Science.gov

Sample records for 3d segmentation method

  1. [An integrated segmentation method for 3D ultrasound carotid artery].

    PubMed

    Yang, Xin; Wu, Huihui; Liu, Yang; Xu, Hongwei; Liang, Huageng; Cai, Wenjuan; Fang, Mengjie; Wang, Yujie

    2013-07-01

    An integrated segmentation method for 3D ultrasound carotid artery was proposed. 3D ultrasound image was sliced into transverse, coronal and sagittal 2D images on the carotid bifurcation point. Then, the three images were processed respectively, and the carotid artery contours and thickness were obtained finally. This paper tries to overcome the disadvantages of current computer aided diagnosis method, such as high computational complexity, easily introduced subjective errors et al. The proposed method could get the carotid artery overall information rapidly, accurately and completely. It could be transplanted into clinical usage for atherosclerosis diagnosis and prevention. PMID:24195385

  2. A 3D Frictional Segment-to-Segment Contact Method for Large Deformations and Quadratic Elements

    SciTech Connect

    Puso, M; Laursen, T; Solberg, J

    2004-04-01

    Node-on-segment contact is the most common form of contact used today but has many deficiencies ranging from potential locking to non-smooth behavior with large sliding. Furthermore, node-on-segment approaches are not at all applicable to higher order discretizations (e.g. quadratic elements). In a previous work, [3, 4] we developed a segment-to-segment contact approach for eight node hexahedral elements based on the mortar method that was applicable to large deformation mechanics. The approach proved extremely robust since it eliminated the over-constraint that caused 'locking' and provided smooth force variations in large sliding. Here, we extend this previous approach to treat frictional contact problems. In addition, the method is extended to 3D quadratic tetrahedrals and hexahedrals. The proposed approach is then applied to several challenging frictional contact problems that demonstrate its effectiveness.

  3. Improving Semantic Updating Method on 3d City Models Using Hybrid Semantic-Geometric 3d Segmentation Technique

    NASA Astrophysics Data System (ADS)

    Sharkawi, K.-H.; Abdul-Rahman, A.

    2013-09-01

    to LoD4. The accuracy and structural complexity of the 3D objects increases with the LoD level where LoD0 is the simplest LoD (2.5D; Digital Terrain Model (DTM) + building or roof print) while LoD4 is the most complex LoD (architectural details with interior structures). Semantic information is one of the main components in CityGML and 3D City Models, and provides important information for any analyses. However, more often than not, the semantic information is not available for the 3D city model due to the unstandardized modelling process. One of the examples is where a building is normally generated as one object (without specific feature layers such as Roof, Ground floor, Level 1, Level 2, Block A, Block B, etc). This research attempts to develop a method to improve the semantic data updating process by segmenting the 3D building into simpler parts which will make it easier for the users to select and update the semantic information. The methodology is implemented for 3D buildings in LoD2 where the buildings are generated without architectural details but with distinct roof structures. This paper also introduces hybrid semantic-geometric 3D segmentation method that deals with hierarchical segmentation of a 3D building based on its semantic value and surface characteristics, fitted by one of the predefined primitives. For future work, the segmentation method will be implemented as part of the change detection module that can detect any changes on the 3D buildings, store and retrieve semantic information of the changed structure, automatically updates the 3D models and visualize the results in a userfriendly graphical user interface (GUI).

  4. A method for the evaluation of thousands of automated 3D stem cell segmentations.

    PubMed

    Bajcsy, P; Simon, M; Florczyk, S J; Simon, C G; Juba, D; Brady, M C

    2015-12-01

    There is no segmentation method that performs perfectly with any dataset in comparison to human segmentation. Evaluation procedures for segmentation algorithms become critical for their selection. The problems associated with segmentation performance evaluations and visual verification of segmentation results are exaggerated when dealing with thousands of three-dimensional (3D) image volumes because of the amount of computation and manual inputs needed. We address the problem of evaluating 3D segmentation performance when segmentation is applied to thousands of confocal microscopy images (z-stacks). Our approach is to incorporate experimental imaging and geometrical criteria, and map them into computationally efficient segmentation algorithms that can be applied to a very large number of z-stacks. This is an alternative approach to considering existing segmentation methods and evaluating most state-of-the-art algorithms. We designed a methodology for 3D segmentation performance characterization that consists of design, evaluation and verification steps. The characterization integrates manual inputs from projected surrogate 'ground truth' of statistically representative samples and from visual inspection into the evaluation. The novelty of the methodology lies in (1) designing candidate segmentation algorithms by mapping imaging and geometrical criteria into algorithmic steps, and constructing plausible segmentation algorithms with respect to the order of algorithmic steps and their parameters, (2) evaluating segmentation accuracy using samples drawn from probability distribution estimates of candidate segmentations and (3) minimizing human labour needed to create surrogate 'truth' by approximating z-stack segmentations with 2D contours from three orthogonal z-stack projections and by developing visual verification tools. We demonstrate the methodology by applying it to a dataset of 1253 mesenchymal stem cells. The cells reside on 10 different types of biomaterial

  5. Liver segmentation in contrast enhanced CT data using graph cuts and interactive 3D segmentation refinement methods

    SciTech Connect

    Beichel, Reinhard; Bornik, Alexander; Bauer, Christian; Sorantin, Erich

    2012-03-15

    Purpose: Liver segmentation is an important prerequisite for the assessment of liver cancer treatment options like tumor resection, image-guided radiation therapy (IGRT), radiofrequency ablation, etc. The purpose of this work was to evaluate a new approach for liver segmentation. Methods: A graph cuts segmentation method was combined with a three-dimensional virtual reality based segmentation refinement approach. The developed interactive segmentation system allowed the user to manipulate volume chunks and/or surfaces instead of 2D contours in cross-sectional images (i.e, slice-by-slice). The method was evaluated on twenty routinely acquired portal-phase contrast enhanced multislice computed tomography (CT) data sets. An independent reference was generated by utilizing a currently clinically utilized slice-by-slice segmentation method. After 1 h of introduction to the developed segmentation system, three experts were asked to segment all twenty data sets with the proposed method. Results: Compared to the independent standard, the relative volumetric segmentation overlap error averaged over all three experts and all twenty data sets was 3.74%. Liver segmentation required on average 16 min of user interaction per case. The calculated relative volumetric overlap errors were not found to be significantly different [analysis of variance (ANOVA) test, p = 0.82] between experts who utilized the proposed 3D system. In contrast, the time required by each expert for segmentation was found to be significantly different (ANOVA test, p = 0.0009). Major differences between generated segmentations and independent references were observed in areas were vessels enter or leave the liver and no accepted criteria for defining liver boundaries exist. In comparison, slice-by-slice based generation of the independent standard utilizing a live wire tool took 70.1 min on average. A standard 2D segmentation refinement approach applied to all twenty data sets required on average 38.2 min of

  6. Segmentation of Brain MRI Using SOM-FCM-Based Method and 3D Statistical Descriptors

    PubMed Central

    Ortiz, Andrés; Palacio, Antonio A.; Górriz, Juan M.; Ramírez, Javier; Salas-González, Diego

    2013-01-01

    Current medical imaging systems provide excellent spatial resolution, high tissue contrast, and up to 65535 intensity levels. Thus, image processing techniques which aim to exploit the information contained in the images are necessary for using these images in computer-aided diagnosis (CAD) systems. Image segmentation may be defined as the process of parcelling the image to delimit different neuroanatomical tissues present on the brain. In this paper we propose a segmentation technique using 3D statistical features extracted from the volume image. In addition, the presented method is based on unsupervised vector quantization and fuzzy clustering techniques and does not use any a priori information. The resulting fuzzy segmentation method addresses the problem of partial volume effect (PVE) and has been assessed using real brain images from the Internet Brain Image Repository (IBSR). PMID:23762192

  7. A 3D neurovascular bundles segmentation method based on MR-TRUS deformable registration

    NASA Astrophysics Data System (ADS)

    Yang, Xiaofeng; Rossi, Peter; Jani, Ashesh B.; Mao, Hui; Ogunleye, Tomi; Curran, Walter J.; Liu, Tian

    2015-03-01

    In this paper, we propose a 3D neurovascular bundles (NVB) segmentation method for ultrasound (US) image by integrating MR and transrectal ultrasound (TRUS) images through MR-TRUS deformable registration. First, 3D NVB was contoured by a physician in MR images, and the 3D MRdefined NVB was then transformed into US images using a MR-TRUS registration method, which models the prostate tissue as an elastic material, and jointly estimates the boundary deformation and the volumetric deformations under the elastic constraint. This technique was validated with a clinical study of 6 patients undergoing radiation therapy (RT) treatment for prostate cancer. The accuracy of our approach was assessed through the locations of landmarks, as well as previous ultrasound Doppler images of patients. MR-TRUS registration was successfully performed for all patients. The mean displacement of the landmarks between the post-registration MR and TRUS images was less than 2 mm, and the average NVB volume Dice Overlap Coefficient was over 89%. This NVB segmentation technique could be a useful tool as we try to spare the NVB in prostate RT, monitor NVB response to RT, and potentially improve post-RT potency outcomes.

  8. Optical flow 3D segmentation and interpretation: a variational method with active curve evolution and level sets.

    PubMed

    Mitiche, Amar; Sekkati, Hicham

    2006-11-01

    This study investigates a variational, active curve evolution method for dense three-dimentional (3D) segmentation and interpretation of optical flow in an image sequence of a scene containing moving rigid objects viewed by a possibly moving camera. This method jointly performs 3D motion segmentation, 3D interpretation (recovery of 3D structure and motion), and optical flow estimation. The objective functional contains two data terms for each segmentation region, one based on the motion-only equation which relates the essential parameters of 3D rigid body motion to optical flow, and the other on the Horn and Schunck optical flow constraint. It also contains two regularization terms for each region, one for optical flow, the other for the region boundary. The necessary conditions for a minimum of the functional result in concurrent 3D-motion segmentation, by active curve evolution via level sets, and linear estimation of each region essential parameters and optical flow. Subsequently, the screw of 3D motion and regularized relative depth are recovered analytically for each region from the estimated essential parameters and optical flow. Examples are provided which verify the method and its implementation. PMID:17063686

  9. A Neurocomputational Method for Fully Automated 3D Dendritic Spine Detection and Segmentation of Medium-sized Spiny Neurons

    PubMed Central

    Zhang, Yong; Chen, Kun; Baron, Matthew; Teylan, Merilee A.; Kim, Yong; Song, Zhihuan; Greengard, Paul

    2010-01-01

    Acquisition and quantitative analysis of high resolution images of dendritic spines are challenging tasks but are necessary for the study of animal models of neurological and psychiatric diseases. Currently available methods for automated dendritic spine detection are for the most part customized for 2D image slices, not volumetric 3D images. In this work, a fully automated method is proposed to detect and segment dendritic spines from 3D confocal microscopy images of medium-sized spiny neurons (MSNs). MSNs constitute a major neuronal population in striatum, and abnormalities in their function are associated with several neurological and psychiatric diseases. Such automated detection is critical for the development of new 3D neuronal assays which can be used for the screening of drugs and the studies of their therapeutic effects. The proposed method utilizes a generalized gradient vector flow (GGVF) with a new smoothing constraint and then detects feature points near the central regions of dendrites and spines. Then, the central regions are refined and separated based on eigen-analysis and multiple shape measurements. Finally, the spines are segmented in 3D space using the fast marching algorithm, taking the detected central regions of spines as initial points. The proposed method is compared with three popular existing methods for centerline extraction and also with manual results for dendritic spine detection in 3D space. The experimental results and comparisons show that the proposed method is able to automatically and accurately detect, segment, and quantitate dendritic spines in 3D images of MSNs. PMID:20100579

  10. Volume rendering for interactive 3D segmentation

    NASA Astrophysics Data System (ADS)

    Toennies, Klaus D.; Derz, Claus

    1997-05-01

    Combined emission/absorption and reflection/transmission volume rendering is able to display poorly segmented structures from 3D medical image sequences. Visual cues such as shading and color let the user distinguish structures in the 3D display that are incompletely extracted by threshold segmentation. In order to be truly helpful, analyzed information needs to be quantified and transferred back into the data. We extend our previously presented scheme for such display be establishing a communication between visual analysis and the display process. The main tool is a selective 3D picking device. For being useful on a rather rough segmentation, the device itself and the display offer facilities for object selection. Selective intersection planes let the user discard information prior to choosing a tissue of interest. Subsequently, a picking is carried out on the 2D display by casting a ray into the volume. The picking device is made pre-selective using already existing segmentation information. Thus, objects can be picked that are visible behind semi-transparent surfaces of other structures. Information generated by a later connected- component analysis can then be integrated into the data. Data examination is continued on an improved display letting the user actively participate in the analysis process. Results of this display-and-interaction scheme proved to be very effective. The viewer's ability to extract relevant information form a complex scene is combined with the computer's ability to quantify this information. The approach introduces 3D computer graphics methods into user- guided image analysis creating an analysis-synthesis cycle for interactive 3D segmentation.

  11. NCC-RANSAC: A Fast Plane Extraction Method for 3-D Range Data Segmentation

    PubMed Central

    Qian, Xiangfei; Ye, Cang

    2015-01-01

    This paper presents a new plane extraction (PE) method based on the random sample consensus (RANSAC) approach. The generic RANSAC-based PE algorithm may over-extract a plane, and it may fail in case of a multistep scene where the RANSAC procedure results in multiple inlier patches that form a slant plane straddling the steps. The CC-RANSAC PE algorithm successfully overcomes the latter limitation if the inlier patches are separate. However, it fails if the inlier patches are connected. A typical scenario is a stairway with a stair wall where the RANSAC plane-fitting procedure results in inliers patches in the tread, riser, and stair wall planes. They connect together and form a plane. The proposed method, called normal-coherence CC-RANSAC (NCC-RANSAC), performs a normal coherence check to all data points of the inlier patches and removes the data points whose normal directions are contradictory to that of the fitted plane. This process results in separate inlier patches, each of which is treated as a candidate plane. A recursive plane clustering process is then executed to grow each of the candidate planes until all planes are extracted in their entireties. The RANSAC plane-fitting and the recursive plane clustering processes are repeated until no more planes are found. A probabilistic model is introduced to predict the success probability of the NCC-RANSAC algorithm and validated with real data of a 3-D time-of-flight camera–SwissRanger SR4000. Experimental results demonstrate that the proposed method extracts more accurate planes with less computational time than the existing RANSAC-based methods. PMID:24771605

  12. Concurrent 3-D motion segmentation and 3-D interpretation of temporal sequences of monocular images.

    PubMed

    Sekkati, Hicham; Mitiche, Amar

    2006-03-01

    The purpose of this study is to investigate a variational method for joint multiregion three-dimensional (3-D) motion segmentation and 3-D interpretation of temporal sequences of monocular images. Interpretation consists of dense recovery of 3-D structure and motion from the image sequence spatiotemporal variations due to short-range image motion. The method is direct insomuch as it does not require prior computation of image motion. It allows movement of both viewing system and multiple independently moving objects. The problem is formulated following a variational statement with a functional containing three terms. One term measures the conformity of the interpretation within each region of 3-D motion segmentation to the image sequence spatiotemporal variations. The second term is of regularization of depth. The assumption that environmental objects are rigid accounts automatically for the regularity of 3-D motion within each region of segmentation. The third and last term is for the regularity of segmentation boundaries. Minimization of the functional follows the corresponding Euler-Lagrange equations. This results in iterated concurrent computation of 3-D motion segmentation by curve evolution, depth by gradient descent, and 3-D motion by least squares within each region of segmentation. Curve evolution is implemented via level sets for topology independence and numerical stability. This algorithm and its implementation are verified on synthetic and real image sequences. Viewers presented with anaglyphs of stereoscopic images constructed from the algorithm's output reported a strong perception of depth. PMID:16519351

  13. 3D Model Segmentation and Representation with Implicit Polynomials

    NASA Astrophysics Data System (ADS)

    Zheng, Bo; Takamatsu, Jun; Ikeuchi, Katsushi

    When large-scale and complex 3D objects are obtained by range finders, it is often necessary to represent them by algebraic surfaces for such purposes as data compression, multi-resolution, noise elimination, and 3D recognition. Representing the 3D data with algebraic surfaces of an implicit polynomial (IP) has proved to offer the advantages that IP representation is capable of encoding geometric properties easily with desired smoothness, few parameters, algebraic/geometric invariants, and robustness to noise and missing data. Unfortunately, generating a high-degree IP surface for a whole complex 3D shape is impossible because of high computational cost and numerical instability. In this paper we propose a 3D segmentation method based on a cut-and-merge approach. Two cutting procedures adopt low-degree IPs to divide and fit the surface segments simultaneously, while avoiding generating high-curved segments. A merging procedure merges the similar adjacent segments to avoid over-segmentation. To prove the effectiveness of this segmentation method, we open up some new vistas for 3D applications such as 3D matching, recognition, and registration.

  14. Hybrid segmentation framework for 3D medical image analysis

    NASA Astrophysics Data System (ADS)

    Chen, Ting; Metaxas, Dimitri N.

    2003-05-01

    Medical image segmentation is the process that defines the region of interest in the image volume. Classical segmentation methods such as region-based methods and boundary-based methods cannot make full use of the information provided by the image. In this paper we proposed a general hybrid framework for 3D medical image segmentation purposes. In our approach we combine the Gibbs Prior model, and the deformable model. First, Gibbs Prior models are applied onto each slice in a 3D medical image volume and the segmentation results are combined to a 3D binary masks of the object. Then we create a deformable mesh based on this 3D binary mask. The deformable model will be lead to the edge features in the volume with the help of image derived external forces. The deformable model segmentation result can be used to update the parameters for Gibbs Prior models. These methods will then work recursively to reach a global segmentation solution. The hybrid segmentation framework has been applied to images with the objective of lung, heart, colon, jaw, tumor, and brain. The experimental data includes MRI (T1, T2, PD), CT, X-ray, Ultra-Sound images. High quality results are achieved with relatively efficient time cost. We also did validation work using expert manual segmentation as the ground truth. The result shows that the hybrid segmentation may have further clinical use.

  15. A 2D driven 3D vessel segmentation algorithm for 3D digital subtraction angiography data.

    PubMed

    Spiegel, M; Redel, T; Struffert, T; Hornegger, J; Doerfler, A

    2011-10-01

    Cerebrovascular disease is among the leading causes of death in western industrial nations. 3D rotational angiography delivers indispensable information on vessel morphology and pathology. Physicians make use of this to analyze vessel geometry in detail, i.e. vessel diameters, location and size of aneurysms, to come up with a clinical decision. 3D segmentation is a crucial step in this pipeline. Although a lot of different methods are available nowadays, all of them lack a method to validate the results for the individual patient. Therefore, we propose a novel 2D digital subtraction angiography (DSA)-driven 3D vessel segmentation and validation framework. 2D DSA projections are clinically considered as gold standard when it comes to measurements of vessel diameter or the neck size of aneurysms. An ellipsoid vessel model is applied to deliver the initial 3D segmentation. To assess the accuracy of the 3D vessel segmentation, its forward projections are iteratively overlaid with the corresponding 2D DSA projections. Local vessel discrepancies are modeled by a global 2D/3D optimization function to adjust the 3D vessel segmentation toward the 2D vessel contours. Our framework has been evaluated on phantom data as well as on ten patient datasets. Three 2D DSA projections from varying viewing angles have been used for each dataset. The novel 2D driven 3D vessel segmentation approach shows superior results against state-of-the-art segmentations like region growing, i.e. an improvement of 7.2% points in precision and 5.8% points for the Dice coefficient. This method opens up future clinical applications requiring the greatest vessel accuracy, e.g. computational fluid dynamic modeling. PMID:21908904

  16. A 2D driven 3D vessel segmentation algorithm for 3D digital subtraction angiography data

    NASA Astrophysics Data System (ADS)

    Spiegel, M.; Redel, T.; Struffert, T.; Hornegger, J.; Doerfler, A.

    2011-10-01

    Cerebrovascular disease is among the leading causes of death in western industrial nations. 3D rotational angiography delivers indispensable information on vessel morphology and pathology. Physicians make use of this to analyze vessel geometry in detail, i.e. vessel diameters, location and size of aneurysms, to come up with a clinical decision. 3D segmentation is a crucial step in this pipeline. Although a lot of different methods are available nowadays, all of them lack a method to validate the results for the individual patient. Therefore, we propose a novel 2D digital subtraction angiography (DSA)-driven 3D vessel segmentation and validation framework. 2D DSA projections are clinically considered as gold standard when it comes to measurements of vessel diameter or the neck size of aneurysms. An ellipsoid vessel model is applied to deliver the initial 3D segmentation. To assess the accuracy of the 3D vessel segmentation, its forward projections are iteratively overlaid with the corresponding 2D DSA projections. Local vessel discrepancies are modeled by a global 2D/3D optimization function to adjust the 3D vessel segmentation toward the 2D vessel contours. Our framework has been evaluated on phantom data as well as on ten patient datasets. Three 2D DSA projections from varying viewing angles have been used for each dataset. The novel 2D driven 3D vessel segmentation approach shows superior results against state-of-the-art segmentations like region growing, i.e. an improvement of 7.2% points in precision and 5.8% points for the Dice coefficient. This method opens up future clinical applications requiring the greatest vessel accuracy, e.g. computational fluid dynamic modeling.

  17. Accuracy of a Mitral Valve Segmentation Method Using J-Splines for Real-Time 3D Echocardiography Data

    PubMed Central

    Siefert, Andrew W.; Icenogle, David A.; Rabbah, Jean-Pierre; Saikrishnan, Neelakantan; Rossignac, Jarek; Lerakis, Stamatios; Yoganathan, Ajit P.

    2013-01-01

    Patient-specific models of the heart’s mitral valve (MV) exhibit potential for surgical planning. While advances in 3D echocardiography (3DE) have provided adequate resolution to extract MV leaflet geometry, no study has quantitatively assessed the accuracy of their modeled leaflets versus a ground-truth standard for temporal frames beyond systolic closure or for differing valvular dysfunctions. The accuracy of a 3DE-based segmentation methodology based on J-splines was assessed for porcine MVs with known 4D leaflet coordinates within a pulsatile simulator during closure, peak closure, and opening for a control, prolapsed, and billowing MV model. For all time points, the mean distance error between the segmented models and ground-truth data were 0.40±0.32 mm, 0.52±0.51 mm, and 0.74±0.69 mm for the control, flail, and billowing models. For all models and temporal frames, 95% of the distance errors were below 1.64 mm. When applied to a patient data set, segmentation was able to confirm a regurgitant orifice and post-operative improvements in coaptation. This study provides an experimental platform for assessing the accuracy of an MV segmentation methodology at phases beyond systolic closure and for differing MV dysfunctions. Results demonstrate the accuracy of a MV segmentation methodology for the development of future surgical planning tools. PMID:23460042

  18. Single 3D cell segmentation from optical CT microscope images

    NASA Astrophysics Data System (ADS)

    Xie, Yiting; Reeves, Anthony P.

    2014-03-01

    The automated segmentation of the nucleus and cytoplasm regions in 3D optical CT microscope images has been achieved with two methods, a global threshold gradient based approach and a graph-cut approach. For the first method, the first two peaks of a gradient figure of merit curve are selected as the thresholds for cytoplasm and nucleus segmentation. The second method applies a graph-cut segmentation twice: the first identifies the nucleus region and the second identifies the cytoplasm region. Image segmentation of single cells is important for automated disease diagnostic systems. The segmentation methods were evaluated with 200 3D images consisting of 40 samples of 5 different cell types. The cell types consisted of columnar, macrophage, metaplastic and squamous human cells and cultured A549 cancer cells. The segmented cells were compared with both 2D and 3D reference images and the quality of segmentation was determined by the Dice Similarity Coefficient (DSC). In general, the graph-cut method had a superior performance to the gradient-based method. The graph-cut method achieved an average DSC of 86% and 72% for nucleus and cytoplasm segmentations respectively for the 2D reference images and 83% and 75% for the 3D reference images. The gradient method achieved an average DSC of 72% and 51% for nucleus and cytoplasm segmentation for the 2D reference images and 71% and 51% for the 3D reference images. The DSC of cytoplasm segmentation was significantly lower than for the nucleus since the cytoplasm was not differentiated as well by image intensity from the background.

  19. 3D surface analysis and classification in neuroimaging segmentation.

    PubMed

    Zagar, Martin; Mlinarić, Hrvoje; Knezović, Josip

    2011-06-01

    This work emphasizes new algorithms for 3D edge and corner detection used in surface extraction and new concept of image segmentation in neuroimaging based on multidimensional shape analysis and classification. We propose using of NifTI standard for describing input data which enables interoperability and enhancement of existing computing tools used widely in neuroimaging research. In methods section we present our newly developed algorithm for 3D edge and corner detection, together with the algorithm for estimating local 3D shape. Surface of estimated shape is analyzed and segmented according to kernel shapes. PMID:21755723

  20. 3D ultrasound image segmentation using wavelet support vector machines

    PubMed Central

    Akbari, Hamed; Fei, Baowei

    2012-01-01

    Purpose: Transrectal ultrasound (TRUS) imaging is clinically used in prostate biopsy and therapy. Segmentation of the prostate on TRUS images has many applications. In this study, a three-dimensional (3D) segmentation method for TRUS images of the prostate is presented for 3D ultrasound-guided biopsy. Methods: This segmentation method utilizes a statistical shape, texture information, and intensity profiles. A set of wavelet support vector machines (W-SVMs) is applied to the images at various subregions of the prostate. The W-SVMs are trained to adaptively capture the features of the ultrasound images in order to differentiate the prostate and nonprostate tissue. This method consists of a set of wavelet transforms for extraction of prostate texture features and a kernel-based support vector machine to classify the textures. The voxels around the surface of the prostate are labeled in sagittal, coronal, and transverse planes. The weight functions are defined for each labeled voxel on each plane and on the model at each region. In the 3D segmentation procedure, the intensity profiles around the boundary between the tentatively labeled prostate and nonprostate tissue are compared to the prostate model. Consequently, the surfaces are modified based on the model intensity profiles. The segmented prostate is updated and compared to the shape model. These two steps are repeated until they converge. Manual segmentation of the prostate serves as the gold standard and a variety of methods are used to evaluate the performance of the segmentation method. Results: The results from 40 TRUS image volumes of 20 patients show that the Dice overlap ratio is 90.3% ± 2.3% and that the sensitivity is 87.7% ± 4.9%. Conclusions: The proposed method provides a useful tool in our 3D ultrasound image-guided prostate biopsy and can also be applied to other applications in the prostate. PMID:22755682

  1. Needle segmentation using 3D Hough transform in 3D TRUS guided prostate transperineal therapy

    SciTech Connect

    Qiu Wu; Yuchi Ming; Ding Mingyue; Tessier, David; Fenster, Aaron

    2013-04-15

    Purpose: Prostate adenocarcinoma is the most common noncutaneous malignancy in American men with over 200 000 new cases diagnosed each year. Prostate interventional therapy, such as cryotherapy and brachytherapy, is an effective treatment for prostate cancer. Its success relies on the correct needle implant position. This paper proposes a robust and efficient needle segmentation method, which acts as an aid to localize the needle in three-dimensional (3D) transrectal ultrasound (TRUS) guided prostate therapy. Methods: The procedure of locating the needle in a 3D TRUS image is a three-step process. First, the original 3D ultrasound image containing a needle is cropped; the cropped image is then converted to a binary format based on its histogram. Second, a 3D Hough transform based needle segmentation method is applied to the 3D binary image in order to locate the needle axis. The position of the needle endpoint is finally determined by an optimal threshold based analysis of the intensity probability distribution. The overall efficiency is improved through implementing a coarse-fine searching strategy. The proposed method was validated in tissue-mimicking agar phantoms, chicken breast phantoms, and 3D TRUS patient images from prostate brachytherapy and cryotherapy procedures by comparison to the manual segmentation. The robustness of the proposed approach was tested by means of varying parameters such as needle insertion angle, needle insertion length, binarization threshold level, and cropping size. Results: The validation results indicate that the proposed Hough transform based method is accurate and robust, with an achieved endpoint localization accuracy of 0.5 mm for agar phantom images, 0.7 mm for chicken breast phantom images, and 1 mm for in vivo patient cryotherapy and brachytherapy images. The mean execution time of needle segmentation algorithm was 2 s for a 3D TRUS image with size of 264 Multiplication-Sign 376 Multiplication-Sign 630 voxels. Conclusions

  2. Chest wall segmentation in automated 3D breast ultrasound scans.

    PubMed

    Tan, Tao; Platel, Bram; Mann, Ritse M; Huisman, Henkjan; Karssemeijer, Nico

    2013-12-01

    In this paper, we present an automatic method to segment the chest wall in automated 3D breast ultrasound images. Determining the location of the chest wall in automated 3D breast ultrasound images is necessary in computer-aided detection systems to remove automatically detected cancer candidates beyond the chest wall and it can be of great help for inter- and intra-modal image registration. We show that the visible part of the chest wall in an automated 3D breast ultrasound image can be accurately modeled by a cylinder. We fit the surface of our cylinder model to a set of automatically detected rib-surface points. The detection of the rib-surface points is done by a classifier using features representing local image intensity patterns and presence of rib shadows. Due to attenuation of the ultrasound signal, a clear shadow is visible behind the ribs. Evaluation of our segmentation method is done by computing the distance of manually annotated rib points to the surface of the automatically detected chest wall. We examined the performance on images obtained with the two most common 3D breast ultrasound devices in the market. In a dataset of 142 images, the average mean distance of the annotated points to the segmented chest wall was 5.59 ± 3.08 mm. PMID:23273891

  3. ZipperDB: Predictions of Fibril-forming Segments within Proteins Identified by the 3D Profile Method (from the UCLA-DOE Institute for Genomics and Proteomics)

    DOE Data Explorer

    Goldschmidt, L.; Teng, P. K.; Riek, R.; Eisenberg, D.

    ZipperDB contains predictions of fibril-forming segments within proteins identified by the 3D Profile Method. The UCLA-DOE Institute for Genomics and Proteomics has analyzed over 20,000 putative protein sequences for segments with high fibrillation propensity that could form a "steric zipper"ùtwo self-complementary beta sheets, giving rise to the spine of an amyloid fibril. The approach is unique in that structural information is used to evaluate the likelihood that a particular sequence can form fibrils. [copied with edits from http://www.doe-mbi.ucla.edu/]. In addition to searching the database, academic and non-profit users may also submit their protein sequences to the database.

  4. Dynamic 3D scanning as a markerless method to calculate multi-segment foot kinematics during stance phase: methodology and first application.

    PubMed

    Van den Herrewegen, Inge; Cuppens, Kris; Broeckx, Mario; Barisch-Fritz, Bettina; Vander Sloten, Jos; Leardini, Alberto; Peeraer, Louis

    2014-08-22

    Multi-segmental foot kinematics have been analyzed by means of optical marker-sets or by means of inertial sensors, but never by markerless dynamic 3D scanning (D3DScanning). The use of D3DScans implies a radically different approach for the construction of the multi-segment foot model: the foot anatomy is identified via the surface shape instead of distinct landmark points. We propose a 4-segment foot model consisting of the shank (Sha), calcaneus (Cal), metatarsus (Met) and hallux (Hal). These segments are manually selected on a static scan. To track the segments in the dynamic scan, the segments of the static scan are matched on each frame of the dynamic scan using the iterative closest point (ICP) fitting algorithm. Joint rotations are calculated between Sha-Cal, Cal-Met, and Met-Hal. Due to the lower quality scans at heel strike and toe off, the first and last 10% of the stance phase is excluded. The application of the method to 5 healthy subjects, 6 trials each, shows a good repeatability (intra-subject standard deviations between 1° and 2.5°) for Sha-Cal and Cal-Met joints, and inferior results for the Met-Hal joint (>3°). The repeatability seems to be subject-dependent. For the validation, a qualitative comparison with joint kinematics from a corresponding established marker-based multi-segment foot model is made. This shows very consistent patterns of rotation. The ease of subject preparation and also the effective and easy to interpret visual output, make the present technique very attractive for functional analysis of the foot, enhancing usability in clinical practice. PMID:24998032

  5. Dynamic deformable models for 3D MRI heart segmentation

    NASA Astrophysics Data System (ADS)

    Zhukov, Leonid; Bao, Zhaosheng; Gusikov, Igor; Wood, John; Breen, David E.

    2002-05-01

    Automated or semiautomated segmentation of medical images decreases interstudy variation, observer bias, and postprocessing time as well as providing clincally-relevant quantitative data. In this paper we present a new dynamic deformable modeling approach to 3D segmentation. It utilizes recently developed dynamic remeshing techniques and curvature estimation methods to produce high-quality meshes. The approach has been implemented in an interactive environment that allows a user to specify an initial model and identify key features in the data. These features act as hard constraints that the model must not pass through as it deforms. We have employed the method to perform semi-automatic segmentation of heart structures from cine MRI data.

  6. Automatic needle segmentation in 3D ultrasound images using 3D Hough transform

    NASA Astrophysics Data System (ADS)

    Zhou, Hua; Qiu, Wu; Ding, Mingyue; Zhang, Songgeng

    2007-12-01

    3D ultrasound (US) is a new technology that can be used for a variety of diagnostic applications, such as obstetrical, vascular, and urological imaging, and has been explored greatly potential in the applications of image-guided surgery and therapy. Uterine adenoma and uterine bleeding are the two most prevalent diseases in Chinese woman, and a minimally invasive ablation system using an RF button electrode which is needle-like is being used to destroy tumor cells or stop bleeding currently. Now a 3D US guidance system has been developed to avoid accidents or death of the patient by inaccurate localizations of the electrode and the tumor position during treatment. In this paper, we described two automated techniques, the 3D Hough Transform (3DHT) and the 3D Randomized Hough Transform (3DRHT), which is potentially fast, accurate, and robust to provide needle segmentation in 3D US image for use of 3D US imaging guidance. Based on the representation (Φ , θ , ρ , α ) of straight lines in 3D space, we used the 3DHT algorithm to segment needles successfully assumed that the approximate needle position and orientation are known in priori. The 3DRHT algorithm was developed to detect needles quickly without any information of the 3D US images. The needle segmentation techniques were evaluated using the 3D US images acquired by scanning water phantoms. The experiments demonstrated the feasibility of two 3D needle segmentation algorithms described in this paper.

  7. A Rapid and Efficient 2D/3D Nuclear Segmentation Method for Analysis of Early Mouse Embryo and Stem Cell Image Data

    PubMed Central

    Lou, Xinghua; Kang, Minjung; Xenopoulos, Panagiotis; Muñoz-Descalzo, Silvia; Hadjantonakis, Anna-Katerina

    2014-01-01

    Summary Segmentation is a fundamental problem that dominates the success of microscopic image analysis. In almost 25 years of cell detection software development, there is still no single piece of commercial software that works well in practice when applied to early mouse embryo or stem cell image data. To address this need, we developed MINS (modular interactive nuclear segmentation) as a MATLAB/C++-based segmentation tool tailored for counting cells and fluorescent intensity measurements of 2D and 3D image data. Our aim was to develop a tool that is accurate and efficient yet straightforward and user friendly. The MINS pipeline comprises three major cascaded modules: detection, segmentation, and cell position classification. An extensive evaluation of MINS on both 2D and 3D images, and comparison to related tools, reveals improvements in segmentation accuracy and usability. Thus, its accuracy and ease of use will allow MINS to be implemented for routine single-cell-level image analyses. PMID:24672759

  8. A fully automatic, threshold-based segmentation method for the estimation of the Metabolic Tumor Volume from PET images: validation on 3D printed anthropomorphic oncological lesions

    NASA Astrophysics Data System (ADS)

    Gallivanone, F.; Interlenghi, M.; Canervari, C.; Castiglioni, I.

    2016-01-01

    18F-Fluorodeoxyglucose (18F-FDG) Positron Emission Tomography (PET) is a standard functional diagnostic technique to in vivo image cancer. Different quantitative paramters can be extracted from PET images and used as in vivo cancer biomarkers. Between PET biomarkers Metabolic Tumor Volume (MTV) has gained an important role in particular considering the development of patient-personalized radiotherapy treatment for non-homogeneous dose delivery. Different imaging processing methods have been developed to define MTV. The different proposed PET segmentation strategies were validated in ideal condition (e.g. in spherical objects with uniform radioactivity concentration), while the majority of cancer lesions doesn't fulfill these requirements. In this context, this work has a twofold objective: 1) to implement and optimize a fully automatic, threshold-based segmentation method for the estimation of MTV, feasible in clinical practice 2) to develop a strategy to obtain anthropomorphic phantoms, including non-spherical and non-uniform objects, miming realistic oncological patient conditions. The developed PET segmentation algorithm combines an automatic threshold-based algorithm for the definition of MTV and a k-means clustering algorithm for the estimation of the background. The method is based on parameters always available in clinical studies and was calibrated using NEMA IQ Phantom. Validation of the method was performed both in ideal (e.g. in spherical objects with uniform radioactivity concentration) and non-ideal (e.g. in non-spherical objects with a non-uniform radioactivity concentration) conditions. The strategy to obtain a phantom with synthetic realistic lesions (e.g. with irregular shape and a non-homogeneous uptake) consisted into the combined use of standard anthropomorphic phantoms commercially and irregular molds generated using 3D printer technology and filled with a radioactive chromatic alginate. The proposed segmentation algorithm was feasible in a

  9. 3D segmentation and reconstruction of endobronchial ultrasound

    NASA Astrophysics Data System (ADS)

    Zang, Xiaonan; Breslav, Mikhail; Higgins, William E.

    2013-03-01

    State-of-the-art practice for lung-cancer staging bronchoscopy often draws upon a combination of endobronchial ultrasound (EBUS) and multidetector computed-tomography (MDCT) imaging. While EBUS offers real-time in vivo imaging of suspicious lesions and lymph nodes, its low signal-to-noise ratio and tendency to exhibit missing region-of-interest (ROI) boundaries complicate diagnostic tasks. Furthermore, past efforts did not incorporate automated analysis of EBUS images and a subsequent fusion of the EBUS and MDCT data. To address these issues, we propose near real-time automated methods for three-dimensional (3D) EBUS segmentation and reconstruction that generate a 3D ROI model along with ROI measurements. Results derived from phantom data and lung-cancer patients show the promise of the methods. In addition, we present a preliminary image-guided intervention (IGI) system example, whereby EBUS imagery is registered to a patient's MDCT chest scan.

  10. Breast Tissue 3D Segmentation and Visualization on MRI

    PubMed Central

    Cui, Xiangfei; Sun, Feifei

    2013-01-01

    Tissue segmentation and visualization are useful for breast lesion detection and quantitative analysis. In this paper, a 3D segmentation algorithm based on Kernel-based Fuzzy C-Means (KFCM) is proposed to separate the breast MR images into different tissues. Then, an improved volume rendering algorithm based on a new transfer function model is applied to implement 3D breast visualization. Experimental results have been shown visually and have achieved reasonable consistency. PMID:23983676

  11. Automated 3D renal segmentation based on image partitioning

    NASA Astrophysics Data System (ADS)

    Yeghiazaryan, Varduhi; Voiculescu, Irina D.

    2016-03-01

    Despite several decades of research into segmentation techniques, automated medical image segmentation is barely usable in a clinical context, and still at vast user time expense. This paper illustrates unsupervised organ segmentation through the use of a novel automated labelling approximation algorithm followed by a hypersurface front propagation method. The approximation stage relies on a pre-computed image partition forest obtained directly from CT scan data. We have implemented all procedures to operate directly on 3D volumes, rather than slice-by-slice, because our algorithms are dimensionality-independent. The results picture segmentations which identify kidneys, but can easily be extrapolated to other body parts. Quantitative analysis of our automated segmentation compared against hand-segmented gold standards indicates an average Dice similarity coefficient of 90%. Results were obtained over volumes of CT data with 9 kidneys, computing both volume-based similarity measures (such as the Dice and Jaccard coefficients, true positive volume fraction) and size-based measures (such as the relative volume difference). The analysis considered both healthy and diseased kidneys, although extreme pathological cases were excluded from the overall count. Such cases are difficult to segment both manually and automatically due to the large amplitude of Hounsfield unit distribution in the scan, and the wide spread of the tumorous tissue inside the abdomen. In the case of kidneys that have maintained their shape, the similarity range lies around the values obtained for inter-operator variability. Whilst the procedure is fully automated, our tools also provide a light level of manual editing.

  12. 3D statistical shape models incorporating 3D random forest regression voting for robust CT liver segmentation

    NASA Astrophysics Data System (ADS)

    Norajitra, Tobias; Meinzer, Hans-Peter; Maier-Hein, Klaus H.

    2015-03-01

    During image segmentation, 3D Statistical Shape Models (SSM) usually conduct a limited search for target landmarks within one-dimensional search profiles perpendicular to the model surface. In addition, landmark appearance is modeled only locally based on linear profiles and weak learners, altogether leading to segmentation errors from landmark ambiguities and limited search coverage. We present a new method for 3D SSM segmentation based on 3D Random Forest Regression Voting. For each surface landmark, a Random Regression Forest is trained that learns a 3D spatial displacement function between the according reference landmark and a set of surrounding sample points, based on an infinite set of non-local randomized 3D Haar-like features. Landmark search is then conducted omni-directionally within 3D search spaces, where voxelwise forest predictions on landmark position contribute to a common voting map which reflects the overall position estimate. Segmentation experiments were conducted on a set of 45 CT volumes of the human liver, of which 40 images were randomly chosen for training and 5 for testing. Without parameter optimization, using a simple candidate selection and a single resolution approach, excellent results were achieved, while faster convergence and better concavity segmentation were observed, altogether underlining the potential of our approach in terms of increased robustness from distinct landmark detection and from better search coverage.

  13. Automatic needle segmentation in 3D ultrasound images using 3D improved Hough transform

    NASA Astrophysics Data System (ADS)

    Zhou, Hua; Qiu, Wu; Ding, Mingyue; Zhang, Songgen

    2008-03-01

    3D ultrasound (US) is a new technology that can be used for a variety of diagnostic applications, such as obstetrical, vascular, and urological imaging, and has been explored greatly potential in the applications of image-guided surgery and therapy. Uterine adenoma and uterine bleeding are the two most prevalent diseases in Chinese woman, and a minimally invasive ablation system using a needle-like RF button electrode is widely used to destroy tumor cells or stop bleeding. To avoid accidents or death of the patient by inaccurate localizations of the electrode and the tumor position during treatment, 3D US guidance system was developed. In this paper, a new automated technique, the 3D Improved Hough Transform (3DIHT) algorithm, which is potentially fast, accurate, and robust to provide needle segmentation in 3D US image for use of 3D US imaging guidance, was presented. Based on the coarse-fine search strategy and a four parameter representation of lines in 3D space, 3DIHT algorithm can segment needles quickly, accurately and robustly. The technique was evaluated using the 3D US images acquired by scanning a water phantom. The segmentation position deviation of the line was less than 2mm and angular deviation was much less than 2°. The average computational time measured on a Pentium IV 2.80GHz PC computer with a 381×381×250 image was less than 2s.

  14. 3D segmentation of prostate ultrasound images using wavelet transform

    NASA Astrophysics Data System (ADS)

    Akbari, Hamed; Yang, Xiaofeng; Halig, Luma V.; Fei, Baowei

    2011-03-01

    The current definitive diagnosis of prostate cancer is transrectal ultrasound (TRUS) guided biopsy. However, the current procedure is limited by using 2D biopsy tools to target 3D biopsy locations. This paper presents a new method for automatic segmentation of the prostate in three-dimensional transrectal ultrasound images, by extracting texture features and by statistically matching geometrical shape of the prostate. A set of Wavelet-based support vector machines (WSVMs) are located and trained at different regions of the prostate surface. The WSVMs capture texture priors of ultrasound images for classification of the prostate and non-prostate tissues in different zones around the prostate boundary. In the segmentation procedure, these W-SVMs are trained in three sagittal, coronal, and transverse planes. The pre-trained W-SVMs are employed to tentatively label each voxel around the surface of the model as a prostate or non-prostate voxel by the texture matching. The labeled voxels in three planes after post-processing is overlaid on a prostate probability model. The probability prostate model is created using 10 segmented prostate data. Consequently, each voxel has four labels: sagittal, coronal, and transverse planes and one probability label. By defining a weight function for each labeling in each region, each voxel is labeled as a prostate or non-prostate voxel. Experimental results by using real patient data show the good performance of the proposed model in segmenting the prostate from ultrasound images.

  15. 3-D segmentation of human sternum in lung MDCT images.

    PubMed

    Pazokifard, Banafsheh; Sowmya, Arcot

    2013-01-01

    A fully automatic novel algorithm is presented for accurate 3-D segmentation of the human sternum in lung multi detector computed tomography (MDCT) images. The segmentation result is refined by employing active contours to remove calcified costal cartilage that is attached to the sternum. For each dataset, costal notches (sternocostal joints) are localized in 3-D by using a sternum mask and positions of the costal notches on it as reference. The proposed algorithm for sternum segmentation was tested on 16 complete lung MDCT datasets and comparison of the segmentation results to the reference delineation provided by a radiologist, shows high sensitivity (92.49%) and specificity (99.51%) and small mean distance (dmean=1.07 mm). Total average of the Euclidean distance error for costal notches positioning in 3-D is 4.2 mm. PMID:24110446

  16. Automated 3D vascular segmentation in CT hepatic venography

    NASA Astrophysics Data System (ADS)

    Fetita, Catalin; Lucidarme, Olivier; Preteux, Francoise

    2005-08-01

    In the framework of preoperative evaluation of the hepatic venous anatomy in living-donor liver transplantation or oncologic rejections, this paper proposes an automated approach for the 3D segmentation of the liver vascular structure from 3D CT hepatic venography data. The developed segmentation approach takes into account the specificities of anatomical structures in terms of spatial location, connectivity and morphometric properties. It implements basic and advanced morphological operators (closing, geodesic dilation, gray-level reconstruction, sup-constrained connection cost) in mono- and multi-resolution filtering schemes in order to achieve an automated 3D reconstruction of the opacified hepatic vessels. A thorough investigation of the venous anatomy including morphometric parameter estimation is then possible via computer-vision 3D rendering, interaction and navigation capabilities.

  17. Object Segmentation and Ground Truth in 3D Embryonic Imaging

    PubMed Central

    Rajasekaran, Bhavna; Uriu, Koichiro; Valentin, Guillaume; Tinevez, Jean-Yves; Oates, Andrew C.

    2016-01-01

    Many questions in developmental biology depend on measuring the position and movement of individual cells within developing embryos. Yet, tools that provide this data are often challenged by high cell density and their accuracy is difficult to measure. Here, we present a three-step procedure to address this problem. Step one is a novel segmentation algorithm based on image derivatives that, in combination with selective post-processing, reliably and automatically segments cell nuclei from images of densely packed tissue. Step two is a quantitative validation using synthetic images to ascertain the efficiency of the algorithm with respect to signal-to-noise ratio and object density. Finally, we propose an original method to generate reliable and experimentally faithful ground truth datasets: Sparse-dense dual-labeled embryo chimeras are used to unambiguously measure segmentation errors within experimental data. Together, the three steps outlined here establish a robust, iterative procedure to fine-tune image analysis algorithms and microscopy settings associated with embryonic 3D image data sets. PMID:27332860

  18. Fully Automatic Localization and Segmentation of 3D Vertebral Bodies from CT/MR Images via a Learning-Based Method

    PubMed Central

    Chu, Chengwen; Belavý, Daniel L.; Armbrecht, Gabriele; Bansmann, Martin; Felsenberg, Dieter; Zheng, Guoyan

    2015-01-01

    In this paper, we address the problems of fully automatic localization and segmentation of 3D vertebral bodies from CT/MR images. We propose a learning-based, unified random forest regression and classification framework to tackle these two problems. More specifically, in the first stage, the localization of 3D vertebral bodies is solved with random forest regression where we aggregate the votes from a set of randomly sampled image patches to get a probability map of the center of a target vertebral body in a given image. The resultant probability map is then further regularized by Hidden Markov Model (HMM) to eliminate potential ambiguity caused by the neighboring vertebral bodies. The output from the first stage allows us to define a region of interest (ROI) for the segmentation step, where we use random forest classification to estimate the likelihood of a voxel in the ROI being foreground or background. The estimated likelihood is combined with the prior probability, which is learned from a set of training data, to get the posterior probability of the voxel. The segmentation of the target vertebral body is then done by a binary thresholding of the estimated probability. We evaluated the present approach on two openly available datasets: 1) 3D T2-weighted spine MR images from 23 patients and 2) 3D spine CT images from 10 patients. Taking manual segmentation as the ground truth (each MR image contains at least 7 vertebral bodies from T11 to L5 and each CT image contains 5 vertebral bodies from L1 to L5), we evaluated the present approach with leave-one-out experiments. Specifically, for the T2-weighted MR images, we achieved for localization a mean error of 1.6 mm, and for segmentation a mean Dice metric of 88.7% and a mean surface distance of 1.5 mm, respectively. For the CT images we achieved for localization a mean error of 1.9 mm, and for segmentation a mean Dice metric of 91.0% and a mean surface distance of 0.9 mm, respectively. PMID:26599505

  19. Fully Automatic Localization and Segmentation of 3D Vertebral Bodies from CT/MR Images via a Learning-Based Method.

    PubMed

    Chu, Chengwen; Belavý, Daniel L; Armbrecht, Gabriele; Bansmann, Martin; Felsenberg, Dieter; Zheng, Guoyan

    2015-01-01

    In this paper, we address the problems of fully automatic localization and segmentation of 3D vertebral bodies from CT/MR images. We propose a learning-based, unified random forest regression and classification framework to tackle these two problems. More specifically, in the first stage, the localization of 3D vertebral bodies is solved with random forest regression where we aggregate the votes from a set of randomly sampled image patches to get a probability map of the center of a target vertebral body in a given image. The resultant probability map is then further regularized by Hidden Markov Model (HMM) to eliminate potential ambiguity caused by the neighboring vertebral bodies. The output from the first stage allows us to define a region of interest (ROI) for the segmentation step, where we use random forest classification to estimate the likelihood of a voxel in the ROI being foreground or background. The estimated likelihood is combined with the prior probability, which is learned from a set of training data, to get the posterior probability of the voxel. The segmentation of the target vertebral body is then done by a binary thresholding of the estimated probability. We evaluated the present approach on two openly available datasets: 1) 3D T2-weighted spine MR images from 23 patients and 2) 3D spine CT images from 10 patients. Taking manual segmentation as the ground truth (each MR image contains at least 7 vertebral bodies from T11 to L5 and each CT image contains 5 vertebral bodies from L1 to L5), we evaluated the present approach with leave-one-out experiments. Specifically, for the T2-weighted MR images, we achieved for localization a mean error of 1.6 mm, and for segmentation a mean Dice metric of 88.7% and a mean surface distance of 1.5 mm, respectively. For the CT images we achieved for localization a mean error of 1.9 mm, and for segmentation a mean Dice metric of 91.0% and a mean surface distance of 0.9 mm, respectively. PMID:26599505

  20. Rule-based automatic segmentation for 3-D coronary arteriography

    NASA Astrophysics Data System (ADS)

    Sarwal, Alok; Truitt, Paul; Ozguner, Fusun; Zhang, Qian; Parker, Dennis L.

    1992-03-01

    Coronary arteriography is a technique used for evaluating the state of coronary arteries and assessing the need for bypass surgery and angioplasty. The present clinical application of this technology is based on the use of a contrast medium for manual radiographic visualization. This method is inaccurate due to varying interpretation of the visual results. Coronary arteriography based quantitations are impractical in a clinical setting without the use of automatic techniques applied to the 3-D reconstruction of the arterial tree. Such a system will provide an easily reproducible method for following the temporal changes in coronary morphology. The labeling of the arteries and establishing of the correspondence between multiple views is necessary for all subsequent processing required for 3-D reconstruction. This work represents a rule based expert system utilized for automatic labeling and segmentation of the arterial branches across multiple views. X-ray data of two and three views of human subjects and a pig arterial cast have been used for this research.

  1. Automatic 3D segmentation of ultrasound images using atlas registration and statistical texture prior

    NASA Astrophysics Data System (ADS)

    Yang, Xiaofeng; Schuster, David; Master, Viraj; Nieh, Peter; Fenster, Aaron; Fei, Baowei

    2011-03-01

    We are developing a molecular image-directed, 3D ultrasound-guided, targeted biopsy system for improved detection of prostate cancer. In this paper, we propose an automatic 3D segmentation method for transrectal ultrasound (TRUS) images, which is based on multi-atlas registration and statistical texture prior. The atlas database includes registered TRUS images from previous patients and their segmented prostate surfaces. Three orthogonal Gabor filter banks are used to extract texture features from each image in the database. Patient-specific Gabor features from the atlas database are used to train kernel support vector machines (KSVMs) and then to segment the prostate image from a new patient. The segmentation method was tested in TRUS data from 5 patients. The average surface distance between our method and manual segmentation is 1.61 +/- 0.35 mm, indicating that the atlas-based automatic segmentation method works well and could be used for 3D ultrasound-guided prostate biopsy.

  2. Vessel segmentation in 3D spectral OCT scans of the retina

    NASA Astrophysics Data System (ADS)

    Niemeijer, Meindert; Garvin, Mona K.; van Ginneken, Bram; Sonka, Milan; Abràmoff, Michael D.

    2008-03-01

    The latest generation of spectral optical coherence tomography (OCT) scanners is able to image 3D cross-sectional volumes of the retina at a high resolution and high speed. These scans offer a detailed view of the structure of the retina. Automated segmentation of the vessels in these volumes may lead to more objective diagnosis of retinal vascular disease including hypertensive retinopathy, retinopathy of prematurity. Additionally, vessel segmentation can allow color fundus images to be registered to these 3D volumes, possibly leading to a better understanding of the structure and localization of retinal structures and lesions. In this paper we present a method for automatically segmenting the vessels in a 3D OCT volume. First, the retina is automatically segmented into multiple layers, using simultaneous segmentation of their boundary surfaces in 3D. Next, a 2D projection of the vessels is produced by only using information from certain segmented layers. Finally, a supervised, pixel classification based vessel segmentation approach is applied to the projection image. We compared the influence of two methods for the projection on the performance of the vessel segmentation on 10 optic nerve head centered 3D OCT scans. The method was trained on 5 independent scans. Using ROC analysis, our proposed vessel segmentation system obtains an area under the curve of 0.970 when compared with the segmentation of a human observer.

  3. Ultrafast superpixel segmentation of large 3D medical datasets

    NASA Astrophysics Data System (ADS)

    Leblond, Antoine; Kauffmann, Claude

    2016-03-01

    Even with recent hardware improvements, superpixel segmentation of large 3D medical images at interactive speed (<500 ms) remains a challenge. We will describe methods to achieve such performances using a GPU based hybrid framework implementing wavefront propagation and cellular automata resolution. Tasks will be scheduled in blocks (work units) using a wavefront propagation strategy, therefore allowing sparse scheduling. Because work units has been designed as spatially cohesive, the fast Thread Group Shared Memory can be used and reused through a Gauss-Seidel like acceleration. The work unit partitioning scheme will however vary on odd- and even-numbered iterations to reduce convergence barriers. Synchronization will be ensured by an 8-step 3D variant of the traditional Red Black Ordering scheme. An attack model and early termination will also be described and implemented as additional acceleration techniques. Using our hybrid framework and typical operating parameters, we were able to compute the superpixels of a high-resolution 512x512x512 aortic angioCT scan in 283 ms using a AMD R9 290X GPU. We achieved a 22.3X speed-up factor compared to the published reference GPU implementation.

  4. Segmentation of 3D microPET images of the rat brain via the hybrid gaussian mixture method with kernel density estimation.

    PubMed

    Chen, Tai-Been; Chen, Jyh-Cheng; Lu, Henry Horng-Shing

    2012-01-01

    Segmentation of positron emission tomography (PET) is typically achieved using the K-Means method or other approaches. In preclinical and clinical applications, the K-Means method needs a prior estimation of parameters such as the number of clusters and appropriate initialized values. This work segments microPET images using a hybrid method combining the Gaussian mixture model (GMM) with kernel density estimation. Segmentation is crucial to registration of disordered 2-deoxy-2-fluoro-D-glucose (FDG) accumulation locations with functional diagnosis and to estimate standardized uptake values (SUVs) of region of interests (ROIs) in PET images. Therefore, simulation studies are conducted to apply spherical targets to evaluate segmentation accuracy based on Tanimoto's definition of similarity. The proposed method generates a higher degree of similarity than the K-Means method. The PET images of a rat brain are used to compare the segmented shape and area of the cerebral cortex by the K-Means method and the proposed method by volume rendering. The proposed method provides clearer and more detailed activity structures of an FDG accumulation location in the cerebral cortex than those by the K-Means method. PMID:22948355

  5. 3D Fast Automatic Segmentation of Kidney Based on Modified AAM and Random Forest.

    PubMed

    Jin, Chao; Shi, Fei; Xiang, Dehui; Jiang, Xueqing; Zhang, Bin; Wang, Ximing; Zhu, Weifang; Gao, Enting; Chen, Xinjian

    2016-06-01

    In this paper, a fully automatic method is proposed to segment the kidney into multiple components: renal cortex, renal column, renal medulla and renal pelvis, in clinical 3D CT abdominal images. The proposed fast automatic segmentation method of kidney consists of two main parts: localization of renal cortex and segmentation of kidney components. In the localization of renal cortex phase, a method which fully combines 3D Generalized Hough Transform (GHT) and 3D Active Appearance Models (AAM) is applied to localize the renal cortex. In the segmentation of kidney components phase, a modified Random Forests (RF) method is proposed to segment the kidney into four components based on the result from localization phase. During the implementation, a multithreading technology is applied to speed up the segmentation process. The proposed method was evaluated on a clinical abdomen CT data set, including 37 contrast-enhanced volume data using leave-one-out strategy. The overall true-positive volume fraction and false-positive volume fraction were 93.15%, 0.37% for renal cortex segmentation; 83.09%, 0.97% for renal column segmentation; 81.92%, 0.55% for renal medulla segmentation; and 80.28%, 0.30% for renal pelvis segmentation, respectively. The average computational time of segmenting kidney into four components took 20 seconds. PMID:26742124

  6. 3D CT spine data segmentation and analysis of vertebrae bone lesions.

    PubMed

    Peter, R; Malinsky, M; Ourednicek, P; Jan, J

    2013-01-01

    A method is presented aiming at detecting and classifying bone lesions in 3D CT data of human spine, via Bayesian approach utilizing Markov random fields. A developed algorithm for necessary segmentation of individual possibly heavily distorted vertebrae based on 3D intensity modeling of vertebra types is presented as well. PMID:24110203

  7. Computational efficient segmentation of cell nuclei in 2D and 3D fluorescent micrographs

    NASA Astrophysics Data System (ADS)

    De Vylder, Jonas; Philips, Wilfried

    2011-02-01

    This paper proposes a new segmentation technique developed for the segmentation of cell nuclei in both 2D and 3D fluorescent micrographs. The proposed method can deal with both blurred edges as with touching nuclei. Using a dual scan line algorithm its both memory as computational efficient, making it interesting for the analysis of images coming from high throughput systems or the analysis of 3D microscopic images. Experiments show good results, i.e. recall of over 0.98.

