate the PSF by a model fit to the full ensemble of stars visible within the field of view. (4) By using sparse matrices to describe the sources, the problem of extracting the spectra of many stars simultaneously becomes computationally tractable. We present extensive performance and validation tests of our algorithm using realistic simulated datacubes that closely reproduce actual IFS observations of the central regions of Galactic globular clusters. We investigate the quality of the extracted spectra under the effects of crowding with respect to the resulting signal-to-noise ratios (S/N) and any possible changes in the continuum level, as well as with respect to absorption line spectral parameters, radial velocities, and equivalent widths. The main effect of blending between two nearby stars is a decrease in the S/N in their spectra. The effect increases with the crowding in the field in a way that the maximum number of stars with useful spectra is always ~0.2 per spatial resolution element. This balance breaks down when exceeding a total source density of one significantly detected star per resolution element. We also explore the

  9. 3-D explosions: a meditation on rotation (and magnetic fields)

    NASA Astrophysics Data System (ADS)

    Wheeler, J. C.

    This is the text of an introduction to a workshop on asymmetric explosions held in Austin in June, 2003. The great progress in supernova research over thirty-odd years is briefly reviewed. The context in which the meeting was called is then summarized. The theoretical success of the intrinsically multidimensional delayed detonation paradigm in explaining the nature of Type Ia supernovae coupled with new techniques of observations in the near IR and with spectropolarimetry promise great advances in understanding binary progenitors, the explosion physics, and the ever more accurate application to cosmology. Spectropolarimetry has also revealed the strongly asymmetric nature of core collapse and given valuable perspectives on the supernova - gamma-ray burst connection. The capability of the magneto-rotational instability to rapidly create strong toroidal magnetic fields in the core collapse ambiance is outlined. This physics may be the precursor to driving MHD jets that play a role in asymmetric supernovae. Welcome to the brave new world of three-dimensional explosions!

  10. Scalar field conformally coupled to a charged BTZ black hole

    NASA Astrophysics Data System (ADS)

    Valtancoli, P.

    2016-06-01

    We study the Klein-Gordon equation of a scalar field conformally coupled to a charged BTZ black hole. The background metric is obtained by coupling a non-linear and conformal invariant Maxwell field to (2 + 1) gravity. We show that the radial part is generally solved by a Heun function and, in the pure gravity limit, by a hypergeometric function.

  11. 3D defect detection using optical wide-field microscopy

    NASA Astrophysics Data System (ADS)

    Tympel, Volker; Schaaf, Marko; Srocka, Bernd

    2007-06-01

    We report a method to detect signed differences in two similar data sets representing 3-dimensional intensity profiles recorded by optical wide-field microscopes. The signed differences describe missing or unexpected intensity values, defined as defects. In technical applications like wafer and mask inspection, data sets often represent surfaces. The reported method is able to describe the size and position especially in relation to the neighboring surface and is called Three-Dimension-Aberration (TDA)-Technology. To increase the tool performance and to handle different sizes of defects a scaled bottom-up method is implemented and started with high reduced data sets for the search of large defects. Each analysis contains three steps. The first step is a correlation to calculate the displacement vector between the similar data sets. In the second step a new data set is created. The new data set consists of intensity differences. Extreme values in the data set represent the position of defects. By the use of linear and non-linear filters the stability of detection can be improved. If all differences are below a threshold the bottom-up method starts with the next larger scaled data set. In the other case it is assumed that the defect is detected and step three starts with the detection of the convex hull of the defect and the search of the neighboring surface. As a result the defect is described by a parameter set including the relative position. Because of the layered structure of the data set and the bottom-up technique the method is suitable for multi-core processor architectures.

  12. Detecting chameleons: The astronomical polarization produced by chameleonlike scalar fields

    SciTech Connect

    Burrage, Clare; Davis, Anne-Christine; Shaw, Douglas J.

    2009-02-15

    We show that a coupling between chameleonlike scalar fields and photons induces linear and circular polarization in the light from astrophysical sources. In this context chameleonlike scalar fields include those of the Olive-Pospelov (OP) model, which describes a varying fine structure constant. We determine the form of this polarization numerically and give analytic expressions in two useful limits. By comparing the predicted signal with current observations we are able to improve the constraints on the chameleon-photon coupling and the coupling in the OP model by over 2 orders of magnitude. It is argued that, if observed, the distinctive form of the chameleon induced circular polarization would represent a smoking gun for the presence of a chameleon. We also report a tentative statistical detection of a chameleonlike scalar field from observations of starlight polarization in our galaxy.

  13. A scalar field dark energy model: Noether symmetry approach

    NASA Astrophysics Data System (ADS)

    Dutta, Sourav; Panja, Madan Mohan; Chakraborty, Subenoy

    2016-04-01

    Scalar field dark energy cosmology has been investigated in the present paper in the frame work of Einstein gravity. In the context of Friedmann-Lemaitre-Robertson-Walker space time minimally coupled scalar field with self interacting potential and non-interacting perfect fluid with barotropic equation of state (dark matter) is chosen as the matter context. By imposing Noether symmetry on the Lagrangian of the system the symmetry vector is obtained and the self interacting potential for the scalar field is determined. Then we choose a point transformation (a, φ )→ (u, v) such that one of the transformation variable (say u) is cyclic for the Lagrangian. Subsequently, using conserved charge (corresponding to the cyclic co-ordinate) and the constant of motion, solutions are obtained. Finally, the cosmological implication of the solutions in the perspective of recent observation has been examined.

  14. Bose-Einstein condensates and scalar fields; exploring the similitudes

    NASA Astrophysics Data System (ADS)

    Castellanos, E.; Macías, A.; Núñez, D.

    2014-01-01

    We analyze the the remarkable analogy between the classical Klein-Gordon equation for a test scalar field in a flat and also in a curved background, and the Gross-Pitaevskii equation for a Bose-Einstein condensate trapped by an external potential. We stress here that the solution associated with the Klein-Gordon equation (KG) in a flat space time has the same mathematical structure, under certain circumstances, to those obtained for the Gross-Pitaevskii equation, that is, a static soliton solution. Additionally, Thomas-Fermi approximation is applied to the 3-dimensional version of this equation, in order to calculate some thermodynamical properties of the system in curved a space-time back ground. Finally, we stress the fact that a gravitational background provides, in some cases, a kind of confining potential for the scalar field, allowing us to remarks even more the possible connection between scalar fields and the phenomenon of Bose-Einstein condensation.

  15. Bose–Einstein condensates and scalar fields; exploring the similitudes

    SciTech Connect

    Castellanos, E.; Macías, A.; Núñez, D.

    2014-01-14

    We analyze the the remarkable analogy between the classical Klein–Gordon equation for a test scalar field in a flat and also in a curved background, and the Gross–Pitaevskii equation for a Bose–Einstein condensate trapped by an external potential. We stress here that the solution associated with the Klein–Gordon equation (KG) in a flat space time has the same mathematical structure, under certain circumstances, to those obtained for the Gross–Pitaevskii equation, that is, a static soliton solution. Additionally, Thomas–Fermi approximation is applied to the 3–dimensional version of this equation, in order to calculate some thermodynamical properties of the system in curved a space–time back ground. Finally, we stress the fact that a gravitational background provides, in some cases, a kind of confining potential for the scalar field, allowing us to remarks even more the possible connection between scalar fields and the phenomenon of Bose–Einstein condensation.

  16. DBI scalar field theory for QGP hydrodynamics

    NASA Astrophysics Data System (ADS)

    Nastase, Horatiu

    2016-07-01

    A way to describe the hydrodynamics of the quark-gluon plasma using a Dirac-Born-Infeld (DBI) action is proposed, based on the model found by Heisenberg for high energy scattering of nucleons. The expanding plasma is described as a shockwave in a DBI model for a real scalar standing in for the pion, and I show that one obtains a fluid description in terms of a relativistic fluid that near the shock is approximately ideal (η ≃0 ) and conformal. One can introduce an extra term inside the square root of the DBI action that generates a shear viscosity term in the energy-momentum tensor near the shock, as well as a bulk viscosity, and regulates the behavior of the energy density at the shock, making it finite. The resulting fluid satisfies the relativistic Navier-Stokes equation with uμ,ρ ,P ,η defined in terms of ϕ and its derivatives. One finds a relation between the parameters of the theory and the quark-gluon plasma thermodynamics, α /β2=η /(s T ), and by fixing α and β from usual (low multiplicity) particle scattering, one finds T ∝mπ.

  17. Coloring 3D line fields using Boy's real projective plane immersion.

    PubMed

    Demiralp, Cağatay; Hughes, John F; Laidlaw, David H

    2009-01-01

    We introduce a new method for coloring 3D line fields and show results from its application in visualizing orientation in DTI brain data sets. The method uses Boy's surface, an immersion of RP2 in 3D. This coloring method is smooth and one-to-one except on a set of measure zero, the double curve of Boy's surface. PMID:19834221

  18. Dark energy parametrization motivated by scalar field dynamics

    NASA Astrophysics Data System (ADS)

    de la Macorra, Axel

    2016-05-01

    We propose a new dark energy (DE) parametrization motivated by the dynamics of a scalar field ϕ. We use an equation of state w parametrized in terms of two functions L and y, closely related to the dynamics of scalar fields, which is exact and has no approximation. By choosing an appropriate ansatz for L we obtain a wide class of behavior for the evolution of DE without the need to specify the scalar potential V. We parametrize L and y in terms of only four parameters, giving w a rich structure and allowing for a wide class of DE dynamics. Our w can either grow and later decrease, or it can happen the other way around; the steepness of the transition is not fixed and it contains the ansatz w={w}o+{w}a(1-a). Our parametrization follows closely the dynamics of a scalar field, and the function L allows us to connect it with the scalar potential V(φ ). While the Universe is accelerating and the slow roll approximation is valid, we get L≃ {({V}\\prime /V)}2. To determine the dynamics of DE we also calculate the background evolution and its perturbations, since they are important to discriminate between different DE models.

  19. Langevin description of gauged scalar fields in a thermal bath

    NASA Astrophysics Data System (ADS)

    Miyamoto, Yuhei; Motohashi, Hayato; Suyama, Teruaki; Yokoyama, Jun'ichi

    2014-04-01

    We study the dynamics of the oscillating gauged scalar field in a thermal bath. A Langevin-type equation of motion of the scalar field, which contains both dissipation and fluctuation terms, is derived by using the real-time finite-temperature effective action approach. The existence of the quantum fluctuation-dissipation relation between the nonlocal dissipation term and the Gaussian stochastic noise terms is verified. We find that the noise variables are anticorrelated at equal time. The dissipation rate for each mode is also studied, which turns out to depend on the wave number.

  20. Braneworld inflation with a complex scalar field from Planck 2015

    NASA Astrophysics Data System (ADS)

    Mounzi, Z.; Ferricha-Alami, M.; Chakir, H.; Bennai, M.

    2016-06-01

    We study an inflationary model with a single complex scalar field in the framework of braneworld Randall-Sundrum model type 2. From the scalar curvature perturbation constrained by the recent observation values, and for specific choice of parameters, we can reduce the values of the coupling constant to take the natural values, and we found that the phase theta θ of the inflation field can take the narrow interval. We have also derived all known inflationary parameters (ns, r and dns/d ln (k)), which are widely consistent with the recent Planck data for a suitable choice of brane tension value λ.

  1. Gauge Fields and Scalars in Rolling Tachyon Backgrounds

    SciTech Connect

    Thomas Mehen; Brian Wecht

    2003-04-01

    We investigate the dynamics of gauge and scalar fields on unstable D-branes with rolling tachyons. Assuming an FRW metric on the brane, we find a solution of the tachyon equation of motion which is valid for arbitrary tachyon potentials and scale factors. The equations of motion for a U(1) gauge field and a scalar field in this background are derived. These fields see an effective metric which differs from the original FRW metric. The field equations receive large corrections due to the curvature of the effective metric as well as the time variation of the gauge coupling. The equations of state for these fields resemble those of nonrelativistic matter rather than those of massless particles.

  2. ALIGNMENT OF THE SCALAR GRADIENT IN EVOLVING MAGNETIC FIELDS

    SciTech Connect

    Sur, Sharanya; Scannapieco, Evan; Pan, Liubin E-mail: evan.scannapieco@asu.edu

    2014-07-20

    We conduct simulations of turbulent mixing in the presence of a magnetic field, grown by the small-scale dynamo. We show that the scalar gradient field, ∇C, which must be large for diffusion to operate, is strongly biased perpendicular to the magnetic field, B. This is true both early on, when the magnetic field is negligible, and at late times, when the field is strong enough to back react on the flow. This occurs because ∇C increases within the plane of a compressive motion, but B increases perpendicular to it. At late times, the magnetic field resists compression, making it harder for scalar gradients to grow and likely slowing mixing.

  3. A cross-platform solution for light field based 3D telemedicine.

    PubMed

    Wang, Gengkun; Xiang, Wei; Pickering, Mark

    2016-03-01

    Current telehealth services are dominated by conventional 2D video conferencing systems, which are limited in their capabilities in providing a satisfactory communication experience due to the lack of realism. The "immersiveness" provided by 3D technologies has the potential to promote telehealth services to a wider range of applications. However, conventional stereoscopic 3D technologies are deficient in many aspects, including low resolution and the requirement for complicated multi-camera setup and calibration, and special glasses. The advent of light field (LF) photography enables us to record light rays in a single shot and provide glasses-free 3D display with continuous motion parallax in a wide viewing zone, which is ideally suited for 3D telehealth applications. As far as our literature review suggests, there have been no reports of 3D telemedicine systems using LF technology. In this paper, we propose a cross-platform solution for a LF-based 3D telemedicine system. Firstly, a novel system architecture based on LF technology is established, which is able to capture the LF of a patient, and provide an immersive 3D display at the doctor site. For 3D modeling, we further propose an algorithm which is able to convert the captured LF to a 3D model with a high level of detail. For the software implementation on different platforms (i.e., desktop, web-based and mobile phone platforms), a cross-platform solution is proposed. Demo applications have been developed for 2D/3D video conferencing, 3D model display and edit, blood pressure and heart rate monitoring, and patient data viewing functions. The demo software can be extended to multi-discipline telehealth applications, such as tele-dentistry, tele-wound and tele-psychiatry. The proposed 3D telemedicine solution has the potential to revolutionize next-generation telemedicine technologies by providing a high quality immersive tele-consultation experience. PMID:26689324

  4. 3D Coronal Magnetic Field Reconstruction Based on Infrared Polarimetric Observations

    NASA Astrophysics Data System (ADS)

    Kramar, M.; Lin, H.; Tomczyk, S.

    2014-12-01

    Measurement of the coronal magnetic field is a crucial ingredient in understanding the nature of solar coronal phenomena at all scales. A significant progress has been recently achieved here with deployment of the Coronal Multichannel Polarimeter (CoMP) of the High Altitude Observatory (HAO). The instrument provides polarization measurements of Fe xiii 10747 A forbidden line emission. The observed polarization are the result of a line-of-sight (LOS) integration through a nonuniform temperature, density and magnetic field distribution. In order resolve the LOS problem and utilize this type of data, the vector tomography method has been developed for 3D reconstruction of the coronal magnetic field. The 3D electron density and temperature, needed as additional input, have been reconstructed by tomography method based on STEREO/EUVI data. We will present the 3D coronal magnetic field and associated 3D curl B, density, and temperature resulted from these inversions.

  5. Weak Gravitational Wave and Casimir Energy of a Scalar Field

    NASA Astrophysics Data System (ADS)

    Tavakoli, F.; Pirmoradian, R.; Parsabod, I.

    2016-09-01

    In this paper, we calculate the effect of a weak gravitational field on the Casimir force between two ideal plates subjected to a massless minimally coupled field. It is the aim of this work to study the Casimir energy under a weak perturbation of gravity. Moreover, the fluctuations of the stress-energy tensor for a scalar field in de Sitter space-time are computed as well.

  6. Collapse of charged scalar field in dilaton gravity

    SciTech Connect

    Borkowska, Anna; Rogatko, Marek; Moderski, Rafal

    2011-04-15

    We elaborated the gravitational collapse of a self-gravitating complex charged scalar field in the context of the low-energy limit of the string theory, the so-called dilaton gravity. We begin with the regular spacetime and follow the evolution through the formation of an apparent horizon and the final central singularity.

  7. Dwarf galaxies in multistate scalar field dark matter halos

    NASA Astrophysics Data System (ADS)

    Martinez-Medina, L. A.; Robles, V. H.; Matos, T.

    2015-01-01

    We analyze the velocity dispersion for eight of the Milky Way dwarf spheroidal satellites in the context of finite temperature scalar field dark matter. In this model the finite temperature allows the scalar field to be in configurations that possess excited states, a feature that has proved to be necessary in order to explain the asymptotic rotational velocities found in low surface brightness (LSB) galaxies. In this work we show that excited states are not only important in large galaxies but also have visible effects in dwarf spheroidals. Additionally, we stress that contrary to previous works where the scalar field dark matter halos are consider to be purely Bose-Einstein condensates, the inclusion of excited states in these halo configurations provides a consistent framework capable of describing LSB and dwarf galaxies of different sizes without arriving to contradictions within the scalar field dark matter model. Using this new framework we find that the addition of excited states accounts very well for the raise in the velocity dispersion in Milky Way dwarf spheroidal galaxies improving the fit compared to the one obtained assuming all the dark matter to be in the form of a Bose-Einstein condensate.

  8. Local Scalar Fields Equivalent to Nambu-Goto Strings

    NASA Astrophysics Data System (ADS)

    Hosotani, Yutaka

    1981-08-01

    We prove the mathematical equivalence of Nambu-Goto strings to local scalar fields S(x) and T (x) described by the Lagrangian L=-d4x{[∂(S,T)∂(xμ,xν)]22}12 Implications to the quantization problem of strings are also discussed.

  9. Higgs particles interacting via a scalar Dark Matter field

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Yajnavalkya; Darewych, Jurij

    2016-07-01

    We study a system of two Higgs particles, interacting via a scalar Dark Matter mediating field. The variational method in the Hamiltonian formalism of QFT is used to derive relativistic wave equations for the two-Higgs system, using a truncated Fock-space trial state. Approximate solutions of the two-body equations are used to examine the existence of Higgs bound states.

  10. Effects of a scalar scaling field on quantum mechanics

    NASA Astrophysics Data System (ADS)

    Benioff, Paul

    2016-07-01

    This paper describes the effects of a complex scalar scaling field on quantum mechanics. The field origin is an extension of the gauge freedom for basis choice in gauge theories to the underlying scalar field. The extension is based on the idea that the value of a number at one space time point does not determine the value at another point. This, combined with the description of mathematical systems as structures of different types, results in the presence of separate number fields and vector spaces as structures, at different space time locations. Complex number structures and vector spaces at each location are scaled by a complex space time dependent scaling factor. The effect of this scaling factor on several physical and geometric quantities has been described in other work. Here the emphasis is on quantum mechanics of one and two particles, their states and properties. Multiparticle states are also briefly described. The effect shows as a complex, nonunitary, scalar field connection on a fiber bundle description of nonrelativistic quantum mechanics. The lack of physical evidence for the presence of this field so far means that the coupling constant of this field to fermions is very small. It also means that the gradient of the field must be very small in a local region of cosmological space and time. Outside this region, there are no restrictions on the field gradient.

  11. Effects of a scalar scaling field on quantum mechanics

    NASA Astrophysics Data System (ADS)

    Benioff, Paul

    2016-04-01

    This paper describes the effects of a complex scalar scaling field on quantum mechanics. The field origin is an extension of the gauge freedom for basis choice in gauge theories to the underlying scalar field. The extension is based on the idea that the value of a number at one space time point does not determine the value at another point. This, combined with the description of mathematical systems as structures of different types, results in the presence of separate number fields and vector spaces as structures, at different space time locations. Complex number structures and vector spaces at each location are scaled by a complex space time dependent scaling factor. The effect of this scaling factor on several physical and geometric quantities has been described in other work. Here the emphasis is on quantum mechanics of one and two particles, their states and properties. Multiparticle states are also briefly described. The effect shows as a complex, nonunitary, scalar field connection on a fiber bundle description of nonrelativistic quantum mechanics. The lack of physical evidence for the presence of this field so far means that the coupling constant of this field to fermions is very small. It also means that the gradient of the field must be very small in a local region of cosmological space and time. Outside this region, there are no restrictions on the field gradient.

  12. Computation of load performance and other parameters of extra high speed modified Lundell alternators from 3D-FE magnetic field solutions

    NASA Technical Reports Server (NTRS)

    Wang, R.; Demerdash, N. A.

    1992-01-01

    The combined magnetic vector potential - magnetic scalar potential method of computation of 3D magnetic fields by finite elements, introduced in a companion paper, in combination with state modeling in the abc-frame of reference, are used for global 3D magnetic field analysis and machine performance computation under rated load and overload condition in an example 14.3 kVA modified Lundell alternator. The results vividly demonstrate the 3D nature of the magnetic field in such machines, and show how this model can be used as an excellent tool for computation of flux density distributions, armature current and voltage waveform profiles and harmonic contents, as well as computation of torque profiles and ripples. Use of the model in gaining insight into locations of regions in the magnetic circuit with heavy degrees of saturation is demonstrated. Experimental results which correlate well with the simulations of the load case are given.

  13. Thick branes from self-gravitating scalar fields

    SciTech Connect

    Novikov, Oleg O.; Andrianov, Vladimir A.; Andrianov, Alexander A.

    2014-07-23

    The formation of a domain wall ('thick brane') induced by scalar matter dynamics and triggered by a thin brane defect is considered in noncompact five-dimensional space-time with warped AdS type geometry. The scalar matter is composed of two fields with softly broken O(2) symmetry and minimal coupling to gravity. The nonperturbative effects in the invariant mass spectrum of light localized scalar states are investigated for different values of the tension of the thin brane defect. Especially interesting is the case of the thin brane with negative tension when the singular barriers form a potential well with two infinitely tall walls and the discrete spectrum of localized states arises completely isolated from the bulk.

  14. 3D strain measurement in electronic devices using through-focal annular dark-field imaging.

    PubMed

    Kim, Suhyun; Jung, Younheum; Lee, Sungho; Jung Kim, Joong; Byun, Gwangseon; Lee, Sunyoung; Lee, Haebum

    2014-11-01

    Spherical aberration correction in high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) allows us to form an electron probe with reduced depth of field. Using through-focal HAADF imaging, we experimentally demonstrated 3D strain measurement in a strained-channel transistor. The strain field distribution in the channel region was obtained by scanning an electron beam over a plan-view specimen. Furthermore, the decrease in the strain fields toward the silicon substrate was revealed at different focal planes with a 5-nm focal step. These results demonstrate that it is possible to reconstruct the 3D strain field in electronic devices. PMID:24859824

  15. A 360-degree floating 3D display based on light field regeneration.

    PubMed

    Xia, Xinxing; Liu, Xu; Li, Haifeng; Zheng, Zhenrong; Wang, Han; Peng, Yifan; Shen, Weidong

    2013-05-01

    Using light field reconstruction technique, we can display a floating 3D scene in the air, which is 360-degree surrounding viewable with correct occlusion effect. A high-frame-rate color projector and flat light field scanning screen are used in the system to create the light field of real 3D scene in the air above the spinning screen. The principle and display performance of this approach are investigated in this paper. The image synthesis method for all the surrounding viewpoints is analyzed, and the 3D spatial resolution and angular resolution of the common display zone are employed to evaluate display performance. The prototype is achieved and the real 3D color animation image has been presented vividly. The experimental results verified the representability of this method. PMID:23669981

  16. Exploring the thermodynamics of noncommutative scalar fields

    NASA Astrophysics Data System (ADS)

    Brito, Francisco A.; Lima, Elisama E. M.

    2016-04-01

    We study the thermodynamic properties of the Bose-Einstein condensate (BEC) in the context of the quantum field theory with noncommutative target space. Our main goal is to investigate in which temperature and/or energy regimes the noncommutativity can characterize some influence on the BEC properties described by a relativistic massive noncommutative boson gas. The noncommutativity parameters play a key role in the modified dispersion relations of the noncommutative fields, leading to a new phenomenology. We have obtained the condensate fraction, internal energy, pressure and specific heat of the system and taken ultrarelativistic (UR) and nonrelativistic (NR) limits. The noncommutative effects on the thermodynamic properties of the system are discussed. We found that there appear interesting signatures around the critical temperature.

  17. Scalar-field-dominated cosmology with a transient acceleration phase.

    PubMed

    Carvalho, F C; Alcaniz, J S; Lima, J A S; Silva, R

    2006-08-25

    A new cosmological scenario driven by a slow rolling homogeneous scalar field whose exponential potential V(Phi) has a quadratic dependence on the field Phi in addition to the standard linear term is discussed. The derived equation of state for the field predicts a transient accelerating phase, in which the Universe was decelerated in the past, began to accelerate at redshift z approximately 1, is currently accelerated, but, finally, will return to a decelerating phase in the future. This overall dynamic behavior is profoundly different from the standard evolution of the cold dark matter model with a cosmological constant, and may alleviate some conflicts in reconciling the idea of a dark-energy-dominated universe with observables in String or M theory. Some theoretical predictions for the present scalar field plus dark matter dominated stage are confronted with cosmological observations in order to test the viability of the scenario. PMID:17026287

  18. Mie scattering of highly focused, scalar fields: an analytic approach.

    PubMed

    Moore, Nicole J; Alonso, Miguel A

    2016-07-01

    We present a method for modeling the scattering of a focused scalar field incident on a spherical particle. This approach involves the expansion of the incident field in an orthonormal basis of closed-form solutions of the Helmholtz equation which are nonparaxial counterparts of Laguerre-Gaussian beams. This method also allows for the analytic calculation of the forces and torques exerted on a particle at any position with respect to the beam's focus. PMID:27409679

  19. Phantom scalar fields result in inflation rather than Big Rip

    NASA Astrophysics Data System (ADS)

    Yurov, A. V.

    2011-12-01

    There exists a variety of exact solutions of the scalar field Einstein equations, allowing for "phantom regions" with negative kinetic field term. These regions can be cut out, their boundaries being sewn together in such a way that neither the scale factor (along with its first two derivatives) nor density or pressure will experience a jump. Such a domain surgery eliminates the "Big Rip" scenario, substituting for it the standard inflation.

  20. Quantitative 3D electromagnetic field determination of 1D nanostructures from single projection.

    PubMed

    Phatak, C; de Knoop, L; Houdellier, F; Gatel, C; Hÿtch, M J; Masseboeuf, A

    2016-05-01

    One-dimensional (1D) nanostructures have been regarded as the most promising building blocks for nanoelectronics and nanocomposite material systems as well as for alternative energy applications. Although they result in confinement of a material, their properties and interactions with other nanostructures are still very much three-dimensional (3D) in nature. In this work, we present a novel method for quantitative determination of the 3D electromagnetic fields in and around 1D nanostructures using a single electron wave phase image, thereby eliminating the cumbersome acquisition of tomographic data. Using symmetry arguments, we have reconstructed the 3D magnetic field of a nickel nanowire as well as the 3D electric field around a carbon nanotube field emitter, from one single projection. The accuracy of quantitative values determined here is shown to be a better fit to the physics at play than the value obtained by conventional analysis. Moreover the 3D reconstructions can then directly be visualized and used in the design of functional 3D architectures built using 1D nanostructures. PMID:26998702

  1. Generation of nearly 3D-unpolarized evanescent optical near fields using total internal reflection.

    PubMed

    Hassinen, Timo; Popov, Sergei; Friberg, Ari T; Setälä, Tero

    2016-07-01

    We analyze the time-domain partial polarization of optical fields composed of two evanescent waves created in total internal reflection by random electromagnetic beams with orthogonal planes of incidence. We show that such a two-beam configuration enables to generate nearly unpolarized, genuine three-component (3D) near fields. This result complements earlier studies on spectral polarization, which state that at least three symmetrically propagating beams are required to produce a 3D-unpolarized near field. The degree of polarization of the near field can be controlled by adjusting the polarization states and mutual correlation of the incident beams. PMID:27367071

  2. On the stability of the asymptotically free scalar field theories

    SciTech Connect

    Shalaby, A M.

    2015-03-30

    Asymptotic freedom plays a vital role in our understanding of the theory of particle interactions. To have this property, one has to resort to a Non-abelian gauge theory with the number of colors equal to or greater than three (QCD). However, recent studies have shown that simple scalar field theories can possess this interesting property. These theories have non-Hermitian effective field forms but their classical potentials are bounded from above. In this work, we shall address the stability of the vacua of the bounded from above (−Φ{sup 4+n}) scalar field theories. Moreover, we shall cover the effect of the distribution of the Stokes wedges in the complex Φ-plane on the features of the vacuum condensate within these theories.

  3. Quantum entanglement in three accelerating qubits coupled to scalar fields

    NASA Astrophysics Data System (ADS)

    Dai, Yue; Shen, Zhejun; Shi, Yu

    2016-07-01

    We consider quantum entanglement of three accelerating qubits, each of which is locally coupled with a real scalar field, without causal influence among the qubits or among the fields. The initial states are assumed to be the GHZ and W states, which are the two representative three-partite entangled states. For each initial state, we study how various kinds of entanglement depend on the accelerations of the three qubits. All kinds of entanglement eventually suddenly die if at least two of three qubits have large enough accelerations. This result implies the eventual sudden death of all kinds of entanglement among three particles coupled with scalar fields when they are sufficiently close to the horizon of a black hole.

  4. Gravitational collapse of scalar fields via spectral methods

    SciTech Connect

    Oliveira, H. P. de; Rodrigues, E. L.; Skea, J. E. F.

    2010-11-15

    In this paper we present a new numerical code based on the Galerkin method to integrate the field equations for the spherical collapse of massive and massless scalar fields. By using a spectral decomposition in terms of the radial coordinate, the field equations were reduced to a finite set of ordinary differential equations in the space of modes associated with the Galerkin expansion of the scalar field, together with algebraic sets of equations connecting modes associated with the metric functions. The set of ordinary differential equations with respect to the null coordinate is then integrated using an eighth-order Runge-Kutta method. The numerical tests have confirmed the high accuracy and fast convergence of the code. As an application we have evaluated the whole spectrum of black hole masses which ranges from infinitesimal to large values obtained after varying the amplitude of the initial scalar field distribution. We have found strong numerical evidence that this spectrum is described by a nonextensive distribution law.

  5. Non-Gaussianity from self-ordering scalar fields

    SciTech Connect

    Figueroa, Daniel G.; Kamionkowski, Marc

    2010-06-15

    The Universe may harbor relics of the post-inflationary epoch in the form of a network of self-ordered scalar fields. Such fossils, while consistent with current cosmological data at trace levels, may leave too weak an imprint on the cosmic microwave background and the large-scale distribution of matter to allow for direct detection. The non-Gaussian statistics of the density perturbations induced by these fields, however, permit a direct means to probe for these relics. Here we calculate the bispectrum that arises in models of self-ordered scalar fields. We find a compact analytic expression for the bispectrum, evaluate it numerically, and provide a simple approximation that may be useful for data analysis. The bispectrum is largest for triangles that are aligned (have edges k{sub 1{approx_equal}}2k{sub 2{approx_equal}}2k{sub 3}) as opposed to the local-model bispectrum, which peaks for squeezed triangles (k{sub 1{approx_equal}}k{sub 2}>>k{sub 3}), and the equilateral bispectrum, which peaks at k{sub 1{approx_equal}}k{sub 2{approx_equal}}k{sub 3}. We estimate that this non-Gaussianity should be detectable by the Planck satellite if the contribution from self-ordering scalar fields to primordial perturbations is near the current upper limit.

  6. Slip versus Field-Line Mapping in Describing 3D Reconnection of Coronal Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Titov, V. S.; Mikic, Z.; Torok, T.; Downs, C.; Lionello, R.; Linker, J.

    2015-12-01

    We demonstrate two techniques for describing the structure of the coronal magnetic field and its evolution due to reconnection in numerical 3D simulations of the solar corona and CMEs. These techniques employ two types of mapping of the boundary of the computational domain on itself. One of them is defined at a given time moment via connections of the magnetic field lines to their opposite endpoints. The other mapping, called slip mapping, relates field line endpoints at two different time moments and allows one to identify the slippage of plasma elements due to resistivity across field lines for a given time interval (Titov et al. 2009). The distortion of each of these mappings can be measured by using the so-called squashing factor Q (Titov 2007). The high-Q layers computed for the first and second mappings define, respectively, (quasi-)separatrix surfaces and reconnection fronts in evolving magnetic configurations. Analyzing these structural features, we are able to reveal topologically different domains and reconnected flux systems in the configurations, in particular, open, closed and disconnected magnetic flux tubes, as well as quantify the related magnetic flux transfer. Comparison with observations makes it possible also to relate these features to observed morphological elements such as flare loops and ribbons, and EUV dimmings. We illustrate these general techniques by applying them to particular data-driven MHD simulations. *Research supported by NASA's HSR and LWS Programs, and NSF/SHINE and NSF/FESD.

  7. Models Ion Trajectories in 2D and 3D Electrostatic and Magnetic Fields

    2000-02-21

    SIMION3D7.0REV is a C based ion optics simulation program that can model complex problems using Laplace equation solutions for potential fields. The program uses an ion optics workbench that can hold up to 200 2D and/or 3D electrostatic/magnetic potential arrays. Arrays can have up to 50,000,000 points. SIMION3D7.0''s 32 bit virtual Graphics User Interface provides a highly interactive advanced user environment. All potential arrays are visualized as 3D objects that the user can cut awaymore » to inspect ion trajectories and potential energy surfaces. User programs allow the user to customize the program for specific simulations. A geometry file option supports the definition of highly complex array geometry. Algorithm modifications have improved this version''s computational speed and accuracy.« less

  8. Models Ion Trajectories in 2D and 3D Electrostatic and Magnetic Fields

    SciTech Connect

    Dahl, David

    2000-02-21

    SIMION3D7.0REV is a C based ion optics simulation program that can model complex problems using Laplace equation solutions for potential fields. The program uses an ion optics workbench that can hold up to 200 2D and/or 3D electrostatic/magnetic potential arrays. Arrays can have up to 50,000,000 points. SIMION3D7.0''s 32 bit virtual Graphics User Interface provides a highly interactive advanced user environment. All potential arrays are visualized as 3D objects that the user can cut away to inspect ion trajectories and potential energy surfaces. User programs allow the user to customize the program for specific simulations. A geometry file option supports the definition of highly complex array geometry. Algorithm modifications have improved this version''s computational speed and accuracy.

  9. Scalar field as a Bose-Einstein condensate?

    SciTech Connect

    Castellanos, Elías; Escamilla-Rivera, Celia; Macías, Alfredo; Núñez, Darío E-mail: cescamilla@mctp.mx E-mail: nunez@nucleares.unam.mx

    2014-11-01

    We discuss the analogy between a classical scalar field with a self-interacting potential, in a curved spacetime described by a quasi-bounded state, and a trapped Bose-Einstein condensate. In this context, we compare the Klein-Gordon equation with the Gross-Pitaevskii equation. Moreover, the introduction of a curved background spacetime endows, in a natural way, an equivalence to the Gross-Pitaevskii equation with an explicit confinement potential. The curvature also induces a position dependent self-interaction parameter. We exploit this analogy by means of the Thomas-Fermi approximation, commonly used to describe the Bose-Einstein condensate, in order to analyze the quasi bound scalar field distribution surrounding a black hole.

  10. On the late-time cosmology of a condensed scalar field

    NASA Astrophysics Data System (ADS)

    Ghalee, Amir

    2016-04-01

    We study the late-time cosmology of a scalar field with a kinetic term non-minimally coupled to gravity. It is demonstrated that the scalar field dominate the radiation matter and the cold dark matter (CDM). Moreover, we show that eventually the scalar field will be condensed and results in an accelerated expansion. The metric perturbations around the condensed phase of the scalar field are investigated and it has been shown that the ghost instability and gradient instability do not exist.

  11. Scalar fields in BTZ black hole spacetime and entanglement entropy

    NASA Astrophysics Data System (ADS)

    Veer Singh, Dharm; Siwach, Sanjay

    2013-12-01

    We study the quantum scalar fields in the background of BTZ black hole spacetime. We calculate the entanglement entropy using the discretized model, which resembles a system of coupled harmonic oscillators. The leading term of the entropy formula is standard Bakenstein-Hawking entropy and sub-leading corresponds to quantum corrections to black hole entropy. We calculate the coefficient of sub-leading logarithmic corrections numerically.

  12. Star-plus-wormhole systems with two interacting scalar fields

    NASA Astrophysics Data System (ADS)

    Dzhunushaliev, Vladimir; Folomeev, Vladimir; Urazalina, Ajnur

    2015-08-01

    We study static, spherically symmetric mixed configurations with a nontrivial (wormhole) spacetime topology provided by the presence of two interacting ghost scalar fields. Wormhole is assumed to be filled by a perfect relativistic neutron fluid modeled by a polytropic equation of state. For such mixed configurations, we find regular, asymptotically flat general relativistic solutions. It is shown that the maximum of the fluid density is always shifted from the center and the resulting configurations represent, in general, double-throat systems.

  13. Direct Detection of the Helical Magnetic Field Geometry from 3D Reconstruction of Prominence Knot Trajectories

    NASA Astrophysics Data System (ADS)

    Zapiór, Maciej; Martínez-Gómez, David

    2016-02-01

    Based on the data collected by the Vacuum Tower Telescope located in the Teide Observatory in the Canary Islands, we analyzed the three-dimensional (3D) motion of so-called knots in a solar prominence of 2014 June 9. Trajectories of seven knots were reconstructed, giving information of the 3D geometry of the magnetic field. Helical motion was detected. From the equipartition principle, we estimated the lower limit of the magnetic field in the prominence to ≈1-3 G and from the Ampère’s law the lower limit of the electric current to ≈1.2 × 109 A.

  14. Scalar field evolution in Gauss-Bonnet black holes

    SciTech Connect

    Abdalla, E.; Konoplya, R.A.; Molina, C.

    2005-10-15

    It is presented a thorough analysis of scalar perturbations in the background of Gauss-Bonnet, Gauss-Bonnet-de Sitter and Gauss-Bonnet-anti-de Sitter black hole spacetimes. The perturbations are considered both in frequency and time domain. The dependence of the scalar field evolution on the values of the cosmological constant {lambda} and the Gauss-Bonnet coupling {alpha} is investigated. For Gauss-Bonnet and Gauss-Bonnet-de Sitter black holes, at asymptotically late times either power-law or exponential tails dominate, while for Gauss-Bonnet-anti-de Sitter black hole, the quasinormal modes govern the scalar field decay at all times. The power-law tails at asymptotically late times for odd-dimensional Gauss-Bonnet black holes does not depend on {alpha}, even though the black hole metric contains {alpha} as a new parameter. The corrections to quasinormal spectrum due to Gauss-Bonnet coupling is not small and should not be neglected. For the limit of near extremal value of the (positive) cosmological constant and pure de Sitter and anti-de Sitter modes in Gauss-Bonnet gravity we have found analytical expressions.

  15. Synthesis of 3D Model of a Magnetic Field-Influenced Body from a Single Image

    NASA Technical Reports Server (NTRS)

    Wang, Cuilan; Newman, Timothy; Gallagher, Dennis

    2006-01-01

    A method for recovery of a 3D model of a cloud-like structure that is in motion and deforming but approximately governed by magnetic field properties is described. The method allows recovery of the model from a single intensity image in which the structure's silhouette can be observed. The method exploits envelope theory and a magnetic field model. Given one intensity image and the segmented silhouette in the image, the method proceeds without human intervention to produce the 3D model. In addition to allowing 3D model synthesis, the method's capability to yield a very compact description offers further utility. Application of the method to several real-world images is demonstrated.

  16. 3-D seismic velocity and attenuation structures in the geothermal field

    SciTech Connect

    Nugraha, Andri Dian; Syahputra, Ahmad; Fatkhan,; Sule, Rachmat

    2013-09-09

    We conducted delay time tomography to determine 3-D seismic velocity structures (Vp, Vs, and Vp/Vs ratio) using micro-seismic events in the geothermal field. The P-and S-wave arrival times of these micro-seismic events have been used as input for the tomographic inversion. Our preliminary seismic velocity results show that the subsurface condition of geothermal field can be fairly delineated the characteristic of reservoir. We then extended our understanding of the subsurface physical properties through determining of attenuation structures (Qp, Qs, and Qs/Qp ratio) using micro-seismic waveform. We combined seismic velocities and attenuation structures to get much better interpretation of the reservoir characteristic. Our preliminary attanuation structures results show reservoir characterization can be more clearly by using the 3-D attenuation model of Qp, Qs, and Qs/Qp ratio combined with 3-D seismic velocity model of Vp, Vs, and Vp/Vs ratio.

  17. Qualitative and quantitative comparative analyses of 3D lidar landslide displacement field measurements

    NASA Astrophysics Data System (ADS)

    Haugen, Benjamin D.

    Landslide ground surface displacements vary at all spatial scales and are an essential component of kinematic and hazards analyses. Unfortunately, survey-based displacement measurements require personnel to enter unsafe terrain and have limited spatial resolution. And while recent advancements in LiDAR technology provide the ability remotely measure 3D landslide displacements at high spatial resolution, no single method is widely accepted. A series of qualitative metrics for comparing 3D landslide displacement field measurement methods were developed. The metrics were then applied to nine existing LiDAR techniques, and the top-ranking methods --Iterative Closest Point (ICP) matching and 3D Particle Image Velocimetry (3DPIV) -- were quantitatively compared using synthetic displacement and control survey data from a slow-moving translational landslide in north-central Colorado. 3DPIV was shown to be the most accurate and reliable point cloud-based 3D landslide displacement field measurement method, and the viability of LiDAR-based techniques for measuring 3D motion on landslides was demonstrated.

  18. Motion field estimation for a dynamic scene using a 3D LiDAR.

    PubMed

    Li, Qingquan; Zhang, Liang; Mao, Qingzhou; Zou, Qin; Zhang, Pin; Feng, Shaojun; Ochieng, Washington

    2014-01-01

    This paper proposes a novel motion field estimation method based on a 3D light detection and ranging (LiDAR) sensor for motion sensing for intelligent driverless vehicles and active collision avoidance systems. Unlike multiple target tracking methods, which estimate the motion state of detected targets, such as cars and pedestrians, motion field estimation regards the whole scene as a motion field in which each little element has its own motion state. Compared to multiple target tracking, segmentation errors and data association errors have much less significance in motion field estimation, making it more accurate and robust. This paper presents an intact 3D LiDAR-based motion field estimation method, including pre-processing, a theoretical framework for the motion field estimation problem and practical solutions. The 3D LiDAR measurements are first projected to small-scale polar grids, and then, after data association and Kalman filtering, the motion state of every moving grid is estimated. To reduce computing time, a fast data association algorithm is proposed. Furthermore, considering the spatial correlation of motion among neighboring grids, a novel spatial-smoothing algorithm is also presented to optimize the motion field. The experimental results using several data sets captured in different cities indicate that the proposed motion field estimation is able to run in real-time and performs robustly and effectively. PMID:25207868

  19. Motion Field Estimation for a Dynamic Scene Using a 3D LiDAR

    PubMed Central

    Li, Qingquan; Zhang, Liang; Mao, Qingzhou; Zou, Qin; Zhang, Pin; Feng, Shaojun; Ochieng, Washington

    2014-01-01

    This paper proposes a novel motion field estimation method based on a 3D light detection and ranging (LiDAR) sensor for motion sensing for intelligent driverless vehicles and active collision avoidance systems. Unlike multiple target tracking methods, which estimate the motion state of detected targets, such as cars and pedestrians, motion field estimation regards the whole scene as a motion field in which each little element has its own motion state. Compared to multiple target tracking, segmentation errors and data association errors have much less significance in motion field estimation, making it more accurate and robust. This paper presents an intact 3D LiDAR-based motion field estimation method, including pre-processing, a theoretical framework for the motion field estimation problem and practical solutions. The 3D LiDAR measurements are first projected to small-scale polar grids, and then, after data association and Kalman filtering, the motion state of every moving grid is estimated. To reduce computing time, a fast data association algorithm is proposed. Furthermore, considering the spatial correlation of motion among neighboring grids, a novel spatial-smoothing algorithm is also presented to optimize the motion field. The experimental results using several data sets captured in different cities indicate that the proposed motion field estimation is able to run in real-time and performs robustly and effectively. PMID:25207868

  20. Numerical Optimization Strategy for Determining 3D Flow Fields in Microfluidics

    NASA Astrophysics Data System (ADS)

    Eden, Alex; Sigurdson, Marin; Mezic, Igor; Meinhart, Carl

    2015-11-01

    We present a hybrid experimental-numerical method for generating 3D flow fields from 2D PIV experimental data. An optimization algorithm is applied to a theory-based simulation of an alternating current electrothermal (ACET) micromixer in conjunction with 2D PIV data to generate an improved representation of 3D steady state flow conditions. These results can be used to investigate mixing phenomena. Experimental conditions were simulated using COMSOL Multiphysics to solve the temperature and velocity fields, as well as the quasi-static electric fields. The governing equations were based on a theoretical model for ac electrothermal flows. A Nelder-Mead optimization algorithm was used to achieve a better fit by minimizing the error between 2D PIV experimental velocity data and numerical simulation results at the measurement plane. By applying this hybrid method, the normalized RMS velocity error between the simulation and experimental results was reduced by more than an order of magnitude. The optimization algorithm altered 3D fluid circulation patterns considerably, providing a more accurate representation of the 3D experimental flow field. This method can be generalized to a wide variety of flow problems. This research was supported by the Institute for Collaborative Biotechnologies through grant W911NF-09-0001 from the U.S. Army Research Office.

  1. 3-D field computation: The near-triumph of commerical codes

    SciTech Connect

    Turner, L.R.

    1995-07-01

    In recent years, more and more of those who design and analyze magnets and other devices are using commercial codes rather than developing their own. This paper considers the commercial codes and the features available with them. Other recent trends with 3-D field computation include parallel computation and visualization methods such as virtual reality systems.

  2. A Residual Kriging method for the reconstruction of 3D high-resolution meteorological fields from airborne and surface observations

    NASA Astrophysics Data System (ADS)

    Laiti, Lavinia; Zardi, Dino; de Franceschi, Massimiliano; Rampanelli, Gabriele

    2013-04-01

    Manned light aircrafts and remotely piloted aircrafts represent very valuable and flexible measurement platforms for atmospheric research, as they are able to provide high temporal and spatial resolution observations of the atmosphere above the ground surface. In the present study the application of a geostatistical interpolation technique called Residual Kriging (RK) is proposed for the mapping of airborne measurements of scalar quantities over regularly spaced 3D grids. In RK the dominant (vertical) trend component underlying the original data is first extracted to filter out local anomalies, then the residual field is separately interpolated and finally added back to the trend; the determination of the interpolation weights relies on the estimate of the characteristic covariance function of the residuals, through the computation and modelling of their semivariogram function. RK implementation also allows for the inference of the characteristic spatial scales of variability of the target field and its isotropization, and for an estimate of the interpolation error. The adopted test-bed database consists in a series of flights of an instrumented motorglider exploring the atmosphere of two valleys near the city of Trento (in the southeastern Italian Alps), performed on fair-weather summer days. RK method is used to reconstruct fully 3D high-resolution fields of potential temperature and mixing ratio for specific vertical slices of the valley atmosphere, integrating also ground-based measurements from the nearest surface weather stations. From RK-interpolated meteorological fields, fine-scale features of the atmospheric boundary layer developing over the complex valley topography in connection with the occurrence of thermally-driven slope and valley winds, are detected. The performance of RK mapping is also tested against two other commonly adopted interpolation methods, i.e. the Inverse Distance Weighting and the Delaunay triangulation methods, comparing the results

  3. Investigation of the 3-D actinic flux field in mountainous terrain

    NASA Astrophysics Data System (ADS)

    Wagner, J. E.; Angelini, F.; Blumthaler, M.; Fitzka, M.; Gobbi, G. P.; Kift, R.; Kreuter, A.; Rieder, H. E.; Simic, S.; Webb, A.; Weihs, P.

    2011-11-01

    During three field campaigns spectral actinic flux was measured from 290-500 nm under clear sky conditions in Alpine terrain and the associated O3- and NO2-photolysis frequencies were calculated and the measurement products were then compared with 1-D- and 3-D-model calculations. To do this 3-D-radiative transfer model was adapted for actinic flux calculations in mountainous terrain and the maps of the actinic flux field at the surface, calculated with the 3-D-radiative transfer model, are given. The differences between the 3-D- and 1-D-model results for selected days during the campaigns are shown, together with the ratios of the modeled actinic flux values to the measurements. In many cases the 1-D-model overestimates actinic flux by more than the measurement uncertainty of 10%. The results of using a 3-D-model generally show significantly lower values, and can underestimate the actinic flux by up to 30%. This case study attempts to quantify the impact of snow cover in combination with topography on spectral actinic flux. The impact of snow cover on the actinic flux was ~ 25% in narrow snow covered valleys, but for snow free areas there were no significant changes due snow cover in the surrounding area and it is found that the effect snow-cover at distances over 5 km from the point of interest was below 5%. Overall the 3-D-model can calculate actinic flux to the same accuracy as the 1-D-model for single points, but gives a much more realistic view of the surface actinic flux field in mountains as topography and obstruction of the horizon are taken into account.

  4. Investigation of the 3-D actinic flux field in mountainous terrain

    PubMed Central

    Wagner, J.E.; Angelini, F.; Blumthaler, M.; Fitzka, M.; Gobbi, G.P.; Kift, R.; Kreuter, A.; Rieder, H.E.; Simic, S.; Webb, A.; Weihs, P.

    2011-01-01

    During three field campaigns spectral actinic flux was measured from 290–500 nm under clear sky conditions in Alpine terrain and the associated O3- and NO2-photolysis frequencies were calculated and the measurement products were then compared with 1-D- and 3-D-model calculations. To do this 3-D-radiative transfer model was adapted for actinic flux calculations in mountainous terrain and the maps of the actinic flux field at the surface, calculated with the 3-D-radiative transfer model, are given. The differences between the 3-D- and 1-D-model results for selected days during the campaigns are shown, together with the ratios of the modeled actinic flux values to the measurements. In many cases the 1-D-model overestimates actinic flux by more than the measurement uncertainty of 10%. The results of using a 3-D-model generally show significantly lower values, and can underestimate the actinic flux by up to 30%. This case study attempts to quantify the impact of snow cover in combination with topography on spectral actinic flux. The impact of snow cover on the actinic flux was ~ 25% in narrow snow covered valleys, but for snow free areas there were no significant changes due snow cover in the surrounding area and it is found that the effect snow-cover at distances over 5 km from the point of interest was below 5%. Overall the 3-D-model can calculate actinic flux to the same accuracy as the 1-D-model for single points, but gives a much more realistic view of the surface actinic flux field in mountains as topography and obstruction of the horizon are taken into account. PMID:26412915

  5. Search for strongly coupled Chameleon scalar field with neutron interferometry

    NASA Astrophysics Data System (ADS)

    Li, K.; Arif, M.; Cory, D.; Haun, R.; Heacock, B.; Huber, M.; Nsofini, J.; Pushin, D. A.; Saggu, P.; Sarenac, D.; Shahi, C.; Skavysh, V.; Snow, M.; Young, A.

