Science.gov

Sample records for 3d segmentation algorithm

  1. A 2D driven 3D vessel segmentation algorithm for 3D digital subtraction angiography data

    NASA Astrophysics Data System (ADS)

    Spiegel, M.; Redel, T.; Struffert, T.; Hornegger, J.; Doerfler, A.

    2011-10-01

    Cerebrovascular disease is among the leading causes of death in western industrial nations. 3D rotational angiography delivers indispensable information on vessel morphology and pathology. Physicians make use of this to analyze vessel geometry in detail, i.e. vessel diameters, location and size of aneurysms, to come up with a clinical decision. 3D segmentation is a crucial step in this pipeline. Although a lot of different methods are available nowadays, all of them lack a method to validate the results for the individual patient. Therefore, we propose a novel 2D digital subtraction angiography (DSA)-driven 3D vessel segmentation and validation framework. 2D DSA projections are clinically considered as gold standard when it comes to measurements of vessel diameter or the neck size of aneurysms. An ellipsoid vessel model is applied to deliver the initial 3D segmentation. To assess the accuracy of the 3D vessel segmentation, its forward projections are iteratively overlaid with the corresponding 2D DSA projections. Local vessel discrepancies are modeled by a global 2D/3D optimization function to adjust the 3D vessel segmentation toward the 2D vessel contours. Our framework has been evaluated on phantom data as well as on ten patient datasets. Three 2D DSA projections from varying viewing angles have been used for each dataset. The novel 2D driven 3D vessel segmentation approach shows superior results against state-of-the-art segmentations like region growing, i.e. an improvement of 7.2% points in precision and 5.8% points for the Dice coefficient. This method opens up future clinical applications requiring the greatest vessel accuracy, e.g. computational fluid dynamic modeling.

  2. 3D superalloy grain segmentation using a multichannel edge-weighted centroidal Voronoi tessellation algorithm.

    PubMed

    Cao, Yu; Ju, Lili; Zhou, Youjie; Wang, Song

    2013-10-01

    Accurate grain segmentation on 3D superalloy images is very important in materials science and engineering. From grain segmentation, we can derive the underlying superalloy grains' micro-structures, based on how many important physical, mechanical, and chemical properties of the superalloy samples can be evaluated. Grain segmentation is, however, usually a very challenging problem because: 1) even a small 3D superalloy sample may contain hundreds of grains; 2) carbides and noises may degrade the imaging quality; and 3) the intensity within a grain may not be homogeneous. In addition, the same grain may present different appearances, e.g., different intensities, under different microscope settings. In practice, a 3D superalloy image may contain multichannel information where each channel corresponds to a specific microscope setting. In this paper, we develop a multichannel edge-weighted centroidal Voronoi tessellation (MCEWCVT) algorithm to effectively and robustly segment the superalloy grains from 3D multichannel superalloy images. MCEWCVT performs segmentation by minimizing an energy function, which encodes both the multichannel voxel-intensity similarity within each cluster in the intensity domain and the smoothness of segmentation boundaries in the 3D image domain. In the experiment, we first quantitatively evaluate the proposed MCEWCVT algorithm on a four-channel Ni-based 3D superalloy data set (IN100) against the manually annotated ground-truth segmentation. We further evaluate the MCEWCVT algorithm on two synthesized four-channel superalloy data sets. The qualitative and quantitative comparisons of 18 existing image segmentation algorithms demonstrate the effectiveness and robustness of the proposed MCEWCVT algorithm. PMID:23797261

  3. Alignment, segmentation and 3-D reconstruction of serial sections based on automated algorithm

    NASA Astrophysics Data System (ADS)

    Bian, Weiguo; Tang, Shaojie; Xu, Qiong; Lian, Qin; Wang, Jin; Li, Dichen

    2012-12-01

    A well-defined three-dimensional (3-D) reconstruction of bone-cartilage transitional structures is crucial for the osteochondral restoration. This paper presents an accurate, computationally efficient and fully-automated algorithm for the alignment and segmentation of two-dimensional (2-D) serial to construct the 3-D model of bone-cartilage transitional structures. Entire system includes the following five components: (1) image harvest, (2) image registration, (3) image segmentation, (4) 3-D reconstruction and visualization, and (5) evaluation. A computer program was developed in the environment of Matlab for the automatic alignment and segmentation of serial sections. Automatic alignment algorithm based on the position's cross-correlation of the anatomical characteristic feature points of two sequential sections. A method combining an automatic segmentation and an image threshold processing was applied to capture the regions and structures of interest. SEM micrograph and 3-D model reconstructed directly in digital microscope were used to evaluate the reliability and accuracy of this strategy. The morphology of 3-D model constructed by serial sections is consistent with the results of SEM micrograph and 3-D model of digital microscope.

  4. Segmentation of heterogeneous or small FDG PET positive tissue based on a 3D-locally adaptive random walk algorithm.

    PubMed

    Onoma, D P; Ruan, S; Thureau, S; Nkhali, L; Modzelewski, R; Monnehan, G A; Vera, P; Gardin, I

    2014-12-01

    A segmentation algorithm based on the random walk (RW) method, called 3D-LARW, has been developed to delineate small tumors or tumors with a heterogeneous distribution of FDG on PET images. Based on the original algorithm of RW [1], we propose an improved approach using new parameters depending on the Euclidean distance between two adjacent voxels instead of a fixed one and integrating probability densities of labels into the system of linear equations used in the RW. These improvements were evaluated and compared with the original RW method, a thresholding with a fixed value (40% of the maximum in the lesion), an adaptive thresholding algorithm on uniform spheres filled with FDG and FLAB method, on simulated heterogeneous spheres and on clinical data (14 patients). On these three different data, 3D-LARW has shown better segmentation results than the original RW algorithm and the three other methods. As expected, these improvements are more pronounced for the segmentation of small or tumors having heterogeneous FDG uptake.

  5. Liver Tumor Segmentation from MR Images Using 3D Fast Marching Algorithm and Single Hidden Layer Feedforward Neural Network.

    PubMed

    Le, Trong-Ngoc; Bao, Pham The; Huynh, Hieu Trung

    2016-01-01

    Objective. Our objective is to develop a computerized scheme for liver tumor segmentation in MR images. Materials and Methods. Our proposed scheme consists of four main stages. Firstly, the region of interest (ROI) image which contains the liver tumor region in the T1-weighted MR image series was extracted by using seed points. The noise in this ROI image was reduced and the boundaries were enhanced. A 3D fast marching algorithm was applied to generate the initial labeled regions which are considered as teacher regions. A single hidden layer feedforward neural network (SLFN), which was trained by a noniterative algorithm, was employed to classify the unlabeled voxels. Finally, the postprocessing stage was applied to extract and refine the liver tumor boundaries. The liver tumors determined by our scheme were compared with those manually traced by a radiologist, used as the "ground truth." Results. The study was evaluated on two datasets of 25 tumors from 16 patients. The proposed scheme obtained the mean volumetric overlap error of 27.43% and the mean percentage volume error of 15.73%. The mean of the average surface distance, the root mean square surface distance, and the maximal surface distance were 0.58 mm, 1.20 mm, and 6.29 mm, respectively. PMID:27597960

  6. Liver Tumor Segmentation from MR Images Using 3D Fast Marching Algorithm and Single Hidden Layer Feedforward Neural Network

    PubMed Central

    2016-01-01

    Objective. Our objective is to develop a computerized scheme for liver tumor segmentation in MR images. Materials and Methods. Our proposed scheme consists of four main stages. Firstly, the region of interest (ROI) image which contains the liver tumor region in the T1-weighted MR image series was extracted by using seed points. The noise in this ROI image was reduced and the boundaries were enhanced. A 3D fast marching algorithm was applied to generate the initial labeled regions which are considered as teacher regions. A single hidden layer feedforward neural network (SLFN), which was trained by a noniterative algorithm, was employed to classify the unlabeled voxels. Finally, the postprocessing stage was applied to extract and refine the liver tumor boundaries. The liver tumors determined by our scheme were compared with those manually traced by a radiologist, used as the “ground truth.” Results. The study was evaluated on two datasets of 25 tumors from 16 patients. The proposed scheme obtained the mean volumetric overlap error of 27.43% and the mean percentage volume error of 15.73%. The mean of the average surface distance, the root mean square surface distance, and the maximal surface distance were 0.58 mm, 1.20 mm, and 6.29 mm, respectively. PMID:27597960

  7. Comparative evaluation of a novel 3D segmentation algorithm on in-treatment radiotherapy cone beam CT images

    NASA Astrophysics Data System (ADS)

    Price, Gareth; Moore, Chris

    2007-03-01

    Image segmentation and delineation is at the heart of modern radiotherapy, where the aim is to deliver as high a radiation dose as possible to a cancerous target whilst sparing the surrounding healthy tissues. This, of course, requires that a radiation oncologist dictates both where the tumour and any nearby critical organs are located. As well as in treatment planning, delineation is of vital importance in image guided radiotherapy (IGRT): organ motion studies demand that features across image databases are accurately segmented, whilst if on-line adaptive IGRT is to become a reality, speedy and correct target identification is a necessity. Recently, much work has been put into the development of automatic and semi-automatic segmentation tools, often using prior knowledge to constrain some grey level, or derivative thereof, interrogation algorithm. It is hoped that such techniques can be applied to organ at risk and tumour segmentation in radiotherapy. In this work, however, we make the assumption that grey levels do not necessarily determine a tumour's extent, especially in CT where the attenuation coefficient can often vary little between cancerous and normal tissue. In this context we present an algorithm that generates a discontinuity free delineation surface driven by user placed, evidence based support points. In regions of sparse user supplied information, prior knowledge, in the form of a statistical shape model, provides guidance. A small case study is used to illustrate the method. Multiple observers (between 3 and 7) used both the presented tool and a commercial manual contouring package to delineate the bladder on a serially imaged (10 cone beam CT volumes ) prostate patient. A previously presented shape analysis technique is used to quantitatively compare the observer variability.

  8. Segmentation and detection of fluorescent 3D spots.

    PubMed

    Ram, Sundaresh; Rodríguez, Jeffrey J; Bosco, Giovanni

    2012-03-01

    The 3D spatial organization of genes and other genetic elements within the nucleus is important for regulating gene expression. Understanding how this spatial organization is established and maintained throughout the life of a cell is key to elucidating the many layers of gene regulation. Quantitative methods for studying nuclear organization will lead to insights into the molecular mechanisms that maintain gene organization as well as serve as diagnostic tools for pathologies caused by loss of nuclear structure. However, biologists currently lack automated and high throughput methods for quantitative and qualitative global analysis of 3D gene organization. In this study, we use confocal microscopy and fluorescence in-situ hybridization (FISH) as a cytogenetic technique to detect and localize the presence of specific DNA sequences in 3D. FISH uses probes that bind to specific targeted locations on the chromosomes, appearing as fluorescent spots in 3D images obtained using fluorescence microscopy. In this article, we propose an automated algorithm for segmentation and detection of 3D FISH spots. The algorithm is divided into two stages: spot segmentation and spot detection. Spot segmentation consists of 3D anisotropic smoothing to reduce the effect of noise, top-hat filtering, and intensity thresholding, followed by 3D region-growing. Spot detection uses a Bayesian classifier with spot features such as volume, average intensity, texture, and contrast to detect and classify the segmented spots as either true or false spots. Quantitative assessment of the proposed algorithm demonstrates improved segmentation and detection accuracy compared to other techniques.

  9. Image segmentation and 3D visualization for MRI mammography

    NASA Astrophysics Data System (ADS)

    Li, Lihua; Chu, Yong; Salem, Angela F.; Clark, Robert A.

    2002-05-01

    MRI mammography has a number of advantages, including the tomographic, and therefore three-dimensional (3-D) nature, of the images. It allows the application of MRI mammography to breasts with dense tissue, post operative scarring, and silicon implants. However, due to the vast quantity of images and subtlety of difference in MR sequence, there is a need for reliable computer diagnosis to reduce the radiologist's workload. The purpose of this work was to develop automatic breast/tissue segmentation and visualization algorithms to aid physicians in detecting and observing abnormalities in breast. Two segmentation algorithms were developed: one for breast segmentation, the other for glandular tissue segmentation. In breast segmentation, the MRI image is first segmented using an adaptive growing clustering method. Two tracing algorithms were then developed to refine the breast air and chest wall boundaries of breast. The glandular tissue segmentation was performed using an adaptive thresholding method, in which the threshold value was spatially adaptive using a sliding window. The 3D visualization of the segmented 2D slices of MRI mammography was implemented under IDL environment. The breast and glandular tissue rendering, slicing and animation were displayed.

  10. Automatic 3D lesion segmentation on breast ultrasound images

    NASA Astrophysics Data System (ADS)

    Kuo, Hsien-Chi; Giger, Maryellen L.; Reiser, Ingrid; Drukker, Karen; Edwards, Alexandra; Sennett, Charlene A.

    2013-02-01

    Automatically acquired and reconstructed 3D breast ultrasound images allow radiologists to detect and evaluate breast lesions in 3D. However, assessing potential cancers in 3D ultrasound can be difficult and time consuming. In this study, we evaluate a 3D lesion segmentation method, which we had previously developed for breast CT, and investigate its robustness on lesions on 3D breast ultrasound images. Our dataset includes 98 3D breast ultrasound images obtained on an ABUS system from 55 patients containing 64 cancers. Cancers depicted on 54 US images had been clinically interpreted as negative on screening mammography and 44 had been clinically visible on mammography. All were from women with breast density BI-RADS 3 or 4. Tumor centers and margins were indicated and outlined by radiologists. Initial RGI-eroded contours were automatically calculated and served as input to the active contour segmentation algorithm yielding the final lesion contour. Tumor segmentation was evaluated by determining the overlap ratio (OR) between computer-determined and manually-drawn outlines. Resulting average overlap ratios on coronal, transverse, and sagittal views were 0.60 +/- 0.17, 0.57 +/- 0.18, and 0.58 +/- 0.17, respectively. All OR values were significantly higher the 0.4, which is deemed "acceptable". Within the groups of mammogram-negative and mammogram-positive cancers, the overlap ratios were 0.63 +/- 0.17 and 0.56 +/- 0.16, respectively, on the coronal views; with similar results on the other views. The segmentation performance was not found to be correlated to tumor size. Results indicate robustness of the 3D lesion segmentation technique in multi-modality 3D breast imaging.

  11. Gebiss: an ImageJ plugin for the specification of ground truth and the performance evaluation of 3D segmentation algorithms

    PubMed Central

    2011-01-01

    Background Image segmentation is a crucial step in quantitative microscopy that helps to define regions of tissues, cells or subcellular compartments. Depending on the degree of user interactions, segmentation methods can be divided into manual, automated or semi-automated approaches. 3D image stacks usually require automated methods due to their large number of optical sections. However, certain applications benefit from manual or semi-automated approaches. Scenarios include the quantification of 3D images with poor signal-to-noise ratios or the generation of so-called ground truth segmentations that are used to evaluate the accuracy of automated segmentation methods. Results We have developed Gebiss; an ImageJ plugin for the interactive segmentation, visualisation and quantification of 3D microscopic image stacks. We integrated a variety of existing plugins for threshold-based segmentation and volume visualisation. Conclusions We demonstrate the application of Gebiss to the segmentation of nuclei in live Drosophila embryos and the quantification of neurodegeneration in Drosophila larval brains. Gebiss was developed as a cross-platform ImageJ plugin and is freely available on the web at http://imaging.bii.a-star.edu.sg/projects/gebiss/. PMID:21668958

  12. Needle segmentation using 3D Hough transform in 3D TRUS guided prostate transperineal therapy

    SciTech Connect

    Qiu Wu; Yuchi Ming; Ding Mingyue; Tessier, David; Fenster, Aaron

    2013-04-15

    Purpose: Prostate adenocarcinoma is the most common noncutaneous malignancy in American men with over 200 000 new cases diagnosed each year. Prostate interventional therapy, such as cryotherapy and brachytherapy, is an effective treatment for prostate cancer. Its success relies on the correct needle implant position. This paper proposes a robust and efficient needle segmentation method, which acts as an aid to localize the needle in three-dimensional (3D) transrectal ultrasound (TRUS) guided prostate therapy. Methods: The procedure of locating the needle in a 3D TRUS image is a three-step process. First, the original 3D ultrasound image containing a needle is cropped; the cropped image is then converted to a binary format based on its histogram. Second, a 3D Hough transform based needle segmentation method is applied to the 3D binary image in order to locate the needle axis. The position of the needle endpoint is finally determined by an optimal threshold based analysis of the intensity probability distribution. The overall efficiency is improved through implementing a coarse-fine searching strategy. The proposed method was validated in tissue-mimicking agar phantoms, chicken breast phantoms, and 3D TRUS patient images from prostate brachytherapy and cryotherapy procedures by comparison to the manual segmentation. The robustness of the proposed approach was tested by means of varying parameters such as needle insertion angle, needle insertion length, binarization threshold level, and cropping size. Results: The validation results indicate that the proposed Hough transform based method is accurate and robust, with an achieved endpoint localization accuracy of 0.5 mm for agar phantom images, 0.7 mm for chicken breast phantom images, and 1 mm for in vivo patient cryotherapy and brachytherapy images. The mean execution time of needle segmentation algorithm was 2 s for a 3D TRUS image with size of 264 Multiplication-Sign 376 Multiplication-Sign 630 voxels. Conclusions

  13. MRCK_3D contact detonation algorithm

    SciTech Connect

    Rougier, Esteban; Munjiza, Antonio

    2010-01-01

    Large-scale Combined Finite-Discrete Element Methods (FEM-DEM) and Discrete Element Methods (DEM) simulations involving contact of a large number of separate bod ies need an efficient, robust and flexible contact detection algorithm. In this work the MRCK-3D search algorithm is outlined and its main CPU perfonnances are evaluated. One of the most important aspects of this newly developed search algorithm is that it is applicable to systems consisting of many bodies of different shapes and sizes.

  14. Automated 3D renal segmentation based on image partitioning

    NASA Astrophysics Data System (ADS)

    Yeghiazaryan, Varduhi; Voiculescu, Irina D.

    2016-03-01

    Despite several decades of research into segmentation techniques, automated medical image segmentation is barely usable in a clinical context, and still at vast user time expense. This paper illustrates unsupervised organ segmentation through the use of a novel automated labelling approximation algorithm followed by a hypersurface front propagation method. The approximation stage relies on a pre-computed image partition forest obtained directly from CT scan data. We have implemented all procedures to operate directly on 3D volumes, rather than slice-by-slice, because our algorithms are dimensionality-independent. The results picture segmentations which identify kidneys, but can easily be extrapolated to other body parts. Quantitative analysis of our automated segmentation compared against hand-segmented gold standards indicates an average Dice similarity coefficient of 90%. Results were obtained over volumes of CT data with 9 kidneys, computing both volume-based similarity measures (such as the Dice and Jaccard coefficients, true positive volume fraction) and size-based measures (such as the relative volume difference). The analysis considered both healthy and diseased kidneys, although extreme pathological cases were excluded from the overall count. Such cases are difficult to segment both manually and automatically due to the large amplitude of Hounsfield unit distribution in the scan, and the wide spread of the tumorous tissue inside the abdomen. In the case of kidneys that have maintained their shape, the similarity range lies around the values obtained for inter-operator variability. Whilst the procedure is fully automated, our tools also provide a light level of manual editing.

  15. Object Segmentation and Ground Truth in 3D Embryonic Imaging.

    PubMed

    Rajasekaran, Bhavna; Uriu, Koichiro; Valentin, Guillaume; Tinevez, Jean-Yves; Oates, Andrew C

    2016-01-01

    Many questions in developmental biology depend on measuring the position and movement of individual cells within developing embryos. Yet, tools that provide this data are often challenged by high cell density and their accuracy is difficult to measure. Here, we present a three-step procedure to address this problem. Step one is a novel segmentation algorithm based on image derivatives that, in combination with selective post-processing, reliably and automatically segments cell nuclei from images of densely packed tissue. Step two is a quantitative validation using synthetic images to ascertain the efficiency of the algorithm with respect to signal-to-noise ratio and object density. Finally, we propose an original method to generate reliable and experimentally faithful ground truth datasets: Sparse-dense dual-labeled embryo chimeras are used to unambiguously measure segmentation errors within experimental data. Together, the three steps outlined here establish a robust, iterative procedure to fine-tune image analysis algorithms and microscopy settings associated with embryonic 3D image data sets. PMID:27332860

  16. Object Segmentation and Ground Truth in 3D Embryonic Imaging

    PubMed Central

    Rajasekaran, Bhavna; Uriu, Koichiro; Valentin, Guillaume; Tinevez, Jean-Yves; Oates, Andrew C.

    2016-01-01

    Many questions in developmental biology depend on measuring the position and movement of individual cells within developing embryos. Yet, tools that provide this data are often challenged by high cell density and their accuracy is difficult to measure. Here, we present a three-step procedure to address this problem. Step one is a novel segmentation algorithm based on image derivatives that, in combination with selective post-processing, reliably and automatically segments cell nuclei from images of densely packed tissue. Step two is a quantitative validation using synthetic images to ascertain the efficiency of the algorithm with respect to signal-to-noise ratio and object density. Finally, we propose an original method to generate reliable and experimentally faithful ground truth datasets: Sparse-dense dual-labeled embryo chimeras are used to unambiguously measure segmentation errors within experimental data. Together, the three steps outlined here establish a robust, iterative procedure to fine-tune image analysis algorithms and microscopy settings associated with embryonic 3D image data sets. PMID:27332860

  17. 3D visualization for medical volume segmentation validation

    NASA Astrophysics Data System (ADS)

    Eldeib, Ayman M.

    2002-05-01

    This paper presents a 3-D visualization tool that manipulates and/or enhances by user input the segmented targets and other organs. A 3-D visualization tool is developed to create a precise and realistic 3-D model from CT/MR data set for manipulation in 3-D and permitting physician or planner to look through, around, and inside the various structures. The 3-D visualization tool is designed to assist and to evaluate the segmentation process. It can control the transparency of each 3-D object. It displays in one view a 2-D slice (axial, coronal, and/or sagittal)within a 3-D model of the segmented tumor or structures. This helps the radiotherapist or the operator to evaluate the adequacy of the generated target compared to the original 2-D slices. The graphical interface enables the operator to easily select a specific 2-D slice of the 3-D volume data set. The operator is enabled to manually override and adjust the automated segmentation results. After correction, the operator can see the 3-D model again and go back and forth till satisfactory segmentation is obtained. The novelty of this research work is in using state-of-the-art of image processing and 3-D visualization techniques to facilitate a process of a medical volume segmentation validation and assure the accuracy of the volume measurement of the structure of interest.

  18. Viewpoint-independent 3D object segmentation for randomly stacked objects using optical object detection

    NASA Astrophysics Data System (ADS)

    Chen, Liang-Chia; Nguyen, Thanh-Hung; Lin, Shyh-Tsong

    2015-10-01

    This work proposes a novel approach to segmenting randomly stacked objects in unstructured 3D point clouds, which are acquired by a random-speckle 3D imaging system for the purpose of automated object detection and reconstruction. An innovative algorithm is proposed; it is based on a novel concept of 3D watershed segmentation and the strategies for resolving over-segmentation and under-segmentation problems. Acquired 3D point clouds are first transformed into a corresponding orthogonally projected depth map along the optical imaging axis of the 3D sensor. A 3D watershed algorithm based on the process of distance transformation is then performed to detect the boundary, called the edge dam, between stacked objects and thereby to segment point clouds individually belonging to two stacked objects. Most importantly, an object-matching algorithm is developed to solve the over- and under-segmentation problems that may arise during the watershed segmentation. The feasibility and effectiveness of the method are confirmed experimentally. The results reveal that the proposed method is a fast and effective scheme for the detection and reconstruction of a 3D object in a random stack of such objects. In the experiments, the precision of the segmentation exceeds 95% and the recall exceeds 80%.

  19. A method for the evaluation of thousands of automated 3D stem cell segmentations.

    PubMed

    Bajcsy, P; Simon, M; Florczyk, S J; Simon, C G; Juba, D; Brady, M C

    2015-12-01

    There is no segmentation method that performs perfectly with any dataset in comparison to human segmentation. Evaluation procedures for segmentation algorithms become critical for their selection. The problems associated with segmentation performance evaluations and visual verification of segmentation results are exaggerated when dealing with thousands of three-dimensional (3D) image volumes because of the amount of computation and manual inputs needed. We address the problem of evaluating 3D segmentation performance when segmentation is applied to thousands of confocal microscopy images (z-stacks). Our approach is to incorporate experimental imaging and geometrical criteria, and map them into computationally efficient segmentation algorithms that can be applied to a very large number of z-stacks. This is an alternative approach to considering existing segmentation methods and evaluating most state-of-the-art algorithms. We designed a methodology for 3D segmentation performance characterization that consists of design, evaluation and verification steps. The characterization integrates manual inputs from projected surrogate 'ground truth' of statistically representative samples and from visual inspection into the evaluation. The novelty of the methodology lies in (1) designing candidate segmentation algorithms by mapping imaging and geometrical criteria into algorithmic steps, and constructing plausible segmentation algorithms with respect to the order of algorithmic steps and their parameters, (2) evaluating segmentation accuracy using samples drawn from probability distribution estimates of candidate segmentations and (3) minimizing human labour needed to create surrogate 'truth' by approximating z-stack segmentations with 2D contours from three orthogonal z-stack projections and by developing visual verification tools. We demonstrate the methodology by applying it to a dataset of 1253 mesenchymal stem cells. The cells reside on 10 different types of biomaterial

  20. Hybrid segmentation framework for 3D medical image analysis

    NASA Astrophysics Data System (ADS)

    Chen, Ting; Metaxas, Dimitri N.

    2003-05-01

    Medical image segmentation is the process that defines the region of interest in the image volume. Classical segmentation methods such as region-based methods and boundary-based methods cannot make full use of the information provided by the image. In this paper we proposed a general hybrid framework for 3D medical image segmentation purposes. In our approach we combine the Gibbs Prior model, and the deformable model. First, Gibbs Prior models are applied onto each slice in a 3D medical image volume and the segmentation results are combined to a 3D binary masks of the object. Then we create a deformable mesh based on this 3D binary mask. The deformable model will be lead to the edge features in the volume with the help of image derived external forces. The deformable model segmentation result can be used to update the parameters for Gibbs Prior models. These methods will then work recursively to reach a global segmentation solution. The hybrid segmentation framework has been applied to images with the objective of lung, heart, colon, jaw, tumor, and brain. The experimental data includes MRI (T1, T2, PD), CT, X-ray, Ultra-Sound images. High quality results are achieved with relatively efficient time cost. We also did validation work using expert manual segmentation as the ground truth. The result shows that the hybrid segmentation may have further clinical use.

  1. An algorithm for segmenting range imagery

    SciTech Connect

    Roberts, R.S.

    1997-03-01

    This report describes the technical accomplishments of the FY96 Cross Cutting and Advanced Technology (CC&AT) project at Los Alamos National Laboratory. The project focused on developing algorithms for segmenting range images. The image segmentation algorithm developed during the project is described here. In addition to segmenting range images, the algorithm can fuse multiple range images thereby providing true 3D scene models. The algorithm has been incorporated into the Rapid World Modelling System at Sandia National Laboratory.

  2. Single 3D cell segmentation from optical CT microscope images

    NASA Astrophysics Data System (ADS)

    Xie, Yiting; Reeves, Anthony P.

    2014-03-01

    The automated segmentation of the nucleus and cytoplasm regions in 3D optical CT microscope images has been achieved with two methods, a global threshold gradient based approach and a graph-cut approach. For the first method, the first two peaks of a gradient figure of merit curve are selected as the thresholds for cytoplasm and nucleus segmentation. The second method applies a graph-cut segmentation twice: the first identifies the nucleus region and the second identifies the cytoplasm region. Image segmentation of single cells is important for automated disease diagnostic systems. The segmentation methods were evaluated with 200 3D images consisting of 40 samples of 5 different cell types. The cell types consisted of columnar, macrophage, metaplastic and squamous human cells and cultured A549 cancer cells. The segmented cells were compared with both 2D and 3D reference images and the quality of segmentation was determined by the Dice Similarity Coefficient (DSC). In general, the graph-cut method had a superior performance to the gradient-based method. The graph-cut method achieved an average DSC of 86% and 72% for nucleus and cytoplasm segmentations respectively for the 2D reference images and 83% and 75% for the 3D reference images. The gradient method achieved an average DSC of 72% and 51% for nucleus and cytoplasm segmentation for the 2D reference images and 71% and 51% for the 3D reference images. The DSC of cytoplasm segmentation was significantly lower than for the nucleus since the cytoplasm was not differentiated as well by image intensity from the background.

  3. Random Walk Based Segmentation for the Prostate on 3D Transrectal Ultrasound Images

    PubMed Central

    Ma, Ling; Guo, Rongrong; Tian, Zhiqiang; Venkataraman, Rajesh; Sarkar, Saradwata; Liu, Xiabi; Nieh, Peter T.; Master, Viraj V.; Schuster, David M.; Fei, Baowei

    2016-01-01

    This paper proposes a new semi-automatic segmentation method for the prostate on 3D transrectal ultrasound images (TRUS) by combining the region and classification information. We use a random walk algorithm to express the region information efficiently and flexibly because it can avoid segmentation leakage and shrinking bias. We further use the decision tree as the classifier to distinguish the prostate from the non-prostate tissue because of its fast speed and superior performance, especially for a binary classification problem. Our segmentation algorithm is initialized with the user roughly marking the prostate and non-prostate points on the mid-gland slice which are fitted into an ellipse for obtaining more points. Based on these fitted seed points, we run the random walk algorithm to segment the prostate on the mid-gland slice. The segmented contour and the information from the decision tree classification are combined to determine the initial seed points for the other slices. The random walk algorithm is then used to segment the prostate on the adjacent slice. We propagate the process until all slices are segmented. The segmentation method was tested in 32 3D transrectal ultrasound images. Manual segmentation by a radiologist serves as the gold standard for the validation. The experimental results show that the proposed method achieved a Dice similarity coefficient of 91.37±0.05%. The segmentation method can be applied to 3D ultrasound-guided prostate biopsy and other applications. PMID:27660383

  4. Random walk based segmentation for the prostate on 3D transrectal ultrasound images

    NASA Astrophysics Data System (ADS)

    Ma, Ling; Guo, Rongrong; Tian, Zhiqiang; Venkataraman, Rajesh; Sarkar, Saradwata; Liu, Xiabi; Nieh, Peter T.; Master, Viraj V.; Schuster, David M.; Fei, Baowei

    2016-03-01

    This paper proposes a new semi-automatic segmentation method for the prostate on 3D transrectal ultrasound images (TRUS) by combining the region and classification information. We use a random walk algorithm to express the region information efficiently and flexibly because it can avoid segmentation leakage and shrinking bias. We further use the decision tree as the classifier to distinguish the prostate from the non-prostate tissue because of its fast speed and superior performance, especially for a binary classification problem. Our segmentation algorithm is initialized with the user roughly marking the prostate and non-prostate points on the mid-gland slice which are fitted into an ellipse for obtaining more points. Based on these fitted seed points, we run the random walk algorithm to segment the prostate on the mid-gland slice. The segmented contour and the information from the decision tree classification are combined to determine the initial seed points for the other slices. The random walk algorithm is then used to segment the prostate on the adjacent slice. We propagate the process until all slices are segmented. The segmentation method was tested in 32 3D transrectal ultrasound images. Manual segmentation by a radiologist serves as the gold standard for the validation. The experimental results show that the proposed method achieved a Dice similarity coefficient of 91.37+/-0.05%. The segmentation method can be applied to 3D ultrasound-guided prostate biopsy and other applications.

  5. Automated 3D vascular segmentation in CT hepatic venography

    NASA Astrophysics Data System (ADS)

    Fetita, Catalin; Lucidarme, Olivier; Preteux, Francoise

    2005-08-01

    In the framework of preoperative evaluation of the hepatic venous anatomy in living-donor liver transplantation or oncologic rejections, this paper proposes an automated approach for the 3D segmentation of the liver vascular structure from 3D CT hepatic venography data. The developed segmentation approach takes into account the specificities of anatomical structures in terms of spatial location, connectivity and morphometric properties. It implements basic and advanced morphological operators (closing, geodesic dilation, gray-level reconstruction, sup-constrained connection cost) in mono- and multi-resolution filtering schemes in order to achieve an automated 3D reconstruction of the opacified hepatic vessels. A thorough investigation of the venous anatomy including morphometric parameter estimation is then possible via computer-vision 3D rendering, interaction and navigation capabilities.

  6. Volumetric CT-based segmentation of NSCLC using 3D-Slicer.

    PubMed

    Velazquez, Emmanuel Rios; Parmar, Chintan; Jermoumi, Mohammed; Mak, Raymond H; van Baardwijk, Angela; Fennessy, Fiona M; Lewis, John H; De Ruysscher, Dirk; Kikinis, Ron; Lambin, Philippe; Aerts, Hugo J W L

    2013-01-01

    Accurate volumetric assessment in non-small cell lung cancer (NSCLC) is critical for adequately informing treatments. In this study we assessed the clinical relevance of a semiautomatic computed tomography (CT)-based segmentation method using the competitive region-growing based algorithm, implemented in the free and public available 3D-Slicer software platform. We compared the 3D-Slicer segmented volumes by three independent observers, who segmented the primary tumour of 20 NSCLC patients twice, to manual slice-by-slice delineations of five physicians. Furthermore, we compared all tumour contours to the macroscopic diameter of the tumour in pathology, considered as the "gold standard". The 3D-Slicer segmented volumes demonstrated high agreement (overlap fractions > 0.90), lower volume variability (p = 0.0003) and smaller uncertainty areas (p = 0.0002), compared to manual slice-by-slice delineations. Furthermore, 3D-Slicer segmentations showed a strong correlation to pathology (r = 0.89, 95%CI, 0.81-0.94). Our results show that semiautomatic 3D-Slicer segmentations can be used for accurate contouring and are more stable than manual delineations. Therefore, 3D-Slicer can be employed as a starting point for treatment decisions or for high-throughput data mining research, such as Radiomics, where manual delineating often represent a time-consuming bottleneck. PMID:24346241

  7. A New Algorithm for 3D Dendritic Spine Detection

    NASA Astrophysics Data System (ADS)

    Zhou, Wengang; Li, Houqiang; Zhou, Xiaobo; Wong, Stephen

    2007-11-01

    It has been shown in recent research that there is a close relationship between neurological functions of neuron and its morphology. As manual analysis of large data sets is too tedious and may be subjected to user bias, a computer aided processing method is urgently desired. In this paper, we propose an automatic approach for 3D dendritic spine detection, which can greatly help neuron-biologists to obtain morphological information about a neuron and its spines. The work mainly consists of segmentation and spine component detection. The segmentation of dendrite and spine components is carried out by means of 3D level set based on local binary fitting model, which yields better results than global threshold method. As for spine component detection, an efficient approach is presented which consists of backbone extraction, detached and attached spine components detection. The detection is robust to noise and the detected spines are well represented. We validate our algorithm with real 3D neuron images and the result reveals that it works well.

  8. Chest wall segmentation in automated 3D breast ultrasound scans.

    PubMed

    Tan, Tao; Platel, Bram; Mann, Ritse M; Huisman, Henkjan; Karssemeijer, Nico

    2013-12-01

    In this paper, we present an automatic method to segment the chest wall in automated 3D breast ultrasound images. Determining the location of the chest wall in automated 3D breast ultrasound images is necessary in computer-aided detection systems to remove automatically detected cancer candidates beyond the chest wall and it can be of great help for inter- and intra-modal image registration. We show that the visible part of the chest wall in an automated 3D breast ultrasound image can be accurately modeled by a cylinder. We fit the surface of our cylinder model to a set of automatically detected rib-surface points. The detection of the rib-surface points is done by a classifier using features representing local image intensity patterns and presence of rib shadows. Due to attenuation of the ultrasound signal, a clear shadow is visible behind the ribs. Evaluation of our segmentation method is done by computing the distance of manually annotated rib points to the surface of the automatically detected chest wall. We examined the performance on images obtained with the two most common 3D breast ultrasound devices in the market. In a dataset of 142 images, the average mean distance of the annotated points to the segmented chest wall was 5.59 ± 3.08 mm.

  9. Deformable M-Reps for 3D Medical Image Segmentation.

    PubMed

    Pizer, Stephen M; Fletcher, P Thomas; Joshi, Sarang; Thall, Andrew; Chen, James Z; Fridman, Yonatan; Fritsch, Daniel S; Gash, Graham; Glotzer, John M; Jiroutek, Michael R; Lu, Conglin; Muller, Keith E; Tracton, Gregg; Yushkevich, Paul; Chaney, Edward L

    2003-11-01

    M-reps (formerly called DSLs) are a multiscale medial means for modeling and rendering 3D solid geometry. They are particularly well suited to model anatomic objects and in particular to capture prior geometric information effectively in deformable models segmentation approaches. The representation is based on figural models, which define objects at coarse scale by a hierarchy of figures - each figure generally a slab representing a solid region and its boundary simultaneously. This paper focuses on the use of single figure models to segment objects of relatively simple structure. A single figure is a sheet of medial atoms, which is interpolated from the model formed by a net, i.e., a mesh or chain, of medial atoms (hence the name m-reps), each atom modeling a solid region via not only a position and a width but also a local figural frame giving figural directions and an object angle between opposing, corresponding positions on the boundary implied by the m-rep. The special capability of an m-rep is to provide spatial and orientational correspondence between an object in two different states of deformation. This ability is central to effective measurement of both geometric typicality and geometry to image match, the two terms of the objective function optimized in segmentation by deformable models. The other ability of m-reps central to effective segmentation is their ability to support segmentation at multiple levels of scale, with successively finer precision. Objects modeled by single figures are segmented first by a similarity transform augmented by object elongation, then by adjustment of each medial atom, and finally by displacing a dense sampling of the m-rep implied boundary. While these models and approaches also exist in 2D, we focus on 3D objects. The segmentation of the kidney from CT and the hippocampus from MRI serve as the major examples in this paper. The accuracy of segmentation as compared to manual, slice-by-slice segmentation is reported.

  10. [An integrated segmentation method for 3D ultrasound carotid artery].

    PubMed

    Yang, Xin; Wu, Huihui; Liu, Yang; Xu, Hongwei; Liang, Huageng; Cai, Wenjuan; Fang, Mengjie; Wang, Yujie

    2013-07-01

    An integrated segmentation method for 3D ultrasound carotid artery was proposed. 3D ultrasound image was sliced into transverse, coronal and sagittal 2D images on the carotid bifurcation point. Then, the three images were processed respectively, and the carotid artery contours and thickness were obtained finally. This paper tries to overcome the disadvantages of current computer aided diagnosis method, such as high computational complexity, easily introduced subjective errors et al. The proposed method could get the carotid artery overall information rapidly, accurately and completely. It could be transplanted into clinical usage for atherosclerosis diagnosis and prevention. PMID:24195385

  11. Shape-Driven 3D Segmentation Using Spherical Wavelets

    PubMed Central

    Nain, Delphine; Haker, Steven; Bobick, Aaron; Tannenbaum, Allen

    2013-01-01

    This paper presents a novel active surface segmentation algorithm using a multiscale shape representation and prior. We define a parametric model of a surface using spherical wavelet functions and learn a prior probability distribution over the wavelet coefficients to model shape variations at different scales and spatial locations in a training set. Based on this representation, we derive a parametric active surface evolution using the multiscale prior coefficients as parameters for our optimization procedure to naturally include the prior in the segmentation framework. Additionally, the optimization method can be applied in a coarse-to-fine manner. We apply our algorithm to the segmentation of brain caudate nucleus, of interest in the study of schizophrenia. Our validation shows our algorithm is computationally efficient and outperforms the Active Shape Model algorithm by capturing finer shape details. PMID:17354875

  12. Shape-driven 3D segmentation using spherical wavelets.

    PubMed

    Nain, Delphine; Haker, Steven; Bobick, Aaron; Tannenbaum, Allen

    2006-01-01

    This paper presents a novel active surface segmentation algorithm using a multiscale shape representation and prior. We define a parametric model of a surface using spherical wavelet functions and learn a prior probability distribution over the wavelet coefficients to model shape variations at different scales and spatial locations in a training set. Based on this representation, we derive a parametric active surface evolution using the multiscale prior coefficients as parameters for our optimization procedure to naturally include the prior in the segmentation framework. Additionally, the optimization method can be applied in a coarse-to-fine manner. We apply our algorithm to the segmentation of brain caudate nucleus, of interest in the study of schizophrenia. Our validation shows our algorithm is computationally efficient and outperforms the Active Shape Model algorithm by capturing finer shape details. PMID:17354875

  13. A high capacity 3D steganography algorithm.

    PubMed

    Chao, Min-Wen; Lin, Chao-hung; Yu, Cheng-Wei; Lee, Tong-Yee

    2009-01-01

    In this paper, we present a very high-capacity and low-distortion 3D steganography scheme. Our steganography approach is based on a novel multilayered embedding scheme to hide secret messages in the vertices of 3D polygon models. Experimental results show that the cover model distortion is very small as the number of hiding layers ranges from 7 to 13 layers. To the best of our knowledge, this novel approach can provide much higher hiding capacity than other state-of-the-art approaches, while obeying the low distortion and security basic requirements for steganography on 3D models.

  14. Multi-camera sensor system for 3D segmentation and localization of multiple mobile robots.

    PubMed

    Losada, Cristina; Mazo, Manuel; Palazuelos, Sira; Pizarro, Daniel; Marrón, Marta

    2010-01-01

    This paper presents a method for obtaining the motion segmentation and 3D localization of multiple mobile robots in an intelligent space using a multi-camera sensor system. The set of calibrated and synchronized cameras are placed in fixed positions within the environment (intelligent space). The proposed algorithm for motion segmentation and 3D localization is based on the minimization of an objective function. This function includes information from all the cameras, and it does not rely on previous knowledge or invasive landmarks on board the robots. The proposed objective function depends on three groups of variables: the segmentation boundaries, the motion parameters and the depth. For the objective function minimization, we use a greedy iterative algorithm with three steps that, after initialization of segmentation boundaries and depth, are repeated until convergence.

  15. Multi-Camera Sensor System for 3D Segmentation and Localization of Multiple Mobile Robots

    PubMed Central

    Losada, Cristina; Mazo, Manuel; Palazuelos, Sira; Pizarro, Daniel; Marrón, Marta

    2010-01-01

    This paper presents a method for obtaining the motion segmentation and 3D localization of multiple mobile robots in an intelligent space using a multi-camera sensor system. The set of calibrated and synchronized cameras are placed in fixed positions within the environment (intelligent space). The proposed algorithm for motion segmentation and 3D localization is based on the minimization of an objective function. This function includes information from all the cameras, and it does not rely on previous knowledge or invasive landmarks on board the robots. The proposed objective function depends on three groups of variables: the segmentation boundaries, the motion parameters and the depth. For the objective function minimization, we use a greedy iterative algorithm with three steps that, after initialization of segmentation boundaries and depth, are repeated until convergence. PMID:22319297

  16. Dynamic deformable models for 3D MRI heart segmentation

    NASA Astrophysics Data System (ADS)

    Zhukov, Leonid; Bao, Zhaosheng; Gusikov, Igor; Wood, John; Breen, David E.

    2002-05-01

    Automated or semiautomated segmentation of medical images decreases interstudy variation, observer bias, and postprocessing time as well as providing clincally-relevant quantitative data. In this paper we present a new dynamic deformable modeling approach to 3D segmentation. It utilizes recently developed dynamic remeshing techniques and curvature estimation methods to produce high-quality meshes. The approach has been implemented in an interactive environment that allows a user to specify an initial model and identify key features in the data. These features act as hard constraints that the model must not pass through as it deforms. We have employed the method to perform semi-automatic segmentation of heart structures from cine MRI data.

  17. 3D automatic liver segmentation using feature-constrained Mahalanobis distance in CT images.

    PubMed

    Salman Al-Shaikhli, Saif Dawood; Yang, Michael Ying; Rosenhahn, Bodo

    2016-08-01

    Automatic 3D liver segmentation is a fundamental step in the liver disease diagnosis and surgery planning. This paper presents a novel fully automatic algorithm for 3D liver segmentation in clinical 3D computed tomography (CT) images. Based on image features, we propose a new Mahalanobis distance cost function using an active shape model (ASM). We call our method MD-ASM. Unlike the standard active shape model (ST-ASM), the proposed method introduces a new feature-constrained Mahalanobis distance cost function to measure the distance between the generated shape during the iterative step and the mean shape model. The proposed Mahalanobis distance function is learned from a public database of liver segmentation challenge (MICCAI-SLiver07). As a refinement step, we propose the use of a 3D graph-cut segmentation. Foreground and background labels are automatically selected using texture features of the learned Mahalanobis distance. Quantitatively, the proposed method is evaluated using two clinical 3D CT scan databases (MICCAI-SLiver07 and MIDAS). The evaluation of the MICCAI-SLiver07 database is obtained by the challenge organizers using five different metric scores. The experimental results demonstrate the availability of the proposed method by achieving an accurate liver segmentation compared to the state-of-the-art methods. PMID:26501155

  18. Deformable M-Reps for 3D Medical Image Segmentation

    PubMed Central

    Pizer, Stephen M.; Fletcher, P. Thomas; Joshi, Sarang; Thall, Andrew; Chen, James Z.; Fridman, Yonatan; Fritsch, Daniel S.; Gash, Graham; Glotzer, John M.; Jiroutek, Michael R.; Lu, Conglin; Muller, Keith E.; Tracton, Gregg; Yushkevich, Paul; Chaney, Edward L.

    2013-01-01

    M-reps (formerly called DSLs) are a multiscale medial means for modeling and rendering 3D solid geometry. They are particularly well suited to model anatomic objects and in particular to capture prior geometric information effectively in deformable models segmentation approaches. The representation is based on figural models, which define objects at coarse scale by a hierarchy of figures – each figure generally a slab representing a solid region and its boundary simultaneously. This paper focuses on the use of single figure models to segment objects of relatively simple structure. A single figure is a sheet of medial atoms, which is interpolated from the model formed by a net, i.e., a mesh or chain, of medial atoms (hence the name m-reps), each atom modeling a solid region via not only a position and a width but also a local figural frame giving figural directions and an object angle between opposing, corresponding positions on the boundary implied by the m-rep. The special capability of an m-rep is to provide spatial and orientational correspondence between an object in two different states of deformation. This ability is central to effective measurement of both geometric typicality and geometry to image match, the two terms of the objective function optimized in segmentation by deformable models. The other ability of m-reps central to effective segmentation is their ability to support segmentation at multiple levels of scale, with successively finer precision. Objects modeled by single figures are segmented first by a similarity transform augmented by object elongation, then by adjustment of each medial atom, and finally by displacing a dense sampling of the m-rep implied boundary. While these models and approaches also exist in 2D, we focus on 3D objects. The segmentation of the kidney from CT and the hippocampus from MRI serve as the major examples in this paper. The accuracy of segmentation as compared to manual, slice-by-slice segmentation is reported. PMID

  19. Automated 3D ultrasound image segmentation to aid breast cancer image interpretation.

    PubMed

    Gu, Peng; Lee, Won-Mean; Roubidoux, Marilyn A; Yuan, Jie; Wang, Xueding; Carson, Paul L

    2016-02-01

    Segmentation of an ultrasound image into functional tissues is of great importance to clinical diagnosis of breast cancer. However, many studies are found to segment only the mass of interest and not all major tissues. Differences and inconsistencies in ultrasound interpretation call for an automated segmentation method to make results operator-independent. Furthermore, manual segmentation of entire three-dimensional (3D) ultrasound volumes is time-consuming, resource-intensive, and clinically impractical. Here, we propose an automated algorithm to segment 3D ultrasound volumes into three major tissue types: cyst/mass, fatty tissue, and fibro-glandular tissue. To test its efficacy and consistency, the proposed automated method was employed on a database of 21 cases of whole breast ultrasound. Experimental results show that our proposed method not only distinguishes fat and non-fat tissues correctly, but performs well in classifying cyst/mass. Comparison of density assessment between the automated method and manual segmentation demonstrates good consistency with an accuracy of 85.7%. Quantitative comparison of corresponding tissue volumes, which uses overlap ratio, gives an average similarity of 74.54%, consistent with values seen in MRI brain segmentations. Thus, our proposed method exhibits great potential as an automated approach to segment 3D whole breast ultrasound volumes into functionally distinct tissues that may help to correct ultrasound speed of sound aberrations and assist in density based prognosis of breast cancer.

  20. Automated 3D ultrasound image segmentation for assistant diagnosis of breast cancer

    NASA Astrophysics Data System (ADS)

    Wang, Yuxin; Gu, Peng; Lee, Won-Mean; Roubidoux, Marilyn A.; Du, Sidan; Yuan, Jie; Wang, Xueding; Carson, Paul L.

    2016-04-01

    Segmentation of an ultrasound image into functional tissues is of great importance to clinical diagnosis of breast cancer. However, many studies are found to segment only the mass of interest and not all major tissues. Differences and inconsistencies in ultrasound interpretation call for an automated segmentation method to make results operator-independent. Furthermore, manual segmentation of entire three-dimensional (3D) ultrasound volumes is time-consuming, resource-intensive, and clinically impractical. Here, we propose an automated algorithm to segment 3D ultrasound volumes into three major tissue types: cyst/mass, fatty tissue, and fibro-glandular tissue. To test its efficacy and consistency, the proposed automated method was employed on a database of 21 cases of whole breast ultrasound. Experimental results show that our proposed method not only distinguishes fat and non-fat tissues correctly, but performs well in classifying cyst/mass. Comparison of density assessment between the automated method and manual segmentation demonstrates good consistency with an accuracy of 85.7%. Quantitative comparison of corresponding tissue volumes, which uses overlap ratio, gives an average similarity of 74.54%, consistent with values seen in MRI brain segmentations. Thus, our proposed method exhibits great potential as an automated approach to segment 3D whole breast ultrasound volumes into functionally distinct tissues that may help to correct ultrasound speed of sound aberrations and assist in density based prognosis of breast cancer.

  1. NIHmagic: 3D visualization, registration, and segmentation tool

    NASA Astrophysics Data System (ADS)

    Freidlin, Raisa Z.; Ohazama, Chikai J.; Arai, Andrew E.; McGarry, Delia P.; Panza, Julio A.; Trus, Benes L.

    2000-05-01

    Interactive visualization of multi-dimensional biological images has revolutionized diagnostic and therapy planning. Extracting complementary anatomical and functional information from different imaging modalities provides a synergistic analysis capability for quantitative and qualitative evaluation of the objects under examination. We have been developing NIHmagic, a visualization tool for research and clinical use, on the SGI OnyxII Infinite Reality platform. Images are reconstructed into a 3D volume by volume rendering, a display technique that employs 3D texture mapping to provide a translucent appearance to the object. A stack of slices is rendered into a volume by an opacity mapping function, where the opacity is determined by the intensity of the voxel and its distance from the viewer. NIHmagic incorporates 3D visualization of time-sequenced images, manual registration of 2D slices, segmentation of anatomical structures, and color-coded re-mapping of intensities. Visualization of MIR, PET, CT, Ultrasound, and 3D reconstructed electron microscopy images has been accomplished using NIHmagic.

  2. 3D segmentation and reconstruction of endobronchial ultrasound

    NASA Astrophysics Data System (ADS)

    Zang, Xiaonan; Breslav, Mikhail; Higgins, William E.

    2013-03-01

    State-of-the-art practice for lung-cancer staging bronchoscopy often draws upon a combination of endobronchial ultrasound (EBUS) and multidetector computed-tomography (MDCT) imaging. While EBUS offers real-time in vivo imaging of suspicious lesions and lymph nodes, its low signal-to-noise ratio and tendency to exhibit missing region-of-interest (ROI) boundaries complicate diagnostic tasks. Furthermore, past efforts did not incorporate automated analysis of EBUS images and a subsequent fusion of the EBUS and MDCT data. To address these issues, we propose near real-time automated methods for three-dimensional (3D) EBUS segmentation and reconstruction that generate a 3D ROI model along with ROI measurements. Results derived from phantom data and lung-cancer patients show the promise of the methods. In addition, we present a preliminary image-guided intervention (IGI) system example, whereby EBUS imagery is registered to a patient's MDCT chest scan.

  3. Machine Learning of Hierarchical Clustering to Segment 2D and 3D Images

    PubMed Central

    Nunez-Iglesias, Juan; Kennedy, Ryan; Parag, Toufiq; Shi, Jianbo; Chklovskii, Dmitri B.

    2013-01-01

    We aim to improve segmentation through the use of machine learning tools during region agglomeration. We propose an active learning approach for performing hierarchical agglomerative segmentation from superpixels. Our method combines multiple features at all scales of the agglomerative process, works for data with an arbitrary number of dimensions, and scales to very large datasets. We advocate the use of variation of information to measure segmentation accuracy, particularly in 3D electron microscopy (EM) images of neural tissue, and using this metric demonstrate an improvement over competing algorithms in EM and natural images. PMID:23977123

  4. Efficient segmentation of 3D fluoroscopic datasets from mobile C-arm

    NASA Astrophysics Data System (ADS)

    Styner, Martin A.; Talib, Haydar; Singh, Digvijay; Nolte, Lutz-Peter

    2004-05-01

    The emerging mobile fluoroscopic 3D technology linked with a navigation system combines the advantages of CT-based and C-arm-based navigation. The intra-operative, automatic segmentation of 3D fluoroscopy datasets enables the combined visualization of surgical instruments and anatomical structures for enhanced planning, surgical eye-navigation and landmark digitization. We performed a thorough evaluation of several segmentation algorithms using a large set of data from different anatomical regions and man-made phantom objects. The analyzed segmentation methods include automatic thresholding, morphological operations, an adapted region growing method and an implicit 3D geodesic snake method. In regard to computational efficiency, all methods performed within acceptable limits on a standard Desktop PC (30sec-5min). In general, the best results were obtained with datasets from long bones, followed by extremities. The segmentations of spine, pelvis and shoulder datasets were generally of poorer quality. As expected, the threshold-based methods produced the worst results. The combined thresholding and morphological operations methods were considered appropriate for a smaller set of clean images. The region growing method performed generally much better in regard to computational efficiency and segmentation correctness, especially for datasets of joints, and lumbar and cervical spine regions. The less efficient implicit snake method was able to additionally remove wrongly segmented skin tissue regions. This study presents a step towards efficient intra-operative segmentation of 3D fluoroscopy datasets, but there is room for improvement. Next, we plan to study model-based approaches for datasets from the knee and hip joint region, which would be thenceforth applied to all anatomical regions in our continuing development of an ideal segmentation procedure for 3D fluoroscopic images.

  5. An Automatic Registration Algorithm for 3D Maxillofacial Model

    NASA Astrophysics Data System (ADS)

    Qiu, Luwen; Zhou, Zhongwei; Guo, Jixiang; Lv, Jiancheng

    2016-09-01

    3D image registration aims at aligning two 3D data sets in a common coordinate system, which has been widely used in computer vision, pattern recognition and computer assisted surgery. One challenging problem in 3D registration is that point-wise correspondences between two point sets are often unknown apriori. In this work, we develop an automatic algorithm for 3D maxillofacial models registration including facial surface model and skull model. Our proposed registration algorithm can achieve a good alignment result between partial and whole maxillofacial model in spite of ambiguous matching, which has a potential application in the oral and maxillofacial reparative and reconstructive surgery. The proposed algorithm includes three steps: (1) 3D-SIFT features extraction and FPFH descriptors construction; (2) feature matching using SAC-IA; (3) coarse rigid alignment and refinement by ICP. Experiments on facial surfaces and mandible skull models demonstrate the efficiency and robustness of our algorithm.

  6. Segmentation of whole cells and cell nuclei from 3-D optical microscope images using dynamic programming.

    PubMed

    McCullough, D P; Gudla, P R; Harris, B S; Collins, J A; Meaburn, K J; Nakaya, M A; Yamaguchi, T P; Misteli, T; Lockett, S J

    2008-05-01

    Communications between cells in large part drive tissue development and function, as well as disease-related processes such as tumorigenesis. Understanding the mechanistic bases of these processes necessitates quantifying specific molecules in adjacent cells or cell nuclei of intact tissue. However, a major restriction on such analyses is the lack of an efficient method that correctly segments each object (cell or nucleus) from 3-D images of an intact tissue specimen. We report a highly reliable and accurate semi-automatic algorithmic method for segmenting fluorescence-labeled cells or nuclei from 3-D tissue images. Segmentation begins with semi-automatic, 2-D object delineation in a user-selected plane, using dynamic programming (DP) to locate the border with an accumulated intensity per unit length greater that any other possible border around the same object. Then the two surfaces of the object in planes above and below the selected plane are found using an algorithm that combines DP and combinatorial searching. Following segmentation, any perceived errors can be interactively corrected. Segmentation accuracy is not significantly affected by intermittent labeling of object surfaces, diffuse surfaces, or spurious signals away from surfaces. The unique strength of the segmentation method was demonstrated on a variety of biological tissue samples where all cells, including irregularly shaped cells, were accurately segmented based on visual inspection.

  7. Segmentation of bone structures in 3D CT images based on continuous max-flow optimization

    NASA Astrophysics Data System (ADS)

    Pérez-Carrasco, J. A.; Acha-Piñero, B.; Serrano, C.

    2015-03-01

    In this paper an algorithm to carry out the automatic segmentation of bone structures in 3D CT images has been implemented. Automatic segmentation of bone structures is of special interest for radiologists and surgeons to analyze bone diseases or to plan some surgical interventions. This task is very complicated as bones usually present intensities overlapping with those of surrounding tissues. This overlapping is mainly due to the composition of bones and to the presence of some diseases such as Osteoarthritis, Osteoporosis, etc. Moreover, segmentation of bone structures is a very time-consuming task due to the 3D essence of the bones. Usually, this segmentation is implemented manually or with algorithms using simple techniques such as thresholding and thus providing bad results. In this paper gray information and 3D statistical information have been combined to be used as input to a continuous max-flow algorithm. Twenty CT images have been tested and different coefficients have been computed to assess the performance of our implementation. Dice and Sensitivity values above 0.91 and 0.97 respectively were obtained. A comparison with Level Sets and thresholding techniques has been carried out and our results outperformed them in terms of accuracy.

  8. Multiscale 3-D Shape Representation and Segmentation Using Spherical Wavelets

    PubMed Central

    Nain, Delphine; Haker, Steven; Bobick, Aaron

    2013-01-01

    This paper presents a novel multiscale shape representation and segmentation algorithm based on the spherical wavelet transform. This work is motivated by the need to compactly and accurately encode variations at multiple scales in the shape representation in order to drive the segmentation and shape analysis of deep brain structures, such as the caudate nucleus or the hippocampus. Our proposed shape representation can be optimized to compactly encode shape variations in a population at the needed scale and spatial locations, enabling the construction of more descriptive, nonglobal, nonuniform shape probability priors to be included in the segmentation and shape analysis framework. In particular, this representation addresses the shortcomings of techniques that learn a global shape prior at a single scale of analysis and cannot represent fine, local variations in a population of shapes in the presence of a limited dataset. Specifically, our technique defines a multiscale parametric model of surfaces belonging to the same population using a compact set of spherical wavelets targeted to that population. We further refine the shape representation by separating into groups wavelet coefficients that describe independent global and/or local biological variations in the population, using spectral graph partitioning. We then learn a prior probability distribution induced over each group to explicitly encode these variations at different scales and spatial locations. Based on this representation, we derive a parametric active surface evolution using the multiscale prior coefficients as parameters for our optimization procedure to naturally include the prior for segmentation. Additionally, the optimization method can be applied in a coarse-to-fine manner. We apply our algorithm to two different brain structures, the caudate nucleus and the hippocampus, of interest in the study of schizophrenia. We show: 1) a reconstruction task of a test set to validate the expressiveness of

  9. Multiscale 3-D shape representation and segmentation using spherical wavelets.

    PubMed

    Nain, Delphine; Haker, Steven; Bobick, Aaron; Tannenbaum, Allen

    2007-04-01

    This paper presents a novel multiscale shape representation and segmentation algorithm based on the spherical wavelet transform. This work is motivated by the need to compactly and accurately encode variations at multiple scales in the shape representation in order to drive the segmentation and shape analysis of deep brain structures, such as the caudate nucleus or the hippocampus. Our proposed shape representation can be optimized to compactly encode shape variations in a population at the needed scale and spatial locations, enabling the construction of more descriptive, nonglobal, nonuniform shape probability priors to be included in the segmentation and shape analysis framework. In particular, this representation addresses the shortcomings of techniques that learn a global shape prior at a single scale of analysis and cannot represent fine, local variations in a population of shapes in the presence of a limited dataset. Specifically, our technique defines a multiscale parametric model of surfaces belonging to the same population using a compact set of spherical wavelets targeted to that population. We further refine the shape representation by separating into groups wavelet coefficients that describe independent global and/or local biological variations in the population, using spectral graph partitioning. We then learn a prior probability distribution induced over each group to explicitly encode these variations at different scales and spatial locations. Based on this representation, we derive a parametric active surface evolution using the multiscale prior coefficients as parameters for our optimization procedure to naturally include the prior for segmentation. Additionally, the optimization method can be applied in a coarse-to-fine manner. We apply our algorithm to two different brain structures, the caudate nucleus and the hippocampus, of interest in the study of schizophrenia. We show: 1) a reconstruction task of a test set to validate the expressiveness of

  10. 3D segmentation of lung CT data with graph-cuts: analysis of parameter sensitivities

    NASA Astrophysics Data System (ADS)

    Cha, Jung won; Dunlap, Neal; Wang, Brian; Amini, Amir

    2016-03-01

    Lung boundary image segmentation is important for many tasks including for example in development of radiation treatment plans for subjects with thoracic malignancies. In this paper, we describe a method and parameter settings for accurate 3D lung boundary segmentation based on graph-cuts from X-ray CT data1. Even though previously several researchers have used graph-cuts for image segmentation, to date, no systematic studies have been performed regarding the range of parameter that give accurate results. The energy function in the graph-cuts algorithm requires 3 suitable parameter settings: K, a large constant for assigning seed points, c, the similarity coefficient for n-links, and λ, the terminal coefficient for t-links. We analyzed the parameter sensitivity with four lung data sets from subjects with lung cancer using error metrics. Large values of K created artifacts on segmented images, and relatively much larger value of c than the value of λ influenced the balance between the boundary term and the data term in the energy function, leading to unacceptable segmentation results. For a range of parameter settings, we performed 3D image segmentation, and in each case compared the results with the expert-delineated lung boundaries. We used simple 6-neighborhood systems for n-link in 3D. The 3D image segmentation took 10 minutes for a 512x512x118 ~ 512x512x190 lung CT image volume. Our results indicate that the graph-cuts algorithm was more sensitive to the K and λ parameter settings than to the C parameter and furthermore that amongst the range of parameters tested, K=5 and λ=0.5 yielded good results.

  11. Automatic 3D kidney segmentation based on shape constrained GC-OAAM

    NASA Astrophysics Data System (ADS)

    Chen, Xinjian; Summers, Ronald M.; Yao, Jianhua

    2011-03-01

    The kidney can be classified into three main tissue types: renal cortex, renal medulla and renal pelvis (or collecting system). Dysfunction of different renal tissue types may cause different kidney diseases. Therefore, accurate and efficient segmentation of kidney into different tissue types plays a very important role in clinical research. In this paper, we propose an automatic 3D kidney segmentation method which segments the kidney into the three different tissue types: renal cortex, medulla and pelvis. The proposed method synergistically combines active appearance model (AAM), live wire (LW) and graph cut (GC) methods, GC-OAAM for short. Our method consists of two main steps. First, a pseudo 3D segmentation method is employed for kidney initialization in which the segmentation is performed slice-by-slice via a multi-object oriented active appearance model (OAAM) method. An improved iterative model refinement algorithm is proposed for the AAM optimization, which synergistically combines the AAM and LW method. Multi-object strategy is applied to help the object initialization. The 3D model constraints are applied to the initialization result. Second, the object shape information generated from the initialization step is integrated into the GC cost computation. A multi-label GC method is used to segment the kidney into cortex, medulla and pelvis. The proposed method was tested on 19 clinical arterial phase CT data sets. The preliminary results showed the feasibility and efficiency of the proposed method.

  12. Semi-automatic segmentation for 3D motion analysis of the tongue with dynamic MRI.

    PubMed

    Lee, Junghoon; Woo, Jonghye; Xing, Fangxu; Murano, Emi Z; Stone, Maureen; Prince, Jerry L

    2014-12-01

    Dynamic MRI has been widely used to track the motion of the tongue and measure its internal deformation during speech and swallowing. Accurate segmentation of the tongue is a prerequisite step to define the target boundary and constrain the tracking to tissue points within the tongue. Segmentation of 2D slices or 3D volumes is challenging because of the large number of slices and time frames involved in the segmentation, as well as the incorporation of numerous local deformations that occur throughout the tongue during motion. In this paper, we propose a semi-automatic approach to segment 3D dynamic MRI of the tongue. The algorithm steps include seeding a few slices at one time frame, propagating seeds to the same slices at different time frames using deformable registration, and random walker segmentation based on these seed positions. This method was validated on the tongue of five normal subjects carrying out the same speech task with multi-slice 2D dynamic cine-MR images obtained at three orthogonal orientations and 26 time frames. The resulting semi-automatic segmentations of a total of 130 volumes showed an average dice similarity coefficient (DSC) score of 0.92 with less segmented volume variability between time frames than in manual segmentations. PMID:25155697

  13. Semi-automatic segmentation for 3D motion analysis of the tongue with dynamic MRI.

    PubMed

    Lee, Junghoon; Woo, Jonghye; Xing, Fangxu; Murano, Emi Z; Stone, Maureen; Prince, Jerry L

    2014-12-01

    Dynamic MRI has been widely used to track the motion of the tongue and measure its internal deformation during speech and swallowing. Accurate segmentation of the tongue is a prerequisite step to define the target boundary and constrain the tracking to tissue points within the tongue. Segmentation of 2D slices or 3D volumes is challenging because of the large number of slices and time frames involved in the segmentation, as well as the incorporation of numerous local deformations that occur throughout the tongue during motion. In this paper, we propose a semi-automatic approach to segment 3D dynamic MRI of the tongue. The algorithm steps include seeding a few slices at one time frame, propagating seeds to the same slices at different time frames using deformable registration, and random walker segmentation based on these seed positions. This method was validated on the tongue of five normal subjects carrying out the same speech task with multi-slice 2D dynamic cine-MR images obtained at three orthogonal orientations and 26 time frames. The resulting semi-automatic segmentations of a total of 130 volumes showed an average dice similarity coefficient (DSC) score of 0.92 with less segmented volume variability between time frames than in manual segmentations.

  14. Semi-automatic segmentation for 3D motion analysis of the tongue with dynamic MRI

    PubMed Central

    Lee, Junghoon; Woo, Jonghye; Xing, Fangxu; Murano, Emi Z.; Stone, Maureen; Prince, Jerry L.

    2014-01-01

    Dynamic MRI has been widely used to track the motion of the tongue and measure its internal deformation during speech and swallowing. Accurate segmentation of the tongue is a prerequisite step to define the target boundary and constrain the tracking to tissue points within the tongue. Segmentation of 2D slices or 3D volumes is challenging because of the large number of slices and time frames involved in the segmentation, as well as the incorporation of numerous local deformations that occur throughout the tongue during motion. In this paper, we propose a semi-automatic approach to segment 3D dynamic MRI of the tongue. The algorithm steps include seeding a few slices at one time frame, propagating seeds to the same slices at different time frames using deformable registration, and random walker segmentation based on these seed positions. This method was validated on the tongue of five normal subjects carrying out the same speech task with multi-slice 2D dynamic cine-MR images obtained at three orthogonal orientations and 26 time frames. The resulting semi-automatic segmentations of a total of 130 volumes showed an average dice similarity coefficient (DSC) score of 0.92 with less segmented volume variability between time frames than in manual segmentations. PMID:25155697

  15. Correlation-based discrimination between cardiac tissue and blood for segmentation of 3D echocardiographic images

    NASA Astrophysics Data System (ADS)

    Saris, Anne E. C. M.; Nillesen, Maartje M.; Lopata, Richard G. P.; de Korte, Chris L.

    2013-03-01

    Automated segmentation of 3D echocardiographic images in patients with congenital heart disease is challenging, because the boundary between blood and cardiac tissue is poorly defined in some regions. Cardiologists mentally incorporate movement of the heart, using temporal coherence of structures to resolve ambiguities. Therefore, we investigated the merit of temporal cross-correlation for automated segmentation over the entire cardiac cycle. Optimal settings for maximum cross-correlation (MCC) calculation, based on a 3D cross-correlation based displacement estimation algorithm, were determined to obtain the best contrast between blood and myocardial tissue over the entire cardiac cycle. Resulting envelope-based as well as RF-based MCC values were used as additional external force in a deformable model approach, to segment the left-ventricular cavity in entire systolic phase. MCC values were tested against, and combined with, adaptive filtered, demodulated RF-data. Segmentation results were compared with manually segmented volumes using a 3D Dice Similarity Index (3DSI). Results in 3D pediatric echocardiographic images sequences (n = 4) demonstrate that incorporation of temporal information improves segmentation. The use of MCC values, either alone or in combination with adaptive filtered, demodulated RF-data, resulted in an increase of the 3DSI in 75% of the cases (average 3DSI increase: 0.71 to 0.82). Results might be further improved by optimizing MCC-contrast locally, in regions with low blood-tissue contrast. Reducing underestimation of the endocardial volume due to MCC processing scheme (choice of window size) and consequential border-misalignment, could also lead to more accurate segmentations. Furthermore, increasing the frame rate will also increase MCC-contrast and thus improve segmentation.

  16. Initialisation of 3D level set for hippocampus segmentation from volumetric brain MR images

    NASA Astrophysics Data System (ADS)

    Hajiesmaeili, Maryam; Dehmeshki, Jamshid; Bagheri Nakhjavanlo, Bashir; Ellis, Tim

    2014-04-01

    Shrinkage of the hippocampus is a primary biomarker for Alzheimer's disease and can be measured through accurate segmentation of brain MR images. The paper will describe the problem of initialisation of a 3D level set algorithm for hippocampus segmentation that must cope with the some challenging characteristics, such as small size, wide range of intensities, narrow width, and shape variation. In addition, MR images require bias correction, to account for additional inhomogeneity associated with the scanner technology. Due to these inhomogeneities, using a single initialisation seed region inside the hippocampus is prone to failure. Alternative initialisation strategies are explored, such as using multiple initialisations in different sections (such as the head, body and tail) of the hippocampus. The Dice metric is used to validate our segmentation results with respect to ground truth for a dataset of 25 MR images. Experimental results indicate significant improvement in segmentation performance using the multiple initialisations techniques, yielding more accurate segmentation results for the hippocampus.