  8. Segmentation of vertebral bodies in CT and MR images based on 3D deterministic models

    NASA Astrophysics Data System (ADS)

    Štern, Darko; Vrtovec, Tomaž; Pernuš, Franjo; Likar, Boštjan

    2011-03-01

    The evaluation of vertebral deformations is of great importance in clinical diagnostics and therapy of pathological conditions affecting the spine. Although modern clinical practice is oriented towards the computed tomography (CT) and magnetic resonance (MR) imaging techniques, as they can provide a detailed 3D representation of vertebrae, the established methods for the evaluation of vertebral deformations still provide only a two-dimensional (2D) geometrical description. Segmentation of vertebrae in 3D may therefore not only improve their visualization, but also provide reliable and accurate 3D measurements of vertebral deformations. In this paper we propose a method for 3D segmentation of individual vertebral bodies that can be performed in CT and MR images. Initialized with a single point inside the vertebral body, the segmentation is performed by optimizing the parameters of a 3D deterministic model of the vertebral body to achieve the best match of the model to the vertebral body in the image. The performance of the proposed method was evaluated on five CT (40 vertebrae) and five T2-weighted MR (40 vertebrae) spine images, among them five are normal and five are pathological. The results show that the proposed method can be used for 3D segmentation of vertebral bodies in CT and MR images and that the proposed model can describe a variety of vertebral body shapes. The method may be therefore used for initializing whole vertebra segmentation or reliably describing vertebral body deformations.

  9. Accuracy evaluation of segmentation for high resolution imagery and 3D laser point cloud data

    NASA Astrophysics Data System (ADS)

    Ni, Nina; Chen, Ninghua; Chen, Jianyu

    2014-09-01

    High resolution satellite imagery and 3D laser point cloud data provide precise geometry, rich spectral information and clear texture of feature. The segmentation of high resolution remote sensing images and 3D laser point cloud is the basis of object-oriented remote sensing image analysis, for the segmentation results will directly influence the accuracy of subsequent analysis and discrimination. Currently, there still lacks a common segmentation theory to support these algorithms. So when we face a specific problem, we should determine applicability of the segmentation method through segmentation accuracy assessment, and then determine an optimal segmentation. To today, the most common method for evaluating the effectiveness of a segmentation method is subjective evaluation and supervised evaluation. For providing a more objective evaluation result, we have carried out following work. Analysis and comparison previous proposed image segmentation accuracy evaluation methods, which are area-based metrics, location-based metrics and combinations metrics. 3D point cloud data, which was gathered by Reigl VZ1000, was used to make two-dimensional transformation of point cloud data. The object-oriented segmentation result of aquaculture farm, building and farmland polygons were used as test object and adopted to evaluate segmentation accuracy.

  10. Random walk based segmentation for the prostate on 3D transrectal ultrasound images

    NASA Astrophysics Data System (ADS)

    Ma, Ling; Guo, Rongrong; Tian, Zhiqiang; Venkataraman, Rajesh; Sarkar, Saradwata; Liu, Xiabi; Nieh, Peter T.; Master, Viraj V.; Schuster, David M.; Fei, Baowei

    2016-03-01

    This paper proposes a new semi-automatic segmentation method for the prostate on 3D transrectal ultrasound images (TRUS) by combining the region and classification information. We use a random walk algorithm to express the region information efficiently and flexibly because it can avoid segmentation leakage and shrinking bias. We further use the decision tree as the classifier to distinguish the prostate from the non-prostate tissue because of its fast speed and superior performance, especially for a binary classification problem. Our segmentation algorithm is initialized with the user roughly marking the prostate and non-prostate points on the mid-gland slice which are fitted into an ellipse for obtaining more points. Based on these fitted seed points, we run the random walk algorithm to segment the prostate on the mid-gland slice. The segmented contour and the information from the decision tree classification are combined to determine the initial seed points for the other slices. The random walk algorithm is then used to segment the prostate on the adjacent slice. We propagate the process until all slices are segmented. The segmentation method was tested in 32 3D transrectal ultrasound images. Manual segmentation by a radiologist serves as the gold standard for the validation. The experimental results show that the proposed method achieved a Dice similarity coefficient of 91.37+/-0.05%. The segmentation method can be applied to 3D ultrasound-guided prostate biopsy and other applications.

  11. Volumetric CT-based segmentation of NSCLC using 3D-Slicer

    PubMed Central

    Velazquez, Emmanuel Rios; Parmar, Chintan; Jermoumi, Mohammed; Mak, Raymond H.; van Baardwijk, Angela; Fennessy, Fiona M.; Lewis, John H.; De Ruysscher, Dirk; Kikinis, Ron; Lambin, Philippe; Aerts, Hugo J. W. L.

    2013-01-01

    Accurate volumetric assessment in non-small cell lung cancer (NSCLC) is critical for adequately informing treatments. In this study we assessed the clinical relevance of a semiautomatic computed tomography (CT)-based segmentation method using the competitive region-growing based algorithm, implemented in the free and public available 3D-Slicer software platform. We compared the 3D-Slicer segmented volumes by three independent observers, who segmented the primary tumour of 20 NSCLC patients twice, to manual slice-by-slice delineations of five physicians. Furthermore, we compared all tumour contours to the macroscopic diameter of the tumour in pathology, considered as the “gold standard”. The 3D-Slicer segmented volumes demonstrated high agreement (overlap fractions > 0.90), lower volume variability (p = 0.0003) and smaller uncertainty areas (p = 0.0002), compared to manual slice-by-slice delineations. Furthermore, 3D-Slicer segmentations showed a strong correlation to pathology (r = 0.89, 95%CI, 0.81–0.94). Our results show that semiautomatic 3D-Slicer segmentations can be used for accurate contouring and are more stable than manual delineations. Therefore, 3D-Slicer can be employed as a starting point for treatment decisions or for high-throughput data mining research, such as Radiomics, where manual delineating often represent a time-consuming bottleneck. PMID:24346241

  12. Volumetric CT-based segmentation of NSCLC using 3D-Slicer.

    PubMed

    Velazquez, Emmanuel Rios; Parmar, Chintan; Jermoumi, Mohammed; Mak, Raymond H; van Baardwijk, Angela; Fennessy, Fiona M; Lewis, John H; De Ruysscher, Dirk; Kikinis, Ron; Lambin, Philippe; Aerts, Hugo J W L

    2013-01-01

    Accurate volumetric assessment in non-small cell lung cancer (NSCLC) is critical for adequately informing treatments. In this study we assessed the clinical relevance of a semiautomatic computed tomography (CT)-based segmentation method using the competitive region-growing based algorithm, implemented in the free and public available 3D-Slicer software platform. We compared the 3D-Slicer segmented volumes by three independent observers, who segmented the primary tumour of 20 NSCLC patients twice, to manual slice-by-slice delineations of five physicians. Furthermore, we compared all tumour contours to the macroscopic diameter of the tumour in pathology, considered as the "gold standard". The 3D-Slicer segmented volumes demonstrated high agreement (overlap fractions > 0.90), lower volume variability (p = 0.0003) and smaller uncertainty areas (p = 0.0002), compared to manual slice-by-slice delineations. Furthermore, 3D-Slicer segmentations showed a strong correlation to pathology (r = 0.89, 95%CI, 0.81-0.94). Our results show that semiautomatic 3D-Slicer segmentations can be used for accurate contouring and are more stable than manual delineations. Therefore, 3D-Slicer can be employed as a starting point for treatment decisions or for high-throughput data mining research, such as Radiomics, where manual delineating often represent a time-consuming bottleneck. PMID:24346241

  13. 3-D Multiphase Segmentation of X-Ray Micro Computed Tomography Data of Geologic Materials

    NASA Astrophysics Data System (ADS)

    Tuller, M.; Kulkarni, R.; Fink, W.

    2011-12-01

    Advancements of noninvasive imaging methods such as X-Ray Computed Tomography (CT) led to a recent surge of applications in Geoscience. While substantial efforts and resources have been devoted to advance CT technology and micro-scale analysis, the development of a stable 3-D multiphase image segmentation method applicable to large datasets is lacking. To eliminate the need for wet/dry or dual energy scans, image alignment, and subtraction analysis, commonly applied in synchrotron X-Ray micro CT, a segmentation method based on a Bayesian Markov Random Field (MRF) framework amenable to true 3-D multiphase processing was developed and evaluated. Furthermore, several heuristic and deterministic combinatorial optimization schemes required to solve the labeling problem of the MRF image model were implemented and tested for computational efficiency and their impact on segmentation results. Test results for natural and artificial porous media datasets demonstrate great potential of the MRF image model for 3-D multiphase segmentation.

  14. 3D automatic liver segmentation using feature-constrained Mahalanobis distance in CT images.

    PubMed

    Salman Al-Shaikhli, Saif Dawood; Yang, Michael Ying; Rosenhahn, Bodo

    2016-08-01

    Automatic 3D liver segmentation is a fundamental step in the liver disease diagnosis and surgery planning. This paper presents a novel fully automatic algorithm for 3D liver segmentation in clinical 3D computed tomography (CT) images. Based on image features, we propose a new Mahalanobis distance cost function using an active shape model (ASM). We call our method MD-ASM. Unlike the standard active shape model (ST-ASM), the proposed method introduces a new feature-constrained Mahalanobis distance cost function to measure the distance between the generated shape during the iterative step and the mean shape model. The proposed Mahalanobis distance function is learned from a public database of liver segmentation challenge (MICCAI-SLiver07). As a refinement step, we propose the use of a 3D graph-cut segmentation. Foreground and background labels are automatically selected using texture features of the learned Mahalanobis distance. Quantitatively, the proposed method is evaluated using two clinical 3D CT scan databases (MICCAI-SLiver07 and MIDAS). The evaluation of the MICCAI-SLiver07 database is obtained by the challenge organizers using five different metric scores. The experimental results demonstrate the availability of the proposed method by achieving an accurate liver segmentation compared to the state-of-the-art methods. PMID:26501155

  15. A 3D interactive method for estimating body segmental parameters in animals: application to the turning and running performance of Tyrannosaurus rex.

    PubMed

    Hutchinson, John R; Ng-Thow-Hing, Victor; Anderson, Frank C

    2007-06-21

    We developed a method based on interactive B-spline solids for estimating and visualizing biomechanically important parameters for animal body segments. Although the method is most useful for assessing the importance of unknowns in extinct animals, such as body contours, muscle bulk, or inertial parameters, it is also useful for non-invasive measurement of segmental dimensions in extant animals. Points measured directly from bodies or skeletons are digitized and visualized on a computer, and then a B-spline solid is fitted to enclose these points, allowing quantification of segment dimensions. The method is computationally fast enough so that software implementations can interactively deform the shape of body segments (by warping the solid) or adjust the shape quantitatively (e.g., expanding the solid boundary by some percentage or a specific distance beyond measured skeletal coordinates). As the shape changes, the resulting changes in segment mass, center of mass (CM), and moments of inertia can be recomputed immediately. Volumes of reduced or increased density can be embedded to represent lungs, bones, or other structures within the body. The method was validated by reconstructing an ostrich body from a fleshed and defleshed carcass and comparing the estimated dimensions to empirically measured values from the original carcass. We then used the method to calculate the segmental masses, centers of mass, and moments of inertia for an adult Tyrannosaurus rex, with measurements taken directly from a complete skeleton. We compare these results to other estimates, using the model to compute the sensitivities of unknown parameter values based upon 30 different combinations of trunk, lung and air sac, and hindlimb dimensions. The conclusion that T. rex was not an exceptionally fast runner remains strongly supported by our models-the main area of ambiguity for estimating running ability seems to be estimating fascicle lengths, not body dimensions. Additionally, the

  16. Automated 3D ultrasound image segmentation for assistant diagnosis of breast cancer

    NASA Astrophysics Data System (ADS)

    Wang, Yuxin; Gu, Peng; Lee, Won-Mean; Roubidoux, Marilyn A.; Du, Sidan; Yuan, Jie; Wang, Xueding; Carson, Paul L.

    2016-04-01

    Segmentation of an ultrasound image into functional tissues is of great importance to clinical diagnosis of breast cancer. However, many studies are found to segment only the mass of interest and not all major tissues. Differences and inconsistencies in ultrasound interpretation call for an automated segmentation method to make results operator-independent. Furthermore, manual segmentation of entire three-dimensional (3D) ultrasound volumes is time-consuming, resource-intensive, and clinically impractical. Here, we propose an automated algorithm to segment 3D ultrasound volumes into three major tissue types: cyst/mass, fatty tissue, and fibro-glandular tissue. To test its efficacy and consistency, the proposed automated method was employed on a database of 21 cases of whole breast ultrasound. Experimental results show that our proposed method not only distinguishes fat and non-fat tissues correctly, but performs well in classifying cyst/mass. Comparison of density assessment between the automated method and manual segmentation demonstrates good consistency with an accuracy of 85.7%. Quantitative comparison of corresponding tissue volumes, which uses overlap ratio, gives an average similarity of 74.54%, consistent with values seen in MRI brain segmentations. Thus, our proposed method exhibits great potential as an automated approach to segment 3D whole breast ultrasound volumes into functionally distinct tissues that may help to correct ultrasound speed of sound aberrations and assist in density based prognosis of breast cancer.

  17. Automated 3D ultrasound image segmentation to aid breast cancer image interpretation.

    PubMed

    Gu, Peng; Lee, Won-Mean; Roubidoux, Marilyn A; Yuan, Jie; Wang, Xueding; Carson, Paul L

    2016-02-01

    Segmentation of an ultrasound image into functional tissues is of great importance to clinical diagnosis of breast cancer. However, many studies are found to segment only the mass of interest and not all major tissues. Differences and inconsistencies in ultrasound interpretation call for an automated segmentation method to make results operator-independent. Furthermore, manual segmentation of entire three-dimensional (3D) ultrasound volumes is time-consuming, resource-intensive, and clinically impractical. Here, we propose an automated algorithm to segment 3D ultrasound volumes into three major tissue types: cyst/mass, fatty tissue, and fibro-glandular tissue. To test its efficacy and consistency, the proposed automated method was employed on a database of 21 cases of whole breast ultrasound. Experimental results show that our proposed method not only distinguishes fat and non-fat tissues correctly, but performs well in classifying cyst/mass. Comparison of density assessment between the automated method and manual segmentation demonstrates good consistency with an accuracy of 85.7%. Quantitative comparison of corresponding tissue volumes, which uses overlap ratio, gives an average similarity of 74.54%, consistent with values seen in MRI brain segmentations. Thus, our proposed method exhibits great potential as an automated approach to segment 3D whole breast ultrasound volumes into functionally distinct tissues that may help to correct ultrasound speed of sound aberrations and assist in density based prognosis of breast cancer. PMID:26547117

  18. Detection, segmentation and classification of 3D urban objects using mathematical morphology and supervised learning

    NASA Astrophysics Data System (ADS)

    Serna, Andrés; Marcotegui, Beatriz

    2014-07-01

    We propose an automatic and robust approach to detect, segment and classify urban objects from 3D point clouds. Processing is carried out using elevation images and the result is reprojected onto the 3D point cloud. First, the ground is segmented and objects are detected as discontinuities on the ground. Then, connected objects are segmented using a watershed approach. Finally, objects are classified using SVM with geometrical and contextual features. Our methodology is evaluated on databases from Ohio (USA) and Paris (France). In the former, our method detects 98% of the objects, 78% of them are correctly segmented and 82% of the well-segmented objects are correctly classified. In the latter, our method leads to an improvement of about 15% on the classification step with respect to previous works. Quantitative results prove that our method not only provides a good performance but is also faster than other works reported in the literature.

  19. Blood Pool Segmentation Results in Superior Virtual Cardiac Models than Myocardial Segmentation for 3D Printing.

    PubMed

    Farooqi, Kanwal M; Lengua, Carlos Gonzalez; Weinberg, Alan D; Nielsen, James C; Sanz, Javier

    2016-08-01

    The method of cardiac magnetic resonance (CMR) three-dimensional (3D) image acquisition and post-processing which should be used to create optimal virtual models for 3D printing has not been studied systematically. Patients (n = 19) who had undergone CMR including both 3D balanced steady-state free precession (bSSFP) imaging and contrast-enhanced magnetic resonance angiography (MRA) were retrospectively identified. Post-processing for the creation of virtual 3D models involved using both myocardial (MS) and blood pool (BP) segmentation, resulting in four groups: Group 1-bSSFP/MS, Group 2-bSSFP/BP, Group 3-MRA/MS and Group 4-MRA/BP. The models created were assessed by two raters for overall quality (1-poor; 2-good; 3-excellent) and ability to identify predefined vessels (1-5: superior vena cava, inferior vena cava, main pulmonary artery, ascending aorta and at least one pulmonary vein). A total of 76 virtual models were created from 19 patient CMR datasets. The mean overall quality scores for Raters 1/2 were 1.63 ± 0.50/1.26 ± 0.45 for Group 1, 2.12 ± 0.50/2.26 ± 0.73 for Group 2, 1.74 ± 0.56/1.53 ± 0.61 for Group 3 and 2.26 ± 0.65/2.68 ± 0.48 for Group 4. The numbers of identified vessels for Raters 1/2 were 4.11 ± 1.32/4.05 ± 1.31 for Group 1, 4.90 ± 0.46/4.95 ± 0.23 for Group 2, 4.32 ± 1.00/4.47 ± 0.84 for Group 3 and 4.74 ± 0.56/4.63 ± 0.49 for Group 4. Models created using BP segmentation (Groups 2 and 4) received significantly higher ratings than those created using MS for both overall quality and number of vessels visualized (p < 0.05), regardless of the acquisition technique. There were no significant differences between Groups 1 and 3. The ratings for Raters 1 and 2 had good correlation for overall quality (ICC = 0.63) and excellent correlation for the total number of vessels visualized (ICC = 0.77). The intra-rater reliability was good for Rater A (ICC = 0.65). Three models were successfully printed

  20. Efficient segmentation of 3D fluoroscopic datasets from mobile C-arm

    NASA Astrophysics Data System (ADS)

    Styner, Martin A.; Talib, Haydar; Singh, Digvijay; Nolte, Lutz-Peter

    2004-05-01

    The emerging mobile fluoroscopic 3D technology linked with a navigation system combines the advantages of CT-based and C-arm-based navigation. The intra-operative, automatic segmentation of 3D fluoroscopy datasets enables the combined visualization of surgical instruments and anatomical structures for enhanced planning, surgical eye-navigation and landmark digitization. We performed a thorough evaluation of several segmentation algorithms using a large set of data from different anatomical regions and man-made phantom objects. The analyzed segmentation methods include automatic thresholding, morphological operations, an adapted region growing method and an implicit 3D geodesic snake method. In regard to computational efficiency, all methods performed within acceptable limits on a standard Desktop PC (30sec-5min). In general, the best results were obtained with datasets from long bones, followed by extremities. The segmentations of spine, pelvis and shoulder datasets were generally of poorer quality. As expected, the threshold-based methods produced the worst results. The combined thresholding and morphological operations methods were considered appropriate for a smaller set of clean images. The region growing method performed generally much better in regard to computational efficiency and segmentation correctness, especially for datasets of joints, and lumbar and cervical spine regions. The less efficient implicit snake method was able to additionally remove wrongly segmented skin tissue regions. This study presents a step towards efficient intra-operative segmentation of 3D fluoroscopy datasets, but there is room for improvement. Next, we plan to study model-based approaches for datasets from the knee and hip joint region, which would be thenceforth applied to all anatomical regions in our continuing development of an ideal segmentation procedure for 3D fluoroscopic images.

  1. 3D Segmentation of the Left Ventricle Combining Long- and Shortaxis Views

    NASA Astrophysics Data System (ADS)

    Relan, Jatin; Säring, Dennis; Groth, Michael; Müllerleile, Kai; Handels, Heinz

    Segmentation of the left ventricle (LV) is required to quantify LV remodeling after myocardial infarction. Therefore spatiotemporal Cine MR sequences including longaxis and shortaxis images are acquired. In this paper a new segmentation method for fast and robust segmentation of the left ventricle is presented. The new approach considers the position of the mitral valve and the apex as well as the longaxis contours to generate a 3D LV surface model. The segmentation result can be checked and adjusted in the shortaxis images. Finally quantitative parameters were extracted. For evaluation the LV was segmented in eight datasets of the same subject by two medical experts using a contour drawing tool and the new segmentation tool. The results of both methods were compared concerning interaction time and intra- and interobserver variance. The presented segmentation method proved to be fast. The intra- and interobserver variance is decreased for all extracted parameters.

  2. Automatic needle segmentation in 3D ultrasound images

    NASA Astrophysics Data System (ADS)

    Ding, Mingyue; Cardinal, H. Neale; Guan, Weiguang; Fenster, Aaron

    2002-05-01

    In this paper, we propose to use 2D image projections to automatically segment a needle in a 3D ultrasound image. This approach is motivated by the twin observations that the needle is more conspicuous in a projected image, and its projected area is a minimum when the rays are cast parallel to the needle direction. To avoid the computational burden of an exhaustive 2D search for the needle direction, a faster 1D search procedure is proposed. First, a plane which contains the needle direction is determined by the initial projection direction and the (estimated) direction of the needle in the corresponding projection image. Subsequently, an adaptive 1D search technique is used to adjust the projection direction iteratively until the projected needle area is minimized. In order to remove noise and complex background structure from the projection images, a priori information about the needle position and orientation is used to crop the 3D volume, and the cropped volume is rendered with Gaussian transfer functions. We have evaluated this approach experimentally using agar and turkey breast phantoms. The results show that it can find the 3D needle orientation within 1 degree, in about 1 to 3 seconds on a 500 MHz computer.

  3. Automatic 3D kidney segmentation based on shape constrained GC-OAAM

    NASA Astrophysics Data System (ADS)

    Chen, Xinjian; Summers, Ronald M.; Yao, Jianhua

    2011-03-01

    The kidney can be classified into three main tissue types: renal cortex, renal medulla and renal pelvis (or collecting system). Dysfunction of different renal tissue types may cause different kidney diseases. Therefore, accurate and efficient segmentation of kidney into different tissue types plays a very important role in clinical research. In this paper, we propose an automatic 3D kidney segmentation method which segments the kidney into the three different tissue types: renal cortex, medulla and pelvis. The proposed method synergistically combines active appearance model (AAM), live wire (LW) and graph cut (GC) methods, GC-OAAM for short. Our method consists of two main steps. First, a pseudo 3D segmentation method is employed for kidney initialization in which the segmentation is performed slice-by-slice via a multi-object oriented active appearance model (OAAM) method. An improved iterative model refinement algorithm is proposed for the AAM optimization, which synergistically combines the AAM and LW method. Multi-object strategy is applied to help the object initialization. The 3D model constraints are applied to the initialization result. Second, the object shape information generated from the initialization step is integrated into the GC cost computation. A multi-label GC method is used to segment the kidney into cortex, medulla and pelvis. The proposed method was tested on 19 clinical arterial phase CT data sets. The preliminary results showed the feasibility and efficiency of the proposed method.

  4. Segmented images and 3D images for studying the anatomical structures in MRIs

    NASA Astrophysics Data System (ADS)

    Lee, Yong Sook; Chung, Min Suk; Cho, Jae Hyun

    2004-05-01

    For identifying the pathological findings in MRIs, the anatomical structures in MRIs should be identified in advance. For studying the anatomical structures in MRIs, an education al tool that includes the horizontal, coronal, sagittal MRIs of entire body, corresponding segmented images, 3D images, and browsing software is necessary. Such an educational tool, however, is hard to obtain. Therefore, in this research, such an educational tool which helps medical students and doctors study the anatomical structures in MRIs was made as follows. A healthy, young Korean male adult with standard body shape was selected. Six hundred thirteen horizontal MRIs of the entire body were scanned and inputted to the personal computer. Sixty anatomical structures in the horizontal MRIs were segmented to make horizontal segmented images. Coronal, sagittal MRIs and coronal, sagittal segmented images were made. 3D images of anatomical structures in the segmented images were reconstructed by surface rendering method. Browsing software of the MRIs, segmented images, and 3D images was composed. This educational tool that includes horizontal, coronal, sagittal MRIs of entire body, corresponding segmented images, 3D images, and browsing software is expected to help medical students and doctors study anatomical structures in MRIs.

  5. Potential of ILRIS3D Intensity Data for Planar Surfaces Segmentation

    PubMed Central

    Wang, Chi-Kuei; Lu, Yao-Yu

    2009-01-01

    Intensity value based point cloud segmentation has received less attention because the intensity value of the terrestrial laser scanner is usually altered by receiving optics/hardware or the internal propriety software, which is unavailable to the end user. We offer a solution by assuming the terrestrial laser scanners are stable and the behavior of the intensity value can be characterized. Then, it is possible to use the intensity value for segmentation by observing its behavior, i.e., intensity value variation, pattern and presence of location of intensity values, etc. In this study, experiment results for characterizing the intensity data of planar surfaces collected by ILRIS3D, a terrestrial laser scanner, are reported. Two intensity formats, grey and raw, are employed by ILRIS3D. It is found from the experiment results that the grey intensity has less variation; hence it is preferable for point cloud segmentation. A warm-up time of approximate 1.5 hours is suggested for more stable intensity data. A segmentation method based on the visual cues of the intensity images sequence, which contains consecutive intensity images, is proposed in order to segment the 3D laser points of ILRIS3D. This method is unique to ILRIS3D data and does not require radiometric calibration. PMID:22346726

  6. 3D segmentation of masses in DCE-MRI images using FCM and adaptive MRF

    NASA Astrophysics Data System (ADS)

    Zhang, Chengjie; Li, Lihua

    2014-03-01

    Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) is a sensitive imaging modality for the detection of breast cancer. Automated segmentation of breast lesions in DCE-MRI images is challenging due to inherent signal-to-noise ratios and high inter-patient variability. A novel 3D segmentation method based on FCM and MRF is proposed in this study. In this method, a MRI image is segmented by spatial FCM, firstly. And then MRF segmentation is conducted to refine the result. We combined with the 3D information of lesion in the MRF segmentation process by using segmentation result of contiguous slices to constraint the slice segmentation. At the same time, a membership matrix of FCM segmentation result is used for adaptive adjustment of Markov parameters in MRF segmentation process. The proposed method was applied for lesion segmentation on 145 breast DCE-MRI examinations (86 malignant and 59 benign cases). An evaluation of segmentation was taken using the traditional overlap rate method between the segmented region and hand-drawing ground truth. The average overlap rates for benign and malignant lesions are 0.764 and 0.755 respectively. Then we extracted five features based on the segmentation region, and used an artificial neural network (ANN) to classify between malignant and benign cases. The ANN had a classification performance measured by the area under the ROC curve of AUC=0.73. The positive and negative predictive values were 0.86 and 0.58, respectively. The results demonstrate the proposed method not only achieves a better segmentation performance in accuracy also has a reasonable classification performance.

  7. 3D TEM reconstruction and segmentation process of laminar bio-nanocomposites

    SciTech Connect

    Iturrondobeitia, M. Okariz, A.; Fernandez-Martinez, R.; Jimbert, P.; Guraya, T.; Ibarretxe, J.

    2015-03-30

    The microstructure of laminar bio-nanocomposites (Poly (lactic acid)(PLA)/clay) depends on the amount of clay platelet opening after integration with the polymer matrix and determines the final properties of the material. Transmission electron microscopy (TEM) technique is the only one that can provide a direct observation of the layer dispersion and the degree of exfoliation. However, the orientation of the clay platelets, which affects the final properties, is practically immeasurable from a single 2D TEM image. This issue can be overcome using transmission electron tomography (ET), a technique that allows the complete 3D characterization of the structure, including the measurement of the orientation of clay platelets, their morphology and their 3D distribution. ET involves a 3D reconstruction of the study volume and a subsequent segmentation of the study object. Currently, accurate segmentation is performed manually, which is inefficient and tedious. The aim of this work is to propose an objective/automated segmentation methodology process of a 3D TEM tomography reconstruction. In this method the segmentation threshold is optimized by minimizing the variation of the dimensions of the segmented objects and matching the segmented V{sub clay} (%) and the actual one. The method is first validated using a fictitious set of objects, and then applied on a nanocomposite.

  8. 3D watershed-based segmentation of internal structures within MR brain images

    NASA Astrophysics Data System (ADS)

    Bueno, Gloria; Musse, Olivier; Heitz, Fabrice; Armspach, Jean-Paul

    2000-06-01

    In this paper an image-based method founded on mathematical morphology is presented in order to facilitate the segmentation of cerebral structures on 3D magnetic resonance images (MRIs). The segmentation is described as an immersion simulation, applied to the modified gradient image, modeled by a generated 3D region adjacency graph (RAG). The segmentation relies on two main processes: homotopy modification and contour decision. The first one is achieved by a marker extraction stage where homogeneous 3D regions are identified in order to attribute an influence zone only to relevant minima of the image. This stage uses contrasted regions from morphological reconstruction and labeled flat regions constrained by the RAG. The goal of the decision stage is to precisely locate the contours of regions detected by the marker extraction. This decision is performed by a 3D extension of the watershed transform. Upon completion of the segmentation, the outcome of the preceding process is presented to the user for manual selection of the structures of interest (SOI). Results of this approach are described and illustrated with examples of segmented 3D MRIs of the human head.

  9. 3D prostate segmentation of ultrasound images combining longitudinal image registration and machine learning

    NASA Astrophysics Data System (ADS)

    Yang, Xiaofeng; Fei, Baowei

    2012-02-01

    We developed a three-dimensional (3D) segmentation method for transrectal ultrasound (TRUS) images, which is based on longitudinal image registration and machine learning. Using longitudinal images of each individual patient, we register previously acquired images to the new images of the same subject. Three orthogonal Gabor filter banks were used to extract texture features from each registered image. Patient-specific Gabor features from the registered images are used to train kernel support vector machines (KSVMs) and then to segment the newly acquired prostate image. The segmentation method was tested in TRUS data from five patients. The average surface distance between our and manual segmentation is 1.18 +/- 0.31 mm, indicating that our automatic segmentation method based on longitudinal image registration is feasible for segmenting the prostate in TRUS images.

  10. New method of 3-D object recognition

    NASA Astrophysics Data System (ADS)

    He, An-Zhi; Li, Qun Z.; Miao, Peng C.

    1991-12-01

    In this paper, a new method of 3-D object recognition using optical techniques and a computer is presented. We perform 3-D object recognition using moire contour to obtain the object's 3- D coordinates, projecting drawings of the object in three coordinate planes to describe it and using a method of inquiring library of judgement to match objects. The recognition of a simple geometrical entity is simulated by computer and studied experimentally. The recognition of an object which is composed of a few simple geometrical entities is discussed.

  11. Multi-Camera Sensor System for 3D Segmentation and Localization of Multiple Mobile Robots

    PubMed Central

    Losada, Cristina; Mazo, Manuel; Palazuelos, Sira; Pizarro, Daniel; Marrón, Marta

    2010-01-01

    This paper presents a method for obtaining the motion segmentation and 3D localization of multiple mobile robots in an intelligent space using a multi-camera sensor system. The set of calibrated and synchronized cameras are placed in fixed positions within the environment (intelligent space). The proposed algorithm for motion segmentation and 3D localization is based on the minimization of an objective function. This function includes information from all the cameras, and it does not rely on previous knowledge or invasive landmarks on board the robots. The proposed objective function depends on three groups of variables: the segmentation boundaries, the motion parameters and the depth. For the objective function minimization, we use a greedy iterative algorithm with three steps that, after initialization of segmentation boundaries and depth, are repeated until convergence. PMID:22319297

  12. 3-D surface rendering of myocardial SPECT images segmented by level set technique.

    PubMed

    Lee, Hwun-Jae; Lee, Sangbock

    2012-06-01

    SPECT(single photon emission computed tomography) myocardial imaging is a diagnosis technique that images the region of interest and examines any change induced by disease using a computer after injects intravenously a radiopharmaceutical drug emitting gamma ray and the drug has dispersed evenly in the heart . Myocardial perfusion imaging, which contains functional information, is useful for non-invasive diagnosis of myocardial disease but noises caused by physical factors and low resolution give difficulty in reading the images. In order to help reading myocardial images, this study proposed a method that segments myocardial images and reconstructs the segmented region into a 3D image. To resolve difficulty in reading, we segmented the left ventricle, the region of interest, using a level set and modeled the segmented region into a 3D image. PMID:20839037

  13. Multi-camera sensor system for 3D segmentation and localization of multiple mobile robots.

    PubMed

    Losada, Cristina; Mazo, Manuel; Palazuelos, Sira; Pizarro, Daniel; Marrón, Marta

    2010-01-01

    This paper presents a method for obtaining the motion segmentation and 3D localization of multiple mobile robots in an intelligent space using a multi-camera sensor system. The set of calibrated and synchronized cameras are placed in fixed positions within the environment (intelligent space). The proposed algorithm for motion segmentation and 3D localization is based on the minimization of an objective function. This function includes information from all the cameras, and it does not rely on previous knowledge or invasive landmarks on board the robots. The proposed objective function depends on three groups of variables: the segmentation boundaries, the motion parameters and the depth. For the objective function minimization, we use a greedy iterative algorithm with three steps that, after initialization of segmentation boundaries and depth, are repeated until convergence. PMID:22319297

  14. MRI Slice Segmentation and 3D Modelling of Temporomandibular Joint Measured by Microscopic Coil

    NASA Astrophysics Data System (ADS)

    Smirg, O.; Liberda, O.; Smekal, Z.; Sprlakova-Pukova, A.

    2012-01-01

    The paper focuses on the segmentation of magnetic resonance imaging (MRI) slices and 3D modelling of the temporomandibular joint disc in order to help physicians diagnose patients with dysfunction of the temporomandibular joint (TMJ). The TMJ is one of the most complex joints in the human body. The most common joint dysfunction is due to the disc. The disc is a soft tissue, which in principle cannot be diagnosed by the CT method. Therefore, a 3D model is made from the MRI slices, which can image soft tissues. For the segmentation of the disc in individual slices a new method is developed based on spatial distribution and anatomical TMJ structure with automatic thresholding. The thresholding is controlled by a genetic algorithm. The 3D model is realized using the marching cube method.

  15. A spherical harmonics intensity model for 3D segmentation and 3D shape analysis of heterochromatin foci.

    PubMed

    Eck, Simon; Wörz, Stefan; Müller-Ott, Katharina; Hahn, Matthias; Biesdorf, Andreas; Schotta, Gunnar; Rippe, Karsten; Rohr, Karl

    2016-08-01

    The genome is partitioned into regions of euchromatin and heterochromatin. The organization of heterochromatin is important for the regulation of cellular processes such as chromosome segregation and gene silencing, and their misregulation is linked to cancer and other diseases. We present a model-based approach for automatic 3D segmentation and 3D shape analysis of heterochromatin foci from 3D confocal light microscopy images. Our approach employs a novel 3D intensity model based on spherical harmonics, which analytically describes the shape and intensities of the foci. The model parameters are determined by fitting the model to the image intensities using least-squares minimization. To characterize the 3D shape of the foci, we exploit the computed spherical harmonics coefficients and determine a shape descriptor. We applied our approach to 3D synthetic image data as well as real 3D static and real 3D time-lapse microscopy images, and compared the performance with that of previous approaches. It turned out that our approach yields accurate 3D segmentation results and performs better than previous approaches. We also show that our approach can be used for quantifying 3D shape differences of heterochromatin foci. PMID:27037463

  16. 3D active surfaces for liver segmentation in multisequence MRI images.

    PubMed

    Bereciartua, Arantza; Picon, Artzai; Galdran, Adrian; Iriondo, Pedro

    2016-08-01

    Biopsies for diagnosis can sometimes be replaced by non-invasive techniques such as CT and MRI. Surgeons require accurate and efficient methods that allow proper segmentation of the organs in order to ensure the most reliable intervention planning. Automated liver segmentation is a difficult and open problem where CT has been more widely explored than MRI. MRI liver segmentation represents a challenge due to the presence of characteristic artifacts, such as partial volumes, noise and low contrast. In this paper, we present a novel method for multichannel MRI automatic liver segmentation. The proposed method consists of the minimization of a 3D active surface by means of the dual approach to the variational formulation of the underlying problem. This active surface evolves over a probability map that is based on a new compact descriptor comprising spatial and multisequence information which is further modeled by means of a liver statistical model. This proposed 3D active surface approach naturally integrates volumetric regularization in the statistical model. The advantages of the compact visual descriptor together with the proposed approach result in a fast and accurate 3D segmentation method. The method was tested on 18 healthy liver studies and results were compared to a gold standard made by expert radiologists. Comparisons with other state-of-the-art approaches are provided by means of nine well established quality metrics. The obtained results improve these methodologies, achieving a Dice Similarity Coefficient of 98.59. PMID:27282235

  17. Methods for comparing 3D surface attributes

    NASA Astrophysics Data System (ADS)

    Pang, Alex; Freeman, Adam

    1996-03-01

    A common task in data analysis is to compare two or more sets of data, statistics, presentations, etc. A predominant method in use is side-by-side visual comparison of images. While straightforward, it burdens the user with the task of discerning the differences between the two images. The user if further taxed when the images are of 3D scenes. This paper presents several methods for analyzing the extent, magnitude, and manner in which surfaces in 3D differ in their attributes. The surface geometry are assumed to be identical and only the surface attributes (color, texture, etc.) are variable. As a case in point, we examine the differences obtained when a 3D scene is rendered progressively using radiosity with different form factor calculation methods. The comparison methods include extensions of simple methods such as mapping difference information to color or transparency, and more recent methods including the use of surface texture, perturbation, and adaptive placements of error glyphs.

  18. Parametric modelling and segmentation of vertebral bodies in 3D CT and MR spine images

    NASA Astrophysics Data System (ADS)

    Štern, Darko; Likar, Boštjan; Pernuš, Franjo; Vrtovec, Tomaž

    2011-12-01

    Accurate and objective evaluation of vertebral deformations is of significant importance in clinical diagnostics and therapy of pathological conditions affecting the spine. Although modern clinical practice is focused on three-dimensional (3D) computed tomography (CT) and magnetic resonance (MR) imaging techniques, the established methods for evaluation of vertebral deformations are limited to measuring deformations in two-dimensional (2D) x-ray images. In this paper, we propose a method for quantitative description of vertebral body deformations by efficient modelling and segmentation of vertebral bodies in 3D. The deformations are evaluated from the parameters of a 3D superquadric model, which is initialized as an elliptical cylinder and then gradually deformed by introducing transformations that yield a more detailed representation of the vertebral body shape. After modelling the vertebral body shape with 25 clinically meaningful parameters and the vertebral body pose with six rigid body parameters, the 3D model is aligned to the observed vertebral body in the 3D image. The performance of the method was evaluated on 75 vertebrae from CT and 75 vertebrae from T2-weighted MR spine images, extracted from the thoracolumbar part of normal and pathological spines. The results show that the proposed method can be used for 3D segmentation of vertebral bodies in CT and MR images, as the proposed 3D model is able to describe both normal and pathological vertebral body deformations. The method may therefore be used for initialization of whole vertebra segmentation or for quantitative measurement of vertebral body deformations.

  19. 2D segmented large inkjet printhead for high speed 3D printers

    NASA Astrophysics Data System (ADS)

    Einat, Moshe; Bar-Levav, Elkana

    2015-05-01

    Three-dimensional (3D) printing is a fast-developing technology these days. However, 3D printing of a model takes many hours. Therefore, the enlargement of the printhead and the increase of the printing speed are important to this technology. In order to enable the enlargement of the printhead a different approach and design are suggested and tested experimentally. The printhead is divided into small segments; each one is autonomous, and not fluid-connected to the neighboring segment. Each segment contains a micro reservoir and few nozzles. The segments are manufactured together in close proximity to each other on the same substrate enabling area coverage. A segmented printhead based on this approach was built and tested. The micro reservoir ink-filling method and operation of the segments were experimentally proven. Ink drops were obtained and the lifetime of the resistors was measured. Electrical characteristics of power and energy for proper operation were obtained. A 3D model printed according to the suggested approach can be completed in less than a minute.

  20. Intraretinal Layer Segmentation of Macular Optical Coherence Tomography Images Using Optimal 3-D Graph Search

    PubMed Central

    Abràmoff, Michael D.; Kardon, Randy; Russell, Stephen R.; Wu, Xiaodong; Sonka, Milan

    2008-01-01

    Current techniques for segmenting macular optical coherence tomography (OCT) images have been 2-D in nature. Furthermore, commercially available OCT systems have only focused on segmenting a single layer of the retina, even though each intraretinal layer may be affected differently by disease. We report an automated approach for segmenting (anisotropic) 3-D macular OCT scans into five layers. Each macular OCT dataset consisted of six linear radial scans centered at the fovea. The six surfaces defining the five layers were identified on each 3-D composite image by transforming the segmentation task into that of finding a minimum-cost closed set in a geometric graph constructed from edge/regional information and a priori determined surface smoothness and interaction constraints. The method was applied to the macular OCT scans of 12 patients (24 3-D composite image datasets) with unilateral anterior ischemic optic neuropathy (AION). Using the average of three experts’ tracings as a reference standard resulted in an overall mean unsigned border positioning error of 6.1 ± 2.9 µm, a result comparable to the interobserver variability (6.9 ± 3.3 µm). Our quantitative analysis of the automated segmentation results from AION subject data revealed that the inner retinal layer thickness for the affected eye was 24.1 µm (21%) smaller on average than for the unaffected eye (P < 0.001), supporting the need for segmenting the layers separately. PMID:18815101

  1. Segmentation of Whole Cells and Cell Nuclei From 3-D Optical Microscope Images Using Dynamic Programming

    PubMed Central

    McCullough, Dean P.; Gudla, Prabhakar R.; Harris, Bradley S.; Collins, Jason A.; Meaburn, Karen J.; Nakaya, Masa-Aki; Yamaguchi, Terry P.; Misteli, Tom; Lockett, Stephen J.

    2009-01-01

    Communications between cells in large part drive tissue development and function, as well as disease-related processes such as tumorigenesis. Understanding the mechanistic bases of these processes necessitates quantifying specific molecules in adjacent cells or cell nuclei of intact tissue. However, a major restriction on such analyses is the lack of an efficient method that correctly segments each object (cell or nucleus) from 3-D images of an intact tissue specimen. We report a highly reliable and accurate semi-automatic algorithmic method for segmenting fluorescence-labeled cells or nuclei from 3-D tissue images. Segmentation begins with semi-automatic, 2-D object delineation in a user-selected plane, using dynamic programming (DP) to locate the border with an accumulated intensity per unit length greater that any other possible border around the same object. Then the two surfaces of the object in planes above and below the selected plane are found using an algorithm that combines DP and combinatorial searching. Following segmentation, any perceived errors can be interactively corrected. Segmentation accuracy is not significantly affected by intermittent labeling of object surfaces, diffuse surfaces, or spurious signals away from surfaces. The unique strength of the segmentation method was demonstrated on a variety of biological tissue samples where all cells, including irregularly shaped cells, were accurately segmented based on visual inspection. PMID:18450544

  2. 3D segmentation of the true and false lumens on CT aortic dissection images

    NASA Astrophysics Data System (ADS)

    Fetnaci, Nawel; Łubniewski, Paweł; Miguel, Bruno; Lohou, Christophe

    2013-03-01

    Our works are related to aortic dissections which are a medical emergency and can quickly lead to death. In this paper, we want to retrieve in CT images the false and the true lumens which are aortic dissection features. Our aim is to provide a 3D view of the lumens that we can difficultly obtain either by volume rendering or by another visualization tool which only directly gives the outer contour of the aorta; or by other segmentation methods because they mainly directly segment either only the outer contour of the aorta or other connected arteries and organs both. In our work, we need to segment the two lumens separately; this segmentation will allow us to: distinguish them automatically, facilitate the landing of the aortic prosthesis, propose a virtual 3d navigation and do quantitative analysis. We chose to segment these data by using a deformable model based on the fast marching method. In the classical fast marching approach, a speed function is used to control the front propagation of a deforming curve. The speed function is only based on the image gradient. In our CT images, due to the low resolution, with the fast marching the front propagates from a lumen to the other; therefore, the gradient data is insufficient to have accurate segmentation results. In the paper, we have adapted the fast marching method more particularly by modifying the speed function and we succeed in segmenting the two lumens separately.

  3. Semi-automatic segmentation for 3D motion analysis of the tongue with dynamic MRI.

    PubMed

    Lee, Junghoon; Woo, Jonghye; Xing, Fangxu; Murano, Emi Z; Stone, Maureen; Prince, Jerry L

    2014-12-01

    Dynamic MRI has been widely used to track the motion of the tongue and measure its internal deformation during speech and swallowing. Accurate segmentation of the tongue is a prerequisite step to define the target boundary and constrain the tracking to tissue points within the tongue. Segmentation of 2D slices or 3D volumes is challenging because of the large number of slices and time frames involved in the segmentation, as well as the incorporation of numerous local deformations that occur throughout the tongue during motion. In this paper, we propose a semi-automatic approach to segment 3D dynamic MRI of the tongue. The algorithm steps include seeding a few slices at one time frame, propagating seeds to the same slices at different time frames using deformable registration, and random walker segmentation based on these seed positions. This method was validated on the tongue of five normal subjects carrying out the same speech task with multi-slice 2D dynamic cine-MR images obtained at three orthogonal orientations and 26 time frames. The resulting semi-automatic segmentations of a total of 130 volumes showed an average dice similarity coefficient (DSC) score of 0.92 with less segmented volume variability between time frames than in manual segmentations. PMID:25155697

  4. Machine Learning of Hierarchical Clustering to Segment 2D and 3D Images

    PubMed Central

    Nunez-Iglesias, Juan; Kennedy, Ryan; Parag, Toufiq; Shi, Jianbo; Chklovskii, Dmitri B.

    2013-01-01

    We aim to improve segmentation through the use of machine learning tools during region agglomeration. We propose an active learning approach for performing hierarchical agglomerative segmentation from superpixels. Our method combines multiple features at all scales of the agglomerative process, works for data with an arbitrary number of dimensions, and scales to very large datasets. We advocate the use of variation of information to measure segmentation accuracy, particularly in 3D electron microscopy (EM) images of neural tissue, and using this metric demonstrate an improvement over competing algorithms in EM and natural images. PMID:23977123

  5. Validation of bone segmentation and improved 3-D registration using contour coherency in CT data.

    PubMed

    Wang, Liping Ingrid; Greenspan, Michael; Ellis, Randy

    2006-03-01

    A method is presented to validate the segmentation of computed tomography (CT) image sequences, and improve the accuracy and efficiency of the subsequent registration of the three-dimensional surfaces that are reconstructed from the segmented slices. The method compares the shapes of contours extracted from neighborhoods of slices in CT stacks of tibias. The bone is first segmented by an automatic segmentation technique, and the bone contour for each slice is parameterized as a one-dimensional function of normalized arc length versus inscribed angle. These functions are represented as vectors within a K-dimensional space comprising the first K amplitude coefficients of their Fourier Descriptors. The similarity or coherency of neighboring contours is measured by comparing statistical properties of their vector representations within this space. Experimentation has demonstrated this technique to be very effective at identifying low-coherency segmentations. Compared with experienced human operators, in a set of 23 CT stacks (1,633 slices), the method correctly detected 87.5% and 80% of the low-coherency and 97.7% and 95.5% of the high coherency segmentations, respectively from two different automatic segmentation techniques. Removal of the automatically detected low-coherency segmentations also significantly improved the accuracy and time efficiency of the registration of 3-D bone surface models. The registration error was reduced by over 500% (i.e., a factor of 5) and 280%, and the computational performance was improved by 540% and 791% for the two respective segmentation methods. PMID:16524088

  6. Segmentation of the ovine lung in 3D CT Images

    NASA Astrophysics Data System (ADS)

    Shi, Lijun; Hoffman, Eric A.; Reinhardt, Joseph M.

    2004-04-01

    Pulmonary CT images can provide detailed information about the regional structure and function of the respiratory system. Prior to any of these analyses, however, the lungs must be identified in the CT data sets. A popular animal model for understanding lung physiology and pathophysiology is the sheep. In this paper we describe a lung segmentation algorithm for CT images of sheep. The algorithm has two main steps. The first step is lung extraction, which identifies the lung region using a technique based on optimal thresholding and connected components analysis. The second step is lung separation, which separates the left lung from the right lung by identifying the central fissure using an anatomy-based method incorporating dynamic programming and a line filter algorithm. The lung segmentation algorithm has been validated by comparing our automatic method to manual analysis for five pulmonary CT datasets. The RMS error between the computer-defined and manually-traced boundary is 0.96 mm. The segmentation requires approximately 10 minutes for a 512x512x400 dataset on a PC workstation (2.40 GHZ CPU, 2.0 GB RAM), while it takes human observer approximately two hours to accomplish the same task.

  7. Segmented Domain Decomposition Multigrid For 3-D Turbomachinery Flows

    NASA Technical Reports Server (NTRS)

    Celestina, M. L.; Adamczyk, J. J.; Rubin, S. G.

    2001-01-01

    A Segmented Domain Decomposition Multigrid (SDDMG) procedure was developed for three-dimensional viscous flow problems as they apply to turbomachinery flows. The procedure divides the computational domain into a coarse mesh comprised of uniformly spaced cells. To resolve smaller length scales such as the viscous layer near a surface, segments of the coarse mesh are subdivided into a finer mesh. This is repeated until adequate resolution of the smallest relevant length scale is obtained. Multigrid is used to communicate information between the different grid levels. To test the procedure, simulation results will be presented for a compressor and turbine cascade. These simulations are intended to show the ability of the present method to generate grid independent solutions. Comparisons with data will also be presented. These comparisons will further demonstrate the usefulness of the present work for they allow an estimate of the accuracy of the flow modeling equations independent of error attributed to numerical discretization.

  8. 3D Filament Network Segmentation with Multiple Active Contours

    NASA Astrophysics Data System (ADS)

    Xu, Ting; Vavylonis, Dimitrios; Huang, Xiaolei

    2014-03-01

    Fluorescence microscopy is frequently used to study two and three dimensional network structures formed by cytoskeletal polymer fibers such as actin filaments and microtubules. While these cytoskeletal structures are often dilute enough to allow imaging of individual filaments or bundles of them, quantitative analysis of these images is challenging. To facilitate quantitative, reproducible and objective analysis of the image data, we developed a semi-automated method to extract actin networks and retrieve their topology in 3D. Our method uses multiple Stretching Open Active Contours (SOACs) that are automatically initialized at image intensity ridges and then evolve along the centerlines of filaments in the network. SOACs can merge, stop at junctions, and reconfigure with others to allow smooth crossing at junctions of filaments. The proposed approach is generally applicable to images of curvilinear networks with low SNR. We demonstrate its potential by extracting the centerlines of synthetic meshwork images, actin networks in 2D TIRF Microscopy images, and 3D actin cable meshworks of live fission yeast cells imaged by spinning disk confocal microscopy.

  9. 3D segmentation of lung CT data with graph-cuts: analysis of parameter sensitivities

    NASA Astrophysics Data System (ADS)

    Cha, Jung won; Dunlap, Neal; Wang, Brian; Amini, Amir

    2016-03-01

    Lung boundary image segmentation is important for many tasks including for example in development of radiation treatment plans for subjects with thoracic malignancies. In this paper, we describe a method and parameter settings for accurate 3D lung boundary segmentation based on graph-cuts from X-ray CT data1. Even though previously several researchers have used graph-cuts for image segmentation, to date, no systematic studies have been performed regarding the range of parameter that give accurate results. The energy function in the graph-cuts algorithm requires 3 suitable parameter settings: K, a large constant for assigning seed points, c, the similarity coefficient for n-links, and λ, the terminal coefficient for t-links. We analyzed the parameter sensitivity with four lung data sets from subjects with lung cancer using error metrics. Large values of K created artifacts on segmented images, and relatively much larger value of c than the value of λ influenced the balance between the boundary term and the data term in the energy function, leading to unacceptable segmentation results. For a range of parameter settings, we performed 3D image segmentation, and in each case compared the results with the expert-delineated lung boundaries. We used simple 6-neighborhood systems for n-link in 3D. The 3D image segmentation took 10 minutes for a 512x512x118 ~ 512x512x190 lung CT image volume. Our results indicate that the graph-cuts algorithm was more sensitive to the K and λ parameter settings than to the C parameter and furthermore that amongst the range of parameters tested, K=5 and λ=0.5 yielded good results.

  10. HOSVD-Based 3D Active Appearance Model: Segmentation of Lung Fields in CT Images.

    PubMed

    Wang, Qingzhu; Kang, Wanjun; Hu, Haihui; Wang, Bin

    2016-07-01

    An Active Appearance Model (AAM) is a computer vision model which can be used to effectively segment lung fields in CT images. However, the fitting result is often inadequate when the lungs are affected by high-density pathologies. To overcome this problem, we propose a Higher-order Singular Value Decomposition (HOSVD)-based Three-dimensional (3D) AAM. An evaluation was performed on 310 diseased lungs form the Lung Image Database Consortium Image Collection. Other contemporary AAMs operate directly on patterns represented by vectors, i.e., before applying the AAM to a 3D lung volume,it has to be vectorized first into a vector pattern by some technique like concatenation. However, some implicit structural or local contextual information may be lost in this transformation. According to the nature of the 3D lung volume, HOSVD is introduced to represent and process the lung in tensor space. Our method can not only directly operate on the original 3D tensor patterns, but also efficiently reduce the computer memory usage. The evaluation resulted in an average Dice coefficient of 97.0 % ± 0.59 %, a mean absolute surface distance error of 1.0403 ± 0.5716 mm, a mean border positioning errors of 0.9187 ± 0.5381 pixel, and a Hausdorff Distance of 20.4064 ± 4.3855, respectively. Experimental results showed that our methods delivered significant and better segmentation results, compared with the three other model-based lung segmentation approaches, namely 3D Snake, 3D ASM and 3D AAM. PMID:27277277

  11. 3D transrectal ultrasound (TRUS) prostate segmentation based on optimal feature learning framework

    NASA Astrophysics Data System (ADS)

    Yang, Xiaofeng; Rossi, Peter J.; Jani, Ashesh B.; Mao, Hui; Curran, Walter J.; Liu, Tian

    2016-03-01

    We propose a 3D prostate segmentation method for transrectal ultrasound (TRUS) images, which is based on patch-based feature learning framework. Patient-specific anatomical features are extracted from aligned training images and adopted as signatures for each voxel. The most robust and informative features are identified by the feature selection process to train the kernel support vector machine (KSVM). The well-trained SVM was used to localize the prostate of the new patient. Our segmentation technique was validated with a clinical study of 10 patients. The accuracy of our approach was assessed using the manual segmentations (gold standard). The mean volume Dice overlap coefficient was 89.7%. In this study, we have developed a new prostate segmentation approach based on the optimal feature learning framework, demonstrated its clinical feasibility, and validated its accuracy with manual segmentations.

  12. Automatic pulmonary vessel segmentation in 3D computed tomographic pulmonary angiographic (CTPA) images

    NASA Astrophysics Data System (ADS)

    Zhou, Chuan; Chan, Heang-Ping; Hadjiiski, Lubomir M.; Patel, Smita; Cascade, Philip N.; Sahiner, Berkman; Wei, Jun; Ge, Jun; Kazerooni, Ella A.

    2006-03-01

    Automatic and accurate segmentation of the pulmonary vessels in 3D computed tomographic angiographic images (CTPA) is an essential step for computerized detection of pulmonary embolism (PE) because PEs only occur inside the pulmonary arteries. We are developing an automated method to segment the pulmonary vessels in 3D CTPA images. The lung region is first extracted using thresholding and morphological operations. 3D multiscale filters in combination with a newly developed response function derived from the eigenvalues of Hessian matrices are used to enhance all vascular structures including the vessel bifurcations and suppress non-vessel structures such as the lymphoid tissues surrounding the vessels. At each scale, a volume of interest (VOI) containing the response function value at each voxel is defined. The voxels with a high response indicate that there is an enhanced vessel whose size matches the given filter scale. A hierarchical expectation-maximization (EM) estimation is then applied to the VOI to segment the vessel by extracting the high response voxels at this single scale. The vessel tree is finally reconstructed by combining the segmented vessels at all scales based on a "connected component" analysis. Two experienced thoracic radiologists provided the gold standard of pulmonary arteries by manually tracking the arterial tree and marking the center of the vessels using a computer graphical user interface. Two CTPA cases containing PEs were used to evaluate the performance. One of these two cases also contained other lung diseases. The accuracy of vessel tree segmentation was evaluated by the percentage of the "gold standard" vessel center points overlapping with the segmented vessels. The result shows that 97.3% (1868/1920) and 92.0% (2277/2476) of the manually marked center points overlapped with the segmented vessels for the cases without and with other lung disease, respectively. The results demonstrate that vessel segmentation using our method is

  13. Automatic classification of 3D segmented CT data using data fusion and support vector machine

    NASA Astrophysics Data System (ADS)

    Osman, Ahmad; Kaftandjian, Valérie; Hassler, Ulf

    2011-07-01

    The three dimensional X-ray computed tomography (3D-CT) has proved its successful usage as inspection method in non destructive testing. The generated 3D volume using high efficiency reconstruction algorithms contains all the inner structures of the inspected part. Segmentation of this volume reveals suspicious regions which need to be classified into defects or false alarms. This paper deals with the classification step using data fusion theory and support vector machine. Results achieved are very promising and prove the effectiveness of the data fusion theory as a method to build stronger classifier.

  14. Recognition methods for 3D textured surfaces

    NASA Astrophysics Data System (ADS)

    Cula, Oana G.; Dana, Kristin J.

    2001-06-01

    Texture as a surface representation is the subject of a wide body of computer vision and computer graphics literature. While texture is always associated with a form of repetition in the image, the repeating quantity may vary. The texture may be a color or albedo variation as in a checkerboard, a paisley print or zebra stripes. Very often in real-world scenes, texture is instead due to a surface height variation, e.g. pebbles, gravel, foliage and any rough surface. Such surfaces are referred to here as 3D textured surfaces. Standard texture recognition algorithms are not appropriate for 3D textured surfaces because the appearance of these surfaces changes in a complex manner with viewing direction and illumination direction. Recent methods have been developed for recognition of 3D textured surfaces using a database of surfaces observed under varied imaging parameters. One of these methods is based on 3D textons obtained using K-means clustering of multiscale feature vectors. Another method uses eigen-analysis originally developed for appearance-based object recognition. In this work we develop a hybrid approach that employs both feature grouping and dimensionality reduction. The method is tested using the Columbia-Utrecht texture database and provides excellent recognition rates. The method is compared with existing recognition methods for 3D textured surfaces. A direct comparison is facilitated by empirical recognition rates from the same texture data set. The current method has key advantages over existing methods including requiring less prior information on both the training and novel images.

  15. Subject-specific body segment parameter estimation using 3D photogrammetry with multiple cameras

    PubMed Central

    Morris, Mark; Sellers, William I.