    2015-04-01

    The dark energy proposed to explain the observed accelerated expansion of the universe is not understood. A chameleon scalar field proposed as a dark energy candidate can explain the accelerated expansion and evade all current gravity experimental bounds. It features an effective range of the chameleon scalar field that depends on the local mass density. Hence a perfect crystal neutron interferometer, that measures relative phase shift between two paths, is a prefect tool to search for the chameleon field. We are preparing a two-chamber helium gas cell for the neutron interferometer. We can lower the pressure in one cell so low that the chameleon field range expands into the cell and causes a measurable neutron phase shift while keeping the pressure difference constant. We expect to set a new upper limit of the Chameleon field by at least one order of magnitude. This work is supported by NSF Grant 1205977, DOE Grant DE-FG02-97ER41042, Canadian Excellence Research Chairs program, Natural Sciences and Engineering Research Council of Canada and Collaborative Research and Training Experience Program

  6. Cosmological density perturbations in a conformal scalar field theory

    NASA Astrophysics Data System (ADS)

    Libanov, M. V.; Rubakov, V. A.

    2012-02-01

    We consider a scenario in which primordial scalar perturbations are generated when a complex conformal scalar field rolls down its negative quartic potential. Initially, these are perturbations of the phase of this field, which are then converted into adiabatic perturbations of the density. The existence of perturbations in the radial field direction, which have a red power spectrum, is a potentially dangerous feature of this scenario. But we show that in the linear order in the small parameter, the self-coupling, the infrared effects are completely nullified by an appropriate field redefinition. We evaluate the statistical anisotropy inherent in the model because of the presence of the long-wave perturbations of the radial field component. In the linear order in the self-coupling, the infrared effects do not affect the statistical anisotropy. They are manifested only at the quadratic order in the self-coupling, weakly (logarithmically) enhancing the corresponding contribution to the statistical anisotropy. The resulting statistical anisotropy is a combination of a large term, which decreases as the momentum increases, and a momentum-independent nonamplified term.

  7. Varying vacuum energy of a self-interacting scalar field

    NASA Astrophysics Data System (ADS)

    Trachenko, K.

    2015-11-01

    Understanding mechanisms capable of altering the vacuum energy is currently of interest in field theories and cosmology. We consider an interacting scalar field and show that the vacuum energy naturally takes any value between its maximum and zero because interaction affects the number of operating field modes, the assertion that involves no assumptions or postulates. The mechanism is similar to the recently discussed temperature evolution of collective modes in liquids. The cosmological implication concerns the evolution of scalar field ϕ during the inflation of the Universe. ϕ starts with all field modes operating and maximal vacuum energy in the early inflation-dominated epoch. As a result of inflation, ϕ undergoes a dynamical crossover and arrives in the state with one long-wavelength longitudinal mode and small positive vacuum energy predicted to be asymptotically decreasing to zero in the late epoch. Accordingly, we predict that the currently observed cosmological constant will decrease in the future, and comment on the possibility of a cyclic Universe.

  8. 3-D FEM field analysis in controlled-PM LSM for Maglev vehicle

    SciTech Connect

    Yoshida, Kinjiro; Lee, J.; Kim, Y.J.

    1997-03-01

    The magnetic fields in the controlled-PM LSM for Maglev vehicle, of which the width is not only finite with lateral edges, but also an effective electric-airgap is very large, are accurately analyzed by using 3-D FEM. The lateral airgap-flux due to lateral edges of the machine is made clear and its effects on thrust and lift forces are evaluated quantitatively from the comparison with 2-D FEA. The accuracy of 3-D FEA is verified by comparing the calculated results with the measured values.

  9. Moving from Batch to Field Using the RT3D Reactive Transport Modeling System

    NASA Astrophysics Data System (ADS)

    Clement, T. P.; Gautam, T. R.

    2002-12-01

    The public domain reactive transport code RT3D (Clement, 1997) is a general-purpose numerical code for solving coupled, multi-species reactive transport in saturated groundwater systems. The code uses MODFLOW to simulate flow and several modules of MT3DMS to simulate the advection and dispersion processes. RT3D employs the operator-split strategy which allows the code solve the coupled reactive transport problem in a modular fashion. The coupling between reaction and transport is defined through a separate module where the reaction equations are specified. The code supports a versatile user-defined reaction option that allows users to define their own reaction system through a Fortran-90 subroutine, known as the RT3D-reaction package. Further a utility code, known as BATCHRXN, allows the users to independently test and debug their reaction package. To analyze a new reaction system at a batch scale, users should first run BATCHRXN to test the ability of their reaction package to model the batch data. After testing, the reaction package can simply be ported to the RT3D environment to study the model response under 1-, 2-, or 3-dimensional transport conditions. This paper presents example problems that demonstrate the methods for moving from batch to field-scale simulations using BATCHRXN and RT3D codes. The first example describes a simple first-order reaction system for simulating the sequential degradation of Tetrachloroethene (PCE) and its daughter products. The second example uses a relatively complex reaction system for describing the multiple degradation pathways of Tetrachloroethane (PCA) and its daughter products. References 1) Clement, T.P, RT3D - A modular computer code for simulating reactive multi-species transport in 3-Dimensional groundwater aquifers, Battelle Pacific Northwest National Laboratory Research Report, PNNL-SA-28967, September, 1997. Available at: http://bioprocess.pnl.gov/rt3d.htm.

  10. HOSVD-Based 3D Active Appearance Model: Segmentation of Lung Fields in CT Images.

    PubMed

    Wang, Qingzhu; Kang, Wanjun; Hu, Haihui; Wang, Bin

    2016-07-01

    An Active Appearance Model (AAM) is a computer vision model which can be used to effectively segment lung fields in CT images. However, the fitting result is often inadequate when the lungs are affected by high-density pathologies. To overcome this problem, we propose a Higher-order Singular Value Decomposition (HOSVD)-based Three-dimensional (3D) AAM. An evaluation was performed on 310 diseased lungs form the Lung Image Database Consortium Image Collection. Other contemporary AAMs operate directly on patterns represented by vectors, i.e., before applying the AAM to a 3D lung volume,it has to be vectorized first into a vector pattern by some technique like concatenation. However, some implicit structural or local contextual information may be lost in this transformation. According to the nature of the 3D lung volume, HOSVD is introduced to represent and process the lung in tensor space. Our method can not only directly operate on the original 3D tensor patterns, but also efficiently reduce the computer memory usage. The evaluation resulted in an average Dice coefficient of 97.0 % ± 0.59 %, a mean absolute surface distance error of 1.0403 ± 0.5716 mm, a mean border positioning errors of 0.9187 ± 0.5381 pixel, and a Hausdorff Distance of 20.4064 ± 4.3855, respectively. Experimental results showed that our methods delivered significant and better segmentation results, compared with the three other model-based lung segmentation approaches, namely 3D Snake, 3D ASM and 3D AAM. PMID:27277277

  11. Fast 3D Spatial EPR Imaging Using Spiral Magnetic Field Gradient

    PubMed Central

    Deng, Yuanmu; Petryakov, Sergy; He, Guanglong; Kesselring, Eric; Kuppusamy, Periannan; Zweier, Jay L.

    2007-01-01

    Electron paramagnetic resonance imaging (EPRI) provides direct detection and mapping of free radicals. The continuous wave (CW) EPRI technique, in particular, has been widely used in a variety of applications in the fields of biology and medicine due to its high sensitivity and applicability to a wide range of free radicals and paramagnetic species. However, the technique requires long image acquisition periods, and this limits its use for many in vivo applications where relatively rapid changes occur in the magnitude and distribution of spins. Therefore, there has been a great need to develop fast EPRI techniques. We report the development of a fast 3D CW EPRI technique using spiral magnetic field gradient. By spiraling the magnetic field gradient and stepping the main magnetic field, this approach acquires a 3D image in one sweep of the main magnetic field, enabling significant reduction of the imaging time. A direct one-stage 3D image reconstruction algorithm, modified for reconstruction of the EPR images from the projections acquired with the spiral magnetic field gradient, was used. We demonstrated using a home-built L-band EPR system that the spiral magnetic field gradient technique enabled a 4 to 7-fold accelerated acquisition of projections. This technique has great potential for in vivo studies of free radicals and their metabolism. PMID:17267252

  12. Marine induction studies based on sea surface scalar magnetic field measurements. A concept and its verification

    NASA Astrophysics Data System (ADS)

    Kuvshinov, A. V.; Poedjono, B.; Matzka, J.; Olsen, N.; Pai, S.; Samrock, F.

    2013-12-01

    Most marine EM studies are based on sea-bottom measurements which are expensive and logistically demanding. We propose a low-cost and easy-to-deploy magnetic survey concept which exploits sea surface measurements. It is assumed that the exciting source can be described by a plane wave. The concept is based on responses that relate variations of the scalar magnetic field at the survey sites with variations of the horizontal magnetic field at a base site. It can be shown that these scalar responses are a mixture of standard tipper responses and elements of the horizontal magnetic tensor and thus can be used to probe the electrical conductivity of the subsoil. This opens an avenue for sea-surface induction studies which so far was believed very difficult to conduct if conventional approaches based on vector measurements are invoked. We perform 3-D realistic model studies where the target region was Oahu Island and its surroundings, and USGS operated Honolulu geomagnetic observatory was chosen as the base site. We compare the predicted responses with the responses estimated from the scalar data collected at a few locations around Oahu Island by the unmanned, autonomous, wave and solar powered 'Wave Glider' developed and operated by Liquid Robotics Oil and Gas/Schlumberger. The marine robots observation platform is equipped with a tow Overhauser magnetometer (validated by USGS). The studies show an encouraging agreement between predictions and experiment in both components of the scalar response at all locations and we consider this as a proof of the suggested concept.

  13. Fluctuation-dissipation dynamics of cosmological scalar fields

    NASA Astrophysics Data System (ADS)

    Bartrum, Sam; Berera, Arjun; Rosa, João G.

    2015-04-01

    We show that dissipative effects have a significant impact on the evolution of cosmological scalar fields, leading to friction, entropy production and field fluctuations. We explicitly compute the dissipation coefficient for different scalar fields within the standard model and some of its most widely considered extensions, in different parametric regimes. We describe the generic consequences of fluctuation-dissipation dynamics in the postinflationary universe, focusing in particular on friction and particle production, and analyze in detail two important effects. First, we show that dissipative friction delays the process of spontaneous symmetry breaking and may even damp the motion of a Higgs field sufficiently to induce a late period of warm inflation. Along with dissipative entropy production, this may parametrically dilute the abundance of dangerous thermal relics. Second, we show that dissipation can generate the observed baryon asymmetry without symmetry restoration, and we develop in detail a model of dissipative leptogenesis. We further show that this generically leads to characteristic baryon isocurvature perturbations that can be tested with cosmic microwave background observations. This work provides a fundamental framework to go beyond the leading thermal equilibrium semiclassical approximation in addressing fundamental problems in modern cosmology.

  14. Wave optics theory and 3-D deconvolution for the light field microscope

    PubMed Central

    Broxton, Michael; Grosenick, Logan; Yang, Samuel; Cohen, Noy; Andalman, Aaron; Deisseroth, Karl; Levoy, Marc

    2013-01-01

    Light field microscopy is a new technique for high-speed volumetric imaging of weakly scattering or fluorescent specimens. It employs an array of microlenses to trade off spatial resolution against angular resolution, thereby allowing a 4-D light field to be captured using a single photographic exposure without the need for scanning. The recorded light field can then be used to computationally reconstruct a full volume. In this paper, we present an optical model for light field microscopy based on wave optics, instead of previously reported ray optics models. We also present a 3-D deconvolution method for light field microscopy that is able to reconstruct volumes at higher spatial resolution, and with better optical sectioning, than previously reported. To accomplish this, we take advantage of the dense spatio-angular sampling provided by a microlens array at axial positions away from the native object plane. This dense sampling permits us to decode aliasing present in the light field to reconstruct high-frequency information. We formulate our method as an inverse problem for reconstructing the 3-D volume, which we solve using a GPU-accelerated iterative algorithm. Theoretical limits on the depth-dependent lateral resolution of the reconstructed volumes are derived. We show that these limits are in good agreement with experimental results on a standard USAF 1951 resolution target. Finally, we present 3-D reconstructions of pollen grains that demonstrate the improvements in fidelity made possible by our method. PMID:24150383

  15. 3D Extended Logging for Geothermal Resources: Field Trials with the Geo-Bilt System

    SciTech Connect

    Mallan, R; Wilt, M; Kirkendall, B; Kasameyer, P

    2002-05-29

    Geo-BILT (Geothermal Borehole Induction Logging Tool) is an extended induction logging tool designed for 3D resistivity imaging around a single borehole. The tool was developed for deployment in high temperature geothermal wells under a joint program funded by the California Energy Commission, Electromagnetic Instruments (EMI) and the U.S. Department of Energy. EM1 was responsible for tool design and manufacture, and numerical modeling efforts were being addressed at Lawrence Livermore Laboratory (LLNL) and other contractors. The field deployment was done by EM1 and LLNL. The tool operates at frequencies from 2 to 42 kHz, and its design features a series of three-component magnetic sensors offset at 2 and 5 meters from a three-component magnetic source. The combined package makes it possible to do 3D resistivity imaging, deep into the formation, from a single well. The manufacture and testing of the tool was completed in spring of 2001, and the initial deployment of Geo-BILT occurred in May 2001 at the Lost Hills oil field in southern California at leases operated by Chevron USA. This site was chosen for the initial field test because of the favorable geological conditions and the availability of a number of wells suitable for tool deployment. The second deployment occurred in April 2002 at the Dixie Valley geothermal field, operated by Caithness Power LLC, in central Nevada. This constituted the first test in a high temperature environment. The Chevron site features a fiberglass-cased observation well in the vicinity of a water injector. The injected water, which is used for pressure maintenance and for secondary sweep of the heavy oil formation, has a much lower resistivity than the oil bearing formation. This, in addition to the non-uniform flow of this water, creates a 3D resistivity structure, which is analogous to conditions produced from flowing fractures adjacent to geothermal boreholes. Therefore, it is an excellent site for testing the 3D capability of

  16. Topology-based Simplification for Feature Extraction from 3D Scalar Fields

    SciTech Connect

    Gyulassy, A; Natarajan, V; Pascucci, V; Bremer, P; Hamann, B

    2005-10-13

    This paper describes a topological approach for simplifying continuous functions defined on volumetric domains. We present a combinatorial algorithm that simplifies the Morse-Smale complex by repeated application of two atomic operations that removes pairs of critical points. The Morse-Smale complex is a topological data structure that provides a compact representation of gradient flows between critical points of a function. Critical points paired by the Morse-Smale complex identify topological features and their importance. The simplification procedure leaves important critical points untouched, and is therefore useful for extracting desirable features. We also present a visualization of the simplified topology.

  17. Slowly rotating scalar field wormholes: The second order approximation

    SciTech Connect

    Kashargin, P. E.; Sushkov, S. V.

    2008-09-15

    We discuss rotating wormholes in general relativity with a scalar field with negative kinetic energy. To solve the problem, we use the assumption about slow rotation. The role of a small dimensionless parameter plays the ratio of the linear velocity of rotation of the wormhole's throat and the velocity of light. We construct the rotating wormhole solution in the second-order approximation with respect to the small parameter. The analysis shows that the asymptotical mass of the rotating wormhole is greater than that of the nonrotating one, and the null energy condition violation in the rotating wormhole spacetime is weaker than that in the nonrotating one.

  18. Boson stars: Gravitational equilibria of self-interacting scalar fields

    SciTech Connect

    Colpi, M.; Shapiro, S.L.; Wasserman, I.

    1986-11-17

    Spherically symmetric gravitational equilibria of self-interacting scalar fields phi with interaction potential V(phi) = (1/4)lambdachemically bondphichemically bond/sup 4/ are determined. Surprisingly, the resulting configurations may differ markedly from the noninteracting case even when lambda<<1. Contrary to generally accepted astrophysical folklore, it is found that the maximum masses of such boson stars may be comparable to the Chandrasekhar mass for fermions of mass m/sub fermion/--lambda/sup -1/4/m/sub boson/. .AE

  19. Complex solutions for the scalar field model of the Universe

    NASA Astrophysics Data System (ADS)

    Lyons, Glenn W.

    1992-08-01

    The Hartle-Hawking proposal is implemented for Hawking's scalar field model of the Universe. For this model the complex saddle-point geometries required by the semiclassical approximation to the path integral cannot simply be deformed into real Euclidean and real Lorentzian sections. Approximate saddle points are constructed which are fully complex and have contours of real Lorentzian evolution. The semiclassical wave function is found to give rise to classical spacetimes at late times and extra terms in the Hamilton-Jacobi equation do not contribute significantly to the potential.

  20. Gauss-Bonnet Brane World Gravity with a Scalar Field

    SciTech Connect

    Davis, Stephen C.

    2004-11-17

    The effective four-dimensional, linearised gravity of a brane world model with one extra dimension and a single brane is analysed. The model includes higher order curvature terms (such as the Gauss-Bonnet term) and a conformally coupled scalar field. Large and small distance gravitational laws are derived. In contrast to the corresponding Einstein gravity models, it is possible to obtain solutions with localised gravity which are compatible with observations. Solutions with non-standard large distance Newtonian potentials are also described.

  1. Absorption of massless scalar field by rotating black holes

    NASA Astrophysics Data System (ADS)

    Leite, Luiz C. S.; Crispino, Luís C. B.; de Oliveira, Ednilton S.; Macedo, Caio F. B.; Dolan, Sam R.

    2016-07-01

    We compute the absorption cross-section of the Kerr black holes (BH) for the massless scalar field, and present a selection of numerical results, to complement the results of Ref.[C. F. B. Macedo, L. C. S. Leite, E. S. Oliveria, S. R. Dolan and L. C. B. Crispino, Phys. Rev. D 88 (2013) 064033.] We show that, in the high-frequency regime, the cross-section approaches the geodesic capture cross-section. We split the absorption cross-section into corotating and counterrotating contributions, and we show that the counterrotating contribution exceeds the corotating one.

  2. Self-dual Maxwell field in 3D gravity with torsion

    SciTech Connect

    Blagojevic, M.; Cvetkovic, B.

    2008-08-15

    We study the system of a self-dual Maxwell field coupled to 3D gravity with torsion, with the Maxwell field modified by a topological mass term. General structure of the field equations reveals a new, dynamical role of the classical central charges, and gives a simple correspondence between self-dual solutions with torsion and their Riemannian counterparts. We construct two exact self-dual solutions, corresponding to the sectors with a massless and massive Maxwell field, and calculate their conserved charges.

  3. Decoding 3D search coil signals in a non-homogeneous magnetic field.

    PubMed

    Thomassen, Jakob S; Benedetto, Giacomo Di; Hess, Bernhard J M

    2010-06-18

    We present a method for recording eye-head movements with the magnetic search coil technique in a small external magnetic field. Since magnetic fields are typically non-linear, except in a relative small region in the center small field frames have not been used for head-unrestrained experiments in oculomotor studies. Here we present a method for recording 3D eye movements by accounting for the magnetic non-linearities using the Biot-Savart law. We show that the recording errors can be significantly reduced by monitoring current head position and thereby taking the location of the eye in the external magnetic field into account. PMID:20359490

  4. Using the CAVE virtual-reality environment as an aid to 3-D electromagnetic field computation

    SciTech Connect

    Turner, L.R.; Levine, D.; Huang, M.; Papka, M; Kettunen, L.

    1995-08-01

    One of the major problems in three-dimensional (3-D) field computation is visualizing the resulting 3-D field distributions. A virtual-reality environment, such as the CAVE, (CAVE Automatic Virtual Environment) is helping to overcome this problem, thus making the results of computation more usable for designers and users of magnets and other electromagnetic devices. As a demonstration of the capabilities of the CAVE, the elliptical multipole wiggler (EMW), an insertion device being designed for the Advanced Photon Source (APS) now being commissioned at Argonne National Laboratory (ANL), wa made visible, along with its fields and beam orbits. Other uses of the CAVE in preprocessing and postprocessing computation for electromagnetic applications are also discussed.

  5. Radial electric field 3D modeling for wire arrays driving dynamic hohlraums on Z.

    SciTech Connect

    Mock, Raymond Cecil

    2007-06-01

    The anode-cathode structure of the Z-machine wire array results in a higher negative radial electric field (Er) on the wires near the cathode relative to the anode. The magnitude of this field has been shown to anti-correlate with the axial radiation top/bottom symmetry in the DH (Dynamic Hohlraum). Using 3D modeling, the structure of this field is revealed for different wire-array configurations and for progressive mechanical alterations, providing insight for minimizing the negative Er on the wire array in the anode-to-cathode region of the DH. Also, the 3D model is compared to Sasorov's approximation, which describes Er at the surface of the wire in terms of wire-array parameters.

  6. Exploring Direct 3D Interaction for Full Horizontal Parallax Light Field Displays Using Leap Motion Controller

    PubMed Central

    Adhikarla, Vamsi Kiran; Sodnik, Jaka; Szolgay, Peter; Jakus, Grega

    2015-01-01

    This paper reports on the design and evaluation of direct 3D gesture interaction with a full horizontal parallax light field display. A light field display defines a visual scene using directional light beams emitted from multiple light sources as if they are emitted from scene points. Each scene point is rendered individually resulting in more realistic and accurate 3D visualization compared to other 3D displaying technologies. We propose an interaction setup combining the visualization of objects within the Field Of View (FOV) of a light field display and their selection through freehand gesture tracked by the Leap Motion Controller. The accuracy and usefulness of the proposed interaction setup was also evaluated in a user study with test subjects. The results of the study revealed high user preference for free hand interaction with light field display as well as relatively low cognitive demand of this technique. Further, our results also revealed some limitations and adjustments of the proposed setup to be addressed in future work. PMID:25875189

  7. Exploring direct 3D interaction for full horizontal parallax light field displays using leap motion controller.

    PubMed

    Adhikarla, Vamsi Kiran; Sodnik, Jaka; Szolgay, Peter; Jakus, Grega

    2015-01-01

    This paper reports on the design and evaluation of direct 3D gesture interaction with a full horizontal parallax light field display. A light field display defines a visual scene using directional light beams emitted from multiple light sources as if they are emitted from scene points. Each scene point is rendered individually resulting in more realistic and accurate 3D visualization compared to other 3D displaying technologies. We propose an interaction setup combining the visualization of objects within the Field Of View (FOV) of a light field display and their selection through freehand gesture tracked by the Leap Motion Controller. The accuracy and usefulness of the proposed interaction setup was also evaluated in a user study with test subjects. The results of the study revealed high user preference for free hand interaction with light field display as well as relatively low cognitive demand of this technique. Further, our results also revealed some limitations and adjustments of the proposed setup to be addressed in future work. PMID:25875189

  8. Extra high speed modified Lundell alternator parameters and open/short-circuit characteristics from global 3D-FE magnetic field solutions

    NASA Technical Reports Server (NTRS)

    Wang, R.; Demerdash, N. A.

    1992-01-01

    The combined magnetic vector potential - magnetic scalar potential method of computation of 3D magnetic fields by finite elements, introduced in a companion paper, is used for global 3D field analysis and machine performance computations under open-circuit and short-circuit conditions for an example 14.3 kVA modified Lundell alternator, whose magnetic field is of intrinsic 3D nature. The computed voltages and currents under these machine test conditions were verified and found to be in very good agreement with corresponding test data. Results of use of this modelling and computation method in the study of a design alteration example, in which the stator stack length of the example alternator is stretched in order to increase voltage and volt-ampere rating, are given here. These results demonstrate the inadequacy of conventional 2D-based design concepts and the imperative of use of this type of 3D magnetic field modelling in the design and investigation of such machines.

  9. Massless scalar field and solar-system experiments

    SciTech Connect

    Formiga, J. B.

    2011-04-15

    The solution of Einstein's field equations with the energy-momentum tensor of a massless scalar field is known as the Fisher solution. It is well known that this solution has a naked singularity due to the ''charge''{Sigma} of the massless scalar field. Here I obtain the radial null geodesic of the Fisher solution and use it to confirm that there is no black hole. In addition, I use the parametrized post-Newtonian formalism to show that the Fisher spacetime predicts the same effects on solar-system experiments as the Schwarzschild one does, as long as we impose a limit on {Sigma}. I show that this limit is not a strong constraint and we can even take values of {Sigma} bigger than M. By using the exact formula of the redshift and some assumptions, I evaluate this limit for the experiment of Pound and Snider [Phys. Rev. 140, B788 (1965)]. It turns out that this limit is {Sigma}<5.8x10{sup 3} m.

  10. Instability of charged wormholes supported by a ghost scalar field

    SciTech Connect

    Gonzalez, J. A.; Guzman, F. S.; Sarbach, O.

    2009-07-15

    In previous work, we analyzed the linear and nonlinear stability of static, spherically symmetric wormhole solutions to Einstein's field equations coupled to a massless ghost scalar field. Our analysis revealed that all these solutions are unstable with respect to linear and nonlinear spherically symmetric perturbations and showed that the perturbation causes the wormholes to either decay to a Schwarzschild black hole or undergo a rapid expansion. Here, we consider charged generalization of the previous models by adding to the gravitational and ghost scalar field an electromagnetic one. We first derive the most general static, spherically symmetric wormholes in this theory and show that they give rise to a four-parameter family of solutions. This family can be naturally divided into subcritical, critical and supercritical solutions depending on the sign of the sum of the asymptotic masses. Then, we analyze the linear stability of these solutions. We prove that all subcritical and all critical solutions possess one exponentially in time growing mode. It follows that all subcritical and critical wormholes are linearly unstable. In the supercritical case we provide numerical evidence for the existence of a similar unstable mode.

  11. Correspondence between Generalized Dark Energy and Scalar Field Dark Energies

    NASA Astrophysics Data System (ADS)

    Maity, Sayani; Debnath, Ujjal

    2015-07-01

    In this work, we have considered non-flat FRW universe filled with dark matter (with non-zero pressure) and generalized dark energy (GDE) as motivated by the work of Sharif et al. (Mod. Phys. Lett. A 28, 1350180, 2013). Also the dark matter and the dark energy are considered to be interacting. The energy density, pressure and the EoS of the GDE have been calculated for the interacting scenario. For stability analysis of this model, we have also analyzed the sign of square speed of sound. Next we investigate the correspondence between GDE and different other candidates of dark energies such as DBI-essence, tachyonic field, hessenc and electromagnetic field. Also we have reconstructed the potential functions and the scalar fields in this scenario.

  12. Casimir effect for a scalar field via Krein quantization

    SciTech Connect

    Pejhan, H.; Tanhayi, M.R.; Takook, M.V.

    2014-02-15

    In this work, we present a rather simple method to study the Casimir effect on a spherical shell for a massless scalar field with Dirichlet boundary condition by applying the indefinite metric field (Krein) quantization technique. In this technique, the field operators are constructed from both negative and positive norm states. Having understood that negative norm states are un-physical, they are only used as a mathematical tool for renormalizing the theory and then one can get rid of them by imposing some proper physical conditions. -- Highlights: • A modification of QFT is considered to address the vacuum energy divergence problem. • Casimir energy of a spherical shell is calculated, through this approach. • In this technique, it is shown, the theory is automatically regularized.

  13. Surface strain-field determination of tympanic membrane using 3D-digital holographic interferometry

    NASA Astrophysics Data System (ADS)

    Hernandez-Montes, María del S.; Mendoza Santoyo, Fernando; Muñoz, Silvino; Perez, Carlos; de la Torre, Manuel; Flores, Mauricio; Alvarez, Luis

    2015-08-01

    In order to increase the understanding of soft tissues mechanical properties, 3D Digital Holographic Interferometry (3D-DHI) was used to quantify the strain-field on a cat tympanic membrane (TM) surface. The experiments were carried out applying a constant sound-stimuli pressure of 90 dB SPL (0.632 Pa) on the TM at 1.2 kHz. The technique allows the accurate acquisition of the micro-displacement data along the x, y and z directions, which is a must for a full characterization of the tissue mechanical behavior under load, and for the calculation of the strain-field in situ. The displacements repeatability in z direction shows a standard deviation of 0.062 μm at 95% confidence level. In order to realize the full 3D characterization correctly the contour of the TM surface was measured employing the optically non-contact two-illumination positions contouring method. The x, y and z displacements combined with the TM contour data allow the evaluation its strain-field by spatially differentiating the u(m,n), v(m,n), and w(m,n) deformation components. The accurate and correct determination of the TM strain-field leads to describing its elasticity, which is an important parameter needed to improve ear biomechanics studies, audition processes and TM mobility in both experimental measurements and theoretical analysis of ear functionality and its modeling.

  14. Reconstruction of the 3D flow field in a differentially heated rotating annulus laboratory experiment

    NASA Astrophysics Data System (ADS)

    Harlander, U.; Wright, G. B.; Egbers, C.

    2012-04-01

    In the earth's atmosphere baroclinic instability is responsible for the heat and momentum transport from low to high latitudes. In the fifties, Raymond Hide used a rather simple laboratory experiment to study such vortices in the lab. The experiment is comprised by a cooled inner and heated outer cylinder mounted on a rotating platform, which mimics the heated tropical and cooled polar regions of the earth's atmosphere. The experiment shows rich dynamics that have been studied by varying the radial temperature difference and the rate of annulus revolution. At the Brandenburg University of Technology (BTU) Cottbus the differentially heated rotating annulus is a reference experiment of the DFG priority program 'MetStröm'. The 3D structure of the annulus flow field has been numerically simulated but, to our knowledge, has not been measured in the laboratory. In the present paper we use novel interpolation techniques to reconstruct the 3D annulus flow field from synchronous Particle Image Velocimetry (PIV) and Infrared Thermography (IRT) measurements. The PIV system is used to measure the horizontal velocity components at 40, 60, 80, 100, and 120 mm above the bottom. The uppermost level is thus 15 mm below the fluid's surface. The surface temperature is simultaneously measured by an infrared (IR) camera. The PIV and infrared cameras have been mounted above the annulus and they co-rotate with the annulus. From the PIV observations alone a coherent 3D picture of the flow cannot be constructed since the PIV measurements have been taken at different instants of time. Therefore a corresponding IR image has been recorded for each PIV measurement. These IR images can be used to reconstruct the correct phase of the measured velocity fields. Each IR and PIV image for which t>0 is rotated back to the position at t=0. Then all surface waves have the same phase. In contrast, the PIV velocity fields generally have different phases since they have been taken at different vertical

  15. Bouncing scalar field cosmology in the polymeric minisuperspace picture

    NASA Astrophysics Data System (ADS)

    Vakili, B.; Nozari, K.; Hosseinzadeh, V.; Gorji, M. A.

    2014-10-01

    We study a cosmological setup consisting of a FRW metric as the background geometry with a massless scalar field in the framework of classical polymerization of a given dynamical system. To do this, we first introduce the polymeric representation of the quantum operators. We then extend the corresponding process to reach a transformation which maps any classical variable to its polymeric counterpart. It is shown that such a formalism has also an analogue in terms of the symplectic structure, i.e. instead of applying polymerization to the classical Hamiltonian to arrive its polymeric form, one can use a new set of variables in terms of which Hamiltonian retains its form but now the corresponding symplectic structure gets a new deformed functional form. We show that these two methods are equivalent and by applying them to the scalar field FRW cosmology see that the resulting scale factor exhibits a bouncing behavior from a contraction phase to an expanding era. Since the replacing of the big bang singularity by a bouncing behavior is one of the most important predictions of the quantum cosmological theories, we may claim that our polymerized classical model brings with itself some signals from quantum theory.

  16. Unified Dark Matter scalar field models with fast transition

    SciTech Connect

    Bertacca, Daniele; Bruni, Marco; Piattella, Oliver F.; Pietrobon, Davide E-mail: marco.bruni@port.ac.uk E-mail: davide.pietrobon@jpl.nasa.gov

    2011-02-01

    We investigate the general properties of Unified Dark Matter (UDM) scalar field models with Lagrangians with a non-canonical kinetic term, looking specifically for models that can produce a fast transition between an early Einstein-de Sitter CDM-like era and a later Dark Energy like phase, similarly to the barotropic fluid UDM models in JCAP01(2010)014. However, while the background evolution can be very similar in the two cases, the perturbations are naturally adiabatic in fluid models, while in the scalar field case they are necessarily non-adiabatic. The new approach to building UDM Lagrangians proposed here allows to escape the common problem of the fine-tuning of the parameters which plague many UDM models. We analyse the properties of perturbations in our model, focusing on the the evolution of the effective speed of sound and that of the Jeans length. With this insight, we can set theoretical constraints on the parameters of the model, predicting sufficient conditions for the model to be viable. An interesting feature of our models is that what can be interpreted as w{sub DE} can be < −1 without violating the null energy conditions.

  17. Spikes and matter inhomogeneities in massless scalar field models

    NASA Astrophysics Data System (ADS)

    Coley, A. A.; Lim, W. C.

    2016-01-01

    We shall discuss the general relativistic generation of spikes in a massless scalar field or stiff perfect fluid model. We first investigate orthogonally transitive (OT) G 2 stiff fluid spike models both heuristically and numerically, and give a new exact OT G 2 stiff fluid spike solution. We then present a new two-parameter family of non-OT G 2 stiff fluid spike solutions, obtained by the generalization of non-OT G 2 vacuum spike solutions to the stiff fluid case by applying Geroch's transformation on a Jacobs seed. The dynamics of these new stiff fluid spike solutions is qualitatively different from that of the vacuum spike solutions in that the matter (stiff fluid) feels the spike directly and the stiff fluid spike solution can end up with a permanent spike. We then derive the evolution equations of non-OT G 2 stiff fluid models, including a second perfect fluid, in full generality, and briefly discuss some of their qualitative properties and their potential numerical analysis. Finally, we discuss how a fluid, and especially a stiff fluid or massless scalar field, affects the physics of the generation of spikes.

  18. Kinetic turbulence in 3D collisionless magnetic reconnection with a guide magnetic field

    NASA Astrophysics Data System (ADS)

    Alejandro Munoz Sepulveda, Patricio; Kilian, Patrick; Jain, Neeraj; Büchner, Jörg

    2016-04-01

    The features of kinetic plasma turbulence developed during non-relativistic 3D collisionless magnetic reconnection are still not fully understood. This is specially true under the influence of a strong magnetic guide field, a scenario common in space plasmas such as in the solar corona and also in laboratory experiments such as MRX or VINETA II. Therefore, we study the mechanisms and micro-instabilities leading to the development of turbulence during 3D magnetic reconnection with a fully kinetic PIC code, emphasizing the role of the guide field with an initial setup suitable for the aforementioned environments. We also clarify the relations between these processes and the generation of non-thermal populations and particle acceleration.

  19. 3D Kinetic Simulations of Topography-Induced Electric Fields at Itokawa Asteroid

    NASA Astrophysics Data System (ADS)

    Zimmerman, M. I.

    2015-12-01

    Results from a new 3D kinetic simulation code will be presented, showing how Itokawa's interaction with the solar wind plasma creates an ever-evolving electric field structure as the asteroid rotates. The simulations combine (1) a realistic surface shape model of Itokawa, (2) a careful and self-consistent accounting of surface charging processes, and (3) the freely-available FMMLib3d code library implementing the fast multipole method for electric field calculations. Fine details of the surface potential and electric grounding conditions, as revealed by this new code, could provide critical inputs into planning for a future asteroid retrieval mission in which extended, direct contact with the asteroid could occur.

  20. Blind Depth-variant Deconvolution of 3D Data in Wide-field Fluorescence Microscopy.

    PubMed

    Kim, Boyoung; Naemura, Takeshi

    2015-01-01

    This paper proposes a new deconvolution method for 3D fluorescence wide-field microscopy. Most previous methods are insufficient in terms of restoring a 3D cell structure, since a point spread function (PSF) is simply assumed as depth-invariant, whereas a PSF of microscopy changes significantly along the optical axis. A few methods that consider a depth-variant PSF have been proposed; however, they are impractical, since they are non-blind approaches that use a known PSF in a pre-measuring condition, whereas an imaging condition of a target image is different from that of the pre-measuring. To solve these problems, this paper proposes a blind approach to estimate depth-variant specimen-dependent PSF and restore 3D cell structure. It is shown by experiments on that the proposed method outperforms the previous ones in terms of suppressing axial blur. The proposed method is composed of the following three steps: First, a non-parametric averaged PSF is estimated by the Richardson Lucy algorithm, whose initial parameter is given by the central depth prediction from intensity analysis. Second, the estimated PSF is fitted to Gibson's parametric PSF model via optimization, and depth-variant PSFs are generated. Third, a 3D cell structure is restored by using a depth-variant version of a generalized expectation-maximization. PMID:25950821

  1. ARCHAEO-SCAN: Portable 3D shape measurement system for archaeological field work

    NASA Astrophysics Data System (ADS)

    Knopf, George K.; Nelson, Andrew J.

    2004-10-01

    Accurate measurement and thorough documentation of excavated artifacts are the essential tasks of archaeological fieldwork. The on-site recording and long-term preservation of fragile evidence can be improved using 3D spatial data acquisition and computer-aided modeling technologies. Once the artifact is digitized and geometry created in a virtual environment, the scientist can manipulate the pieces in a virtual reality environment to develop a "realistic" reconstruction of the object without physically handling or gluing the fragments. The ARCHAEO-SCAN system is a flexible, affordable 3D coordinate data acquisition and geometric modeling system for acquiring surface and shape information of small to medium sized artifacts and bone fragments. The shape measurement system is being developed to enable the field archaeologist to manually sweep the non-contact sensor head across the relic or artifact surface. A series of unique data acquisition, processing, registration and surface reconstruction algorithms are then used to integrate 3D coordinate information from multiple views into a single reference frame. A novel technique for automatically creating a hexahedral mesh of the recovered fragments is presented. The 3D model acquisition system is designed to operate from a standard laptop with minimal additional hardware and proprietary software support. The captured shape data can be pre-processed and displayed on site, stored digitally on a CD, or transmitted via the Internet to the researcher's home institution.

  2. Rigorous analysis of an electric-field-driven liquid crystal lens for 3D displays

    NASA Astrophysics Data System (ADS)

    Kim, Bong-Sik; Lee, Seung-Chul; Park, Woo-Sang

    2014-08-01

    We numerically analyzed the optical performance of an electric field driven liquid crystal (ELC) lens adopted for 3-dimensional liquid crystal displays (3D-LCDs) through rigorous ray tracing. For the calculation, we first obtain the director distribution profile of the liquid crystals by using the Erickson-Leslie motional equation; then, we calculate the transmission of light through the ELC lens by using the extended Jones matrix method. The simulation was carried out for a 9view 3D-LCD with a diagonal of 17.1 inches, where the ELC lens was slanted to achieve natural stereoscopic images. The results show that each view exists separately according to the viewing position at an optimum viewing distance of 80 cm. In addition, our simulation results provide a quantitative explanation for the ghost or blurred images between views observed from a 3D-LCD with an ELC lens. The numerical simulations are also shown to be in good agreement with the experimental results. The present simulation method is expected to provide optimum design conditions for obtaining natural 3D images by rigorously analyzing the optical functionalities of an ELC lens.

  3. Full-field strain measurements on turbomachinery components using 3D SLDV technology

    NASA Astrophysics Data System (ADS)

    Maguire, Martyn; Sever, Ibrahim

    2016-06-01

    This paper focuses on measurements of 3D Operating Deflection Shapes (ODSs), and subsequently, construction of full-field surface strain maps of a number of turbomachinery components. For this purpose a 3D Scanning Laser Doppler Vibrometer (SLDV) is used. The ODS measurements are performed for a large number of modes and results obtained are compared with the 1-D shapes that are most commonly measured. It is demonstrated that the 3D measurements are a significant improvement over the 1-D case in terms of independent amount of extra information they provide. This is confirmed through comparisons with FE results. Special tests are carried out to recover the full-field strain on scanned faces of the components used. Visual comparison of these measurements with FE counterparts reveal that strain maps can be successfully measured, not only for low frequency modes but also for highly complex high frequency ones. These maps are measured with different levels of input force to assess the linearity of strain results to varying response amplitudes. Lessons learnt and observations made are summarised in concluding remarks and the scope of future work to take this study into the production environment is discussed. This study constitutes a unique comprehensive investigation into full-field strain measurements using real application hardware and a large frequency range.

  4. Progressive attenuation fields: Fast 2D-3D image registration without precomputation

    SciTech Connect

    Rohlfing, Torsten; Russakoff, Daniel B.; Denzler, Joachim; Mori, Kensaku; Maurer, Calvin R. Jr.

    2005-09-15

    Computation of digitally reconstructed radiograph (DRR) images is the rate-limiting step in most current intensity-based algorithms for the registration of three-dimensional (3D) images to two-dimensional (2D) projection images. This paper introduces and evaluates the progressive attenuation field (PAF), which is a new method to speed up DRR computation. A PAF is closely related to an attenuation field (AF). A major difference is that a PAF is constructed on the fly as the registration proceeds; it does not require any precomputation time, nor does it make any prior assumptions of the patient pose or limit the permissible range of patient motion. A PAF effectively acts as a cache memory for projection values once they are computed, rather than as a lookup table for precomputed projections like standard AFs. We use a cylindrical attenuation field parametrization, which is better suited for many medical applications of 2D-3D registration than the usual two-plane parametrization. The computed attenuation values are stored in a hash table for time-efficient storage and access. Using clinical gold-standard spine image data sets from five patients, we demonstrate consistent speedups of intensity-based 2D-3D image registration using PAF DRRs by a factor of 10 over conventional ray casting DRRs with no decrease of registration accuracy or robustness.

  5. Commissioning a small-field biological irradiator using point, 2D, and 3D dosimetry techniques

    PubMed Central

    Newton, Joseph; Oldham, Mark; Thomas, Andrew; Li, Yifan; Adamovics, John; Kirsch, David G.; Das, Shiva

    2011-01-01

    Purpose: To commission a small-field biological irradiator, the XRad225Cx from Precision x-Ray, Inc., for research use. The system produces a 225 kVp x-ray beam and is equipped with collimating cones that produce both square and circular radiation fields ranging in size from 1 to 40 mm. This work incorporates point, 2D, and 3D measurements to determine output factors (OF), percent-depth-dose (PDD) and dose profiles at multiple depths. Methods: Three independent dosimetry systems were used: ion-chambers (a farmer chamber and a micro-ionisation chamber), 2D EBT2 radiochromic film, and a novel 3D dosimetry system (DLOS/PRESAGE®). Reference point dose rates and output factors were determined from in-air ionization chamber measurements for fields down to ∼13 mm using the formalism of TG61. PDD, profiles, and output factors at three separate depths (0, 0.5, and 2 cm), were determined for all field sizes from EBT2 film measurements in solid water. Several film PDD curves required a scaling correction, reflecting the challenge of accurate film alignment in very small fields. PDDs, profiles, and output factors were also determined with the 3D DLOS/PRESAGE® system which generated isotropic 0.2 mm data, in scan times of 20 min. Results: Surface output factors determined by ion-chamber were observed to gradually drop by ∼9% when the field size was reduced from 40 to 13 mm. More dramatic drops were observed for the smallest fields as determined by EBT∼18% and ∼42% for the 2.5 mm and 1 mm fields, respectively. PRESAGE® and film output factors agreed well for fields <20 mm (where 3D data were available) with mean deviation of 2.2% (range 1%–4%). PDD values at 2 cm depth varied from ∼72% for the 40 mm field, down to ∼55% for the 1 mm field. EBT and PRESAGE® PDDs agreed within ∼3% in the typical therapy region (1–4 cm). At deeper depths the EBT curves were slightly steeper (2.5% at 5 cm). These results indicate good overall consistency between ion-chamber, EBT

  6. Commissioning a small-field biological irradiator using point, 2D, and 3D dosimetry techniques

    SciTech Connect

    Newton, Joseph; Oldham, Mark; Thomas, Andrew; Li Yifan; Adamovics, John; Kirsch, David G.; Das, Shiva

    2011-12-15

    Purpose: To commission a small-field biological irradiator, the XRad225Cx from Precision x-Ray, Inc., for research use. The system produces a 225 kVp x-ray beam and is equipped with collimating cones that produce both square and circular radiation fields ranging in size from 1 to 40 mm. This work incorporates point, 2D, and 3D measurements to determine output factors (OF), percent-depth-dose (PDD) and dose profiles at multiple depths. Methods: Three independent dosimetry systems were used: ion-chambers (a farmer chamber and a micro-ionisation chamber), 2D EBT2 radiochromic film, and a novel 3D dosimetry system (DLOS/PRESAGE registered ). Reference point dose rates and output factors were determined from in-air ionization chamber measurements for fields down to {approx}13 mm using the formalism of TG61. PDD, profiles, and output factors at three separate depths (0, 0.5, and 2 cm), were determined for all field sizes from EBT2 film measurements in solid water. Several film PDD curves required a scaling correction, reflecting the challenge of accurate film alignment in very small fields. PDDs, profiles, and output factors were also determined with the 3D DLOS/PRESAGE registered system which generated isotropic 0.2 mm data, in scan times of 20 min. Results: Surface output factors determined by ion-chamber were observed to gradually drop by {approx}9% when the field size was reduced from 40 to 13 mm. More dramatic drops were observed for the smallest fields as determined by EBT{approx}18% and {approx}42% for the 2.5 mm and 1 mm fields, respectively. PRESAGE registered and film output factors agreed well for fields <20 mm (where 3D data were available) with mean deviation of 2.2% (range 1%-4%). PDD values at 2 cm depth varied from {approx}72% for the 40 mm field, down to {approx}55% for the 1 mm field. EBT and PRESAGE registered PDDs agreed within {approx}3% in the typical therapy region (1-4 cm). At deeper depths the EBT curves were slightly steeper (2.5% at 5 cm

  7. Analytical Characterization of Scalar-Field Oscillons in Quartic Potentials

    NASA Astrophysics Data System (ADS)

    Sicilia, David Pasquale

    In this thesis I present a series of simple models of scalar field oscillons which allow estimation of the basic properties of oscillons using nonperturbative analytical methods, with minimal dependence on computer simulation. The methods are applied to oscillons in phi^4 Klein-Gordon models in two and three spatialdimensions, yielding results with good accuracy in the characterization of most aspects of oscillon dynamics. In particular, I show how oscillons can be interpreted as long-lived perturbations about an attractor in field configuration space. By investigating their radiation rate as they approach the attractor, I obtain an accurate estimate of their lifetimes in d=3 and explain why they seem to be perturbatively stable in d=2, where d is the number of spatial dimensions. I also present some preliminary work on a method to calculate the form of the spatial profile of the oscillon.

  8. Locally smeared operator product expansions in scalar field theory

    SciTech Connect

    Monahan, Christopher; Orginos, Kostas

    2015-04-01

    We propose a new locally smeared operator product expansion to decompose non-local operators in terms of a basis of smeared operators. The smeared operator product expansion formally connects nonperturbative matrix elements determined numerically using lattice field theory to matrix elements of non-local operators in the continuum. These nonperturbative matrix elements do not suffer from power-divergent mixing on the lattice, which significantly complicates calculations of quantities such as the moments of parton distribution functions, provided the smearing scale is kept fixed in the continuum limit. The presence of this smearing scale complicates the connection to the Wilson coefficients of the standard operator product expansion and requires the construction of a suitable formalism. We demonstrate the feasibility of our approach with examples in real scalar field theory.

  9. Effective field theory of quantum gravity coupled to scalar electrodynamics

    NASA Astrophysics Data System (ADS)

    Ibiapina Bevilaqua, L.; Lehum, A. C.; da Silva, A. J.

    2016-05-01

    In this work, we use the framework of effective field theory to couple Einstein’s gravity to scalar electrodynamics and determine the renormalization of the model through the study of physical processes below Planck scale, a realm where quantum mechanics and general relativity are perfectly compatible. We consider the effective field theory up to dimension six operators, corresponding to processes involving one-graviton exchange. Studying the renormalization group functions, we see that the beta function of the electric charge is positive and possesses no contribution coming from gravitational interaction. Our result indicates that gravitational corrections do not alter the running behavior of the gauge coupling constants, even if massive particles are present.

  10. Quantization of massive scalar fields over static black string backgrounds

    SciTech Connect

    Fernandez Piedra, Owen Pavel; Montes de Oca, Alejandro Cabo

    2007-05-15

    The renormalized mean value of the corresponding components of the energy-momentum tensor for massive scalar fields coupled to an arbitrary gravitational field configuration having cylindrical symmetry are analytically evaluated using the Schwinger-DeWitt approximation, up to second order in the inverse mass value. The general results are employed to explicitly derive compact analytical expressions for the energy-momentum tensor in the particular background of the black-string space-time. In the case of the black string considered in this work, we prove that a violation of the weak energy condition occurs at the horizon of the space-time for values of the coupling constant, which include as particular cases the most interesting of minimal and conformal coupling.