  17. Ultrafast superpixel segmentation of large 3D medical datasets

    NASA Astrophysics Data System (ADS)

    Leblond, Antoine; Kauffmann, Claude

    2016-03-01

    Even with recent hardware improvements, superpixel segmentation of large 3D medical images at interactive speed (<500 ms) remains a challenge. We will describe methods to achieve such performances using a GPU based hybrid framework implementing wavefront propagation and cellular automata resolution. Tasks will be scheduled in blocks (work units) using a wavefront propagation strategy, therefore allowing sparse scheduling. Because work units has been designed as spatially cohesive, the fast Thread Group Shared Memory can be used and reused through a Gauss-Seidel like acceleration. The work unit partitioning scheme will however vary on odd- and even-numbered iterations to reduce convergence barriers. Synchronization will be ensured by an 8-step 3D variant of the traditional Red Black Ordering scheme. An attack model and early termination will also be described and implemented as additional acceleration techniques. Using our hybrid framework and typical operating parameters, we were able to compute the superpixels of a high-resolution 512x512x512 aortic angioCT scan in 283 ms using a AMD R9 290X GPU. We achieved a 22.3X speed-up factor compared to the published reference GPU implementation.

  18. Sloped terrain segmentation for autonomous drive using sparse 3D point cloud.

    PubMed

    Cho, Seoungjae; Kim, Jonghyun; Ikram, Warda; Cho, Kyungeun; Jeong, Young-Sik; Um, Kyhyun; Sim, Sungdae

    2014-01-01

    A ubiquitous environment for road travel that uses wireless networks requires the minimization of data exchange between vehicles. An algorithm that can segment the ground in real time is necessary to obtain location data between vehicles simultaneously executing autonomous drive. This paper proposes a framework for segmenting the ground in real time using a sparse three-dimensional (3D) point cloud acquired from undulating terrain. A sparse 3D point cloud can be acquired by scanning the geography using light detection and ranging (LiDAR) sensors. For efficient ground segmentation, 3D point clouds are quantized in units of volume pixels (voxels) and overlapping data is eliminated. We reduce nonoverlapping voxels to two dimensions by implementing a lowermost heightmap. The ground area is determined on the basis of the number of voxels in each voxel group. We execute ground segmentation in real time by proposing an approach to minimize the comparison between neighboring voxels. Furthermore, we experimentally verify that ground segmentation can be executed at about 19.31 ms per frame.

  19. Sloped Terrain Segmentation for Autonomous Drive Using Sparse 3D Point Cloud

    PubMed Central

    Cho, Seoungjae; Kim, Jonghyun; Ikram, Warda; Cho, Kyungeun; Sim, Sungdae

    2014-01-01

    A ubiquitous environment for road travel that uses wireless networks requires the minimization of data exchange between vehicles. An algorithm that can segment the ground in real time is necessary to obtain location data between vehicles simultaneously executing autonomous drive. This paper proposes a framework for segmenting the ground in real time using a sparse three-dimensional (3D) point cloud acquired from undulating terrain. A sparse 3D point cloud can be acquired by scanning the geography using light detection and ranging (LiDAR) sensors. For efficient ground segmentation, 3D point clouds are quantized in units of volume pixels (voxels) and overlapping data is eliminated. We reduce nonoverlapping voxels to two dimensions by implementing a lowermost heightmap. The ground area is determined on the basis of the number of voxels in each voxel group. We execute ground segmentation in real time by proposing an approach to minimize the comparison between neighboring voxels. Furthermore, we experimentally verify that ground segmentation can be executed at about 19.31 ms per frame. PMID:25093204

  20. Sloped terrain segmentation for autonomous drive using sparse 3D point cloud.

    PubMed

    Cho, Seoungjae; Kim, Jonghyun; Ikram, Warda; Cho, Kyungeun; Jeong, Young-Sik; Um, Kyhyun; Sim, Sungdae

    2014-01-01

    A ubiquitous environment for road travel that uses wireless networks requires the minimization of data exchange between vehicles. An algorithm that can segment the ground in real time is necessary to obtain location data between vehicles simultaneously executing autonomous drive. This paper proposes a framework for segmenting the ground in real time using a sparse three-dimensional (3D) point cloud acquired from undulating terrain. A sparse 3D point cloud can be acquired by scanning the geography using light detection and ranging (LiDAR) sensors. For efficient ground segmentation, 3D point clouds are quantized in units of volume pixels (voxels) and overlapping data is eliminated. We reduce nonoverlapping voxels to two dimensions by implementing a lowermost heightmap. The ground area is determined on the basis of the number of voxels in each voxel group. We execute ground segmentation in real time by proposing an approach to minimize the comparison between neighboring voxels. Furthermore, we experimentally verify that ground segmentation can be executed at about 19.31 ms per frame. PMID:25093204

  1. Live-wire-based segmentation of 3D anatomical structures for image-guided lung interventions

    NASA Astrophysics Data System (ADS)

    Lu, Kongkuo; Xu, Sheng; Xue, Zhong; Wong, Stephen T.

    2012-02-01

    Computed Tomography (CT) has been widely used for assisting in lung cancer detection/diagnosis and treatment. In lung cancer diagnosis, suspect lesions or regions of interest (ROIs) are usually analyzed in screening CT scans. Then, CT-based image-guided minimally invasive procedures are performed for further diagnosis through bronchoscopic or percutaneous approaches. Thus, ROI segmentation is a preliminary but vital step for abnormality detection, procedural planning, and intra-procedural guidance. In lung cancer diagnosis, such ROIs can be tumors, lymph nodes, nodules, etc., which may vary in size, shape, and other complication phenomena. Manual segmentation approaches are time consuming, user-biased, and cannot guarantee reproducible results. Automatic methods do not require user input, but they are usually highly application-dependent. To counterbalance among efficiency, accuracy, and robustness, considerable efforts have been contributed to semi-automatic strategies, which enable full user control, while minimizing human interactions. Among available semi-automatic approaches, the live-wire algorithm has been recognized as a valuable tool for segmentation of a wide range of ROIs from chest CT images. In this paper, a new 3D extension of the traditional 2D live-wire method is proposed for 3D ROI segmentation. In the experiments, the proposed approach is applied to a set of anatomical ROIs from 3D chest CT images, and the results are compared with the segmentation derived from a previous evaluated live-wire-based approach.

  2. Multiscale segmentation method for small inclusion detection in 3D industrial computed tomography

    NASA Astrophysics Data System (ADS)

    Zauner, G.; Harrer, B.; Angermaier, D.; Reiter, M.; Kastner, J.

    2007-06-01

    In this paper a new segmentation method for highly precise inclusion detection in 3D X-ray computed tomography (CT), based on multiresolution denoising methods, is presented. The aim of this work is the automatic 3D-segmentation of small graphite inclusions in cast iron samples. Industrial X-ray computed tomography of metallic samples often suffers from imaging artifacts (e.g. cupping effects) which result in unwanted background image structures, making automated segmentation a difficult task. Additionally, small spatial structures (inclusions and voids) are generally difficult to detect e.g. by standard region based methods like watershed segmentation. Finally, image noise (assuming a Poisson noise characteristic) and the large amount of 3D data have to be considered to obtain good results. The approach presented is based on image subtraction of two different representations of the image under consideration. The first image represents the low spatial frequency content derived by means of wavelet filtering based on the 'a trous' algorithm (i.e. the 'background' content) assuming standard Gaussian noise. The second image is derived by applying a multiresolution denoising scheme based on 'platelet'-filtering, which can produce highly accurate intensity and density estimates assuming Poisson noise. It is shown that the resulting arithmetic difference between these two images can give highly accurate segmentation results with respect to finding small spatial structures in heavily cluttered background structures. Experimental results of industrial CT measurements are presented showing the practicability and reliability of this approach for the proposed task.

  3. A segmentation method for 3D visualization of neurons imaged with a confocal laser scanning microscope

    NASA Astrophysics Data System (ADS)

    Anderson, Jeffrey R.; Barrett, Steven F.; Wilcox, Michael J.

    2005-04-01

    Our understanding of the world around us is based primarily on three-dimensional information because of the environment in which we live and interact. Medical or biological image information is often collected in the form of two-dimensional, serial section images. As such, it is difficult for the observer to mentally reconstruct the three dimensional features of each object. Although many image rendering software packages allow for 3D views of the serial sections, they lack the ability to segment, or isolate different objects in the data set. Segmentation is the key to creating 3D renderings of distinct objects from serial slice images, like separate pieces to a puzzle. This paper describes a segmentation method for objects recorded with serial section images. The user defines threshold levels and object labels on a single image of the data set that are subsequently used to automatically segment each object in the remaining images of the same data set, while maintaining boundaries between contacting objects. The performance of the algorithm is verified using mathematically defined shapes. It is then applied to the visual neurons of the housefly, Musca domestica. Knowledge of the fly"s visual system may lead to improved machine visions systems. This effort has provided the impetus to develop this segmentation algorithm. The described segmentation method can be applied to any high contrast serial slice data set that is well aligned and registered. The medical field alone has many applications for rapid generation of 3D segmented models from MRI and other medical imaging modalities.

  4. A novel 3D algorithm for VLSI floorplanning

    NASA Astrophysics Data System (ADS)

    Rani, D. Gracia N.; Rajaram, S.; Sudarasan, Athira

    2013-01-01

    3-D VLSI circuit is becoming a hot issue because of its potential of enhancing performance, while it is also facing challenges such as the increased complexity on floorplanning and placement in VLSI Physical design. Efficient 3-D floorplan representations are needed to handle the placement optimization in new circuit designs. We analyze and categorize some state-of-the-art 3-D representations, and propose a Ternary tree model for 3-D nonslicing floorplans, extending the B*tree from 2D.This paper proposes a novel optimization algorithm for packing of 3D rectangular blocks. The new techniques considered are Differential evolutionary algorithm (DE) is very fast in that it evaluates the feasibility of a Ternary tree representation. Experimental results based on MCNC benchmark with constraints show that our proposed Differential Evolutionary (DE) can quickly produce optimal solutions.

  5. Oblique needle segmentation and tracking for 3D TRUS guided prostate brachytherapy

    SciTech Connect

    Wei Zhouping; Gardi, Lori; Downey, Donal B.; Fenster, Aaron

    2005-09-15

    An algorithm was developed in order to segment and track brachytherapy needles inserted along oblique trajectories. Three-dimensional (3D) transrectal ultrasound (TRUS) images of the rigid rod simulating the needle inserted into the tissue-mimicking agar and chicken breast phantoms were obtained to test the accuracy of the algorithm under ideal conditions. Because the robot possesses high positioning and angulation accuracies, we used the robot as a ''gold standard,'' and compared the results of algorithm segmentation to the values measured by the robot. Our testing results showed that the accuracy of the needle segmentation algorithm depends on the needle insertion distance into the 3D TRUS image and the angulations with respect to the TRUS transducer, e.g., at a 10 deg. insertion anglulation in agar phantoms, the error of the algorithm in determining the needle tip position was less than 1 mm when the insertion distance was greater than 15 mm. Near real-time needle tracking was achieved by scanning a small volume containing the needle. Our tests also showed that, the segmentation time was less than 60 ms, and the scanning time was less than 1.2 s, when the insertion distance into the 3D TRUS image was less than 55 mm. In our needle tracking tests in chicken breast phantoms, the errors in determining the needle orientation were less than 2 deg. in robot yaw and 0.7 deg. in robot pitch orientations, for up to 20 deg. needle insertion angles with the TRUS transducer in the horizontal plane when the needle insertion distance was greater than 15 mm.

  6. Segmentation of tooth in CT images for the 3D reconstruction of teeth

    NASA Astrophysics Data System (ADS)

    Heo, Hoon; Chae, Ok-Sam

    2004-05-01

    In the dental field, the 3D tooth model in which each tooth can be manipulated individually is an essential component for the simulation of orthodontic surgery and treatment. To reconstruct such a tooth model from CT slices, we need to define the accurate boundary of each tooth from CT slices. However, the global threshold method, which is commonly used in most existing 3D reconstruction systems, is not effective for the tooth segmentation in the CT image. In tooth CT slices, some teeth touch with other teeth and some are located inside of alveolar bone whose intensity is similar to that of teeth. In this paper, we propose an image segmentation algorithm based on B-spline curve fitting to produce smooth tooth regions from such CT slices. The proposed algorithm prevents the malfitting problem of the B-spline algorithm by providing accurate initial tooth boundary for the fitting process. This paper proposes an optimal threshold scheme using the intensity and shape information passed by previous slice for the initial boundary generation and an efficient B-spline fitting method based on genetic algorithm. The test result shows that the proposed method detects contour of the individual tooth successfully and can produce a smooth and accurate 3D tooth model for the simulation of orthodontic surgery and treatment.

  7. Segmentation of the common carotid artery with active shape models from 3D ultrasound images

    NASA Astrophysics Data System (ADS)

    Yang, Xin; Jin, Jiaoying; He, Wanji; Yuchi, Ming; Ding, Mingyue

    2012-03-01

    Carotid atherosclerosis is a major cause of stroke, a leading cause of death and disability. In this paper, we develop and evaluate a new segmentation method for outlining both lumen and adventitia (inner and outer walls) of common carotid artery (CCA) from three-dimensional ultrasound (3D US) images for carotid atherosclerosis diagnosis and evaluation. The data set consists of sixty-eight, 17× 2× 2, 3D US volume data acquired from the left and right carotid arteries of seventeen patients (eight treated with 80mg atorvastain and nine with placebo), who had carotid stenosis of 60% or more, at baseline and after three months of treatment. We investigate the use of Active Shape Models (ASMs) to segment CCA inner and outer walls after statin therapy. The proposed method was evaluated with respect to expert manually outlined boundaries as a surrogate for ground truth. For the lumen and adventitia segmentations, respectively, the algorithm yielded Dice Similarity Coefficient (DSC) of 93.6%+/- 2.6%, 91.8%+/- 3.5%, mean absolute distances (MAD) of 0.28+/- 0.17mm and 0.34 +/- 0.19mm, maximum absolute distances (MAXD) of 0.87 +/- 0.37mm and 0.74 +/- 0.49mm. The proposed algorithm took 4.4 +/- 0.6min to segment a single 3D US images, compared to 11.7+/-1.2min for manual segmentation. Therefore, the method would promote the translation of carotid 3D US to clinical care for the fast, safety and economical monitoring of the atherosclerotic disease progression and regression during therapy.

  8. A spherical harmonics intensity model for 3D segmentation and 3D shape analysis of heterochromatin foci.

    PubMed

    Eck, Simon; Wörz, Stefan; Müller-Ott, Katharina; Hahn, Matthias; Biesdorf, Andreas; Schotta, Gunnar; Rippe, Karsten; Rohr, Karl

    2016-08-01

    The genome is partitioned into regions of euchromatin and heterochromatin. The organization of heterochromatin is important for the regulation of cellular processes such as chromosome segregation and gene silencing, and their misregulation is linked to cancer and other diseases. We present a model-based approach for automatic 3D segmentation and 3D shape analysis of heterochromatin foci from 3D confocal light microscopy images. Our approach employs a novel 3D intensity model based on spherical harmonics, which analytically describes the shape and intensities of the foci. The model parameters are determined by fitting the model to the image intensities using least-squares minimization. To characterize the 3D shape of the foci, we exploit the computed spherical harmonics coefficients and determine a shape descriptor. We applied our approach to 3D synthetic image data as well as real 3D static and real 3D time-lapse microscopy images, and compared the performance with that of previous approaches. It turned out that our approach yields accurate 3D segmentation results and performs better than previous approaches. We also show that our approach can be used for quantifying 3D shape differences of heterochromatin foci.

  9. Segmentation of vascular structures and hematopoietic cells in 3D microscopy images and quantitative analysis

    NASA Astrophysics Data System (ADS)

    Mu, Jian; Yang, Lin; Kamocka, Malgorzata M.; Zollman, Amy L.; Carlesso, Nadia; Chen, Danny Z.

    2015-03-01

    In this paper, we present image processing methods for quantitative study of how the bone marrow microenvironment changes (characterized by altered vascular structure and hematopoietic cell distribution) caused by diseases or various factors. We develop algorithms that automatically segment vascular structures and hematopoietic cells in 3-D microscopy images, perform quantitative analysis of the properties of the segmented vascular structures and cells, and examine how such properties change. In processing images, we apply local thresholding to segment vessels, and add post-processing steps to deal with imaging artifacts. We propose an improved watershed algorithm that relies on both intensity and shape information and can separate multiple overlapping cells better than common watershed methods. We then quantitatively compute various features of the vascular structures and hematopoietic cells, such as the branches and sizes of vessels and the distribution of cells. In analyzing vascular properties, we provide algorithms for pruning fake vessel segments and branches based on vessel skeletons. Our algorithms can segment vascular structures and hematopoietic cells with good quality. We use our methods to quantitatively examine the changes in the bone marrow microenvironment caused by the deletion of Notch pathway. Our quantitative analysis reveals property changes in samples with deleted Notch pathway. Our tool is useful for biologists to quantitatively measure changes in the bone marrow microenvironment, for developing possible therapeutic strategies to help the bone marrow microenvironment recovery.

  10. Demonstration of a 3D vision algorithm for space applications

    NASA Technical Reports Server (NTRS)

    Defigueiredo, Rui J. P. (Editor)

    1987-01-01

    This paper reports an extension of the MIAG algorithm for recognition and motion parameter determination of general 3-D polyhedral objects based on model matching techniques and using movement invariants as features of object representation. Results of tests conducted on the algorithm under conditions simulating space conditions are presented.

  11. Subject-specific body segment parameter estimation using 3D photogrammetry with multiple cameras

    PubMed Central

    Morris, Mark; Sellers, William I.

    2015-01-01

    Inertial properties of body segments, such as mass, centre of mass or moments of inertia, are important parameters when studying movements of the human body. However, these quantities are not directly measurable. Current approaches include using regression models which have limited accuracy: geometric models with lengthy measuring procedures or acquiring and post-processing MRI scans of participants. We propose a geometric methodology based on 3D photogrammetry using multiple cameras to provide subject-specific body segment parameters while minimizing the interaction time with the participants. A low-cost body scanner was built using multiple cameras and 3D point cloud data generated using structure from motion photogrammetric reconstruction algorithms. The point cloud was manually separated into body segments, and convex hulling applied to each segment to produce the required geometric outlines. The accuracy of the method can be adjusted by choosing the number of subdivisions of the body segments. The body segment parameters of six participants (four male and two female) are presented using the proposed method. The multi-camera photogrammetric approach is expected to be particularly suited for studies including populations for which regression models are not available in literature and where other geometric techniques or MRI scanning are not applicable due to time or ethical constraints. PMID:25780778

  12. GPS 3-D cockpit displays: Sensors, algorithms, and flight testing

    NASA Astrophysics Data System (ADS)

    Barrows, Andrew Kevin

    Tunnel-in-the-Sky 3-D flight displays have been investigated for several decades as a means of enhancing aircraft safety and utility. However, high costs have prevented commercial development and seriously hindered research into their operational benefits. The rapid development of Differential Global Positioning Systems (DGPS), inexpensive computing power, and ruggedized displays is now changing this situation. A low-cost prototype system was built and flight tested to investigate implementation and operational issues. The display provided an "out the window" 3-D perspective view of the world, letting the pilot see the horizon, runway, and desired flight path even in instrument flight conditions. The flight path was depicted as a tunnel through which the pilot flew the airplane, while predictor symbology provided guidance to minimize path-following errors. Positioning data was supplied, by various DGPS sources including the Stanford Wide Area Augmentation System (WAAS) testbed. A combination of GPS and low-cost inertial sensors provided vehicle heading, pitch, and roll information. Architectural and sensor fusion tradeoffs made during system implementation are discussed. Computational algorithms used to provide guidance on curved paths over the earth geoid are outlined along with display system design issues. It was found that current technology enables low-cost Tunnel-in-the-Sky display systems with a target cost of $20,000 for large-scale commercialization. Extensive testing on Piper Dakota and Beechcraft Queen Air aircraft demonstrated enhanced accuracy and operational flexibility on a variety of complex flight trajectories. These included curved and segmented approaches, traffic patterns flown on instruments, and skywriting by instrument reference. Overlays to existing instrument approaches at airports in California and Alaska were flown and compared with current instrument procedures. These overlays demonstrated improved utility and situational awareness for

  13. An efficient topology adaptation system for parametric active contour segmentation of 3D images

    NASA Astrophysics Data System (ADS)

    Abhau, Jochen; Scherzer, Otmar

    2008-03-01

    Active contour models have already been used succesfully for segmentation of organs from medical images in 3D. In implicit models, the contour is given as the isosurface of a scalar function, and therefore topology adaptations are handled naturally during a contour evolution. Nevertheless, explicit or parametric models are often preferred since user interaction and special geometric constraints are usually easier to incorporate. Although many researchers have studied topology adaptation algorithms in explicit mesh evolutions, no stable algorithm is known for interactive applications. In this paper, we present a topology adaptation system, which consists of two novel ingredients: A spatial hashing technique is used to detect self-colliding triangles of the mesh whose expected running time is linear with respect to the number of mesh vertices. For the topology change procedure, we have developed formulas by homology theory. During a contour evolution, we just have to choose between a few possible mesh retriangulations by local triangle-triangle intersection tests. Our algorithm has several advantages compared to existing ones: Since the new algorithm does not require any global mesh reparametrizations, it is very efficient. Since the topology adaptation system does not require constant sampling density of the mesh vertices nor especially smooth meshes, mesh evolution steps can be performed in a stable way with a rather coarse mesh. We apply our algorithm to 3D ultrasonic data, showing that accurate segmentation is obtained in some seconds.

  14. Automatic segmentation of pulmonary fissures in computed tomography images using 3D surface features.

    PubMed

    Yu, Mali; Liu, Hong; Gong, Jianping; Jin, Renchao; Han, Ping; Song, Enmin

    2014-02-01

    Pulmonary interlobar fissures are important anatomic structures in human lungs and are useful in locating and classifying lung abnormalities. Automatic segmentation of fissures is a difficult task because of their low contrast and large variability. We developed a fully automatic training-free approach for fissure segmentation based on the local bending degree (LBD) and the maximum bending index (MBI). The LBD is determined by the angle between the eigenvectors of two Hessian matrices for a pair of adjacent voxels. It is used to construct a constraint to extract the candidate surfaces in three-dimensional (3D) space. The MBI is a measure to discriminate cylindrical surfaces from planar surfaces in 3D space. Our approach for segmenting fissures consists of five steps, including lung segmentation, plane-like structure enhancement, surface extraction with LBD, initial fissure identification with MBI, and fissure extension based on local plane fitting. When applying our approach to 15 chest computed tomography (CT) scans, the mean values of the positive predictive value, the sensitivity, the root-mean square (RMS) distance, and the maximal RMS are 91 %, 88 %, 1.01 ± 0.99 mm, and 11.56 mm, respectively, which suggests that our algorithm can efficiently segment fissures in chest CT scans.

  15. 3D FEA simulation of segmented reinforcement variable stiffness composites

    NASA Astrophysics Data System (ADS)

    Henry, C. P.; McKnight, G. P.; Enke, A.; Bortolin, R.; Joshi, S.

    2008-03-01

    Reconfigurable and morphing structures may provide significant improvement in overall platform performance through optimization over broad operating conditions. The realization of this concept requires structures, which can accommodate the large deformations necessary with modest weight and strength penalties. Other studies suggest morphing structures need new materials to realize the benefits that morphing may provide. To help meet this need, we have developed novel composite materials based on specially designed segmented reinforcement and shape memory polymer matrices that provide unique combinations of deformation and stiffness properties. To tailor and optimize the design and fabrication of these materials for particular structural applications, one must understand the envelope of morphing material properties as a function of microstructural architecture and constituent properties. Here we extend our previous simulations of these materials by using 3D models to predict stiffness and deformation properties in variable stiffness segmented composite materials. To understand the effect of various geometry tradeoffs and constituent properties on the elastic stiffness in both the high and low stiffness states, we have performed a trade study using a commercial FEA analysis package. The modulus tensor is constructed and deformation properties are computed from representative volume elements (RVE) in which all (6) basic loading conditions are applied. Our test matrix consisted of four composite RVE geometries modeled using combinations of 5 SMP and 3 reinforcement elastic moduli. Effective composite stiffness and deformation results confirm earlier evidence of the essential performance tradeoffs of reduced stiffness for increasing reversible strain accommodation with especially heavy dependencies on matrix modulus and microstructural architecture. Furthermore, our results show these laminar materials are generally orthotropic and indicate that previous calculations of

  16. A 3D Frictional Segment-to-Segment Contact Method for Large Deformations and Quadratic Elements

    SciTech Connect

    Puso, M; Laursen, T; Solberg, J

    2004-04-01

    Node-on-segment contact is the most common form of contact used today but has many deficiencies ranging from potential locking to non-smooth behavior with large sliding. Furthermore, node-on-segment approaches are not at all applicable to higher order discretizations (e.g. quadratic elements). In a previous work, [3, 4] we developed a segment-to-segment contact approach for eight node hexahedral elements based on the mortar method that was applicable to large deformation mechanics. The approach proved extremely robust since it eliminated the over-constraint that caused 'locking' and provided smooth force variations in large sliding. Here, we extend this previous approach to treat frictional contact problems. In addition, the method is extended to 3D quadratic tetrahedrals and hexahedrals. The proposed approach is then applied to several challenging frictional contact problems that demonstrate its effectiveness.

  17. Improving Semantic Updating Method on 3d City Models Using Hybrid Semantic-Geometric 3d Segmentation Technique

    NASA Astrophysics Data System (ADS)

    Sharkawi, K.-H.; Abdul-Rahman, A.

    2013-09-01

    to LoD4. The accuracy and structural complexity of the 3D objects increases with the LoD level where LoD0 is the simplest LoD (2.5D; Digital Terrain Model (DTM) + building or roof print) while LoD4 is the most complex LoD (architectural details with interior structures). Semantic information is one of the main components in CityGML and 3D City Models, and provides important information for any analyses. However, more often than not, the semantic information is not available for the 3D city model due to the unstandardized modelling process. One of the examples is where a building is normally generated as one object (without specific feature layers such as Roof, Ground floor, Level 1, Level 2, Block A, Block B, etc). This research attempts to develop a method to improve the semantic data updating process by segmenting the 3D building into simpler parts which will make it easier for the users to select and update the semantic information. The methodology is implemented for 3D buildings in LoD2 where the buildings are generated without architectural details but with distinct roof structures. This paper also introduces hybrid semantic-geometric 3D segmentation method that deals with hierarchical segmentation of a 3D building based on its semantic value and surface characteristics, fitted by one of the predefined primitives. For future work, the segmentation method will be implemented as part of the change detection module that can detect any changes on the 3D buildings, store and retrieve semantic information of the changed structure, automatically updates the 3D models and visualize the results in a userfriendly graphical user interface (GUI).

  18. Medical anatomy segmentation kit: combining 2D and 3D segmentation methods to enhance functionality

    NASA Astrophysics Data System (ADS)

    Tracton, Gregg S.; Chaney, Edward L.; Rosenman, Julian G.; Pizer, Stephen M.

    1994-07-01

    Image segmentation, in particular, defining normal anatomic structures and diseased or malformed tissue from tomographic images, is common in medical applications. Defining tumors or arterio-venous malformation from computed tomography or magnetic resonance images are typical examples. This paper describes a program, Medical Anatomy Segmentation Kit (MASK), whose design acknowledges that no single segmentation technique has proven to be successful or optimal for all object definition tasks associated with medical images. A practical solution is offered through a suite of complementary user-guided segmentation techniques and extensive manual editing functions to reach the final object definition goal. Manual editing can also be used to define objects which are abstract or otherwise not well represented in the image data and so require direct human definition - e.g., a radiotherapy target volume which requires human knowledge and judgement regarding image interpretation and tumor spread characteristics. Results are either in the form of 2D boundaries or regions of labeled pixels or voxels. MASK currently uses thresholding and edge detection to form contours, and 2D or 3D scale-sensitive fill and region algebra to form regions. In addition to these proven techniques, MASK's architecture anticipates clinically practical automatic 2D and 3D segmentation methods of the future.

  19. Parallel algorithm for computing 3-D reachable workspaces

    NASA Astrophysics Data System (ADS)

    Alameldin, Tarek K.; Sobh, Tarek M.

    1992-03-01

    The problem of computing the 3-D workspace for redundant articulated chains has applications in a variety of fields such as robotics, computer aided design, and computer graphics. The computational complexity of the workspace problem is at least NP-hard. The recent advent of parallel computers has made practical solutions for the workspace problem possible. Parallel algorithms for computing the 3-D workspace for redundant articulated chains with joint limits are presented. The first phase of these algorithms computes workspace points in parallel. The second phase uses workspace points that are computed in the first phase and fits a 3-D surface around the volume that encompasses the workspace points. The second phase also maps the 3- D points into slices, uses region filling to detect the holes and voids in the workspace, extracts the workspace boundary points by testing the neighboring cells, and tiles the consecutive contours with triangles. The proposed algorithms are efficient for computing the 3-D reachable workspace for articulated linkages, not only those with redundant degrees of freedom but also those with joint limits.

  20. Improved hybrid optimization algorithm for 3D protein structure prediction.

    PubMed

    Zhou, Changjun; Hou, Caixia; Wei, Xiaopeng; Zhang, Qiang

    2014-07-01

    A new improved hybrid optimization algorithm - PGATS algorithm, which is based on toy off-lattice model, is presented for dealing with three-dimensional protein structure prediction problems. The algorithm combines the particle swarm optimization (PSO), genetic algorithm (GA), and tabu search (TS) algorithms. Otherwise, we also take some different improved strategies. The factor of stochastic disturbance is joined in the particle swarm optimization to improve the search ability; the operations of crossover and mutation that are in the genetic algorithm are changed to a kind of random liner method; at last tabu search algorithm is improved by appending a mutation operator. Through the combination of a variety of strategies and algorithms, the protein structure prediction (PSP) in a 3D off-lattice model is achieved. The PSP problem is an NP-hard problem, but the problem can be attributed to a global optimization problem of multi-extremum and multi-parameters. This is the theoretical principle of the hybrid optimization algorithm that is proposed in this paper. The algorithm combines local search and global search, which overcomes the shortcoming of a single algorithm, giving full play to the advantage of each algorithm. In the current universal standard sequences, Fibonacci sequences and real protein sequences are certified. Experiments show that the proposed new method outperforms single algorithms on the accuracy of calculating the protein sequence energy value, which is proved to be an effective way to predict the structure of proteins. PMID:25069136

  1. Fast segmentation of stained nuclei in terabyte-scale, time resolved 3D microscopy image stacks.

    PubMed

    Stegmaier, Johannes; Otte, Jens C; Kobitski, Andrei; Bartschat, Andreas; Garcia, Ariel; Nienhaus, G Ulrich; Strähle, Uwe; Mikut, Ralf

    2014-01-01

    Automated analysis of multi-dimensional microscopy images has become an integral part of modern research in life science. Most available algorithms that provide sufficient segmentation quality, however, are infeasible for a large amount of data due to their high complexity. In this contribution we present a fast parallelized segmentation method that is especially suited for the extraction of stained nuclei from microscopy images, e.g., of developing zebrafish embryos. The idea is to transform the input image based on gradient and normal directions in the proximity of detected seed points such that it can be handled by straightforward global thresholding like Otsu's method. We evaluate the quality of the obtained segmentation results on a set of real and simulated benchmark images in 2D and 3D and show the algorithm's superior performance compared to other state-of-the-art algorithms. We achieve an up to ten-fold decrease in processing times, allowing us to process large data sets while still providing reasonable segmentation results.

  2. Automated Segmentation of the Right Ventricle in 3D Echocardiography: A Kalman Filter State Estimation Approach.

    PubMed

    Bersvendsen, Jorn; Orderud, Fredrik; Massey, Richard John; Fosså, Kristian; Gerard, Olivier; Urheim, Stig; Samset, Eigil

    2016-01-01

    As the right ventricle's (RV) role in cardiovascular diseases is being more widely recognized, interest in RV imaging, function and quantification is growing. However, there are currently few RV quantification methods for 3D echocardiography presented in the literature or commercially available. In this paper we propose an automated RV segmentation method for 3D echocardiographic images. We represent the RV geometry by a Doo-Sabin subdivision surface with deformation modes derived from a training set of manual segmentations. The segmentation is then represented as a state estimation problem and solved with an extended Kalman filter by combining the RV geometry with a motion model and edge detection. Validation was performed by comparing surface-surface distances, volumes and ejection fractions in 17 patients with aortic insufficiency between the proposed method, magnetic resonance imaging (MRI), and a manual echocardiographic reference. The algorithm was efficient with a mean computation time of 2.0 s. The mean absolute distances between the proposed and manual segmentations were 3.6 ± 0.7 mm. Good agreements of end diastolic volume, end systolic volume and ejection fraction with respect to MRI ( -26±24 mL , -16±26 mL and 0 ± 10%, respectively) and a manual echocardiographic reference (7 ± 30 mL, 13 ± 17 mL and -5±7% , respectively) were observed.

  3. Fast phase-added stereogram algorithm for generation of photorealistic 3D content.

    PubMed

    Kang, Hoonjong; Stoykova, Elena; Yoshikawa, Hiroshi

    2016-01-20

    A new phase-added stereogram algorithm for accelerated computation of holograms from a point cloud model is proposed. The algorithm relies on the hologram segmentation, sampling of directional information, and usage of the fast Fourier transform with a finer grid in the spatial frequency domain than is provided by the segment size. The algorithm gives improved quality of reconstruction due to new phase compensation introduced in the segment fringe patterns. The result is finer beam steering leading to high peak intensity and a large peak signal-to-noise ratio in reconstruction. The feasibility of the algorithm is checked by the generation of 3D contents for a color wavefront printer. PMID:26835945

  4. Algorithms for Haptic Rendering of 3D Objects

    NASA Technical Reports Server (NTRS)

    Basdogan, Cagatay; Ho, Chih-Hao; Srinavasan, Mandayam

    2003-01-01

    Algorithms have been developed to provide haptic rendering of three-dimensional (3D) objects in virtual (that is, computationally simulated) environments. The goal of haptic rendering is to generate tactual displays of the shapes, hardnesses, surface textures, and frictional properties of 3D objects in real time. Haptic rendering is a major element of the emerging field of computer haptics, which invites comparison with computer graphics. We have already seen various applications of computer haptics in the areas of medicine (surgical simulation, telemedicine, haptic user interfaces for blind people, and rehabilitation of patients with neurological disorders), entertainment (3D painting, character animation, morphing, and sculpting), mechanical design (path planning and assembly sequencing), and scientific visualization (geophysical data analysis and molecular manipulation).

  5. Conservative Patch Algorithm and Mesh Sequencing for PAB3D

    NASA Technical Reports Server (NTRS)

    Pao, S. P.; Abdol-Hamid, K. S.

    2005-01-01

    A mesh-sequencing algorithm and a conservative patched-grid-interface algorithm (hereafter Patch Algorithm ) have been incorporated into the PAB3D code, which is a computer program that solves the Navier-Stokes equations for the simulation of subsonic, transonic, or supersonic flows surrounding an aircraft or other complex aerodynamic shapes. These algorithms are efficient, flexible, and have added tremendously to the capabilities of PAB3D. The mesh-sequencing algorithm makes it possible to perform preliminary computations using only a fraction of the grid cells (provided the original cell count is divisible by an integer) along any grid coordinate axis, independently of the other axes. The patch algorithm addresses another critical need in multi-block grid situation where the cell faces of adjacent grid blocks may not coincide, leading to errors in calculating fluxes of conserved physical quantities across interfaces between the blocks. The patch algorithm, based on the Stokes integral formulation of the applicable conservation laws, effectively matches each of the interfacial cells on one side of the block interface to the corresponding fractional cell area pieces on the other side. This approach is comprehensive and unified such that all interface topology is automatically processed without user intervention. This algorithm is implemented in a preprocessing code that creates a cell-by-cell database that will maintain flux conservation at any level of full or reduced grid density as the user may choose by way of the mesh-sequencing algorithm. These two algorithms have enhanced the numerical accuracy of the code, reduced the time and effort for grid preprocessing, and provided users with the flexibility of performing computations at any desired full or reduced grid resolution to suit their specific computational requirements.

  6. Semi-automatic 3D segmentation of costal cartilage in CT data from Pectus Excavatum patients

    NASA Astrophysics Data System (ADS)

    Barbosa, Daniel; Queirós, Sandro; Rodrigues, Nuno; Correia-Pinto, Jorge; Vilaça, J.

    2015-03-01

    One of the current frontiers in the clinical management of Pectus Excavatum (PE) patients is the prediction of the surgical outcome prior to the intervention. This can be done through computerized simulation of the Nuss procedure, which requires an anatomically correct representation of the costal cartilage. To this end, we take advantage of the costal cartilage tubular structure to detect it through multi-scale vesselness filtering. This information is then used in an interactive 2D initialization procedure which uses anatomical maximum intensity projections of 3D vesselness feature images to efficiently initialize the 3D segmentation process. We identify the cartilage tissue centerlines in these projected 2D images using a livewire approach. We finally refine the 3D cartilage surface through region-based sparse field level-sets. We have tested the proposed algorithm in 6 noncontrast CT datasets from PE patients. A good segmentation performance was found against reference manual contouring, with an average Dice coefficient of 0.75±0.04 and an average mean surface distance of 1.69+/-0.30mm. The proposed method requires roughly 1 minute for the interactive initialization step, which can positively contribute to an extended use of this tool in clinical practice, since current manual delineation of the costal cartilage can take up to an hour.

  7. Algorithms for 3D shape scanning with a depth camera.

    PubMed

    Cui, Yan; Schuon, Sebastian; Thrun, Sebastian; Stricker, Didier; Theobalt, Christian

    2013-05-01

    We describe a method for 3D object scanning by aligning depth scans that were taken from around an object with a Time-of-Flight (ToF) camera. These ToF cameras can measure depth scans at video rate. Due to comparably simple technology, they bear potential for economical production in big volumes. Our easy-to-use, cost-effective scanning solution, which is based on such a sensor, could make 3D scanning technology more accessible to everyday users. The algorithmic challenge we face is that the sensor's level of random noise is substantial and there is a nontrivial systematic bias. In this paper, we show the surprising result that 3D scans of reasonable quality can also be obtained with a sensor of such low data quality. Established filtering and scan alignment techniques from the literature fail to achieve this goal. In contrast, our algorithm is based on a new combination of a 3D superresolution method with a probabilistic scan alignment approach that explicitly takes into account the sensor's noise characteristics.

  8. Using 3-D shape models to guide segmentation of MR brain images.

    PubMed Central

    Hinshaw, K. P.; Brinkley, J. F.

    1997-01-01

    Accurate segmentation of medical images poses one of the major challenges in computer vision. Approaches that rely solely on intensity information frequently fail because similar intensity values appear in multiple structures. This paper presents a method for using shape knowledge to guide the segmentation process, applying it to the task of finding the surface of the brain. A 3-D model that includes local shape constraints is fitted to an MR volume dataset. The resulting low-resolution surface is used to mask out regions far from the cortical surface, enabling an isosurface extraction algorithm to isolate a more detailed surface boundary. The surfaces generated by this technique are comparable to those achieved by other methods, without requiring user adjustment of a large number of ad hoc parameters. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:9357670

  9. Blood Pool Segmentation Results in Superior Virtual Cardiac Models than Myocardial Segmentation for 3D Printing.

    PubMed

    Farooqi, Kanwal M; Lengua, Carlos Gonzalez; Weinberg, Alan D; Nielsen, James C; Sanz, Javier

    2016-08-01

    The method of cardiac magnetic resonance (CMR) three-dimensional (3D) image acquisition and post-processing which should be used to create optimal virtual models for 3D printing has not been studied systematically. Patients (n = 19) who had undergone CMR including both 3D balanced steady-state free precession (bSSFP) imaging and contrast-enhanced magnetic resonance angiography (MRA) were retrospectively identified. Post-processing for the creation of virtual 3D models involved using both myocardial (MS) and blood pool (BP) segmentation, resulting in four groups: Group 1-bSSFP/MS, Group 2-bSSFP/BP, Group 3-MRA/MS and Group 4-MRA/BP. The models created were assessed by two raters for overall quality (1-poor; 2-good; 3-excellent) and ability to identify predefined vessels (1-5: superior vena cava, inferior vena cava, main pulmonary artery, ascending aorta and at least one pulmonary vein). A total of 76 virtual models were created from 19 patient CMR datasets. The mean overall quality scores for Raters 1/2 were 1.63 ± 0.50/1.26 ± 0.45 for Group 1, 2.12 ± 0.50/2.26 ± 0.73 for Group 2, 1.74 ± 0.56/1.53 ± 0.61 for Group 3 and 2.26 ± 0.65/2.68 ± 0.48 for Group 4. The numbers of identified vessels for Raters 1/2 were 4.11 ± 1.32/4.05 ± 1.31 for Group 1, 4.90 ± 0.46/4.95 ± 0.23 for Group 2, 4.32 ± 1.00/4.47 ± 0.84 for Group 3 and 4.74 ± 0.56/4.63 ± 0.49 for Group 4. Models created using BP segmentation (Groups 2 and 4) received significantly higher ratings than those created using MS for both overall quality and number of vessels visualized (p < 0.05), regardless of the acquisition technique. There were no significant differences between Groups 1 and 3. The ratings for Raters 1 and 2 had good correlation for overall quality (ICC = 0.63) and excellent correlation for the total number of vessels visualized (ICC = 0.77). The intra-rater reliability was good for Rater A (ICC = 0.65). Three models were successfully printed

  10. Blood Pool Segmentation Results in Superior Virtual Cardiac Models than Myocardial Segmentation for 3D Printing.

    PubMed

    Farooqi, Kanwal M; Lengua, Carlos Gonzalez; Weinberg, Alan D; Nielsen, James C; Sanz, Javier

    2016-08-01

    The method of cardiac magnetic resonance (CMR) three-dimensional (3D) image acquisition and post-processing which should be used to create optimal virtual models for 3D printing has not been studied systematically. Patients (n = 19) who had undergone CMR including both 3D balanced steady-state free precession (bSSFP) imaging and contrast-enhanced magnetic resonance angiography (MRA) were retrospectively identified. Post-processing for the creation of virtual 3D models involved using both myocardial (MS) and blood pool (BP) segmentation, resulting in four groups: Group 1-bSSFP/MS, Group 2-bSSFP/BP, Group 3-MRA/MS and Group 4-MRA/BP. The models created were assessed by two raters for overall quality (1-poor; 2-good; 3-excellent) and ability to identify predefined vessels (1-5: superior vena cava, inferior vena cava, main pulmonary artery, ascending aorta and at least one pulmonary vein). A total of 76 virtual models were created from 19 patient CMR datasets. The mean overall quality scores for Raters 1/2 were 1.63 ± 0.50/1.26 ± 0.45 for Group 1, 2.12 ± 0.50/2.26 ± 0.73 for Group 2, 1.74 ± 0.56/1.53 ± 0.61 for Group 3 and 2.26 ± 0.65/2.68 ± 0.48 for Group 4. The numbers of identified vessels for Raters 1/2 were 4.11 ± 1.32/4.05 ± 1.31 for Group 1, 4.90 ± 0.46/4.95 ± 0.23 for Group 2, 4.32 ± 1.00/4.47 ± 0.84 for Group 3 and 4.74 ± 0.56/4.63 ± 0.49 for Group 4. Models created using BP segmentation (Groups 2 and 4) received significantly higher ratings than those created using MS for both overall quality and number of vessels visualized (p < 0.05), regardless of the acquisition technique. There were no significant differences between Groups 1 and 3. The ratings for Raters 1 and 2 had good correlation for overall quality (ICC = 0.63) and excellent correlation for the total number of vessels visualized (ICC = 0.77). The intra-rater reliability was good for Rater A (ICC = 0.65). Three models were successfully printed

  11. Swarm Intelligence Integrated Graph-Cut for Liver Segmentation from 3D-CT Volumes.

    PubMed

    Eapen, Maya; Korah, Reeba; Geetha, G

    2015-01-01

    The segmentation of organs in CT volumes is a prerequisite for diagnosis and treatment planning. In this paper, we focus on liver segmentation from contrast-enhanced abdominal CT volumes, a challenging task due to intensity overlapping, blurred edges, large variability in liver shape, and complex background with cluttered features. The algorithm integrates multidiscriminative cues (i.e., prior domain information, intensity model, and regional characteristics of liver in a graph-cut image segmentation framework). The paper proposes a swarm intelligence inspired edge-adaptive weight function for regulating the energy minimization of the traditional graph-cut model. The model is validated both qualitatively (by clinicians and radiologists) and quantitatively on publically available computed tomography (CT) datasets (MICCAI 2007 liver segmentation challenge, 3D-IRCAD). Quantitative evaluation of segmentation results is performed using liver volume calculations and a mean score of 80.8% and 82.5% on MICCAI and IRCAD dataset, respectively, is obtained. The experimental result illustrates the efficiency and effectiveness of the proposed method. PMID:26689833

  12. Aorta segmentation with a 3D level set approach and quantification of aortic calcifications in non-contrast chest CT.

    PubMed

    Kurugol, Sila; San Jose Estepar, Raul; Ross, James; Washko, George R

    2012-01-01

    Automatic aorta segmentation in thoracic computed tomography (CT) scans is important for aortic calcification quantification and to guide the segmentation of other central vessels. We propose an aorta segmentation algorithm consisting of an initial boundary detection step followed by 3D level set segmentation for refinement. Our algorithm exploits aortic cross-sectional circularity: we first detect aorta boundaries with a circular Hough transform on axial slices to detect ascending and descending aorta regions, and we apply the Hough transform on oblique slices to detect the aortic arch. The centers and radii of circles detected by Hough transform are fitted to smooth cubic spline functions using least-squares fitting. From these center and radius spline functions, we reconstruct an initial aorta surface using the Frenet frame. This reconstructed tubular surface is further refined with 3D level set evolutions. The level set framework we employ optimizes a functional that depends on both edge strength and smoothness terms and evolves the surface to the position of nearby edge location corresponding to the aorta wall. After aorta segmentation, we first detect the aortic calcifications with thresholding applied to the segmented aorta region. We then filter out the false positive regions due to nearby high intensity structures. We tested the algorithm on 45 CT scans and obtained a closest point mean error of 0.52 ± 0.10 mm between the manually and automatically segmented surfaces. The true positive detection rate of calcification algorithm was 0.96 over all CT scans. PMID:23366394

  13. Real-time 3D medical structure segmentation using fast evolving active contours

    NASA Astrophysics Data System (ADS)

    Wang, Xiaotao; Wang, Qiang; Hao, Zhihui; Xu, Kuanhong; Guo, Ping; Ren, Haibing; Jang, Wooyoung; Kim, Jung-bae

    2014-03-01

    Segmentation of 3D medical structures in real-time is an important as well as intractable problem for clinical applications due to the high computation and memory cost. We propose a novel fast evolving active contour model in this paper to reduce the requirements of computation and memory. The basic idea is to evolve the brief represented dynamic contour interface as far as possible per iteration. Our method encodes zero level set via a single unordered list, and evolves the list recursively by adding activated adjacent neighbors to its end, resulting in active parts of the zero level set moves far enough per iteration along with list scanning. To guarantee the robustness of this process, a new approximation of curvature for integer valued level set is proposed as the internal force to penalize the list smoothness and restrain the list continual growth. Besides, list scanning times are also used as an upper hard constraint to control the list growing. Together with the internal force, efficient regional and constrained external forces, whose computations are only performed along the unordered list, are also provided to attract the list toward object boundaries. Specially, our model calculates regional force only in a narrowband outside the zero level set and can efficiently segment multiple regions simultaneously as well as handle the background with multiple components. Compared with state-of-the-art algorithms, our algorithm is one-order of magnitude faster with similar segmentation accuracy and can achieve real-time performance for the segmentation of 3D medical structures on a standard PC.

  14. A 3D Level Sets Method for Segmenting the Mouse Spleen and Follicles in Volumetric microCT Images

    SciTech Connect

    Price, Jeffery R; Aykac, Deniz; Wall, Jonathan

    2006-01-01

    We present a semi-automatic, 3D approach for segmenting the mouse spleen, and its interior follicles, in volumetric microCT imagery. Based upon previous 2D level sets work, we develop a fully 3D implementation and provide the corresponding finite difference formulas. We incorporate statistical and proximity weighting schemes to improve segmentation performance. We also note an issue with the original algorithm and propose a solution that proves beneficial in our experiments. Experimental results are provided for artificial and real data.

  15. Implementation of wireless 3D stereo image capture system and 3D exaggeration algorithm for the region of interest

    NASA Astrophysics Data System (ADS)

    Ham, Woonchul; Song, Chulgyu; Lee, Kangsan; Badarch, Luubaatar

    2015-05-01

    In this paper, we introduce the mobile embedded system implemented for capturing stereo image based on two CMOS camera module. We use WinCE as an operating system and capture the stereo image by using device driver for CMOS camera interface and Direct Draw API functions. We aslo comments on the GPU hardware and CUDA programming for implementation of 3D exaggeraion algorithm for ROI by adjusting and synthesizing the disparity value of ROI (region of interest) in real time. We comment on the pattern of aperture for deblurring of CMOS camera module based on the Kirchhoff diffraction formula and clarify the reason why we can get more sharp and clear image by blocking some portion of aperture or geometric sampling. Synthesized stereo image is real time monitored on the shutter glass type three-dimensional LCD monitor and disparity values of each segment are analyzed to prove the validness of emphasizing effect of ROI.

  16. Automated detection, 3D segmentation and analysis of high resolution spine MR images using statistical shape models

    NASA Astrophysics Data System (ADS)

    Neubert, A.; Fripp, J.; Engstrom, C.; Schwarz, R.; Lauer, L.; Salvado, O.; Crozier, S.

    2012-12-01

    Recent advances in high resolution magnetic resonance (MR) imaging of the spine provide a basis for the automated assessment of intervertebral disc (IVD) and vertebral body (VB) anatomy. High resolution three-dimensional (3D) morphological information contained in these images may be useful for early detection and monitoring of common spine disorders, such as disc degeneration. This work proposes an automated approach to extract the 3D segmentations of lumbar and thoracic IVDs and VBs from MR images using statistical shape analysis and registration of grey level intensity profiles. The algorithm was validated on a dataset of volumetric scans of the thoracolumbar spine of asymptomatic volunteers obtained on a 3T scanner using the relatively new 3D T2-weighted SPACE pulse sequence. Manual segmentations and expert radiological findings of early signs of disc degeneration were used in the validation. There was good agreement between manual and automated segmentation of the IVD and VB volumes with the mean Dice scores of 0.89 ± 0.04 and 0.91 ± 0.02 and mean absolute surface distances of 0.55 ± 0.18 mm and 0.67 ± 0.17 mm respectively. The method compares favourably to existing 3D MR segmentation techniques for VBs. This is the first time IVDs have been automatically segmented from 3D volumetric scans and shape parameters obtained were used in preliminary analyses to accurately classify (100% sensitivity, 98.3% specificity) disc abnormalities associated with early degenerative changes.

  17. Deformable templates guided discriminative models for robust 3D brain MRI segmentation.

    PubMed

    Liu, Cheng-Yi; Iglesias, Juan Eugenio; Tu, Zhuowen

    2013-10-01

    Automatically segmenting anatomical structures from 3D brain MRI images is an important task in neuroimaging. One major challenge is to design and learn effective image models accounting for the large variability in anatomy and data acquisition protocols. A deformable template is a type of generative model that attempts to explicitly match an input image with a template (atlas), and thus, they are robust against global intensity changes. On the other hand, discriminative models combine local image features to capture complex image patterns. In this paper, we propose a robust brain image segmentation algorithm that fuses together deformable templates and informative features. It takes advantage of the adaptation capability of the generative model and the classification power of the discriminative models. The proposed algorithm achieves both robustness and efficiency, and can be used to segment brain MRI images with large anatomical variations. We perform an extensive experimental study on four datasets of T1-weighted brain MRI data from different sources (1,082 MRI scans in total) and observe consistent improvement over the state-of-the-art systems.

  18. Automated bone segmentation from large field of view 3D MR images of the hip joint

    NASA Astrophysics Data System (ADS)

    Xia, Ying; Fripp, Jurgen; Chandra, Shekhar S.; Schwarz, Raphael; Engstrom, Craig; Crozier, Stuart

    2013-10-01

    Accurate bone segmentation in the hip joint region from magnetic resonance (MR) images can provide quantitative data for examining pathoanatomical conditions such as femoroacetabular impingement through to varying stages of osteoarthritis to monitor bone and associated cartilage morphometry. We evaluate two state-of-the-art methods (multi-atlas and active shape model (ASM) approaches) on bilateral MR images for automatic 3D bone segmentation in the hip region (proximal femur and innominate bone). Bilateral MR images of the hip joints were acquired at 3T from 30 volunteers. Image sequences included water-excitation dual echo stead state (FOV 38.6 × 24.1 cm, matrix 576 × 360, thickness 0.61 mm) in all subjects and multi-echo data image combination (FOV 37.6 × 23.5 cm, matrix 576 × 360, thickness 0.70 mm) for a subset of eight subjects. Following manual segmentation of femoral (head-neck, proximal-shaft) and innominate (ilium+ischium+pubis) bone, automated bone segmentation proceeded via two approaches: (1) multi-atlas segmentation incorporating non-rigid registration and (2) an advanced ASM-based scheme. Mean inter- and intra-rater reliability Dice's similarity coefficients (DSC) for manual segmentation of femoral and innominate bone were (0.970, 0.963) and (0.971, 0.965). Compared with manual data, mean DSC values for femoral and innominate bone volumes using automated multi-atlas and ASM-based methods were (0.950, 0.922) and (0.946, 0.917), respectively. Both approaches delivered accurate (high DSC values) segmentation results; notably, ASM data were generated in substantially less computational time (12 min versus 10 h). Both automated algorithms provided accurate 3D bone volumetric descriptions for MR-based measures in the hip region. The highly computational efficient ASM-based approach is more likely suitable for future clinical applications such as extracting bone-cartilage interfaces for potential cartilage segmentation.

  19. Automated bone segmentation from large field of view 3D MR images of the hip joint.

    PubMed

    Xia, Ying; Fripp, Jurgen; Chandra, Shekhar S; Schwarz, Raphael; Engstrom, Craig; Crozier, Stuart

    2013-10-21

    Accurate bone segmentation in the hip joint region from magnetic resonance (MR) images can provide quantitative data for examining pathoanatomical conditions such as femoroacetabular impingement through to varying stages of osteoarthritis to monitor bone and associated cartilage morphometry. We evaluate two state-of-the-art methods (multi-atlas and active shape model (ASM) approaches) on bilateral MR images for automatic 3D bone segmentation in the hip region (proximal femur and innominate bone). Bilateral MR images of the hip joints were acquired at 3T from 30 volunteers. Image sequences included water-excitation dual echo stead state (FOV 38.6 × 24.1 cm, matrix 576 × 360, thickness 0.61 mm) in all subjects and multi-echo data image combination (FOV 37.6 × 23.5 cm, matrix 576 × 360, thickness 0.70 mm) for a subset of eight subjects. Following manual segmentation of femoral (head-neck, proximal-shaft) and innominate (ilium+ischium+pubis) bone, automated bone segmentation proceeded via two approaches: (1) multi-atlas segmentation incorporating non-rigid registration and (2) an advanced ASM-based scheme. Mean inter- and intra-rater reliability Dice's similarity coefficients (DSC) for manual segmentation of femoral and innominate bone were (0.970, 0.963) and (0.971, 0.965). Compared with manual data, mean DSC values for femoral and innominate bone volumes using automated multi-atlas and ASM-based methods were (0.950, 0.922) and (0.946, 0.917), respectively. Both approaches delivered accurate (high DSC values) segmentation results; notably, ASM data were generated in substantially less computational time (12 min versus 10 h). Both automated algorithms provided accurate 3D bone volumetric descriptions for MR-based measures in the hip region. The highly computational efficient ASM-based approach is more likely suitable for future clinical applications such as extracting bone-cartilage interfaces for potential cartilage segmentation.

  20. A parallel algorithm for solving the 3d Schroedinger equation

    SciTech Connect

    Strickland, Michael; Yager-Elorriaga, David

    2010-08-20

    We describe a parallel algorithm for solving the time-independent 3d Schroedinger equation using the finite difference time domain (FDTD) method. We introduce an optimized parallelization scheme that reduces communication overhead between computational nodes. We demonstrate that the compute time, t, scales inversely with the number of computational nodes as t {proportional_to} (N{sub nodes}){sup -0.95} {sup {+-} 0.04}. This makes it possible to solve the 3d Schroedinger equation on extremely large spatial lattices using a small computing cluster. In addition, we present a new method for precisely determining the energy eigenvalues and wavefunctions of quantum states based on a symmetry constraint on the FDTD initial condition. Finally, we discuss the usage of multi-resolution techniques in order to speed up convergence on extremely large lattices.

  1. Segmented Domain Decomposition Multigrid For 3-D Turbomachinery Flows

    NASA Technical Reports Server (NTRS)

    Celestina, M. L.; Adamczyk, J. J.; Rubin, S. G.

    2001-01-01

    A Segmented Domain Decomposition Multigrid (SDDMG) procedure was developed for three-dimensional viscous flow problems as they apply to turbomachinery flows. The procedure divides the computational domain into a coarse mesh comprised of uniformly spaced cells. To resolve smaller length scales such as the viscous layer near a surface, segments of the coarse mesh are subdivided into a finer mesh. This is repeated until adequate resolution of the smallest relevant length scale is obtained. Multigrid is used to communicate information between the different grid levels. To test the procedure, simulation results will be presented for a compressor and turbine cascade. These simulations are intended to show the ability of the present method to generate grid independent solutions. Comparisons with data will also be presented. These comparisons will further demonstrate the usefulness of the present work for they allow an estimate of the accuracy of the flow modeling equations independent of error attributed to numerical discretization.

  2. 3D Filament Network Segmentation with Multiple Active Contours

    NASA Astrophysics Data System (ADS)

    Xu, Ting; Vavylonis, Dimitrios; Huang, Xiaolei

    2014-03-01

    Fluorescence microscopy is frequently used to study two and three dimensional network structures formed by cytoskeletal polymer fibers such as actin filaments and microtubules. While these cytoskeletal structures are often dilute enough to allow imaging of individual filaments or bundles of them, quantitative analysis of these images is challenging. To facilitate quantitative, reproducible and objective analysis of the image data, we developed a semi-automated method to extract actin networks and retrieve their topology in 3D. Our method uses multiple Stretching Open Active Contours (SOACs) that are automatically initialized at image intensity ridges and then evolve along the centerlines of filaments in the network. SOACs can merge, stop at junctions, and reconfigure with others to allow smooth crossing at junctions of filaments. The proposed approach is generally applicable to images of curvilinear networks with low SNR. We demonstrate its potential by extracting the centerlines of synthetic meshwork images, actin networks in 2D TIRF Microscopy images, and 3D actin cable meshworks of live fission yeast cells imaged by spinning disk confocal microscopy.

  3. Automatic segmentation and 3D feature extraction of protein aggregates in Caenorhabditis elegans

    NASA Astrophysics Data System (ADS)

    Rodrigues, Pedro L.; Moreira, António H. J.; Teixeira-Castro, Andreia; Oliveira, João; Dias, Nuno; Rodrigues, Nuno F.; Vilaça, João L.

    2012-03-01

    In the last years, it has become increasingly clear that neurodegenerative diseases involve protein aggregation, a process often used as disease progression readout and to develop therapeutic strategies. This work presents an image processing tool to automatic segment, classify and quantify these aggregates and the whole 3D body of the nematode Caenorhabditis Elegans. A total of 150 data set images, containing different slices, were captured with a confocal microscope from animals of distinct genetic conditions. Because of the animals' transparency, most of the slices pixels appeared dark, hampering their body volume direct reconstruction. Therefore, for each data set, all slices were stacked in one single 2D image in order to determine a volume approximation. The gradient of this image was input to an anisotropic diffusion algorithm that uses the Tukey's biweight as edge-stopping function. The image histogram median of this outcome was used to dynamically determine a thresholding level, which allows the determination of a smoothed exterior contour of the worm and the medial axis of the worm body from thinning its skeleton. Based on this exterior contour diameter and the medial animal axis, random 3D points were then calculated to produce a volume mesh approximation. The protein aggregations were subsequently segmented based on an iso-value and blended with the resulting volume mesh. The results obtained were consistent with qualitative observations in literature, allowing non-biased, reliable and high throughput protein aggregates quantification. This may lead to a significant improvement on neurodegenerative diseases treatment planning and interventions prevention.

  4. 3D Hail Size Distribution Interpolation/Extrapolation Algorithm

    NASA Technical Reports Server (NTRS)

    Lane, John

    2013-01-01

    Radar data can usually detect hail; however, it is difficult for present day radar to accurately discriminate between hail and rain. Local ground-based hail sensors are much better at detecting hail against a rain background, and when incorporated with radar data, provide a much better local picture of a severe rain or hail event. The previous disdrometer interpolation/ extrapolation algorithm described a method to interpolate horizontally between multiple ground sensors (a minimum of three) and extrapolate vertically. This work is a modification to that approach that generates a purely extrapolated 3D spatial distribution when using a single sensor.

  5. Image intensity standardization in 3D rotational angiography and its application to vascular segmentation

    NASA Astrophysics Data System (ADS)

    Bogunović, Hrvoje; Radaelli, Alessandro G.; De Craene, Mathieu; Delgado, David; Frangi, Alejandro F.

    2008-03-01

    Knowledge-based vascular segmentation methods typically rely on a pre-built training set of segmented images, which is used to estimate the probability of each voxel to belong to a particular tissue. In 3D Rotational Angiography (3DRA) the same tissue can correspond to different intensity ranges depending on the imaging device, settings and contrast injection protocol. As a result, pre-built training sets do not apply to all images and the best segmentation results are often obtained when the training set is built specifically for each individual image. We present an Image Intensity Standardization (IIS) method designed to ensure a correspondence between specific tissues and intensity ranges common to every image that undergoes the standardization process. The method applies a piecewise linear transformation to the image that aligns the intensity histogram to the histogram taken as reference. The reference histogram has been selected from a high quality image not containing artificial objects such as coils or stents. This is a pre-processing step that allows employing a training set built on a limited number of standardized images for the segmentation of standardized images which were not part of the training set. The effectiveness of the presented IIS technique in combination with a well-validated knowledge-based vasculature segmentation method is quantified on a variety of 3DRA images depicting cerebral arteries and intracranial aneurysms. The proposed IIS method offers a solution to the standardization of tissue classes in routine medical images and effectively improves automation and usability of knowledge-based vascular segmentation algorithms.

  6. Improving segmentation of 3D touching cell nuclei using flow tracking on surface meshes.

    PubMed

    Li, Gang; Guo, Lei

    2012-01-01

    Automatic segmentation of touching cell nuclei in 3D microscopy images is of great importance in bioimage informatics and computational biology. This paper presents a novel method for improving 3D touching cell nuclei segmentation. Given binary touching nuclei by the method in Li et al. (2007), our method herein consists of several steps: surface mesh reconstruction and curvature information estimation; direction field diffusion on surface meshes; flow tracking on surface meshes; and projection of surface mesh segmentation to volumetric images. The method is validated on both synthesised and real 3D touching cell nuclei images, demonstrating its validity and effectiveness.

  7. Diffusive smoothing of 3D segmented medical data

    PubMed Central

    Patané, Giuseppe

    2014-01-01

    This paper proposes an accurate, computationally efficient, and spectrum-free formulation of the heat diffusion smoothing on 3D shapes, represented as triangle meshes. The idea behind our approach is to apply a (r,r)-degree Padé–Chebyshev rational approximation to the solution of the heat diffusion equation. The proposed formulation is equivalent to solve r sparse, symmetric linear systems, is free of user-defined parameters, and is robust to surface discretization. We also discuss a simple criterion to select the time parameter that provides the best compromise between approximation accuracy and smoothness of the solution. Finally, our experiments on anatomical data show that the spectrum-free approach greatly reduces the computational cost and guarantees a higher approximation accuracy than previous work. PMID:26257940

  8. 2D/3D registration algorithm for lung brachytherapy

    SciTech Connect

    Zvonarev, P. S.; Farrell, T. J.; Hunter, R.; Wierzbicki, M.; Hayward, J. E.; Sur, R. K.

    2013-02-15

    Purpose: A 2D/3D registration algorithm is proposed for registering orthogonal x-ray images with a diagnostic CT volume for high dose rate (HDR) lung brachytherapy. Methods: The algorithm utilizes a rigid registration model based on a pixel/voxel intensity matching approach. To achieve accurate registration, a robust similarity measure combining normalized mutual information, image gradient, and intensity difference was developed. The algorithm was validated using a simple body and anthropomorphic phantoms. Transfer catheters were placed inside the phantoms to simulate the unique image features observed during treatment. The algorithm sensitivity to various degrees of initial misregistration and to the presence of foreign objects, such as ECG leads, was evaluated. Results: The mean registration error was 2.2 and 1.9 mm for the simple body and anthropomorphic phantoms, respectively. The error was comparable to the interoperator catheter digitization error of 1.6 mm. Preliminary analysis of data acquired from four patients indicated a mean registration error of 4.2 mm. Conclusions: Results obtained using the proposed algorithm are clinically acceptable especially considering the complications normally encountered when imaging during lung HDR brachytherapy.

  9. Geodesic Distance Algorithm for Extracting the Ascending Aorta from 3D CT Images.

    PubMed

    Jang, Yeonggul; Jung, Ho Yub; Hong, Youngtaek; Cho, Iksung; Shim, Hackjoon; Chang, Hyuk-Jae

    2016-01-01

    This paper presents a method for the automatic 3D segmentation of the ascending aorta from coronary computed tomography angiography (CCTA). The segmentation is performed in three steps. First, the initial seed points are selected by minimizing a newly proposed energy function across the Hough circles. Second, the ascending aorta is segmented by geodesic distance transformation. Third, the seed points are effectively transferred through the next axial slice by a novel transfer function. Experiments are performed using a database composed of 10 patients' CCTA images. For the experiment, the ground truths are annotated manually on the axial image slices by a medical expert. A comparative evaluation with state-of-the-art commercial aorta segmentation algorithms shows that our approach is computationally more efficient and accurate under the DSC (Dice Similarity Coefficient) measurements. PMID:26904151

  10. Multiple 2D video/3D medical image registration algorithm

    NASA Astrophysics Data System (ADS)

    Clarkson, Matthew J.; Rueckert, Daniel; Hill, Derek L.; Hawkes, David J.

    2000-06-01

    In this paper we propose a novel method to register at least two vide images to a 3D surface model. The potential applications of such a registration method could be in image guided surgery, high precision radiotherapy, robotics or computer vision. Registration is performed by optimizing a similarity measure with respect to the pose parameters. The similarity measure is based on 'photo-consistency' and computes for each surface point, how consistent the corresponding video image information in each view is with a lighting model. We took four video views of a volunteer's face, and used an independent method to reconstruct a surface that was intrinsically registered to the four views. In addition, we extracted a skin surface from the volunteer's MR scan. The surfaces were misregistered from a gold standard pose and our algorithm was used to register both types of surfaces to the video images. For the reconstructed surface, the mean 3D error was 1.53 mm. For the MR surface, the standard deviation of the pose parameters after registration ranged from 0.12 to 0.70 mm and degrees. The performance of the algorithm is accurate, precise and robust.

  11. Knowledge-based 3D segmentation of the brain in MR images for quantitative multiple sclerosis lesion tracking

    NASA Astrophysics Data System (ADS)

    Fisher, Elizabeth; Cothren, Robert M., Jr.; Tkach, Jean A.; Masaryk, Thomas J.; Cornhill, J. Fredrick

    1997-04-01

    Brain segmentation in magnetic resonance (MR) images is an important step in quantitative analysis applications, including the characterization of multiple sclerosis (MS) lesions over time. Our approach is based on a priori knowledge of the intensity and three-dimensional (3D) spatial relationships of structures in MR images of the head. Optimal thresholding and connected-components analysis are used to generate a starting point for segmentation. A 3D radial search is then performed to locate probable locations of the intra-cranial cavity (ICC). Missing portions of the ICC surface are interpolated in order to exclude connected structures. Partial volume effects and inter-slice intensity variations in the image are accounted for automatically. Several studies were conducted to validate the segmentation. Accuracy was tested by calculating the segmented volume and comparing to known volumes of a standard MR phantom. Reliability was tested by comparing calculated volumes of individual segmentation results from multiple images of the same subject. The segmentation results were also compared to manual tracings. The average error in volume measurements for the phantom was 1.5% and the average coefficient of variation of brain volume measurements of the same subject was 1.2%. Since the new algorithm requires minimal user interaction, variability introduced by manual tracing and interactive threshold or region selection was eliminated. Overall, the new algorithm was shown to produce a more accurate and reliable brain segmentation than existing manual and semi-automated techniques.

  12. 3D MR ventricle segmentation in pre-term infants with post-hemorrhagic ventricle dilation

    NASA Astrophysics Data System (ADS)

    Qiu, Wu; Yuan, Jing; Kishimoto, Jessica; Chen, Yimin; de Ribaupierre, Sandrine; Chiu, Bernard; Fenster, Aaron

    2015-03-01

    Intraventricular hemorrhage (IVH) or bleed within the brain is a common condition among pre-term infants that occurs in very low birth weight preterm neonates. The prognosis is further worsened by the development of progressive ventricular dilatation, i.e., post-hemorrhagic ventricle dilation (PHVD), which occurs in 10-30% of IVH patients. In practice, predicting PHVD accurately and determining if that specific patient with ventricular dilatation requires the ability to measure accurately ventricular volume. While monitoring of PHVD in infants is typically done by repeated US and not MRI, once the patient has been treated, the follow-up over the lifetime of the patient is done by MRI. While manual segmentation is still seen as a gold standard, it is extremely time consuming, and therefore not feasible in a clinical context, and it also has a large inter- and intra-observer variability. This paper proposes a segmentation algorithm to extract the cerebral ventricles from 3D T1- weighted MR images of pre-term infants with PHVD. The proposed segmentation algorithm makes use of the convex optimization technique combined with the learned priors of image intensities and label probabilistic map, which is built from a multi-atlas registration scheme. The leave-one-out cross validation using 7 PHVD patient T1 weighted MR images showed that the proposed method yielded a mean DSC of 89.7% +/- 4.2%, a MAD of 2.6 +/- 1.1 mm, a MAXD of 17.8 +/- 6.2 mm, and a VD of 11.6% +/- 5.9%, suggesting a good agreement with manual segmentations.

  13. Automatic 3D segmentation of spinal cord MRI using propagated deformable models

    NASA Astrophysics Data System (ADS)

    De Leener, B.; Cohen-Adad, J.; Kadoury, S.