    2015-01-01

    Inertial properties of body segments, such as mass, centre of mass or moments of inertia, are important parameters when studying movements of the human body. However, these quantities are not directly measurable. Current approaches include using regression models which have limited accuracy: geometric models with lengthy measuring procedures or acquiring and post-processing MRI scans of participants. We propose a geometric methodology based on 3D photogrammetry using multiple cameras to provide subject-specific body segment parameters while minimizing the interaction time with the participants. A low-cost body scanner was built using multiple cameras and 3D point cloud data generated using structure from motion photogrammetric reconstruction algorithms. The point cloud was manually separated into body segments, and convex hulling applied to each segment to produce the required geometric outlines. The accuracy of the method can be adjusted by choosing the number of subdivisions of the body segments. The body segment parameters of six participants (four male and two female) are presented using the proposed method. The multi-camera photogrammetric approach is expected to be particularly suited for studies including populations for which regression models are not available in literature and where other geometric techniques or MRI scanning are not applicable due to time or ethical constraints. PMID:25780778

  16. Automated segmentation of necrotic femoral head from 3D MR data.

    PubMed

    Zoroofi, Reza A; Sato, Yoshinobu; Nishii, Takashi; Sugano, Nobuhiko; Yoshikawa, Hideki; Tamura, Shinichi

    2004-07-01

    Segmentation of diseased organs is an important topic in computer assisted medical image analysis. In particular, automatic segmentation of necrotic femoral head is of importance for various corresponding clinical tasks including visualization, quantitative assessment, early diagnosis and adequate management of patients suffering from avascular necrosis of the femoral head (ANFH). Early diagnosis and treatment of ANFH is crucial since the disease occurs in relatively young individuals with an average age of 20-50, and since treatment options for more advanced disease are frequently unsuccessful. The present paper describes several new techniques and software for automatic segmentation of necrotic femoral head based on clinically obtained multi-slice T1-weighted MR data. In vivo MR data sets of 50 actual patients are used in the study. An automatic method built up to manage the segmentation task according to image intensity of bone tissues, shape of the femoral head, and other characters. The processing scheme consisted of the following five steps. (1) Rough segmentation of non-necrotic lesions of the femur by applying a 3D gray morphological operation and a 3D region growing technique. (2) Fitting a 3D ellipse to the femoral head by a new approach utilizing the constraint of the shape of the femur, and employing a principle component analysis and a simulated annealing technique. (3) Estimating the femoral neck location, and also femoral head axis by integrating anatomical information of the femur and boundary of estimated 3D ellipse. (4) Removal of non-bony tissues around the femoral neck and femoral head ligament by utilizing the estimated femoral neck axis. (5) Classification of necrotic lesions inside the estimated femoral head by a k-means technique. The above method was implemented in a Microsoft Windows software package. The feasibility of this method was tested on the data sets of 50 clinical cases (3000 MR images). PMID:15249072

  17. Segmentation of the common carotid artery with active shape models from 3D ultrasound images

    NASA Astrophysics Data System (ADS)

    Yang, Xin; Jin, Jiaoying; He, Wanji; Yuchi, Ming; Ding, Mingyue

    2012-03-01

    Carotid atherosclerosis is a major cause of stroke, a leading cause of death and disability. In this paper, we develop and evaluate a new segmentation method for outlining both lumen and adventitia (inner and outer walls) of common carotid artery (CCA) from three-dimensional ultrasound (3D US) images for carotid atherosclerosis diagnosis and evaluation. The data set consists of sixty-eight, 17× 2× 2, 3D US volume data acquired from the left and right carotid arteries of seventeen patients (eight treated with 80mg atorvastain and nine with placebo), who had carotid stenosis of 60% or more, at baseline and after three months of treatment. We investigate the use of Active Shape Models (ASMs) to segment CCA inner and outer walls after statin therapy. The proposed method was evaluated with respect to expert manually outlined boundaries as a surrogate for ground truth. For the lumen and adventitia segmentations, respectively, the algorithm yielded Dice Similarity Coefficient (DSC) of 93.6%+/- 2.6%, 91.8%+/- 3.5%, mean absolute distances (MAD) of 0.28+/- 0.17mm and 0.34 +/- 0.19mm, maximum absolute distances (MAXD) of 0.87 +/- 0.37mm and 0.74 +/- 0.49mm. The proposed algorithm took 4.4 +/- 0.6min to segment a single 3D US images, compared to 11.7+/-1.2min for manual segmentation. Therefore, the method would promote the translation of carotid 3D US to clinical care for the fast, safety and economical monitoring of the atherosclerotic disease progression and regression during therapy.

  18. 3D+t brain MRI segmentation using robust 4D Hidden Markov Chain.

    PubMed

    Lavigne, François; Collet, Christophe; Armspach, Jean-Paul

    2014-01-01

    In recent years many automatic methods have been developed to help physicians diagnose brain disorders, but the problem remains complex. In this paper we propose a method to segment brain structures on two 3D multi-modal MR images taken at different times (longitudinal acquisition). A bias field correction is performed with an adaptation of the Hidden Markov Chain (HMC) allowing us to take into account the temporal correlation in addition to spatial neighbourhood information. To improve the robustness of the segmentation of the principal brain structures and to detect Multiple Sclerosis Lesions as outliers the Trimmed Likelihood Estimator (TLE) is used during the process. The method is validated on 3D+t brain MR images. PMID:25571045

  19. Intuitive Terrain Reconstruction Using Height Observation-Based Ground Segmentation and 3D Object Boundary Estimation

    PubMed Central

    Song, Wei; Cho, Kyungeun; Um, Kyhyun; Won, Chee Sun; Sim, Sungdae

    2012-01-01

    Mobile robot operators must make rapid decisions based on information about the robot’s surrounding environment. This means that terrain modeling and photorealistic visualization are required for the remote operation of mobile robots. We have produced a voxel map and textured mesh from the 2D and 3D datasets collected by a robot’s array of sensors, but some upper parts of objects are beyond the sensors’ measurements and these parts are missing in the terrain reconstruction result. This result is an incomplete terrain model. To solve this problem, we present a new ground segmentation method to detect non-ground data in the reconstructed voxel map. Our method uses height histograms to estimate the ground height range, and a Gibbs-Markov random field model to refine the segmentation results. To reconstruct a complete terrain model of the 3D environment, we develop a 3D boundary estimation method for non-ground objects. We apply a boundary detection technique to the 2D image, before estimating and refining the actual height values of the non-ground vertices in the reconstructed textured mesh. Our proposed methods were tested in an outdoor environment in which trees and buildings were not completely sensed. Our results show that the time required for ground segmentation is faster than that for data sensing, which is necessary for a real-time approach. In addition, those parts of objects that were not sensed are accurately recovered to retrieve their real-world appearances. PMID:23235454

  20. Intuitive terrain reconstruction using height observation-based ground segmentation and 3D object boundary estimation.

    PubMed

    Song, Wei; Cho, Kyungeun; Um, Kyhyun; Won, Chee Sun; Sim, Sungdae

    2012-01-01

    Mobile robot operators must make rapid decisions based on information about the robot's surrounding environment. This means that terrain modeling and photorealistic visualization are required for the remote operation of mobile robots. We have produced a voxel map and textured mesh from the 2D and 3D datasets collected by a robot's array of sensors, but some upper parts of objects are beyond the sensors' measurements and these parts are missing in the terrain reconstruction result. This result is an incomplete terrain model. To solve this problem, we present a new ground segmentation method to detect non-ground data in the reconstructed voxel map. Our method uses height histograms to estimate the ground height range, and a Gibbs-Markov random field model to refine the segmentation results. To reconstruct a complete terrain model of the 3D environment, we develop a 3D boundary estimation method for non-ground objects. We apply a boundary detection technique to the 2D image, before estimating and refining the actual height values of the non-ground vertices in the reconstructed textured mesh. Our proposed methods were tested in an outdoor environment in which trees and buildings were not completely sensed. Our results show that the time required for ground segmentation is faster than that for data sensing, which is necessary for a real-time approach. In addition, those parts of objects that were not sensed are accurately recovered to retrieve their real-world appearances. PMID:23235454

  1. Automatic 2D and 3D segmentation of liver from Computerised Tomography

    NASA Astrophysics Data System (ADS)

    Evans, Alun

    As part of the diagnosis of liver disease, a Computerised Tomography (CT) scan is taken of the patient, which the clinician then uses for assistance in determining the presence and extent of the disease. This thesis presents the background, methodology, results and future work of a project that employs automated methods to segment liver tissue. The clinical motivation behind this work is the desire to facilitate the diagnosis of liver disease such as cirrhosis or cancer, assist in volume determination for liver transplantation, and possibly assist in measuring the effect of any treatment given to the liver. Previous attempts at automatic segmentation of liver tissue have relied on 2D, low-level segmentation techniques, such as thresholding and mathematical morphology, to obtain the basic liver structure. The derived boundary can then be smoothed or refined using more advanced methods. The 2D results presented in this thesis improve greatly on this previous work by using a topology adaptive active contour model to accurately segment liver tissue from CT images. The use of conventional snakes for liver segmentation is difficult due to the presence of other organs closely surrounding the liver this new technique avoids this problem by adding an inflationary force to the basic snake equation, and initialising the snake inside the liver. The concepts underlying the 2D technique are extended to 3D, and results of full 3D segmentation of the liver are presented. The 3D technique makes use of an inflationary active surface model which is adaptively reparameterised, according to its size and local curvature, in order that it may more accurately segment the organ. Statistical analysis of the accuracy of the segmentation is presented for 18 healthy liver datasets, and results of the segmentation of unhealthy livers are also shown. The novel work developed during the course of this project has possibilities for use in other areas of medical imaging research, for example the

  2. 3D MRI brain image segmentation based on region restricted EM algorithm

    NASA Astrophysics Data System (ADS)

    Li, Zhong; Fan, Jianping

    2008-03-01

    This paper presents a novel algorithm of 3D human brain tissue segmentation and classification in magnetic resonance image (MRI) based on region restricted EM algorithm (RREM). The RREM is a level set segmentation method while the evolution of the contours was driven by the force field composed by the probability density functions of the Gaussian models. Each tissue is modeled by one or more Gaussian models restricted by free shaped contour so that the Gaussian models are adaptive to the local intensities. The RREM is guaranteed to be convergency and achieving the local minimum. The segmentation avoids to be trapped in the local minimum by the split and merge operation. A fuzzy rule based classifier finally groups the regions belonging to the same tissue and forms the segmented 3D image of white matter (WM) and gray matter (GM) which are of major interest in numerous applications. The presented method can be extended to segment brain images with tumor or the images having part of the brain removed with the adjusted classifier.

  3. Segmentation of Image Data from Complex Organotypic 3D Models of Cancer Tissues with Markov Random Fields

    PubMed Central

    Robinson, Sean; Guyon, Laurent; Nevalainen, Jaakko; Toriseva, Mervi

    2015-01-01

    Organotypic, three dimensional (3D) cell culture models of epithelial tumour types such as prostate cancer recapitulate key aspects of the architecture and histology of solid cancers. Morphometric analysis of multicellular 3D organoids is particularly important when additional components such as the extracellular matrix and tumour microenvironment are included in the model. The complexity of such models has so far limited their successful implementation. There is a great need for automatic, accurate and robust image segmentation tools to facilitate the analysis of such biologically relevant 3D cell culture models. We present a segmentation method based on Markov random fields (MRFs) and illustrate our method using 3D stack image data from an organotypic 3D model of prostate cancer cells co-cultured with cancer-associated fibroblasts (CAFs). The 3D segmentation output suggests that these cell types are in physical contact with each other within the model, which has important implications for tumour biology. Segmentation performance is quantified using ground truth labels and we show how each step of our method increases segmentation accuracy. We provide the ground truth labels along with the image data and code. Using independent image data we show that our segmentation method is also more generally applicable to other types of cellular microscopy and not only limited to fluorescence microscopy. PMID:26630674

  4. A universal approach for automatic organ segmentations on 3D CT images based on organ localization and 3D GrabCut

    NASA Astrophysics Data System (ADS)

    Zhou, Xiangrong; Ito, Takaaki; Zhou, Xinxin; Chen, Huayue; Hara, Takeshi; Yokoyama, Ryujiro; Kanematsu, Masayuki; Hoshi, Hiroaki; Fujita, Hiroshi

    2014-03-01

    This paper describes a universal approach to automatic segmentation of different internal organ and tissue regions in three-dimensional (3D) computerized tomography (CT) scans. The proposed approach combines object localization, a probabilistic atlas, and 3D GrabCut techniques to achieve automatic and quick segmentation. The proposed method first detects a tight 3D bounding box that contains the target organ region in CT images and then estimates the prior of each pixel inside the bounding box belonging to the organ region or background based on a dynamically generated probabilistic atlas. Finally, the target organ region is separated from the background by using an improved 3D GrabCut algorithm. A machine-learning method is used to train a detector to localize the 3D bounding box of the target organ using template matching on a selected feature space. A content-based image retrieval method is used for online generation of a patient-specific probabilistic atlas for the target organ based on a database. A 3D GrabCut algorithm is used for final organ segmentation by iteratively estimating the CT number distributions of the target organ and backgrounds using a graph-cuts algorithm. We applied this approach to localize and segment twelve major organ and tissue regions independently based on a database that includes 1300 torso CT scans. In our experiments, we randomly selected numerous CT scans and manually input nine principal types of inner organ regions for performance evaluation. Preliminary results showed the feasibility and efficiency of the proposed approach for addressing automatic organ segmentation issues on CT images.

  5. Segmentation and reconstruction of cerebral vessels from 3D rotational angiography for AVM embolization planning.

    PubMed

    Li, Fan; Chenoune, Yasmina; Ouenniche, Meriem; Blanc, Raphaël; Petit, Eric

    2014-01-01

    Diagnosis and computer-guided therapy of cerebral Arterio-Venous Malformations (AVM) require an accurate understanding of the cerebral vascular network both from structural and biomechanical point of view. We propose to obtain such information by analyzing three Dimensional Rotational Angiography (3DRA) images. In this paper, we describe a two-step process allowing 1) the 3D automatic segmentation of cerebral vessels from 3DRA images using a region-growing based algorithm and 2) the reconstruction of the segmented vessels using the 3D constrained Delaunay Triangulation method. The proposed algorithm was successfully applied to reconstruct cerebral blood vessels from ten datasets of 3DRA images. This software allows the neuroradiologist to separately analyze cerebral vessels for pre-operative interventions planning and therapeutic decision making. PMID:25571245

  6. Biview learning for human posture segmentation from 3D points cloud.

    PubMed

    Qiao, Maoying; Cheng, Jun; Bian, Wei; Tao, Dacheng

    2014-01-01

    Posture segmentation plays an essential role in human motion analysis. The state-of-the-art method extracts sufficiently high-dimensional features from 3D depth images for each 3D point and learns an efficient body part classifier. However, high-dimensional features are memory-consuming and difficult to handle on large-scale training dataset. In this paper, we propose an efficient two-stage dimension reduction scheme, termed biview learning, to encode two independent views which are depth-difference features (DDF) and relative position features (RPF). Biview learning explores the complementary property of DDF and RPF, and uses two stages to learn a compact yet comprehensive low-dimensional feature space for posture segmentation. In the first stage, discriminative locality alignment (DLA) is applied to the high-dimensional DDF to learn a discriminative low-dimensional representation. In the second stage, canonical correlation analysis (CCA) is used to explore the complementary property of RPF and the dimensionality reduced DDF. Finally, we train a support vector machine (SVM) over the output of CCA. We carefully validate the effectiveness of DLA and CCA utilized in the two-stage scheme on our 3D human points cloud dataset. Experimental results show that the proposed biview learning scheme significantly outperforms the state-of-the-art method for human posture segmentation. PMID:24465721

  7. Automated Segmentation of the Right Ventricle in 3D Echocardiography: A Kalman Filter State Estimation Approach.

    PubMed

    Bersvendsen, Jorn; Orderud, Fredrik; Massey, Richard John; Fosså, Kristian; Gerard, Olivier; Urheim, Stig; Samset, Eigil

    2016-01-01

    As the right ventricle's (RV) role in cardiovascular diseases is being more widely recognized, interest in RV imaging, function and quantification is growing. However, there are currently few RV quantification methods for 3D echocardiography presented in the literature or commercially available. In this paper we propose an automated RV segmentation method for 3D echocardiographic images. We represent the RV geometry by a Doo-Sabin subdivision surface with deformation modes derived from a training set of manual segmentations. The segmentation is then represented as a state estimation problem and solved with an extended Kalman filter by combining the RV geometry with a motion model and edge detection. Validation was performed by comparing surface-surface distances, volumes and ejection fractions in 17 patients with aortic insufficiency between the proposed method, magnetic resonance imaging (MRI), and a manual echocardiographic reference. The algorithm was efficient with a mean computation time of 2.0 s. The mean absolute distances between the proposed and manual segmentations were 3.6 ± 0.7 mm. Good agreements of end diastolic volume, end systolic volume and ejection fraction with respect to MRI ( -26±24 mL , -16±26 mL and 0 ± 10%, respectively) and a manual echocardiographic reference (7 ± 30 mL, 13 ± 17 mL and -5±7% , respectively) were observed. PMID:26168434

  8. Parallel graph search: application to intraretinal layer segmentation of 3D macular OCT scans

    NASA Astrophysics Data System (ADS)

    Lee, Kyungmoo; Abràmoff, Michael D.; Garvin, Mona K.; Sonka, Milan

    2012-02-01

    Image segmentation is of paramount importance for quantitative analysis of medical image data. Recently, a 3-D graph search method which can detect globally optimal interacting surfaces with respect to the cost function of volumetric images has been introduced, and its utility demonstrated in several application areas. Although the method provides excellent segmentation accuracy, its limitation is a slow processing speed when many surfaces are simultaneously segmented in large volumetric datasets. Here, we propose a novel method of parallel graph search, which overcomes the limitation and allows the quick detection of multiple surfaces. To demonstrate the obtained performance with respect to segmentation accuracy and processing speedup, the new approach was applied to retinal optical coherence tomography (OCT) image data and compared with the performance of the former non-parallel method. Our parallel graph search methods for single and double surface detection are approximately 267 and 181 times faster than the original graph search approach in 5 macular OCT volumes (200 x 5 x 1024 voxels) acquired from the right eyes of 5 normal subjects. The resulting segmentation differences were small as demonstrated by the mean unsigned differences between the non-parallel and parallel methods of 0.0 +/- 0.0 voxels (0.0 +/- 0.0 μm) and 0.27 +/- 0.34 voxels (0.53 +/- 0.66 μm) for the single- and dual-surface approaches, respectively.

  9. Differential and relaxed image foresting transform for graph-cut segmentation of multiple 3D objects.

    PubMed

    Moya, Nikolas; Falcão, Alexandre X; Ciesielski, Krzysztof C; Udupa, Jayaram K

    2014-01-01

    Graph-cut algorithms have been extensively investigated for interactive binary segmentation, when the simultaneous delineation of multiple objects can save considerable user's time. We present an algorithm (named DRIFT) for 3D multiple object segmentation based on seed voxels and Differential Image Foresting Transforms (DIFTs) with relaxation. DRIFT stands behind efficient implementations of some state-of-the-art methods. The user can add/remove markers (seed voxels) along a sequence of executions of the DRIFT algorithm to improve segmentation. Its first execution takes linear time with the image's size, while the subsequent executions for corrections take sublinear time in practice. At each execution, DRIFT first runs the DIFT algorithm, then it applies diffusion filtering to smooth boundaries between objects (and background) and, finally, it corrects possible objects' disconnection occurrences with respect to their seeds. We evaluate DRIFT in 3D CT-images of the thorax for segmenting the arterial system, esophagus, left pleural cavity, right pleural cavity, trachea and bronchi, and the venous system. PMID:25333179

  10. Bayesian Segmentation of Atrium Wall Using Globally-Optimal Graph Cuts on 3D Meshes

    PubMed Central

    Veni, Gopalkrishna; Fu, Zhisong; Awate, Suyash P.; Whitaker, Ross T.

    2014-01-01

    Efficient segmentation of the left atrium (LA) wall from delayed enhancement MRI is challenging due to inconsistent contrast, combined with noise, and high variation in atrial shape and size. We present a surface-detection method that is capable of extracting the atrial wall by computing an optimal a-posteriori estimate. This estimation is done on a set of nested meshes, constructed from an ensemble of segmented training images, and graph cuts on an associated multi-column, proper-ordered graph. The graph/mesh is a part of a template/model that has an associated set of learned intensity features. When this mesh is overlaid onto a test image, it produces a set of costs which lead to an optimal segmentation. The 3D mesh has an associated weighted, directed multi-column graph with edges that encode smoothness and inter-surface penalties. Unlike previous graph-cut methods that impose hard constraints on the surface properties, the proposed method follows from a Bayesian formulation resulting in soft penalties on spatial variation of the cuts through the mesh. The novelty of this method also lies in the construction of proper-ordered graphs on complex shapes for choosing among distinct classes of base shapes for automatic LA segmentation. We evaluate the proposed segmentation framework on simulated and clinical cardiac MRI. PMID:24684007

  11. Atlas-registration based image segmentation of MRI human thigh muscles in 3D space

    NASA Astrophysics Data System (ADS)

    Ahmad, Ezak; Yap, Moi Hoon; Degens, Hans; McPhee, Jamie S.

    2014-03-01

    Automatic segmentation of anatomic structures of magnetic resonance thigh scans can be a challenging task due to the potential lack of precisely defined muscle boundaries and issues related to intensity inhomogeneity or bias field across an image. In this paper, we demonstrate a combination framework of atlas construction and image registration methods to propagate the desired region of interest (ROI) between atlas image and the targeted MRI thigh scans for quadriceps muscles, femur cortical layer and bone marrow segmentations. The proposed system employs a semi-automatic segmentation method on an initial image in one dataset (from a series of images). The segmented initial image is then used as an atlas image to automate the segmentation of other images in the MRI scans (3-D space). The processes include: ROI labeling, atlas construction and registration, and morphological transform correspondence pixels (in terms of feature and intensity value) between the atlas (template) image and the targeted image based on the prior atlas information and non-rigid image registration methods.

  12. Segmentation of vascular structures and hematopoietic cells in 3D microscopy images and quantitative analysis

    NASA Astrophysics Data System (ADS)

    Mu, Jian; Yang, Lin; Kamocka, Malgorzata M.; Zollman, Amy L.; Carlesso, Nadia; Chen, Danny Z.

    2015-03-01

    In this paper, we present image processing methods for quantitative study of how the bone marrow microenvironment changes (characterized by altered vascular structure and hematopoietic cell distribution) caused by diseases or various factors. We develop algorithms that automatically segment vascular structures and hematopoietic cells in 3-D microscopy images, perform quantitative analysis of the properties of the segmented vascular structures and cells, and examine how such properties change. In processing images, we apply local thresholding to segment vessels, and add post-processing steps to deal with imaging artifacts. We propose an improved watershed algorithm that relies on both intensity and shape information and can separate multiple overlapping cells better than common watershed methods. We then quantitatively compute various features of the vascular structures and hematopoietic cells, such as the branches and sizes of vessels and the distribution of cells. In analyzing vascular properties, we provide algorithms for pruning fake vessel segments and branches based on vessel skeletons. Our algorithms can segment vascular structures and hematopoietic cells with good quality. We use our methods to quantitatively examine the changes in the bone marrow microenvironment caused by the deletion of Notch pathway. Our quantitative analysis reveals property changes in samples with deleted Notch pathway. Our tool is useful for biologists to quantitatively measure changes in the bone marrow microenvironment, for developing possible therapeutic strategies to help the bone marrow microenvironment recovery.

  13. 3-D segmentation and quantitative analysis of inner and outer walls of thrombotic abdominal aortic aneurysms

    NASA Astrophysics Data System (ADS)

    Lee, Kyungmoo; Yin, Yin; Wahle, Andreas; Olszewski, Mark E.; Sonka, Milan

    2008-03-01

    An abdominal aortic aneurysm (AAA) is an area of a localized widening of the abdominal aorta, with a frequent presence of thrombus. A ruptured aneurysm can cause death due to severe internal bleeding. AAA thrombus segmentation and quantitative analysis are of paramount importance for diagnosis, risk assessment, and determination of treatment options. Until now, only a small number of methods for thrombus segmentation and analysis have been presented in the literature, either requiring substantial user interaction or exhibiting insufficient performance. We report a novel method offering minimal user interaction and high accuracy. Our thrombus segmentation method is composed of an initial automated luminal surface segmentation, followed by a cost function-based optimal segmentation of the inner and outer surfaces of the aortic wall. The approach utilizes the power and flexibility of the optimal triangle mesh-based 3-D graph search method, in which cost functions for thrombus inner and outer surfaces are based on gradient magnitudes. Sometimes local failures caused by image ambiguity occur, in which case several control points are used to guide the computer segmentation without the need to trace borders manually. Our method was tested in 9 MDCT image datasets (951 image slices). With the exception of a case in which the thrombus was highly eccentric, visually acceptable aortic lumen and thrombus segmentation results were achieved. No user interaction was used in 3 out of 8 datasets, and 7.80 +/- 2.71 mouse clicks per case / 0.083 +/- 0.035 mouse clicks per image slice were required in the remaining 5 datasets.

  14. A 3D Contact Smoothing Method

    SciTech Connect

    Puso, M A; Laursen, T A

    2002-05-02

    Smoothing of contact surfaces can be used to eliminate the chatter typically seen with node on facet contact and give a better representation of the actual contact surface. The latter affect is well demonstrated for problems with interference fits. In this work we present two methods for the smoothing of contact surfaces for 3D finite element contact. In the first method, we employ Gregory patches to smooth the faceted surface in a node on facet implementation. In the second method, we employ a Bezier interpolation of the faceted surface in a mortar method implementation of contact. As is well known, node on facet approaches can exhibit locking due to the failure of the Babuska-Brezzi condition and in some instances fail the patch test. The mortar method implementation is stable and provides optimal convergence in the energy of error. In the this work we demonstrate the superiority of the smoothed versus the non-smoothed node on facet implementations. We also show where the node on facet method fails and some results from the smoothed mortar method implementation.

  15. Multivariate statistical analysis as a tool for the segmentation of 3D spectral data.

    PubMed

    Lucas, G; Burdet, P; Cantoni, M; Hébert, C

    2013-01-01

    Acquisition of three-dimensional (3D) spectral data is nowadays common using many different microanalytical techniques. In order to proceed to the 3D reconstruction, data processing is necessary not only to deal with noisy acquisitions but also to segment the data in term of chemical composition. In this article, we demonstrate the value of multivariate statistical analysis (MSA) methods for this purpose, allowing fast and reliable results. Using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) coupled with a focused ion beam (FIB), a stack of spectrum images have been acquired on a sample produced by laser welding of a nickel-titanium wire and a stainless steel wire presenting a complex microstructure. These data have been analyzed using principal component analysis (PCA) and factor rotations. PCA allows to significantly improve the overall quality of the data, but produces abstract components. Here it is shown that rotated components can be used without prior knowledge of the sample to help the interpretation of the data, obtaining quickly qualitative mappings representative of elements or compounds found in the material. Such abundance maps can then be used to plot scatter diagrams and interactively identify the different domains in presence by defining clusters of voxels having similar compositions. Identified voxels are advantageously overlaid on secondary electron (SE) images with higher resolution in order to refine the segmentation. The 3D reconstruction can then be performed using available commercial softwares on the basis of the provided segmentation. To asses the quality of the segmentation, the results have been compared to an EDX quantification performed on the same data. PMID:24035679

  16. Segmentation of 3D holographic images using bivariate jointly distributed region snake

    NASA Astrophysics Data System (ADS)

    Daneshpanah, Mehdi; Javidi, Bahram

    2006-06-01

    In this paper, we describe the bivariate jointly distributed region snake method in segmentation of microorganisms in Single Exposure On- Line (SEOL) holographic microscopy images. 3D images of the microorganisms are digitally reconstructed and numerically focused from any arbitrary depth from a single recorded digital hologram without mechanical scanning. Living organisms are non-rigid and they vary in shape and size. Moreover, they often do not exhibit clear edges in digitally reconstructed SEOL holographic images. Thus, conventional segmentation techniques based on the edge map may fail to segment these images. However, SEOL holographic microscopy provides both magnitude and phase information of the sample specimen, which could be helpful in the segmentation process. In this paper, we present a statistical framework based on the joint probability distribution of magnitude and phase information of SEOL holographic microscopy images and maximum likelihood estimation of image probability density function parameters. An optimization criterion is computed by maximizing the likelihood function of the target support hypothesis. In addition, a simple stochastic algorithm has been adapted for carrying out the optimization, while several boosting techniques have been employed to enhance its performance. Finally, the proposed method is applied for segmentation of biological microorganisms in SEOL holographic images and the experimental results are presented.

  17. Preliminary results in large bone segmentation from 3D freehand ultrasound

    NASA Astrophysics Data System (ADS)

    Fanti, Zian; Torres, Fabian; Arámbula Cosío, Fernando

    2013-11-01

    Computer Assisted Orthopedic Surgery (CAOS) requires a correct registration between the patient in the operating room and the virtual models representing the patient in the computer. In order to increase the precision and accuracy of the registration a set of new techniques that eliminated the need to use fiducial markers have been developed. The majority of these newly developed registration systems are based on costly intraoperative imaging systems like Computed Tomography (CT scan) or Magnetic resonance imaging (MRI). An alternative to these methods is the use of an Ultrasound (US) imaging system for the implementation of a more cost efficient intraoperative registration solution. In order to develop the registration solution with the US imaging system, the bone surface is segmented in both preoperative and intraoperative images, and the registration is done using the acquire surface. In this paper, we present the a preliminary results of a new approach to segment bone surface from ultrasound volumes acquired by means 3D freehand ultrasound. The method is based on the enhancement of the voxels that belongs to surface and its posterior segmentation. The enhancement process is based on the information provided by eigenanalisis of the multiscale 3D Hessian matrix. The preliminary results shows that from the enhance volume the final bone surfaces can be extracted using a singular value thresholding.

  18. Semi-automatic 3D segmentation of costal cartilage in CT data from Pectus Excavatum patients

    NASA Astrophysics Data System (ADS)

    Barbosa, Daniel; Queirós, Sandro; Rodrigues, Nuno; Correia-Pinto, Jorge; Vilaça, J.

    2015-03-01

    One of the current frontiers in the clinical management of Pectus Excavatum (PE) patients is the prediction of the surgical outcome prior to the intervention. This can be done through computerized simulation of the Nuss procedure, which requires an anatomically correct representation of the costal cartilage. To this end, we take advantage of the costal cartilage tubular structure to detect it through multi-scale vesselness filtering. This information is then used in an interactive 2D initialization procedure which uses anatomical maximum intensity projections of 3D vesselness feature images to efficiently initialize the 3D segmentation process. We identify the cartilage tissue centerlines in these projected 2D images using a livewire approach. We finally refine the 3D cartilage surface through region-based sparse field level-sets. We have tested the proposed algorithm in 6 noncontrast CT datasets from PE patients. A good segmentation performance was found against reference manual contouring, with an average Dice coefficient of 0.75±0.04 and an average mean surface distance of 1.69+/-0.30mm. The proposed method requires roughly 1 minute for the interactive initialization step, which can positively contribute to an extended use of this tool in clinical practice, since current manual delineation of the costal cartilage can take up to an hour.

  19. Novel multiresolution mammographic density segmentation using pseudo 3D features and adaptive cluster merging

    NASA Astrophysics Data System (ADS)

    He, Wenda; Juette, Arne; Denton, Erica R. E.; Zwiggelaar, Reyer

    2015-03-01

    Breast cancer is the most frequently diagnosed cancer in women. Early detection, precise identification of women at risk, and application of appropriate disease prevention measures are by far the most effective ways to overcome the disease. Successful mammographic density segmentation is a key aspect in deriving correct tissue composition, ensuring an accurate mammographic risk assessment. However, mammographic densities have not yet been fully incorporated with non-image based risk prediction models, (e.g. the Gail and the Tyrer-Cuzick model), because of unreliable segmentation consistency and accuracy. This paper presents a novel multiresolution mammographic density segmentation, a concept of stack representation is proposed, and 3D texture features were extracted by adapting techniques based on classic 2D first-order statistics. An unsupervised clustering technique was employed to achieve mammographic segmentation, in which two improvements were made; 1) consistent segmentation by incorporating an optimal centroids initialisation step, and 2) significantly reduced the number of missegmentation by using an adaptive cluster merging technique. A set of full field digital mammograms was used in the evaluation. Visual assessment indicated substantial improvement on segmented anatomical structures and tissue specific areas, especially in low mammographic density categories. The developed method demonstrated an ability to improve the quality of mammographic segmentation via clustering, and results indicated an improvement of 26% in segmented image with good quality when compared with the standard clustering approach. This in turn can be found useful in early breast cancer detection, risk-stratified screening, and aiding radiologists in the process of decision making prior to surgery and/or treatment.

  20. TU-F-BRF-06: 3D Pancreas MRI Segmentation Using Dictionary Learning and Manifold Clustering

    SciTech Connect

    Gou, S; Rapacchi, S; Hu, P; Sheng, K

    2014-06-15

    Purpose: The recent advent of MRI guided radiotherapy machines has lent an exciting platform for soft tissue target localization during treatment. However, tools to efficiently utilize MRI images for such purpose have not been developed. Specifically, to efficiently quantify the organ motion, we develop an automated segmentation method using dictionary learning and manifold clustering (DLMC). Methods: Fast 3D HASTE and VIBE MR images of 2 healthy volunteers and 3 patients were acquired. A bounding box was defined to include pancreas and surrounding normal organs including the liver, duodenum and stomach. The first slice of the MRI was used for dictionary learning based on mean-shift clustering and K-SVD sparse representation. Subsequent images were iteratively reconstructed until the error is less than a preset threshold. The preliminarily segmentation was subject to the constraints of manifold clustering. The segmentation results were compared with the mean shift merging (MSM), level set (LS) and manual segmentation methods. Results: DLMC resulted in consistently higher accuracy and robustness than comparing methods. Using manual contours as the ground truth, the mean Dices indices for all subjects are 0.54, 0.56 and 0.67 for MSM, LS and DLMC, respectively based on the HASTE image. The mean Dices indices are 0.70, 0.77 and 0.79 for the three methods based on VIBE images. DLMC is clearly more robust on the patients with the diseased pancreas while LS and MSM tend to over-segment the pancreas. DLMC also achieved higher sensitivity (0.80) and specificity (0.99) combining both imaging techniques. LS achieved equivalent sensitivity on VIBE images but was more computationally inefficient. Conclusion: We showed that pancreas and surrounding normal organs can be reliably segmented based on fast MRI using DLMC. This method will facilitate both planning volume definition and imaging guidance during treatment.

  1. Automatic segmentation of bladder and prostate using coupled 3D deformable models.

    PubMed

    Costa, María Jimena; Delingette, Hervé; Novellas, Sébastien; Ayache, Nicholas

    2007-01-01

    In this paper, we propose a fully automatic method for the coupled 3D localization and segmentation of lower abdomen structures. We apply it to the joint segmentation of the prostate and bladder in a database of CT scans of the lower abdomen of male patients. A flexible approach on the bladder allows the process to easily adapt to high shape variation and to intensity inhomogeneities that would be hard to characterize (due, for example, to the level of contrast agent that is present). On the other hand, a statistical shape prior is enforced on the prostate. We also propose an adaptive non-overlapping constraint that arbitrates the evolution of both structures based on the availability of strong image data at their common boundary. The method has been tested on a database of 16 volumetric images, and the validation process includes an assessment of inter-expert variability in prostate delineation, with promising results. PMID:18051066

  2. Using 3-D shape models to guide segmentation of MR brain images.

    PubMed Central

    Hinshaw, K. P.; Brinkley, J. F.

    1997-01-01

    Accurate segmentation of medical images poses one of the major challenges in computer vision. Approaches that rely solely on intensity information frequently fail because similar intensity values appear in multiple structures. This paper presents a method for using shape knowledge to guide the segmentation process, applying it to the task of finding the surface of the brain. A 3-D model that includes local shape constraints is fitted to an MR volume dataset. The resulting low-resolution surface is used to mask out regions far from the cortical surface, enabling an isosurface extraction algorithm to isolate a more detailed surface boundary. The surfaces generated by this technique are comparable to those achieved by other methods, without requiring user adjustment of a large number of ad hoc parameters. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:9357670

  3. 3D liver segmentation using multiple region appearances and graph cuts

    SciTech Connect

    Peng, Jialin Zhang, Hongbo; Hu, Peijun; Lu, Fang; Kong, Dexing; Peng, Zhiyi

    2015-12-15

    Purpose: Efficient and accurate 3D liver segmentations from contrast-enhanced computed tomography (CT) images play an important role in therapeutic strategies for hepatic diseases. However, inhomogeneous appearances, ambiguous boundaries, and large variance in shape often make it a challenging task. The existence of liver abnormalities poses further difficulty. Despite the significant intensity difference, liver tumors should be segmented as part of the liver. This study aims to address these challenges, especially when the target livers contain subregions with distinct appearances. Methods: The authors propose a novel multiregion-appearance based approach with graph cuts to delineate the liver surface. For livers with multiple subregions, a geodesic distance based appearance selection scheme is introduced to utilize proper appearance constraint for each subregion. A special case of the proposed method, which uses only one appearance constraint to segment the liver, is also presented. The segmentation process is modeled with energy functions incorporating both boundary and region information. Rather than a simple fixed combination, an adaptive balancing weight is introduced and learned from training sets. The proposed method only calls initialization inside the liver surface. No additional constraints from user interaction are utilized. Results: The proposed method was validated on 50 3D CT images from three datasets, i.e., Medical Image Computing and Computer Assisted Intervention (MICCAI) training and testing set, and local dataset. On MICCAI testing set, the proposed method achieved a total score of 83.4 ± 3.1, outperforming nonexpert manual segmentation (average score of 75.0). When applying their method to MICCAI training set and local dataset, it yielded a mean Dice similarity coefficient (DSC) of 97.7% ± 0.5% and 97.5% ± 0.4%, respectively. These results demonstrated the accuracy of the method when applied to different computed tomography (CT) datasets

  4. Segmentation of 3D radio frequency echocardiography using a spatio-temporal predictor.

    PubMed

    Pearlman, P C; Tagare, H D; Lin, B A; Sinusas, A J; Duncan, J S

    2012-02-01

    This paper presents an algorithm for segmenting left ventricular endocardial boundaries from RF ultrasound. Our method incorporates a computationally efficient linear predictor that exploits short-term spatio-temporal coherence in the RF data. Segmentation is achieved jointly using an independent identically distributed (i.i.d.) spatial model for RF intensity and a multiframe conditional model that relates neighboring frames in the image sequence. Segmentation using the RF data overcomes challenges due to image inhomogeneities often amplified in B-mode segmentation and provides geometric constraints for RF phase-based speckle tracking. The incorporation of multiple frames in the conditional model significantly increases the robustness and accuracy of the algorithm. Results are generated using between 2 and 5 frames of RF data for each segmentation and are validated by comparison with manual tracings and automated B-mode boundary detection using standard (Chan and Vese-based) level sets on echocardiographic images from 27 3D sequences acquired from six canine studies. PMID:22078842

  5. Swarm Intelligence Integrated Graph-Cut for Liver Segmentation from 3D-CT Volumes

    PubMed Central

    Eapen, Maya; Korah, Reeba; Geetha, G.

    2015-01-01

    The segmentation of organs in CT volumes is a prerequisite for diagnosis and treatment planning. In this paper, we focus on liver segmentation from contrast-enhanced abdominal CT volumes, a challenging task due to intensity overlapping, blurred edges, large variability in liver shape, and complex background with cluttered features. The algorithm integrates multidiscriminative cues (i.e., prior domain information, intensity model, and regional characteristics of liver in a graph-cut image segmentation framework). The paper proposes a swarm intelligence inspired edge-adaptive weight function for regulating the energy minimization of the traditional graph-cut model. The model is validated both qualitatively (by clinicians and radiologists) and quantitatively on publically available computed tomography (CT) datasets (MICCAI 2007 liver segmentation challenge, 3D-IRCAD). Quantitative evaluation of segmentation results is performed using liver volume calculations and a mean score of 80.8% and 82.5% on MICCAI and IRCAD dataset, respectively, is obtained. The experimental result illustrates the efficiency and effectiveness of the proposed method. PMID:26689833

  6. A Segmentation Algorithm for X-ray 3D Angiography and Vessel Catheterization

    SciTech Connect

    Franchi, Danilo; Rosa, Luigi; Placidi, Giuseppe

    2008-11-06

    Vessel Catheterization is a clinical procedure usually performed by a specialist by means of X-ray fluoroscopic guide with contrast-media. In the present paper, we present a simple and efficient algorithm for vessel segmentation which allows vessel separation and extraction from the background (noise and signal coming from other organs). This would reduce the number of projections (X-ray scans) to reconstruct a complete and accurate 3D vascular model and the radiological risk, in particular for the patient. In what follows, the algorithm is described and some preliminary experimental results are reported illustrating the behaviour of the proposed method.

  7. Automated bone segmentation from large field of view 3D MR images of the hip joint.

    PubMed

    Xia, Ying; Fripp, Jurgen; Chandra, Shekhar S; Schwarz, Raphael; Engstrom, Craig; Crozier, Stuart

    2013-10-21

    Accurate bone segmentation in the hip joint region from magnetic resonance (MR) images can provide quantitative data for examining pathoanatomical conditions such as femoroacetabular impingement through to varying stages of osteoarthritis to monitor bone and associated cartilage morphometry. We evaluate two state-of-the-art methods (multi-atlas and active shape model (ASM) approaches) on bilateral MR images for automatic 3D bone segmentation in the hip region (proximal femur and innominate bone). Bilateral MR images of the hip joints were acquired at 3T from 30 volunteers. Image sequences included water-excitation dual echo stead state (FOV 38.6 × 24.1 cm, matrix 576 × 360, thickness 0.61 mm) in all subjects and multi-echo data image combination (FOV 37.6 × 23.5 cm, matrix 576 × 360, thickness 0.70 mm) for a subset of eight subjects. Following manual segmentation of femoral (head-neck, proximal-shaft) and innominate (ilium+ischium+pubis) bone, automated bone segmentation proceeded via two approaches: (1) multi-atlas segmentation incorporating non-rigid registration and (2) an advanced ASM-based scheme. Mean inter- and intra-rater reliability Dice's similarity coefficients (DSC) for manual segmentation of femoral and innominate bone were (0.970, 0.963) and (0.971, 0.965). Compared with manual data, mean DSC values for femoral and innominate bone volumes using automated multi-atlas and ASM-based methods were (0.950, 0.922) and (0.946, 0.917), respectively. Both approaches delivered accurate (high DSC values) segmentation results; notably, ASM data were generated in substantially less computational time (12 min versus 10 h). Both automated algorithms provided accurate 3D bone volumetric descriptions for MR-based measures in the hip region. The highly computational efficient ASM-based approach is more likely suitable for future clinical applications such as extracting bone-cartilage interfaces for potential cartilage segmentation. PMID:24077264

  8. Automated bone segmentation from large field of view 3D MR images of the hip joint

    NASA Astrophysics Data System (ADS)

    Xia, Ying; Fripp, Jurgen; Chandra, Shekhar S.; Schwarz, Raphael; Engstrom, Craig; Crozier, Stuart

    2013-10-01

    Accurate bone segmentation in the hip joint region from magnetic resonance (MR) images can provide quantitative data for examining pathoanatomical conditions such as femoroacetabular impingement through to varying stages of osteoarthritis to monitor bone and associated cartilage morphometry. We evaluate two state-of-the-art methods (multi-atlas and active shape model (ASM) approaches) on bilateral MR images for automatic 3D bone segmentation in the hip region (proximal femur and innominate bone). Bilateral MR images of the hip joints were acquired at 3T from 30 volunteers. Image sequences included water-excitation dual echo stead state (FOV 38.6 × 24.1 cm, matrix 576 × 360, thickness 0.61 mm) in all subjects and multi-echo data image combination (FOV 37.6 × 23.5 cm, matrix 576 × 360, thickness 0.70 mm) for a subset of eight subjects. Following manual segmentation of femoral (head-neck, proximal-shaft) and innominate (ilium+ischium+pubis) bone, automated bone segmentation proceeded via two approaches: (1) multi-atlas segmentation incorporating non-rigid registration and (2) an advanced ASM-based scheme. Mean inter- and intra-rater reliability Dice's similarity coefficients (DSC) for manual segmentation of femoral and innominate bone were (0.970, 0.963) and (0.971, 0.965). Compared with manual data, mean DSC values for femoral and innominate bone volumes using automated multi-atlas and ASM-based methods were (0.950, 0.922) and (0.946, 0.917), respectively. Both approaches delivered accurate (high DSC values) segmentation results; notably, ASM data were generated in substantially less computational time (12 min versus 10 h). Both automated algorithms provided accurate 3D bone volumetric descriptions for MR-based measures in the hip region. The highly computational efficient ASM-based approach is more likely suitable for future clinical applications such as extracting bone-cartilage interfaces for potential cartilage segmentation.

  9. SPASM: a 3D-ASM for segmentation of sparse and arbitrarily oriented cardiac MRI data.

    PubMed

    van Assen, Hans C; Danilouchkine, Mikhail G; Frangi, Alejandro F; Ordás, Sebastián; Westenberg, Jos J M; Reiber, Johan H C; Lelieveldt, Boudewijn P F

    2006-04-01

    A new technique (SPASM) based on a 3D-ASM is presented for automatic segmentation of cardiac MRI image data sets consisting of multiple planes with arbitrary orientations, and with large undersampled regions. Model landmark positions are updated in a two-stage iterative process. First, landmark positions close to intersections with images are updated. Second, the update information is propagated to the regions without image information, such that new locations for the whole set of the model landmarks are obtained. Feature point detection is performed by a fuzzy inference system, based on fuzzy C-means clustering. Model parameters were optimized on a computer cluster and the computational load distributed by grid computing. SPASM was applied to image data sets with an increasing sparsity (from 2 to 11 slices) comprising images with different orientations and stemming from different MRI acquisition protocols. Segmentation outcomes and calculated volumes were compared to manual segmentation on a dense short-axis data configuration in a 3D manner. For all data configurations, (sub-)pixel accuracy was achieved. Performance differences between data configurations were significantly different (p<0.05) for SA data sets with less than 6 slices, but not clinically relevant (volume differences<4 ml). Comparison to results from other 3D model-based methods showed that SPASM performs comparable to or better than these other methods, but SPASM uses considerably less image data. Sensitivity to initial model placement proved to be limited within a range of position perturbations of approximately 20 mm in all directions. PMID:16439182

  10. 3-D segmentation of retinal blood vessels in spectral-domain OCT volumes of the optic nerve head

    NASA Astrophysics Data System (ADS)

    Lee, Kyungmoo; Abràmoff, Michael D.; Niemeijer, Meindert; Garvin, Mona K.; Sonka, Milan

    2010-03-01

    Segmentation of retinal blood vessels can provide important information for detecting and tracking retinal vascular diseases including diabetic retinopathy, arterial hypertension, arteriosclerosis and retinopathy of prematurity (ROP). Many studies on 2-D segmentation of retinal blood vessels from a variety of medical images have been performed. However, 3-D segmentation of retinal blood vessels from spectral-domain optical coherence tomography (OCT) volumes, which is capable of providing geometrically accurate vessel models, to the best of our knowledge, has not been previously studied. The purpose of this study is to develop and evaluate a method that can automatically detect 3-D retinal blood vessels from spectral-domain OCT scans centered on the optic nerve head (ONH). The proposed method utilized a fast multiscale 3-D graph search to segment retinal surfaces as well as a triangular mesh-based 3-D graph search to detect retinal blood vessels. An experiment on 30 ONH-centered OCT scans (15 right eye scans and 15 left eye scans) from 15 subjects was performed, and the mean unsigned error in 3-D of the computer segmentations compared with the independent standard obtained from a retinal specialist was 3.4 +/- 2.5 voxels (0.10 +/- 0.07 mm).

  11. Surface modeling and segmentation of the 3D airway wall in MSCT

    NASA Astrophysics Data System (ADS)

    Ortner, Margarete; Fetita, Catalin; Brillet, Pierre-Yves; Pr"teux, Françoise; Grenier, Philippe

    2011-03-01

    Airway wall remodeling in asthma and chronic obstructive pulmonary disease (COPD) is a well-known indicator of the pathology. In this context, current clinical studies aim for establishing the relationship between the airway morphological structure and its function. Multislice computed tomography (MSCT) allows morphometric assessment of airways, but requires dedicated segmentation tools for clinical exploitation. While most of the existing tools are limited to cross-section measurements, this paper develops a fully 3D approach for airway wall segmentation. Such approach relies on a deformable model which is built up as a patient-specific surface model at the level of the airway lumen and deformed to reach the outer surface of the airway wall. The deformation dynamics obey a force equilibrium in a Lagrangian framework constrained by a vector field which avoids model self-intersections. The segmentation result allows a dense quantitative investigation of the airway wall thickness with a deeper insight at bronchus subdivisions than classic cross-section methods. The developed approach has been assessed both by visual inspection of 2D cross-sections, performed by two experienced radiologists on clinical data obtained with various protocols, and by using a simulated ground truth (pulmonary CT image model). The results confirmed a robust segmentation in intra-pulmonary regions with an error in the range of the MSCT image resolution and underlined the interest of the volumetric approach versus purely 2D methods.

  12. Automated detection, 3D segmentation and analysis of high resolution spine MR images using statistical shape models

    NASA Astrophysics Data System (ADS)

    Neubert, A.; Fripp, J.; Engstrom, C.; Schwarz, R.; Lauer, L.; Salvado, O.; Crozier, S.

    2012-12-01

    Recent advances in high resolution magnetic resonance (MR) imaging of the spine provide a basis for the automated assessment of intervertebral disc (IVD) and vertebral body (VB) anatomy. High resolution three-dimensional (3D) morphological information contained in these images may be useful for early detection and monitoring of common spine disorders, such as disc degeneration. This work proposes an automated approach to extract the 3D segmentations of lumbar and thoracic IVDs and VBs from MR images using statistical shape analysis and registration of grey level intensity profiles. The algorithm was validated on a dataset of volumetric scans of the thoracolumbar spine of asymptomatic volunteers obtained on a 3T scanner using the relatively new 3D T2-weighted SPACE pulse sequence. Manual segmentations and expert radiological findings of early signs of disc degeneration were used in the validation. There was good agreement between manual and automated segmentation of the IVD and VB volumes with the mean Dice scores of 0.89 ± 0.04 and 0.91 ± 0.02 and mean absolute surface distances of 0.55 ± 0.18 mm and 0.67 ± 0.17 mm respectively. The method compares favourably to existing 3D MR segmentation techniques for VBs. This is the first time IVDs have been automatically segmented from 3D volumetric scans and shape parameters obtained were used in preliminary analyses to accurately classify (100% sensitivity, 98.3% specificity) disc abnormalities associated with early degenerative changes.

  13. Three dimensional level set based semiautomatic segmentation of atherosclerotic carotid artery wall volume using 3D ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Hossain, Md. Murad; AlMuhanna, Khalid; Zhao, Limin; Lal, Brajesh K.; Sikdar, Siddhartha

    2014-03-01

    3D segmentation of carotid plaque from ultrasound (US) images is challenging due to image artifacts and poor boundary definition. Semiautomatic segmentation algorithms for calculating vessel wall volume (VWV) have been proposed for the common carotid artery (CCA) but they have not been applied on plaques in the internal carotid artery (ICA). In this work, we describe a 3D segmentation algorithm that is robust to shadowing and missing boundaries. Our algorithm uses distance regularized level set method with edge and region based energy to segment the adventitial wall boundary (AWB) and lumen-intima boundary (LIB) of plaques in the CCA, ICA and external carotid artery (ECA). The algorithm is initialized by manually placing points on the boundary of a subset of transverse slices with an interslice distance of 4mm. We propose a novel user defined stopping surface based energy to prevent leaking of evolving surface across poorly defined boundaries. Validation was performed against manual segmentation using 3D US volumes acquired from five asymptomatic patients with carotid stenosis using a linear 4D probe. A pseudo gold-standard boundary was formed from manual segmentation by three observers. The Dice similarity coefficient (DSC), Hausdor distance (HD) and modified HD (MHD) were used to compare the algorithm results against the pseudo gold-standard on 1205 cross sectional slices of 5 3D US image sets. The algorithm showed good agreement with the pseudo gold standard boundary with mean DSC of 93.3% (AWB) and 89.82% (LIB); mean MHD of 0.34 mm (AWB) and 0.24 mm (LIB); mean HD of 1.27 mm (AWB) and 0.72 mm (LIB). The proposed 3D semiautomatic segmentation is the first step towards full characterization of 3D plaque progression and longitudinal monitoring.

  14. Automatic segmentation of the fetal cerebellum on ultrasound volumes, using a 3D statistical shape model.

    PubMed

    Gutiérrez-Becker, Benjamín; Arámbula Cosío, Fernando; Guzmán Huerta, Mario E; Benavides-Serralde, Jesús Andrés; Camargo-Marín, Lisbeth; Medina Bañuelos, Verónica

    2013-09-01

    Previous work has shown that the segmentation of anatomical structures on 3D ultrasound data sets provides an important tool for the assessment of the fetal health. In this work, we present an algorithm based on a 3D statistical shape model to segment the fetal cerebellum on 3D ultrasound volumes. This model is adjusted using an ad hoc objective function which is in turn optimized using the Nelder-Mead simplex algorithm. Our algorithm was tested on ultrasound volumes of the fetal brain taken from 20 pregnant women, between 18 and 24 gestational weeks. An intraclass correlation coefficient of 0.8528 and a mean Dice coefficient of 0.8 between cerebellar volumes measured using manual techniques and the volumes calculated using our algorithm were obtained. As far as we know, this is the first effort to automatically segment fetal intracranial structures on 3D ultrasound data. PMID:23686392

  15. Semiautomated segmentation and 3D reconstruction of coronary trees: biplane angiography and intravascular ultrasound data fusion

    NASA Astrophysics Data System (ADS)

    Prause, Guido P. M.; DeJong, Steven C.; McKay, Charles R.; Sonka, Milan

    1996-04-01

    In this paper, we describe an approach to 3D reconstruction of the coronary tree based on combined use of biplane coronary angiography and intravascular ultrasound (IVUS). Shortly before the start of a constant-speed IVUS pullback, radiopaque dye is injected into the examined coronary tree and the heart is imaged with a calibrated biplane X-ray system. The 3D centerline of the coronary tree is reconstructed from the geometrically corrected biplane angiograms using an automated segmentation method and manual matching of corresponding branching points. The borders of vessel wall and plaque are automatically detected in the acquired pullback images and the IVUS cross sections are mapped perpendicular to the previously reconstructed 3D vessel centerline. In addition, the twist of the IVUS probe due to the curvature of the coronary artery is calculated for a torsion-free catheter and the whole vessel reconstruction is rotationally adjusted using available anatomic landmarks. The accuracy of the biplane reconstruction procedure is validated by means of a left coronary tree phantom. The feasibility of the entire approach is demonstrated in a cadaveric pig heart.

  16. Computer-aided diagnosis of pulmonary nodules on CT scans: Segmentation and classification using 3D active contours

    PubMed Central

    Way, Ted W.; Hadjiiski, Lubomir M.; Sahiner, Berkman; Chan, Heang-Ping; Cascade, Philip N.; Kazerooni, Ella A.; Bogot, Naama; Zhou, Chuan

    2009-01-01

    We are developing a computer-aided diagnosis (CAD) system to classify malignant and benign lung nodules found on CT scans. A fully automated system was designed to segment the nodule from its surrounding structured background in a local volume of interest (VOI) and to extract image features for classification. Image segmentation was performed with a three-dimensional (3D) active contour (AC) method. A data set of 96 lung nodules (44 malignant, 52 benign) from 58 patients was used in this study. The 3D AC model is based on two-dimensional AC with the addition of three new energy components to take advantage of 3D information: (1) 3D gradient, which guides the active contour to seek the object surface, (2) 3D curvature, which imposes a smoothness constraint in the z direction, and (3) mask energy, which penalizes contours that grow beyond the pleura or thoracic wall. The search for the best energy weights in the 3D AC model was guided by a simplex optimization method. Morphological and gray-level features were extracted from the segmented nodule. The rubber band straightening transform (RBST) was applied to the shell of voxels surrounding the nodule. Texture features based on run-length statistics were extracted from the RBST image. A linear discriminant analysis classifier with stepwise feature selection was designed using a second simplex optimization to select the most effective features. Leave-one-case-out resampling was used to train and test the CAD system. The system achieved a test area under the receiver operating characteristic curve (Az) of 0.83±0.04. Our preliminary results indicate that use of the 3D AC model and the 3D texture features surrounding the nodule is a promising approach to the segmentation and classification of lung nodules with CAD. The segmentation performance of the 3D AC model trained with our data set was evaluated with 23 nodules available in the Lung Image Database Consortium (LIDC). The lung nodule volumes segmented by the 3D AC

  17. Pancreas segmentation from 3D abdominal CT images using patient-specific weighted subspatial probabilistic atlases

    NASA Astrophysics Data System (ADS)

    Karasawa, Kenichi; Oda, Masahiro; Hayashi, Yuichiro; Nimura, Yukitaka; Kitasaka, Takayuki; Misawa, Kazunari; Fujiwara, Michitaka; Rueckert, Daniel; Mori, Kensaku

    2015-03-01

    Abdominal organ segmentations from CT volumes are now widely used in the computer-aided diagnosis and surgery assistance systems. Among abdominal organs, the pancreas is especially difficult to segment because of its large individual differences of the shape and position. In this paper, we propose a new pancreas segmentation method from 3D abdominal CT volumes using patient-specific weighted-subspatial probabilistic atlases. First of all, we perform normalization of organ shapes in training volumes and an input volume. We extract the Volume Of Interest (VOI) of the pancreas from the training volumes and an input volume. We divide each training VOI and input VOI into some cubic regions. We use a nonrigid registration method to register these cubic regions of the training VOI to corresponding regions of the input VOI. Based on the registration results, we calculate similarities between each cubic region of the training VOI and corresponding region of the input VOI. We select cubic regions of training volumes having the top N similarities in each cubic region. We subspatially construct probabilistic atlases weighted by the similarities in each cubic region. After integrating these probabilistic atlases in cubic regions into one, we perform a rough-to-precise segmentation of the pancreas using the atlas. The results of the experiments showed that utilization of the training volumes having the top N similarities in each cubic region led good results of the pancreas segmentation. The Jaccard Index and the average surface distance of the result were 58.9% and 2.04mm on average, respectively.

  18. Automatic 3D segmentation of spinal cord MRI using propagated deformable models

    NASA Astrophysics Data System (ADS)

    De Leener, B.; Cohen-Adad, J.; Kadoury, S.

    2014-03-01

    Spinal cord diseases or injuries can cause dysfunction of the sensory and locomotor systems. Segmentation of the spinal cord provides measures of atrophy and allows group analysis of multi-parametric MRI via inter-subject registration to a template. All these measures were shown to improve diagnostic and surgical intervention. We developed a framework to automatically segment the spinal cord on T2-weighted MR images, based on the propagation of a deformable model. The algorithm is divided into three parts: first, an initialization step detects the spinal cord position and orientation by using the elliptical Hough transform on multiple adjacent axial slices to produce an initial tubular mesh. Second, a low-resolution deformable model is iteratively propagated along the spinal cord. To deal with highly variable contrast levels between the spinal cord and the cerebrospinal fluid, the deformation is coupled with a contrast adaptation at each iteration. Third, a refinement process and a global deformation are applied on the low-resolution mesh to provide an accurate segmentation of the spinal cord. Our method was evaluated against a semi-automatic edge-based snake method implemented in ITK-SNAP (with heavy manual adjustment) by computing the 3D Dice coefficient, mean and maximum distance errors. Accuracy and robustness were assessed from 8 healthy subjects. Each subject had two volumes: one at the cervical and one at the thoracolumbar region. Results show a precision of 0.30 +/- 0.05 mm (mean absolute distance error) in the cervical region and 0.27 +/- 0.06 mm in the thoracolumbar region. The 3D Dice coefficient was of 0.93 for both regions.

  19. Deformable segmentation of 3D MR prostate images via distributed discriminative dictionary and ensemble learning

    SciTech Connect

    Guo, Yanrong; Shao, Yeqin; Gao, Yaozong; Price, True; Oto, Aytekin; Shen, Dinggang

    2014-07-15

    patches of the prostate surface and trained to adaptively capture the appearance in different prostate zones, thus achieving better local tissue differentiation. For each local region, multiple classifiers are trained based on the randomly selected samples and finally assembled by a specific fusion method. In addition to this nonparametric appearance model, a prostate shape model is learned from the shape statistics using a novel approach, sparse shape composition, which can model nonGaussian distributions of shape variation and regularize the 3D mesh deformation by constraining it within the observed shape subspace. Results: The proposed method has been evaluated on two datasets consisting of T2-weighted MR prostate images. For the first (internal) dataset, the classification effectiveness of the authors' improved dictionary learning has been validated by comparing it with three other variants of traditional dictionary learning methods. The experimental results show that the authors' method yields a Dice Ratio of 89.1% compared to the manual segmentation, which is more accurate than the three state-of-the-art MR prostate segmentation methods under comparison. For the second dataset, the MICCAI 2012 challenge dataset, the authors' proposed method yields a Dice Ratio of 87.4%, which also achieves better segmentation accuracy than other methods under comparison. Conclusions: A new magnetic resonance image prostate segmentation method is proposed based on the combination of deformable model and dictionary learning methods, which achieves more accurate segmentation performance on prostate T2 MR images.