  11. Locally smeared operator product expansions in scalar field theory

    DOE PAGESBeta

    Monahan, Christopher; Orginos, Kostas

    2015-04-01

    We propose a new locally smeared operator product expansion to decompose non-local operators in terms of a basis of smeared operators. The smeared operator product expansion formally connects nonperturbative matrix elements determined numerically using lattice field theory to matrix elements of non-local operators in the continuum. These nonperturbative matrix elements do not suffer from power-divergent mixing on the lattice, which significantly complicates calculations of quantities such as the moments of parton distribution functions, provided the smearing scale is kept fixed in the continuum limit. The presence of this smearing scale complicates the connection to the Wilson coefficients of the standardmore » operator product expansion and requires the construction of a suitable formalism. We demonstrate the feasibility of our approach with examples in real scalar field theory.« less

  12. 3D-HST WFC3-SELECTED PHOTOMETRIC CATALOGS IN THE FIVE CANDELS/3D-HST FIELDS: PHOTOMETRY, PHOTOMETRIC REDSHIFTS, AND STELLAR MASSES

    SciTech Connect

    Skelton, Rosalind E.; Whitaker, Katherine E.; Momcheva, Ivelina G.; Van Dokkum, Pieter G.; Bezanson, Rachel; Leja, Joel; Nelson, Erica J.; Oesch, Pascal; Brammer, Gabriel B.; Labbé, Ivo; Franx, Marijn; Fumagalli, Mattia; Van der Wel, Arjen; Da Cunha, Elisabete; Maseda, Michael V.; Förster Schreiber, Natascha; Kriek, Mariska; Lundgren, Britt F.; Magee, Daniel; Marchesini, Danilo; and others

    2014-10-01

    The 3D-HST and CANDELS programs have provided WFC3 and ACS spectroscopy and photometry over ≈900 arcmin{sup 2} in five fields: AEGIS, COSMOS, GOODS-North, GOODS-South, and the UKIDSS UDS field. All these fields have a wealth of publicly available imaging data sets in addition to the Hubble Space Telescope (HST) data, which makes it possible to construct the spectral energy distributions (SEDs) of objects over a wide wavelength range. In this paper we describe a photometric analysis of the CANDELS and 3D-HST HST imaging and the ancillary imaging data at wavelengths 0.3-8 μm. Objects were selected in the WFC3 near-IR bands, and their SEDs were determined by carefully taking the effects of the point-spread function in each observation into account. A total of 147 distinct imaging data sets were used in the analysis. The photometry is made available in the form of six catalogs: one for each field, as well as a master catalog containing all objects in the entire survey. We also provide derived data products: photometric redshifts, determined with the EAZY code, and stellar population parameters determined with the FAST code. We make all the imaging data that were used in the analysis available, including our reductions of the WFC3 imaging in all five fields. 3D-HST is a spectroscopic survey with the WFC3 and ACS grisms, and the photometric catalogs presented here constitute a necessary first step in the analysis of these grism data. All the data presented in this paper are available through the 3D-HST Web site (http://3dhst.research.yale.edu)

  13. Time-dependent scalar fields in modified gravities in a stationary spacetime

    NASA Astrophysics Data System (ADS)

    Zhong, Yi; Gu, Bao-Ming; Wei, Shao-Wen; Liu, Yu-Xiao

    2016-07-01

    Most no-hair theorems involve the assumption that the scalar field is independent of time. Recently in Graham and Jha (Phys. Rev. D90: 041501, 2014) the existence of time-dependent scalar hair outside a stationary black hole in general relativity was ruled out. We generalize this work to modified gravities and non-minimally coupled scalar field with the additional assumption that the spacetime is axisymmetric. It is shown that in higher-order gravity such as metric f( R) gravity the time-dependent scalar hair does not exist. In Palatini f( R) gravity and the non-minimally coupled case the time-dependent scalar hair may exist.

  14. An approach to 3D magnetic field calculation using numerical and differential algebra methods

    SciTech Connect

    Caspi, S.; Helm, M.; Laslett, L.J.; Brady, V.O.

    1992-07-17

    Motivated by the need for new means for specification and determination of 3D fields that are produced by electromagnetic lens elements in the region interior to coil windings and seeking to obtain techniques that will be convenient for accurate conductor placement and dynamical study of particle motion, we have conveniently gene the representation of a 2D magnetic field to 3D. We have shown that the 3 dimensioal magnetic field components of a multipole magnet in the curl-fire divergence-fire region near the axis r=0 can be derived from one dimensional functions A{sub n}(z) and their derivatives (part 1). In the region interior to coil windings of accelerator magnets the three spatial components of magnet fields can be expressed in terms of harmonic components'' proportional to functions sin (n{theta}) or cos (n{theta}) of the azimuthal angle. The r,z dependence of any such component can then be expressed in terms of powers of r times functions A{sub n}(z) and their derivatives. For twodimensional configurations B{sub z} of course is identically zero, the derivatives of A{sub n}(z) vanish, and the harmonic components of the transverse field then acquire a simple proportionality B{sub r,n} {proportional to} r{sup n-1} sin (n{theta}),B{sub {theta},n} {proportional to} r{sup n-1} cos (n{theta}), whereas in a 3-D configuration the more complex nature of the field gives rise to additional so-called psuedomultipole'' components as judged by additional powers of r required in the development of the field. Computation of the 3-D magnetic field arising at a sequence of field points, as a direct result of a specified current configuration or coil geometry, can be calculated explicitly through use of the Biot-Savart law and from such data the coefficients can then be derived for a general development of the type indicated above. We indicate, discuss, and illustrate two means by which this development may be performed.

  15. Development of a 3D Potential Field Forward Modelling System in Python

    NASA Astrophysics Data System (ADS)

    Cole, P.

    2012-12-01

    The collection of potential field data has long been a standard part of geophysical exploration. Specifically, airborne magnetic data is collected routinely in any brown-fields area, because of the low cost and fast acquisition rate compared to other geophysical techniques. However, the interpretation of such data can be a daunting task, especially when 3D models are becoming more necessary. The current trend in modelling software is to follow either the modelling of individual profiles, which are then "joined" up into 3D sections, or to model in a full 3D using polygonal based models (Singh and Guptasarma, 2001). Unfortunately, both techniques have disadvantages. When modelling in 2.5D the impact of other profiles is not truly available on your current profile being modelled, and vice versa. The problem is not present in 3D, but 3D polygonal models, while being easy to construct the initial model, are not as easy to make fast changes to. In some cases, the entire model must be recreated from scratch. The ability to easily change a model is the very basis of forward modelling. With this is mind, the objective of the project was to: 1) Develop software which was truly modelling in 3D 2) Create a system which would allow the rapid changing of the 3D model, without the need to recreate the model. The solution was to adopt a voxel based approach, rather than a polygonal approach. The solution for a cube (Blakely 1996) was used to calculate potential field for each voxel. The voxels are then summed over the entire volume. The language used was python, because of its huge capacity for scientific development. It enables full 3D visualisation as well as complex mathematical routines. Some properties worth noting are: 1) Although 200 rows by 200 columns by 200 layers would imply 8 million calculations, in reality, since the calculation for adjacent voxels produces the same result, only 200 calculations are necessary. 2) Changes to susceptibility and density do not affect

  16. RV functional imaging: 3-D echo-derived dynamic geometry and flow field simulations.

    PubMed

    Pasipoularides, Ares D; Shu, Ming; Womack, Michael S; Shah, Ashish; Von Ramm, Olaf; Glower, Donald D

    2003-01-01

    We describe a novel functional imaging approach for quantitative analysis of right ventricular (RV) blood flow patterns in specific experimental animals (or humans) using real-time, three-dimensional (3-D) echocardiography (RT3D). The method is independent of the digital imaging modality used. It comprises three parts. First, a semiautomated segmentation aided by intraluminal contrast medium locates the RV endocardial surface. Second, a geometric scheme for dynamic RV chamber reconstruction applies a time interpolation procedure to the RT3D data to quantify wall geometry and motion at 400 Hz. A volumetric prism method validated the dynamic geometric reconstruction against simultaneous sonomicrometric canine measurements. Finally, the RV endocardial border motion information is used for mesh generation on a computational fluid dynamics solver to simulate development of the early RV diastolic inflow field. Boundary conditions (tessellated endocardial surface nodal velocities) for the solver are directly derived from the endocardial geometry and motion information. The new functional imaging approach may yield important kinematic information on the distribution of instantaneous velocities in the RV diastolic flow field of specific normal or diseased hearts. PMID:12388220

  17. 3-D Numerical Modeling of MHD Flows in Variable Magnetic Field

    NASA Astrophysics Data System (ADS)

    Abdullina, K. I.; Bogovalov, S. V.

    3-D numerical simulation of the liquid metal flow affected by the electromagnetic field in the magnetohydrodynamic (MHD) devices is performed. Software package ANSYS has been used for the numerical calculations. The non-stationary problem has been solved taking into account the influence of the metal flow on the electromagnetic field and nonlinear magnetic permeability of the ferromagnetic cores. Simplified calculations with constant magnetic permeability of the ferromagnetic cores have been performed as well. Comparison of these calculations shows that the simulation of the MHD pump can be performed in the linear approximation. The pump performance curve has been derived in this approximation.

  18. 3D structure and conductive thermal field of the Upper Rhine Graben

    NASA Astrophysics Data System (ADS)

    Freymark, Jessica; Sippel, Judith; Scheck-Wenderoth, Magdalena; Bär, Kristian; Stiller, Manfred; Fritsche, Johann-Gerhard; Kracht, Matthias

    2016-04-01

    The Upper Rhine Graben (URG) was formed as part of the European Cenozoic Rift System in a complex extensional setting. At present-day, it has a large socioeconomic relevance as it provides a great potential for geothermal energy production in Germany and France. For the utilisation of this energy resource it is crucial to understand the structure and the observed temperature anomalies in the rift basin. In the framework of the EU-funded "IMAGE" project (Integrated Methods for Advanced Geothermal Exploration), we apply a data-driven numerical modelling approach to quantify the processes and properties controlling the spatial distribution of subsurface temperatures. Typically, reservoir-scale numerical models are developed for predictions on the subsurface hydrothermal conditions and for reducing the risk of drilling non-productive geothermal wells. One major problem related to such models is setting appropriate boundary conditions that define, for instance, how much heat enters the reservoir from greater depths. Therefore, we first build a regional lithospheric-scale 3D structural model, which covers not only the entire URG but also adjacent geological features like the Black Forest and the Vosges Mountains. In particular, we use a multidisciplinary dataset (e.g. well data, seismic reflection data, existing structural models, gravity) to construct the geometries of the sediments, the crust and the lithospheric mantle that control the spatial distribution of thermal conductivity and radiogenic heat production and hence temperatures. By applying a data-based and lithology-dependent parameterisation of this lithospheric-scale 3D structural model and a 3D finite element method, we calculate the steady-state conductive thermal field for the entire region. Available measured temperatures (down to depths of up to 5 km) are considered to validate the 3D thermal model. We present major characteristics of the lithospheric-scale 3D structural model and results of the 3D

  19. Bianchi type I Universe and interacting ghost scalar fields models of dark energy

    NASA Astrophysics Data System (ADS)

    Hossienkhani, H.

    2016-04-01

    We suggest a correspondence between interacting ghost dark energy model with the quintessence, tachyon and K-essence scalar field in a non-isotropic universe. This correspondence allows to reconstruct the potential and the dynamics for the scalar field of the interacting ghost dark energy model, which describe accelerated expansion of the universe. Our numerical result show the effects of the interaction and anisotropic on the evolutionary behavior the ghost scalar field models.

  20. Global 3-D Hybrid Simulations of Mars and the Effect of Crustal Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Brecht, S. H.; Ledvina, S. A.; Luhmann, J. G.

    2001-12-01

    Mars is not protected from the solar wind by a strong intrinsic magnetic field. Further, Mars is a very small planet. These two aspects of Mars mean that the solar wind interaction with the planet is both direct and kinetic in behavior. The large gyroradius of the incoming solar wind and the large gyroradius of the pick up ions make the solar wind interaction with Mars very unique. Over the years the authors using a 3-D kinetic hybrid particle code have studied this planet. Mars Global Surveyor has produced many exciting discoveries. Probably the most significant and unexpected was the presence of the crustal magnetic fields on the surface of the planet. The presence of these strong crustal fields suggests that the solar wind interaction with Mars will be altered. In fact, it suggests that the loss rate of pick up ions and the shape of the Martian magnetosphere will be substantially changed. Results will be presented from our latest 3-D hybrid particle code simulations of Mars where models for the crustal magnetic field have been inserted into the simulations. Particular emphasis will be placed on changes to the magnetic field topology and the change in the rate of pick up ions.

  1. 3-D Waveguide Effects of Topographical Structural Variation on Full Waveform Propagation: 3-D Finite Difference Modeling Comparisons with Field Data From Yuma Proving Ground, Arizona

    NASA Astrophysics Data System (ADS)

    Anderson, T. S.; Miller, R.; Greenfield, R.; Fisk, D.

    2002-12-01

    The propagation of seismic waves through regions of complex topography is not thoroughly understood. Surface waves, are of particular interest, as they are large in amplitude and can characterize the source depth, magnitude, and frequency content. The amplitude and frequency content of seismic waves that propagate in regions with large topographical variations are affected by both the scattering and blockage of the wave energy. The ability to predict the 3-d scattering due to topography will improve the understanding of both regional scale surface wave magnitudes, and refine surface wave discriminants as well as at the local scale (<2 km ) where it will aid in the development of rule of thumb guide lines for array sensor placement for real time sensing technologies. Ideally, when validating the numerical accuracy of a propagation model against field data, the input geologic parameters would be known and thus eliminates geology as a source of error in the calculation. In March of 2001, Kansas Geological Survey (KGS) performed a detailed seismic site characterization at the Smart Weapons Test Range, Yuma Proving Ground, Arizona. The result of the KGS characterization study is a high-resolution 3-d model that is used in our seismic simulations. The velocities Vs, Vp are calculated by tomography and refraction, attenuation coefficients estimated from the surface wave and from p-waves and are provided in a model with attributes resolved in 3-d to 0.5 meters. In the present work, we present comparisons of synthetic data with seismic data collected at the Smart Weapons Test Range to benchmark the accuracy achieved in simulating 3-d wave propagation in the vicinity of a topographical anomaly (trench). Synthetic seismograms are generated using a 3-d 8th order staggered grid visco-elastic finite difference code that accounts for topography. The geologic model is based on the Yuma site characterization. The size of these calculations required use of the DoD High Performance

  2. Neutron star structure in the presence of conformally coupled scalar fields

    NASA Astrophysics Data System (ADS)

    Sultana, Joseph; Bose, Benjamin; Kazanas, Demosthenes

    2014-10-01

    Neutron star models are studied in the context of scalar-tensor theories of gravity in the presence of a conformally coupled scalar field, using two different numerical equations of state (EoS) representing different degrees of stiffness. In both cases we obtain a complete solution by matching the interior numerical solution of the coupled Einstein-scalar field hydrostatic equations, with an exact metric on the surface of the star. These are then used to find the effect of the scalar field and its coupling to geometry, on the neutron star structure, particularly the maximum neutron star mass and radius. We show that in the presence of a conformally coupled scalar field, neutron stars are less dense and have smaller masses and radii than their counterparts in the minimally coupled case, and the effect increases with the magnitude of the scalar field at the center of the star.

  3. Neutron Star Structure in the Presence of Conformally Coupled Scalar Fields

    NASA Technical Reports Server (NTRS)

    Sultana, Joseph; Bose, Benjamin; Kazanas, Demosthenes

    2014-01-01

    Neutron star models are studied in the context of scalar-tensor theories of gravity in the presence of a conformally coupled scalar field, using two different numerical equations of state (EoS) representing different degrees of stiffness. In both cases we obtain a complete solution by matching the interior numerical solution of the coupled Einstein-scalar field hydrostatic equations, with an exact metric on the surface of the star. These are then used to find the effect of the scalar field and its coupling to geometry, on the neutron star structure, particularly the maximum neutron star mass and radius. We show that in the presence of a conformally coupled scalar field, neutron stars are less dense and have smaller masses and radii than their counterparts in the minimally coupled case, and the effect increases with the magnitude of the scalar field at the center of the star.

  4. Mirror moving in quantum vacuum of a massive scalar field

    NASA Astrophysics Data System (ADS)

    Wang, Qingdi; Unruh, William G.

    2015-09-01

    We present a mirror model moving in the quantum vacuum of a massive scalar field and study its motion under infinitely fluctuating quantum vacuum stress. The model is similar to the one in [Q. Wang and W. G. Unruh, Motion of a mirror under infinitely fluctuating quantum vacuum stress Phys. Rev. D 89, 085009 (2014).], but this time there is no divergent effective mass to weaken the effect of divergent vacuum energy density. We show that this kind of weakening is not necessary. The vacuum friction and strong anticorrelation property of the quantum vacuum are enough to confine the mirror's position fluctuations. This is another example illustrating that while the actual value of the vacuum energy can be physically significant even for a nongravitational system, and that its infinite value makes sense, but that its physical effect can be small despite this infinity.

  5. Casimir piston for massless scalar fields in three dimensions

    SciTech Connect

    Edery, Ariel

    2007-05-15

    We study the Casimir piston for massless scalar fields obeying Dirichlet boundary conditions in a three-dimensional cavity with sides of arbitrary lengths a, b, and c where a is the plate separation. We obtain an exact expression for the Casimir force on the piston valid for any values of the three lengths. As in the electromagnetic case with perfect-conductor conditions, we find that the Casimir force is negative (attractive) regardless of the values of a, b, and c. Though cases exist where the interior contributes a positive (repulsive) Casimir force, the total Casimir force on the piston is negative when the exterior contribution is included. We also obtain an alternative expression for the Casimir force that is useful computationally when the plate separation a is large.

  6. The real scalar field in extreme RNdS space

    NASA Astrophysics Data System (ADS)

    Guo, Guanghai; Gui, Yuanxing; Tian, Jianxiang

    2005-07-01

    The real scalar field equation between the outer black hole horizon and the cosmological horizon is solved in the extreme Reissner-Nordström de Sitter (RNdS) space. We use an accurate approximation, the polynomial approximation, to approximate the tortoise coordinate x(r) in order to get the inverse function r = r(x) and then to solve the wave equation. The case where the two horizons are very close to each other is discussed in detail. We find that the wave function is harmonic only in the very small regions near the horizons, and the amplitude decreases remarkably near the potential peak because of the effect of the potential. Furthermore, it is found that the height of the potential increases as the cosmological constant Λ decreases, and the wave amplitude will decrease more remarkably with less Λ.

  7. Detailed ultraviolet asymptotics for AdS scalar field perturbations

    NASA Astrophysics Data System (ADS)

    Evnin, Oleg; Jai-akson, Puttarak

    2016-04-01

    We present a range of methods suitable for accurate evaluation of the leading asymptotics for integrals of products of Jacobi polynomials in limits when the degrees of some or all polynomials inside the integral become large. The structures in question have recently emerged in the context of effective descriptions of small amplitude perturbations in anti-de Sitter (AdS) spacetime. The limit of high degree polynomials corresponds in this situation to effective interactions involving extreme short-wavelength modes, whose dynamics is crucial for the turbulent instabilities that determine the ultimate fate of small AdS perturbations. We explicitly apply the relevant asymptotic techniques to the case of a self-interacting probe scalar field in AdS and extract a detailed form of the leading large degree behavior, including closed form analytic expressions for the numerical coefficients appearing in the asymptotics.

  8. Scalar field critical collapse in 2 +1 dimensions

    NASA Astrophysics Data System (ADS)

    JałmuŻna, Joanna; Gundlach, Carsten; Chmaj, Tadeusz

    2015-12-01

    We carry out numerical experiments in the critical collapse of a spherically symmetric massless scalar field in 2 +1 spacetime dimensions in the presence of a negative cosmological constant and compare them against a new theoretical model. We approximate the true critical solution as the n =4 Garfinkle solution, matched at the light cone to a Vaidya-like solution, and corrected to leading order for the effect of Λ <0 . This approximation is only C3 at the light cone and has three growing modes. We conjecture that pointwise it is a good approximation to a yet unknown true critical solution that is analytic with only one growing mode (itself approximated by the top mode of our amended Garfinkle solution). With this conjecture, we predict a Ricci-scaling exponent of γ =8 /7 and a mass-scaling exponent of δ =16 /23 , compatible with our numerical experiments.

  9. Bifurcation and pattern changing with two real scalar fields

    SciTech Connect

    Avelino, P. P.; Bazeia, D.; Menezes, R.; Oliveira, J. C. R. E.

    2009-04-15

    This work deals with bifurcation and pattern changing in models described by two real scalar fields. We consider generic models with quartic potentials and show that the number of independent polynomial coefficients affecting the ratios between the various domain wall tensions can be reduced to 4 if the model has a superpotential. We then study specific one-parameter families of models and compute the wall tensions associated with both Bogomol'nyi-Prasad-Sommerfield (BPS) and non-BPS sectors. We show how bifurcation can be associated to modification of the patterns of domain wall networks and illustrate this with some examples which may be relevant to describe realistic situations of current interest in high energy physics. In particular, we discuss a simple solution to the cosmological domain wall problem.

  10. A Parallelized 3D Particle-In-Cell Method With Magnetostatic Field Solver And Its Applications

    NASA Astrophysics Data System (ADS)

    Hsu, Kuo-Hsien; Chen, Yen-Sen; Wu, Men-Zan Bill; Wu, Jong-Shinn

    2008-10-01

    A parallelized 3D self-consistent electrostatic particle-in-cell finite element (PIC-FEM) code using an unstructured tetrahedral mesh was developed. For simulating some applications with external permanent magnet set, the distribution of the magnetostatic field usually also need to be considered and determined accurately. In this paper, we will firstly present the development of a 3D magnetostatic field solver with an unstructured mesh for the flexibility of modeling objects with complex geometry. The vector Poisson equation for magnetostatic field is formulated using the Galerkin nodal finite element method and the resulting matrix is solved by parallel conjugate gradient method. A parallel adaptive mesh refinement module is coupled to this solver for better resolution. Completed solver is then verified by simulating a permanent magnet array with results comparable to previous experimental observations and simulations. By taking the advantage of the same unstructured grid format of this solver, the developed PIC-FEM code could directly and easily read the magnetostatic field for particle simulation. In the upcoming conference, magnetron is simulated and presented for demonstrating the capability of this code.

  11. The role of plasma response in divertor footprint modification by 3D fields in NSTX

    NASA Astrophysics Data System (ADS)

    Ahn, Joonwook; Kim, Kimin; Canal, Gustavo; Gan, Kaifu; Gray, Travis; McLean, Adam; Park, Jong-Kyu; Scotti, Filippo

    2015-11-01

    In NSTX, the divertor footprints of both heat and particle fluxes are found to be significantly modified by externally applied 3D magnetic perturbations. Striations on the divertor surface, indicating separatrix splitting and formation of magnetic lobes, are observed for both n = 1 and n = 3 perturbation fields. These striations can lead to localized heating of the divertor plates and to the re-attachment of detached plasmas, both of which have to be avoided in ITER for successful heat flux management. In this work, the role of plasma response on the formation of separatrix splitting has been investigated in the ideal framework by comparing measured heat and particle flux footprints with field line tracing calculations with and without contributions from the plasma response calculated by the ideal code IPEC. Simulations show that, n = 3 fields are slightly shielded by the plasma, with the measured helical pattern of striations in good agreement with the results from the vacuum approximation. The n = 1 fields are, however, significantly amplified by the plasma response, which provides a better agreement with the measurements. Resistive plasma response calculations by M3D-C1 are also in progress and the results will be compared with those from the ideal code IPEC. This work was supported by DoE Contracts: DE-AC05-00OR22725, DE-AC52-07NA27344 and DE-AC02-09CH11466.

  12. Poloidal structure of the plasma edge with 3D magnetic fields

    NASA Astrophysics Data System (ADS)

    Agostini, Matteo; Scarin, Paolo; Carraro, Lorella; Spizzo, Gianluca; Spolaore, Monica; Vianello, Nicola

    2015-11-01

    In the RFX-mod reversed-field pinch, when the magnetic field spontaneously develops a non axi-symmetric structure, also the plasma edge assumes a three dimensional shape. In previous RFX works, it has been shown that kinetic properties of the plasma (electron pressure, connection lengths, floating potential, influx, plasma flow) closely follow the symmetry of the 3D field, both in amplitude and phase, along the toroidal angle (i.e, the RFP perpendicular direction in the edge). Using a set of poloidally distributed diagnostics, it is shown that these same properties follow the poloidal periodicity (m =1) of the field. However, the behavior of the phase is more difficult to understand. In particular, the 3D modulation of the plasma potential can rotate in the poloidal direction with the typical velocity of 100m/s, similar in value with the phase velocity of the m =1 magnetic mode; or it can jump between inboard and outboard equatorial midplane. Moreover, when the floating potential structure rotates, there are preliminary indications that its direction depends on the plasma density: it follows the m =1 mode at higher density, and rotates in the opposite direction at lower density.

  13. The distribution of 3D superconductivity near the second critical field

    NASA Astrophysics Data System (ADS)

    Kachmar, Ayman; Nasrallah, Marwa

    2016-09-01

    We study the minimizers of the Ginzburg–Landau energy functional with a uniform magnetic field in a three dimensional bounded domain. The functional depends on two positive parameters, the Ginzburg–Landau parameter and the intensity of the applied magnetic field, and acts on complex-valued functions and vector fields. We establish a formula for the distribution of the L 2-norm of the minimizing complex-valued function (order parameter). The formula is valid in the regime where the Ginzburg–Landau parameter is large and the applied magnetic field is close to and strictly below the second critical field—the threshold value corresponding to the transition from the superconducting to the normal phase in the bulk of the sample. Earlier results are valid in 2D domains and for the L 4-norm in 3D domains.

  14. 3-D Monarch reservoir modelling as a development tool: West Salym field, Western Siberia, Russia

    SciTech Connect

    Ainsworth, R.B.; Van Kuyk, A.; Van Lieshout, J.

    1996-12-31

    The Salym fields are located in the central part of the West Siberia basin. The basin developed during the Triassic and contains an almost complete stratigraphic succession from the Jurassic to the Quaternary. The main oil reserves in the Salym fields are located in the Lower Cretaceous proprading deltaic complex. The principal reservoir section in the West Salym field is interpreted as marginal marine. Shoreface, mouthbar, fluvial channel and crevasse-splay subenvironments are recognised. Due to this range of depositional environments and average (exploration) well spacing of 5 km, 3-D modelling of depositional geometries is essential to determine the reservoir architecture and reservoir property trends prior to full-scale field development.

  15. 3-D Monarch reservoir modelling as a development tool: West Salym field, Western Siberia, Russia

    SciTech Connect

    Ainsworth, R.B.; Van Kuyk, A.; Van Lieshout, J. )

    1996-01-01

    The Salym fields are located in the central part of the West Siberia basin. The basin developed during the Triassic and contains an almost complete stratigraphic succession from the Jurassic to the Quaternary. The main oil reserves in the Salym fields are located in the Lower Cretaceous proprading deltaic complex. The principal reservoir section in the West Salym field is interpreted as marginal marine. Shoreface, mouthbar, fluvial channel and crevasse-splay subenvironments are recognised. Due to this range of depositional environments and average (exploration) well spacing of 5 km, 3-D modelling of depositional geometries is essential to determine the reservoir architecture and reservoir property trends prior to full-scale field development.

  16. Effects of 3D Toroidally Asymmetric Magnetic Field on Tokamak Magnetic Surfaces

    NASA Astrophysics Data System (ADS)

    Lao, L. L.

    2005-10-01

    The effects of 3D error magnetic field on magnetic surfaces are investigated using the DIII-D internal coils (I-Coils). Slowly rotating n=1 traveling waves at 5 Hz and various amplitudes were applied to systematically perturb the edge surfaces by programming the I-Coil currents. The vertical separatrix location difference between EFIT magnetic reconstructions that assumes toroidal symmetry and Thomson scattering Te measurements responds in phase to the applied perturbed field. The oscillation amplitudes increase with the strength of the applied field but are much smaller than those expected from the applied field alone. The results indicate that plasma response is important. Various plasma response models based on results from the MHD codes MARS and GATO are being developed and compared to the experimental observations. To more accurately evaluate the effects of magnetic measurement errors, a new form of the magnetic uncertainty matrix is also being implemented into EFIT. Details will be presented.

  17. Effects of electromagnetic field frequencies on chondrocytes in 3D cell-printed composite constructs.

    PubMed

    Yi, Hee-Gyeong; Kang, Kyung Shin; Hong, Jung Min; Jang, Jinah; Park, Moon Nyeo; Jeong, Young Hun; Cho, Dong-Woo

    2016-07-01

    In cartilage tissue engineering, electromagnetic field (EMF) therapy has been reported to have a modest effect on promoting cartilage regeneration. However, these studies were conducted using different frequencies of EMF to stimulate chondrocytes. Thus, it is necessary to investigate the effect of EMF frequency on cartilage formation. In addition to the stimulation, a scaffold is required to satisfy the characteristics of cartilage such as its hydrated and dense extracellular matrix, and a mechanical resilience to applied loads. Therefore, we 3D-printed a composite construct composed of a polymeric framework and a chondrocyte-laden hydrogel. Here, we observed frequency-dependent positive and negative effects on chondrogenesis using a 3D cell-printed cartilage tissue. We found that a frequency of 45 Hz promoted gene expression and secretion of extracellular matrix molecules of chondrocytes. In contrast, a frequency of 7.5 Hz suppressed chondrogenic differentiation in vitro. Additionally, the EMF-treated composite constructs prior to implantation showed consistent results with those of in vitro, suggesting that in vitro pre-treatment with different EMF frequencies provides different capabilities for the enhancement of cartilage formation in vivo. This correlation between EMF frequency and 3D-printed chondrocytes suggests the necessity for optimization of EMF parameters when this physical stimulus is applied to engineered cartilage. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1797-1804, 2016. PMID:26991030

  18. Quantum tunneling from scalar fields in rotating black strings

    NASA Astrophysics Data System (ADS)

    Gohar, H.; Saifullah, K.

    2013-08-01

    Using the Hamilton-Jacobi method of quantum tunneling and complex path integration, we study Hawking radiation of scalar particles from rotating black strings. We discuss tunneling of both charged and uncharged scalar particles from the event horizons. For this purpose, we use the Klein-Gordon equation and find the tunneling probability of outgoing scalar particles. The procedure gives Hawking temperature for rotating charged black strings as well.

  19. A geometric formulation of Higgs Effective Field Theory: Measuring the curvature of scalar field space

    NASA Astrophysics Data System (ADS)

    Alonso, Rodrigo; Jenkins, Elizabeth E.; Manohar, Aneesh V.

    2016-03-01

    A geometric formulation of Higgs Effective Field Theory (HEFT) is presented. Experimental observables are given in terms of geometric invariants of the scalar sigma model sector such as the curvature of the scalar field manifold M. We show how the curvature can be measured experimentally via Higgs cross-sections, WL scattering, and the S parameter. The one-loop action of HEFT is given in terms of geometric invariants of M. The distinction between the Standard Model (SM) and HEFT is whether M is flat or curved, and the curvature is a signal of the scale of new physics.

  20. Coupling Magnetic Fields and ALE Hydrodynamics for 3D Simulations of MFCG's

    SciTech Connect

    White, D; Rieben, R; Wallin, B

    2006-09-20

    We review the development of a full 3D multiphysics code for the simulation of explosively driven Magnetic Flux Compression Generators (MFCG) and related pulse power devices. In a typical MFCG the device is seeded with an initial electric current and the device is then detonated. The detonation compresses the magnetic field and amplifies the current. This is a multiphysics problem in that detonation kinetics, electromagnetic diffusion and induction, material deformation, and thermal effects are all important. This is a tightly coupled problem in that the different physical quantities have comparable spatial and temporal variation, and hence should be solved simultaneously on the same computational mesh.

  1. Magnetic field penetration into a 3D ordered Josephson medium and applicability of the bean model

    NASA Astrophysics Data System (ADS)

    Zelikman, M. A.

    2014-11-01

    The results of calculation of penetration of an external magnetic field into a 3D ordered Josephson medium, based on analysis of modification of the configuration in the direction of the decrease in its Gibbs potential, are reported. When the external field slightly exceeds the stability threshold, the Meissner configuration is transformed into a periodic sequence of linear vortices, which are parallel to the boundary of the medium and are located at a certain distance from it. There exists a critical value I C separating two possible regimes of penetration of the external magnetic field into the medium. For I > I C, for any value of the external field, a finite-length boundary current configuration appears, which completely compensates the external field in the bulk of the sample. At the sample boundary, the field decreases with increasing depth almost linearly. The values of the slope of the magnetic field dependence are rational fractions, which remain constant in finite intervals of I. When the value of I exceeds the upper boundary of such an interval, the slope increases and assumes the value of another rational fraction. If, however, I < I C, such a situation takes place only up to a certain value of external field H max. For higher values, the field penetrates into the medium to an infinite depth. These results lead to the conclusion that the Bean assumptions are violated and that Bean's model is inapplicable for analyzing the processes considered here.

  2. 3D Numerical simulation of high current vacuum arc in realistic magnetic fields considering anode evaporation

    NASA Astrophysics Data System (ADS)

    Wang, Lijun; Huang, Xiaolong; Jia, Shenli; Deng, Jie; Qian, Zhonghao; Shi, Zongqian; Schellenkens, H.; Godechot, X.

    2015-06-01

    A time-dependent 3D numerical model considering anode evaporation is developed for the high current vacuum arc (VA) under a realistic spatial magnetic field. The simulation work contains steady state 3D numerical simulation of high current VA considering anode evaporation at nine discrete moments of first half wave of 50 Hz AC current, transient numerical simulation of anode activity, and realistic spatial magnetic field calculation of commercial cup-shaped electrodes. In the simulation, contact opening and arc diffusion processes are also considered. Due to the effect of electrode slots, the simulation results of magnetic field and temperature of anode plate exhibit six leaves shape (SLS). During 6-8 ms, the strong evaporation of anode surface seriously influence the parameter distributions of VA. Ions emitted from anode penetrate into arc column and the axial velocity distribution on the anode side exhibits SLS. The ions emitted from anode surface have the same temperature with anode surface, which cool the arc plasma and lead to a relative low temperature area formed. The seriously evaporation of anode leads to the accumulation of ions near the anode, and then the current density is more uniform.

  3. The continuous molecular fields approach to building 3D-QSAR models.

    PubMed

    Baskin, Igor I; Zhokhova, Nelly I

    2013-05-01

    The continuous molecular fields (CMF) approach is based on the application of continuous functions for the description of molecular fields instead of finite sets of molecular descriptors (such as interaction energies computed at grid nodes) commonly used for this purpose. These functions can be encapsulated into kernels and combined with kernel-based machine learning algorithms to provide a variety of novel methods for building classification and regression structure-activity models, visualizing chemical datasets and conducting virtual screening. In this article, the CMF approach is applied to building 3D-QSAR models for 8 datasets through the use of five types of molecular fields (the electrostatic, steric, hydrophobic, hydrogen-bond acceptor and donor ones), the linear convolution molecular kernel with the contribution of each atom approximated with a single isotropic Gaussian function, and the kernel ridge regression data analysis technique. It is shown that the CMF approach even in this simplest form provides either comparable or enhanced predictive performance in comparison with state-of-the-art 3D-QSAR methods. PMID:23719959

  4. Noise analysis for near field 3-D FM-CW radar imaging systems

    SciTech Connect

    Sheen, David M.

    2015-06-19

    Near field radar imaging systems are used for several applications including concealed weapon detection in airports and other high-security venues. Despite the near-field operation, phase noise and thermal noise can limit the performance in several ways including reduction in system sensitivity and reduction of image dynamic range. In this paper, the effects of thermal noise, phase noise, and processing gain are analyzed in the context of a near field 3-D FM-CW imaging radar as might be used for concealed weapon detection. In addition to traditional frequency domain analysis, a time-domain simulation is employed to graphically demonstrate the effect of these noise sources on a fast-chirping FM-CW system.

  5. TE/TM alternating direction scheme for wake field calculation in 3D

    NASA Astrophysics Data System (ADS)

    Zagorodnov, Igor; Weiland, Thomas

    2006-03-01

    In the future, accelerators with very short bunches will be used. It demands developing new numerical approaches for long-time calculation of electromagnetic fields in the vicinity of relativistic bunches. The conventional FDTD scheme, used in MAFIA, ABCI and other wake and PIC codes, suffers from numerical grid dispersion and staircase approximation problem. As an effective cure of the dispersion problem, a numerical scheme without dispersion in longitudinal direction can be used as it was shown by Novokhatski et al. [Transition dynamics of the wake fields of ultrashort bunches, TESLA Report 2000-03, DESY, 2000] and Zagorodnov et al. [J. Comput. Phys. 191 (2003) 525]. In this paper, a new economical conservative scheme for short-range wake field calculation in 3D is presented. As numerical examples show, the new scheme is much more accurate on long-time scale than the conventional FDTD approach.

  6. Effect of high magnetic field on a quasi-3D silver dendrite growing system

    NASA Astrophysics Data System (ADS)

    Tang, Fengzhi; Katsuki, Akio; Tanimoto, Yoshifumi

    2006-05-01

    The Ag+/Cu liquid-solid redox reaction was investigated in a vertical and inhomogeneous high magnetic field (up to 15 T). According to a comparison between the morphologies of quasi-3D silver dendrites generated under different magnetic flux densities, the imposition of a high magnetic field strongly affected the aggregation process of the silver dendrites. The present experiment used four kinds of liquid-solid boundaries, which are affected by the reaction direction and solution condition, as bases for the diffusion limited aggregation (DLA)-like dendritic growth of silver deposition. Results are interpreted in terms of convections of the aqueous solution and a tentative quantitative analysis of forces acting on particles arising from the magnetic field. A new force is predicted theoretically and is discussed in detail.

  7. Flow properties along field lines in a 3-D tilted-dipole geometry

    NASA Technical Reports Server (NTRS)

    Pizzo, V. J.

    1995-01-01

    A 3-D MHD simulation of a global, tilted-dipole solar wind flow pattern is analyzed to determine flow properties along individual magnetic field lines. In the model, flow conditions near the Sun are chosen to provide a reasonable match to the interplanetary configuration prevailing during the recent south polar passage by Ulysses, i.e., a streamer belt inclined approximately 30 deg to the solar equator and speeds ranging from 325-800 km/s. Field lines all across the stream pattern are traced from 1 to 10 AU by following the motion of marker particles embedded in the flow. It is found that those field lines threading the core of the interaction region are subject to significant latitudinal and relative longitudinal displacement over this range of heliocentric distance. Thus, observations taken at a fixed latitude in the inner solar system sample, over the course of a solar rotation, field lines which connect to a range of latitudes in the outer heliosphere. Maps of the field line displacements are presented to help visualize these connections. In addition, it is found that depending upon the location relative to the CIR structure, the radial evolution of fluid elements frozen to different field lines can deviate considerably from that of the canonical solar wind. That is, for selected subsets of field lines, large speed changes (not just at shocks) can be experienced; the density variation can be far from 1/r(exp 2), and the magnetic field intensity need not decay monotonically with distance.

  8. 3D transient eddy current fields using the u-v integral-eigenvalue formulation

    NASA Astrophysics Data System (ADS)

    Davey, Kent R.; Han, Hsiu Chi; Turner, Larry

    1988-02-01

    The three-dimensional eddy current transient field problem is formulated using the u-v method. This method breaks the vector Helmholtz equation into two scalar Helmholtz equations. Null field integral equations and the appropriate boundary conditions are used to set up an identification matrix which is independent of null field point locations. Embedded in the identification matrix are the unknown eigenvalues of the problem representing its impulse response in time. These eigenvalues are found by equating the determinant of the identification matrix to zero. When the initial transient forcing function is Fourier decomposed into its spatial harmonics, each Fourier component can be associated with a unique eigenvalue by this technique. The true transient solution comes through a convolution of the impulse response, so obtained with the particular external field decay governing the problem at hand. The technique is applied to the FELIX (fusion electromagnetic induction experiments) medium cylinder experiment; computed results are compared with data. A pseudoanalytic confirmation of the eigenvalues so obtained is formulated to validate the procedure.

  9. 3D transient eddy current fields using the u-v integral-eigenvalue formulation

    SciTech Connect

    Davey, K.R.; Han, H.C.; Turner, L.

    1988-02-15

    The three-dimensional eddy current transient field problem is formulated using the u-v method. This method breaks the vector Helmholtz equation into two scalar Helmholtz equations. Null field integral equations and the appropriate boundary conditions are used to set up an identification matrix which is independent of null field point locations. Embedded in the identification matrix are the unknown eigenvalues of the problem representing its impulse response in time. These eigenvalues are found by equating the determinant of the identification matrix to zero. When the initial transient forcing function is Fourier decomposed into its spatial harmonics, each Fourier component can be associated with a unique eigenvalue by this technique. The true transient solution comes through a convolution of the impulse response, so obtained with the particular external field decay governing the problem at hand. The technique is applied to the FELIX (fusion electromagnetic induction experiments) medium cylinder experiment; computed results are compared with data. A pseudoanalytic confirmation of the eigenvalues so obtained is formulated to validate the procedure.

  10. 3D Magnetic Field Configuration of the 2006 December 13 Flare Extrapolated with the Optimization Method

    NASA Astrophysics Data System (ADS)

    Guo, Y.; Ding, M. D.; Wiegelmann, T.; Li, H.

    2008-06-01

    The photospheric vector magnetic field of the active region NOAA 10930 was obtained with the Solar Optical Telescope (SOT) on board the Hinode satellite with a very high spatial resolution (about 0.3''). Observations of the two-ribbon flare on 2006 December 13 in this active region provide us a good sample to study the magnetic field configuration related to the occurrence of the flare. Using the optimization method for nonlinear force-free field (NLFFF) extrapolation proposed by Wheatland et al. and recently developed by Wiegelmann, we derive the three-dimensional (3D) vector magnetic field configuration associated with this flare. The general topology can be described as a highly sheared core field and a quasi-potential envelope arch field. The core field clearly shows some dips supposed to sustain a filament. Free energy release in the flare, calculated by subtracting the energy contained in the NLFFF and the corresponding potential field, is 2.4 × 1031 ergs, which is ~2% of the preflare potential field energy. We also calculate the shear angles, defined as the angles between the NLFFF and potential field, and find that they become larger at some particular sites in the lower atmosphere, while they become significantly smaller in most places, implying that the whole configuration gets closer to the potential field after the flare. The Ca II H line images obtained with the Broadband Filter Imager (BFI) of the SOT and the 1600 Å images with the Transition Region and Coronal Explorer (TRACE) show that the preflare heating occurs mainly in the core field. These results provide evidence in support of the tether-cutting model of solar flares.

  11. Inflation driven by scalar field with non-minimal kinetic coupling with Higgs and quadratic potentials

    SciTech Connect

    Granda, L.N.

    2011-04-01

    We study a scalar field with non-minimal kinetic coupling to itself and to the curvature. The slow rolling conditions allowing an inflationary background have been found. The quadratic and Higgs type potentials have been considered, and the corresponding values for the scalar fields at the end of inflation allows to recover the connection with particle physics.

  12. 3-D reservoir characterization of the House Creek oil field, Powder River Basin, Wyoming

    USGS Publications Warehouse

    Higley, Debra K.; Pantea, Michael P.; Slatt, Roger M.

    1997-01-01

    This CD-ROM is intended to serve a broad audience. An important purpose is to explain geologic and geochemical factors that control petroleum production from the House Creek Field. This information may serve as an analog for other marine-ridge sandstone reservoirs. The 3-D slide and movie images are tied to explanations and 2-D geologic and geochemical images to visualize geologic structures in three dimensions, explain the geologic significance of porosity/permeability distribution across the sandstone bodies, and tie this to petroleum production characteristics in the oil field. Movies, text, images including scanning electron photomicrographs (SEM), thin-section photomicrographs, and data files can be copied from the CD-ROM for use in external mapping, statistical, and other applications.

  13. 3D-NTT: a versatile integral field spectro-imager for the NTT

    NASA Astrophysics Data System (ADS)

    Marcelin, M.; Amram, P.; Balard, P.; Balkowski, C.; Boissin, O.; Boulesteix, J.; Carignan, C.; Daigle, O.; de Denus Baillargeon, M.-M.; Epinat, B.; Gach, J.-L.; Hernandez, O.; Rigaud, F.; Vallée, P.

    2008-07-01

    The 3D-NTT is a visible integral field spectro-imager offering two modes. A low resolution mode (R ~ 300 to 6 000) with a large field of view Tunable Filter (17'x17') and a high resolution mode (R ~ 10 000 to 40 000) with a scanning Fabry-Perot (7'x7'). It will be operated as a visitor instrument on the NTT from 2009. Two large programmes will be led: "Characterizing the interstellar medium of nearby galaxies with 2D maps of extinction and abundances" (PI M. Marcelin) and "Gas accretion and radiative feedback in the early universe" (PI J. Bland Hawthorn). Both will be mainly based on the Tunable Filter mode. This instrument is being built as a collaborative effort between LAM (Marseille), GEPI (Paris) and LAE (Montreal). The website adress of the instrument is : http://www.astro.umontreal.ca/3DNTT

  14. 3D stochastic inversion of potential field data using structural geologic constraints

    NASA Astrophysics Data System (ADS)

    Shamsipour, Pejman; Schetselaar, Ernst; Bellefleur, Gilles; Marcotte, Denis

    2014-12-01

    We introduce a new method to include structural orientation constraints into potential field inversion using a stochastic framework. The method considers known geological interfaces and planar orientation data such as stratification estimated from seismic surveys or drill hole information. Integrating prior geological information into inversion methods can effectively reduce ambiguity and improve inversion results. The presented approach uses cokriging prediction with derivatives. The method is applied to two synthetic models to demonstrate its suitability for 3D inversion of potential field data. The method is also applied to the inversion of gravity data collected over the Lalor volcanogenic massive sulfide deposit at Snow Lake, Central Manitoba, Canada. The results show that using a structurally-constrained inversion leads to a better-resolved solution.

  15. Parameter modeling for nanopore lonic field effect transistors in 3-D device simulation.

    PubMed

    Park, Jun-Mo; Chun, Honggu; Park, Y Eugene; Park, Byung-Gook; Lee, Jong-Ho

    2014-11-01

    An Ion Field Effect Transistor (IFET) with nanopore structure was modeled in a conventional 3-dimensional (3-D) device simulator to understand current-voltage (I-V) characteristics and underlying physics of the device. Since the nanopore was filled with positive ions (K+) ions due to the negative interface charge on the insulator surface and negative gate bias condition, we could successfully simulate the IFET structure using modified p-type silicon to mimic KCl solution. We used p-type silicon with a doping concentration of 6.022 x 10(16) cm(-3) which has the same concentration of positive carriers (hole) as in 10(-4) M KCl. By controlling gate electric field effect on the mobility, the I-V curves obtained by the parameter modeling matched very well with the measured data. In addition, the decrease of [V(th)] with increasing V(DS) was physically analyzed. PMID:25958494

  16. Analysis of the repeatability of time-lapse 3d vsp multicomponent surveys, delhi field

    NASA Astrophysics Data System (ADS)

    Carvalho, Mariana Fernandes de

    Delhi Field is a producing oil field located in northeastern Louisiana. In order to monitor the CO2 sweep efficiency, time-lapse 3D seismic data have been acquired in this area. Time-lapse studies are increasingly used to evaluate changes in the seismic response induced by the production of hydrocarbons or the injection of water, CO2 or steam into a reservoir. A 4D seismic signal is generated by a combination of production and injection effects within the reservoir as well as non-repeatability effects. In order to get reliable results from time-lapse seismic methods, it is important to distinguish the production and injection effects from the non-repeatability effects in the 4D seismic signal. Repeatability of 4D land seismic data is affected by several factors. The most significant of them are: source and receiver geometry inaccuracies, differences in seismic sources signatures, variations in the immediate near surface and ambient non-repeatable noise. In this project, two 3D multicomponent VSP surveys acquired in Delhi Field were used to quantify the relative contribution of each factor that can affect the repeatability in land seismic data. The factors analyzed in this study were: source and receiver geometry inaccura- cies, variations in the immediate near surface and ambient non-repeatable noise. This study showed that all these factors had a significant impact on the repeatability of the successive multicomponent VSP surveys in Delhi Field. This project also shows the advantages and disadvantages in the use of different repeata- bility metrics, normalized-root-mean-square (NRMS) difference and signal-to-distortion ratio (SDR) attribute, to evaluate the level of seismic repeatability between successive time-lapse seismic surveys. It is observed that NRMS difference is greatly influenced by time-shifts and that SDR attribute combined with the time-shift may give more distinct and representative repeatability information than the NRMS difference.

  17. Three dimensional magnetic fields in extra high speed modified Lundell alternators computed by a combined vector-scalar magnetic potential finite element method

    NASA Technical Reports Server (NTRS)

    Demerdash, N. A.; Wang, R.; Secunde, R.

    1992-01-01

    A 3D finite element (FE) approach was developed and implemented for computation of global magnetic fields in a 14.3 kVA modified Lundell alternator. The essence of the new method is the combined use of magnetic vector and scalar potential formulations in 3D FEs. This approach makes it practical, using state of the art supercomputer resources, to globally analyze magnetic fields and operating performances of rotating machines which have truly 3D magnetic flux patterns. The 3D FE-computed fields and machine inductances as well as various machine performance simulations of the 14.3 kVA machine are presented in this paper and its two companion papers.

  18. Holographic display system for dynamic synthesis of 3D light fields with increased space bandwidth product.

    PubMed

    Agour, Mostafa; Falldorf, Claas; Bergmann, Ralf B

    2016-06-27

    We present a new method for the generation of a dynamic wave field with high space bandwidth product (SBP). The dynamic wave field is generated from several wave fields diffracted by a display which comprises multiple spatial light modulators (SLMs) each having a comparably low SBP. In contrast to similar approaches in stereoscopy, we describe how the independently generated wave fields can be coherently superposed. A major benefit of the scheme is that the display system may be extended to provide an even larger display. A compact experimental configuration which is composed of four phase-only SLMs to realize the coherent combination of independent wave fields is presented. Effects of important technical parameters of the display system on the wave field generated across the observation plane are investigated. These effects include, e.g., the tilt of the individual SLM and the gap between the active areas of multiple SLMs. As an example of application, holographic reconstruction of a 3D object with parallax effects is demonstrated. PMID:27410593

  19. The continuous tower of scalar fields as a system of interacting dark matter-dark energy

    NASA Astrophysics Data System (ADS)

    Santos, Paulo

    2015-10-01

    This paper aims to introduce a new parameterisation for the coupling Q in interacting dark matter and dark energy models by connecting said models with the Continuous Tower of Scalar Fields model. Based upon the existence of a dark matter and a dark energy sectors in the Continuous Tower of Scalar Fields, a simplification is considered for the evolution of a single scalar field from the tower, validated in this paper. This allows for the results obtained with the Continuous Tower of Scalar Fields model to match those of an interacting dark matter-dark energy system, considering that the energy transferred from one fluid to the other is given by the energy of the scalar fields that start oscillating at a given time, rather than considering that the energy transference depends on properties of the whole fluids that are interacting.

  20. Electric fields and field-aligned currents in polar regions of the solar corona: 3-D MHD consideration

    NASA Technical Reports Server (NTRS)

    Pisanko, Yu. V.

    1995-01-01

    The calculation of the solar rotation electro-dynamical effects in the near-the-Sun solar wind seems more convenient from the non-inertial corotating reference frame. This implies some modification of the 3-D MHD equations generally on the base of the General Theory of Relativity. The paper deals with the search of stationary (in corotating non-inertial reference frame) solutions of the modified 3-D MHD equations for the in near-the-Sun high latitude sub-alfvenic solar wind. The solution is obtained requiring electric fields and field-aligned electric currents in the high latitude near-the-Sun solar wind. Various scenario are explored self-consistently via a number of numerical experiments. The analogy with the high latitude Earth's magnetosphere is used for the interpretation of the results. Possible observational manifestations are discussed.