    2014-03-01

    Spinal cord diseases or injuries can cause dysfunction of the sensory and locomotor systems. Segmentation of the spinal cord provides measures of atrophy and allows group analysis of multi-parametric MRI via inter-subject registration to a template. All these measures were shown to improve diagnostic and surgical intervention. We developed a framework to automatically segment the spinal cord on T2-weighted MR images, based on the propagation of a deformable model. The algorithm is divided into three parts: first, an initialization step detects the spinal cord position and orientation by using the elliptical Hough transform on multiple adjacent axial slices to produce an initial tubular mesh. Second, a low-resolution deformable model is iteratively propagated along the spinal cord. To deal with highly variable contrast levels between the spinal cord and the cerebrospinal fluid, the deformation is coupled with a contrast adaptation at each iteration. Third, a refinement process and a global deformation are applied on the low-resolution mesh to provide an accurate segmentation of the spinal cord. Our method was evaluated against a semi-automatic edge-based snake method implemented in ITK-SNAP (with heavy manual adjustment) by computing the 3D Dice coefficient, mean and maximum distance errors. Accuracy and robustness were assessed from 8 healthy subjects. Each subject had two volumes: one at the cervical and one at the thoracolumbar region. Results show a precision of 0.30 +/- 0.05 mm (mean absolute distance error) in the cervical region and 0.27 +/- 0.06 mm in the thoracolumbar region. The 3D Dice coefficient was of 0.93 for both regions.

  14. CellSegm - a MATLAB toolbox for high-throughput 3D cell segmentation.

    PubMed

    Hodneland, Erlend; Kögel, Tanja; Frei, Dominik Michael; Gerdes, Hans-Hermann; Lundervold, Arvid

    2013-08-09

    : The application of fluorescence microscopy in cell biology often generates a huge amount of imaging data. Automated whole cell segmentation of such data enables the detection and analysis of individual cells, where a manual delineation is often time consuming, or practically not feasible. Furthermore, compared to manual analysis, automation normally has a higher degree of reproducibility. CellSegm, the software presented in this work, is a Matlab based command line software toolbox providing an automated whole cell segmentation of images showing surface stained cells, acquired by fluorescence microscopy. It has options for both fully automated and semi-automated cell segmentation. Major algorithmic steps are: (i) smoothing, (ii) Hessian-based ridge enhancement, (iii) marker-controlled watershed segmentation, and (iv) feature-based classfication of cell candidates. Using a wide selection of image recordings and code snippets, we demonstrate that CellSegm has the ability to detect various types of surface stained cells in 3D. After detection and outlining of individual cells, the cell candidates can be subject to software based analysis, specified and programmed by the end-user, or they can be analyzed by other software tools. A segmentation of tissue samples with appropriate characteristics is also shown to be resolvable in CellSegm. The command-line interface of CellSegm facilitates scripting of the separate tools, all implemented in Matlab, offering a high degree of flexibility and tailored workflows for the end-user. The modularity and scripting capabilities of CellSegm enable automated workflows and quantitative analysis of microscopic data, suited for high-throughput image based screening.

  15. CellSegm - a MATLAB toolbox for high-throughput 3D cell segmentation.

    PubMed

    Hodneland, Erlend; Kögel, Tanja; Frei, Dominik Michael; Gerdes, Hans-Hermann; Lundervold, Arvid

    2013-01-01

    : The application of fluorescence microscopy in cell biology often generates a huge amount of imaging data. Automated whole cell segmentation of such data enables the detection and analysis of individual cells, where a manual delineation is often time consuming, or practically not feasible. Furthermore, compared to manual analysis, automation normally has a higher degree of reproducibility. CellSegm, the software presented in this work, is a Matlab based command line software toolbox providing an automated whole cell segmentation of images showing surface stained cells, acquired by fluorescence microscopy. It has options for both fully automated and semi-automated cell segmentation. Major algorithmic steps are: (i) smoothing, (ii) Hessian-based ridge enhancement, (iii) marker-controlled watershed segmentation, and (iv) feature-based classfication of cell candidates. Using a wide selection of image recordings and code snippets, we demonstrate that CellSegm has the ability to detect various types of surface stained cells in 3D. After detection and outlining of individual cells, the cell candidates can be subject to software based analysis, specified and programmed by the end-user, or they can be analyzed by other software tools. A segmentation of tissue samples with appropriate characteristics is also shown to be resolvable in CellSegm. The command-line interface of CellSegm facilitates scripting of the separate tools, all implemented in Matlab, offering a high degree of flexibility and tailored workflows for the end-user. The modularity and scripting capabilities of CellSegm enable automated workflows and quantitative analysis of microscopic data, suited for high-throughput image based screening. PMID:23938087

  16. Multimodality 3D Tumor Segmentation in HCC patients treated with TACE

    PubMed Central

    Wang, Zhijun; Chapiro, Julius; Schernthaner, Rüdiger; Duran, Rafael; Chen, Rongxin; Geschwind, Jean-François; Lin, MingDe

    2015-01-01

    Rationale and Objectives To validate the concordance of a semi-automated multimodality lesion segmentation technique between contrast-enhanced MRI (CE-MRI), cone-beam CT (CBCT) and multi-detector CT (MDCT) in patients with hepatocellular carcinoma (HCC) treated with transarterial chemoembolization (TACE). Materials and methods This retrospective analysis included 45 patients with unresectable HCC that underwent baseline CE-MRI within one month before the treatment, intraprocedural CBCT during conventional TACE and MDCT within 24 hours post TACE. Fourteen patients were excluded due to atypical lesion morphology, portal vein invasion or small lesion size which precluded sufficient lesion visualization. 31 patients with a total of 40 target lesions were included into the analysis. A tumor segmentation software, based on non-Euclidean geometry and theory of radial basis functions, was used to allow for the segmentation of target lesions in 3D on all three modalities. The algorithm created image-based masks located in a 3D region whose center and size was defined by the user, yielding the nomenclature “semi-automatic”. Based on that, tumor volumes on all three modalities were calculated and compared using a linear regression model (R2 values). Residual plots were used to analyze drift and variance of the values. Results The mean value of tumor volumes was 18.72±19.13cm3 (range, 0.41-59.16cm3) on CE-MRI, 21.26±21.99 cm3 (range, 0.62-86.82 cm3) on CBCT and 19.88±20.88 cm3 (range, 0.45-75.24 cm3) on MDCT. The average volumes of the tumor were not significantly different between CE-MR and DP-CBCT, DP-CBCT and MDCT, MDCT and CE-MR (p=0.577, 0.770 and 0.794 respectively). A strong correlation between volumes on CE-MRI and CBCT, CBCT and MDCT, MDCT and CE-MRI was observed (R2=0.974, 0.992 and 0.983, respectively). When plotting the residuals, no drift was observed for all methods showing deviations of no more than 10% of absolute volumes (in cm3). Conclusion A semi

  17. 3D KLT compression algorithm for camera security systems

    NASA Astrophysics Data System (ADS)

    Fritsch, Lukás; Páta, Petr

    2008-11-01

    This paper deals with an image compression algorithm based on the three- dimensional Karhunen- Loeve transform (3D KLT), whose task is to reduce time redundancy for an image data. There are many cases for which the reduction of time redundancy is very efficient and brings perceptible bitstream reduction. This is very desirable for transfering image data through telephone links, GSM networks etc. The time redundancy is very perceptible e.g. in camera security systems where relative unchanging frames are very conventional. The time evolution of grabbed scene is reviews according an energy content in eigenimages. These eigenimages are obtained in KLT for a suitable number of incoming frames. Required number of transfered eigenimages and eigenvectors is determined on the basis of the energy content in eigenimages.

  18. Segmentation of complex objects with non-spherical topologies from volumetric medical images using 3D livewire

    NASA Astrophysics Data System (ADS)

    Poon, Kelvin; Hamarneh, Ghassan; Abugharbieh, Rafeef

    2007-03-01

    Segmentation of 3D data is one of the most challenging tasks in medical image analysis. While reliable automatic methods are typically preferred, their success is often hindered by poor image quality and significant variations in anatomy. Recent years have thus seen an increasing interest in the development of semi-automated segmentation methods that combine computational tools with intuitive, minimal user interaction. In an earlier work, we introduced a highly-automated technique for medical image segmentation, where a 3D extension of the traditional 2D Livewire was proposed. In this paper, we present an enhanced and more powerful 3D Livewire-based segmentation approach with new features designed to primarily enable the handling of complex object topologies that are common in biological structures. The point ordering algorithm we proposed earlier, which automatically pairs up seedpoints in 3D, is improved in this work such that multiple sets of points are allowed to simultaneously exist. Point sets can now be automatically merged and split to accommodate for the presence of concavities, protrusions, and non-spherical topologies. The robustness of the method is further improved by extending the 'turtle algorithm', presented earlier, by using a turtle-path pruning step. Tests on both synthetic and real medical images demonstrate the efficiency, reproducibility, accuracy, and robustness of the proposed approach. Among the examples illustrated is the segmentation of the left and right ventricles from a T1-weighted MRI scan, where an average task time reduction of 84.7% was achieved when compared to a user performing 2D Livewire segmentation on every slice.

  19. Simultaneous image segmentation and medial structure estimation: application to 2D and 3D vessel tree extraction

    NASA Astrophysics Data System (ADS)

    Makram-Ebeid, Sherif; Stawiaski, Jean; Pizaine, Guillaume

    2011-03-01

    We propose a variational approach which combines automatic segmentation and medial structure extraction in a single computationally efficient algorithm. In this paper, we apply our approach to the analysis of vessels in 2D X-ray angiography and 3D X-ray rotational angiography of the brain. Other variational methods proposed in the literature encode the medial structure of vessel trees as a skeleton with associated vessel radii. In contrast, our method provides a dense smooth level set map which sign provides the segmentation. The ridges of this map define the segmented regions skeleton. The differential structure of the smooth map (in particular the Hessian) allows the discrimination between tubular and other structures. In 3D, both circular and non-circular tubular cross-sections and tubular branching can be handled conveniently. This algorithm allows accurate segmentation of complex vessel structures. It also provides key tools for extracting anatomically labeled vessel tree graphs and for dealing with challenging issues like kissing vessel discrimination and separation of entangled 3D vessel trees.

  20. Hybrid atlas-based and image-based approach for segmenting 3D brain MRIs

    NASA Astrophysics Data System (ADS)

    Bueno, Gloria; Musse, Olivier; Heitz, Fabrice; Armspach, Jean-Paul

    2001-07-01

    This work is a contribution to the problem of localizing key cerebral structures in 3D MRIs and its quantitative evaluation. In pursuing it, the cooperation between an image-based segmentation method and a hierarchical deformable registration approach has been considered. The segmentation relies on two main processes: homotopy modification and contour decision. The first one is achieved by a marker extraction stage where homogeneous 3D regions of an image, I(s), from the data set are identified. These regions, M(I), are obtained combining information from deformable atlas, achieved by the warping of eight previous labeled maps on I(s). Then, the goal of the decision stage is to precisely locate the contours of the 3D regions set by the markers. This contour decision is performed by a 3D extension of the watershed transform. The anatomical structures taken into consideration and embedded into the atlas are brain, ventricles, corpus callosum, cerebellum, right and left hippocampus, medulla and midbrain. The hybrid method operates fully automatically and in 3D, successfully providing segmented brain structures. The quality of the segmentation has been studied in terms of the detected volume ratio by using kappa statistic and ROC analysis. Results of the method are shown and validated on a 3D MRI phantom. This study forms part of an on-going long term research aiming at the creation of a 3D probabilistic multi-purpose anatomical brain atlas.

  1. Segmentation of vertebral bodies in CT and MR images based on 3D deterministic models

    NASA Astrophysics Data System (ADS)

    Štern, Darko; Vrtovec, Tomaž; Pernuš, Franjo; Likar, Boštjan

    2011-03-01

    The evaluation of vertebral deformations is of great importance in clinical diagnostics and therapy of pathological conditions affecting the spine. Although modern clinical practice is oriented towards the computed tomography (CT) and magnetic resonance (MR) imaging techniques, as they can provide a detailed 3D representation of vertebrae, the established methods for the evaluation of vertebral deformations still provide only a two-dimensional (2D) geometrical description. Segmentation of vertebrae in 3D may therefore not only improve their visualization, but also provide reliable and accurate 3D measurements of vertebral deformations. In this paper we propose a method for 3D segmentation of individual vertebral bodies that can be performed in CT and MR images. Initialized with a single point inside the vertebral body, the segmentation is performed by optimizing the parameters of a 3D deterministic model of the vertebral body to achieve the best match of the model to the vertebral body in the image. The performance of the proposed method was evaluated on five CT (40 vertebrae) and five T2-weighted MR (40 vertebrae) spine images, among them five are normal and five are pathological. The results show that the proposed method can be used for 3D segmentation of vertebral bodies in CT and MR images and that the proposed model can describe a variety of vertebral body shapes. The method may be therefore used for initializing whole vertebra segmentation or reliably describing vertebral body deformations.

  2. Automatic 3D image registration using voxel similarity measurements based on a genetic algorithm

    NASA Astrophysics Data System (ADS)

    Huang, Wei; Sullivan, John M., Jr.; Kulkarni, Praveen; Murugavel, Murali

    2006-03-01

    An automatic 3D non-rigid body registration system based upon the genetic algorithm (GA) process is presented. The system has been successfully applied to 2D and 3D situations using both rigid-body and affine transformations. Conventional optimization techniques and gradient search strategies generally require a good initial start location. The GA approach avoids the local minima/maxima traps of conventional optimization techniques. Based on the principles of Darwinian natural selection (survival of the fittest), the genetic algorithm has two basic steps: 1. Randomly generate an initial population. 2. Repeated application of the natural selection operation until a termination measure is satisfied. The natural selection process selects individuals based on their fitness to participate in the genetic operations; and it creates new individuals by inheritance from both parents, genetic recombination (crossover) and mutation. Once the termination criteria are satisfied, the optimum is selected from the population. The algorithm was applied on 2D and 3D magnetic resonance images (MRI). It does not require any preprocessing such as threshold, smoothing, segmentation, or definition of base points or edges. To evaluate the performance of the GA registration, the results were compared with results of the Automatic Image Registration technique (AIR) and manual registration which was used as the gold standard. Results showed that our GA implementation was a robust algorithm and gives very close results to the gold standard. A pre-cropping strategy was also discussed as an efficient preprocessing step to enhance the registration accuracy.

  3. 3D automatic anatomy segmentation based on iterative graph-cut-ASM

    SciTech Connect

    Chen, Xinjian; Bagci, Ulas

    2011-08-15

    Purpose: This paper studies the feasibility of developing an automatic anatomy segmentation (AAS) system in clinical radiology and demonstrates its operation on clinical 3D images. Methods: The AAS system, the authors are developing consists of two main parts: object recognition and object delineation. As for recognition, a hierarchical 3D scale-based multiobject method is used for the multiobject recognition task, which incorporates intensity weighted ball-scale (b-scale) information into the active shape model (ASM). For object delineation, an iterative graph-cut-ASM (IGCASM) algorithm is proposed, which effectively combines the rich statistical shape information embodied in ASM with the globally optimal delineation capability of the GC method. The presented IGCASM algorithm is a 3D generalization of the 2D GC-ASM method that they proposed previously in Chen et al.[Proc. SPIE, 7259, 72590C1-72590C-8 (2009)]. The proposed methods are tested on two datasets comprised of images obtained from 20 patients (10 male and 10 female) of clinical abdominal CT scans, and 11 foot magnetic resonance imaging (MRI) scans. The test is for four organs (liver, left and right kidneys, and spleen) segmentation, five foot bones (calcaneus, tibia, cuboid, talus, and navicular). The recognition and delineation accuracies were evaluated separately. The recognition accuracy was evaluated in terms of translation, rotation, and scale (size) error. The delineation accuracy was evaluated in terms of true and false positive volume fractions (TPVF, FPVF). The efficiency of the delineation method was also evaluated on an Intel Pentium IV PC with a 3.4 GHZ CPU machine. Results: The recognition accuracies in terms of translation, rotation, and scale error over all organs are about 8 mm, 10 deg. and 0.03, and over all foot bones are about 3.5709 mm, 0.35 deg. and 0.025, respectively. The accuracy of delineation over all organs for all subjects as expressed in TPVF and FPVF is 93.01% and 0.22%, and

  4. A novel 3D partitioned active shape model for segmentation of brain MR images.

    PubMed

    Zhao, Zheen; Aylward, Stephen R; Teoh, Earn Khwang

    2005-01-01

    A 3D Partitioned Active Shape Model (PASM) is proposed in this paper to address the problems of the 3D Active Shape Models (ASM). When training sets are small. It is usually the case in 3D segmentation, 3D ASMs tend to be restrictive. This is because the allowable region spanned by relatively few eigenvectors cannot capture the full range of shape variability. The 3D PASM overcomes this limitation by using a partitioned representation of the ASM. Given a Point Distribution Model (PDM), the mean mesh is partitioned into a group of small tiles. In order to constrain deformation of tiles, the statistical priors of tiles are estimated by applying Principal Component Analysis to each tile. To avoid the inconsistency of shapes between tiles, training samples are projected as curves in one hyperspace instead of point clouds in several hyperspaces. The deformed points are then fitted into the allowable region of the model by using a curve alignment scheme. The experiments on 3D human brain MRIs show that when the numbers of the training samples are limited, the 3D PASMs significantly improve the segmentation results as compared to 3D ASMs and 3D Hierarchical ASMs.

  5. Segmented images and 3D images for studying the anatomical structures in MRIs

    NASA Astrophysics Data System (ADS)

    Lee, Yong Sook; Chung, Min Suk; Cho, Jae Hyun

    2004-05-01

    For identifying the pathological findings in MRIs, the anatomical structures in MRIs should be identified in advance. For studying the anatomical structures in MRIs, an education al tool that includes the horizontal, coronal, sagittal MRIs of entire body, corresponding segmented images, 3D images, and browsing software is necessary. Such an educational tool, however, is hard to obtain. Therefore, in this research, such an educational tool which helps medical students and doctors study the anatomical structures in MRIs was made as follows. A healthy, young Korean male adult with standard body shape was selected. Six hundred thirteen horizontal MRIs of the entire body were scanned and inputted to the personal computer. Sixty anatomical structures in the horizontal MRIs were segmented to make horizontal segmented images. Coronal, sagittal MRIs and coronal, sagittal segmented images were made. 3D images of anatomical structures in the segmented images were reconstructed by surface rendering method. Browsing software of the MRIs, segmented images, and 3D images was composed. This educational tool that includes horizontal, coronal, sagittal MRIs of entire body, corresponding segmented images, 3D images, and browsing software is expected to help medical students and doctors study anatomical structures in MRIs.

  6. Acquisition and automated 3-D segmentation of respiratory/cardiac-gated PET transmission images

    SciTech Connect

    Reutter, B.W.; Klein, G.J.; Brennan, K.M.; Huesman, R.H. |

    1996-12-31

    To evaluate the impact of respiratory motion on attenuation correction of cardiac PET data, we acquired and automatically segmented gated transmission data for a dog breathing on its own under gas anesthesia. Data were acquired for 20 min on a CTI/Siemens ECAT EXACT HR (47-slice) scanner configured for 12 gates in a static study, Two respiratory gates were obtained using data from a pneumatic bellows placed around the dog`s chest, in conjunction with 6 cardiac gates from standard EKG gating. Both signals were directed to a LabVIEW-controlled Macintosh, which translated them into one of 12 gate addresses. The respiratory gating threshold was placed near end-expiration to acquire 6 cardiac-gated datasets at end-expiration and 6 cardiac-gated datasets during breaths. Breaths occurred about once every 10 sec and lasted about 1-1.5 sec. For each respiratory gate, data were summed over cardiac gates and torso and lung surfaces were segmented automatically using a differential 3-D edge detection algorithm. Three-dimensional visualizations showed that lung surfaces adjacent to the heart translated 9 mm inferiorly during breaths. Our results suggest that respiration-compensated attenuation correction is feasible with a modest amount of gated transmission data and is necessary for accurate quantitation of high-resolution gated cardiac PET data.

  7. Effects of CT image segmentation methods on the accuracy of long bone 3D reconstructions.

    PubMed

    Rathnayaka, Kanchana; Sahama, Tony; Schuetz, Michael A; Schmutz, Beat

    2011-03-01

    An accurate and accessible image segmentation method is in high demand for generating 3D bone models from CT scan data, as such models are required in many areas of medical research. Even though numerous sophisticated segmentation methods have been published over the years, most of them are not readily available to the general research community. Therefore, this study aimed to quantify the accuracy of three popular image segmentation methods, two implementations of intensity thresholding and Canny edge detection, for generating 3D models of long bones. In order to reduce user dependent errors associated with visually selecting a threshold value, we present a new approach of selecting an appropriate threshold value based on the Canny filter. A mechanical contact scanner in conjunction with a microCT scanner was utilised to generate the reference models for validating the 3D bone models generated from CT data of five intact ovine hind limbs. When the overall accuracy of the bone model is considered, the three investigated segmentation methods generated comparable results with mean errors in the range of 0.18-0.24 mm. However, for the bone diaphysis, Canny edge detection and Canny filter based thresholding generated 3D models with a significantly higher accuracy compared to those generated through visually selected thresholds. This study demonstrates that 3D models with sub-voxel accuracy can be generated utilising relatively simple segmentation methods that are available to the general research community.

  8. Potential of ILRIS3D Intensity Data for Planar Surfaces Segmentation.

    PubMed

    Wang, Chi-Kuei; Lu, Yao-Yu

    2009-01-01

    Intensity value based point cloud segmentation has received less attention because the intensity value of the terrestrial laser scanner is usually altered by receiving optics/hardware or the internal propriety software, which is unavailable to the end user. We offer a solution by assuming the terrestrial laser scanners are stable and the behavior of the intensity value can be characterized. Then, it is possible to use the intensity value for segmentation by observing its behavior, i.e., intensity value variation, pattern and presence of location of intensity values, etc. In this study, experiment results for characterizing the intensity data of planar surfaces collected by ILRIS3D, a terrestrial laser scanner, are reported. Two intensity formats, grey and raw, are employed by ILRIS3D. It is found from the experiment results that the grey intensity has less variation; hence it is preferable for point cloud segmentation. A warm-up time of approximate 1.5 hours is suggested for more stable intensity data. A segmentation method based on the visual cues of the intensity images sequence, which contains consecutive intensity images, is proposed in order to segment the 3D laser points of ILRIS3D. This method is unique to ILRIS3D data and does not require radiometric calibration. PMID:22346726

  9. Algorithms for Accurate and Fast Plotting of Contour Surfaces in 3D Using Hexahedral Elements

    NASA Astrophysics Data System (ADS)

    Singh, Chandan; Saini, Jaswinder Singh

    2016-07-01

    In the present study, Fast and accurate algorithms for the generation of contour surfaces in 3D are described using hexahedral elements which are popular in finite element analysis. The contour surfaces are described in the form of groups of boundaries of contour segments and their interior points are derived using the contour equation. The locations of contour boundaries and the interior points on contour surfaces are as accurate as the interpolation results obtained by hexahedral elements and thus there are no discrepancies between the analysis and visualization results.

  10. Segmentation of 3D tubular objects with adaptive front propagation and minimal tree extraction for 3D medical imaging.

    PubMed

    Cohen, Laurent D; Deschamps, Thomas

    2007-08-01

    We present a new fast approach for segmentation of thin branching structures, like vascular trees, based on Fast-Marching (FM) and Level Set (LS) methods. FM allows segmentation of tubular structures by inflating a "long balloon" from a user given single point. However, when the tubular shape is rather long, the front propagation may blow up through the boundary of the desired shape close to the starting point. Our contribution is focused on a method to propagate only the useful part of the front while freezing the rest of it. We demonstrate its ability to segment quickly and accurately tubular and tree-like structures. We also develop a useful stopping criterion for the causal front propagation. We finally derive an efficient algorithm for extracting an underlying 1D skeleton of the branching objects, with minimal path techniques. Each branch being represented by its centerline, we automatically detect the bifurcations, leading to the "Minimal Tree" representation. This so-called "Minimal Tree" is very useful for visualization and quantification of the pathologies in our anatomical data sets. We illustrate our algorithms by applying it to several arteries datasets.

  11. Segmentation of 3D tubular objects with adaptive front propagation and minimal tree extraction for 3D medical imaging.

    PubMed

    Cohen, Laurent D; Deschamps, Thomas

    2007-08-01

    We present a new fast approach for segmentation of thin branching structures, like vascular trees, based on Fast-Marching (FM) and Level Set (LS) methods. FM allows segmentation of tubular structures by inflating a "long balloon" from a user given single point. However, when the tubular shape is rather long, the front propagation may blow up through the boundary of the desired shape close to the starting point. Our contribution is focused on a method to propagate only the useful part of the front while freezing the rest of it. We demonstrate its ability to segment quickly and accurately tubular and tree-like structures. We also develop a useful stopping criterion for the causal front propagation. We finally derive an efficient algorithm for extracting an underlying 1D skeleton of the branching objects, with minimal path techniques. Each branch being represented by its centerline, we automatically detect the bifurcations, leading to the "Minimal Tree" representation. This so-called "Minimal Tree" is very useful for visualization and quantification of the pathologies in our anatomical data sets. We illustrate our algorithms by applying it to several arteries datasets. PMID:17671862

  12. 3D TEM reconstruction and segmentation process of laminar bio-nanocomposites

    SciTech Connect

    Iturrondobeitia, M. Okariz, A.; Fernandez-Martinez, R.; Jimbert, P.; Guraya, T.; Ibarretxe, J.

    2015-03-30

    The microstructure of laminar bio-nanocomposites (Poly (lactic acid)(PLA)/clay) depends on the amount of clay platelet opening after integration with the polymer matrix and determines the final properties of the material. Transmission electron microscopy (TEM) technique is the only one that can provide a direct observation of the layer dispersion and the degree of exfoliation. However, the orientation of the clay platelets, which affects the final properties, is practically immeasurable from a single 2D TEM image. This issue can be overcome using transmission electron tomography (ET), a technique that allows the complete 3D characterization of the structure, including the measurement of the orientation of clay platelets, their morphology and their 3D distribution. ET involves a 3D reconstruction of the study volume and a subsequent segmentation of the study object. Currently, accurate segmentation is performed manually, which is inefficient and tedious. The aim of this work is to propose an objective/automated segmentation methodology process of a 3D TEM tomography reconstruction. In this method the segmentation threshold is optimized by minimizing the variation of the dimensions of the segmented objects and matching the segmented V{sub clay} (%) and the actual one. The method is first validated using a fictitious set of objects, and then applied on a nanocomposite.

  13. A parallel algorithm for 3D dislocation dynamics

    NASA Astrophysics Data System (ADS)

    Wang, Zhiqiang; Ghoniem, Nasr; Swaminarayan, Sriram; LeSar, Richard

    2006-12-01

    Dislocation dynamics (DD), a discrete dynamic simulation method in which dislocations are the fundamental entities, is a powerful tool for investigation of plasticity, deformation and fracture of materials at the micron length scale. However, severe computational difficulties arising from complex, long-range interactions between these curvilinear line defects limit the application of DD in the study of large-scale plastic deformation. We present here the development of a parallel algorithm for accelerated computer simulations of DD. By representing dislocations as a 3D set of dislocation particles, we show here that the problem of an interacting ensemble of dislocations can be converted to a problem of a particle ensemble, interacting with a long-range force field. A grid using binary space partitioning is constructed to keep track of node connectivity across domains. We demonstrate the computational efficiency of the parallel micro-plasticity code and discuss how O(N) methods map naturally onto the parallel data structure. Finally, we present results from applications of the parallel code to deformation in single crystal fcc metals.

  14. Split Bregman's algorithm for three-dimensional mesh segmentation

    NASA Astrophysics Data System (ADS)

    Habiba, Nabi; Ali, Douik

    2016-05-01

    Variational methods have attracted a lot of attention in the literature, especially for image and mesh segmentation. The methods aim at minimizing the energy to optimize both edge and region detections. We propose a spectral mesh decomposition algorithm to obtain disjoint but meaningful regions of an input mesh. The related optimization problem is nonconvex, and it is very difficult to find a good approximation or global optimum, which represents a challenge in computer vision. We propose an alternating split Bregman algorithm for mesh segmentation, where we extended the image-dedicated model to a three-dimensional (3-D) mesh one. By applying our scheme to 3-D mesh segmentation, we obtain fast solvers that can outperform various conventional ones, such as graph-cut and primal dual methods. A consistent evaluation of the proposed method on various public domain 3-D databases for different metrics is elaborated, and a comparison with the state-of-the-art is performed.

  15. 3D segmentation of masses in DCE-MRI images using FCM and adaptive MRF

    NASA Astrophysics Data System (ADS)

    Zhang, Chengjie; Li, Lihua

    2014-03-01

    Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) is a sensitive imaging modality for the detection of breast cancer. Automated segmentation of breast lesions in DCE-MRI images is challenging due to inherent signal-to-noise ratios and high inter-patient variability. A novel 3D segmentation method based on FCM and MRF is proposed in this study. In this method, a MRI image is segmented by spatial FCM, firstly. And then MRF segmentation is conducted to refine the result. We combined with the 3D information of lesion in the MRF segmentation process by using segmentation result of contiguous slices to constraint the slice segmentation. At the same time, a membership matrix of FCM segmentation result is used for adaptive adjustment of Markov parameters in MRF segmentation process. The proposed method was applied for lesion segmentation on 145 breast DCE-MRI examinations (86 malignant and 59 benign cases). An evaluation of segmentation was taken using the traditional overlap rate method between the segmented region and hand-drawing ground truth. The average overlap rates for benign and malignant lesions are 0.764 and 0.755 respectively. Then we extracted five features based on the segmentation region, and used an artificial neural network (ANN) to classify between malignant and benign cases. The ANN had a classification performance measured by the area under the ROC curve of AUC=0.73. The positive and negative predictive values were 0.86 and 0.58, respectively. The results demonstrate the proposed method not only achieves a better segmentation performance in accuracy also has a reasonable classification performance.

  16. A framework for automatic construction of 3D PDM from segmented volumetric neuroradiological data sets.

    PubMed

    Fu, Yili; Gao, Wenpeng; Xiao, Yongfei; Liu, Jimin

    2010-03-01

    3D point distribution model (PDM) of subcortical structures can be applied in medical image analysis by providing priori-knowledge. However, accurate shape representation and point correspondence are still challenging for building 3D PDM. This paper presents a novel framework for the automated construction of 3D PDMs from a set of segmented volumetric images. First, a template shape is generated according to the spatial overlap. Then the corresponding landmarks among shapes are automatically identified by a novel hierarchical global-to-local approach, which combines iterative closest point based global registration and active surface model based local deformation to transform the template shape to all other shapes. Finally, a 3D PDM is constructed. Experiment results on four subcortical structures show that the proposed method is able to construct 3D PDMs with a high quality in compactness, generalization and specificity, and more efficient and effective than the state-of-art methods such as MDL and SPHARM. PMID:19631401

  17. Estimation of 3-D pore network coordination number of rocks from watershed segmentation of a single 2-D image

    NASA Astrophysics Data System (ADS)

    Rabbani, Arash; Ayatollahi, Shahab; Kharrat, Riyaz; Dashti, Nader

    2016-08-01

    In this study, we have utilized 3-D micro-tomography images of real and synthetic rocks to introduce two mathematical correlations which estimate the distribution parameters of 3-D coordination number using a single 2-D cross-sectional image. By applying a watershed segmentation algorithm, it is found that the distribution of 3-D coordination number is acceptably predictable by statistical analysis of the network extracted from 2-D images. In this study, we have utilized 25 volumetric images of rocks in order to propose two mathematical formulas. These formulas aim to approximate the average and standard deviation of coordination number in 3-D pore networks. Then, the formulas are applied for five independent test samples to evaluate the reliability. Finally, pore network flow modeling is used to find the error of absolute permeability prediction using estimated and measured coordination numbers. Results show that the 2-D images are considerably informative about the 3-D network of the rocks and can be utilized to approximate the 3-D connectivity of the porous spaces with determination coefficient of about 0.85 that seems to be acceptable considering the variety of the studied samples.

  18. Image enhancement and segmentation of fluid-filled structures in 3D ultrasound images

    NASA Astrophysics Data System (ADS)

    Chalana, Vikram; Dudycha, Stephen; McMorrow, Gerald

    2003-05-01

    Segmentation of fluid-filled structures, such as the urinary bladder, from three-dimensional ultrasound images is necessary for measuring their volume. This paper describes a system for image enhancement, segmentation and volume measurement of fluid-filled structures on 3D ultrasound images. The system was applied for the measurement of urinary bladder volume. Results show an average error of less than 10% in the estimation of the total bladder volume.

  19. 3D Prostate Segmentation of Ultrasound Images Combining Longitudinal Image Registration and Machine Learning

    PubMed Central

    Yang, Xiaofeng; Fei, Baowei

    2012-01-01

    We developed a three-dimensional (3D) segmentation method for transrectal ultrasound (TRUS) images, which is based on longitudinal image registration and machine learning. Using longitudinal images of each individual patient, we register previously acquired images to the new images of the same subject. Three orthogonal Gabor filter banks were used to extract texture features from each registered image. Patient-specific Gabor features from the registered images are used to train kernel support vector machines (KSVMs) and then to segment the newly acquired prostate image. The segmentation method was tested in TRUS data from five patients. The average surface distance between our and manual segmentation is 1.18 ± 0.31 mm, indicating that our automatic segmentation method based on longitudinal image registration is feasible for segmenting the prostate in TRUS images. PMID:24027622

  20. Automated Computed Tomography-Ultrasound Cross-Modality 3-D Contouring Algorithm for Prostate.

    PubMed

    Ermacora, Denis; Pesente, Silvia; Pascoli, Francesco; Raducci, Sebastian; Mauro, Rudy; Rumeileh, Imad Abu; Verhaegen, Frank; Fontanarosa, Davide

    2015-10-01

    A novel fully automated algorithm is introduced for 3-D cross-modality image segmentation of the prostate, based on the simultaneous use of co-registered computed tomography (CT) and 3-D ultrasound (US) images. By use of a Gabor feature detector, the algorithm can outline in three dimensions and in cross-modality the prostate, and it can be trained and optimized on specific patient populations. We applied it to 16 prostate cancer patients and evaluated the conformity between the automatically segmented prostate contours and the contours manually outlined by an experienced physician, on the CT-US fusion, using the mean distance to conformity (MDC) index. When only the CT scans were used, the average MDC value was 4.5 ± 1.7 mm (maximum value = 9.0 mm). When the US scans also were considered, the mean ± standard deviation was reduced to 3.9 ± 0.7 mm (maximum value = 5.5 mm). The cross-modality approach acted on all the largest distance values, reducing them to acceptable discrepancies.

  1. Estimation of regeneration coverage in a temperate forest by 3D segmentation using airborne laser scanning data

    NASA Astrophysics Data System (ADS)

    Amiri, Nina; Yao, Wei; Heurich, Marco; Krzystek, Peter; Skidmore, Andrew K.

    2016-10-01

    Forest understory and regeneration are important factors in sustainable forest management. However, understanding their spatial distribution in multilayered forests requires accurate and continuously updated field data, which are difficult and time-consuming to obtain. Therefore, cost-efficient inventory methods are required, and airborne laser scanning (ALS) is a promising tool for obtaining such information. In this study, we examine a clustering-based 3D segmentation in combination with ALS data for regeneration coverage estimation in a multilayered temperate forest. The core of our method is a two-tiered segmentation of the 3D point clouds into segments associated with regeneration trees. First, small parts of trees (super-voxels) are constructed through mean shift clustering, a nonparametric procedure for finding the local maxima of a density function. In the second step, we form a graph based on the mean shift clusters and merge them into larger segments using the normalized cut algorithm. These segments are used to obtain regeneration coverage of the target plot. Results show that, based on validation data from field inventory and terrestrial laser scanning (TLS), our approach correctly estimates up to 70% of regeneration coverage across the plots with different properties, such as tree height and tree species. The proposed method is negatively impacted by the density of the overstory because of decreasing ground point density. In addition, the estimated coverage has a strong relationship with the overstory tree species composition.

  2. Soft computing approach to 3D lung nodule segmentation in CT.

    PubMed

    Badura, P; Pietka, E

    2014-10-01

    This paper presents a novel, multilevel approach to the segmentation of various types of pulmonary nodules in computed tomography studies. It is based on two branches of computational intelligence: the fuzzy connectedness (FC) and the evolutionary computation. First, the image and auxiliary data are prepared for the 3D FC analysis during the first stage of an algorithm - the masks generation. Its main goal is to process some specific types of nodules connected to the pleura or vessels. It consists of some basic image processing operations as well as dedicated routines for the specific cases of nodules. The evolutionary computation is performed on the image and seed points in order to shorten the FC analysis and improve its accuracy. After the FC application, the remaining vessels are removed during the postprocessing stage. The method has been validated using the first dataset of studies acquired and described by the Lung Image Database Consortium (LIDC) and by its latest release - the LIDC-IDRI (Image Database Resource Initiative) database.

  3. Automated Lung Segmentation and Image Quality Assessment for Clinical 3-D/4-D-Computed Tomography

    PubMed Central

    Li, Guang

    2014-01-01

    4-D-computed tomography (4DCT) provides not only a new dimension of patient-specific information for radiation therapy planning and treatment, but also a challenging scale of data volume to process and analyze. Manual analysis using existing 3-D tools is unable to keep up with vastly increased 4-D data volume, automated processing and analysis are thus needed to process 4DCT data effectively and efficiently. In this paper, we applied ideas and algorithms from image/signal processing, computer vision, and machine learning to 4DCT lung data so that lungs can be reliably segmented in a fully automated manner, lung features can be visualized and measured on the fly via user interactions, and data quality classifications can be computed in a robust manner. Comparisons of our results with an established treatment planning system and calculation by experts demonstrated negligible discrepancies (within ±2%) for volume assessment but one to two orders of magnitude performance enhancement. An empirical Fourier-analysis-based quality measure-delivered performances closely emulating human experts. Three machine learners are inspected to justify the viability of machine learning techniques used to robustly identify data quality of 4DCT images in the scalable manner. The resultant system provides a toolkit that speeds up 4-D tasks in the clinic and facilitates clinical research to improve current clinical practice. PMID:25621194

  4. GIST: an interactive, GPU-based level set segmentation tool for 3D medical images.

    PubMed

    Cates, Joshua E; Lefohn, Aaron E; Whitaker, Ross T

    2004-09-01

    While level sets have demonstrated a great potential for 3D medical image segmentation, their usefulness has been limited by two problems. First, 3D level sets are relatively slow to compute. Second, their formulation usually entails several free parameters which can be very difficult to correctly tune for specific applications. The second problem is compounded by the first. This paper describes a new tool for 3D segmentation that addresses these problems by computing level-set surface models at interactive rates. This tool employs two important, novel technologies. First is the mapping of a 3D level-set solver onto a commodity graphics card (GPU). This mapping relies on a novel mechanism for GPU memory management. The interactive rates level-set PDE solver give the user immediate feedback on the parameter settings, and thus users can tune free parameters and control the shape of the model in real time. The second technology is the use of intensity-based speed functions, which allow a user to quickly and intuitively specify the behavior of the deformable model. We have found that the combination of these interactive tools enables users to produce good, reliable segmentations. To support this observation, this paper presents qualitative results from several different datasets as well as a quantitative evaluation from a study of brain tumor segmentations. PMID:15450217

  5. 3D Slicer as a Tool for Interactive Brain Tumor Segmentation

    PubMed Central

    Kikinis, Ron; Pieper, Steve

    2014-01-01

    User interaction is required for reliable segmentation of brain tumors in clinical practice and in clinical research. By incorporating current research tools, 3D Slicer provides a set of easy to use interactive tools that can be efficiently used for this purpose. PMID:22255945

  6. 3D segmentation of the true and false lumens on CT aortic dissection images

    NASA Astrophysics Data System (ADS)

    Fetnaci, Nawel; Łubniewski, Paweł; Miguel, Bruno; Lohou, Christophe

    2013-03-01

    Our works are related to aortic dissections which are a medical emergency and can quickly lead to death. In this paper, we want to retrieve in CT images the false and the true lumens which are aortic dissection features. Our aim is to provide a 3D view of the lumens that we can difficultly obtain either by volume rendering or by another visualization tool which only directly gives the outer contour of the aorta; or by other segmentation methods because they mainly directly segment either only the outer contour of the aorta or other connected arteries and organs both. In our work, we need to segment the two lumens separately; this segmentation will allow us to: distinguish them automatically, facilitate the landing of the aortic prosthesis, propose a virtual 3d navigation and do quantitative analysis. We chose to segment these data by using a deformable model based on the fast marching method. In the classical fast marching approach, a speed function is used to control the front propagation of a deforming curve. The speed function is only based on the image gradient. In our CT images, due to the low resolution, with the fast marching the front propagates from a lumen to the other; therefore, the gradient data is insufficient to have accurate segmentation results. In the paper, we have adapted the fast marching method more particularly by modifying the speed function and we succeed in segmenting the two lumens separately.

  7. 3D active surfaces for liver segmentation in multisequence MRI images.

    PubMed

    Bereciartua, Arantza; Picon, Artzai; Galdran, Adrian; Iriondo, Pedro

    2016-08-01

    Biopsies for diagnosis can sometimes be replaced by non-invasive techniques such as CT and MRI. Surgeons require accurate and efficient methods that allow proper segmentation of the organs in order to ensure the most reliable intervention planning. Automated liver segmentation is a difficult and open problem where CT has been more widely explored than MRI. MRI liver segmentation represents a challenge due to the presence of characteristic artifacts, such as partial volumes, noise and low contrast. In this paper, we present a novel method for multichannel MRI automatic liver segmentation. The proposed method consists of the minimization of a 3D active surface by means of the dual approach to the variational formulation of the underlying problem. This active surface evolves over a probability map that is based on a new compact descriptor comprising spatial and multisequence information which is further modeled by means of a liver statistical model. This proposed 3D active surface approach naturally integrates volumetric regularization in the statistical model. The advantages of the compact visual descriptor together with the proposed approach result in a fast and accurate 3D segmentation method. The method was tested on 18 healthy liver studies and results were compared to a gold standard made by expert radiologists. Comparisons with other state-of-the-art approaches are provided by means of nine well established quality metrics. The obtained results improve these methodologies, achieving a Dice Similarity Coefficient of 98.59. PMID:27282235

  8. Parametric modelling and segmentation of vertebral bodies in 3D CT and MR spine images

    NASA Astrophysics Data System (ADS)

    Štern, Darko; Likar, Boštjan; Pernuš, Franjo; Vrtovec, Tomaž

    2011-12-01

    Accurate and objective evaluation of vertebral deformations is of significant importance in clinical diagnostics and therapy of pathological conditions affecting the spine. Although modern clinical practice is focused on three-dimensional (3D) computed tomography (CT) and magnetic resonance (MR) imaging techniques, the established methods for evaluation of vertebral deformations are limited to measuring deformations in two-dimensional (2D) x-ray images. In this paper, we propose a method for quantitative description of vertebral body deformations by efficient modelling and segmentation of vertebral bodies in 3D. The deformations are evaluated from the parameters of a 3D superquadric model, which is initialized as an elliptical cylinder and then gradually deformed by introducing transformations that yield a more detailed representation of the vertebral body shape. After modelling the vertebral body shape with 25 clinically meaningful parameters and the vertebral body pose with six rigid body parameters, the 3D model is aligned to the observed vertebral body in the 3D image. The performance of the method was evaluated on 75 vertebrae from CT and 75 vertebrae from T2-weighted MR spine images, extracted from the thoracolumbar part of normal and pathological spines. The results show that the proposed method can be used for 3D segmentation of vertebral bodies in CT and MR images, as the proposed 3D model is able to describe both normal and pathological vertebral body deformations. The method may therefore be used for initialization of whole vertebra segmentation or for quantitative measurement of vertebral body deformations.

  9. HOSVD-Based 3D Active Appearance Model: Segmentation of Lung Fields in CT Images.

    PubMed

    Wang, Qingzhu; Kang, Wanjun; Hu, Haihui; Wang, Bin

    2016-07-01

    An Active Appearance Model (AAM) is a computer vision model which can be used to effectively segment lung fields in CT images. However, the fitting result is often inadequate when the lungs are affected by high-density pathologies. To overcome this problem, we propose a Higher-order Singular Value Decomposition (HOSVD)-based Three-dimensional (3D) AAM. An evaluation was performed on 310 diseased lungs form the Lung Image Database Consortium Image Collection. Other contemporary AAMs operate directly on patterns represented by vectors, i.e., before applying the AAM to a 3D lung volume,it has to be vectorized first into a vector pattern by some technique like concatenation. However, some implicit structural or local contextual information may be lost in this transformation. According to the nature of the 3D lung volume, HOSVD is introduced to represent and process the lung in tensor space. Our method can not only directly operate on the original 3D tensor patterns, but also efficiently reduce the computer memory usage. The evaluation resulted in an average Dice coefficient of 97.0 % ± 0.59 %, a mean absolute surface distance error of 1.0403 ± 0.5716 mm, a mean border positioning errors of 0.9187 ± 0.5381 pixel, and a Hausdorff Distance of 20.4064 ± 4.3855, respectively. Experimental results showed that our methods delivered significant and better segmentation results, compared with the three other model-based lung segmentation approaches, namely 3D Snake, 3D ASM and 3D AAM. PMID:27277277

  10. A density-based segmentation for 3D images, an application for X-ray micro-tomography.

    PubMed

    Tran, Thanh N; Nguyen, Thanh T; Willemsz, Tofan A; van Kessel, Gijs; Frijlink, Henderik W; van der Voort Maarschalk, Kees

    2012-05-01

    Density-based spatial clustering of applications with noise (DBSCAN) is an unsupervised classification algorithm which has been widely used in many areas with its simplicity and its ability to deal with hidden clusters of different sizes and shapes and with noise. However, the computational issue of the distance table and the non-stability in detecting the boundaries of adjacent clusters limit the application of the original algorithm to large datasets such as images. In this paper, the DBSCAN algorithm was revised and improved for image clustering and segmentation. The proposed clustering algorithm presents two major advantages over the original one. Firstly, the revised DBSCAN algorithm made it applicable for large 3D image dataset (often with millions of pixels) by using the coordinate system of the image data. Secondly, the revised algorithm solved the non-stability issue of boundary detection in the original DBSCAN. For broader applications, the image dataset can be ordinary 3D images or in general, it can also be a classification result of other type of image data e.g. a multivariate image.

  11. COMBINING ATLAS AND ACTIVE CONTOUR FOR AUTOMATIC 3D MEDICAL IMAGE SEGMENTATION.

    PubMed

    Gao, Yi; Tannenbaum, Allen

    2011-01-01

    Atlas based methods and active contours are two families of techniques widely used for the task of 3D medical image segmentation. In this work we present a coupled framework where the two methods are combined together, in order to exploit each's advantage while avoid their respective drawbacks. Indeed, the atlas based methods lacks the flexibility in locally tuning the segmentation boundary; whereas the active contour has the drawback that the final result heavily depends on the initialization as well as the contour evolution energy functional. Therefore, in the proposed work, the atlas based segmentation provides a probability map, which not only supplies the initial contour position, but also defines the contour evolution energy in an on-line fashion. Afterward, the active contour further converges to the desired object boundary. Finally, the method is tested on various 3D medical images to demonstrate its robustness as well as accuracy.

  12. From Voxels to Knowledge: A Practical Guide to the Segmentation of Complex Electron Microscopy 3D-Data

    PubMed Central

    Tsai, Wen-Ting; Hassan, Ahmed; Sarkar, Purbasha; Correa, Joaquin; Metlagel, Zoltan; Jorgens, Danielle M.; Auer, Manfred

    2014-01-01

    Modern 3D electron microscopy approaches have recently allowed unprecedented insight into the 3D ultrastructural organization of cells and tissues, enabling the visualization of large macromolecular machines, such as adhesion complexes, as well as higher-order structures, such as the cytoskeleton and cellular organelles in their respective cell and tissue context. Given the inherent complexity of cellular volumes, it is essential to first extract the features of interest in order to allow visualization, quantification, and therefore comprehension of their 3D organization. Each data set is defined by distinct characteristics, e.g., signal-to-noise ratio, crispness (sharpness) of the data, heterogeneity of its features, crowdedness of features, presence or absence of characteristic shapes that allow for easy identification, and the percentage of the entire volume that a specific region of interest occupies. All these characteristics need to be considered when deciding on which approach to take for segmentation. The six different 3D ultrastructural data sets presented were obtained by three different imaging approaches: resin embedded stained electron tomography, focused ion beam- and serial block face- scanning electron microscopy (FIB-SEM, SBF-SEM) of mildly stained and heavily stained samples, respectively. For these data sets, four different segmentation approaches have been applied: (1) fully manual model building followed solely by visualization of the model, (2) manual tracing segmentation of the data followed by surface rendering, (3) semi-automated approaches followed by surface rendering, or (4) automated custom-designed segmentation algorithms followed by surface rendering and quantitative analysis. Depending on the combination of data set characteristics, it was found that typically one of these four categorical approaches outperforms the others, but depending on the exact sequence of criteria, more than one approach may be successful. Based on these data

  13. 3D transrectal ultrasound (TRUS) prostate segmentation based on optimal feature learning framework

    NASA Astrophysics Data System (ADS)

    Yang, Xiaofeng; Rossi, Peter J.; Jani, Ashesh B.; Mao, Hui; Curran, Walter J.; Liu, Tian

    2016-03-01

    We propose a 3D prostate segmentation method for transrectal ultrasound (TRUS) images, which is based on patch-based feature learning framework. Patient-specific anatomical features are extracted from aligned training images and adopted as signatures for each voxel. The most robust and informative features are identified by the feature selection process to train the kernel support vector machine (KSVM). The well-trained SVM was used to localize the prostate of the new patient. Our segmentation technique was validated with a clinical study of 10 patients. The accuracy of our approach was assessed using the manual segmentations (gold standard). The mean volume Dice overlap coefficient was 89.7%. In this study, we have developed a new prostate segmentation approach based on the optimal feature learning framework, demonstrated its clinical feasibility, and validated its accuracy with manual segmentations.

  14. Liver segmentation in contrast enhanced CT data using graph cuts and interactive 3D segmentation refinement methods

    SciTech Connect

    Beichel, Reinhard; Bornik, Alexander; Bauer, Christian; Sorantin, Erich

    2012-03-15

    Purpose: Liver segmentation is an important prerequisite for the assessment of liver cancer treatment options like tumor resection, image-guided radiation therapy (IGRT), radiofrequency ablation, etc. The purpose of this work was to evaluate a new approach for liver segmentation. Methods: A graph cuts segmentation method was combined with a three-dimensional virtual reality based segmentation refinement approach. The developed interactive segmentation system allowed the user to manipulate volume chunks and/or surfaces instead of 2D contours in cross-sectional images (i.e, slice-by-slice). The method was evaluated on twenty routinely acquired portal-phase contrast enhanced multislice computed tomography (CT) data sets. An independent reference was generated by utilizing a currently clinically utilized slice-by-slice segmentation method. After 1 h of introduction to the developed segmentation system, three experts were asked to segment all twenty data sets with the proposed method. Results: Compared to the independent standard, the relative volumetric segmentation overlap error averaged over all three experts and all twenty data sets was 3.74%. Liver segmentation required on average 16 min of user interaction per case. The calculated relative volumetric overlap errors were not found to be significantly different [analysis of variance (ANOVA) test, p = 0.82] between experts who utilized the proposed 3D system. In contrast, the time required by each expert for segmentation was found to be significantly different (ANOVA test, p = 0.0009). Major differences between generated segmentations and independent references were observed in areas were vessels enter or leave the liver and no accepted criteria for defining liver boundaries exist. In comparison, slice-by-slice based generation of the independent standard utilizing a live wire tool took 70.1 min on average. A standard 2D segmentation refinement approach applied to all twenty data sets required on average 38.2 min of

  15. Validation of bone segmentation and improved 3-D registration using contour coherency in CT data.

    PubMed

    Wang, Liping Ingrid; Greenspan, Michael; Ellis, Randy

    2006-03-01

    A method is presented to validate the segmentation of computed tomography (CT) image sequences, and improve the accuracy and efficiency of the subsequent registration of the three-dimensional surfaces that are reconstructed from the segmented slices. The method compares the shapes of contours extracted from neighborhoods of slices in CT stacks of tibias. The bone is first segmented by an automatic segmentation technique, and the bone contour for each slice is parameterized as a one-dimensional function of normalized arc length versus inscribed angle. These functions are represented as vectors within a K-dimensional space comprising the first K amplitude coefficients of their Fourier Descriptors. The similarity or coherency of neighboring contours is measured by comparing statistical properties of their vector representations within this space. Experimentation has demonstrated this technique to be very effective at identifying low-coherency segmentations. Compared with experienced human operators, in a set of 23 CT stacks (1,633 slices), the method correctly detected 87.5% and 80% of the low-coherency and 97.7% and 95.5% of the high coherency segmentations, respectively from two different automatic segmentation techniques. Removal of the automatically detected low-coherency segmentations also significantly improved the accuracy and time efficiency of the registration of 3-D bone surface models. The registration error was reduced by over 500% (i.e., a factor of 5) and 280%, and the computational performance was improved by 540% and 791% for the two respective segmentation methods. PMID:16524088

  16. Semi-automatic 3D segmentation of carotid lumen in contrast-enhanced computed tomography angiography images.

    PubMed

    Hemmati, Hamidreza; Kamli-Asl, Alireza; Talebpour, Alireza; Shirani, Shapour

    2015-12-01

    The atherosclerosis disease is one of the major causes of the death in the world. Atherosclerosis refers to the hardening and narrowing of the arteries by plaques. Carotid stenosis is a narrowing or constriction of carotid artery lumen usually caused by atherosclerosis. Carotid artery stenosis can increase risk of brain stroke. Contrast-enhanced Computed Tomography Angiography (CTA) is a minimally invasive method for imaging and quantification of the carotid plaques. Manual segmentation of carotid lumen in CTA images is a tedious and time consuming procedure which is subjected to observer variability. As a result, there is a strong and growing demand for developing computer-aided carotid segmentation procedures. In this study, a novel method is presented for carotid artery lumen segmentation in CTA data. First, the mean shift smoothing is used for uniformity enhancement of gray levels. Then with the help of three seed points, the centerlines of the arteries are extracted by a 3D Hessian based fast marching shortest path algorithm. Finally, a 3D Level set function is performed for segmentation. Results on 14 CTA volumes data show 85% of Dice similarity and 0.42 mm of mean absolute surface distance measures. Evaluation shows that the proposed method requires minimal user intervention, low dependence to gray levels changes in artery path, resistance to extreme changes in carotid diameter and carotid branch locations. The proposed method has high accuracy and can be used in qualitative and quantitative evaluation. PMID:26429385

  17. Framework for quantitative evaluation of 3D vessel segmentation approaches using vascular phantoms in conjunction with 3D landmark localization and registration

    NASA Astrophysics Data System (ADS)

    Wörz, Stefan; Hoegen, Philipp; Liao, Wei; Müller-Eschner, Matthias; Kauczor, Hans-Ulrich; von Tengg-Kobligk, Hendrik; Rohr, Karl

    2016-03-01

    We introduce a framework for quantitative evaluation of 3D vessel segmentation approaches using vascular phantoms. Phantoms are designed using a CAD system and created with a 3D printer, and comprise realistic shapes including branches and pathologies such as abdominal aortic aneurysms (AAA). To transfer ground truth information to the 3D image coordinate system, we use a landmark-based registration scheme utilizing fiducial markers integrated in the phantom design. For accurate 3D localization of the markers we developed a novel 3D parametric intensity model that is directly fitted to the markers in the images. We also performed a quantitative evaluation of different vessel segmentation approaches for a phantom of an AAA.

  18. Interactive 3D segmentation of the prostate in magnetic resonance images using shape and local appearance similarity analysis

    NASA Astrophysics Data System (ADS)

    Shahedi, Maysam; Fenster, Aaron; Cool, Derek W.; Romagnoli, Cesare; Ward, Aaron D.

    2013-03-01

    3D segmentation of the prostate in medical images is useful to prostate cancer diagnosis and therapy guidance, but is time-consuming to perform manually. Clinical translation of computer-assisted segmentation algorithms for this purpose requires a comprehensive and complementary set of evaluation metrics that are informative to the clinical end user. We have developed an interactive 3D prostate segmentation method for 1.5T and 3.0T T2-weighted magnetic resonance imaging (T2W MRI) acquired using an endorectal coil. We evaluated our method against manual segmentations of 36 3D images using complementary boundary-based (mean absolute distance; MAD), regional overlap (Dice similarity coefficient; DSC) and volume difference (ΔV) metrics. Our technique is based on inter-subject prostate shape and local boundary appearance similarity. In the training phase, we calculated a point distribution model (PDM) and a set of local mean intensity patches centered on the prostate border to capture shape and appearance variability. To segment an unseen image, we defined a set of rays - one corresponding to each of the mean intensity patches computed in training - emanating from the prostate centre. We used a radial-based search strategy and translated each mean intensity patch along its corresponding ray, selecting as a candidate the boundary point with the highest normalized cross correlation along each ray. These boundary points were then regularized using the PDM. For the whole gland, we measured a mean+/-std MAD of 2.5+/-0.7 mm, DSC of 80+/-4%, and ΔV of 1.1+/-8.8 cc. We also provided an anatomic breakdown of these metrics within the prostatic base, mid-gland, and apex.

  19. 3D Visualization of Machine Learning Algorithms with Astronomical Data

    NASA Astrophysics Data System (ADS)

    Kent, Brian R.

    2016-01-01

    We present innovative machine learning (ML) methods using unsupervised clustering with minimum spanning trees (MSTs) to study 3D astronomical catalogs. Utilizing Python code to build trees based on galaxy catalogs, we can render the results with the visualization suite Blender to produce interactive 360 degree panoramic videos. The catalogs and their ML results can be explored in a 3D space using mobile devices, tablets or desktop browsers. We compare the statistics of the MST results to a number of machine learning methods relating to optimization and efficiency.

  20. Neuronal nuclei localization in 3D using level set and watershed segmentation from laser scanning microscopy images

    NASA Astrophysics Data System (ADS)

    Zhu, Yingxuan; Olson, Eric; Subramanian, Arun; Feiglin, David; Varshney, Pramod K.; Krol, Andrzej

    2008-03-01

    Abnormalities of the number and location of cells are hallmarks of both developmental and degenerative neurological diseases. However, standard stereological methods are impractical for assigning each cell's nucleus position within a large volume of brain tissue. We propose an automated approach for segmentation and localization of the brain cell nuclei in laser scanning microscopy (LSM) embryonic mouse brain images. The nuclei in these images are first segmented by using the level set (LS) and watershed methods in each optical plane. The segmentation results are further refined by application of information from adjacent optical planes and prior knowledge of nuclear shape. Segmentation is then followed with an algorithm for 3D localization of the centroid of nucleus (CN). Each volume of tissue is thus represented by a collection of centroids leading to an approximate 10,000-fold reduction in the data set size, as compared to the original image series. Our method has been tested on LSM images obtained from an embryonic mouse brain, and compared to the segmentation and CN localization performed by an expert. The average Euclidian distance between locations of CNs obtained using our method and those obtained by an expert is 1.58+/-1.24 µm, a value well within the ~5 µm average radius of each nucleus. We conclude that our approach accurately segments and localizes CNs within cell dense embryonic tissue.

  1. Automatic 2D and 3D segmentation of liver from Computerised Tomography

    NASA Astrophysics Data System (ADS)

    Evans, Alun

    As part of the diagnosis of liver disease, a Computerised Tomography (CT) scan is taken of the patient, which the clinician then uses for assistance in determining the presence and extent of the disease. This thesis presents the background, methodology, results and future work of a project that employs automated methods to segment liver tissue. The clinical motivation behind this work is the desire to facilitate the diagnosis of liver disease such as cirrhosis or cancer, assist in volume determination for liver transplantation, and possibly assist in measuring the effect of any treatment given to the liver. Previous attempts at automatic segmentation of liver tissue have relied on 2D, low-level segmentation techniques, such as thresholding and mathematical morphology, to obtain the basic liver structure. The derived boundary can then be smoothed or refined using more advanced methods. The 2D results presented in this thesis improve greatly on this previous work by using a topology adaptive active contour model to accurately segment liver tissue from CT images. The use of conventional snakes for liver segmentation is difficult due to the presence of other organs closely surrounding the liver this new technique avoids this problem by adding an inflationary force to the basic snake equation, and initialising the snake inside the liver. The concepts underlying the 2D technique are extended to 3D, and results of full 3D segmentation of the liver are presented. The 3D technique makes use of an inflationary active surface model which is adaptively reparameterised, according to its size and local curvature, in order that it may more accurately segment the organ. Statistical analysis of the accuracy of the segmentation is presented for 18 healthy liver datasets, and results of the segmentation of unhealthy livers are also shown. The novel work developed during the course of this project has possibilities for use in other areas of medical imaging research, for example the

  2. Shape-model-based adaptation of 3D deformable meshes for segmentation of medical images

    NASA Astrophysics Data System (ADS)

    Pekar, Vladimir; Kaus, Michael R.; Lorenz, Cristian; Lobregt, Steven; Truyen, Roel; Weese, Juergen

    2001-07-01

    Segmentation methods based on adaptation of deformable models have found numerous applications in medical image analysis. Many efforts have been made in the recent years to improve their robustness and reliability. In particular, increasingly more methods use a priori information about the shape of the anatomical structure to be segmented. This reduces the risk of the model being attracted to false features in the image and, as a consequence, makes the need of close initialization, which remains the principal limitation of elastically deformable models, less crucial for the segmentation quality. In this paper, we present a novel segmentation approach which uses a 3D anatomical statistical shape model to initialize the adaptation process of a deformable model represented by a triangular mesh. As the first step, the anatomical shape model is parametrically fitted to the structure of interest in the image. The result of this global adaptation is used to initialize the local mesh refinement based on an energy minimization. We applied our approach to segment spine vertebrae in CT datasets. The segmentation quality was quantitatively assessed for 6 vertebrae, from 2 datasets, by computing the mean and maximum distance between the adapted mesh and a manually segmented reference shape. The results of the study show that the presented method is a promising approach for segmentation of complex anatomical structures in medical images.

  3. Segmentation of the brain from 3D MRI using a hierarchical active surface template

    NASA Astrophysics Data System (ADS)

    Snell, John W.; Merickel, Michael B.; Ortega, James M.; Goble, John C.; Brookeman, James R.; Kassell, Neal F.

    1994-05-01

    The accurate segmentation of the brain from three-dimensional medical imagery is important as the basis for visualization, morphometry, surgical planning and intraoperative navigation. The complex and variable nature of brain anatomy makes recognition of the brain boundaries a difficult problem and frustrates segmentation schemes based solely on local image features. We have developed a deformable surface model of the brain as a mechanism for utilizing a priori anatomical knowledge in the segmentation process. The active surface template uses an energy minimization scheme to find a globally consistent surface configuration given a set of potentially ambiguous image features. Solution of the entire 3D problem at once produces superior results to those achieved using a slice by slice approach. We have achieved good results with MR image volumes of both normal and abnormal subjects. Evaluation of the segmentation results has been performed using cadaver studies.

  4. Off- and Along-Axis Slow Spreading Ridge Segment Characters: Insights From 3d Thermal Modeling

    NASA Astrophysics Data System (ADS)

    Gac, S.; Tisseau, C.; Dyment, J.

    2001-12-01

    Many observations along the Mid-Atlantic Ridge segments suggest a correlation between surface characters (length, axial morphology) and the thermal state of the segment. Thibaud et al. (1998) classify segments according to their thermal state: "colder" segments shorter than 30 km show a weak magmatic activity, and "hotter" segments as long as 90 km show a robust magmatic activity. The existence of such a correlation suggests that the thermal structure of a slow spreading ridge segment explains most of the surface observations. Here we test the physical coherence of such an integrated thermal model and evaluate it quantitatively. The different kinds of segment would constitute different phases in a segment evolution, the segment evolving progressively from a "colder" to a "hotter" so to a "colder" state. Here we test the consistency of such an evolution scheme. To test these hypotheses we have developed a 3D numerical model for the thermal structure and evolution of a slow spreading ridge segment. The thermal structure is controlled by the geometry and the dimensions of a permanently hot zone, imposed beneath the segment center, where is simulated the adiabatic ascent of magmatic material. To compare the model with the observations several geophysic quantities which depend on the thermal state are simulated: crustal thickness variations along axis, gravity anomalies (reflecting density variations) and earthquake maximum depth (corresponding to the 750° C isotherm depth). The thermal structure of a particular segment is constrained by comparing the simulated quantities to the real ones. Considering realistic magnetization parameters, the magnetic anomalies generated from the same thermal structure and evolution reproduce the observed magnetic anomaly amplitude variations along the segment. The thermal structures accounting for observations are determined for each kind of segment (from "colder" to "hotter"). The evolution of the thermal structure from the "colder" to

  5. Measuring the success of video segmentation algorithms

    NASA Astrophysics Data System (ADS)

    Power, Gregory J.

    2001-12-01

    Appropriate segmentation of video is a key step for applications such as video surveillance, video composing, video compression, storage and retrieval, and automated target recognition. Video segmentation algorithms involve dissecting the video into scenes based on shot boundaries as well as local objects and events based on spatial shape and regional motions. Many algorithmic approaches to video segmentation have been recently reported, but many lack measures to quantify the success of the segmentation especially in comparison to other algorithms. This paper suggests multiple bench-top measures for evaluating video segmentation. The paper suggests that the measures are most useful when 'truth' data about the video is available such as precise frame-by- frame object shape. When precise 'truth' data is unavailable, this paper suggests using hand-segmented 'truth' data to measure the success of the video segmentation. Thereby, the ability of the video segmentation algorithm to achieve the same quality of segmentation as the human is obtained in the form of a variance in multiple measures. The paper introduces a suite of measures, each scaled from zero to one. A score of one on a particular measure is a perfect score for a singular segmentation measure. Measures are introduced to evaluate the ability of a segmentation algorithm to correctly detect shot boundaries, to correctly determine spatial shape and to correctly determine temporal shape. The usefulness of the measures are demonstrated on a simple segmenter designed to detect and segment a ping pong ball from a table tennis image sequence.

  6. A shape prior-based MRF model for 3D masseter muscle segmentation

    NASA Astrophysics Data System (ADS)

    Majeed, Tahir; Fundana, Ketut; Lüthi, Marcel; Beinemann, Jörg; Cattin, Philippe

    2012-02-01

    Medical image segmentation is generally an ill-posed problem that can only be solved by incorporating prior knowledge. The ambiguities arise due to the presence of noise, weak edges, imaging artifacts, inhomogeneous interior and adjacent anatomical structures having similar intensity profile as the target structure. In this paper we propose a novel approach to segment the masseter muscle using the graph-cut incorporating additional 3D shape priors in CT datasets, which is robust to noise; artifacts; and shape deformations. The main contribution of this paper is in translating the 3D shape knowledge into both unary and pairwise potentials of the Markov Random Field (MRF). The segmentation task is casted as a Maximum-A-Posteriori (MAP) estimation of the MRF. Graph-cut is then used to obtain the global minimum which results in the segmentation of the masseter muscle. The method is tested on 21 CT datasets of the masseter muscle, which are noisy with almost all possessing mild to severe imaging artifacts such as high-density artifacts caused by e.g. the very common dental fillings and dental implants. We show that the proposed technique produces clinically acceptable results to the challenging problem of muscle segmentation, and further provide a quantitative and qualitative comparison with other methods. We statistically show that adding additional shape prior into both unary and pairwise potentials can increase the robustness of the proposed method in noisy datasets.

  7. Improved Segmentation of Multiple Cavities of the Heart in Wide-View 3-D Transesophageal Echocardiograms.

    PubMed

    Haak, Alexander; Ren, Ben; Mulder, Harriët W; Vegas-Sánchez-Ferrero, Gonzalo; van Burken, Gerard; van der Steen, Antonius F W; van Stralen, Marijn; Pluim, Josien P W; van Walsum, Theo; Bosch, Johannes G

    2015-07-01

    Minimally invasive interventions in the heart such as in electrophysiology are becoming more and more important in clinical practice. Currently, preoperative computed tomography angiography (CTA) is used to provide anatomic information during electrophysiology interventions, but this does not provide real-time feedback and burdens the patient with additional radiation and side effects of the contrast agent. Three-dimensional transesophageal echocardiography (TEE) is an excellent modality for visualization of anatomic structures and instruments in real time, but some cavities, especially the left atrium, suffer from the limited coverage of the 3-D TEE volumes. This leads to difficulty in segmenting the left atrium. We propose replacing or complementing pre-operative CTA imaging with wide-view TEE. We tested this proposal on 20 patients for which TEE image volumes covering the left atrium and CTA images were acquired. The TEE images were manually registered, and wide-view volumes were generated. Five heart cavities in single-view and wide-view TEE were segmented and compared with atlas based-segmentations derived from the CTA images. We found that the segmentation accuracy (Dice coefficients) improved relative to segmentation of single-view images by 5, 15 and 9 percentage points for the left atrium, right atrium and aorta, respectively. Average anatomic coverage was improved by 2, 29, 62 and 49 percentage points for the right ventricle, left atrium, right atrium and aorta, respectively. This finding confirms that wide-view 3-D TEE can be useful in supporting electrophysiology interventions.

  8. 3D+t brain MRI segmentation using robust 4D Hidden Markov Chain.

    PubMed

    Lavigne, François; Collet, Christophe; Armspach, Jean-Paul

    2014-01-01

    In recent years many automatic methods have been developed to help physicians diagnose brain disorders, but the problem remains complex. In this paper we propose a method to segment brain structures on two 3D multi-modal MR images taken at different times (longitudinal acquisition). A bias field correction is performed with an adaptation of the Hidden Markov Chain (HMC) allowing us to take into account the temporal correlation in addition to spatial neighbourhood information. To improve the robustness of the segmentation of the principal brain structures and to detect Multiple Sclerosis Lesions as outliers the Trimmed Likelihood Estimator (TLE) is used during the process. The method is validated on 3D+t brain MR images. PMID:25571045

  9. Three dimensional template matching segmentation method for motile cells in 3D+t video sequences.

    PubMed

    Pimentel, J A; Corkidi, G

    2010-01-01

    In this work, we describe a segmentation cell method oriented to deal with experimental data obtained from 3D+t microscopical volumes. The proposed segmentation technique takes advantage of the pattern of appearances exhibited by the objects (cells) from different focal planes, as a result of the object translucent properties and its interaction with light. This information allows us to discriminate between cells and artifacts (dust an other) with equivalent size and shape that are present in the biological preparation. Using a simple correlation criteria, the method matches a 3D video template (extracted from a sample of cells) with the motile cells contained into the biological sample, obtaining a high rate of true positives while discarding artifacts. In this work, our analysis is focused on sea urchin spermatozoa cells but is applicable to many other microscopical structures having the same optical properties. PMID:21096252

  10. Development of an automated 3D segmentation program for volume quantification of body fat distribution using CT.

    PubMed

    Ohshima, Shunsuke; Yamamoto, Shuji; Yamaji, Taiki; Suzuki, Masahiro; Mutoh, Michihiro; Iwasaki, Motoki; Sasazuki, Shizuka; Kotera, Ken; Tsugane, Shoichiro; Muramatsu, Yukio; Moriyama, Noriyuki

    2008-09-20

    The objective of this study was to develop a computing tool for full-automatic segmentation of body fat distributions on volumetric CT images. We developed an algorithm to automatically identify the body perimeter and the inner contour that separates visceral fat from subcutaneous fat. Diaphragmatic surfaces can be extracted by model-based segmentation to match the bottom surface of the lung in CT images for determination of the upper limitation of the abdomen. The functions for quantitative evaluation of abdominal obesity or obesity-related metabolic syndrome were implemented with a prototype three-dimensional (3D) image processing workstation. The volumetric ratios of visceral fat to total fat and visceral fat to subcutaneous fat for each subject can be calculated. Additionally, color intensity mapping of subcutaneous areas and the visceral fat layer is quite obvious in understanding the risk of abdominal obesity with the 3D surface display. Preliminary results obtained have been useful in medical checkups and have contributed to improved efficiency in checking obesity throughout the whole range of the abdomen with 3D visualization and analysis.