  20. A deformable model for hippocampus segmentation: Improvements and extension to 3D

    SciTech Connect

    Ghanei, A.; Soltanian-Zadeh, H. |; Windham, J.P.

    1996-12-31

    In this work, the application of a deformable model to the segmentation of hippocampus in brain MRI has been investigated. Common problems of the model in this case and similar cases have been discussed and solved. A new method for extracting discontinuous boundaries of an object with multiple unwanted edges has been developed. This method is based on detecting and following the edge by external forces. For improving the contour stability, its movement has been limited. Also, adaptive values for internal force weights have been used. In the next step, the model has been extended to 3D which is a Deformable Surface Model. A geometric structure used for this purpose. This helps in definition of normal vectors and internal forces. Finally, a method for generating the initial volume from individual initial polygons has been developed.

  1. Chest-wall segmentation in automated 3D breast ultrasound images using thoracic volume classification

    NASA Astrophysics Data System (ADS)

    Tan, Tao; van Zelst, Jan; Zhang, Wei; Mann, Ritse M.; Platel, Bram; Karssemeijer, Nico

    2014-03-01

    Computer-aided detection (CAD) systems are expected to improve effectiveness and efficiency of radiologists in reading automated 3D breast ultrasound (ABUS) images. One challenging task on developing CAD is to reduce a large number of false positives. A large amount of false positives originate from acoustic shadowing caused by ribs. Therefore determining the location of the chestwall in ABUS is necessary in CAD systems to remove these false positives. Additionally it can be used as an anatomical landmark for inter- and intra-modal image registration. In this work, we extended our previous developed chestwall segmentation method that fits a cylinder to automated detected rib-surface points and we fit the cylinder model by minimizing a cost function which adopted a term of region cost computed from a thoracic volume classifier to improve segmentation accuracy. We examined the performance on a dataset of 52 images where our previous developed method fails. Using region-based cost, the average mean distance of the annotated points to the segmented chest wall decreased from 7.57±2.76 mm to 6.22±2.86 mm.art.

  2. Learning structured models for segmentation of 2-D and 3-D imagery.

    PubMed

    Lucchi, Aurelien; Marquez-Neila, Pablo; Becker, Carlos; Li, Yunpeng; Smith, Kevin; Knott, Graham; Fua, Pascal

    2015-05-01

    Efficient and accurate segmentation of cellular structures in microscopic data is an essential task in medical imaging. Many state-of-the-art approaches to image segmentation use structured models whose parameters must be carefully chosen for optimal performance. A popular choice is to learn them using a large-margin framework and more specifically structured support vector machines (SSVM). Although SSVMs are appealing, they suffer from certain limitations. First, they are restricted in practice to linear kernels because the more powerful nonlinear kernels cause the learning to become prohibitively expensive. Second, they require iteratively finding the most violated constraints, which is often intractable for the loopy graphical models used in image segmentation. This requires approximation that can lead to reduced quality of learning. In this paper, we propose three novel techniques to overcome these limitations. We first introduce a method to "kernelize" the features so that a linear SSVM framework can leverage the power of nonlinear kernels without incurring much additional computational cost. Moreover, we employ a working set of constraints to increase the reliability of approximate subgradient methods and introduce a new way to select a suitable step size at each iteration. We demonstrate the strength of our approach on both 2-D and 3-D electron microscopic (EM) image data and show consistent performance improvement over state-of-the-art approaches. PMID:25438309

  3. Standardized Evaluation System for Left Ventricular Segmentation Algorithms in 3D Echocardiography.

    PubMed

    Bernard, Olivier; Bosch, Johan G; Heyde, Brecht; Alessandrini, Martino; Barbosa, Daniel; Camarasu-Pop, Sorina; Cervenansky, Frederic; Valette, Sebastien; Mirea, Oana; Bernier, Michel; Jodoin, Pierre-Marc; Domingos, Jaime Santo; Stebbing, Richard V; Keraudren, Kevin; Oktay, Ozan; Caballero, Jose; Shi, Wei; Rueckert, Daniel; Milletari, Fausto; Ahmadi, Seyed-Ahmad; Smistad, Erik; Lindseth, Frank; van Stralen, Maartje; Wang, Chen; Smedby, Orjan; Donal, Erwan; Monaghan, Mark; Papachristidis, Alex; Geleijnse, Marcel L; Galli, Elena; D'hooge, Jan

    2016-04-01

    Real-time 3D Echocardiography (RT3DE) has been proven to be an accurate tool for left ventricular (LV) volume assessment. However, identification of the LV endocardium remains a challenging task, mainly because of the low tissue/blood contrast of the images combined with typical artifacts. Several semi and fully automatic algorithms have been proposed for segmenting the endocardium in RT3DE data in order to extract relevant clinical indices, but a systematic and fair comparison between such methods has so far been impossible due to the lack of a publicly available common database. Here, we introduce a standardized evaluation framework to reliably evaluate and compare the performance of the algorithms developed to segment the LV border in RT3DE. A database consisting of 45 multivendor cardiac ultrasound recordings acquired at different centers with corresponding reference measurements from three experts are made available. The algorithms from nine research groups were quantitatively evaluated and compared using the proposed online platform. The results showed that the best methods produce promising results with respect to the experts' measurements for the extraction of clinical indices, and that they offer good segmentation precision in terms of mean distance error in the context of the experts' variability range. The platform remains open for new submissions. PMID:26625409

  4. Weakly supervised automatic segmentation and 3D modeling of the knee joint from MR images

    NASA Astrophysics Data System (ADS)

    Amami, Amal; Ben Azouz, Zouhour

    2013-12-01

    Automatic segmentation and 3D modeling of the knee joint from MR images, is a challenging task. Most of the existing techniques require the tedious manual segmentation of a training set of MRIs. We present an approach that necessitates the manual segmentation of one MR image. It is based on a volumetric active appearance model. First, a dense tetrahedral mesh is automatically created on a reference MR image that is arbitrary selected. Second, a pairwise non-rigid registration between each MRI from a training set and the reference MRI is computed. The non-rigid registration is based on a piece-wise affine deformation using the created tetrahedral mesh. The minimum description length is then used to bring all the MR images into a correspondence. An average image and tetrahedral mesh, as well as a set of main modes of variations, are generated using the established correspondence. Any manual segmentation of the average MRI can be mapped to other MR images using the AAM. The proposed approach has the advantage of simultaneously generating 3D reconstructions of the surface as well as a 3D solid model of the knee joint. The generated surfaces and tetrahedral meshes present the interesting property of fulfilling a correspondence between different MR images. This paper shows preliminary results of the proposed approach. It demonstrates the automatic segmentation and 3D reconstruction of a knee joint obtained by mapping a manual segmentation of a reference image.

  5. Fast and memory-efficient LOGISMOS graph search for intraretinal layer segmentation of 3D macular OCT scans

    NASA Astrophysics Data System (ADS)

    Lee, Kyungmoo; Zhang, Li; Abramoff, Michael D.; Sonka, Milan

    2015-03-01

    Image segmentation is important for quantitative analysis of medical image data. Recently, our research group has introduced a 3-D graph search method which can simultaneously segment optimal interacting surfaces with respect to the cost function in volumetric images. Although it provides excellent segmentation accuracy, it is computationally demanding (both CPU and memory) to simultaneously segment multiple surfaces from large volumetric images. Therefore, we propose a new, fast, and memory-efficient graph search method for intraretinal layer segmentation of 3-D macular optical coherence tomograpy (OCT) scans. The key idea is to reduce the size of a graph by combining the nodes with high costs based on the multiscale approach. The new approach requires significantly less memory and achieves significantly faster processing speeds (p < 0.01) with only small segmentation differences compared to the original graph search method. This paper discusses sub-optimality of this approach and assesses trade-off relationships between decreasing processing speed and increasing segmentation differences from that of the original method as a function of employed scale of the underlying graph construction.

  6. Segmentation of Blood Vessels and 3D Representation of CMR Image

    NASA Astrophysics Data System (ADS)

    Jiji, G. W.

    2013-06-01

    Current cardiac magnetic resonance imaging (CMR) technology allows the determination of patient-individual coronary tree structure, detection of infarctions, and assessment of myocardial perfusion. The purpose of this work is to segment heart blood vessels and visualize it in 3D. In this work, 3D visualisation of vessel was performed into four phases. The first step is to detect the tubular structures using multiscale medialness function, which distinguishes tube-like structures from and other structures. Second step is to extract the centrelines of the tubes. From the centreline radius the cylindrical tube model is constructed. The third step is segmentation of the tubular structures. The cylindrical tube model is used in segmentation process. Fourth step is to 3D representation of the tubular structure using Volume . The proposed approach is applied to 10 datasets of patients from the clinical routine and tested the results with radiologists.

  7. 3D automatic anatomy segmentation based on iterative graph-cut-ASM

    SciTech Connect

    Chen, Xinjian; Bagci, Ulas

    2011-08-15

    Purpose: This paper studies the feasibility of developing an automatic anatomy segmentation (AAS) system in clinical radiology and demonstrates its operation on clinical 3D images. Methods: The AAS system, the authors are developing consists of two main parts: object recognition and object delineation. As for recognition, a hierarchical 3D scale-based multiobject method is used for the multiobject recognition task, which incorporates intensity weighted ball-scale (b-scale) information into the active shape model (ASM). For object delineation, an iterative graph-cut-ASM (IGCASM) algorithm is proposed, which effectively combines the rich statistical shape information embodied in ASM with the globally optimal delineation capability of the GC method. The presented IGCASM algorithm is a 3D generalization of the 2D GC-ASM method that they proposed previously in Chen et al.[Proc. SPIE, 7259, 72590C1-72590C-8 (2009)]. The proposed methods are tested on two datasets comprised of images obtained from 20 patients (10 male and 10 female) of clinical abdominal CT scans, and 11 foot magnetic resonance imaging (MRI) scans. The test is for four organs (liver, left and right kidneys, and spleen) segmentation, five foot bones (calcaneus, tibia, cuboid, talus, and navicular). The recognition and delineation accuracies were evaluated separately. The recognition accuracy was evaluated in terms of translation, rotation, and scale (size) error. The delineation accuracy was evaluated in terms of true and false positive volume fractions (TPVF, FPVF). The efficiency of the delineation method was also evaluated on an Intel Pentium IV PC with a 3.4 GHZ CPU machine. Results: The recognition accuracies in terms of translation, rotation, and scale error over all organs are about 8 mm, 10 deg. and 0.03, and over all foot bones are about 3.5709 mm, 0.35 deg. and 0.025, respectively. The accuracy of delineation over all organs for all subjects as expressed in TPVF and FPVF is 93.01% and 0.22%, and

  8. Four-chamber heart modeling and automatic segmentation for 3D cardiac CT volumes

    NASA Astrophysics Data System (ADS)

    Zheng, Yefeng; Georgescu, Bogdan; Barbu, Adrian; Scheuering, Michael; Comaniciu, Dorin

    2008-03-01

    Multi-chamber heart segmentation is a prerequisite for quantification of the cardiac function. In this paper, we propose an automatic heart chamber segmentation system. There are two closely related tasks to develop such a system: heart modeling and automatic model fitting to an unseen volume. The heart is a complicated non-rigid organ with four chambers and several major vessel trunks attached. A flexible and accurate model is necessary to capture the heart chamber shape at an appropriate level of details. In our four-chamber surface mesh model, the following two factors are considered and traded-off: 1) accuracy in anatomy and 2) easiness for both annotation and automatic detection. Important landmarks such as valves and cusp points on the interventricular septum are explicitly represented in our model. These landmarks can be detected reliably to guide the automatic model fitting process. We also propose two mechanisms, the rotation-axis based and parallel-slice based resampling methods, to establish mesh point correspondence, which is necessary to build a statistical shape model to enforce priori shape constraints in the model fitting procedure. Using this model, we develop an efficient and robust approach for automatic heart chamber segmentation in 3D computed tomography (CT) volumes. Our approach is based on recent advances in learning discriminative object models and we exploit a large database of annotated CT volumes. We formulate the segmentation as a two step learning problem: anatomical structure localization and boundary delineation. A novel algorithm, Marginal Space Learning (MSL), is introduced to solve the 9-dimensional similarity transformation search problem for localizing the heart chambers. After determining the pose of the heart chambers, we estimate the 3D shape through learning-based boundary delineation. Extensive experiments demonstrate the efficiency and robustness of the proposed approach, comparing favorably to the state-of-the-art. This

  9. Volume quantization of the mouse cerebellum by semiautomatic 3D segmentation of magnetic resonance images

    NASA Astrophysics Data System (ADS)

    Sijbers, Jan; Van der Linden, Anne-Marie; Scheunders, Paul; Van Audekerke, Johan; Van Dyck, Dirk; Raman, Erik R.

    1996-04-01

    The aim of this work is the development of a non-invasive technique for efficient and accurate volume quantization of the cerebellum of mice. This enables an in-vivo study on the development of the cerebellum in order to define possible alterations in cerebellum volume of transgenic mice. We concentrate on a semi-automatic segmentation procedure to extract the cerebellum from 3D magnetic resonance data. The proposed technique uses a 3D variant of Vincent and Soille's immersion based watershed algorithm which is applied to the gradient magnitude of the MR data. The algorithm results in a partitioning of the data in volume primitives. The known drawback of the watershed algorithm, over-segmentation, is strongly reduced by a priori application of an adaptive anisotropic diffusion filter on the gradient magnitude data. In addition, over-segmentation is a posteriori contingently reduced by properly merging volume primitives, based on the minimum description length principle. The outcome of the preceding image processing step is presented to the user for manual segmentation. The first slice which contains the object of interest is quickly segmented by the user through selection of basic image regions. In the sequel, the subsequent slices are automatically segmented. The segmentation results are contingently manually corrected. The technique is tested on phantom objects, where segmentation errors less than 2% were observed. Three-dimensional reconstructions of the segmented data are shown for the mouse cerebellum and the mouse brains in toto.

  10. Correlation-based discrimination between cardiac tissue and blood for segmentation of 3D echocardiographic images

    NASA Astrophysics Data System (ADS)

    Saris, Anne E. C. M.; Nillesen, Maartje M.; Lopata, Richard G. P.; de Korte, Chris L.

    2013-03-01

    Automated segmentation of 3D echocardiographic images in patients with congenital heart disease is challenging, because the boundary between blood and cardiac tissue is poorly defined in some regions. Cardiologists mentally incorporate movement of the heart, using temporal coherence of structures to resolve ambiguities. Therefore, we investigated the merit of temporal cross-correlation for automated segmentation over the entire cardiac cycle. Optimal settings for maximum cross-correlation (MCC) calculation, based on a 3D cross-correlation based displacement estimation algorithm, were determined to obtain the best contrast between blood and myocardial tissue over the entire cardiac cycle. Resulting envelope-based as well as RF-based MCC values were used as additional external force in a deformable model approach, to segment the left-ventricular cavity in entire systolic phase. MCC values were tested against, and combined with, adaptive filtered, demodulated RF-data. Segmentation results were compared with manually segmented volumes using a 3D Dice Similarity Index (3DSI). Results in 3D pediatric echocardiographic images sequences (n = 4) demonstrate that incorporation of temporal information improves segmentation. The use of MCC values, either alone or in combination with adaptive filtered, demodulated RF-data, resulted in an increase of the 3DSI in 75% of the cases (average 3DSI increase: 0.71 to 0.82). Results might be further improved by optimizing MCC-contrast locally, in regions with low blood-tissue contrast. Reducing underestimation of the endocardial volume due to MCC processing scheme (choice of window size) and consequential border-misalignment, could also lead to more accurate segmentations. Furthermore, increasing the frame rate will also increase MCC-contrast and thus improve segmentation.

  11. Image enhancement and segmentation of fluid-filled structures in 3D ultrasound images

    NASA Astrophysics Data System (ADS)

    Chalana, Vikram; Dudycha, Stephen; McMorrow, Gerald

    2003-05-01

    Segmentation of fluid-filled structures, such as the urinary bladder, from three-dimensional ultrasound images is necessary for measuring their volume. This paper describes a system for image enhancement, segmentation and volume measurement of fluid-filled structures on 3D ultrasound images. The system was applied for the measurement of urinary bladder volume. Results show an average error of less than 10% in the estimation of the total bladder volume.

  12. 3D graph segmentation for target detection in FOPEN LiDAR data

    NASA Astrophysics Data System (ADS)

    Shorter, Nicholas; Locke, Judson; Smith, O'Neil; Keating, Emma; Smith, Philip

    2013-05-01

    A novel use of Felzenszwalb's graph based efficient image segmentation algorithm* is proposed for segmenting 3D volumetric foliage penetrating (FOPEN) Light Detection and Ranging (LiDAR) data for automated target detection. The authors propose using an approximate nearest neighbors algorithm to establish neighbors of points in 3D and thus form the graph for segmentation. Following graph formation, the angular difference in the points' estimated normal vectors is proposed for the graph edge weights. Then the LiDAR data is segmented, in 3D, and metrics are calculated from the segments to determine their geometrical characteristics and thus likelihood of being a target. Finally, the bare earth within the scene is automatically identified to avoid confusion of flat bare earth with flat targets. The segmentation, the calculated metrics, and the bare earth all culminate in a target detection system deployed for FOPEN LiDAR. General purpose graphics processing units (GPGPUs) are leveraged to reduce processing times for the approximate nearest neighbors and point normal estimation algorithms such that the application can be run in near real time. Results are presented on several data sets.

  13. 3D MR ventricle segmentation in pre-term infants with post-hemorrhagic ventricle dilation

    NASA Astrophysics Data System (ADS)

    Qiu, Wu; Yuan, Jing; Kishimoto, Jessica; Chen, Yimin; de Ribaupierre, Sandrine; Chiu, Bernard; Fenster, Aaron

    2015-03-01

    Intraventricular hemorrhage (IVH) or bleed within the brain is a common condition among pre-term infants that occurs in very low birth weight preterm neonates. The prognosis is further worsened by the development of progressive ventricular dilatation, i.e., post-hemorrhagic ventricle dilation (PHVD), which occurs in 10-30% of IVH patients. In practice, predicting PHVD accurately and determining if that specific patient with ventricular dilatation requires the ability to measure accurately ventricular volume. While monitoring of PHVD in infants is typically done by repeated US and not MRI, once the patient has been treated, the follow-up over the lifetime of the patient is done by MRI. While manual segmentation is still seen as a gold standard, it is extremely time consuming, and therefore not feasible in a clinical context, and it also has a large inter- and intra-observer variability. This paper proposes a segmentation algorithm to extract the cerebral ventricles from 3D T1- weighted MR images of pre-term infants with PHVD. The proposed segmentation algorithm makes use of the convex optimization technique combined with the learned priors of image intensities and label probabilistic map, which is built from a multi-atlas registration scheme. The leave-one-out cross validation using 7 PHVD patient T1 weighted MR images showed that the proposed method yielded a mean DSC of 89.7% +/- 4.2%, a MAD of 2.6 +/- 1.1 mm, a MAXD of 17.8 +/- 6.2 mm, and a VD of 11.6% +/- 5.9%, suggesting a good agreement with manual segmentations.

  14. A perceptual preprocess method for 3D-HEVC

    NASA Astrophysics Data System (ADS)

    Shi, Yawen; Wang, Yongfang; Wang, Yubing

    2015-08-01

    A perceptual preprocessing method for 3D-HEVC coding is proposed in the paper. Firstly we proposed a new JND model, which accounts for luminance contrast masking effect, spatial masking effect, and temporal masking effect, saliency characteristic as well as depth information. We utilize spectral residual approach to obtain the saliency map and built a visual saliency factor based on saliency map. In order to distinguish the sensitivity of objects in different depth. We segment each texture frame into foreground and background by a automatic threshold selection algorithm using corresponding depth information, and then built a depth weighting factor. A JND modulation factor is built with a linear combined with visual saliency factor and depth weighting factor to adjust the JND threshold. Then, we applied the proposed JND model to 3D-HEVC for residual filtering and distortion coefficient processing. The filtering process is that the residual value will be set to zero if the JND threshold is greater than residual value, or directly subtract the JND threshold from residual value if JND threshold is less than residual value. Experiment results demonstrate that the proposed method can achieve average bit rate reduction of 15.11%, compared to the original coding scheme with HTM12.1, while maintains the same subjective quality.

  15. In Situ 3D Segmentation of Individual Plant Leaves Using a RGB-D Camera for Agricultural Automation

    PubMed Central

    Xia, Chunlei; Wang, Longtan; Chung, Bu-Keun; Lee, Jang-Myung

    2015-01-01

    In this paper, we present a challenging task of 3D segmentation of individual plant leaves from occlusions in the complicated natural scene. Depth data of plant leaves is introduced to improve the robustness of plant leaf segmentation. The low cost RGB-D camera is utilized to capture depth and color image in fields. Mean shift clustering is applied to segment plant leaves in depth image. Plant leaves are extracted from the natural background by examining vegetation of the candidate segments produced by mean shift. Subsequently, individual leaves are segmented from occlusions by active contour models. Automatic initialization of the active contour models is implemented by calculating the center of divergence from the gradient vector field of depth image. The proposed segmentation scheme is tested through experiments under greenhouse conditions. The overall segmentation rate is 87.97% while segmentation rates for single and occluded leaves are 92.10% and 86.67%, respectively. Approximately half of the experimental results show segmentation rates of individual leaves higher than 90%. Nevertheless, the proposed method is able to segment individual leaves from heavy occlusions. PMID:26295395

  16. 3D Face Modeling Using the Multi-Deformable Method

    PubMed Central

    Hwang, Jinkyu; Yu, Sunjin; Kim, Joongrock; Lee, Sangyoun

    2012-01-01

    In this paper, we focus on the problem of the accuracy performance of 3D face modeling techniques using corresponding features in multiple views, which is quite sensitive to feature extraction errors. To solve the problem, we adopt a statistical model-based 3D face modeling approach in a mirror system consisting of two mirrors and a camera. The overall procedure of our 3D facial modeling method has two primary steps: 3D facial shape estimation using a multiple 3D face deformable model and texture mapping using seamless cloning that is a type of gradient-domain blending. To evaluate our method's performance, we generate 3D faces of 30 individuals and then carry out two tests: accuracy test and robustness test. Our method shows not only highly accurate 3D face shape results when compared with the ground truth, but also robustness to feature extraction errors. Moreover, 3D face rendering results intuitively show that our method is more robust to feature extraction errors than other 3D face modeling methods. An additional contribution of our method is that a wide range of face textures can be acquired by the mirror system. By using this texture map, we generate realistic 3D face for individuals at the end of the paper. PMID:23201976

  17. Sloped terrain segmentation for autonomous drive using sparse 3D point cloud.

    PubMed

    Cho, Seoungjae; Kim, Jonghyun; Ikram, Warda; Cho, Kyungeun; Jeong, Young-Sik; Um, Kyhyun; Sim, Sungdae

    2014-01-01

    A ubiquitous environment for road travel that uses wireless networks requires the minimization of data exchange between vehicles. An algorithm that can segment the ground in real time is necessary to obtain location data between vehicles simultaneously executing autonomous drive. This paper proposes a framework for segmenting the ground in real time using a sparse three-dimensional (3D) point cloud acquired from undulating terrain. A sparse 3D point cloud can be acquired by scanning the geography using light detection and ranging (LiDAR) sensors. For efficient ground segmentation, 3D point clouds are quantized in units of volume pixels (voxels) and overlapping data is eliminated. We reduce nonoverlapping voxels to two dimensions by implementing a lowermost heightmap. The ground area is determined on the basis of the number of voxels in each voxel group. We execute ground segmentation in real time by proposing an approach to minimize the comparison between neighboring voxels. Furthermore, we experimentally verify that ground segmentation can be executed at about 19.31 ms per frame. PMID:25093204

  18. Sloped Terrain Segmentation for Autonomous Drive Using Sparse 3D Point Cloud

    PubMed Central

    Cho, Seoungjae; Kim, Jonghyun; Ikram, Warda; Cho, Kyungeun; Sim, Sungdae

    2014-01-01

    A ubiquitous environment for road travel that uses wireless networks requires the minimization of data exchange between vehicles. An algorithm that can segment the ground in real time is necessary to obtain location data between vehicles simultaneously executing autonomous drive. This paper proposes a framework for segmenting the ground in real time using a sparse three-dimensional (3D) point cloud acquired from undulating terrain. A sparse 3D point cloud can be acquired by scanning the geography using light detection and ranging (LiDAR) sensors. For efficient ground segmentation, 3D point clouds are quantized in units of volume pixels (voxels) and overlapping data is eliminated. We reduce nonoverlapping voxels to two dimensions by implementing a lowermost heightmap. The ground area is determined on the basis of the number of voxels in each voxel group. We execute ground segmentation in real time by proposing an approach to minimize the comparison between neighboring voxels. Furthermore, we experimentally verify that ground segmentation can be executed at about 19.31 ms per frame. PMID:25093204

  19. Initialisation of 3D level set for hippocampus segmentation from volumetric brain MR images

    NASA Astrophysics Data System (ADS)

    Hajiesmaeili, Maryam; Dehmeshki, Jamshid; Bagheri Nakhjavanlo, Bashir; Ellis, Tim

    2014-04-01

    Shrinkage of the hippocampus is a primary biomarker for Alzheimer's disease and can be measured through accurate segmentation of brain MR images. The paper will describe the problem of initialisation of a 3D level set algorithm for hippocampus segmentation that must cope with the some challenging characteristics, such as small size, wide range of intensities, narrow width, and shape variation. In addition, MR images require bias correction, to account for additional inhomogeneity associated with the scanner technology. Due to these inhomogeneities, using a single initialisation seed region inside the hippocampus is prone to failure. Alternative initialisation strategies are explored, such as using multiple initialisations in different sections (such as the head, body and tail) of the hippocampus. The Dice metric is used to validate our segmentation results with respect to ground truth for a dataset of 25 MR images. Experimental results indicate significant improvement in segmentation performance using the multiple initialisations techniques, yielding more accurate segmentation results for the hippocampus.

  20. Segmentation of multiple heart cavities in 3-D transesophageal ultrasound images.

    PubMed

    Haak, Alexander; Vegas-Sánchez-Ferrero, Gonzalo; Mulder, Harriët W; Ren, Ben; Kirişli, Hortense A; Metz, Coert; van Burken, Gerard; van Stralen, Marijn; Pluim, Josien P W; van der Steen, Antonius F W; van Walsum, Theo; Bosch, Johannes G

    2015-06-01

    Three-dimensional transesophageal echocardiography (TEE) is an excellent modality for real-time visualization of the heart and monitoring of interventions. To improve the usability of 3-D TEE for intervention monitoring and catheter guidance, automated segmentation is desired. However, 3-D TEE segmentation is still a challenging task due to the complex anatomy with multiple cavities, the limited TEE field of view, and typical ultrasound artifacts. We propose to segment all cavities within the TEE view with a multi-cavity active shape model (ASM) in conjunction with a tissue/blood classification based on a gamma mixture model (GMM). 3-D TEE image data of twenty patients were acquired with a Philips X7-2t matrix TEE probe. Tissue probability maps were estimated by a two-class (blood/tissue) GMM. A statistical shape model containing the left ventricle, right ventricle, left atrium, right atrium, and aorta was derived from computed tomography angiography (CTA) segmentations by principal component analysis. ASMs of the whole heart and individual cavities were generated and consecutively fitted to tissue probability maps. First, an average whole-heart model was aligned with the 3-D TEE based on three manually indicated anatomical landmarks. Second, pose and shape of the whole-heart ASM were fitted by a weighted update scheme excluding parts outside of the image sector. Third, pose and shape of ASM for individual heart cavities were initialized by the previous whole heart ASM and updated in a regularized manner to fit the tissue probability maps. The ASM segmentations were validated against manual outlines by two observers and CTA derived segmentations. Dice coefficients and point-to-surface distances were used to determine segmentation accuracy. ASM segmentations were successful in 19 of 20 cases. The median Dice coefficient for all successful segmentations versus the average observer ranged from 90% to 71% compared with an inter-observer range of 95% to 84%. The

  1. Intra-retinal layer segmentation of 3D optical coherence tomography using coarse grained diffusion map

    PubMed Central

    Kafieh, Raheleh; Rabbani, Hossein; Abramoff, Michael D.; Sonka, Milan

    2013-01-01

    Optical coherence tomography (OCT) is a powerful and noninvasive method for retinal imaging. In this paper, we introduce a fast segmentation method based on a new variant of spectral graph theory named diffusion maps. The research is performed on spectral domain (SD) OCT images depicting macular and optic nerve head appearance. The presented approach does not require edge-based image information in localizing most of boundaries and relies on regional image texture. Consequently, the proposed method demonstrates robustness in situations of low image contrast or poor layer-to-layer image gradients. Diffusion mapping applied to 2D and 3D OCT datasets is composed of two steps, one for partitioning the data into important and less important sections, and another one for localization of internal layers. In the first step, the pixels/voxels are grouped in rectangular/cubic sets to form a graph node. The weights of the graph are calculated based on geometric distances between pixels/voxels and differences of their mean intensity. The first diffusion map clusters the data into three parts, the second of which is the area of interest. The other two sections are eliminated from the remaining calculations. In the second step, the remaining area is subjected to another diffusion map assessment and the internal layers are localized based on their textural similarities. The proposed method was tested on 23 datasets from two patient groups (glaucoma and normals). The mean unsigned border positioning errors (mean ± SD) was 8.52 ± 3.13 and 7.56 ± 2.95 μm for the 2D and 3D methods, respectively. PMID:23837966

  2. Phase grouping-based needle segmentation in 3-D trans-rectal ultrasound-guided prostate trans-perineal therapy.

    PubMed

    Qiu, Wu; Yuchi, Ming; Ding, Mingyue

    2014-04-01

    A robust and efficient needle segmentation method used to localize and track the needle in 3-D trans-rectal ultrasound (TRUS)-guided prostate therapy is proposed. The algorithmic procedure begins by cropping the 3-D US image containing a needle; then all voxels in the cropped 3-D image are grouped into different line support regions (LSRs) based on the outer product of the adjacent voxels' gradient vector. Two different needle axis extraction methods in the candidate LSR are presented: least-squares fitting and 3-D randomized Hough transform. Subsequent local optimization refines the position of the needle axis. Finally, the needle endpoint is localized by finding an intensity drop along the needle axis. The proposed methods were validated with 3-D TRUS tissue-mimicking agar phantom images, chicken breast phantom images and patient images obtained during prostate cryotherapy. The results of the in vivo test indicate that our method can localize the needle accurately and robustly with a needle endpoint localization accuracy <1.43 mm and detection accuracy >84%, which are favorable for 3-D TRUS-guided prostate trans-perineal therapy. PMID:24462163

  3. Patellar segmentation from 3D magnetic resonance images using guided recursive ray-tracing for edge pattern detection

    NASA Astrophysics Data System (ADS)

    Cheng, Ruida; Jackson, Jennifer N.; McCreedy, Evan S.; Gandler, William; Eijkenboom, J. J. F. A.; van Middelkoop, M.; McAuliffe, Matthew J.; Sheehan, Frances T.

    2016-03-01

    The paper presents an automatic segmentation methodology for the patellar bone, based on 3D gradient recalled echo and gradient recalled echo with fat suppression magnetic resonance images. Constricted search space outlines are incorporated into recursive ray-tracing to segment the outer cortical bone. A statistical analysis based on the dependence of information in adjacent slices is used to limit the search in each image to between an outer and inner search region. A section based recursive ray-tracing mechanism is used to skip inner noise regions and detect the edge boundary. The proposed method achieves higher segmentation accuracy (0.23mm) than the current state-of-the-art methods with the average dice similarity coefficient of 96.0% (SD 1.3%) agreement between the auto-segmentation and ground truth surfaces.

  4. Segmentation of 3D tubular objects with adaptive front propagation and minimal tree extraction for 3D medical imaging.

    PubMed

    Cohen, Laurent D; Deschamps, Thomas

    2007-08-01

    We present a new fast approach for segmentation of thin branching structures, like vascular trees, based on Fast-Marching (FM) and Level Set (LS) methods. FM allows segmentation of tubular structures by inflating a "long balloon" from a user given single point. However, when the tubular shape is rather long, the front propagation may blow up through the boundary of the desired shape close to the starting point. Our contribution is focused on a method to propagate only the useful part of the front while freezing the rest of it. We demonstrate its ability to segment quickly and accurately tubular and tree-like structures. We also develop a useful stopping criterion for the causal front propagation. We finally derive an efficient algorithm for extracting an underlying 1D skeleton of the branching objects, with minimal path techniques. Each branch being represented by its centerline, we automatically detect the bifurcations, leading to the "Minimal Tree" representation. This so-called "Minimal Tree" is very useful for visualization and quantification of the pathologies in our anatomical data sets. We illustrate our algorithms by applying it to several arteries datasets. PMID:17671862

  5. 2D and 3D shape based segmentation using deformable models.

    PubMed

    El-Baz, Ayman; Yuksel, Seniha E; Shi, Hongjian; Farag, Aly A; El-Ghar, Mohamed A; Eldiasty, Tarek; Ghoneim, Mohamed A

    2005-01-01

    A novel shape based segmentation approach is proposed by modifying the external energy component of a deformable model. The proposed external energy component depends not only on the gray level of the images but also on the shape information which is obtained from the signed distance maps of objects in a given data set. The gray level distribution and the signed distance map of the points inside and outside the object of interest are accurately estimated by modelling the empirical density function with a linear combination of discrete Gaussians (LCDG) with positive and negative components. Experimental results on the segmentation of the kidneys from low-contrast DCE-MRI and on the segmentation of the ventricles from brain MRI's show how the approach is accurate in segmenting 2-D and 3-D data sets. The 2D results for the kidney segmentation have been validated by a radiologist and the 3D results of the ventricle segmentation have been validated with a geometrical phantom. PMID:16686036

  6. Framework for quantitative evaluation of 3D vessel segmentation approaches using vascular phantoms in conjunction with 3D landmark localization and registration

    NASA Astrophysics Data System (ADS)

    Wörz, Stefan; Hoegen, Philipp; Liao, Wei; Müller-Eschner, Matthias; Kauczor, Hans-Ulrich; von Tengg-Kobligk, Hendrik; Rohr, Karl

    2016-03-01

    We introduce a framework for quantitative evaluation of 3D vessel segmentation approaches using vascular phantoms. Phantoms are designed using a CAD system and created with a 3D printer, and comprise realistic shapes including branches and pathologies such as abdominal aortic aneurysms (AAA). To transfer ground truth information to the 3D image coordinate system, we use a landmark-based registration scheme utilizing fiducial markers integrated in the phantom design. For accurate 3D localization of the markers we developed a novel 3D parametric intensity model that is directly fitted to the markers in the images. We also performed a quantitative evaluation of different vessel segmentation approaches for a phantom of an AAA.

  7. Bone segmentation and fracture detection in ultrasound using 3D local phase features.

    PubMed

    Hacihaliloglu, Ilker; Abugharbieh, Rafeef; Hodgson, Antony; Rohling, Robert

    2008-01-01

    3D ultrasound (US) is increasingly considered as a viable alternative imaging modality in computer-assisted orthopaedic surgery (CAOS) applications. Automatic bone segmentation from US images, however, remains a challenge due to speckle noise and various other artifacts inherent to US. In this paper, we present intensity invariant three dimensional (3D) local image phase features, obtained using 3D Log-Gabor filter banks, for extracting ridge-like features similar to those that occur at soft tissue/bone interfaces. Our contributions include the novel extension of 2D phase symmetry features to 3D and their use in automatic extraction of bone surfaces and fractured fragments in 3D US. We validate our technique using phantom, in vitro, and in vivo experiments. Qualitative and quantitative results demonstrate remarkably clear segmentations results of bone surfaces with a localization accuracy of better than 0.62 mm and mean errors in estimating fracture displacements below 0.65 mm, which will likely be of strong clinical utility. PMID:18979759

  8. Segmentation of bone structures in 3D CT images based on continuous max-flow optimization

    NASA Astrophysics Data System (ADS)

    Pérez-Carrasco, J. A.; Acha-Piñero, B.; Serrano, C.

    2015-03-01

    In this paper an algorithm to carry out the automatic segmentation of bone structures in 3D CT images has been implemented. Automatic segmentation of bone structures is of special interest for radiologists and surgeons to analyze bone diseases or to plan some surgical interventions. This task is very complicated as bones usually present intensities overlapping with those of surrounding tissues. This overlapping is mainly due to the composition of bones and to the presence of some diseases such as Osteoarthritis, Osteoporosis, etc. Moreover, segmentation of bone structures is a very time-consuming task due to the 3D essence of the bones. Usually, this segmentation is implemented manually or with algorithms using simple techniques such as thresholding and thus providing bad results. In this paper gray information and 3D statistical information have been combined to be used as input to a continuous max-flow algorithm. Twenty CT images have been tested and different coefficients have been computed to assess the performance of our implementation. Dice and Sensitivity values above 0.91 and 0.97 respectively were obtained. A comparison with Level Sets and thresholding techniques has been carried out and our results outperformed them in terms of accuracy.

  9. a Fast Method for Measuring the Similarity Between 3d Model and 3d Point Cloud

    NASA Astrophysics Data System (ADS)

    Zhang, Zongliang; Li, Jonathan; Li, Xin; Lin, Yangbin; Zhang, Shanxin; Wang, Cheng

    2016-06-01

    This paper proposes a fast method for measuring the partial Similarity between 3D Model and 3D point Cloud (SimMC). It is crucial to measure SimMC for many point cloud-related applications such as 3D object retrieval and inverse procedural modelling. In our proposed method, the surface area of model and the Distance from Model to point Cloud (DistMC) are exploited as measurements to calculate SimMC. Here, DistMC is defined as the weighted distance of the distances between points sampled from model and point cloud. Similarly, Distance from point Cloud to Model (DistCM) is defined as the average distance of the distances between points in point cloud and model. In order to reduce huge computational burdens brought by calculation of DistCM in some traditional methods, we define SimMC as the ratio of weighted surface area of model to DistMC. Compared to those traditional SimMC measuring methods that are only able to measure global similarity, our method is capable of measuring partial similarity by employing distance-weighted strategy. Moreover, our method is able to be faster than other partial similarity assessment methods. We demonstrate the superiority of our method both on synthetic data and laser scanning data.

  10. Automated segmentation of breast in 3-D MR images using a robust atlas.

    PubMed

    Khalvati, Farzad; Gallego-Ortiz, Cristina; Balasingham, Sharmila; Martel, Anne L

    2015-01-01

    This paper presents a robust atlas-based segmentation (ABS) algorithm for segmentation of the breast boundary in 3-D MR images. The proposed algorithm combines the well-known methodologies of ABS namely probabilistic atlas and atlas selection approaches into a single framework where two configurations are realized. The algorithm uses phase congruency maps to create an atlas which is robust to intensity variations. This allows an atlas derived from images acquired with one MR imaging sequence to be used to segment images acquired with a different MR imaging sequence and eliminates the need for intensity-based registration. Images acquired using a Dixon sequence were used to create an atlas which was used to segment both Dixon images (intra-sequence) and T1-weighted images (inter-sequence). In both cases, highly accurate results were achieved with the median Dice similarity coefficient values of 94% ±4% and 87 ±6.5%, respectively. PMID:25137725

  11. A hybrid framework of multiple active appearance models and global registration for 3D prostate segmentation in MRI

    NASA Astrophysics Data System (ADS)

    Ghose, Soumya; Oliver, Arnau; Martí, Robert; Lladó, Xavier; Freixenet, Jordi; Mitra, Jhimli; Vilanova, Joan C.; Meriaudeau, Fabrice

    2012-02-01

    Real-time fusion of Magnetic Resonance (MR) and Trans Rectal Ultra Sound (TRUS) images aid in the localization of malignant tissues in TRUS guided prostate biopsy. Registration performed on segmented contours of the prostate reduces computational complexity and improves the multimodal registration accuracy. However, accurate and computationally efficient 3D segmentation of the prostate in MR images could be a challenging task due to inter-patient shape and intensity variability of the prostate gland. In this work, we propose to use multiple statistical shape and appearance models to segment the prostate in 2D and a global registration framework to impose shape restriction in 3D. Multiple mean parametric models of the shape and appearance corresponding to the apex, central and base regions of the prostate gland are derived from principal component analysis (PCA) of prior shape and intensity information of the prostate from the training data. The estimated parameters are then modified with the prior knowledge of the optimization space to achieve segmentation in 2D. The 2D segmented slices are then rigidly registered with the average 3D model produced by affine registration of the ground truth of the training datasets to minimize pose variations and impose 3D shape restriction. The proposed method achieves a mean Dice similarity coefficient (DSC) value of 0.88+/-0.11, and mean Hausdorff distance (HD) of 3.38+/-2.81 mm when validated with 15 prostate volumes of a public dataset in leave-one-out validation framework. The results achieved are better compared to some of the works in the literature.

  12. Web-based Visualization and Query of semantically segmented multiresolution 3D Models in the Field of Cultural Heritage

    NASA Astrophysics Data System (ADS)

    Auer, M.; Agugiaro, G.; Billen, N.; Loos, L.; Zipf, A.

    2014-05-01

    Many important Cultural Heritage sites have been studied over long periods of time by different means of technical equipment, methods and intentions by different researchers. This has led to huge amounts of heterogeneous "traditional" datasets and formats. The rising popularity of 3D models in the field of Cultural Heritage in recent years has brought additional data formats and makes it even more necessary to find solutions to manage, publish and study these data in an integrated way. The MayaArch3D project aims to realize such an integrative approach by establishing a web-based research platform bringing spatial and non-spatial databases together and providing visualization and analysis tools. Especially the 3D components of the platform use hierarchical segmentation concepts to structure the data and to perform queries on semantic entities. This paper presents a database schema to organize not only segmented models but also different Levels-of-Details and other representations of the same entity. It is further implemented in a spatial database which allows the storing of georeferenced 3D data. This enables organization and queries by semantic, geometric and spatial properties. As service for the delivery of the segmented models a standardization candidate of the OpenGeospatialConsortium (OGC), the Web3DService (W3DS) has been extended to cope with the new database schema and deliver a web friendly format for WebGL rendering. Finally a generic user interface is presented which uses the segments as navigation metaphor to browse and query the semantic segmentation levels and retrieve information from an external database of the German Archaeological Institute (DAI).

  13. Model based 3D segmentation and OCT image undistortion of percutaneous implants.

    PubMed

    Müller, Oliver; Donner, Sabine; Klinder, Tobias; Dragon, Ralf; Bartsch, Ivonne; Witte, Frank; Krüger, Alexander; Heisterkamp, Alexander; Rosenhahn, Bodo

    2011-01-01

    Optical Coherence Tomography (OCT) is a noninvasive imaging technique which is used here for in vivo biocompatibility studies of percutaneous implants. A prerequisite for a morphometric analysis of the OCT images is the correction of optical distortions caused by the index of refraction in the tissue. We propose a fully automatic approach for 3D segmentation of percutaneous implants using Markov random fields. Refraction correction is done by using the subcutaneous implant base as a prior for model based estimation of the refractive index using a generalized Hough transform. Experiments show the competitiveness of our algorithm towards manual segmentations done by experts. PMID:22003731

  14. 3D scanning modeling method application in ancient city reconstruction

    NASA Astrophysics Data System (ADS)

    Ren, Pu; Zhou, Mingquan; Du, Guoguang; Shui, Wuyang; Zhou, Pengbo

    2015-07-01

    With the development of optical engineering technology, the precision of 3D scanning equipment becomes higher, and its role in 3D modeling is getting more distinctive. This paper proposed a 3D scanning modeling method that has been successfully applied in Chinese ancient city reconstruction. On one hand, for the existing architectures, an improved algorithm based on multiple scanning is adopted. Firstly, two pieces of scanning data were rough rigid registered using spherical displacers and vertex clustering method. Secondly, a global weighted ICP (iterative closest points) method is used to achieve a fine rigid registration. On the other hand, for the buildings which have already disappeared, an exemplar-driven algorithm for rapid modeling was proposed. Based on the 3D scanning technology and the historical data, a system approach was proposed for 3D modeling and virtual display of ancient city.

  15. Semi-automatic 3D segmentation of carotid lumen in contrast-enhanced computed tomography angiography images.

    PubMed

    Hemmati, Hamidreza; Kamli-Asl, Alireza; Talebpour, Alireza; Shirani, Shapour

    2015-12-01

    The atherosclerosis disease is one of the major causes of the death in the world. Atherosclerosis refers to the hardening and narrowing of the arteries by plaques. Carotid stenosis is a narrowing or constriction of carotid artery lumen usually caused by atherosclerosis. Carotid artery stenosis can increase risk of brain stroke. Contrast-enhanced Computed Tomography Angiography (CTA) is a minimally invasive method for imaging and quantification of the carotid plaques. Manual segmentation of carotid lumen in CTA images is a tedious and time consuming procedure which is subjected to observer variability. As a result, there is a strong and growing demand for developing computer-aided carotid segmentation procedures. In this study, a novel method is presented for carotid artery lumen segmentation in CTA data. First, the mean shift smoothing is used for uniformity enhancement of gray levels. Then with the help of three seed points, the centerlines of the arteries are extracted by a 3D Hessian based fast marching shortest path algorithm. Finally, a 3D Level set function is performed for segmentation. Results on 14 CTA volumes data show 85% of Dice similarity and 0.42 mm of mean absolute surface distance measures. Evaluation shows that the proposed method requires minimal user intervention, low dependence to gray levels changes in artery path, resistance to extreme changes in carotid diameter and carotid branch locations. The proposed method has high accuracy and can be used in qualitative and quantitative evaluation. PMID:26429385

  16. Segmentation of 3D EBSD data for subgrain boundary identification and feature characterization.

    PubMed

    Loeb, Andrew; Ferry, Michael; Bassman, Lori

    2016-02-01

    Subgrain structures formed during plastic deformation of metals can be observed by electron backscatter diffraction (EBSD) but are challenging to identify automatically. We have adapted a 2D image segmentation technique, fast multiscale clustering (FMC), to 3D EBSD data using a novel variance function to accommodate quaternion data. This adaptation, which has been incorporated into the free open source texture analysis software package MTEX, is capable of segmenting based on subtle and gradual variation as well as on sharp boundaries within the data. FMC has been further modified to group the resulting closed 3D segment boundaries into distinct coherent surfaces based on local normals of a triangulated surface. We demonstrate the excellent capabilities of this technique with application to 3D EBSD data sets generated from cold rolled aluminum containing well-defined microbands, cold rolled and partly recrystallized extra low carbon steel microstructure containing three magnitudes of boundary misorientations, and channel-die plane strain compressed Goss-oriented nickel crystal containing microbands with very subtle changes in orientation. PMID:26630071

  17. Simultaneous Multi-Structure Segmentation and 3D Nonrigid Pose Estimation in Image-Guided Robotic Surgery.

    PubMed

    Nosrati, Masoud S; Abugharbieh, Rafeef; Peyrat, Jean-Marc; Abinahed, Julien; Al-Alao, Osama; Al-Ansari, Abdulla; Hamarneh, Ghassan

    2016-01-01

    In image-guided robotic surgery, segmenting the endoscopic video stream into meaningful parts provides important contextual information that surgeons can exploit to enhance their perception of the surgical scene. This information provides surgeons with real-time decision-making guidance before initiating critical tasks such as tissue cutting. Segmenting endoscopic video is a challenging problem due to a variety of complications including significant noise attributed to bleeding and smoke from cutting, poor appearance contrast between different tissue types, occluding surgical tools, and limited visibility of the objects' geometries on the projected camera views. In this paper, we propose a multi-modal approach to segmentation where preoperative 3D computed tomography scans and intraoperative stereo-endoscopic video data are jointly analyzed. The idea is to segment multiple poorly visible structures in the stereo/multichannel endoscopic videos by fusing reliable prior knowledge captured from the preoperative 3D scans. More specifically, we estimate and track the pose of the preoperative models in 3D and consider the models' non-rigid deformations to match with corresponding visual cues in multi-channel endoscopic video and segment the objects of interest. Further, contrary to most augmented reality frameworks in endoscopic surgery that assume known camera parameters, an assumption that is often violated during surgery due to non-optimal camera calibration and changes in camera focus/zoom, our method embeds these parameters into the optimization hence correcting the calibration parameters within the segmentation process. We evaluate our technique on synthetic data, ex vivo lamb kidney datasets, and in vivo clinical partial nephrectomy surgery with results demonstrating high accuracy and robustness. PMID:26151933

  18. Cardiac Multi-detector CT Segmentation Based on Multiscale Directional Edge Detector and 3D Level Set.

    PubMed

    Antunes, Sofia; Esposito, Antonio; Palmisano, Anna; Colantoni, Caterina; Cerutti, Sergio; Rizzo, Giovanna

    2016-05-01

    Extraction of the cardiac surfaces of interest from multi-detector computed tomographic (MDCT) data is a pre-requisite step for cardiac analysis, as well as for image guidance procedures. Most of the existing methods need manual corrections, which is time-consuming. We present a fully automatic segmentation technique for the extraction of the right ventricle, left ventricular endocardium and epicardium from MDCT images. The method consists in a 3D level set surface evolution approach coupled to a new stopping function based on a multiscale directional second derivative Gaussian filter, which is able to stop propagation precisely on the real boundary of the structures of interest. We validated the segmentation method on 18 MDCT volumes from healthy and pathologic subjects using manual segmentation performed by a team of expert radiologists as gold standard. Segmentation errors were assessed for each structure resulting in a surface-to-surface mean error below 0.5 mm and a percentage of surface distance with errors less than 1 mm above 80%. Moreover, in comparison to other segmentation approaches, already proposed in previous work, our method presented an improved accuracy (with surface distance errors less than 1 mm increased of 8-20% for all structures). The obtained results suggest that our approach is accurate and effective for the segmentation of ventricular cavities and myocardium from MDCT images. PMID:26319010

  19. Simulation of 3D MRI brain images for quantitative evaluation of image segmentation algorithms

    NASA Astrophysics Data System (ADS)

    Wagenknecht, Gudrun; Kaiser, Hans-Juergen; Obladen, Thorsten; Sabri, Osama; Buell, Udalrich

    2000-06-01

    To model the true shape of MRI brain images, automatically classified T1-weighted 3D MRI images (gray matter, white matter, cerebrospinal fluid, scalp/bone and background) are utilized for simulation of grayscale data and imaging artifacts. For each class, Gaussian distribution of grayscale values is assumed, and mean and variance are computed from grayscale images. A random generator fills up the class images with Gauss-distributed grayscale values. Since grayscale values of neighboring voxels are not correlated, a Gaussian low-pass filtering is done, preserving class region borders. To simulate anatomical variability, a Gaussian distribution in space with user-defined mean and variance can be added at any user-defined position. Several imaging artifacts can be added: (1) to simulate partial volume effects, every voxel is averaged with neighboring voxels if they have a different class label; (2) a linear or quadratic bias field can be added with user-defined strength and orientation; (3) additional background noise can be added; and (4) artifacts left over after spoiling can be simulated by adding a band with increasing/decreasing grayscale values. With this method, realistic-looking simulated MRI images can be produced to test classification and segmentation algorithms regarding accuracy and robustness even in the presence of artifacts.

  20. Segmentation and Tracking of Adherens Junctions in 3D for the Analysis of Epithelial Tissue Morphogenesis

    PubMed Central

    Cilla, Rodrigo; Mechery, Vinodh; Hernandez de Madrid, Beatriz; Del Signore, Steven; Dotu, Ivan; Hatini, Victor

    2015-01-01

    Epithelial morphogenesis generates the shape of tissues, organs and embryos and is fundamental for their proper function. It is a dynamic process that occurs at multiple spatial scales from macromolecular dynamics, to cell deformations, mitosis and apoptosis, to coordinated cell rearrangements that lead to global changes of tissue shape. Using time lapse imaging, it is possible to observe these events at a system level. However, to investigate morphogenetic events it is necessary to develop computational tools to extract quantitative information from the time lapse data. Toward this goal, we developed an image-based computational pipeline to preprocess, segment and track epithelial cells in 4D confocal microscopy data. The computational pipeline we developed, for the first time, detects the adherens junctions of epithelial cells in 3D, without the need to first detect cell nuclei. We accentuate and detect cell outlines in a series of steps, symbolically describe the cells and their connectivity, and employ this information to track the cells. We validated the performance of the pipeline for its ability to detect vertices and cell-cell contacts, track cells, and identify mitosis and apoptosis in surface epithelia of Drosophila imaginal discs. We demonstrate the utility of the pipeline to extract key quantitative features of cell behavior with which to elucidate the dynamics and biomechanical control of epithelial tissue morphogenesis. We have made our methods and data available as an open-source multiplatform software tool called TTT (http://github.com/morganrcu/TTT) PMID:25884654

  1. Automatic 3D segmentation of the kidney in MR images using wavelet feature extraction and probability shape model

    NASA Astrophysics Data System (ADS)

    Akbari, Hamed; Fei, Baowei

    2012-02-01

    Numerical estimation of the size of the kidney is useful in evaluating conditions of the kidney, especially, when serial MR imaging is performed to evaluate the kidney function. This paper presents a new method for automatic segmentation of the kidney in three-dimensional (3D) MR images, by extracting texture features and statistical matching of geometrical shape of the kidney. A set of Wavelet-based support vector machines (W-SVMs) is trained on the MR images. The W-SVMs capture texture priors of MRI for classification of the kidney and non-kidney tissues in different zones around the kidney boundary. In the segmentation procedure, these W-SVMs are trained to tentatively label each voxel around the kidney model as a kidney or non-kidney voxel by texture matching. A probability kidney model is created using 10 segmented MRI data. The model is initially localized based on the intensity profiles in three directions. The weight functions are defined for each labeled voxel for each Wavelet-based, intensity-based, and model-based label. Consequently, each voxel has three labels and three weights for the Wavelet feature, intensity, and probability model. Using a 3D edge detection method, the model is re-localized and the segmented kidney is modified based on a region growing method in the model region. The probability model is re-localized based on the results and this loop continues until the segmentation converges. Experimental results with mouse MRI data show the good performance of the proposed method in segmenting the kidney in MR images.

  2. Oblique needle segmentation and tracking for 3D TRUS guided prostate brachytherapy

    SciTech Connect

    Wei Zhouping; Gardi, Lori; Downey, Donal B.; Fenster, Aaron

    2005-09-15

    An algorithm was developed in order to segment and track brachytherapy needles inserted along oblique trajectories. Three-dimensional (3D) transrectal ultrasound (TRUS) images of the rigid rod simulating the needle inserted into the tissue-mimicking agar and chicken breast phantoms were obtained to test the accuracy of the algorithm under ideal conditions. Because the robot possesses high positioning and angulation accuracies, we used the robot as a ''gold standard,'' and compared the results of algorithm segmentation to the values measured by the robot. Our testing results showed that the accuracy of the needle segmentation algorithm depends on the needle insertion distance into the 3D TRUS image and the angulations with respect to the TRUS transducer, e.g., at a 10 deg. insertion anglulation in agar phantoms, the error of the algorithm in determining the needle tip position was less than 1 mm when the insertion distance was greater than 15 mm. Near real-time needle tracking was achieved by scanning a small volume containing the needle. Our tests also showed that, the segmentation time was less than 60 ms, and the scanning time was less than 1.2 s, when the insertion distance into the 3D TRUS image was less than 55 mm. In our needle tracking tests in chicken breast phantoms, the errors in determining the needle orientation were less than 2 deg. in robot yaw and 0.7 deg. in robot pitch orientations, for up to 20 deg. needle insertion angles with the TRUS transducer in the horizontal plane when the needle insertion distance was greater than 15 mm.

  3. Light Attenuation Method for 3D data acquisition (LAM3D) of bottom particle deposits

    NASA Astrophysics Data System (ADS)

    Er, Jenn Wei; Law, Adrian W. K.; Adams, E. Eric; Yang, Yang

    2015-11-01

    We have developed a novel experimental technique, Light Attenuation Method for 3D data acquisition (LAM3D), to acquire three-dimensional spatial characteristics and temporal development of bottom particle deposits. The new technique performs data acquisition with higher spatial and temporal resolution than existing approaches with laser and ultrasonic 3D profilers, and is therefore ideal for laboratory investigations with fast varying changes in the sediment bed, such as the developing deposition profile from sediment clouds commonly formed during dredging or land reclamation projects and the dynamic evolution in movable bed processes in rivers. The principle of the technique is based on the analysis of the light attenuation due to multiple light scattering through the particle deposits layer compared to the clear water column. With appropriate calibration, the particles size and distribution thickness can be quantified by the transmitted light spectrum. In the presentation, we will first show our measurement setup with a light panel for calibrated illumination and a system of DSLR cameras for the light capturing. Subsequently, we shall present the experimental results of fast evolving deposition profile of a barge-disposed sediment cloud upon its bottom impact on the sea bed.

  4. A 3D Level Set Method for Microwave Breast Imaging

    PubMed Central

    Colgan, Timothy J.; Hagness, Susan C.; Van Veen, Barry D.

    2015-01-01

    Objective Conventional inverse-scattering algorithms for microwave breast imaging result in moderate resolution images with blurred boundaries between tissues. Recent 2D numerical microwave imaging studies demonstrate that the use of a level set method preserves dielectric boundaries, resulting in a more accurate, higher resolution reconstruction of the dielectric properties distribution. Previously proposed level set algorithms are computationally expensive and thus impractical in 3D. In this paper we present a computationally tractable 3D microwave imaging algorithm based on level sets. Methods We reduce the computational cost of the level set method using a Jacobian matrix, rather than an adjoint method, to calculate Frechet derivatives. We demonstrate the feasibility of 3D imaging using simulated array measurements from 3D numerical breast phantoms. We evaluate performance by comparing full 3D reconstructions to those from a conventional microwave imaging technique. We also quantitatively assess the efficacy of our algorithm in evaluating breast density. Results Our reconstructions of 3D numerical breast phantoms improve upon those of a conventional microwave imaging technique. The density estimates from our level set algorithm are more accurate than those of conventional microwave imaging, and the accuracy is greater than that reported for mammographic density estimation. Conclusion Our level set method leads to a feasible level of computational complexity for full 3D imaging, and reconstructs the heterogeneous dielectric properties distribution of the breast more accurately than conventional microwave imaging methods. Significance 3D microwave breast imaging using a level set method is a promising low-cost, non-ionizing alternative to current breast imaging techniques. PMID:26011863

  5. Automated three-dimensional choroidal vessel segmentation of 3D 1060 nm OCT retinal data

    PubMed Central

    Kajić, Vedran; Esmaeelpour, Marieh; Glittenberg, Carl; Kraus, Martin F.; Honegger, Joachim; Othara, Richu; Binder, Susanne; Fujimoto, James G.; Drexler, Wolfgang

    2012-01-01

    A fully automated, robust vessel segmentation algorithm has been developed for choroidal OCT, employing multiscale 3D edge filtering and projection of “probability cones” to determine the vessel “core”, even in the tomograms with low signal-to-noise ratio (SNR). Based on the ideal vessel response after registration and multiscale filtering, with computed depth related SNR, the vessel core estimate is dilated to quantify the full vessel diameter. As a consequence, various statistics can be computed using the 3D choroidal vessel information, such as ratios of inner (smaller) to outer (larger) choroidal vessels or the absolute/relative volume of choroid vessels. Choroidal vessel quantification can be displayed in various forms, focused and averaged within a special region of interest, or analyzed as the function of image depth. In this way, the proposed algorithm enables unique visualization of choroidal watershed zones, as well as the vessel size reduction when investigating the choroid from the sclera towards the retinal pigment epithelium (RPE). To the best of our knowledge, this is the first time that an automatic choroidal vessel segmentation algorithm is successfully applied to 1060 nm 3D OCT of healthy and diseased eyes. PMID:23304653

  6. Diaphragm dome surface segmentation in CT data sets: a 3D active appearance model approach

    NASA Astrophysics Data System (ADS)

    Beichel, Reinhard; Gotschuli, Georg; Sorantin, Erich; Leberl, Franz W.; Sonka, Milan

    2002-05-01

    Knowledge about the location of the diaphragm dome surface, which separates the lungs and the heart from the abdominal cavity, is of vital importance for applications like automated segmentation of adjacent organs (e.g., liver) or functional analysis of the respiratory cycle. We present a new 3D Active Appearance Model (AAM) approach to segmentation of the top layer of the diaphragm dome. The 3D AAM consists of three parts: a 2D closed curve (reference curve), an elevation image and texture layers. The first two parts combined represent 3D shape information and the third part image intensity of the diaphragm dome and the surrounding layers. Differences in height between dome voxels and a reference plane are stored in the elevation image. The reference curve is generated by a parallel projection of the diaphragm dome outline in the axial direction. Landmark point placement is only done on the (2D) reference curve, which can be seen as the bounding curve of the elevation image. Matching is based on a gradient-descent optimization process and uses image intensity appearance around the actual dome shape. Results achieved in 60 computer generated phantom data sets show a high degree of accuracy (positioning error -0.07+/-1.29 mm). Validation using real CT data sets yielded a positioning error of -0.16+/-2.95 mm. Additional training and testing on in-vivo CT image data is ongoing.