  1. The generalized Fényes-Nelson model for free scalar field theory

    NASA Astrophysics Data System (ADS)

    Davidson, Mark

    1980-03-01

    The generalized Fényes-Nelson model of quantum mechanics is applied to the free scalar field. The resulting Markov field is equivalent to the Euclidean Markov field with the times scaled by a common factor which depends on the diffusion parameter. This result is consistent with Guerra's earlier work on stochastic quantization of scalar fields. It suggests a deep connection between Euclidean field theory and the stochastic interpretation of quantum mechanics. The question of Lorentz covariance is also discussed.

  2. Fine resolution 3D temperature fields off Kerguelen from instrumented penguins

    NASA Astrophysics Data System (ADS)

    Charrassin, Jean-Benoît; Park, Young-Hyang; Le Maho, Yvon; Bost, Charles-André

    2004-12-01

    The use of diving animals as autonomous vectors of oceanographic instruments is rapidly increasing, because this approach yields cost-efficient new information and can be used in previously poorly sampled areas. However, methods for analyzing the collected data are still under development. In particular, difficulties may arise from the heterogeneous data distribution linked to animals' behavior. Here we show how raw temperature data collected by penguin-borne loggers were transformed to a regular gridded dataset that provided new information on the local circulation off Kerguelen. A total of 16 king penguins ( Aptenodytes patagonicus) were equipped with satellite-positioning transmitters and with temperature-time-depth recorders (TTDRs) to record dive depth and sea temperature. The penguins' foraging trips recorded during five summers ranged from 140 to 600 km from the colony and 11,000 dives >100 m were recorded. Temperature measurements recorded during diving were used to produce detailed 3D temperature fields of the area (0-200 m). The data treatment included dive location, determination of the vertical profile for each dive, averaging and gridding of those profiles onto 0.1°×0.1° cells, and optimal interpolation in both the horizontal and vertical using an objective analysis. Horizontal fields of temperature at the surface and 100 m are presented, as well as a vertical section along the main foraging direction of the penguins. Compared to conventional temperature databases (Levitus World Ocean Atlas and historical stations available in the area), the 3D temperature fields collected from penguins are extremely finely resolved, by one order finer. Although TTDRs were less accurate than conventional instruments, such a high spatial resolution of penguin-derived data provided unprecedented detailed information on the upper level circulation pattern east of Kerguelen, as well as the iron-enrichment mechanism leading to a high primary production over the Kerguelen

  3. Torque-consistent 3D force balance and optimization of non-resonant fields in tokamaks

    NASA Astrophysics Data System (ADS)

    Park, Jong-Kyu

    2015-11-01

    A non-axisymmetric magnetic perturbation in tokamaks breaks the toroidal symmetry and produces toroidal torque, which is well known as neoclassical toroidal viscosity (NTV) effects. Although NTV torque is second order, it is the first-order change in the pressure anisotropy that drives currents associated with local torques and thereby modifies the field penetration in force balance. The force operator becomes non-Hermitian, but can be directly solved using parallel, toroidal, and radial force balance, leading to a modified Euler-Lagrange equation. The general perturbed equilibrium code (GPEC), which has been successfully developed to solve the modified Euler-Lagrange equation, gives the torque-consistent 3D force balance as well as self-consistent NTV torque. The self-shielding of the torque becomes apparent in the solutions in high β, which was implied in recent MARS-K applications. Furthermore, the full response matrix including the torque in GPEC provides a new and systematic way of optimizing torque and non-resonant fields. Recently the optimization of 3D fields for torque has been actively studied using the stellarator optimizing tools, but the efficiency and accuracy can be greatly improved by directly incorporating the torque response matrix. There are salient features uncovered by response with the torque, as the response can become invisible in amplitudes but only significant in toroidal phase shift. A perturbation in backward helicity is an example, in which NTV can be induced substantially but quietly without measurable response in amplitudes. A number of other GPEC applications will also be discussed, including the multi-mode responses in high- β tokamak plasmas and the new non-axisymmetric control coil (NCC) design in NSTX-U. This work was supported by DOE Contract DE-AC02-09CH11466.

  4. Engineering a 3D microfluidic culture platform for tumor-treating field application

    PubMed Central

    Pavesi, Andrea; Adriani, Giulia; Tay, Andy; Warkiani, Majid Ebrahimi; Yeap, Wei Hseun; Wong, Siew Cheng; Kamm, Roger D.

    2016-01-01

    The limitations of current cancer therapies highlight the urgent need for a more effective therapeutic strategy. One promising approach uses an alternating electric field; however, the mechanisms involved in the disruption of the cancer cell cycle as well as the potential adverse effects on non-cancerous cells must be clarified. In this study, we present a novel microfluidic device with embedded electrodes that enables the application of an alternating electric field therapy to cancer cells in a 3D extracellular matrix. To demonstrate the potential of our system to aid in designing and testing new therapeutic approaches, cancer cells and cancer cell aggregates were cultured individually or co-cultured with endothelial cells. The metastatic potential of the cancer cells was reduced after electric field treatment. Moreover, the proliferation rate of the treated cancer cells was lower compared with that of the untreated cells, whereas the morphologies and proliferative capacities of the endothelial cells were not significantly affected. These results demonstrate that our novel system can be used to rapidly screen the effect of an alternating electric field on cancer and normal cells within an in vivo-like microenvironment with the potential to optimize treatment protocols and evaluate synergies between tumor-treating field treatment and chemotherapy. PMID:27215466

  5. Engineering a 3D microfluidic culture platform for tumor-treating field application.

    PubMed

    Pavesi, Andrea; Adriani, Giulia; Tay, Andy; Warkiani, Majid Ebrahimi; Yeap, Wei Hseun; Wong, Siew Cheng; Kamm, Roger D

    2016-01-01

    The limitations of current cancer therapies highlight the urgent need for a more effective therapeutic strategy. One promising approach uses an alternating electric field; however, the mechanisms involved in the disruption of the cancer cell cycle as well as the potential adverse effects on non-cancerous cells must be clarified. In this study, we present a novel microfluidic device with embedded electrodes that enables the application of an alternating electric field therapy to cancer cells in a 3D extracellular matrix. To demonstrate the potential of our system to aid in designing and testing new therapeutic approaches, cancer cells and cancer cell aggregates were cultured individually or co-cultured with endothelial cells. The metastatic potential of the cancer cells was reduced after electric field treatment. Moreover, the proliferation rate of the treated cancer cells was lower compared with that of the untreated cells, whereas the morphologies and proliferative capacities of the endothelial cells were not significantly affected. These results demonstrate that our novel system can be used to rapidly screen the effect of an alternating electric field on cancer and normal cells within an in vivo-like microenvironment with the potential to optimize treatment protocols and evaluate synergies between tumor-treating field treatment and chemotherapy. PMID:27215466

  6. Engineering a 3D microfluidic culture platform for tumor-treating field application

    NASA Astrophysics Data System (ADS)

    Pavesi, Andrea; Adriani, Giulia; Tay, Andy; Warkiani, Majid Ebrahimi; Yeap, Wei Hseun; Wong, Siew Cheng; Kamm, Roger D.

    2016-05-01

    The limitations of current cancer therapies highlight the urgent need for a more effective therapeutic strategy. One promising approach uses an alternating electric field; however, the mechanisms involved in the disruption of the cancer cell cycle as well as the potential adverse effects on non-cancerous cells must be clarified. In this study, we present a novel microfluidic device with embedded electrodes that enables the application of an alternating electric field therapy to cancer cells in a 3D extracellular matrix. To demonstrate the potential of our system to aid in designing and testing new therapeutic approaches, cancer cells and cancer cell aggregates were cultured individually or co-cultured with endothelial cells. The metastatic potential of the cancer cells was reduced after electric field treatment. Moreover, the proliferation rate of the treated cancer cells was lower compared with that of the untreated cells, whereas the morphologies and proliferative capacities of the endothelial cells were not significantly affected. These results demonstrate that our novel system can be used to rapidly screen the effect of an alternating electric field on cancer and normal cells within an in vivo-like microenvironment with the potential to optimize treatment protocols and evaluate synergies between tumor-treating field treatment and chemotherapy.

  7. Uniqueness of the static spacetimes with a photon sphere in Einstein-scalar field theory

    NASA Astrophysics Data System (ADS)

    Yazadjiev, Stoytcho

    2015-06-01

    In the present paper we prove a uniqueness theorem for the static and asymptotically flat solutions to the Einstein-scalar field equations which possess a photon sphere. We show that such solutions are uniquely specified by their mass M and scalar charge q and that they are isometric to the Janis-Newman-Winicour solution with the same mass and scalar charge subject to the inequality q/2M2<3 .

  8. Cosmological perturbations in SFT inspired non-local scalar field models

    NASA Astrophysics Data System (ADS)

    Koshelev, Alexey S.; Vernov, Sergey Yu.

    2012-10-01

    We study cosmological perturbations in models with a single non-local scalar field originating from the string field theory description of the rolling tachyon dynamics. We construct the equation for the energy density perturbations of the non-local scalar field and explicitly prove that for the free field it is identical to a system of local cosmological perturbation equations in a particular model with multiple (maybe infinitely many) local free scalar fields. We also show that vector and tensor perturbations are absent in this set-up.

  9. Gravitational waves from self-ordering scalar fields

    SciTech Connect

    Fenu, Elisa; Durrer, Ruth; Figueroa, Daniel G.; García-Bellido, Juan E-mail: daniel.figueroa@uam.es E-mail: juan.garciabellido@uam.es

    2009-10-01

    Gravitational waves were copiously produced in the early Universe whenever the processes taking place were sufficiently violent. The spectra of several of these gravitational wave backgrounds on subhorizon scales have been extensively studied in the literature. In this paper we analyze the shape and amplitude of the gravitational wave spectrum on scales which are superhorizon at the time of production. Such gravitational waves are expected from the self ordering of randomly oriented scalar fields which can be present during a thermal phase transition or during preheating after hybrid inflation. We find that, if the gravitational wave source acts only during a small fraction of the Hubble time, the gravitational wave spectrum at frequencies lower than the expansion rate at the time of production behaves as Ω{sub GW}(f) ∝ f{sup 3} with an amplitude much too small to be observable by gravitational wave observatories like LIGO, LISA or BBO. On the other hand, if the source is active for a much longer time, until a given mode which is initially superhorizon (kη{sub *} << 1), enters the horizon, for kη ∼> 1, we find that the gravitational wave energy density is frequency independent, i.e. scale invariant. Moreover, its amplitude for a GUT scale scenario turns out to be within the range and sensitivity of BBO and marginally detectable by LIGO and LISA. This new gravitational wave background can compete with the one generated during inflation, and distinguishing both may require extra information.

  10. Three-dimensional Casimir piston for massive scalar fields

    SciTech Connect

    Lim, S.C. Teo, L.P.

    2009-08-15

    We consider Casimir force acting on a three-dimensional rectangular piston due to a massive scalar field subject to periodic, Dirichlet and Neumann boundary conditions. Exponential cut-off method is used to derive the Casimir energy. It is shown that the divergent terms do not contribute to the Casimir force acting on the piston, thus render a finite well-defined Casimir force acting on the piston. Explicit expressions for the total Casimir force acting on the piston is derived, which show that the Casimir force is always attractive for all the different boundary conditions considered. As a function of a - the distance from the piston to the opposite wall, it is found that the magnitude of the Casimir force behaves like 1/a{sup 4} when a{yields}0{sup +} and decays exponentially when a{yields}{infinity}. Moreover, the magnitude of the Casimir force is always a decreasing function of a. On the other hand, passing from massless to massive, we find that the effect of the mass is insignificant when a is small, but the magnitude of the force is decreased for large a in the massive case.

  11. Comparison of Boltzmann equations with quantum dynamics for scalar fields

    SciTech Connect

    Lindner, Manfred; Mueller, Markus Michael

    2006-06-15

    Boltzmann equations are often used to study the thermal evolution of particle reaction networks. Prominent examples are the computation of the baryon asymmetry of the universe and the evolution of the quark-gluon plasma after relativistic heavy ion collisions. However, Boltzmann equations are only a classical approximation of the quantum thermalization process which is described by the so-called Kadanoff-Baym equations. This raises the question how reliable Boltzmann equations are as approximations to the full Kadanoff-Baym equations. Therefore, we present in this paper a detailed comparison between the Kadanoff-Baym and Boltzmann equations in the framework of a scalar {phi}{sup 4} quantum field theory in 3+1 space-time dimensions. The obtained numerical solutions reveal significant discrepancies in the results predicted by both types of equations. Apart from quantitative discrepancies, on a qualitative level the universality respected by the Kadanoff-Baym equations is severely restricted in the case of Boltzmann equations. Furthermore, the Kadanoff-Baym equations strongly separate the time scales between kinetic and chemical equilibration. This separation of time scales is absent for the Boltzmann equation.

  12. Rapid topography mapping of scalar fields: Large molecular clusters

    NASA Astrophysics Data System (ADS)

    Yeole, Sachin D.; López, Rafael; Gadre, Shridhar R.

    2012-08-01

    An efficient and rapid algorithm for topography mapping of scalar fields, molecular electron density (MED) and molecular electrostatic potential (MESP) is presented. The highlight of the work is the use of fast function evaluation by Deformed-atoms-in-molecules (DAM) method. The DAM method provides very rapid as well as sufficiently accurate function and gradient evaluation. For mapping the topography of large systems, the molecular tailoring approach (MTA) is invoked. This new code is tested out for mapping the MED and MESP critical points (CP's) of small systems. It is further applied to large molecular clusters viz. (H2O)25, (C6H6)8 and also to a unit cell of valine crystal at MP2/6-31+G(d) level of theory. The completeness of the topography is checked by extensive search as well as applying the Poincaré-Hopf relation. The results obtained show that the DAM method in combination with MTA provides a rapid and efficient route for mapping the topography of large molecular systems.

  13. Cosmological perturbations in coherent oscillating scalar field models

    NASA Astrophysics Data System (ADS)

    Cembranos, J. A. R.; Maroto, A. L.; Jareño, S. J. Núñez

    2016-03-01

    The fact that fast oscillating homogeneous scalar fields behave as perfect fluids in average and their intrinsic isotropy have made these models very fruitful in cosmology. In this work we will analyse the perturbations dynamics in these theories assuming general power law potentials V( ϕ) = λ| ϕ| n /n. At leading order in the wavenumber expansion, a simple expression for the effective sound speed of perturbations is obtained c eff 2 = ω = ( n - 2)/( n + 2) with ω the effective equation of state. We also obtain the first order correction in k 2/ ω eff 2 , when the wavenumber k of the perturbations is much smaller than the background oscillation frequency, ω eff. For the standard massive case we have also analysed general anharmonic contributions to the effective sound speed. These results are reached through a perturbed version of the generalized virial theorem and also studying the exact system both in the super-Hubble limit, deriving the natural ansatz for δϕ; and for sub-Hubble modes, exploiting Floquet's theorem.

  14. Extended quintessence with nonminimally coupled phantom scalar field

    SciTech Connect

    Hrycyna, Orest; Szydlowski, Marek

    2007-12-15

    We investigate evolutional paths of an extended quintessence with a nonminimally coupled phantom scalar field {psi} to the Ricci curvature. The dynamical system methods are used to investigate typical regimes of dynamics at the late time. We demonstrate that there are two generic types of evolutional scenarios which approach the attractor (a focus or a node type critical point) in the phase space: the quasioscillatory and monotonic trajectories approach the attractor which represents the Friedmann-Robertson-Walker model with the cosmological constant. We demonstrate that the dynamical system admits an invariant two-dimensional submanifold and discuss that which cosmological scenario is realized depends on the behavior of the system on the phase plane ({psi},{psi}{sup '}). We formulate simple conditions on the value of the coupling constant {xi} for which trajectories tend to the focus in the phase plane and hence damping oscillations around the mysterious value w=-1. We describe this condition in terms of slow-roll parameters calculated at the critical point. We discover that the generic trajectories in the focus-attractor scenario come from the unstable node. We also investigate the exact form of the parametrization of the equation of state parameter w(z) (directly determined from dynamics) which assumes a different form for both scenarios.

  15. Spatial dependence of correlation functions in the decay problem for a passive scalar in a large-scale velocity field

    SciTech Connect

    Vergeles, S. S.

    2006-04-15

    Statistical characteristics of a passive scalar advected by a turbulent velocity field are considered in the decay problem with a low scalar diffusivity {kappa} (large Prandtl number v/{kappa}, where v is kinematic viscosity). A regime in which the scalar correlation length remains smaller than the velocity correlation length is analyzed. The equal-time correlation functions of the scalar field are found to vary according to power laws and have angular singularities reflecting locally layered distribution of the scalar in space.

  16. A unified optical theorem for scalar and vectorial wave fields.

    PubMed

    Wapenaar, Kees; Douma, Huub

    2012-05-01

    The generalized optical theorem is an integral relation for the angle-dependent scattering amplitude of an inhomogeneous scattering object embedded in a homogeneous background. It has been derived separately for several scalar and vectorial wave phenomena. Here a unified optical theorem is derived that encompasses the separate versions for scalar and vectorial waves. Moreover, this unified theorem also holds for scattering by anisotropic elastic and piezoelectric scatterers as well as bianisotropic (non-reciprocal) EM scatterers. PMID:22559339

  17. 3D stochastic inversion and joint inversion of potential fields for multi scale parameters

    NASA Astrophysics Data System (ADS)

    Shamsipour, Pejman

    In this thesis we present the development of new techniques for the interpretation of potential field (gravity and magnetic data), which are the most widespread economic geophysical methods used for oil and mineral exploration. These new techniques help to address the long-standing issue with the interpretation of potential fields, namely the intrinsic non-uniqueness inversion of these types of data. The thesis takes the form of three papers (four including Appendix), which have been published, or soon to be published, in respected international journals. The purpose of the thesis is to introduce new methods based on 3D stochastical approaches for: 1) Inversion of potential field data (magnetic), 2) Multiscale Inversion using surface and borehole data and 3) Joint inversion of geophysical potential field data. We first present a stochastic inversion method based on a geostatistical approach to recover 3D susceptibility models from magnetic data. The aim of applying geostatistics is to provide quantitative descriptions of natural variables distributed in space or in time and space. We evaluate the uncertainty on the parameter model by using geostatistical unconditional simulations. The realizations are post-conditioned by cokriging to observation data. In order to avoid the natural tendency of the estimated structure to lay near the surface, depth weighting is included in the cokriging system. Then, we introduce algorithm for multiscale inversion, the presented algorithm has the capability of inverting data on multiple supports. The method involves four main steps: i. upscaling of borehole parameters (It could be density or susceptibility) to block parameters, ii. selection of block to use as constraints based on a threshold on kriging variance, iii. inversion of observation data with selected block densities as constraints, and iv. downscaling of inverted parameters to small prisms. Two modes of application are presented: estimation and simulation. Finally, a novel

  18. 3D Coincidence Imaging Disentangles Intense Field Double Detachment of SF6(–).

    PubMed

    Kandhasamy, Durai Murugan; Albeck, Yishai; Jagtap, Krishna; Strasser, Daniel

    2015-07-23

    The efficient intense field double detachment of molecular anions observed in SF6(–) is studied by 3D coincidence imaging of the dissociation products. The dissociation anisotropy and kinetic energy release distributions are determined for the energetically lowest double detachment channel by virtue of disentangling the SF5(+) + F fragmentation products. The observed nearly isotropic dissociation with respect to the linear laser polarization and surprisingly high kinetic energy release events suggest that the dissociation occurs on a highly excited state. Rydberg (SF6(+))* states composed of a highly repulsive dication core and a Rydberg electron are proposed to explain the observed kinetic energy release, accounting also for the efficient production of all possible cationic fragments at equivalent laser intensities. PMID:26098224

  19. Calibration of Panoramic Cameras with Coded Targets and a 3d Calibration Field

    NASA Astrophysics Data System (ADS)

    Tommaselli, A. M. G.; Marcato, J., Jr.; Moraes, M. V. A.; Silva, S. L. A.; Artero, A. O.

    2014-03-01

    The aim of this paper is to present results achieved with a 3D terrestrial calibration field, designed for calibrating digital cameras and omnidirectional sensors. This terrestrial calibration field is composed of 139 ARUCO coded targets. Some experiments were performed using a Nikon D3100 digital camera with 8mm Samyang Bower fisheye lens. The camera was calibrated in this terrestrial test field using a conventional bundle adjustment with the Collinearity and mathematical models specially designed for fisheye lenses. The CMC software (Calibration with Multiple Cameras), developed in-house, was used for the calibration trials. This software was modified to use fisheye models to which the Conrady-Brown distortion equations were added. The target identification and image measurements of its four corners were performed automatically with a public software. Several experiments were performed with 16 images and the results were presented and compared. Besides the calibration of fish-eye cameras, the field was designed for calibration of a catadrioptic system and brief informations on the calibration of this unit will be provided in the paper.

  20. 3D Printed Scintillators For Use in Field Emission Detection and Other Nuclear Physics Experiments

    NASA Astrophysics Data System (ADS)

    Ficenec, Karen

    2015-10-01

    In accelerator cavities, field emission electrons - electrons that get stripped away from the cavity walls due to the high electromagnetic field necessary to accelerate the main beam - are partially accelerated and can crash into the cavity walls, adding to the heat-load of the cryogenic system. Because these field electrons emit gamma rays when bent by the electromagnetic field, a scintillator, if made to fit the cavity enclosure, can detect their presence. Eliminating the waste of subtractive manufacturing techniques and allowing for the production of unique, varied shapes, 3D printing of scintillators may allow for an efficient detection system. UV light is used to start a chemical polymerization process that links the monomers of the liquid resin together into larger, intertwined molecules, forming the solid structure. Each shape requires slightly different calibration of its optimal printing parameters, such as slice thickness and exposure time to UV light. Thus far, calibration parameters have been optimized for cylinders of 20 mm diameter, cones of 30 mm diameter and 30 mm height, rectangular prisms 30 by 40 by 10 mm, and square pyramids 20 mm across. Calibration continues on creating holes in the prints (for optical fibers), as well as shapes with overhangs. Scintill This work was supported in part by the National Science Foundation under Grant No. PHY-1405857.

  1. Terahertz 3D printed diffractive lens matrices for field-effect transistor detector focal plane arrays.

    PubMed

    Szkudlarek, Krzesimir; Sypek, Maciej; Cywiński, Grzegorz; Suszek, Jarosław; Zagrajek, Przemysław; Feduniewicz-Żmuda, Anna; Yahniuk, Ivan; Yatsunenko, Sergey; Nowakowska-Siwińska, Anna; Coquillat, Dominique; But, Dmytro B; Rachoń, Martyna; Węgrzyńska, Karolina; Skierbiszewski, Czesław; Knap, Wojciech

    2016-09-01

    We present the concept, the fabrication processes and the experimental results for materials and optics that can be used for terahertz field-effect transistor detector focal plane arrays. More specifically, we propose 3D printed arrays of a new type - diffractive multi-zone lenses of which the performance is superior to that of previously used mono-zone diffractive or refractive elements and evaluate them with GaN/AlGaN field-effect transistor terahertz detectors. Experiments performed in the 300-GHz atmospheric window show that the lens arrays offer both a good efficiency and good uniformity, and may improve the signal-to-noise ratio of the terahertz field-effect transistor detectors by more than one order of magnitude. In practice, we tested 3 × 12 lens linear arrays with printed circuit board THz detector arrays used in postal security scanners and observed significant signal-to-noise improvements. Our results clearly show that the proposed technology provides a way to produce cost-effective, reproducible, flat optics for large-size field-effect transistor THz-detector focal plane arrays. PMID:27607620

  2. Field calibration of binocular stereo vision based on fast reconstruction of 3D control field

    NASA Astrophysics Data System (ADS)

    Zhang, Haijun; Liu, Changjie; Fu, Luhua; Guo, Yin

    2015-08-01

    Construction of high-speed railway in China has entered a period of rapid growth. To accurately and quickly obtain the dynamic envelope curve of high-speed vehicle is an important guarantee for safe driving. The measuring system is based on binocular stereo vision. Considering the difficulties in field calibration such as environmental changes and time limits, carried out a field calibration method based on fast reconstruction of three-dimensional control field. With the rapid assembly of pre-calibrated three-dimensional control field, whose coordinate accuracy is guaranteed by manufacture accuracy and calibrated by V-STARS, two cameras take a quick shot of it at the same time. The field calibration parameters are then solved by the method combining linear solution with nonlinear optimization. Experimental results showed that the measurement accuracy can reach up to +/- 0.5mm, and more importantly, in the premise of guaranteeing accuracy, the speed of the calibration and the portability of the devices have been improved considerably.

  3. 3-D analysis and interpretation of magnetotelluric data from the Aluto-Langano geothermal field, Ethiopia

    NASA Astrophysics Data System (ADS)

    Samrock, F.; Kuvshinov, A.; Bakker, J.; Jackson, A.; Fisseha, S.

    2015-09-01

    The Main Ethiopian Rift Valley encompasses a number of volcanoes, which are known to be actively deforming with reoccurring periods of uplift and setting. One of the regions where temporal changes take place is the Aluto volcanic complex. It hosts a productive geothermal field and the only currently operating geothermal power plant of Ethiopia. We carried out magnetotelluric (MT) measurements in early 2012 in order to identify the source of unrest. Broad-band MT data (0.001-1000 s) have been acquired at 46 sites covering the expanse of the Aluto volcanic complex with an average site spacing of 1 km. Based on this MT data it is possible to map the bulk electrical resistivity of the subsurface down to depths of several kilometres. Resistivity is a crucial geophysical parameter in geothermal exploration as hydrothermal and magmatic reservoirs are typically related to low resistive zones, which can be easily sensed by MT. Thus by mapping the electrical conductivity one can identify and analyse geothermal systems with respect to their temperature, extent and potential for production of energy. 3-D inversions of the observed MT data from Aluto reveal the typical electrical conductivity distribution of a high-enthalpy geothermal system, which is mainly governed by the hydrothermal alteration mineralogy. The recovered 3-D conductivity models provide no evidence for an active deep magmatic system under Aluto. Forward modelling of the tippers rather suggest that occurrence of melt is predominantly at lower crustal depths along an off-axis fault zone a few tens of kilometres west of the central rift axis. The absence of an active magmatic system implies that the deforming source is most likely situated within the shallow hydrothermal system of the Aluto-Langano geothermal field.

  4. 3-D seismic data for field development: Landslide field case study

    SciTech Connect

    Raeuchle, S.K.; Carr, T.R.; Tucker, R.D. )

    1990-05-01

    The Landslide field is located on the extreme southern flank of the San Joaquin basin, approximately 25 mi south of Bakersfield, California. The field, discovered in 1985, has produced in excess 9 million bbl of oil with an estimated ultimate recovery of more than 13 MMBO. The Miocene Stevens sands, which form the reservoir units at Landslide field, are interpreted as a series of constructional submarine fan deposits. Deposition of the fans was controlled by paleotopography with an abrupt updip pinch-out of the sands to the southwest. The three-dimensional seismic data over the field was used to locate the bottom hole of the landslide 22X-30 development well as close to this abrupt updip pinchout as possible in order to maximize oil recovery. A location was selected two traces (330 ft) from the updip pinch-out as mapped on the seismic data. The well was successfully drilled during 1989, encountering 150 ft of net sand with initial production in excess of 1,500 bbl of oil/day. A pressure buildup test indicates the presence of a boundary approximately 200 ft from the well bore. This boundary is interpreted as the updip pinchout of the Stevens sands against the paleohigh. Based on examination of changes in amplitude, the absence or presence of reservoir-quality sand can be mapped across the paleohighs. Application of three-dimensional seismic data, integration with well data, and in particular reconstruction cuts tied closely to existing wells can be used to map the ultimate extent of the field and contribute to efficient development.

  5. Efficient visualization of unsteady and huge scalar and vector fields

    NASA Astrophysics Data System (ADS)

    Vetter, Michael; Olbrich, Stephan

    2016-04-01

    and methods, we are developing a stand-alone post-processor, adding further data structures and mapping algorithms, and cooperating with the ICON developers and users. With the implementation of a DSVR-based post-processor, a milestone was achieved. By using the DSVR post-processor the mentioned 3 processes are completely separated: the data set is processed in a batch mode - e.g. on the same supercomputer, which the data is generated on - and the interactive 3D rendering is done afterwards on the scientist's local system. At the actual status of implementation the DSVR post-processor supports the generation of isosurfaces and colored slicers on volume data set time series based on rectilinear grids as well as the visualization of pathlines on time varying flow fields based on either rectilinear grids or prism grids. The software implementation and evaluation is done on the supercomputers at DKRZ, including scalability tests using ICON output files in NetCDF format. The next milestones will be (a) the in-situ integration of the DSVR library in the ICON model and (b) the implementation of an isosurface algorithm for prism grids.

  6. Analysis of the 3D magnetic field and its errors for undulators with iron poles

    SciTech Connect

    Ingold, G.; Bahrdt, J.; Gaupp, A.

    1995-12-31

    The attainable field strength and field quality, such as the optical phase error, the electron beam displacement within the undulator and higher order multipoles of the magnetic field, are discussed. These issues are critical to the design and construction of short period undulators for use in short wavelength FEL or for operation in third generation light sources. We discuss two approaches: (i) For superferric undulators the construction of a full length device would rely on the optimum sorting of precision machined undulator segments. Magnetic data on segments with 20 periods (period length 8.80mm) will be presented. (ii) For hybrid undulators the sorting has to be done on individual poles and magnets. For this approach typical error sources such as machining tolerances, magnetization errors of the permanent magnet material and assembly errors are modeled in 3D and compared to induced errors on an existing hybrid undulator segment. In case of undulators having a full length of hundred periods at least five times as many individual parts have to be characterized. This should be done automatically where both the mechanical and magnetic data before and after the assembly of the magnetic structure are recorded in one step. A CNC programmable measuring device suitable for this task will shortly be presented.

  7. An analytical algorithm for 3D magnetic field mapping of a watt balance magnet

    NASA Astrophysics Data System (ADS)

    Fu, Zhuang; Zhang, Zhonghua; Li, Zhengkun; Zhao, Wei; Han, Bing; Lu, Yunfeng; Li, Shisong

    2016-04-01

    A yoke-based permanent magnet, which has been employed in many watt balances at national metrology institutes, is supposed to generate strong and uniform magnetic field in an air gap in the radial direction. However, in reality the fringe effect due to the finite height of the air gap will introduce an undesired vertical magnetic component to the air gap, which should either be measured or modeled towards some optimizations of the watt balance. A recent publication, i.e. Li et al (2015 Metrologia 52 445), presented a full field mapping method, which in theory will supply useful information for profile characterization and misalignment analysis. This article is an additional material of Li et al (2015 Metrologia 52 445), which develops a different analytical algorithm to represent the 3D magnetic field of a watt balance magnet based on only one measurement for the radial magnetic flux density along the vertical direction, B r (z). The new algorithm is based on the electromagnetic nature of the magnet, which has a much better accuracy.

  8. Adaptive multi-GPU Exchange Monte Carlo for the 3D Random Field Ising Model

    NASA Astrophysics Data System (ADS)

    Navarro, Cristóbal A.; Huang, Wei; Deng, Youjin

    2016-08-01

    This work presents an adaptive multi-GPU Exchange Monte Carlo approach for the simulation of the 3D Random Field Ising Model (RFIM). The design is based on a two-level parallelization. The first level, spin-level parallelism, maps the parallel computation as optimal 3D thread-blocks that simulate blocks of spins in shared memory with minimal halo surface, assuming a constant block volume. The second level, replica-level parallelism, uses multi-GPU computation to handle the simulation of an ensemble of replicas. CUDA's concurrent kernel execution feature is used in order to fill the occupancy of each GPU with many replicas, providing a performance boost that is more notorious at the smallest values of L. In addition to the two-level parallel design, the work proposes an adaptive multi-GPU approach that dynamically builds a proper temperature set free of exchange bottlenecks. The strategy is based on mid-point insertions at the temperature gaps where the exchange rate is most compromised. The extra work generated by the insertions is balanced across the GPUs independently of where the mid-point insertions were performed. Performance results show that spin-level performance is approximately two orders of magnitude faster than a single-core CPU version and one order of magnitude faster than a parallel multi-core CPU version running on 16-cores. Multi-GPU performance is highly convenient under a weak scaling setting, reaching up to 99 % efficiency as long as the number of GPUs and L increase together. The combination of the adaptive approach with the parallel multi-GPU design has extended our possibilities of simulation to sizes of L = 32 , 64 for a workstation with two GPUs. Sizes beyond L = 64 can eventually be studied using larger multi-GPU systems.

  9. Test-particle Orbit Simulations in Fields from a Realistic 3D MHD Simulation

    NASA Astrophysics Data System (ADS)

    Decker, R. B.; Opher, M.; Hill, M. E.

    2007-05-01

    Models designed to explore the global structure of the heliosphere have become increasing sophisticated. Incentives to increase and to further explore the predictive capabilities of such models include the entry of the Voyager spacecraft into the foreshock region of the termination shock (TS), Voyager 1 in mid-2002 and Voyager 2 in late 2004, and the crossing of the TS and passage into the heliosheath (HSH) of Voyager 1 in 2004 day 351. Using the electric and magnetic fields generated by a MHD model of a 3D, asymmetric heliosphere [Opher et al., Ap. J. L., 640, 2006], we have developed full-particle and adiabatic-orbit codes to simulate the motion of test particles in the solar wind, TS, and HSH environments. The full-particle orbits are necessary to investigate energetic ion (e.g., anomalous and galactic cosmic ray) motion at the TS and within the heliospheric current sheet that is included in the MHD model. Adiabatic orbits are used to study particle motion in the much larger volume of the HSH where the non-homogeneous model fields produce complex guiding center motions, including mirroring in local field compressions. We will present results from these orbit computations, which are intended to provide an initial, albeit simplified, look at the propagation of high-energy charged particles, in the scatter-free limit, in the best model of the TS/HSH field configurations currently available. We will also display drift paths of high-energy ions in the HSH fields using the guiding center drift equations that are applicable in the limit of diffusive propagation.

  10. A package for 3-D unstructured grid generation, finite-element flow solution and flow field visualization

    NASA Technical Reports Server (NTRS)

    Parikh, Paresh; Pirzadeh, Shahyar; Loehner, Rainald

    1990-01-01

    A set of computer programs for 3-D unstructured grid generation, fluid flow calculations, and flow field visualization was developed. The grid generation program, called VGRID3D, generates grids over complex configurations using the advancing front method. In this method, the point and element generation is accomplished simultaneously, VPLOT3D is an interactive, menudriven pre- and post-processor graphics program for interpolation and display of unstructured grid data. The flow solver, VFLOW3D, is an Euler equation solver based on an explicit, two-step, Taylor-Galerkin algorithm which uses the Flux Corrected Transport (FCT) concept for a wriggle-free solution. Using these programs, increasingly complex 3-D configurations of interest to aerospace community were gridded including a complete Space Transportation System comprised of the space-shuttle orbitor, the solid-rocket boosters, and the external tank. Flow solutions were obtained on various configurations in subsonic, transonic, and supersonic flow regimes.

  11. Construction of Extended 3D Field of Views of the Internal Bladder Wall Surface: A Proof of Concept

    NASA Astrophysics Data System (ADS)

    Ben-Hamadou, Achraf; Daul, Christian; Soussen, Charles

    2016-09-01

    3D extended field of views (FOVs) of the internal bladder wall facilitate lesion diagnosis, patient follow-up and treatment traceability. In this paper, we propose a 3D image mosaicing algorithm guided by 2D cystoscopic video-image registration for obtaining textured FOV mosaics. In this feasibility study, the registration makes use of data from a 3D cystoscope prototype providing, in addition to each small FOV image, some 3D points located on the surface. This proof of concept shows that textured surfaces can be constructed with minimally modified cystoscopes. The potential of the method is demonstrated on numerical and real phantoms reproducing various surface shapes. Pig and human bladder textures are superimposed on phantoms with known shape and dimensions. These data allow for quantitative assessment of the 3D mosaicing algorithm based on the registration of images simulating bladder textures.

  12. Transient 3D elastodynamic field in an embedded multilayered anisotropic plate.

    PubMed

    Mora, Pierric; Ducasse, Eric; Deschamps, Marc

    2016-07-01

    The aim of this paper is to study the ultrasonic response to a transient source that radiates ultrasonic waves in a 3D embedded multilayered anisotropic and dissipative plate. The source can be inside the plate or outside, in a fluid loading the plate for example. In the context of Non-Destructive Testing applied to composite materials, our goal is to create a robust algorithm to calculate ultrasonic field, irrespective of the source and receiver positions. The principle of the method described in this paper is well-established. This method is based on time analysis using the Laplace transform. In the present work, it has been customized for computing ultrasonic source interactions with multilayered dissipative anisotropic plates. The fields are transformed in the 2D Fourier wave-vector domain for the space variables related to the plate surface, and they are expressed in the partial-wave basis. Surprisingly, this method has been very little used in the ultrasonic community, while it is a useful tool which complements the much used technique based on generalized Lamb wave decomposition. By avoiding mode analysis - which can be problematic in some cases - exact numerical calculations (i.e., approximations by truncating infinite series that may be poorly convergent are not needed) can be made in a relatively short time for immersed plates and viscoelastic layers. Even for 3D cases, numerical costs are relatively low. Special attention is given to separate up- and down-going waves, which is a simple matter when using the Laplace transform. Numerical results show the effectiveness of this method. Three examples are presented here to investigate the quality of the model and the robustness of the algorithm: first, a comparison of experiment and simulation for a monolayer carbon-epoxy plate, where the diffracted field is due to a source located on the first free surface of the sample, for both dissipative and non-dissipative cases; second, the basic configuration of an

  13. Effects of a scalar field on the thermodynamics of interuniversal entanglement

    NASA Astrophysics Data System (ADS)

    Garay, Iñaki; Robles-Pérez, Salvador

    2014-03-01

    We consider a multiverse scenario made up of classically disconnected regions of the spacetime that are, nevertheless, in a quantum entangled state. The addition of a scalar field enriches the model and allows us to treat both the inflationary and the "oscillatory stage" of the universe on the same basis. Imposing suitable boundary conditions on the state of the multiverse, two different representations are constructed related by a Bogoliubov transformation. We compute the thermodynamic magnitudes of the entanglement, such as entropy and energy, explore the effects introduced by the presence of the scalar field and compare with previous results in the absence of scalar field.

  14. CFD Simulation of 3D Flow field in a Gas Centrifuge

    SciTech Connect

    Dongjun Jiang; Shi Zeng

    2006-07-01

    A CFD method was used to study the whole flow field in a gas centrifuge. In this paper, the VSM (Vector Splitting Method) of the FVM (Finite Volume Method) was used to solve the 3D Navier-Stokes equations. An implicit second-order upwind scheme was adopted. The numerical simulation was successfully performed on a parallel cluster computer and a convergence result was obtained. The simulation shows that: in the withdrawal chamber, a strong detached shock wave is formed in front of the scoop; as the radial position increases, the shock becomes stronger and the distance to scoop front surface is smaller. An oblique shock forms in the clearance between the scoop and the centrifuge wall; behind the shock-wave, the radially-inward motion of gas is induced because of the imbalance of the pressure gradient and the centrifugal force. In the separation chamber, a countercurrent is introduced. This indicates that CFD method can be used to study the complex three-dimensional flow field of gas centrifuges. (authors)

  15. Observations of 3-D Electric Fields and Waves Associated With Reconnection at the Dayside Magnetopause

    NASA Astrophysics Data System (ADS)

    Wilder, F. D.; Ergun, R.; Goodrich, K.; Malaspina, D.; Eriksson, S.; Stawarz, J. E.; Sturner, A. P.; Holmes, J.; Burch, J. L.; Torbert, R. B.; Phan, T.; Le Contel, O.; Goldman, M. V.; Newman, D. L.; Lindqvist, P. A.; Khotyaintsev, Y. V.; Strangeway, R. J.; Russell, C. T.; Giles, B. L.; Pollock, C. J.

    2015-12-01

    The phenomenon of magnetic reconnection, especially at electron scales, is still poorly understood. One process that warrants further investigation is the role of wave phenomenon in mediating magnetic reconnection. Previous observations have shown the presence of electrostatic solitary waves (ESWs) as well as whistler mode waves near the dayside reconnection site. Additionally, recent simulations have suggested that whistler waves might be generated by electron phase space holes associated with ESWs as they propagate along the magnetic separatrix towards the diffusion region. Other observations have shown ESWs with distinct speeds and time scales, suggesting that different instabilities generate the ESWs. NASA's recently launched Magnetospheric Multiscale (MMS) mission presents a unique opportunity to investigate the roles of wave phenomena, such as ESWs and whistlers, in asymmetric reconnection at the dayside magnetopause. We will present 3-D electric and magnetic field data from magnetopause crossings by MMS during its first dayside science phase. Burst mode wave data and electron distributions from all four spacecraft will be analyzed to investigate the origin of these wave phenomena, as well as their impact on the reconnection electric field.

  16. Full-field drift Hamiltonian particle orbits in 3D geometry

    NASA Astrophysics Data System (ADS)

    Cooper, W. A.; Graves, J. P.; Brunner, S.; Isaev, M. Yu

    2011-02-01

    A Hamiltonian/Lagrangian theory to describe guiding centre orbit drift motion which is canonical in the Boozer coordinate frame has been extended to include full electromagnetic perturbed fields in anisotropic pressure 3D equilibria with nested magnetic flux surfaces. A redefinition of the guiding centre velocity to eliminate the motion due to finite equilibrium radial magnetic fields and the choice of a gauge condition that sets the radial component of the electromagnetic vector potential to zero are invoked to guarantee that the Boozer angular coordinates retain the canonical structure. The canonical momenta are identified and the guiding centre particle radial drift motion and parallel gyroradius evolution are derived. The particle coordinate position is linearly modified by wave-particle interactions. All the nonlinear wave-wave interactions appear explicitly only in the evolution of the parallel gyroradius. The radial variation of the electrostatic potential is related to the binormal component of the displacement vector for MHD-type perturbations. The electromagnetic vector potential projections can then be determined from the electrostatic potential and the radial component of the MHD displacement vector.

  17. pynoddy 1.0: an experimental platform for automated 3-D kinematic and potential field modelling

    NASA Astrophysics Data System (ADS)

    Florian Wellmann, J.; Thiele, Sam T.; Lindsay, Mark D.; Jessell, Mark W.

    2016-03-01

    We present a novel methodology for performing experiments with subsurface structural models using a set of flexible and extensible Python modules. We utilize the ability of kinematic modelling techniques to describe major deformational, tectonic, and magmatic events at low computational cost to develop experiments testing the interactions between multiple kinematic events, effect of uncertainty regarding event timing, and kinematic properties. These tests are simple to implement and perform, as they are automated within the Python scripting language, allowing the encapsulation of entire kinematic experiments within high-level class definitions and fully reproducible results. In addition, we provide a link to geophysical potential-field simulations to evaluate the effect of parameter uncertainties on maps of gravity and magnetics. We provide relevant fundamental information on kinematic modelling and our implementation, and showcase the application of our novel methods to investigate the interaction of multiple tectonic events on a pre-defined stratigraphy, the effect of changing kinematic parameters on simulated geophysical potential fields, and the distribution of uncertain areas in a full 3-D kinematic model, based on estimated uncertainties in kinematic input parameters. Additional possibilities for linking kinematic modelling to subsequent process simulations are discussed, as well as additional aspects of future research. Our modules are freely available on github, including documentation and tutorial examples, and we encourage the contribution to this project.

  18. pynoddy 1.0: an experimental platform for automated 3-D kinematic and potential field modelling

    NASA Astrophysics Data System (ADS)

    Wellmann, J. F.; Thiele, S. T.; Lindsay, M. D.; Jessell, M. W.

    2015-11-01

    We present a novel methodology for performing experiments with subsurface structural models using a set of flexible and extensible Python modules. We utilise the ability of kinematic modelling techniques to describe major deformational, tectonic, and magmatic events at low computational cost to develop experiments testing the interactions between multiple kinematic events, effect of uncertainty regarding event timing, and kinematic properties. These tests are simple to implement and perform, as they are automated within the Python scripting language, allowing the encapsulation of entire kinematic experiments within high-level class definitions and fully reproducible results. In addition, we provide a~link to geophysical potential-field simulations to evaluate the effect of parameter uncertainties on maps of gravity and magnetics. We provide relevant fundamental information on kinematic modelling and our implementation, and showcase the application of our novel methods to investigate the interaction of multiple tectonic events on a pre-defined stratigraphy, the effect of changing kinematic parameters on simulated geophysical potential-fields, and the distribution of uncertain areas in a full 3-D kinematic model, based on estimated uncertainties in kinematic input parameters. Additional possibilities for linking kinematic modelling to subsequent process simulations are discussed, as well as additional aspects of future research. Our modules are freely available on github, including documentation and tutorial examples, and we encourage the contribution to this project.

  19. 3D Loops Evolutions (Twists And Expansions) And Magnetic Fields Interactions Studied With SOHO/EIT

    NASA Astrophysics Data System (ADS)

    Portier-Fozzani, Fabrice

    1999-10-01

    I will present some results from my PHD/Thesis. With SOHO/EIT, 3D Technics such as stereovision and "vision by shape" were developped to study coronal structures evolution. To discribe loops morphology, we adapted with M. Aschwanden a torus fit which include twist evolution. On a quick magnetic flux emergence (August 5th 1997), the twist were decreasing while the loop expand. During a long time evolution (July - August 1996), flaring activities were well correlated with sudden decrease in the twist. These 2 results correspond to the evolution expected with the Parker's formula (1977). Magnetic field lines interactions were also analyzed. From multi-wavelengths observations, we had studied some morphological and topological changes which can be interpreted as interactions between open and closed field lines (ie between Coronal Holes and Active Region Loops). Then, relationship between CME/Flares formation and our different instabilities studied were analyzed in the aim to find, in the futur, good criteria concerning space weather.

  20. The Hamiltonian formalism for scalar fields coupled to gravity in a cosmological background

    SciTech Connect

    Bernardini, A.E. Bertolami, O.

    2013-11-15

    A novel routine to investigate the scalar fields in a cosmological context is discussed in the framework of the Hamiltonian formalism. Starting from the Einstein–Hilbert action coupled to a Lagrangian density that contains two components–one corresponding to a scalar field Lagrangian, L{sub ϕ}, and another that depends on the scale parameter, L{sub a}–one can identify a generalized Hamiltonian density from which first-order dynamical equations can be obtained. This set up corresponds to the dynamics of Friedmann–Robertson–Walker models in the presence of homogeneous fields embedded into a generalized cosmological background fluid in a system that evolves all together isentropically. Once the generalized Hamiltonian density is properly defined, the constraints on the gravity–matter–field system are straightforwardly obtained through the first-order Hamilton equations. The procedure is illustrated for three examples of cosmological interest for studies of the dark sector: real scalar fields, tachyonic fields and generalized Born–Infeld tachyonic fields. The inclusion of some isentropic fluid component into the Friedmann equation allows for identifying an exact correspondence between the dark sector underlying scalar field and an ordinary real scalar field dynamics. As a final issue, the Hamiltonian formulation is used to set the first-order dynamical equations through which one obtains the exact analytical description of the cosmological evolution of a generalized Chaplygin gas (GCG) with dustlike matter, radiation or curvature contributions. Model stability in terms of the square of the sound velocity, c{sub s}{sup 2}, cosmic acceleration, q, and conditions for inflation are discussed. -- Highlights: •The Hamiltonian formalism for scalar fields coupled to gravity in a cosmological background is constructed. •Real scalar, tachyonic and generalized Born–Infeld tachyonic-type fields are considered. •An extended formulation of the Hamilton

  1. Experimental pencil beam kernels derivation for 3D dose calculation in flattening filter free modulated fields.

    PubMed

    Azcona, Juan Diego; Barbés, Benigno; Wang, Lilie; Burguete, Javier

    2016-01-01

    This paper presents a method to obtain the pencil-beam kernels that characterize a megavoltage photon beam generated in a flattening filter free (FFF) linear accelerator (linac) by deconvolution from experimental measurements at different depths. The formalism is applied to perform independent dose calculations in modulated fields. In our previous work a formalism was developed for ideal flat fluences exiting the linac's head. That framework could not deal with spatially varying energy fluences, so any deviation from the ideal flat fluence was treated as a perturbation. The present work addresses the necessity of implementing an exact analysis where any spatially varying fluence can be used such as those encountered in FFF beams. A major improvement introduced here is to handle the actual fluence in the deconvolution procedure. We studied the uncertainties associated to the kernel derivation with this method. Several Kodak EDR2 radiographic films were irradiated with a 10 MV FFF photon beam from two linacs from different vendors, at the depths of 5, 10, 15, and 20cm in polystyrene (RW3 water-equivalent phantom, PTW Freiburg, Germany). The irradiation field was a 50mm diameter circular field, collimated with a lead block. The 3D kernel for a FFF beam was obtained by deconvolution using the Hankel transform. A correction on the low dose part of the kernel was performed to reproduce accurately the experimental output factors. Error uncertainty in the kernel derivation procedure was estimated to be within 0.2%. Eighteen modulated fields used clinically in different treatment localizations were irradiated at four measurement depths (total of fifty-four film measurements). Comparison through the gamma-index to their corresponding calculated absolute dose distributions showed a number of passing points (3%, 3mm) mostly above 99%. This new procedure is more reliable and robust than the previous one. Its ability to perform accurate independent dose calculations was

  2. Experimental pencil beam kernels derivation for 3D dose calculation in flattening filter free modulated fields

    NASA Astrophysics Data System (ADS)

    Diego Azcona, Juan; Barbés, Benigno; Wang, Lilie; Burguete, Javier

    2016-01-01

    This paper presents a method to obtain the pencil-beam kernels that characterize a megavoltage photon beam generated in a flattening filter free (FFF) linear accelerator (linac) by deconvolution from experimental measurements at different depths. The formalism is applied to perform independent dose calculations in modulated fields. In our previous work a formalism was developed for ideal flat fluences exiting the linac’s head. That framework could not deal with spatially varying energy fluences, so any deviation from the ideal flat fluence was treated as a perturbation. The present work addresses the necessity of implementing an exact analysis where any spatially varying fluence can be used such as those encountered in FFF beams. A major improvement introduced here is to handle the actual fluence in the deconvolution procedure. We studied the uncertainties associated to the kernel derivation with this method. Several Kodak EDR2 radiographic films were irradiated with a 10 MV FFF photon beam from two linacs from different vendors, at the depths of 5, 10, 15, and 20cm in polystyrene (RW3 water-equivalent phantom, PTW Freiburg, Germany). The irradiation field was a 50mm diameter circular field, collimated with a lead block. The 3D kernel for a FFF beam was obtained by deconvolution using the Hankel transform. A correction on the low dose part of the kernel was performed to reproduce accurately the experimental output factors. Error uncertainty in the kernel derivation procedure was estimated to be within 0.2%. Eighteen modulated fields used clinically in different treatment localizations were irradiated at four measurement depths (total of fifty-four film measurements). Comparison through the gamma-index to their corresponding calculated absolute dose distributions showed a number of passing points (3%, 3mm) mostly above 99%. This new procedure is more reliable and robust than the previous one. Its ability to perform accurate independent dose calculations was

  3. 3-D water vapor field in the atmospheric boundary layer observed with scanning differential absorption lidar

    NASA Astrophysics Data System (ADS)

    Späth, Florian; Behrendt, Andreas; Muppa, Shravan Kumar; Metzendorf, Simon; Riede, Andrea; Wulfmeyer, Volker

    2016-04-01

    High-resolution three-dimensional (3-D) water vapor data of the atmospheric boundary layer (ABL) are required to improve our understanding of land-atmosphere exchange processes. For this purpose, the scanning differential absorption lidar (DIAL) of the University of Hohenheim (UHOH) was developed as well as new analysis tools and visualization methods. The instrument determines 3-D fields of the atmospheric water vapor number density with a temporal resolution of a few seconds and a spatial resolution of up to a few tens of meters. We present three case studies from two field campaigns. In spring 2013, the UHOH DIAL was operated within the scope of the HD(CP)2 Observational Prototype Experiment (HOPE) in western Germany. HD(CP)2 stands for High Definition of Clouds and Precipitation for advancing Climate Prediction and is a German research initiative. Range-height indicator (RHI) scans of the UHOH DIAL show the water vapor heterogeneity within a range of a few kilometers up to an altitude of 2 km and its impact on the formation of clouds at the top of the ABL. The uncertainty of the measured data was assessed for the first time by extending a technique to scanning data, which was formerly applied to vertical time series. Typically, the accuracy of the DIAL measurements is between 0.5 and 0.8 g m-3 (or < 6 %) within the ABL even during daytime. This allows for performing a RHI scan from the surface to an elevation angle of 90° within 10 min. In summer 2014, the UHOH DIAL participated in the Surface Atmosphere Boundary Layer Exchange (SABLE) campaign in southwestern Germany. Conical volume scans were made which reveal multiple water vapor layers in three dimensions. Differences in their heights in different directions can be attributed to different surface elevation. With low-elevation scans in the surface layer, the humidity profiles and gradients can be related to different land cover such as maize, grassland, and forest as well as different surface layer

  4. 3D Photo Mosaicing of Tagiri Shallow Vent Field by an Autonomous Underwater Vehicle

    NASA Astrophysics Data System (ADS)

    Maki, Toshihiro; Kondo, Hayato; Ura, Tamaki; Sakamaki, Takashi; Mizushima, Hayato; Yanagisawa, Masao

    Although underwater visual observation is an ideal method for detailed survey of seafloors, it is currently a costly process that requires the use of Remotely Operated Vehicles (ROVs) or Human Occupied Vehicles (HOVs), and can cover only a limited area. This paper proposes an innovative method to navigate an autonomous underwater vehicle (AUV) to create both 2D and 3D photo mosaics of seafloors with high positioning accuracy without using any vision-based matching. The vehicle finds vertical pole-like acoustic reflectors to use as positioning landmarks using a profiling sonar based on a SLAM (Simultaneous Localization And Mapping) technique. These reflectors can be either artificial or natural objects, and so the method can be applied to shallow vent fields where conventional acoustic positioning is difficult, since bubble plumes can also be used as landmarks as well as artificial reflectors. Path-planning is performed in real-time based on the positions and types of landmarks so as to navigate safely and stably using landmarks of different types (artificial reflector or bubble plume) found at arbitrary times and locations. Terrain tracker switches control reference between depth and altitude from the seafloor based on a local map of hazardous area created in real-time using onboard perceptual sensors, in order to follow rugged terrains at an altitude of 1 to 2 meters, as this range is ideal for visual observation. The method was implemented in the AUV Tri-Dog 1 and experiments were carried out at Tagiri vent field, Kagoshima Bay in Japan. The AUV succeeded in fully autonomous observation for more than 160 minutes to create a photo mosaic with an area larger than 600 square meters, which revealed the spatial distribution of detailed features such as tube-worm colonies, bubble plumes and bacteria mats. A fine bathymetry of the same area was also created using a light-section ranging system mounted on the vehicle. Finally a 3 D representation of the environment was

  5. A Mean Field Analysis of the Exchange Coupling (J) For 2- and 3-D Structured Tetracyanoethylenide (TCNE -)-based Magnets

    SciTech Connect

    McConnell, Amber C.; Fishman, Randy Scott; Miller, Joel S.