  11. Biview learning for human posture segmentation from 3D points cloud.

    PubMed

    Qiao, Maoying; Cheng, Jun; Bian, Wei; Tao, Dacheng

    2014-01-01

    Posture segmentation plays an essential role in human motion analysis. The state-of-the-art method extracts sufficiently high-dimensional features from 3D depth images for each 3D point and learns an efficient body part classifier. However, high-dimensional features are memory-consuming and difficult to handle on large-scale training dataset. In this paper, we propose an efficient two-stage dimension reduction scheme, termed biview learning, to encode two independent views which are depth-difference features (DDF) and relative position features (RPF). Biview learning explores the complementary property of DDF and RPF, and uses two stages to learn a compact yet comprehensive low-dimensional feature space for posture segmentation. In the first stage, discriminative locality alignment (DLA) is applied to the high-dimensional DDF to learn a discriminative low-dimensional representation. In the second stage, canonical correlation analysis (CCA) is used to explore the complementary property of RPF and the dimensionality reduced DDF. Finally, we train a support vector machine (SVM) over the output of CCA. We carefully validate the effectiveness of DLA and CCA utilized in the two-stage scheme on our 3D human points cloud dataset. Experimental results show that the proposed biview learning scheme significantly outperforms the state-of-the-art method for human posture segmentation.

  12. Intuitive terrain reconstruction using height observation-based ground segmentation and 3D object boundary estimation.

    PubMed

    Song, Wei; Cho, Kyungeun; Um, Kyhyun; Won, Chee Sun; Sim, Sungdae

    2012-01-01

    Mobile robot operators must make rapid decisions based on information about the robot's surrounding environment. This means that terrain modeling and photorealistic visualization are required for the remote operation of mobile robots. We have produced a voxel map and textured mesh from the 2D and 3D datasets collected by a robot's array of sensors, but some upper parts of objects are beyond the sensors' measurements and these parts are missing in the terrain reconstruction result. This result is an incomplete terrain model. To solve this problem, we present a new ground segmentation method to detect non-ground data in the reconstructed voxel map. Our method uses height histograms to estimate the ground height range, and a Gibbs-Markov random field model to refine the segmentation results. To reconstruct a complete terrain model of the 3D environment, we develop a 3D boundary estimation method for non-ground objects. We apply a boundary detection technique to the 2D image, before estimating and refining the actual height values of the non-ground vertices in the reconstructed textured mesh. Our proposed methods were tested in an outdoor environment in which trees and buildings were not completely sensed. Our results show that the time required for ground segmentation is faster than that for data sensing, which is necessary for a real-time approach. In addition, those parts of objects that were not sensed are accurately recovered to retrieve their real-world appearances. PMID:23235454

  13. Intuitive Terrain Reconstruction Using Height Observation-Based Ground Segmentation and 3D Object Boundary Estimation

    PubMed Central

    Song, Wei; Cho, Kyungeun; Um, Kyhyun; Won, Chee Sun; Sim, Sungdae

    2012-01-01

    Mobile robot operators must make rapid decisions based on information about the robot’s surrounding environment. This means that terrain modeling and photorealistic visualization are required for the remote operation of mobile robots. We have produced a voxel map and textured mesh from the 2D and 3D datasets collected by a robot’s array of sensors, but some upper parts of objects are beyond the sensors’ measurements and these parts are missing in the terrain reconstruction result. This result is an incomplete terrain model. To solve this problem, we present a new ground segmentation method to detect non-ground data in the reconstructed voxel map. Our method uses height histograms to estimate the ground height range, and a Gibbs-Markov random field model to refine the segmentation results. To reconstruct a complete terrain model of the 3D environment, we develop a 3D boundary estimation method for non-ground objects. We apply a boundary detection technique to the 2D image, before estimating and refining the actual height values of the non-ground vertices in the reconstructed textured mesh. Our proposed methods were tested in an outdoor environment in which trees and buildings were not completely sensed. Our results show that the time required for ground segmentation is faster than that for data sensing, which is necessary for a real-time approach. In addition, those parts of objects that were not sensed are accurately recovered to retrieve their real-world appearances. PMID:23235454

  14. Segmentation of 3D EBSD data for subgrain boundary identification and feature characterization.

    PubMed

    Loeb, Andrew; Ferry, Michael; Bassman, Lori

    2016-02-01

    Subgrain structures formed during plastic deformation of metals can be observed by electron backscatter diffraction (EBSD) but are challenging to identify automatically. We have adapted a 2D image segmentation technique, fast multiscale clustering (FMC), to 3D EBSD data using a novel variance function to accommodate quaternion data. This adaptation, which has been incorporated into the free open source texture analysis software package MTEX, is capable of segmenting based on subtle and gradual variation as well as on sharp boundaries within the data. FMC has been further modified to group the resulting closed 3D segment boundaries into distinct coherent surfaces based on local normals of a triangulated surface. We demonstrate the excellent capabilities of this technique with application to 3D EBSD data sets generated from cold rolled aluminum containing well-defined microbands, cold rolled and partly recrystallized extra low carbon steel microstructure containing three magnitudes of boundary misorientations, and channel-die plane strain compressed Goss-oriented nickel crystal containing microbands with very subtle changes in orientation. PMID:26630071

  15. Intuitive terrain reconstruction using height observation-based ground segmentation and 3D object boundary estimation.

    PubMed

    Song, Wei; Cho, Kyungeun; Um, Kyhyun; Won, Chee Sun; Sim, Sungdae

    2012-12-12

    Mobile robot operators must make rapid decisions based on information about the robot's surrounding environment. This means that terrain modeling and photorealistic visualization are required for the remote operation of mobile robots. We have produced a voxel map and textured mesh from the 2D and 3D datasets collected by a robot's array of sensors, but some upper parts of objects are beyond the sensors' measurements and these parts are missing in the terrain reconstruction result. This result is an incomplete terrain model. To solve this problem, we present a new ground segmentation method to detect non-ground data in the reconstructed voxel map. Our method uses height histograms to estimate the ground height range, and a Gibbs-Markov random field model to refine the segmentation results. To reconstruct a complete terrain model of the 3D environment, we develop a 3D boundary estimation method for non-ground objects. We apply a boundary detection technique to the 2D image, before estimating and refining the actual height values of the non-ground vertices in the reconstructed textured mesh. Our proposed methods were tested in an outdoor environment in which trees and buildings were not completely sensed. Our results show that the time required for ground segmentation is faster than that for data sensing, which is necessary for a real-time approach. In addition, those parts of objects that were not sensed are accurately recovered to retrieve their real-world appearances.

  16. A novel Hessian based algorithm for rat kidney glomerulus detection in 3D MRI

    NASA Astrophysics Data System (ADS)

    Zhang, Min; Wu, Teresa; Bennett, Kevin M.

    2015-03-01

    The glomeruli of the kidney perform the key role of blood filtration and the number of glomeruli in a kidney is correlated with susceptibility to chronic kidney disease and chronic cardiovascular disease. This motivates the development of new technology using magnetic resonance imaging (MRI) to measure the number of glomeruli and nephrons in vivo. However, there is currently a lack of computationally efficient techniques to perform fast, reliable and accurate counts of glomeruli in MR images due to the issues inherent in MRI, such as acquisition noise, partial volume effects (the mixture of several tissue signals in a voxel) and bias field (spatial intensity inhomogeneity). Such challenges are particularly severe because the glomeruli are very small, (in our case, a MRI image is ~16 million voxels, each glomerulus is in the size of 8~20 voxels), and the number of glomeruli is very large. To address this, we have developed an efficient Hessian based Difference of Gaussians (HDoG) detector to identify the glomeruli on 3D rat MR images. The image is first smoothed via DoG followed by the Hessian process to pre-segment and delineate the boundary of the glomerulus candidates. This then provides a basis to extract regional features used in an unsupervised clustering algorithm, completing segmentation by removing the false identifications occurred in the pre-segmentation. The experimental results show that Hessian based DoG has the potential to automatically detect glomeruli,from MRI in 3D, enabling new measurements of renal microstructure and pathology in preclinical and clinical studies.

  17. Accurate and automated image segmentation of 3D optical coherence tomography data suffering from low signal-to-noise levels.

    PubMed

    Su, Rong; Ekberg, Peter; Leitner, Michael; Mattsson, Lars

    2014-12-01

    Optical coherence tomography (OCT) has proven to be a useful tool for investigating internal structures in ceramic tapes, and the technique is expected to be important for roll-to-roll manufacturing. However, because of high scattering in ceramic materials, noise and speckles deteriorate the image quality, which makes automated quantitative measurements of internal interfaces difficult. To overcome this difficulty we present in this paper an innovative image analysis approach based on volumetric OCT data. The engine in the analysis is a 3D image processing and analysis algorithm. It is dedicated to boundary segmentation and dimensional measurement in volumetric OCT images, and offers high accuracy, efficiency, robustness, subpixel resolution, and a fully automated operation. The method relies on the correlation property of a physical interface and effectively eliminates pixels caused by noise and speckles. The remaining pixels being stored are the ones confirmed to be related to the target interfaces. Segmentation of tilted and curved internal interfaces separated by ∼10  μm in the Z direction is demonstrated. The algorithm also extracts full-field top-view intensity maps of the target interfaces for high-accuracy measurements in the X and Y directions. The methodology developed here may also be adopted in other similar 3D imaging and measurement technologies, e.g., ultrasound imaging, and for various materials. PMID:25606743

  18. 3D radiative transfer in colliding wind binaries: Application of the SimpleX algorithm to 3D SPH simulations

    NASA Astrophysics Data System (ADS)

    Madura, Thomas; Clementel, Nicola; Kruip, Chael; Icke, Vincent; Gull, Theodore

    2014-09-01

    We present the first results of full 3D radiative transfer simulations of the colliding stellar winds in a massive binary system. We accomplish this by applying the SIMPLEX algorithm for 3D radiative transfer on an unstructured Delaunay grid to recent 3D smoothed particle hydrodynamics (SPH) simulations of the colliding winds in the binary system η Carinae. We use SIMPLEX to obtain detailed ionization fractions of hydrogen and helium, in 3D, at the resolution of the original SPH simulations. We show how the SIMPLEX simulations can be used to generate synthetic spectral data cubes for comparison to data obtained with the Hubble Space Telescope (HST)/Space Telescope Imaging Spectrograph as part of a multi-cycle program to map changes in η Car's extended interacting wind structures across one binary cycle. Comparison of the HST observations to the SIMPLEX models can help lead to more accurate constraints on the orbital, stellar, and wind parameters of the η Car system, such as the primary's mass-loss rate and the companion's temperature and luminosity. While we initially focus specifically on the η Car binary, the numerical methods employed can be applied to numerous other colliding wind (WR140, WR137, WR19) and dusty 'pinwheel' (WR104, WR98a) binary systems. One of the biggest remaining mysteries is how dust can form and survive in such systems that contain a hot, luminous O star. Coupled with 3D hydrodynamical simulations, SIMPLEX simulations have the potential to help determine the regions where dust can form and survive in these unique objects.

  19. A method of 3D reconstruction from multiple views based on graph theoretic segmentation

    NASA Astrophysics Data System (ADS)

    Li, Yi; Hong, Hanyu; Zhang, Xiuhua; Bai, Haoyu

    2013-10-01

    During the process of three-dimensional vision inspection for products, the target objects under the complex background are usually immovable. So the desired three-dimensional reconstruction results can not be able to be obtained because of achieving the targets, which is difficult to be extracted from the images under the complicated and diverse background. Aiming at the problem, a method of three-dimensional reconstruction based on the graph theoretic segmentation and multiple views is proposed in this paper. Firstly, the target objects are segmented from obtained multi-view images by the method based on graph theoretic segmentation and the parameters of all cameras arranged in a linear way are gained by the method of Zhengyou Zhang calibration. Then, combined with Harris corner detection and Difference of Gaussian detection algorithm, the feature points of the images are detected. At last, after matching feature points by the triangle method, the surface of the object is reconstructed by the method of Poisson surface reconstruction. The reconstruction experimental results show that the proposed algorithm segments the target objects in the complex scene accurately and steadily. What's more, the algorithm based on the graph theoretic segmentation solves the problem of object extraction in the complex scene, and the static object surface is reconstructed precisely. The proposed algorithm also provides the crucial technology for the three-dimensional vision inspection and other practical applications.

  20. Vector algorithms for geometrically nonlinear 3D finite element analysis

    NASA Technical Reports Server (NTRS)

    Whitcomb, John D.

    1989-01-01

    Algorithms for geometrically nonlinear finite element analysis are presented which exploit the vector processing capability of the VPS-32, which is closely related to the CYBER 205. By manipulating vectors (which are long lists of numbers) rather than individual numbers, very high processing speeds are obtained. Long vector lengths are obtained without extensive replication or reordering by storage of intermediate results in strategic patterns at all stages of the computations. Comparisons of execution times with those from programs using either scalar or other vector programming techniques indicate that the algorithms presented are quite efficient.

  1. Weights and topology: a study of the effects of graph construction on 3D image segmentation.

    PubMed

    Grady, Leo; Jolly, Marie-Pierre

    2008-01-01

    Graph-based algorithms have become increasingly popular for medical image segmentation. The fundamental process for each of these algorithms is to use the image content to generate a set of weights for the graph and then set conditions for an optimal partition of the graph with respect to these weights. To date, the heuristics used for generating the weighted graphs from image intensities have largely been ignored, while the primary focus of attention has been on the details of providing the partitioning conditions. In this paper we empirically study the effects of graph connectivity and weighting function on the quality of the segmentation results. To control for algorithm-specific effects, we employ both the Graph Cuts and Random Walker algorithms in our experiments.

  2. Multivariate statistical analysis as a tool for the segmentation of 3D spectral data.

    PubMed

    Lucas, G; Burdet, P; Cantoni, M; Hébert, C

    2013-01-01

    Acquisition of three-dimensional (3D) spectral data is nowadays common using many different microanalytical techniques. In order to proceed to the 3D reconstruction, data processing is necessary not only to deal with noisy acquisitions but also to segment the data in term of chemical composition. In this article, we demonstrate the value of multivariate statistical analysis (MSA) methods for this purpose, allowing fast and reliable results. Using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) coupled with a focused ion beam (FIB), a stack of spectrum images have been acquired on a sample produced by laser welding of a nickel-titanium wire and a stainless steel wire presenting a complex microstructure. These data have been analyzed using principal component analysis (PCA) and factor rotations. PCA allows to significantly improve the overall quality of the data, but produces abstract components. Here it is shown that rotated components can be used without prior knowledge of the sample to help the interpretation of the data, obtaining quickly qualitative mappings representative of elements or compounds found in the material. Such abundance maps can then be used to plot scatter diagrams and interactively identify the different domains in presence by defining clusters of voxels having similar compositions. Identified voxels are advantageously overlaid on secondary electron (SE) images with higher resolution in order to refine the segmentation. The 3D reconstruction can then be performed using available commercial softwares on the basis of the provided segmentation. To asses the quality of the segmentation, the results have been compared to an EDX quantification performed on the same data. PMID:24035679

  3. Novel multiresolution mammographic density segmentation using pseudo 3D features and adaptive cluster merging

    NASA Astrophysics Data System (ADS)

    He, Wenda; Juette, Arne; Denton, Erica R. E.; Zwiggelaar, Reyer

    2015-03-01

    Breast cancer is the most frequently diagnosed cancer in women. Early detection, precise identification of women at risk, and application of appropriate disease prevention measures are by far the most effective ways to overcome the disease. Successful mammographic density segmentation is a key aspect in deriving correct tissue composition, ensuring an accurate mammographic risk assessment. However, mammographic densities have not yet been fully incorporated with non-image based risk prediction models, (e.g. the Gail and the Tyrer-Cuzick model), because of unreliable segmentation consistency and accuracy. This paper presents a novel multiresolution mammographic density segmentation, a concept of stack representation is proposed, and 3D texture features were extracted by adapting techniques based on classic 2D first-order statistics. An unsupervised clustering technique was employed to achieve mammographic segmentation, in which two improvements were made; 1) consistent segmentation by incorporating an optimal centroids initialisation step, and 2) significantly reduced the number of missegmentation by using an adaptive cluster merging technique. A set of full field digital mammograms was used in the evaluation. Visual assessment indicated substantial improvement on segmented anatomical structures and tissue specific areas, especially in low mammographic density categories. The developed method demonstrated an ability to improve the quality of mammographic segmentation via clustering, and results indicated an improvement of 26% in segmented image with good quality when compared with the standard clustering approach. This in turn can be found useful in early breast cancer detection, risk-stratified screening, and aiding radiologists in the process of decision making prior to surgery and/or treatment.

  4. A 3D neurovascular bundles segmentation method based on MR-TRUS deformable registration

    NASA Astrophysics Data System (ADS)

    Yang, Xiaofeng; Rossi, Peter; Jani, Ashesh B.; Mao, Hui; Ogunleye, Tomi; Curran, Walter J.; Liu, Tian

    2015-03-01

    In this paper, we propose a 3D neurovascular bundles (NVB) segmentation method for ultrasound (US) image by integrating MR and transrectal ultrasound (TRUS) images through MR-TRUS deformable registration. First, 3D NVB was contoured by a physician in MR images, and the 3D MRdefined NVB was then transformed into US images using a MR-TRUS registration method, which models the prostate tissue as an elastic material, and jointly estimates the boundary deformation and the volumetric deformations under the elastic constraint. This technique was validated with a clinical study of 6 patients undergoing radiation therapy (RT) treatment for prostate cancer. The accuracy of our approach was assessed through the locations of landmarks, as well as previous ultrasound Doppler images of patients. MR-TRUS registration was successfully performed for all patients. The mean displacement of the landmarks between the post-registration MR and TRUS images was less than 2 mm, and the average NVB volume Dice Overlap Coefficient was over 89%. This NVB segmentation technique could be a useful tool as we try to spare the NVB in prostate RT, monitor NVB response to RT, and potentially improve post-RT potency outcomes.

  5. 3D magnetic sources' framework estimation using Genetic Algorithm (GA)

    NASA Astrophysics Data System (ADS)

    Ponte-Neto, C. F.; Barbosa, V. C.

    2008-05-01

    We present a method for inverting total-field anomaly for determining simple 3D magnetic sources' framework such as: batholiths, dikes, sills, geological contacts, kimberlite and lamproite pipes. We use GA to obtain magnetic sources' frameworks and their magnetic features simultaneously. Specifically, we estimate the magnetization direction (inclination and declination) and the total dipole moment intensity, and the horizontal and vertical positions, in Cartesian coordinates , of a finite set of elementary magnetic dipoles. The spatial distribution of these magnetic dipoles composes the skeletal outlines of the geologic sources. We assume that the geologic sources have a homogeneous magnetization distribution and, thus all dipoles have the same magnetization direction and dipole moment intensity. To implement the GA, we use real-valued encoding with crossover, mutation, and elitism. To obtain a unique and stable solution, we set upper and lower bounds on declination and inclination of [0,360°] and [-90°, 90°], respectively. We also set the criterion of minimum scattering of the dipole-position coordinates, to guarantee that spatial distribution of the dipoles (defining the source skeleton) be as close as possible to continuous distribution. To this end, we fix the upper and lower bounds of the dipole moment intensity and we evaluate the dipole-position estimates. If the dipole scattering is greater than a value expected by the interpreter, the upper bound of the dipole moment intensity is reduced by 10 % of the latter. We repeat this procedure until the dipole scattering and the data fitting are acceptable. We apply our method to noise-corrupted magnetic data from simulated 3D magnetic sources with simple geometries and located at different depths. In tests simulating sources such as sphere and cube, all estimates of the dipole coordinates are agreeing with center of mass of these sources. To elongated-prismatic sources in an arbitrary direction, we estimate

  6. Preliminary results in large bone segmentation from 3D freehand ultrasound

    NASA Astrophysics Data System (ADS)

    Fanti, Zian; Torres, Fabian; Arámbula Cosío, Fernando

    2013-11-01

    Computer Assisted Orthopedic Surgery (CAOS) requires a correct registration between the patient in the operating room and the virtual models representing the patient in the computer. In order to increase the precision and accuracy of the registration a set of new techniques that eliminated the need to use fiducial markers have been developed. The majority of these newly developed registration systems are based on costly intraoperative imaging systems like Computed Tomography (CT scan) or Magnetic resonance imaging (MRI). An alternative to these methods is the use of an Ultrasound (US) imaging system for the implementation of a more cost efficient intraoperative registration solution. In order to develop the registration solution with the US imaging system, the bone surface is segmented in both preoperative and intraoperative images, and the registration is done using the acquire surface. In this paper, we present the a preliminary results of a new approach to segment bone surface from ultrasound volumes acquired by means 3D freehand ultrasound. The method is based on the enhancement of the voxels that belongs to surface and its posterior segmentation. The enhancement process is based on the information provided by eigenanalisis of the multiscale 3D Hessian matrix. The preliminary results shows that from the enhance volume the final bone surfaces can be extracted using a singular value thresholding.

  7. Atlas-registration based image segmentation of MRI human thigh muscles in 3D space

    NASA Astrophysics Data System (ADS)

    Ahmad, Ezak; Yap, Moi Hoon; Degens, Hans; McPhee, Jamie S.

    2014-03-01

    Automatic segmentation of anatomic structures of magnetic resonance thigh scans can be a challenging task due to the potential lack of precisely defined muscle boundaries and issues related to intensity inhomogeneity or bias field across an image. In this paper, we demonstrate a combination framework of atlas construction and image registration methods to propagate the desired region of interest (ROI) between atlas image and the targeted MRI thigh scans for quadriceps muscles, femur cortical layer and bone marrow segmentations. The proposed system employs a semi-automatic segmentation method on an initial image in one dataset (from a series of images). The segmented initial image is then used as an atlas image to automate the segmentation of other images in the MRI scans (3-D space). The processes include: ROI labeling, atlas construction and registration, and morphological transform correspondence pixels (in terms of feature and intensity value) between the atlas (template) image and the targeted image based on the prior atlas information and non-rigid image registration methods.

  8. A modular segmented-flow platform for 3D cell cultivation.

    PubMed

    Lemke, Karen; Förster, Tobias; Römer, Robert; Quade, Mandy; Wiedemeier, Stefan; Grodrian, Andreas; Gastrock, Gunter

    2015-07-10

    In vitro 3D cell cultivation is promised to equate tissue in vivo more realistically than 2D cell cultivation corresponding to cell-cell and cell-matrix interactions. Therefore, a scalable 3D cultivation platform was developed. This platform, called pipe-based bioreactors (pbb), is based on the segmented-flow technology: aqueous droplets are embedded in a water-immiscible carrier fluid. The droplet volumes range from 60 nL to 20 μL and are used as bioreactors lined up in a tubing like pearls on a string. The modular automated platform basically consists of several modules like a fluid management for a high throughput droplet generation for self-assembly or scaffold-based 3D cell cultivation, a storage module for incubation and storage, and an analysis module for monitoring cell aggregation and proliferation basing on microscopy or photometry. In this report, the self-assembly of murine embryonic stem cells (mESCs) to uniformly sized embryoid bodies (EBs), the cell proliferation, the cell viability as well as the influence on the cell differentiation to cardiomyocytes are described. The integration of a dosage module for medium exchange or agent addition will enable pbb as long-term 3D cell cultivation system for studying stem cell differentiation, e.g. cardiac myogenesis or for diagnostic and therapeutic testing in personalized medicine.

  9. Comparative study of diverse model building strategies for 3D-ASM segmentation of dynamic gated SPECT data

    NASA Astrophysics Data System (ADS)

    Tobon-Gomez, C.; Butakoff, C.; Ordas, S.; Aguade, S.; Frangi, A. F.

    2007-03-01

    Over the course of the last two decades, myocardial perfusion with Single Photon Emission Computed Tomography (SPECT) has emerged as an established and well-validated method for assessing myocardial ischemia, viability, and function. Gated-SPECT imaging integrates traditional perfusion information along with global left ventricular function. Despite of these advantages, inherent limitations of SPECT imaging yield a challenging segmentation problem, since an error of only one voxel along the chamber surface may generate a huge difference in volume calculation. In previous works we implemented a 3-D statistical model-based algorithm for Left Ventricle (LV) segmentation of in dynamic perfusion SPECT studies. The present work evaluates the relevance of training a different Active Shape Model (ASM) for each frame of the gated SPECT imaging acquisition in terms of their subsequent segmentation accuracy. Models are subsequently employed to segment the LV cavity of gated SPECT studies of a virtual population. The evaluation is accomplished by comparing point-to-surface (P2S) and volume errors, both against a proper Gold Standard. The dataset comprised 40 voxel phantoms (NCAT, Johns Hopkins, University of of North Carolina). Monte-Carlo simulations were generated with SIMIND (Lund University) and reconstructed to tomographic slices with ASPIRE (University of Michigan).

  10. Fully automated prostate segmentation in 3D MR based on normalized gradient fields cross-correlation initialization and LOGISMOS refinement

    NASA Astrophysics Data System (ADS)

    Yin, Yin; Fotin, Sergei V.; Periaswamy, Senthil; Kunz, Justin; Haldankar, Hrishikesh; Muradyan, Naira; Cornud, François; Turkbey, Baris; Choyke, Peter

    2012-02-01

    Manual delineation of the prostate is a challenging task for a clinician due to its complex and irregular shape. Furthermore, the need for precisely targeting the prostate boundary continues to grow. Planning for radiation therapy, MR-ultrasound fusion for image-guided biopsy, multi-parametric MRI tissue characterization, and context-based organ retrieval are examples where accurate prostate delineation can play a critical role in a successful patient outcome. Therefore, a robust automated full prostate segmentation system is desired. In this paper, we present an automated prostate segmentation system for 3D MR images. In this system, the prostate is segmented in two steps: the prostate displacement and size are first detected, and then the boundary is refined by a shape model. The detection approach is based on normalized gradient fields cross-correlation. This approach is fast, robust to intensity variation and provides good accuracy to initialize a prostate mean shape model. The refinement model is based on a graph-search based framework, which contains both shape and topology information during deformation. We generated the graph cost using trained classifiers and used coarse-to-fine search and region-specific classifier training. The proposed algorithm was developed using 261 training images and tested on another 290 cases. The segmentation performance using mean DSC ranging from 0.89 to 0.91 depending on the evaluation subset demonstrates state of the art performance. Running time for the system is about 20 to 40 seconds depending on image size and resolution.

  11. Algorithm of pulmonary emphysema extraction using thoracic 3D CT images

    NASA Astrophysics Data System (ADS)

    Saita, Shinsuke; Kubo, Mitsuru; Kawata, Yoshiki; Niki, Noboru; Nakano, Yasutaka; Ohmatsu, Hironobu; Tominaga, Keigo; Eguchi, Kenji; Moriyama, Noriyuki

    2007-03-01

    Recently, due to aging and smoking, emphysema patients are increasing. The restoration of alveolus which was destroyed by emphysema is not possible, thus early detection of emphysema is desired. We describe a quantitative algorithm for extracting emphysematous lesions and quantitatively evaluate their distribution patterns using low dose thoracic 3-D CT images. The algorithm identified lung anatomies, and extracted low attenuation area (LAA) as emphysematous lesion candidates. Applying the algorithm to thoracic 3-D CT images and then by follow-up 3-D CT images, we demonstrate its potential effectiveness to assist radiologists and physicians to quantitatively evaluate the emphysematous lesions distribution and their evolution in time interval changes.

  12. 3-D segmentation and quantitative analysis of inner and outer walls of thrombotic abdominal aortic aneurysms

    NASA Astrophysics Data System (ADS)

    Lee, Kyungmoo; Yin, Yin; Wahle, Andreas; Olszewski, Mark E.; Sonka, Milan

    2008-03-01

    An abdominal aortic aneurysm (AAA) is an area of a localized widening of the abdominal aorta, with a frequent presence of thrombus. A ruptured aneurysm can cause death due to severe internal bleeding. AAA thrombus segmentation and quantitative analysis are of paramount importance for diagnosis, risk assessment, and determination of treatment options. Until now, only a small number of methods for thrombus segmentation and analysis have been presented in the literature, either requiring substantial user interaction or exhibiting insufficient performance. We report a novel method offering minimal user interaction and high accuracy. Our thrombus segmentation method is composed of an initial automated luminal surface segmentation, followed by a cost function-based optimal segmentation of the inner and outer surfaces of the aortic wall. The approach utilizes the power and flexibility of the optimal triangle mesh-based 3-D graph search method, in which cost functions for thrombus inner and outer surfaces are based on gradient magnitudes. Sometimes local failures caused by image ambiguity occur, in which case several control points are used to guide the computer segmentation without the need to trace borders manually. Our method was tested in 9 MDCT image datasets (951 image slices). With the exception of a case in which the thrombus was highly eccentric, visually acceptable aortic lumen and thrombus segmentation results were achieved. No user interaction was used in 3 out of 8 datasets, and 7.80 +/- 2.71 mouse clicks per case / 0.083 +/- 0.035 mouse clicks per image slice were required in the remaining 5 datasets.

  13. A 3-D Computational Study of a Variable Camber Continuous Trailing Edge Flap (VCCTEF) Spanwise Segment

    NASA Technical Reports Server (NTRS)

    Kaul, Upender K.; Nguyen, Nhan T.

    2015-01-01

    Results of a computational study carried out to explore the effects of various elastomer configurations joining spanwise contiguous Variable Camber Continuous Trailing Edge Flap (VCCTEF) segments are reported here. This research is carried out as a proof-of-concept study that will seek to push the flight envelope in cruise with drag optimization as the objective. The cruise conditions can be well off design such as caused by environmental conditions, maneuvering, etc. To handle these off-design conditions, flap deflection is used so when the flap is deflected in a given direction, the aircraft angle of attack changes accordingly to maintain a given lift. The angle of attack is also a design parameter along with the flap deflection. In a previous 2D study,1 the effect of camber was investigated and the results revealed some insight into the relative merit of various camber settings of the VCCTEF. The present state of the art has not advanced sufficiently to do a full 3-D viscous analysis of the whole NASA Generic Transport Model (GTM) wing with VCCTEF deployed with elastomers. Therefore, this study seeks to explore the local effects of three contiguous flap segments on lift and drag of a model devised here to determine possible trades among various flap deflections to achieve desired lift and drag results. Although this approach is an approximation, it provides new insights into the "local" effects of the relative deflections of the contiguous spanwise flap systems and various elastomer segment configurations. The present study is a natural extension of the 2-D study to assess these local 3-D effects. Design cruise condition at 36,000 feet at free stream Mach number of 0.797 and a mean aerodynamic chord (MAC) based Reynolds number of 30.734x10(exp 6) is simulated for an angle of attack (AoA) range of 0 to 6 deg. In the previous 2-D study, the calculations revealed that the parabolic arc camber (1x2x3) and circular arc camber (VCCTEF222) offered the best L

  14. Simulation Environment for the Evaluation of 3D Coronary Tree Reconstruction Algorithms in Rotational Angiography

    PubMed Central

    Yang, Guanyu; Bousse, Alexandre; Toumoulin, Christine; Shu, Huazhong

    2007-01-01

    We present a preliminary version of a simulation environment to evaluate the 3D reconstruction algorithms of the coronary arteries in rotational angiography. It includes the construction of a 3D dynamic model of the coronary tree from patient data, the modeling of the rotational angiography acquisition system to simulate different acquisition and gating strategies and the calculation of radiographic projections of the 3D model of coronary tree throughout several cardiac cycles. PMID:18003001

  15. Volume analysis of treatment response of head and neck lesions using 3D level set segmentation

    NASA Astrophysics Data System (ADS)

    Hadjiiski, Lubomir; Street, Ethan; Sahiner, Berkman; Gujar, Sachin; Ibrahim, Mohannad; Chan, Heang-Ping; Mukherji, Suresh K.

    2008-03-01

    A computerized system for segmenting lesions in head and neck CT scans was developed to assist radiologists in estimation of the response to treatment of malignant lesions. The system performs 3D segmentations based on a level set model and uses as input an approximate bounding box for the lesion of interest. In this preliminary study, CT scans from a pre-treatment exam and a post one-cycle chemotherapy exam of 13 patients containing head and neck neoplasms were used. A radiologist marked 35 temporal pairs of lesions. 13 pairs were primary site cancers and 22 pairs were metastatic lymph nodes. For all lesions, a radiologist outlined a contour on the best slice on both the pre- and post treatment scans. For the 13 primary lesion pairs, full 3D contours were also extracted by a radiologist. The average pre- and post-treatment areas on the best slices for all lesions were 4.5 and 2.1 cm2, respectively. For the 13 primary site pairs the average pre- and post-treatment primary lesions volumes were 15.4 and 6.7 cm 3 respectively. The correlation between the automatic and manual estimates for the pre-to-post-treatment change in area for all 35 pairs was r=0.97, while the correlation for the percent change in area was r=0.80. The correlation for the change in volume for the 13 primary site pairs was r=0.89, while the correlation for the percent change in volume was r=0.79. The average signed percent error between the automatic and manual areas for all 70 lesions was 11.0+/-20.6%. The average signed percent error between the automatic and manual volumes for all 26 primary lesions was 37.8+/-42.1%. The preliminary results indicate that the automated segmentation system can reliably estimate tumor size change in response to treatment relative to radiologist's hand segmentation.

  16. Visualising, segmenting and analysing heterogenous glacigenic sediments using 3D x-ray CT.

    NASA Astrophysics Data System (ADS)

    Carr, Simon; Diggens, Lucy; Groves, John; O'Sullivan, Catherine; Marsland, Rhona

    2015-04-01

    , especially with regard to using such data to improve understanding of mechanisms of particle motion and fabric development during subglacial strain. In this study, we present detailed investigation of subglacial tills from the UK, Iceland and Poland, to explore the challenges in segmenting these highly variable sediment bodies for 3D microfabric analysis. A calibration study is reported to compare various approaches to CT data segmentation to manually segmented datasets, from which an optimal workflow is developed, using a combination of the WEKA Trainable Segmentation tool within ImageJ to segment the data, followed by object-based analysis using Blob3D. We then demonstrate the value of this analysis through the analysis of true 3D microfabric data from a Last Glacial Maximum till deposit located at Morston, North Norfolk. Seven undisturbed sediment samples were scanned and analysed using high-resolution 3D X-ray computed tomography. Large (~5,000 to ~16,000) populations of individual particles are objectively and systematically segmented and identified. These large datasets are then subject to detailed interrogation using bespoke code for analysing particle fabric within Matlab, including the application of fabric-tensor analysis, by which fabrics can be weighted and scaled by key variables such as size and shape. We will present initial findings from these datasets, focusing particularly on overcoming the methodological challenges of obtaining robust datasets of sediments with highly complex, mixed compositional sediments.

  17. Level set algorithms comparison for multi-slice CT left ventricle segmentation

    NASA Astrophysics Data System (ADS)

    Medina, Ruben; La Cruz, Alexandra; Ordoñes, Andrés.; Pesántez, Daniel; Morocho, Villie; Vanegas, Pablo

    2015-12-01

    The comparison of several Level Set algorithms is performed with respect to 2D left ventricle segmentation in Multi-Slice CT images. Five algorithms are compared by calculating the Dice coefficient between the resulting segmentation contour and a reference contour traced by a cardiologist. The algorithms are also tested on images contaminated with Gaussian noise for several values of PSNR. Additionally an algorithm for providing the initialization shape is proposed. This algorithm is based on a combination of mathematical morphology tools with watershed and region growing algorithms. Results on the set of test images are promising and suggest the extension to 3{D MSCT database segmentation.

  18. A 3D Cloud-Construction Algorithm for the EarthCARE Satellite Mission

    NASA Technical Reports Server (NTRS)

    Barker, H. W.; Jerg, M. P.; Wehr, T.; Kato, S.; Donovan, D. P.; Hogan, R. J.

    2011-01-01

    This article presents and assesses an algorithm that constructs 3D distributions of cloud from passive satellite imagery and collocated 2D nadir profiles of cloud properties inferred synergistically from lidar, cloud radar and imager data.

  19. Surface modeling and segmentation of the 3D airway wall in MSCT

    NASA Astrophysics Data System (ADS)

    Ortner, Margarete; Fetita, Catalin; Brillet, Pierre-Yves; Pr"teux, Françoise; Grenier, Philippe

    2011-03-01

    Airway wall remodeling in asthma and chronic obstructive pulmonary disease (COPD) is a well-known indicator of the pathology. In this context, current clinical studies aim for establishing the relationship between the airway morphological structure and its function. Multislice computed tomography (MSCT) allows morphometric assessment of airways, but requires dedicated segmentation tools for clinical exploitation. While most of the existing tools are limited to cross-section measurements, this paper develops a fully 3D approach for airway wall segmentation. Such approach relies on a deformable model which is built up as a patient-specific surface model at the level of the airway lumen and deformed to reach the outer surface of the airway wall. The deformation dynamics obey a force equilibrium in a Lagrangian framework constrained by a vector field which avoids model self-intersections. The segmentation result allows a dense quantitative investigation of the airway wall thickness with a deeper insight at bronchus subdivisions than classic cross-section methods. The developed approach has been assessed both by visual inspection of 2D cross-sections, performed by two experienced radiologists on clinical data obtained with various protocols, and by using a simulated ground truth (pulmonary CT image model). The results confirmed a robust segmentation in intra-pulmonary regions with an error in the range of the MSCT image resolution and underlined the interest of the volumetric approach versus purely 2D methods.

  20. Partial volume segmentation in 3D of lesions and tissues in magnetic resonance images

    NASA Astrophysics Data System (ADS)

    Johnston, Brian; Atkins, M. Stella; Booth, Kellogg S.

    1994-05-01

    An important first step in diagnosis and treatment planning using tomographic imaging is differentiating and quantifying diseased as well as healthy tissue. One of the difficulties encountered in solving this problem to date has been distinguishing the partial volume constituents of each voxel in the image volume. Most proposed solutions to this problem involve analysis of planar images, in sequence, in two dimensions only. We have extended a model-based method of image segmentation which applies the technique of iterated conditional modes in three dimensions. A minimum of user intervention is required to train the algorithm. Partial volume estimates for each voxel in the image are obtained yielding fractional compositions of multiple tissue types for individual voxels. A multispectral approach is applied, where spatially registered data sets are available. The algorithm is simple and has been parallelized using a dataflow programming environment to reduce the computational burden. The algorithm has been used to segment dual echo MRI data sets of multiple sclerosis patients using lesions, gray matter, white matter, and cerebrospinal fluid as the partial volume constituents. The results of the application of the algorithm to these datasets is presented and compared to the manual lesion segmentation of the same data.

  1. TU-F-BRF-06: 3D Pancreas MRI Segmentation Using Dictionary Learning and Manifold Clustering

    SciTech Connect

    Gou, S; Rapacchi, S; Hu, P; Sheng, K

    2014-06-15

    Purpose: The recent advent of MRI guided radiotherapy machines has lent an exciting platform for soft tissue target localization during treatment. However, tools to efficiently utilize MRI images for such purpose have not been developed. Specifically, to efficiently quantify the organ motion, we develop an automated segmentation method using dictionary learning and manifold clustering (DLMC). Methods: Fast 3D HASTE and VIBE MR images of 2 healthy volunteers and 3 patients were acquired. A bounding box was defined to include pancreas and surrounding normal organs including the liver, duodenum and stomach. The first slice of the MRI was used for dictionary learning based on mean-shift clustering and K-SVD sparse representation. Subsequent images were iteratively reconstructed until the error is less than a preset threshold. The preliminarily segmentation was subject to the constraints of manifold clustering. The segmentation results were compared with the mean shift merging (MSM), level set (LS) and manual segmentation methods. Results: DLMC resulted in consistently higher accuracy and robustness than comparing methods. Using manual contours as the ground truth, the mean Dices indices for all subjects are 0.54, 0.56 and 0.67 for MSM, LS and DLMC, respectively based on the HASTE image. The mean Dices indices are 0.70, 0.77 and 0.79 for the three methods based on VIBE images. DLMC is clearly more robust on the patients with the diseased pancreas while LS and MSM tend to over-segment the pancreas. DLMC also achieved higher sensitivity (0.80) and specificity (0.99) combining both imaging techniques. LS achieved equivalent sensitivity on VIBE images but was more computationally inefficient. Conclusion: We showed that pancreas and surrounding normal organs can be reliably segmented based on fast MRI using DLMC. This method will facilitate both planning volume definition and imaging guidance during treatment.

  2. 3D robust Chan-Vese model for industrial computed tomography volume data segmentation

    NASA Astrophysics Data System (ADS)

    Liu, Linghui; Zeng, Li; Luan, Xiao

    2013-11-01

    Industrial computed tomography (CT) has been widely applied in many areas of non-destructive testing (NDT) and non-destructive evaluation (NDE). In practice, CT volume data to be dealt with may be corrupted by noise. This paper addresses the segmentation of noisy industrial CT volume data. Motivated by the research on the Chan-Vese (CV) model, we present a region-based active contour model that draws upon intensity information in local regions with a controllable scale. In the presence of noise, a local energy is firstly defined according to the intensity difference within a local neighborhood. Then a global energy is defined to integrate local energy with respect to all image points. In a level set formulation, this energy is represented by a variational level set function, where a surface evolution equation is derived for energy minimization. Comparative analysis with the CV model indicates the comparable performance of the 3D robust Chan-Vese (RCV) model. The quantitative evaluation also shows the segmentation accuracy of 3D RCV. In addition, the efficiency of our approach is validated under several types of noise, such as Poisson noise, Gaussian noise, salt-and-pepper noise and speckle noise.

  3. 3D liver segmentation using multiple region appearances and graph cuts

    SciTech Connect

    Peng, Jialin Zhang, Hongbo; Hu, Peijun; Lu, Fang; Kong, Dexing; Peng, Zhiyi

    2015-12-15

    Purpose: Efficient and accurate 3D liver segmentations from contrast-enhanced computed tomography (CT) images play an important role in therapeutic strategies for hepatic diseases. However, inhomogeneous appearances, ambiguous boundaries, and large variance in shape often make it a challenging task. The existence of liver abnormalities poses further difficulty. Despite the significant intensity difference, liver tumors should be segmented as part of the liver. This study aims to address these challenges, especially when the target livers contain subregions with distinct appearances. Methods: The authors propose a novel multiregion-appearance based approach with graph cuts to delineate the liver surface. For livers with multiple subregions, a geodesic distance based appearance selection scheme is introduced to utilize proper appearance constraint for each subregion. A special case of the proposed method, which uses only one appearance constraint to segment the liver, is also presented. The segmentation process is modeled with energy functions incorporating both boundary and region information. Rather than a simple fixed combination, an adaptive balancing weight is introduced and learned from training sets. The proposed method only calls initialization inside the liver surface. No additional constraints from user interaction are utilized. Results: The proposed method was validated on 50 3D CT images from three datasets, i.e., Medical Image Computing and Computer Assisted Intervention (MICCAI) training and testing set, and local dataset. On MICCAI testing set, the proposed method achieved a total score of 83.4 ± 3.1, outperforming nonexpert manual segmentation (average score of 75.0). When applying their method to MICCAI training set and local dataset, it yielded a mean Dice similarity coefficient (DSC) of 97.7% ± 0.5% and 97.5% ± 0.4%, respectively. These results demonstrated the accuracy of the method when applied to different computed tomography (CT) datasets

  4. A model-based 3D phase unwrapping algorithm using Gegenbauer polynomials.

    PubMed

    Langley, Jason; Zhao, Qun

    2009-09-01

    The application of a two-dimensional (2D) phase unwrapping algorithm to a three-dimensional (3D) phase map may result in an unwrapped phase map that is discontinuous in the direction normal to the unwrapped plane. This work investigates the problem of phase unwrapping for 3D phase maps. The phase map is modeled as a product of three one-dimensional Gegenbauer polynomials. The orthogonality of Gegenbauer polynomials and their derivatives on the interval [-1, 1] are exploited to calculate the expansion coefficients. The algorithm was implemented using two well-known Gegenbauer polynomials: Chebyshev polynomials of the first kind and Legendre polynomials. Both implementations of the phase unwrapping algorithm were tested on 3D datasets acquired from a magnetic resonance imaging (MRI) scanner. The first dataset was acquired from a homogeneous spherical phantom. The second dataset was acquired using the same spherical phantom but magnetic field inhomogeneities were introduced by an external coil placed adjacent to the phantom, which provided an additional burden to the phase unwrapping algorithm. Then Gaussian noise was added to generate a low signal-to-noise ratio dataset. The third dataset was acquired from the brain of a human volunteer. The results showed that Chebyshev implementation and the Legendre implementation of the phase unwrapping algorithm give similar results on the 3D datasets. Both implementations of the phase unwrapping algorithm compare well to PRELUDE 3D, 3D phase unwrapping software well recognized for functional MRI. PMID:19671967

  5. A model-based 3D phase unwrapping algorithm using Gegenbauer polynomials

    NASA Astrophysics Data System (ADS)

    Langley, Jason; Zhao, Qun

    2009-09-01

    The application of a two-dimensional (2D) phase unwrapping algorithm to a three-dimensional (3D) phase map may result in an unwrapped phase map that is discontinuous in the direction normal to the unwrapped plane. This work investigates the problem of phase unwrapping for 3D phase maps. The phase map is modeled as a product of three one-dimensional Gegenbauer polynomials. The orthogonality of Gegenbauer polynomials and their derivatives on the interval [-1, 1] are exploited to calculate the expansion coefficients. The algorithm was implemented using two well-known Gegenbauer polynomials: Chebyshev polynomials of the first kind and Legendre polynomials. Both implementations of the phase unwrapping algorithm were tested on 3D datasets acquired from a magnetic resonance imaging (MRI) scanner. The first dataset was acquired from a homogeneous spherical phantom. The second dataset was acquired using the same spherical phantom but magnetic field inhomogeneities were introduced by an external coil placed adjacent to the phantom, which provided an additional burden to the phase unwrapping algorithm. Then Gaussian noise was added to generate a low signal-to-noise ratio dataset. The third dataset was acquired from the brain of a human volunteer. The results showed that Chebyshev implementation and the Legendre implementation of the phase unwrapping algorithm give similar results on the 3D datasets. Both implementations of the phase unwrapping algorithm compare well to PRELUDE 3D, 3D phase unwrapping software well recognized for functional MRI.

  6. An algorithm for segmenting polarimetric SAR imagery

    NASA Astrophysics Data System (ADS)

    Geaga, Jorge V.

    2015-05-01

    We have developed an algorithm for segmenting fully polarimetric single look TerraSAR-X, multilook SIR-C and 7 band Landsat 5 imagery using neural nets. The algorithm uses a feedforward neural net with one hidden layer to segment different surface classes. The weights are refined through an iterative filtering process characteristic of a relaxation process. Features selected from studies of fully polarimetric complex single look TerraSAR-X data and multilook SIR-C data are used as input to the net. The seven bands from Landsat 5 data are used as input for the Landsat neural net. The Cloude-Pottier incoherent decomposition is used to investigate the physical basis of the polarimetric SAR data segmentation. The segmentation of a SIR-C ocean surface scene into four classes is presented. This segmentation algorithm could be a very useful tool for investigating complex polarimetric SAR phenomena.

  7. A segmentation algorithm for noisy images

    SciTech Connect

    Xu, Y.; Olman, V.; Uberbacher, E.C.

    1996-12-31

    This paper presents a 2-D image segmentation algorithm and addresses issues related to its performance on noisy images. The algorithm segments an image by first constructing a minimum spanning tree representation of the image and then partitioning the spanning tree into sub-trees representing different homogeneous regions. The spanning tree is partitioned in such a way that the sum of gray-level variations over all partitioned subtrees is minimized under the constraints that each subtree has at least a specified number of pixels and two adjacent subtrees have significantly different ``average`` gray-levels. Two types of noise, transmission errors and Gaussian additive noise. are considered and their effects on the segmentation algorithm are studied. Evaluation results have shown that the segmentation algorithm is robust in the presence of these two types of noise.

  8. Multi-atlas-based automatic 3D segmentation for prostate brachytherapy in transrectal ultrasound images

    NASA Astrophysics Data System (ADS)

    Nouranian, Saman; Mahdavi, S. Sara; Spadinger, Ingrid; Morris, William J.; Salcudean, S. E.; Abolmaesumi, P.

    2013-03-01

    One of the commonly used treatment methods for early-stage prostate cancer is brachytherapy. The standard of care for planning this procedure is segmentation of contours from transrectal ultrasound (TRUS) images, which closely follow the prostate boundary. This process is currently performed either manually or using semi-automatic techniques. This paper introduces a fully automatic segmentation algorithm which uses a priori knowledge of contours in a reference data set of TRUS volumes. A non-parametric deformable registration method is employed to transform the atlas prostate contours to a target image coordinates. All atlas images are sorted based on their registration results and the highest ranked registration results are selected for decision fusion. A Simultaneous Truth and Performance Level Estimation algorithm is utilized to fuse labels from registered atlases and produce a segmented target volume. In this experiment, 50 patient TRUS volumes are obtained and a leave-one-out study on TRUS volumes is reported. We also compare our results with a state-of-the-art semi-automatic prostate segmentation method that has been clinically used for planning prostate brachytherapy procedures and we show comparable accuracy and precision within clinically acceptable runtime.

  9. A multi-model approach to simultaneous segmentation and classification of heterogeneous populations of cell nuclei in 3D confocal microscope images.

    PubMed

    Lin, Gang; Chawla, Monica K; Olson, Kathy; Barnes, Carol A; Guzowski, John F; Bjornsson, Christopher; Shain, William; Roysam, Badrinath

    2007-09-01

    Automated segmentation and morphometry of fluorescently labeled cell nuclei in batches of 3D confocal stacks is essential for quantitative studies. Model-based segmentation algorithms are attractive due to their robustness. Previous methods incorporated a single nuclear model. This is a limitation for tissues containing multiple cell types with different nuclear features. Improved segmentation for such tissues requires algorithms that permit multiple models to be used simultaneously. This requires a tight integration of classification and segmentation algorithms. Two or more nuclear models are constructed semiautomatically from user-provided training examples. Starting with an initial over-segmentation produced by a gradient-weighted watershed algorithm, a hierarchical fragment merging tree rooted at each object is built. Linear discriminant analysis is used to classify each candidate using multiple object models. On the basis of the selected class, a Bayesian score is computed. Fragment merging decisions are made by comparing the score with that of other candidates, and the scores of constituent fragments of each candidate. The overall segmentation accuracy was 93.7% and classification accuracy was 93.5%, respectively, on a diverse collection of images drawn from five different regions of the rat brain. The multi-model method was found to achieve high accuracy on nuclear segmentation and classification by correctly resolving ambiguities in clustered regions containing heterogeneous cell populations.

  10. Geometric and topological feature extraction of linear segments from 2D cross-section data of 3D point clouds

    NASA Astrophysics Data System (ADS)

    Ramamurthy, Rajesh; Harding, Kevin; Du, Xiaoming; Lucas, Vincent; Liao, Yi; Paul, Ratnadeep; Jia, Tao

    2015-05-01

    Optical measurement techniques are often employed to digitally capture three dimensional shapes of components. The digital data density output from these probes range from a few discrete points to exceeding millions of points in the point cloud. The point cloud taken as a whole represents a discretized measurement of the actual 3D shape of the surface of the component inspected to the measurement resolution of the sensor. Embedded within the measurement are the various features of the part that make up its overall shape. Part designers are often interested in the feature information since those relate directly to part function and to the analytical models used to develop the part design. Furthermore, tolerances are added to these dimensional features, making their extraction a requirement for the manufacturing quality plan of the product. The task of "extracting" these design features from the point cloud is a post processing task. Due to measurement repeatability and cycle time requirements often automated feature extraction from measurement data is required. The presence of non-ideal features such as high frequency optical noise and surface roughness can significantly complicate this feature extraction process. This research describes a robust process for extracting linear and arc segments from general 2D point clouds, to a prescribed tolerance. The feature extraction process generates the topology, specifically the number of linear and arc segments, and the geometry equations of the linear and arc segments automatically from the input 2D point clouds. This general feature extraction methodology has been employed as an integral part of the automated post processing algorithms of 3D data of fine features.

  11. Pancreas segmentation from 3D abdominal CT images using patient-specific weighted subspatial probabilistic atlases

    NASA Astrophysics Data System (ADS)

    Karasawa, Kenichi; Oda, Masahiro; Hayashi, Yuichiro; Nimura, Yukitaka; Kitasaka, Takayuki; Misawa, Kazunari; Fujiwara, Michitaka; Rueckert, Daniel; Mori, Kensaku

    2015-03-01

    Abdominal organ segmentations from CT volumes are now widely used in the computer-aided diagnosis and surgery assistance systems. Among abdominal organs, the pancreas is especially difficult to segment because of its large individual differences of the shape and position. In this paper, we propose a new pancreas segmentation method from 3D abdominal CT volumes using patient-specific weighted-subspatial probabilistic atlases. First of all, we perform normalization of organ shapes in training volumes and an input volume. We extract the Volume Of Interest (VOI) of the pancreas from the training volumes and an input volume. We divide each training VOI and input VOI into some cubic regions. We use a nonrigid registration method to register these cubic regions of the training VOI to corresponding regions of the input VOI. Based on the registration results, we calculate similarities between each cubic region of the training VOI and corresponding region of the input VOI. We select cubic regions of training volumes having the top N similarities in each cubic region. We subspatially construct probabilistic atlases weighted by the similarities in each cubic region. After integrating these probabilistic atlases in cubic regions into one, we perform a rough-to-precise segmentation of the pancreas using the atlas. The results of the experiments showed that utilization of the training volumes having the top N similarities in each cubic region led good results of the pancreas segmentation. The Jaccard Index and the average surface distance of the result were 58.9% and 2.04mm on average, respectively.

  12. Enhanced hybrid search algorithm for protein structure prediction using the 3D-HP lattice model.

    PubMed

    Zhou, Changjun; Hou, Caixia; Zhang, Qiang; Wei, Xiaopeng

    2013-09-01

    The problem of protein structure prediction in the hydrophobic-polar (HP) lattice model is the prediction of protein tertiary structure. This problem is usually referred to as the protein folding problem. This paper presents a method for the application of an enhanced hybrid search algorithm to the problem of protein folding prediction, using the three dimensional (3D) HP lattice model. The enhanced hybrid search algorithm is a combination of the particle swarm optimizer (PSO) and tabu search (TS) algorithms. Since the PSO algorithm entraps local minimum in later evolution extremely easily, we combined PSO with the TS algorithm, which has properties of global optimization. Since the technologies of crossover and mutation are applied many times to PSO and TS algorithms, so enhanced hybrid search algorithm is called the MCMPSO-TS (multiple crossover and mutation PSO-TS) algorithm. Experimental results show that the MCMPSO-TS algorithm can find the best solutions so far for the listed benchmarks, which will help comparison with any future paper approach. Moreover, real protein sequences and Fibonacci sequences are verified in the 3D HP lattice model for the first time. Compared with the previous evolutionary algorithms, the new hybrid search algorithm is novel, and can be used effectively to predict 3D protein folding structure. With continuous development and changes in amino acids sequences, the new algorithm will also make a contribution to the study of new protein sequences. PMID:23824509

  13. Segmentation and quantitative evaluation of brain MRI data with a multiphase 3D implicit deformable model

    NASA Astrophysics Data System (ADS)

    Angelini, Elsa D.; Song, Ting; Mensh, Brett D.; Laine, Andrew

    2004-05-01

    Segmentation of three-dimensional anatomical brain images into tissue classes has applications in both clinical and research settings. This paper presents the implementation and quantitative evaluation of a four-phase three-dimensional active contour implemented with a level set framework for automated segmentation of brain MRIs. The segmentation algorithm performs an optimal partitioning of three-dimensional data based on homogeneity measures that naturally evolves to the extraction of different tissue types in the brain. Random seed initialization was used to speed up numerical computation and avoid the need for a priori information. This random initialization ensures robustness of the method to variation of user expertise, biased a priori information and errors in input information that could be influenced by variations in image quality. Experimentation on three MRI brain data sets showed that an optimal partitioning successfully labeled regions that accurately identified white matter, gray matter and cerebrospinal fluid in the ventricles. Quantitative evaluation of the segmentation was performed with comparison to manually labeled data and computed false positive and false negative assignments of voxels for the three organs. We report high accuracy for the two comparison cases. These results demonstrate the efficiency and flexibility of this segmentation framework to perform the challenging task of automatically extracting brain tissue volume contours.

  14. Rule-based fuzzy vector median filters for 3D phase contrast MRI segmentation

    NASA Astrophysics Data System (ADS)

    Sundareswaran, Kartik S.; Frakes, David H.; Yoganathan, Ajit P.

    2008-02-01

    Recent technological advances have contributed to the advent of phase contrast magnetic resonance imaging (PCMRI) as standard practice in clinical environments. In particular, decreased scan times have made using the modality more feasible. PCMRI is now a common tool for flow quantification, and for more complex vector field analyses that target the early detection of problematic flow conditions. Segmentation is one component of this type of application that can impact the accuracy of the final product dramatically. Vascular segmentation, in general, is a long-standing problem that has received significant attention. Segmentation in the context of PCMRI data, however, has been explored less and can benefit from object-based image processing techniques that incorporate fluids specific information. Here we present a fuzzy rule-based adaptive vector median filtering (FAVMF) algorithm that in combination with active contour modeling facilitates high-quality PCMRI segmentation while mitigating the effects of noise. The FAVMF technique was tested on 111 synthetically generated PC MRI slices and on 15 patients with congenital heart disease. The results were compared to other multi-dimensional filters namely the adaptive vector median filter, the adaptive vector directional filter, and the scalar low pass filter commonly used in PC MRI applications. FAVMF significantly outperformed the standard filtering methods (p < 0.0001). Two conclusions can be drawn from these results: a) Filtering should be performed after vessel segmentation of PC MRI; b) Vector based filtering methods should be used instead of scalar techniques.

  15. Fully automated 3D prostate central gland segmentation in MR images: a LOGISMOS based approach

    NASA Astrophysics Data System (ADS)

    Yin, Yin; Fotin, Sergei V.; Periaswamy, Senthil; Kunz, Justin; Haldankar, Hrishikesh; Muradyan, Naira; Turkbey, Baris; Choyke, Peter

    2012-02-01

    One widely accepted classification of a prostate is by a central gland (CG) and a peripheral zone (PZ). In some clinical applications, separating CG and PZ from the whole prostate is useful. For instance, in prostate cancer detection, radiologist wants to know in which zone the cancer occurs. Another application is for multiparametric MR tissue characterization. In prostate T2 MR images, due to the high intensity variation between CG and PZ, automated differentiation of CG and PZ is difficult. Previously, we developed an automated prostate boundary segmentation system, which tested on large datasets and showed good performance. Using the results of the pre-segmented prostate boundary, in this paper, we proposed an automated CG segmentation algorithm based on Layered Optimal Graph Image Segmentation of Multiple Objects and Surfaces (LOGISMOS). The designed LOGISMOS model contained both shape and topology information during deformation. We generated graph cost by training classifiers and used coarse-to-fine search. The LOGISMOS framework guarantees optimal solution regarding to cost and shape constraint. A five-fold cross-validation approach was applied to training dataset containing 261 images to optimize the system performance and compare with a voxel classification based reference approach. After the best parameter settings were found, the system was tested on a dataset containing another 261 images. The mean DSC of 0.81 for the test set indicates that our approach is promising for automated CG segmentation. Running time for the system is about 15 seconds.

  16. Chest-wall segmentation in automated 3D breast ultrasound images using thoracic volume classification

    NASA Astrophysics Data System (ADS)

    Tan, Tao; van Zelst, Jan; Zhang, Wei; Mann, Ritse M.; Platel, Bram; Karssemeijer, Nico

    2014-03-01

    Computer-aided detection (CAD) systems are expected to improve effectiveness and efficiency of radiologists in reading automated 3D breast ultrasound (ABUS) images. One challenging task on developing CAD is to reduce a large number of false positives. A large amount of false positives originate from acoustic shadowing caused by ribs. Therefore determining the location of the chestwall in ABUS is necessary in CAD systems to remove these false positives. Additionally it can be used as an anatomical landmark for inter- and intra-modal image registration. In this work, we extended our previous developed chestwall segmentation method that fits a cylinder to automated detected rib-surface points and we fit the cylinder model by minimizing a cost function which adopted a term of region cost computed from a thoracic volume classifier to improve segmentation accuracy. We examined the performance on a dataset of 52 images where our previous developed method fails. Using region-based cost, the average mean distance of the annotated points to the segmented chest wall decreased from 7.57±2.76 mm to 6.22±2.86 mm.art.

  17. Segmentation of 3D cell membrane images by PDE methods and its applications.

    PubMed

    Mikula, K; Peyriéras, N; Remešíková, M; Stašová, O

    2011-06-01

    We present a set of techniques that enable us to segment objects from 3D cell membrane images. Particularly, we propose methods for detection of approximate cell nuclei centers, extraction of the inner cell boundaries, the surface of the organism and the intercellular borders--the so called intercellular skeleton. All methods are based on numerical solution of partial differential equations. The center detection problem is represented by a level set equation for advective motion in normal direction with curvature term. In case of the inner cell boundaries and the global surface, we use the generalized subjective surface model. The intercellular borders are segmented by the advective level set equation where the velocity field is given by the gradient of the signed distance function to the segmented inner cell boundaries. The distance function is computed by solving the time relaxed eikonal equation. We describe the mathematical models, explain their numerical approximation and finally we present various possible practical applications on the images of zebrafish embryogenesis--computation of important quantitative characteristics, evaluation of the cell shape, detection of cell divisions and others.

  18. Automated multilayer segmentation and characterization in 3D spectral-domain optical coherence tomography images

    NASA Astrophysics Data System (ADS)

    Hu, Zhihong; Wu, Xiaodong; Hariri, Amirhossein; Sadda, SriniVas R.

    2013-03-01

    Spectral-domain optical coherence tomography (SD-OCT) is a 3-D imaging technique, allowing direct visualization of retinal morphology and architecture. The various layers of the retina may be affected differentially by various diseases. In this study, an automated graph-based multilayer approach was developed to sequentially segment eleven retinal surfaces including the inner retinal bands to the outer retinal bands in normal SD-OCT volume scans at three different stages. For stage 1, the four most detectable and/or distinct surfaces were identified in the four-times-downsampled images and were used as a priori positional information to limit the graph search for other surfaces at stage 2. Eleven surfaces were then detected in the two-times-downsampled images at stage 2, and refined in the original image space at stage 3 using the graph search integrating the estimated morphological shape models. Twenty macular SD-OCT (Heidelberg Spectralis) volume scans from 20 normal subjects (one eye per subject) were used in this study. The overall mean and absolute mean differences in border positions between the automated and manual segmentation for all 11 segmented surfaces were -0.20 +/- 0.53 voxels (-0.76 +/- 2.06 μm) and 0.82 +/- 0.64 voxels (3.19 +/- 2.46 μm). Intensity and thickness properties in the resultant retinal layers were investigated. This investigation in normal subjects may provide a comparative reference for subsequent investigations in eyes with disease.

  19. Segmentation of Image Data from Complex Organotypic 3D Models of Cancer Tissues with Markov Random Fields

    PubMed Central

    Robinson, Sean; Guyon, Laurent; Nevalainen, Jaakko; Toriseva, Mervi

    2015-01-01

    Organotypic, three dimensional (3D) cell culture models of epithelial tumour types such as prostate cancer recapitulate key aspects of the architecture and histology of solid cancers. Morphometric analysis of multicellular 3D organoids is particularly important when additional components such as the extracellular matrix and tumour microenvironment are included in the model. The complexity of such models has so far limited their successful implementation. There is a great need for automatic, accurate and robust image segmentation tools to facilitate the analysis of such biologically relevant 3D cell culture models. We present a segmentation method based on Markov random fields (MRFs) and illustrate our method using 3D stack image data from an organotypic 3D model of prostate cancer cells co-cultured with cancer-associated fibroblasts (CAFs). The 3D segmentation output suggests that these cell types are in physical contact with each other within the model, which has important implications for tumour biology. Segmentation performance is quantified using ground truth labels and we show how each step of our method increases segmentation accuracy. We provide the ground truth labels along with the image data and code. Using independent image data we show that our segmentation method is also more generally applicable to other types of cellular microscopy and not only limited to fluorescence microscopy. PMID:26630674

  20. Segmentation of Image Data from Complex Organotypic 3D Models of Cancer Tissues with Markov Random Fields.

    PubMed

    Robinson, Sean; Guyon, Laurent; Nevalainen, Jaakko; Toriseva, Mervi; Åkerfelt, Malin; Nees, Matthias

    2015-01-01

    Organotypic, three dimensional (3D) cell culture models of epithelial tumour types such as prostate cancer recapitulate key aspects of the architecture and histology of solid cancers. Morphometric analysis of multicellular 3D organoids is particularly important when additional components such as the extracellular matrix and tumour microenvironment are included in the model. The complexity of such models has so far limited their successful implementation. There is a great need for automatic, accurate and robust image segmentation tools to facilitate the analysis of such biologically relevant 3D cell culture models. We present a segmentation method based on Markov random fields (MRFs) and illustrate our method using 3D stack image data from an organotypic 3D model of prostate cancer cells co-cultured with cancer-associated fibroblasts (CAFs). The 3D segmentation output suggests that these cell types are in physical contact with each other within the model, which has important implications for tumour biology. Segmentation performance is quantified using ground truth labels and we show how each step of our method increases segmentation accuracy. We provide the ground truth labels along with the image data and code. Using independent image data we show that our segmentation method is also more generally applicable to other types of cellular microscopy and not only limited to fluorescence microscopy.

  1. Parallel contact detection algorithm for transient solid dynamics simulations using PRONTO3D

    SciTech Connect

    Attaway, S.W.; Hendrickson, B.A.; Plimpton, S.J.

    1996-09-01

    An efficient, scalable, parallel algorithm for treating material surface contacts in solid mechanics finite element programs has been implemented in a modular way for MIMD parallel computers. The serial contact detection algorithm that was developed previously for the transient dynamics finite element code PRONTO3D has been extended for use in parallel computation by devising a dynamic (adaptive) processor load balancing scheme.

  2. Robust Adaptive 3-D Segmentation of Vessel Laminae From Fluorescence Confocal Microscope Images and Parallel GPU Implementation

    PubMed Central

    Narayanaswamy, Arunachalam; Dwarakapuram, Saritha; Bjornsson, Christopher S.; Cutler, Barbara M.; Shain, William

    2010-01-01

    This paper presents robust 3-D algorithms to segment vasculature that is imaged by labeling laminae, rather than the lumenal volume. The signal is weak, sparse, noisy, nonuniform, low-contrast, and exhibits gaps and spectral artifacts, so adaptive thresholding and Hessian filtering based methods are not effective. The structure deviates from a tubular geometry, so tracing algorithms are not effective. We propose a four step approach. The first step detects candidate voxels using a robust hypothesis test based on a model that assumes Poisson noise and locally planar geometry. The second step performs an adaptive region growth to extract weakly labeled and fine vessels while rejecting spectral artifacts. To enable interactive visualization and estimation of features such as statistical confidence, local curvature, local thickness, and local normal, we perform the third step. In the third step, we construct an accurate mesh representation using marching tetrahedra, volume-preserving smoothing, and adaptive decimation algorithms. To enable topological analysis and efficient validation, we describe a method to estimate vessel centerlines using a ray casting and vote accumulation algorithm which forms the final step of our algorithm. Our algorithm lends itself to parallel processing, and yielded an 8× speedup on a graphics processor (GPU). On synthetic data, our meshes had average error per face (EPF) values of (0.1–1.6) voxels per mesh face for peak signal-to-noise ratios from (110–28 dB). Separately, the error from decimating the mesh to less than 1% of its original size, the EPF was less than 1 voxel/face. When validated on real datasets, the average recall and precision values were found to be 94.66% and 94.84%, respectively. PMID:20199906

  3. Sensitivity Analysis of the Scattering-Based SARBM3D Despeckling Algorithm.

    PubMed

    Di Simone, Alessio

    2016-01-01

    Synthetic Aperture Radar (SAR) imagery greatly suffers from multiplicative speckle noise, typical of coherent image acquisition sensors, such as SAR systems. Therefore, a proper and accurate despeckling preprocessing step is almost mandatory to aid the interpretation and processing of SAR data by human users and computer algorithms, respectively. Very recently, a scattering-oriented version of the popular SAR Block-Matching 3D (SARBM3D) despeckling filter, named Scattering-Based (SB)-SARBM3D, was proposed. The new filter is based on the a priori knowledge of the local topography of the scene. In this paper, an experimental sensitivity analysis of the above-mentioned despeckling algorithm is carried out, and the main results are shown and discussed. In particular, the role of both electromagnetic and geometrical parameters of the surface and the impact of its scattering behavior are investigated. Furthermore, a comprehensive sensitivity analysis of the SB-SARBM3D filter against the Digital Elevation Model (DEM) resolution and the SAR image-DEM coregistration step is also provided. The sensitivity analysis shows a significant robustness of the algorithm against most of the surface parameters, while the DEM resolution plays a key role in the despeckling process. Furthermore, the SB-SARBM3D algorithm outperforms the original SARBM3D in the presence of the most realistic scattering behaviors of the surface. An actual scenario is also presented to assess the DEM role in real-life conditions. PMID:27347971

  4. Sensitivity Analysis of the Scattering-Based SARBM3D Despeckling Algorithm

    PubMed Central

    Di Simone, Alessio

    2016-01-01

    Synthetic Aperture Radar (SAR) imagery greatly suffers from multiplicative speckle noise, typical of coherent image acquisition sensors, such as SAR systems. Therefore, a proper and accurate despeckling preprocessing step is almost mandatory to aid the interpretation and processing of SAR data by human users and computer algorithms, respectively. Very recently, a scattering-oriented version of the popular SAR Block-Matching 3D (SARBM3D) despeckling filter, named Scattering-Based (SB)-SARBM3D, was proposed. The new filter is based on the a priori knowledge of the local topography of the scene. In this paper, an experimental sensitivity analysis of the above-mentioned despeckling algorithm is carried out, and the main results are shown and discussed. In particular, the role of both electromagnetic and geometrical parameters of the surface and the impact of its scattering behavior are investigated. Furthermore, a comprehensive sensitivity analysis of the SB-SARBM3D filter against the Digital Elevation Model (DEM) resolution and the SAR image-DEM coregistration step is also provided. The sensitivity analysis shows a significant robustness of the algorithm against most of the surface parameters, while the DEM resolution plays a key role in the despeckling process. Furthermore, the SB-SARBM3D algorithm outperforms the original SARBM3D in the presence of the most realistic scattering behaviors of the surface. An actual scenario is also presented to assess the DEM role in real-life conditions. PMID:27347971

  5. Sensitivity Analysis of the Scattering-Based SARBM3D Despeckling Algorithm.

    PubMed

    Di Simone, Alessio

    2016-01-01

    Synthetic Aperture Radar (SAR) imagery greatly suffers from multiplicative speckle noise, typical of coherent image acquisition sensors, such as SAR systems. Therefore, a proper and accurate despeckling preprocessing step is almost mandatory to aid the interpretation and processing of SAR data by human users and computer algorithms, respectively. Very recently, a scattering-oriented version of the popular SAR Block-Matching 3D (SARBM3D) despeckling filter, named Scattering-Based (SB)-SARBM3D, was proposed. The new filter is based on the a priori knowledge of the local topography of the scene. In this paper, an experimental sensitivity analysis of the above-mentioned despeckling algorithm is carried out, and the main results are shown and discussed. In particular, the role of both electromagnetic and geometrical parameters of the surface and the impact of its scattering behavior are investigated. Furthermore, a comprehensive sensitivity analysis of the SB-SARBM3D filter against the Digital Elevation Model (DEM) resolution and the SAR image-DEM coregistration step is also provided. The sensitivity analysis shows a significant robustness of the algorithm against most of the surface parameters, while the DEM resolution plays a key role in the despeckling process. Furthermore, the SB-SARBM3D algorithm outperforms the original SARBM3D in the presence of the most realistic scattering behaviors of the surface. An actual scenario is also presented to assess the DEM role in real-life conditions.