  7. A systematic review of image segmentation methodology, used in the additive manufacture of patient-specific 3D printed models of the cardiovascular system

    PubMed Central

    Byrne, N; Velasco Forte, M; Tandon, A; Valverde, I

    2016-01-01

    Background Shortcomings in existing methods of image segmentation preclude the widespread adoption of patient-specific 3D printing as a routine decision-making tool in the care of those with congenital heart disease. We sought to determine the range of cardiovascular segmentation methods and how long each of these methods takes. Methods A systematic review of literature was undertaken. Medical imaging modality, segmentation methods, segmentation time, segmentation descriptive quality (SDQ) and segmentation software were recorded. Results Totally 136 studies met the inclusion criteria (1 clinical trial; 80 journal articles; 55 conference, technical and case reports). The most frequently used image segmentation methods were brightness thresholding, region growing and manual editing, as supported by the most popular piece of proprietary software: Mimics (Materialise NV, Leuven, Belgium, 1992–2015). The use of bespoke software developed by individual authors was not uncommon. SDQ indicated that reporting of image segmentation methods was generally poor with only one in three accounts providing sufficient detail for their procedure to be reproduced. Conclusions and implication of key findings Predominantly anecdotal and case reporting precluded rigorous assessment of risk of bias and strength of evidence. This review finds a reliance on manual and semi-automated segmentation methods which demand a high level of expertise and a significant time commitment on the part of the operator. In light of the findings, we have made recommendations regarding reporting of 3D printing studies. We anticipate that these findings will encourage the development of advanced image segmentation methods. PMID:27170842

  8. 3D face recognition based on a modified ICP method

    NASA Astrophysics Data System (ADS)

    Zhao, Kankan; Xi, Jiangtao; Yu, Yanguang; Chicharo, Joe F.

    2011-11-01

    3D face recognition technique has gained much more attention recently, and it is widely used in security system, identification system, and access control system, etc. The core technique in 3D face recognition is to find out the corresponding points in different 3D face images. The classic partial Iterative Closest Point (ICP) method is iteratively align the two point sets based on repetitively calculate the closest points as the corresponding points in each iteration. After several iterations, the corresponding points can be obtained accurately. However, if two 3D face images with different scale are from the same person, the classic partial ICP does not work. In this paper we propose a modified partial Iterative Closest Point (ICP) method in which the scaling effect is considered to achieve 3D face recognition. We design a 3x3 diagonal matrix as the scale matrix in each iteration of the classic partial ICP. The probing face image which is multiplied by the scale matrix will keep the similar scale with the reference face image. Therefore, we can accurately determine the corresponding points even the scales of probing image and reference image are different. 3D face images in our experiments are acquired by a 3D data acquisition system based on Digital Fringe Projection Profilometry (DFPP). A 3D database consists of 30 group images, three images with the same scale, which are from the same person with different views, are included in each group. And in different groups, the scale of the 3 images may be different from other groups. The experiment results show that our proposed method can achieve 3D face recognition, especially in the case that the scales of probing image and referent image are different.

  9. Segmentation of 3D RF echocardiography using a multiframe spatio-temporal predictor.

    PubMed

    Pearlman, Paul C; Tagare, Hemant D; Lin, Ben A; Sinusas, Albert J; Duncan, James S

    2011-01-01

    We present an approach for segmenting left ventricular endocardial boundaries from RF ultrasound. Segmentation is achieved jointly using an independent identically distributed (i.i.d.) spatial model for RF intensity and a multiframe conditional model. The conditional model relates neighboring frames in the image sequence by means of a computationally efficient linear predictor that exploits spatio-temporal coherence in the data. Segmentation using the RF data overcomes problems due to image inhomogeneities often amplified in B-mode segmentation and provides geometric constraints for RF phase-based speckle tracking. The incorporation of multiple frames in the conditional model significantly increases the robustness and accuracy of the algorithm. Results are generated using between 2 and 5 frames of RF data for each segmentation and are validated by comparison with manual tracings and automated B-mode boundary detection using standard (Chan and Vese-based) level sets on echocardiographic images from 27 3D sequences acquired from 6 canine studies. PMID:21761644

  10. Volume rendering segmented data using 3D textures: a practical approach for intra-operative visualization

    NASA Astrophysics Data System (ADS)

    Subramanian, Navneeth; Mullick, Rakesh; Vaidya, Vivek

    2006-03-01

    Volume rendering has high utility in visualization of segmented datasets. However, volume rendering of the segmented labels along with the original data causes undesirable intermixing/bleeding artifacts arising from interpolation at the sharp boundaries. This issue is further amplified in 3D textures based volume rendering due to the inaccessibility of the interpolation stage. We present an approach which helps minimize intermixing artifacts while maintaining the high performance of 3D texture based volume rendering - both of which are critical for intra-operative visualization. Our approach uses a 2D transfer function based classification scheme where label distinction is achieved through an encoding that generates unique gradient values for labels. This helps ensure that labelled voxels always map to distinct regions in the 2D transfer function, irrespective of interpolation. In contrast to previously reported algorithms, our algorithm does not require multiple passes for rendering and supports greater than 4 masks. It also allows for real-time modification of the colors/opacities of the segmented structures along with the original data. Additionally, these capabilities are available with minimal texture memory requirements amongst comparable algorithms. Results are presented on clinical and phantom data.

  11. Reconstructing photorealistic 3D models from image sequence using domain decomposition method

    NASA Astrophysics Data System (ADS)

    Xiong, Hanwei; Pan, Ming; Zhang, Xiangwei

    2009-11-01

    In the fields of industrial design, artistic design and heritage conservation, physical objects are usually digitalized by reverse engineering through some 3D scanning methods. Structured light and photogrammetry are two main methods to acquire 3D information, and both are expensive. Even if these expensive instruments are used, photorealistic 3D models are seldom available. In this paper, a new method to reconstruction photorealistic 3D models using a single camera is proposed. A square plate glued with coded marks is used to place the objects, and a sequence of about 20 images is taken. From the coded marks, the images are calibrated, and a snake algorithm is used to segment object from the background. A rough 3d model is obtained using shape from silhouettes algorithm. The silhouettes are decomposed into a combination of convex curves, which are used to partition the rough 3d model into some convex mesh patches. For each patch, the multi-view photo consistency constraints and smooth regulations are expressed as a finite element formulation, which can be resolved locally, and the information can be exchanged along the patches boundaries. The rough model is deformed into a fine 3d model through such a domain decomposition finite element method. The textures are assigned to each element mesh, and a photorealistic 3D model is got finally. A toy pig is used to verify the algorithm, and the result is exciting.

  12. Bone canalicular network segmentation in 3D nano-CT images through geodesic voting and image tessellation

    NASA Astrophysics Data System (ADS)

    Zuluaga, Maria A.; Orkisz, Maciej; Dong, Pei; Pacureanu, Alexandra; Gouttenoire, Pierre-Jean; Peyrin, Françoise

    2014-05-01

    Recent studies emphasized the role of the bone lacuno-canalicular network (LCN) in the understanding of bone diseases such as osteoporosis. However, suitable methods to investigate this structure are lacking. The aim of this paper is to introduce a methodology to segment the LCN from three-dimensional (3D) synchrotron radiation nano-CT images. Segmentation of such structures is challenging due to several factors such as limited contrast and signal-to-noise ratio, partial volume effects and huge number of data that needs to be processed, which restrains user interaction. We use an approach based on minimum-cost paths and geodesic voting, for which we propose a fully automatic initialization scheme based on a tessellation of the image domain. The centroids of pre-segmented lacunæ are used as Voronoi-tessellation seeds and as start-points of a fast-marching front propagation, whereas the end-points are distributed in the vicinity of each Voronoi-region boundary. This initialization scheme was devised to cope with complex biological structures involving cells interconnected by multiple thread-like, branching processes, while the seminal geodesic-voting method only copes with tree-like structures. Our method has been assessed quantitatively on phantom data and qualitatively on real datasets, demonstrating its feasibility. To the best of our knowledge, presented 3D renderings of lacunæ interconnected by their canaliculi were achieved for the first time.

  13. Bone canalicular network segmentation in 3D nano-CT images through geodesic voting and image tessellation.

    PubMed

    Zuluaga, Maria A; Orkisz, Maciej; Dong, Pei; Pacureanu, Alexandra; Gouttenoire, Pierre-Jean; Peyrin, Françoise

    2014-05-01

    Recent studies emphasized the role of the bone lacuno-canalicular network (LCN) in the understanding of bone diseases such as osteoporosis. However, suitable methods to investigate this structure are lacking. The aim of this paper is to introduce a methodology to segment the LCN from three-dimensional (3D) synchrotron radiation nano-CT images. Segmentation of such structures is challenging due to several factors such as limited contrast and signal-to-noise ratio, partial volume effects and huge number of data that needs to be processed, which restrains user interaction. We use an approach based on minimum-cost paths and geodesic voting, for which we propose a fully automatic initialization scheme based on a tessellation of the image domain. The centroids of pre-segmented lacunæ are used as Voronoi-tessellation seeds and as start-points of a fast-marching front propagation, whereas the end-points are distributed in the vicinity of each Voronoi-region boundary. This initialization scheme was devised to cope with complex biological structures involving cells interconnected by multiple thread-like, branching processes, while the seminal geodesic-voting method only copes with tree-like structures. Our method has been assessed quantitatively on phantom data and qualitatively on real datasets, demonstrating its feasibility. To the best of our knowledge, presented 3D renderings of lacunæ interconnected by their canaliculi were achieved for the first time. PMID:24710691

  14. A 3-D Computational Study of a Variable Camber Continuous Trailing Edge Flap (VCCTEF) Spanwise Segment

    NASA Technical Reports Server (NTRS)

    Kaul, Upender K.; Nguyen, Nhan T.

    2015-01-01

    Results of a computational study carried out to explore the effects of various elastomer configurations joining spanwise contiguous Variable Camber Continuous Trailing Edge Flap (VCCTEF) segments are reported here. This research is carried out as a proof-of-concept study that will seek to push the flight envelope in cruise with drag optimization as the objective. The cruise conditions can be well off design such as caused by environmental conditions, maneuvering, etc. To handle these off-design conditions, flap deflection is used so when the flap is deflected in a given direction, the aircraft angle of attack changes accordingly to maintain a given lift. The angle of attack is also a design parameter along with the flap deflection. In a previous 2D study,1 the effect of camber was investigated and the results revealed some insight into the relative merit of various camber settings of the VCCTEF. The present state of the art has not advanced sufficiently to do a full 3-D viscous analysis of the whole NASA Generic Transport Model (GTM) wing with VCCTEF deployed with elastomers. Therefore, this study seeks to explore the local effects of three contiguous flap segments on lift and drag of a model devised here to determine possible trades among various flap deflections to achieve desired lift and drag results. Although this approach is an approximation, it provides new insights into the "local" effects of the relative deflections of the contiguous spanwise flap systems and various elastomer segment configurations. The present study is a natural extension of the 2-D study to assess these local 3-D effects. Design cruise condition at 36,000 feet at free stream Mach number of 0.797 and a mean aerodynamic chord (MAC) based Reynolds number of 30.734x10(exp 6) is simulated for an angle of attack (AoA) range of 0 to 6 deg. In the previous 2-D study, the calculations revealed that the parabolic arc camber (1x2x3) and circular arc camber (VCCTEF222) offered the best L

  15. 3D prostate boundary segmentation from ultrasound images using 2D active shape models.

    PubMed

    Hodge, Adam C; Ladak, Hanif M

    2006-01-01

    Boundary outlining, or segmentation, of the prostate is an important task in diagnosis and treatment planning for prostate cancer. This paper describes an algorithm for semi-automatic, three-dimensional (3D) segmentation of the prostate boundary from ultrasound images based on two-dimensional (2D) active shape models (ASM) and rotation-based slicing. Evaluation of the algorithm used distance- and volume-based error metrics to compare algorithm generated boundary outlines to gold standard (manually generated) boundary outlines. The mean absolute distance between the algorithm and gold standard boundaries was 1.09+/-0.49 mm, the average percent absolute volume difference was 3.28+/-3.16%, and a 5x speed increase as compared manual planimetry was achieved. PMID:17946106

  16. A software tool for automatic classification and segmentation of 2D/3D medical images

    NASA Astrophysics Data System (ADS)

    Strzelecki, Michal; Szczypinski, Piotr; Materka, Andrzej; Klepaczko, Artur

    2013-02-01

    Modern medical diagnosis utilizes techniques of visualization of human internal organs (CT, MRI) or of its metabolism (PET). However, evaluation of acquired images made by human experts is usually subjective and qualitative only. Quantitative analysis of MR data, including tissue classification and segmentation, is necessary to perform e.g. attenuation compensation, motion detection, and correction of partial volume effect in PET images, acquired with PET/MR scanners. This article presents briefly a MaZda software package, which supports 2D and 3D medical image analysis aiming at quantification of image texture. MaZda implements procedures for evaluation, selection and extraction of highly discriminative texture attributes combined with various classification, visualization and segmentation tools. Examples of MaZda application in medical studies are also provided.

  17. 3-D UNSTRUCTURED HEXAHEDRAL-MESH Sn TRANSPORT METHODS

    SciTech Connect

    J. MOREL; J. MCGHEE; ET AL

    2000-11-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). We have developed a method for solving the neutral-particle transport equation on 3-D unstructured hexahedral meshes using a S{sub n} discretization in angle in conjunction with a discontinuous finite-element discretization in space and a multigroup discretization in energy. Previous methods for solving this equation in 3-D have been limited to rectangular meshes. The unstructured-mesh method that we have developed is far more efficient for solving problems with complex 3-D geometric features than rectangular-mesh methods. In spite of having to make several compromises in our spatial discretization technique and our iterative solution technique, our method has been found to be both accurate and efficient for a broad class of problems.

  18. Volume analysis of treatment response of head and neck lesions using 3D level set segmentation

    NASA Astrophysics Data System (ADS)

    Hadjiiski, Lubomir; Street, Ethan; Sahiner, Berkman; Gujar, Sachin; Ibrahim, Mohannad; Chan, Heang-Ping; Mukherji, Suresh K.

    2008-03-01

    A computerized system for segmenting lesions in head and neck CT scans was developed to assist radiologists in estimation of the response to treatment of malignant lesions. The system performs 3D segmentations based on a level set model and uses as input an approximate bounding box for the lesion of interest. In this preliminary study, CT scans from a pre-treatment exam and a post one-cycle chemotherapy exam of 13 patients containing head and neck neoplasms were used. A radiologist marked 35 temporal pairs of lesions. 13 pairs were primary site cancers and 22 pairs were metastatic lymph nodes. For all lesions, a radiologist outlined a contour on the best slice on both the pre- and post treatment scans. For the 13 primary lesion pairs, full 3D contours were also extracted by a radiologist. The average pre- and post-treatment areas on the best slices for all lesions were 4.5 and 2.1 cm2, respectively. For the 13 primary site pairs the average pre- and post-treatment primary lesions volumes were 15.4 and 6.7 cm 3 respectively. The correlation between the automatic and manual estimates for the pre-to-post-treatment change in area for all 35 pairs was r=0.97, while the correlation for the percent change in area was r=0.80. The correlation for the change in volume for the 13 primary site pairs was r=0.89, while the correlation for the percent change in volume was r=0.79. The average signed percent error between the automatic and manual areas for all 70 lesions was 11.0+/-20.6%. The average signed percent error between the automatic and manual volumes for all 26 primary lesions was 37.8+/-42.1%. The preliminary results indicate that the automated segmentation system can reliably estimate tumor size change in response to treatment relative to radiologist's hand segmentation.

  19. Visualising, segmenting and analysing heterogenous glacigenic sediments using 3D x-ray CT.

    NASA Astrophysics Data System (ADS)

    Carr, Simon; Diggens, Lucy; Groves, John; O'Sullivan, Catherine; Marsland, Rhona

    2015-04-01

    , especially with regard to using such data to improve understanding of mechanisms of particle motion and fabric development during subglacial strain. In this study, we present detailed investigation of subglacial tills from the UK, Iceland and Poland, to explore the challenges in segmenting these highly variable sediment bodies for 3D microfabric analysis. A calibration study is reported to compare various approaches to CT data segmentation to manually segmented datasets, from which an optimal workflow is developed, using a combination of the WEKA Trainable Segmentation tool within ImageJ to segment the data, followed by object-based analysis using Blob3D. We then demonstrate the value of this analysis through the analysis of true 3D microfabric data from a Last Glacial Maximum till deposit located at Morston, North Norfolk. Seven undisturbed sediment samples were scanned and analysed using high-resolution 3D X-ray computed tomography. Large (~5,000 to ~16,000) populations of individual particles are objectively and systematically segmented and identified. These large datasets are then subject to detailed interrogation using bespoke code for analysing particle fabric within Matlab, including the application of fabric-tensor analysis, by which fabrics can be weighted and scaled by key variables such as size and shape. We will present initial findings from these datasets, focusing particularly on overcoming the methodological challenges of obtaining robust datasets of sediments with highly complex, mixed compositional sediments.

  20. Improving automated 3D reconstruction methods via vision metrology

    NASA Astrophysics Data System (ADS)

    Toschi, Isabella; Nocerino, Erica; Hess, Mona; Menna, Fabio; Sargeant, Ben; MacDonald, Lindsay; Remondino, Fabio; Robson, Stuart

    2015-05-01

    This paper aims to provide a procedure for improving automated 3D reconstruction methods via vision metrology. The 3D reconstruction problem is generally addressed using two different approaches. On the one hand, vision metrology (VM) systems try to accurately derive 3D coordinates of few sparse object points for industrial measurement and inspection applications; on the other, recent dense image matching (DIM) algorithms are designed to produce dense point clouds for surface representations and analyses. This paper strives to demonstrate a step towards narrowing the gap between traditional VM and DIM approaches. Efforts are therefore intended to (i) test the metric performance of the automated photogrammetric 3D reconstruction procedure, (ii) enhance the accuracy of the final results and (iii) obtain statistical indicators of the quality achieved in the orientation step. VM tools are exploited to integrate their main functionalities (centroid measurement, photogrammetric network adjustment, precision assessment, etc.) into the pipeline of 3D dense reconstruction. Finally, geometric analyses and accuracy evaluations are performed on the raw output of the matching (i.e. the point clouds) by adopting a metrological approach. The latter is based on the use of known geometric shapes and quality parameters derived from VDI/VDE guidelines. Tests are carried out by imaging the calibrated Portable Metric Test Object, designed and built at University College London (UCL), UK. It allows assessment of the performance of the image orientation and matching procedures within a typical industrial scenario, characterised by poor texture and known 3D/2D shapes.

  1. Combining population and patient-specific characteristics for prostate segmentation on 3D CT images

    NASA Astrophysics Data System (ADS)

    Ma, Ling; Guo, Rongrong; Tian, Zhiqiang; Venkataraman, Rajesh; Sarkar, Saradwata; Liu, Xiabi; Tade, Funmilayo; Schuster, David M.; Fei, Baowei

    2016-03-01

    Prostate segmentation on CT images is a challenging task. In this paper, we explore the population and patient-specific characteristics for the segmentation of the prostate on CT images. Because population learning does not consider the inter-patient variations and because patient-specific learning may not perform well for different patients, we are combining the population and patient-specific information to improve segmentation performance. Specifically, we train a population model based on the population data and train a patient-specific model based on the manual segmentation on three slice of the new patient. We compute the similarity between the two models to explore the influence of applicable population knowledge on the specific patient. By combining the patient-specific knowledge with the influence, we can capture the population and patient-specific characteristics to calculate the probability of a pixel belonging to the prostate. Finally, we smooth the prostate surface according to the prostate-density value of the pixels in the distance transform image. We conducted the leave-one-out validation experiments on a set of CT volumes from 15 patients. Manual segmentation results from a radiologist serve as the gold standard for the evaluation. Experimental results show that our method achieved an average DSC of 85.1% as compared to the manual segmentation gold standard. This method outperformed the population learning method and the patient-specific learning approach alone. The CT segmentation method can have various applications in prostate cancer diagnosis and therapy.

  2. 3D robust Chan-Vese model for industrial computed tomography volume data segmentation

    NASA Astrophysics Data System (ADS)

    Liu, Linghui; Zeng, Li; Luan, Xiao

    2013-11-01

    Industrial computed tomography (CT) has been widely applied in many areas of non-destructive testing (NDT) and non-destructive evaluation (NDE). In practice, CT volume data to be dealt with may be corrupted by noise. This paper addresses the segmentation of noisy industrial CT volume data. Motivated by the research on the Chan-Vese (CV) model, we present a region-based active contour model that draws upon intensity information in local regions with a controllable scale. In the presence of noise, a local energy is firstly defined according to the intensity difference within a local neighborhood. Then a global energy is defined to integrate local energy with respect to all image points. In a level set formulation, this energy is represented by a variational level set function, where a surface evolution equation is derived for energy minimization. Comparative analysis with the CV model indicates the comparable performance of the 3D robust Chan-Vese (RCV) model. The quantitative evaluation also shows the segmentation accuracy of 3D RCV. In addition, the efficiency of our approach is validated under several types of noise, such as Poisson noise, Gaussian noise, salt-and-pepper noise and speckle noise.

  3. Automatic segmentation and 3D feature extraction of protein aggregates in Caenorhabditis elegans

    NASA Astrophysics Data System (ADS)

    Rodrigues, Pedro L.; Moreira, António H. J.; Teixeira-Castro, Andreia; Oliveira, João; Dias, Nuno; Rodrigues, Nuno F.; Vilaça, João L.

    2012-03-01

    In the last years, it has become increasingly clear that neurodegenerative diseases involve protein aggregation, a process often used as disease progression readout and to develop therapeutic strategies. This work presents an image processing tool to automatic segment, classify and quantify these aggregates and the whole 3D body of the nematode Caenorhabditis Elegans. A total of 150 data set images, containing different slices, were captured with a confocal microscope from animals of distinct genetic conditions. Because of the animals' transparency, most of the slices pixels appeared dark, hampering their body volume direct reconstruction. Therefore, for each data set, all slices were stacked in one single 2D image in order to determine a volume approximation. The gradient of this image was input to an anisotropic diffusion algorithm that uses the Tukey's biweight as edge-stopping function. The image histogram median of this outcome was used to dynamically determine a thresholding level, which allows the determination of a smoothed exterior contour of the worm and the medial axis of the worm body from thinning its skeleton. Based on this exterior contour diameter and the medial animal axis, random 3D points were then calculated to produce a volume mesh approximation. The protein aggregations were subsequently segmented based on an iso-value and blended with the resulting volume mesh. The results obtained were consistent with qualitative observations in literature, allowing non-biased, reliable and high throughput protein aggregates quantification. This may lead to a significant improvement on neurodegenerative diseases treatment planning and interventions prevention.

  4. Shape representation for efficient landmark-based segmentation in 3-d.

    PubMed

    Ibragimov, Bulat; Likar, Boštjan; Pernuš, Franjo; Vrtovec, Tomaž

    2014-04-01

    In this paper, we propose a novel approach to landmark-based shape representation that is based on transportation theory, where landmarks are considered as sources and destinations, all possible landmark connections as roads, and established landmark connections as goods transported via these roads. Landmark connections, which are selectively established, are identified through their statistical properties describing the shape of the object of interest, and indicate the least costly roads for transporting goods from sources to destinations. From such a perspective, we introduce three novel shape representations that are combined with an existing landmark detection algorithm based on game theory. To reduce computational complexity, which results from the extension from 2-D to 3-D segmentation, landmark detection is augmented by a concept known in game theory as strategy dominance. The novel shape representations, game-theoretic landmark detection and strategy dominance are combined into a segmentation framework that was evaluated on 3-D computed tomography images of lumbar vertebrae and femoral heads. The best shape representation yielded symmetric surface distance of 0.75 mm and 1.11 mm, and Dice coefficient of 93.6% and 96.2% for lumbar vertebrae and femoral heads, respectively. By applying strategy dominance, the computational costs were further reduced for up to three times. PMID:24710155

  5. Repeatability of a 3D multi-segment foot model protocol in presence of foot deformities.

    PubMed

    Deschamps, Kevin; Staes, Filip; Bruyninckx, Herman; Busschots, Ellen; Matricali, Giovanni A; Spaepen, Pieter; Meyer, Christophe; Desloovere, Kaat

    2012-07-01

    Repeatability studies on 3D multi-segment foot models (3DMFMs) have mainly considered healthy participants which contrasts with the widespread application of these models to evaluate foot pathologies. The current study aimed at establishing the repeatability of the 3DMFM described by Leardini et al. in presence of foot deformities. Foot kinematics of eight adult participants were analyzed using a repeated-measures design including two therapists with different levels of experience. The inter-trial variability was higher compared to the kinematics of healthy subjects. Consideration of relative angles resulted in the lowest inter-session variability. The absolute 3D rotations between the Sha-Cal and Cal-Met seem to have the lowest variability in both therapists. A general trend towards higher σ(sess)/σ(trial) ratios was observed when the midfoot was involved. The current study indicates that not only relative 3D rotations and planar angles can be measured consistently in patients, also a number of absolute parameters can be consistently measured serving as basis for the decision making process. PMID:22591792

  6. MR image denoising method for brain surface 3D modeling

    NASA Astrophysics Data System (ADS)

    Zhao, De-xin; Liu, Peng-jie; Zhang, De-gan

    2014-11-01

    Three-dimensional (3D) modeling of medical images is a critical part of surgical simulation. In this paper, we focus on the magnetic resonance (MR) images denoising for brain modeling reconstruction, and exploit a practical solution. We attempt to remove the noise existing in the MR imaging signal and preserve the image characteristics. A wavelet-based adaptive curve shrinkage function is presented in spherical coordinates system. The comparative experiments show that the denoising method can preserve better image details and enhance the coefficients of contours. Using these denoised images, the brain 3D visualization is given through surface triangle mesh model, which demonstrates the effectiveness of the proposed method.

  7. CellSegm - a MATLAB toolbox for high-throughput 3D cell segmentation.

    PubMed

    Hodneland, Erlend; Kögel, Tanja; Frei, Dominik Michael; Gerdes, Hans-Hermann; Lundervold, Arvid

    2013-01-01

    : The application of fluorescence microscopy in cell biology often generates a huge amount of imaging data. Automated whole cell segmentation of such data enables the detection and analysis of individual cells, where a manual delineation is often time consuming, or practically not feasible. Furthermore, compared to manual analysis, automation normally has a higher degree of reproducibility. CellSegm, the software presented in this work, is a Matlab based command line software toolbox providing an automated whole cell segmentation of images showing surface stained cells, acquired by fluorescence microscopy. It has options for both fully automated and semi-automated cell segmentation. Major algorithmic steps are: (i) smoothing, (ii) Hessian-based ridge enhancement, (iii) marker-controlled watershed segmentation, and (iv) feature-based classfication of cell candidates. Using a wide selection of image recordings and code snippets, we demonstrate that CellSegm has the ability to detect various types of surface stained cells in 3D. After detection and outlining of individual cells, the cell candidates can be subject to software based analysis, specified and programmed by the end-user, or they can be analyzed by other software tools. A segmentation of tissue samples with appropriate characteristics is also shown to be resolvable in CellSegm. The command-line interface of CellSegm facilitates scripting of the separate tools, all implemented in Matlab, offering a high degree of flexibility and tailored workflows for the end-user. The modularity and scripting capabilities of CellSegm enable automated workflows and quantitative analysis of microscopic data, suited for high-throughput image based screening. PMID:23938087

  8. A 3D interactive multi-object segmentation tool using local robust statistics driven active contours.

    PubMed

    Gao, Yi; Kikinis, Ron; Bouix, Sylvain; Shenton, Martha; Tannenbaum, Allen

    2012-08-01

    Extracting anatomical and functional significant structures renders one of the important tasks for both the theoretical study of the medical image analysis, and the clinical and practical community. In the past, much work has been dedicated only to the algorithmic development. Nevertheless, for clinical end users, a well designed algorithm with an interactive software is necessary for an algorithm to be utilized in their daily work. Furthermore, the software would better be open sourced in order to be used and validated by not only the authors but also the entire community. Therefore, the contribution of the present work is twofolds: first, we propose a new robust statistics based conformal metric and the conformal area driven multiple active contour framework, to simultaneously extract multiple targets from MR and CT medical imagery in 3D. Second, an open source graphically interactive 3D segmentation tool based on the aforementioned contour evolution is implemented and is publicly available for end users on multiple platforms. In using this software for the segmentation task, the process is initiated by the user drawn strokes (seeds) in the target region in the image. Then, the local robust statistics are used to describe the object features, and such features are learned adaptively from the seeds under a non-parametric estimation scheme. Subsequently, several active contours evolve simultaneously with their interactions being motivated by the principles of action and reaction-this not only guarantees mutual exclusiveness among the contours, but also no longer relies upon the assumption that the multiple objects fill the entire image domain, which was tacitly or explicitly assumed in many previous works. In doing so, the contours interact and converge to equilibrium at the desired positions of the desired multiple objects. Furthermore, with the aim of not only validating the algorithm and the software, but also demonstrating how the tool is to be used, we provide

  9. A method to fabricate disconnected silver nanostructures in 3D.

    PubMed

    Vora, Kevin; Kang, SeungYeon; Mazur, Eric

    2012-01-01

    The standard nanofabrication toolkit includes techniques primarily aimed at creating 2D patterns in dielectric media. Creating metal patterns on a submicron scale requires a combination of nanofabrication tools and several material processing steps. For example, steps to create planar metal structures using ultraviolet photolithography and electron-beam lithography can include sample exposure, sample development, metal deposition, and metal liftoff. To create 3D metal structures, the sequence is repeated multiple times. The complexity and difficulty of stacking and aligning multiple layers limits practical implementations of 3D metal structuring using standard nanofabrication tools. Femtosecond-laser direct-writing has emerged as a pre-eminent technique for 3D nanofabrication.(1,2) Femtosecond lasers are frequently used to create 3D patterns in polymers and glasses.(3-7) However, 3D metal direct-writing remains a challenge. Here, we describe a method to fabricate silver nanostructures embedded inside a polymer matrix using a femtosecond laser centered at 800 nm. The method enables the fabrication of patterns not feasible using other techniques, such as 3D arrays of disconnected silver voxels.(8) Disconnected 3D metal patterns are useful for metamaterials where unit cells are not in contact with each other,(9) such as coupled metal dot(10,11)or coupled metal rod(12,13) resonators. Potential applications include negative index metamaterials, invisibility cloaks, and perfect lenses. In femtosecond-laser direct-writing, the laser wavelength is chosen such that photons are not linearly absorbed in the target medium. When the laser pulse duration is compressed to the femtosecond time scale and the radiation is tightly focused inside the target, the extremely high intensity induces nonlinear absorption. Multiple photons are absorbed simultaneously to cause electronic transitions that lead to material modification within the focused region. Using this approach, one can

  10. Deformable templates guided discriminative models for robust 3D brain MRI segmentation.

    PubMed

    Liu, Cheng-Yi; Iglesias, Juan Eugenio; Tu, Zhuowen

    2013-10-01

    Automatically segmenting anatomical structures from 3D brain MRI images is an important task in neuroimaging. One major challenge is to design and learn effective image models accounting for the large variability in anatomy and data acquisition protocols. A deformable template is a type of generative model that attempts to explicitly match an input image with a template (atlas), and thus, they are robust against global intensity changes. On the other hand, discriminative models combine local image features to capture complex image patterns. In this paper, we propose a robust brain image segmentation algorithm that fuses together deformable templates and informative features. It takes advantage of the adaptation capability of the generative model and the classification power of the discriminative models. The proposed algorithm achieves both robustness and efficiency, and can be used to segment brain MRI images with large anatomical variations. We perform an extensive experimental study on four datasets of T1-weighted brain MRI data from different sources (1,082 MRI scans in total) and observe consistent improvement over the state-of-the-art systems. PMID:23836390

  11. Automated multilayer segmentation and characterization in 3D spectral-domain optical coherence tomography images

    NASA Astrophysics Data System (ADS)

    Hu, Zhihong; Wu, Xiaodong; Hariri, Amirhossein; Sadda, SriniVas R.

    2013-03-01

    Spectral-domain optical coherence tomography (SD-OCT) is a 3-D imaging technique, allowing direct visualization of retinal morphology and architecture. The various layers of the retina may be affected differentially by various diseases. In this study, an automated graph-based multilayer approach was developed to sequentially segment eleven retinal surfaces including the inner retinal bands to the outer retinal bands in normal SD-OCT volume scans at three different stages. For stage 1, the four most detectable and/or distinct surfaces were identified in the four-times-downsampled images and were used as a priori positional information to limit the graph search for other surfaces at stage 2. Eleven surfaces were then detected in the two-times-downsampled images at stage 2, and refined in the original image space at stage 3 using the graph search integrating the estimated morphological shape models. Twenty macular SD-OCT (Heidelberg Spectralis) volume scans from 20 normal subjects (one eye per subject) were used in this study. The overall mean and absolute mean differences in border positions between the automated and manual segmentation for all 11 segmented surfaces were -0.20 +/- 0.53 voxels (-0.76 +/- 2.06 μm) and 0.82 +/- 0.64 voxels (3.19 +/- 2.46 μm). Intensity and thickness properties in the resultant retinal layers were investigated. This investigation in normal subjects may provide a comparative reference for subsequent investigations in eyes with disease.

  12. Segmentation, surface rendering, and surface simplification of 3-D skull images for the repair of a large skull defect

    NASA Astrophysics Data System (ADS)

    Wan, Weibing; Shi, Pengfei; Li, Shuguang

    2009-10-01

    Given the potential demonstrated by research into bone-tissue engineering, the use of medical image data for the rapid prototyping (RP) of scaffolds is a subject worthy of research. Computer-aided design and manufacture and medical imaging have created new possibilities for RP. Accurate and efficient design and fabrication of anatomic models is critical to these applications. We explore the application of RP computational methods to the repair of a pediatric skull defect. The focus of this study is the segmentation of the defect region seen in computerized tomography (CT) slice images of this patient's skull and the three-dimensional (3-D) surface rendering of the patient's CT-scan data. We see if our segmentation and surface rendering software can improve the generation of an implant model to fill a skull defect.

  13. 3D Segmentation of Rodent Brain Structures Using Hierarchical Shape Priors and Deformable Models

    PubMed Central

    Zhang, Shaoting; Huang, Junzhou; Uzunbas, Mustafa; Shen, Tian; Delis, Foteini; Huang, Xiaolei; Volkow, Nora; Thanos, Panayotis; Metaxas, Dimitris N.

    2016-01-01

    In this paper, we propose a method to segment multiple rodent brain structures simultaneously. This method combines deformable models and hierarchical shape priors within one framework. The deformation module employs both gradient and appearance information to generate image forces to deform the shape. The shape prior module uses Principal Component Analysis to hierarchically model the multiple structures at both global and local levels. At the global level, the statistics of relative positions among different structures are modeled. At the local level, the shape statistics within each structure is learned from training samples. Our segmentation method adaptively employs both priors to constrain the intermediate deformation result. This prior constraint improves the robustness of the model and benefits the segmentation accuracy. Another merit of our prior module is that the size of the training data can be small, because the shape prior module models each structure individually and combines them using global statistics. This scheme can preserve shape details better than directly applying PCA on all structures. We use this method to segment rodent brain structures, such as the cerebellum, the left and right striatum, and the left and right hippocampus. The experiments show that our method works effectively and this hierarchical prior improves the segmentation performance. PMID:22003750

  14. 3D segmentation of rodent brain structures using hierarchical shape priors and deformable models.

    PubMed

    Zhang, Shaoting; Huang, Junzhou; Uzunbas, Mustafa; Shen, Tian; Delis, Foteini; Huang, Xiaolei; Volkow, Nora; Thanos, Panayotis; Metaxas, Dimitris N

    2011-01-01

    In this paper, we propose a method to segment multiple rodent brain structures simultaneously. This method combines deformable models and hierarchical shape priors within one framework. The deformation module employs both gradient and appearance information to generate image forces to deform the shape. The shape prior module uses Principal Component Analysis to hierarchically model the multiple structures at both global and local levels. At the global level, the statistics of relative positions among different structures are modeled. At the local level, the shape statistics within each structure is learned from training samples. Our segmentation method adaptively employs both priors to constrain the intermediate deformation result. This prior constraint improves the robustness of the model and benefits the segmentation accuracy. Another merit of our prior module is that the size of the training data can be small, because the shape prior module models each structure individually and combines them using global statistics. This scheme can preserve shape details better than directly applying PCA on all structures. We use this method to segment rodent brain structures, such as the cerebellum, the left and right striatum, and the left and right hippocampus. The experiments show that our method works effectively and this hierarchical prior improves the segmentation performance. PMID:22003750

  15. Novel 3D Compression Methods for Geometry, Connectivity and Texture

    NASA Astrophysics Data System (ADS)

    Siddeq, M. M.; Rodrigues, M. A.

    2016-06-01

    A large number of applications in medical visualization, games, engineering design, entertainment, heritage, e-commerce and so on require the transmission of 3D models over the Internet or over local networks. 3D data compression is an important requirement for fast data storage, access and transmission within bandwidth limitations. The Wavefront OBJ (object) file format is commonly used to share models due to its clear simple design. Normally each OBJ file contains a large amount of data (e.g. vertices and triangulated faces, normals, texture coordinates and other parameters) describing the mesh surface. In this paper we introduce a new method to compress geometry, connectivity and texture coordinates by a novel Geometry Minimization Algorithm (GM-Algorithm) in connection with arithmetic coding. First, each vertex ( x, y, z) coordinates are encoded to a single value by the GM-Algorithm. Second, triangle faces are encoded by computing the differences between two adjacent vertex locations, which are compressed by arithmetic coding together with texture coordinates. We demonstrate the method on large data sets achieving compression ratios between 87 and 99 % without reduction in the number of reconstructed vertices and triangle faces. The decompression step is based on a Parallel Fast Matching Search Algorithm (Parallel-FMS) to recover the structure of the 3D mesh. A comparative analysis of compression ratios is provided with a number of commonly used 3D file formats such as VRML, OpenCTM and STL highlighting the performance and effectiveness of the proposed method.

  16. An automated framework for 3D serous pigment epithelium detachment segmentation in SD-OCT images

    PubMed Central

    Sun, Zhuli; Chen, Haoyu; Shi, Fei; Wang, Lirong; Zhu, Weifang; Xiang, Dehui; Yan, Chenglin; Li, Liang; Chen, Xinjian

    2016-01-01

    Pigment epithelium detachment (PED) is an important clinical manifestation of multiple chorioretinal diseases, which can cause loss of central vision. In this paper, an automated framework is proposed to segment serous PED in SD-OCT images. The proposed framework consists of four main steps: first, a multi-scale graph search method is applied to segment abnormal retinal layers; second, an effective AdaBoost method is applied to refine the initial segmented regions based on 62 extracted features; third, a shape-constrained graph cut method is applied to segment serous PED, in which the foreground and background seeds are obtained automatically; finally, an adaptive structure elements based morphology method is applied to remove false positive segmented regions. The proposed framework was tested on 25 SD-OCT volumes from 25 patients diagnosed with serous PED. The average true positive volume fraction (TPVF), false positive volume fraction (FPVF), dice similarity coefficient (DSC) and positive predictive value (PPV) are 90.08%, 0.22%, 91.20% and 92.62%, respectively. The proposed framework can provide clinicians with accurate quantitative information, including shape, size and position of the PED region, which can assist clinical diagnosis and treatment. PMID:26899236

  17. Comparative study of diverse model building strategies for 3D-ASM segmentation of dynamic gated SPECT data

    NASA Astrophysics Data System (ADS)

    Tobon-Gomez, C.; Butakoff, C.; Ordas, S.; Aguade, S.; Frangi, A. F.

    2007-03-01

    Over the course of the last two decades, myocardial perfusion with Single Photon Emission Computed Tomography (SPECT) has emerged as an established and well-validated method for assessing myocardial ischemia, viability, and function. Gated-SPECT imaging integrates traditional perfusion information along with global left ventricular function. Despite of these advantages, inherent limitations of SPECT imaging yield a challenging segmentation problem, since an error of only one voxel along the chamber surface may generate a huge difference in volume calculation. In previous works we implemented a 3-D statistical model-based algorithm for Left Ventricle (LV) segmentation of in dynamic perfusion SPECT studies. The present work evaluates the relevance of training a different Active Shape Model (ASM) for each frame of the gated SPECT imaging acquisition in terms of their subsequent segmentation accuracy. Models are subsequently employed to segment the LV cavity of gated SPECT studies of a virtual population. The evaluation is accomplished by comparing point-to-surface (P2S) and volume errors, both against a proper Gold Standard. The dataset comprised 40 voxel phantoms (NCAT, Johns Hopkins, University of of North Carolina). Monte-Carlo simulations were generated with SIMIND (Lund University) and reconstructed to tomographic slices with ASPIRE (University of Michigan).

  18. 3D shape descriptors for face segmentation and fiducial points detection: an anatomical-based analysis

    NASA Astrophysics Data System (ADS)

    Salazar, Augusto E.; Cerón, Alexander; Prieto, Flavio A.

    2011-03-01

    The behavior of nine 3D shape descriptors which were computed on the surface of 3D face models, is studied. The set of descriptors includes six curvature-based ones, SPIN images, Folded SPIN Images, and Finger prints. Instead of defining clusters of vertices based on the value of a given primitive surface feature, a face template composed by 28 anatomical regions, is used to segment the models and to extract the location of different landmarks and fiducial points. Vertices are grouped by: region, region boundaries, and subsampled versions of them. The aim of this study is to analyze the discriminant capacity of each descriptor to characterize regions and to identify key points on the facial surface. The experiment includes testing with data from neutral faces and faces showing expressions. Also, in order to see the usefulness of the bending-invariant canonical form (BICF) to handle variations due to facial expressions, the descriptors are computed directly from the surface and also from its BICF. In the results: the values, distributions, and relevance indexes of each set of vertices, were analyzed.

  19. Uncovering the true nature of deformation microstructures using 3D analysis methods

    NASA Astrophysics Data System (ADS)

    Ferry, M.; Quadir, M. Z.; Afrin, N.; Xu, W.; Loeb, A.; Soe, B.; McMahon, C.; George, C.; Bassman, L.

    2015-08-01

    Three-dimensional electron backscatter diffraction (3D EBSD) has emerged as a powerful technique for generating 3D crystallographic information in reasonably large volumes of a microstructure. The technique uses a focused ion beam (FIB) as a high precision serial sectioning device for generating consecutive ion milled surfaces of a material, with each milled surface subsequently mapped by EBSD. The successive EBSD maps are combined using a suitable post-processing method to generate a crystallographic volume of the microstructure. The first part of this paper shows the usefulness of 3D EBSD for understanding the origin of various structural features associated with the plastic deformation of metals. The second part describes a new method for automatically identifying the various types of low and high angle boundaries found in deformed and annealed metals, particularly those associated with grains exhibiting subtle and gradual variations in orientation. We have adapted a 2D image segmentation technique, fast multiscale clustering, to 3D EBSD data using a novel variance function to accommodate quaternion data. This adaptation is capable of segmenting based on subtle and gradual variation as well as on sharp boundaries within the data. We demonstrate the excellent capabilities of this technique with application to 3D EBSD data sets generated from a range of cold rolled and annealed metals described in the paper.

  20. Combination therapy with BMP-2 and BMSCs enhances bone healing efficacy of PCL scaffold fabricated using the 3D plotting system in a large segmental defect model.

    PubMed

    Kang, Sun-Woong; Bae, Ji-Hoon; Park, Su-A; Kim, Wan-Doo; Park, Mi-Su; Ko, You-Jin; Jang, Hyon-Seok; Park, Jung-Ho

    2012-07-01

    The three-dimensional (3D) plotting system is a rapidly-developing scaffold fabrication method for bone tissue engineering. It yields a highly porous and inter-connective structure without the use of cytotoxic solvents. However, the therapeutic effects of a scaffold fabricated using the 3D plotting system in a large segmental defect model have not yet been demonstrated. We have tested two hypotheses: whether the bone healing efficacy of scaffold fabricated using the 3D plotting system would be enhanced by bone marrow-derived mesenchymal stem cell (BMSC) transplantation; and whether the combination of bone morphogenetic protein-2 (BMP-2) administration and BMSC transplantation onto the scaffold would act synergistically to enhance bone regeneration in a large segmental defect model. The use of the combined therapy did increase bone regeneration further as compared to that with monotherapy in large segmental bone defects. PMID:22447098

  1. Ellipsoid Segmentation Model for Analyzing Light-Attenuated 3D Confocal Image Stacks of Fluorescent Multi-Cellular Spheroids

    PubMed Central

    Barbier, Michaël; Jaensch, Steffen; Cornelissen, Frans; Vidic, Suzana; Gjerde, Kjersti; de Hoogt, Ronald; Graeser, Ralph; Gustin, Emmanuel; Chong, Yolanda T.

    2016-01-01

    In oncology, two-dimensional in-vitro culture models are the standard test beds for the discovery and development of cancer treatments, but in the last decades, evidence emerged that such models have low predictive value for clinical efficacy. Therefore they are increasingly complemented by more physiologically relevant 3D models, such as spheroid micro-tumor cultures. If suitable fluorescent labels are applied, confocal 3D image stacks can characterize the structure of such volumetric cultures and, for example, cell proliferation. However, several issues hamper accurate analysis. In particular, signal attenuation within the tissue of the spheroids prevents the acquisition of a complete image for spheroids over 100 micrometers in diameter. And quantitative analysis of large 3D image data sets is challenging, creating a need for methods which can be applied to large-scale experiments and account for impeding factors. We present a robust, computationally inexpensive 2.5D method for the segmentation of spheroid cultures and for counting proliferating cells within them. The spheroids are assumed to be approximately ellipsoid in shape. They are identified from information present in the Maximum Intensity Projection (MIP) and the corresponding height view, also known as Z-buffer. It alerts the user when potential bias-introducing factors cannot be compensated for and includes a compensation for signal attenuation. PMID:27303813

  2. Ellipsoid Segmentation Model for Analyzing Light-Attenuated 3D Confocal Image Stacks of Fluorescent Multi-Cellular Spheroids.

    PubMed

    Barbier, Michaël; Jaensch, Steffen; Cornelissen, Frans; Vidic, Suzana; Gjerde, Kjersti; de Hoogt, Ronald; Graeser, Ralph; Gustin, Emmanuel; Chong, Yolanda T

    2016-01-01

    In oncology, two-dimensional in-vitro culture models are the standard test beds for the discovery and development of cancer treatments, but in the last decades, evidence emerged that such models have low predictive value for clinical efficacy. Therefore they are increasingly complemented by more physiologically relevant 3D models, such as spheroid micro-tumor cultures. If suitable fluorescent labels are applied, confocal 3D image stacks can characterize the structure of such volumetric cultures and, for example, cell proliferation. However, several issues hamper accurate analysis. In particular, signal attenuation within the tissue of the spheroids prevents the acquisition of a complete image for spheroids over 100 micrometers in diameter. And quantitative analysis of large 3D image data sets is challenging, creating a need for methods which can be applied to large-scale experiments and account for impeding factors. We present a robust, computationally inexpensive 2.5D method for the segmentation of spheroid cultures and for counting proliferating cells within them. The spheroids are assumed to be approximately ellipsoid in shape. They are identified from information present in the Maximum Intensity Projection (MIP) and the corresponding height view, also known as Z-buffer. It alerts the user when potential bias-introducing factors cannot be compensated for and includes a compensation for signal attenuation. PMID:27303813

  3. Color dithering methods for LEGO-like 3D printing

    NASA Astrophysics Data System (ADS)

    Sun, Pei-Li; Sie, Yuping

    2015-01-01

    Color dithering methods for LEGO-like 3D printing are proposed in this study. The first method is work for opaque color brick building. It is a modification of classic error diffusion. Many color primaries can be chosen. However, RGBYKW is recommended as its image quality is good and the number of color primary is limited. For translucent color bricks, multi-layer color building can enhance the image quality significantly. A LUT-based method is proposed to speed the dithering proceeding and make the color distribution even smoother. Simulation results show the proposed multi-layer dithering method can really improve the image quality of LEGO-like 3D printing.

  4. Intra-chain 3D segment swapping spawns the evolution of new multidomain protein architectures.

    PubMed

    Szilágyi, András; Zhang, Yang; Závodszky, Péter

    2012-01-01

    Multidomain proteins form in evolution through the concatenation of domains, but structural domains may comprise multiple segments of the chain. In this work, we demonstrate that new multidomain architectures can evolve by an apparent three-dimensional swap of segments between structurally similar domains within a single-chain monomer. By a comprehensive structural search of the current Protein Data Bank (PDB), we identified 32 well-defined segment-swapped proteins (SSPs) belonging to 18 structural families. Nearly 13% of all multidomain proteins in the PDB may have a segment-swapped evolutionary precursor as estimated by more permissive searching criteria. The formation of SSPs can be explained by two principal evolutionary mechanisms: (i) domain swapping and fusion (DSF) and (ii) circular permutation (CP). By large-scale comparative analyses using structural alignment and hidden Markov model methods, it was found that the majority of SSPs have evolved via the DSF mechanism, and a much smaller fraction, via CP. Functional analyses further revealed that segment swapping, which results in two linkers connecting the domains, may impart directed flexibility to multidomain proteins and contributes to the development of new functions. Thus, inter-domain segment swapping represents a novel general mechanism by which new protein folds and multidomain architectures arise in evolution, and SSPs have structural and functional properties that make them worth defining as a separate group. PMID:22079367

  5. Computer-aided classification of liver tumors in 3D ultrasound images with combined deformable model segmentation and support vector machine

    NASA Astrophysics Data System (ADS)

    Lee, Myungeun; Kim, Jong Hyo; Park, Moon Ho; Kim, Ye-Hoon; Seong, Yeong Kyeong; Cho, Baek Hwan; Woo, Kyoung-Gu

    2014-03-01

    In this study, we propose a computer-aided classification scheme of liver tumor in 3D ultrasound by using a combination of deformable model segmentation and support vector machine. For segmentation of tumors in 3D ultrasound images, a novel segmentation model was used which combined edge, region, and contour smoothness energies. Then four features were extracted from the segmented tumor including tumor edge, roundness, contrast, and internal texture. We used a support vector machine for the classification of features. The performance of the developed method was evaluated with a dataset of 79 cases including 20 cysts, 20 hemangiomas, and 39 hepatocellular carcinomas, as determined by the radiologist's visual scoring. Evaluation of the results showed that our proposed method produced tumor boundaries that were equal to or better than acceptable in 89.8% of cases, and achieved 93.7% accuracy in classification of cyst and hemangioma.

  6. A modular hierarchical approach to 3D electron microscopy image segmentation.

    PubMed

    Liu, Ting; Jones, Cory; Seyedhosseini, Mojtaba; Tasdizen, Tolga

    2014-04-15

    The study of neural circuit reconstruction, i.e., connectomics, is a challenging problem in neuroscience. Automated and semi-automated electron microscopy (EM) image analysis can be tremendously helpful for connectomics research. In this paper, we propose a fully automatic approach for intra-section segmentation and inter-section reconstruction of neurons using EM images. A hierarchical merge tree structure is built to represent multiple region hypotheses and supervised classification techniques are used to evaluate their potentials, based on which we resolve the merge tree with consistency constraints to acquire final intra-section segmentation. Then, we use a supervised learning based linking procedure for the inter-section neuron reconstruction. Also, we develop a semi-automatic method that utilizes the intermediate outputs of our automatic algorithm and achieves intra-segmentation with minimal user intervention. The experimental results show that our automatic method can achieve close-to-human intra-segmentation accuracy and state-of-the-art inter-section reconstruction accuracy. We also show that our semi-automatic method can further improve the intra-segmentation accuracy. PMID:24491638

  7. Reconstruction 3D des structures adjacentes de l'articulation de la hanche par une segmentation multi-structures a l'aide des maillages surfaciques triangulaires

    NASA Astrophysics Data System (ADS)

    Meghoufel, Brahim

    A new 3D reconstruction technique of the two adjacent structures forming the hip joint from the 3D CT-scans images has been developed. The femoral head and the acetabulum are reconstructed using a 3D multi-structure segmentation method for the adjacent surfaces which is based on the use of a 3D triangular surface meshes. This method begins with a preliminary hierarchical segmentation of the two structures, using one triangular mesh for each structure. The two resulting 3D meshes of the hierarchical segmentation are deployed into two planar 2D surfaces. We have used the umbrella deployment to deploy the femoral head mesh, and the parameterization 3D/2D to deploy the acetabulum mesh. The two planar generated surfaces are used to deploy the CT-scan volume around each structure. The surface of each structure is nearly planar in the corresponding deployed volume. The iterative method of minimal surfaces ensures the optimal identification of both sought surfaces from the deployed volumes. The last step of the 3D reconstruction method aims at detecting and correcting the overlap between the two structures. This 3D reconstruction method has been validated using a data base of 10 3D CT-scan images. The results of the 3D reconstructions seem satisfactory. The precision errors of these 3D reconstructions have been quantified by comparing the 3D reconstructions with an available manual gold standard. The errors resulting from the quantification are better than those available in the literature; the mean of those errors is 0,83 +/- 0,25 mm for acetabulum and 0,70 +/- 0,17 mm for the femoral head. The mean execution time of the 3D reconstruction of the two structures forming the hip joint has been estimated at approximately 3,0 +/- 0,3 min . The proposed method shows the potential of the solution which the image processing can provide to the surgeons in order to achieve their routine tasks. Such a method can be applied to every imaging modality.

  8. Acquisition and automated 3-D segmentation of respiratory/cardiac-gated PET transmission images

    SciTech Connect

    Reutter, B.W.; Klein, G.J.; Brennan, K.M.; Huesman, R.H. |

    1996-12-31

    To evaluate the impact of respiratory motion on attenuation correction of cardiac PET data, we acquired and automatically segmented gated transmission data for a dog breathing on its own under gas anesthesia. Data were acquired for 20 min on a CTI/Siemens ECAT EXACT HR (47-slice) scanner configured for 12 gates in a static study, Two respiratory gates were obtained using data from a pneumatic bellows placed around the dog`s chest, in conjunction with 6 cardiac gates from standard EKG gating. Both signals were directed to a LabVIEW-controlled Macintosh, which translated them into one of 12 gate addresses. The respiratory gating threshold was placed near end-expiration to acquire 6 cardiac-gated datasets at end-expiration and 6 cardiac-gated datasets during breaths. Breaths occurred about once every 10 sec and lasted about 1-1.5 sec. For each respiratory gate, data were summed over cardiac gates and torso and lung surfaces were segmented automatically using a differential 3-D edge detection algorithm. Three-dimensional visualizations showed that lung surfaces adjacent to the heart translated 9 mm inferiorly during breaths. Our results suggest that respiration-compensated attenuation correction is feasible with a modest amount of gated transmission data and is necessary for accurate quantitation of high-resolution gated cardiac PET data.

  9. SAMA: A Method for 3D Morphological Analysis

    PubMed Central

    Cerruti, Florent; Sonnenschein, Carlos; Soto, Ana M.

    2016-01-01

    Three-dimensional (3D) culture models are critical tools for understanding tissue morphogenesis. A key requirement for their analysis is the ability to reconstruct the tissue into computational models that allow quantitative evaluation of the formed structures. Here, we present Software for Automated Morphological Analysis (SAMA), a method by which epithelial structures grown in 3D cultures can be imaged, reconstructed and analyzed with minimum human intervention. SAMA allows quantitative analysis of key features of epithelial morphogenesis such as ductal elongation, branching and lumen formation that distinguish different hormonal treatments. SAMA is a user-friendly set of customized macros operated via FIJI (http://fiji.sc/Fiji), an open-source image analysis platform in combination with a set of functions in R (http://www.r-project.org/), an open-source program for statistical analysis. SAMA enables a rapid, exhaustive and quantitative 3D analysis of the shape of a population of structures in a 3D image. SAMA is cross-platform, licensed under the GPLv3 and available at http://montevil.theobio.org/content/sama. PMID:27035711

  10. Real-time 3D curved needle segmentation using combined B-mode and power Doppler ultrasound.

    PubMed

    Greer, Joseph D; Adebar, Troy K; Hwang, Gloria L; Okamura, Allison M

    2014-01-01

    This paper presents a real-time segmentation method for curved needles in biological tissue based on analysis of B-mode and power Doppler images from a tracked 2D ultrasound transducer. Mechanical vibration induced by an external voice coil results in a Doppler response along the needle shaft, which is centered around the needle section in the ultrasound image. First, B-mode image analysis is performed within regions of interest indicated by the Doppler response to create a segmentation of the needle section in the ultrasound image. Next, each needle section is decomposed into a sequence of points and transformed into a global coordinate system using the tracked transducer pose. Finally, the 3D shape is reconstructed from these points. The results of this method differ from manual segmentation by 0.71 ± 0.55 mm in needle tip location and 0.38 ± 0.27 mm along the needle shaft. This method is also fast, taking 5-10 ms to run on a standard PC, and is particularly advantageous in robotic needle steering, which involves thin, curved needles with poor echogenicity. PMID:25485402

  11. Rule-based fuzzy vector median filters for 3D phase contrast MRI segmentation

    NASA Astrophysics Data System (ADS)

    Sundareswaran, Kartik S.; Frakes, David H.; Yoganathan, Ajit P.

    2008-02-01

    Recent technological advances have contributed to the advent of phase contrast magnetic resonance imaging (PCMRI) as standard practice in clinical environments. In particular, decreased scan times have made using the modality more feasible. PCMRI is now a common tool for flow quantification, and for more complex vector field analyses that target the early detection of problematic flow conditions. Segmentation is one component of this type of application that can impact the accuracy of the final product dramatically. Vascular segmentation, in general, is a long-standing problem that has received significant attention. Segmentation in the context of PCMRI data, however, has been explored less and can benefit from object-based image processing techniques that incorporate fluids specific information. Here we present a fuzzy rule-based adaptive vector median filtering (FAVMF) algorithm that in combination with active contour modeling facilitates high-quality PCMRI segmentation while mitigating the effects of noise. The FAVMF technique was tested on 111 synthetically generated PC MRI slices and on 15 patients with congenital heart disease. The results were compared to other multi-dimensional filters namely the adaptive vector median filter, the adaptive vector directional filter, and the scalar low pass filter commonly used in PC MRI applications. FAVMF significantly outperformed the standard filtering methods (p < 0.0001). Two conclusions can be drawn from these results: a) Filtering should be performed after vessel segmentation of PC MRI; b) Vector based filtering methods should be used instead of scalar techniques.