    2012-01-01

    Mean field expressions based on the simple Heisenberg model were derived to correlate the inter- and intralayer exchange coupling to the critical temperatures, Tc, for several TCNE (tetracyanoethylene) based magnets with extended 2- and 3-D structure types. These expressions were used to estimate the exchange coupling, J, for 2-D ferrimagnetic [MII(TCNE)(NCMe)2]+ (M = Mn, Fe), 3-D antiferromagnetic MnII(TCNE)[C4(CN)8]1/2, and 3-D ferrimagnetic MnII(TCNE)3/2(I3)1/2. The sign and magnitude of the exchange coupling are in accord with previously reported magnetic data.

  6. ORBXYZ: a 3D single-particle orbit code for following charged-particle trajectories in equilibrium magnetic fields

    SciTech Connect

    Anderson, D.V.; Cohen, R.H.; Ferguson, J.R.; Johnston, B.M.; Sharp, C.B.; Willmann, P.A.

    1981-06-30

    The single particle orbit code, TIBRO, has been modified extensively to improve the interpolation methods used and to allow use of vector potential fields in the simulation of charged particle orbits on a 3D domain. A 3D cubic B-spline algorithm is used to generate spline coefficients used in the interpolation. Smooth and accurate field representations are obtained. When vector potential fields are used, the 3D cubic spline interpolation formula analytically generates the magnetic field used to push the particles. This field has del.BETA = 0 to computer roundoff. When magnetic induction is used the interpolation allows del.BETA does not equal 0, which can lead to significant nonphysical results. Presently the code assumes quadrupole symmetry, but this is not an essential feature of the code and could be easily removed for other applications. Many details pertaining to this code are given on microfiche accompanying this report.

  7. Modification of divertor heat and article flux profiles with applied 3D fields in NSTX H-mode plasmas

    SciTech Connect

    Ahn, Joon-Wook; Canik, John; Soukhanovskii, V. A.; Maingi, Rajesh; Battaglia, D. J.

    2010-04-01

    Externally imposed non-axisymmetric magnetic perurbations are observed to alter divertor heat and particle flux profiles in the National Spherical Torus Experiment (NSTX). The divertor profiles are foud to have a modust level of multiple local peaks, characteristic of strike poimt splitting or the "magnetis lob" structure, even before the application of the 3D fields in some (but not all) NSTX discharges. This is thought to be due to the intrinsic error fields. The applied 3D fields augmented the intrinsic strike point splitting, making the ampliture of local peaks, and valleys larger in the divertor profile and striations at the divertor surface brighter. The measured heat flux profile shows that the radial location and spacing of the strations are qualitativel consistent witth a vacuum field tracing calcultion. 3D field application did not change the peak divertor heat and particle fluxes at the toroidal location of measurement. Spatial characteristics of the observed patterns are also reported in the paper.

  8. Non-Ideal ELM Stability and Non-Axisymmetric Field Penetration Calculations with M3D-C1

    NASA Astrophysics Data System (ADS)

    Ferraro, N. M.; Chu, M. S.; Snyder, P. B.; Jardin, S. C.; Luo, X.

    2009-11-01

    Numerical studies of ELM stability and non-axisymmetric field penetration in diverted DIII-D and NSTX equilibria are presented, with resistive and finite Larmor radius effects included. These results are obtained with the nonlinear two-fluid code M3D-C1, which has recently been extended to allow linear non-axisymmetric calculations. Benchmarks of M3D-C1 with ideal codes ELITE and GATO show good agreement for the linear stability of peeling-ballooning modes in the ideal limit. New calculations of the resistive stability of ideally stable DIII-D equilibria are presented. M3D-C1 has also been used to calculate the linear response to non-axisymmetric external fields; these calculations are benchmarked with Surfmn and MARS-F. New numerical methods implemented in M3D-C1 are presented, including the treatment of boundary conditions with C^1 elements in a non-rectangular mesh.

  9. Noise analysis for near-field 3D FM-CW radar imaging systems

    NASA Astrophysics Data System (ADS)

    Sheen, David M.

    2015-05-01

    Near field radar imaging systems are used for demanding security applications including concealed weapon detection in airports and other high-security venues. Despite the near-field operation, phase noise and thermal noise can limit performance in several ways. Practical imaging systems can employ arrays with low gain antennas and relatively large signal distribution networks that have substantial losses which limit transmit power and increase the effective noise figure of the receiver chain, resulting in substantial thermal noise. Phase noise can also limit system performance. The signal coupled from transmitter to receiver is much larger than expected target signals. Phase noise from this coupled signal can set the system noise floor if the oscillator is too noisy. Frequency modulated continuous wave (FM-CW) radar transceivers used in short range systems are relatively immune to the effects of the coupled phase noise due to range correlation effects. This effect can reduce the phase-noise floor such that it is below the thermal noise floor for moderate performance oscillators. Phase noise is also manifested in the range response around bright targets, and can cause smaller targets to be obscured. Noise in synthetic aperture imaging systems is mitigated by the processing gain of the system. In this paper, the effects of thermal noise, phase noise, and processing gain are analyzed in the context of a near field 3-D FM-CW imaging radar as might be used for concealed weapon detection. In addition to traditional frequency domain analysis, a time-domain simulation is employed to graphically demonstrate the effect of these noise sources on a fast-chirping FM-CW system.

  10. 3D airflow dynamics over transverse ridges Mpekweni, South Africa: implications for dune field migration behaviour

    NASA Astrophysics Data System (ADS)

    Jackson, Derek; Cooper, Andrew; Green, Andrew; Beyers, Meiring; Wiles, Errol; Benallack, Keegan

    2016-04-01

    Un-vegetated dune fields provide excellent opportunities to examine airflow dynamics over various types and scales of dune landforms. The three dimensional surface over which lower boundary layers travel, help adjust surface airflow and consequently the aeolian response of the dunes themselves. The use of computational fluid dynamic (CFD) modelling in recent studies now enables investigation of the 3D behaviour of airflow over complex terrain, providing new insights into heterogeneous surface flow and aeolian response of dune surfaces on a large (dunefield) scale. Using a largely un-vegetated coastal dune field site at Mpekweni, Eastern Cape, South Africa, a detailed (0.1m gridded) terrestrial laser scanning survey was conducted to create a high resolution topographical surface. Using local wind flow measurements and local met station records as input, CFD modelling was performed for a number of scenarios involving variable direction and magnitude to examine surface flow patterns across multiple dune forms. Near surface acceleration, expansion and separation of airflow inducing convergence and divergence (steering) of flow velocity streamlines are investigated. Flow acceleration over dune crests/brink lines is a key parameter in driving dune migration and slip face dynamics. Dune aspect ratio (height to length) is also important in determining the degree of crestal flow acceleration, with an increase in flow associated with increasing aspect ratios. Variations in dune height appear to be the most important parameter in driving general flow acceleration. The results from the study provide new insights into dune migration behaviour at this site as well as surface flow behaviour across multiple dune configurations and length scales within un-vegetated dune fields.

  11. Simultaneous measurement of 3D zooplankton trajectories and surrounding fluid velocity field in complex flows.

    PubMed

    Adhikari, Deepak; Gemmell, Brad J; Hallberg, Michael P; Longmire, Ellen K; Buskey, Edward J

    2015-11-01

    We describe an automated, volumetric particle image velocimetry (PIV) and tracking method that measures time-resolved, 3D zooplankton trajectories and surrounding volumetric fluid velocity fields simultaneously and non-intrusively. The method is demonstrated for groups of copepods flowing past a wall-mounted cylinder. We show that copepods execute escape responses when subjected to a strain rate threshold upstream of a cylinder, but the same threshold range elicits no escape responses in the turbulent wake downstream. The method was also used to document the instantaneous slip velocity of zooplankton and the resulting differences in trajectory between zooplankton and non-inertial fluid particles in the unsteady wake flow, showing the method's capability to quantify drift for both passive and motile organisms in turbulent environments. Applications of the method extend to any group of organisms interacting with the surrounding fluid environment, where organism location, larger-scale eddies and smaller-scale fluid deformation rates can all be tracked and analyzed. PMID:26486364

  12. Quantifying the 3D Odorant Concentration Field Used by Actively Tracking Blue Crabs

    NASA Astrophysics Data System (ADS)

    Webster, D. R.; Dickman, B. D.; Jackson, J. L.; Weissburg, M. J.

    2007-11-01

    Blue crabs and other aquatic organisms locate food and mates by tracking turbulent odorant plumes. The odorant concentration fluctuates unpredictably due to turbulent transport, and many characteristics of the fluctuation pattern have been hypothesized as useful cues for orienting to the odorant source. To make a direct linkage between tracking behavior and the odorant concentration signal, we developed a measurement system based the laser induced fluorescence technique to quantify the instantaneous 3D concentration field surrounding actively tracking blue crabs. The data suggest a correlation between upstream walking speed and the concentration of the odorant signal arriving at the antennule chemosensors, which are located near the mouth region. More specifically, we note an increase in upstream walking speed when high concentration bursts arrive at the antennules location. We also test hypotheses regarding the ability of blue crabs to steer relative to the plume centerline based on the signal contrast between the chemosensors located on their leg appendages. These chemosensors are located much closer to the substrate compared to the antennules and are separated by the width of the blue crab. In this case, it appears that blue crabs use the bilateral signal comparison to track along the edge of the plume.

  13. How the scalar field of unified dark matter models can cluster

    SciTech Connect

    Bertacca, Daniele; Bartolo, Nicola; Matarrese, Sabino; Diaferio, Antonaldo E-mail: nicola.bartolo@pd.infn.it E-mail: sabino.matarrese@pd.infn.it

    2008-10-15

    We use scalar field Lagrangians with a non-canonical kinetic term to obtain unified dark matter models where both the dark matter and the dark energy, the latter mimicking a cosmological constant, are described by the scalar field itself. In this framework, we propose a technique for reconstructing models where the effective speed of sound is small enough that the scalar field can cluster. These models avoid the strong time evolution of the gravitational potential and the large integrated Sachs-Wolfe effect which have been serious drawbacks of models considered previously. Moreover, these unified dark matter scalar field models can be easily generalized to behave as dark matter plus a dark energy component behaving like any type of quintessence fluid.

  14. Reliability of the Optimized Perturbation Theory for scalar fields at finite temperature

    SciTech Connect

    Farias, R. L.; Teixeira, D. L. Jr.; Ramos, R. O.

    2013-03-25

    The thermodynamics of a massless scalar field with a quartic interaction is studied up to third order in the Optimized Perturbation Theory (OPT) method. A comparison with other nonperturbative approaches is performed such that the reliability of OPT is accessed.

  15. New class of cosmological solutions for a self-interacting scalar field

    NASA Astrophysics Data System (ADS)

    Chaadaev, A. A.; Chervon, S. V.

    2013-12-01

    New cosmological solutions are found to the system of Einstein scalar field equations using the scalar field φ as the argument. For a homogeneous and isotropic Universe, the system of equations is reduced to two equations, one of which is an equation of Hamilton-Jacobi type. Using the hyperbolically parameterized representation of this equation together with the consistency condition, explicit dependences of the potential V of the scalar field and the Hubble parameter H on φ are obtained. The dependences of the scalar field and the scale factor a on cosmic time t have also been found. It is shown that this scenario corresponds to the evolution of the Universe with accelerated expansion out to times distant from the initial singularity.

  16. Comparison of perturbations in fluid and scalar field models of dark energy

    SciTech Connect

    Jassal, H. K.

    2009-06-15

    We compare perturbations in a fluid model of dark energy with those in a scalar field. As compared to the {lambda}CDM model, large scale matter power spectrum is suppressed in fluid model as well as in a generic quintessence dark energy model. To check the efficacy of fluid description of dark energy in emulating a scalar field, we consider a potential which gives the same background evolution as a fluid with a constant equation of state. We show that for sub-Hubble scales, a fluid model effectively emulates a scalar field model. At larger scales, where dark energy perturbations may play a significant role, the fluid analogy breaks down and the evolution of matter density contrast depends on individual scalar field models.

  17. Landau levels of scalar QED in time-dependent magnetic fields

    SciTech Connect

    Kim, Sang Pyo

    2014-05-15

    The Landau levels of scalar QED undergo continuous transitions under a homogeneous, time-dependent magnetic field. We analytically formulate the Klein–Gordon equation for a charged spinless scalar as a Cauchy initial value problem in the two-component first order formalism and then put forth a measure that classifies the quantum motions into the adiabatic change, the nonadiabatic change, and the sudden change. We find the exact quantum motion and calculate the pair-production rate when the magnetic field suddenly changes as a step function. -- Highlights: •We study the Landau levels of scalar QED in time-dependent magnetic fields. •Instantaneous Landau levels make continuous transitions but keep parity. •The Klein–Gordon equation is expressed in the two-component first order formalism. •A measure is advanced that characterizes the quantum motions into three categories. •A suddenly changing magnetic field produces pairs of charged scalars from vacuum.

  18. Entropy-corrected holographic scalar field models of dark energy in Kaluza-Klein universe

    NASA Astrophysics Data System (ADS)

    Sharif, M.; Jawad, Abdul

    2013-12-01

    We investigate the evolution of interacting holographic dark energy with logarithmic corrections in the flat Kaluza-Klein universe. We evaluate the equation of state parameter and also reconstruct the scalar field models in this scenario. For this purpose, the well-known choice of scale factor in the power law form is taken. It is interesting to mention here that the corresponding equation of state parameter crosses the phantom divide line for a particular choice of interacting parameters. Finally, we conclude that the behavior of the dynamical scalar field as well as the scalar potential is consistent with the present observations.

  19. Broadband Near-Field Ground Motion Simulations in 3D Scattering Media

    NASA Astrophysics Data System (ADS)

    Imperatori, Walter; Mai, Martin

    2013-04-01

    The heterogeneous nature of Earth's crust is manifested in the scattering of propagating seismic waves. In recent years, different techniques have been developed to include such phenomenon in broadband ground-motion calculations, either considering scattering as a semi-stochastic or pure stochastic process. In this study, we simulate broadband (0-10 Hz) ground motions using a 3D finite-difference wave propagation solver using several 3D media characterized by Von Karman correlation functions with different correlation lengths and standard deviation values. Our goal is to investigate scattering characteristics and its influence on the seismic wave-field at short and intermediate distances from the source in terms of ground motion parameters. We also examine other relevant scattering-related phenomena, such as the loss of radiation pattern and the directivity breakdown. We first simulate broadband ground motions for a point-source characterized by a classic omega-squared spectrum model. Fault finiteness is then introduced by means of a Haskell-type source model presenting both sub-shear and super-shear rupture speed. Results indicate that scattering plays an important role in ground motion even at short distances from the source, where source effects are thought to be dominating. In particular, peak ground motion parameters can be affected even at relatively low frequencies, implying that earthquake ground-motion simulations should include scattering also for PGV calculations. At the same time, we find a gradual loss of the source signature in the 2-5 Hz frequency range, together with a distortion of the Mach cones in case of super-shear rupture. For more complex source models and truly heterogeneous Earth, these effects may occur even at lower frequencies. Our simulations suggest that Von Karman correlation functions with correlation length between several hundred meters and few kilometers, Hurst exponent around 0.3 and standard deviation in the 5-10% range

  20. Tracking vortices in superconductors: Extracting singularities from a discretized complex scalar field evolving in time

    NASA Astrophysics Data System (ADS)

    Phillips, Carolyn L.; Guo, Hanqi; Peterka, Tom; Karpeyev, Dmitry; Glatz, Andreas

    2016-02-01

    In type-II superconductors, the dynamics of magnetic flux vortices determine their transport properties. In the Ginzburg-Landau theory, vortices correspond to topological defects in the complex order parameter field. Earlier, in Phillips et al. [Phys. Rev. E 91, 023311 (2015), 10.1103/PhysRevE.91.023311], we introduced a method for extracting vortices from the discretized complex order parameter field generated by a large-scale simulation of vortex matter. With this method, at a fixed time step, each vortex [simplistically, a one-dimensional (1D) curve in 3D space] can be represented as a connected graph extracted from the discretized field. Here we extend this method as a function of time as well. A vortex now corresponds to a 2D space-time sheet embedded in 4D space time that can be represented as a connected graph extracted from the discretized field over both space and time. Vortices that interact by merging or splitting correspond to disappearance and appearance of holes in the connected graph in the time direction. This method of tracking vortices, which makes no assumptions about the scale or behavior of the vortices, can track the vortices with a resolution as good as the discretization of the temporally evolving complex scalar field. Additionally, even details of the trajectory between time steps can be reconstructed from the connected graph. With this form of vortex tracking, the details of vortex dynamics in a model of a superconducting materials can be understood in greater detail than previously possible.

  1. Present-day stress field in subduction zones: Insights from 3D viscoelastic models and data

    NASA Astrophysics Data System (ADS)

    Petricca, Patrizio; Carminati, Eugenio

    2016-01-01

    3D viscoelastic FE models were performed to investigate the impact of geometry and kinematics on the lithospheric stress in convergent margins. Generic geometries were designed in order to resemble natural subduction. Our model predictions mirror the results of previous 2D models concerning the effects of lithosphere-mantle relative flow on stress regimes, and allow a better understanding of the lateral variability of the stress field. In particular, in both upper and lower plates, stress axes orientations depend on the adopted geometry and axes rotations occur following the trench shape. Generally stress axes are oriented perpendicular or parallel to the trench, with the exception of the slab lateral tips where rotations occur. Overall compression results in the upper plate when convergence rate is faster than mantle flow rate, suggesting a major role for convergence. In the slab, along-strike tension occurs at intermediate and deeper depths (> 100 km) in case of mantle flow sustaining the sinking lithosphere and slab convex geometry facing mantle flow or in case of opposing mantle flow and slab concave geometry facing mantle flow. Along-strike compression is predicted in case of sustaining mantle flow and concave slabs or in case of opposing mantle flow and convex slabs. The slab stress field is thus controlled by the direction of impact of mantle flow onto the slab and by slab longitudinal curvature. Slab pull produces not only tension in the bending region of subducted plate but also compression where upper and lower plates are coupled. A qualitative comparison between results and data in selected subductions indicates good match for South America, Mariana and Tonga-Kermadec subductions. Discrepancies, as for Sumatra-Java, emerge due to missing geometric (e.g., occurrence of fault systems and local changes in the orientation of plate boundaries) and rheological (e.g., plasticity associated with slab bending, anisotropy) complexities in the models.

  2. Wheeler-DeWitt equation and Lie symmetries in Bianchi scalar-field cosmology

    NASA Astrophysics Data System (ADS)

    Paliathanasis, A.; Karpathopoulos, L.; Wojnar, A.; Capozziello, S.

    2016-04-01

    Lie symmetries are discussed for the Wheeler-De Witt equation in Bianchi Class A cosmologies. In particular, we consider general relativity, minimally coupled scalar-field gravity and hybrid gravity as paradigmatic examples of the approach. Several invariant solutions are determined and classified according to the form of the scalar-field potential. The approach gives rise to a suitable method to select classical solutions and it is based on the first principle of the existence of symmetries.

  3. Symmetry breaking and restoration for interacting scalar and gauge fields in Lifshitz type theories

    NASA Astrophysics Data System (ADS)

    Farakos, K.; Metaxas, D.

    2012-05-01

    We consider the one-loop effective potential at zero and finite temperature in field theories with anisotropic space-time scaling, with critical exponent z = 2, including both scalar and gauge fields. Depending on the relative strength of the coupling constants for the gauge and scalar interactions, we find that there is a symmetry breaking term induced at one loop at zero temperature and we find symmetry restoration through a first-order phase transition at high temperature.

  4. Scattering of near normal incidence SH waves by sinusoidal and rough surfaces in 3-D: comparison to the scalar wave approximation.

    PubMed

    Jarvis, Andrew J C; Cegla, Frederic B

    2014-07-01

    The challenge of accurately simulating how incident scalar waves interact with rough boundaries has made it an important area of research within many scientific disciplines. Conventional methods, which in the majority of cases focus only on scattering in two dimensions, often suffer from long simulation times or reduced accuracy, neglecting phenomena such as multiple scattering and surface self-shadowing. A simulation based on the scalar wave distributed point source method (DPSM) is presented as an alternative which is computationally more efficient than fully meshed numerical methods while obtaining greater accuracy than approximate analytical techniques. Comparison is made to simulated results obtained using the finite element method for a sinusoidally periodic surface where scattering only occurs in two dimensions, showing very good agreement (<0.2 dB). In addition to two-dimensional scattering, comparison to experimental results is also carried out for scattering in three dimensions when the surface has a Gaussian roughness distribution. Results indicate that for two-dimensional scattering and for rough surfaces with a correlation length equal to the incident wavelength (λ) and a root mean square height less than 0.2λ, the scalar wave approximation predicts reflected pulse shape change and envelope amplitudes generally to within 1 dB. Comparison between transducers within a three-element array also illustrate the sensitivity pulse amplitude can have to sensor position above a rough surface, differing by as much as 17 dB with a positional change of just 1.25λ. PMID:24960707

  5. A 3D photographic capsule endoscope system with full field of view

    NASA Astrophysics Data System (ADS)

    Ou-Yang, Mang; Jeng, Wei-De; Lai, Chien-Cheng; Kung, Yi-Chinn; Tao, Kuan-Heng

    2013-09-01

    Current capsule endoscope uses one camera to capture the surface image in the intestine. It can only observe the abnormal point, but cannot know the exact information of this abnormal point. Using two cameras can generate 3D images, but the visual plane changes while capsule endoscope rotates. It causes that two cameras can't capture the images information completely. To solve this question, this research provides a new kind of capsule endoscope to capture 3D images, which is 'A 3D photographic capsule endoscope system'. The system uses three cameras to capture images in real time. The advantage is increasing the viewing range up to 2.99 times respect to the two camera system. The system can accompany 3D monitor provides the exact information of symptom points, helping doctors diagnose the disease.

  6. Quasistationary solutions of self-gravitating scalar fields around collapsing stars

    NASA Astrophysics Data System (ADS)

    Sanchis-Gual, Nicolas; Degollado, Juan Carlos; Montero, Pedro J.; Font, José A.; Mewes, Vassilios

    2015-10-01

    Recent work has shown that scalar fields around black holes can form long-lived, quasistationary configurations surviving for cosmological time scales. Scalar fields thus cannot be discarded as viable candidates for dark matter halo models in galaxies around central supermassive black holes (SMBHs). One hypothesized formation scenario of most SMBHs at high redshift is the gravitational collapse of supermassive stars (SMSs) with masses of ˜105 M⊙ . Any such scalar field configurations must survive the gravitational collapse of a SMS in order to be a viable model of physical reality. To check for the postcollapse survival of these configurations and to follow the dynamics of the black hole-scalar field system we present in this paper the results of a series of numerical relativity simulations of gravitationally collapsing, spherically symmetric stars surrounded by self-gravitating scalar fields. We use an ideal fluid equation of state with adiabatic index Γ =4 /3 which is adequate to simulate radiation-dominated isentropic SMSs. Our results confirm the existence of oscillating, long-lived, self-gravitating scalar field configurations around nonrotating black holes after the collapse of the stars.

  7. SHANK DESIGNS AND SOIL SURFACE TREATMENTS ON 1,3-D EMISSIONS IN A NURSERY FIELD TRIAL

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In California, tree and grapevine field nurseries must meet the CDFA requirements for nematode-free planting stock. Telone II (1,3-D) is the only methyl bromide alternative accepted by CDFA’s Nursery Stock Nematode Certification program, but its use is subject to environmental regulations. A field t...

  8. 3-D visualization of ensemble weather forecasts - Part 2: Forecasting warm conveyor belt situations for aircraft-based field campaigns

    NASA Astrophysics Data System (ADS)

    Rautenhaus, M.; Grams, C. M.; Schäfler, A.; Westermann, R.

    2015-02-01

    We present the application of interactive 3-D visualization of ensemble weather predictions to forecasting warm conveyor belt situations during aircraft-based atmospheric research campaigns. Motivated by forecast requirements of the T-NAWDEX-Falcon 2012 campaign, a method to predict 3-D probabilities of the spatial occurrence of warm conveyor belts has been developed. Probabilities are derived from Lagrangian particle trajectories computed on the forecast wind fields of the ECMWF ensemble prediction system. Integration of the method into the 3-D ensemble visualization tool Met.3D, introduced in the first part of this study, facilitates interactive visualization of WCB features and derived probabilities in the context of the ECMWF ensemble forecast. We investigate the sensitivity of the method with respect to trajectory seeding and forecast wind field resolution. Furthermore, we propose a visual analysis method to quantitatively analyse the contribution of ensemble members to a probability region and, thus, to assist the forecaster in interpreting the obtained probabilities. A case study, revisiting a forecast case from T-NAWDEX-Falcon, illustrates the practical application of Met.3D and demonstrates the use of 3-D and uncertainty visualization for weather forecasting and for planning flight routes in the medium forecast range (three to seven days before take-off).

  9. Critical behavior in a massless scalar field collapse with self-interaction potential

    NASA Astrophysics Data System (ADS)

    Zhang, Xuefeng; Lü, H.

    2015-02-01

    We examine a one-parameter family of analytical solutions representing spherically symmetric collapse of a nonlinear massless scalar field with self-interaction in an asymptotically flat spacetime. The time evolution exhibits a type of critical behavior. Depending on the scalar charge parameter q as compared to a critical value q*, the incoming scalar wave collapses either to a globally naked central singularity if q field) or to a scalar-hairy black hole if q >q* (strong field), both having finite asymptotic masses. Near the critical evolution, the black hole mass follows a product-logarithmic scaling law: -M2ln M ˜q -q* with 0 q*. The solution admits no self-similarity and satisfies the null and the strong energy conditions.

  10. Matter in loop quantum gravity without time gauge: A nonminimally coupled scalar field

    SciTech Connect

    Cianfrani, Francesco; Montani, Giovanni

    2009-10-15

    We analyze the phase space of gravity nonminimally coupled to a scalar field in a generic local Lorentz frame. We reduce the set of constraints to a first class one by fixing a specific hypersurfaces in the phase space. The main issue of our analysis is to extend the features of the vacuum case to the presence of scalar matter by recovering the emergence of an SU(2) gauge structure and the nondynamical role of boost variables. Within this scheme, the supermomentum and the super-Hamiltonian are those ones associated with a scalar field minimally coupled to the metric in the Einstein frame. Hence, the kinematical Hilbert space is defined as in canonical loop quantum gravity with a scalar field, but the differences in the area spectrum are outlined to be the same as in the time-gauge approach.

  11. Reconstruction of lava fields based on 3D and conventional images. Arenal volcano, Costa Rica.

    NASA Astrophysics Data System (ADS)

    Horvath, S.; Duarte, E.; Fernandez, E.

    2007-05-01

    , chemical composition, type of lava, velocity, etc. With all this information and photographs; real, visual and topographic images of the position and characters of the 1990s and 2000s lava flows, were obtained . An illustrative poster will be presented along with this abstract to show the construction process of such tool. Moreover, 3D animations will be present in the mentioned poster.

  12. Dark sector impact on gravitational collapse of an electrically charged scalar field

    NASA Astrophysics Data System (ADS)

    Nakonieczna, Anna; Rogatko, Marek; Nakonieczny, Łukasz

    2015-11-01

    Dark matter and dark energy are dominating components of the Universe. Their presence affects the course and results of processes, which are driven by the gravitational interaction. The objective of the paper was to examine the influence of the dark sector on the gravitational collapse of an electrically charged scalar field. A phantom scalar field was used as a model of dark energy in the system. Dark matter was modeled by a complex scalar field with a quartic potential, charged under a U(1)-gauge field. The dark components were coupled to the electrically charged scalar field via the exponential coupling and the gauge field-Maxwell field kinetic mixing, respectively. Complete non-linear simulations of the investigated process were performed. They were conducted from regular initial data to the end state, which was the matter dispersal or a singularity formation in a spacetime. During the collapse in the presence of dark energy dynamical wormholes and naked singularities were formed in emerging spacetimes. The wormhole throats were stabilized by the violation of the null energy condition, which occurred due to a significant increase of a value of the phantom scalar field function in its vicinity. The square of mass parameter of the dark matter scalar field potential controlled the formation of a Cauchy horizon or wormhole throats in the spacetime. The joint impact of dark energy and dark matter on the examined process indicated that the former decides what type of an object forms, while the latter controls the amount of time needed for the object to form. Additionally, the dark sector suppresses the natural tendency of an electrically charged scalar field to form a dynamical Reissner-Nordström spacetime during the gravitational collapse.

  13. Anti-de Sitter 5D black hole solutions with a self-interacting bulk scalar field: A potential reconstruction approach

    SciTech Connect

    Farakos, K.; Kouretsis, A. P.; Pasipoularides, P.

    2009-09-15

    We construct asymptotically AdS black hole solutions, with a self-interacting bulk scalar field, in the context of 5D general relativity. As the observable universe is characterized by spatial flatness, we focus on solutions where the horizon of the black hole, and subsequently all 3D hypersurfaces for fixed radial coordinate, have zero spatial curvature. We examine two cases for the black hole scalar hair: (a) an exponential decaying scalar field profile and (b) an inverse power scalar field profile. The scalar black hole solutions we present in this paper are characterized by four functions f(r), a(r), {phi}(r), and V({phi}(r)). Only the functions {phi}(r) and a(r) are determined analytically, while the functions f(r) and V({phi}(r)) are expressed semianalytically by integral formulas in terms of a(r). We present our numerical results and study in detail the characteristic properties of our solutions. We also note that the potential we obtain has a nonconvex form in agreement with the corresponding 'no hair theorem' for AdS spacetimes.

  14. Anti-deSitter 5D black hole solutions with a self-interacting bulk scalar field: A potential reconstruction approach

    NASA Astrophysics Data System (ADS)

    Farakos, K.; Kouretsis, A. P.; Pasipoularides, P.

    2009-09-01

    We construct asymptotically AdS black hole solutions, with a self-interacting bulk scalar field, in the context of 5D general relativity. As the observable universe is characterized by spatial flatness, we focus on solutions where the horizon of the black hole, and subsequently all 3D hypersurfaces for fixed radial coordinate, have zero spatial curvature. We examine two cases for the black hole scalar hair: (a) an exponential decaying scalar field profile and (b) an inverse power scalar field profile. The scalar black hole solutions we present in this paper are characterized by four functions f(r), a(r), ϕ(r), and V(ϕ(r)). Only the functions ϕ(r) and a(r) are determined analytically, while the functions f(r) and V(ϕ(r)) are expressed semianalytically by integral formulas in terms of a(r). We present our numerical results and study in detail the characteristic properties of our solutions. We also note that the potential we obtain has a nonconvex form in agreement with the corresponding “no hair theorem” for AdS spacetimes.

  15. 4-D stratigraphic architecture and 3-D reservoir zonation of the Mirado Formation, Cusiana Field, Colombia

    SciTech Connect

    Fajardo, A.A.; Cross, T.A.

    1996-12-31

    A high-resolution sequence stratigraphic study using 2300 feet of core calibrated with geophysical logs from 14 wells and 1800 measurements of porosity and permeability established the 4-D stratigraphy and 3-D reservoir zonation of the Mirador. Virtually all reservoir-quality facies are through cross-stratified sandstones which occur in channel facies successions in the lower Mirador, but in bay-head delta and estuarine channel facies successions in the upper Mirador. Petrophysical properties and the geometry, continuity and volume of reservoir-quality sandstones change regularly as function of their stratigraphic position. These vertical facies successions reflect increasing accommodation-to-sediment supply (A/S) ratio through each intermediate-term cycle. The upper long-term cycle comprises four intermediate-term, landward-stepping, symmetrical base-level cycles. These cycles consist of estuarine channel, bay-head to bay-fill facies successions. The transition from channel to bay-head to bay-fill facies successions represents an increase in A/S ratio, and the reverse transition indicates a decrease in A/S ratio. Sixteen reservoir zones were defined within the Cusiana field. Reservoirs within the upper and lower long-term cycles are separated by a continuous middle Mirador mudstone which creates two large reservoir divisions. At the second level of zonation, the reservoir compartments and fluid-flow retardants coincide with the intermediate-term stratigraphic cycles. A third level of reservoir compartmentalization follows the distribution of facies successions within the intermediate-term cycles. A strong stratigraphic control on reservoir properties occurs at the three scales of stratigraphic cyclicity. In all cases as A/S ratio increases, porosity and permeability decrease.

  16. 4-D stratigraphic architecture and 3-D reservoir zonation of the Mirado Formation, Cusiana Field, Colombia

    SciTech Connect

    Fajardo, A.A. ); Cross, T.A. )

    1996-01-01

    A high-resolution sequence stratigraphic study using 2300 feet of core calibrated with geophysical logs from 14 wells and 1800 measurements of porosity and permeability established the 4-D stratigraphy and 3-D reservoir zonation of the Mirador. Virtually all reservoir-quality facies are through cross-stratified sandstones which occur in channel facies successions in the lower Mirador, but in bay-head delta and estuarine channel facies successions in the upper Mirador. Petrophysical properties and the geometry, continuity and volume of reservoir-quality sandstones change regularly as function of their stratigraphic position. These vertical facies successions reflect increasing accommodation-to-sediment supply (A/S) ratio through each intermediate-term cycle. The upper long-term cycle comprises four intermediate-term, landward-stepping, symmetrical base-level cycles. These cycles consist of estuarine channel, bay-head to bay-fill facies successions. The transition from channel to bay-head to bay-fill facies successions represents an increase in A/S ratio, and the reverse transition indicates a decrease in A/S ratio. Sixteen reservoir zones were defined within the Cusiana field. Reservoirs within the upper and lower long-term cycles are separated by a continuous middle Mirador mudstone which creates two large reservoir divisions. At the second level of zonation, the reservoir compartments and fluid-flow retardants coincide with the intermediate-term stratigraphic cycles. A third level of reservoir compartmentalization follows the distribution of facies successions within the intermediate-term cycles. A strong stratigraphic control on reservoir properties occurs at the three scales of stratigraphic cyclicity. In all cases as A/S ratio increases, porosity and permeability decrease.

  17. Comparison of Phase-Based 3D Near-Field Source Localization Techniques for UHF RFID.

    PubMed

    Parr, Andreas; Miesen, Robert; Vossiek, Martin

    2016-01-01

    In this paper, we present multiple techniques for phase-based narrowband backscatter tag localization in three-dimensional space with planar antenna arrays or synthetic apertures. Beamformer and MUSIC localization algorithms, known from near-field source localization and direction-of-arrival estimation, are applied to the 3D backscatter scenario and their performance in terms of localization accuracy is evaluated. We discuss the impact of different transceiver modes known from the literature, which evaluate different send and receive antenna path combinations for a single localization, as in multiple input multiple output (MIMO) systems. Furthermore, we propose a new Singledimensional-MIMO (S-MIMO) transceiver mode, which is especially suited for use with mobile robot systems. Monte-Carlo simulations based on a realistic multipath error model ensure spatial correlation of the simulated signals, and serve to critically appraise the accuracies of the different localization approaches. A synthetic uniform rectangular array created by a robotic arm is used to evaluate selected localization techniques. We use an Ultra High Frequency (UHF) Radiofrequency Identification (RFID) setup to compare measurements with the theory and simulation. The results show how a mean localization accuracy of less than 30 cm can be reached in an indoor environment. Further simulations demonstrate how the distance between aperture and tag affects the localization accuracy and how the size and grid spacing of the rectangular array need to be adapted to improve the localization accuracy down to orders of magnitude in the centimeter range, and to maximize array efficiency in terms of localization accuracy per number of elements. PMID:27347976

  18. Comparison of Phase-Based 3D Near-Field Source Localization Techniques for UHF RFID

    PubMed Central

    Parr, Andreas; Miesen, Robert; Vossiek, Martin

    2016-01-01

    In this paper, we present multiple techniques for phase-based narrowband backscatter tag localization in three-dimensional space with planar antenna arrays or synthetic apertures. Beamformer and MUSIC localization algorithms, known from near-field source localization and direction-of-arrival estimation, are applied to the 3D backscatter scenario and their performance in terms of localization accuracy is evaluated. We discuss the impact of different transceiver modes known from the literature, which evaluate different send and receive antenna path combinations for a single localization, as in multiple input multiple output (MIMO) systems. Furthermore, we propose a new Singledimensional-MIMO (S-MIMO) transceiver mode, which is especially suited for use with mobile robot systems. Monte-Carlo simulations based on a realistic multipath error model ensure spatial correlation of the simulated signals, and serve to critically appraise the accuracies of the different localization approaches. A synthetic uniform rectangular array created by a robotic arm is used to evaluate selected localization techniques. We use an Ultra High Frequency (UHF) Radiofrequency Identification (RFID) setup to compare measurements with the theory and simulation. The results show how a mean localization accuracy of less than 30 cm can be reached in an indoor environment. Further simulations demonstrate how the distance between aperture and tag affects the localization accuracy and how the size and grid spacing of the rectangular array need to be adapted to improve the localization accuracy down to orders of magnitude in the centimeter range, and to maximize array efficiency in terms of localization accuracy per number of elements. PMID:27347976

  19. Time-lapse 3D VSP monitoring of a carbon dioxide injection project at Delhi Field, Louisiana

    NASA Astrophysics Data System (ADS)

    Lubis, Muhammad Husni Mubarak

    Delhi Field is a producing oil field located in northeastern Louisiana. The estimated original oil in place (OOIP) is 357 mmbo and approximately 54% of OOIP has been produced through the primary production and water-flooding. A CO2-EOR program has been implemented since November 2009 to recover an additional 17% of OOIP. Reservoir surveillance using time-lapse 3D seismic data has been conducted to monitor the CO2 sweep efficiency. The goal of this study is to monitor the CO2 flow-path in the area around the injector using time-lapse 3D VSP data. For this purpose, two 3D VSPs acquired in June 2010 and again in August 2011 were processed together. Fluid substitution and VSP modeling were performed to understand the influence of pore-fluid saturation change on VSP records. A cross-equalization was performed to improve the similarity of the datasets. This step is important to reduce the ambiguity in time-lapse observation. The splice of a 3D VSP image into the surface seismic data becomes the key point in determining the reflector of the reservoir. By integrating the observation from the modeling and the splice of 3D VSP image to surface seismic, the CO2 flow-path from injector 164-3 can be identified from 3D time-lapse VSP data. The CO2 was not radially distributed around the injector, but moved toward southwest direction. This finding is also consistent with the flow-path interpreted from surface seismic. This consistency implies that time-lapse 3D VSP surveys at Delhi Field confirm and augment the time-lapse interpretation from surface seismic data.

  20. Simulation of bootstrap current in 2D and 3D ideal magnetic fields in tokamaks

    NASA Astrophysics Data System (ADS)

    Raghunathan, M.; Graves, J. P.; Cooper, W. A.; Pedro, M.; Sauter, O.

    2016-09-01

    We aim to simulate the bootstrap current for a MAST-like spherical tokamak using two approaches for magnetic equilibria including externally caused 3D effects such as resonant magnetic perturbations (RMPs), the effect of toroidal ripple, and intrinsic 3D effects such as non-resonant internal kink modes. The first approach relies on known neoclassical coefficients in ideal MHD equilibria, using the Sauter (Sauter et al 1999 Phys. Plasmas 6 2834) expression valid for all collisionalities in axisymmetry, and the second approach being the quasi-analytic Shaing–Callen (Shaing and Callen 1983 Phys. Fluids 26 3315) model in the collisionless regime for 3D. Using the ideal free-boundary magnetohydrodynamic code VMEC, we compute the flux-surface averaged bootstrap current density, with the Sauter and Shaing–Callen expressions for 2D and 3D ideal MHD equilibria including an edge pressure barrier with the application of resonant magnetic perturbations, and equilibria possessing a saturated non-resonant 1/1 internal kink mode with a weak internal pressure barrier. We compare the applicability of the self-consistent iterative model on the 3D applications and discuss the limitations and advantages of each bootstrap current model for each type of equilibrium.

  1. Vacuum stability of a general scalar potential of a few fields

    NASA Astrophysics Data System (ADS)

    Kannike, Kristjan

    2016-06-01

    We calculate analytical vacuum stability or bounded from below conditions for general scalar potentials of a few fields. After a brief review of copositivity, we show how to find positivity conditions for more complicated potentials. We discuss the vacuum stability conditions of the general potential of two real scalars, without and with the Higgs boson included in the potential. As further examples, we give explicit vacuum stability conditions for the two Higgs doublet model with no explicit CP breaking, and for the mathbb {Z}3 scalar dark matter with an inert doublet and a complex singlet. We give a short overview of positivity conditions for tensors of quartic couplings via tensor eigenvalues.

  2. Non-linear dynamics of viscous bilayers subjected to an electric field: 3D phase field simulations

    NASA Astrophysics Data System (ADS)

    Dritselis, Christos; Karapetsas, George; Bontozoglou, Vasilis

    2014-11-01

    The scope of this work is to investigate the non-linear dynamics of the electro-hydrodynamic instability of a bilayer of immiscible liquids. We consider the case of two viscous films which is separated from the top electrode by air. We assume that the liquids are perfect dielectrics and consider the case of both flat and patterned electrodes. We develop a computational model using the diffuse interface method and carry out 3D numerical simulations fully accounting for the flow and electric field in all phases. We perform a parametric study and investigate the influence of the electric properties of fluids, applied voltage and various geometrical characteristics of the mask. The authors acknowledge the support by the General Secretariat of Research and Technology of Greece under the action ``Supporting Postdoctoral Researchers'' (Grant Number PE8/906), co-funded by the European Social Fund and National Resources.

  3. Cosmic Evolution of Scalar Fields with Multiple Vacua: Generalized DBI and Quintessence

    NASA Astrophysics Data System (ADS)

    Gao, Changjun; Shen, You-Gen

    2016-06-01

    We find a method to rewrite the equations of motion of scalar fields, generalized DBI field and quintessence, in the autonomous form for arbitrary scalar potentials. With the aid of this method, we explore the cosmic evolution of generalized DBI field and quintessence with the potential of multiple vacua. Then we find that the scalars are always frozen in the false or true vacuum in the end. Compared to the evolution of quintessence, the generalized DBI field has more times of oscillations around the vacuum of the potential. The reason for this point is that, with the increasing of speed dot {φ }, the friction term of generalized DBI field is greatly decreased. Thus the generalized DBI field acquires more times of oscillations.

  4. Segmentation of Image Data from Complex Organotypic 3D Models of Cancer Tissues with Markov Random Fields

    PubMed Central

    Robinson, Sean; Guyon, Laurent; Nevalainen, Jaakko; Toriseva, Mervi

    2015-01-01

    Organotypic, three dimensional (3D) cell culture models of epithelial tumour types such as prostate cancer recapitulate key aspects of the architecture and histology of solid cancers. Morphometric analysis of multicellular 3D organoids is particularly important when additional components such as the extracellular matrix and tumour microenvironment are included in the model. The complexity of such models has so far limited their successful implementation. There is a great need for automatic, accurate and robust image segmentation tools to facilitate the analysis of such biologically relevant 3D cell culture models. We present a segmentation method based on Markov random fields (MRFs) and illustrate our method using 3D stack image data from an organotypic 3D model of prostate cancer cells co-cultured with cancer-associated fibroblasts (CAFs). The 3D segmentation output suggests that these cell types are in physical contact with each other within the model, which has important implications for tumour biology. Segmentation performance is quantified using ground truth labels and we show how each step of our method increases segmentation accuracy. We provide the ground truth labels along with the image data and code. Using independent image data we show that our segmentation method is also more generally applicable to other types of cellular microscopy and not only limited to fluorescence microscopy. PMID:26630674

  5. Multiscale renormalization group methods for effective potentials with multiple scalar fields

    NASA Astrophysics Data System (ADS)

    Wang, Zhi-Wei; Steele, Tom; McKeon, Gerry

    2015-04-01

    Conformally symmetric scalar extensions of the Standard Model are particular appealing to reveal the underlying mechanism for electroweak symmetry breaking and to provide dark matter candidates. The Gildener & Weinberg (GW) method is widely used in these models, but is limited to weakly coupled theories. In this talk, multi-scale renormalization group (RG) methods are reviewed and applied to the analysis of the effective potential for radiative symmetry breaking with multiple scalar fields, allowing an extension of the GW method beyond the weak coupling limit. A model containing two interacting real scalar fields is used as an example to illustrate these multi-scale RG methods. Extensions of these multi-scale methods for effective potentials in models containing multiple scalars with O(M) × O(N) symmetry will also be discussed. Reseach funded by NSERC (Natural Sciences and Engineering Research Council of Canada).

  6. Landau pole in the Standard Model with weakly interacting scalar fields

    NASA Astrophysics Data System (ADS)

    Hamada, Yuta; Kawana, Kiyoharu; Tsumura, Koji

    2015-07-01

    We consider the Standard Model with a new scalar field X which is an nX representation of the SU (2)L with a hypercharge YX. The renormalization group running effects on the new scalar quartic coupling constants are evaluated. Even if we set the scalar quartic coupling constants to be zero at the scale of the new scalar field, the coupling constants are induced by the one-loop effect of the weak gauge bosons. Once non-vanishing couplings are generated, the couplings rapidly increase by renormalization group effect of the quartic coupling constant itself. As a result, the Landau pole appears below Planck scale if nX ≥ 4. We find that the scale of the obtained Landau pole is much lower than that evaluated by solving the one-loop beta function of the gauge coupling constants.