  6. A deformable model for hippocampus segmentation: Improvements and extension to 3D

    SciTech Connect

    Ghanei, A.; Soltanian-Zadeh, H. |; Windham, J.P.

    1996-12-31

    In this work, the application of a deformable model to the segmentation of hippocampus in brain MRI has been investigated. Common problems of the model in this case and similar cases have been discussed and solved. A new method for extracting discontinuous boundaries of an object with multiple unwanted edges has been developed. This method is based on detecting and following the edge by external forces. For improving the contour stability, its movement has been limited. Also, adaptive values for internal force weights have been used. In the next step, the model has been extended to 3D which is a Deformable Surface Model. A geometric structure used for this purpose. This helps in definition of normal vectors and internal forces. Finally, a method for generating the initial volume from individual initial polygons has been developed.

  7. 3D segmentation of annulus fibrosus and nucleus pulposus from T2-weighted magnetic resonance images

    NASA Astrophysics Data System (ADS)

    Castro-Mateos, Isaac; Pozo, Jose M.; Eltes, Peter E.; Del Rio, Luis; Lazary, Aron; Frangi, Alejandro F.

    2014-12-01

    Computational medicine aims at employing personalised computational models in diagnosis and treatment planning. The use of such models to help physicians in finding the best treatment for low back pain (LBP) is becoming popular. One of the challenges of creating such models is to derive patient-specific anatomical and tissue models of the lumbar intervertebral discs (IVDs), as a prior step. This article presents a segmentation scheme that obtains accurate results irrespective of the degree of IVD degeneration, including pathological discs with protrusion or herniation. The segmentation algorithm, employing a novel feature selector, iteratively deforms an initial shape, which is projected into a statistical shape model space at first and then, into a B-Spline space to improve accuracy. The method was tested on a MR dataset of 59 patients suffering from LBP. The images follow a standard T2-weighted protocol in coronal and sagittal acquisitions. These two image volumes were fused in order to overcome large inter-slice spacing. The agreement between expert-delineated structures, used here as gold-standard, and our automatic segmentation was evaluated using Dice Similarity Index and surface-to-surface distances, obtaining a mean error of 0.68 mm in the annulus segmentation and 1.88 mm in the nucleus, which are the best results with respect to the image resolution in the current literature.

  8. 3D segmentation of annulus fibrosus and nucleus pulposus from T2-weighted magnetic resonance images.

    PubMed

    Castro-Mateos, Isaac; Pozo, Jose M; Eltes, Peter E; Rio, Luis Del; Lazary, Aron; Frangi, Alejandro F

    2014-12-21

    Computational medicine aims at employing personalised computational models in diagnosis and treatment planning. The use of such models to help physicians in finding the best treatment for low back pain (LBP) is becoming popular. One of the challenges of creating such models is to derive patient-specific anatomical and tissue models of the lumbar intervertebral discs (IVDs), as a prior step. This article presents a segmentation scheme that obtains accurate results irrespective of the degree of IVD degeneration, including pathological discs with protrusion or herniation. The segmentation algorithm, employing a novel feature selector, iteratively deforms an initial shape, which is projected into a statistical shape model space at first and then, into a B-Spline space to improve accuracy.The method was tested on a MR dataset of 59 patients suffering from LBP. The images follow a standard T2-weighted protocol in coronal and sagittal acquisitions. These two image volumes were fused in order to overcome large inter-slice spacing. The agreement between expert-delineated structures, used here as gold-standard, and our automatic segmentation was evaluated using Dice Similarity Index and surface-to-surface distances, obtaining a mean error of 0.68 mm in the annulus segmentation and 1.88 mm in the nucleus, which are the best results with respect to the image resolution in the current literature.

  9. Deformable segmentation of 3D MR prostate images via distributed discriminative dictionary and ensemble learning

    SciTech Connect

    Guo, Yanrong; Shao, Yeqin; Gao, Yaozong; Price, True; Oto, Aytekin; Shen, Dinggang

    2014-07-15

    patches of the prostate surface and trained to adaptively capture the appearance in different prostate zones, thus achieving better local tissue differentiation. For each local region, multiple classifiers are trained based on the randomly selected samples and finally assembled by a specific fusion method. In addition to this nonparametric appearance model, a prostate shape model is learned from the shape statistics using a novel approach, sparse shape composition, which can model nonGaussian distributions of shape variation and regularize the 3D mesh deformation by constraining it within the observed shape subspace. Results: The proposed method has been evaluated on two datasets consisting of T2-weighted MR prostate images. For the first (internal) dataset, the classification effectiveness of the authors' improved dictionary learning has been validated by comparing it with three other variants of traditional dictionary learning methods. The experimental results show that the authors' method yields a Dice Ratio of 89.1% compared to the manual segmentation, which is more accurate than the three state-of-the-art MR prostate segmentation methods under comparison. For the second dataset, the MICCAI 2012 challenge dataset, the authors' proposed method yields a Dice Ratio of 87.4%, which also achieves better segmentation accuracy than other methods under comparison. Conclusions: A new magnetic resonance image prostate segmentation method is proposed based on the combination of deformable model and dictionary learning methods, which achieves more accurate segmentation performance on prostate T2 MR images.

  10. An image encryption algorithm based on 3D cellular automata and chaotic maps

    NASA Astrophysics Data System (ADS)

    Del Rey, A. Martín; Sánchez, G. Rodríguez

    2015-05-01

    A novel encryption algorithm to cipher digital images is presented in this work. The digital image is rendering into a three-dimensional (3D) lattice and the protocol consists of two phases: the confusion phase where 24 chaotic Cat maps are applied and the diffusion phase where a 3D cellular automata is evolved. The encryption method is shown to be secure against the most important cryptanalytic attacks.

  11. Automated multimodality concurrent classification for segmenting vessels in 3D spectral OCT and color fundus images

    NASA Astrophysics Data System (ADS)

    Hu, Zhihong; Abràmoff, Michael D.; Niemeijer, Meindert; Garvin, Mona K.

    2011-03-01

    Segmenting vessels in spectral-domain optical coherence tomography (SD-OCT) volumes is particularly challenging in the region near and inside the neural canal opening (NCO). Furthermore, accurately segmenting them in color fundus photographs also presents a challenge near the projected NCO. However, both modalities also provide complementary information to help indicate vessels, such as a better NCO contrast from the NCO-aimed OCT projection image and a better vessel contrast inside the NCO from fundus photographs. We thus present a novel multimodal automated classification approach for simultaneously segmenting vessels in SD-OCT volumes and fundus photographs, with a particular focus on better segmenting vessels near and inside the NCO by using a combination of their complementary features. In particular, in each SD-OCT volume, the algorithm pre-segments the NCO using a graph-theoretic approach and then applies oriented Gabor wavelets with oriented NCO-based templates to generate OCT image features. After fundus-to-OCT registration, the fundus image features are computed using Gaussian filter banks and combined with OCT image features. A k-NN classifier is trained on 5 and tested on 10 randomly chosen independent image pairs of SD-OCT volumes and fundus images from 15 subjects with glaucoma. Using ROC analysis, we demonstrate an improvement over two closest previous works performed in single modal SD-OCT volumes with an area under the curve (AUC) of 0.87 (0.81 for our and 0.72 for Niemeijer's single modal approach) in the region around the NCO and 0.90 outside the NCO (0.84 for our and 0.81 for Niemeijer's single modal approach).

  12. Generalized recovery algorithm for 3D super-resolution microscopy using rotating point spread functions

    NASA Astrophysics Data System (ADS)

    Shuang, Bo; Wang, Wenxiao; Shen, Hao; Tauzin, Lawrence J.; Flatebo, Charlotte; Chen, Jianbo; Moringo, Nicholas A.; Bishop, Logan D. C.; Kelly, Kevin F.; Landes, Christy F.

    2016-08-01

    Super-resolution microscopy with phase masks is a promising technique for 3D imaging and tracking. Due to the complexity of the resultant point spread functions, generalized recovery algorithms are still missing. We introduce a 3D super-resolution recovery algorithm that works for a variety of phase masks generating 3D point spread functions. A fast deconvolution process generates initial guesses, which are further refined by least squares fitting. Overfitting is suppressed using a machine learning determined threshold. Preliminary results on experimental data show that our algorithm can be used to super-localize 3D adsorption events within a porous polymer film and is useful for evaluating potential phase masks. Finally, we demonstrate that parallel computation on graphics processing units can reduce the processing time required for 3D recovery. Simulations reveal that, through desktop parallelization, the ultimate limit of real-time processing is possible. Our program is the first open source recovery program for generalized 3D recovery using rotating point spread functions.

  13. Generalized recovery algorithm for 3D super-resolution microscopy using rotating point spread functions

    PubMed Central

    Shuang, Bo; Wang, Wenxiao; Shen, Hao; Tauzin, Lawrence J.; Flatebo, Charlotte; Chen, Jianbo; Moringo, Nicholas A.; Bishop, Logan D. C.; Kelly, Kevin F.; Landes, Christy F.

    2016-01-01

    Super-resolution microscopy with phase masks is a promising technique for 3D imaging and tracking. Due to the complexity of the resultant point spread functions, generalized recovery algorithms are still missing. We introduce a 3D super-resolution recovery algorithm that works for a variety of phase masks generating 3D point spread functions. A fast deconvolution process generates initial guesses, which are further refined by least squares fitting. Overfitting is suppressed using a machine learning determined threshold. Preliminary results on experimental data show that our algorithm can be used to super-localize 3D adsorption events within a porous polymer film and is useful for evaluating potential phase masks. Finally, we demonstrate that parallel computation on graphics processing units can reduce the processing time required for 3D recovery. Simulations reveal that, through desktop parallelization, the ultimate limit of real-time processing is possible. Our program is the first open source recovery program for generalized 3D recovery using rotating point spread functions. PMID:27488312

  14. Generalized recovery algorithm for 3D super-resolution microscopy using rotating point spread functions.

    PubMed

    Shuang, Bo; Wang, Wenxiao; Shen, Hao; Tauzin, Lawrence J; Flatebo, Charlotte; Chen, Jianbo; Moringo, Nicholas A; Bishop, Logan D C; Kelly, Kevin F; Landes, Christy F

    2016-01-01

    Super-resolution microscopy with phase masks is a promising technique for 3D imaging and tracking. Due to the complexity of the resultant point spread functions, generalized recovery algorithms are still missing. We introduce a 3D super-resolution recovery algorithm that works for a variety of phase masks generating 3D point spread functions. A fast deconvolution process generates initial guesses, which are further refined by least squares fitting. Overfitting is suppressed using a machine learning determined threshold. Preliminary results on experimental data show that our algorithm can be used to super-localize 3D adsorption events within a porous polymer film and is useful for evaluating potential phase masks. Finally, we demonstrate that parallel computation on graphics processing units can reduce the processing time required for 3D recovery. Simulations reveal that, through desktop parallelization, the ultimate limit of real-time processing is possible. Our program is the first open source recovery program for generalized 3D recovery using rotating point spread functions.

  15. Near-infrared optical imaging of human brain based on the semi-3D reconstruction algorithm

    NASA Astrophysics Data System (ADS)

    Liu, Ming; Meng, Wei; Qin, Zhuanping; Zhou, Xiaoqing; Zhao, Huijuan; Gao, Feng

    2013-03-01

    In the non-invasive brain imaging with near-infrared light, precise head model is of great significance to the forward model and the image reconstruction. To deal with the individual difference of human head tissues and the problem of the irregular curvature, in this paper, we extracted head structure with Mimics software from the MRI image of a volunteer. This scheme makes it possible to assign the optical parameters to every layer of the head tissues reasonably and solve the diffusion equation with the finite-element analysis. During the solution of the inverse problem, a semi-3D reconstruction algorithm is adopted to trade off the computation cost and accuracy between the full 3-D and the 2-D reconstructions. In this scheme, the changes in the optical properties of the inclusions are assumed either axially invariable or confined to the imaging plane, while the 3-D nature of the photon migration is still retained. This therefore leads to a 2-D inverse issue with the matched 3-D forward model. Simulation results show that comparing to the 3-D reconstruction algorithm, the Semi-3D reconstruction algorithm cut 27% the calculation time consumption.

  16. Generalized recovery algorithm for 3D super-resolution microscopy using rotating point spread functions.

    PubMed

    Shuang, Bo; Wang, Wenxiao; Shen, Hao; Tauzin, Lawrence J; Flatebo, Charlotte; Chen, Jianbo; Moringo, Nicholas A; Bishop, Logan D C; Kelly, Kevin F; Landes, Christy F

    2016-01-01

    Super-resolution microscopy with phase masks is a promising technique for 3D imaging and tracking. Due to the complexity of the resultant point spread functions, generalized recovery algorithms are still missing. We introduce a 3D super-resolution recovery algorithm that works for a variety of phase masks generating 3D point spread functions. A fast deconvolution process generates initial guesses, which are further refined by least squares fitting. Overfitting is suppressed using a machine learning determined threshold. Preliminary results on experimental data show that our algorithm can be used to super-localize 3D adsorption events within a porous polymer film and is useful for evaluating potential phase masks. Finally, we demonstrate that parallel computation on graphics processing units can reduce the processing time required for 3D recovery. Simulations reveal that, through desktop parallelization, the ultimate limit of real-time processing is possible. Our program is the first open source recovery program for generalized 3D recovery using rotating point spread functions. PMID:27488312

  17. Parallel OSEM Reconstruction Algorithm for Fully 3-D SPECT on a Beowulf Cluster.

    PubMed

    Rong, Zhou; Tianyu, Ma; Yongjie, Jin

    2005-01-01

    In order to improve the computation speed of ordered subset expectation maximization (OSEM) algorithm for fully 3-D single photon emission computed tomography (SPECT) reconstruction, an experimental beowulf-type cluster was built and several parallel reconstruction schemes were described. We implemented a single-program-multiple-data (SPMD) parallel 3-D OSEM reconstruction algorithm based on message passing interface (MPI) and tested it with combinations of different number of calculating processors and different size of voxel grid in reconstruction (64×64×64 and 128×128×128). Performance of parallelization was evaluated in terms of the speedup factor and parallel efficiency. This parallel implementation methodology is expected to be helpful to make fully 3-D OSEM algorithms more feasible in clinical SPECT studies.

  18. Comparison of algorithms for non-linear inverse 3D electrical tomography reconstruction.

    PubMed

    Molinari, Marc; Cox, Simon J; Blott, Barry H; Daniell, Geoffrey J

    2002-02-01

    Non-linear electrical impedance tomography reconstruction algorithms usually employ the Newton-Raphson iteration scheme to image the conductivity distribution inside the body. For complex 3D problems, the application of this method is not feasible any more due to the large matrices involved and their high storage requirements. In this paper we demonstrate the suitability of an alternative conjugate gradient reconstruction algorithm for 3D tomographic imaging incorporating adaptive mesh refinement and requiring less storage space than the Newton-Raphson scheme. We compare the reconstruction efficiency of both algorithms for a simple 3D head model. The results show that an increase in speed of about 30% is achievable with the conjugate gradient-based method without loss of accuracy.

  19. A 3-D industrial CT reconstruction algorithm to directly reconstruct the characteristics

    NASA Astrophysics Data System (ADS)

    Zhao, Ying-Liang; Wang, Li-Ming; Han, Yan

    2011-01-01

    In traditional 3-D CT reconstruction methods, for the projection procedure is low-pass smoothing, the high-frequency characters are difficult to obtain after the projection data are reconstructed. In addition the design and implementation of three-dimensional filter are relatively harder. A new 3D industrial CT reconstruction algorithm to directly reconstruct the characteristics is put forth. Based on the FDK method and the trait of RADON transform, the feasibility of the novel algorithm is theoretically deduced. Combined with the wavelet, it is deduced to extract the characteristics using the 2-D wavelet transform and to directly reconstruct the characteristics in 3-D CT. The experiments show that the algorithm can preferably stand out the useful information, is of engineering practicability and the design of the filter is relatively simpler.

  20. 3-D segmentation of retinal blood vessels in spectral-domain OCT volumes of the optic nerve head

    NASA Astrophysics Data System (ADS)

    Lee, Kyungmoo; Abràmoff, Michael D.; Niemeijer, Meindert; Garvin, Mona K.; Sonka, Milan

    2010-03-01

    Segmentation of retinal blood vessels can provide important information for detecting and tracking retinal vascular diseases including diabetic retinopathy, arterial hypertension, arteriosclerosis and retinopathy of prematurity (ROP). Many studies on 2-D segmentation of retinal blood vessels from a variety of medical images have been performed. However, 3-D segmentation of retinal blood vessels from spectral-domain optical coherence tomography (OCT) volumes, which is capable of providing geometrically accurate vessel models, to the best of our knowledge, has not been previously studied. The purpose of this study is to develop and evaluate a method that can automatically detect 3-D retinal blood vessels from spectral-domain OCT scans centered on the optic nerve head (ONH). The proposed method utilized a fast multiscale 3-D graph search to segment retinal surfaces as well as a triangular mesh-based 3-D graph search to detect retinal blood vessels. An experiment on 30 ONH-centered OCT scans (15 right eye scans and 15 left eye scans) from 15 subjects was performed, and the mean unsigned error in 3-D of the computer segmentations compared with the independent standard obtained from a retinal specialist was 3.4 +/- 2.5 voxels (0.10 +/- 0.07 mm).

  1. Intra-retinal layer segmentation of 3D optical coherence tomography using coarse grained diffusion map

    PubMed Central

    Kafieh, Raheleh; Rabbani, Hossein; Abramoff, Michael D.; Sonka, Milan

    2013-01-01

    Optical coherence tomography (OCT) is a powerful and noninvasive method for retinal imaging. In this paper, we introduce a fast segmentation method based on a new variant of spectral graph theory named diffusion maps. The research is performed on spectral domain (SD) OCT images depicting macular and optic nerve head appearance. The presented approach does not require edge-based image information in localizing most of boundaries and relies on regional image texture. Consequently, the proposed method demonstrates robustness in situations of low image contrast or poor layer-to-layer image gradients. Diffusion mapping applied to 2D and 3D OCT datasets is composed of two steps, one for partitioning the data into important and less important sections, and another one for localization of internal layers. In the first step, the pixels/voxels are grouped in rectangular/cubic sets to form a graph node. The weights of the graph are calculated based on geometric distances between pixels/voxels and differences of their mean intensity. The first diffusion map clusters the data into three parts, the second of which is the area of interest. The other two sections are eliminated from the remaining calculations. In the second step, the remaining area is subjected to another diffusion map assessment and the internal layers are localized based on their textural similarities. The proposed method was tested on 23 datasets from two patient groups (glaucoma and normals). The mean unsigned border positioning errors (mean ± SD) was 8.52 ± 3.13 and 7.56 ± 2.95 μm for the 2D and 3D methods, respectively. PMID:23837966

  2. Evaluation of 3D reconstruction algorithms for a small animal PET camera

    SciTech Connect

    Johnson, C.A.; Gandler, W.R.; Seidel, J.

    1996-12-31

    The use of paired, opposing position-sensitive phototube scintillation cameras (SCs) operating in coincidence for small animal imaging with positron emitters is currently under study. Because of the low sensitivity of the system even in 3D mode and the need to produce images with high resolution, it was postulated that a 3D expectation maximization (EM) reconstruction algorithm might be well suited for this application. We investigated four reconstruction algorithms for the 3D SC PET camera: 2D filtered back-projection (FBP), 2D ordered subset EM (OSEM), 3D reprojection (3DRP), and 3D OSEM. Noise was assessed for all slices by the coefficient of variation in a simulated uniform cylinder. Resolution was assessed from a simulation of 15 point sources in the warm background of the uniform cylinder. At comparable noise levels, the resolution achieved with OSEM (0.9-mm to 1.2-mm) is significantly better than that obtained with FBP or 3DRP (1.5-mm to 2.0-mm.) Images of a rat skull labeled with {sup 18}F-fluoride suggest that 3D OSEM can improve image quality of a small animal PET camera.

  3. Efficient Semi-Automatic 3D Segmentation for Neuron Tracing in Electron Microscopy Images

    PubMed Central

    Jones, Cory; Liu, Ting; Cohan, Nathaniel Wood; Ellisman, Mark; Tasdizen, Tolga

    2015-01-01

    0.1. Background In the area of connectomics, there is a significant gap between the time required for data acquisition and dense reconstruction of the neural processes contained in the same dataset. Automatic methods are able to eliminate this timing gap, but the state-of-the-art accuracy so far is insufficient for use without user corrections. If completed naively, this process of correction can be tedious and time consuming. 0.2. New Method We present a new semi-automatic method that can be used to perform 3D segmentation of neurites in EM image stacks. It utilizes an automatic method that creates a hierarchical structure for recommended merges of superpixels. The user is then guided through each predicted region to quickly identify errors and establish correct links. 0.3. Results We tested our method on three datasets with both novice and expert users. Accuracy and timing were compared with published automatic, semi-automatic, and manual results. 0.4. Comparison with Existing Methods Post-automatic correction methods have also been used in [1] and [2]. These methods do not provide navigation or suggestions in the manner we present. Other semi-automatic methods require user input prior to the automatic segmentation such as [3] and [4] and are inherently different than our method. 0.5. Conclusion Using this method on the three datasets, novice users achieved accuracy exceeding state-of-the-art automatic results, and expert users achieved accuracy on par with full manual labeling but with a 70% time improvement when compared with other examples in publication. PMID:25769273

  4. 3D multiscale segmentation and morphological analysis of X-ray microtomography from cold-sprayed coatings.

    PubMed

    Gillibert, L; Peyrega, C; Jeulin, D; Guipont, V; Jeandin, M

    2012-11-01

    X-ray microtomography from cold-sprayed coatings brings a new insight on this deposition process. A noise-tolerant segmentation algorithm is introduced, based on the combination of two segmentations: a deterministic multiscale segmentation and a stochastic segmentation. The stochastic approach uses random Poisson lines as markers. Results on a X-ray microtomographic image of aluminium particles are presented and validated. PMID:22946787

  5. A hyperspectral images compression algorithm based on 3D bit plane transform

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Xiang, Libin; Zhang, Sam; Quan, Shengxue

    2010-10-01

    According the analyses of the hyper-spectral images, a new compression algorithm based on 3-D bit plane transform is proposed. The spectral coefficient is higher than the spatial. The algorithm is proposed to overcome the shortcoming of 1-D bit plane transform for it can only reduce the correlation when the neighboring pixels have similar values. The algorithm calculates the horizontal, vertical and spectral bit plane transform sequentially. As the spectral bit plane transform, the algorithm can be easily realized by hardware. In addition, because the calculation and encoding of the transform matrix of each bit are independent, the algorithm can be realized by parallel computing model, which can improve the calculation efficiency and save the processing time greatly. The experimental results show that the proposed algorithm achieves improved compression performance. With a certain compression ratios, the algorithm satisfies requirements of hyper-spectral images compression system, by efficiently reducing the cost of computation and memory usage.

  6. TSaT-MUSIC: a novel algorithm for rapid and accurate ultrasonic 3D localization

    NASA Astrophysics Data System (ADS)

    Mizutani, Kyohei; Ito, Toshio; Sugimoto, Masanori; Hashizume, Hiromichi

    2011-12-01

    We describe a fast and accurate indoor localization technique using the multiple signal classification (MUSIC) algorithm. The MUSIC algorithm is known as a high-resolution method for estimating directions of arrival (DOAs) or propagation delays. A critical problem in using the MUSIC algorithm for localization is its computational complexity. Therefore, we devised a novel algorithm called Time Space additional Temporal-MUSIC, which can rapidly and simultaneously identify DOAs and delays of mul-ticarrier ultrasonic waves from transmitters. Computer simulations have proved that the computation time of the proposed algorithm is almost constant in spite of increasing numbers of incoming waves and is faster than that of existing methods based on the MUSIC algorithm. The robustness of the proposed algorithm is discussed through simulations. Experiments in real environments showed that the standard deviation of position estimations in 3D space is less than 10 mm, which is satisfactory for indoor localization.

  7. Feature edge extraction from 3D triangular meshes using a thinning algorithm

    NASA Astrophysics Data System (ADS)

    Nomura, Masaru; Hamada, Nozomu

    2001-11-01

    Highly detailed geometric models, which are represented as dense triangular meshes are becoming popular in computer graphics. Since such 3D meshes often have huge information, we require some methods to treat them efficiently in the 3D mesh processing such as, surface simplification, subdivision surface, curved surface approximation and morphing. In these applications, we often extract features of 3D meshes such as feature vertices and feature edges in preprocessing step. An automatic extraction method of feature edges is treated in this study. In order to realize the feature edge extraction method, we first introduce the concavity and convexity evaluation value. Then the histogram of the concavity and convexity evaluation value is used to separate the feature edge region. We apply a thinning algorithm, which is used in 2D binary image processing. It is shown that the proposed method can extract appropriate feature edges from 3D meshes.

  8. An N-body Tree Algorithm for the Cray T3D

    NASA Technical Reports Server (NTRS)

    Olson, Kevin M.; Packer, Charles V.

    1996-01-01

    We describe in this paper an algorithm for solving the gravitational N-body problem using tree data structures on the Cray T3D parallel supercomputer. This implementation is an adaptation of previous work where this problem was solved using an SIMD, fine-grained parallel computer. We show here that this approach lends itself, with small modifications, to more coarse-grained parallelism as well. We also show that the performance of the algorithm on the Cray T3D parallel architecture scales adequately with the number of processors (up to 256). Specific levels to be reached using the Cray T3D parallel architecture. A peak performance level of 9.6 Gflop/s is reached on 256 processors for the time critical gravity computation.

  9. Field testing of a 3D automatic target recognition and pose estimation algorithm

    NASA Astrophysics Data System (ADS)

    Ruel, Stephane; English, Chad E.; Melo, Len; Berube, Andrew; Aikman, Doug; Deslauriers, Adam M.; Church, Philip M.; Maheux, Jean

    2004-09-01

    Neptec Design Group Ltd. has developed a 3D Automatic Target Recognition (ATR) and pose estimation technology demonstrator in partnership with the Canadian DND. The system prototype was deployed for field testing at Defence Research and Development Canada (DRDC)-Valcartier. This paper discusses the performance of the developed algorithm using 3D scans acquired with an imaging LIDAR. 3D models of civilian and military vehicles were built using scans acquired with a triangulation laser scanner. The models were then used to generate a knowledge base for the recognition algorithm. A commercial imaging LIDAR was used to acquire test scans of the target vehicles with varying range, pose and degree of occlusion. Recognition and pose estimation results are presented for at least 4 different poses of each vehicle at each test range. Results obtained with targets partially occluded by an artificial plane, vegetation and military camouflage netting are also presented. Finally, future operational considerations are discussed.

  10. Computer-aided diagnosis of pulmonary nodules on CT scans: Segmentation and classification using 3D active contours

    PubMed Central

    Way, Ted W.; Hadjiiski, Lubomir M.; Sahiner, Berkman; Chan, Heang-Ping; Cascade, Philip N.; Kazerooni, Ella A.; Bogot, Naama; Zhou, Chuan

    2009-01-01

    We are developing a computer-aided diagnosis (CAD) system to classify malignant and benign lung nodules found on CT scans. A fully automated system was designed to segment the nodule from its surrounding structured background in a local volume of interest (VOI) and to extract image features for classification. Image segmentation was performed with a three-dimensional (3D) active contour (AC) method. A data set of 96 lung nodules (44 malignant, 52 benign) from 58 patients was used in this study. The 3D AC model is based on two-dimensional AC with the addition of three new energy components to take advantage of 3D information: (1) 3D gradient, which guides the active contour to seek the object surface, (2) 3D curvature, which imposes a smoothness constraint in the z direction, and (3) mask energy, which penalizes contours that grow beyond the pleura or thoracic wall. The search for the best energy weights in the 3D AC model was guided by a simplex optimization method. Morphological and gray-level features were extracted from the segmented nodule. The rubber band straightening transform (RBST) was applied to the shell of voxels surrounding the nodule. Texture features based on run-length statistics were extracted from the RBST image. A linear discriminant analysis classifier with stepwise feature selection was designed using a second simplex optimization to select the most effective features. Leave-one-case-out resampling was used to train and test the CAD system. The system achieved a test area under the receiver operating characteristic curve (Az) of 0.83±0.04. Our preliminary results indicate that use of the 3D AC model and the 3D texture features surrounding the nodule is a promising approach to the segmentation and classification of lung nodules with CAD. The segmentation performance of the 3D AC model trained with our data set was evaluated with 23 nodules available in the Lung Image Database Consortium (LIDC). The lung nodule volumes segmented by the 3D AC

  11. A new algorithm for evaluating 3D curvature and curvature gradient for improved fracture detection

    NASA Astrophysics Data System (ADS)

    Di, Haibin; Gao, Dengliang

    2014-09-01

    In 3D seismic interpretation, both curvature and curvature gradient are useful seismic attributes for structure characterization and fault detection in the subsurface. However, the existing algorithms are computationally intensive and limited by the lateral resolution for steeply-dipping formations. This study presents new and robust volume-based algorithms that evaluate both curvature and curvature gradient attributes more accurately and effectively. The algorithms first instantaneously fit a local surface to seismic data and then compute attributes using the spatial derivatives of the built surface. Specifically, the curvature algorithm constructs a quadratic surface by using a rectangle 9-node grid cell, whereas the curvature gradient algorithm builds a cubic surface by using a diamond 13-node grid cell. A dip-steering approach based on 3D complex seismic trace analysis is implemented to enhance the accuracy of surface construction and to reduce computational time. Applications to two 3D seismic surveys demonstrate the accuracy and efficiency of the new curvature and curvature gradient algorithms for characterizing faults and fractures in fractured reservoirs.

  12. A fast rebinning algorithm for 3D positron emission tomography using John's equation

    NASA Astrophysics Data System (ADS)

    Defrise, Michel; Liu, Xuan

    1999-08-01

    Volume imaging in positron emission tomography (PET) requires the inversion of the three-dimensional (3D) x-ray transform. The usual solution to this problem is based on 3D filtered-backprojection (FBP), but is slow. Alternative methods have been proposed which factor the 3D data into independent 2D data sets corresponding to the 2D Radon transforms of a stack of parallel slices. Each slice is then reconstructed using 2D FBP. These so-called rebinning methods are numerically efficient but are approximate. In this paper a new exact rebinning method is derived by exploiting the fact that the 3D x-ray transform of a function is the solution to the second-order partial differential equation first studied by John. The method is proposed for two sampling schemes, one corresponding to a pair of infinite plane detectors and another one corresponding to a cylindrical multi-ring PET scanner. The new FORE-J algorithm has been implemented for this latter geometry and was compared with the approximate Fourier rebinning algorithm FORE and with another exact rebinning algorithm, FOREX. Results with simulated data demonstrate a significant improvement in accuracy compared to FORE, while the reconstruction time is doubled. Compared to FOREX, the FORE-J algorithm is slightly less accurate but more than three times faster.

  13. 3D image reconstruction algorithms for cryo-electron-microscopy images of virus particles

    NASA Astrophysics Data System (ADS)

    Doerschuk, Peter C.; Johnson, John E.

    2000-11-01

    A statistical model for the object and the complete image formation process in cryo electron microscopy of viruses is presented. Using this model, maximum likelihood reconstructions of the 3D structure of viruses are computed using the expectation maximization algorithm and an example based on Cowpea mosaic virus is provided.

  14. NCC-RANSAC: A Fast Plane Extraction Method for 3-D Range Data Segmentation

    PubMed Central

    Qian, Xiangfei; Ye, Cang

    2015-01-01

    This paper presents a new plane extraction (PE) method based on the random sample consensus (RANSAC) approach. The generic RANSAC-based PE algorithm may over-extract a plane, and it may fail in case of a multistep scene where the RANSAC procedure results in multiple inlier patches that form a slant plane straddling the steps. The CC-RANSAC PE algorithm successfully overcomes the latter limitation if the inlier patches are separate. However, it fails if the inlier patches are connected. A typical scenario is a stairway with a stair wall where the RANSAC plane-fitting procedure results in inliers patches in the tread, riser, and stair wall planes. They connect together and form a plane. The proposed method, called normal-coherence CC-RANSAC (NCC-RANSAC), performs a normal coherence check to all data points of the inlier patches and removes the data points whose normal directions are contradictory to that of the fitted plane. This process results in separate inlier patches, each of which is treated as a candidate plane. A recursive plane clustering process is then executed to grow each of the candidate planes until all planes are extracted in their entireties. The RANSAC plane-fitting and the recursive plane clustering processes are repeated until no more planes are found. A probabilistic model is introduced to predict the success probability of the NCC-RANSAC algorithm and validated with real data of a 3-D time-of-flight camera–SwissRanger SR4000. Experimental results demonstrate that the proposed method extracts more accurate planes with less computational time than the existing RANSAC-based methods. PMID:24771605

  15. NCC-RANSAC: a fast plane extraction method for 3-D range data segmentation.

    PubMed

    Qian, Xiangfei; Ye, Cang

    2014-12-01

    This paper presents a new plane extraction (PE) method based on the random sample consensus (RANSAC) approach. The generic RANSAC-based PE algorithm may over-extract a plane, and it may fail in case of a multistep scene where the RANSAC procedure results in multiple inlier patches that form a slant plane straddling the steps. The CC-RANSAC PE algorithm successfully overcomes the latter limitation if the inlier patches are separate. However, it fails if the inlier patches are connected. A typical scenario is a stairway with a stair wall where the RANSAC plane-fitting procedure results in inliers patches in the tread, riser, and stair wall planes. They connect together and form a plane. The proposed method, called normal-coherence CC-RANSAC (NCC-RANSAC), performs a normal coherence check to all data points of the inlier patches and removes the data points whose normal directions are contradictory to that of the fitted plane. This process results in separate inlier patches, each of which is treated as a candidate plane. A recursive plane clustering process is then executed to grow each of the candidate planes until all planes are extracted in their entireties. The RANSAC plane-fitting and the recursive plane clustering processes are repeated until no more planes are found. A probabilistic model is introduced to predict the success probability of the NCC-RANSAC algorithm and validated with real data of a 3-D time-of-flight camera-SwissRanger SR4000. Experimental results demonstrate that the proposed method extracts more accurate planes with less computational time than the existing RANSAC-based methods.

  16. Automatic shape-based level set segmentation for needle tracking in 3-D TRUS-guided prostate brachytherapy.

    PubMed

    Yan, Ping; Cheeseborough, John C; Chao, K S Clifford

    2012-09-01

    Prostate brachytherapy is an effective treatment for early prostate cancer. The success depends critically on the correct needle implant positions. We have devised an automatic shape-based level set segmentation tool for needle tracking in 3-D transrectal ultrasound (TRUS) images, which uses the shape information and level set technique to localize the needle position and estimate the endpoint of needle in real-time. The 3-D TRUS images used in the evaluation of our tools were obtained using a 2-D TRUS transducer from Ultrasonix (Richmond, BC, Canada) and a computer-controlled stepper motor system from Thorlabs (Newton, NJ, USA). The accuracy and feedback mechanism had been validated using prostate phantoms and compared with 3-D positions of these needles derived from experts' readings. The experts' segmentation of needles from 3-D computed tomography images was the ground truth in this study. The difference between automatic and expert segmentations are within 0.1 mm for 17 of 19 implanted needles. The mean errors of automatic segmentations by comparing with the ground truth are within 0.25 mm. Our automated method allows real-time TRUS-based needle placement difference within one pixel compared with manual expert segmentation.

  17. 3D polygonal representation of dense point clouds by triangulation, segmentation, and texture projection

    NASA Astrophysics Data System (ADS)

    Tajbakhsh, Touraj

    2010-02-01

    A basic concern of computer graphic is the modeling and realistic representation of three-dimensional objects. In this paper we present our reconstruction framework which determines a polygonal surface from a set of dense points such those typically obtained from laser scanners. We deploy the concept of adaptive blobs to achieve a first volumetric representation of the object. In the next step we estimate a coarse surface using the marching cubes method. We propose to deploy a depth-first search segmentation algorithm traversing a graph representation of the obtained polygonal mesh in order to identify all connected components. A so called supervised triangulation maps the coarse surfaces onto the dense point cloud. We optimize the mesh topology using edge exchange operations. For photo-realistic visualization of objects we finally synthesize optimal low-loss textures from available scene captures of different projections. We evaluate our framework on artificial data as well as real sensed data.

  18. Automated torso organ segmentation from 3D CT images using conditional random field

    NASA Astrophysics Data System (ADS)

    Nimura, Yukitaka; Hayashi, Yuichiro; Kitasaka, Takayuki; Misawa, Kazunari; Mori, Kensaku

    2016-03-01

    This paper presents a segmentation method for torso organs using conditional random field (CRF) from medical images. A lot of methods have been proposed to enable automated extraction of organ regions from volumetric medical images. However, it is necessary to adjust empirical parameters of them to obtain precise organ regions. In this paper, we propose an organ segmentation method using structured output learning which is based on probabilistic graphical model. The proposed method utilizes CRF on three-dimensional grids as probabilistic graphical model and binary features which represent the relationship between voxel intensities and organ labels. Also we optimize the weight parameters of the CRF using stochastic gradient descent algorithm and estimate organ labels for a given image by maximum a posteriori (MAP) estimation. The experimental result revealed that the proposed method can extract organ regions automatically using structured output learning. The error of organ label estimation was 6.6%. The DICE coefficients of right lung, left lung, heart, liver, spleen, right kidney, and left kidney are 0.94, 0.92, 0.65, 0.67, 0.36, 0.38, and 0.37, respectively.

  19. Image segmentation using an improved differential algorithm

    NASA Astrophysics Data System (ADS)

    Gao, Hao; Shi, Yujiao; Wu, Dongmei

    2014-10-01

    Among all the existing segmentation techniques, the thresholding technique is one of the most popular due to its simplicity, robustness, and accuracy (e.g. the maximum entropy method, Otsu's method, and K-means clustering). However, the computation time of these algorithms grows exponentially with the number of thresholds due to their exhaustive searching strategy. As a population-based optimization algorithm, differential algorithm (DE) uses a population of potential solutions and decision-making processes. It has shown considerable success in solving complex optimization problems within a reasonable time limit. Thus, applying this method into segmentation algorithm should be a good choice during to its fast computational ability. In this paper, we first propose a new differential algorithm with a balance strategy, which seeks a balance between the exploration of new regions and the exploitation of the already sampled regions. Then, we apply the new DE into the traditional Otsu's method to shorten the computation time. Experimental results of the new algorithm on a variety of images show that, compared with the EA-based thresholding methods, the proposed DE algorithm gets more effective and efficient results. It also shortens the computation time of the traditional Otsu method.

  20. Towards an Iterative Algorithm for the Optimal Boundary Coverage of a 3D Environment

    NASA Astrophysics Data System (ADS)

    Bottino, Andrea

    This paper presents a new optimal algorithm for locating a set of sensors in 3D able to see the boundaries of a polyhedral environment. Our approach is iterative and is based on a lower bound on the sensors' number and on a restriction of the original problem requiring each face to be observed in its entirety by at least one sensor. The lower bound allows evaluating the quality of the solution obtained at each step, and halting the algorithm if the solution is satisfactory. The algorithm asymptotically converges to the optimal solution of the unrestricted problem if the faces are subdivided into smaller parts.

  1. Integrated 3D density modelling and segmentation of the Dead Sea Transform

    NASA Astrophysics Data System (ADS)

    Götze, H.-J.; El-Kelani, R.; Schmidt, S.; Rybakov, M.; Hassouneh, M.; Förster, H.-J.; Ebbing, J.

    2007-04-01

    A 3D interpretation of the newly compiled Bouguer anomaly in the area of the “Dead Sea Rift” is presented. A high-resolution 3D model constrained with the seismic results reveals the crustal thickness and density distribution beneath the Arava/Araba Valley (AV), the region between the Dead Sea and the Gulf of Aqaba/Elat. The Bouguer anomalies along the axial portion of the AV, as deduced from the modelling results, are mainly caused by deep-seated sedimentary basins ( D > 10 km). An inferred zone of intrusion coincides with the maximum gravity anomaly on the eastern flank of the AV. The intrusion is displaced at different sectors along the NNW-SSE direction. The zone of maximum crustal thinning (depth 30 km) is attained in the western sector at the Mediterranean. The southeastern plateau, on the other hand, shows by far the largest crustal thickness of the region (38-42 km). Linked to the left lateral movement of approx. 105 km at the boundary between the African and Arabian plate, and constrained with recent seismic data, a small asymmetric topography of the Moho beneath the Dead Sea Transform (DST) was modelled. The thickness and density of the crust suggest that the AV is underlain by continental crust. The deep basins, the relatively large intrusion and the asymmetric topography of the Moho lead to the conclusion that a small-scale asthenospheric upwelling could be responsible for the thinning of the crust and subsequent creation of the Dead Sea basin during the left lateral movement. A clear segmentation along the strike of the DST was obtained by curvature analysis: the northern part in the neighbourhood of the Dead Sea is characterised by high curvature of the residual gravity field. Flexural rigidity calculations result in very low values of effective elastic lithospheric thickness ( t e < 5 km). This points to decoupling of crust in the Dead Sea area. In the central, AV the curvature is less pronounced and t e increases to approximately 10 km

  2. Kidney segmentation in CT sequences using SKFCM and improved GrowCut algorithm

    PubMed Central

    2015-01-01

    Background Organ segmentation is an important step in computer-aided diagnosis and pathology detection. Accurate kidney segmentation in abdominal computed tomography (CT) sequences is an essential and crucial task for surgical planning and navigation in kidney tumor ablation. However, kidney segmentation in CT is a substantially challenging work because the intensity values of kidney parenchyma are similar to those of adjacent structures. Results In this paper, a coarse-to-fine method was applied to segment kidney from CT images, which consists two stages including rough segmentation and refined segmentation. The rough segmentation is based on a kernel fuzzy C-means algorithm with spatial information (SKFCM) algorithm and the refined segmentation is implemented with improved GrowCut (IGC) algorithm. The SKFCM algorithm introduces a kernel function and spatial constraint into fuzzy c-means clustering (FCM) algorithm. The IGC algorithm makes good use of the continuity of CT sequences in space which can automatically generate the seed labels and improve the efficiency of segmentation. The experimental results performed on the whole dataset of abdominal CT images have shown that the proposed method is accurate and efficient. The method provides a sensitivity of 95.46% with specificity of 99.82% and performs better than other related methods. Conclusions Our method achieves high accuracy in kidney segmentation and considerably reduces the time and labor required for contour delineation. In addition, the method can be expanded to 3D segmentation directly without modification. PMID:26356850

  3. Athena3D: Flux-conservative Godunov-type algorithm for compressible magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Hawley, John; Simon, Jake; Stone, James; Gardiner, Thomas; Teuben, Peter

    2015-05-01

    Written in FORTRAN, Athena3D, based on Athena (ascl:1010.014), is an implementation of a flux-conservative Godunov-type algorithm for compressible magnetohydrodynamics. Features of the Athena3D code include compressible hydrodynamics and ideal MHD in one, two or three spatial dimensions in Cartesian coordinates; adiabatic and isothermal equations of state; 1st, 2nd or 3rd order reconstruction using the characteristic variables; and numerical fluxes computed using the Roe scheme. In addition, it offers the ability to add source terms to the equations and is parallelized based on MPI.

  4. Bayesian maximal paths for coronary artery segmentation from 3D CT angiograms.

    PubMed

    Lesage, David; Angelini, Elsa D; Bloch, Isabelle; Funka-Lea, Gareth

    2009-01-01

    We propose a recursive Bayesian model for the delineation of coronary arteries from 3D CT angiograms (cardiac CTA) and discuss the use of discrete minimal path techniques as an efficient optimization scheme for the propagation of model realizations on a discrete graph. Design issues such as the definition of a suitable accumulative metric are analyzed in the context of our probabilistic formulation. Our approach jointly optimizes the vascular centerline and associated radius on a 4D space+scale graph. It employs a simple heuristic scheme to dynamically limit scale-space exploration for increased computational performance. It incorporates prior knowledge on radius variations and derives the local data likelihood from a multiscale, oriented gradient flux-based feature. From minimal cost path techniques, it inherits practical properties such as computational efficiency and workflow versatility. We quantitatively evaluated a two-point interactive implementation on a large and varied cardiac CTA database. Additionally, results from the Rotterdam Coronary Artery Algorithm Evaluation Framework are provided for comparison with existing techniques. The scores obtained are excellent (97.5% average overlap with ground truth delineated by experts) and demonstrate the high potential of the method in terms of robustness to anomalies and poor image quality.

  5. Study of improved ray tracing parallel algorithm for CGH of 3D objects on GPU

    NASA Astrophysics Data System (ADS)

    Cong, Bin; Jiang, Xiaoyu; Yao, Jun; Zhao, Kai

    2014-11-01

    An improved parallel algorithm for holograms of three-dimensional objects was presented. According to the physical characteristics and mathematical properties of the original ray tracing algorithm for computer generated holograms (CGH), using transform approximation and numerical analysis methods, we extract parts of ray tracing algorithm which satisfy parallelization features and implement them on graphics processing unit (GPU). Meanwhile, through proper design of parallel numerical procedure, we did parallel programming to the two-dimensional slices of three-dimensional object with CUDA. According to the experiments, an effective method of dealing with occlusion problem in ray tracing is proposed, as well as generating the holograms of 3D objects with additive property. Our results indicate that the improved algorithm can effectively shorten the computing time. Due to the different sizes of spatial object points and hologram pixels, the speed has increased 20 to 70 times comparing with original ray tracing algorithm.

  6. In Situ 3D Segmentation of Individual Plant Leaves Using a RGB-D Camera for Agricultural Automation.

    PubMed

    Xia, Chunlei; Wang, Longtan; Chung, Bu-Keun; Lee, Jang-Myung

    2015-08-19

    In this paper, we present a challenging task of 3D segmentation of individual plant leaves from occlusions in the complicated natural scene. Depth data of plant leaves is introduced to improve the robustness of plant leaf segmentation. The low cost RGB-D camera is utilized to capture depth and color image in fields. Mean shift clustering is applied to segment plant leaves in depth image. Plant leaves are extracted from the natural background by examining vegetation of the candidate segments produced by mean shift. Subsequently, individual leaves are segmented from occlusions by active contour models. Automatic initialization of the active contour models is implemented by calculating the center of divergence from the gradient vector field of depth image. The proposed segmentation scheme is tested through experiments under greenhouse conditions. The overall segmentation rate is 87.97% while segmentation rates for single and occluded leaves are 92.10% and 86.67%, respectively. Approximately half of the experimental results show segmentation rates of individual leaves higher than 90%. Nevertheless, the proposed method is able to segment individual leaves from heavy occlusions.

  7. In Situ 3D Segmentation of Individual Plant Leaves Using a RGB-D Camera for Agricultural Automation

    PubMed Central

    Xia, Chunlei; Wang, Longtan; Chung, Bu-Keun; Lee, Jang-Myung

    2015-01-01

    In this paper, we present a challenging task of 3D segmentation of individual plant leaves from occlusions in the complicated natural scene. Depth data of plant leaves is introduced to improve the robustness of plant leaf segmentation. The low cost RGB-D camera is utilized to capture depth and color image in fields. Mean shift clustering is applied to segment plant leaves in depth image. Plant leaves are extracted from the natural background by examining vegetation of the candidate segments produced by mean shift. Subsequently, individual leaves are segmented from occlusions by active contour models. Automatic initialization of the active contour models is implemented by calculating the center of divergence from the gradient vector field of depth image. The proposed segmentation scheme is tested through experiments under greenhouse conditions. The overall segmentation rate is 87.97% while segmentation rates for single and occluded leaves are 92.10% and 86.67%, respectively. Approximately half of the experimental results show segmentation rates of individual leaves higher than 90%. Nevertheless, the proposed method is able to segment individual leaves from heavy occlusions. PMID:26295395

  8. Fast and memory-efficient LOGISMOS graph search for intraretinal layer segmentation of 3D macular OCT scans

    NASA Astrophysics Data System (ADS)

    Lee, Kyungmoo; Zhang, Li; Abramoff, Michael D.; Sonka, Milan

    2015-03-01

    Image segmentation is important for quantitative analysis of medical image data. Recently, our research group has introduced a 3-D graph search method which can simultaneously segment optimal interacting surfaces with respect to the cost function in volumetric images. Although it provides excellent segmentation accuracy, it is computationally demanding (both CPU and memory) to simultaneously segment multiple surfaces from large volumetric images. Therefore, we propose a new, fast, and memory-efficient graph search method for intraretinal layer segmentation of 3-D macular optical coherence tomograpy (OCT) scans. The key idea is to reduce the size of a graph by combining the nodes with high costs based on the multiscale approach. The new approach requires significantly less memory and achieves significantly faster processing speeds (p < 0.01) with only small segmentation differences compared to the original graph search method. This paper discusses sub-optimality of this approach and assesses trade-off relationships between decreasing processing speed and increasing segmentation differences from that of the original method as a function of employed scale of the underlying graph construction.

  9. Evaluation of segmented 3D acquisition schemes for whole-brain high-resolution arterial spin labeling at 3 T.

    PubMed

    Vidorreta, Marta; Balteau, Evelyne; Wang, Ze; De Vita, Enrico; Pastor, María A; Thomas, David L; Detre, John A; Fernández-Seara, María A

    2014-11-01

    Recent technical developments have significantly increased the signal-to-noise ratio (SNR) of arterial spin labeled (ASL) perfusion MRI. Despite this, typical ASL acquisitions still employ large voxel sizes. The purpose of this work was to implement and evaluate two ASL sequences optimized for whole-brain high-resolution perfusion imaging, combining pseudo-continuous ASL (pCASL), background suppression (BS) and 3D segmented readouts, with different in-plane k-space trajectories. Identical labeling and BS pulses were implemented for both sequences. Two segmented 3D readout schemes with different in-plane trajectories were compared: Cartesian (3D GRASE) and spiral (3D RARE Stack-Of-Spirals). High-resolution perfusion images (2 × 2 × 4 mm(3) ) were acquired in 15 young healthy volunteers with the two ASL sequences at 3 T. The quality of the perfusion maps was evaluated in terms of SNR and gray-to-white matter contrast. Point-spread-function simulations were carried out to assess the impact of readout differences on the effective resolution. The combination of pCASL, in-plane segmented 3D readouts and BS provided high-SNR high-resolution ASL perfusion images of the whole brain. Although both sequences produced excellent image quality, the 3D RARE Stack-Of-Spirals readout yielded higher temporal and spatial SNR than 3D GRASE (spatial SNR = 8.5 ± 2.8 and 3.7 ± 1.4; temporal SNR = 27.4 ± 12.5 and 15.6 ± 7.6, respectively) and decreased through-plane blurring due to its inherent oversampling of the central k-space region, its reduced effective TE and shorter total readout time, at the expense of a slight increase in the effective in-plane voxel size. PMID:25263944

  10. Meta-Model Based Optimisation Algorithms for Robust Optimization of 3D Forging Sequences

    SciTech Connect

    Fourment, Lionel

    2007-04-07

    In order to handle costly and complex 3D metal forming optimization problems, we develop a new optimization algorithm that allows finding satisfactory solutions within less than 50 iterations (/function evaluation) in the presence of local extrema. It is based on the sequential approximation of the problem objective function by the Meshless Finite Difference Method (MFDM). This changing meta-model allows taking into account the gradient information, if available, or not. It can be easily extended to take into account uncertainties on the optimization parameters. This new algorithm is first evaluated on analytic functions, before being applied to a 3D forging benchmark, the preform tool shape optimization that allows minimizing the potential of fold formation during the two-stepped forging sequence.

  11. Shape analysis of corpus callosum in phenylketonuria using a new 3D correspondence algorithm

    NASA Astrophysics Data System (ADS)

    He, Qing; Christ, Shawn E.; Karsch, Kevin; Peck, Dawn; Duan, Ye

    2010-03-01

    Statistical shape analysis of brain structures has gained increasing interest from neuroimaging community because it can precisely locate shape differences between healthy and pathological structures. The most difficult and crucial problem is establishing shape correspondence among individual 3D shapes. This paper proposes a new algorithm for 3D shape correspondence. A set of landmarks are sampled on a template shape, and initial correspondence is established between the template and the target shape based on the similarity of locations and normal directions. The landmarks on the target are then refined by iterative thin plate spline. The algorithm is simple and fast, and no spherical mapping is needed. We apply our method to the statistical shape analysis of the corpus callosum (CC) in phenylketonuria (PKU), and significant local shape differences between the patients and the controls are found in the most anterior and posterior aspects of the corpus callosum.

  12. Meanie3D - a mean-shift based, multivariate, multi-scale clustering and tracking algorithm

    NASA Astrophysics Data System (ADS)

    Simon, Jürgen-Lorenz; Malte, Diederich; Silke, Troemel

    2014-05-01

    Project OASE is the one of 5 work groups at the HErZ (Hans Ertel Centre for Weather Research), an ongoing effort by the German weather service (DWD) to further research at Universities concerning weather prediction. The goal of project OASE is to gain an object-based perspective on convective events by identifying them early in the onset of convective initiation and follow then through the entire lifecycle. The ability to follow objects in this fashion requires new ways of object definition and tracking, which incorporate all the available data sets of interest, such as Satellite imagery, weather Radar or lightning counts. The Meanie3D algorithm provides the necessary tool for this purpose. Core features of this new approach to clustering (object identification) and tracking are the ability to identify objects using the mean-shift algorithm applied to a multitude of variables (multivariate), as well as the ability to detect objects on various scales (multi-scale) using elements of Scale-Space theory. The algorithm works in 2D as well as 3D without modifications. It is an extension of a method well known from the field of computer vision and image processing, which has been tailored to serve the needs of the meteorological community. In spite of the special application to be demonstrated here (like convective initiation), the algorithm is easily tailored to provide clustering and tracking for a wide class of data sets and problems. In this talk, the demonstration is carried out on two of the OASE group's own composite sets. One is a 2D nationwide composite of Germany including C-Band Radar (2D) and Satellite information, the other a 3D local composite of the Bonn/Jülich area containing a high-resolution 3D X-Band Radar composite.

  13. Optic disc boundary segmentation from diffeomorphic demons registration of monocular fundus image sequences versus 3D visualization of stereo fundus image pairs for automated early stage glaucoma assessment

    NASA Astrophysics Data System (ADS)

    Gatti, Vijay; Hill, Jason; Mitra, Sunanda; Nutter, Brian

    2014-03-01

    Despite the current availability in resource-rich regions of advanced technologies in scanning and 3-D imaging in current ophthalmology practice, world-wide screening tests for early detection and progression of glaucoma still consist of a variety of simple tools, including fundus image-based parameters such as CDR (cup to disc diameter ratio) and CAR (cup to disc area ratio), especially in resource -poor regions. Reliable automated computation of the relevant parameters from fundus image sequences requires robust non-rigid registration and segmentation techniques. Recent research work demonstrated that proper non-rigid registration of multi-view monocular fundus image sequences could result in acceptable segmentation of cup boundaries for automated computation of CAR and CDR. This research work introduces a composite diffeomorphic demons registration algorithm for segmentation of cup boundaries from a sequence of monocular images and compares the resulting CAR and CDR values with those computed manually by experts and from 3-D visualization of stereo pairs. Our preliminary results show that the automated computation of CDR and CAR from composite diffeomorphic segmentation of monocular image sequences yield values comparable with those from the other two techniques and thus may provide global healthcare with a cost-effective yet accurate tool for management of glaucoma in its early stage.

  14. 3-D asteroids using parallel graphics on NCUBE: A testbed for evaluating controller algorithms

    SciTech Connect

    Ho, A.; Fox, G.; Snyder, S.; Chu, D.; Mylner, T.

    1989-04-18

    We have implemented on NCUBE a 3-D Asteroids video game system. The system functions as a testbed for evaluating intelligent controller algorithms within a simulated space battle framework. The Asteroids features battle of spacecrafts in a 3-D toroidal space with inert meteorites of various sizes. It supports multi-players and mixed communication protocols. The game can be played either in interactive or batch mode. In interactive mode a player can maneuver a spacecraft by keyboard or graphics tablet control like a regular pc-based video game. 3-D visual display of the game uses the NCUBE Real-Time Parallel Graphics Board which has 16 NCUBE processors and a Hitachi HD63484 drawing/video chip. In batch mode spacecrafts can be controlled by user-supplied software controllers. The modular structure of the game allows easy replacement of game objectives, game rules, and spacecraft controllers. The flexibility of module substitution allows fast prototyping of different controller strategies and algorithms which are constrained by various game rules. The system also allows algorithms that run on distinct subcubes of a hypercube to compete with one another. 6 refs., 1 fig.

  15. A real-time misalignment correction algorithm for stereoscopic 3D cameras

    NASA Astrophysics Data System (ADS)

    Pekkucuksen, Ibrahim E.; Batur, Aziz Umit; Zhang, Buyue

    2012-03-01

    Camera calibration is an important problem for stereo 3-D cameras since the misalignment between the two views can lead to vertical disparities that significantly degrade 3-D viewing quality. Offline calibration during manufacturing is not always an option especially for mass produced cameras due to cost. In addition, even if one-time calibration is performed during manufacturing, its accuracy cannot be maintained indefinitely because environmental factors can lead to changes in camera hardware. In this paper, we propose a real-time stereo calibration solution that runs inside a consumer camera and continuously estimates and corrects for the misalignment between the stereo cameras. Our algorithm works by processing images of natural scenes and does not require the use of special calibration charts. The algorithm first estimates the disparity in horizontal and vertical directions between the corresponding blocks from stereo images. Then, this initial estimate is refined with two dimensional search using smaller sub-blocks. The displacement data and block coordinates are fed to a modified affine transformation model and outliers are discarded to keep the modeling error low. Finally, the estimated affine parameters are split by half and misalignment correction is applied to each view accordingly. The proposed algorithm significantly reduces the misalignment between stereo frames and enables a more comfortable 3-D viewing experience.

  16. Algorithms for extraction of structural attitudes from 3D outcrop models

    NASA Astrophysics Data System (ADS)

    Duelis Viana, Camila; Endlein, Arthur; Ademar da Cruz Campanha, Ginaldo; Henrique Grohmann, Carlos

    2016-05-01

    The acquisition of geological attitudes on rock cuts using traditional field compass survey can be a time consuming, dangerous, or even impossible task depending on the conditions and location of outcrops. The importance of this type of data in rock-mass classifications and structural geology has led to the development of new techniques, in which the application of photogrammetric 3D digital models has had an increasing use. In this paper we present two algorithms for extraction of attitudes of geological discontinuities from virtual outcrop models: ply2atti and scanline, implemented with the Python programming language. The ply2atti algorithm allows for the virtual sampling of planar discontinuities appearing on the 3D model as individual exposed surfaces, while the scanline algorithm allows the sampling of discontinuities (surfaces and traces) along a virtual scanline. Application to digital models of a simplified test setup and a rock cut demonstrated a good correlation between the surveys undertaken using traditional field compass reading and virtual sampling on 3D digital models.

  17. Automatic 3D Segmentation and Quantification of Lenticulostriate Arteries from High-Resolution 7 Tesla MRA Images.

    PubMed

    Wei Liao; Rohr, Karl; Chang-Ki Kang; Zang-Hee Cho; Worz, Stefan

    2016-01-01

    We propose a novel hybrid approach for automatic 3D segmentation and quantification of high-resolution 7 Tesla magnetic resonance angiography (MRA) images of the human cerebral vasculature. Our approach consists of two main steps. First, a 3D model-based approach is used to segment and quantify thick vessels and most parts of thin vessels. Second, remaining vessel gaps of the first step in low-contrast and noisy regions are completed using a 3D minimal path approach, which exploits directional information. We present two novel minimal path approaches. The first is an explicit approach based on energy minimization using probabilistic sampling, and the second is an implicit approach based on fast marching with anisotropic directional prior. We conducted an extensive evaluation with over 2300 3D synthetic images and 40 real 3D 7 Tesla MRA images. Quantitative and qualitative evaluation shows that our approach achieves superior results compared with a previous minimal path approach. Furthermore, our approach was successfully used in two clinical studies on stroke and vascular dementia.

  18. Automatic 3D Segmentation and Quantification of Lenticulostriate Arteries from High-Resolution 7 Tesla MRA Images.

    PubMed

    Wei Liao; Rohr, Karl; Chang-Ki Kang; Zang-Hee Cho; Worz, Stefan

    2016-01-01

    We propose a novel hybrid approach for automatic 3D segmentation and quantification of high-resolution 7 Tesla magnetic resonance angiography (MRA) images of the human cerebral vasculature. Our approach consists of two main steps. First, a 3D model-based approach is used to segment and quantify thick vessels and most parts of thin vessels. Second, remaining vessel gaps of the first step in low-contrast and noisy regions are completed using a 3D minimal path approach, which exploits directional information. We present two novel minimal path approaches. The first is an explicit approach based on energy minimization using probabilistic sampling, and the second is an implicit approach based on fast marching with anisotropic directional prior. We conducted an extensive evaluation with over 2300 3D synthetic images and 40 real 3D 7 Tesla MRA images. Quantitative and qualitative evaluation shows that our approach achieves superior results compared with a previous minimal path approach. Furthermore, our approach was successfully used in two clinical studies on stroke and vascular dementia. PMID:26571526

  19. A hybrid framework of multiple active appearance models and global registration for 3D prostate segmentation in MRI

    NASA Astrophysics Data System (ADS)

    Ghose, Soumya; Oliver, Arnau; Martí, Robert; Lladó, Xavier; Freixenet, Jordi; Mitra, Jhimli; Vilanova, Joan C.; Meriaudeau, Fabrice

    2012-02-01

    Real-time fusion of Magnetic Resonance (MR) and Trans Rectal Ultra Sound (TRUS) images aid in the localization of malignant tissues in TRUS guided prostate biopsy. Registration performed on segmented contours of the prostate reduces computational complexity and improves the multimodal registration accuracy. However, accurate and computationally efficient 3D segmentation of the prostate in MR images could be a challenging task due to inter-patient shape and intensity variability of the prostate gland. In this work, we propose to use multiple statistical shape and appearance models to segment the prostate in 2D and a global registration framework to impose shape restriction in 3D. Multiple mean parametric models of the shape and appearance corresponding to the apex, central and base regions of the prostate gland are derived from principal component analysis (PCA) of prior shape and intensity information of the prostate from the training data. The estimated parameters are then modified with the prior knowledge of the optimization space to achieve segmentation in 2D. The 2D segmented slices are then rigidly registered with the average 3D model produced by affine registration of the ground truth of the training datasets to minimize pose variations and impose 3D shape restriction. The proposed method achieves a mean Dice similarity coefficient (DSC) value of 0.88+/-0.11, and mean Hausdorff distance (HD) of 3.38+/-2.81 mm when validated with 15 prostate volumes of a public dataset in leave-one-out validation framework. The results achieved are better compared to some of the works in the literature.

  20. Web-based Visualization and Query of semantically segmented multiresolution 3D Models in the Field of Cultural Heritage

    NASA Astrophysics Data System (ADS)

    Auer, M.; Agugiaro, G.; Billen, N.; Loos, L.; Zipf, A.

    2014-05-01

    Many important Cultural Heritage sites have been studied over long periods of time by different means of technical equipment, methods and intentions by different researchers. This has led to huge amounts of heterogeneous "traditional" datasets and formats. The rising popularity of 3D models in the field of Cultural Heritage in recent years has brought additional data formats and makes it even more necessary to find solutions to manage, publish and study these data in an integrated way. The MayaArch3D project aims to realize such an integrative approach by establishing a web-based research platform bringing spatial and non-spatial databases together and providing visualization and analysis tools. Especially the 3D components of the platform use hierarchical segmentation concepts to structure the data and to perform queries on semantic entities. This paper presents a database schema to organize not only segmented models but also different Levels-of-Details and other representations of the same entity. It is further implemented in a spatial database which allows the storing of georeferenced 3D data. This enables organization and queries by semantic, geometric and spatial properties. As service for the delivery of the segmented models a standardization candidate of the OpenGeospatialConsortium (OGC), the Web3DService (W3DS) has been extended to cope with the new database schema and deliver a web friendly format for WebGL rendering. Finally a generic user interface is presented which uses the segments as navigation metaphor to browse and query the semantic segmentation levels and retrieve information from an external database of the German Archaeological Institute (DAI).

  1. Patellar segmentation from 3D magnetic resonance images using guided recursive ray-tracing for edge pattern detection

    NASA Astrophysics Data System (ADS)

    Cheng, Ruida; Jackson, Jennifer N.; McCreedy, Evan S.; Gandler, William; Eijkenboom, J. J. F. A.; van Middelkoop, M.; McAuliffe, Matthew J.; Sheehan, Frances T.

    2016-03-01

    The paper presents an automatic segmentation methodology for the patellar bone, based on 3D gradient recalled echo and gradient recalled echo with fat suppression magnetic resonance images. Constricted search space outlines are incorporated into recursive ray-tracing to segment the outer cortical bone. A statistical analysis based on the dependence of information in adjacent slices is used to limit the search in each image to between an outer and inner search region. A section based recursive ray-tracing mechanism is used to skip inner noise regions and detect the edge boundary. The proposed method achieves higher segmentation accuracy (0.23mm) than the current state-of-the-art methods with the average dice similarity coefficient of 96.0% (SD 1.3%) agreement between the auto-segmentation and ground truth surfaces.

  2. Development of an algorithm to measure defect geometry using a 3D laser scanner

    NASA Astrophysics Data System (ADS)

    Kilambi, S.; Tipton, S. M.

    2012-08-01

    Current fatigue life prediction models for coiled tubing (CT) require accurate measurements of the defect geometry. Three-dimensional (3D) laser imaging has shown promise toward becoming a nondestructive, non-contacting method of surface defect characterization. Laser imaging provides a detailed photographic image of a flaw, in addition to a detailed 3D surface map from which its critical dimensions can be measured. This paper describes algorithms to determine defect characteristics, specifically depth, width, length and projected cross-sectional area. Curve-fitting methods were compared and implicit algebraic fits have higher probability of convergence compared to explicit geometric fits. Among the algebraic fits, the Taubin circle fit has the least error. The algorithm was able to extract the dimensions of the flaw geometry from the scanned data of CT to within a tolerance of about 0.127 mm, close to the tolerance specified for the laser scanner itself, compared to measurements made using traveling microscopes. The algorithm computes the projected surface area of the flaw, which could previously only be estimated from the dimension measurements and the assumptions made about cutter shape. Although shadows compromised the accuracy of the shape characterization, especially for deep and narrow flaws, the results indicate that the algorithm with laser scanner can be used for non-destructive evaluation of CT in the oil field industry. Further work is needed to improve accuracy, to eliminate shadow effects and to reduce radial deviation.

  3. Simultaneous Multi-Structure Segmentation and 3D Nonrigid Pose Estimation in Image-Guided Robotic Surgery.

    PubMed

    Nosrati, Masoud S; Abugharbieh, Rafeef; Peyrat, Jean-Marc; Abinahed, Julien; Al-Alao, Osama; Al-Ansari, Abdulla; Hamarneh, Ghassan

    2016-01-01

    In image-guided robotic surgery, segmenting the endoscopic video stream into meaningful parts provides important contextual information that surgeons can exploit to enhance their perception of the surgical scene. This information provides surgeons with real-time decision-making guidance before initiating critical tasks such as tissue cutting. Segmenting endoscopic video is a challenging problem due to a variety of complications including significant noise attributed to bleeding and smoke from cutting, poor appearance contrast between different tissue types, occluding surgical tools, and limited visibility of the objects' geometries on the projected camera views. In this paper, we propose a multi-modal approach to segmentation where preoperative 3D computed tomography scans and intraoperative stereo-endoscopic video data are jointly analyzed. The idea is to segment multiple poorly visible structures in the stereo/multichannel endoscopic videos by fusing reliable prior knowledge captured from the preoperative 3D scans. More specifically, we estimate and track the pose of the preoperative models in 3D and consider the models' non-rigid deformations to match with corresponding visual cues in multi-channel endoscopic video and segment the objects of interest. Further, contrary to most augmented reality frameworks in endoscopic surgery that assume known camera parameters, an assumption that is often violated during surgery due to non-optimal camera calibration and changes in camera focus/zoom, our method embeds these parameters into the optimization hence correcting the calibration parameters within the segmentation process. We evaluate our technique on synthetic data, ex vivo lamb kidney datasets, and in vivo clinical partial nephrectomy surgery with results demonstrating high accuracy and robustness. PMID:26151933

  4. Detectability limitations with 3-D point reconstruction algorithms using digital radiography

    SciTech Connect

    Lindgren, Erik

    2015-03-31

    The estimated impact of pores in clusters on component fatigue will be highly conservative when based on 2-D rather than 3-D pore positions. To 3-D position and size defects using digital radiography and 3-D point reconstruction algorithms in general require a lower inspection time and in some cases work better with planar geometries than X-ray computed tomography. However, the increase in prior assumptions about the object and the defects will increase the intrinsic uncertainty in the resulting nondestructive evaluation output. In this paper this uncertainty arising when detecting pore defect clusters with point reconstruction algorithms is quantified using simulations. The simulation model is compared to and mapped to experimental data. The main issue with the uncertainty is the possible masking (detectability zero) of smaller defects around some other slightly larger defect. In addition, the uncertainty is explored in connection to the expected effects on the component fatigue life and for different amount of prior object-defect assumptions made.