  12. A new method of 3D scene recognition from still images

    NASA Astrophysics Data System (ADS)

    Zheng, Li-ming; Wang, Xing-song

    2014-04-01

    Most methods of monocular visual three dimensional (3D) scene recognition involve supervised machine learning. However, these methods often rely on prior knowledge. Specifically, they learn the image scene as part of a training dataset. For this reason, when the sampling equipment or scene is changed, monocular visual 3D scene recognition may fail. To cope with this problem, a new method of unsupervised learning for monocular visual 3D scene recognition is here proposed. First, the image is made using superpixel segmentation based on the CIELAB color space values L, a, and b and on the coordinate values x and y of pixels, forming a superpixel image with a specific density. Second, a spectral clustering algorithm based on the superpixels' color characteristics and neighboring relationships was used to reduce the dimensions of the superpixel image. Third, the fuzzy distribution density functions representing sky, ground, and façade are multiplied with the segment pixels, where the expectations of these segments are obtained. A preliminary classification of sky, ground, and façade is generated in this way. Fourth, the most accurate classification images of sky, ground, and façade were extracted through the tier-1 wavelet sampling and Manhattan direction feature. Finally, a depth perception map is generated based on the pinhole imaging model and the linear perspective information of ground surface. Here, 400 images of Make3D Image data from the Cornell University website were used to test the algorithm. The experimental results showed that this unsupervised learning method provides a more effective monocular visual 3D scene recognition model than other methods.

  13. A method for building 3D models of barchan dunes

    NASA Astrophysics Data System (ADS)

    Nai, Yang; Li-lan, Su; Lin, Wan; Jie, Yang; Shi-yi, Chen; Wei-lu, Hu

    2016-01-01

    The distributions of barchan dunes are usually represented by digital terrain models (DTMs) overlaid with digital orthophoto maps. Given that most regions with barchan dues have low relief, a 3D map obtained from a DTM may ineffectively show the stereoscopic shape of each dune. The method of building 3D models of barchan dunes using existing modeling software seldom considers the geographical environment. As a result, barchan dune models are often inconsistent with actual DTMs and incompletely express the morphological characteristics of dunes. Manual construction of barchan dune models is also costly and time consuming. Considering these problems, the morphological characteristics of barchan dunes and the mathematical relationships between the morphological parameters of the dunes, such as length, height, and width, are analyzed in this study. The methods of extracting the morphological feature points of barchan dunes, calculating their morphological parameters and building dune outlines and skeleton lines based on the medial axes, are also presented. The dune outlines, skeleton lines, and part of the medial axes of dunes are used to construct a constrained triangulated irregular network. C# and ArcEngine are employed to build 3D models of barchan dunes automatically. Experimental results of a study conducted in Tengger Desert show that the method can be used to approximate the morphological characteristics of barchan dunes and is less time consuming than manual methods.

  14. Optoranger: A 3D pattern matching method for bin picking applications

    NASA Astrophysics Data System (ADS)

    Sansoni, Giovanna; Bellandi, Paolo; Leoni, Fabio; Docchio, Franco

    2014-03-01

    This paper presents a new method, based on 3D vision, for the recognition of free-form objects in the presence of clutters and occlusions, ideal for robotic bin picking tasks. The method can be considered as a compromise between complexity and effectiveness. A 3D point cloud representing the scene is generated by a triangulation-based scanning system, where a fast camera acquires a blade projected by a laser source. Image segmentation is based on 2D images, and on the estimation of the distances between point pairs, to search for empty areas. Object recognition is performed using commercial software libraries integrated with custom-developed segmentation algorithms, and a database of model clouds created by means of the same scanning system.

  15. Breast tumour visualization using 3D quantitative ultrasound methods

    NASA Astrophysics Data System (ADS)

    Gangeh, Mehrdad J.; Raheem, Abdul; Tadayyon, Hadi; Liu, Simon; Hadizad, Farnoosh; Czarnota, Gregory J.

    2016-04-01

    Breast cancer is one of the most common cancer types accounting for 29% of all cancer cases. Early detection and treatment has a crucial impact on improving the survival of affected patients. Ultrasound (US) is non-ionizing, portable, inexpensive, and real-time imaging modality for screening and quantifying breast cancer. Due to these attractive attributes, the last decade has witnessed many studies on using quantitative ultrasound (QUS) methods in tissue characterization. However, these studies have mainly been limited to 2-D QUS methods using hand-held US (HHUS) scanners. With the availability of automated breast ultrasound (ABUS) technology, this study is the first to develop 3-D QUS methods for the ABUS visualization of breast tumours. Using an ABUS system, unlike the manual 2-D HHUS device, the whole patient's breast was scanned in an automated manner. The acquired frames were subsequently examined and a region of interest (ROI) was selected in each frame where tumour was identified. Standard 2-D QUS methods were used to compute spectral and backscatter coefficient (BSC) parametric maps on the selected ROIs. Next, the computed 2-D parameters were mapped to a Cartesian 3-D space, interpolated, and rendered to provide a transparent color-coded visualization of the entire breast tumour. Such 3-D visualization can potentially be used for further analysis of the breast tumours in terms of their size and extension. Moreover, the 3-D volumetric scans can be used for tissue characterization and the categorization of breast tumours as benign or malignant by quantifying the computed parametric maps over the whole tumour volume.

  16. Optical Sensors and Methods for Underwater 3D Reconstruction.

    PubMed

    Massot-Campos, Miquel; Oliver-Codina, Gabriel

    2015-01-01

    This paper presents a survey on optical sensors and methods for 3D reconstruction in underwater environments. The techniques to obtain range data have been listed and explained, together with the different sensor hardware that makes them possible. The literature has been reviewed, and a classification has been proposed for the existing solutions. New developments, commercial solutions and previous reviews in this topic have also been gathered and considered. PMID:26694389

  17. Optical Sensors and Methods for Underwater 3D Reconstruction

    PubMed Central

    Massot-Campos, Miquel; Oliver-Codina, Gabriel

    2015-01-01

    This paper presents a survey on optical sensors and methods for 3D reconstruction in underwater environments. The techniques to obtain range data have been listed and explained, together with the different sensor hardware that makes them possible. The literature has been reviewed, and a classification has been proposed for the existing solutions. New developments, commercial solutions and previous reviews in this topic have also been gathered and considered. PMID:26694389

  18. Segmentation and quantitative evaluation of brain MRI data with a multiphase 3D implicit deformable model

    NASA Astrophysics Data System (ADS)

    Angelini, Elsa D.; Song, Ting; Mensh, Brett D.; Laine, Andrew

    2004-05-01

    Segmentation of three-dimensional anatomical brain images into tissue classes has applications in both clinical and research settings. This paper presents the implementation and quantitative evaluation of a four-phase three-dimensional active contour implemented with a level set framework for automated segmentation of brain MRIs. The segmentation algorithm performs an optimal partitioning of three-dimensional data based on homogeneity measures that naturally evolves to the extraction of different tissue types in the brain. Random seed initialization was used to speed up numerical computation and avoid the need for a priori information. This random initialization ensures robustness of the method to variation of user expertise, biased a priori information and errors in input information that could be influenced by variations in image quality. Experimentation on three MRI brain data sets showed that an optimal partitioning successfully labeled regions that accurately identified white matter, gray matter and cerebrospinal fluid in the ventricles. Quantitative evaluation of the segmentation was performed with comparison to manually labeled data and computed false positive and false negative assignments of voxels for the three organs. We report high accuracy for the two comparison cases. These results demonstrate the efficiency and flexibility of this segmentation framework to perform the challenging task of automatically extracting brain tissue volume contours.

  19. Discrete Method of Images for 3D Radio Propagation Modeling

    NASA Astrophysics Data System (ADS)

    Novak, Roman

    2016-09-01

    Discretization by rasterization is introduced into the method of images (MI) in the context of 3D deterministic radio propagation modeling as a way to exploit spatial coherence of electromagnetic propagation for fine-grained parallelism. Traditional algebraic treatment of bounding regions and surfaces is replaced by computer graphics rendering of 3D reflections and double refractions while building the image tree. The visibility of reception points and surfaces is also resolved by shader programs. The proposed rasterization is shown to be of comparable run time to that of the fundamentally parallel shooting and bouncing rays. The rasterization does not affect the signal evaluation backtracking step, thus preserving its advantage over the brute force ray-tracing methods in terms of accuracy. Moreover, the rendering resolution may be scaled back for a given level of scenario detail with only marginal impact on the image tree size. This allows selection of scene optimized execution parameters for faster execution, giving the method a competitive edge. The proposed variant of MI can be run on any GPU that supports real-time 3D graphics.

  20. A Review of Failure Analysis Methods for Advanced 3D Microelectronic Packages

    NASA Astrophysics Data System (ADS)

    Li, Yan; Srinath, Purushotham Kaushik Muthur; Goyal, Deepak

    2016-01-01

    Advanced three dimensional (3D) packaging is a key enabler in driving form factor reduction, performance benefits, and package cost reduction, especially in the fast paced mobility and ultraportable consumer electronics segments. The high level of functional integration and the complex package architecture pose a significant challenge for conventional fault isolation (FI) and failure analysis (FA) methods. Innovative FI/FA tools and techniques are required to tackle the technical and throughput challenges. In this paper, the applications of FI and FA techniques such as Electro Optic Terahertz Pulse Reflectometry, 3D x-ray computed tomography, lock-in thermography, and novel physical sample preparation methods to 3D packages with package on package and stacked die with through silicon via configurations are reviewed, along with the key FI and FA challenges.

  1. Automatic segmentation and 3D reconstruction of intravascular ultrasound images for a fast preliminar evaluation of vessel pathologies.

    PubMed

    Sanz-Requena, Roberto; Moratal, David; García-Sánchez, Diego Ramón; Bodí, Vicente; Rieta, José Joaquín; Sanchis, Juan Manuel

    2007-03-01

    Intravascular ultrasound (IVUS) imaging is used along with X-ray coronary angiography to detect vessel pathologies. Manual analysis of IVUS images is slow and time-consuming and it is not feasible for clinical purposes. A semi-automated method is proposed to generate 3D reconstructions from IVUS video sequences, so that a fast diagnose can be easily done, quantifying plaque length and severity as well as plaque volume of the vessels under study. The methodology described in this work has four steps: a pre-processing of IVUS images, a segmentation of media-adventitia contour, a detection of intima and plaque and a 3D reconstruction of the vessel. Preprocessing is intended to remove noise from the images without blurring the edges. Segmentation of media-adventitia contour is achieved using active contours (snakes). In particular, we use the gradient vector flow (GVF) as external force for the snakes. The detection of lumen border is obtained taking into account gray-level information of the inner part of the previously detected contours. A knowledge-based approach is used to determine which level of gray corresponds statistically to the different regions of interest: intima, plaque and lumen. The catheter region is automatically discarded. An estimate of plaque type is also given. Finally, 3D reconstruction of all detected regions is made. The suitability of this methodology has been verified for the analysis and visualization of plaque length, stenosis severity, automatic detection of the most problematic regions, calculus of plaque volumes and a preliminary estimation of plaque type obtaining for automatic measures of lumen and vessel area an average error smaller than 1mm(2) (equivalent aproximately to 10% of the average measure), for calculus of plaque and lumen volume errors smaller than 0.5mm(3) (equivalent approximately to 20% of the average measure) and for plaque type estimates a mismatch of less than 8% in the analysed frames. PMID:17215103

  2. Automatic lung lobe segmentation in x-ray CT images by 3D watershed transform using anatomic information from the segmented airway tree

    NASA Astrophysics Data System (ADS)

    Ukil, Soumik; Hoffman, Eric A.; Reinhardt, Joseph M.

    2005-04-01

    The human lungs are divided into five distinct anatomic compartments called lobes. The physical boundaries between the lobes are called the lobar fissures. Detection of lobar fissure positions in pulmonary X-ray CT images is of increasing interest for the diagnosis of lung disease. We have developed an automatic method for segmentation of all five lung lobes simultaneously using a 3D watershed transform on the distance transform of a previously generated vessel mask, linearly combined with the original data. Due to the anatomically separate airway sub-trees for individual lobes, we can accurately and automatically place seed points for the watershed segmentation based on the airway tree anatomical description, due to the fact that lower generation airway and vascular tree segments are located near each other. This, along with seed point placement using information on the spatial location of the lobes, can give a close approximation to the actual lobar fissures. The accuracy of the lobar borders is assessed by comparing the automatic segmentation to manually traced lobar boundaries. Averaged over all volumes, the RMS distance errors for the left oblique fissure, right oblique fissure and right horizontal fissure are 3.720 mm, 0.713 mm and 1.109 mm respectively.

  3. Parallel 3D Mortar Element Method for Adaptive Nonconforming Meshes

    NASA Technical Reports Server (NTRS)

    Feng, Huiyu; Mavriplis, Catherine; VanderWijngaart, Rob; Biswas, Rupak

    2004-01-01

    High order methods are frequently used in computational simulation for their high accuracy. An efficient way to avoid unnecessary computation in smooth regions of the solution is to use adaptive meshes which employ fine grids only in areas where they are needed. Nonconforming spectral elements allow the grid to be flexibly adjusted to satisfy the computational accuracy requirements. The method is suitable for computational simulations of unsteady problems with very disparate length scales or unsteady moving features, such as heat transfer, fluid dynamics or flame combustion. In this work, we select the Mark Element Method (MEM) to handle the non-conforming interfaces between elements. A new technique is introduced to efficiently implement MEM in 3-D nonconforming meshes. By introducing an "intermediate mortar", the proposed method decomposes the projection between 3-D elements and mortars into two steps. In each step, projection matrices derived in 2-D are used. The two-step method avoids explicitly forming/deriving large projection matrices for 3-D meshes, and also helps to simplify the implementation. This new technique can be used for both h- and p-type adaptation. This method is applied to an unsteady 3-D moving heat source problem. With our new MEM implementation, mesh adaptation is able to efficiently refine the grid near the heat source and coarsen the grid once the heat source passes. The savings in computational work resulting from the dynamic mesh adaptation is demonstrated by the reduction of the the number of elements used and CPU time spent. MEM and mesh adaptation, respectively, bring irregularity and dynamics to the computer memory access pattern. Hence, they provide a good way to gauge the performance of computer systems when running scientific applications whose memory access patterns are irregular and unpredictable. We select a 3-D moving heat source problem as the Unstructured Adaptive (UA) grid benchmark, a new component of the NAS Parallel

  4. CT and MRI Assessment and Characterization Using Segmentation and 3D Modeling Techniques: Applications to Muscle, Bone and Brain

    PubMed Central

    Helgason, Thordur; Ramon, Ceon; jr, Halldór Jónsson; Carraro, Ugo

    2014-01-01

    This paper reviews the novel use of CT and MRI data and image processing tools to segment and reconstruct tissue images in 3D to determine characteristics of muscle, bone and brain. This to study and simulate the structural changes occurring in healthy and pathological conditions as well as in response to clinical treatments. Here we report the application of this methodology to evaluate and quantify: 1. progression of atrophy in human muscle subsequent to permanent lower motor neuron (LMN) denervation, 2. muscle recovery as induced by functional electrical stimulation (FES), 3. bone quality in patients undergoing total hip replacement and 4. to model the electrical activity of the brain. Study 1: CT data and segmentation techniques were used to quantify changes in muscle density and composition by associating the Hounsfield unit values of muscle, adipose and fibrous connective tissue with different colors. This method was employed to monitor patients who have permanent muscle LMN denervation in the lower extremities under two different conditions: permanent LMN denervated not electrically stimulated and stimulated. Study 2: CT data and segmentation techniques were employed, however, in this work we assessed bone and muscle conditions in the pre-operative CT scans of patients scheduled to undergo total hip replacement. In this work, the overall anatomical structure, the bone mineral density (BMD) and compactness of quadriceps muscles and proximal femoral was computed to provide a more complete view for surgeons when deciding which implant technology to use. Further, a Finite element analysis provided a map of the strains around the proximal femur socket when solicited by typical stresses caused by an implant press fitting. Study 3 describes a method to model the electrical behavior of human brain using segmented MR images. The aim of the work is to use these models to predict the electrical activity of the human brain under normal and pathological conditions by

  5. 3D segmentation of non-isolated pulmonary nodules in high resolution CT images

    NASA Astrophysics Data System (ADS)

    Zhang, Xiangwei; McLennan, Geoffrey; Hoffman, Eric A.; Sonka, Milan

    2005-04-01

    The purpose of this study is to develop a computer-aided diagnosis (CAD) system to segment small size non-isolated pulmonary nodules in high resolution helical CT scans. A new automated method of segmenting juxtapleural nodules was proposed, in which a quadric surface fitting procedure was used to create a boundary between a juxtapleural nodule and its neighboring pleural surface. Experiments on some real CT nodule data showed that this method was able to yield results that reflect the local shape of the pleural surface. Additionally, a scheme based on parametrically deformable geometric model was developed to deal with the problem of segmenting nodules attached to vessels. A vessel segment connected to a nodule was modeled using superquadrics with parametric deformations. The boundary between a vascularized nodule and the attached vessels can be recovered by finding the deformed superquadrics which approximates the vessels. Gradient descent scheme was utilized to optimize the parameters of the superquadrics. Simple experiments on synthetic data showed this scheme is promising.

  6. Automatic histogram-based segmentation of white matter hyperintensities using 3D FLAIR images

    NASA Astrophysics Data System (ADS)

    Simões, Rita; Slump, Cornelis; Moenninghoff, Christoph; Wanke, Isabel; Dlugaj, Martha; Weimar, Christian

    2012-03-01

    White matter hyperintensities are known to play a role in the cognitive decline experienced by patients suffering from neurological diseases. Therefore, accurately detecting and monitoring these lesions is of importance. Automatic methods for segmenting white matter lesions typically use multimodal MRI data. Furthermore, many methods use a training set to perform a classification task or to determine necessary parameters. In this work, we describe and evaluate an unsupervised segmentation method that is based solely on the histogram of FLAIR images. It approximates the histogram by a mixture of three Gaussians in order to find an appropriate threshold for white matter hyperintensities. We use a context-sensitive Expectation-Maximization method to determine the Gaussian mixture parameters. The segmentation is subsequently corrected for false positives using the knowledge of the location of typical FLAIR artifacts. A preliminary validation with the ground truth on 6 patients revealed a Similarity Index of 0.73 +/- 0.10, indicating that the method is comparable to others in the literature which require multimodal MRI and/or a preliminary training step.

  7. System and method for 3D printing of aerogels

    DOEpatents

    Worsley, Marcus A.; Duoss, Eric; Kuntz, Joshua; Spadaccini, Christopher; Zhu, Cheng

    2016-03-08

    A method of forming an aerogel. The method may involve providing a graphene oxide powder and mixing the graphene oxide powder with a solution to form an ink. A 3D printing technique may be used to write the ink into a catalytic solution that is contained in a fluid containment member to form a wet part. The wet part may then be cured in a sealed container for a predetermined period of time at a predetermined temperature. The cured wet part may then be dried to form a finished aerogel part.

  8. Method and simulation to study 3D crosstalk perception

    NASA Astrophysics Data System (ADS)

    Khaustova, Dar'ya; Blondé, Laurent; Huynh-Thu, Quan; Vienne, Cyril; Doyen, Didier

    2012-03-01

    To various degrees, all modern 3DTV displays suffer from crosstalk, which can lead to a decrease of both visual quality and visual comfort, and also affect perception of depth. In the absence of a perfect 3D display technology, crosstalk has to be taken into account when studying perception of 3D stereoscopic content. In order to improve 3D presentation systems and understand how to efficiently eliminate crosstalk, it is necessary to understand its impact on human perception. In this paper, we present a practical method to study the perception of crosstalk. The approach consists of four steps: (1) physical measurements of a 3DTV, (2) building of a crosstalk surface based on those measurements and representing specifically the behavior of that 3TV, (3) manipulation of the crosstalk function and application on reference images to produce test images degraded by crosstalk in various ways, and (4) psychophysical tests. Our approach allows both a realistic representation of the behavior of a 3DTV and the easy manipulation of its resulting crosstalk in order to conduct psycho-visual experiments. Our approach can be used in all studies requiring the understanding of how crosstalk affects perception of stereoscopic content and how it can be corrected efficiently.

  9. 3D segmentation of annulus fibrosus and nucleus pulposus from T2-weighted magnetic resonance images

    NASA Astrophysics Data System (ADS)

    Castro-Mateos, Isaac; Pozo, Jose M.; Eltes, Peter E.; Del Rio, Luis; Lazary, Aron; Frangi, Alejandro F.

    2014-12-01

    Computational medicine aims at employing personalised computational models in diagnosis and treatment planning. The use of such models to help physicians in finding the best treatment for low back pain (LBP) is becoming popular. One of the challenges of creating such models is to derive patient-specific anatomical and tissue models of the lumbar intervertebral discs (IVDs), as a prior step. This article presents a segmentation scheme that obtains accurate results irrespective of the degree of IVD degeneration, including pathological discs with protrusion or herniation. The segmentation algorithm, employing a novel feature selector, iteratively deforms an initial shape, which is projected into a statistical shape model space at first and then, into a B-Spline space to improve accuracy. The method was tested on a MR dataset of 59 patients suffering from LBP. The images follow a standard T2-weighted protocol in coronal and sagittal acquisitions. These two image volumes were fused in order to overcome large inter-slice spacing. The agreement between expert-delineated structures, used here as gold-standard, and our automatic segmentation was evaluated using Dice Similarity Index and surface-to-surface distances, obtaining a mean error of 0.68 mm in the annulus segmentation and 1.88 mm in the nucleus, which are the best results with respect to the image resolution in the current literature.

  10. Automated Lung Segmentation and Image Quality Assessment for Clinical 3-D/4-D-Computed Tomography

    PubMed Central

    Li, Guang

    2014-01-01

    4-D-computed tomography (4DCT) provides not only a new dimension of patient-specific information for radiation therapy planning and treatment, but also a challenging scale of data volume to process and analyze. Manual analysis using existing 3-D tools is unable to keep up with vastly increased 4-D data volume, automated processing and analysis are thus needed to process 4DCT data effectively and efficiently. In this paper, we applied ideas and algorithms from image/signal processing, computer vision, and machine learning to 4DCT lung data so that lungs can be reliably segmented in a fully automated manner, lung features can be visualized and measured on the fly via user interactions, and data quality classifications can be computed in a robust manner. Comparisons of our results with an established treatment planning system and calculation by experts demonstrated negligible discrepancies (within ±2%) for volume assessment but one to two orders of magnitude performance enhancement. An empirical Fourier-analysis-based quality measure-delivered performances closely emulating human experts. Three machine learners are inspected to justify the viability of machine learning techniques used to robustly identify data quality of 4DCT images in the scalable manner. The resultant system provides a toolkit that speeds up 4-D tasks in the clinic and facilitates clinical research to improve current clinical practice. PMID:25621194

  11. Single-camera fixed perspective 360-deg 3D method

    NASA Astrophysics Data System (ADS)

    Harding, Kevin G.; Fergan, Robert K.

    1997-01-01

    The use of 3D methods for such applications as feature locations within a wide field-of-view, such as for automated guided vehicles or large assembly work, offers some distinct challenges. The use of stereo viewing has often been the method of choice due to the wide area coverage and hardware simplicity. However, stereo based methods suffer from a loss of spatial position resolution for more distant object as compared to close objects due to the high demagnification needed to cover large fields-of-view. A long depth-of-field in such systems may also degrade the general ability to perform correlations due to poor focus. In addition, stereo looses distance resolution for features nearing the line of the two cameras, typically requiring movement of the cameras. The paper presents a novel method of obtaining 3D scene information as seen from the center of a cylindrical field. The method described uses a single camera with a view that is rotated through 360 degrees by means of a continuously rotating mirror. The viewing systems uses a constant field of view optical system that provides a constant X-Y resolution of features in the scene over depths of several meters. Comparing successive images with the readout from an encoder on the rotating mirror generates all locations of objects within a limited height cylinder. This paper will discuss the sources of errors and typical capabilities of this approach in light of a real-time part location tracking application useful in assembly systems.

  12. 3D reconstruction methods of coronal structures by radio observations

    NASA Astrophysics Data System (ADS)

    Aschwanden, Markus J.; Bastian, T. S.; White, Stephen M.

    1992-11-01

    The ability to carry out the three dimensional (3D) reconstruction of structures in the solar corona would represent a major advance in the study of the physical properties in active regions and in flares. Methods which allow a geometric reconstruction of quasistationary coronal structures (for example active region loops) or dynamic structures (for example flaring loops) are described: stereoscopy of multi-day imaging observations by the VLA (Very Large Array); tomography of optically thin emission (in radio or soft x-rays); multifrequency band imaging by the VLA; and tracing of magnetic field lines by propagating electron beams.

  13. 3D reconstruction methods of coronal structures by radio observations

    NASA Technical Reports Server (NTRS)

    Aschwanden, Markus J.; Bastian, T. S.; White, Stephen M.

    1992-01-01

    The ability to carry out the three dimensional (3D) reconstruction of structures in the solar corona would represent a major advance in the study of the physical properties in active regions and in flares. Methods which allow a geometric reconstruction of quasistationary coronal structures (for example active region loops) or dynamic structures (for example flaring loops) are described: stereoscopy of multi-day imaging observations by the VLA (Very Large Array); tomography of optically thin emission (in radio or soft x-rays); multifrequency band imaging by the VLA; and tracing of magnetic field lines by propagating electron beams.

  14. Adaptive model based pulmonary artery segmentation in 3D chest CT

    NASA Astrophysics Data System (ADS)

    Feuerstein, Marco; Kitasaka, Takayuki; Mori, Kensaku

    2010-03-01

    The extraction and analysis of the pulmonary artery in computed tomography (CT) of the chest can be an important, but time-consuming step for the diagnosis and treatment of lung disease, in particular in non-contrast data, where the pulmonary artery has low contrast and frequently merges with adjacent tissue of similar intensity. We here present a new method for the automatic segmentation of the pulmonary artery based on an adaptive model, Hough and Euclidean distance transforms, and spline fitting, which works equally well on non-contrast and contrast enhanced data. An evaluation on 40 patient data sets and a comparison to manual segmentations in terms of Jaccard index, sensitivity, specificity, and minimum mean distance shows its overall robustness.

  15. LiDAR Segmentation using Suitable Seed Points for 3D Building Extraction

    NASA Astrophysics Data System (ADS)

    Abdullah, S. M.; Awrangjeb, M.; Lu, G.

    2014-08-01

    Effective building detection and roof reconstruction has an influential demand over the remote sensing research community. In this paper, we present a new automatic LiDAR point cloud segmentation method using suitable seed points for building detection and roof plane extraction. Firstly, the LiDAR point cloud is separated into "ground" and "non-ground" points based on the analysis of DEM with a height threshold. Each of the non-ground point is marked as coplanar or non-coplanar based on a coplanarity analysis. Commencing from the maximum LiDAR point height towards the minimum, all the LiDAR points on each height level are extracted and separated into several groups based on 2D distance. From each group, lines are extracted and a coplanar point which is the nearest to the midpoint of each line is considered as a seed point. This seed point and its neighbouring points are utilised to generate the plane equation. The plane is grown in a region growing fashion until no new points can be added. A robust rule-based tree removal method is applied subsequently to remove planar segments on trees. Four different rules are applied in this method. Finally, the boundary of each object is extracted from the segmented LiDAR point cloud. The method is evaluated with six different data sets consisting hilly and densely vegetated areas. The experimental results indicate that the proposed method offers a high building detection and roof plane extraction rates while compared to a recently proposed method.

  16. Robust method for extracting the pulmonary vascular trees from 3D MDCT images

    NASA Astrophysics Data System (ADS)

    Taeprasartsit, Pinyo; Higgins, William E.

    2011-03-01

    Segmentation of pulmonary blood vessels from three-dimensional (3D) multi-detector CT (MDCT) images is important for pulmonary applications. This work presents a method for extracting the vascular trees of the pulmonary arteries and veins, applicable to both contrast-enhanced and unenhanced 3D MDCT image data. The method finds 2D elliptical cross-sections and evaluates agreement of these cross-sections in consecutive slices to find likely cross-sections. It next employs morphological multiscale analysis to separate vessels from adjoining airway walls. The method then tracks the center of the likely cross-sections to connect them to the pulmonary vessels in the mediastinum and forms connected vascular trees spanning both lungs. A ground-truth study indicates that the method was able to detect on the order of 98% of the vessel branches having diameter >= 3.0 mm. The extracted vascular trees can be utilized for the guidance of safe bronchoscopic biopsy.

  17. Automated torso organ segmentation from 3D CT images using structured perceptron and dual decomposition

    NASA Astrophysics Data System (ADS)

    Nimura, Yukitaka; Hayashi, Yuichiro; Kitasaka, Takayuki; Mori, Kensaku

    2015-03-01

    This paper presents a method for torso organ segmentation from abdominal CT images using structured perceptron and dual decomposition. A lot of methods have been proposed to enable automated extraction of organ regions from volumetric medical images. However, it is necessary to adjust empirical parameters of them to obtain precise organ regions. This paper proposes an organ segmentation method using structured output learning. Our method utilizes a graphical model and binary features which represent the relationship between voxel intensities and organ labels. Also we optimize the weights of the graphical model by structured perceptron and estimate the best organ label for a given image by dynamic programming and dual decomposition. The experimental result revealed that the proposed method can extract organ regions automatically using structured output learning. The error of organ label estimation was 4.4%. The DICE coefficients of left lung, right lung, heart, liver, spleen, pancreas, left kidney, right kidney, and gallbladder were 0.91, 0.95, 0.77, 0.81, 0.74, 0.08, 0.83, 0.84, and 0.03, respectively.

  18. A new method for automated discontinuity trace mapping on rock mass 3D surface model

    NASA Astrophysics Data System (ADS)

    Li, Xiaojun; Chen, Jianqin; Zhu, Hehua

    2016-04-01

    This paper presents an automated discontinuity trace mapping method on a 3D surface model of rock mass. Feature points of discontinuity traces are first detected using the Normal Tensor Voting Theory, which is robust to noisy point cloud data. Discontinuity traces are then extracted from feature points in four steps: (1) trace feature point grouping, (2) trace segment growth, (3) trace segment connection, and (4) redundant trace segment removal. A sensitivity analysis is conducted to identify optimal values for the parameters used in the proposed method. The optimal triangular mesh element size is between 5 cm and 6 cm; the angle threshold in the trace segment growth step is between 70° and 90°; the angle threshold in the trace segment connection step is between 50° and 70°, and the distance threshold should be at least 15 times the mean triangular mesh element size. The method is applied to the excavation face trace mapping of a drill-and-blast tunnel. The results show that the proposed discontinuity trace mapping method is fast and effective and could be used as a supplement to traditional direct measurement of discontinuity traces.

  19. Evaluation of Methods for Coregistration and Fusion of Rpas-Based 3d Point Clouds and Thermal Infrared Images

    NASA Astrophysics Data System (ADS)

    Hoegner, L.; Tuttas, S.; Xu, Y.; Eder, K.; Stilla, U.

    2016-06-01

    This paper discusses the automatic coregistration and fusion of 3d point clouds generated from aerial image sequences and corresponding thermal infrared (TIR) images. Both RGB and TIR images have been taken from a RPAS platform with a predefined flight path where every RGB image has a corresponding TIR image taken from the same position and with the same orientation with respect to the accuracy of the RPAS system and the inertial measurement unit. To remove remaining differences in the exterior orientation, different strategies for coregistering RGB and TIR images are discussed: (i) coregistration based on 2D line segments for every single TIR image and the corresponding RGB image. This method implies a mainly planar scene to avoid mismatches; (ii) coregistration of both the dense 3D point clouds from RGB images and from TIR images by coregistering 2D image projections of both point clouds; (iii) coregistration based on 2D line segments in every single TIR image and 3D line segments extracted from intersections of planes fitted in the segmented dense 3D point cloud; (iv) coregistration of both the dense 3D point clouds from RGB images and from TIR images using both ICP and an adapted version based on corresponding segmented planes; (v) coregistration of both image sets based on point features. The quality is measured by comparing the differences of the back projection of homologous points in both corrected RGB and TIR images.

  20. A method of PSF generation for 3D brightfield deconvolution.

    PubMed

    Tadrous, P J

    2010-02-01

    This paper addresses the problem of 3D deconvolution of through focus widefield microscope datasets (Z-stacks). One of the most difficult stages in brightfield deconvolution is finding the point spread function. A theoretically calculated point spread function (called a 'synthetic PSF' in this paper) requires foreknowledge of many system parameters and still gives only approximate results. A point spread function measured from a sub-resolution bead suffers from low signal-to-noise ratio, compounded in the brightfield setting (by contrast to fluorescence) by absorptive, refractive and dispersal effects. This paper describes a method of point spread function estimation based on measurements of a Z-stack through a thin sample. This Z-stack is deconvolved by an idealized point spread function derived from the same Z-stack to yield a point spread function of high signal-to-noise ratio that is also inherently tailored to the imaging system. The theory is validated by a practical experiment comparing the non-blind 3D deconvolution of the yeast Saccharomyces cerevisiae with the point spread function generated using the method presented in this paper (called the 'extracted PSF') to a synthetic point spread function. Restoration of both high- and low-contrast brightfield structures is achieved with fewer artefacts using the extracted point spread function obtained with this method. Furthermore the deconvolution progresses further (more iterations are allowed before the error function reaches its nadir) with the extracted point spread function compared to the synthetic point spread function indicating that the extracted point spread function is a better fit to the brightfield deconvolution model than the synthetic point spread function. PMID:20096049

  1. The COMET method in 3-D hexagonal geometry

    SciTech Connect

    Connolly, K. J.; Rahnema, F.

    2012-07-01

    The hybrid stochastic-deterministic coarse mesh radiation transport (COMET) method developed at Georgia Tech now solves reactor core problems in 3-D hexagonal geometry. In this paper, the method is used to solve three preliminary test problems designed to challenge the method with steep flux gradients, high leakage, and strong asymmetry and heterogeneity in the core. The test problems are composed of blocks taken from a high temperature test reactor benchmark problem. As the method is still in development, these problems and their results are strictly preliminary. Results are compared to whole core Monte Carlo reference solutions in order to verify the method. Relative errors are on the order of 50 pcm in core eigenvalue, and mean relative error in pin fission density calculations is less than 1% in these difficult test cores. The method requires the one-time pre-computation of a response expansion coefficient library, which may be compiled in a comparable amount of time to a single whole core Monte Carlo calculation. After the library has been computed, COMET may solve any number of core configurations on the order of an hour, representing a significant gain in efficiency over other methods for whole core transport calculations. (authors)

  2. Automatic segmentation of solitary pulmonary nodules based on local intensity structure analysis and 3D neighborhood features in 3D chest CT images

    NASA Astrophysics Data System (ADS)

    Chen, Bin; Kitasaka, Takayuki; Honma, Hirotoshi; Takabatake, Hirotsugu; Mori, Masaki; Natori, Hiroshi; Mori, Kensaku

    2012-03-01

    This paper presents a solitary pulmonary nodule (SPN) segmentation method based on local intensity structure analysis and neighborhood feature analysis in chest CT images. Automated segmentation of SPNs is desirable for a chest computer-aided detection/diagnosis (CAS) system since a SPN may indicate early stage of lung cancer. Due to the similar intensities of SPNs and other chest structures such as blood vessels, many false positives (FPs) are generated by nodule detection methods. To reduce such FPs, we introduce two features that analyze the relation between each segmented nodule candidate and it neighborhood region. The proposed method utilizes a blob-like structure enhancement (BSE) filter based on Hessian analysis to augment the blob-like structures as initial nodule candidates. Then a fine segmentation is performed to segment much more accurate region of each nodule candidate. FP reduction is mainly addressed by investigating two neighborhood features based on volume ratio and eigenvector of Hessian that are calculates from the neighborhood region of each nodule candidate. We evaluated the proposed method by using 40 chest CT images, include 20 standard-dose CT images that we randomly chosen from a local database and 20 low-dose CT images that were randomly chosen from a public database: LIDC. The experimental results revealed that the average TP rate of proposed method was 93.6% with 12.3 FPs/case.

  3. The 3D inelastic analysis methods for hot section components

    NASA Technical Reports Server (NTRS)

    Dame, L. T.; Mcknight, R. L.

    1983-01-01

    The objective of this research is to develop an analytical tool capable of economically evaluating the cyclic time dependent plasticity which occurs in hot section engine components in areas of strain concentration resulting from the combination of both mechanical and thermal stresses. The techniques developed must be capable of accommodating large excursions in temperatures with the associated variations in material properties including plasticity and creep. The overall objective of this proposed program is to develop advanced 3-D inelastic structural/stress analysis methods and solution strategies for more accurate and yet more cost effective analysis of combustors, turbine blades, and vanes. The approach will be to develop four different theories, one linear and three higher order with increasing complexities including embedded singularities.

  4. On 3D inelastic analysis methods for hot section components

    NASA Technical Reports Server (NTRS)

    Mcknight, R. L.; Chen, P. C.; Dame, L. T.; Holt, R. V.; Huang, H.; Hartle, M.; Gellin, S.; Allen, D. H.; Haisler, W. E.

    1986-01-01

    Accomplishments are described for the 2-year program, to develop advanced 3-D inelastic structural stress analysis methods and solution strategies for more accurate and cost effective analysis of combustors, turbine blades and vanes. The approach was to develop a matrix of formulation elements and constitutive models. Three constitutive models were developed in conjunction with optimized iterating techniques, accelerators, and convergence criteria within a framework of dynamic time incrementing. Three formulations models were developed; an eight-noded mid-surface shell element, a nine-noded mid-surface shell element and a twenty-noded isoparametric solid element. A separate computer program was developed for each combination of constitutive model-formulation model. Each program provides a functional stand alone capability for performing cyclic nonlinear structural analysis. In addition, the analysis capabilities incorporated into each program can be abstracted in subroutine form for incorporation into other codes or to form new combinations.

  5. The 3D inelastic analysis methods for hot section components

    NASA Technical Reports Server (NTRS)

    Mcknight, R. L.; Maffeo, R. J.; Tipton, M. T.; Weber, G.

    1992-01-01

    A two-year program to develop advanced 3D inelastic structural stress analysis methods and solution strategies for more accurate and cost effective analysis of combustors, turbine blades, and vanes is described. The approach was to develop a matrix of formulation elements and constitutive models. Three constitutive models were developed in conjunction with optimized iterating techniques, accelerators, and convergence criteria within a framework of dynamic time incrementing. Three formulation models were developed: an eight-noded midsurface shell element; a nine-noded midsurface shell element; and a twenty-noded isoparametric solid element. A separate computer program has been developed for each combination of constitutive model-formulation model. Each program provides a functional stand alone capability for performing cyclic nonlinear structural analysis. In addition, the analysis capabilities incorporated into each program can be abstracted in subroutine form for incorporation into other codes or to form new combinations.

  6. Axial magnetic anomalies over slow-spreading ridge segments: insights from numerical 3-D thermal and physical modelling

    NASA Astrophysics Data System (ADS)

    Gac, Sébastien; Dyment, Jérôme; Tisseau, Chantal; Goslin, Jean

    2003-09-01

    The axial magnetic anomaly amplitude along Mid-Atlantic Ridge segments is systematically twice as high at segment ends compared with segment centres. Various processes have been proposed to account for such observations, either directly or indirectly related to the thermal structure of the segments: (1) shallower Curie isotherm at segment centres, (2) higher Fe-Ti content at segment ends, (3) serpentinized peridotites at segment ends or (4) a combination of these processes. In this paper the contribution of each of these processes to the axial magnetic anomaly amplitude is quantitatively evaluated by achieving a 3-D numerical modelling of the magnetization distribution and a magnetic anomaly over a medium-sized, 50 km long segment. The magnetization distribution depends on the thermal structure and thermal evolution of the lithosphere. The thermal structure is calculated considering the presence of a permanent hot zone beneath the segment centre. The `best-fitting' thermal structure is determined by adjusting the parameters (shape, size, depth, etc.) of this hot zone, to fit the modelled geophysical outputs (Mantle Bouguer anomaly, maximum earthquake depths and crustal thickness) to the observations. Both the thermoremanent magnetization, acquired during the thermal evolution, and the induced magnetization, which depends on the present thermal structure, are modelled. The resulting magnetic anomalies are then computed and compared with the observed ones. This modelling exercise suggests that, in the case of aligned and slightly offset segments, a combination of higher Fe-Ti content and the presence of serpentinized peridotites at segment ends will produce the observed higher axial magnetic anomaly amplitudes over the segment ends. In the case of greater offsets, the presence of serpentinized peridotites at segment ends is sufficient to account for the observations.

  7. Automatic 3D Segmentation and Quantification of Lenticulostriate Arteries from High-Resolution 7 Tesla MRA Images.

    PubMed

    Wei Liao; Rohr, Karl; Chang-Ki Kang; Zang-Hee Cho; Worz, Stefan

    2016-01-01

    We propose a novel hybrid approach for automatic 3D segmentation and quantification of high-resolution 7 Tesla magnetic resonance angiography (MRA) images of the human cerebral vasculature. Our approach consists of two main steps. First, a 3D model-based approach is used to segment and quantify thick vessels and most parts of thin vessels. Second, remaining vessel gaps of the first step in low-contrast and noisy regions are completed using a 3D minimal path approach, which exploits directional information. We present two novel minimal path approaches. The first is an explicit approach based on energy minimization using probabilistic sampling, and the second is an implicit approach based on fast marching with anisotropic directional prior. We conducted an extensive evaluation with over 2300 3D synthetic images and 40 real 3D 7 Tesla MRA images. Quantitative and qualitative evaluation shows that our approach achieves superior results compared with a previous minimal path approach. Furthermore, our approach was successfully used in two clinical studies on stroke and vascular dementia. PMID:26571526

  8. Lattice Boltzmann Method for 3-D Flows with Curved Boundary

    NASA Technical Reports Server (NTRS)

    Mei, Renwei; Shyy, Wei; Yu, Dazhi; Luo, Li-Shi

    2002-01-01

    In this work, we investigate two issues that are important to computational efficiency and reliability in fluid dynamics applications of the lattice, Boltzmann equation (LBE): (1) Computational stability and accuracy of different lattice Boltzmann models and (2) the treatment of the boundary conditions on curved solid boundaries and their 3-D implementations. Three athermal 3-D LBE models (D3QI5, D3Ql9, and D3Q27) are studied and compared in terms of efficiency, accuracy, and robustness. The boundary treatment recently developed by Filippova and Hanel and Met et al. in 2-D is extended to and implemented for 3-D. The convergence, stability, and computational efficiency of the 3-D LBE models with the boundary treatment for curved boundaries were tested in simulations of four 3-D flows: (1) Fully developed flows in a square duct, (2) flow in a 3-D lid-driven cavity, (3) fully developed flows in a circular pipe, and (4) a uniform flow over a sphere. We found that while the fifteen-velocity 3-D (D3Ql5) model is more prone to numerical instability and the D3Q27 is more computationally intensive, the 63Q19 model provides a balance between computational reliability and efficiency. Through numerical simulations, we demonstrated that the boundary treatment for 3-D arbitrary curved geometry has second-order accuracy and possesses satisfactory stability characteristics.

  9. 3D Wavelet-Based Filter and Method

    DOEpatents

    Moss, William C.; Haase, Sebastian; Sedat, John W.

    2008-08-12

    A 3D wavelet-based filter for visualizing and locating structural features of a user-specified linear size in 2D or 3D image data. The only input parameter is a characteristic linear size of the feature of interest, and the filter output contains only those regions that are correlated with the characteristic size, thus denoising the image.

  10. Fast Semantic Segmentation of 3d Point Clouds with Strongly Varying Density

    NASA Astrophysics Data System (ADS)

    Hackel, Timo; Wegner, Jan D.; Schindler, Konrad

    2016-06-01

    We describe an effective and efficient method for point-wise semantic classification of 3D point clouds. The method can handle unstructured and inhomogeneous point clouds such as those derived from static terrestrial LiDAR or photogammetric reconstruction; and it is computationally efficient, making it possible to process point clouds with many millions of points in a matter of minutes. The key issue, both to cope with strong variations in point density and to bring down computation time, turns out to be careful handling of neighborhood relations. By choosing appropriate definitions of a point's (multi-scale) neighborhood, we obtain a feature set that is both expressive and fast to compute. We evaluate our classification method both on benchmark data from a mobile mapping platform and on a variety of large, terrestrial laser scans with greatly varying point density. The proposed feature set outperforms the state of the art with respect to per-point classification accuracy, while at the same time being much faster to compute.

  11. A region-appearance-based adaptive variational model for 3D liver segmentation

    SciTech Connect

    Peng, Jialin; Dong, Fangfang; Chen, Yunmei; Kong, Dexing

    2014-04-15

    Purpose: Liver segmentation from computed tomography images is a challenging task owing to pixel intensity overlapping, ambiguous edges, and complex backgrounds. The authors address this problem with a novel active surface scheme, which minimizes an energy functional combining both edge- and region-based information. Methods: In this semiautomatic method, the evolving surface is principally attracted to strong edges but is facilitated by the region-based information where edge information is missing. As avoiding oversegmentation is the primary challenge, the authors take into account multiple features and appearance context information. Discriminative cues, such as multilayer consecutiveness and local organ deformation are also implicitly incorporated. Case-specific intensity and appearance constraints are included to cope with the typically large appearance variations over multiple images. Spatially adaptive balancing weights are employed to handle the nonuniformity of image features. Results: Comparisons and validations on difficult cases showed that the authors’ model can effectively discriminate the liver from adhering background tissues. Boundaries weak in gradient or with no local evidence (e.g., small edge gaps or parts with similar intensity to the background) were delineated without additional user constraint. With an average surface distance of 0.9 mm and an average volume overlap of 93.9% on the MICCAI data set, the authors’ model outperformed most state-of-the-art methods. Validations on eight volumes with different initial conditions had segmentation score variances mostly less than unity. Conclusions: The proposed model can efficiently delineate ambiguous liver edges from complex tissue backgrounds with reproducibility. Quantitative validations and comparative results demonstrate the accuracy and efficacy of the model.

  12. Fusion of ultrasound B-mode and vibro-elastography images for automatic 3D segmentation of the prostate.

    PubMed

    Mahdavi, S Sara; Moradi, Mehdi; Morris, William J; Goldenberg, S Larry; Salcudean, Septimiu E

    2012-11-01

    Prostate segmentation in B-mode images is a challenging task even when done manually by experts. In this paper we propose a 3D automatic prostate segmentation algorithm which makes use of information from both ultrasound B-mode and vibro-elastography data.We exploit the high contrast to noise ratio of vibro-elastography images of the prostate, in addition to the commonly used B-mode images, to implement a 2D Active Shape Model (ASM)-based segmentation algorithm on the midgland image. The prostate model is deformed by a combination of two measures: the gray level similarity and the continuity of the prostate edge in both image types. The automatically obtained mid-gland contour is then used to initialize a 3D segmentation algorithm which models the prostate as a tapered and warped ellipsoid. Vibro-elastography images are used in addition to ultrasound images to improve boundary detection.We report a Dice similarity coefficient of 0.87±0.07 and 0.87±0.08 comparing the 2D automatic contours with manual contours of two observers on 61 images. For 11 cases, a whole gland volume error of 10.2±2.2% and 13.5±4.1% and whole gland volume difference of -7.2±9.1% and -13.3±12.6% between 3D automatic and manual surfaces of two observers is obtained. This is the first validated work showing the fusion of B-mode and vibro-elastography data for automatic 3D segmentation of the prostate. PMID:22829391

  13. 3D polygonal representation of dense point clouds by triangulation, segmentation, and texture projection

    NASA Astrophysics Data System (ADS)

    Tajbakhsh, Touraj

    2010-02-01

    A basic concern of computer graphic is the modeling and realistic representation of three-dimensional objects. In this paper we present our reconstruction framework which determines a polygonal surface from a set of dense points such those typically obtained from laser scanners. We deploy the concept of adaptive blobs to achieve a first volumetric representation of the object. In the next step we estimate a coarse surface using the marching cubes method. We propose to deploy a depth-first search segmentation algorithm traversing a graph representation of the obtained polygonal mesh in order to identify all connected components. A so called supervised triangulation maps the coarse surfaces onto the dense point cloud. We optimize the mesh topology using edge exchange operations. For photo-realistic visualization of objects we finally synthesize optimal low-loss textures from available scene captures of different projections. We evaluate our framework on artificial data as well as real sensed data.

  14. Automatic left-atrial segmentation from cardiac 3D ultrasound: a dual-chamber model-based approach

    NASA Astrophysics Data System (ADS)

    Almeida, Nuno; Sarvari, Sebastian I.; Orderud, Fredrik; Gérard, Olivier; D'hooge, Jan; Samset, Eigil

    2016-04-01

    In this paper, we present an automatic solution for segmentation and quantification of the left atrium (LA) from 3D cardiac ultrasound. A model-based framework is applied, making use of (deformable) active surfaces to model the endocardial surfaces of cardiac chambers, allowing incorporation of a priori anatomical information in a simple fashion. A dual-chamber model (LA and left ventricle) is used to detect and track the atrio-ventricular (AV) plane, without any user input. Both chambers are represented by parametric surfaces and a Kalman filter is used to fit the model to the position of the endocardial walls detected in the image, providing accurate detection and tracking during the whole cardiac cycle. This framework was tested in 20 transthoracic cardiac ultrasound volumetric recordings of healthy volunteers, and evaluated using manual traces of a clinical expert as a reference. The 3D meshes obtained with the automatic method were close to the reference contours at all cardiac phases (mean distance of 0.03+/-0.6 mm). The AV plane was detected with an accuracy of -0.6+/-1.0 mm. The LA volumes assessed automatically were also in agreement with the reference (mean +/-1.96 SD): 0.4+/-5.3 ml, 2.1+/-12.6 ml, and 1.5+/-7.8 ml at end-diastolic, end-systolic and pre-atrial-contraction frames, respectively. This study shows that the proposed method can be used for automatic volumetric assessment of the LA, considerably reducing the analysis time and effort when compared to manual analysis.

  15. Methods for Geometric Data Validation of 3d City Models

    NASA Astrophysics Data System (ADS)

    Wagner, D.; Alam, N.; Wewetzer, M.; Pries, M.; Coors, V.

    2015-12-01

    Geometric quality of 3D city models is crucial for data analysis and simulation tasks, which are part of modern applications of the data (e.g. potential heating energy consumption of city quarters, solar potential, etc.). Geometric quality in these contexts is however a different concept as it is for 2D maps. In the latter case, aspects such as positional or temporal accuracy and correctness represent typical quality metrics of the data. They are defined in ISO 19157 and should be mentioned as part of the metadata. 3D data has a far wider range of aspects which influence their quality, plus the idea of quality itself is application dependent. Thus, concepts for definition of quality are needed, including methods to validate these definitions. Quality on this sense means internal validation and detection of inconsistent or wrong geometry according to a predefined set of rules. A useful starting point would be to have correct geometry in accordance with ISO 19107. A valid solid should consist of planar faces which touch their neighbours exclusively in defined corner points and edges. No gaps between them are allowed, and the whole feature must be 2-manifold. In this paper, we present methods to validate common geometric requirements for building geometry. Different checks based on several algorithms have been implemented to validate a set of rules derived from the solid definition mentioned above (e.g. water tightness of the solid or planarity of its polygons), as they were developed for the software tool CityDoctor. The method of each check is specified, with a special focus on the discussion of tolerance values where they are necessary. The checks include polygon level checks to validate the correctness of each polygon, i.e. closeness of the bounding linear ring and planarity. On the solid level, which is only validated if the polygons have passed validation, correct polygon orientation is checked, after self-intersections outside of defined corner points and edges

  16. Left-ventricle segmentation in real-time 3D echocardiography using a hybrid active shape model and optimal graph search approach

    NASA Astrophysics Data System (ADS)

    Zhang, Honghai; Abiose, Ademola K.; Campbell, Dwayne N.; Sonka, Milan; Martins, James B.; Wahle, Andreas

    2010-03-01

    Quantitative analysis of the left ventricular shape and motion patterns associated with left ventricular mechanical dyssynchrony (LVMD) is essential for diagnosis and treatment planning in congestive heart failure. Real-time 3D echocardiography (RT3DE) used for LVMD analysis is frequently limited by heavy speckle noise or partially incomplete data, thus a segmentation method utilizing learned global shape knowledge is beneficial. In this study, the endocardial surface of the left ventricle (LV) is segmented using a hybrid approach combining active shape model (ASM) with optimal graph search. The latter is used to achieve landmark refinement in the ASM framework. Optimal graph search translates the 3D segmentation into the detection of a minimum-cost closed set in a graph and can produce a globally optimal result. Various information-gradient, intensity distributions, and regional-property terms-are used to define the costs for the graph search. The developed method was tested on 44 RT3DE datasets acquired from 26 LVMD patients. The segmentation accuracy was assessed by surface positioning error and volume overlap measured for the whole LV as well as 16 standard LV regions. The segmentation produced very good results that were not achievable using ASM or graph search alone.

  17. Two new methods for simulating photolithography development in 3D

    SciTech Connect

    Helmsen, J.; Colella, P.; Dorr, M.; Puckett, E.G.

    1997-01-30

    Two methods are presented for simulating the development of photolithographic profiles during the resist dissolution phase. These algorithms are the volume-of-fluid algorithm, and the steady level-set algorithm. They are compared with the ray-trace, cell, and level-set techniques employed in SAMPLE-3D. The volume-of-fluid algorithm employs an Euclidean Grid with volume fractions. At each time step, the surface is reconstructed by computing an approximation of the tangent plane of the surface in each cell that contains a value between 0 and 1. The geometry constructed in this manner is used to determine flow velocity vectors and the flux across each edge. The material is then advanced by a split advection scheme. The steady Level Set algorithm is an extension of the Iterative Level Set algorithm. The steady Level Set algorithm combines Fast Level Set concepts and a technique for finding zero residual solutions to the ( ) function. The etch time for each cell is calculated in a time ordered manner. Use of heap sorting data structures allows the algorithm to execute extremely quickly. Comparisons of the methods have been performed and results shown.

  18. New method for 3D reconstruction in digital tomosynthesis

    NASA Astrophysics Data System (ADS)

    Claus, Bernhard E. H.; Eberhard, Jeffrey W.

    2002-05-01

    Digital tomosynthesis mammography is an advanced x-ray application that can provide detailed 3D information about the imaged breast. We introduce a novel reconstruction method based on simple backprojection, which yields high contrast reconstructions with reduced artifacts at a relatively low computational complexity. The first step in the proposed reconstruction method is a simple backprojection with an order statistics-based operator (e.g., minimum) used for combining the backprojected images into a reconstructed slice. Accordingly, a given pixel value does generally not contribute to all slices. The percentage of slices where a given pixel value does not contribute, as well as the associated reconstructed values, are collected. Using a form of re-projection consistency constraint, one now updates the projection images, and repeats the order statistics backprojection reconstruction step, but now using the enhanced projection images calculated in the first step. In our digital mammography application, this new approach enhances the contrast of structures in the reconstruction, and allows in particular to recover the loss in signal level due to reduced tissue thickness near the skinline, while keeping artifacts to a minimum. We present results obtained with the algorithm for phantom images.

  19. The 3D Shape of the Dendrite by WDT Method

    NASA Astrophysics Data System (ADS)

    Tang, Chao; Mitobe, Kazutaka; Yoshimura, Noboru

    The purpose of this study is use of a three dimension (3D) measuring system that can automatically measure surface condition. We applied the WDT method that is one of the migration acceleration testing methods, to calculate the spatial variation of the electrodes of ion immigration on a glass epoxy printed wiring board. We also investigated the spatial shape and its variation of dendrite after short circuit for the cases of uniform and nonuniform field strength. As a result the phenomenon of immigration peak of separated matter from cathode to anode due to nonuniform was reported.The moving of the peak of the separated matter is supposed to be due to Cu(OH)2's change in accumulation status. Under the nonuniform and uniform situation, the behavior of separated matter will change after occurring short circuit between the electrodes. Therefore in order to avoid the progress of ion immigration, it is necessary to pay attention to the field strength in hardwiring and the curvature so that the field strength of the wiring pattern cannot be very high.

  20. Estimation of 3-D pore network coordination number of rocks from watershed segmentation of a single 2-D image

    NASA Astrophysics Data System (ADS)

    Rabbani, Arash; Ayatollahi, Shahab; Kharrat, Riyaz; Dashti, Nader

    2016-08-01

    In this study, we have utilized 3-D micro-tomography images of real and synthetic rocks to introduce two mathematical correlations which estimate the distribution parameters of 3-D coordination number using a single 2-D cross-sectional image. By applying a watershed segmentation algorithm, it is found that the distribution of 3-D coordination number is acceptably predictable by statistical analysis of the network extracted from 2-D images. In this study, we have utilized 25 volumetric images of rocks in order to propose two mathematical formulas. These formulas aim to approximate the average and standard deviation of coordination number in 3-D pore networks. Then, the formulas are applied for five independent test samples to evaluate the reliability. Finally, pore network flow modeling is used to find the error of absolute permeability prediction using estimated and measured coordination numbers. Results show that the 2-D images are considerably informative about the 3-D network of the rocks and can be utilized to approximate the 3-D connectivity of the porous spaces with determination coefficient of about 0.85 that seems to be acceptable considering the variety of the studied samples.

  1. A support-operator method for 3-D rupture dynamics

    NASA Astrophysics Data System (ADS)

    Ely, Geoffrey P.; Day, Steven M.; Minster, Jean-Bernard

    2009-06-01

    We present a numerical method to simulate spontaneous shear crack propagation within a heterogeneous, 3-D, viscoelastic medium. Wave motions are computed on a logically rectangular hexahedral mesh, using the generalized finite-difference method of Support Operators (SOM). This approach enables modelling of non-planar surfaces and non-planar fault ruptures. Our implementation, the Support Operator Rupture Dynamics (SORD) code, is highly scalable, enabling large-scale, multiprocessors calculations. The fault surface is modelled by coupled double nodes, where rupture occurs as dictated by the local stress conditions and a frictional failure law. The method successfully performs test problems developed for the Southern California Earthquake Center (SCEC)/U.S. Geological Survey (USGS) dynamic earthquake rupture code validation exercise, showing good agreement with semi-analytical boundary integral method results. We undertake further dynamic rupture tests to quantify numerical errors introduced by shear deformations to the hexahedral mesh. We generate a family of meshes distorted by simple shearing, in the along-strike direction, up to a maximum of 73°. For SCEC/USGS validation problem number 3, grid-induced errors increase with mesh shear angle, with the logarithm of error approximately proportional to angle over the range tested. At 73°, rms misfits are about 10 per cent for peak slip rate, and 0.5 per cent for both rupture time and total slip, indicating that the method (which, up to now, we have applied mainly to near-vertical strike-slip faulting) is also capable of handling geometries appropriate to low-angle surface-rupturing thrust earthquakes. Additionally, we demonstrate non-planar rupture effects, by modifying the test geometry to include, respectively, cylindrical curvature and sharp kinks.