  7. PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITH TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    five groups: 1) Grid Functions for grids, grid-checking, etc.; 2) Scalar Functions for contour or carpet plots of density, pressure, temperature, Mach number, vorticity magnitude, helicity, etc.; 3) Vector Functions for vector plots of velocity, vorticity, momentum, and density gradient, etc.; 4) Particle Trace Functions for rake-like plots of particle flow or vortex lines; and 5) Shock locations based on pressure gradient. TURB3D is a modification of PLOT3D which is used for viewing CFD simulations of incompressible turbulent flow. Input flow data consists of pressure, velocity and vorticity. Typical quantities to plot include local fluctuations in flow quantities and turbulent production terms, plotted in physical or wall units. PLOT3D/TURB3D includes both TURB3D and PLOT3D because the operation of TURB3D is identical to PLOT3D, and there is no additional sample data or printed documentation for TURB3D. Graphical capabilities of PLOT3D version 3.6b+ vary among the implementations available through COSMIC. Customers are encouraged to purchase and carefully review the PLOT3D manual before ordering the program for a specific computer and graphics library. There is only one manual for use with all implementations of PLOT3D, and although this manual generally assumes that the Silicon Graphics Iris implementation is being used, informative comments concerning other implementations appear throughout the text. With all implementations, the visual representation of the object and flow field created by PLOT3D consists of points, lines, and polygons. Points can be represented with dots or symbols, color can be used to denote data values, and perspective is used to show depth. Differences among implementations impact the program's ability to use graphical features that are based on 3D polygons, the user's ability to manipulate the graphical displays, and the user's ability to obtain alternate forms of output. The Apollo implementation of PLOT3D uses some of the capabilities of

  8. PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITHOUT TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    five groups: 1) Grid Functions for grids, grid-checking, etc.; 2) Scalar Functions for contour or carpet plots of density, pressure, temperature, Mach number, vorticity magnitude, helicity, etc.; 3) Vector Functions for vector plots of velocity, vorticity, momentum, and density gradient, etc.; 4) Particle Trace Functions for rake-like plots of particle flow or vortex lines; and 5) Shock locations based on pressure gradient. TURB3D is a modification of PLOT3D which is used for viewing CFD simulations of incompressible turbulent flow. Input flow data consists of pressure, velocity and vorticity. Typical quantities to plot include local fluctuations in flow quantities and turbulent production terms, plotted in physical or wall units. PLOT3D/TURB3D includes both TURB3D and PLOT3D because the operation of TURB3D is identical to PLOT3D, and there is no additional sample data or printed documentation for TURB3D. Graphical capabilities of PLOT3D version 3.6b+ vary among the implementations available through COSMIC. Customers are encouraged to purchase and carefully review the PLOT3D manual before ordering the program for a specific computer and graphics library. There is only one manual for use with all implementations of PLOT3D, and although this manual generally assumes that the Silicon Graphics Iris implementation is being used, informative comments concerning other implementations appear throughout the text. With all implementations, the visual representation of the object and flow field created by PLOT3D consists of points, lines, and polygons. Points can be represented with dots or symbols, color can be used to denote data values, and perspective is used to show depth. Differences among implementations impact the program's ability to use graphical features that are based on 3D polygons, the user's ability to manipulate the graphical displays, and the user's ability to obtain alternate forms of output. The Apollo implementation of PLOT3D uses some of the capabilities of

  9. Extended field-of-view and increased-signal 3D holographic illumination with time-division multiplexing

    PubMed Central

    Yang, Samuel J.; Allen, William E.; Kauvar, Isaac; Andalman, Aaron S.; Young, Noah P.; Kim, Christina K.; Marshel, James H.; Wetzstein, Gordon; Deisseroth, Karl

    2016-01-01

    Phase spatial light modulators (SLMs) are widely used for generating multifocal three-dimensional (3D) illumination patterns, but these are limited to a field of view constrained by the pixel count or size of the SLM. Further, with two-photon SLM-based excitation, increasing the number of focal spots penalizes the total signal linearly—requiring more laser power than is available or can be tolerated by the sample. Here we analyze and demonstrate a method of using galvanometer mirrors to time-sequentially reposition multiple 3D holograms, both extending the field of view and increasing the total time-averaged two-photon signal. We apply our approach to 3D two-photon in vivo neuronal calcium imaging. PMID:26699047

  10. Extended field-of-view and increased-signal 3D holographic illumination with time-division multiplexing.

    PubMed

    Yang, Samuel J; Allen, William E; Kauvar, Isaac; Andalman, Aaron S; Young, Noah P; Kim, Christina K; Marshel, James H; Wetzstein, Gordon; Deisseroth, Karl

    2015-12-14

    Phase spatial light modulators (SLMs) are widely used for generating multifocal three-dimensional (3D) illumination patterns, but these are limited to a field of view constrained by the pixel count or size of the SLM. Further, with two-photon SLM-based excitation, increasing the number of focal spots penalizes the total signal linearly--requiring more laser power than is available or can be tolerated by the sample. Here we analyze and demonstrate a method of using galvanometer mirrors to time-sequentially reposition multiple 3D holograms, both extending the field of view and increasing the total time-averaged two-photon signal. We apply our approach to 3D two-photon in vivo neuronal calcium imaging. PMID:26699047

  11. Fast 3D dark-field reflection-mode photoacoustic microscopy in vivo with a 30-MHz ultrasound linear array

    PubMed Central

    Song, Liang; Maslov, Konstantin; Bitton, Rachel; Shung, K. Kirk; Wang, Lihong V.

    2009-01-01

    We present an in vivo dark-field reflection-mode photoacoustic microscopy system that performs cross-sectional (B-scan) imaging at 50 Hz with realtime beamforming and 3D imaging consisting of 166 B-scan frames at 1 Hz with post-beamforming. To our knowledge, this speed is currently the fastest in photoacoustic imaging. A custom-designed light delivery system is integrated with a 30-MHz ultrasound linear array to realize dark-field reflection-mode imaging. Linear mechanical scanning of the array produces 3D images. The system has axial, lateral, and elevational resolutions of 25, 70, and 200 μm, respectively, and can image 3 mm deep in scattering biological tissues. Volumetric images of subcutaneous vasculature in rats are demonstrated in vivo. Fast 3D photoacoustic microscopy is anticipated to facilitate applications of photoacoustic imaging in biomedical studies that involve dynamics and clinical procedures that demand immediate diagnosis. PMID:19021408

  12. Scalar and electromagnetic fields of static sources in higher dimensional Majumdar-Papapetrou spacetimes

    NASA Astrophysics Data System (ADS)

    Frolov, Valeri P.; Zelnikov, Andrei

    2012-03-01

    We study massless scalar and electromagnetic fields from static sources in a static higher-dimensional spacetime. Exact expressions for static Green’s functions for such problems are obtained in the background of the Majumdar-Papapetrou solutions of the Einstein-Maxwell equations. Using this result, we calculate the force between two scalar or electric charges in the presence of one or several extremally charged black holes in equilibrium in the higher-dimensional spacetime.

  13. A hybrid experimental-numerical technique for determining 3D velocity fields from planar 2D PIV data

    NASA Astrophysics Data System (ADS)

    Eden, A.; Sigurdson, M.; Mezić, I.; Meinhart, C. D.

    2016-09-01

    Knowledge of 3D, three component velocity fields is central to the understanding and development of effective microfluidic devices for lab-on-chip mixing applications. In this paper we present a hybrid experimental-numerical method for the generation of 3D flow information from 2D particle image velocimetry (PIV) experimental data and finite element simulations of an alternating current electrothermal (ACET) micromixer. A numerical least-squares optimization algorithm is applied to a theory-based 3D multiphysics simulation in conjunction with 2D PIV data to generate an improved estimation of the steady state velocity field. This 3D velocity field can be used to assess mixing phenomena more accurately than would be possible through simulation alone. Our technique can also be used to estimate uncertain quantities in experimental situations by fitting the gathered field data to a simulated physical model. The optimization algorithm reduced the root-mean-squared difference between the experimental and simulated velocity fields in the target region by more than a factor of 4, resulting in an average error less than 12% of the average velocity magnitude.

  14. Near field 3D displacement of El Mayor-Cupapah Earthquake: A hybrid approach. (Invited)

    NASA Astrophysics Data System (ADS)

    Hinojosa-Corona, A.; Limon, F. J.; Nissen, E.; Glennie, C. L.; Krishnan, A.; Oskin, M. E.; Arrowsmith, R.; Leprince, S.; Saripalli, S.; Arregui, S. M.; Borsa, A. A.; Kreylos, O.; Banesh, D.; Fletcher, J. M.

    2013-12-01

    The surface rupture produced on April 4th of 2010 by the M 7.2 El Mayor-Cucapah Earthquake is an ideal target to be analyzed by remote sensing techniques. It produced over 100 km of scarps, with vertical and horizontal slip on the order of 2 to 3 m in scarcely vegetated, rugged terrain underlain by mostly igneous rocks. A 3D displacement field (DF) was calculated by matching pre- to post-event airborne LiDAR point clouds through the Iterative Closest Point (ICP) algorithm, which first segments the point clouds into discrete windows, and for each, iteratively converges on a rigid body transformation comprising a translation and a rotation that best aligns the pre- to post-event point clouds. After testing different window sizes, we used a square window 100m a side. The El Mayor-Cucapah LiDAR data sets present special challenges for the ICP technique. The point clouds differ considerably in point density, by ~1:700. This, and the lower precision of the pre-earthquake data, limit the accuracy of the DF results. Despite these issues, the vertical and East-West (E-W) components of the DF from ICP very clearly delineate the trace of the surface rupture, showing east-side down dextral-normal motion in agreement with field measurements and the focal mechanism reported for this event. A systematic error in the LiDAR instrument used for the pre-event survey caused severe distortion of the North-South (N-S) component of the LiDAR returns. After reprocessing the source pre-event point cloud in various ways to correct for the systematic error, a more plausible pattern for the N-S component was obtained for the DF. To have another perspective for the horizontal DF, a subpixel correlation analysis of optical satellite images (SPOT 2.5 m panchromatic images) before and after the earthquake, was performed using the COSI-Corr software. We combined the N-S component from this analysis with the E-W and vertical components of the ICP results, and present the analysis of the resulting

  15. Temporal Evolution of the 3-D Flow Field In a Mixing Tank with a Two-Bladed Impeller

    NASA Astrophysics Data System (ADS)

    Choi, Woong-Chul; Guezennec, Yann G.

    1998-11-01

    The evolution of the 3-D flow field inside a cylindrical mixing vessel was measured using 3-D Cinematic Particle Tracking Velocimetry. The mixing vessel consisted of a cylindrical chamber with a two-bladed impeller axially centered in the vessel. The impeller was a simple paddle wheel-type and its height in the vessel could be externally adjusted. The fluid inside the chamber was seeded by small neutrally buoyant particles. The entire vessel volume was illuminated by a high-power, collimated strobe light located under the vessel and the particle motion was imaged by a pair of synchronized high-speed (up to 500 fps) digital cameras. Prior to the actual experiments, an in situ calibration of the cameras was performed to automatically account for the optical distortion resulting from the curved vessel boundaries and index of refraction mismatch. The long, high-speed video sequences were analyzed using the FloDyne(tm) 3-D Particle Tracking software. This typically resulted in 500-600 instantaneous 3-D velocity vectors over the entire vessel. The image sequences were then processed for a large number of impeller rotations (50, typically). The resulting velocity fields were then post-processed to obtain the evolution of the phase-averaged 3-D velocity field as well as estimates of the intrinsic turbulence intensities. Animation of the reconstructed 3-D flow fields will be shown. Under some geometrical configurations of the impeller at low Reynolds numbers, the results show the presence of quasi-stable recirculating regions inhibiting the overall mixing.

  16. Online Stereo 3D Simulation in Studying the Spherical Pendulum in Conservative Force Field

    ERIC Educational Resources Information Center

    Zabunov, Svetoslav S.

    2013-01-01

    The current paper aims at presenting a modern e-learning method and tool that is utilized in teaching physics in the universities. An online stereo 3D simulation is used for e-learning mechanics and specifically the teaching of spherical pendulum as part of the General Physics course for students in the universities. This approach was realized on…

  17. Argand-plane vorticity singularities in complex scalar optical fields: an experimental study using optical speckle.

    PubMed

    Rothschild, Freda; Bishop, Alexis I; Kitchen, Marcus J; Paganin, David M

    2014-03-24

    The Cornu spiral is, in essence, the image resulting from an Argand-plane map associated with monochromatic complex scalar plane waves diffracting from an infinite edge. Argand-plane maps can be useful in the analysis of more general optical fields. We experimentally study particular features of Argand-plane mappings known as "vorticity singularities" that are associated with mapping continuous single-valued complex scalar speckle fields to the Argand plane. Vorticity singularities possess a hierarchy of Argand-plane catastrophes including the fold, cusp and elliptic umbilic. We also confirm their connection to vortices in two-dimensional complex scalar waves. The study of vorticity singularities may also have implications for higher-dimensional fields such as coherence functions and multi-component fields such as vector and spinor fields. PMID:24663998

  18. Topological black holes for Einstein-Gauss-Bonnet gravity with a nonminimal scalar field

    NASA Astrophysics Data System (ADS)

    Gaete, Moisés Bravo; Hassaïne, Mokhtar

    2013-11-01

    We consider the Einstein-Gauss-Bonnet gravity with a negative cosmological constant together with a source given by a scalar field nonminimally coupled in arbitrary dimension D. For a certain election of the cosmological and Gauss-Bonnet coupling constants, we derive two classes of AdS black hole solutions whose horizon is planar. The first family of black holes obtained for a particular value of the nonminimal coupling parameter only depends on a constant M, and the scalar field vanishes as M=0. The second class of solutions corresponds to a two-parametric (with constants M and A) black hole stealth configuration, which is a nontrivial scalar field with a black hole metric such that both sides (gravity and matter parts) of the Einstein equations vanish. In this case, in the vanishing M, the solution reduces to a stealth scalar field on the pure AdS metric. We note that the existence of these two classes of solutions is indicative of the particular choice of the coupling constants, and they cannot be promoted to spherical or hyperboloid black hole solutions in a standard fashion. In the last part, we add to the original action some exact (D-1) forms coupled to the scalar field. The direct benefit of introducing such extra fields is to obtain black hole solutions with a planar horizon for an arbitrary value of the nonminimal coupling parameter.

  19. How Students and Field Geologists Reason in Integrating Spatial Observations from Outcrops to Visualize a 3-D Geological Structure

    ERIC Educational Resources Information Center

    Kastens, Kim A.; Agrawal, Shruti; Liben, Lynn S.

    2009-01-01

    Geologists and undergraduate students observed eight artificial "rock outcrops" in a realistically scaled field area, and then tried to envision a geological structure that might plausibly be formed by the layered rocks in the set of outcrops. Students were videotaped as they selected which of fourteen 3-D models they thought best represented the…

  20. Properties of the prominence magnetic field and plasma distributions as obtained from 3D whole-prominence fine structure modeling

    NASA Astrophysics Data System (ADS)

    Gunár, S.; Mackay, D. H.

    2016-07-01

    Aims: We analyze distributions of the magnetic field strength and prominence plasma (temperature, pressure, plasma β, and mass) using the 3D whole-prominence fine structure model. Methods: The model combines a 3D magnetic field configuration of an entire prominence, obtained from non-linear force-free field simulations, with a detailed semi-empirically derived description of the prominence plasma. The plasma is located in magnetic dips in hydrostatic equilibrium and is distributed along multiple fine structures within the 3D magnetic model. Results: We show that in the modeled prominence, the variations of the magnetic field strength and its orientation are insignificant on scales comparable to the smallest dimensions of the observed prominence fine structures. We also show the ability of the 3D whole-prominence fine structure model to reveal the distribution of the prominence plasma with respect to its temperature within the prominence volume. This provides new insights into the composition of the prominence-corona transition region. We further demonstrate that the values of the plasma β are small throughout the majority of the modeled prominences when realistic photospheric magnetic flux distributions and prominence plasma parameters are assumed. While this is generally true, we also find that in the region with the deepest magnetic dips, the plasma β may increase towards unity. Finally, we show that the mass of the modeled prominence plasma is in good agreement with the mass of observed non-eruptive prominences.

  1. Toward real-time endoscopically-guided robotic navigation based on a 3D virtual surgical field model

    NASA Astrophysics Data System (ADS)

    Gong, Yuanzheng; Hu, Danying; Hannaford, Blake; Seibel, Eric J.

    2015-03-01

    The challenge is to accurately guide the surgical tool within the three-dimensional (3D) surgical field for roboticallyassisted operations such as tumor margin removal from a debulked brain tumor cavity. The proposed technique is 3D image-guided surgical navigation based on matching intraoperative video frames to a 3D virtual model of the surgical field. A small laser-scanning endoscopic camera was attached to a mock minimally-invasive surgical tool that was manipulated toward a region of interest (residual tumor) within a phantom of a debulked brain tumor. Video frames from the endoscope provided features that were matched to the 3D virtual model, which were reconstructed earlier by raster scanning over the surgical field. Camera pose (position and orientation) is recovered by implementing a constrained bundle adjustment algorithm. Navigational error during the approach to fluorescence target (residual tumor) is determined by comparing the calculated camera pose to the measured camera pose using a micro-positioning stage. From these preliminary results, computation efficiency of the algorithm in MATLAB code is near real-time (2.5 sec for each estimation of pose), which can be improved by implementation in C++. Error analysis produced 3-mm distance error and 2.5 degree of orientation error on average. The sources of these errors come from 1) inaccuracy of the 3D virtual model, generated on a calibrated RAVEN robotic platform with stereo tracking; 2) inaccuracy of endoscope intrinsic parameters, such as focal length; and 3) any endoscopic image distortion from scanning irregularities. This work demonstrates feasibility of micro-camera 3D guidance of a robotic surgical tool.

  2. Entanglement entropy and variational methods: Interacting scalar fields

    NASA Astrophysics Data System (ADS)

    Cotler, Jordan S.; Mueller, Mark T.

    2016-02-01

    We develop a variational approximation to the entanglement entropy for scalar ϕ4 theory in 1 + 1, 2 + 1, and 3 + 1 dimensions, and then examine the entanglement entropy as a function of the coupling. We find that in 1 + 1 and 2 + 1 dimensions, the entanglement entropy of ϕ4 theory as a function of coupling is monotonically decreasing and convex. While ϕ4 theory with positive bare coupling in 3 + 1 dimensions is thought to lead to a trivial free theory, we analyze a version of ϕ4 with infinitesimal negative bare coupling, an asymptotically free theory known as precariousϕ4 theory, and explore the monotonicity and convexity of its entanglement entropy as a function of coupling. Within the variational approximation, the stability of precarious ϕ4 theory is related to the sign of the first and second derivatives of the entanglement entropy with respect to the coupling.

  3. Chaplygin gas inspired scalar fields inflation via well-known potentials

    NASA Astrophysics Data System (ADS)

    Jawad, Abdul; Butt, Sadaf; Rani, Shamaila

    2016-08-01

    Brane inflationary universe models in the context of modified Chaplygin gas and generalized cosmic Chaplygin gas are being studied. We develop these models in view of standard scalar and tachyon fields. In both models, the implemented inflationary parameters such as scalar and tensor power spectra, scalar spectral index and tensor to scalar ratio are derived under slow roll approximations. We also use chaotic and exponential potential in high energy limits and discuss the characteristics of inflationary parameters for both potentials. These models are compatible with recent astronomical observations provided by WMAP7{+}9 and Planck data, i.e., ηs=1.027±0.051, 1.009±0.049, 0.096±0.025 and r<0.38, 0.36, 0.11.

  4. Retrieving 3D Velocity Fields of Glaciers from X-band SAR Data and Comparison with GPS Observations

    NASA Astrophysics Data System (ADS)

    Magnússon, E.; Nagler, T.; Hetzenecker, M.; Palsson, F.; Scharrer, K.; Floricioiu, D.; Berthier, E.; Gudmundsson, S.; Rott, H.

    2013-12-01

    We present 3D velocity fields obtained from time series of TerraSAR-X and TanDEM-X images acquired over the ablation area of the Breidamerkurjökull outlet glacier of Vatnjökull Ice Cap (Iceland) in 2008-2012. Coherent and incoherent offset tracking is applied to repeat pass X-Band data to obtain ice displacement in cross and along track direction. Three methods are tested and compared to extract fields of the 3D ice velocity. First, the conventional surface parallel approach, which we consider as an approximation for deriving the horizontal motion rate, but does not reveal a realistic vertical motion. Second, the combination of offset tracking results from almost simultaneous observations from ascending and descending orbits measuring the glacier motion in four different directions, allowing calculation of the 3D velocity fields without any additional approximations. Third, deriving full 3D velocity fields by using the horizontal flow direction, derived from the ascending-descending combination, as constrain on offset tracking results from a single pair of SAR images. The latter two methods reveal a measurement of the vertical ice motion plus ablation, hence equivalent to the vertical motion component measured by GPS station fixed on a platform laying on the ice surface. The results from all methods are compared with such GPS measurements recorded by permanent stations on the glacier in 2008-2012 and the errors of the different methods are calculated. Additionally, we approximate the contribution of these 3D flow fields to elevation changes (emergence/submergence velocity plus net balance) and compare it with elevation changes from surface DEMs obtained in 2008 (SPIRIT), 2010 (airborne LIDAR) and 2012 (TanDEM-X).

  5. Are black holes a serious threat to scalar field dark matter models?

    SciTech Connect

    Barranco, Juan; Degollado, Juan Carlos; Bernal, Argelia; Diez-Tejedor, Alberto; Megevand, Miguel; Alcubierre, Miguel; Nunez, Dario; Sarbach, Olivier

    2011-10-15

    Classical scalar fields have been proposed as possible candidates for the dark matter component of the universe. Given the fact that supermassive black holes seem to exist at the center of most galaxies, in order to be a viable candidate for the dark matter halo a scalar field configuration should be stable in the presence of a central black hole, or at least be able to survive for cosmological time scales. In the present work we consider a scalar field as a test field on a Schwarzschild background, and study under which conditions one can obtain long-lived configurations. We present a detailed study of the Klein-Gordon equation in the Schwarzschild space-time, both from an analytical and numerical point of view, and show that indeed there exist quasistationary solutions that can remain surrounding a black hole for large time scales.

  6. Are black holes a serious threat to scalar field dark matter models?

    NASA Astrophysics Data System (ADS)

    Barranco, Juan; Bernal, Argelia; Degollado, Juan Carlos; Diez-Tejedor, Alberto; Megevand, Miguel; Alcubierre, Miguel; Núñez, Darío; Sarbach, Olivier

    2011-10-01

    Classical scalar fields have been proposed as possible candidates for the dark matter component of the universe. Given the fact that supermassive black holes seem to exist at the center of most galaxies, in order to be a viable candidate for the dark matter halo a scalar field configuration should be stable in the presence of a central black hole, or at least be able to survive for cosmological time scales. In the present work we consider a scalar field as a test field on a Schwarzschild background, and study under which conditions one can obtain long-lived configurations. We present a detailed study of the Klein-Gordon equation in the Schwarzschild space-time, both from an analytical and numerical point of view, and show that indeed there exist quasistationary solutions that can remain surrounding a black hole for large time scales.

  7. Lifshitz black holes with a time-dependent scalar field in a Horndeski theory

    NASA Astrophysics Data System (ADS)

    Gaete, Moisés Bravo; Hassaine, Mokhtar

    2014-05-01

    In arbitrary dimensions, we consider a particular Horndeski action given by the Einstein-Hilbert Lagrangian with a cosmological constant term, while the source part is described by a real scalar field with its usual kinetic term together with a nonminimal kinetic coupling. In order to evade the no-hair theorem, we look for solutions where the radial component of the conserved current vanishes identically. Under this hypothesis, we prove that this model cannot accommodate Lifshitz solutions with a radial scalar field. This problem is finally circumvented by turning on the time dependence of the scalar field, and we obtain a Lifshitz black hole solution with a fixed value of the dynamical exponent z=1/3. The same metric is also shown to satisfy the field equations arising only from the variation of the matter source.

  8. Is the DBI scalar field as fragile as other k -essence fields?

    NASA Astrophysics Data System (ADS)

    Mukohyama, Shinji; Namba, Ryo; Watanabe, Yota

    2016-07-01

    Caustic singularity formations in shift-symmetric k -essence and Horndeski theories on a fixed Minkowski spacetime were recently argued. In n dimensions, this singularity is the (n -2 )-dimensional plane in spacetime at which second derivatives of a field diverge and the field loses single-valued description for its evolution. This does not necessarily imply a pathological behavior of the system but rather invalidates the effective description. The effective theory would thus have to be replaced by another to describe the evolution thereafter. In this paper, adopting the planar-symmetric 1 +1 -dimensional approach employed in the original analysis, we seek all k -essence theories in which generic simple wave solutions are free from such caustic singularities. Contrary to the previous claim, we find that not only the standard canonical scalar but also the DBI scalar are free from caustics, as far as planar-symmetric simple wave solutions are concerned. Addition of shift-symmetric Horndeski terms does not change the conclusion.

  9. Modeling of 3d Space-time Surface of Potential Fields and Hydrogeologic Modeling of Nuclear Waste Disposal Sites

    NASA Astrophysics Data System (ADS)

    Shestopalov, V.; Bondarenko, Y.; Zayonts, I.; Rudenko, Y.

    Introduction After the Chernobyl Nuclear Power Plant (CNPP) disaster (04.26.1986) a huge amount (over 2000 sq. km) of nuclear wastes appeared within so-called "Cher- nobyl Exclusion Zone" (CEZ). At present there are not enough storage facilities in the Ukraine for safe disposal of nuclear wastes and hazardous chemical wastes. The urgent problem now is safe isolation of these dangerous wastes. According to the developed state program of radioactive waste management, the construction of a na- tional storage facility of nuclear wastes is planned. It is also possible to create regional storage facilities for hazardous chemical wastes. The region of our exploration cov- ers the eastern part of the Korosten Plutone and its slope, reaching the CNPP. 3D Space-Time Surface Imaging of Geophysical Fields. There are only three direct meth- ods of stress field reconstruction in present practice, namely the field investigations based on the large-scale fracturing tests, petrotectonic and optical polarization meth- ods. Unfortunately, all these methods are extremely laborious and need the regular field tests, which is difficult to conduct in the areas of anisotropic rock outcrops. A compilation of magnetic and gravity data covering the CNPP area was carried out as a prelude to an interpretation study. More than thirty map products were generated from magnetic, gravity and geodesy data to prepare the 3D Space-Time Surface Images (3D STSI). Multi-layer topography and geophysic surfaces included: total magnetic intensity, isostatically-corrected Bouguer gravity, aspect and slope, first and second derivatives, vertical and horizontal curvature, histogram characteristics and space cor- relation coefficients between the gradient fields. Many maps shows the first and sec- ond derivatives of the potential fields, with the results of lineament (edge) structure detection superimposed. The lineament or edges of the potential fields are located from maximal gradient in many directions

  10. Bootstrapping 3D fermions

    NASA Astrophysics Data System (ADS)

    Iliesiu, Luca; Kos, Filip; Poland, David; Pufu, Silviu S.; Simmons-Duffin, David; Yacoby, Ran

    2016-03-01

    We study the conformal bootstrap for a 4-point function of fermions < ψψψψ> in 3D. We first introduce an embedding formalism for 3D spinors and compute the conformal blocks appearing in fermion 4-point functions. Using these results, we find general bounds on the dimensions of operators appearing in the ψ × ψ OPE, and also on the central charge C T . We observe features in our bounds that coincide with scaling dimensions in the GrossNeveu models at large N . We also speculate that other features could coincide with a fermionic CFT containing no relevant scalar operators.

  11. Numerical simulation of internal and external inviscid and viscous 3-D flow fields

    NASA Astrophysics Data System (ADS)

    Leicher, Stefan

    1986-11-01

    A numerical method for solving the 3-D Euler equations in geometrical complex domains was developed. The approach divides the computational space into multiple blocks whose structure follows the natural lines of the conficuration. A systematic, multi-block grid generation scheme is used to produce the grid. The flow solutions are obtained by solving the Euler equations by a finite volume discretization and a Runge-Kutta time stepping scheme. The main advantage of this method is the applicability to complex geometries, for example complete aircraft configurations including wing, fuselage, canard and tail. The coupling with a 3-D boundary layer method allows to account for viscous effects. Another application for the method was the simulation of flows in the presence of a propeller.

  12. Wide-field hyperspectral 3D imaging of functionalized gold nanoparticles targeting cancer cells by reflected light microscopy.

    PubMed

    Patskovsky, Sergiy; Bergeron, Eric; Rioux, David; Meunier, Michel

    2015-05-01

    We present a new hyperspectral reflected light microscopy system with a scanned broadband supercontinuum light source. This wide-field and low phototoxic hyperspectral imaging system has been successful for performing spectral three-dimensional (3D) localization and spectroscopic identification of CD44-targeted PEGylated AuNPs in fixed cell preparations. Such spatial and spectral information is essential for the improvement of nanoplasmonic-based imaging, disease detection and treatment in complex biological environment. The presented system can be used for real-time 3D NP tracking as spectral sensors, thus providing new avenues in the spatio-temporal characterization and detection of bioanalytes. 3D image of the distribution of functionalized AuNPs attached to CD44-expressing MDA-MB-231 human cancer cells. PMID:24961507

  13. Scalar-tensor gravity with a non-minimally coupled Higgs field and accelerating universe

    NASA Astrophysics Data System (ADS)

    Sim, Jonghyun; Lee, Tae Hoon

    2016-03-01

    We consider general couplings, including non-minimal derivative coupling, of a Higgs boson field to scalar-tensor gravity and calculate their contributions to the energy density and pressure in Friedmann-Robertson-Walker spacetime. In a special case where the kinetic term of the Higgs field is non-minimally coupled to the Einstein tensor, we seek de Sitter solutions for the cosmic scale factor and discuss the possibility that the late-time acceleration and the inflationary era of our universe can be described by means of scalar fields with self-interactions and the Yukawa potential.

  14. Magnetic field induced controllable self-assembly of maghemite nanocrystals: From 3D arrays to 1D nanochains

    NASA Astrophysics Data System (ADS)

    Tang, Yan; Chen, Qianwang; Chen, Rongsheng

    2015-08-01

    A hydrothermal process has been used to synthesize walnut-like maghemite superstructures which can be further self-assembled in a controllable manner into ordered three-dimensional (3D) architectures and one-dimensional (1D) nanochains in the presence of different external magnetic field. The assembly behavior of the maghemite nanoparticles isclosely related to the van der Waals interactions and external-field-induced magnetic dipole interactions. The magnetic properties of these nanostructures are also investigated.

  15. 3D real-time visualization of blood flow in cerebral aneurysms by light field particle image velocimetry

    NASA Astrophysics Data System (ADS)

    Carlsohn, Matthias F.; Kemmling, André; Petersen, Arne; Wietzke, Lennart

    2016-04-01

    Cerebral aneurysms require endovascular treatment to eliminate potentially lethal hemorrhagic rupture by hemostasis of blood flow within the aneurysm. Devices (e.g. coils and flow diverters) promote homeostasis, however, measurement of blood flow within an aneurysm or cerebral vessel before and after device placement on a microscopic level has not been possible so far. This would allow better individualized treatment planning and improve manufacture design of devices. For experimental analysis, direct measurement of real-time microscopic cerebrovascular flow in micro-structures may be an alternative to computed flow simulations. An application of microscopic aneurysm flow measurement on a regular basis to empirically assess a high number of different anatomic shapes and the corresponding effect of different devices would require a fast and reliable method at low cost with high throughout assessment. Transparent three dimensional 3D models of brain vessels and aneurysms may be used for microscopic flow measurements by particle image velocimetry (PIV), however, up to now the size of structures has set the limits for conventional 3D-imaging camera set-ups. On line flow assessment requires additional computational power to cope with the processing large amounts of data generated by sequences of multi-view stereo images, e.g. generated by a light field camera capturing the 3D information by plenoptic imaging of complex flow processes. Recently, a fast and low cost workflow for producing patient specific three dimensional models of cerebral arteries has been established by stereo-lithographic (SLA) 3D printing. These 3D arterial models are transparent an exhibit a replication precision within a submillimeter range required for accurate flow measurements under physiological conditions. We therefore test the feasibility of microscopic flow measurements by PIV analysis using a plenoptic camera system capturing light field image sequences. Averaging across a sequence of

  16. Characteristics of divertor heat and particle deposition with intrinsic and applied 3-D fields in NSTX H-mode plasmas

    SciTech Connect

    Ahn, J.W.; Canik, John; Maingi, Rajesh; Gray, Travis K; Lore, Jeremy D; McLean, Adam G; Park, J.-K.; Roquemore, A. L.; Soukhanovskii, V. A.

    2011-01-01

    Divertor heat and particle flux profiles are modified by externally imposed non-axisymmetric magnetic perturbations in the National Spherical Torus Experiment. The applied 3-D field causes strike point splitting that is represented as local peaks and valleys in the divertor profiles. The plasma response in an ideal perturbed equilibrium approach was included in the field line tracing by taking account of the B-field generated by the plasma current up to a certain fraction of normalized flux inside the separatrix and being superposed to the vacuum field. The inclusion of this type of plasma response does not significantly affect the location and spacing of the split strike points at the divertor surface. A modest level of divertor profile modification is found to occur even without the application of 3-D fields in certain high triangularity (delta = 0.65-0.8) discharges, with the location of local peaks and valleys same before and after the application. The intrinsic error field from the non-circularity of PF5 coil is known to have primarily n = 3 component in NSTX and was modeled to be included in the vacuum field line tracing. The produced puncture plot of the field line along with the connection length profile shows that the radial location of local peaks agrees well with the measurement, identifying intrinsic error field as a possible source of intrinsic strike point splitting. The radial location of local peaks in the profiles during the triggered ELM by the applied n = 3 field is the same before and after the 3-D field application. This shows that the heat flux from the triggered ELMs appears to follow the imposed n = 3 field structure.

  17. An Exact Solution of Einstein-Maxwell Gravity Coupled to a Scalar Field

    NASA Technical Reports Server (NTRS)

    Turyshev, S. G.

    1995-01-01

    The general solution to low-energy string theory representing static spherically symmetric solution of the Einstein-Maxwell gravity with a massless scalar field has been found. Some of the partial cases appear to coincide with known solutions to black holes, naked singularities, and gravity and electromagnetic fields.

  18. Non-minimally coupled scalar field cosmology on the phase plane

    SciTech Connect

    Hrycyna, Orest; Szydlowski, Marek E-mail: uoszydlo@cyf-kr.edu.pl

    2009-04-15

    In this publication we investigate dynamics of a flat FRW cosmological model with a non-minimally coupled scalar field with the coupling term {xi}R{psi}{sup 2} in the scalar field action. The quadratic potential function V({psi}) {proportional_to} {psi}{sup 2} is assumed. All the evolutional paths are visualized and classified in the phase plane, at which the parameter of non-minimal coupling {xi} plays the role of a control parameter. The fragility of global dynamics with respect to changes of the coupling constant is studied in details. We find that the future big rip singularity appearing in the phantom scalar field cosmological models can be avoided due to non-minimal coupling constant effects. We have shown the existence of a finite scale factor singular point (future or past) where the Hubble function as well as its first cosmological time derivative diverge.

  19. A study of dynamical equations for non-minimally coupled scalar field using Noether symmetric approach

    NASA Astrophysics Data System (ADS)

    Dutta, Sourav; Panja, Madan Mohan; Chakraborty, Subenoy

    2016-06-01

    Non-minimally coupled scalar field cosmology has been studied in this work within the framework of Einstein gravity. In the background of homogeneous and isotropic Friedmann-Lemaitre-Robertson-Walker (FLRW) spacetime non-minimally coupled scalar field having self-interacting potential is taken as the source of the matter content. The constraint of imposing Noether symmetry on the Lagrangian of the system not only determines the infinitesimal generator (the symmetry vector) but also the coupling function and the self-interacting potential for the scalar field. By choosing appropriately a point transformation in the augmented space, one of the transformed variables is cyclic for the Lagrangian. Finally, using constants of motion, the solutions are analyzed.

  20. Non-minimally coupled scalar fields, Holst action and black hole mechanics

    SciTech Connect

    Chatterjee, Ayan

    2011-02-15

    The paper deals with the extension of the Weak Isolated Horizon (WIH) formulation of black hole horizons to the non-minimally coupled scalar fields. In the early part of the paper, we introduce an appropriate Holst type action to incorporate scalar fields non-minimally coupled to gravity and construct the covariant phase space of the theory. Using this phase space, we proceed to prove the laws of black hole mechanics. Further, we show that with a gauge fixing, the symplectic structure on the horizon reduces to that of a U(1) Chern-Simons theory. The level of the Chern-Simons theory is shown to depend on the non-minimally coupled scalar field.

  1. Closed star product on noncommutative ℝ 3 and scalar field dynamics

    NASA Astrophysics Data System (ADS)

    Jurić, Tajron; Poulain, Timothé; Wallet, Jean-Christophe

    2016-05-01

    We consider the noncommutative space ℝ θ 3 , a deformation of ℝ 3 for which the star product is closed for the trace functional. We study one-loop IR and UV properties of the 2-point function for real and complex noncommutative scalar field theories with quartic interactions and Laplacian on ℝ 3 as kinetic operator. We find that the 2-point functions for these noncommutative scalar field theories have no IR singularities in the external momenta, indicating the absence of UV/IR mixing. We also find that the 2-point functions are UV finite with the deformation parameter θ playing the role of a natural UV cut-off. The possible origin of the absence of UV/IR mixing in noncommutative scalar field theories on ℝ θ 3 as well as on ℝ λ 3 , another deformation of ℝ 3, is discussed.

  2. Formation of caustics in Dirac-Born-Infeld type scalar field systems

    SciTech Connect

    Goswami, U. D.; Nandan, H.; Sami, M.

    2010-11-15

    We investigate the formation of caustics in the Dirac-Born-Infeld type scalar field systems for generic classes of potentials, viz., massive rolling scalar with potential, V({phi})=V{sub 0}e{sup {+-}(1/2)M2{phi}2} and inverse power-law potentials with V({phi})=V{sub 0}/{phi}{sup n}, 0scalar field potential, there are multivalued regions and regions of likely to be caustics in the field configuration. However there are no caustics in the case of exponentially increasing potential. We show that the formation of caustics is inevitable for the inverse power-law potentials under consideration in Minkowski space time whereas caustics do not form in this case in the Friedmann-Robertson-Walker Universe.

  3. Light-like κ-deformations and scalar field theory via Drinfeld twist

    NASA Astrophysics Data System (ADS)

    Jurić, Tajron; Meljanac, Stjepan; Samsarov, Andjelo

    2015-08-01

    In this article we will use the Drinfeld twist leading to light-like κ-deformations of Poincaré algebra. We shall apply the standard Hopf algebra methods in order to define the star-product, which shall be used to formulate a scalar field theory compatible with κ-Poincaré-Hopf algebra. Using this approach we show that there is no problem with formulating integration on κ-Minkowski space and no need for introducing a new measure. We have shown that the ★-product obtained from this twist enables us to define a free scalar field theory on κ-Minkowski space that is equivalent to a commutative one on a usual Minkowski space. We also discuss the interacting ϕ4 scalar field model compatible with κ-Poincaré-Hopf algebra.

  4. First steps toward 3D high resolution imaging using adaptive optics and full-field optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Blanco, Leonardo; Blavier, Marie; Glanc, Marie; Pouplard, Florence; Tick, Sarah; Maksimovic, Ivan; Chenegros, Guillaume; Mugnier, Laurent; Lacombe, Francois; Rousset, Gérard; Paques, Michel; Le Gargasson, Jean-François; Sahel, Jose-Alain

    2008-09-01

    We describe here two parts of our future 3D fundus camera coupling Adaptive Optics and full-field Optical Coherence Tomography. The first part is an Adaptive Optics flood imager installed at the Quinze-Vingts Hospital, regularly used on healthy and pathological eyes. A posteriori image reconstruction is performed, increasing the final image quality and field of view. The instrument lateral resolution is better than 2 microns. The second part is a full-field Optical Coherence Tomograph, which has demonstrated capability of performing a simple kind of "4 phases" image reconstruction of non biological samples and ex situ retinas. Final aim is to couple both parts in order to achieve 3D high resolution mapping of in vivo retinas.

  5. First MMS Observations of High Time Resolution 3D Electric and Magnetic fields at the Dayside Magnetopause.

    NASA Astrophysics Data System (ADS)

    Torbert, R. B.; Burch, J. L.; Russell, C. T.; Magnes, W.; Ergun, R. E.; Lindqvist, P. A.; Le Contel, O.; Vaith, H.; Macri, J.; Myers, S.; Rau, D.; Needell, J.; King, B.; Granoff, M.; Chutter, M.; Dors, I.; Argall, M. R.; Shuster, J. R.; Olsson, G.; Marklund, G. T.; Khotyaintsev, Y. V.; Eriksson, A. I.; Kletzing, C.; Bounds, S. R.; Anderson, B. J.; Baumjohann, W.; Steller, M.; Bromund, K. R.; Le, G.; Nakamura, R.; Strangeway, R. J.; Leinweber, H. K.; Tucker, S.; Westfall, J.; Fischer, D.; Plaschke, F.; Pollock, C. J.; Giles, B. L.; Moore, T. E.; Mauk, B.; Fuselier, S. A.

    2015-12-01

    The electrodynamics at the magnetopause is key to our understanding of ion and electron acceleration within reconnection regions. The Magnetospheric Multiscale (MMS) fleet of four spacecraft was launched into its Phase-1 equatorial orbit of 12 Re apogee specifically to investigate these regions at the Earth's magnetopause. In addition to a comprehensive suite of particle measurements, MMS makes very high time resolution 3D electric and magnetic field measurements of high accuracy using flux-gate, search coil, 3-axis double probe, and electron drift sensors. In September 2015, the MMS fleet will begin to encounter the dusk-side magnetopause in its initial configuration of approximately 160 km separation, allowing investigation of the spatial and temporal characteristics of important electrodynamics during reconnection. Using these field and particle measurements, we present first observations of 3D magnetic and electric fields (including their parallel component), and inferred current sheets, during active magnetopause crossings using the highest time resolution data available on MMS.

  6. Is Sextans dwarf galaxy in a scalar field dark matter halo?

    SciTech Connect

    Lora, V.; Magaña, Juan E-mail: juan.magana@uv.cl

    2014-09-01

    The Bose-Einstein condensate/scalar field dark matter model, considers that the dark matter is composed by spinless-ultra-light particles which can be described by a scalar field. This model is an alternative model to the Λ-cold dark matter paradigm, and therefore should be studied at galactic and cosmological scales. Dwarf spheroidal galaxies have been very useful when studying any dark matter theory, because the dark matter dominates their dynamics. In this paper we study the Sextans dwarf spheroidal galaxy, embedded in a scalar field dark matter halo. We explore how the dissolution time-scale of the stellar substructures in Sextans, constrain the mass, and the self-interacting parameter of the scalar field dark matter boson. We find that for masses in the range (0.12< m{sub φ}<8) ×10{sup -22} eV, scalar field dark halos without self-interaction would have cores large enough to explain the longevity of the stellar substructures in Sextans, and small enough mass to be compatible with dynamical limits. If the self-interacting parameter is distinct to zero, then the mass of the boson could be as high as m{sub φ}≈2×10{sup -21} eV, but it would correspond to an unrealistic low mass for the Sextans dark matter halo . Therefore, the Sextans dwarf galaxy could be embedded in a scalar field/BEC dark matter halo with a preferred self-interacting parameter equal to zero.

  7. Fully automated measurement of field-dependent AMS using MFK1-FA Kappabridge equipped with 3D rotator

    NASA Astrophysics Data System (ADS)

    Chadima, Martin; Studynka, Jan

    2013-04-01

    Low-field magnetic susceptibility of paramagnetic and diamagnetic minerals is field-independent by definition being also field-independent in pure magnetite. On the other hand, in pyrrhotite, hematite and high-Ti titanomagnetite it may be clearly field-dependent. Consequently, the field-dependent AMS enables the magnetic fabric of the latter group of minerals to be separated from the whole-rock AMS. The methods for the determination of the field-dependent AMS consist of separate measurements of each specimen in several fields within the Rayleigh Law range and subsequent processing in which the field-independent and field-dependent AMS components are calculated. The disadvantage of this technique is that each specimen must be measured several times, which is relatively laborious and time consuming. Recently, a new 3D rotator was developed for the MFK1-FA Kappabridge, which rotates the specimen simultaneously about two axes with different velocities. The measurement is fully automated in such a way that, once the specimen is inserted into the rotator, it requires no additional manipulation to measure the full AMS tensor. Consequently, the 3D rotator enables to measure the AMS tensors in the pre-set field intensities without any operator interference. Whole procedure is controlled by newly developed Safyr5 software; once the measurements are finished, the acquired data are immediately processed and can be visualized in a standard way.

  8. Mechanisms of clay smear formation in 3D - a field study

    NASA Astrophysics Data System (ADS)

    Kettermann, Michael; Tronberens, Sebastian; Urai, Janos; Asmus, Sven

    2016-04-01

    Clay smears in sedimentary basins are important factors defining the sealing properties of faults. However, as clay smears are highly complex 3D structures, processes involved in the formation and deformation of clay smears are not well identified and understood. To enhance the prediction of sealing properties of clay smears extensive studies of these structures are necessary including the 3D information. We present extraordinary outcrop data from an open cast lignite mine (Hambach) in the Lower Rhine Embayment, Germany. The faults formed at a depth of 150 m, and have Shale Gouge Ratios between 0.1 and 0.3. Material in the fault zones is layered, with sheared sand, sheared clay and tectonically mixed sand-clay gouge. We studied the 3D thickness distribution of clay smear from a series of thin-spaced incremental cross-sections and several cross-sections in larger distances along the fault. Additionally, we excavated two large clay smear surfaces. Our observations show that clay smears are strongly affected by R- and R'-shears, mostly at the footwall side of our outcrops. These shears can locally cross and offset clay smears, forming holes. Thinnest parts of the clay smears are often located close to source layer cutoffs. Investigating the 3D thickness of the clay smears shows a heterogeneous distribution, rather than a continuous thinning of the smear with increasing distance to the source layers. We found two types of layered clay smears: one with continuous sheared sand between two clay smears providing vertical pathways for fluid flow, and one which consists of overlapping clay patches separated by sheared sand that provide a tortuous pathway across the clay smear. On smaller scale we identified grain-scale mixing as an important process for the formation of clay smears. Sand can be entrained into the clay smear by mixing from the surrounding host rock as well as due to intense shearing of sand lenses that were incorporated into the smear. This causes clay smears

  9. 3D-HST: A WIDE-FIELD GRISM SPECTROSCOPIC SURVEY WITH THE HUBBLE SPACE TELESCOPE

    SciTech Connect

    Brammer, Gabriel B.; Van Dokkum, Pieter G.; Skelton, Rosalind E.; Nelson, Erica; Bezanson, Rachel; Leja, Joel; Lundgren, Britt; Franx, Marijn; Fumagalli, Mattia; Patel, Shannon; Labbe, Ivo; Rix, Hans-Walter; Schmidt, Kasper B.; Da Cunha, Elisabete; Kriek, Mariska; Erb, Dawn K.; Fan, Xiaohui; Foerster Schreiber, Natascha; Illingworth, Garth D.; Magee, Dan; and others

    2012-06-01

    We present 3D-HST, a near-infrared spectroscopic Treasury program with the Hubble Space Telescope for studying the physical processes that shape galaxies in the distant universe. 3D-HST provides rest-frame optical spectra for a sample of {approx}7000 galaxies at 1 < z < 3.5, the epoch when {approx}60% of all star formation took place, the number density of quasars peaked, the first galaxies stopped forming stars, and the structural regularity that we see in galaxies today must have emerged. 3D-HST will cover three quarters (625 arcmin{sup 2}) of the CANDELS Treasury survey area with two orbits of primary WFC3/G141 grism coverage and two to four orbits with the ACS/G800L grism in parallel. In the IR, these exposure times yield a continuum signal-to-noise ratio of {approx}5 per resolution element at H{sub 140} {approx} 23.1 and a 5{sigma} emission-line sensitivity of {approx}5 Multiplication-Sign 10{sup -17} erg s{sup -1} cm{sup -2} for typical objects, improving by a factor of {approx}2 for compact sources in images with low sky background levels. The WFC3/G141 spectra provide continuous wavelength coverage from 1.1 to 1.6 {mu}m at a spatial resolution of {approx}0.''13, which, combined with their depth, makes them a unique resource for studying galaxy evolution. We present an overview of the preliminary reduction and analysis of the grism observations, including emission-line and redshift measurements from combined fits to the extracted grism spectra and photometry from ancillary multi-wavelength catalogs. The present analysis yields redshift estimates with a precision of {sigma}(z) = 0.0034(1 + z), or {sigma}(v) Almost-Equal-To 1000 km s{sup -1}. We illustrate how the generalized nature of the survey yields near-infrared spectra of remarkable quality for many different types of objects, including a quasar at z = 4.7, quiescent galaxies at z {approx} 2, and the most distant T-type brown dwarf star known. The combination of the CANDELS and 3D-HST surveys will

  10. Unraveling near-field and far-field relationships for 3D SERS substrates--a combined experimental and theoretical analysis.

    PubMed

    Kurouski, Dmitry; Large, Nicolas; Chiang, Naihao; Greeneltch, Nathan; Carron, Keith T; Seideman, Tamar; Schatz, George C; Van Duyne, Richard P

    2016-03-01

    Simplicity and low cost has positioned inkjet paper- and fabric-based 3D substrates as two of the most commonly used surface-enhanced Raman spectroscopy (SERS) platforms for the detection and the identification of chemical and biological analytes down to the nanogram and femtogram levels. The relationship between far-field and near-field properties of these 3D SERS platforms remains poorly understood and warrants more detailed characterization. Here, we investigate the extremely weak optical scattering observed from commercial and home-fabricated paper-, as well as fabric-based 3D SERS substrates. Using wavelength scanned surface-enhanced Raman excitation spectroscopy (WS-SERES) and finite-difference time-domain (FDTD) calculations we were able to determine their near-field SERS properties and correlate them with morphological and far-field properties. It was found that nanoparticle dimers, trimers, and higher order nanoparticle clusters primarily determine the near-field properties of these substrates. At the same time, the far-field response of 3D SERS substrates either originates primarily from the monomers or cannot be clearly defined. Using FDTD we demonstrate that LSPR bands of nanoparticle aggregates near perfectly overlap with the maxima of the near-field surface-enhanced Raman scattering responses of the 3D SERS substrates. This behaviour of far-field spectroscopic properties and near-field surface-enhanced Raman scattering has not been previously observed for 2D SERS substrates, known as nanorod arrays. The combination of these analytical approaches provides a full spectroscopic characterization of 3D SERS substrates, while FDTD simulation can be used to design new 3D SERS substrates with tailored spectral characteristics. PMID:26858996

  11. Reinterpretation of nappe structures in the Central Alps Evidence from 3D foliation field modelling

    NASA Astrophysics Data System (ADS)

    Maxelon, M.; Mancktelow, N. S.