  5. Computer-aided segmentation and 3D analysis of in vivo MRI examinations of the human vocal tract during phonation

    NASA Astrophysics Data System (ADS)

    Wismüller, Axel; Behrends, Johannes; Hoole, Phil; Leinsinger, Gerda L.; Meyer-Baese, Anke; Reiser, Maximilian F.

    2008-03-01

    We developed, tested, and evaluated a 3D segmentation and analysis system for in vivo MRI examinations of the human vocal tract during phonation. For this purpose, six professionally trained speakers, age 22-34y, were examined using a standardized MRI protocol (1.5 T, T1w FLASH, ST 4mm, 23 slices, acq. time 21s). The volunteers performed a prolonged (>=21s) emission of sounds of the German phonemic inventory. Simultaneous audio tape recording was obtained to control correct utterance. Scans were made in axial, coronal, and sagittal planes each. Computer-aided quantitative 3D evaluation included (i) automated registration of the phoneme-specific data acquired in different slice orientations, (ii) semi-automated segmentation of oropharyngeal structures, (iii) computation of a curvilinear vocal tract midline in 3D by nonlinear PCA, (iv) computation of cross-sectional areas of the vocal tract perpendicular to this midline. For the vowels /a/,/e/,/i/,/o/,/ø/,/u/,/y/, the extracted area functions were used to synthesize phoneme sounds based on an articulatory-acoustic model. For quantitative analysis, recorded and synthesized phonemes were compared, where area functions extracted from 2D midsagittal slices were used as a reference. All vowels could be identified correctly based on the synthesized phoneme sounds. The comparison between synthesized and recorded vowel phonemes revealed that the quality of phoneme sound synthesis was improved for phonemes /a/ and /y/, if 3D instead of 2D data were used, as measured by the average relative frequency shift between recorded and synthesized vowel formants (p<0.05, one-sided Wilcoxon rank sum test). In summary, the combination of fast MRI followed by subsequent 3D segmentation and analysis is a novel approach to examine human phonation in vivo. It unveils functional anatomical findings that may be essential for realistic modelling of the human vocal tract during speech production.

  6. Identifying Components in 3D Density Maps of Protein Nanomachines by Multi-scale Segmentation.

    PubMed

    Pintilie, Grigore; Zhang, Junjie; Chiu, Wah; Gossard, David

    2009-04-01

    Segmentation of density maps obtained using cryo-electron microscopy (cryo-EM) is a challenging task, and is typically accomplished by time-intensive interactive methods. The goal of segmentation is to identify the regions inside the density map that correspond to individual components. We present a multi-scale segmentation method for accomplishing this task that requires very little user interaction. The method uses the concept of scale space, which is created by convolution of the input density map with a Gaussian filter. The latter process smoothes the density map. The standard deviation of the Gaussian filter is varied, with smaller values corresponding to finer scales and larger values to coarser scales. Each of the maps at different scales is segmented using the watershed method, which is very efficient, completely automatic, and does not require the specification of seed points. Some detail is lost in the smoothing process. A sharpening process reintroduces detail into the segmentation at the coarsest scale by using the segmentations at the finer scales. We apply the method to simulated density maps, where the exact segmentation (or ground truth) is known, and rigorously evaluate the accuracy of the resulting segmentations.

  7. Systolic and diastolic assessment by 3D-ASM segmentation of gated-SPECT Studies: a comparison with MRI

    NASA Astrophysics Data System (ADS)

    Tobon-Gomez, C.; Bijnens, B. H.; Huguet, M.; Sukno, F.; Moragas, G.; Frangi, A. F.

    2009-02-01

    Gated single photon emission tomography (gSPECT) is a well-established technique used routinely in clinical practice. It can be employed to evaluate global left ventricular (LV) function of a patient. The purpose of this study is to assess LV systolic and diastolic function from gSPECT datasets in comparison with cardiac magnetic resonance imaging (CMR) measurements. This is achieved by applying our recently implemented 3D active shape model (3D-ASM) segmentation approach for gSPECT studies. This methodology allows for generation of 3D LV meshes for all cardiac phases, providing volume time curves and filling rate curves. Both systolic and diastolic functional parameters can be derived from these curves for an assessment of patient condition even at early stages of LV dysfunction. Agreement of functional parameters, with respect to CMR measurements, were analyzed by means of Bland-Altman plots. The analysis included subjects presenting either LV hypertrophy, dilation or myocardial infarction.

  8. Nodes Localization in 3D Wireless Sensor Networks Based on Multidimensional Scaling Algorithm

    PubMed Central

    2014-01-01

    In the recent years, there has been a huge advancement in wireless sensor computing technology. Today, wireless sensor network (WSN) has become a key technology for different types of smart environment. Nodes localization in WSN has arisen as a very challenging problem in the research community. Most of the applications for WSN are not useful without a priory known nodes positions. Adding GPS receivers to each node is an expensive solution and inapplicable for indoor environments. In this paper, we implemented and evaluated an algorithm based on multidimensional scaling (MDS) technique for three-dimensional (3D) nodes localization in WSN using improved heuristic method for distance calculation. Using extensive simulations we investigated our approach regarding various network parameters. We compared the results from the simulations with other approaches for 3D-WSN localization and showed that our approach outperforms other techniques in terms of accuracy. PMID:27437480

  9. Free segmentation in rendered 3D images through synthetic impulse response in integral imaging

    NASA Astrophysics Data System (ADS)

    Martínez-Corral, M.; Llavador, A.; Sánchez-Ortiga, E.; Saavedra, G.; Javidi, B.

    2016-06-01

    Integral Imaging is a technique that has the capability of providing not only the spatial, but also the angular information of three-dimensional (3D) scenes. Some important applications are the 3D display and digital post-processing as for example, depth-reconstruction from integral images. In this contribution we propose a new reconstruction method that takes into account the integral image and a simplified version of the impulse response function (IRF) of the integral imaging (InI) system to perform a two-dimensional (2D) deconvolution. The IRF of an InI system has a periodic structure that depends directly on the axial position of the object. Considering different periods of the IRFs we recover by deconvolution the depth information of the 3D scene. An advantage of our method is that it is possible to obtain nonconventional reconstructions by considering alternative synthetic impulse responses. Our experiments show the feasibility of the proposed method.

  10. 3D Drop Size Distribution Extrapolation Algorithm Using a Single Disdrometer

    NASA Technical Reports Server (NTRS)

    Lane, John

    2012-01-01

    Determining the Z-R relationship (where Z is the radar reflectivity factor and R is rainfall rate) from disdrometer data has been and is a common goal of cloud physicists and radar meteorology researchers. The usefulness of this quantity has traditionally been limited since radar represents a volume measurement, while a disdrometer corresponds to a point measurement. To solve that problem, a 3D-DSD (drop-size distribution) method of determining an equivalent 3D Z-R was developed at the University of Central Florida and tested at the Kennedy Space Center, FL. Unfortunately, that method required a minimum of three disdrometers clustered together within a microscale network (.1-km separation). Since most commercial disdrometers used by the radar meteorology/cloud physics community are high-cost instruments, three disdrometers located within a microscale area is generally not a practical strategy due to the limitations of these kinds of research budgets. A relatively simple modification to the 3D-DSD algorithm provides an estimate of the 3D-DSD and therefore, a 3D Z-R measurement using a single disdrometer. The basis of the horizontal extrapolation is mass conservation of a drop size increment, employing the mass conservation equation. For vertical extrapolation, convolution of a drop size increment using raindrop terminal velocity is used. Together, these two independent extrapolation techniques provide a complete 3DDSD estimate in a volume around and above a single disdrometer. The estimation error is lowest along a vertical plane intersecting the disdrometer position in the direction of wind advection. This work demonstrates that multiple sensors are not required for successful implementation of the 3D interpolation/extrapolation algorithm. This is a great benefit since it is seldom that multiple sensors in the required spatial arrangement are available for this type of analysis. The original software (developed at the University of Central Florida, 1998.- 2000) has

  11. Combining population and patient-specific characteristics for prostate segmentation on 3D CT images

    NASA Astrophysics Data System (ADS)

    Ma, Ling; Guo, Rongrong; Tian, Zhiqiang; Venkataraman, Rajesh; Sarkar, Saradwata; Liu, Xiabi; Tade, Funmilayo; Schuster, David M.; Fei, Baowei

    2016-03-01

    Prostate segmentation on CT images is a challenging task. In this paper, we explore the population and patient-specific characteristics for the segmentation of the prostate on CT images. Because population learning does not consider the inter-patient variations and because patient-specific learning may not perform well for different patients, we are combining the population and patient-specific information to improve segmentation performance. Specifically, we train a population model based on the population data and train a patient-specific model based on the manual segmentation on three slice of the new patient. We compute the similarity between the two models to explore the influence of applicable population knowledge on the specific patient. By combining the patient-specific knowledge with the influence, we can capture the population and patient-specific characteristics to calculate the probability of a pixel belonging to the prostate. Finally, we smooth the prostate surface according to the prostate-density value of the pixels in the distance transform image. We conducted the leave-one-out validation experiments on a set of CT volumes from 15 patients. Manual segmentation results from a radiologist serve as the gold standard for the evaluation. Experimental results show that our method achieved an average DSC of 85.1% as compared to the manual segmentation gold standard. This method outperformed the population learning method and the patient-specific learning approach alone. The CT segmentation method can have various applications in prostate cancer diagnosis and therapy.

  12. Combining Population and Patient-Specific Characteristics for Prostate Segmentation on 3D CT Images

    PubMed Central

    Ma, Ling; Guo, Rongrong; Tian, Zhiqiang; Venkataraman, Rajesh; Sarkar, Saradwata; Liu, Xiabi; Tade, Funmilayo; Schuster, David M.; Fei, Baowei

    2016-01-01

    Prostate segmentation on CT images is a challenging task. In this paper, we explore the population and patient-specific characteristics for the segmentation of the prostate on CT images. Because population learning does not consider the inter-patient variations and because patient-specific learning may not perform well for different patients, we are combining the population and patient-specific information to improve segmentation performance. Specifically, we train a population model based on the population data and train a patient-specific model based on the manual segmentation on three slice of the new patient. We compute the similarity between the two models to explore the influence of applicable population knowledge on the specific patient. By combining the patient-specific knowledge with the influence, we can capture the population and patient-specific characteristics to calculate the probability of a pixel belonging to the prostate. Finally, we smooth the prostate surface according to the prostate-density value of the pixels in the distance transform image. We conducted the leave-one-out validation experiments on a set of CT volumes from 15 patients. Manual segmentation results from a radiologist serve as the gold standard for the evaluation. Experimental results show that our method achieved an average DSC of 85.1% as compared to the manual segmentation gold standard. This method outperformed the population learning method and the patient-specific learning approach alone. The CT segmentation method can have various applications in prostate cancer diagnosis and therapy. PMID:27660382

  13. Accurate and Fully Automatic Hippocampus Segmentation Using Subject-Specific 3D Optimal Local Maps Into a Hybrid Active Contour Model

    PubMed Central

    Gkontra, Polyxeni; Daras, Petros; Maglaveras, Nicos

    2014-01-01

    Assessing the structural integrity of the hippocampus (HC) is an essential step toward prevention, diagnosis, and follow-up of various brain disorders due to the implication of the structural changes of the HC in those disorders. In this respect, the development of automatic segmentation methods that can accurately, reliably, and reproducibly segment the HC has attracted considerable attention over the past decades. This paper presents an innovative 3-D fully automatic method to be used on top of the multiatlas concept for the HC segmentation. The method is based on a subject-specific set of 3-D optimal local maps (OLMs) that locally control the influence of each energy term of a hybrid active contour model (ACM). The complete set of the OLMs for a set of training images is defined simultaneously via an optimization scheme. At the same time, the optimal ACM parameters are also calculated. Therefore, heuristic parameter fine-tuning is not required. Training OLMs are subsequently combined, by applying an extended multiatlas concept, to produce the OLMs that are anatomically more suitable to the test image. The proposed algorithm was tested on three different and publicly available data sets. Its accuracy was compared with that of state-of-the-art methods demonstrating the efficacy and robustness of the proposed method. PMID:27170866

  14. An improved scheduling algorithm for 3D cluster rendering with platform LSF

    NASA Astrophysics Data System (ADS)

    Xu, Wenli; Zhu, Yi; Zhang, Liping

    2013-10-01

    High-quality photorealistic rendering of 3D modeling needs powerful computing systems. On this demand highly efficient management of cluster resources develops fast to exert advantages. This paper is absorbed in the aim of how to improve the efficiency of 3D rendering tasks in cluster. It focuses research on a dynamic feedback load balance (DFLB) algorithm, the work principle of load sharing facility (LSF) and optimization of external scheduler plug-in. The algorithm can be applied into match and allocation phase of a scheduling cycle. Candidate hosts is prepared in sequence in match phase. And the scheduler makes allocation decisions for each job in allocation phase. With the dynamic mechanism, new weight is assigned to each candidate host for rearrangement. The most suitable one will be dispatched for rendering. A new plugin module of this algorithm has been designed and integrated into the internal scheduler. Simulation experiments demonstrate the ability of improved plugin module is superior to the default one for rendering tasks. It can help avoid load imbalance among servers, increase system throughput and improve system utilization.

  15. Evaluation of an improved algorithm for producing realistic 3D breast software phantoms: Application for mammography

    SciTech Connect

    Bliznakova, K.; Suryanarayanan, S.; Karellas, A.; Pallikarakis, N.

    2010-11-15

    Purpose: This work presents an improved algorithm for the generation of 3D breast software phantoms and its evaluation for mammography. Methods: The improved methodology has evolved from a previously presented 3D noncompressed breast modeling method used for the creation of breast models of different size, shape, and composition. The breast phantom is composed of breast surface, duct system and terminal ductal lobular units, Cooper's ligaments, lymphatic and blood vessel systems, pectoral muscle, skin, 3D mammographic background texture, and breast abnormalities. The key improvement is the development of a new algorithm for 3D mammographic texture generation. Simulated images of the enhanced 3D breast model without lesions were produced by simulating mammographic image acquisition and were evaluated subjectively and quantitatively. For evaluation purposes, a database with regions of interest taken from simulated and real mammograms was created. Four experienced radiologists participated in a visual subjective evaluation trial, as they judged the quality of the simulated mammograms, using the new algorithm compared to mammograms, obtained with the old modeling approach. In addition, extensive quantitative evaluation included power spectral analysis and calculation of fractal dimension, skewness, and kurtosis of simulated and real mammograms from the database. Results: The results from the subjective evaluation strongly suggest that the new methodology for mammographic breast texture creates improved breast models compared to the old approach. Calculated parameters on simulated images such as {beta} exponent deducted from the power law spectral analysis and fractal dimension are similar to those calculated on real mammograms. The results for the kurtosis and skewness are also in good coincidence with those calculated from clinical images. Comparison with similar calculations published in the literature showed good agreement in the majority of cases. Conclusions: The

  16. Model-based 3-D segmentation of multiple sclerosis lesions in dual-echo MRI data

    NASA Astrophysics Data System (ADS)

    Kamber, Micheline; Collins, D. Louis; Shinghal, Rajjan; Francis, G. S.; Evans, Alan C.

    1992-09-01

    This paper describes the development and use of a brain tissue probability model for the segmentation of multiple sclerosis lesions in magnetic resonance (MR) images of the human brain. Based on MR data obtained from a group of healthy volunteers, the model was constructed to provide prior probabilities of grey matter, white matter, ventricular cerebrospinal fluid (CSF), and external CSF distribution per unit voxel in a standardized 3- dimensional `brain space.' In comparison to purely data-driven segmentation, the use of the model to guide the segmentation of multiple sclerosis lesions reduced the volume of false positive lesions by 50%.

  17. Refinement-Cut: User-Guided Segmentation Algorithm for Translational Science

    PubMed Central

    Egger, Jan

    2014-01-01

    In this contribution, a semi-automatic segmentation algorithm for (medical) image analysis is presented. More precise, the approach belongs to the category of interactive contouring algorithms, which provide real-time feedback of the segmentation result. However, even with interactive real-time contouring approaches there are always cases where the user cannot find a satisfying segmentation, e.g. due to homogeneous appearances between the object and the background, or noise inside the object. For these difficult cases the algorithm still needs additional user support. However, this additional user support should be intuitive and rapid integrated into the segmentation process, without breaking the interactive real-time segmentation feedback. I propose a solution where the user can support the algorithm by an easy and fast placement of one or more seed points to guide the algorithm to a satisfying segmentation result also in difficult cases. These additional seed(s) restrict(s) the calculation of the segmentation for the algorithm, but at the same time, still enable to continue with the interactive real-time feedback segmentation. For a practical and genuine application in translational science, the approach has been tested on medical data from the clinical routine in 2D and 3D. PMID:24893650

  18. Object-constrained meshless deformable algorithm for high speed 3D nonrigid registration between CT and CBCT

    SciTech Connect

    Chen Ting; Kim, Sung; Goyal, Sharad; Jabbour, Salma; Zhou Jinghao; Rajagopal, Gunaretnum; Haffty, Bruce; Yue Ning

    2010-01-15

    Purpose: High-speed nonrigid registration between the planning CT and the treatment CBCT data is critical for real time image guided radiotherapy (IGRT) to improve the dose distribution and to reduce the toxicity to adjacent organs. The authors propose a new fully automatic 3D registration framework that integrates object-based global and seed constraints with the grayscale-based ''demons'' algorithm. Methods: Clinical objects were segmented on the planning CT images and were utilized as meshless deformable models during the nonrigid registration process. The meshless models reinforced a global constraint in addition to the grayscale difference between CT and CBCT in order to maintain the shape and the volume of geometrically complex 3D objects during the registration. To expedite the registration process, the framework was stratified into hierarchies, and the authors used a frequency domain formulation to diffuse the displacement between the reference and the target in each hierarchy. Also during the registration of pelvis images, they replaced the air region inside the rectum with estimated pixel values from the surrounding rectal wall and introduced an additional seed constraint to robustly track and match the seeds implanted into the prostate. The proposed registration framework and algorithm were evaluated on 15 real prostate cancer patients. For each patient, prostate gland, seminal vesicle, bladder, and rectum were first segmented by a radiation oncologist on planning CT images for radiotherapy planning purpose. The same radiation oncologist also manually delineated the tumor volumes and critical anatomical structures in the corresponding CBCT images acquired at treatment. These delineated structures on the CBCT were only used as the ground truth for the quantitative validation, while structures on the planning CT were used both as the input to the registration method and the ground truth in validation. By registering the planning CT to the CBCT, a

  19. Intra-chain 3D segment swapping spawns the evolution of new multidomain protein architectures.

    PubMed

    Szilágyi, András; Zhang, Yang; Závodszky, Péter

    2012-01-01

    Multidomain proteins form in evolution through the concatenation of domains, but structural domains may comprise multiple segments of the chain. In this work, we demonstrate that new multidomain architectures can evolve by an apparent three-dimensional swap of segments between structurally similar domains within a single-chain monomer. By a comprehensive structural search of the current Protein Data Bank (PDB), we identified 32 well-defined segment-swapped proteins (SSPs) belonging to 18 structural families. Nearly 13% of all multidomain proteins in the PDB may have a segment-swapped evolutionary precursor as estimated by more permissive searching criteria. The formation of SSPs can be explained by two principal evolutionary mechanisms: (i) domain swapping and fusion (DSF) and (ii) circular permutation (CP). By large-scale comparative analyses using structural alignment and hidden Markov model methods, it was found that the majority of SSPs have evolved via the DSF mechanism, and a much smaller fraction, via CP. Functional analyses further revealed that segment swapping, which results in two linkers connecting the domains, may impart directed flexibility to multidomain proteins and contributes to the development of new functions. Thus, inter-domain segment swapping represents a novel general mechanism by which new protein folds and multidomain architectures arise in evolution, and SSPs have structural and functional properties that make them worth defining as a separate group. PMID:22079367

  20. Robust 3D object localization and pose estimation for random bin picking with the 3DMaMa algorithm

    NASA Astrophysics Data System (ADS)

    Skotheim, Øystein; Thielemann, Jens T.; Berge, Asbjørn; Sommerfelt, Arne

    2010-02-01

    Enabling robots to automatically locate and pick up randomly placed and oriented objects from a bin is an important challenge in factory automation, replacing tedious and heavy manual labor. A system should be able to recognize and locate objects with a predefined shape and estimate the position with the precision necessary for a gripping robot to pick it up. We describe a system that consists of a structured light instrument for capturing 3D data and a robust approach for object location and pose estimation. The method does not depend on segmentation of range images, but instead searches through pairs of 2D manifolds to localize candidates for object match. This leads to an algorithm that is not very sensitive to scene complexity or the number of objects in the scene. Furthermore, the strategy for candidate search is easily reconfigurable to arbitrary objects. Experiments reported in this paper show the utility of the method on a general random bin picking problem, in this paper exemplified by localization of car parts with random position and orientation. Full pose estimation is done in less than 380 ms per image. We believe that the method is applicable for a wide range of industrial automation problems where precise localization of 3D objects in a scene is needed.

  1. Segmentation of Hypocenters and 3-D Velocity Structure around the Kii Peninsula Revealed by Onshore and Offshore Seismic Observations

    NASA Astrophysics Data System (ADS)

    Akuhara, T.; Mochizuki, K.; Nakahigashi, K.; Yamada, T.; Shinohara, M.; Sakai, S.; Kanazawa, T.; Uehira, K.; Shimizu, H.

    2013-12-01

    The Philippine Sea Plate subducts beneath the Eurasian Plate at a rate of ~4 cm/year along the Nankai Trough, southwest of Japan. Around the Kii Peninsula, the rupture boundary of the historical Tonankai and Nankai large earthquakes is located, and previous researches have revealed along-strike segmentation of hypocenters [Mochizuki et al., 2010], P-wave anisotropy [Ishise et al., 2009], low frequency earthquake (LFE) distribution [e.g., Obara, 2010] and subduction depth of the Philippine Sea (PHS) Plate, or there may exist a split in the PHS Plate [Ide et al., 2010]. To investigate such segmentation, in our previous work we determined 3-D velocity structure and hypocenters using P- and S-wave arrival times of earthquakes recorded by both ocean bottom seismometers (OBSs) that were deployed from 2003 to 2007 and on-land stations [Akuhara et al., 2013]. As a result, it was discovered that Vp/Vs ratio is also segmented within the oceanic crust and at the bottom of the overriding plate, which coincides with the LFE distribution: segment A is located along the Kii Channel, segment B around the western Kii Peninsula, and segment C around the eastern Kii Peninsula. In segment B, Vp/Vs ratio is low within the oceanic crust and LFE cluster characterized by an anomalously small amount of cumulative slip, compared to the other LFE clusters around the Kii Peninsula, is located [Obara, 2010]. The difference of Vp/Vs ratio and LFE activity among segments were interpreted as difference of pore fluid pressure. In fact, similar segmentation can be seen in hypocenters: Segment A with concentrated seismicity in the oceanic mantle, segment B with that in the oceanic crust, and segment C with little seismicity. To derive characteristic patterns of the hypocenters, we conducted a cluster analysis of earthquakes based on waveform similarity represented by cross-correlation coefficients (CCs) [e.g., Cattaneo, 1999], in which we took varying structural site effects among the OBS stations

  2. 3D radiative transfer in η Carinae: application of the SIMPLEX algorithm to 3D SPH simulations of binary colliding winds

    NASA Astrophysics Data System (ADS)

    Clementel, N.; Madura, T. I.; Kruip, C. J. H.; Icke, V.; Gull, T. R.

    2014-09-01

    Eta Carinae is an ideal astrophysical laboratory for studying massive binary interactions and evolution, and stellar wind-wind collisions. Recent three-dimensional (3D) simulations set the stage for understanding the highly complex 3D flows in η Car. Observations of different broad high- and low-ionization forbidden emission lines provide an excellent tool to constrain the orientation of the system, the primary's mass-loss rate, and the ionizing flux of the hot secondary. In this work, we present the first steps towards generating synthetic observations to compare with available and future HST/STIS data. We present initial results from full 3D radiative transfer simulations of the interacting winds in η Car. We use the SIMPLEX algorithm to post-process the output from 3D smoothed particle hydrodynamics (SPH) simulations and obtain the ionization fractions of hydrogen and helium assuming three different mass-loss rates for the primary star. The resultant ionization maps of both species constrain the regions where the observed forbidden emission lines can form. Including collisional ionization is necessary to achieve a better description of the ionization states, especially in the areas shielded from the secondary's radiation. We find that reducing the primary's mass-loss rate increases the volume of ionized gas, creating larger areas where the forbidden emission lines can form. We conclude that post-processing 3D SPH data with SIMPLEX is a viable tool to create ionization maps for η Car.

  3. 3D Radiative Transfer in Eta Carinae: Application of the SimpleX Algorithm to 3D SPH Simulations of Binary Colliding Winds

    NASA Technical Reports Server (NTRS)

    Clementel, N.; Madura, T. I.; Kruip, C. J. H.; Icke, V.; Gull, T. R.

    2014-01-01

    Eta Carinae is an ideal astrophysical laboratory for studying massive binary interactions and evolution, and stellar wind-wind collisions. Recent three-dimensional (3D) simulations set the stage for understanding the highly complex 3D flows in Eta Car. Observations of different broad high- and low-ionization forbidden emission lines provide an excellent tool to constrain the orientation of the system, the primary's mass-loss rate, and the ionizing flux of the hot secondary. In this work we present the first steps towards generating synthetic observations to compare with available and future HST/STIS data. We present initial results from full 3D radiative transfer simulations of the interacting winds in Eta Car. We use the SimpleX algorithm to post-process the output from 3D SPH simulations and obtain the ionization fractions of hydrogen and helium assuming three different mass-loss rates for the primary star. The resultant ionization maps of both species constrain the regions where the observed forbidden emission lines can form. Including collisional ionization is necessary to achieve a better description of the ionization states, especially in the areas shielded from the secondary's radiation. We find that reducing the primary's mass-loss rate increases the volume of ionized gas, creating larger areas where the forbidden emission lines can form. We conclude that post processing 3D SPH data with SimpleX is a viable tool to create ionization maps for Eta Car.

  4. 3D Radiative Transfer in Eta Carinae: Application of the SimpleX Algorithm to 3D SPH Simulations of Binary Colliding Winds

    NASA Technical Reports Server (NTRS)

    Clementel, N.; Madura, T. I.; Kruip, C.J.H.; Icke, V.; Gull, T. R.

    2014-01-01

    Eta Carinae is an ideal astrophysical laboratory for studying massive binary interactions and evolution, and stellar wind-wind collisions. Recent three-dimensional (3D) simulations set the stage for understanding the highly complex 3D flows in eta Car. Observations of different broad high- and low-ionization forbidden emission lines provide an excellent tool to constrain the orientation of the system, the primary's mass-loss rate, and the ionizing flux of the hot secondary. In this work we present the first steps towards generating synthetic observations to compare with available and future HST/STIS data. We present initial results from full 3D radiative transfer simulations of the interacting winds in eta Car.We use the SimpleX algorithm to post-process the output from 3D SPH simulations and obtain the ionization fractions of hydrogen and helium assuming three different mass-loss rates for the primary star. The resultant ionization maps of both species constrain the regions where the observed forbidden emission lines can form. Including collisional ionization is necessary to achieve a better description of the ionization states, especially in the areas shielded from the secondary's radiation. We find that reducing the primary's mass-loss rate increases the volume of ionized gas, creating larger areas where the forbidden emission lines can form.We conclude that post processing 3D SPH data with SimpleX is a viable tool to create ionization maps for eta Car.

  5. A fully automatic, threshold-based segmentation method for the estimation of the Metabolic Tumor Volume from PET images: validation on 3D printed anthropomorphic oncological lesions

    NASA Astrophysics Data System (ADS)

    Gallivanone, F.; Interlenghi, M.; Canervari, C.; Castiglioni, I.

    2016-01-01

    18F-Fluorodeoxyglucose (18F-FDG) Positron Emission Tomography (PET) is a standard functional diagnostic technique to in vivo image cancer. Different quantitative paramters can be extracted from PET images and used as in vivo cancer biomarkers. Between PET biomarkers Metabolic Tumor Volume (MTV) has gained an important role in particular considering the development of patient-personalized radiotherapy treatment for non-homogeneous dose delivery. Different imaging processing methods have been developed to define MTV. The different proposed PET segmentation strategies were validated in ideal condition (e.g. in spherical objects with uniform radioactivity concentration), while the majority of cancer lesions doesn't fulfill these requirements. In this context, this work has a twofold objective: 1) to implement and optimize a fully automatic, threshold-based segmentation method for the estimation of MTV, feasible in clinical practice 2) to develop a strategy to obtain anthropomorphic phantoms, including non-spherical and non-uniform objects, miming realistic oncological patient conditions. The developed PET segmentation algorithm combines an automatic threshold-based algorithm for the definition of MTV and a k-means clustering algorithm for the estimation of the background. The method is based on parameters always available in clinical studies and was calibrated using NEMA IQ Phantom. Validation of the method was performed both in ideal (e.g. in spherical objects with uniform radioactivity concentration) and non-ideal (e.g. in non-spherical objects with a non-uniform radioactivity concentration) conditions. The strategy to obtain a phantom with synthetic realistic lesions (e.g. with irregular shape and a non-homogeneous uptake) consisted into the combined use of standard anthropomorphic phantoms commercially and irregular molds generated using 3D printer technology and filled with a radioactive chromatic alginate. The proposed segmentation algorithm was feasible in a

  6. Four-chamber heart modeling and automatic segmentation for 3-D cardiac CT volumes using marginal space learning and steerable features.

    PubMed

    Zheng, Yefeng; Barbu, Adrian; Georgescu, Bogdan; Scheuering, Michael; Comaniciu, Dorin

    2008-11-01

    We propose an automatic four-chamber heart segmentation system for the quantitative functional analysis of the heart from cardiac computed tomography (CT) volumes. Two topics are discussed: heart modeling and automatic model fitting to an unseen volume. Heart modeling is a nontrivial task since the heart is a complex nonrigid organ. The model must be anatomically accurate, allow manual editing, and provide sufficient information to guide automatic detection and segmentation. Unlike previous work, we explicitly represent important landmarks (such as the valves and the ventricular septum cusps) among the control points of the model. The control points can be detected reliably to guide the automatic model fitting process. Using this model, we develop an efficient and robust approach for automatic heart chamber segmentation in 3-D CT volumes. We formulate the segmentation as a two-step learning problem: anatomical structure localization and boundary delineation. In both steps, we exploit the recent advances in learning discriminative models. A novel algorithm, marginal space learning (MSL), is introduced to solve the 9-D similarity transformation search problem for localizing the heart chambers. After determining the pose of the heart chambers, we estimate the 3-D shape through learning-based boundary delineation. The proposed method has been extensively tested on the largest dataset (with 323 volumes from 137 patients) ever reported in the literature. To the best of our knowledge, our system is the fastest with a speed of 4.0 s per volume (on a dual-core 3.2-GHz processor) for the automatic segmentation of all four chambers.

  7. Accurate 3D reconstruction by a new PDS-OSEM algorithm for HRRT

    NASA Astrophysics Data System (ADS)

    Chen, Tai-Been; Horng-Shing Lu, Henry; Kim, Hang-Keun; Son, Young-Don; Cho, Zang-Hee

    2014-03-01

    State-of-the-art high resolution research tomography (HRRT) provides high resolution PET images with full 3D human brain scanning. But, a short time frame in dynamic study causes many problems related to the low counts in the acquired data. The PDS-OSEM algorithm was proposed to reconstruct the HRRT image with a high signal-to-noise ratio that provides accurate information for dynamic data. The new algorithm was evaluated by simulated image, empirical phantoms, and real human brain data. Meanwhile, the time activity curve was adopted to validate a reconstructed performance of dynamic data between PDS-OSEM and OP-OSEM algorithms. According to simulated and empirical studies, the PDS-OSEM algorithm reconstructs images with higher quality, higher accuracy, less noise, and less average sum of square error than those of OP-OSEM. The presented algorithm is useful to provide quality images under the condition of low count rates in dynamic studies with a short scan time.

  8. The AUDANA algorithm for automated protein 3D structure determination from NMR NOE data.

    PubMed

    Lee, Woonghee; Petit, Chad M; Cornilescu, Gabriel; Stark, Jaime L; Markley, John L

    2016-06-01

    We introduce AUDANA (Automated Database-Assisted NOE Assignment), an algorithm for determining three-dimensional structures of proteins from NMR data that automates the assignment of 3D-NOE spectra, generates distance constraints, and conducts iterative high temperature molecular dynamics and simulated annealing. The protein sequence, chemical shift assignments, and NOE spectra are the only required inputs. Distance constraints generated automatically from ambiguously assigned NOE peaks are validated during the structure calculation against information from an enlarged version of the freely available PACSY database that incorporates information on protein structures deposited in the Protein Data Bank (PDB). This approach yields robust sets of distance constraints and 3D structures. We evaluated the performance of AUDANA with input data for 14 proteins ranging in size from 6 to 25 kDa that had 27-98 % sequence identity to proteins in the database. In all cases, the automatically calculated 3D structures passed stringent validation tests. Structures were determined with and without database support. In 9/14 cases, database support improved the agreement with manually determined structures in the PDB and in 11/14 cases, database support lowered the r.m.s.d. of the family of 20 structural models.

  9. Automatic 3D segmentation of the kidney in MR images using wavelet feature extraction and probability shape model

    NASA Astrophysics Data System (ADS)

    Akbari, Hamed; Fei, Baowei

    2012-02-01

    Numerical estimation of the size of the kidney is useful in evaluating conditions of the kidney, especially, when serial MR imaging is performed to evaluate the kidney function. This paper presents a new method for automatic segmentation of the kidney in three-dimensional (3D) MR images, by extracting texture features and statistical matching of geometrical shape of the kidney. A set of Wavelet-based support vector machines (W-SVMs) is trained on the MR images. The W-SVMs capture texture priors of MRI for classification of the kidney and non-kidney tissues in different zones around the kidney boundary. In the segmentation procedure, these W-SVMs are trained to tentatively label each voxel around the kidney model as a kidney or non-kidney voxel by texture matching. A probability kidney model is created using 10 segmented MRI data. The model is initially localized based on the intensity profiles in three directions. The weight functions are defined for each labeled voxel for each Wavelet-based, intensity-based, and model-based label. Consequently, each voxel has three labels and three weights for the Wavelet feature, intensity, and probability model. Using a 3D edge detection method, the model is re-localized and the segmented kidney is modified based on a region growing method in the model region. The probability model is re-localized based on the results and this loop continues until the segmentation converges. Experimental results with mouse MRI data show the good performance of the proposed method in segmenting the kidney in MR images.

  10. Crowdsourcing the creation of image segmentation algorithms for connectomics.

    PubMed

    Arganda-Carreras, Ignacio; Turaga, Srinivas C; Berger, Daniel R; Cireşan, Dan; Giusti, Alessandro; Gambardella, Luca M; Schmidhuber, Jürgen; Laptev, Dmitry; Dwivedi, Sarvesh; Buhmann, Joachim M; Liu, Ting; Seyedhosseini, Mojtaba; Tasdizen, Tolga; Kamentsky, Lee; Burget, Radim; Uher, Vaclav; Tan, Xiao; Sun, Changming; Pham, Tuan D; Bas, Erhan; Uzunbas, Mustafa G; Cardona, Albert; Schindelin, Johannes; Seung, H Sebastian

    2015-01-01

    To stimulate progress in automating the reconstruction of neural circuits, we organized the first international challenge on 2D segmentation of electron microscopic (EM) images of the brain. Participants submitted boundary maps predicted for a test set of images, and were scored based on their agreement with a consensus of human expert annotations. The winning team had no prior experience with EM images, and employed a convolutional network. This "deep learning" approach has since become accepted as a standard for segmentation of EM images. The challenge has continued to accept submissions, and the best so far has resulted from cooperation between two teams. The challenge has probably saturated, as algorithms cannot progress beyond limits set by ambiguities inherent in 2D scoring and the size of the test dataset. Retrospective evaluation of the challenge scoring system reveals that it was not sufficiently robust to variations in the widths of neurite borders. We propose a solution to this problem, which should be useful for a future 3D segmentation challenge. PMID:26594156

  11. Crowdsourcing the creation of image segmentation algorithms for connectomics

    PubMed Central

    Arganda-Carreras, Ignacio; Turaga, Srinivas C.; Berger, Daniel R.; Cireşan, Dan; Giusti, Alessandro; Gambardella, Luca M.; Schmidhuber, Jürgen; Laptev, Dmitry; Dwivedi, Sarvesh; Buhmann, Joachim M.; Liu, Ting; Seyedhosseini, Mojtaba; Tasdizen, Tolga; Kamentsky, Lee; Burget, Radim; Uher, Vaclav; Tan, Xiao; Sun, Changming; Pham, Tuan D.; Bas, Erhan; Uzunbas, Mustafa G.; Cardona, Albert; Schindelin, Johannes; Seung, H. Sebastian

    2015-01-01

    To stimulate progress in automating the reconstruction of neural circuits, we organized the first international challenge on 2D segmentation of electron microscopic (EM) images of the brain. Participants submitted boundary maps predicted for a test set of images, and were scored based on their agreement with a consensus of human expert annotations. The winning team had no prior experience with EM images, and employed a convolutional network. This “deep learning” approach has since become accepted as a standard for segmentation of EM images. The challenge has continued to accept submissions, and the best so far has resulted from cooperation between two teams. The challenge has probably saturated, as algorithms cannot progress beyond limits set by ambiguities inherent in 2D scoring and the size of the test dataset. Retrospective evaluation of the challenge scoring system reveals that it was not sufficiently robust to variations in the widths of neurite borders. We propose a solution to this problem, which should be useful for a future 3D segmentation challenge. PMID:26594156

  12. Assessment of next-best-view algorithms performance with various 3D scanners and manipulator

    NASA Astrophysics Data System (ADS)

    Karaszewski, M.; Adamczyk, M.; Sitnik, R.

    2016-09-01

    The problem of calculating three dimensional (3D) sensor position (and orientation) during the digitization of real-world objects (called next best view planning or NBV) has been an active topic of research for over 20 years. While many solutions have been developed, it is hard to compare their quality based only on the exemplary results presented in papers. We implemented 13 of the most popular NBV algorithms and evaluated their performance by digitizing five objects of various properties, using three measurement heads with different working volumes mounted on a 6-axis robot with a rotating table for placing objects. The results obtained for the 13 algorithms were then compared based on four criteria: the number of directional measurements, digitization time, total positioning distance, and surface coverage required to digitize test objects with available measurement heads.

  13. 3D Segmentation of Rodent Brain Structures Using Hierarchical Shape Priors and Deformable Models

    PubMed Central

    Zhang, Shaoting; Huang, Junzhou; Uzunbas, Mustafa; Shen, Tian; Delis, Foteini; Huang, Xiaolei; Volkow, Nora; Thanos, Panayotis; Metaxas, Dimitris N.

    2016-01-01

    In this paper, we propose a method to segment multiple rodent brain structures simultaneously. This method combines deformable models and hierarchical shape priors within one framework. The deformation module employs both gradient and appearance information to generate image forces to deform the shape. The shape prior module uses Principal Component Analysis to hierarchically model the multiple structures at both global and local levels. At the global level, the statistics of relative positions among different structures are modeled. At the local level, the shape statistics within each structure is learned from training samples. Our segmentation method adaptively employs both priors to constrain the intermediate deformation result. This prior constraint improves the robustness of the model and benefits the segmentation accuracy. Another merit of our prior module is that the size of the training data can be small, because the shape prior module models each structure individually and combines them using global statistics. This scheme can preserve shape details better than directly applying PCA on all structures. We use this method to segment rodent brain structures, such as the cerebellum, the left and right striatum, and the left and right hippocampus. The experiments show that our method works effectively and this hierarchical prior improves the segmentation performance. PMID:22003750

  14. 3D segmentation of rodent brain structures using hierarchical shape priors and deformable models.

    PubMed

    Zhang, Shaoting; Huang, Junzhou; Uzunbas, Mustafa; Shen, Tian; Delis, Foteini; Huang, Xiaolei; Volkow, Nora; Thanos, Panayotis; Metaxas, Dimitris N

    2011-01-01

    In this paper, we propose a method to segment multiple rodent brain structures simultaneously. This method combines deformable models and hierarchical shape priors within one framework. The deformation module employs both gradient and appearance information to generate image forces to deform the shape. The shape prior module uses Principal Component Analysis to hierarchically model the multiple structures at both global and local levels. At the global level, the statistics of relative positions among different structures are modeled. At the local level, the shape statistics within each structure is learned from training samples. Our segmentation method adaptively employs both priors to constrain the intermediate deformation result. This prior constraint improves the robustness of the model and benefits the segmentation accuracy. Another merit of our prior module is that the size of the training data can be small, because the shape prior module models each structure individually and combines them using global statistics. This scheme can preserve shape details better than directly applying PCA on all structures. We use this method to segment rodent brain structures, such as the cerebellum, the left and right striatum, and the left and right hippocampus. The experiments show that our method works effectively and this hierarchical prior improves the segmentation performance. PMID:22003750

  15. Segmentation of densely populated cell nuclei from confocal image stacks using 3D non-parametric shape priors.

    PubMed

    Ong, Lee-Ling S; Wang, Mengmeng; Dauwels, Justin; Asada, H Harry

    2014-01-01

    An approach to jointly estimate 3D shapes and poses of stained nuclei from confocal microscopy images, using statistical prior information, is presented. Extracting nuclei boundaries from our experimental images of cell migration is challenging due to clustered nuclei and variations in their shapes. This issue is formulated as a maximum a posteriori estimation problem. By incorporating statistical prior models of 3D nuclei shapes into level set functions, the active contour evolutions applied on the images is constrained. A 3D alignment algorithm is developed to build the training databases and to match contours obtained from the images to them. To address the issue of aligning the model over multiple clustered nuclei, a watershed-like technique is used to detect and separate clustered regions prior to active contour evolution. Our method is tested on confocal images of endothelial cells in microfluidic devices, compared with existing approaches.

  16. IMPROVEMENTS TO THE TIME STEPPING ALGORITHM OF RELAP5-3D

    SciTech Connect

    Cumberland, R.; Mesina, G.

    2009-01-01

    The RELAP5-3D time step method is used to perform thermo-hydraulic and neutronic simulations of nuclear reactors and other devices. It discretizes time and space by numerically solving several differential equations. Previously, time step size was controlled by halving or doubling the size of a previous time step. This process caused the code to run slower than it potentially could. In this research project, the RELAP5-3D time step method was modifi ed to allow a new method of changing time steps to improve execution speed and to control error. The new RELAP5-3D time step method being studied involves making the time step proportional to the material courant limit (MCL), while insuring that the time step does not increase by more than a factor of two between advancements. As before, if a step fails or mass error is excessive, the time step is cut in half. To examine performance of the new method, a measure of run time and a measure of error were plotted against a changing MCL proportionality constant (m) in seven test cases. The removal of the upper time step limit produced a small increase in error, but a large decrease in execution time. The best value of m was found to be 0.9. The new algorithm is capable of producing a signifi cant increase in execution speed, with a relatively small increase in mass error. The improvements made are now under consideration for inclusion as a special option in the RELAP5-3D production code.

  17. Atlas-based segmentation of 3D cerebral structures with competitive level sets and fuzzy control.

    PubMed

    Ciofolo, Cybèle; Barillot, Christian

    2009-06-01

    We propose a novel approach for the simultaneous segmentation of multiple structures with competitive level sets driven by fuzzy control. To this end, several contours evolve simultaneously toward previously defined anatomical targets. A fuzzy decision system combines the a priori knowledge provided by an anatomical atlas with the intensity distribution of the image and the relative position of the contours. This combination automatically determines the directional term of the evolution equation of each level set. This leads to a local expansion or contraction of the contours, in order to match the boundaries of their respective targets. Two applications are presented: the segmentation of the brain hemispheres and the cerebellum, and the segmentation of deep internal structures. Experimental results on real magnetic resonance (MR) images are presented, quantitatively assessed and discussed.

  18. A new algorithm for determining 3D biplane imaging geometry: theory and implementation

    NASA Astrophysics Data System (ADS)

    Singh, Vikas; Xu, Jinhui; Hoffmann, Kenneth R.; Xu, Guang; Chen, Zhenming; Gopal, Anant

    2005-04-01

    Biplane imaging is a primary method for visual and quantitative assessment of the vasculature. A key problem called Imaging Geometry Determination problem (IGD for short) in this method is to determine the rotation-matrix R and the translation-vector t which relate the two coordinate systems. In this paper, we propose a new approach, called IG-Sieving, to calculate R and t using corresponding points in the two images. Our technique first generates an initial estimate of R and t from the gantry angles of the imaging system, and then optimizes them by solving an optimal-cell-search problem in a 6-D parametric space (three variables defining R plus the three variables of t). To efficiently find the optimal imaging geometry (IG) in 6-D, our approach divides the high dimensional search domain into a set of lower-dimensional regions, thereby reducing the optimal-cell-search problem to a set of optimization problems in 3D sub-spaces. For each such sub-space, our approach first applies efficient computational geometry techniques to identify "possibly-feasible"" IG"s, and then uses a criterion we call fall-in-number to sieve out good IGs. We show that in a bounded number of optimization steps, a (possibly infinite) set of near-optimal IGs can be determined. Simulation results indicate that our method can reconstruct 3D points with average 3D center-of-mass errors of about 0.8cm for input image-data errors as high as 0.1cm. More importantly, our algorithm provides a novel insight into the geometric structure of the solution-space, which could be exploited to significantly improve the accuracy of other biplane algorithms.

  19. Dynamic 3D scanning as a markerless method to calculate multi-segment foot kinematics during stance phase: methodology and first application.

    PubMed

    Van den Herrewegen, Inge; Cuppens, Kris; Broeckx, Mario; Barisch-Fritz, Bettina; Vander Sloten, Jos; Leardini, Alberto; Peeraer, Louis

    2014-08-22

    Multi-segmental foot kinematics have been analyzed by means of optical marker-sets or by means of inertial sensors, but never by markerless dynamic 3D scanning (D3DScanning). The use of D3DScans implies a radically different approach for the construction of the multi-segment foot model: the foot anatomy is identified via the surface shape instead of distinct landmark points. We propose a 4-segment foot model consisting of the shank (Sha), calcaneus (Cal), metatarsus (Met) and hallux (Hal). These segments are manually selected on a static scan. To track the segments in the dynamic scan, the segments of the static scan are matched on each frame of the dynamic scan using the iterative closest point (ICP) fitting algorithm. Joint rotations are calculated between Sha-Cal, Cal-Met, and Met-Hal. Due to the lower quality scans at heel strike and toe off, the first and last 10% of the stance phase is excluded. The application of the method to 5 healthy subjects, 6 trials each, shows a good repeatability (intra-subject standard deviations between 1° and 2.5°) for Sha-Cal and Cal-Met joints, and inferior results for the Met-Hal joint (>3°). The repeatability seems to be subject-dependent. For the validation, a qualitative comparison with joint kinematics from a corresponding established marker-based multi-segment foot model is made. This shows very consistent patterns of rotation. The ease of subject preparation and also the effective and easy to interpret visual output, make the present technique very attractive for functional analysis of the foot, enhancing usability in clinical practice.

  20. Bone canalicular network segmentation in 3D nano-CT images through geodesic voting and image tessellation

    NASA Astrophysics Data System (ADS)

    Zuluaga, Maria A.; Orkisz, Maciej; Dong, Pei; Pacureanu, Alexandra; Gouttenoire, Pierre-Jean; Peyrin, Françoise

    2014-05-01

    Recent studies emphasized the role of the bone lacuno-canalicular network (LCN) in the understanding of bone diseases such as osteoporosis. However, suitable methods to investigate this structure are lacking. The aim of this paper is to introduce a methodology to segment the LCN from three-dimensional (3D) synchrotron radiation nano-CT images. Segmentation of such structures is challenging due to several factors such as limited contrast and signal-to-noise ratio, partial volume effects and huge number of data that needs to be processed, which restrains user interaction. We use an approach based on minimum-cost paths and geodesic voting, for which we propose a fully automatic initialization scheme based on a tessellation of the image domain. The centroids of pre-segmented lacunæ are used as Voronoi-tessellation seeds and as start-points of a fast-marching front propagation, whereas the end-points are distributed in the vicinity of each Voronoi-region boundary. This initialization scheme was devised to cope with complex biological structures involving cells interconnected by multiple thread-like, branching processes, while the seminal geodesic-voting method only copes with tree-like structures. Our method has been assessed quantitatively on phantom data and qualitatively on real datasets, demonstrating its feasibility. To the best of our knowledge, presented 3D renderings of lacunæ interconnected by their canaliculi were achieved for the first time.

  1. Accuracy of a Mitral Valve Segmentation Method Using J-Splines for Real-Time 3D Echocardiography Data

    PubMed Central

    Siefert, Andrew W.; Icenogle, David A.; Rabbah, Jean-Pierre; Saikrishnan, Neelakantan; Rossignac, Jarek; Lerakis, Stamatios; Yoganathan, Ajit P.

    2013-01-01

    Patient-specific models of the heart’s mitral valve (MV) exhibit potential for surgical planning. While advances in 3D echocardiography (3DE) have provided adequate resolution to extract MV leaflet geometry, no study has quantitatively assessed the accuracy of their modeled leaflets versus a ground-truth standard for temporal frames beyond systolic closure or for differing valvular dysfunctions. The accuracy of a 3DE-based segmentation methodology based on J-splines was assessed for porcine MVs with known 4D leaflet coordinates within a pulsatile simulator during closure, peak closure, and opening for a control, prolapsed, and billowing MV model. For all time points, the mean distance error between the segmented models and ground-truth data were 0.40±0.32 mm, 0.52±0.51 mm, and 0.74±0.69 mm for the control, flail, and billowing models. For all models and temporal frames, 95% of the distance errors were below 1.64 mm. When applied to a patient data set, segmentation was able to confirm a regurgitant orifice and post-operative improvements in coaptation. This study provides an experimental platform for assessing the accuracy of an MV segmentation methodology at phases beyond systolic closure and for differing MV dysfunctions. Results demonstrate the accuracy of a MV segmentation methodology for the development of future surgical planning tools. PMID:23460042

  2. A Bayesian 3D data fusion and unsupervised joint segmentation approach for stochastic geological modelling using Hidden Markov random fields

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Wellmann, Florian

    2016-04-01

    It is generally accepted that 3D geological models inferred from observed data will contain a certain amount of uncertainties. The uncertainty quantification and stochastic sampling methods are essential for gaining the insight into the geological variability of subsurface structures. In the community of deterministic or traditional modelling techniques, classical geo-statistical methods using boreholes (hard data sets) are still most widely accepted although suffering certain drawbacks. Modern geophysical measurements provide us regional data sets in 2D or 3D spaces either directly from sensors or indirectly from inverse problem solving using observed signal (soft data sets). We propose a stochastic modelling framework to extract subsurface heterogeneity from multiple and complementary types of data. In the presented work, subsurface heterogeneity is considered as the "hidden link" among multiple spatial data sets as well as inversion results. Hidden Markov random field models are employed to perform 3D segmentation which is the representation of the "hidden link". Finite Gaussian mixture models are adopted to characterize the statistical parameters of the multiple data sets. The uncertainties are quantified via a Gibbs sampling process under the Bayesian inferential framework. The proposed modelling framework is validated using two numerical examples. The model behavior and convergence are also well examined. It is shown that the presented stochastic modelling framework is a promising tool for the 3D data fusion in the communities of geological modelling and geophysics.

  3. A Fast Full Tensor Gravity computation algorithm for High Resolution 3D Geologic Interpretations

    NASA Astrophysics Data System (ADS)

    Jayaram, V.; Crain, K.; Keller, G. R.

    2011-12-01

    We present an algorithm to rapidly calculate the vertical gravity and full tensor gravity (FTG) values due to a 3-D geologic model. This algorithm can be implemented on single, multi-core CPU and graphical processing units (GPU) architectures. Our technique is based on the line element approximation with a constant density within each grid cell. This type of parameterization is well suited for high-resolution elevation datasets with grid size typically in the range of 1m to 30m. The large high-resolution data grids in our studies employ a pre-filtered mipmap pyramid type representation for the grid data known as the Geometry clipmap. The clipmap was first introduced by Microsoft Research in 2004 to do fly-through terrain visualization. This method caches nested rectangular extents of down-sampled data layers in the pyramid to create view-dependent calculation scheme. Together with the simple grid structure, this allows the gravity to be computed conveniently on-the-fly, or stored in a highly compressed format. Neither of these capabilities has previously been available. Our approach can perform rapid calculations on large topographies including crustal-scale models derived from complex geologic interpretations. For example, we used a 1KM Sphere model consisting of 105000 cells at 10m resolution with 100000 gravity stations. The line element approach took less than 90 seconds to compute the FTG and vertical gravity on an Intel Core i7 CPU at 3.07 GHz utilizing just its single core. Also, unlike traditional gravity computational algorithms, the line-element approach can calculate gravity effects at locations interior or exterior to the model. The only condition that must be met is the observation point cannot be located directly above the line element. Therefore, we perform a location test and then apply appropriate formulation to those data points. We will present and compare the computational performance of the traditional prism method versus the line element

  4. Indoor Localization Algorithms for an Ambulatory Human Operated 3D Mobile Mapping System

    SciTech Connect

    Corso, N; Zakhor, A

    2013-12-03

    Indoor localization and mapping is an important problem with many applications such as emergency response, architectural modeling, and historical preservation. In this paper, we develop an automatic, off-line pipeline for metrically accurate, GPS-denied, indoor 3D mobile mapping using a human-mounted backpack system consisting of a variety of sensors. There are three novel contributions in our proposed mapping approach. First, we present an algorithm which automatically detects loop closure constraints from an occupancy grid map. In doing so, we ensure that constraints are detected only in locations that are well conditioned for scan matching. Secondly, we address the problem of scan matching with poor initial condition by presenting an outlier-resistant, genetic scan matching algorithm that accurately matches scans despite a poor initial condition. Third, we present two metrics based on the amount and complexity of overlapping geometry in order to vet the estimated loop closure constraints. By doing so, we automatically prevent erroneous loop closures from degrading the accuracy of the reconstructed trajectory. The proposed algorithms are experimentally verified using both controlled and real-world data. The end-to-end system performance is evaluated using 100 surveyed control points in an office environment and obtains a mean accuracy of 10 cm. Experimental results are also shown on three additional datasets from real world environments including a 1500 meter trajectory in a warehouse sized retail shopping center.

  5. Integration of Libration Point Orbit Dynamics into a Universal 3-D Autonomous Formation Flying Algorithm

    NASA Technical Reports Server (NTRS)

    Folta, David; Bauer, Frank H. (Technical Monitor)

    2001-01-01

    The autonomous formation flying control algorithm developed by the Goddard Space Flight Center (GSFC) for the New Millennium Program (NMP) Earth Observing-1 (EO-1) mission is investigated for applicability to libration point orbit formations. In the EO-1 formation-flying algorithm, control is accomplished via linearization about a reference transfer orbit with a state transition matrix (STM) computed from state inputs. The effect of libration point orbit dynamics on this algorithm architecture is explored via computation of STMs using the flight proven code, a monodromy matrix developed from a N-body model of a libration orbit, and a standard STM developed from the gravitational and coriolis effects as measured at the libration point. A comparison of formation flying Delta-Vs calculated from these methods is made to a standard linear quadratic regulator (LQR) method. The universal 3-D approach is optimal in the sense that it can be accommodated as an open-loop or closed-loop control using only state information.

  6. Validation of a Fully Automated 3D Hippocampal Segmentation Method Using Subjects with Alzheimer's Disease, Mild Cognitive Impairment, and Elderly Controls

    PubMed Central

    Morra, Jonathan H.; Tu, Zhuowen; Apostolova, Liana G.; Green, Amity E.; Avedissian, Christina; Madsen, Sarah K.; Parikshak, Neelroop; Hua, Xue; Toga, Arthur W.; Jack, Clifford R.; Weiner, Michael W.; Thompson, Paul M.

    2008-01-01

    We introduce a new method for brain MRI segmentation, called the auto context model (ACM), to segment the hippocampus automatically in 3D T1-weighted structural brain MRI scans of subjects from the Alzheimer's Disease Neuroimaging Initiative (ADNI). In a training phase, our algorithm used 21 hand-labeled segmentations to learn a classification rule for hippocampal versus non-hippocampal regions using a modified AdaBoost method, based on ∼18,000 features (image intensity, position, image curvatures, image gradients, tissue classification maps of gray/white matter and CSF, and mean, standard deviation, and Haar filters of size 1×1×1 to 7×7×7). We linearly registered all brains to a standard template to devise a basic shape prior to capture the global shape of the hippocampus, defined as the pointwise summation of all the training masks. We also included curvature, gradient, mean, standard deviation, and Haar filters of the shape prior and the tissue classified images as features. During each iteration of ACM - our extension of AdaBoost - the Bayesian posterior distribution of the labeling was fed back in as an input, along with its neighborhood features, as new features for AdaBoost to use. In validation studies, we compared our results with hand-labeled segmentations by two experts. Using a leave-one-out approach and standard overlap and distance error metrics, our automated segmentations agreed well with human raters; any differences were comparable to differences between trained human raters. Our error metrics compare favorably with those previously reported for other automated hippocampal segmentations, suggesting the utility of the approach for large-scale studies. PMID:18675918

  7. Thrust fault segmentation and downward fault propagation in accretionary wedges: New Insights from 3D seismic reflection data

    NASA Astrophysics Data System (ADS)

    Orme, Haydn; Bell, Rebecca; Jackson, Christopher

    2016-04-01

    The shallow parts of subduction megathrust faults are typically thought to be aseismic and incapable of propagating seismic rupture. The 2011 Tohoku-Oki earthquake, however, ruptured all the way to the trench, proving that in some locations rupture can propagate through the accretionary wedge. An improved understanding of the structural character and physical properties of accretionary wedges is therefore crucial to begin to assess why such anomalously shallow seismic rupture occurs. Despite its importance, we know surprisingly little regarding the 3D geometry and kinematics of thrust network development in accretionary prisms, largely due to a lack of 3D seismic reflection data providing high-resolution, 3D images of entire networks. Thus our current understanding is largely underpinned by observations from analogue and numerical modelling, with limited observational data from natural examples. In this contribution we use PSDM, 3D seismic reflection data from the Nankai margin (3D Muroto dataset, available from the UTIG Academic Seismic Portal, Marine Geoscience Data System) to examine how imbricate thrust fault networks evolve during accretionary wedge growth. We unravel the evolution of faults within the protothrust and imbricate thrust zones by interpreting multiple horizons across faults and measuring fault displacement and fold amplitude along-strike; by doing this, we are able to investigate the three dimensional accrual of strain. We document a number of local displacement minima along-strike of faults, suggesting that, the protothrust and imbricate thrusts developed from the linkage of smaller, previously isolated fault segments. Although we often assume imbricate faults are likely to have propagated upwards from the décollement we show strong evidence for fault nucleation at shallow depths and downward propagation to intersect the décollement. The complex fault interactions documented here have implications for hydraulic compartmentalisation and pore

  8. Novel irregular mesh tagging algorithm for wound synthesis on a 3D face.

    PubMed

    Lee, Sangyong; Chin, Seongah

    2015-01-01

    Recently, advanced visualizing techniques in computer graphics have considerably enhanced the visual appearance of synthetic models. To realize enhanced visual graphics for synthetic medical effects, the first step followed by rendering techniques involves attaching albedo textures to the region where a certain graphic is to be rendered. For instance, in order to render wound textures efficiently, the first step is to recognize the area where the user wants to attach a wound. However, in general, face indices are not stored in sequential order, which makes sub-texturing difficult. In this paper, we present a novel mesh tagging algorithm that utilizes a task for mesh traversals and level extension in the general case of a wound sub-texture mapping and a selected region deformation in a three-dimensional (3D) model. This method works automatically on both regular and irregular mesh surfaces. The approach consists of mesh selection (MS), mesh leveling (ML), and mesh tagging (MT). To validate our approach, we performed experiments for synthesizing wounds on a 3D face model and on a simulated mesh. PMID:26405904

  9. Brightness-compensated 3-D optical flow algorithm for monitoring cochlear motion patterns

    NASA Astrophysics Data System (ADS)

    von Tiedemann, Miriam; Fridberger, Anders; Ulfendahl, Mats; de Monvel, Jacques Boutet

    2010-09-01

    A method for three-dimensional motion analysis designed for live cell imaging by fluorescence confocal microscopy is described. The approach is based on optical flow computation and takes into account brightness variations in the image scene that are not due to motion, such as photobleaching or fluorescence variations that may reflect changes in cellular physiology. The 3-D optical flow algorithm allowed almost perfect motion estimation on noise-free artificial sequences, and performed with a relative error of <10% on noisy images typical of real experiments. The method was applied to a series of 3-D confocal image stacks from an in vitro preparation of the guinea pig cochlea. The complex motions caused by slow pressure changes in the cochlear compartments were quantified. At the surface of the hearing organ, the largest motion component was the transverse one (normal to the surface), but significant radial and longitudinal displacements were also present. The outer hair cell displayed larger radial motion at their basolateral membrane than at their apical surface. These movements reflect mechanical interactions between different cellular structures, which may be important for communicating sound-evoked vibrations to the sensory cells. A better understanding of these interactions is important for testing realistic models of cochlear mechanics.

  10. Benchmarking of state-of-the-art needle detection algorithms in 3D ultrasound data volumes

    NASA Astrophysics Data System (ADS)

    Pourtaherian, Arash; Zinger, Svitlana; de With, Peter H. N.; Korsten, Hendrikus H. M.; Mihajlovic, Nenad

    2015-03-01

    Ultrasound-guided needle interventions are widely practiced in medical diagnostics and therapy, i.e. for biopsy guidance, regional anesthesia or for brachytherapy. Needle guidance using 2D ultrasound can be very challenging due to the poor needle visibility and the limited field of view. Since 3D ultrasound transducers are becoming more widely used, needle guidance can be improved and simplified with appropriate computer-aided analyses. In this paper, we compare two state-of-the-art 3D needle detection techniques: a technique based on line filtering from literature and a system employing Gabor transformation. Both algorithms utilize supervised classification to pre-select candidate needle voxels in the volume and then fit a model of the needle on the selected voxels. The major differences between the two approaches are in extracting the feature vectors for classification and selecting the criterion for fitting. We evaluate the performance of the two techniques using manually-annotated ground truth in several ex-vivo situations of different complexities, containing three different needle types with various insertion angles. This extensive evaluation provides better understanding on the limitations and advantages of each technique under different acquisition conditions, which is leading to the development of improved techniques for more reliable and accurate localization. Benchmarking results that the Gabor features are better capable of distinguishing the needle voxels in all datasets. Moreover, it is shown that the complete processing chain of the Gabor-based method outperforms the line filtering in accuracy and stability of the detection results.

  11. The development of a scalable parallel 3-D CFD algorithm for turbomachinery. M.S. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Luke, Edward Allen

    1993-01-01

    Two algorithms capable of computing a transonic 3-D inviscid flow field about rotating machines are considered for parallel implementation. During the study of these algorithms, a significant new method of measuring the performance of parallel algorithms is developed. The theory that supports this new method creates an empirical definition of scalable parallel algorithms that is used to produce quantifiable evidence that a scalable parallel application was developed. The implementation of the parallel application and an automated domain decomposition tool are also discussed.

  12. Automated 3D heart segmentation by search rays for building individual conductor models

    NASA Astrophysics Data System (ADS)

    Kim, Jaeil; Kim, Seokyeol; Kim, Kiwoong; Park, Jinah

    2009-02-01

    Magnetocardiograph (MCG) is one of the most useful diagnosing tools for myocardial ischemic diseases and the conduction abnormality, since the technique directly measures magnetic fields generated by myocardial currents without distortion in a non-invasive way. To localize the current source accurately, building a patient-specific conductor model is indispensable. In this paper, we present the method to automatically construct a patient-specific three-dimensional (3D) mesh model of a human thorax and a heart consisting of pericardium and four chambers. We represent the standard thorax model by simplex meshes, and deform them to fit into the individual CT data to reconstruct accurate surface representations for the MCG conductor model. The deformable simplex mesh model deforms based on the external forces exerted by the edge and gradient components of the source volume data while its internal force acts to maintain the integrity of the shape. However, image driven deformation is often very sensitive to its initial position. Therefore, we suggest our solution to automatic region-of-interest (ROI) detection using search rays, which are casted to 3D volume images to identify the region of a heart based on both the radiodensity values and their continuity along the path of the rays. Upon automatic ROI detection with search rays, the initial position and orientation of the standard mesh model is determined, and each vertex of the model is respectively moved by the weighted sum of the internal and external forces to conform to the each patient's own thorax and heart shape while minimizing the user's input.

  13. Prostate volume contouring: A 3D analysis of segmentation using 3DTRUS, CT, and MR

    SciTech Connect

    Smith, Wendy L. . E-mail: wendy.smith@cancerboard.ab.ca; Lewis, Craig |; Bauman, Glenn ||; Rodrigues, George ||; D'Souza, David |; Ash, Robert |; Ho, Derek; Venkatesan, Varagur |; Downey, Donal; Fenster, Aaron

    2007-03-15

    Purpose: This study evaluated the reproducibility and modality differences of prostate contouring after brachytherapy implant using three-dimensional (3D) transrectal ultrasound (3DTRUS), T2-weighted magnetic resonance (MR), and computed tomography (CT) imaging. Methods and Materials: Seven blinded observers contoured 10 patients' prostates, 30 day postimplant, on 3DTRUS, MR, and CT images to assess interobserver variability. Randomized images were contoured twice by each observer. We analyzed length and volume measurements and performed a 3D analysis of intra- and intermodality variation. Results: Average volume ratios were 1.16 for CT/MR, 0.90 for 3DTRUS/MR, and 1.30 for CT/3DTRUS. Overall contouring variability was largest for CT and similar for MR and 3DTRUS. The greatest variability of CT contours occurred at the posterior and anterior portions of the midgland. On MR, overall variability was smaller, with a maximum in the anterior region. On 3DTRUS, high variability occurred in anterior regions of the apex and base, whereas the prostate-rectum interface had the smallest variability. The shape of the prostate on MR was rounder, with the base and apex of similar size, whereas CT contours had broad, flat bases narrowing toward the apex. The average percent of surface area that was significantly different (95% confidence interval) for CT/MR was 4.1%; 3DTRUS/MR, 10.7%; and CT/3DTRUS, 6.3%. The larger variability of CT measurements made significant differences more difficult to detect. Conclusions: The contouring of prostates on CT, MR, and 3DTRUS results in systematic differences in the locations of and variability in prostate boundary definition between modalities. MR and 3DTRUS display the smallest variability and the closest correspondence.

  14. LiDAR Segmentation using Suitable Seed Points for 3D Building Extraction

    NASA Astrophysics Data System (ADS)

    Abdullah, S. M.; Awrangjeb, M.; Lu, G.

    2014-08-01

    Effective building detection and roof reconstruction has an influential demand over the remote sensing research community. In this paper, we present a new automatic LiDAR point cloud segmentation method using suitable seed points for building detection and roof plane extraction. Firstly, the LiDAR point cloud is separated into "ground" and "non-ground" points based on the analysis of DEM with a height threshold. Each of the non-ground point is marked as coplanar or non-coplanar based on a coplanarity analysis. Commencing from the maximum LiDAR point height towards the minimum, all the LiDAR points on each height level are extracted and separated into several groups based on 2D distance. From each group, lines are extracted and a coplanar point which is the nearest to the midpoint of each line is considered as a seed point. This seed point and its neighbouring points are utilised to generate the plane equation. The plane is grown in a region growing fashion until no new points can be added. A robust rule-based tree removal method is applied subsequently to remove planar segments on trees. Four different rules are applied in this method. Finally, the boundary of each object is extracted from the segmented LiDAR point cloud. The method is evaluated with six different data sets consisting hilly and densely vegetated areas. The experimental results indicate that the proposed method offers a high building detection and roof plane extraction rates while compared to a recently proposed method.

  15. An automatic contact algorithm in DYNA3D for impact problems

    SciTech Connect

    Whirley, R.G.; Engelmann, B.E.

    1993-07-23

    This paper presents a new approach for the automatic definition and treatment of mechanical contact in explicit nonlinear finite element analysis. Automatic contact offers the benefits of significantly reduced model construction time and fewer opportunities for user error, but faces significant challenges in reliability and computational costs. Key aspects of the proposed new method include automatic identification of adjacent and opposite surfaces in the global search phase, and the use of a well-defined surface normal which allows a consistent treatment of shell intersection and corner contact conditions without a ad-hoc rules. The paper concludes with three examples which illustrate the performance of the newly proposed algorithm in the public DYNA3D code.

  16. 3D resistivity inversion using an improved Genetic Algorithm based on control method of mutation direction

    NASA Astrophysics Data System (ADS)

    Liu, B.; Li, S. C.; Nie, L. C.; Wang, J.; L, X.; Zhang, Q. S.

    2012-12-01

    Traditional inversion method is the most commonly used procedure for three-dimensional (3D) resistivity inversion, which usually takes the linearization of the problem and accomplish it by iterations. However, its accuracy is often dependent on the initial model, which can make the inversion trapped in local optima, even cause a bad result. Non-linear method is a feasible way to eliminate the dependence on the initial model. However, for large problems such as 3D resistivity inversion with inversion parameters exceeding a thousand, main challenges of non-linear method are premature and quite low search efficiency. To deal with these problems, we present an improved Genetic Algorithm (GA) method. In the improved GA method, smooth constraint and inequality constraint are both applied on the object function, by which the degree of non-uniqueness and ill-conditioning is decreased. Some measures are adopted from others by reference to maintain the diversity and stability of GA, e.g. real-coded method, and the adaptive adjustment of crossover and mutation probabilities. Then a generation method of approximately uniform initial population is proposed in this paper, with which uniformly distributed initial generation can be produced and the dependence on initial model can be eliminated. Further, a mutation direction control method is presented based on the joint algorithm, in which the linearization method is embedded in GA. The update vector produced by linearization method is used as mutation increment to maintain a better search direction compared with the traditional GA with non-controlled mutation operation. By this method, the mutation direction is optimized and the search efficiency is improved greatly. The performance of improved GA is evaluated by comparing with traditional inversion results in synthetic example or with drilling columnar sections in practical example. The synthetic and practical examples illustrate that with the improved GA method we can eliminate

  17. Correlation-based discrimination between cardiac tissue and blood for segmentation of the left ventricle in 3-D echocardiographic images.