  2. Prostate boundary segmentation from ultrasound images using 2D active shape models: optimisation and extension to 3D.

    PubMed

    Hodge, Adam C; Fenster, Aaron; Downey, Dónal B; Ladak, Hanif M

    2006-12-01

    Boundary outlining, or segmentation, of the prostate is an important task in diagnosis and treatment planning for prostate cancer. This paper describes an algorithm based on two-dimensional (2D) active shape models (ASM) for semi-automatic segmentation of the prostate boundary from ultrasound images. Optimisation of the 2D ASM for prostatic ultrasound was done first by examining ASM construction and image search parameters. Extension of the algorithm to three-dimensional (3D) segmentation was then done using rotational-based slicing. Evaluation of the 3D segmentation algorithm used distance- and volume-based error metrics to compare algorithm generated boundary outlines to gold standard (manually generated) boundary outlines. Minimum description length landmark placement for ASM construction, and specific values for constraints and image search were found to be optimal. Evaluation of the algorithm versus gold standard boundaries found an average mean absolute distance of 1.09+/-0.49 mm, an average percent absolute volume difference of 3.28+/-3.16%, and a 5x speed increase versus manual segmentation. PMID:16930764

  3. MO-G-17A-03: MR-Based Cortical Bone Segmentation for PET Attenuation Correction with a Non-UTE 3D Fast GRE Sequence

    SciTech Connect

    Ai, H; Pan, T; Hwang, K

    2014-06-15

    Purpose: To determine the feasibility of identifying cortical bone on MR images with a short-TE 3D fast-GRE sequence for attenuation correction of PET data in PET/MR. Methods: A water-fat-bone phantom was constructed with two pieces of beef shank. MR scans were performed on a 3T MR scanner (GE Discovery™ MR750). A 3D GRE sequence was first employed to measure the level of residual signal in cortical bone (TE{sub 1}/TE{sub 2}/TE{sub 3}=2.2/4.4/6.6ms, TR=20ms, flip angle=25°). For cortical bone segmentation, a 3D fast-GRE sequence (TE/TR=0.7/1.9ms, acquisition voxel size=2.5×2.5×3mm{sup 3}) was implemented along with a 3D Dixon sequence (TE{sub 1}/TE{sub 2}/TR=1.2/2.3/4.0ms, acquisition voxel size=1.25×1.25×3mm{sup 3}) for water/fat imaging. Flip angle (10°), acquisition bandwidth (250kHz), FOV (480×480×144mm{sup 3}) and reconstructed voxel size (0.94×0.94×1.5mm{sup 3}) were kept the same for both sequences. Soft tissue and fat tissue were first segmented on the reconstructed water/fat image. A tissue mask was created by combining the segmented water/fat masks, which was then applied on the fast-GRE image (MRFGRE). A second mask was created to remove the Gibbs artifacts present in regions in close vicinity to the phantom. MRFGRE data was smoothed with a 3D anisotropic diffusion filter for noise reduction, after which cortical bone and air was separated using a threshold determined from the histogram. Results: There is signal in the cortical bone region in the 3D GRE images, indicating the possibility of separating cortical bone and air based on signal intensity from short-TE MR image. The acquisition time for the 3D fast-GRE sequence was 17s, which can be reduced to less than 10s with parallel imaging. The attenuation image created from water-fat-bone segmentation is visually similar compared to reference CT. Conclusion: Cortical bone and air can be separated based on intensity in MR image with a short-TE 3D fast-GRE sequence. Further research is required

  4. Computer-aided segmentation and 3D analysis of in vivo MRI examinations of the human vocal tract during phonation

    NASA Astrophysics Data System (ADS)

    Wismüller, Axel; Behrends, Johannes; Hoole, Phil; Leinsinger, Gerda L.; Meyer-Baese, Anke; Reiser, Maximilian F.

    2008-03-01

    We developed, tested, and evaluated a 3D segmentation and analysis system for in vivo MRI examinations of the human vocal tract during phonation. For this purpose, six professionally trained speakers, age 22-34y, were examined using a standardized MRI protocol (1.5 T, T1w FLASH, ST 4mm, 23 slices, acq. time 21s). The volunteers performed a prolonged (>=21s) emission of sounds of the German phonemic inventory. Simultaneous audio tape recording was obtained to control correct utterance. Scans were made in axial, coronal, and sagittal planes each. Computer-aided quantitative 3D evaluation included (i) automated registration of the phoneme-specific data acquired in different slice orientations, (ii) semi-automated segmentation of oropharyngeal structures, (iii) computation of a curvilinear vocal tract midline in 3D by nonlinear PCA, (iv) computation of cross-sectional areas of the vocal tract perpendicular to this midline. For the vowels /a/,/e/,/i/,/o/,/ø/,/u/,/y/, the extracted area functions were used to synthesize phoneme sounds based on an articulatory-acoustic model. For quantitative analysis, recorded and synthesized phonemes were compared, where area functions extracted from 2D midsagittal slices were used as a reference. All vowels could be identified correctly based on the synthesized phoneme sounds. The comparison between synthesized and recorded vowel phonemes revealed that the quality of phoneme sound synthesis was improved for phonemes /a/ and /y/, if 3D instead of 2D data were used, as measured by the average relative frequency shift between recorded and synthesized vowel formants (p<0.05, one-sided Wilcoxon rank sum test). In summary, the combination of fast MRI followed by subsequent 3D segmentation and analysis is a novel approach to examine human phonation in vivo. It unveils functional anatomical findings that may be essential for realistic modelling of the human vocal tract during speech production.

  5. Systolic and diastolic assessment by 3D-ASM segmentation of gated-SPECT Studies: a comparison with MRI

    NASA Astrophysics Data System (ADS)

    Tobon-Gomez, C.; Bijnens, B. H.; Huguet, M.; Sukno, F.; Moragas, G.; Frangi, A. F.

    2009-02-01

    Gated single photon emission tomography (gSPECT) is a well-established technique used routinely in clinical practice. It can be employed to evaluate global left ventricular (LV) function of a patient. The purpose of this study is to assess LV systolic and diastolic function from gSPECT datasets in comparison with cardiac magnetic resonance imaging (CMR) measurements. This is achieved by applying our recently implemented 3D active shape model (3D-ASM) segmentation approach for gSPECT studies. This methodology allows for generation of 3D LV meshes for all cardiac phases, providing volume time curves and filling rate curves. Both systolic and diastolic functional parameters can be derived from these curves for an assessment of patient condition even at early stages of LV dysfunction. Agreement of functional parameters, with respect to CMR measurements, were analyzed by means of Bland-Altman plots. The analysis included subjects presenting either LV hypertrophy, dilation or myocardial infarction.

  6. From Voxels to Knowledge: A Practical Guide to the Segmentation of Complex Electron Microscopy 3D-Data

    PubMed Central

    Tsai, Wen-Ting; Hassan, Ahmed; Sarkar, Purbasha; Correa, Joaquin; Metlagel, Zoltan; Jorgens, Danielle M.; Auer, Manfred

    2014-01-01

    Modern 3D electron microscopy approaches have recently allowed unprecedented insight into the 3D ultrastructural organization of cells and tissues, enabling the visualization of large macromolecular machines, such as adhesion complexes, as well as higher-order structures, such as the cytoskeleton and cellular organelles in their respective cell and tissue context. Given the inherent complexity of cellular volumes, it is essential to first extract the features of interest in order to allow visualization, quantification, and therefore comprehension of their 3D organization. Each data set is defined by distinct characteristics, e.g., signal-to-noise ratio, crispness (sharpness) of the data, heterogeneity of its features, crowdedness of features, presence or absence of characteristic shapes that allow for easy identification, and the percentage of the entire volume that a specific region of interest occupies. All these characteristics need to be considered when deciding on which approach to take for segmentation. The six different 3D ultrastructural data sets presented were obtained by three different imaging approaches: resin embedded stained electron tomography, focused ion beam- and serial block face- scanning electron microscopy (FIB-SEM, SBF-SEM) of mildly stained and heavily stained samples, respectively. For these data sets, four different segmentation approaches have been applied: (1) fully manual model building followed solely by visualization of the model, (2) manual tracing segmentation of the data followed by surface rendering, (3) semi-automated approaches followed by surface rendering, or (4) automated custom-designed segmentation algorithms followed by surface rendering and quantitative analysis. Depending on the combination of data set characteristics, it was found that typically one of these four categorical approaches outperforms the others, but depending on the exact sequence of criteria, more than one approach may be successful. Based on these data

  7. Unlocking the scientific potential of complex 3D point cloud dataset : new classification and 3D comparison methods

    NASA Astrophysics Data System (ADS)

    Lague, D.; Brodu, N.; Leroux, J.

    2012-12-01

    Ground based lidar and photogrammetric techniques are increasingly used to track the evolution of natural surfaces in 3D at an unprecedented resolution and precision. The range of applications encompass many type of natural surfaces with different geometries and roughness characteristics (landslides, cliff erosion, river beds, bank erosion,....). Unravelling surface change in these contexts requires to compare large point clouds in 2D or 3D. The most commonly used method in geomorphology is based on a 2D difference of the gridded point clouds. Yet this is hardly adapted to many 3D natural environments such as rivers (with horizontal beds and vertical banks), while gridding complex rough surfaces is a complex task. On the other hand, tools allowing to perform 3D comparison are scarce and may require to mesh the point clouds which is difficult on rough natural surfaces. Moreover, existing 3D comparison tools do not provide an explicit calculation of confidence intervals that would factor in registration errors, roughness effects and instrument related position uncertainties. To unlock this problem, we developed the first algorithm combining a 3D measurement of surface change directly on point clouds with an estimate of spatially variable confidence intervals (called M3C2). The method has two steps : (1) surface normal estimation and orientation in 3D at a scale consistent with the local roughness ; (2) measurement of mean surface change along the normal direction with explicit calculation of a local confidence interval. Comparison with existing 3D methods based on a closest-point calculation demonstrates the higher precision of the M3C2 method when mm changes needs to be detected. The M3C2 method is also simple to use as it does not require surface meshing or gridding, and is not sensitive to missing data or change in point density. We also present a 3D classification tool (CANUPO) for vegetation removal based on a new geometrical measure: the multi

  8. 3-D dynamic rupture simulations by a finite volume method

    NASA Astrophysics Data System (ADS)

    Benjemaa, M.; Glinsky-Olivier, N.; Cruz-Atienza, V. M.; Virieux, J.

    2009-07-01

    Dynamic rupture of a 3-D spontaneous crack of arbitrary shape is investigated using a finite volume (FV) approach. The full domain is decomposed in tetrahedra whereas the surface, on which the rupture takes place, is discretized with triangles that are faces of tetrahedra. First of all, the elastodynamic equations are described into a pseudo-conservative form for an easy application of the FV discretization. Explicit boundary conditions are given using criteria based on the conservation of discrete energy through the crack surface. Using a stress-threshold criterion, these conditions specify fluxes through those triangles that have suffered rupture. On these broken surfaces, stress follows a linear slip-weakening law, although other friction laws can be implemented. For The Problem Version 3 of the dynamic-rupture code verification exercise conducted by the SCEC/USGS, numerical solutions on a planar fault exhibit a very high convergence rate and are in good agreement with the reference one provided by a finite difference (FD) technique. For a non-planar fault of parabolic shape, numerical solutions agree satisfactorily well with those obtained with a semi-analytical boundary integral method in terms of shear stress amplitudes, stopping phases arrival times and stress overshoots. Differences between solutions are attributed to the low-order interpolation of the FV approach, whose results are particularly sensitive to the mesh regularity (structured/unstructured). We expect this method, which is well adapted for multiprocessor parallel computing, to be competitive with others for solving large scale dynamic ruptures scenarios of seismic sources in the near future.

  9. Methods For Electronic 3-D Moving Pictures Without Glasses

    NASA Astrophysics Data System (ADS)

    Collender, Robert B.

    1987-06-01

    This paper describes implementation approaches in image acquisition and playback for 3-D computer graphics, 3-D television and 3-D theatre movies without special glasses. Projection lamps, spatial light modulators, CRT's and dynamic scanning are all eliminated by the application of an active image array, all static components and a semi-specular screen. The resulting picture shows horizontal parallax with a wide horizontal view field (up to 360 de-grees) giving a holographic appearance in full color with smooth continuous viewing without speckle. Static component systems are compared with dynamic component systems using both linear and circular arrays. Implementation of computer graphic systems are shown that allow complex shaded color images to extend from the viewer's eyes to infinity. Large screen systems visible by hundreds of people are feasible by the use of low f-stops and high gain screens in projection. Screen geometries and special screen properties are shown. Viewing characteristics offer no restrictions in view-position over the entire view-field and have a "look-around" feature for all the categories of computer graphics, television and movies. Standard video cassettes and optical discs can also interface the system to generate a 3-D window viewable without glasses. A prognosis is given for technology application to 3-D pictures without glasses that replicate the daily viewing experience. Super-position of computer graphics on real-world pictures is shown feasible.

  10. Segmentation of Hypocenters and 3-D Velocity Structure around the Kii Peninsula Revealed by Onshore and Offshore Seismic Observations

    NASA Astrophysics Data System (ADS)

    Akuhara, T.; Mochizuki, K.; Nakahigashi, K.; Yamada, T.; Shinohara, M.; Sakai, S.; Kanazawa, T.; Uehira, K.; Shimizu, H.

    2013-12-01

    The Philippine Sea Plate subducts beneath the Eurasian Plate at a rate of ~4 cm/year along the Nankai Trough, southwest of Japan. Around the Kii Peninsula, the rupture boundary of the historical Tonankai and Nankai large earthquakes is located, and previous researches have revealed along-strike segmentation of hypocenters [Mochizuki et al., 2010], P-wave anisotropy [Ishise et al., 2009], low frequency earthquake (LFE) distribution [e.g., Obara, 2010] and subduction depth of the Philippine Sea (PHS) Plate, or there may exist a split in the PHS Plate [Ide et al., 2010]. To investigate such segmentation, in our previous work we determined 3-D velocity structure and hypocenters using P- and S-wave arrival times of earthquakes recorded by both ocean bottom seismometers (OBSs) that were deployed from 2003 to 2007 and on-land stations [Akuhara et al., 2013]. As a result, it was discovered that Vp/Vs ratio is also segmented within the oceanic crust and at the bottom of the overriding plate, which coincides with the LFE distribution: segment A is located along the Kii Channel, segment B around the western Kii Peninsula, and segment C around the eastern Kii Peninsula. In segment B, Vp/Vs ratio is low within the oceanic crust and LFE cluster characterized by an anomalously small amount of cumulative slip, compared to the other LFE clusters around the Kii Peninsula, is located [Obara, 2010]. The difference of Vp/Vs ratio and LFE activity among segments were interpreted as difference of pore fluid pressure. In fact, similar segmentation can be seen in hypocenters: Segment A with concentrated seismicity in the oceanic mantle, segment B with that in the oceanic crust, and segment C with little seismicity. To derive characteristic patterns of the hypocenters, we conducted a cluster analysis of earthquakes based on waveform similarity represented by cross-correlation coefficients (CCs) [e.g., Cattaneo, 1999], in which we took varying structural site effects among the OBS stations

  11. Liver Tumor Segmentation from MR Images Using 3D Fast Marching Algorithm and Single Hidden Layer Feedforward Neural Network

    PubMed Central

    2016-01-01

    Objective. Our objective is to develop a computerized scheme for liver tumor segmentation in MR images. Materials and Methods. Our proposed scheme consists of four main stages. Firstly, the region of interest (ROI) image which contains the liver tumor region in the T1-weighted MR image series was extracted by using seed points. The noise in this ROI image was reduced and the boundaries were enhanced. A 3D fast marching algorithm was applied to generate the initial labeled regions which are considered as teacher regions. A single hidden layer feedforward neural network (SLFN), which was trained by a noniterative algorithm, was employed to classify the unlabeled voxels. Finally, the postprocessing stage was applied to extract and refine the liver tumor boundaries. The liver tumors determined by our scheme were compared with those manually traced by a radiologist, used as the “ground truth.” Results. The study was evaluated on two datasets of 25 tumors from 16 patients. The proposed scheme obtained the mean volumetric overlap error of 27.43% and the mean percentage volume error of 15.73%. The mean of the average surface distance, the root mean square surface distance, and the maximal surface distance were 0.58 mm, 1.20 mm, and 6.29 mm, respectively. PMID:27597960

  12. Liver Tumor Segmentation from MR Images Using 3D Fast Marching Algorithm and Single Hidden Layer Feedforward Neural Network.

    PubMed

    Le, Trong-Ngoc; Bao, Pham The; Huynh, Hieu Trung

    2016-01-01

    Objective. Our objective is to develop a computerized scheme for liver tumor segmentation in MR images. Materials and Methods. Our proposed scheme consists of four main stages. Firstly, the region of interest (ROI) image which contains the liver tumor region in the T1-weighted MR image series was extracted by using seed points. The noise in this ROI image was reduced and the boundaries were enhanced. A 3D fast marching algorithm was applied to generate the initial labeled regions which are considered as teacher regions. A single hidden layer feedforward neural network (SLFN), which was trained by a noniterative algorithm, was employed to classify the unlabeled voxels. Finally, the postprocessing stage was applied to extract and refine the liver tumor boundaries. The liver tumors determined by our scheme were compared with those manually traced by a radiologist, used as the "ground truth." Results. The study was evaluated on two datasets of 25 tumors from 16 patients. The proposed scheme obtained the mean volumetric overlap error of 27.43% and the mean percentage volume error of 15.73%. The mean of the average surface distance, the root mean square surface distance, and the maximal surface distance were 0.58 mm, 1.20 mm, and 6.29 mm, respectively. PMID:27597960

  13. X3D moving grid methods for semiconductor applications

    SciTech Connect

    Kuprat, A.; Cartwright, D.; Gammel, J.T.; George, D.; Kendrick, B.; Kilcrease, D.; Trease, H.; Walker, R.

    1997-11-01

    The Los Alamos 3D grid toolbox handles grid maintenance chores and provides access to a sophisticated set of optimization algorithms for unstructured grids. The application of these tools to semiconductor problems is illustrated in three examples: grain growth, topographic deposition and electrostatics. These examples demonstrate adaptive smoothing, front tracking, and automatic, adaptive refinement/derefinement.

  14. Segment-interaction in sprint start: Analysis of 3D angular velocity and kinetic energy in elite sprinters.

    PubMed

    Slawinski, J; Bonnefoy, A; Ontanon, G; Leveque, J M; Miller, C; Riquet, A; Chèze, L; Dumas, R

    2010-05-28

    The aim of the present study was to measure during a sprint start the joint angular velocity and the kinetic energy of the different segments in elite sprinters. This was performed using a 3D kinematic analysis of the whole body. Eight elite sprinters (10.30+/-0.14s 100 m time), equipped with 63 passive reflective markers, realised four maximal 10 m sprints start on an indoor track. An opto-electronic Motion Analysis system consisting of 12 digital cameras (250 Hz) was used to collect the 3D marker trajectories. During the pushing phase on the blocks, the 3D angular velocity vector and its norm were calculated for each joint. The kinetic energy of 16 segments of the lower and upper limbs and of the total body was calculated. The 3D kinematic analysis of the whole body demonstrated that joints such as shoulders, thoracic or hips did not reach their maximal angular velocity with a movement of flexion-extension, but with a combination of flexion-extension, abduction-adduction and internal-external rotation. The maximal kinetic energy of the total body was reached before clearing block (respectively, 537+/-59.3 J vs. 514.9+/-66.0 J; p< or =0.01). These results suggested that a better synchronization between the upper and lower limbs could increase the efficiency of pushing phase on the blocks. Besides, to understand low interindividual variances in the sprint start performance in elite athletes, a 3D complete body kinematic analysis shall be used. PMID:20226465

  15. Fully automated 3D prostate central gland segmentation in MR images: a LOGISMOS based approach

    NASA Astrophysics Data System (ADS)

    Yin, Yin; Fotin, Sergei V.; Periaswamy, Senthil; Kunz, Justin; Haldankar, Hrishikesh; Muradyan, Naira; Turkbey, Baris; Choyke, Peter

    2012-02-01

    One widely accepted classification of a prostate is by a central gland (CG) and a peripheral zone (PZ). In some clinical applications, separating CG and PZ from the whole prostate is useful. For instance, in prostate cancer detection, radiologist wants to know in which zone the cancer occurs. Another application is for multiparametric MR tissue characterization. In prostate T2 MR images, due to the high intensity variation between CG and PZ, automated differentiation of CG and PZ is difficult. Previously, we developed an automated prostate boundary segmentation system, which tested on large datasets and showed good performance. Using the results of the pre-segmented prostate boundary, in this paper, we proposed an automated CG segmentation algorithm based on Layered Optimal Graph Image Segmentation of Multiple Objects and Surfaces (LOGISMOS). The designed LOGISMOS model contained both shape and topology information during deformation. We generated graph cost by training classifiers and used coarse-to-fine search. The LOGISMOS framework guarantees optimal solution regarding to cost and shape constraint. A five-fold cross-validation approach was applied to training dataset containing 261 images to optimize the system performance and compare with a voxel classification based reference approach. After the best parameter settings were found, the system was tested on a dataset containing another 261 images. The mean DSC of 0.81 for the test set indicates that our approach is promising for automated CG segmentation. Running time for the system is about 15 seconds.

  16. Object-oriented urban 3D spatial data model organization method

    NASA Astrophysics Data System (ADS)

    Li, Jing-wen; Li, Wen-qing; Lv, Nan; Su, Tao

    2015-12-01

    This paper combined the 3d data model with object-oriented organization method, put forward the model of 3d data based on object-oriented method, implemented the city 3d model to quickly build logical semantic expression and model, solved the city 3d spatial information representation problem of the same location with multiple property and the same property with multiple locations, designed the space object structure of point, line, polygon, body for city of 3d spatial database, and provided a new thought and method for the city 3d GIS model and organization management.

  17. 3D structural analysis of proteins using electrostatic surfaces based on image segmentation

    PubMed Central

    Vlachakis, Dimitrios; Champeris Tsaniras, Spyridon; Tsiliki, Georgia; Megalooikonomou, Vasileios; Kossida, Sophia

    2016-01-01

    Herein, we present a novel strategy to analyse and characterize proteins using protein molecular electro-static surfaces. Our approach starts by calculating a series of distinct molecular surfaces for each protein that are subsequently flattened out, thus reducing 3D information noise. RGB images are appropriately scaled by means of standard image processing techniques whilst retaining the weight information of each protein’s molecular electrostatic surface. Then homogeneous areas in the protein surface are estimated based on unsupervised clustering of the 3D images, while performing similarity searches. This is a computationally fast approach, which efficiently highlights interesting structural areas among a group of proteins. Multiple protein electrostatic surfaces can be combined together and in conjunction with their processed images, they can provide the starting material for protein structural similarity and molecular docking experiments.

  18. Accurate and Fully Automatic Hippocampus Segmentation Using Subject-Specific 3D Optimal Local Maps Into a Hybrid Active Contour Model

    PubMed Central

    Gkontra, Polyxeni; Daras, Petros; Maglaveras, Nicos

    2014-01-01

    Assessing the structural integrity of the hippocampus (HC) is an essential step toward prevention, diagnosis, and follow-up of various brain disorders due to the implication of the structural changes of the HC in those disorders. In this respect, the development of automatic segmentation methods that can accurately, reliably, and reproducibly segment the HC has attracted considerable attention over the past decades. This paper presents an innovative 3-D fully automatic method to be used on top of the multiatlas concept for the HC segmentation. The method is based on a subject-specific set of 3-D optimal local maps (OLMs) that locally control the influence of each energy term of a hybrid active contour model (ACM). The complete set of the OLMs for a set of training images is defined simultaneously via an optimization scheme. At the same time, the optimal ACM parameters are also calculated. Therefore, heuristic parameter fine-tuning is not required. Training OLMs are subsequently combined, by applying an extended multiatlas concept, to produce the OLMs that are anatomically more suitable to the test image. The proposed algorithm was tested on three different and publicly available data sets. Its accuracy was compared with that of state-of-the-art methods demonstrating the efficacy and robustness of the proposed method. PMID:27170866

  19. Accurate and Fully Automatic Hippocampus Segmentation Using Subject-Specific 3D Optimal Local Maps Into a Hybrid Active Contour Model.

    PubMed

    Zarpalas, Dimitrios; Gkontra, Polyxeni; Daras, Petros; Maglaveras, Nicos

    2014-01-01

    Assessing the structural integrity of the hippocampus (HC) is an essential step toward prevention, diagnosis, and follow-up of various brain disorders due to the implication of the structural changes of the HC in those disorders. In this respect, the development of automatic segmentation methods that can accurately, reliably, and reproducibly segment the HC has attracted considerable attention over the past decades. This paper presents an innovative 3-D fully automatic method to be used on top of the multiatlas concept for the HC segmentation. The method is based on a subject-specific set of 3-D optimal local maps (OLMs) that locally control the influence of each energy term of a hybrid active contour model (ACM). The complete set of the OLMs for a set of training images is defined simultaneously via an optimization scheme. At the same time, the optimal ACM parameters are also calculated. Therefore, heuristic parameter fine-tuning is not required. Training OLMs are subsequently combined, by applying an extended multiatlas concept, to produce the OLMs that are anatomically more suitable to the test image. The proposed algorithm was tested on three different and publicly available data sets. Its accuracy was compared with that of state-of-the-art methods demonstrating the efficacy and robustness of the proposed method. PMID:27170866

  20. 3D range scan enhancement using image-based methods

    NASA Astrophysics Data System (ADS)

    Herbort, Steffen; Gerken, Britta; Schugk, Daniel; Wöhler, Christian

    2013-10-01

    This paper addresses the problem of 3D surface scan refinement, which is desirable due to noise, outliers, and missing measurements being present in the 3D surfaces obtained with a laser scanner. We present a novel algorithm for the fusion of absolute laser scanner depth profiles and photometrically estimated surface normal data, which yields a noise-reduced and highly detailed depth profile with large scale shape robustness. In contrast to other approaches published in the literature, the presented algorithm (1) regards non-Lambertian surfaces, (2) simultaneously computes surface reflectance (i.e. BRDF) parameters required for 3D reconstruction, (3) models pixelwise incident light and viewing directions, and (4) accounts for interreflections. The algorithm as such relies on the minimization of a three-component error term, which penalizes intensity deviations, integrability deviations, and deviations from the known large-scale surface shape. The solution of the error minimization is obtained iteratively based on a calculus of variations. BRDF parameters are estimated by initially reducing and then iteratively refining the optical resolution, which provides the required robust data basis. The 3D reconstruction of concave surface regions affected by interreflections is improved by compensating global illumination in the image data. The algorithm is evaluated based on eight objects with varying albedos and reflectance behaviors (diffuse, specular, metallic). The qualitative evaluation shows a removal of outliers and a strong reduction of noise, while the large scale shape is preserved. Fine surface details Which are previously not contained in the surface scans, are incorporated through using image data. The algorithm is evaluated with respect to its absolute accuracy using two caliper objects of known shape, and based on synthetically generated data. The beneficial effect of interreflection compensation on the reconstruction accuracy is evaluated quantitatively in a

  1. Calibration Methods for a 3D Triangulation Based Camera

    NASA Astrophysics Data System (ADS)

    Schulz, Ulrike; Böhnke, Kay

    A sensor in a camera takes a gray level image (1536 x 512 pixels), which is reflected by a reference body. The reference body is illuminated by a linear laser line. This gray level image can be used for a 3D calibration. The following paper describes how a calibration program calculates the calibration factors. The calibration factors serve to determine the size of an unknown reference body.

  2. Parallel 3-D method of characteristics in MPACT

    SciTech Connect

    Kochunas, B.; Dovvnar, T. J.; Liu, Z.

    2013-07-01

    A new parallel 3-D MOC kernel has been developed and implemented in MPACT which makes use of the modular ray tracing technique to reduce computational requirements and to facilitate parallel decomposition. The parallel model makes use of both distributed and shared memory parallelism which are implemented with the MPI and OpenMP standards, respectively. The kernel is capable of parallel decomposition of problems in space, angle, and by characteristic rays up to 0(104) processors. Initial verification of the parallel 3-D MOC kernel was performed using the Takeda 3-D transport benchmark problems. The eigenvalues computed by MPACT are within the statistical uncertainty of the benchmark reference and agree well with the averages of other participants. The MPACT k{sub eff} differs from the benchmark results for rodded and un-rodded cases by 11 and -40 pcm, respectively. The calculations were performed for various numbers of processors and parallel decompositions up to 15625 processors; all producing the same result at convergence. The parallel efficiency of the worst case was 60%, while very good efficiency (>95%) was observed for cases using 500 processors. The overall run time for the 500 processor case was 231 seconds and 19 seconds for the case with 15625 processors. Ongoing work is focused on developing theoretical performance models and the implementation of acceleration techniques to minimize the number of iterations to converge. (authors)

  3. An automated 3D reconstruction method of UAV images

    NASA Astrophysics Data System (ADS)

    Liu, Jun; Wang, He; Liu, Xiaoyang; Li, Feng; Sun, Guangtong; Song, Ping

    2015-10-01

    In this paper a novel fully automated 3D reconstruction approach based on low-altitude unmanned aerial vehicle system (UAVs) images will be presented, which does not require previous camera calibration or any other external prior knowledge. Dense 3D point clouds are generated by integrating orderly feature extraction, image matching, structure from motion (SfM) and multi-view stereo (MVS) algorithms, overcoming many of the cost, time limitations of rigorous photogrammetry techniques. An image topology analysis strategy is introduced to speed up large scene reconstruction by taking advantage of the flight-control data acquired by UAV. Image topology map can significantly reduce the running time of feature matching by limiting the combination of images. A high-resolution digital surface model of the study area is produced base on UAV point clouds by constructing the triangular irregular network. Experimental results show that the proposed approach is robust and feasible for automatic 3D reconstruction of low-altitude UAV images, and has great potential for the acquisition of spatial information at large scales mapping, especially suitable for rapid response and precise modelling in disaster emergency.

  4. New automatic liver segmentation and extraction method

    NASA Astrophysics Data System (ADS)

    Zhang, Pinzheng; Xu, Qinzheng; Wang, Zheng

    2007-12-01

    Liver segmentation is critical in designing and developing computer-assisted systems that have been used for liver disease diagnosis before surgery or transplantation. The purpose of this study is to develop a computerized system for extracting liver contours and reconstructing liver volume using contrast-enhanced hepatic CT images. The automatic liver segmentation method adopted the graph optimal algorithm with ratio contour as its salient measure. This new cost function encoded the Gestalt laws and synthesized the gap length, the liver region area, the length of the closed contour and the average curvature of the closed boundary. With the extracted liver contours, a promising system to exclude tissues outside the liver was developed. It promised to save time and simplify liver volume reconstruction by minimizing intervention operations. Some 3D-rendered reconstruction results were also created to demonstrate the final results of our system.

  5. Automated multimodality concurrent classification for segmenting vessels in 3D spectral OCT and color fundus images

    NASA Astrophysics Data System (ADS)

    Hu, Zhihong; Abràmoff, Michael D.; Niemeijer, Meindert; Garvin, Mona K.

    2011-03-01

    Segmenting vessels in spectral-domain optical coherence tomography (SD-OCT) volumes is particularly challenging in the region near and inside the neural canal opening (NCO). Furthermore, accurately segmenting them in color fundus photographs also presents a challenge near the projected NCO. However, both modalities also provide complementary information to help indicate vessels, such as a better NCO contrast from the NCO-aimed OCT projection image and a better vessel contrast inside the NCO from fundus photographs. We thus present a novel multimodal automated classification approach for simultaneously segmenting vessels in SD-OCT volumes and fundus photographs, with a particular focus on better segmenting vessels near and inside the NCO by using a combination of their complementary features. In particular, in each SD-OCT volume, the algorithm pre-segments the NCO using a graph-theoretic approach and then applies oriented Gabor wavelets with oriented NCO-based templates to generate OCT image features. After fundus-to-OCT registration, the fundus image features are computed using Gaussian filter banks and combined with OCT image features. A k-NN classifier is trained on 5 and tested on 10 randomly chosen independent image pairs of SD-OCT volumes and fundus images from 15 subjects with glaucoma. Using ROC analysis, we demonstrate an improvement over two closest previous works performed in single modal SD-OCT volumes with an area under the curve (AUC) of 0.87 (0.81 for our and 0.72 for Niemeijer's single modal approach) in the region around the NCO and 0.90 outside the NCO (0.84 for our and 0.81 for Niemeijer's single modal approach).

  6. Robust Adaptive 3-D Segmentation of Vessel Laminae From Fluorescence Confocal Microscope Images and Parallel GPU Implementation

    PubMed Central

    Narayanaswamy, Arunachalam; Dwarakapuram, Saritha; Bjornsson, Christopher S.; Cutler, Barbara M.; Shain, William

    2010-01-01

    This paper presents robust 3-D algorithms to segment vasculature that is imaged by labeling laminae, rather than the lumenal volume. The signal is weak, sparse, noisy, nonuniform, low-contrast, and exhibits gaps and spectral artifacts, so adaptive thresholding and Hessian filtering based methods are not effective. The structure deviates from a tubular geometry, so tracing algorithms are not effective. We propose a four step approach. The first step detects candidate voxels using a robust hypothesis test based on a model that assumes Poisson noise and locally planar geometry. The second step performs an adaptive region growth to extract weakly labeled and fine vessels while rejecting spectral artifacts. To enable interactive visualization and estimation of features such as statistical confidence, local curvature, local thickness, and local normal, we perform the third step. In the third step, we construct an accurate mesh representation using marching tetrahedra, volume-preserving smoothing, and adaptive decimation algorithms. To enable topological analysis and efficient validation, we describe a method to estimate vessel centerlines using a ray casting and vote accumulation algorithm which forms the final step of our algorithm. Our algorithm lends itself to parallel processing, and yielded an 8× speedup on a graphics processor (GPU). On synthetic data, our meshes had average error per face (EPF) values of (0.1–1.6) voxels per mesh face for peak signal-to-noise ratios from (110–28 dB). Separately, the error from decimating the mesh to less than 1% of its original size, the EPF was less than 1 voxel/face. When validated on real datasets, the average recall and precision values were found to be 94.66% and 94.84%, respectively. PMID:20199906

  7. Automatic training and reliability estimation for 3D ASM applied to cardiac MRI segmentation.

    PubMed

    Tobon-Gomez, Catalina; Sukno, Federico M; Butakoff, Constantine; Huguet, Marina; Frangi, Alejandro F

    2012-07-01

    Training active shape models requires collecting manual ground-truth meshes in a large image database. While shape information can be reused across multiple imaging modalities, intensity information needs to be imaging modality and protocol specific. In this context, this study has two main purposes: (1) to test the potential of using intensity models learned from MRI simulated datasets and (2) to test the potential of including a measure of reliability during the matching process to increase robustness. We used a population of 400 virtual subjects (XCAT phantom), and two clinical populations of 40 and 45 subjects. Virtual subjects were used to generate simulated datasets (MRISIM simulator). Intensity models were trained both on simulated and real datasets. The trained models were used to segment the left ventricle (LV) and right ventricle (RV) from real datasets. Segmentations were also obtained with and without reliability information. Performance was evaluated with point-to-surface and volume errors. Simulated intensity models obtained average accuracy comparable to inter-observer variability for LV segmentation. The inclusion of reliability information reduced volume errors in hypertrophic patients (EF errors from 17 ± 57% to 10 ± 18%; LV MASS errors from -27 ± 22 g to -14 ± 25 g), and in heart failure patients (EF errors from -8 ± 42% to -5 ± 14%). The RV model of the simulated images needs further improvement to better resemble image intensities around the myocardial edges. Both for real and simulated models, reliability information increased segmentation robustness without penalizing accuracy. PMID:22683992

  8. Automatic training and reliability estimation for 3D ASM applied to cardiac MRI segmentation

    NASA Astrophysics Data System (ADS)

    Tobon-Gomez, Catalina; Sukno, Federico M.; Butakoff, Constantine; Huguet, Marina; Frangi, Alejandro F.

    2012-07-01

    Training active shape models requires collecting manual ground-truth meshes in a large image database. While shape information can be reused across multiple imaging modalities, intensity information needs to be imaging modality and protocol specific. In this context, this study has two main purposes: (1) to test the potential of using intensity models learned from MRI simulated datasets and (2) to test the potential of including a measure of reliability during the matching process to increase robustness. We used a population of 400 virtual subjects (XCAT phantom), and two clinical populations of 40 and 45 subjects. Virtual subjects were used to generate simulated datasets (MRISIM simulator). Intensity models were trained both on simulated and real datasets. The trained models were used to segment the left ventricle (LV) and right ventricle (RV) from real datasets. Segmentations were also obtained with and without reliability information. Performance was evaluated with point-to-surface and volume errors. Simulated intensity models obtained average accuracy comparable to inter-observer variability for LV segmentation. The inclusion of reliability information reduced volume errors in hypertrophic patients (EF errors from 17 ± 57% to 10 ± 18% LV MASS errors from -27 ± 22 g to -14 ± 25 g), and in heart failure patients (EF errors from -8 ± 42% to -5 ± 14%). The RV model of the simulated images needs further improvement to better resemble image intensities around the myocardial edges. Both for real and simulated models, reliability information increased segmentation robustness without penalizing accuracy.

  9. Chest wall segmentation in automated 3D breast ultrasound using rib shadow enhancement and multi-plane cumulative probability enhanced map

    NASA Astrophysics Data System (ADS)

    Kim, Hyeonjin; Kim, Hannah; Hong, Helen

    2015-03-01

    We propose an automatic segmentation method of chest wall in 3D ABUS images using rib shadow enhancement and multi-planar cumulative probability enhanced map. For the identification of individual dark rib shadows, each rib shadow is enhanced using intensity transfer function and 3D sheet-like enhancement filtering. Then, wrongly enhanced intercostal regions and small fatty tissues are removed using coronal and sagittal cumulative probability enhanced maps. The large fatty tissues with globular and sheet-like shapes at the top of rib shadow are removed using shape and orientation analysis based on moment matrix. Detected chest walls are connected with cubic B-spline interpolation. Experimental results show that the Dice similarity coefficient of proposed method as comparison with two manually outlining results provides over 90% in average.

  10. A method of multi-view intraoral 3D measurement

    NASA Astrophysics Data System (ADS)

    Zhao, Huijie; Wang, Zhen; Jiang, Hongzhi; Xu, Yang; Lv, Peijun; Sun, Yunchun

    2015-02-01

    In dental restoration, its important to achieve a high-accuracy digital impression. Most of the existing intraoral measurement systems can only measure the tooth from a single view. Therfore - if we are wilng to acquire the whole data of a tooth, the scans of the tooth from multi-direction ad the data stitching based on the features of the surface are needed, which increases the measurement duration and influence the measurement accuracy. In this paper, we introduce a fringe-projection based on multi-view intraoral measurement system. It can acquire 3D data of the occlusal surface, the buccal surface and the lingual surface of a tooth synchronously, by using a senor with three mirrors, which aim at the three surfaces respectively and thus expand the measuring area. The constant relationship of the three mirrors is calibrated before measurement and can help stitch the data clouds acquired through different mirrors accurately. Therefore the system can obtain the 3D data of a tooth without the need to measure it from different directions for many times. Experiments proved the availability and reliability of this miniaturized measurement system.

  11. A method for 3D reconstruction of coronary arteries using biplane angiography and intravascular ultrasound images.

    PubMed

    Bourantas, Christos V; Kourtis, Iraklis C; Plissiti, Marina E; Fotiadis, Dimitrios I; Katsouras, Christos S; Papafaklis, Michail I; Michalis, Lampros K

    2005-12-01

    The aim of this study is to describe a new method for the three-dimensional reconstruction of coronary arteries and its quantitative validation. Our approach is based on the fusion of the data provided by intravascular ultrasound images (IVUS) and biplane angiographies. A specific segmentation algorithm is used for the detection of the regions of interest in intravascular ultrasound images. A new methodology is also introduced for the accurate extraction of the catheter path. In detail, a cubic B-spline is used for approximating the catheter path in each biplane projection. Each B-spline curve is swept along the normal direction of its X-ray angiographic plane forming a surface. The intersection of the two surfaces is a 3D curve, which represents the reconstructed path. The detected regions of interest in the IVUS images are placed perpendicularly onto the path and their relative axial twist is computed using the sequential triangulation algorithm. Then, an efficient algorithm is applied to estimate the absolute orientation of the first IVUS frame. In order to obtain 3D visualization the commercial package Geomagic Studio 4.0 is used. The performance of the proposed method is assessed using a validation methodology which addresses the separate validation of each step followed for obtaining the coronary reconstruction. The performance of the segmentation algorithm was examined in 80 IVUS images. The reliability of the path extraction method was studied in vitro using a metal wire model and in vivo in a dataset of 11 patients. The performance of the sequential triangulation algorithm was tested in two gutter models and in the coronary arteries (marked with metal clips) of six cadaveric sheep hearts. Finally, the accuracy in the estimation of the first IVUS frame absolute orientation was examined in the same set of cadaveric sheep hearts. The obtained results demonstrate that the proposed reconstruction method is reliable and capable of depicting the morphology of

  12. Fully automated prostate segmentation in 3D MR based on normalized gradient fields cross-correlation initialization and LOGISMOS refinement

    NASA Astrophysics Data System (ADS)

    Yin, Yin; Fotin, Sergei V.; Periaswamy, Senthil; Kunz, Justin; Haldankar, Hrishikesh; Muradyan, Naira; Cornud, François; Turkbey, Baris; Choyke, Peter

    2012-02-01

    Manual delineation of the prostate is a challenging task for a clinician due to its complex and irregular shape. Furthermore, the need for precisely targeting the prostate boundary continues to grow. Planning for radiation therapy, MR-ultrasound fusion for image-guided biopsy, multi-parametric MRI tissue characterization, and context-based organ retrieval are examples where accurate prostate delineation can play a critical role in a successful patient outcome. Therefore, a robust automated full prostate segmentation system is desired. In this paper, we present an automated prostate segmentation system for 3D MR images. In this system, the prostate is segmented in two steps: the prostate displacement and size are first detected, and then the boundary is refined by a shape model. The detection approach is based on normalized gradient fields cross-correlation. This approach is fast, robust to intensity variation and provides good accuracy to initialize a prostate mean shape model. The refinement model is based on a graph-search based framework, which contains both shape and topology information during deformation. We generated the graph cost using trained classifiers and used coarse-to-fine search and region-specific classifier training. The proposed algorithm was developed using 261 training images and tested on another 290 cases. The segmentation performance using mean DSC ranging from 0.89 to 0.91 depending on the evaluation subset demonstrates state of the art performance. Running time for the system is about 20 to 40 seconds depending on image size and resolution.

  13. Correlation-based discrimination between cardiac tissue and blood for segmentation of the left ventricle in 3-D echocardiographic images.

    PubMed

    Saris, Anne E C M; Nillesen, Maartje M; Lopata, Richard G P; de Korte, Chris L

    2014-03-01

    For automated segmentation of 3-D echocardiographic images, incorporation of temporal information may be helpful. In this study, optimal settings for calculation of temporal cross-correlations between subsequent time frames were determined, to obtain the maximum cross-correlation (MCC) values that provided the best contrast between blood and cardiac tissue over the entire cardiac cycle. Both contrast and boundary gradient quality measures were assessed to optimize MCC values with respect to signal choice (radiofrequency or envelope data) and axial window size. Optimal MCC values were incorporated into a deformable model to automatically segment the left ventricular cavity. MCC values were tested against, and combined with, filtered, demodulated radiofrequency data. Results reveal that using envelope data in combination with a relatively small axial window (0.7-1.25 mm) at fine scale results in optimal contrast and boundary gradient between the two tissues over the entire cardiac cycle. Preliminary segmentation results indicate that incorporation of MCC values has additional value for automated segmentation of the left ventricle. PMID:24412178

  14. ROI-preserving 3D video compression method utilizing depth information

    NASA Astrophysics Data System (ADS)

    Ti, Chunli; Xu, Guodong; Guan, Yudong; Teng, Yidan

    2015-09-01

    Efficiently transmitting the extra information of three dimensional (3D) video is becoming a key issue of the development of 3DTV. 2D plus depth format not only occupies the smaller bandwidth and is compatible transmission under the condition of the existing channel, but also can provide technique support for advanced 3D video compression in some extend. This paper proposes an ROI-preserving compression scheme to further improve the visual quality at a limited bit rate. According to the connection between the focus of Human Visual System (HVS) and depth information, region of interest (ROI) can be automatically selected via depth map progressing. The main improvement from common method is that a meanshift based segmentation is executed to the depth map before foreground ROI selection to keep the integrity of scene. Besides, the sensitive areas along the edges are also protected. The Spatio-temporal filtering adapting to H.264 is used to the non-ROI of both 2D video and depth map before compression. Experiments indicate that, the ROI extracted by this method is more undamaged and according with subjective feeling, and the proposed method can keep the key high-frequency information more effectively while the bit rate is reduced.

  15. MOM3D method of moments code theory manual

    NASA Astrophysics Data System (ADS)

    Shaeffer, John F.

    1992-03-01

    MOM3D is a FORTRAN algorithm that solves Maxwell's equations as expressed via the electric field integral equation for the electromagnetic response of open or closed three dimensional surfaces modeled with triangle patches. Two joined triangles (couples) form the vector current unknowns for the surface. Boundary conditions are for perfectly conducting or resistive surfaces. The impedance matrix represents the fundamental electromagnetic interaction of the body with itself. A variety of electromagnetic analysis options are possible once the impedance matrix is computed including backscatter radar cross section (RCS), bistatic RCS, antenna pattern prediction for user specified body voltage excitation ports, RCS image projection showing RCS scattering center locations, surface currents excited on the body as induced by specified plane wave excitation, and near field computation for the electric field on or near the body.

  16. 3D sensitivity of 6-electrode Focused Impedance Method (FIM)

    NASA Astrophysics Data System (ADS)

    Masum Iquebal, A. H.; Siddique-e Rabbani, K.

    2010-04-01

    The present work was taken up to have an understanding of the depth sensitivity of the 6 electrode FIM developed by our laboratory earlier, so that it may be applied judiciously for the measurement of organs in 3D, with electrodes on the skin surface. For a fixed electrode geometry sensitivity is expected to depend on the depth, size and conductivity of the target object. With current electrodes 18 cm apart and potential electrodes 5 cm apart, depth sensitivity of spherical conductors, insulators and of pieces of potato of different diameters were measured. The sensitivity dropped sharply with depth gradually leveling off to background, and objects could be sensed down to a depth of about twice their diameters. The sensitivity at a certain depth increases almost linearly with volume for objects with the same conductivity. Thus these results increase confidence in the use of FIM for studying organs at depths of the body.

  17. MOM3D method of moments code theory manual

    NASA Technical Reports Server (NTRS)

    Shaeffer, John F.

    1992-01-01

    MOM3D is a FORTRAN algorithm that solves Maxwell's equations as expressed via the electric field integral equation for the electromagnetic response of open or closed three dimensional surfaces modeled with triangle patches. Two joined triangles (couples) form the vector current unknowns for the surface. Boundary conditions are for perfectly conducting or resistive surfaces. The impedance matrix represents the fundamental electromagnetic interaction of the body with itself. A variety of electromagnetic analysis options are possible once the impedance matrix is computed including backscatter radar cross section (RCS), bistatic RCS, antenna pattern prediction for user specified body voltage excitation ports, RCS image projection showing RCS scattering center locations, surface currents excited on the body as induced by specified plane wave excitation, and near field computation for the electric field on or near the body.

  18. Automated 3-D Segmentation of Lungs With Lung Cancer in CT Data Using a Novel Robust Active Shape Model Approach

    PubMed Central

    Sun, Shanhui; Bauer, Christian; Beichel, Reinhard

    2013-01-01

    Segmentation of lungs with (large) lung cancer regions is a nontrivial problem. We present a new fully automated approach for segmentation of lungs with such high-density pathologies. Our method consists of two main processing steps. First, a novel robust active shape model (RASM) matching method is utilized to roughly segment the outline of the lungs. The initial position of the RASM is found by means of a rib cage detection method. Second, an optimal surface finding approach is utilized to further adapt the initial segmentation result to the lung. Left and right lungs are segmented individually. An evaluation on 30 data sets with 40 abnormal (lung cancer) and 20 normal left/right lungs resulted in an average Dice coefficient of 0.975 ± 0.006 and a mean absolute surface distance error of 0.84 ± 0.23 mm, respectively. Experiments on the same 30 data sets showed that our methods delivered statistically significant better segmentation results, compared to two commercially available lung segmentation approaches. In addition, our RASM approach is generally applicable and suitable for large shape models. PMID:21997248

  19. Automatic Detection, Segmentation and Classification of Retinal Horizontal Neurons in Large-scale 3D Confocal Imagery

    SciTech Connect

    Karakaya, Mahmut; Kerekes, Ryan A; Gleason, Shaun Scott; Martins, Rodrigo; Dyer, Michael

    2011-01-01

    Automatic analysis of neuronal structure from wide-field-of-view 3D image stacks of retinal neurons is essential for statistically characterizing neuronal abnormalities that may be causally related to neural malfunctions or may be early indicators for a variety of neuropathies. In this paper, we study classification of neuron fields in large-scale 3D confocal image stacks, a challenging neurobiological problem because of the low spatial resolution imagery and presence of intertwined dendrites from different neurons. We present a fully automated, four-step processing approach for neuron classification with respect to the morphological structure of their dendrites. In our approach, we first localize each individual soma in the image by using morphological operators and active contours. By using each soma position as a seed point, we automatically determine an appropriate threshold to segment dendrites of each neuron. We then use skeletonization and network analysis to generate the morphological structures of segmented dendrites, and shape-based features are extracted from network representations of each neuron to characterize the neuron. Based on qualitative results and quantitative comparisons, we show that we are able to automatically compute relevant features that clearly distinguish between normal and abnormal cases for postnatal day 6 (P6) horizontal neurons.

  20. Joint segmentation of lumen and outer wall from femoral artery MR images: Towards 3D imaging measurements of peripheral arterial disease.

    PubMed

    Ukwatta, Eranga; Yuan, Jing; Qiu, Wu; Rajchl, Martin; Chiu, Bernard; Fenster, Aaron

    2015-12-01

    Three-dimensional (3D) measurements of peripheral arterial disease (PAD) plaque burden extracted from fast black-blood magnetic resonance (MR) images have shown to be more predictive of clinical outcomes than PAD stenosis measurements. To this end, accurate segmentation of the femoral artery lumen and outer wall is required for generating volumetric measurements of PAD plaque burden. Here, we propose a semi-automated algorithm to jointly segment the femoral artery lumen and outer wall surfaces from 3D black-blood MR images, which are reoriented and reconstructed along the medial axis of the femoral artery to obtain improved spatial coherence between slices of the long, thin femoral artery and to reduce computation time. The developed segmentation algorithm enforces two priors in a global optimization manner: the spatial consistency between the adjacent 2D slices and the anatomical region order between the femoral artery lumen and outer wall surfaces. The formulated combinatorial optimization problem for segmentation is solved globally and exactly by means of convex relaxation using a coupled continuous max-flow (CCMF) model, which is a dual formulation to the convex relaxed optimization problem. In addition, the CCMF model directly derives an efficient duality-based algorithm based on the modern multiplier augmented optimization scheme, which has been implemented on a GPU for fast computation. The computed segmentations from the developed algorithm were compared to manual delineations from experts using 20 black-blood MR images. The developed algorithm yielded both high accuracy (Dice similarity coefficients ≥ 87% for both the lumen and outer wall surfaces) and high reproducibility (intra-class correlation coefficient of 0.95 for generating vessel wall area), while outperforming the state-of-the-art method in terms of computational time by a factor of ≈ 20. PMID:26387053

  1. Geometric and topological feature extraction of linear segments from 2D cross-section data of 3D point clouds

    NASA Astrophysics Data System (ADS)

    Ramamurthy, Rajesh; Harding, Kevin; Du, Xiaoming; Lucas, Vincent; Liao, Yi; Paul, Ratnadeep; Jia, Tao

    2015-05-01

    Optical measurement techniques are often employed to digitally capture three dimensional shapes of components. The digital data density output from these probes range from a few discrete points to exceeding millions of points in the point cloud. The point cloud taken as a whole represents a discretized measurement of the actual 3D shape of the surface of the component inspected to the measurement resolution of the sensor. Embedded within the measurement are the various features of the part that make up its overall shape. Part designers are often interested in the feature information since those relate directly to part function and to the analytical models used to develop the part design. Furthermore, tolerances are added to these dimensional features, making their extraction a requirement for the manufacturing quality plan of the product. The task of "extracting" these design features from the point cloud is a post processing task. Due to measurement repeatability and cycle time requirements often automated feature extraction from measurement data is required. The presence of non-ideal features such as high frequency optical noise and surface roughness can significantly complicate this feature extraction process. This research describes a robust process for extracting linear and arc segments from general 2D point clouds, to a prescribed tolerance. The feature extraction process generates the topology, specifically the number of linear and arc segments, and the geometry equations of the linear and arc segments automatically from the input 2D point clouds. This general feature extraction methodology has been employed as an integral part of the automated post processing algorithms of 3D data of fine features.

  2. Development of 3-D Ice Accretion Measurement Method

    NASA Technical Reports Server (NTRS)

    Lee, Sam; Broeren, Andy P.; Addy, Harold E., Jr.; Sills, Robert; Pifer, Ellen M.

    2012-01-01

    A research plan is currently being implemented by NASA to develop and validate the use of a commercial laser scanner to record and archive fully three-dimensional (3-D) ice shapes from an icing wind tunnel. The plan focused specifically upon measuring ice accreted in the NASA Icing Research Tunnel (IRT). The plan was divided into two phases. The first phase was the identification and selection of the laser scanning system and the post-processing software to purchase and develop further. The second phase was the implementation and validation of the selected system through a series of icing and aerodynamic tests. Phase I of the research plan has been completed. It consisted of evaluating several scanning hardware and software systems against an established selection criteria through demonstrations in the IRT. The results of Phase I showed that all of the scanning systems that were evaluated were equally capable of scanning ice shapes. The factors that differentiated the scanners were ease of use and the ability to operate in a wide range of IRT environmental conditions.

  3. Multi-surface and multi-field co-segmentation of 3-D retinal optical coherence tomography.

    PubMed

    Bogunovic, Hrvoje; Sonka, Milan; Kwon, Young H; Kemp, Pavlina; Abramoff, Michael D; Wu, Xiaodong

    2014-12-01

    When segmenting intraretinal layers from multiple optical coherence tomography (OCT) images forming a mosaic or a set of repeated scans, it is attractive to exploit the additional information from the overlapping areas rather than discarding it as redundant, especially in low contrast and noisy images. However, it is currently not clear how to effectively combine the multiple information sources available in the areas of overlap. In this paper, we propose a novel graph-theoretic method for multi-surface multi-field co-segmentation of intraretinal layers, assuring consistent segmentation of the fields across the overlapped areas. After 2-D en-face alignment, all the fields are segmented simultaneously, imposing a priori soft interfield-intrasurface constraints for each pair of overlapping fields. The constraints penalize deviations from the expected surface height differences, taken to be the depth-axis shifts that produce the maximum cross-correlation of pairwise-overlapped areas. The method's accuracy and reproducibility are evaluated qualitatively and quantitatively on 212 OCT images (20 nine-field, 32 single-field acquisitions) from 26 patients with glaucoma. Qualitatively, the obtained thickness maps show no stitching artifacts, compared to pronounced stitches when the fields are segmented independently. Quantitatively, two ophthalmologists manually traced four intraretinal layers on 10 patients, and the average error ( 4.58 ±1.46 μm) was comparable to the average difference between the observers ( 5.86±1.72 μm). Furthermore, we show the benefit of the proposed approach in co-segmenting longitudinal scans. As opposed to segmenting layers in each of the fields independently, the proposed co-segmentation method obtains consistent segmentations across the overlapped areas, producing accurate, reproducible, and artifact-free results. PMID:25020067

  4. Assessment of DICOM Viewers Capable of Loading Patient-specific 3D Models Obtained by Different Segmentation Platforms in the Operating Room.

    PubMed

    Lo Presti, Giuseppe; Carbone, Marina; Ciriaci, Damiano; Aramini, Daniele; Ferrari, Mauro; Ferrari, Vincenzo

    2015-10-01

    Patient-specific 3D models obtained by the segmentation of volumetric diagnostic images play an increasingly important role in surgical planning. Surgeons use the virtual models reconstructed through segmentation to plan challenging surgeries. Many solutions exist for the different anatomical districts and surgical interventions. The possibility to bring the 3D virtual reconstructions with native radiological images in the operating room is essential for fostering the use of intraoperative planning. To the best of our knowledge, current DICOM viewers are not able to simultaneously connect to the picture archiving and communication system (PACS) and import 3D models generated by external platforms to allow a straight integration in the operating room. A total of 26 DICOM viewers were evaluated: 22 open source and four commercial. Two DICOM viewers can connect to PACS and import segmentations achieved by other applications: Synapse 3D® by Fujifilm and OsiriX by University of Geneva. We developed a software network that converts diffuse visual tool kit (VTK) format 3D model segmentations, obtained by any software platform, to a DICOM format that can be displayed using OsiriX or Synapse 3D. Both OsiriX and Synapse 3D were suitable for our purposes and had comparable performance. Although Synapse 3D loads native images and segmentations faster, the main benefits of OsiriX are its user-friendly loading of elaborated images and it being both free of charge and open source. PMID:25739346

  5. Multi-Surface and Multi-Field Co-Segmentation of 3-D Retinal Optical Coherence Tomography

    PubMed Central

    Sonka, Milan; Kwon, Young H.; Kemp, Pavlina; Abràmoff, Michael D.; Wu, Xiaodong

    2015-01-01

    When segmenting intraretinal layers from multiple optical coherence tomography (OCT) images forming a mosaic or a set of repeated scans, it is attractive to exploit the additional information from the overlapping areas rather than discarding it as redundant, especially in low contrast and noisy images. However, it is currently not clear how to effectively combine the multiple information sources available in the areas of overlap. In this paper, we propose a novel graph-theoretic method for multi-surface multi-field co-segmentation of intraretinal layers, assuring consistent segmentation of the fields across the overlapped areas. After 2-D en-face alignment, all the fields are segmented simultaneously, imposing a priori soft interfield-intrasurface constraints for each pair of overlapping fields. The constraints penalize deviations from the expected surface height differences, taken to be the depth-axis shifts that produce the maximum cross-correlation of pairwise-overlapped areas. The method’s accuracy and reproducibility are evaluated qualitatively and quantitatively on 212 OCT images (20 nine-field, 32 single-field acquisitions) from 26 patients with glaucoma. Qualitatively, the obtained thickness maps show no stitching artifacts, compared to pronounced stitches when the fields are segmented independently. Quantitatively, two ophthalmologists manually traced four intraretinal layers on 10 patients, and the average error (4.58±1.46 μm) was comparable to the average difference between the observers (5.86±1.72 μm). Furthermore, we show the benefit of the proposed approach in co-segmenting longitudinal scans. As opposed to segmenting layers in each of the fields independently, the proposed co-segmentation method obtains consistent segmentations across the overlapped areas, producing accurate, reproducible, and artifact-free results. PMID:25020067

  6. Automatic Segmentation of the Eye in 3D Magnetic Resonance Imaging: A Novel Statistical Shape Model for Treatment Planning of Retinoblastoma

    SciTech Connect

    Ciller, Carlos; De Zanet, Sandro I.; Rüegsegger, Michael B.; Pica, Alessia; Sznitman, Raphael; Thiran, Jean-Philippe; Maeder, Philippe; Munier, Francis L.; Kowal, Jens H.; and others

    2015-07-15

    Purpose: Proper delineation of ocular anatomy in 3-dimensional (3D) imaging is a big challenge, particularly when developing treatment plans for ocular diseases. Magnetic resonance imaging (MRI) is presently used in clinical practice for diagnosis confirmation and treatment planning for treatment of retinoblastoma in infants, where it serves as a source of information, complementary to the fundus or ultrasonographic imaging. Here we present a framework to fully automatically segment the eye anatomy for MRI based on 3D active shape models (ASM), and we validate the results and present a proof of concept to automatically segment pathological eyes. Methods and Materials: Manual and automatic segmentation were performed in 24 images of healthy children's eyes (3.29 ± 2.15 years of age). Imaging was performed using a 3-T MRI scanner. The ASM consists of the lens, the vitreous humor, the sclera, and the cornea. The model was fitted by first automatically detecting the position of the eye center, the lens, and the optic nerve, and then aligning the model and fitting it to the patient. We validated our segmentation method by using a leave-one-out cross-validation. The segmentation results were evaluated by measuring the overlap, using the Dice similarity coefficient (DSC) and the mean distance error. Results: We obtained a DSC of 94.90 ± 2.12% for the sclera and the cornea, 94.72 ± 1.89% for the vitreous humor, and 85.16 ± 4.91% for the lens. The mean distance error was 0.26 ± 0.09 mm. The entire process took 14 seconds on average per eye. Conclusion: We provide a reliable and accurate tool that enables clinicians to automatically segment the sclera, the cornea, the vitreous humor, and the lens, using MRI. We additionally present a proof of concept for fully automatically segmenting eye pathology. This tool reduces the time needed for eye shape delineation and thus can help clinicians when planning eye treatment and confirming the extent of the tumor.