    2003-04-01

    The Lepontine Alps represent the classic region for both, fold nappe development at mid-crustal levels and fold interference patterns from outcrop to regional scale. They have also been proposed as models for rapid burial and exhumation. However, before such models can be applied or critically assessed, the geometry of the units involved must be accurately known in three dimensions and this is a challenging task in this complex region. The three-dimensional geometry of the Lepontine nappes is not established unequivocally, as the integration and visualisation of structural data reflecting at least five different deformation phases has not yet been achieved satisfactorily. The present study focusses on a combination of new structural mapping in critical and/or contradictory areas, existing observations and their geostatistical assessment with modern computer-based tools (Editeur Géologique, Gocad) in order to develop a testable three-dimensional model of the geometry of the Lepontine Nappes in the Central Alps. Here we present a regional-scale three dimensional model of the southern central part of the Lepontine Region, bordered by the Swiss-Italian frontier in the east and Valle Leventina to the west and by Biasca and Locarno to the north and south. The model visualises a geostatistical calculation of the dominant foliation field in three dimensions, based on field measurements. The present day tectonostratigraphy and nappe geometry are mainly influenced by the three earliest recognisable Alpine deformation phases D_1 to D_3. D_1 structures are associated with first-time crustal nappe emplacement. Lithologies that are interpreted as nappe separators - mainly Mesozoic sediments such as "Bündnerschiefer" - have mostly been interleaved between the nappes during D_1, which entails strong isoclinal folding and pronounced boudinage of the infolded lithologies, with the development of a penetrative foliation S_1. S_1 and the infolded Mesozoic have been intensely

  12. Stationary bound states of massless scalar fields around black holes and black hole analogues

    NASA Astrophysics Data System (ADS)

    Benone, Carolina L.; Crispino, Luís C. B.; Herdeiro, Carlos A. R.; Radu, Eugen

    2015-06-01

    We discuss stationary bound states, a.k.a. clouds, for a massless test scalar field around Kerr black holes (BHs) and spinning acoustic BH analogues. In view of the absence of a mass term, the trapping is achieved via enclosing the BH — scalar field system in a cavity and imposing Dirichlet or Neumann boundary conditions. We discuss the variation of these bounds states with the discrete parameters that label them, as well as their spatial distribution, complementing results in our previous work [C. L. Benone, L. C. B. Crispino, C. Herdeiro and E. Radu, Phys. Rev. D91 (2015) 104038].

  13. Dynamics of scalar field dark matter with a cosh-like potential

    SciTech Connect

    Matos, Tonatiuh; Vazquez, Jose Alberto; Luevano, Jose-Ruben; Quiros, Israel; Urena-Lopez, L. Arturo

    2009-12-15

    The dynamics of a cosmological model of dark matter and dark energy represented by a scalar field endowed with a cosh-like potential plus a cosmological constant is investigated in detail. By studying the appropriate phase space of the equations of motion, it is shown that a standard evolution of the Universe is recovered for appropriate values of the free parameters, and that the only late-time attractor is always the de Sitter solution. We also discuss the appearance of scalar field oscillations corresponding to dark matter behavior.

  14. Quintessential inflation with canonical and noncanonical scalar fields and Planck 2015 results

    NASA Astrophysics Data System (ADS)

    Geng, Chao-Qiang; Hossain, Md. Wali; Myrzakulov, R.; Sami, M.; Saridakis, Emmanuel N.

    2015-07-01

    We investigate two classes of models of quintessential inflation, based upon canonical as well as noncanonical scalar fields. In particular, introducing potentials steeper than the standard exponential, we construct models that can give rise to a successful inflationary phase, with signatures consistent with Planck 2015 results. Additionally, using nonminimal coupling of the scalar field with massive neutrino matter, we obtain the standard thermal history of the Universe, with late-time cosmic acceleration as the last stage of evolution. In both cases, inflation and late-time acceleration are connected by a tracker solution.

  15. On the Infrared Behaviour of Landau Gauge Yang-Mills Theory with Differently Charged Scalar Fields

    SciTech Connect

    Alkofer, Reinhard; Maas, Axel; Macher, Veronika; Fister, Leonard

    2011-05-23

    Recently it has been argued that infrared singularities of the quark-gluon vertex of Landau gauge QCD can confine static quarks via a linear potential. It is demonstrated that the same mechanism also may confine fundamental scalar fields. This opens the possibility that within functional approaches static confinement is an universal property of the gauge sector even though it is formally represented in the functional equations of the matter sector. The colour structure of Dyson-Schwinger equations for fundamental and adjoint scalar fields is determined for the gauge groups SU(N) and G(2) exhibiting interesting cancellations purely due to colour algebra.

  16. Induced inflation from a 5D purely kinetic scalar field formalism on warped product spaces

    NASA Astrophysics Data System (ADS)

    Madriz Aguilar, J. E.

    2008-01-01

    Considering a separable and purely kinetic 5D scalar field we investigate the induction of 4D scalar potentials on a 4D constant foliation on the class of 5D warped product space-times. We obtain a quantum confinement of the inflaton modes given naturally from the model for at least a class of warping factors. We can recover a 4D inflationary scenario where the inflationary potential is geometrically induced from 5D and the effective equation of state in 4D that includes the effect of the inflaton field and the induced matter is Peff≃-ρeff.

  17. Measurements of stress fields near a grain boundary: Exploring blocked arrays of dislocations in 3D

    DOE PAGESBeta

    Guo, Y.; Collins, D. M.; Tarleton, E.; Hofmann, F.; Tischler, J.; Liu, W.; Xu, R.; Wilkinson, A. J.; Britton, T. B.

    2015-06-24

    The interaction between dislocation pile-ups and grain boundaries gives rise to heterogeneous stress distributions when a structural metal is subjected to mechanical loading. Such stress heterogeneity leads to preferential sites for damage nucleation and therefore is intrinsically linked to the strength and ductility of polycrystalline metals. To date the majority of conclusions have been drawn from 2D experimental investigations at the sample surface, allowing only incomplete observations. Our purpose here is to significantly advance the understanding of such problems by providing quantitative measurements of the effects of dislocation pile up and grain boundary interactions in 3D. This is accomplished throughmore » the application of differential aperture X-ray Laue micro-diffraction (DAXM) and high angular resolution electron backscatter diffraction (HR-EBSD) techniques. Our analysis demonstrates a similar strain characterization capability between DAXM and HR-EBSD and the variation of stress intensity in 3D reveals that different parts of the same grain boundary may have different strengths in resisting slip transfer, likely due to the local grain boundary curvature.« less

  18. Measurements of stress fields near a grain boundary: Exploring blocked arrays of dislocations in 3D

    SciTech Connect

    Guo, Y.; Collins, D. M.; Tarleton, E.; Hofmann, F.; Tischler, J.; Liu, W.; Xu, R.; Wilkinson, A. J.; Britton, T. B.

    2015-06-24

    The interaction between dislocation pile-ups and grain boundaries gives rise to heterogeneous stress distributions when a structural metal is subjected to mechanical loading. Such stress heterogeneity leads to preferential sites for damage nucleation and therefore is intrinsically linked to the strength and ductility of polycrystalline metals. To date the majority of conclusions have been drawn from 2D experimental investigations at the sample surface, allowing only incomplete observations. Our purpose here is to significantly advance the understanding of such problems by providing quantitative measurements of the effects of dislocation pile up and grain boundary interactions in 3D. This is accomplished through the application of differential aperture X-ray Laue micro-diffraction (DAXM) and high angular resolution electron backscatter diffraction (HR-EBSD) techniques. Our analysis demonstrates a similar strain characterization capability between DAXM and HR-EBSD and the variation of stress intensity in 3D reveals that different parts of the same grain boundary may have different strengths in resisting slip transfer, likely due to the local grain boundary curvature.

  19. Imaging of Passive Scalar Fields by Filtered Rayleigh Scattering

    NASA Astrophysics Data System (ADS)

    Kearney, Sean; Grasser, Thomas; Beresh, Steven; Schefer, Robert

    2002-11-01

    Filtered Rayleigh Scattering (FRS) is a molecular-filter-based, laser-diagnostic approach for multiparameter flowfield imaging that has been gaining popularity over the past 5-10 years [1]. Advantages of FRS for noninvasive gas-phase imaging include: (1) elimination of particle or chemical seeding requirements, (2) increased optical noise rejection allowing imaging close to walls and in "dirty" laboratory environments, (3) imaging of multiple flowfield parameters with a single diagnostic. In this work, the construction and performance of a FRS optical system for passive scalar imaging at Sandia National Laboratories is presented. Data were obtained in an open lab where no special precautions for the elimination of room particulate were made. Results from nonreacting jets and from a premixed flame are shown. Temperature imaging in a nonreacting, steady calibration jet reveals the precision of the time-averaged FRS thermometry results to be ±20 K, or 4of the characteristic temperature difference, while the single-laser-pulse precision is degraded to approximately ±40-50 K. These results are adequate for combustion thermometry purposes. Relative to the jet temperature measurements, species concentration imaging of a buoyant helium jet displays increased signal dynamic range and further improved precision. Reacting flow measurements from the combustion-product region of a methane-air Hencken-type premixed flame are also presented and a comparison of FRS and coherent anti-Stokes Raman scattering (CARS) experiments to calculated adiabatic-equilibrium product temperatures is made which validates the suitability of our FRS instrument for combustion temperature imaging. [1]G.S. Elliott, N. Glumac, and C.D. Carter, Meas. Sci. Tech., 12, 452, 2001.

  20. 3D galaxy clustering with future wide-field surveys: Advantages of a spherical Fourier-Bessel analysis

    NASA Astrophysics Data System (ADS)

    Lanusse, F.; Rassat, A.; Starck, J.-L.

    2015-06-01

    Context. Upcoming spectroscopic galaxy surveys are extremely promising to help in addressing the major challenges of cosmology, in particular in understanding the nature of the dark universe. The strength of these surveys, naturally described in spherical geometry, comes from their unprecedented depth and width, but an optimal extraction of their three-dimensional information is of utmost importance to best constrain the properties of the dark universe. Aims: Although there is theoretical motivation and novel tools to explore these surveys using the 3D spherical Fourier-Bessel (SFB) power spectrum of galaxy number counts Cℓ(k,k'), most survey optimisations and forecasts are based on the tomographic spherical harmonics power spectrum C(ij)_ℓ. The goal of this paper is to perform a new investigation of the information that can be extracted from these two analyses in the context of planned stage IV wide-field galaxy surveys. Methods: We compared tomographic and 3D SFB techniques by comparing the forecast cosmological parameter constraints obtained from a Fisher analysis. The comparison was made possible by careful and coherent treatment of non-linear scales in the two analyses, which makes this study the first to compare 3D SFB and tomographic constraints on an equal footing. Nuisance parameters related to a scale- and redshift-dependent galaxy bias were also included in the computation of the 3D SFB and tomographic power spectra for the first time. Results: Tomographic and 3D SFB methods can recover similar constraints in the absence of systematics. This requires choosing an optimal number of redshift bins for the tomographic analysis, which we computed to be N = 26 for zmed ≃ 0.4, N = 30 for zmed ≃ 1.0, and N = 42 for zmed ≃ 1.7. When marginalising over nuisance parameters related to the galaxy bias, the forecast 3D SFB constraints are less affected by this source of systematics than the tomographic constraints. In addition, the rate of increase of the

  1. 3D palmprint and hand imaging system based on full-field composite color sinusoidal fringe projection technique.

    PubMed

    Zhang, Zonghua; Huang, Shujun; Xu, Yongjia; Chen, Chao; Zhao, Yan; Gao, Nan; Xiao, Yanjun

    2013-09-01

    Palmprint and hand shape, as two kinds of important biometric characteristics, have been widely studied and applied to human identity recognition. The existing research is based mainly on 2D images, which lose the third-dimensional information. The biological features extracted from 2D images are distorted by pressure and rolling, so the subsequent feature matching and recognition are inaccurate. This paper presents a method to acquire accurate 3D shapes of palmprint and hand by projecting full-field composite color sinusoidal fringe patterns and the corresponding color texture information. A 3D imaging system is designed to capture and process the full-field composite color fringe patterns on hand surface. Composite color fringe patterns having the optimum three fringe numbers are generated by software and projected onto the surface of human hand by a digital light processing projector. From another viewpoint, a color CCD camera captures the deformed fringe patterns and saves them for postprocessing. After compensating for the cross talk and chromatic aberration between color channels, three fringe patterns are extracted from three color channels of a captured composite color image. Wrapped phase information can be calculated from the sinusoidal fringe patterns with high precision. At the same time, the absolute phase of each pixel is determined by the optimum three-fringe selection method. After building up the relationship between absolute phase map and 3D shape data, the 3D palmprint and hand are obtained. Color texture information can be directly captured or demodulated from the captured composite fringe pattern images. Experimental results show that the proposed method and system can yield accurate 3D shape and color texture information of the palmprint and hand shape. PMID:24085070

  2. Possible Statistics of Two Coupled Random Fields: Application to Passive Scalar

    NASA Technical Reports Server (NTRS)

    Dubrulle, B.; He, Guo-Wei; Bushnell, Dennis M. (Technical Monitor)

    2000-01-01

    We use the relativity postulate of scale invariance to derive the similarity transformations between two coupled scale-invariant random elds at different scales. We nd the equations leading to the scaling exponents. This formulation is applied to the case of passive scalars advected i) by a random Gaussian velocity field; and ii) by a turbulent velocity field. In the Gaussian case, we show that the passive scalar increments follow a log-Levy distribution generalizing Kraichnan's solution and, in an appropriate limit, a log-normal distribution. In the turbulent case, we show that when the velocity increments follow a log-Poisson statistics, the passive scalar increments follow a statistics close to log-Poisson. This result explains the experimental observations of Ruiz et al. about the temperature increments.

  3. Lagrangian model for the evolution of turbulent magnetic and passive scalar fields

    SciTech Connect

    Hater, T.; Grauer, R.; Homann, H.

    2011-01-15

    In this Brief Report we present an extension of the recent fluid deformation (RFD) closure introduced by Chevillard and Meneveau [L. Chevillard and C. Meneveau, Phys. Rev. Lett. 97, 174501 (2006)] which was developed for modeling the time evolution of Lagrangian fluctuations in incompressible Navier-Stokes turbulence. We apply the RFD closure to study the evolution of magnetic and passive scalar fluctuations. This comparison is especially interesting since the stretching term for the magnetic field and for the gradient of the passive scalar are similar but differ by a sign such that the effect of stretching and compression by the turbulent velocity field is reversed. Probability density functions (PDFs) of magnetic fluctuations and fluctuations of the gradient of the passive scalar obtained from the RFD closure are compared against PDFs obtained from direct numerical simulations.

  4. Tangible 3D printouts of scientific data volumes with FOSS - an emerging field for research

    NASA Astrophysics Data System (ADS)

    Löwe, Peter; Klump, Jens; Wickert, Jens; Ludwig, Marcel; Frigeri, Alessandro

    2013-04-01

    Humans are very good in using both hands and eyes for tactile pattern recognition: The german verb for understanding, "begreifen" literally means "getting a (tactile) grip on a matter". This proven and time honoured concept has been in use since prehistoric times. While the amount of scientific data continues to grow, researchers still need all the support to help them visualize the data content before their inner eye. Immersive data-visualisations are helpful, yet fail to provide tactile feedback as provided from tangible objects. The need for tangible representations of geospatial information to solve real world problems eventually led to the advent of 3d-globes by M. Behaim in the 15th century and has continued since. The production of a tangible representation of a scientific data set with some fidelity is just the final step of an arc, leading from the physical world into scientific reasoning and back: The process starts with a physical observation, or a model, by a sensor which produces a data stream which is turned into a geo-referenced data set. This data is turned into a volume representation which is converted into command sequences for the printing device, leading to the creation of a 3d-printout. Finally, the new specimen has to be linked to its metadata to ensure its scientific meaning and context. On the technical side, the production of a tangible data-print has been realized as a pilot workflow based on the Free and Open Source Geoinformatics tools GRASS GIS and Paraview to convert scientific data volume into stereolithography datasets (stl) for printing on a RepRap printer. The initial motivation to use tangible representations of complex data was the task of quality assessments on tsunami simulation data sets in the FP7 TRIDEC project (www.tridec-online.eu). For this, 3d-prints of space time cubes of tsunami wave spreading patterns were produced. This was followed by print-outs of volume data derived from radar sounders (MARSIS, SHARAD) imaging

  5. 3-D solid modeling of sandstone reservoirs using NURBS: A case study of Noonen Ranch Field, Denver Basin, Colorado

    SciTech Connect

    Fisher, T.R. ); Wales, R.Q. )

    1990-02-01

    In this paper, the authors describe an experimental attempt to represent sandstone petroleum reservoirs as 3-D solids using Intergraphs object-oriented NURBS (non-uniform rational B-splines) based engineering modeling system. Initial data interpretation, well log correlation, map preparation and combination were done using GIPSE geological interpretation software. The modeling efforts were concentrated on Noonen Ranch, a small producing field in the Denver Basin of Colorado.

  6. Dynamic complex optical fields for optical manipulation, 3D microscopy, and photostimulation of neurotransmitters

    NASA Astrophysics Data System (ADS)

    Daria, Vincent R.; Stricker, Christian; Bekkers, John; Redman, Steve; Bachor, Hans

    2010-08-01

    We demonstrate a multi-functional system capable of multiple-site two-photon excitation of photo-sensitive compounds as well as transfer of optical mechanical properties on an array of mesoscopic particles. We use holographic projection of a single Ti:Sapphire laser operating in femtosecond pulse mode to show that the projected three-dimensional light patterns have sufficient spatiotemporal photon density for multi-site two-photon excitation of biological fluorescent markers and caged neurotransmitters. Using the same laser operating in continuous-wave mode, we can use the same light patterns for non-invasive transfer of both linear and orbital angular momentum on a variety of mesoscopic particles. The system also incorporates high-speed scanning using acousto-optic modulators to rapidly render 3D images of neuron samples via two-photon microscopy.

  7. Stationary cylindrically symmetric spacetimes with a massless scalar field and a nonpositive cosmological constant

    NASA Astrophysics Data System (ADS)

    Erices, Cristián; Martínez, Cristián

    2015-08-01

    The general stationary cylindrically symmetric solution of Einstein-massless scalar field system with a nonpositive cosmological constant is presented. It is shown that the general solution is characterized by four integration constants. Two of these essential parameters have a local meaning and characterize the gravitational field strength. The other two have a topological origin, as they define an improper coordinate transformation that provides the stationary solution from the static one. The Petrov scheme is considered to explore the effects of the scalar field on the algebraic classification of the solutions. In general, these spacetimes are of type I. However, the presence of the scalar field allows us to find a nonvacuum type O solution and a wider family of type D spacetimes, in comparison with the vacuum case. The mass and angular momentum of the solution are computed using the Regge-Teitelboim method in the case of a negative cosmological constant. In absence of a cosmological constant, the curvature singularities in the vacuum solutions can be removed by including a phantom scalar field, yielding nontrivial locally homogeneous spacetimes. These spacetimes are of particular interest, as they have all their curvature invariants constant.

  8. Nonlinear perturbations of cosmological scalar fields with non-standard kinetic terms

    NASA Astrophysics Data System (ADS)

    Renaux-Petel, Sébastien; Tasinato, Gianmassimo

    2009-01-01

    We adopt a covariant formalism to derive exact evolution equations for nonlinear perturbations, in a universe dominated by two scalar fields. These scalar fields are characterized by non-canonical kinetic terms and an arbitrary field space metric, a situation typically encountered in inflationary models inspired by string theory. We decompose the nonlinear scalar perturbations into adiabatic and entropy modes, generalizing the definition adopted in the linear theory, and we derive the corresponding exact evolution equations. We also obtain a nonlinear generalization of the curvature perturbation on uniform density hypersurfaces, showing that on large scales it is sourced only by the nonlinear version of the entropy perturbation. We then expand these equations to second order in the perturbations, using a coordinate based formalism. Our results are relatively compact and elegant and enable one to identify the new effects coming from the non-canonical structure of the scalar fields Lagrangian. We also explain how to analyze, in our formalism, the interesting scenario of multi-field Dirac-Born-Infeld inflation.

  9. Late-time evolution of a self-interacting scalar field in the spacetime of a dilaton black hole

    SciTech Connect

    Moderski, Rafal; Rogatko, Marek

    2001-08-15

    We investigate the late-time tails of self-interacting (massive) scalar fields in the spacetime of a dilaton black hole. Following the no hair theorem we examine the mechanism by which self-interacting scalar hair decays. We reveal that the intermediate asymptotic behavior of the considered field perturbations is dominated by an oscillatory inverse power-law decaying tail. The numerical simulations show that at very late time, massive self-interacting scalar hair decays slower than any power law.

  10. Lessons in modern digital field geology: Open source software, 3D techniques, and the new world of digital mapping

    NASA Astrophysics Data System (ADS)

    Pavlis, Terry; Hurtado, Jose; Langford, Richard; Serpa, Laura

    2014-05-01

    Although many geologists refuse to admit it, it is time to put paper-based geologic mapping into the historical archives and move to the full potential of digital mapping techniques. For our group, flat map digital geologic mapping is now a routine operation in both research and instruction. Several software options are available, and basic proficiency with the software can be learned in a few hours of instruction and practice. The first practical field GIS software, ArcPad, remains a viable, stable option on Windows-based systems. However, the vendor seems to be moving away from ArcPad in favor of mobile software solutions that are difficult to implement without GIS specialists. Thus, we have pursued a second software option based on the open source program QGIS. Our QGIS system uses the same shapefile-centric data structure as our ArcPad system, including similar pop-up data entry forms and generic graphics for easy data management in the field. The advantage of QGIS is that the same software runs on virtually all common platforms except iOS, although the Android version remains unstable as of this writing. A third software option we are experimenting with for flat map-based field work is Fieldmove, a derivative of the 3D-capable program Move developed by Midland Valley. Our initial experiments with Fieldmove are positive, particularly with the new, inexpensive (<300Euros) Windows tablets. However, the lack of flexibility in data structure makes for cumbersome workflows when trying to interface our existing shapefile-centric data structures to Move. Nonetheless, in spring 2014 we will experiment with full-3D immersion in the field using the full Move software package in combination with ground based LiDAR and photogrammetry. One new workflow suggested by our initial experiments is that field geologists should consider using photogrammetry software to capture 3D visualizations of key outcrops. This process is now straightforward in several software packages, and

  11. Three-dimensional black holes with conformally coupled scalar and gauge fields

    NASA Astrophysics Data System (ADS)

    Cárdenas, Marcela; Fuentealba, Oscar; Martínez, Cristián

    2014-12-01

    We consider three-dimensional gravity with negative cosmological constant in the presence of a scalar and an Abelian gauge field. Both fields are conformally coupled to gravity, the scalar field through a nonminimal coupling with the curvature and the gauge field by means of a Lagrangian given by a power of the Maxwell one. A sixth-power self-interaction potential, which does not spoil conformal invariance is also included in the action. Using a circularly symmetric ansatz, we obtain black hole solutions dressed with the scalar and gauge fields, which are regular on and outside the event horizon. These charged hairy black holes are asymptotically anti-de Sitter spacetimes. The mass and the electric charge are computed by using the Regge-Teitelboim Hamiltonian approach. If both leading and subleading terms of the asymptotic condition of the scalar field are present, a boundary condition that functionally relates them is required for determining the mass. Since the asymptotic form of the scalar field solution is defined by two integration constants, the boundary condition may or may not respect the asymptotic conformal symmetry. An analysis of the temperature and entropy of these black holes is presented. The temperature is a monotonically increasing function of the horizon radius as expected for asymptotically anti-de Sitter black holes. However, restrictions on the parameters describing the black holes are found by requiring the entropy to be positive, which, given the nonminimal coupling considered here, does not follow the area law. Remarkably, the same conditions ensure that the conformally related solutions become black holes in the Einstein frame.

  12. 3D model of small-scale density cavities in the auroral magnetosphere with field-aligned current

    NASA Astrophysics Data System (ADS)

    Bespalov, P. A.; Misonova, V. G.; Savina, O. N.

    2016-09-01

    We propose a 3D model of small-scale density cavities stimulated by an auroral field-aligned current and an oscillating field-aligned current of kinetic Alfvén waves. It is shown that when the field-aligned current increases so that the electron drift velocity exceeds a value of the order of the electron thermal velocity, the plasma becomes unstable to the formation of cavities with low density and strong electric field. The condition of instability is associated with the value of the background magnetic field. In the case of a relatively weak magnetic field (where the electron gyro-radius is greater than the ion acoustic wavelength), the current instability can lead to the formation of one-dimensional cavities along the magnetic field. In the case of a stronger magnetic field (where the ion acoustic wavelength is greater than the electron gyro-radius, but still is less than the ion gyro-radius), the instability can lead to the formation of 3D density cavities. In this case, the spatial scales of the cavity, both along and across the background magnetic field, can be comparable, and at the earlier stage of the cavity formation they are of the order of the ion acoustic wavelength. Rarefactions of the cavity density are accompanied by an increase in the electric field and are limited by the pressure of bipolar electric fields that occur within them. The estimates of typical density cavity characteristics and the results of numerical solutions agree with known experimental data: small-scale structures with a sufficiently strong electric field are observed in the auroral regions with strong field-aligned current.

  13. Handling and quantifying uncertainty in geological 3D models: A methodological approach based on remote-sensing and field work.

    NASA Astrophysics Data System (ADS)

    Baumberger, Roland; Wehrens, Philip; Herwegh, Marco

    2013-04-01

    Geological 3D models are always just an approximation of a complex natural situation. This is especially true in regions, where hard underground data (e.g. bore holes, tunnel mappings and seismic data) is lacking. One of the key problems while developing valid geological 3D models is the three-dimensional spatial distribution of geological structures, particularly with increasing distance from the surface. In our study, we investigate the Alpine 3D Deformation of the crystalline rocks of the Aar massif (Haslital valley, Central Switzerland). Deformation in this area is dominated by different sets of large-scale shear zones, which acted under both ductile and brittle deformation conditions. The goal of our study is the prediction of the geometry and the evolution of the structures in 3D space and time. A key point in our project is the generation of a reliable 3D model of today's structures. In this sense, estimation of the reliability of the surface information for the extrapolation to depth is mandatory. Based on our data, a method will be presented that contributes to a possible solution of the questions addressed above. The basic idea consists of the fact that (i) mechanical anisotropies as shear zones and faults show prominent three-dimensional information in the landscape, (ii) these geometries can be used as input data for a geological 3D model and (iii) that the 3D information mentioned allows a projection to depth. As a great advantage of the study area, a large number of underground tunnels exist, which allow to evaluate the quality of the aforementioned extrapolations. The method is based on a combined remote-sensing and field work approach: morphological incisions recognized on digital elevation models as well as on aerial photos on the computer screen were evaluated, described and attributed in detail in the field. Our approach is based on a six step workflow: (1) Elaboration of a large-scale structural map of geological structures by means of remote

  14. Calculation of the potentials and 3D electric fields in a proton decay detector

    SciTech Connect

    Lari, R.J.; Dawson, J.W.; Turner, L.R.

    1987-01-01

    An electrostatic detector for measuring the lifetime of the proton has been modeled in three dimensions. Linear hexahedral finite elements were used and the potential obtained at all nodes. The three components of the electric field were calculated and used to determine field lines, calculate drift fields and drift times. Effective aperture calculations agreed with the measurements.

  15. Anomalous scaling of a scalar field advected by turbulence

    SciTech Connect

    Kraichnan, R.H.

    1995-12-31

    Recent work leading to deduction of anomalous scaling exponents for the inertial range of an advected passive field from the equations of motion is reviewed. Implications for other turbulence problems are discussed.

  16. Quasistationary solutions of self-gravitating scalar fields around black holes

    NASA Astrophysics Data System (ADS)

    Sanchis-Gual, Nicolas; Degollado, Juan Carlos; Montero, Pedro J.; Font, José A.

    2015-02-01

    Recent perturbative studies have shown the existence of long-lived, quasistationary configurations of scalar fields around black holes. In particular, such configurations have been found to survive for cosmological time scales, which is a requirement for viable dark matter halo models in galaxies based on such types of structures. In this paper we perform a series of numerical relativity simulations of dynamical nonrotating black holes surrounded by self-gravitating scalar fields. We solve numerically the coupled system of equations formed by the Einstein and the Klein-Gordon equations under the assumption of spherical symmetry using spherical coordinates. Our results confirm the existence of oscillating, long-lived, self-gravitating scalar field configurations around nonrotating black holes in highly dynamical spacetimes with a rich scalar field environment. Our numerical simulations are long-term stable and allow for the extraction of the resonant frequencies to make a direct comparison with results obtained in the linearized regime. A by-product of our simulations is the existence of a degeneracy in plausible long-lived solutions of Einstein equations that would induce the same motion of test particles, either with or without the existence of quasibound states.

  17. Confining the scalar field of the Kaluza-Klein wormhole soliton

    SciTech Connect

    Clement, G. )

    1989-08-01

    The Maison five-to-three dimensional reduction, generalized to the case of five-dimensional general relativity with sources, is applied to the problem of confining the scalar field of the Kaluza-Klein wormhole soliton by a very weak perfect fluid source, without affecting the spatial geometry of this localized solution.

  18. Fixed point analysis of a scalar theory with an external field

    SciTech Connect

    Bonanno, A.; Zappala, D.

    1997-09-01

    A momentum dependent projection of the Wegner-Hougton equation is derived for a scalar theory coupled to an external field. This formalism is useful to discuss the phase diagram of the theory. In particular we study some properties of the Gaussian fixed point. {copyright} {ital 1997} {ital The American Physical Society}

  19. Out-of-Core Compression and Decompression of Large n-Dimensional Scalar Fields

    SciTech Connect

    Ibarria, L; Lindstrom, P; Rossignac, J; Szymczak, A

    2003-05-07

    We present a simple method for compressing very large and regularly sampled scalar fields. Our method is particularly attractive when the entire data set does not fit in memory and when the sampling rate is high relative to the feature size of the scalar field in all dimensions. Although we report results for R{sup 3} and R{sup 4} data sets, the proposed approach may be applied to higher dimensions. The method is based on the new Lorenzo predictor, introduced here, which estimates the value of the scalar field at each sample from the values at processed neighbors. The predicted values are exact when the n-dimensional scalar field is an implicit polynomial of degree n-1. Surprisingly, when the residuals (differences between the actual and predicted values) are encoded using arithmetic coding, the proposed method often outperforms wavelet compression in an L{infinity} sense. The proposed approach may be used both for lossy and lossless compression and is well suited for out-of-core compression and decompression, because a trivial implementation, which sweeps through the data set reading it once, requires maintaining only a small buffer in core memory, whose size barely exceeds a single n-1 dimensional slice of the data.

  20. Solar system tests of scalar field models with an exponential potential

    SciTech Connect

    Paramos, J.; Bertolami, O.

    2008-04-15

    We consider a scenario where the dynamics of a scalar field is ruled by an exponential potential, such as those arising from some quintessence-type models, and aim at obtaining phenomenological manifestations of this entity within our Solar System. To do so, we assume a perturbative regime, derive the perturbed Schwarzschild metric, and extract the relevant post-Newtonian parameters.

  1. Symmetry breaking in (gravitating) scalar field models describing interacting boson stars and Q-balls

    SciTech Connect

    Brihaye, Yves; Caebergs, Thierry; Hartmann, Betti; Minkov, Momchil

    2009-09-15

    We investigate the properties of interacting Q-balls and boson stars that sit on top of each other in great detail. The model that describes these solutions is essentially a (gravitating) two-scalar field model where both scalar fields are complex. We construct interacting Q-balls or boson stars with arbitrarily small charges but finite mass. We observe that in the interacting case--where the interaction can be either due to the potential or due to gravity--two types of solutions exist for equal frequencies: one for which the two-scalar fields are equal, but also one for which the two-scalar fields differ. This constitutes a symmetry breaking in the model. While for Q-balls asymmetric solutions have always corresponding symmetric solutions and are thus likely unstable to decay to symmetric solutions with lower energy, there exists a parameter regime for interacting boson stars, where only asymmetric solutions exist. We present the domain of existence for two interacting nonrotating solutions as well as for solutions describing the interaction between rotating and nonrotating Q-balls and boson stars, respectively.

  2. Pulsed magnetic field measurement system based on colossal magnetoresistance-B-scalar sensors for railgun investigation.

    PubMed

    Stankevič, T; Medišauskas, L; Stankevič, V; Balevičius, S; Żurauskienė, N; Liebfried, O; Schneider, M

    2014-04-01

    A high pulsed magnetic field measurement system based on the use of CMR-B-scalar sensors was developed for the investigations of the electrodynamic processes in electromagnetic launchers. The system consists of four independent modules (channels) which are controlled by a personal computer. Each channel is equipped with a CMR-B-scalar sensor connected to the measurement device-B-scalar meter. The system is able to measure the magnitude of pulsed magnetic fields from 0.3 T to 20 T in the range from DC up to 20 kHz independently of the magnetic field direction. The measurement equipment circuit is electrically separated from the ground and shielded against low and high frequency electromagnetic noise. The B-scalar meters can be operated in the presence of ambient pulsed magnetic fields with amplitudes up to 0.2 T and frequencies higher than 1 kHz. The recorded signals can be transmitted to a personal computer in a distance of 25 m by means of a fiber optic link. The system was tested using the electromagnetic railgun RAFIRA installed at the French-German Research Institute of Saint-Louis, France. PMID:24784635

  3. Green's function of a free massive scalar field on the lattice

    SciTech Connect

    Borasoy, B.; Krebs, H.

    2005-09-01

    We propose a method to calculate the Green's function of a free massive scalar field on the lattice numerically to very high precision. For masses m<2 (in lattice units) the massive Green's function can be expressed recursively in terms of the massless Green's function and just two additional mass-independent constants.

  4. Quantification of gully volume using very high resolution DSM generated through 3D reconstruction from airborne and field digital imagery

    NASA Astrophysics Data System (ADS)

    Castillo, Carlos; Zarco-Tejada, Pablo; Laredo, Mario; Gómez, Jose Alfonso

    2013-04-01

    Major advances have been made recently in automatic 3D photo-reconstruction techniques using uncalibrated and non-metric cameras (James and Robson, 2012). However, its application on soil conservation studies and landscape feature identification is currently at the outset. The aim of this work is to compare the performance of a remote sensing technique using a digital camera mounted on an airborne platform, with 3D photo-reconstruction, a method already validated for gully erosion assessment purposes (Castillo et al., 2012). A field survey was conducted in November 2012 in a 250 m-long gully located in field crops on a Vertisol in Cordoba (Spain). The airborne campaign was conducted with a 4000x3000 digital camera installed onboard an aircraft flying at 300 m above ground level to acquire 6 cm resolution imagery. A total of 990 images were acquired over the area ensuring a large overlap in the across- and along-track direction of the aircraft. An ortho-mosaic and the digital surface model (DSM) were obtained through automatic aerial triangulation and camera calibration methods. For the field-level photo-reconstruction technique, the gully was divided in several reaches to allow appropriate reconstruction (about 150 pictures taken per reach) and, finally, the resulting point clouds were merged into a unique mesh. A centimetric-accuracy GPS provided a benchmark dataset for gully perimeter and distinguishable reference points in order to allow the assessment of measurement errors of the airborne technique and the georeferenciation of the photo-reconstruction 3D model. The uncertainty on the gully limits definition was explicitly addressed by comparison of several criteria obtained by 3D models (slope and second derivative) with the outer perimeter obtained by the GPS operator identifying visually the change in slope at the top of the gully walls. In this study we discussed the magnitude of planimetric and altimetric errors and the differences observed between the

  5. Automated bone segmentation from large field of view 3D MR images of the hip joint.

    PubMed

    Xia, Ying; Fripp, Jurgen; Chandra, Shekhar S; Schwarz, Raphael; Engstrom, Craig; Crozier, Stuart

    2013-10-21

    Accurate bone segmentation in the hip joint region from magnetic resonance (MR) images can provide quantitative data for examining pathoanatomical conditions such as femoroacetabular impingement through to varying stages of osteoarthritis to monitor bone and associated cartilage morphometry. We evaluate two state-of-the-art methods (multi-atlas and active shape model (ASM) approaches) on bilateral MR images for automatic 3D bone segmentation in the hip region (proximal femur and innominate bone). Bilateral MR images of the hip joints were acquired at 3T from 30 volunteers. Image sequences included water-excitation dual echo stead state (FOV 38.6 × 24.1 cm, matrix 576 × 360, thickness 0.61 mm) in all subjects and multi-echo data image combination (FOV 37.6 × 23.5 cm, matrix 576 × 360, thickness 0.70 mm) for a subset of eight subjects. Following manual segmentation of femoral (head-neck, proximal-shaft) and innominate (ilium+ischium+pubis) bone, automated bone segmentation proceeded via two approaches: (1) multi-atlas segmentation incorporating non-rigid registration and (2) an advanced ASM-based scheme. Mean inter- and intra-rater reliability Dice's similarity coefficients (DSC) for manual segmentation of femoral and innominate bone were (0.970, 0.963) and (0.971, 0.965). Compared with manual data, mean DSC values for femoral and innominate bone volumes using automated multi-atlas and ASM-based methods were (0.950, 0.922) and (0.946, 0.917), respectively. Both approaches delivered accurate (high DSC values) segmentation results; notably, ASM data were generated in substantially less computational time (12 min versus 10 h). Both automated algorithms provided accurate 3D bone volumetric descriptions for MR-based measures in the hip region. The highly computational efficient ASM-based approach is more likely suitable for future clinical applications such as extracting bone-cartilage interfaces for potential cartilage segmentation. PMID:24077264

  6. Automated bone segmentation from large field of view 3D MR images of the hip joint

    NASA Astrophysics Data System (ADS)

    Xia, Ying; Fripp, Jurgen; Chandra, Shekhar S.; Schwarz, Raphael; Engstrom, Craig; Crozier, Stuart

    2013-10-01

    Accurate bone segmentation in the hip joint region from magnetic resonance (MR) images can provide quantitative data for examining pathoanatomical conditions such as femoroacetabular impingement through to varying stages of osteoarthritis to monitor bone and associated cartilage morphometry. We evaluate two state-of-the-art methods (multi-atlas and active shape model (ASM) approaches) on bilateral MR images for automatic 3D bone segmentation in the hip region (proximal femur and innominate bone). Bilateral MR images of the hip joints were acquired at 3T from 30 volunteers. Image sequences included water-excitation dual echo stead state (FOV 38.6 × 24.1 cm, matrix 576 × 360, thickness 0.61 mm) in all subjects and multi-echo data image combination (FOV 37.6 × 23.5 cm, matrix 576 × 360, thickness 0.70 mm) for a subset of eight subjects. Following manual segmentation of femoral (head-neck, proximal-shaft) and innominate (ilium+ischium+pubis) bone, automated bone segmentation proceeded via two approaches: (1) multi-atlas segmentation incorporating non-rigid registration and (2) an advanced ASM-based scheme. Mean inter- and intra-rater reliability Dice's similarity coefficients (DSC) for manual segmentation of femoral and innominate bone were (0.970, 0.963) and (0.971, 0.965). Compared with manual data, mean DSC values for femoral and innominate bone volumes using automated multi-atlas and ASM-based methods were (0.950, 0.922) and (0.946, 0.917), respectively. Both approaches delivered accurate (high DSC values) segmentation results; notably, ASM data were generated in substantially less computational time (12 min versus 10 h). Both automated algorithms provided accurate 3D bone volumetric descriptions for MR-based measures in the hip region. The highly computational efficient ASM-based approach is more likely suitable for future clinical applications such as extracting bone-cartilage interfaces for potential cartilage segmentation.

  7. Modeling Recent Large Earthquakes Using the 3-D Global Wave Field

    NASA Astrophysics Data System (ADS)

    Hjörleifsdóttir, V.; Kanamori, H.; Tromp, J.

    2003-04-01

    We use the spectral-element method (SEM) to accurately compute waveforms at periods of 40 s and longer for three recent large earthquakes using 3D Earth models and finite source models. The M_w~7.6, Jan~26, 2001, Bhuj, India event had a small rupture area and is well modeled at long periods with a point source. We use this event as a calibration event to investigate the effects of 3-D Earth models on the waveforms. The M_w~7.9, Nov~11, 2001, Kunlun, China, event exhibits a large directivity (an asymmetry in the radiation pattern) even at periods longer than 200~s. We used the source time function determined by Kikuchi and Yamanaka (2001) and the overall pattern of slip distribution determined by Lin et al. to guide the wave-form modeling. The large directivity is consistent with a long fault, at least 300 km, and an average rupture speed of 3±0.3~km/s. The directivity at long periods is not sensitive to variations in the rupture speed along strike as long as the average rupture speed is constant. Thus, local variations in rupture speed cannot be ruled out. The rupture speed is a key parameter for estimating the fracture energy of earthquakes. The M_w~8.1, March~25, 1998, event near the Balleny Islands on the Antarctic Plate exhibits large directivity in long period surface waves, similar to the Kunlun event. Many slip models have been obtained from body waves for this earthquake (Kuge et al. (1999), Nettles et al. (1999), Antolik et al. (2000), Henry et al. (2000) and Tsuboi et al. (2000)). We used the slip model from Henry et al. to compute SEM waveforms for this event. The synthetic waveforms show a good fit to the data at periods from 40-200~s, but the amplitude and directivity at longer periods are significantly smaller than observed. Henry et al. suggest that this event comprised two subevents with one triggering the other at a distance of 100 km. To explain the observed directivity however, a significant amount of slip is required between the two subevents

  8. Barbero-Immirzi parameter as a scalar field: K-inflation from loop quantum gravity?

    SciTech Connect

    Taveras, Victor; Yunes, Nicolas

    2008-09-15

    We consider a loop-quantum gravity inspired modification of general relativity, where the Holst action is generalized by making the Barbero-Immirzi (BI) parameter a scalar field, whose value could be dynamically determined. The modified theory leads to a nonzero torsion tensor that corrects the field equations through quadratic first derivatives of the BI field. Such a correction is equivalent to general relativity in the presence of a scalar field with nontrivial kinetic energy. This stress energy of this field is automatically covariantly conserved by its own dynamical equations of motion, thus satisfying the strong equivalence principle. Every general relativistic solution remains a solution to the modified theory for any constant value of the BI field. For arbitrary time-varying BI fields, a study of cosmological solutions reduces the scalar-field stress energy to that of a pressureless perfect fluid in a comoving reference frame, forcing the scale-factor dynamics to be equivalent to those of a stiff equation of state. Upon ultraviolet completion, this model could provide a natural mechanism for k inflation, where the role of the inflaton is played by the BI field and inflation is driven by its nontrivial kinetic energy instead of a potential.

  9. Barbero-Immirzi parameter as a scalar field: K-inflation from loop quantum gravity?

    NASA Astrophysics Data System (ADS)

    Taveras, Victor; Yunes, Nicolás

    2008-09-01

    We consider a loop-quantum gravity inspired modification of general relativity, where the Holst action is generalized by making the Barbero-Immirzi (BI) parameter a scalar field, whose value could be dynamically determined. The modified theory leads to a nonzero torsion tensor that corrects the field equations through quadratic first derivatives of the BI field. Such a correction is equivalent to general relativity in the presence of a scalar field with nontrivial kinetic energy. This stress energy of this field is automatically covariantly conserved by its own dynamical equations of motion, thus satisfying the strong equivalence principle. Every general relativistic solution remains a solution to the modified theory for any constant value of the BI field. For arbitrary time-varying BI fields, a study of cosmological solutions reduces the scalar-field stress energy to that of a pressureless perfect fluid in a comoving reference frame, forcing the scale-factor dynamics to be equivalent to those of a stiff equation of state. Upon ultraviolet completion, this model could provide a natural mechanism for k inflation, where the role of the inflaton is played by the BI field and inflation is driven by its nontrivial kinetic energy instead of a potential.

  10. Production of scalar particles in electric field on de Sitter expanding universe

    NASA Astrophysics Data System (ADS)

    Băloi, Mihaela-Andreea

    2014-08-01

    The scalar particle production from vacuum in the presence of an electric field, on the de Sitter spacetime is studied. We use perturbation methods to define the transition amplitude. We obtain that the momentum is not conserved in this process. The probability density of pair production is computed by squaring the transition amplitude. Our graphical representations show that, the probability of scalar particle production was important only in the early stages of the universe, when Hubble's constant was very large in comparison with the mass of the particle. Also, we propose here a criterion for particle-antiparticle separation.

  11. Coexistence of black holes and a long-range scalar field in cosmology.

    PubMed

    Zloshchastiev, Konstantin G

    2005-04-01

    The exactly solvable scalar hairy black hole model (originated from the modern high-energy theory) is proposed. It turns out that the existence of black holes is strongly correlated to global scalar field, in a sense that they mutually impose bounds upon their physical parameters like the black hole mass (lower bound) or the cosmological constant (upper bound). We consider the same model also as a cosmological one and show that it agrees with recent experimental data; additionally, it provides a unified quintessence-like description of dark energy and dark matter. PMID:15903901

  12. Unified dark energy and dark matter from a scalar field different from quintessence

    SciTech Connect

    Gao Changjun; Kunz, Martin; Liddle, Andrew R.; Parkinson, David

    2010-02-15

    We explore unification of dark matter and dark energy in a theory containing a scalar field of non-Lagrangian type, obtained by direct insertion of a kinetic term into the energy-momentum tensor. This scalar is different from quintessence, having an equation of state between -1 and 0 and a zero sound speed in its rest frame. We solve the equations of motion for an exponential potential via a rewriting as an autonomous system, and demonstrate the observational viability of the scenario, for sufficiently small exponential potential parameter {lambda}, by comparison to a compilation of kinematical cosmological data.

  13. Tomographic reconstruction of circularly polarized high-harmonic fields: 3D attosecond metrology

    PubMed Central

    Chen, Cong; Tao, Zhensheng; Hernández-García, Carlos; Matyba, Piotr; Carr, Adra; Knut, Ronny; Kfir, Ofer; Zusin, Dimitry; Gentry, Christian; Grychtol, Patrik; Cohen, Oren; Plaja, Luis; Becker, Andreas; Jaron-Becker, Agnieszka; Kapteyn, Henry; Murnane, Margaret

    2016-01-01

    Bright, circularly polarized, extreme ultraviolet (EUV) and soft x-ray high-harmonic beams can now be produced using counter-rotating circularly polarized driving laser fields. Although the resulting circularly polarized harmonics consist of relatively simple pairs of peaks in the spectral domain, in the time domain, the field is predicted to emerge as a complex series of rotating linearly polarized bursts, varying rapidly in amplitude, frequency, and polarization. We extend attosecond metrology techniques to circularly polarized light by simultaneously irradiating a copper surface with circularly polarized high-harmonic and linearly polarized infrared laser fields. The resulting temporal modulation of the photoelectron spectra carries essential phase information about the EUV field. Utilizing the polarization selectivity of the solid surface and by rotating the circularly polarized EUV field in space, we fully retrieve the amplitude and phase of the circularly polarized harmonics, allowing us to reconstruct one of the most complex coherent light fields produced to date. PMID:26989782

  14. Tomographic Reconstruction of Circularly Polarized High Harmonic Fields: 3D Attosecond Metrology

    NASA Astrophysics Data System (ADS)

    Chen, Cong; Tao, Zhensheng; Hernández-García, Carlos; Matyba, Piotr; Carr, Adra; Knut, Ronny; Kfir, Ofer; Zusin, Dimitry; Gentry, Christian; Grychtol, Patrick; Cohen, Oren; Plaja, Lius; Becker, Andreas; Jaron-Becker, Agnieszka; Kapteyn, Henry; Murnane, Margaret

    Bright, circularly polarized, extreme ultraviolet (EUV) and soft X-ray high harmonic beams can now be produced using counter-rotating circularly polarized driving laser fields. In the time domain, the field is predicted to emerge as a complex series of rotating linearly polarized bursts, varying rapidly in amplitude, frequency and polarization. Here, we extend attosecond metrology techniques to circularly polarized light for the first time by simultaneously irradiating a copper surface with circularly polarized high harmonic and linearly polarized infrared laser fields. The resulting temporal modulation of the photoelectron spectra carries essential phase information about the EUV field. Utilizing the polarization selectivity of the solid surface and by rotating the circularly polarized EUV field in space, we fully retrieve the amplitude and phase of the circularly polarized harmonics, allowing us to reconstruct one of the most complex coherent light fields produced to date.

  15. Can symmetry transitions of complex fields enable 3-d control of fluid vorticity?

    SciTech Connect

    Martin, James E.; Solis, Kyle Jameson

    2015-08-01

    Methods of inducing vigorous noncontact fluid flow are important to technologies involving heat and mass transfer and fluid mixing, since they eliminate the need for moving parts, pipes and seals, all of which compromise system reliability. Unfortunately, traditional noncontact flow methods are few, and have limitations of their own. We have discovered two classes of fields that can induce fluid vorticity without requiring either gravity or a thermal gradient. The first class we call Symmetry-Breaking Rational Fields. These are triaxial fields comprised of three orthogonal components, two ac and one dc. The second class is Rational Triad Fields, which differ in that all three components are alternating. In this report we quantify the induced vorticity for a wide variety of fields and consider symmetry transitions between these field types. These transitions give rise to orbiting vorticity vectors, a technology for non-contact, non-stationary fluid mixing.

  16. Assessing soil water storage distribution under sprinkler irrigation by coupling 3D simulations and field observations

    NASA Astrophysics Data System (ADS)

    Taha, Uday; Shabeeb, Ahmed; dragonetti, giovanna; Lamaddalena, Nicola; Coppola, Antonio

    2016-04-01

    This work analyzed the variability of sprinkler irrigation application over a bare soil, both in terms of water application efficiency and uniformity, by integrating and comparing the information on the irrigation depth data (ID), as measured by catch cans, soil water storage in the upper root zone, as measured by TDR probes, and a 3D simulations of water flow in soils. Three irrigation tests were performed at three different pressures (2, 3 and 4 bar). A lateral water redistribution was observed and simulated after each irrigation event by comparing spatial distributions of site-specific water application efficiency (AEs), as well as ratios of site-specific actual water storage increase (SWEs) and irrigation depth (IDs) to the water content before irrigation. Because of soil water redistribution processes, distribution uniformity based on soil storages was systematically higher than the catch can uniformity. The obvious consequence of lateral water redistribution processes was that the soil smoothing action on non-uniformity observed at the surface increased both with depth and over time. At a given depth the uniformity of soil water storages always attained the same value, whatever the pressure considered and the catch can-based uniformity coefficient. It was concluded that, for the case of random distribution of ID, the uniformity of water storages is driven by the soil behavior rather than by the irrigation system.

  17. Correlations of Surface Deformation and 3D Flow Field in a Compliant Wall Turbulent Channel Flow.

    NASA Astrophysics Data System (ADS)

    Wang, Jin; Zhang, Cao; Katz, Joseph

    2015-11-01

    This study focuses on the correlations between surface deformation and flow features, including velocity, vorticity and pressure, in a turbulent channel flow over a flat, compliant Polydimethylsiloxane (PDMS) wall. The channel centerline velocity is 2.5 m/s, and the friction Reynolds number is 2.3x103. Analysis is based on simultaneous measurements of the time resolved 3D velocity and surface deformation using tomographic PIV and Mach-Zehnder Interferometry. The volumetric pressure distribution is calculated plane by plane by spatially integrating the material acceleration using virtual boundary, omni-directional method. Conditional sampling based on local high/low pressure and deformation events reveals the primary flow structures causing the deformation. High pressure peaks appear at the interface between sweep and ejection, whereas the negative deformations peaks (dent) appear upstream, under the sweeps. The persistent phase lag between flow and deformations are presumably caused by internal damping within the PDMS. Some of the low pressure peaks and strong ejections are located under the head of hairpin vortices, and accordingly, are associated with positive deformation (bump). Others bumps and dents are correlated with some spanwise offset large inclined quasi-streamwise vortices that are not necessarily associated with hairpins. Sponsored by ONR.