    PubMed

    Saris, Anne E C M; Nillesen, Maartje M; Lopata, Richard G P; de Korte, Chris L

    2014-03-01

    For automated segmentation of 3-D echocardiographic images, incorporation of temporal information may be helpful. In this study, optimal settings for calculation of temporal cross-correlations between subsequent time frames were determined, to obtain the maximum cross-correlation (MCC) values that provided the best contrast between blood and cardiac tissue over the entire cardiac cycle. Both contrast and boundary gradient quality measures were assessed to optimize MCC values with respect to signal choice (radiofrequency or envelope data) and axial window size. Optimal MCC values were incorporated into a deformable model to automatically segment the left ventricular cavity. MCC values were tested against, and combined with, filtered, demodulated radiofrequency data. Results reveal that using envelope data in combination with a relatively small axial window (0.7-1.25 mm) at fine scale results in optimal contrast and boundary gradient between the two tissues over the entire cardiac cycle. Preliminary segmentation results indicate that incorporation of MCC values has additional value for automated segmentation of the left ventricle. PMID:24412178

  18. Automated torso organ segmentation from 3D CT images using structured perceptron and dual decomposition

    NASA Astrophysics Data System (ADS)

    Nimura, Yukitaka; Hayashi, Yuichiro; Kitasaka, Takayuki; Mori, Kensaku

    2015-03-01

    This paper presents a method for torso organ segmentation from abdominal CT images using structured perceptron and dual decomposition. A lot of methods have been proposed to enable automated extraction of organ regions from volumetric medical images. However, it is necessary to adjust empirical parameters of them to obtain precise organ regions. This paper proposes an organ segmentation method using structured output learning. Our method utilizes a graphical model and binary features which represent the relationship between voxel intensities and organ labels. Also we optimize the weights of the graphical model by structured perceptron and estimate the best organ label for a given image by dynamic programming and dual decomposition. The experimental result revealed that the proposed method can extract organ regions automatically using structured output learning. The error of organ label estimation was 4.4%. The DICE coefficients of left lung, right lung, heart, liver, spleen, pancreas, left kidney, right kidney, and gallbladder were 0.91, 0.95, 0.77, 0.81, 0.74, 0.08, 0.83, 0.84, and 0.03, respectively.

  19. Rayleigh Wave Numerical Dispersion in a 3D Finite-Difference Algorithm

    NASA Astrophysics Data System (ADS)

    Preston, L. A.; Aldridge, D. F.

    2010-12-01

    A Rayleigh wave propagates laterally without dispersion in the vicinity of the plane stress-free surface of a homogeneous and isotropic elastic halfspace. The phase speed is independent of frequency and depends only on the Poisson ratio of the medium. However, after temporal and spatial discretization, a Rayleigh wave simulated by a 3D staggered-grid finite-difference (FD) seismic wave propagation algorithm suffers from frequency- and direction-dependent numerical dispersion. The magnitude of this dispersion depends critically on FD algorithm implementation details. Nevertheless, proper gridding can control numerical dispersion to within an acceptable level, leading to accurate Rayleigh wave simulations. Many investigators have derived dispersion relations appropriate for body wave propagation by various FD algorithms. However, the situation for surface waves is less well-studied. We have devised a numerical search procedure to estimate Rayleigh phase speed and group speed curves for 3D O(2,2) and O(2,4) staggered-grid FD algorithms. In contrast with the continuous time-space situation (where phase speed is obtained by extracting the appropriate root of the Rayleigh cubic), we cannot develop a closed-form mathematical formula governing the phase speed. Rather, we numerically seek the particular phase speed that leads to a solution of the discrete wave propagation equations, while holding medium properties, frequency, horizontal propagation direction, and gridding intervals fixed. Group speed is then obtained by numerically differentiating the phase speed with respect to frequency. The problem is formulated for an explicit stress-free surface positioned at two different levels within the staggered spatial grid. Additionally, an interesting variant involving zero-valued medium properties above the surface is addressed. We refer to the latter as an implicit free surface. Our preliminary conclusion is that an explicit free surface, implemented with O(4) spatial FD

  20. Performance analysis of different surface reconstruction algorithms for 3D reconstruction of outdoor objects from their digital images.

    PubMed

    Maiti, Abhik; Chakravarty, Debashish

    2016-01-01

    3D reconstruction of geo-objects from their digital images is a time-efficient and convenient way of studying the structural features of the object being modelled. This paper presents a 3D reconstruction methodology which can be used to generate photo-realistic 3D watertight surface of different irregular shaped objects, from digital image sequences of the objects. The 3D reconstruction approach described here is robust, simplistic and can be readily used in reconstructing watertight 3D surface of any object from its digital image sequence. Here, digital images of different objects are used to build sparse, followed by dense 3D point clouds of the objects. These image-obtained point clouds are then used for generation of photo-realistic 3D surfaces, using different surface reconstruction algorithms such as Poisson reconstruction and Ball-pivoting algorithm. Different control parameters of these algorithms are identified, which affect the quality and computation time of the reconstructed 3D surface. The effects of these control parameters in generation of 3D surface from point clouds of different density are studied. It is shown that the reconstructed surface quality of Poisson reconstruction depends on Samples per node (SN) significantly, greater SN values resulting in better quality surfaces. Also, the quality of the 3D surface generated using Ball-Pivoting algorithm is found to be highly depend upon Clustering radius and Angle threshold values. The results obtained from this study give the readers of the article a valuable insight into the effects of different control parameters on determining the reconstructed surface quality. PMID:27386376

  1. Performance analysis of different surface reconstruction algorithms for 3D reconstruction of outdoor objects from their digital images.

    PubMed

    Maiti, Abhik; Chakravarty, Debashish

    2016-01-01

    3D reconstruction of geo-objects from their digital images is a time-efficient and convenient way of studying the structural features of the object being modelled. This paper presents a 3D reconstruction methodology which can be used to generate photo-realistic 3D watertight surface of different irregular shaped objects, from digital image sequences of the objects. The 3D reconstruction approach described here is robust, simplistic and can be readily used in reconstructing watertight 3D surface of any object from its digital image sequence. Here, digital images of different objects are used to build sparse, followed by dense 3D point clouds of the objects. These image-obtained point clouds are then used for generation of photo-realistic 3D surfaces, using different surface reconstruction algorithms such as Poisson reconstruction and Ball-pivoting algorithm. Different control parameters of these algorithms are identified, which affect the quality and computation time of the reconstructed 3D surface. The effects of these control parameters in generation of 3D surface from point clouds of different density are studied. It is shown that the reconstructed surface quality of Poisson reconstruction depends on Samples per node (SN) significantly, greater SN values resulting in better quality surfaces. Also, the quality of the 3D surface generated using Ball-Pivoting algorithm is found to be highly depend upon Clustering radius and Angle threshold values. The results obtained from this study give the readers of the article a valuable insight into the effects of different control parameters on determining the reconstructed surface quality.

  2. Analysis of image thresholding segmentation algorithms based on swarm intelligence

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; Lu, Kai; Gao, Yinghui; Yang, Bo

    2013-03-01

    Swarm intelligence-based image thresholding segmentation algorithms are playing an important role in the research field of image segmentation. In this paper, we briefly introduce the theories of four existing image segmentation algorithms based on swarm intelligence including fish swarm algorithm, artificial bee colony, bacteria foraging algorithm and particle swarm optimization. Then some image benchmarks are tested in order to show the differences of the segmentation accuracy, time consumption, convergence and robustness for Salt & Pepper noise and Gaussian noise of these four algorithms. Through these comparisons, this paper gives qualitative analyses for the performance variance of the four algorithms. The conclusions in this paper would give a significant guide for the actual image segmentation.

  3. Automatic Detection, Segmentation and Classification of Retinal Horizontal Neurons in Large-scale 3D Confocal Imagery

    SciTech Connect

    Karakaya, Mahmut; Kerekes, Ryan A; Gleason, Shaun Scott; Martins, Rodrigo; Dyer, Michael

    2011-01-01

    Automatic analysis of neuronal structure from wide-field-of-view 3D image stacks of retinal neurons is essential for statistically characterizing neuronal abnormalities that may be causally related to neural malfunctions or may be early indicators for a variety of neuropathies. In this paper, we study classification of neuron fields in large-scale 3D confocal image stacks, a challenging neurobiological problem because of the low spatial resolution imagery and presence of intertwined dendrites from different neurons. We present a fully automated, four-step processing approach for neuron classification with respect to the morphological structure of their dendrites. In our approach, we first localize each individual soma in the image by using morphological operators and active contours. By using each soma position as a seed point, we automatically determine an appropriate threshold to segment dendrites of each neuron. We then use skeletonization and network analysis to generate the morphological structures of segmented dendrites, and shape-based features are extracted from network representations of each neuron to characterize the neuron. Based on qualitative results and quantitative comparisons, we show that we are able to automatically compute relevant features that clearly distinguish between normal and abnormal cases for postnatal day 6 (P6) horizontal neurons.

  4. Ellipsoid Segmentation Model for Analyzing Light-Attenuated 3D Confocal Image Stacks of Fluorescent Multi-Cellular Spheroids

    PubMed Central

    Barbier, Michaël; Jaensch, Steffen; Cornelissen, Frans; Vidic, Suzana; Gjerde, Kjersti; de Hoogt, Ronald; Graeser, Ralph; Gustin, Emmanuel; Chong, Yolanda T.

    2016-01-01

    In oncology, two-dimensional in-vitro culture models are the standard test beds for the discovery and development of cancer treatments, but in the last decades, evidence emerged that such models have low predictive value for clinical efficacy. Therefore they are increasingly complemented by more physiologically relevant 3D models, such as spheroid micro-tumor cultures. If suitable fluorescent labels are applied, confocal 3D image stacks can characterize the structure of such volumetric cultures and, for example, cell proliferation. However, several issues hamper accurate analysis. In particular, signal attenuation within the tissue of the spheroids prevents the acquisition of a complete image for spheroids over 100 micrometers in diameter. And quantitative analysis of large 3D image data sets is challenging, creating a need for methods which can be applied to large-scale experiments and account for impeding factors. We present a robust, computationally inexpensive 2.5D method for the segmentation of spheroid cultures and for counting proliferating cells within them. The spheroids are assumed to be approximately ellipsoid in shape. They are identified from information present in the Maximum Intensity Projection (MIP) and the corresponding height view, also known as Z-buffer. It alerts the user when potential bias-introducing factors cannot be compensated for and includes a compensation for signal attenuation. PMID:27303813

  5. Ellipsoid Segmentation Model for Analyzing Light-Attenuated 3D Confocal Image Stacks of Fluorescent Multi-Cellular Spheroids.

    PubMed

    Barbier, Michaël; Jaensch, Steffen; Cornelissen, Frans; Vidic, Suzana; Gjerde, Kjersti; de Hoogt, Ronald; Graeser, Ralph; Gustin, Emmanuel; Chong, Yolanda T

    2016-01-01

    In oncology, two-dimensional in-vitro culture models are the standard test beds for the discovery and development of cancer treatments, but in the last decades, evidence emerged that such models have low predictive value for clinical efficacy. Therefore they are increasingly complemented by more physiologically relevant 3D models, such as spheroid micro-tumor cultures. If suitable fluorescent labels are applied, confocal 3D image stacks can characterize the structure of such volumetric cultures and, for example, cell proliferation. However, several issues hamper accurate analysis. In particular, signal attenuation within the tissue of the spheroids prevents the acquisition of a complete image for spheroids over 100 micrometers in diameter. And quantitative analysis of large 3D image data sets is challenging, creating a need for methods which can be applied to large-scale experiments and account for impeding factors. We present a robust, computationally inexpensive 2.5D method for the segmentation of spheroid cultures and for counting proliferating cells within them. The spheroids are assumed to be approximately ellipsoid in shape. They are identified from information present in the Maximum Intensity Projection (MIP) and the corresponding height view, also known as Z-buffer. It alerts the user when potential bias-introducing factors cannot be compensated for and includes a compensation for signal attenuation. PMID:27303813

  6. A region-appearance-based adaptive variational model for 3D liver segmentation

    SciTech Connect

    Peng, Jialin; Dong, Fangfang; Chen, Yunmei; Kong, Dexing

    2014-04-15

    Purpose: Liver segmentation from computed tomography images is a challenging task owing to pixel intensity overlapping, ambiguous edges, and complex backgrounds. The authors address this problem with a novel active surface scheme, which minimizes an energy functional combining both edge- and region-based information. Methods: In this semiautomatic method, the evolving surface is principally attracted to strong edges but is facilitated by the region-based information where edge information is missing. As avoiding oversegmentation is the primary challenge, the authors take into account multiple features and appearance context information. Discriminative cues, such as multilayer consecutiveness and local organ deformation are also implicitly incorporated. Case-specific intensity and appearance constraints are included to cope with the typically large appearance variations over multiple images. Spatially adaptive balancing weights are employed to handle the nonuniformity of image features. Results: Comparisons and validations on difficult cases showed that the authors’ model can effectively discriminate the liver from adhering background tissues. Boundaries weak in gradient or with no local evidence (e.g., small edge gaps or parts with similar intensity to the background) were delineated without additional user constraint. With an average surface distance of 0.9 mm and an average volume overlap of 93.9% on the MICCAI data set, the authors’ model outperformed most state-of-the-art methods. Validations on eight volumes with different initial conditions had segmentation score variances mostly less than unity. Conclusions: The proposed model can efficiently delineate ambiguous liver edges from complex tissue backgrounds with reproducibility. Quantitative validations and comparative results demonstrate the accuracy and efficacy of the model.

  7. Fast Semantic Segmentation of 3d Point Clouds with Strongly Varying Density

    NASA Astrophysics Data System (ADS)

    Hackel, Timo; Wegner, Jan D.; Schindler, Konrad

    2016-06-01

    We describe an effective and efficient method for point-wise semantic classification of 3D point clouds. The method can handle unstructured and inhomogeneous point clouds such as those derived from static terrestrial LiDAR or photogammetric reconstruction; and it is computationally efficient, making it possible to process point clouds with many millions of points in a matter of minutes. The key issue, both to cope with strong variations in point density and to bring down computation time, turns out to be careful handling of neighborhood relations. By choosing appropriate definitions of a point's (multi-scale) neighborhood, we obtain a feature set that is both expressive and fast to compute. We evaluate our classification method both on benchmark data from a mobile mapping platform and on a variety of large, terrestrial laser scans with greatly varying point density. The proposed feature set outperforms the state of the art with respect to per-point classification accuracy, while at the same time being much faster to compute.

  8. 3D Radiative Transfer in Eta Carinae: The SimpleX Radiative Transfer Algorithm Applied to 3D SPH Simulations of Eta Car's Colliding Winds

    NASA Astrophysics Data System (ADS)

    Clementel, N.; Madura, T. I.; Kruip, C. J. H.; Icke, V.; Gull, T. R.

    2014-04-01

    At the heart of the spectacular bipolar Homunculus nebula lies an extremely luminous (5*10^6 L_sun) colliding wind binary with a highly eccentric (e ~ 0.9), 5.54-year orbit and a total mass ~ 110 M_sun. Our closest (D ~ 2.3 kpc) and best example of a pre-hypernova environment, Eta Carinae is an ideal astrophysical laboratory for studying massive binary interactions, stellar wind-wind collisions, and massive star evolution. In order to improve our knowledge of the system, we need to generate synthetic observations and compare them with the already available and future HST/STIS data. We present initial results from full 3D radiative transfer post-processing of 3D SPH hydrodynamical simulations of the interacting winds of Eta Carinae. We use SimpleX algorithm to obtain the ionization fractions of hydrogen and helium, this results in ionization maps of both species that constrain the regions where these lines can form. These results will allow us to put constraints on the number of ionizing photons coming from the companion. This construction of synthetic observations allows us to obtain insight into the highly complex 3D flows in Eta, from the shape of the ionized volume and its resulting optical/spectral appearance.

  9. An efficient parallel algorithm: Poststack and prestack Kirchhoff 3D depth migration using flexi-depth iterations

    NASA Astrophysics Data System (ADS)

    Rastogi, Richa; Srivastava, Abhishek; Khonde, Kiran; Sirasala, Kirannmayi M.; Londhe, Ashutosh; Chavhan, Hitesh

    2015-07-01

    This paper presents an efficient parallel 3D Kirchhoff depth migration algorithm suitable for current class of multicore architecture. The fundamental Kirchhoff depth migration algorithm exhibits inherent parallelism however, when it comes to 3D data migration, as the data size increases the resource requirement of the algorithm also increases. This challenges its practical implementation even on current generation high performance computing systems. Therefore a smart parallelization approach is essential to handle 3D data for migration. The most compute intensive part of Kirchhoff depth migration algorithm is the calculation of traveltime tables due to its resource requirements such as memory/storage and I/O. In the current research work, we target this area and develop a competent parallel algorithm for post and prestack 3D Kirchhoff depth migration, using hybrid MPI+OpenMP programming techniques. We introduce a concept of flexi-depth iterations while depth migrating data in parallel imaging space, using optimized traveltime table computations. This concept provides flexibility to the algorithm by migrating data in a number of depth iterations, which depends upon the available node memory and the size of data to be migrated during runtime. Furthermore, it minimizes the requirements of storage, I/O and inter-node communication, thus making it advantageous over the conventional parallelization approaches. The developed parallel algorithm is demonstrated and analysed on Yuva II, a PARAM series of supercomputers. Optimization, performance and scalability experiment results along with the migration outcome show the effectiveness of the parallel algorithm.

  10. Structural stereo matching of Laplacian-of-Gaussian contour segments for 3D perception

    NASA Technical Reports Server (NTRS)

    Boyer, K. L.; Sotak, G. E., Jr.

    1989-01-01

    The stereo correspondence problem is solved using Laplacian-of-Gaussian zero-crossing contours as a source of primitives for structural stereopsis, as opposed to traditional point-based algorithms. Up to 74 percent matching of candidate zero crossing points are being achieved on 240 x 246 images at small scales and large ranges of disparity, without coarse-to-fine tracking and without precise knowledge of the epipolar geometry. This approach should prove particularly useful in recovering the epipolar geometry automatically for stereo pairs for which it is unavailable a priori. Such situations occur in the extraction of terrain models from stereo aerial photographs.

  11. Improved document image segmentation algorithm using multiresolution morphology

    NASA Astrophysics Data System (ADS)

    Bukhari, Syed Saqib; Shafait, Faisal; Breuel, Thomas M.

    2011-01-01

    Page segmentation into text and non-text elements is an essential preprocessing step before optical character recognition (OCR) operation. In case of poor segmentation, an OCR classification engine produces garbage characters due to the presence of non-text elements. This paper describes modifications to the text/non-text segmentation algorithm presented by Bloomberg,1 which is also available in his open-source Leptonica library.2The modifications result in significant improvements and achieved better segmentation accuracy than the original algorithm for UW-III, UNLV, ICDAR 2009 page segmentation competition test images and circuit diagram datasets.

  12. Research of the multimodal brain-tumor segmentation algorithm

    NASA Astrophysics Data System (ADS)

    Lu, Yisu; Chen, Wufan

    2015-12-01

    It is well-known that the number of clusters is one of the most important parameters for automatic segmentation. However, it is difficult to define owing to the high diversity in appearance of tumor tissue among different patients and the ambiguous boundaries of lesions. In this study, a nonparametric mixture of Dirichlet process (MDP) model is applied to segment the tumor images, and the MDP segmentation can be performed without the initialization of the number of clusters. A new nonparametric segmentation algorithm combined with anisotropic diffusion and a Markov random field (MRF) smooth constraint is proposed in this study. Besides the segmentation of single modal brain tumor images, we developed the algorithm to segment multimodal brain tumor images by the magnetic resonance (MR) multimodal features and obtain the active tumor and edema in the same time. The proposed algorithm is evaluated and compared with other approaches. The accuracy and computation time of our algorithm demonstrates very impressive performance.

  13. Directional adaptive deformable models for segmentation with application to 2D and 3D medical images

    NASA Astrophysics Data System (ADS)

    Rougon, Nicolas F.; Preteux, Francoise J.

    1993-09-01

    In this paper, we address the problem of adapting the functions controlling the material properties of 2D snakes, and show how introducing oriented smoothness constraints results in a novel class of active contour models for segmentation which extends standard isotropic inhomogeneous membrane/thin-plate stabilizers. These constraints, expressed as adaptive L2 matrix norms, are defined by two 2nd-order symmetric and positive definite tensors which are invariant with respect to rigid motions in the image plane. These tensors, equivalent to directional adaptive stretching and bending densities, are quadratic with respect to 1st- and 2nd-order derivatives of the image intensity, respectively. A representation theorem specifying their canonical form is established and a geometrical interpretation of their effects if developed. Within this framework, it is shown that, by achieving a directional control of regularization, such non-isotropic constraints consistently relate the differential properties (metric and curvature) of the deformable model with those of the underlying intensity surface, yielding a satisfying preservation of image contour characteristics.

  14. Assessment of DICOM Viewers Capable of Loading Patient-specific 3D Models Obtained by Different Segmentation Platforms in the Operating Room.

    PubMed

    Lo Presti, Giuseppe; Carbone, Marina; Ciriaci, Damiano; Aramini, Daniele; Ferrari, Mauro; Ferrari, Vincenzo

    2015-10-01

    Patient-specific 3D models obtained by the segmentation of volumetric diagnostic images play an increasingly important role in surgical planning. Surgeons use the virtual models reconstructed through segmentation to plan challenging surgeries. Many solutions exist for the different anatomical districts and surgical interventions. The possibility to bring the 3D virtual reconstructions with native radiological images in the operating room is essential for fostering the use of intraoperative planning. To the best of our knowledge, current DICOM viewers are not able to simultaneously connect to the picture archiving and communication system (PACS) and import 3D models generated by external platforms to allow a straight integration in the operating room. A total of 26 DICOM viewers were evaluated: 22 open source and four commercial. Two DICOM viewers can connect to PACS and import segmentations achieved by other applications: Synapse 3D® by Fujifilm and OsiriX by University of Geneva. We developed a software network that converts diffuse visual tool kit (VTK) format 3D model segmentations, obtained by any software platform, to a DICOM format that can be displayed using OsiriX or Synapse 3D. Both OsiriX and Synapse 3D were suitable for our purposes and had comparable performance. Although Synapse 3D loads native images and segmentations faster, the main benefits of OsiriX are its user-friendly loading of elaborated images and it being both free of charge and open source.

  15. GeoBuilder: a geometric algorithm visualization and debugging system for 2D and 3D geometric computing.

    PubMed

    Wei, Jyh-Da; Tsai, Ming-Hung; Lee, Gen-Cher; Huang, Jeng-Hung; Lee, Der-Tsai

    2009-01-01

    Algorithm visualization is a unique research topic that integrates engineering skills such as computer graphics, system programming, database management, computer networks, etc., to facilitate algorithmic researchers in testing their ideas, demonstrating new findings, and teaching algorithm design in the classroom. Within the broad applications of algorithm visualization, there still remain performance issues that deserve further research, e.g., system portability, collaboration capability, and animation effect in 3D environments. Using modern technologies of Java programming, we develop an algorithm visualization and debugging system, dubbed GeoBuilder, for geometric computing. The GeoBuilder system features Java's promising portability, engagement of collaboration in algorithm development, and automatic camera positioning for tracking 3D geometric objects. In this paper, we describe the design of the GeoBuilder system and demonstrate its applications. PMID:19147888

  16. Rapid probabilistic source characterisation in 3D earth models using learning algorithms

    NASA Astrophysics Data System (ADS)

    Valentine, A. P.; Kaeufl, P.; Trampert, J.

    2015-12-01

    Characterising earthquake sources rapidly and robustly is an essential component of any earthquake early warning (EEW) procedure. Ideally, this characterisation should:(i) be probabilistic -- enabling appreciation of the full range of mechanisms compatible with available data, and taking observational and theoretical uncertainties into account; and(ii) operate in a physically-complete theoretical framework.However, implementing either of these ideals increases computational costs significantly, making it unfeasible to satisfy both in the short timescales necessary for EEW applications.The barrier here arises from the fact that conventional probabilistic inversion techniques involve running many thousands of forward simulations after data has been obtained---a procedure known as `posterior sampling'. Thus, for EEW, all computational costs must be incurred after the event time. Here, we demonstrate a new approach---based instead on `prior sampling'---which circumvents this problem and is feasible for EEW applications. All forward simulations are conducted in advance, and a learning algorithm is used to assimilate information about the relationship between model and data. Once observations from an earthquake become available, this information can be used to infer probability density functions (pdfs) for seismic source parameters, within milliseconds.We demonstrate this procedure using data from the 2008 Mw5.4 Chino Hills earthquake. We compute Green's functions for 150 randomly-chosen locations on the Whittier and Chino faults, using SPECFEM3D and a 3D model of the regional velocity structure. We then use these to train neural networks that map from seismic waveforms to pdfs on a point-source, moment-tensor representation of the event mechanism. We show that using local network data from the Chino Hills event, this system provides accurate information on magnitude, epicentral location and source half-duration using data available 6 seconds after the first station

  17. Form From Projected Shadow (FFPS): An algorithm for 3D shape analysis of sedimentary particles

    NASA Astrophysics Data System (ADS)

    Montenegro Ríos, Anibal; Sarocchi, Damiano; Nahmad-Molinari, Yuri; Borselli, Lorenzo

    2013-10-01

    In this paper we present a simple and effective method based on measuring the projected shadow of sedimentary particles by means of a digital image processing algorithm that enables the three principal axes of the particle to be determined from a single 2D color image. The method consists in projecting the shadow of the particle when it is resting on the maximum projection area (“c” axis pointing almost vertical, since in this configuration minimal distance from the center of mass to the floor is achieved minimizing the gravitational potential energy), by means of an oblique incident illumination system. Using HSL (hue-saturation-lightness) color space segmentation, two axes of the particle are measured directly from the maximum projected area. The length of the shadow provides the third axis of the particle. Multiple textured and colored sedimentary particles can be easily segmented from a green background and their corresponding shadows by means of a single space color transformation. This simple method enables the lengths of the three main axes of several particles to be determined at the same time without expensive equipment (the software is provided free by the authors). The axis lengths can span a broad range of sizes, and are measured with low experimental error (less than 5%).

  18. Axial 3D region of interest reconstruction using weighted cone beam BPF/DBPF algorithm cascaded with adequately oriented orthogonal butterfly filtering

    NASA Astrophysics Data System (ADS)

    Tang, Shaojie; Tang, Xiangyang

    2016-03-01

    Axial cone beam (CB) computed tomography (CT) reconstruction is still the most desirable in clinical applications. As the potential candidates with analytic form for the task, the back projection-filtration (BPF) and the derivative backprojection filtered (DBPF) algorithms, in which Hilbert filtering is the common algorithmic feature, are originally derived for exact helical and axial reconstruction from CB and fan beam projection data, respectively. These two algorithms have been heuristically extended for axial CB reconstruction via adoption of virtual PI-line segments. Unfortunately, however, streak artifacts are induced along the Hilbert filtering direction, since these algorithms are no longer accurate on the virtual PI-line segments. We have proposed to cascade the extended BPF/DBPF algorithm with orthogonal butterfly filtering for image reconstruction (namely axial CB-BPP/DBPF cascaded with orthogonal butterfly filtering), in which the orientation-specific artifacts caused by post-BP Hilbert transform can be eliminated, at a possible expense of losing the BPF/DBPF's capability of dealing with projection data truncation. Our preliminary results have shown that this is not the case in practice. Hence, in this work, we carry out an algorithmic analysis and experimental study to investigate the performance of the axial CB-BPP/DBPF cascaded with adequately oriented orthogonal butterfly filtering for three-dimensional (3D) reconstruction in region of interest (ROI).

  19. Finite-Difference Algorithm for Simulating 3D Electromagnetic Wavefields in Conductive Media

    NASA Astrophysics Data System (ADS)

    Aldridge, D. F.; Bartel, L. C.; Knox, H. A.

    2013-12-01

    Electromagnetic (EM) wavefields are routinely used in geophysical exploration for detection and characterization of subsurface geological formations of economic interest. Recorded EM signals depend strongly on the current conductivity of geologic media. Hence, they are particularly useful for inferring fluid content of saturated porous bodies. In order to enhance understanding of field-recorded data, we are developing a numerical algorithm for simulating three-dimensional (3D) EM wave propagation and diffusion in heterogeneous conductive materials. Maxwell's equations are combined with isotropic constitutive relations to obtain a set of six, coupled, first-order partial differential equations governing the electric and magnetic vectors. An advantage of this system is that it does not contain spatial derivatives of the three medium parameters electric permittivity, magnetic permeability, and current conductivity. Numerical solution methodology consists of explicit, time-domain finite-differencing on a 3D staggered rectangular grid. Temporal and spatial FD operators have order 2 and N, where N is user-selectable. We use an artificially-large electric permittivity to maximize the FD timestep, and thus reduce execution time. For the low frequencies typically used in geophysical exploration, accuracy is not unduly compromised. Grid boundary reflections are mitigated via convolutional perfectly matched layers (C-PMLs) imposed at the six grid flanks. A shared-memory-parallel code implementation via OpenMP directives enables rapid algorithm execution on a multi-thread computational platform. Good agreement is obtained in comparisons of numerically-generated data with reference solutions. EM wavefields are sourced via point current density and magnetic dipole vectors. Spatially-extended inductive sources (current carrying wire loops) are under development. We are particularly interested in accurate representation of high-conductivity sub-grid-scale features that are common

  20. Algorithms for improved 3-D reconstruction of live mammalian embryo vasculature from optical coherence tomography data

    PubMed Central

    Kulkarni, Prathamesh M.; Rey-Villamizar, Nicolas; Merouane, Amine; Sudheendran, Narendran; Wang, Shang; Garcia, Monica; Larina, Irina V.; Roysam, Badrinath

    2015-01-01

    Background Robust reconstructions of the three-dimensional network of blood vessels in developing embryos imaged by optical coherence tomography (OCT) are needed for quantifying the longitudinal development of vascular networks in live mammalian embryos, in support of developmental cardiovascular research. Past computational methods [such as speckle variance (SV)] have demonstrated the feasibility of vascular reconstruction, but multiple challenges remain including: the presence of vessel structures at multiple spatial scales, thin blood vessels with weak flow, and artifacts resulting from bulk tissue motion (BTM). Methods In order to overcome these challenges, this paper introduces a robust and scalable reconstruction algorithm based on a combination of anomaly detection algorithms and a parametric dictionary based sparse representation of blood vessels from structural OCT data. Results Validation results using confocal data as the baseline demonstrate that the proposed method enables the detection of vessel segments that are either partially missed or weakly reconstructed using the SV method. Finally, quantitative measurements of vessel reconstruction quality indicate an overall higher quality of vessel reconstruction with the proposed method. Conclusions Results suggest that sparsity-integrated speckle anomaly detection (SSAD) is potentially a valuable tool for performing accurate quantification of the progression of vascular development in the mammalian embryonic yolk sac as imaged using OCT. PMID:25694962

  1. Exact and approximate Fourier rebinning algorithms for the solution of the data truncation problem in 3-D PET.

    PubMed

    Bouallègue, Fayçal Ben; Crouzet, Jean-François; Comtat, Claude; Fourcade, Marjolaine; Mohammadi, Bijan; Mariano-Goulart, Denis

    2007-07-01

    This paper presents an extended 3-D exact rebinning formula in the Fourier space that leads to an iterative reprojection algorithm (iterative FOREPROJ), which enables the estimation of unmeasured oblique projection data on the basis of the whole set of measured data. In first approximation, this analytical formula also leads to an extended Fourier rebinning equation that is the basis for an approximate reprojection algorithm (extended FORE). These algorithms were evaluated on numerically simulated 3-D positron emission tomography (PET) data for the solution of the truncation problem, i.e., the estimation of the missing portions in the oblique projection data, before the application of algorithms that require complete projection data such as some rebinning methods (FOREX) or 3-D reconstruction algorithms (3DRP or direct Fourier methods). By taking advantage of all the 3-D data statistics, the iterative FOREPROJ reprojection provides a reliable alternative to the classical FOREPROJ method, which only exploits the low-statistics nonoblique data. It significantly improves the quality of the external reconstructed slices without loss of spatial resolution. As for the approximate extended FORE algorithm, it clearly exhibits limitations due to axial interpolations, but will require clinical studies with more realistic measured data in order to decide on its pertinence. PMID:17649913

  2. Embedding SAS approach into conjugate gradient algorithms for asymmetric 3D elasticity problems

    SciTech Connect

    Chen, Hsin-Chu; Warsi, N.A.; Sameh, A.

    1996-12-31

    In this paper, we present two strategies to embed the SAS (symmetric-and-antisymmetric) scheme into conjugate gradient (CG) algorithms to make solving 3D elasticity problems, with or without global reflexive symmetry, more efficient. The SAS approach is physically a domain decomposition scheme that takes advantage of reflexive symmetry of discretized physical problems, and algebraically a matrix transformation method that exploits special reflexivity properties of the matrix resulting from discretization. In addition to offering large-grain parallelism, which is valuable in a multiprocessing environment, the SAS scheme also has the potential for reducing arithmetic operations in the numerical solution of a reasonably wide class of scientific and engineering problems. This approach can be applied directly to problems that have global reflexive symmetry, yielding smaller and independent subproblems to solve, or indirectly to problems with partial symmetry, resulting in loosely coupled subproblems. The decomposition is achieved by separating the reflexive subspace from the antireflexive one, possessed by a special class of matrices A, A {element_of} C{sup n x n} that satisfy the relation A = PAP where P is a reflection matrix (symmetric signed permutation matrix).

  3. Graph-based active learning of agglomeration (GALA): a Python library to segment 2D and 3D neuroimages.

    PubMed

    Nunez-Iglesias, Juan; Kennedy, Ryan; Plaza, Stephen M; Chakraborty, Anirban; Katz, William T

    2014-01-01

    The aim in high-resolution connectomics is to reconstruct complete neuronal connectivity in a tissue. Currently, the only technology capable of resolving the smallest neuronal processes is electron microscopy (EM). Thus, a common approach to network reconstruction is to perform (error-prone) automatic segmentation of EM images, followed by manual proofreading by experts to fix errors. We have developed an algorithm and software library to not only improve the accuracy of the initial automatic segmentation, but also point out the image coordinates where it is likely to have made errors. Our software, called gala (graph-based active learning of agglomeration), improves the state of the art in agglomerative image segmentation. It is implemented in Python and makes extensive use of the scientific Python stack (numpy, scipy, networkx, scikit-learn, scikit-image, and others). We present here the software architecture of the gala library, and discuss several designs that we consider would be generally useful for other segmentation packages. We also discuss the current limitations of the gala library and how we intend to address them. PMID:24772079

  4. Automated 2D-3D registration of a radiograph and a cone beam CT using line-segment enhancement

    SciTech Connect

    Munbodh, Reshma; Jaffray, David A.; Moseley, Douglas J.; Chen Zhe; Knisely, Jonathan P.S.; Cathier, Pascal; Duncan, James S.

    2006-05-15

    The objective of this study was to develop a fully automated two-dimensional (2D)-three-dimensional (3D) registration framework to quantify setup deviations in prostate radiation therapy from cone beam CT (CBCT) data and a single AP radiograph. A kilovoltage CBCT image and kilovoltage AP radiograph of an anthropomorphic phantom of the pelvis were acquired at 14 accurately known positions. The shifts in the phantom position were subsequently estimated by registering digitally reconstructed radiographs (DRRs) from the 3D CBCT scan to the AP radiographs through the correlation of enhanced linear image features mainly representing bony ridges. Linear features were enhanced by filtering the images with ''sticks,'' short line segments which are varied in orientation to achieve the maximum projection value at every pixel in the image. The mean (and standard deviations) of the absolute errors in estimating translations along the three orthogonal axes in millimeters were 0.134 (0.096) AP(out-of-plane), 0.021 (0.023) ML and 0.020 (0.020) SI. The corresponding errors for rotations in degrees were 0.011 (0.009) AP, 0.029 (0.016) ML (out-of-plane), and 0.030 (0.028) SI (out-of-plane). Preliminary results with megavoltage patient data have also been reported. The results suggest that it may be possible to enhance anatomic features that are common to DRRs from a CBCT image and a single AP radiography of the pelvis for use in a completely automated and accurate 2D-3D registration framework for setup verification in prostate radiotherapy. This technique is theoretically applicable to other rigid bony structures such as the cranial vault or skull base and piecewise rigid structures such as the spine.

  5. Efficient Algorithms for Segmentation of Item-Set Time Series

    NASA Astrophysics Data System (ADS)

    Chundi, Parvathi; Rosenkrantz, Daniel J.

    We propose a special type of time series, which we call an item-set time series, to facilitate the temporal analysis of software version histories, email logs, stock market data, etc. In an item-set time series, each observed data value is a set of discrete items. We formalize the concept of an item-set time series and present efficient algorithms for segmenting a given item-set time series. Segmentation of a time series partitions the time series into a sequence of segments where each segment is constructed by combining consecutive time points of the time series. Each segment is associated with an item set that is computed from the item sets of the time points in that segment, using a function which we call a measure function. We then define a concept called the segment difference, which measures the difference between the item set of a segment and the item sets of the time points in that segment. The segment difference values are required to construct an optimal segmentation of the time series. We describe novel and efficient algorithms to compute segment difference values for each of the measure functions described in the paper. We outline a dynamic programming based scheme to construct an optimal segmentation of the given item-set time series. We use the item-set time series segmentation techniques to analyze the temporal content of three different data sets—Enron email, stock market data, and a synthetic data set. The experimental results show that an optimal segmentation of item-set time series data captures much more temporal content than a segmentation constructed based on the number of time points in each segment, without examining the item set data at the time points, and can be used to analyze different types of temporal data.

  6. Integration of 3D scale-based pseudo-enhancement correction and partial volume image segmentation for improving electronic colon cleansing in CT colonograpy.

    PubMed

    Zhang, Hao; Li, Lihong; Zhu, Hongbin; Han, Hao; Song, Bowen; Liang, Zhengrong

    2014-01-01

    Orally administered tagging agents are usually used in CT colonography (CTC) to differentiate residual bowel content from native colonic structures. However, the high-density contrast agents tend to introduce pseudo-enhancement (PE) effect on neighboring soft tissues and elevate their observed CT attenuation value toward that of the tagged materials (TMs), which may result in an excessive electronic colon cleansing (ECC) since the pseudo-enhanced soft tissues are incorrectly identified as TMs. To address this issue, we integrated a 3D scale-based PE correction into our previous ECC pipeline based on the maximum a posteriori expectation-maximization partial volume (PV) segmentation. The newly proposed ECC scheme takes into account both the PE and PV effects that commonly appear in CTC images. We evaluated the new scheme on 40 patient CTC scans, both qualitatively through display of segmentation results, and quantitatively through radiologists' blind scoring (human observer) and computer-aided detection (CAD) of colon polyps (computer observer). Performance of the presented algorithm has shown consistent improvements over our previous ECC pipeline, especially for the detection of small polyps submerged in the contrast agents. The CAD results of polyp detection showed that 4 more submerged polyps were detected for our new ECC scheme over the previous one.

  7. Feature measures for the segmentation of neuronal membrane using a machine learning algorithm

    NASA Astrophysics Data System (ADS)

    Iftikhar, Saadia; Godil, Afzal

    2013-12-01

    In this paper, we present a Support Vector Machine (SVM) based pixel classifier for a semi-automated segmentation algorithm to detect neuronal membrane structures in stacks of electron microscopy images of brain tissue samples. This algorithm uses high-dimensional feature spaces extracted from center-surrounded patches, and some distinct edge sensitive features for each pixel in the image, and a training dataset for the segmentation of neuronal membrane structures and background. Some threshold conditions are later applied to remove small regions, which are below a certain threshold criteria, and morphological operations, such as the filling of the detected objects, are done to get compactness in the objects. The performance of the segmentation method is calculated on the unseen data by using three distinct error measures: pixel error, wrapping error, and rand error, and also a pixel by pixel accuracy measure with their respective ground-truth. The trained SVM classifier achieves the best precision level in these three distinct errors at 0.23, 0.016 and 0.15, respectively; while the best accuracy using pixel by pixel measure reaches 77% on the given dataset. The results presented here are one step further towards exploring possible ways to solve these hard problems, such as segmentation in medical image analysis. In the future, we plan to extend it as a 3D segmentation approach for 3D datasets to not only retain the topological structures in the dataset but also for the ease of further analysis.

  8. Brain tumor segmentation in MR slices using improved GrowCut algorithm

    NASA Astrophysics Data System (ADS)

    Ji, Chunhong; Yu, Jinhua; Wang, Yuanyuan; Chen, Liang; Shi, Zhifeng; Mao, Ying

    2015-12-01

    The detection of brain tumor from MR images is very significant for medical diagnosis and treatment. However, the existing methods are mostly based on manual or semiautomatic segmentation which are awkward when dealing with a large amount of MR slices. In this paper, a new fully automatic method for the segmentation of brain tumors in MR slices is presented. Based on the hypothesis of the symmetric brain structure, the method improves the interactive GrowCut algorithm by further using the bounding box algorithm in the pre-processing step. More importantly, local reflectional symmetry is used to make up the deficiency of the bounding box method. After segmentation, 3D tumor image is reconstructed. We evaluate the accuracy of the proposed method on MR slices with synthetic tumors and actual clinical MR images. Result of the proposed method is compared with the actual position of simulated 3D tumor qualitatively and quantitatively. In addition, our automatic method produces equivalent performance as manual segmentation and the interactive GrowCut with manual interference while providing fully automatic segmentation.

  9. Blind watermark algorithm on 3D motion model based on wavelet transform

    NASA Astrophysics Data System (ADS)

    Qi, Hu; Zhai, Lang

    2013-12-01

    With the continuous development of 3D vision technology, digital watermark technology, as the best choice for copyright protection, has fused with it gradually. This paper proposed a blind watermark plan of 3D motion model based on wavelet transform, and made it loaded into the Vega real-time visual simulation system. Firstly, put 3D model into affine transform, and take the distance from the center of gravity to the vertex of 3D object in order to generate a one-dimensional discrete signal; then make this signal into wavelet transform to change its frequency coefficients and embed watermark, finally generate 3D motion model with watermarking. In fixed affine space, achieve the robustness in translation, revolving and proportion transforms. The results show that this approach has better performances not only in robustness, but also in watermark- invisibility.

  10. A Rapid and Efficient 2D/3D Nuclear Segmentation Method for Analysis of Early Mouse Embryo and Stem Cell Image Data

    PubMed Central

    Lou, Xinghua; Kang, Minjung; Xenopoulos, Panagiotis; Muñoz-Descalzo, Silvia; Hadjantonakis, Anna-Katerina

    2014-01-01

    Summary Segmentation is a fundamental problem that dominates the success of microscopic image analysis. In almost 25 years of cell detection software development, there is still no single piece of commercial software that works well in practice when applied to early mouse embryo or stem cell image data. To address this need, we developed MINS (modular interactive nuclear segmentation) as a MATLAB/C++-based segmentation tool tailored for counting cells and fluorescent intensity measurements of 2D and 3D image data. Our aim was to develop a tool that is accurate and efficient yet straightforward and user friendly. The MINS pipeline comprises three major cascaded modules: detection, segmentation, and cell position classification. An extensive evaluation of MINS on both 2D and 3D images, and comparison to related tools, reveals improvements in segmentation accuracy and usability. Thus, its accuracy and ease of use will allow MINS to be implemented for routine single-cell-level image analyses. PMID:24672759

  11. Masseter segmentation using an improved watershed algorithm with unsupervised classification.

    PubMed

    Ng, H P; Ong, S H; Foong, K W C; Goh, P S; Nowinski, W L

    2008-02-01

    The watershed algorithm always produces a complete division of the image. However, it is susceptible to over-segmentation and sensitivity to false edges. In medical images this leads to unfavorable representations of the anatomy. We address these drawbacks by introducing automated thresholding and post-segmentation merging. The automated thresholding step is based on the histogram of the gradient magnitude map while post-segmentation merging is based on a criterion which measures the similarity in intensity values between two neighboring partitions. Our improved watershed algorithm is able to merge more than 90% of the initial partitions, which indicates that a large amount of over-segmentation has been reduced. To further improve the segmentation results, we make use of K-means clustering to provide an initial coarse segmentation of the highly textured image before the improved watershed algorithm is applied to it. When applied to the segmentation of the masseter from 60 magnetic resonance images of 10 subjects, the proposed algorithm achieved an overlap index (kappa) of 90.6%, and was able to merge 98% of the initial partitions on average. The segmentation results are comparable to those obtained using the gradient vector flow snake. PMID:17950265

  12. Robust and accurate star segmentation algorithm based on morphology

    NASA Astrophysics Data System (ADS)

    Jiang, Jie; Lei, Liu; Guangjun, Zhang

    2016-06-01

    Star tracker is an important instrument of measuring a spacecraft's attitude; it measures a spacecraft's attitude by matching the stars captured by a camera and those stored in a star database, the directions of which are known. Attitude accuracy of star tracker is mainly determined by star centroiding accuracy, which is guaranteed by complete star segmentation. Current algorithms of star segmentation cannot suppress different interferences in star images and cannot segment stars completely because of these interferences. To solve this problem, a new star target segmentation algorithm is proposed on the basis of mathematical morphology. The proposed algorithm utilizes the margin structuring element to detect small targets and the opening operation to suppress noises, and a modified top-hat transform is defined to extract stars. A combination of three different structuring elements is utilized to define a new star segmentation algorithm, and the influence of three different structural elements on the star segmentation results is analyzed. Experimental results show that the proposed algorithm can suppress different interferences and segment stars completely, thus providing high star centroiding accuracy.

  13. Portable high-intensity focused ultrasound system with 3D electronic steering, real-time cavitation monitoring, and 3D image reconstruction algorithms: a preclinical study in pigs

    PubMed Central

    2014-01-01

    Purpose: The aim of this study was to evaluate the safety and accuracy of a new portable ultrasonography-guided high-intensity focused ultrasound (USg-HIFU) system with a 3-dimensional (3D) electronic steering transducer, a simultaneous ablation and imaging module, real-time cavitation monitoring, and 3D image reconstruction algorithms. Methods: To address the accuracy of the transducer, hydrophones in a water chamber were used to assess the generation of sonic fields. An animal study was also performed in five pigs by ablating in vivo thighs by single-point sonication (n=10) or volume sonication (n=10) and ex vivo kidneys by single-point sonication (n=10). Histological and statistical analyses were performed. Results: In the hydrophone study, peak voltages were detected within 1.0 mm from the targets on the y- and z-axes and within 2.0-mm intervals along the x-axis (z-axis, direction of ultrasound propagation; y- and x-axes, perpendicular to the direction of ultrasound propagation). Twenty-nine of 30 HIFU sessions successfully created ablations at the target. The in vivo porcine thigh study showed only a small discrepancy (width, 0.5-1.1 mm; length, 3.0 mm) between the planning ultrasonograms and the pathological specimens. Inordinate thermal damage was not observed in the adjacent tissues or sonic pathways in the in vivo thigh and ex vivo kidney studies. Conclusion: Our study suggests that this new USg-HIFU system may be a safe and accurate technique for ablating soft tissues and encapsulated organs. PMID:25038809

  14. Automatic left-atrial segmentation from cardiac 3D ultrasound: a dual-chamber model-based approach

    NASA Astrophysics Data System (ADS)

    Almeida, Nuno; Sarvari, Sebastian I.; Orderud, Fredrik; Gérard, Olivier; D'hooge, Jan; Samset, Eigil

    2016-04-01

    In this paper, we present an automatic solution for segmentation and quantification of the left atrium (LA) from 3D cardiac ultrasound. A model-based framework is applied, making use of (deformable) active surfaces to model the endocardial surfaces of cardiac chambers, allowing incorporation of a priori anatomical information in a simple fashion. A dual-chamber model (LA and left ventricle) is used to detect and track the atrio-ventricular (AV) plane, without any user input. Both chambers are represented by parametric surfaces and a Kalman filter is used to fit the model to the position of the endocardial walls detected in the image, providing accurate detection and tracking during the whole cardiac cycle. This framework was tested in 20 transthoracic cardiac ultrasound volumetric recordings of healthy volunteers, and evaluated using manual traces of a clinical expert as a reference. The 3D meshes obtained with the automatic method were close to the reference contours at all cardiac phases (mean distance of 0.03+/-0.6 mm). The AV plane was detected with an accuracy of -0.6+/-1.0 mm. The LA volumes assessed automatically were also in agreement with the reference (mean +/-1.96 SD): 0.4+/-5.3 ml, 2.1+/-12.6 ml, and 1.5+/-7.8 ml at end-diastolic, end-systolic and pre-atrial-contraction frames, respectively. This study shows that the proposed method can be used for automatic volumetric assessment of the LA, considerably reducing the analysis time and effort when compared to manual analysis.

  15. A systematic review of image segmentation methodology, used in the additive manufacture of patient-specific 3D printed models of the cardiovascular system

    PubMed Central

    Byrne, N; Velasco Forte, M; Tandon, A; Valverde, I

    2016-01-01

    Background Shortcomings in existing methods of image segmentation preclude the widespread adoption of patient-specific 3D printing as a routine decision-making tool in the care of those with congenital heart disease. We sought to determine the range of cardiovascular segmentation methods and how long each of these methods takes. Methods A systematic review of literature was undertaken. Medical imaging modality, segmentation methods, segmentation time, segmentation descriptive quality (SDQ) and segmentation software were recorded. Results Totally 136 studies met the inclusion criteria (1 clinical trial; 80 journal articles; 55 conference, technical and case reports). The most frequently used image segmentation methods were brightness thresholding, region growing and manual editing, as supported by the most popular piece of proprietary software: Mimics (Materialise NV, Leuven, Belgium, 1992–2015). The use of bespoke software developed by individual authors was not uncommon. SDQ indicated that reporting of image segmentation methods was generally poor with only one in three accounts providing sufficient detail for their procedure to be reproduced. Conclusions and implication of key findings Predominantly anecdotal and case reporting precluded rigorous assessment of risk of bias and strength of evidence. This review finds a reliance on manual and semi-automated segmentation methods which demand a high level of expertise and a significant time commitment on the part of the operator. In light of the findings, we have made recommendations regarding reporting of 3D printing studies. We anticipate that these findings will encourage the development of advanced image segmentation methods. PMID:27170842

  16. Algorithm for simulation of craniotomies assisted by peripheral for 3D virtual navigation.

    PubMed

    Duque, Sara I; Ochoa, John F; Botero, Andrés F; Ramirez, Mateo

    2015-01-01

    Neurosurgical procedures require high precision and an accurate localization of the structures. For that reason and due to the advances in 3D visualization, the software for planning and training neurosurgeries has become an important tool for neurosurgeons and students, but the manipulation of the 3D structures is not always easy for the staff that usually works with 2D images. This paper describes a system developed in open source software that allows performing a virtual craniotomy (a common procedure in neurosurgery that enables the access to intracranial lesions) in 3D slicer; the system includes a peripheral input in order to permit the manipulation of the 3D structures according to camera movements and to guide the movement of the craniotomy tool. PMID:26737914

  17. Intelligent speckle reducing anisotropic diffusion algorithm for automated 3-D ultrasound images.

    PubMed

    Wu, Jun; Wang, Yuanyuan; Yu, Jinhua; Shi, Xinling; Zhang, Junhua; Chen, Yue; Pang, Yun

    2015-02-01

    A novel 3-D filtering method is presented for speckle reduction and detail preservation in automated 3-D ultrasound images. First, texture features of an image are analyzed by using the improved quadtree (QT) decomposition. Then, the optimal homogeneous and the obvious heterogeneous regions are selected from QT decomposition results. Finally, diffusion parameters and diffusion process are automatically decided based on the properties of these two selected regions. The computing time needed for 2-D speckle reduction is very short. However, the computing time required for 3-D speckle reduction is often hundreds of times longer than 2-D speckle reduction. This may limit its potential application in practice. Because this new filter can adaptively adjust the time step of iteration, the computation time is reduced effectively. Both synthetic and real 3-D ultrasound images are used to evaluate the proposed filter. It is shown that this filter is superior to other methods in both practicality and efficiency. PMID:26366596

  18. Morpho-geometrical approach for 3D segmentation of pulmonary vascular tree in multi-slice CT

    NASA Astrophysics Data System (ADS)

    Fetita, Catalin; Brillet, Pierre-Yves; Prêteux, Françoise J.

    2009-02-01

    The analysis of pulmonary vessels provides better insights into the lung physio-pathology and offers the basis for a functional investigation of the respiratory system. In order to be performed in clinical routine, such analysis has to be compatible with the general protocol for thorax imaging based on multi-slice CT (MSCT), which does not involve the use of contrast agent for vessels enhancement. Despite the fact that a visual assessment of the pulmonary vascular tree is facilitated by the natural contrast existing between vessels and lung parenchyma, a quantitative analysis becomes quickly tedious due to the high spatial density and subdivision complexity of these anatomical structures. In this paper, we develop an automated 3D approach for the segmentation of the pulmonary vessels in MSCT allowing further quantification facilities for the lung function. The proposed approach combines mathematical morphology and discrete geometry operators in order to reach distal small caliber blood vessels and to preserve the border with the wall of the bronchial tree which features identical intensity values. In this respect, the pulmonary field is first roughly segmented using thresholding, and the trachea and the main bronchi removed. The lung shape is then regularized by morphological alternate filtering and the high opacities (vessels, bronchi, and other eventual pathologic features) selected. After the attenuation of the bronchus wall for large and medium airways, the set of vessel candidates are obtained by morphological grayscale reconstruction and binarization. The residual bronchus wall components are then removed by means of a geometrical shape filtering which includes skeletonization and cylindrical shape estimation. The morphology of the reconstructed pulmonary vessels can be visually investigated with volume rendering, by associating a specific color code with the local vessel caliber. The complement set of the vascular tree among the high intensity structures in

  19. Segmentation of thermographic images of hands using a genetic algorithm

    NASA Astrophysics Data System (ADS)

    Ghosh, Payel; Mitchell, Melanie; Gold, Judith

    2010-01-01

    This paper presents a new technique for segmenting thermographic images using a genetic algorithm (GA). The individuals of the GA also known as chromosomes consist of a sequence of parameters of a level set function. Each chromosome represents a unique segmenting contour. An initial population of segmenting contours is generated based on the learned variation of the level set parameters from training images. Each segmenting contour (an individual) is evaluated for its fitness based on the texture of the region it encloses. The fittest individuals are allowed to propagate to future generations of the GA run using selection, crossover and mutation. The dataset consists of thermographic images of hands of patients suffering from upper extremity musculo-skeletal disorders (UEMSD). Thermographic images are acquired to study the skin temperature as a surrogate for the amount of blood flow in the hands of these patients. Since entire hands are not visible on these images, segmentation of the outline of the hands on these images is typically performed by a human. In this paper several different methods have been tried for segmenting thermographic images: Gabor-wavelet-based texture segmentation method, the level set method of segmentation and our GA which we termed LSGA because it combines level sets with genetic algorithms. The results show a comparative evaluation of the segmentation performed by all the methods. We conclude that LSGA successfully segments entire hands on images in which hands are only partially visible.

  20. LC-lens array with light field algorithm for 3D biomedical applications

    NASA Astrophysics Data System (ADS)

    Huang, Yi-Pai; Hsieh, Po-Yuan; Hassanfiroozi, Amir; Martinez, Manuel; Javidi, Bahram; Chu, Chao-Yu; Hsuan, Yun; Chu, Wen-Chun

    2016-03-01

    In this paper, liquid crystal lens (LC-lens) array was utilized in 3D bio-medical applications including 3D endoscope and light field microscope. Comparing with conventional plastic lens array, which was usually placed in 3D endoscope or light field microscope system to record image disparity, our LC-lens array has higher flexibility of electrically changing its focal length. By using LC-lens array, the working distance and image quality of 3D endoscope and microscope could be enhanced. Furthermore, the 2D/3D switching ability could be achieved if we turn off/on the electrical power on LClens array. In 3D endoscope case, a hexagonal micro LC-lens array with 350um diameter was placed at the front end of a 1mm diameter endoscope. With applying electric field on LC-lens array, the 3D specimen would be recorded as from seven micro-cameras with different disparity. We could calculate 3D construction of specimen with those micro images. In the other hand, if we turn off the electric field on LC-lens array, the conventional high resolution 2D endoscope image would be recorded. In light field microscope case, the LC-lens array was placed in front of the CMOS sensor. The main purpose of LC-lens array is to extend the refocusing distance of light field microscope, which is usually very narrow in focused light field microscope system, by montaging many light field images sequentially focusing on different depth. With adjusting focal length of LC-lens array from 2.4mm to 2.9mm, the refocusing distance was extended from 1mm to 11.3mm. Moreover, we could use a LC wedge to electrically shift the optics axis and increase the resolution of light field.

  1. An improved independent component analysis model for 3D chromatogram separation and its solution by multi-areas genetic algorithm

    PubMed Central

    2014-01-01

    Background The 3D chromatogram generated by High Performance Liquid Chromatography-Diode Array Detector (HPLC-DAD) has been researched widely in the field of herbal medicine, grape wine, agriculture, petroleum and so on. Currently, most of the methods used for separating a 3D chromatogram need to know the compounds' number in advance, which could be impossible especially when the compounds are complex or white noise exist. New method which extracts compounds from 3D chromatogram directly is needed. Methods In this paper, a new separation model named parallel Independent Component Analysis constrained by Reference Curve (pICARC) was proposed to transform the separation problem to a multi-parameter optimization issue. It was not necessary to know the number of compounds in the optimization. In order to find all the solutions, an algorithm named multi-areas Genetic Algorithm (mGA) was proposed, where multiple areas of candidate solutions were constructed according to the fitness and distances among the chromosomes. Results Simulations and experiments on a real life HPLC-DAD data set were used to demonstrate our method and its effectiveness. Through simulations, it can be seen that our method can separate 3D chromatogram to chromatogram peaks and spectra successfully even when they severely overlapped. It is also shown by the experiments that our method is effective to solve real HPLC-DAD data set. Conclusions Our method can separate 3D chromatogram successfully without knowing the compounds' number in advance, which is fast and effective. PMID:25474487

  2. On solving the 3-D phase field equations by employing a parallel-adaptive mesh refinement (Para-AMR) algorithm

    NASA Astrophysics Data System (ADS)

    Guo, Z.; Xiong, S. M.

    2015-05-01

    An algorithm comprising adaptive mesh refinement (AMR) and parallel (Para-) computing capabilities was developed to efficiently solve the coupled phase field equations in 3-D. The AMR was achieved based on a gradient criterion and the point clustering algorithm introduced by Berger (1991). To reduce the time for mesh generation, a dynamic regridding approach was developed based on the magnitude of the maximum phase advancing velocity. Local data at each computing process was then constructed and parallel computation was realized based on the hierarchical grid structure created during the AMR. Numerical tests and simulations on single and multi-dendrite growth were performed and results show that the proposed algorithm could shorten the computing time for 3-D phase field simulation for about two orders of magnitude and enable one to gain much more insight in understanding the underlying physics during dendrite growth in solidification.

  3. A fast 3-D object recognition algorithm for the vision system of a special-purpose dexterous manipulator

    NASA Technical Reports Server (NTRS)

    Hung, Stephen H. Y.

    1989-01-01

    A fast 3-D object recognition algorithm that can be used as a quick-look subsystem to the vision system for the Special-Purpose Dexterous Manipulator (SPDM) is described. Global features that can be easily computed from range data are used to characterize the images of a viewer-centered model of an object. This algorithm will speed up the processing by eliminating the low level processing whenever possible. It may identify the object, reject a set of bad data in the early stage, or create a better environment for a more powerful algorithm to carry the work further.

  4. An implicit dispersive transport algorithm for the US Geological Survey MOC3D solute-transport model

    USGS Publications Warehouse

    Kipp, K.L.; Konikow, L.F.; Hornberger, G.Z.

    1998-01-01

    This report documents an extension to the U.S. Geological Survey MOC3D transport model that incorporates an implicit-in-time difference approximation for the dispersive transport equation, including source/sink terms. The original MOC3D transport model (Version 1) uses the method of characteristics to solve the transport equation on the basis of the velocity field. The original MOC3D solution algorithm incorporates particle tracking to represent advective processes and an explicit finite-difference formulation to calculate dispersive fluxes. The new implicit procedure eliminates several stability criteria required for the previous explicit formulation. This allows much larger transport time increments to be used in dispersion-dominated problems. The decoupling of advective and dispersive transport in MOC3D, however, is unchanged. With the implicit extension, the MOC3D model is upgraded to Version 2. A description of the numerical method of the implicit dispersion calculation, the data-input requirements and output options, and the results of simulator testing and evaluation are presented. Version 2 of MOC3D was evaluated for the same set of problems used for verification of Version 1. These test results indicate that the implicit calculation of Version 2 matches the accuracy of Version 1, yet is more efficient than the explicit calculation for transport problems that are characterized by a grid Peclet number less than about 1.0.

  5. TESS: a geometric hashing algorithm for deriving 3D coordinate templates for searching structural databases. Application to enzyme active sites.

    PubMed

    Wallace, A C; Borkakoti, N; Thornton, J M

    1997-11-01

    It is well established that sequence templates such as those in the PROSITE and PRINTS databases are powerful tools for predicting the biological function and tertiary structure for newly derived protein sequences. The number of X-ray and NMR protein structures is increasing rapidly and it is apparent that a 3D equivalent of the sequence templates is needed. Here, we describe an algorithm called TESS that automatically derives 3D templates from structures deposited in the Brookhaven Protein Data Bank. While a new sequence can be searched for sequence patterns, a new structure can be scanned against these 3D templates to identify functional sites. As examples, 3D templates are derived for enzymes with an O-His-O "catalytic triad" and for the ribonucleases and lysozymes. When these 3D templates are applied to a large data set of nonidentical proteins, several interesting hits are located. This suggests that the development of a 3D template database may help to identify the function of new protein structures, if unknown, as well as to design proteins with specific functions.

  6. Experimental validation of improved 3D SBP positioning algorithm in PET applications using UW Phase II Board

    NASA Astrophysics Data System (ADS)

    Jorge, L. S.; Bonifacio, D. A. B.; DeWitt, Don; Miyaoka, R. S.

    2016-12-01

    Continuous scintillator-based detectors have been considered as a competitive and cheaper approach than highly pixelated discrete crystal positron emission tomography (PET) detectors, despite the need for algorithms to estimate 3D gamma interaction position. In this work, we report on the implementation of a positioning algorithm to estimate the 3D interaction position in a continuous crystal PET detector using a Field Programmable Gate Array (FPGA). The evaluated method is the Statistics-Based Processing (SBP) technique that requires light response function and event position characterization. An algorithm has been implemented using the Verilog language and evaluated using a data acquisition board that contains an Altera Stratix III FPGA. The 3D SBP algorithm was previously successfully implemented on a Stratix II FPGA using simulated data and a different module design. In this work, improvements were made to the FPGA coding of the 3D positioning algorithm, reducing the total memory usage to around 34%. Further the algorithm was evaluated using experimental data from a continuous miniature crystal element (cMiCE) detector module. Using our new implementation, average FWHM (Full Width at Half Maximum) for the whole block is 1.71±1 mm, 1.70±1 mm and 1.632±5 mm for x, y and z directions, respectively. Using a pipelined architecture, the FPGA is able to process 245,000 events per second for interactions inside of the central area of the detector that represents 64% of the total block area. The weighted average of the event rate by regional area (corner, border and central regions) is about 198,000 events per second. This event rate is greater than the maximum expected coincidence rate for any given detector module in future PET systems using the cMiCE detector design.

  7. A segmentation algorithm for automated tracking of fast swimming unlabelled cells in three dimensions.

    PubMed

    Pimentel, J A; Carneiro, J; Darszon, A; Corkidi, G

    2012-01-01

    Recent advances in microscopy and cytolabelling methods enable the real time imaging of cells as they move and interact in their real physiological environment. Scenarios in which multiple cells move autonomously in all directions are not uncommon in biology. A remarkable example is the swimming of marine spermatozoa in search of the conspecific oocyte. Imaging cells in these scenarios, particularly when they move fast and are poorly labelled or even unlabelled requires very fast three-dimensional time-lapse (3D+t) imaging. This 3D+t imaging poses challenges not only to the acquisition systems but also to the image analysis algorithms. It is in this context that this work describes an original automated multiparticle segmentation method to analyse motile translucent cells in 3D microscopical volumes. The proposed segmentation technique takes advantage of the way the cell appearance changes with the distance to the focal plane position. The cells translucent properties and their interaction with light produce a specific pattern: when the cell is within or close to the focal plane, its two-dimensional (2D) appearance matches a bright spot surrounded by a dark ring, whereas when it is farther from the focal plane the cell contrast is inverted looking like a dark spot surrounded by a bright ring. The proposed method analyses the acquired video sequence frame-by-frame taking advantage of 2D image segmentation algorithms to identify and select candidate cellular sections. The crux of the method is in the sequential filtering of the candidate sections, first by template matching of the in-focus and out-of-focus templates and second by considering adjacent candidates sections in 3D. These sequential filters effectively narrow down the number of segmented candidate sections making the automatic tracking of cells in three dimensions a straightforward operation. PMID:21999166

  8. A segmentation algorithm for automated tracking of fast swimming unlabelled cells in three dimensions.

    PubMed

    Pimentel, J A; Carneiro, J; Darszon, A; Corkidi, G

    2012-01-01

    Recent advances in microscopy and cytolabelling methods enable the real time imaging of cells as they move and interact in their real physiological environment. Scenarios in which multiple cells move autonomously in all directions are not uncommon in biology. A remarkable example is the swimming of marine spermatozoa in search of the conspecific oocyte. Imaging cells in these scenarios, particularly when they move fast and are poorly labelled or even unlabelled requires very fast three-dimensional time-lapse (3D+t) imaging. This 3D+t imaging poses challenges not only to the acquisition systems but also to the image analysis algorithms. It is in this context that this work describes an original automated multiparticle segmentation method to analyse motile translucent cells in 3D microscopical volumes. The proposed segmentation technique takes advantage of the way the cell appearance changes with the distance to the focal plane position. The cells translucent properties and their interaction with light produce a specific pattern: when the cell is within or close to the focal plane, its two-dimensional (2D) appearance matches a bright spot surrounded by a dark ring, whereas when it is farther from the focal plane the cell contrast is inverted looking like a dark spot surrounded by a bright ring. The proposed method analyses the acquired video sequence frame-by-frame taking advantage of 2D image segmentation algorithms to identify and select candidate cellular sections. The crux of the method is in the sequential filtering of the candidate sections, first by template matching of the in-focus and out-of-focus templates and second by considering adjacent candidates sections in 3D. These sequential filters effectively narrow down the number of segmented candidate sections making the automatic tracking of cells in three dimensions a straightforward operation.

  9. An enhanced fast scanning algorithm for image segmentation

    NASA Astrophysics Data System (ADS)

    Ismael, Ahmed Naser; Yusof, Yuhanis binti

    2015-12-01

    Segmentation is an essential and important process that separates an image into regions that have similar characteristics or features. This will transform the image for a better image analysis and evaluation. An important benefit of segmentation is the identification of region of interest in a particular image. Various algorithms have been proposed for image segmentation and this includes the Fast Scanning algorithm which has been employed on food, sport and medical images. It scans all pixels in the image and cluster each pixel according to the upper and left neighbor pixels. The clustering process in Fast Scanning algorithm is performed by merging pixels with similar neighbor based on an identified threshold. Such an approach will lead to a weak reliability and shape matching of the produced segments. This paper proposes an adaptive threshold function to be used in the clustering process of the Fast Scanning algorithm. This function used the gray'value in the image's pixels and variance Also, the level of the image that is more the threshold are converted into intensity values between 0 and 1, and other values are converted into intensity values zero. The proposed enhanced Fast Scanning algorithm is realized on images of the public and private transportation in Iraq. Evaluation is later made by comparing the produced images of proposed algorithm and the standard Fast Scanning algorithm. The results showed that proposed algorithm is faster in terms the time from standard fast scanning.

  10. Segmentation algorithms for ear image data towards biomechanical studies.

    PubMed

    Ferreira, Ana; Gentil, Fernanda; Tavares, João Manuel R S

    2014-01-01

    In recent years, the segmentation, i.e. the identification, of ear structures in video-otoscopy, computerised tomography (CT) and magnetic resonance (MR) image data, has gained significant importance in the medical imaging area, particularly those in CT and MR imaging. Segmentation is the fundamental step of any automated technique for supporting the medical diagnosis and, in particular, in biomechanics studies, for building realistic geometric models of ear structures. In this paper, a review of the algorithms used in ear segmentation is presented. The review includes an introduction to the usually biomechanical modelling approaches and also to the common imaging modalities. Afterwards, several segmentation algorithms for ear image data are described, and their specificities and difficulties as well as their advantages and disadvantages are identified and analysed using experimental examples. Finally, the conclusions are presented as well as a discussion about possible trends for future research concerning the ear segmentation.

  11. [An automatic extraction algorithm for individual tree crown projection area and volume based on 3D point cloud data].

    PubMed

    Xu, Wei-Heng; Feng, Zhong-Ke; Su, Zhi-Fang; Xu, Hui; Jiao, You-Quan; Deng, Ou

    2014-02-01

    Tree crown projection area and crown volume are the important parameters for the estimation of biomass, tridimensional green biomass and other forestry science applications. Using conventional measurements of tree crown projection area and crown volume will produce a large area of errors in the view of practical situations referring to complicated tree crown structures or different morphological characteristics. However, it is difficult to measure and validate their accuracy through conventional measurement methods. In view of practical problems which include complicated tree crown structure, different morphological characteristics, so as to implement the objective that tree crown projection and crown volume can be extracted by computer program automatically. This paper proposes an automatic untouched measurement based on terrestrial three-dimensional laser scanner named FARO Photon120 using plane scattered data point convex hull algorithm and slice segmentation and accumulation algorithm to calculate the tree crown projection area. It is exploited on VC+6.0 and Matlab7.0. The experiments are exploited on 22 common tree species of Beijing, China. The results show that the correlation coefficient of the crown projection between Av calculated by new method and conventional method A4 reaches 0.964 (p<0.01); and the correlation coefficient of tree crown volume between V(VC) derived from new method and V(C) by the formula of a regular body is 0.960 (p<0.001). The results also show that the average of V(C) is smaller than that of V(VC) at the rate of 8.03%, and the average of A4 is larger than that of A(V) at the rate of 25.5%. Assumed Av and V(VC) as ture values, the deviations of the new method could be attributed to irregularity of the crowns' silhouettes. Different morphological characteristics of tree crown led to measurement error in forest simple plot survey. Based on the results, the paper proposes that: (1) the use of eight-point or sixteen-point projection with

  12. Computer-aided classification of liver tumors in 3D ultrasound images with combined deformable model segmentation and support vector machine

    NASA Astrophysics Data System (ADS)

    Lee, Myungeun; Kim, Jong Hyo; Park, Moon Ho; Kim, Ye-Hoon; Seong, Yeong Kyeong; Cho, Baek Hwan; Woo, Kyoung-Gu

    2014-03-01

    In this study, we propose a computer-aided classification scheme of liver tumor in 3D ultrasound by using a combination of deformable model segmentation and support vector machine. For segmentation of tumors in 3D ultrasound images, a novel segmentation model was used which combined edge, region, and contour smoothness energies. Then four features were extracted from the segmented tumor including tumor edge, roundness, contrast, and internal texture. We used a support vector machine for the classification of features. The performance of the developed method was evaluated with a dataset of 79 cases including 20 cysts, 20 hemangiomas, and 39 hepatocellular carcinomas, as determined by the radiologist's visual scoring. Evaluation of the results showed that our proposed method produced tumor boundaries that were equal to or better than acceptable in 89.8% of cases, and achieved 93.7% accuracy in classification of cyst and hemangioma.