  18. Scalar field probes of power-law space-time singularities

    NASA Astrophysics Data System (ADS)

    Blau, Matthias; Frank, Denis; Weiss, Sebastian

    2006-08-01

    We analyse the effective potential of the scalar wave equation near generic space-time singularities of power-law type (Szekeres-Iyer metrics) and show that the effective potential exhibits a universal and scale invariant leading inverse square behaviour ~ x-2 in the ``tortoise coordinate'' x provided that the metrics satisfy the strict Dominant Energy Condition (DEC). This result parallels that obtained in [1] for probes consisting of families of massless particles (null geodesic deviation, a.k.a. the Penrose Limit). The detailed properties of the scalar wave operator depend sensitively on the numerical coefficient of the x-2-term, and as one application we show that timelike singularities satisfying the DEC are quantum mechanically singular in the sense of the Horowitz-Marolf (essential self-adjointness) criterion. We also comment on some related issues like the near-singularity behaviour of the scalar fields permitted by the Friedrichs extension.

  19. Scalar particle in general inertial and gravitational fields and conformal invariance revisited

    NASA Astrophysics Data System (ADS)

    Silenko, Alexander J.

    2013-08-01

    The new manifestation of conformal invariance for a massless scalar particle in a Riemannian spacetime of general relativity is found. Conformal transformations conserve the Hamiltonian and wave function in the Foldy-Wouthuysen representation. Similarity of manifestations of conformal invariance for massless scalar and Dirac particles is proved. New exact Foldy-Wouthuysen Hamiltonians are derived for both massive and massless scalar particles in a general static spacetime and in a frame rotating in the Kerr field approximated by a spatially isotropic metric. The latter case covers an observer on the ground of the Earth or on a satellite and takes into account the Lense-Thirring effect. High-precision formulas are obtained for an arbitrary spacetime metric. General quantum-mechanical equations of motion are derived. Their classical limit coincides with corresponding classical equations.

  20. Self-Sensing, Ultralight, and Conductive 3D Graphene/Iron Oxide Aerogel Elastomer Deformable in a Magnetic Field.

    PubMed

    Xu, Xiang; Li, Hui; Zhang, Qiangqiang; Hu, Han; Zhao, Zongbin; Li, Jihao; Li, Jingye; Qiao, Yu; Gogotsi, Yury

    2015-04-28

    Three-dimensional (3D) graphene aerogels (GA) show promise for applications in supercapacitors, electrode materials, gas sensors, and oil absorption due to their high porosity, mechanical strength, and electrical conductivity. However, the control, actuation, and response properties of graphene aerogels have not been well studied. In this paper, we synthesized 3D graphene aerogels decorated with Fe3O4 nanoparticles (Fe3O4/GA) by self-assembly of graphene with simultaneous decoration by Fe3O4 nanoparticles using a modified hydrothermal reduction process. The aerogels exhibit up to 52% reversible magnetic field-induced strain and strain-dependent electrical resistance that can be used to monitor the degree of compression/stretching of the material. The density of Fe3O4/GA is only about 5.8 mg cm(-3), making it an ultralight magnetic elastomer with potential applications in self-sensing soft actuators, microsensors, microswitches, and environmental remediation. PMID:25792130

  1. 3D-resolved fluorescence and phosphorescence lifetime imaging using temporal focusing wide-field two-photon excitation

    PubMed Central

    Choi, Heejin; Tzeranis, Dimitrios S.; Cha, Jae Won; Clémenceau, Philippe; de Jong, Sander J. G.; van Geest, Lambertus K.; Moon, Joong Ho; Yannas, Ioannis V.; So, Peter T. C.

    2012-01-01

    Fluorescence and phosphorescence lifetime imaging are powerful techniques for studying intracellular protein interactions and for diagnosing tissue pathophysiology. While lifetime-resolved microscopy has long been in the repertoire of the biophotonics community, current implementations fall short in terms of simultaneously providing 3D resolution, high throughput, and good tissue penetration. This report describes a new highly efficient lifetime-resolved imaging method that combines temporal focusing wide-field multiphoton excitation and simultaneous acquisition of lifetime information in frequency domain using a nanosecond gated imager from a 3D-resolved plane. This approach is scalable allowing fast volumetric imaging limited only by the available laser peak power. The accuracy and performance of the proposed method is demonstrated in several imaging studies important for understanding peripheral nerve regeneration processes. Most importantly, the parallelism of this approach may enhance the imaging speed of long lifetime processes such as phosphorescence by several orders of magnitude. PMID:23187477

  2. PDF approach for turbulent scalar field: Some recent developments

    NASA Technical Reports Server (NTRS)

    Gao, Feng

    1993-01-01

    The probability density function (PDF) method has been proven a very useful approach in turbulence research. It has been particularly effective in simulating turbulent reacting flows and in studying some detailed statistical properties generated by a turbulent field There are, however, some important questions that have yet to be answered in PDF studies. Our efforts in the past year have been focused on two areas. First, a simple mixing model suitable for Monte Carlo simulations has been developed based on the mapping closure. Secondly, the mechanism of turbulent transport has been analyzed in order to understand the recently observed abnormal PDF's of turbulent temperature fields generated by linear heat sources.

  3. 3D Analysis of Wake Field Excitation in a Dielectric Loaded Rectangular Resonator

    SciTech Connect

    Sotnikov, Gennadij V.; Onishchenko, Ivan N.; Marshall, Thomas C.

    2006-11-27

    The results of a three-dimensional analysis of wake field excitation in a slab-symmetric dielectric-loaded resonator by rigid electron bunches are presented. The complete set of solutions, including the solenoidal and potential parts of the electromagnetic field, consists of LSM and LSE modes. Each of the LSM and LSE modes contains odd and even waves. A numerical analysis of wake field excitation by symmetric electron bunches is carried out. The three-dimensional spatial structure of the longitudinal electric field is investigated. The influence of the drift vacuum channel on the wake field amplitude and on the coherent summation of wakefields for a regular sequence of bunches is studied.

  4. Wave Phase-Sensitive Transformation of 3d-Straining of Mechanical Fields

    NASA Astrophysics Data System (ADS)

    Smirnov, I. N.; Speranskiy, A. A.

    2015-11-01

    It is the area of research of oscillatory processes in elastic mechanical systems. Technical result of innovation is creation of spectral set of multidimensional images which reflect time-correlated three-dimensional vector parameters of metrological, and\\or estimated, and\\or design parameters of oscillations in mechanical systems. Reconstructed images of different dimensionality integrated in various combinations depending on their objective function can be used as homeostatic profile or cybernetic image of oscillatory processes in mechanical systems for an objective estimation of current operational conditions in real time. The innovation can be widely used to enhance the efficiency of monitoring and research of oscillation processes in mechanical systems (objects) in construction, mechanical engineering, acoustics, etc. Concept method of vector vibrometry based on application of vector 3D phase- sensitive vibro-transducers permits unique evaluation of real stressed-strained states of power aggregates and loaded constructions and opens fundamental innovation opportunities: conduct of continuous (on-line regime) reliable monitoring of turboagregates of electrical machines, compressor installations, bases, supports, pipe-lines and other objects subjected to damaging effect of vibrations; control of operational safety of technical systems at all the stages of life cycle including design, test production, tuning, testing, operational use, repairs and resource enlargement; creation of vibro-diagnostic systems of authentic non-destructive control of anisotropic characteristics of materials resistance of power aggregates and loaded constructions under outer effects and operational flaws. The described technology is revolutionary, universal and common for all branches of engineering industry and construction building objects.

  5. Non-canonical scalar fields and their applications in cosmology and astrophysics

    NASA Astrophysics Data System (ADS)

    Gauthier, Christopher S.

    In this thesis we will discuss several issues concerning cosmological applications of non-canonical scalar fields, which are generically referred to as k-essence. First, we consider two examples of k-essence. These are the rolling tachyon and static spherically symmetric solutions of non-canonical scalar fields in flat space. We find constraints on the form of the allowed interactions in the first case and on the choice of boundary conditions in the latter. For the rolling tachyon we find that at late times the tachyon matter behaves like a non-relativistic dust, thus making it a dark matter candidate. For the static spherically symmetric solutions we show that solutions which are finite at the origin must have negative energy density there. Next, we consider static spherically symmetric solutions of non-canonical scalar fields coupled to gravity as a way to explain dark matter halos as a coherent state of the scalar field. Consistent solutions are found with a smooth scalar profile which can describe observed rotation curves. The non-trivial solutions have negative energy density near the origin, though the total energy is positive. We also reconsider the no scalar hair theorems for black holes with emphasis on asymptotic boundary conditions and superluminal propagation. After this we show that, for general scalar fields, stationary configurations are possible for shift symmetric theories only. This symmetry with respect to constant translations in field space should either be manifest in the original field variables or reveal itself after an appropriate field redefinition. In particular this result implies that neither k-essence nor quintessence can have exact steady state/Bondi accretion onto black holes. Finally, we find that stationary field configurations are necessarily linear in Killing time, provided that shift symmetry is realized in terms of these field variables. The next discussion outlines a general program for reconstructing the action of non

  6. 3-D modeling of water balance and soil erosion in a clayey subsurface drained agricultural field in boreal climate

    NASA Astrophysics Data System (ADS)

    Turunen, M.; Warsta, L.; Koivusalo, H. J.; Paasonen-Kivekäs, M.; Nurminen, J.; Myllys, M.; Alakukku, L.; Äijö, H.; Puustinen, M.

    2012-12-01

    Fluxes of nutrients and other substances from cultivated fields cause eutrophication and deterioration of water quality in aquatic ecosystems worldwide. In order to develop effective strategies to control the environmental impacts of crop cultivation, it is crucial to identify the main transport pathways and the effects of different water management methods on the loads. Reduction of sediment loads is essential since sediment particles typically carry nutrients (especially sorbed phosphorus) and other potentially harmful substances, e.g. pesticides, from the fields to the adjacent surface waters. The novel part of this study was the investigation of suspended sediment transport in soil macropores to the subsurface drains and to the deep groundwater. We applied a 3-D distributed dual-permeability model (FLUSH) using a dataset collected from a subsurface drained, clayey agricultural field (15 ha) to holistically assess water balance, soil erosion and sediment transport from the field to an adjacent stream. The data set included five years of hydrological and water quality measurements from four intensively monitored field sections with different soil properties, topography, drainage systems (drain spacing and drain depth), drain installation methods (trenchless and trench drainage) and drain envelope materials (gravel and fiber). The 3-D model allowed us to quantify how soil erosion and sediment transport differed between the field sections within the field area. The simulations were conducted during snow- and frost-free periods. The simulation results include closure of water balance of the cultivated field, distribution of soil erosion and sediment transport within the field area and the effects of different subsurface drainage systems on sediment loads. The 3-D dual-permeability subsurface flow model was able to reproduce the measured drainflows and sediment fluxes in the clayey field and according to the simulations over 90% of drainflow waters were conveyed to

  7. Hamiltonian description of the parametrized scalar field in bounded spatial regions

    NASA Astrophysics Data System (ADS)

    Barbero G, J. Fernando; Margalef-Bentabol, Juan; Villaseñor, Eduardo J. S.

    2016-05-01

    We study the Hamiltonian formulation for a parametrized scalar field in a regular bounded spatial region subject to Dirichlet, Neumann and Robin boundary conditions. We generalize the work carried out by a number of authors on parametrized field systems to the interesting case where spatial boundaries are present. The configuration space of our models contains both smooth scalar fields defined on the spatial manifold and spacelike embeddings from the spatial manifold to a target spacetime endowed with a fixed Lorentzian background metric. We pay particular attention to the geometry of the infinite dimensional manifold of embeddings and the description of the relevant geometric objects: the symplectic form on the primary constraint submanifold and the Hamiltonian vector fields defined on it.

  8. 3-D RPIC Simulations of Relativistic Jets: Particle Acceleration, Magnetic Field Generation, and Emission

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Mizuno, Y.; Hardee, P.; Hededal, C. B.; Fishman, G. J.

    2006-01-01

    Recent PIC simulations using injected relativistic electron-ion (electro-positron) jets into ambient plasmas show that acceleration occurs in relativistic shocks. The Weibel instability created in shocks is responsible for particle acceleration, and generation and amplification of highly inhomogeneous, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection in relativistic jets. The "jitter" radiation from deflected electrons has different properties than the synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understand the complex time evolution and spectral structure in relativistic jets and gamma-ray bursts. We will present recent PIC simulations which show particle acceleration and magnetic field generation. We will also calculate associated self-consistent emission from relativistic shocks.

  9. 3-D Magnetic Field Analysis of Permanent Magnet Motor Considering Magnetizing, Demagnetizing and Eddy Current Loss

    NASA Astrophysics Data System (ADS)

    Miyata, Koji; Aoyama, Yasuaki; Yokoyama, Tomonori; Ohashi, Ken; Kondo, Minoru; Matsuoka, Koichi

    Rare-earth magnets, which have high energy product, have been widely used in several industrial applications such as voice coil motors for hard disk drives, MRI for medical devices and motors for electric vehicle. In order to realize a small and high performance device, the magnetic field analysis techniques are required. In this paper, we applied the magnetic field analysis to design the permanent magnet synchronous motors into the rail traction system. In the inverter fed motor drive, the eddy current loss in the permanent magnet increased. We simulated the effect that eddy current was decreased by using a divided permanent magnet. Furthermore, the permanent magnet tends to be demagnetized due to the effect of a demagnetizing field formed at high temperatures. However, according to our analysis, demagnetization does not occur within the range of our design specifications. Also, we performed magnetic field analysis assuming a pulse-type magnetization process and designed an optimal magnetizing coil.

  10. Rapid 3-D forward modeling of gravity and gravity gradient tensor fields

    NASA Astrophysics Data System (ADS)

    Longwei, C.; Dai, S.; Zhang, Q.

    2014-12-01

    Three-dimensional inversion are the key process in gravity exploration. In the commonly used scheme of inversion, the subsurface of the earth is usually divided into many small prism blocks (or grids) with variable density values. A key task in gravity inversion is to calculate the composite fields (gravity and gravity gradient tensor) generated by all these grids, this is known as forward modeling. In general forward modeling is memory-demanding and time-consuming. One scheme to rapidly calculate the fields is to implement it in Fourier domain and use fast Fourier transform algorithm. The advantage of the Fourier domain method is, obviously, much faster. However, the intrinsic edge effect of the Fourier domain method degrades the precision of the calculated fields. We have developed an innovative scheme to directly calculate the fields in spatial domain. There are two key points in this scheme. One key point is spatial discretization. Spatial convolution formula is discretized using an approach similar to normal difference method. A key idea during discretization is to use the analytical formula of a cubic prism, and this makes the resultant discrete formula have clear physical meaning: it embodies the superposition principle of the fields and is the exact formula to calculate the fields generated by all grids. The discretization only requires the grids have the same dimension in horizontal directions, and grids in different layers may have different dimension in vertical direction, and this offers more flexibility for inversion. Another key point is discrete convolution calculation. We invoke a high efficient two-dimensional discrete convolution algorithm, and it guarantees both time-saving and memory-saving. Its memory cost has the same order as the number of grids. Numerical test result shows that for a model with a dimension of 1000x1000x201 grids, it takes about 300s to calculate the fields on 1000x1000 field points in a personal computer with 3.4-GHz CPU

  11. Binary 3-D Markov Chain Random Fields: Finite-size Scaling Analysis of Percolation Properties

    NASA Astrophysics Data System (ADS)

    Harter, T.

    2004-12-01

    Percolation phenomena in random media have been extensively studied in a wide variety of fields in physics, chemistry, engineering, bio-, earth-, and environmental sciences. Most work has focused on uncorrelated random fields. The critical behavior in media with short-range correlations is thought to be identical to that in uncorrelated systems. However, the percolation threshold, pc, which is 0.3116 in uncorrelated media, has been observed to vary with the correlation scale and also with the random field type. Here, we present percolation properties and finite-size scaling effects in three-dimensional binary cubic lattices represented by correlated Markov-chain random fields and compare them to those in sequential Gaussian and sequential indicator random fields. We find that the computed percolation threshold in correlated random fields is significantly lower than in the uncorrelated lattice and decreases with increasing correlation scale. The rate of decrease rapidly flattens out for correlation lengths larger than 2-3 grid-blocks. At correlation scales of 5-6 grid blocks, pc is found to be 0.126 for the Markov chain random fields and slightly higher for sequential Gaussian and indicator random fields. The universal scaling constants for mean cluster size, backbone fraction, and connectivity are found to be consistent with results on uncorrelated lattices. For numerical studies, it is critical to understand finite-size effects on the percolation and associated phase connectivity properties of lattices. We present detailed statistical results on the percolation properties in finite sized lattice and their dependence on correlation scale. We show that appropriate grid resolution and choice of simulation boundaries is critical to properly simulate correlated natural geologic systems, which may display significant finite-size effects.

  12. The structure of Nevada`s Grant Canyon and Bacon Flat oil fields from 3-D seismic data

    SciTech Connect

    Johnson, E.H.; Zwart, D.W.

    1995-06-01

    The 20 million barrel Grant Canyon structure and its satellite feature, the one million barrel Bacon Flat field, are located at the eastern edge of Railroad Valley, Nevada. Utilizing an eleven square mile 3-D seismic survey, we have unraveled the complicated structure of the field area. The seismic data were calibrated to known geology with 21 wells drilled prior to the 1993 3-D survey, and 4 recent wells. The 3-D data cube provided vertical 2-D seismic lines every 60 feet. Horizontal slices of the data cube rendered {open_quotes}map views{close_quotes} of the structural trends. Still, the interpretation of this complex area was difficult, hampered by extreme velocity variations in the valley fill sediments that degraded data resolution and skewed the imaged structures. The Grant Canyon and Bacon Flat reservoirs are shown to be remnants of detached Devonian rocks that rest upon a northwest-trending salient of younger Paleozoic rocks. The Paleozoic rocks that form the salient are truncated to the southeast against the Troy Intrusive. Beneath the salient, the flank of the intrusive dips about 30 degrees northwest. We show Bacon Flat to be an isolated closure northwest of Grant Canyon field. However, on the south flank of the Grant Canyon reservoir, a significant oil accumulation was trapped on the down side of a normal fault, 400 feet low to the oil column of the field. This appears to be anomalous for a carbonate reservoir with extraordinary permeability, but suggests that more oil may be trapped in the area, on the flanks of producing structures.

  13. VOFI - A library to initialize the volume fraction scalar field

    NASA Astrophysics Data System (ADS)

    Bnà, S.; Manservisi, S.; Scardovelli, R.; Yecko, P.; Zaleski, S.

    2016-03-01

    The VOFI library has been developed to accurately calculate the volume fraction field demarcated by implicitly-defined fluid interfaces in Cartesian grids with cubic cells. The method enlists a number of algorithms to compute the integration limits and the local height function, that is the integrand of a double Gauss-Legendre integration with a variable number of nodes. Tests in two and three dimensions are presented to demonstrate the accuracy of the method and are provided in the software distribution with C/C++ and FORTRAN interfaces.

  14. Quantized scalar field as DM: the axion's case

    SciTech Connect

    Barranco, J.; Bernal, A.

    2008-12-04

    We derive a rough estimation of the radius and the mass of a self-gravitating system made of axions. The system is a stationary solution of the Einstein-Klein-Gordon equations with a source term given by the vacuum expectation value of the energy-momentum operator constructed from the axion field. We found that such system would have masses of the order of asteroids ({approx}10{sup -10} M{sub {center_dot}}) and radius of the order of few centimeters. Some implications of such type of objects are discussed.

  15. Mean-field diffusivities in passive scalar and magnetic transport in irrotational flows

    NASA Astrophysics Data System (ADS)

    Rädler, Karl-Heinz; Brandenburg, Axel; Del Sordo, Fabio; Rheinhardt, Matthias

    2011-10-01

    Certain aspects of the mean-field theory of turbulent passive scalar transport and of mean-field electrodynamics are considered with particular emphasis on aspects of compressible fluids. It is demonstrated that the total mean-field diffusivity for passive scalar transport in a compressible flow may well be smaller than the molecular diffusivity. This is in full analogy to an old finding regarding the magnetic mean-field diffusivity in an electrically conducting turbulently moving compressible fluid. These phenomena occur if the irrotational part of the motion dominates the vortical part, the Péclet or magnetic Reynolds number is not too large, and, in addition, the variation of the flow pattern is slow. For both the passive scalar and the magnetic cases several further analytical results on mean-field diffusivities and related quantities found within the second-order correlation approximation are presented, as well as numerical results obtained by the test-field method, which applies independently of this approximation. Particular attention is paid to nonlocal and noninstantaneous connections between the turbulence-caused terms and the mean fields. Two examples of irrotational flows, in which interesting phenomena in the above sense occur, are investigated in detail. In particular, it is demonstrated that the decay of a mean scalar in a compressible fluid under the influence of these flows can be much slower than without any flow, and can be strongly influenced by the so-called memory effect, that is, the fact that the relevant mean-field coefficients depend on the decay rates themselves.

  16. Scalarized photon analysis of spontaneous emission in the uniform magnetic field free-electron laser

    NASA Astrophysics Data System (ADS)

    Soln, Josip

    1990-04-01

    The recently developed concept of scalarized photons (formally photons of any polarization) is used to analyze the spontaneous emission in the uniform magnetic field free-electron laser in the microwave spectral region. With the electron beam energy of up to 10 MeV and the uniform magnetic field of up to 4 Tesla, the radiation (occurring with the fundamental and higher harmonic frequencies) can easily cover a 10- to 10,000 GHz spectral region.

  17. Dynamically Self-consistent Simulations of the 3D Gravity and Magnetic Fields to be Measured by Juno at Jupiter

    NASA Astrophysics Data System (ADS)

    Glatzmaier, G.

    2013-12-01

    In 2016 NASA's Juno spacecraft will begin making high fidelity gravity and magnetic measurements near the surface of Jupiter that will provide clues to Jupiter's internal structure and dynamics. To prepare for the interpretation of these data, we are producing 3D dynamo simulations that self-consistently solve for the gravity and magnetic fields throughout the interior and exterior of our simulated gas giant. Knowing the trajectories of the 34 11-day polar orbits Juno will make around Jupiter as Jupiter rotates, we calculate the three components of the gravity and magnetic fields that Juno would measure as a function of time for two different simulated giant planet dynamos: one having latitudinally banded zonal winds that exist only in a shallow surface layer and one with banded zonal winds that extend deep below the surface. The different dynamo solutions are obtained by making different specifications for poorly known quantities, like the amplitude and radial dependence of the effective viscous diffusivity within Jupiter. By identifying fundamental differences in the 3D data that Juno would collect for these two scenarios, we will provide a dynamically self-consistent test for inferring the structure and amplitude of the zonal winds in Jupiter's interior. For example, a latitudinally banded pattern of magnetic field measured by Juno would suggest that strong zonal winds extend well below the surface to where the electrical conductivity is high enough for the generation of Jupiter's magnetic field.

  18. Magnetic fields end-face effect investigation of HTS bulk over PMG with 3D-modeling numerical method

    NASA Astrophysics Data System (ADS)

    Qin, Yujie; Lu, Yiyun

    2015-09-01

    In this paper, the magnetic fields end-face effect of high temperature superconducting (HTS) bulk over a permanent magnetic guideway (PMG) is researched with 3D-modeling numerical method. The electromagnetic behavior of the bulk is simulated using finite element method (FEM). The framework is formulated by the magnetic field vector method (H-method). A superconducting levitation system composed of one rectangular HTS bulk and one infinite long PMG is successfully investigated using the proposed method. The simulation results show that for finite geometrical HTS bulk, even the applied magnetic field is only distributed in x-y plane, the magnetic field component Hz which is along the z-axis can be observed interior the HTS bulk.

  19. 3-D seismic over the Fausse Pointe Field: A case history of acquisition in a harsh environment

    SciTech Connect

    Duncan, P.M.; Nester, D.C.; Martin, J.A.; Moles, J.R.

    1995-12-31

    A 50 square mile 3D seismic survey was successfully acquired over Fausse Point Field in the latter half of 1994. The geophysical and logistical challenges of this project were immense. The steep dips and extensive range of target depths required a large shoot area with a relatively fine sampling interval. The surface, while essentially flat, included areas of cane field, crawfish ponds, thick brush, swamp, open lakes and deep canals -- all typical of southern Louisiana. Planning and permitting of the survey began in late 1993. Field operations began in June 1994 and were complete in January 1995. Field personnel numbered 150 at the peak of operations. More than 19,000 crew hours were required to complete the job at a cost of over 5,000,000. The project was complete on time and on budget. The resulting images of the salt dome and surrounding rocks are not only beautiful but are revealing many opportunities for new hydrocarbon development.

  20. Dosimetric Comparison Between Intensity-Modulated with Coplanar Field and 3D Conformal Radiotherapy with Noncoplanar Field for Postocular Invasion Tumor

    SciTech Connect

    Tu Wenyong; Liu Lu Zeng Jun; Yin Weidong; Li Yun

    2010-07-01

    This study presents a dosimetric optimization effort aiming to compare noncoplanar field (NCF) on 3 dimensions conformal radiotherapy (3D-CRT) and coplanar field (CF) on intensity-modulated radiotherapy (IMRT) planning for postocular invasion tumor. We performed a planning study on the computed tomography data of 8 consecutive patients with localized postocular invasion tumor. Four fields NCF 3D-CRT in the transverse plane with gantry angles of 0-10 deg., 30-45 deg., 240-270 deg., and 310-335 deg. degrees were isocentered at the center of gravity of the target volume. The geometry of the beams was determined by beam's eye view. The same constraints were prepared with between CF IMRT optimization and NCF 3D-CRT treatment. The maximum point doses (D max) for the different optic pathway structures (OPS) with NCF 3D-CRT treatment should differ in no more than 3% from those with the NCF IMRT plan. Dose-volume histograms (DVHs) were obtained for all targets and organ at risk (OAR) with both treatment techniques. Plans with NCF 3D-CRT and CF IMRT constraints on target dose in homogeneity were computed, as well as the conformity index (CI) and homogeneity index (HI) in the target volume. The PTV coverage was optimal with both NCF 3D-CRT and CF IMRT plans in the 8 tumor sites. No difference was noted between the two techniques for the average D{sub max} and D{sub min} dose. NCF 3D-CRT and CF IMRT will yield similar results on CI. However, HI was a significant difference between NCF 3D-CRT and CF IMRT plan (p < 0.001). Physical endpoints for target showed the mean target dose to be low in the CF IMRT plan, caused by a large target dose in homogeneity (p < 0.001). The impact of NCF 3D-CRT versus CF IMRT set-up is very slight. NCF3D-CRT is one of the treatment options for postocular invasion tumor. However, constraints for OARs are needed.

  1. Vacuum energy density and pressure of a massive scalar field

    NASA Astrophysics Data System (ADS)

    Mera, Fernando Daniel; Fulling, S. A.

    2015-06-01

    With a view toward application of the Pauli-Villars regularization method to the Casimir energy of boundaries, we calculate the expectation values of the components of the stress tensor of a confined massive field in 1+1 space-time dimensions. Previous papers by Hays and Fulling are bridged and generalized. The Green function for the time-independent Schrödinger equation is constructed from the Green function for the whole line by the method of images; equivalently, the one-dimensional system is solved exactly in terms of closed classical paths and periodic orbits. Terms in the energy density and in the eigenvalue density attributable to the two boundaries individually and those attributable to the confinement of the field to a finite interval are distinguished so that their physical origins are clear. Then the pressure is found similarly from the cylinder kernel, the Green function associated most directly with an exponential frequency cutoff of the Fourier mode expansion. Finally, we discuss how the theory could be rendered finite by the Pauli-Villars method.

  2. Decoding 3-D Reach and Grasp Kinematics from High-Frequency Local Field Potentials in Primate Primary Motor Cortex

    PubMed Central

    Zhuang, Jun; Vargas-Irwin, Carlos; Donoghue, John P.

    2011-01-01

    Intracortical microelectrode array recordings generate a variety of neural signals with potential application as control signals in neural interface systems. Previous studies have focused on single and multiunit activity, as well as low frequency local field potentials (LFPs), but have not explored higher frequency (>200 Hz) LFPs. In addition, the potential to decode three dimensional (3-D) reach and grasp kinematics based on LFPs has not been demonstrated. Here, we use mutual information and decoding analyses to probe the information content about 3-D reaching and grasping of 7 different LFP frequency bands in the range of 0.3 Hz – 400 Hz. LFPs were recorded via 96-microelectrode arrays in primary motor cortex (M1) of two monkeys performing free reaching to grasp moving objects. Mutual information analyses revealed that higher frequency bands (e.g. 100 – 200 Hz and 200 – 400 Hz) carried the most information about the examined kinematics. Furthermore, Kalman filter decoding revealed that broadband high frequency LFPs, likely reflecting multiunit activity, provided the best decoding performance as well as substantial accuracy in reconstructing reach kinematics, grasp aperture and aperture velocity. These results indicate that LFPs, especially high frequency bands, could be useful signals for neural interfaces controlling 3-D reach and grasp kinematics. PMID:20403782

  3. Pipe3D, a pipeline to analyze Integral Field Spectroscopy Data: II. Analysis sequence and CALIFA dataproducts

    NASA Astrophysics Data System (ADS)

    Sánchez, S. F.; Pérez, E.; Sánchez-Blázquez, P.; García-Benito, R.; Ibarra-Mede, H. J.; González, J. J.; Rosales-Ortega, F. F.; Sánchez-Menguiano, L.; Ascasibar, Y.; Bitsakis, T.; Law, D.; Cano-Díaz, M.; López-Cobá, C.; Marino, R. A.; Gil de Paz, A.; López-Sánchez, A. R.; Barrera-Ballesteros, J.; Galbany, L.; Mast, D.; Abril-Melgarejo, V.; Roman-Lopes, A.

    2016-04-01

    We present Pipe3D, an analysis pipeline based on the FIT3D fitting tool, developed to explore the properties of the stellar populations and ionized gas of integral field spectroscopy (IFS) data. Pipe3D was created to provide coherent, simple to distribute, and comparable dataproducts, independently of the origin of the data, focused on the data of the most recent IFU surveys (e.g., CALIFA, MaNGA, and SAMI), and the last generation IFS instruments (e.g., MUSE). In this article we describe the different steps involved in the analysis of the data, illustrating them by showing the dataproducts derived for NGC 2916, observed by CALIFA and P-MaNGA. As a practical example of the pipeline we present the complete set of dataproducts derived for the 200 datacubes that comprises the V500 setup of the CALIFA Data Release 2 (DR2), making them freely available through the network. Finally, we explore the hypothesis that the properties of the stellar populations and ionized gas of galaxies at the effective radius are representative of the overall average ones, finding that this is indeed the case.

  4. Small-Field Measurements of 3D Polymer Gel Dosimeters through Optical Computed Tomography

    PubMed Central

    Shih, Cheng-Ting; Lee, Yao-Ting; Wu, Shin-Hua; Yao, Chun-Hsu; Hsieh, Bor-Tsung

    2016-01-01

    With advances in therapeutic instruments and techniques, three-dimensional dose delivery has been widely used in radiotherapy. The verification of dose distribution in a small field becomes critical because of the obvious dose gradient within the field. The study investigates the dose distributions of various field sizes by using NIPAM polymer gel dosimeter. The dosimeter consists of 5% gelatin, 5% monomers, 3% cross linkers, and 5 mM THPC. After irradiation, a 24 to 96 hour delay was applied, and the gel dosimeters were read by a cone beam optical computed tomography (optical CT) scanner. The dose distributions measured by the NIPAM gel dosimeter were compared to the outputs of the treatment planning system using gamma evaluation. For the criteria of 3%/3 mm, the pass rates for 5 × 5, 3 × 3, 2 × 2, 1 × 1, and 0.5 × 0.5 cm2 were as high as 91.7%, 90.7%, 88.2%, 74.8%, and 37.3%, respectively. For the criteria of 5%/5 mm, the gamma pass rates of the 5 × 5, 3 × 3, and 2 × 2 cm2 fields were over 99%. The NIPAM gel dosimeter provides high chemical stability. With cone-beam optical CT readouts, the NIPAM polymer gel dosimeter has potential for clinical dose verification of small-field irradiation. PMID:26974434

  5. LDA measurement of the passage flow field in a 3-D airfoil cascade

    NASA Technical Reports Server (NTRS)

    Stauter, R. C.; Fleeter, S.

    1986-01-01

    Three-dimensional internal flow computational models are currently being developed to predict the flow through turbomachinery blade rows. For these codes to be of quantitative value, they must be verified with data obtained in experiments which model the fundamental flow phenomena. In this paper, the complete three-dimensional flow field through a subsonic annular cascade of cambered airfoils is experimentally quantified. In particular, detailed three-dimensional data are obtained to quantify the inlet velocity profile, the cascade passage velocity field, and the exit region flow field. The primary instrumentation for acquiring these data is a single-channel Laser Doppler Anemometer operating in the backscatter mode, with chordwise distributions of airfoil surface static pressure taps also utilized. Appropriate data are correlated with predictions from the MERIDL/TSONIC codes.

  6. Regional magnetic anomaly fields: 3D Taylor polynomial and surface spline models

    NASA Astrophysics Data System (ADS)

    Feng, Yan; Jiang, Yong; Jiang, Yi; Li, Zheng; Jiang, Jin; Liu, Zhong-Wei; Ye, Mei-Chen; Wang, Hong-Sheng; Li, Xiu-Ming

    2016-03-01

    We used data from 1960.0, 1970.0, 1980.0, 1990.0, and 2000.0 to study the geomagnetic anomaly field over the Chinese mainland by using the three-dimensional Taylor polynomial (3DTP) and the surface spline (SS) models. To obtain the pure anomaly field, the main field and the induced field of the ionospheric and magnetospheric fields were removed from measured data. We also compared the SS model anomalies and the data obtained with Kriging interpolation (KI). The geomagnetic anomaly distribution over the mainland was analyzed based on the SS and 3DTP models by transferring all points from 1960.0-1990.0 to 2000.0. The results suggest that the total intensity F anomalies estimated based on the SS and KI for each year are basically consistent in distribution and intensity. The anomalous distributions in the X-, Y-, and Z-direction and F are mainly negative. The 3DTP model anomalies suggest that the intensity in the X-direction increases from -100 nT to 0 nT with longitude, whereas the intensity in the Y-direction decreases from 400 nT to 20 nT with longitude and over the eastern mainland is almost negative. The intensity in the Z-direction and F are very similar and in most areas it is about -50nT and higher in western Tibet. The SS model anomalies overall reflect the actual distribution of the magnetic field anomalies; however, because of the uneven distribution of measurements, it yields several big anomalies. Owing to the added altitude term, the 3DTP model offers higher precision and is consistent with KI.

  7. Application of digital interferogram evaluation techniques to the measurement of 3-D flow fields

    NASA Technical Reports Server (NTRS)

    Becker, Friedhelm; Yu, Yung H.

    1987-01-01

    A system for digitally evaluating interferograms, based on an image processing system connected to a host computer, was implemented. The system supports one- and two-dimensional interferogram evaluations. Interferograms are digitized, enhanced, and then segmented. The fringe coordinates are extracted, and the fringes are represented as polygonal data structures. Fringe numbering and fringe interpolation modules are implemented. The system supports editing and interactive features, as well as graphic visualization. An application of the system to the evaluation of double exposure interferograms from the transonic flow field around a helicopter blade and the reconstruction of the three dimensional flow field is given.

  8. The MUSE 3D view of the Hubble Deep Field South

    NASA Astrophysics Data System (ADS)

    Bacon, R.; Brinchmann, J.; Richard, J.; Contini, T.; Drake, A.; Franx, M.; Tacchella, S.; Vernet, J.; Wisotzki, L.; Blaizot, J.; Bouché, N.; Bouwens, R.; Cantalupo, S.; Carollo, C. M.; Carton, D.; Caruana, J.; Clément, B.; Dreizler, S.; Epinat, B.; Guiderdoni, B.; Herenz, C.; Husser, T.-O.; Kamann, S.; Kerutt, J.; Kollatschny, W.; Krajnovic, D.; Lilly, S.; Martinsson, T.; Michel-Dansac, L.; Patricio, V.; Schaye, J.; Shirazi, M.; Soto, K.; Soucail, G.; Steinmetz, M.; Urrutia, T.; Weilbacher, P.; de Zeeuw, T.

    2015-03-01

    We observed Hubble Deep Field South with the new panoramic integral-field spectrograph MUSE that we built and have just commissioned at the VLT. The data cube resulting from 27 h of integration covers one arcmin2 field of view at an unprecedented depth with a 1σ emission-line surface brightness limit of 1 × 10-19 erg s-1 cm-2 arcsec-2, and contains ~90 000 spectra. We present the combined and calibrated data cube, and we performed a first-pass analysis of the sources detected in the Hubble Deep Field South imaging. We measured the redshifts of 189 sources up to a magnitude I814 = 29.5, increasing the number of known spectroscopic redshifts in this field by more than an order of magnitude. We also discovered 26 Lyα emitting galaxies that are not detected in the HST WFPC2 deep broad-band images. The intermediate spectral resolution of 2.3 Å allows us to separate resolved asymmetric Lyα emitters, [O ii]3727 emitters, and C iii]1908 emitters, and the broad instantaneous wavelength range of 4500 Å helps to identify single emission lines, such as [O iii]5007, Hβ, and Hα, over a very wide redshift range. We also show how the three-dimensional information of MUSE helps to resolve sources that are confused at ground-based image quality. Overall, secure identifications are provided for 83% of the 227 emission line sources detected in the MUSE data cube and for 32% of the 586 sources identified in the HST catalogue. The overall redshift distribution is fairly flat to z = 6.3, with a reduction between z = 1.5 to 2.9, in the well-known redshift desert. The field of view of MUSE also allowed us to detect 17 groups within the field. We checked that the number counts of [O ii]3727 and Lyα emitters are roughly consistent with predictions from the literature. Using two examples, we demonstrate that MUSE is able to provide exquisite spatially resolved spectroscopic information on the intermediate-redshift galaxies present in the field. Thisunique data set can be used for a

  9. Web-based Visualization and Query of semantically segmented multiresolution 3D Models in the Field of Cultural Heritage

    NASA Astrophysics Data System (ADS)

    Auer, M.; Agugiaro, G.; Billen, N.; Loos, L.; Zipf, A.

    2014-05-01

    Many important Cultural Heritage sites have been studied over long periods of time by different means of technical equipment, methods and intentions by different researchers. This has led to huge amounts of heterogeneous "traditional" datasets and formats. The rising popularity of 3D models in the field of Cultural Heritage in recent years has brought additional data formats and makes it even more necessary to find solutions to manage, publish and study these data in an integrated way. The MayaArch3D project aims to realize such an integrative approach by establishing a web-based research platform bringing spatial and non-spatial databases together and providing visualization and analysis tools. Especially the 3D components of the platform use hierarchical segmentation concepts to structure the data and to perform queries on semantic entities. This paper presents a database schema to organize not only segmented models but also different Levels-of-Details and other representations of the same entity. It is further implemented in a spatial database which allows the storing of georeferenced 3D data. This enables organization and queries by semantic, geometric and spatial properties. As service for the delivery of the segmented models a standardization candidate of the OpenGeospatialConsortium (OGC), the Web3DService (W3DS) has been extended to cope with the new database schema and deliver a web friendly format for WebGL rendering. Finally a generic user interface is presented which uses the segments as navigation metaphor to browse and query the semantic segmentation levels and retrieve information from an external database of the German Archaeological Institute (DAI).

  10. Hairy black holes sourced by a conformally coupled scalar field in D dimensions

    NASA Astrophysics Data System (ADS)

    Giribet, Gaston; Leoni, Matías; Oliva, Julio; Ray, Sourya

    2014-04-01

    There exist well-known no-hair theorems forbidding the existence of hairy black hole solutions in general relativity coupled to a scalar conformal field theory in asymptotically flat space. Even in the presence of cosmological constant, where no-hair theorems can usually be circumvented and black holes with conformal scalar hair were shown to exist in D≤4 dimensions, no-go results were reported for D>4. In this paper we prove that these obstructions can be evaded and we answer in the affirmative a question that remained open: Whether hairy black holes do exist in general relativity sourced by a conformally coupled scalar field in arbitrary dimensions. We find the analytic black hole solution in arbitrary dimension D>4, which exhibits a backreacting scalar hair that is regular everywhere outside and on the horizon. The metric asymptotes to (anti-)de Sitter spacetime at large distance and admits spherical horizon as well as horizon of a different topology. We also find analytic solutions when higher-curvature corrections O(Rn) of arbitrary order n are included in the gravity action.

  11. Asymptotic stability and bifurcations of 3D piecewise smooth vector fields

    NASA Astrophysics Data System (ADS)

    Carvalho, Tiago; Teixeira, Marco Antônio; Tonon, Durval José

    2016-04-01

    The paper deals with the analysis of the behavior of a nonsmooth three-dimensional vector field around a typal singularity. We focus on a class of generic one-parameter families {Z_{λ}} of Filippov systems and address the persistence problem for the asymptotic stability when the parameter varies near the bifurcation value {λ = 0}.

  12. New Method for the Characterization of 3D Preferential Flow Paths at the Field

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Preferential flow paths development in the field is the result of the complex interaction of multiple processes relating to the soil's structure, moisture condition, stress level, and biological activities. Visualizing and characterizing the cracking behavior and preferential paths evolution with so...

  13. Numerical program for analysis of three-dimensional supersonic exhaust flow fields (CHAR 3D)

    NASA Technical Reports Server (NTRS)

    Dash, S.; Guidice, P. D.; Ferri, A.; Roffe, G.

    1974-01-01

    Choice of reference plane orientation depends on specific nozzle geometry, with different configurations requiring different reference plane systems. In addition, for given configuration several reference systems may be used in different regions of flow field, so each system is locally aligned with flow.

  14. Configuration and Evaluation of a Dual-Doppler 3-D Wind Field System

    NASA Technical Reports Server (NTRS)

    Crawford, Winifred C.

    2014-01-01

    Current LSP, GSDO, and SLS space vehicle operations are halted when wind speeds from specific directions exceed defined thresholds and when lightning is a threat. Strong winds and lightning are difficult parameters for the 45th Weather Squadron (45 WS) to forecast, yet are important in the protection of customer vehicle operations and the personnel that conduct them. A display of the low-level horizontal wind field to reveal areas of high winds or convergence would be a valuable tool for forecasters in assessing the timing of high winds, or convection initiation and subsequent lightning occurrence. This is especially important for areas where no weather observation platforms exist. Developing a dual-Doppler radar capability would provide such a display to assist forecasters in predicting high winds and convection initiation. The wind fields can also be used to initialize a local mesoscale numerical weather prediction model to help improve the model forecast winds, convection initiation, and other phenomena. The 45 WS and NWS MLB tasked the Applied Meteorology Unit (AMU) to develop a dual- Doppler wind field display using data from the 45th Space Wing radar, known as the Weather Surveillance Radar (WSR), NWS MLB Weather Surveillance Radar 1988 Doppler (KMLB), and the Orlando International Airport Terminal Doppler Weather Radar (KMCO). They also stipulated that the software used should be freely available. The AMU evaluated two software packages and, with concurrence from NWS MLB and the 45 WS, chose the Warning Decision Support System-Integrated Information (WDSS-II). The AMU collected data from two significant weather cases: a tornadic event on 14 April 2013 and a severe wind and hail event on 12 February 2014. For the 14 April case, the data were from WSR and KMLB. For the 12 February case, the data were from KMCO and KMLB. The AMU installed WDSS-II on a Linux PC, then processed and quality controlled the radar data for display and analysis using WDSS-II tools

  15. Reproducing Electric Field Observations during Magnetic Storms by means of Rigorous 3-D Modelling and Distortion Matrix Co-estimation

    NASA Astrophysics Data System (ADS)

    Püthe, Christoph; Manoj, Chandrasekharan; Kuvshinov, Alexey

    2015-04-01

    Electric fields induced in the conducting Earth during magnetic storms drive currents in power transmission grids, telecommunication lines or buried pipelines. These geomagnetically induced currents (GIC) can cause severe service disruptions. The prediction of GIC is thus of great importance for public and industry. A key step in the prediction of the hazard to technological systems during magnetic storms is the calculation of the geoelectric field. To address this issue for mid-latitude regions, we developed a method that involves 3-D modelling of induction processes in a heterogeneous Earth and the construction of a model of the magnetospheric source. The latter is described by low-degree spherical harmonics; its temporal evolution is derived from observatory magnetic data. Time series of the electric field can be computed for every location on Earth's surface. The actual electric field however is known to be perturbed by galvanic effects, arising from very local near-surface heterogeneities or topography, which cannot be included in the conductivity model. Galvanic effects are commonly accounted for with a real-valued time-independent distortion matrix, which linearly relates measured and computed electric fields. Using data of various magnetic storms that occurred between 2000 and 2003, we estimated distortion matrices for observatory sites onshore and on the ocean bottom. Strong correlations between modellings and measurements validate our method. The distortion matrix estimates prove to be reliable, as they are accurately reproduced for different magnetic storms. We further show that 3-D modelling is crucial for a correct separation of galvanic and inductive effects and a precise prediction of electric field time series during magnetic storms. Since the required computational resources are negligible, our approach is suitable for a real-time prediction of GIC. For this purpose, a reliable forecast of the source field, e.g. based on data from satellites

  16. Scalar field reconstruction of power-law entropy-corrected holographic dark energy

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Esmaeil; Sheykhi, Ahmad

    2011-10-01

    A so-called 'power-law entropy-corrected holographic dark energy' (PLECHDE) was recently proposed to explain the dark energy (DE)-dominated universe. This model is based on the power-law corrections to black hole entropy that appear when dealing with the entanglement of quantum fields between the inside and the outside of the horizon. In this paper, we suggest a correspondence between the interacting PLECHDE and the tachyon, quintessence, K-essence and dilaton scalar field models of DE in a non-flat Friedmann-Robertson-Walker universe. Then, we reconstruct the potential terms accordingly, and present the dynamical equations that describe the evolution of the scalar field DE models.

  17. Comparison of high harmonic generation and attosecond pulse from 3D hydrogen atom in three kinds of inhomogeneous fields

    NASA Astrophysics Data System (ADS)

    Zhong, Huiying; Guo, Jing; Feng, Wei; Li, Peng-Cheng; Liu, Xue-Shen

    2016-01-01

    The high harmonic generation (HHG) from 3D hydrogen (H) atom in three kinds of inhomogeneous fields are investigated by solving the time-dependent Schrödinger equation (TDSE) accurately with time-dependent generalized pseudospectral method (TDGPS), and compared together. The corresponding time-frequency and three-step model is also presented to explain the differences between three cases. We will also calculate the ionization probability and electron wavepacket as functions of time to further illustrate this phenomenon. By superposing a series of properly selected harmonics, the isolated attosecond pulses can be obtained straightforwards the shortest of which is 64 as.

  18. A 3D model of crustal magnetization at the Pinacate Volcanic Field, NW Sonora, Mexico

    NASA Astrophysics Data System (ADS)

    García-Abdeslem, Juan; Calmus, Thierry

    2015-08-01

    The Pinacate Volcanic Field (PVF) is located near the western border of the southern Basin and Range province, in the State of Sonora NW Mexico, and within the Gulf of California Extensional Province. This volcanic field contains the shield volcano Santa Clara, which mainly consists of basaltic to trachytic volcanic rocks, and reaches an altitude of ~ 1200 m. The PVF disrupts a series of discontinuous ranges of low topographic relief aligned in a NW direction, which consist mainly of Proterozoic metamorphic rocks and Proterozoic through Paleogene granitoids. The PVF covers an area of approximately 60 by 55 km, and includes more than 400 well-preserved cinder cones and vents and eight maar craters. It was active from about 1.7 Ma until about 13 ka. We have used the ages and magnetic polarities of the volcanic rocks, along with mapped magnetic anomalies and their inverse modeling to determine that the Pinacate Volcanic Field was formed during two volcanic episodes. The oldest one built the Santa Clara shield volcano of basaltic and trachytic composition, and occurred during the geomagnetic Matuyama Chron of reverse polarity, which also includes the normal polarity Jaramillo and Olduvai Subchrons, thus imprinting both normal and reverse magnetization in the volcanic products. The younger Pinacate series of basaltic composition represents monogenetic volcanic activity that extends all around the PVF and occurred during the subsequent geomagnetic Brunhes Chron of normal polarity. Magnetic anomalies toward the north of the Santa Clara volcano are the most intense in the PVF, and their inverse modeling indicates the presence of a large subsurface body magnetized in the present direction of the geomagnetic field. This suggests that the magma chambers at depth cooled below the Curie temperature during the Brunhes Chron.

  19. 3-D RPIC simulations of relativistic jets: Particle acceleration, magnetic field generation, and emission

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.

    2006-01-01

    Nonthermal radiation observed from astrophysical systems containing (relativistic) jets and shocks, e.g., supernova remnants, active galactic nuclei (AGNs), gamma-ray bursts (GRBs), and Galactic microquasar systems usually have power-law emission spectra. Fermi acceleration is the mechanism usually assumed for the acceleration of particles in astrophysical environments. Recent PIC simulations using injected relativistic electron-ion (electro-positron) jets show that acceleration occurs within the downstream jet, rather than by the scattering of particles back and forth across the shock as in Fermi acceleration. Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel instability) created in the .shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants. We will review recent PIC simulations which show particle acceleration in jets.

  20. Generation of field-aligned currents and Alfven waves by 3D magnetic reconnection

    SciTech Connect

    Ma, Z.W.; Lee, L.C.; Otto, A.

    1995-07-01

    The authors have carried out a three-dimensional compressible MHD simulation to study the generation of field-aligned currents (FAC`s) and Alfven waves by magnetic reconnection for locally antiparallel magnetic fields across the current sheet. Reconnection is triggered by a localized resistivity. The results indicate that both FAC`s and Alfven waves are generated by the three-dimensional reconnection process. Two pairs of FAC`s are generated on each side of current sheet. The polarities of the resulting FAC pair in the leading bulge region are opposite to those of a FAC pair in the trailing quasi-steady region. It is further found that a large portion of the FAC`s ({approximately}40%) is located in the closed field line region. They examine the Walen relation between FAC and parallel vorticity and find that Alfven waves are generated and propagate away from the reconnection site. They discuss the relevance of the results to the observed Region 1 FAC`s at noon. 15 refs., 4 figs.