  13. Comparison of 3D-OP-OSEM and 3D-FBP reconstruction algorithms for High-Resolution Research Tomograph studies: effects of randoms estimation methods.

    PubMed

    van Velden, Floris H P; Kloet, Reina W; van Berckel, Bart N M; Wolfensberger, Saskia P A; Lammertsma, Adriaan A; Boellaard, Ronald

    2008-06-21

    The High-Resolution Research Tomograph (HRRT) is a dedicated human brain positron emission tomography (PET) scanner. Recently, a 3D filtered backprojection (3D-FBP) reconstruction method has been implemented to reduce bias in short duration frames, currently observed in 3D ordinary Poisson OSEM (3D-OP-OSEM) reconstructions. Further improvements might be expected using a new method of variance reduction on randoms (VRR) based on coincidence histograms instead of using the delayed window technique (DW) to estimate randoms. The goal of this study was to evaluate VRR in combination with 3D-OP-OSEM and 3D-FBP reconstruction techniques. To this end, several phantom studies and a human brain study were performed. For most phantom studies, 3D-OP-OSEM showed higher accuracy of observed activity concentrations with VRR than with DW. However, both positive and negative deviations in reconstructed activity concentrations and large biases of grey to white matter contrast ratio (up to 88%) were still observed as a function of scan statistics. Moreover 3D-OP-OSEM+VRR also showed bias up to 64% in clinical data, i.e. in some pharmacokinetic parameters as compared with those obtained with 3D-FBP+VRR. In the case of 3D-FBP, VRR showed similar results as DW for both phantom and clinical data, except that VRR showed a better standard deviation of 6-10%. Therefore, VRR should be used to correct for randoms in HRRT PET studies.

  14. Comparison of 3D-OP-OSEM and 3D-FBP reconstruction algorithms for High-Resolution Research Tomograph studies: effects of randoms estimation methods

    NASA Astrophysics Data System (ADS)

    van Velden, Floris H. P.; Kloet, Reina W.; van Berckel, Bart N. M.; Wolfensberger, Saskia P. A.; Lammertsma, Adriaan A.; Boellaard, Ronald

    2008-06-01

    The High-Resolution Research Tomograph (HRRT) is a dedicated human brain positron emission tomography (PET) scanner. Recently, a 3D filtered backprojection (3D-FBP) reconstruction method has been implemented to reduce bias in short duration frames, currently observed in 3D ordinary Poisson OSEM (3D-OP-OSEM) reconstructions. Further improvements might be expected using a new method of variance reduction on randoms (VRR) based on coincidence histograms instead of using the delayed window technique (DW) to estimate randoms. The goal of this study was to evaluate VRR in combination with 3D-OP-OSEM and 3D-FBP reconstruction techniques. To this end, several phantom studies and a human brain study were performed. For most phantom studies, 3D-OP-OSEM showed higher accuracy of observed activity concentrations with VRR than with DW. However, both positive and negative deviations in reconstructed activity concentrations and large biases of grey to white matter contrast ratio (up to 88%) were still observed as a function of scan statistics. Moreover 3D-OP-OSEM+VRR also showed bias up to 64% in clinical data, i.e. in some pharmacokinetic parameters as compared with those obtained with 3D-FBP+VRR. In the case of 3D-FBP, VRR showed similar results as DW for both phantom and clinical data, except that VRR showed a better standard deviation of 6-10%. Therefore, VRR should be used to correct for randoms in HRRT PET studies.

  15. Accuracy of volume measurement using 3D ultrasound and development of CT-3D US image fusion algorithm for prostate cancer radiotherapy

    SciTech Connect

    Baek, Jihye; Huh, Jangyoung; Hyun An, So; Oh, Yoonjin; Kim, Myungsoo; Kim, DongYoung; Chung, Kwangzoo; Cho, Sungho; Lee, Rena

    2013-02-15

    Purpose: To evaluate the accuracy of measuring volumes using three-dimensional ultrasound (3D US), and to verify the feasibility of the replacement of CT-MR fusion images with CT-3D US in radiotherapy treatment planning. Methods: Phantoms, consisting of water, contrast agent, and agarose, were manufactured. The volume was measured using 3D US, CT, and MR devices. A CT-3D US and MR-3D US image fusion software was developed using the Insight Toolkit library in order to acquire three-dimensional fusion images. The quality of the image fusion was evaluated using metric value and fusion images. Results: Volume measurement, using 3D US, shows a 2.8 {+-} 1.5% error, 4.4 {+-} 3.0% error for CT, and 3.1 {+-} 2.0% error for MR. The results imply that volume measurement using the 3D US devices has a similar accuracy level to that of CT and MR. Three-dimensional image fusion of CT-3D US and MR-3D US was successfully performed using phantom images. Moreover, MR-3D US image fusion was performed using human bladder images. Conclusions: 3D US could be used in the volume measurement of human bladders and prostates. CT-3D US image fusion could be used in monitoring the target position in each fraction of external beam radiation therapy. Moreover, the feasibility of replacing the CT-MR image fusion to the CT-3D US in radiotherapy treatment planning was verified.

  16. 3D weighting in cone beam image reconstruction algorithms: ray-driven vs. pixel-driven.

    PubMed

    Tang, Xiangyang; Nilsen, Roy A; Smolin, Alex; Lifland, Ilya; Samsonov, Dmitry; Taha, Basel

    2008-01-01

    A 3D weighting scheme have been proposed previously to reconstruct images at both helical and axial scans in stat-of-the-art volumetric CT scanners for diagnostic imaging. Such a 3D weighting can be implemented in the manner of either ray-driven or pixel-drive, depending on the available computation resources. An experimental study is conducted in this paper to evaluate the difference between the ray-driven and pixel-driven implementations of the 3D weighting from the perspective of image quality, while their computational complexity is analyzed theoretically. Computer simulated data and several phantoms, such as the helical body phantom and humanoid chest phantom, are employed in the experimental study, showing that both the ray-driven and pixel-driven 3D weighting provides superior image quality for diagnostic imaging in clinical applications. With the availability of image reconstruction engine at increasing computational power, it is believed that the pixel-driven 3D weighting will be dominantly employed in state-of-the-art volumetric CT scanners over clinical applications.

  17. Reconstruction 3D des structures adjacentes de l'articulation de la hanche par une segmentation multi-structures a l'aide des maillages surfaciques triangulaires

    NASA Astrophysics Data System (ADS)

    Meghoufel, Brahim

    A new 3D reconstruction technique of the two adjacent structures forming the hip joint from the 3D CT-scans images has been developed. The femoral head and the acetabulum are reconstructed using a 3D multi-structure segmentation method for the adjacent surfaces which is based on the use of a 3D triangular surface meshes. This method begins with a preliminary hierarchical segmentation of the two structures, using one triangular mesh for each structure. The two resulting 3D meshes of the hierarchical segmentation are deployed into two planar 2D surfaces. We have used the umbrella deployment to deploy the femoral head mesh, and the parameterization 3D/2D to deploy the acetabulum mesh. The two planar generated surfaces are used to deploy the CT-scan volume around each structure. The surface of each structure is nearly planar in the corresponding deployed volume. The iterative method of minimal surfaces ensures the optimal identification of both sought surfaces from the deployed volumes. The last step of the 3D reconstruction method aims at detecting and correcting the overlap between the two structures. This 3D reconstruction method has been validated using a data base of 10 3D CT-scan images. The results of the 3D reconstructions seem satisfactory. The precision errors of these 3D reconstructions have been quantified by comparing the 3D reconstructions with an available manual gold standard. The errors resulting from the quantification are better than those available in the literature; the mean of those errors is 0,83 +/- 0,25 mm for acetabulum and 0,70 +/- 0,17 mm for the femoral head. The mean execution time of the 3D reconstruction of the two structures forming the hip joint has been estimated at approximately 3,0 +/- 0,3 min . The proposed method shows the potential of the solution which the image processing can provide to the surgeons in order to achieve their routine tasks. Such a method can be applied to every imaging modality.

  18. Imaging bacterial 3D motion using digital in-line holographic microscopy and correlation-based de-noising algorithm

    PubMed Central

    Molaei, Mehdi; Sheng, Jian

    2014-01-01

    Abstract: Better understanding of bacteria environment interactions in the context of biofilm formation requires accurate 3-dimentional measurements of bacteria motility. Digital Holographic Microscopy (DHM) has demonstrated its capability in resolving 3D distribution and mobility of particulates in a dense suspension. Due to their low scattering efficiency, bacteria are substantially difficult to be imaged by DHM. In this paper, we introduce a novel correlation-based de-noising algorithm to remove the background noise and enhance the quality of the hologram. Implemented in conjunction with DHM, we demonstrate that the method allows DHM to resolve 3-D E. coli bacteria locations of a dense suspension (>107 cells/ml) with submicron resolutions (<0.5 µm) over substantial depth and to obtain thousands of 3D cell trajectories. PMID:25607177

  19. An ant colony optimisation algorithm for the 2D and 3D hydrophobic polar protein folding problem

    PubMed Central

    Shmygelska, Alena; Hoos, Holger H

    2005-01-01

    Background The protein folding problem is a fundamental problems in computational molecular biology and biochemical physics. Various optimisation methods have been applied to formulations of the ab-initio folding problem that are based on reduced models of protein structure, including Monte Carlo methods, Evolutionary Algorithms, Tabu Search and hybrid approaches. In our work, we have introduced an ant colony optimisation (ACO) algorithm to address the non-deterministic polynomial-time hard (NP-hard) combinatorial problem of predicting a protein's conformation from its amino acid sequence under a widely studied, conceptually simple model – the 2-dimensional (2D) and 3-dimensional (3D) hydrophobic-polar (HP) model. Results We present an improvement of our previous ACO algorithm for the 2D HP model and its extension to the 3D HP model. We show that this new algorithm, dubbed ACO-HPPFP-3, performs better than previous state-of-the-art algorithms on sequences whose native conformations do not contain structural nuclei (parts of the native fold that predominantly consist of local interactions) at the ends, but rather in the middle of the sequence, and that it generally finds a more diverse set of native conformations. Conclusions The application of ACO to this bioinformatics problem compares favourably with specialised, state-of-the-art methods for the 2D and 3D HP protein folding problem; our empirical results indicate that our rather simple ACO algorithm scales worse with sequence length but usually finds a more diverse ensemble of native states. Therefore the development of ACO algorithms for more complex and realistic models of protein structure holds significant promise. PMID:15710037

  20. Comparison of algorithms for ultrasound image segmentation without ground truth

    NASA Astrophysics Data System (ADS)

    Sikka, Karan; Deserno, Thomas M.

    2010-02-01

    Image segmentation is a pre-requisite to medical image analysis. A variety of segmentation algorithms have been proposed, and most are evaluated on a small dataset or based on classification of a single feature. The lack of a gold standard (ground truth) further adds to the discrepancy in these comparisons. This work proposes a new methodology for comparing image segmentation algorithms without ground truth by building a matrix called region-correlation matrix. Subsequently, suitable distance measures are proposed for quantitative assessment of similarity. The first measure takes into account the degree of region overlap or identical match. The second considers the degree of splitting or misclassification by using an appropriate penalty term. These measures are shown to satisfy the axioms of a quasi-metric. They are applied for a comparative analysis of synthetic segmentation maps to show their direct correlation with human intuition of similar segmentation. Since ultrasound images are difficult to segment and usually lack a ground truth, the measures are further used to compare the recently proposed spectral clustering algorithm (encoding spatial and edge information) with standard k-means over abdominal ultrasound images. Improving the parameterization and enlarging the feature space for k-means steadily increased segmentation quality to that of spectral clustering.

  1. Interactive 3-D graphics workstations in stereotaxy: clinical requirements, algorithms, and solutions

    NASA Astrophysics Data System (ADS)

    Ehricke, Hans-Heino; Daiber, Gerhard; Sonntag, Ralf; Strasser, Wolfgang; Lochner, Mathias; Rudi, Lothar S.; Lorenz, Walter J.

    1992-09-01

    In stereotactic treatment planning the spatial relationships between a variety of objects has to be taken into account in order to avoid destruction of vital brain structures and rupture of vasculature. The visualization of these highly complex relations may be supported by 3-D computer graphics methods. In this context the three-dimensional display of the intracranial vascular tree and additional objects, such as neuroanatomy, pathology, stereotactic devices, or isodose surfaces, is of high clinical value. We report an advanced rendering method for a depth-enhanced maximum intensity projection from magnetic resonance angiography (MRA) and a walk-through approach to the analysis of MRA volume data. Furthermore, various methods for a multiple-object 3-D rendering in stereotaxy are discussed. The development of advanced applications in medical imaging can hardly be successful if image acquisition problems are disregarded. We put particular emphasis on the use of conventional MRI and MRA for stereotactic guidance. The problem of MR distortion is discussed and a novel three- dimensional approach to the quantification and correction of the distortion patterns is presented. Our results suggest that the sole use of MR for stereotactic guidance is highly practical. The true three-dimensionality of the acquired datasets opens up new perspectives to stereotactic treatment planning. For the first time it is possible now to integrate all the necessary information into 3-D scenes, thus enabling an interactive 3-D planning.

  2. Automatic brain tumor segmentation with a fast Mumford-Shah algorithm

    NASA Astrophysics Data System (ADS)

    Müller, Sabine; Weickert, Joachim; Graf, Norbert

    2016-03-01

    We propose a fully-automatic method for brain tumor segmentation that does not require any training phase. Our approach is based on a sequence of segmentations using the Mumford-Shah cartoon model with varying parameters. In order to come up with a very fast implementation, we extend the recent primal-dual algorithm of Strekalovskiy et al. (2014) from the 2D to the medically relevant 3D setting. Moreover, we suggest a new confidence refinement and show that it can increase the precision of our segmentations substantially. Our method is evaluated on 188 data sets with high-grade gliomas and 25 with low-grade gliomas from the BraTS14 database. Within a computation time of only three minutes, we achieve Dice scores that are comparable to state-of-the-art methods.

  3. Delaunay algorithm and principal component analysis for 3D visualization of mitochondrial DNA nucleoids by Biplane FPALM/dSTORM.

    PubMed

    Alán, Lukáš; Špaček, Tomáš; Ježek, Petr

    2016-07-01

    Data segmentation and object rendering is required for localization super-resolution microscopy, fluorescent photoactivation localization microscopy (FPALM), and direct stochastic optical reconstruction microscopy (dSTORM). We developed and validated methods for segmenting objects based on Delaunay triangulation in 3D space, followed by facet culling. We applied them to visualize mitochondrial nucleoids, which confine DNA in complexes with mitochondrial (mt) transcription factor A (TFAM) and gene expression machinery proteins, such as mt single-stranded-DNA-binding protein (mtSSB). Eos2-conjugated TFAM visualized nucleoids in HepG2 cells, which was compared with dSTORM 3D-immunocytochemistry of TFAM, mtSSB, or DNA. The localized fluorophores of FPALM/dSTORM data were segmented using Delaunay triangulation into polyhedron models and by principal component analysis (PCA) into general PCA ellipsoids. The PCA ellipsoids were normalized to the smoothed volume of polyhedrons or by the net unsmoothed Delaunay volume and remodeled into rotational ellipsoids to obtain models, termed DVRE. The most frequent size of ellipsoid nucleoid model imaged via TFAM was 35 × 45 × 95 nm; or 35 × 45 × 75 nm for mtDNA cores; and 25 × 45 × 100 nm for nucleoids imaged via mtSSB. Nucleoids encompassed different point density and wide size ranges, speculatively due to different activity stemming from different TFAM/mtDNA stoichiometry/density. Considering twofold lower axial vs. lateral resolution, only bulky DVRE models with an aspect ratio >3 and tilted toward the xy-plane were considered as two proximal nucleoids, suspicious occurring after division following mtDNA replication. The existence of proximal nucleoids in mtDNA-dSTORM 3D images of mtDNA "doubling"-supported possible direct observations of mt nucleoid division after mtDNA replication.

  4. Conservative multizonal interface algorithm for the 3-D Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Klopfer, G. H.; Molvik, G. A.

    1991-01-01

    A conservative zonal interface algorithm using features of both structured and unstructured mesh CFD technology is presented. The flow solver within each of the zones is based on structured mesh CFD technology. The interface algorithm was implemented into two three-dimensional Navier-Stokes finite volume codes and was found to yield good results.

  5. Pathological leucocyte segmentation algorithm based on hyperspectral imaging technique

    NASA Astrophysics Data System (ADS)

    Guan, Yana; Li, Qingli; Wang, Yiting; Liu, Hongying; Zhu, Ziqiang

    2012-05-01

    White blood cells (WBC) are comparatively significant components in the human blood system, and they have a pathological relationship with some blood-related diseases. To analyze the disease information accurately, the most essential work is to segment WBCs. We propose a new method for pathological WBC segmentation based on a hyperspectral imaging system. This imaging system is used to capture WBC images, which is characterized by acquiring 1-D spectral information and 2-D spatial information for each pixel. A spectral information divergence algorithm is presented to segment pathological WBCs into four parts. In order to evaluate the performance of the new approach, K-means and spectral angle mapper-based segmental methods are tested in contrast on six groups of blood smears. Experimental results show that the presented method can segment pathological WBCs more accurately, regardless of their irregular shapes, sizes, and gray-values.

  6. GPU-accelerated MRF segmentation algorithm for SAR images

    NASA Astrophysics Data System (ADS)

    Sui, Haigang; Peng, Feifei; Xu, Chuan; Sun, Kaimin; Gong, Jianya

    2012-06-01

    Markov Random Field (MRF) approaches have been widely studied for Synthetic Aperture Radar (SAR) image segmentation, but they have a large computational cost and hence are not widely used in practice. Fortunately parallel algorithms have been documented to enjoy significant speedups when ported to run on a graphics processing units (GPUs) instead of a standard CPU. Presented here is an implementation of graphics processing units in General Purpose Computation (GPGPU) for SAR image segmentation based on the MRF method, using the C-oriented Compute Unified Device Architecture (CUDA) developed by NVIDIA. This experiment with GPGPU shows that the speed of segmentation can be increased by a factor of 10 for large images.

  7. A segmentation algorithm of intracranial hemorrhage CT image

    NASA Astrophysics Data System (ADS)

    Wang, Haibo; Chen, Zhiguo; Wang, Jianzhi

    2011-10-01

    To develop a computer aided detection (CAD) system that improves diagnostic accuracy of intracranial hemorrhage on cerebral CT. A method for CT image segmentation of brain is proposed, with which, several regions that are suspicious of hemorrhage can be segmented rapidly and effectively. Extracting intracranial area algorithm is introduced firstly to extract intracranial area. Secondly, FCM is employed twice, we named it with TFCM. FCM is first employed to identify areas of intracranial hemorrhage. Finally, FCM is employed to segment the lesions. Experimental results on real medical images demonstrate the efficiency and effectiveness.

  8. Mammographic images segmentation based on chaotic map clustering algorithm

    PubMed Central

    2014-01-01

    Background This work investigates the applicability of a novel clustering approach to the segmentation of mammographic digital images. The chaotic map clustering algorithm is used to group together similar subsets of image pixels resulting in a medically meaningful partition of the mammography. Methods The image is divided into pixels subsets characterized by a set of conveniently chosen features and each of the corresponding points in the feature space is associated to a map. A mutual coupling strength between the maps depending on the associated distance between feature space points is subsequently introduced. On the system of maps, the simulated evolution through chaotic dynamics leads to its natural partitioning, which corresponds to a particular segmentation scheme of the initial mammographic image. Results The system provides a high recognition rate for small mass lesions (about 94% correctly segmented inside the breast) and the reproduction of the shape of regions with denser micro-calcifications in about 2/3 of the cases, while being less effective on identification of larger mass lesions. Conclusions We can summarize our analysis by asserting that due to the particularities of the mammographic images, the chaotic map clustering algorithm should not be used as the sole method of segmentation. It is rather the joint use of this method along with other segmentation techniques that could be successfully used for increasing the segmentation performance and for providing extra information for the subsequent analysis stages such as the classification of the segmented ROI. PMID:24666766

  9. Implementation of low communication frequency 3D FFT algorithm for ultra-large-scale micromagnetics simulation

    NASA Astrophysics Data System (ADS)

    Tsukahara, Hiroshi; Iwano, Kaoru; Mitsumata, Chiharu; Ishikawa, Tadashi; Ono, Kanta

    2016-10-01

    We implement low communication frequency three-dimensional fast Fourier transform algorithms on micromagnetics simulator for calculations of a magnetostatic field which occupies a significant portion of large-scale micromagnetics simulation. This fast Fourier transform algorithm reduces the frequency of all-to-all communications from six to two times. Simulation times with our simulator show high scalability in parallelization, even if we perform the micromagnetics simulation using 32 768 physical computing cores. This low communication frequency fast Fourier transform algorithm enables world largest class micromagnetics simulations to be carried out with over one billion calculation cells.

  10. 3D numerical modeling of subduction dynamics: plate stagnation and segmentation, and crustal advection in the mantle transition zone

    NASA Astrophysics Data System (ADS)

    Yoshida, M.; Tajima, F.

    2012-04-01

    Water content in the mantle transition zone (MTZ) has been broadly debated in the Earth science community as a key issue for plate dynamics [e.g., Bercovici and Karato, 2003]. In this study, a systematic series of three-dimensional (3D) numerical simulation are performed in an attempt to verify two hypotheses for plate subduction with effects of deep water transport: (1) the small-scale behavior of subducted oceanic plate in the MTZ; and (2) the role of subducted crust in the MTZ. These hypotheses are postulated based on the seismic observations characterized by large-scale flattened high velocity anomalies (i.e., stagnant slabs) in the MTZ and discontinuity depth variations. The proposed model states that under wet conditions the subducted plate main body of peridotite (olivine rich) is abutted by subducted crustal materials (majorite rich) at the base of the MTZ. The computational domain of mantle convection is confined to 3D regional spherical-shell geometry with a thickness of 1000 km and a lateral extent of 10° × 30° in the latitudinal and longitudinal directions. A semi-dynamic model of subduction zone [Morishige et al., 2010] is applied to let the highly viscous, cold oceanic plate subduct. Weak (low-viscosity) fault zones (WFZs), which presumably correspond to the fault boundaries of large subduction earthquakes, are imposed on the top part of subducting plates. The phase transitions of olivine to wadsleyite and ringwoodite to perovskite+magnesiowüstite with Clapeyron slopes under both "dry" and "wet" conditions are considered based on recent high pressure experiments [e.g., Ohtani and Litasov, 2006]. Another recent experiment provides new evidence for lower-viscosity (weaker strength) of garnet-rich zones than the olivine dominant mantle under wet conditions [Katayama and Karato, 2008]. According to this, the effect of viscosity reduction of oceanic crust is considered under wet condition in the MTZ. Results show that there is a substantial difference

  11. Snapshots: a novel local surface descriptor and matching algorithm for robust 3D surface alignment.

    PubMed

    Malassiotis, Sotiris; Strintzis, Michael G

    2007-07-01

    In this paper, a novel local surface descriptor is proposed and applied to the problem of aligning partial views of a 3D object. The descriptor is based on taking "snapshots" of the surface over each point using a virtual camera oriented perpendicularly to the surface. This representation has the advantage of imposing minimal loss of information be robust to self-occlusions and also be very efficient to compute. Then, we describe an efficient search technique to deal with the rotation ambiguity of our representation and experimentally demonstrate the benefits of our approaches which are pronounced especially when we align views with small overlap. PMID:17496386

  12. Integrated WiFi/PDR/Smartphone Using an Unscented Kalman Filter Algorithm for 3D Indoor Localization.

    PubMed

    Chen, Guoliang; Meng, Xiaolin; Wang, Yunjia; Zhang, Yanzhe; Tian, Peng; Yang, Huachao

    2015-01-01

    Because of the high calculation cost and poor performance of a traditional planar map when dealing with complicated indoor geographic information, a WiFi fingerprint indoor positioning system cannot be widely employed on a smartphone platform. By making full use of the hardware sensors embedded in the smartphone, this study proposes an integrated approach to a three-dimensional (3D) indoor positioning system. First, an improved K-means clustering method is adopted to reduce the fingerprint database retrieval time and enhance positioning efficiency. Next, with the mobile phone's acceleration sensor, a new step counting method based on auto-correlation analysis is proposed to achieve cell phone inertial navigation positioning. Furthermore, the integration of WiFi positioning with Pedestrian Dead Reckoning (PDR) obtains higher positional accuracy with the help of the Unscented Kalman Filter algorithm. Finally, a hybrid 3D positioning system based on Unity 3D, which can carry out real-time positioning for targets in 3D scenes, is designed for the fluent operation of mobile terminals. PMID:26404314

  13. Integrated WiFi/PDR/Smartphone Using an Unscented Kalman Filter Algorithm for 3D Indoor Localization

    PubMed Central

    Chen, Guoliang; Meng, Xiaolin; Wang, Yunjia; Zhang, Yanzhe; Tian, Peng; Yang, Huachao

    2015-01-01

    Because of the high calculation cost and poor performance of a traditional planar map when dealing with complicated indoor geographic information, a WiFi fingerprint indoor positioning system cannot be widely employed on a smartphone platform. By making full use of the hardware sensors embedded in the smartphone, this study proposes an integrated approach to a three-dimensional (3D) indoor positioning system. First, an improved K-means clustering method is adopted to reduce the fingerprint database retrieval time and enhance positioning efficiency. Next, with the mobile phone’s acceleration sensor, a new step counting method based on auto-correlation analysis is proposed to achieve cell phone inertial navigation positioning. Furthermore, the integration of WiFi positioning with Pedestrian Dead Reckoning (PDR) obtains higher positional accuracy with the help of the Unscented Kalman Filter algorithm. Finally, a hybrid 3D positioning system based on Unity 3D, which can carry out real-time positioning for targets in 3D scenes, is designed for the fluent operation of mobile terminals. PMID:26404314

  14. Integrated WiFi/PDR/Smartphone Using an Unscented Kalman Filter Algorithm for 3D Indoor Localization.

    PubMed

    Chen, Guoliang; Meng, Xiaolin; Wang, Yunjia; Zhang, Yanzhe; Tian, Peng; Yang, Huachao

    2015-09-23

    Because of the high calculation cost and poor performance of a traditional planar map when dealing with complicated indoor geographic information, a WiFi fingerprint indoor positioning system cannot be widely employed on a smartphone platform. By making full use of the hardware sensors embedded in the smartphone, this study proposes an integrated approach to a three-dimensional (3D) indoor positioning system. First, an improved K-means clustering method is adopted to reduce the fingerprint database retrieval time and enhance positioning efficiency. Next, with the mobile phone's acceleration sensor, a new step counting method based on auto-correlation analysis is proposed to achieve cell phone inertial navigation positioning. Furthermore, the integration of WiFi positioning with Pedestrian Dead Reckoning (PDR) obtains higher positional accuracy with the help of the Unscented Kalman Filter algorithm. Finally, a hybrid 3D positioning system based on Unity 3D, which can carry out real-time positioning for targets in 3D scenes, is designed for the fluent operation of mobile terminals.

  15. Study of dendritic growth and coarsening using a 3-D phase field model: Implementation of the Para-AMR algorithm

    NASA Astrophysics Data System (ADS)

    Guo, Z.; Xiong, S. M.

    2015-06-01

    To efficiently solve the coupled phase field equations in 3-D, an algorithm comprising of adaptive mesh refinement (AMR) and parallel (Para-) computing capabilities was developed. Dendritic growth and subsequent coarsening were studied by employing the model to simulate multi-dendrite growth under isothermal conditions. Quantitative comparison including decrease of interface area (S) and nonlinear growing of the characteristic length (ratio between solid volume V and surface area S i.e. V/S) as time was performed between the simulation results and these predicted by the existing theories. In particular, various mechanisms including growth of lower curvature area in expense of higher curvature one, coalescence of neighbouring dendrite arms and groove advancement at the root of higher order arms for dendritic coarsening were identified and successfully revealed via the 3-D phase field simulation. In addition, results showed that the proposed algorithm could greatly shorten the computing time for 3-D phase field simulation and enable one to gain much more insight in understanding the underlying physics during dendrite growth in solidification.

  16. Image segmentation with genetic algorithms: a formulation and implementation

    NASA Astrophysics Data System (ADS)

    Seetharaman, Gunasekaran; Narasimhan, Amruthur; Sathe, Anand; Storc, Lisa

    1991-10-01

    Image segmentation is an important step in any computer vision system. Segmentation refers to the partitioning of the image plane into several regions, such that each region corresponds to a logical entity present in the scene. The problem is inherently NP, and the theory on the existence and uniqueness of the ideal segmentation is not yet established. Several methods have been proposed in literature for image segmentation. With the exception of the state-space approach to segmentation, other methods lack generality. The state-space approach, however, amounts to searching for the solution in a large search space of 22n(2) possibilities for a n X n image. In this paper, a classic approach based on state-space techniques for segmentation due to Brice and Fennema is reformulated using genetic algorithms. The state space representation of a partially segmented image lends itself to binary strings, in which the dominant substrings are easily explained in terms of chromosomes. Also the operations such as crossover and mutations are easily abstracted. In particular, when multiple images are segmented from an image sequence, fusion of constraints from one to the other becomes clear under this formulation.

  17. Comparison between upwind FEM and new algorithm based on the indirect BIEM for 3D moving conductor problems

    SciTech Connect

    Kim, D.H. . Living System Research Lab.); Jeon, D.Y.; Hahn, S.Y. . Dept. of Electrical Engineering)

    1999-05-01

    In general, an electromagnetic apparatus such as linear induction motors, MAGLEV vehicles or electromagnetic launchers, involves conducting parts in motion. This paper presents a new algorithm based on the indirect boundary integral equation method to analyze the electromagnetic system with a moving conductor. The proposed algorithm yields relatively stable and accurate solutions because a fundamental Green's function of diffusion type is used which is valid for any value of the Peclet number. In addition, computer memory and computing time for 3D computation can be saved considerably by using the boundary integral equations of minimum order and the singular property of the Green's function. In order to prove these, numerical results obtained by the proposed algorithm and the upwind finite element method are compared with their analytic solutions.

  18. Efficient spectral and pseudospectral algorithms for 3D simulations of whistler-mode waves in a plasma

    SciTech Connect

    Gumerov, Nail A.; Karavaev, Alexey V.; Surjalal Sharma, A.; Shao Xi; Papadopoulos, Konstantinos D.

    2011-04-01

    Efficient spectral and pseudospectral algorithms for simulation of linear and nonlinear 3D whistler waves in a cold electron plasma are developed. These algorithms are applied to the simulation of whistler waves generated by loop antennas and spheromak-like stationary waves of considerable amplitude. The algorithms are linearly stable and show good stability properties for computations of nonlinear waves over tens of thousands of time steps. Additional speedups by factors of 10-20 (comparing single core CPU and one GPU) are achieved by using graphics processors (GPUs), which enable efficient numerical simulation of the wave propagation on relatively high resolution meshes (tens of millions nodes) in personal computing environment. Comparisons of the numerical results with analytical solutions and experiments show good agreement. The limitations of the codes and the performance of the GPU computing are discussed.

  19. Improved Algorithms and Methods for Solving Strongly Variable-Viscosity 3D Stokes flow and Strongly Variable Permeability 3D D’Arcy flow on a Parallel Computer

    NASA Astrophysics Data System (ADS)

    Morgan, J. P.; Hasenclever, J.; Shi, C.

    2009-12-01

    Computational studies of mantle convection face large challenges to obtain fast and accurate solutions for variable viscosity 3d flow. Recently we have been using parallel (MPI-based) MATLAB to more thoroughly explore possible pitfalls and algorithmic improvements to current ‘best-practice’ variable viscosity Stokes and D’Arcy flow solvers. Here we focus on study of finite-element solvers based on a decomposition of the equations for incompressible Stokes flow: Ku + Gp = f and G’u = 0 (K-velocity stiffness matrix, G-discretized gradient operator, G’=transpose(G)-discretized divergence operator) into a single equation for pressure Sp==G’K^-1Gp =G’K^-1f, in which the velocity is also updated as part of each pressure iteration. The outer pressure iteration is solved with preconditioned conjugate gradients (CG) (Maday and Patera, 1989), with a multigrid-preconditioned CG solver for the z=K^-1 (Gq) step of each pressure iteration. One fairly well-known pitfall (Fortin, 1985) is that constant-pressure elements can generate a spurious non-zero flow under a constant body force within non-rectangular geometries. We found a new pitfall when using an iterative method to solve the Kz=y operation in evaluating each G’K^-1Gq product -- even if the residual of the outer pressure equation converges to zero, the discrete divergence of this equation does not correspondingly converge; the error in the incompressibility depends on roughly the square of the tolerance used to solve each Kz=y velocity-like subproblem. Our current best recipe is: (1) Use flexible CG (cf. Notay, 2001) to solve the outer pressure problem. This is analogous to GMRES for a symmetric positive definite problem. It allows use of numerically unsymmetric and/or inexact preconditioners with CG. (2) In this outer-iteration, use an ‘alpha-bar’ technique to find the appropriate magnitude alpha to change the solution in each search direction. This improvement allows a similar iterative tolerance of

  20. MO-G-17A-03: MR-Based Cortical Bone Segmentation for PET Attenuation Correction with a Non-UTE 3D Fast GRE Sequence

    SciTech Connect

    Ai, H; Pan, T; Hwang, K

    2014-06-15

    Purpose: To determine the feasibility of identifying cortical bone on MR images with a short-TE 3D fast-GRE sequence for attenuation correction of PET data in PET/MR. Methods: A water-fat-bone phantom was constructed with two pieces of beef shank. MR scans were performed on a 3T MR scanner (GE Discovery™ MR750). A 3D GRE sequence was first employed to measure the level of residual signal in cortical bone (TE{sub 1}/TE{sub 2}/TE{sub 3}=2.2/4.4/6.6ms, TR=20ms, flip angle=25°). For cortical bone segmentation, a 3D fast-GRE sequence (TE/TR=0.7/1.9ms, acquisition voxel size=2.5×2.5×3mm{sup 3}) was implemented along with a 3D Dixon sequence (TE{sub 1}/TE{sub 2}/TR=1.2/2.3/4.0ms, acquisition voxel size=1.25×1.25×3mm{sup 3}) for water/fat imaging. Flip angle (10°), acquisition bandwidth (250kHz), FOV (480×480×144mm{sup 3}) and reconstructed voxel size (0.94×0.94×1.5mm{sup 3}) were kept the same for both sequences. Soft tissue and fat tissue were first segmented on the reconstructed water/fat image. A tissue mask was created by combining the segmented water/fat masks, which was then applied on the fast-GRE image (MRFGRE). A second mask was created to remove the Gibbs artifacts present in regions in close vicinity to the phantom. MRFGRE data was smoothed with a 3D anisotropic diffusion filter for noise reduction, after which cortical bone and air was separated using a threshold determined from the histogram. Results: There is signal in the cortical bone region in the 3D GRE images, indicating the possibility of separating cortical bone and air based on signal intensity from short-TE MR image. The acquisition time for the 3D fast-GRE sequence was 17s, which can be reduced to less than 10s with parallel imaging. The attenuation image created from water-fat-bone segmentation is visually similar compared to reference CT. Conclusion: Cortical bone and air can be separated based on intensity in MR image with a short-TE 3D fast-GRE sequence. Further research is required

  1. 3D protein structure prediction using Imperialist Competitive algorithm and half sphere exposure prediction.

    PubMed

    Khaji, Erfan; Karami, Masoumeh; Garkani-Nejad, Zahra

    2016-02-21

    Predicting the native structure of proteins based on half-sphere exposure and contact numbers has been studied deeply within recent years. Online predictors of these vectors and secondary structures of amino acids sequences have made it possible to design a function for the folding process. By choosing variant structures and directs for each secondary structure, a random conformation can be generated, and a potential function can then be assigned. Minimizing the potential function utilizing meta-heuristic algorithms is the final step of finding the native structure of a given amino acid sequence. In this work, Imperialist Competitive algorithm was used in order to accelerate the process of minimization. Moreover, we applied an adaptive procedure to apply revolutionary changes. Finally, we considered a more accurate tool for prediction of secondary structure. The results of the computational experiments on standard benchmark show the superiority of the new algorithm over the previous methods with similar potential function. PMID:26718864

  2. 3D protein structure prediction using Imperialist Competitive algorithm and half sphere exposure prediction.

    PubMed

    Khaji, Erfan; Karami, Masoumeh; Garkani-Nejad, Zahra

    2016-02-21

    Predicting the native structure of proteins based on half-sphere exposure and contact numbers has been studied deeply within recent years. Online predictors of these vectors and secondary structures of amino acids sequences have made it possible to design a function for the folding process. By choosing variant structures and directs for each secondary structure, a random conformation can be generated, and a potential function can then be assigned. Minimizing the potential function utilizing meta-heuristic algorithms is the final step of finding the native structure of a given amino acid sequence. In this work, Imperialist Competitive algorithm was used in order to accelerate the process of minimization. Moreover, we applied an adaptive procedure to apply revolutionary changes. Finally, we considered a more accurate tool for prediction of secondary structure. The results of the computational experiments on standard benchmark show the superiority of the new algorithm over the previous methods with similar potential function.

  3. Test of 3D CT reconstructions by EM + TV algorithm from undersampled data

    NASA Astrophysics Data System (ADS)

    Evseev, Ivan; Ahmann, Francielle; da Silva, Hamilton P.; Schelin, Hugo R.; Yevseyeva, Olga; Klock, Márgio C. L.

    2013-05-01

    Computerized tomography (CT) plays an important role in medical imaging for diagnosis and therapy. However, CT imaging is connected with ionization radiation exposure of patients. Therefore, the dose reduction is an essential issue in CT. In 2011, the Expectation Maximization and Total Variation Based Model for CT Reconstruction (EM+TV) was proposed. This method can reconstruct a better image using less CT projections in comparison with the usual filtered back projection (FBP) technique. Thus, it could significantly reduce the overall dose of radiation in CT. This work reports the results of an independent numerical simulation for cone beam CT geometry with alternative virtual phantoms. As in the original report, the 3D CT images of 128×128×128 virtual phantoms were reconstructed. It was not possible to implement phantoms with lager dimensions because of the slowness of code execution even by the CORE i7 CPU.

  4. Test of 3D CT reconstructions by EM + TV algorithm from undersampled data

    SciTech Connect

    Evseev, Ivan; Ahmann, Francielle; Silva, Hamilton P. da

    2013-05-06

    Computerized tomography (CT) plays an important role in medical imaging for diagnosis and therapy. However, CT imaging is connected with ionization radiation exposure of patients. Therefore, the dose reduction is an essential issue in CT. In 2011, the Expectation Maximization and Total Variation Based Model for CT Reconstruction (EM+TV) was proposed. This method can reconstruct a better image using less CT projections in comparison with the usual filtered back projection (FBP) technique. Thus, it could significantly reduce the overall dose of radiation in CT. This work reports the results of an independent numerical simulation for cone beam CT geometry with alternative virtual phantoms. As in the original report, the 3D CT images of 128 Multiplication-Sign 128 Multiplication-Sign 128 virtual phantoms were reconstructed. It was not possible to implement phantoms with lager dimensions because of the slowness of code execution even by the CORE i7 CPU.

  5. 3D Continuum Radiative Transfer. An adaptive grid construction algorithm based on the Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Niccolini, G.; Alcolea, J.

    Solving the radiative transfer problem is a common problematic to may fields in astrophysics. With the increasing angular resolution of spatial or ground-based telescopes (VLTI, HST) but also with the next decade instruments (NGST, ALMA, ...), astrophysical objects reveal and will certainly reveal complex spatial structures. Consequently, it is necessary to develop numerical tools being able to solve the radiative transfer equation in three dimensions in order to model and interpret these observations. I present a 3D radiative transfer program, using a new method for the construction of an adaptive spatial grid, based on the Monte Claro method. With the help of this tools, one can solve the continuum radiative transfer problem (e.g. a dusty medium), computes the temperature structure of the considered medium and obtain the flux of the object (SED and images).

  6. Evaluation of a segmentation algorithm designed for an FPGA implementation

    NASA Astrophysics Data System (ADS)

    Schwenk, Kurt; Schönermark, Maria; Huber, Felix

    2013-10-01

    The present work has to be seen in the context of real-time on-board image evaluation of optical satellite data. With on board image evaluation more useful data can be acquired, the time to get requested information can be decreased and new real-time applications are possible. Because of the relative high processing power in comparison to the low power consumption, Field Programmable Gate Array (FPGA) technology has been chosen as an adequate hardware platform for image processing tasks. One fundamental part for image evaluation is image segmentation. It is a basic tool to extract spatial image information which is very important for many applications such as object detection. Therefore a special segmentation algorithm using the advantages of FPGA technology has been developed. The aim of this work is the evaluation of this algorithm. Segmentation evaluation is a difficult task. The most common way for evaluating the performance of a segmentation method is still subjective evaluation, in which human experts determine the quality of a segmentation. This way is not in compliance with our needs. The evaluation process has to provide a reasonable quality assessment, should be objective, easy to interpret and simple to execute. To reach these requirements a so called Segmentation Accuracy Equality norm (SA EQ) was created, which compares the difference of two segmentation results. It can be shown that this norm is capable as a first quality measurement. Due to its objectivity and simplicity the algorithm has been tested on a specially chosen synthetic test model. In this work the most important results of the quality assessment will be presented.

  7. Multiprocessing and Correction Algorithm of 3D-models for Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Anamova, R. R.; Zelenov, S. V.; Kuprikov, M. U.; Ripetskiy, A. V.

    2016-07-01

    This article addresses matters related to additive manufacturing preparation. A layer-by-layer model presentation was developed on the basis of a routing method. Methods for correction of errors in the layer-by-layer model presentation were developed. A multiprocessing algorithm for forming an additive manufacturing batch file was realized.

  8. 4D BADA-based Trajectory Generator and 3D Guidance Algorithm

    NASA Technical Reports Server (NTRS)

    Palacios, Eduardo Sepulveda; Johnson, Marcus A.

    2013-01-01

    This paper presents a hybrid integration between aerodynamic, airline procedures and other BADA-based (Base of Aircraft Data) coefficients with a classical aircraft dynamic model. This paper also describes a three-dimensional guidance algorithm implemented in order to produce commands for the aircraft to follow a flight plan. The software chosen for this work is MATLAB.

  9. A shape constrained MAP-EM algorithm for colorectal segmentation

    NASA Astrophysics Data System (ADS)

    Wang, Huafeng; Li, Lihong; Song, Bowen; Han, Fangfang; Liang, Zhengrong

    2013-02-01

    The task of effectively segmenting colon areas in CT images is an important area of interest in medical imaging field. The ability to distinguish the colon wall in an image from the background is a critical step in several approaches for achieving larger goals in automated computer-aided diagnosis (CAD). The related task of polyp detection, the ability to determine which objects or classes of polyps are present in a scene, also relies on colon wall segmentation. When modeling each tissue type as a conditionally independent Gaussian distribution, the tissue mixture fractions in each voxel via the modeled unobservable random processes of the underlying tissue types can be estimated by maximum a posteriori expectation-maximization (MAP-EM) algorithm in an iterative manner. This paper presents, based on the assumption that the partial volume effect (PVE) could be fully described by a tissue mixture model, a theoretical solution to the MAP-EM segmentation algorithm. However, the MAP-EM algorithm may miss some small regions which also belong to the colon wall. Combining with the shape constrained model, we present an improved algorithm which is able to merge similar regions and reserve fine structures. Experiment results show that the new approach can refine the jagged-like boundaries and achieve better results than merely exploited our previously presented MAP-EM algorithm.

  10. Automated real-time search and analysis algorithms for a non-contact 3D profiling system

    NASA Astrophysics Data System (ADS)

    Haynes, Mark; Wu, Chih-Hang John; Beck, B. Terry; Peterman, Robert J.

    2013-04-01

    The purpose of this research is to develop a new means of identifying and extracting geometrical feature statistics from a non-contact precision-measurement 3D profilometer. Autonomous algorithms have been developed to search through large-scale Cartesian point clouds to identify and extract geometrical features. These algorithms are developed with the intent of providing real-time production quality control of cold-rolled steel wires. The steel wires in question are prestressing steel reinforcement wires for concrete members. The geometry of the wire is critical in the performance of the overall concrete structure. For this research a custom 3D non-contact profilometry system has been developed that utilizes laser displacement sensors for submicron resolution surface profiling. Optimizations in the control and sensory system allow for data points to be collected at up to an approximate 400,000 points per second. In order to achieve geometrical feature extraction and tolerancing with this large volume of data, the algorithms employed are optimized for parsing large data quantities. The methods used provide a unique means of maintaining high resolution data of the surface profiles while keeping algorithm running times within practical bounds for industrial application. By a combination of regional sampling, iterative search, spatial filtering, frequency filtering, spatial clustering, and template matching a robust feature identification method has been developed. These algorithms provide an autonomous means of verifying tolerances in geometrical features. The key method of identifying the features is through a combination of downhill simplex and geometrical feature templates. By performing downhill simplex through several procedural programming layers of different search and filtering techniques, very specific geometrical features can be identified within the point cloud and analyzed for proper tolerancing. Being able to perform this quality control in real time

  11. A drill hole query algorithm for extracting lithostratigraphic contacts in support of 3D geologic modelling in crystalline basement

    NASA Astrophysics Data System (ADS)

    Schetselaar, Ernst M.; Lemieux, David

    2012-07-01

    The identification and extraction of lithostratigraphic contacts in crystalline basement for constraining 3D geologic models is commonly hampered by the sparseness of diagnostic lithostratigraphic features and the limited availability of geophysical well log data. This paper presents a query algorithm that, instead of using geophysical well log measurements, extracts lithostratigraphic contacts by exploiting diagnostic patterns of lithology-encoded intervals, recurrent in adjacent drill holes. The query algorithm allows defining gaps in the pattern to search across unconformable, intrusive and tectonic contacts and allows combining multiple search patterns in a single query to account for lateral lithofacies variations. The performance of the query algorithm has been tested in the Precambrian Flin Flon greenstone belt (Canada) by evaluating the agreement between queried and logged lithostratigraphic contacts in 52 lithostratigraphic reference drill holes. Results show that the automated extraction of the unconformable and partly tectonized contact between metavolcanic rocks and its metasedimentary cover was relatively unambiguous and matched all the contacts previously established by visual inspection of drill core. The 100% match was nevertheless paired with 23% false positives due to mafic and felsic sills emplaced in sandstone and conglomerate, which overlap in composition and thickness with extrusive volcanic rocks. The automated extraction of the contact between a mine horizon, defined by laterally complex volcanic and volcaniclastic lithofacies variations and overlying basalt flows, matched the visually logged contacts for 83% with 27% false positives. The query algorithm supplements geological interpretation when patterns in drilled lithostratigraphic successions, suspected to be diagnostic for lithostratigraphic contacts, need to be extracted from large drill hole datasets in a systematic and time-efficient manner. The application of the query algorithm is

  12. Left-ventricle segmentation in real-time 3D echocardiography using a hybrid active shape model and optimal graph search approach

    NASA Astrophysics Data System (ADS)

    Zhang, Honghai; Abiose, Ademola K.; Campbell, Dwayne N.; Sonka, Milan; Martins, James B.; Wahle, Andreas

    2010-03-01

    Quantitative analysis of the left ventricular shape and motion patterns associated with left ventricular mechanical dyssynchrony (LVMD) is essential for diagnosis and treatment planning in congestive heart failure. Real-time 3D echocardiography (RT3DE) used for LVMD analysis is frequently limited by heavy speckle noise or partially incomplete data, thus a segmentation method utilizing learned global shape knowledge is beneficial. In this study, the endocardial surface of the left ventricle (LV) is segmented using a hybrid approach combining active shape model (ASM) with optimal graph search. The latter is used to achieve landmark refinement in the ASM framework. Optimal graph search translates the 3D segmentation into the detection of a minimum-cost closed set in a graph and can produce a globally optimal result. Various information-gradient, intensity distributions, and regional-property terms-are used to define the costs for the graph search. The developed method was tested on 44 RT3DE datasets acquired from 26 LVMD patients. The segmentation accuracy was assessed by surface positioning error and volume overlap measured for the whole LV as well as 16 standard LV regions. The segmentation produced very good results that were not achievable using ASM or graph search alone.

  13. A Fourier rebinning algorithm incorporating spectral transfer efficiency for 3D PET.

    PubMed

    Tanaka, E; Amo, Y

    1998-04-01

    This paper presents a Fourier rebinning algorithm for three-dimensional image reconstruction in PET that incorporates the concept of spectral transfer function. It suggests the need for discarding low-frequency components in the rebinning. It also includes the correction for rebinning efficiency which was evaluated by simulations as a function of oblique angle of projections. The performance was optimized by high-pass filters and axial smoothing. The algorithm yields satisfactory images with negligible axial cross-talk for a maximum oblique angle up to 26.6 degrees. The statistical noise was evaluated in terms of 'noise equivalent number of oblique angles', and reasonable results were obtained in view of the theoretical expectation. Ring artefacts due to noise are negligibly small.

  14. Algorithm of pulmonary emphysema extraction using thoracic 3-D CT images

    NASA Astrophysics Data System (ADS)

    Saita, Shinsuke; Kubo, Mitsuru; Kawata, Yoshiki; Niki, Noboru; Nakano, Yasutaka; Ohmatsu, Hironobu; Tominaga, Keigo; Eguchi, Kenji; Moriyama, Noriyuki

    2008-03-01

    Emphysema patients have the tendency to increase due to aging and smoking. Emphysematous disease destroys alveolus and to repair is impossible, thus early detection is essential. CT value of lung tissue decreases due to the destruction of lung structure. This CT value becomes lower than the normal lung- low density absorption region or referred to as Low Attenuation Area (LAA). So far, the conventional way of extracting LAA by simple thresholding has been proposed. However, the CT value of CT image fluctuates due to the measurement conditions, with various bias components such as inspiration, expiration and congestion. It is therefore necessary to consider these bias components in the extraction of LAA. We removed these bias components and we proposed LAA extraction algorithm. This algorithm has been applied to the phantom image. Then, by using the low dose CT(normal: 30 cases, obstructive lung disease: 26 cases), we extracted early stage LAA and quantitatively analyzed lung lobes using lung structure.

  15. An Efficient Algorithm for Mapping Imaging Data to 3D Unstructured Grids in Computational Biomechanics

    SciTech Connect

    Einstein, Daniel R.; Kuprat, Andrew P.; Jiao, Xiangmin; Carson, James P.; Einstein, David M.; Corley, Richard A.; Jacob, Rick E.

    2013-01-01

    Geometries for organ scale and multiscale simulations of organ function are now routinely derived from imaging data. However, medical images may also contain spatially heterogeneous information other than geometry that are relevant to such simulations either as initial conditions or in the form of model parameters. In this manuscript, we present an algorithm for the efficient and robust mapping of such data to imaging based unstructured polyhedral grids in parallel. We then illustrate the application of our mapping algorithm to three different mapping problems: 1) the mapping of MRI diffusion tensor data to an unstuctured ventricular grid; 2) the mapping of serial cyro-section histology data to an unstructured mouse brain grid; and 3) the mapping of CT-derived volumetric strain data to an unstructured multiscale lung grid. Execution times and parallel performance are reported for each case.

  16. An efficient algorithm for mapping imaging data to 3D unstructured grids in computational biomechanics.

    PubMed

    Einstein, Daniel R; Kuprat, Andrew P; Jiao, Xiangmin; Carson, James P; Einstein, David M; Jacob, Richard E; Corley, Richard A

    2013-01-01

    Geometries for organ scale and multiscale simulations of organ function are now routinely derived from imaging data. However, medical images may also contain spatially heterogeneous information other than geometry that are relevant to such simulations either as initial conditions or in the form of model parameters. In this manuscript, we present an algorithm for the efficient and robust mapping of such data to imaging-based unstructured polyhedral grids in parallel. We then illustrate the application of our mapping algorithm to three different mapping problems: (i) the mapping of MRI diffusion tensor data to an unstructured ventricular grid; (ii) the mapping of serial cyrosection histology data to an unstructured mouse brain grid; and (iii) the mapping of computed tomography-derived volumetric strain data to an unstructured multiscale lung grid. Execution times and parallel performance are reported for each case. PMID:23293066

  17. Stamping Line Optimization Using Genetic Algorithms and Virtual 3D Line Simulation

    NASA Astrophysics Data System (ADS)

    García-Sedano, Javier A.; Bernardo, Jon Alzola; González, Asier González; de Gauna, Óscar Berasategui Ruiz; de Mendivil, Rafael Yuguero González

    This paper describes the use of a genetic algorithm (GA) in order to optimize the trajectory followed by industrial robots (IRs) in stamping lines. The objective is to generate valid paths or trajectories without collisions in order to minimize the cycle time required to complete all the operations in an individual stamping cell of the line. A commercial software tool is used to simulate the virtual trajectories and potential collisions, taking into account the specific geometries of the different parts involved: robot arms, columns, dies and manipulators. Then, a genetic algorithm is proposed to optimize trajectories. Both systems, the GA and the simulator, communicate as client - server in order to evaluate solutions proposed by the GA. The novelty of the idea is to consider the geometry of the specific components to adjust robot paths to optimize cycle time in a given stamping cell.

  18. A parallel dynamic load balancing algorithm for 3-D adaptive unstructured grids

    NASA Technical Reports Server (NTRS)

    Vidwans, A.; Kallinderis, Y.; Venkatakrishnan, V.

    1993-01-01

    Adaptive local grid refinement and coarsening results in unequal distribution of workload among the processors of a parallel system. A novel method for balancing the load in cases of dynamically changing tetrahedral grids is developed. The approach employs local exchange of cells among processors in order to redistribute the load equally. An important part of the load balancing algorithm is the method employed by a processor to determine which cells within its subdomain are to be exchanged. Two such methods are presented and compared. The strategy for load balancing is based on the Divide-and-Conquer approach which leads to an efficient parallel algorithm. This method is implemented on a distributed-memory MIMD system.

  19. Comparing algorithms for automated vessel segmentation in computed tomography scans of the lung: the VESSEL12 study.

    PubMed

    Rudyanto, Rina D; Kerkstra, Sjoerd; van Rikxoort, Eva M; Fetita, Catalin; Brillet, Pierre-Yves; Lefevre, Christophe; Xue, Wenzhe; Zhu, Xiangjun; Liang, Jianming; Öksüz, Ilkay; Ünay, Devrim; Kadipaşaoğlu, Kamuran; Estépar, Raúl San José; Ross, James C; Washko, George R; Prieto, Juan-Carlos; Hoyos, Marcela Hernández; Orkisz, Maciej; Meine, Hans; Hüllebrand, Markus; Stöcker, Christina; Mir, Fernando Lopez; Naranjo, Valery; Villanueva, Eliseo; Staring, Marius; Xiao, Changyan; Stoel, Berend C; Fabijanska, Anna; Smistad, Erik; Elster, Anne C; Lindseth, Frank; Foruzan, Amir Hossein; Kiros, Ryan; Popuri, Karteek; Cobzas, Dana; Jimenez-Carretero, Daniel; Santos, Andres; Ledesma-Carbayo, Maria J; Helmberger, Michael; Urschler, Martin; Pienn, Michael; Bosboom, Dennis G H; Campo, Arantza; Prokop, Mathias; de Jong, Pim A; Ortiz-de-Solorzano, Carlos; Muñoz-Barrutia, Arrate; van Ginneken, Bram

    2014-10-01

    The VESSEL12 (VESsel SEgmentation in the Lung) challenge objectively compares the performance of different algorithms to identify vessels in thoracic computed tomography (CT) scans. Vessel segmentation is fundamental in computer aided processing of data generated by 3D imaging modalities. As manual vessel segmentation is prohibitively time consuming, any real world application requires some form of automation. Several approaches exist for automated vessel segmentation, but judging their relative merits is difficult due to a lack of standardized evaluation. We present an annotated reference dataset containing 20 CT scans and propose nine categories to perform a comprehensive evaluation of vessel segmentation algorithms from both academia and industry. Twenty algorithms participated in the VESSEL12 challenge, held at International Symposium on Biomedical Imaging (ISBI) 2012. All results have been published at the VESSEL12 website http://vessel12.grand-challenge.org. The challenge remains ongoing and open to new participants. Our three contributions are: (1) an annotated reference dataset available online for evaluation of new algorithms; (2) a quantitative scoring system for objective comparison of algorithms; and (3) performance analysis of the strengths and weaknesses of the various vessel segmentation methods in the presence of various lung diseases.

  20. A comparison study of atlas-based 3D cardiac MRI segmentation: global versus global and local transformations

    NASA Astrophysics Data System (ADS)

    Daryanani, Aditya; Dangi, Shusil; Ben-Zikri, Yehuda Kfir; Linte, Cristian A.

    2016-03-01

    Magnetic Resonance Imaging (MRI) is a standard-of-care imaging modality for cardiac function assessment and guidance of cardiac interventions thanks to its high image quality and lack of exposure to ionizing radiation. Cardiac health parameters such as left ventricular volume, ejection fraction, myocardial mass, thickness, and strain can be assessed by segmenting the heart from cardiac MRI images. Furthermore, the segmented pre-operative anatomical heart models can be used to precisely identify regions of interest to be treated during minimally invasive therapy. Hence, the use of accurate and computationally efficient segmentation techniques is critical, especially for intra-procedural guidance applications that rely on the peri-operative segmentation of subject-specific datasets without delaying the procedure workflow. Atlas-based segmentation incorporates prior knowledge of the anatomy of interest from expertly annotated image datasets. Typically, the ground truth atlas label is propagated to a test image using a combination of global and local registration. The high computational cost of non-rigid registration motivated us to obtain an initial segmentation using global transformations based on an atlas of the left ventricle from a population of patient MRI images and refine it using well developed technique based on graph cuts. Here we quantitatively compare the segmentations obtained from the global and global plus local atlases and refined using graph cut-based techniques with the expert segmentations according to several similarity metrics, including Dice correlation coefficient, Jaccard coefficient, Hausdorff distance, and Mean absolute distance error.

  1. The DANTE Boltzmann transport solver: An unstructured mesh, 3-D, spherical harmonics algorithm compatible with parallel computer architectures

    SciTech Connect

    McGhee, J.M.; Roberts, R.M.; Morel, J.E.

    1997-06-01

    A spherical harmonics research code (DANTE) has been developed which is compatible with parallel computer architectures. DANTE provides 3-D, multi-material, deterministic, transport capabilities using an arbitrary finite element mesh. The linearized Boltzmann transport equation is solved in a second order self-adjoint form utilizing a Galerkin finite element spatial differencing scheme. The core solver utilizes a preconditioned conjugate gradient algorithm. Other distinguishing features of the code include options for discrete-ordinates and simplified spherical harmonics angular differencing, an exact Marshak boundary treatment for arbitrarily oriented boundary faces, in-line matrix construction techniques to minimize memory consumption, and an effective diffusion based preconditioner for scattering dominated problems. Algorithm efficiency is demonstrated for a massively parallel SIMD architecture (CM-5), and compatibility with MPP multiprocessor platforms or workstation clusters is anticipated.

  2. Joint graph cut and relative fuzzy connectedness image segmentation algorithm.

    PubMed

    Ciesielski, Krzysztof Chris; Miranda, Paulo A V; Falcão, Alexandre X; Udupa, Jayaram K

    2013-12-01

    We introduce an image segmentation algorithm, called GC(sum)(max), which combines, in novel manner, the strengths of two popular algorithms: Relative Fuzzy Connectedness (RFC) and (standard) Graph Cut (GC). We show, both theoretically and experimentally, that GC(sum)(max) preserves robustness of RFC with respect to the seed choice (thus, avoiding "shrinking problem" of GC), while keeping GC's stronger control over the problem of "leaking though poorly defined boundary segments." The analysis of GC(sum)(max) is greatly facilitated by our recent theoretical results that RFC can be described within the framework of Generalized GC (GGC) segmentation algorithms. In our implementation of GC(sum)(max) we use, as a subroutine, a version of RFC algorithm (based on Image Forest Transform) that runs (provably) in linear time with respect to the image size. This results in GC(sum)(max) running in a time close to linear. Experimental comparison of GC(sum)(max) to GC, an iterative version of RFC (IRFC), and power watershed (PW), based on a variety medical and non-medical images, indicates superior accuracy performance of GC(sum)(max) over these other methods, resulting in a rank ordering of GC(sum)(max)>PW∼IRFC>GC.

  3. Multi-Surface and Multi-Field Co-Segmentation of 3-D Retinal Optical Coherence Tomography

    PubMed Central

    Sonka, Milan; Kwon, Young H.; Kemp, Pavlina; Abràmoff, Michael D.; Wu, Xiaodong

    2015-01-01

    When segmenting intraretinal layers from multiple optical coherence tomography (OCT) images forming a mosaic or a set of repeated scans, it is attractive to exploit the additional information from the overlapping areas rather than discarding it as redundant, especially in low contrast and noisy images. However, it is currently not clear how to effectively combine the multiple information sources available in the areas of overlap. In this paper, we propose a novel graph-theoretic method for multi-surface multi-field co-segmentation of intraretinal layers, assuring consistent segmentation of the fields across the overlapped areas. After 2-D en-face alignment, all the fields are segmented simultaneously, imposing a priori soft interfield-intrasurface constraints for each pair of overlapping fields. The constraints penalize deviations from the expected surface height differences, taken to be the depth-axis shifts that produce the maximum cross-correlation of pairwise-overlapped areas. The method’s accuracy and reproducibility are evaluated qualitatively and quantitatively on 212 OCT images (20 nine-field, 32 single-field acquisitions) from 26 patients with glaucoma. Qualitatively, the obtained thickness maps show no stitching artifacts, compared to pronounced stitches when the fields are segmented independently. Quantitatively, two ophthalmologists manually traced four intraretinal layers on 10 patients, and the average error (4.58±1.46 μm) was comparable to the average difference between the observers (5.86±1.72 μm). Furthermore, we show the benefit of the proposed approach in co-segmenting longitudinal scans. As opposed to segmenting layers in each of the fields independently, the proposed co-segmentation method obtains consistent segmentations across the overlapped areas, producing accurate, reproducible, and artifact-free results. PMID:25020067

  4. Protein folding optimization based on 3D off-lattice model via an improved artificial bee colony algorithm.

    PubMed

    Li, Bai; Lin, Mu; Liu, Qiao; Li, Ya; Zhou, Changjun

    2015-10-01

    Protein folding is a fundamental topic in molecular biology. Conventional experimental techniques for protein structure identification or protein folding recognition require strict laboratory requirements and heavy operating burdens, which have largely limited their applications. Alternatively, computer-aided techniques have been developed to optimize protein structures or to predict the protein folding process. In this paper, we utilize a 3D off-lattice model to describe the original protein folding scheme as a simplified energy-optimal numerical problem, where all types of amino acid residues are binarized into hydrophobic and hydrophilic ones. We apply a balance-evolution artificial bee colony (BE-ABC) algorithm as the minimization solver, which is featured by the adaptive adjustment of search intensity to cater for the varying needs during the entire optimization process. In this work, we establish a benchmark case set with 13 real protein sequences from the Protein Data Bank database and evaluate the convergence performance of BE-ABC algorithm through strict comparisons with several state-of-the-art ABC variants in short-term numerical experiments. Besides that, our obtained best-so-far protein structures are compared to the ones in comprehensive previous literature. This study also provides preliminary insights into how artificial intelligence techniques can be applied to reveal the dynamics of protein folding. Graphical Abstract Protein folding optimization using 3D off-lattice model and advanced optimization techniques.

  5. Rapidly convergent algorithms for 3-D tandem and stellarator equilibria in the paraxial approximation

    SciTech Connect

    McNamara, B.

    1984-04-01

    Tandem and stellarator equilibria at high ..beta.. have proved hard to compute and the relaxation methods of Bauer et al., Chodura and Schluter, Hirshman, Strauss, and Pearlstein et al. have been slow to converge. This paper reports an extension of the low-..beta.. analytic method of Pearlstein, Kaiser, and Newcomb to arbitrary ..beta.. for tandem mirrors which converges in 10 to 20 iterations. Extensions of the method to stellarator equilibria are proposed and are very close to the analytic method of Johnson and Greene - the stellarator expansion. Most of the results of all these calculations can be adequately described by low-..beta.. approximations since the MHD stability limits occur at low ..beta... The tandem mirror, having weak curvature and a long central cell, allows finite Larmor radius effects to eliminate most ballooning modes and offers the possibility of really high average ..beta... This is the interest in developing such three-dimensional numerical algorithms.

  6. 3D-2D registration in mobile radiographs: algorithm development and preliminary clinical evaluation

    NASA Astrophysics Data System (ADS)

    Otake, Yoshito; Wang, Adam S.; Uneri, Ali; Kleinszig, Gerhard; Vogt, Sebastian; Aygun, Nafi; Lo, Sheng-fu L.; Wolinsky, Jean-Paul; Gokaslan, Ziya L.; Siewerdsen, Jeffrey H.

    2015-03-01

    An image-based 3D-2D registration method is presented using radiographs acquired in the uncalibrated, unconstrained geometry of mobile radiography. The approach extends a previous method for six degree-of-freedom (DOF) registration in C-arm fluoroscopy (namely ‘LevelCheck’) to solve the 9-DOF estimate of geometry in which the position of the source and detector are unconstrained. The method was implemented using a gradient correlation similarity metric and stochastic derivative-free optimization on a GPU. Development and evaluation were conducted in three steps. First, simulation studies were performed that involved a CT scan of an anthropomorphic body phantom and 1000 randomly generated digitally reconstructed radiographs in posterior-anterior and lateral views. A median projection distance error (PDE) of 0.007 mm was achieved with 9-DOF registration compared to 0.767 mm for 6-DOF. Second, cadaver studies were conducted using mobile radiographs acquired in three anatomical regions (thorax, abdomen and pelvis) and three levels of source-detector distance (~800, ~1000 and ~1200 mm). The 9-DOF method achieved a median PDE of 0.49 mm (compared to 2.53 mm for the 6-DOF method) and demonstrated robustness in the unconstrained imaging geometry. Finally, a retrospective clinical study was conducted with intraoperative radiographs of the spine exhibiting real anatomical deformation and image content mismatch (e.g. interventional devices in the radiograph that were not in the CT), demonstrating a PDE = 1.1 mm for the 9-DOF approach. Average computation time was 48.5 s, involving 687 701 function evaluations on average, compared to 18.2 s for the 6-DOF method. Despite the greater computational load, the 9-DOF method may offer a valuable tool for target localization (e.g. decision support in level counting) as well as safety and quality assurance checks at the conclusion of a procedure (e.g. overlay of planning data on the radiograph for verification of

  7. Inner and outer coronary vessel wall segmentation from CCTA using an active contour model with machine learning-based 3D voxel context-aware image force

    NASA Astrophysics Data System (ADS)

    Sivalingam, Udhayaraj; Wels, Michael; Rempfler, Markus; Grosskopf, Stefan; Suehling, Michael; Menze, Bjoern H.

    2016-03-01

    In this paper, we present a fully automated approach to coronary vessel segmentation, which involves calcification or soft plaque delineation in addition to accurate lumen delineation, from 3D Cardiac Computed Tomography Angiography data. Adequately virtualizing the coronary lumen plays a crucial role for simulating blood ow by means of fluid dynamics while additionally identifying the outer vessel wall in the case of arteriosclerosis is a prerequisite for further plaque compartment analysis. Our method is a hybrid approach complementing Active Contour Model-based segmentation with an external image force that relies on a Random Forest Regression model generated off-line. The regression model provides a strong estimate of the distance to the true vessel surface for every surface candidate point taking into account 3D wavelet-encoded contextual image features, which are aligned with the current surface hypothesis. The associated external image force is integrated in the objective function of the active contour model, such that the overall segmentation approach benefits from the advantages associated with snakes and from the ones associated with machine learning-based regression alike. This yields an integrated approach achieving competitive results on a publicly available benchmark data collection (Rotterdam segmentation challenge).

  8. Vegetation Height Estimation Near Power transmission poles Via satellite Stereo Images using 3D Depth Estimation Algorithms

    NASA Astrophysics Data System (ADS)

    Qayyum, A.; Malik, A. S.; Saad, M. N. M.; Iqbal, M.; Abdullah, F.; Rahseed, W.; Abdullah, T. A. R. B. T.; Ramli, A. Q.

    2015-04-01

    Monitoring vegetation encroachment under overhead high voltage power line is a challenging problem for electricity distribution companies. Absence of proper monitoring could result in damage to the power lines and consequently cause blackout. This will affect electric power supply to industries, businesses, and daily life. Therefore, to avoid the blackouts, it is mandatory to monitor the vegetation/trees near power transmission lines. Unfortunately, the existing approaches are more time consuming and expensive. In this paper, we have proposed a novel approach to monitor the vegetation/trees near or under the power transmission poles using satellite stereo images, which were acquired using Pleiades satellites. The 3D depth of vegetation has been measured near power transmission lines using stereo algorithms. The area of interest scanned by Pleiades satellite sensors is 100 square kilometer. Our dataset covers power transmission poles in a state called Sabah in East Malaysia, encompassing a total of 52 poles in the area of 100 km. We have compared the results of Pleiades satellite stereo images using dynamic programming and Graph-Cut algorithms, consequently comparing satellites' imaging sensors and Depth-estimation Algorithms. Our results show that Graph-Cut Algorithm performs better than dynamic programming (DP) in terms of accuracy and speed.

  9. Image-based point spread function implementation in a fully 3D OSEM reconstruction algorithm for PET.

    PubMed

    Rapisarda, E; Bettinardi, V; Thielemans, K; Gilardi, M C

    2010-07-21

    The interest in positron emission tomography (PET) and particularly in hybrid integrated PET/CT systems has significantly increased in the last few years due to the improved quality of the obtained i