  7. An adaptive 3D region growing algorithm to automatically segment and identify thoracic aorta and its centerline using computed tomography angiography scans

    NASA Astrophysics Data System (ADS)

    Ferreira, F.; Dehmeshki, J.; Amin, H.; Dehkordi, M. E.; Belli, A.; Jouannic, A.; Qanadli, S.

    2010-03-01

    Thoracic Aortic Aneurysm (TAA) is a localized swelling of the thoracic aorta. The progressive growth of an aneurysm may eventually cause a rupture if not diagnosed or treated. This necessitates the need for an accurate measurement which in turn calls for the accurate segmentation of the aneurysm regions. Computer Aided Detection (CAD) is a tool to automatically detect and segment the TAA in the Computer tomography angiography (CTA) images. The fundamental major step of developing such a system is to develop a robust method for the detection of main vessel and measuring its diameters. In this paper we propose a novel adaptive method to simultaneously segment the thoracic aorta and to indentify its center line. For this purpose, an adaptive parametric 3D region growing is proposed in which its seed will be automatically selected through the detection of the celiac artery and the parameters of the method will be re-estimated while the region is growing thorough the aorta. At each phase of region growing the initial center line of aorta will also be identified and modified through the process. Thus the proposed method simultaneously detect aorta and identify its centerline. The method has been applied on CT images from 20 patients with good agreement with the visual assessment by two radiologists.

  8. A novel alternative method for 3D visualisation in Parasitology: the construction of a 3D model of a parasite from 2D illustrations.

    PubMed

    Teo, B G; Sarinder, K K S; Lim, L H S

    2010-08-01

    Three-dimensional (3D) models of the marginal hooks, dorsal and ventral anchors, bars and haptoral reservoirs of a parasite, Sundatrema langkawiense Lim & Gibson, 2009 (Monogenea) were developed using the polygonal modelling method in Autodesk 3ds Max (Version 9) based on two-dimensional (2D) illustrations. Maxscripts were written to rotate the modelled 3D structures. Appropriately orientated 3D haptoral hard-parts were then selected and positioned within the transparent 3D outline of the haptor and grouped together to form a complete 3D haptoral entity. This technique is an inexpensive tool for constructing 3D models from 2D illustrations for 3D visualisation of the spatial relationships between the different structural parts within organisms. PMID:20962723

  9. Automated 2D-3D registration of a radiograph and a cone beam CT using line-segment enhancement

    SciTech Connect

    Munbodh, Reshma; Jaffray, David A.; Moseley, Douglas J.; Chen Zhe; Knisely, Jonathan P.S.; Cathier, Pascal; Duncan, James S.

    2006-05-15

    The objective of this study was to develop a fully automated two-dimensional (2D)-three-dimensional (3D) registration framework to quantify setup deviations in prostate radiation therapy from cone beam CT (CBCT) data and a single AP radiograph. A kilovoltage CBCT image and kilovoltage AP radiograph of an anthropomorphic phantom of the pelvis were acquired at 14 accurately known positions. The shifts in the phantom position were subsequently estimated by registering digitally reconstructed radiographs (DRRs) from the 3D CBCT scan to the AP radiographs through the correlation of enhanced linear image features mainly representing bony ridges. Linear features were enhanced by filtering the images with ''sticks,'' short line segments which are varied in orientation to achieve the maximum projection value at every pixel in the image. The mean (and standard deviations) of the absolute errors in estimating translations along the three orthogonal axes in millimeters were 0.134 (0.096) AP(out-of-plane), 0.021 (0.023) ML and 0.020 (0.020) SI. The corresponding errors for rotations in degrees were 0.011 (0.009) AP, 0.029 (0.016) ML (out-of-plane), and 0.030 (0.028) SI (out-of-plane). Preliminary results with megavoltage patient data have also been reported. The results suggest that it may be possible to enhance anatomic features that are common to DRRs from a CBCT image and a single AP radiography of the pelvis for use in a completely automated and accurate 2D-3D registration framework for setup verification in prostate radiotherapy. This technique is theoretically applicable to other rigid bony structures such as the cranial vault or skull base and piecewise rigid structures such as the spine.

  10. A supervoxel-based segmentation method for prostate MR images

    NASA Astrophysics Data System (ADS)

    Tian, Zhiqiang; Liu, LiZhi; Fei, Baowei

    2015-03-01

    Accurate segmentation of the prostate has many applications in prostate cancer diagnosis and therapy. In this paper, we propose a "Supervoxel" based method for prostate segmentation. The prostate segmentation problem is considered as assigning a label to each supervoxel. An energy function with data and smoothness terms is used to model the labeling process. The data term estimates the likelihood of a supervoxel belongs to the prostate according to a shape feature. The geometric relationship between two neighboring supervoxels is used to construct a smoothness term. A threedimensional (3D) graph cut method is used to minimize the energy function in order to segment the prostate. A 3D level set is then used to get a smooth surface based on the output of the graph cut. The performance of the proposed segmentation algorithm was evaluated with respect to the manual segmentation ground truth. The experimental results on 12 prostate volumes showed that the proposed algorithm yields a mean Dice similarity coefficient of 86.9%+/-3.2%. The segmentation method can be used not only for the prostate but also for other organs.

  11. Method for 3D fibre reconstruction on a microrobotic platform.

    PubMed

    Hirvonen, J; Myllys, M; Kallio, P

    2016-07-01

    Automated handling of a natural fibrous object requires a method for acquiring the three-dimensional geometry of the object, because its dimensions cannot be known beforehand. This paper presents a method for calculating the three-dimensional reconstruction of a paper fibre on a microrobotic platform that contains two microscope cameras. The method is based on detecting curvature changes in the fibre centreline, and using them as the corresponding points between the different views of the images. We test the developed method with four fibre samples and compare the results with the references measured with an X-ray microtomography device. We rotate the samples through 16 different orientations on the platform and calculate the three-dimensional reconstruction to test the repeatability of the algorithm and its sensitivity to the orientation of the sample. We also test the noise sensitivity of the algorithm, and record the mismatch rate of the correspondences provided. We use the iterative closest point algorithm to align the measured three-dimensional reconstructions with the references. The average point-to-point distances between the reconstructed fibre centrelines and the references are 20-30 μm, and the mismatch rate is low. Given the manipulation tolerance, this shows that the method is well suited to automated fibre grasping. This has also been demonstrated with actual grasping experiments. PMID:26695385

  12. New 3-D flow interpolation method on moving ADCP data

    NASA Astrophysics Data System (ADS)

    Tsubaki, R.; Kawahara, Y.; Muto, Y.; Fujita, I.

    2012-05-01

    A simple but accurate interpolation procedure for obtaining the three-dimensional distribution of three-component velocity data, from moving acoustic doppler current profiler (ADCP) observation data, is proposed. For understanding actual flow structure within a river with complex bathymetry, the three-dimensional mean velocity field provides a basic picture of the flow. For obtaining the three-dimensional distribution of three-component velocity data, in this work, anisotropic gridding was introduced in order to remove the random component of measured velocity data caused by the turbulence of the flow and measurement error. A continuity correction based on the pressure equation was used to reduce both random and systematic errors. The accuracy of the developed method was evaluated using three-dimensional flow simulation data from a detached-eddy simulation (DES). By using the procedure developed, the complex flow structure surrounding the spur dikes section in the Uji River was successfully visualized and explored. The proposed method shows superiorities in both accuracy and consistency for the interpolated velocity field, as compared to the kriging and inverse-distance weighted (IDW) methods.

  13. Computerized method for automated measurement of thickness of cerebral cortex for 3-D MR images

    NASA Astrophysics Data System (ADS)

    Arimura, Hidetaka; Yoshiura, Takashi; Kumazawa, Seiji; Koga, Hiroshi; Sakai, Shuji; Mihara, Futoshi; Honda, Hiroshi; Ohki, Masafumi; Toyofuku, Fukai; Higashida, Yoshiharu

    2006-03-01

    Alzheimer's disease (AD) is associated with the degeneration of cerebral cortex, which results in focal volume change or thinning in the cerebral cortex in magnetic resonance imaging (MRI). Therefore, the measurement of the cortical thickness is important for detection of the atrophy related to AD. Our purpose was to develop a computerized method for automated measurement of the cortical thickness for three-dimensional (3-D) MRI. The cortical thickness was measured with normal vectors from white matter surface to cortical gray matter surface on a voxel-by-voxel basis. First, a head region was segmented by use of an automatic thresholding technique, and then the head region was separated into the cranium region and brain region by means of a multiple gray level thresholding with monitoring the ratio of the first maximum volume to the second one. Next, a fine white matter region was determined based on a level set method as a seed region of the rough white matter region extracted from the brain region. Finally, the cortical thickness was measured by extending normal vectors from the white matter surface to gray matter surface (brain surface) on a voxel-by-voxel basis. We applied the computerized method to high-resolution 3-D T1-weighted images of the whole brains from 7 clinically diagnosed AD patients and 8 healthy subjects. The average cortical thicknesses in the upper slices for AD patients were thinner than those for non-AD subjects, whereas the average cortical thicknesses in the lower slices for most AD patients were slightly thinner. Our preliminary results suggest that the MRI-based computerized measurement of gray matter atrophy is promising for detecting AD.

  14. Filtering method for 3D laser scanning point cloud

    NASA Astrophysics Data System (ADS)

    Liu, Da; Wang, Li; Hao, Yuncai; Zhang, Jun

    2015-10-01

    In recent years, with the rapid development of the hardware and software of the three-dimensional model acquisition, three-dimensional laser scanning technology is utilized in various aspects, especially in space exploration. The point cloud filter is very important before using the data. In the paper, considering both the processing quality and computing speed, an improved mean-shift point cloud filter method is proposed. Firstly, by analyze the relevance of the normal vector between the upcoming processing point and the near points, the iterative neighborhood of the mean-shift is selected dynamically, then the high frequency noise is constrained. Secondly, considering the normal vector of the processing point, the normal vector is updated. Finally, updated position is calculated for each point, then each point is moved in the normal vector according to the updated position. The experimental results show that the large features are retained, at the same time, the small sharp features are also existed for different size and shape of objects, so the target feature information is protected precisely. The computational complexity of the proposed method is not high, it can bring high precision results with fast speed, so it is very suitable for space application. It can also be utilized in civil, such as large object measurement, industrial measurement, car navigation etc. In the future, filter with the help of point strength will be further exploited.

  15. Segmentation of center brains and optic lobes in 3D confocal images of adult fruit fly brains.

    PubMed

    Lam, Shing Chun Benny; Ruan, Zongcai; Zhao, Ting; Long, Fuhui; Jenett, Arnim; Simpson, Julie; Myers, Eugene W; Peng, Hanchuan

    2010-02-01

    Automatic alignment (registration) of 3D images of adult fruit fly brains is often influenced by the significant displacement of the relative locations of the two optic lobes (OLs) and the center brain (CB). In one of our ongoing efforts to produce a better image alignment pipeline of adult fruit fly brains, we consider separating CB and OLs and align them independently. This paper reports our automatic method to segregate CB and OLs, in particular under conditions where the signal to noise ratio (SNR) is low, the variation of the image intensity is big, and the relative displacement of OLs and CB is substantial. We design an algorithm to find a minimum-cost 3D surface in a 3D image stack to best separate an OL (of one side, either left or right) from CB. This surface is defined as an aggregation of the respective minimum-cost curves detected in each individual 2D image slice. Each curve is defined by a list of control points that best segregate OL and CB. To obtain the locations of these control points, we derive an energy function that includes an image energy term defined by local pixel intensities and two internal energy terms that constrain the curve's smoothness and length. Gradient descent method is used to optimize this energy function. To improve both the speed and robustness of the method, for each stack, the locations of optimized control points in a slice are taken as the initialization prior for the next slice. We have tested this approach on simulated and real 3D fly brain image stacks and demonstrated that this method can reasonably segregate OLs from CBs despite the aforementioned difficulties. PMID:19698789

  16. Jacob's Interpretation Method Revisited: Accounting for 3-D Spatial Heterogeneity

    NASA Astrophysics Data System (ADS)

    Sanchez-Vila, X.; Riva, M.; Guadagnini, A.; Carrera, J.

    2005-12-01

    Traditional approaches to hydraulic test interpretation provide typically individual aquifer parameters, such as hydraulic conductivity (K) and storativity (S) values. The values obtained somehow incorporate some averaging values of aquifer heterogeneity, while the averaging functions are a direct consequence of the method of analysis employed. In recent years most work, casted in a stochastic framework, focused on the relationship between pumping rate and ensemble mean or variance of drawdown, thus having to pre-specify the parameters characterizing the underlying random spatial function. On the contrary, we contend that additional highly relevant information about heterogeneity can be obtained by looking to the spatial distribution of drawdown in individual realizations of the heterogeneous K field, without the need for invoking ergodic arguments. We present an analysis of the spatial distribution of time-dependent drawdown in a tridimensional aquifer produced by constant rate pumping in a fully penetrating well. The aquifer is considered of infinite extension in the x, y directions, and we assume no-flow boundaries in the aquifer top and bottom. The observation point is a fully penetrating piezometer. We consider an unknown spatial distribution of K(x,y,z), and using a perturbation expansion up to second order, we look at the late-time behavior of drawdown at any given observation vertical line. We conclude that: (1) at any given observation line the late-time behavior of drawdown would display a straight line in a drawdown versus log time plot, thus allowing the use of Jacob's method for test interpretation; (2) the slope of the straight line is the same for each observation line, thus providing a global average of K(x,y,z) through the aquifer; (3) the intercept point of the line in the same plot depends on location and is related to connectivity issues between the pumping and observation locations; (4) the intercept value is a weighted function of the local

  17. Multi-crosswell profile 3D imaging and method

    DOEpatents

    Washbourne, John K.; Rector, III, James W.; Bube, Kenneth P.

    2002-01-01

    Characterizing the value of a particular property, for example, seismic velocity, of a subsurface region of ground is described. In one aspect, the value of the particular property is represented using at least one continuous analytic function such as a Chebychev polynomial. The seismic data may include data derived from at least one crosswell dataset for the subsurface region of interest and may also include other data. In either instance, data may simultaneously be used from a first crosswell dataset in conjunction with one or more other crosswell datasets and/or with the other data. In another aspect, the value of the property is characterized in three dimensions throughout the region of interest using crosswell and/or other data. In still another aspect, crosswell datasets for highly deviated or horizontal boreholes are inherently useful. The method is performed, in part, by fitting a set of vertically spaced layer boundaries, represented by an analytic function such as a Chebychev polynomial, within and across the region encompassing the boreholes such that a series of layers is defined between the layer boundaries. Initial values of the particular property are then established between the layer boundaries and across the subterranean region using a series of continuous analytic functions. The continuous analytic functions are then adjusted to more closely match the value of the particular property across the subterranean region of ground to determine the value of the particular property for any selected point within the region.

  18. A method of 3-D data information storage with virtual holography

    NASA Astrophysics Data System (ADS)

    Huang, Zhen; Liu, Guodong; Ren, Zhong; Zeng, Lüming

    2008-12-01

    In this paper, a new method of 3-D data cube based on virtual holographic storage is presented. Firstly, the data information is encoded in the form of 3-D data cube with a certain algorithm, in which the interval along coordinates between every data is d. Using the plane-scanning method, the 3-D cube can be described as a assembly of slices which are parallel planes along the coordinates at an interval of d. The dot on the slice represents a bit. The bright one means "1", while the dark one means "0". Secondly, a hologram of the 3-D cube is obtained by computer with virtual optics technology. All the information of a 3-D cube can be described by a 2-D hologram. At last, the hologram is inputted in the SLM, and recorded in the recording material by intersecting two coherent laser beams. When the 3-D data is exported, a reference light illuminates the hologram, and a CCD is used to get the object image which is a hologram of the 3-D data. Then the 3-D data is computed with virtual optical technology. Compared with 2-D data page storage, the 3-D data cube storage has outstanding performance in larger capacity of data storage and higher security of data.

  19. Evaluation of a new method for stenosis quantification from 3D x-ray angiography images

    NASA Astrophysics Data System (ADS)

    Betting, Fabienne; Moris, Gilles; Knoplioch, Jerome; Trousset, Yves L.; Sureda, Francisco; Launay, Laurent

    2001-05-01

    A new method for stenosis quantification from 3D X-ray angiography images has been evaluated on both phantom and clinical data. On phantoms, for the parts larger or equal to 3 mm, the standard deviation of the measurement error has always found to be less or equal to 0.4 mm, and the maximum measurement error less than 0.17 mm. No clear relationship has been observed between the performances of the quantification method and the acquisition FoV. On clinical data, the 3D quantification method proved to be more robust to vessel bifurcations than its 3D equivalent. On a total of 15 clinical cases, the differences between 2D and 3D quantification were always less than 0.7 mm. The conclusion is that stenosis quantification from 3D X-4ay angiography images is an attractive alternative to quantification from 2D X-ray images.

  20. 3D segmentation and quantification of magnetic resonance data: application to the osteonecrosis of the femoral head

    NASA Astrophysics Data System (ADS)

    Klifa, Catherine S.; Lynch, John A.; Zaim, Souhil; Genant, Harry K.

    1999-05-01

    The general objective of our study is the development of a clinically robust three-dimensional segmentation and quantification technique of Magnetic Resonance (MR) data, for the objective and quantitative evaluation of the osteonecrosis (ON) of the femoral head. This method will help evaluate the effects of joint preserving treatments for femoral head osteonecrosis from MR data. The disease is characterized by tissue changes (death of bone and marrow cells) within the weight-bearing portion of the femoral head. Due to the fuzzy appearance of lesion tissues and their different intensity patterns in various MR sequences, we proposed a semi-automatic multispectral segmentation of MR data introducing data constraints (anatomical and geometrical) and using a classical K-means unsupervised clustering algorithm. The method was applied on ON patient data. Results of volumetric measurements and configuration of various tissues obtained with the semi- automatic method were compared with quantitative results delineated by a trained radiologist.

  1. 3D-2D registration of cerebral angiograms: a method and evaluation on clinical images.

    PubMed

    Mitrovic, Uroš; Špiclin, Žiga; Likar, Boštjan; Pernuš, Franjo

    2013-08-01

    Endovascular image-guided interventions (EIGI) involve navigation of a catheter through the vasculature followed by application of treatment at the site of anomaly using live 2D projection images for guidance. 3D images acquired prior to EIGI are used to quantify the vascular anomaly and plan the intervention. If fused with the information of live 2D images they can also facilitate navigation and treatment. For this purpose 3D-2D image registration is required. Although several 3D-2D registration methods for EIGI achieve registration accuracy below 1 mm, their clinical application is still limited by insufficient robustness or reliability. In this paper, we propose a 3D-2D registration method based on matching a 3D vasculature model to intensity gradients of live 2D images. To objectively validate 3D-2D registration methods, we acquired a clinical image database of 10 patients undergoing cerebral EIGI and established "gold standard" registrations by aligning fiducial markers in 3D and 2D images. The proposed method had mean registration accuracy below 0.65 mm, which was comparable to tested state-of-the-art methods, and execution time below 1 s. With the highest rate of successful registrations and the highest capture range the proposed method was the most robust and thus a good candidate for application in EIGI. PMID:23649179

  2. A Monte Carlo method for 3D thermal infrared radiative transfer

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Liou, K. N.

    2006-09-01

    A 3D Monte Carlo model for specific application to the broadband thermal radiative transfer has been developed in which the emissivities for gases and cloud particles are parameterized by using a single cubic element as the building block in 3D space. For spectral integration in the thermal infrared, the correlated k-distribution method has been used for the sorting of gaseous absorption lines in multiple-scattering atmospheres involving 3D clouds. To check the Monte-Carlo simulation, we compare a variety of 1D broadband atmospheric fluxes and heating rates to those computed from the conventional plane-parallel (PP) model and demonstrate excellent agreement between the two. Comparisons of the Monte Carlo results for broadband thermal cooling rates in 3D clouds to those computed from the delta-diffusion approximation for 3D radiative transfer and the independent pixel-by-pixel approximation are subsequently carried out to understand the relative merits of these approaches.

  3. Closed formulae to determine the angular velocity of a body-segment based on 3D measurements.

    PubMed

    Kocsis, L; Béda, G

    2001-01-01

    This paper suggests a simple method to determine the global coordinates of the angular velocity and the angular acceleration of a body segment determined by the coordinates of minimum three markers. There are commonly used calculations for the angular quantities basing on the "hypothesis" of planar motion. The usage of approximate methods can result in quantitative and qualitative errors that may completely disort the reality. The method mentioned here is theoretically absolutely correct and can be well used for smoothing noisy data. PMID:11811842

  4. Associative image analysis: a method for automated quantification of 3D multi-parameter images of brain tissue

    PubMed Central

    Bjornsson, Christopher S; Lin, Gang; Al-Kofahi, Yousef; Narayanaswamy, Arunachalam; Smith, Karen L; Shain, William; Roysam, Badrinath

    2009-01-01

    Brain structural complexity has confounded prior efforts to extract quantitative image-based measurements. We present a systematic ‘divide and conquer’ methodology for analyzing three-dimensional (3D) multi-parameter images of brain tissue to delineate and classify key structures, and compute quantitative associations among them. To demonstrate the method, thick (~100 μm) slices of rat brain tissue were labeled using 3 – 5 fluorescent signals, and imaged using spectral confocal microscopy and unmixing algorithms. Automated 3D segmentation and tracing algorithms were used to delineate cell nuclei, vasculature, and cell processes. From these segmentations, a set of 23 intrinsic and 8 associative image-based measurements was computed for each cell. These features were used to classify astrocytes, microglia, neurons, and endothelial cells. Associations among cells and between cells and vasculature were computed and represented as graphical networks to enable further analysis. The automated results were validated using a graphical interface that permits investigator inspection and corrective editing of each cell in 3D. Nuclear counting accuracy was >89%, and cell classification accuracy ranged from 81–92% depending on cell type. We present a software system named FARSIGHT implementing our methodology. Its output is a detailed XML file containing measurements that may be used for diverse quantitative hypothesis-driven and exploratory studies of the central nervous system. PMID:18294697

  5. Registration of overlapping 3D point clouds using extracted line segments. (Polish Title: Rejestracja chmur punktów 3D w oparciu o wyodrębnione krawędzie)

    NASA Astrophysics Data System (ADS)

    Poręba, M.; Goulette, F.

    2014-12-01

    The registration of 3D point clouds collected from different scanner positions is necessary in order to avoid occlusions, ensure a full coverage of areas, and collect useful data for analyzing and documenting the surrounding environment. This procedure involves three main stages: 1) choosing appropriate features, which can be reliably extracted; 2) matching conjugate primitives; 3) estimating the transformation parameters. Currently, points and spheres are most frequently chosen as the registration features. However, due to limited point cloud resolution, proper identification and precise measurement of a common point within the overlapping laser data is almost impossible. One possible solution to this problem may be a registration process based on the Iterative Closest Point (ICP) algorithm or its variation. Alternatively, planar and linear feature-based registration techniques can also be applied. In this paper, we propose the use of line segments obtained from intersecting planes modelled within individual scans. Such primitives can be easily extracted even from low-density point clouds. Working with synthetic data, several existing line-based registration methods are evaluated according to their robustness to noise and the precision of the estimated transformation parameters. For the purpose of quantitative assessment, an accuracy criterion based on a modified Hausdorff distance is defined. Since an automated matching of segments is a challenging task that influences the correctness of the transformation parameters, a correspondence-finding algorithm is developed. The tests show that our matching algorithm provides a correct p airing with an accuracy of 99 % at least, and about 8% of omitted line pairs.

  6. A simple method for producing freestanding 3D microstructures by integrated photomask micromolding

    NASA Astrophysics Data System (ADS)

    Li, Hui

    2015-12-01

    Freestanding three-dimensional (3D) microstructures are widely used in micro-electro-mechanical system (MEMS) applications or can function as microdevices themselves. However, microfabrication methods for freestanding 3D microstructures have limitations in shape, size, cost, and mass production, etc. In this work, integrated photomask micromolding is demonstrated, which uses a portable UV light source and chrome glass micromolding to fabricate 3D microstructures without alignment. Specifically, a chrome layer on one side of the glass micromold shields the excess filling SU-8 photoresist from UV exposure and only the SU-8 photoresist in mold cavities is crosslinked. The 3D microstructures produced using this method have very high dimensional accuracy and the profile error is approximately 1.5%. This method can be used with features of virtually any size and shape and can be integrated into highly-parallel micromolding processes and has potential for MEMS applications.

  7. Sensitivity and reproducibility of a new fast 3D segmentation technique for clinical MR-based brain volumetry in multiple sclerosis.

    PubMed

    Lukas, Carsten; Hahn, Horst K; Bellenberg, Barbara; Rexilius, Jan; Schmid, Gebhard; Schimrigk, Sebastian K; Przuntek, Horst; Köster, Odo; Peitgen, Heinz-Otto

    2004-11-01

    Fast, reliable and easy-to-use methods to quantify brain atrophy are of increasing importance in clinical studies on neuro-degenerative diseases. Here, ILAB 4, a new volumetry software that uses a fast semi-automated 3D segmentation of thin-slice T1-weighted 3D MR images based on a modified watershed transform and an automatic histogram analysis was evaluated. It provides the cerebral volumes: whole brain, white matter, gray matter and intracranial cavity. Inter- and intra-rater reliability and scan-rescan reproducibility were excellent in measuring whole brain volumes (coefficients of variation below 0.5%) of volunteers and patients. However, gray and white matter volumes were more susceptible to image quality. High accuracy of the absolute volume results (+/-5 ml) were shown by phantom and preparation measurements. Analysis times were 6 min for processing of 128 slices. The proposed technique is reliable and highly suitable for quantitative studies of brain atrophy, e.g., in multiple sclerosis. PMID:15536555

  8. 3D modeling method for computer animate based on modified weak structured light method

    NASA Astrophysics Data System (ADS)

    Xiong, Hanwei; Pan, Ming; Zhang, Xiangwei

    2010-11-01

    A simple and affordable 3D scanner is designed in this paper. Three-dimensional digital models are playing an increasingly important role in many fields, such as computer animate, industrial design, artistic design and heritage conservation. For many complex shapes, optical measurement systems are indispensable to acquiring the 3D information. In the field of computer animate, such an optical measurement device is too expensive to be widely adopted, and on the other hand, the precision is not as critical a factor in that situation. In this paper, a new cheap 3D measurement system is implemented based on modified weak structured light, using only a video camera, a light source and a straight stick rotating on a fixed axis. For an ordinary weak structured light configuration, one or two reference planes are required, and the shadows on these planes must be tracked in the scanning process, which destroy the convenience of this method. In the modified system, reference planes are unnecessary, and size range of the scanned objects is expanded widely. A new calibration procedure is also realized for the proposed method, and points cloud is obtained by analyzing the shadow strips on the object. A two-stage ICP algorithm is used to merge the points cloud from different viewpoints to get a full description of the object, and after a series of operations, a NURBS surface model is generated in the end. A complex toy bear is used to verify the efficiency of the method, and errors range from 0.7783mm to 1.4326mm comparing with the ground truth measurement.

  9. Comparative evaluation of a novel 3D segmentation algorithm on in-treatment radiotherapy cone beam CT images

    NASA Astrophysics Data System (ADS)

    Price, Gareth; Moore, Chris

    2007-03-01

    Image segmentation and delineation is at the heart of modern radiotherapy, where the aim is to deliver as high a radiation dose as possible to a cancerous target whilst sparing the surrounding healthy tissues. This, of course, requires that a radiation oncologist dictates both where the tumour and any nearby critical organs are located. As well as in treatment planning, delineation is of vital importance in image guided radiotherapy (IGRT): organ motion studies demand that features across image databases are accurately segmented, whilst if on-line adaptive IGRT is to become a reality, speedy and correct target identification is a necessity. Recently, much work has been put into the development of automatic and semi-automatic segmentation tools, often using prior knowledge to constrain some grey level, or derivative thereof, interrogation algorithm. It is hoped that such techniques can be applied to organ at risk and tumour segmentation in radiotherapy. In this work, however, we make the assumption that grey levels do not necessarily determine a tumour's extent, especially in CT where the attenuation coefficient can often vary little between cancerous and normal tissue. In this context we present an algorithm that generates a discontinuity free delineation surface driven by user placed, evidence based support points. In regions of sparse user supplied information, prior knowledge, in the form of a statistical shape model, provides guidance. A small case study is used to illustrate the method. Multiple observers (between 3 and 7) used both the presented tool and a commercial manual contouring package to delineate the bladder on a serially imaged (10 cone beam CT volumes ) prostate patient. A previously presented shape analysis technique is used to quantitatively compare the observer variability.

  10. An automatic method for colon segmentation in CT colonography.

    PubMed

    Bert, Alberto; Dmitriev, Ivan; Agliozzo, Silvano; Pietrosemoli, Natalia; Mandelkern, Mark; Gallo, Teresa; Regge, Daniele

    2009-06-01

    An automatic method for the segmentation of the colonic wall is proposed for abdominal computed tomography (CT) of the cleansed and air-inflated colon. This multistage approach uses an adaptive 3D region-growing algorithm, with a self-adjusting growing condition depending on local variations of the intensity at the air-tissue boundary. The method was evaluated using retrospectively collected CT scans based on visual segmentation of the colon by expert radiologists. This evaluation showed that the procedure identifies 97% of the colon segments, representing 99.8% of the colon surface, and accurately replicates the anatomical profile of the colonic wall. The parameter settings and performance of the method are relatively independent of the scanner and acquisition conditions. The method is intended for application to the computer-aided detection of polyps in CT colonography. PMID:19304454

  11. Accurate compressed look up table method for CGH in 3D holographic display.

    PubMed

    Gao, Chuan; Liu, Juan; Li, Xin; Xue, Gaolei; Jia, Jia; Wang, Yongtian

    2015-12-28

    Computer generated hologram (CGH) should be obtained with high accuracy and high speed in 3D holographic display, and most researches focus on the high speed. In this paper, a simple and effective computation method for CGH is proposed based on Fresnel diffraction theory and look up table. Numerical simulations and optical experiments are performed to demonstrate its feasibility. The proposed method can obtain more accurate reconstructed images with lower memory usage compared with split look up table method and compressed look up table method without sacrificing the computational speed in holograms generation, so it is called accurate compressed look up table method (AC-LUT). It is believed that AC-LUT method is an effective method to calculate the CGH of 3D objects for real-time 3D holographic display where the huge information data is required, and it could provide fast and accurate digital transmission in various dynamic optical fields in the future. PMID:26831987

  12. A multimaterial bioink method for 3D printing tunable, cell-compatible hydrogels.

    PubMed

    Rutz, Alexandra L; Hyland, Kelly E; Jakus, Adam E; Burghardt, Wesley R; Shah, Ramille N

    2015-03-01

    A multimaterial bio-ink method using polyethylene glycol crosslinking is presented for expanding the biomaterial palette required for 3D bioprinting of more mimetic and customizable tissue and organ constructs. Lightly crosslinked, soft hydrogels are produced from precursor solutions of various materials and 3D printed. Rheological and biological characterizations are presented, and the promise of this new bio-ink synthesis strategy is discussed. PMID:25641220

  13. A practical salient region feature based 3D multi-modality registration method for medical images

    NASA Astrophysics Data System (ADS)

    Hahn, Dieter A.; Wolz, Gabriele; Sun, Yiyong; Hornegger, Joachim; Sauer, Frank; Kuwert, Torsten; Xu, Chenyang

    2006-03-01

    We present a novel representation of 3D salient region features and its integration into a hybrid rigid-body registration framework. We adopt scale, translation and rotation invariance properties of those intrinsic 3D features to estimate a transform between underlying mono- or multi-modal 3D medical images. Our method combines advantageous aspects of both feature- and intensity-based approaches and consists of three steps: an automatic extraction of a set of 3D salient region features on each image, a robust estimation of correspondences and their sub-pixel accurate refinement with outliers elimination. We propose a region-growing based approach for the extraction of 3D salient region features, a solution to the problem of feature clustering and a reduction of the correspondence search space complexity. Results of the developed algorithm are presented for both mono- and multi-modal intra-patient 3D image pairs (CT, PET and SPECT) that have been acquired for change detection, tumor localization, and time based intra-person studies. The accuracy of the method is clinically evaluated by a medical expert with an approach that measures the distance between a set of selected corresponding points consisting of both anatomical and functional structures or lesion sites. This demonstrates the robustness of the proposed method to image overlap, missing information and artefacts. We conclude by discussing potential medical applications and possibilities for integration into a non-rigid registration framework.

  14. Gap-Closing 3d Building Reconstruction by Aligning Boundaries of Roof Segments and Detecting Uncovered Details

    NASA Astrophysics Data System (ADS)

    Pohl, M.; Bulatov, D.

    2015-03-01

    We describe a work flow to border building faces which aims to obtain a detailed and closed building model. Initially, we use the estimated roof planes and the rasterized binary mask of the corresponding inlier set to generate bordering polygons. To close the gaps between the initial boundary polygons and between the polygons and the building ground outline, we introduce an algorithm to align boundaries which successfully works in 2.5D and 3D. To enhance the accuracy of the boundary alignment, we use additional reliable model entities such as cut lines and step lines between the initial estimated roof planes. All gaps that cannot be avoided by this procedure are afterwards covered by a method searching for uncovered details.

  15. A Ray Casting Accelerated Method of Segmented Regular Volume Data

    NASA Astrophysics Data System (ADS)

    Zhu, Min; Guo, Ming; Wang, Liting; Dai, Yujin

    The size of volume data field which is constructed by large-scale war industry product ICT images is large, and empty voxels in the volume data field occupy little ratio. The effect of existing ray casting accelerated methods is not distinct. In 3D visualization fault diagnosis of large-scale war industry product, only some of the information in the volume data field can help surveyor check out fault inside it. Computational complexity will greatly increase if all volume data is 3D reconstructed. So a new ray casting accelerated method based on segmented volume data is put forward. Segmented information volume data field is built by use of segmented result. Consulting the conformation method of existing hierarchical volume data structures, hierarchical volume data structure on the base of segmented information is constructed. According to the structure, the construction parts defined by user are identified automatically in ray casting. The other parts are regarded as empty voxels, hence the sampling step is adjusted dynamically, the sampling point amount is decreased, and the volume rendering speed is improved. Experimental results finally reveal the high efficiency and good display performance of the proposed method.

  16. Transient 3d contact problems—NTS method: mixed methods and conserving integration

    NASA Astrophysics Data System (ADS)

    Hesch, Christian; Betsch, Peter

    2011-10-01

    The present work deals with a new formulation for transient large deformation contact problems. It is well known, that one-step implicit time integration schemes for highly non-linear systems fail to conserve the total energy of the system. To deal with this drawback, a mixed method is newly proposed in conjunction with the concept of a discrete gradient. In particular, we reformulate the well known and widely-used node-to-segment methods and establish an energy-momentum scheme. The advocated approach ensures robustness and enhanced numerical stability, demonstrated in several three-dimensional applications of the proposed algorithm.

  17. Research of aluminium alloy aerospace structure aperture measurement based on 3D digital speckle correlation method

    NASA Astrophysics Data System (ADS)

    Bai, Lu; Wang, Hongbo; Zhou, Jiangfan; Yang, Rong; Zhang, Hui

    2014-11-01

    In this paper, the aperture change of the aluminium alloy aerospace structure under real load is researched. Static experiments are carried on which is simulated the load environment of flight course. Compared with the traditional methods, through experiments results, it's proved that 3D digital speckle correlation method has good adaptability and precision on testing aperture change, and it can satisfy measurement on non-contact,real-time 3D deformation or stress concentration. The test results of new method is compared with the traditional method.

  18. High efficient methods of content-based 3D model retrieval

    NASA Astrophysics Data System (ADS)

    Wu, Yuanhao; Tian, Ling; Li, Chenggang

    2013-03-01

    Content-based 3D model retrieval is of great help to facilitate the reuse of existing designs and to inspire designers during conceptual design. However, there is still a gap to apply it in industry due to the low time efficiency. This paper presents two new methods with high efficiency to build a Content-based 3D model retrieval system. First, an improvement is made on the "Shape Distribution (D2)" algorithm, and a new algorithm named "Quick D2" is proposed. Four sample 3D mechanical models are used in an experiment to compare the time cost of the two algorithms. The result indicates that the time cost of Quick D2 is much lower than that of D2, while the descriptors extracted by the two algorithms are almost the same. Second, an expandable 3D model repository index method with high performance, namely, RBK index, is presented. On the basis of RBK index, the search space is pruned effectively during the search process, leading to a speed up of the whole system. The factors that influence the values of the key parameters of RBK index are discussed and an experimental method to find the optimal values of the key parameters is given. Finally, "3D Searcher", a content-based 3D model retrieval system is developed. By using the methods proposed, the time cost for the system to respond one query online is reduced by 75% on average. The system has been implemented in a manufacturing enterprise, and practical query examples during a case of the automobile rear axle design are also shown. The research method presented shows a new research perspective and can effectively improve the content-based 3D model retrieval efficiency.

  19. Modified Anderson Method for Accelerating 3D-RISM Calculations Using Graphics Processing Unit.

    PubMed

    Maruyama, Yutaka; Hirata, Fumio

    2012-09-11

    A fast algorithm is proposed to solve the three-dimensional reference interaction site model (3D-RISM) theory on a graphics processing unit (GPU). 3D-RISM theory is a powerful tool for investigating biomolecular processes in solution; however, such calculations are often both memory-intensive and time-consuming. We sought to accelerate these calculations using GPUs, but to work around the problem of limited memory size in GPUs, we modified the less memory-intensive "Anderson method" to give faster convergence to 3D-RISM calculations. Using this method on a Tesla C2070 GPU, we reduced the total computational time by a factor of 8, 1.4 times by the modified Andersen method and 5.7 times by GPU, compared to calculations on an Intel Xeon machine (eight cores, 3.33 GHz) with the conventional method. PMID:26605714

  20. 3D numerical modeling of subduction dynamics: plate stagnation and segmentation, and crustal advection in the mantle transition zone

    NASA Astrophysics Data System (ADS)

    Yoshida, M.; Tajima, F.

    2012-04-01

    Water content in the mantle transition zone (MTZ) has been broadly debated in the Earth science community as a key issue for plate dynamics [e.g., Bercovici and Karato, 2003]. In this study, a systematic series of three-dimensional (3D) numerical simulation are performed in an attempt to verify two hypotheses for plate subduction with effects of deep water transport: (1) the small-scale behavior of subducted oceanic plate in the MTZ; and (2) the role of subducted crust in the MTZ. These hypotheses are postulated based on the seismic observations characterized by large-scale flattened high velocity anomalies (i.e., stagnant slabs) in the MTZ and discontinuity depth variations. The proposed model states that under wet conditions the subducted plate main body of peridotite (olivine rich) is abutted by subducted crustal materials (majorite rich) at the base of the MTZ. The computational domain of mantle convection is confined to 3D regional spherical-shell geometry with a thickness of 1000 km and a lateral extent of 10° × 30° in the latitudinal and longitudinal directions. A semi-dynamic model of subduction zone [Morishige et al., 2010] is applied to let the highly viscous, cold oceanic plate subduct. Weak (low-viscosity) fault zones (WFZs), which presumably correspond to the fault boundaries of large subduction earthquakes, are imposed on the top part of subducting plates. The phase transitions of olivine to wadsleyite and ringwoodite to perovskite+magnesiowüstite with Clapeyron slopes under both "dry" and "wet" conditions are considered based on recent high pressure experiments [e.g., Ohtani and Litasov, 2006]. Another recent experiment provides new evidence for lower-viscosity (weaker strength) of garnet-rich zones than the olivine dominant mantle under wet conditions [Katayama and Karato, 2008]. According to this, the effect of viscosity reduction of oceanic crust is considered under wet condition in the MTZ. Results show that there is a substantial difference

  1. Implementation of algebraic stress models in a general 3-D Navier-Stokes method (PAB3D)

    NASA Technical Reports Server (NTRS)

    Abdol-Hamid, Khaled S.

    1995-01-01

    A three-dimensional multiblock Navier-Stokes code, PAB3D, which was developed for propulsion integration and general aerodynamic analysis, has been used extensively by NASA Langley and other organizations to perform both internal (exhaust) and external flow analysis of complex aircraft configurations. This code was designed to solve the simplified Reynolds Averaged Navier-Stokes equations. A two-equation k-epsilon turbulence model has been used with considerable success, especially for attached flows. Accurate predicting of transonic shock wave location and pressure recovery in separated flow regions has been more difficult. Two algebraic Reynolds stress models (ASM) have been recently implemented in the code that greatly improved the code's ability to predict these difficult flow conditions. Good agreement with Direct Numerical Simulation (DNS) for a subsonic flat plate was achieved with ASM's developed by Shih, Zhu, and Lumley and Gatski and Speziale. Good predictions were also achieved at subsonic and transonic Mach numbers for shock location and trailing edge boattail pressure recovery on a single-engine afterbody/nozzle model.

  2. Binding affinity prediction of novel estrogen receptor ligands using receptor-based 3-D QSAR methods.

    PubMed

    Sippl, Wolfgang

    2002-12-01

    We have recently reported the development of a 3-D QSAR model for estrogen receptor ligands showing a significant correlation between calculated molecular interaction fields and experimentally measured binding affinity. The ligand alignment obtained from docking simulations was taken as basis for a comparative field analysis applying the GRID/GOLPE program. Using the interaction field derived with a water probe and applying the smart region definition (SRD) variable selection procedure, a significant and robust model was obtained (q(2)(LOO)=0.921, SDEP=0.345). To further analyze the robustness and the predictivity of the established model several recently developed estrogen receptor ligands were selected as external test set. An excellent agreement between predicted and experimental binding data was obtained indicated by an external SDEP of 0.531. Two other traditionally used prediction techniques were applied in order to check the performance of the receptor-based 3-D QSAR procedure. The interaction energies calculated on the basis of receptor-ligand complexes were correlated with experimentally observed affinities. Also ligand-based 3-D QSAR models were generated using program FlexS. The interaction energy-based model, as well as the ligand-based 3-D QSAR models yielded models with lower predictivity. The comparison with the interaction energy-based model and with the ligand-based 3-D QSAR models, respectively, indicates that the combination of receptor-based and 3-D QSAR methods is able to improve the quality of prediction. PMID:12413831

  3. Method for making a single-step etch mask for 3D monolithic nanostructures.

    PubMed

    Grishina, D A; Harteveld, C A M; Woldering, L A; Vos, W L

    2015-12-18

    Current nanostructure fabrication by etching is usually limited to planar structures as they are defined by a planar mask. The realization of three-dimensional (3D) nanostructures by etching requires technologies beyond planar masks. We present a method for fabricating a 3D mask that allows one to etch three-dimensional monolithic nanostructures using only CMOS-compatible processes. The mask is written in a hard-mask layer that is deposited on two adjacent inclined surfaces of a Si wafer. By projecting in a single step two different 2D patterns within one 3D mask on the two inclined surfaces, the mutual alignment between the patterns is ensured. Thereby after the mask pattern is defined, the etching of deep pores in two oblique directions yields a three-dimensional structure in Si. As a proof of concept we demonstrate 3D mask fabrication for three-dimensional diamond-like photonic band gap crystals in silicon. The fabricated crystals reveal a broad stop gap in optical reflectivity measurements. We propose how 3D nanostructures with five different Bravais lattices can be realized, namely cubic, tetragonal, orthorhombic, monoclinic and hexagonal, and demonstrate a mask for a 3D hexagonal crystal. We also demonstrate the mask for a diamond-structure crystal with a 3D array of cavities. In general, the 2D patterns on the different surfaces can be completely independently structured and still be in perfect mutual alignment. Indeed, we observe an alignment accuracy of better than 3.0 nm between the 2D mask patterns on the inclined surfaces, which permits one to etch well-defined monolithic 3D nanostructures. PMID:26581317

  4. Efficient fabrication method of nano-grating for 3D holographic display with full parallax views.

    PubMed

    Wan, Wenqiang; Qiao, Wen; Huang, Wenbin; Zhu, Ming; Fang, Zongbao; Pu, Donglin; Ye, Yan; Liu, Yanhua; Chen, Linsen

    2016-03-21

    Without any special glasses, multiview 3D displays based on the diffractive optics can present high resolution, full-parallax 3D images in an ultra-wide viewing angle. The enabling optical component, namely the phase plate, can produce arbitrarily distributed view zones by carefully designing the orientation and the period of each nano-grating pixel. However, such 3D display screen is restricted to a limited size due to the time-consuming fabricating process of nano-gratings on the phase plate. In this paper, we proposed and developed a lithography system that can fabricate the phase plate efficiently. Here we made two phase plates with full nano-grating pixel coverage at a speed of 20 mm2/mins, a 500 fold increment in the efficiency when compared to the method of E-beam lithography. One 2.5-inch phase plate generated 9-view 3D images with horizontal-parallax, while the other 6-inch phase plate produced 64-view 3D images with full-parallax. The angular divergence in horizontal axis and vertical axis was 1.5 degrees, and 1.25 degrees, respectively, slightly larger than the simulated value of 1.2 degrees by Finite Difference Time Domain (FDTD). The intensity variation was less than 10% for each viewpoint, in consistency with the simulation results. On top of each phase plate, a high-resolution binary masking pattern containing amplitude information of all viewing zone was well aligned. We achieved a resolution of 400 pixels/inch and a viewing angle of 40 degrees for 9-view 3D images with horizontal parallax. In another prototype, the resolution of each view was 160 pixels/inch and the view angle was 50 degrees for 64-view 3D images with full parallax. As demonstrated in the experiments, the homemade lithography system provided the key fabricating technology for multiview 3D holographic display. PMID:27136814

  5. Method for making a single-step etch mask for 3D monolithic nanostructures

    NASA Astrophysics Data System (ADS)

    Grishina, D. A.; Harteveld, C. A. M.; Woldering, L. A.; Vos, W. L.

    2015-12-01

    Current nanostructure fabrication by etching is usually limited to planar structures as they are defined by a planar mask. The realization of three-dimensional (3D) nanostructures by etching requires technologies beyond planar masks. We present a method for fabricating a 3D mask that allows one to etch three-dimensional monolithic nanostructures using only CMOS-compatible processes. The mask is written in a hard-mask layer that is deposited on two adjacent inclined surfaces of a Si wafer. By projecting in a single step two different 2D patterns within one 3D mask on the two inclined surfaces, the mutual alignment between the patterns is ensured. Thereby after the mask pattern is defined, the etching of deep pores in two oblique directions yields a three-dimensional structure in Si. As a proof of concept we demonstrate 3D mask fabrication for three-dimensional diamond-like photonic band gap crystals in silicon. The fabricated crystals reveal a broad stop gap in optical reflectivity measurements. We propose how 3D nanostructures with five different Bravais lattices can be realized, namely cubic, tetragonal, orthorhombic, monoclinic and hexagonal, and demonstrate a mask for a 3D hexagonal crystal. We also demonstrate the mask for a diamond-structure crystal with a 3D array of cavities. In general, the 2D patterns on the different surfaces can be completely independently structured and still be in perfect mutual alignment. Indeed, we observe an alignment accuracy of better than 3.0 nm between the 2D mask patterns on the inclined surfaces, which permits one to etch well-defined monolithic 3D nanostructures.

  6. 2D-3D hybrid stabilized finite element method for tsunami runup simulations

    NASA Astrophysics Data System (ADS)

    Takase, S.; Moriguchi, S.; Terada, K.; Kato, J.; Kyoya, T.; Kashiyama, K.; Kotani, T.

    2016-09-01

    This paper presents a two-dimensional (2D)-three-dimensional (3D) hybrid stabilized finite element method that enables us to predict a propagation process of tsunami generated in a hypocentral region, which ranges from offshore propagation to runup to urban areas, with high accuracy and relatively low computational costs. To be more specific, the 2D shallow water equation is employed to simulate the propagation of offshore waves, while the 3D Navier-Stokes equation is employed for the runup in urban areas. The stabilized finite element method is utilized for numerical simulations for both of the 2D and 3D domains that are independently discretized with unstructured meshes. The multi-point constraint and transmission methods are applied to satisfy the continuity of flow velocities and pressures at the interface between the resulting 2D and 3D meshes, since neither their spatial dimensions nor node arrangements are consistent. Numerical examples are presented to demonstrate the performance of the proposed hybrid method to simulate tsunami behavior, including offshore propagation and runup to urban areas, with substantially lower computation costs in comparison with full 3D computations.

  7. 2D-3D hybrid stabilized finite element method for tsunami runup simulations

    NASA Astrophysics Data System (ADS)

    Takase, S.; Moriguchi, S.; Terada, K.; Kato, J.; Kyoya, T.; Kashiyama, K.; Kotani, T.

    2016-05-01

    This paper presents a two-dimensional (2D)-three-dimensional (3D) hybrid stabilized finite element method that enables us to predict a propagation process of tsunami generated in a hypocentral region, which ranges from offshore propagation to runup to urban areas, with high accuracy and relatively low computational costs. To be more specific, the 2D shallow water equation is employed to simulate the propagation of offshore waves, while the 3D Navier-Stokes equation is employed for the runup in urban areas. The stabilized finite element method is utilized for numerical simulations for both of the 2D and 3D domains that are independently discretized with unstructured meshes. The multi-point constraint and transmission methods are applied to satisfy the continuity of flow velocities and pressures at the interface between the resulting 2D and 3D meshes, since neither their spatial dimensions nor node arrangements are consistent. Numerical examples are presented to demonstrate the performance of the proposed hybrid method to simulate tsunami behavior, including offshore propagation and runup to urban areas, with substantially lower computation costs in comparison with full 3D computations.

  8. Analysis of corner cracks at hole by a 3-D weight function method with stresses from finite element method

    NASA Technical Reports Server (NTRS)

    Zhao, W.; Newman, J. C., Jr.; Sutton, M. A.; Wu, X. R.; Shivakumar, K. N.

    1995-01-01

    Stress intensity factors for quarter-elliptical corner cracks emanating from a circular hole are determined using a 3-D weight function method combined with a 3-D finite element method. The 3-D finite element method is used to analyze uncracked configuration and provide stress distribution in the region where crack is to occur. Using this stress distribution as input, the 3-D weight function method is used to determine stress intensity factors. Three different loading conditions, i.e. remote tension, remote bending and wedge loading, are considered for a wide range in geometrical parameters. The significance in using 3-D uncracked stress distribution and the difference between single and double corner cracks are studied. Typical crack opening displacements are also provided. Comparisons are made with solutions available in the literature.

  9. Detecting and estimating errors in 3D restoration methods using analog models.

    NASA Astrophysics Data System (ADS)

    José Ramón, Ma; Pueyo, Emilio L.; Briz, José Luis

    2015-04-01

    Some geological scenarios may be important for a number of socio-economic reasons, such as water or energy resources, but the available underground information is often limited, scarce and heterogeneous. A truly 3D reconstruction, which is still necessary during the decision-making process, may have important social and economic implications. For this reason, restoration methods were developed. By honoring some geometric or mechanical laws, they help build a reliable image of the subsurface. Pioneer methods were firstly applied in 2D (balanced and restored cross-sections) during the sixties and seventies. Later on, and due to the improvements of computational capabilities, they were extended to 3D. Currently, there are some academic and commercial restoration solutions; Unfold by the Université de Grenoble, Move by Midland Valley Exploration, Kine3D (on gOcad code) by Paradigm, Dynel3D by igeoss-Schlumberger. We have developed our own restoration method, Pmag3Drest (IGME-Universidad de Zaragoza), which is designed to tackle complex geometrical scenarios using paleomagnetic vectors as a pseudo-3D indicator of deformation. However, all these methods have limitations based on the assumptions they need to establish. For this reason, detecting and estimating uncertainty in 3D restoration methods is of key importance to trust the reconstructions. Checking the reliability and the internal consistency of every method, as well as to compare the results among restoration tools, is a critical issue never tackled so far because of the impossibility to test out the results in Nature. To overcome this problem we have developed a technique using analog models. We built complex geometric models inspired in real cases of superposed and/or conical folding at laboratory scale. The stratigraphic volumes were modeled using EVA sheets (ethylene vinyl acetate). Their rheology (tensile and tear strength, elongation, density etc) and thickness can be chosen among a large number of values

  10. A simple method for the production of anti-C3d monoclonal antibody.

    PubMed

    Cruz, Carlos; León, Graciela

    2007-12-01

    Production of monoclonal antibodies to C3d usually involves the purification of protein. Our method does not require C3 purification; it relies on attachment of C3b to mouse erythrocytes by activation of alternative pathways and further conversion in C3d. We prepared human complement-coated mouse red cells and sensitized mice of the same strain with our own schedule of immunization and applied the classical methods to obtain a mouse monoclonal antibody. We obtained a clone called BMS-11 which produces a monoclonal antibody of IgM class, to C3d with a title of 1:500000. The monoclonal antibody obtained has shown that it is suitable for use as an antiglobulin reagent. PMID:18158789

  11. Simulations of Coulomb systems with slab geometry using an efficient 3D Ewald summation method

    NASA Astrophysics Data System (ADS)

    dos Santos, Alexandre P.; Girotto, Matheus; Levin, Yan

    2016-04-01

    We present a new approach to efficiently simulate electrolytes confined between infinite charged walls using a 3d Ewald summation method. The optimal performance is achieved by separating the electrostatic potential produced by the charged walls from the electrostatic potential of electrolyte. The electric field produced by the 3d periodic images of the walls is constant inside the simulation cell, with the field produced by the transverse images of the charged plates canceling out. The non-neutral confined electrolyte in an external potential can be simulated using 3d Ewald summation with a suitable renormalization of the electrostatic energy, to remove a divergence, and a correction that accounts for the conditional convergence of the resulting lattice sum. The new algorithm is at least an order of magnitude more rapid than the usual simulation methods for the slab geometry and can be further sped up by adopting a particle-particle particle-mesh approach.

  12. A Multiscale Constraints Method Localization of 3D Facial Feature Points

    PubMed Central

    Li, Hong-an; Zhang, Yongxin; Li, Zhanli; Li, Huilin

    2015-01-01

    It is an important task to locate facial feature points due to the widespread application of 3D human face models in medical fields. In this paper, we propose a 3D facial feature point localization method that combines the relative angle histograms with multiscale constraints. Firstly, the relative angle histogram of each vertex in a 3D point distribution model is calculated; then the cluster set of the facial feature points is determined using the cluster algorithm. Finally, the feature points are located precisely according to multiscale integral features. The experimental results show that the feature point localization accuracy of this algorithm is better than that of the localization method using the relative angle histograms. PMID:26539244

  13. Device and methods for "gold standard" registration of clinical 3D and 2D cerebral angiograms

    NASA Astrophysics Data System (ADS)

    Madan, Hennadii; Likar, Boštjan; Pernuš, Franjo; Å piclin, Žiga

    2015-03-01

    Translation of any novel and existing 3D-2D image registration methods into clinical image-guidance systems is limited due to lack of their objective validation on clinical image datasets. The main reason is that, besides the calibration of the 2D imaging system, a reference or "gold standard" registration is very difficult to obtain on clinical image datasets. In the context of cerebral endovascular image-guided interventions (EIGIs), we present a calibration device in the form of a headband with integrated fiducial markers and, secondly, propose an automated pipeline comprising 3D and 2D image processing, analysis and annotation steps, the result of which is a retrospective calibration of the 2D imaging system and an optimal, i.e., "gold standard" registration of 3D and 2D images. The device and methods were used to create the "gold standard" on 15 datasets of 3D and 2D cerebral angiograms, whereas each dataset was acquired on a patient undergoing EIGI for either aneurysm coiling or embolization of arteriovenous malformation. The use of the device integrated seamlessly in the clinical workflow of EIGI. While the automated pipeline eliminated all manual input or interactive image processing, analysis or annotation. In this way, the time to obtain the "gold standard" was reduced from 30 to less than one minute and the "gold standard" of 3D-2D registration on all 15 datasets of cerebral angiograms was obtained with a sub-0.1 mm accuracy.

  14. Methods of constructing a 3D geological model from scatter data

    SciTech Connect

    Horsman, J.; Bethel, W.

    1995-04-01

    Most geoscience applications, such as assessment of an oil reservoir or hazardous waste site, require geological characterization of the site. Geological characterization involves analysis of spatial distributions of lithology, porosity, etc. Because of the complexity of the spatial relationships, the authors find that a 3-D model of geology is better suited for integration of many different types of data and provides a better representation of a site than a 2-D one. A 3-D model of geology is constructed from sample data obtained from field measurements, which are usually scattered. To create a volume model from scattered data, interpolation between points is required. The interpolation can be computed using one of several computational algorithms. Alternatively, a manual method may be employed, in which an interactive graphics device is used to input by hand the information that lies between the data points. For example, a mouse can be used to draw lines connecting data points with equal values. The combination of these two methods presents yet another approach. In this study, the authors will compare selected methods of 3-D geological modeling, They used a flow-based, modular visualization environment (AVS) to construct the geological models computationally. Within this system, they used three modules, scat{_}3d, trivar and scatter{_}to{_}ucd, as examples of computational methods. They compare these methods to the combined manual and computational approach. Because there are no tools readily available in AVS for this type of construction, they used a geological modeling system to demonstrate this method.

  15. Use of Anisotropy, 3D Segmented Atlas, and Computational Analysis to Identify Gray Matter Subcortical Lesions Common to Concussive Injury from Different Sites on the Cortex

    PubMed Central

    Kulkarni, Praveen; Kenkel, William; Finklestein, Seth P.; Barchet, Thomas M.; Ren, JingMei; Davenport, Mathew; Shenton, Martha E.; Kikinis, Zora; Nedelman, Mark; Ferris, Craig F.

    2015-01-01

    Traumatic brain injury (TBI) can occur anywhere along the cortical mantel. While the cortical contusions may be random and disparate in their locations, the clinical outcomes are often similar and difficult to explain. Thus a question that arises is, do concussions at different sites on the cortex affect similar subcortical brain regions? To address this question we used a fluid percussion model to concuss the right caudal or rostral cortices in rats. Five days later, diffusion tensor MRI data were acquired for indices of anisotropy (IA) for use in a novel method of analysis to detect changes in gray matter microarchitecture. IA values from over 20,000 voxels were registered into a 3D segmented, annotated rat atlas covering 150 brain areas. Comparisons between left and right hemispheres revealed a small population of subcortical sites with altered IA values. Rostral and caudal concussions were of striking similarity in the impacted subcortical locations, particularly the central nucleus of the amygdala, laterodorsal thalamus, and hippocampal complex. Subsequent immunohistochemical analysis of these sites showed significant neuroinflammation. This study presents three significant findings that advance our understanding and evaluation of TBI: 1) the introduction of a new method to identify highly localized disturbances in discrete gray matter, subcortical brain nuclei without postmortem histology, 2) the use of this method to demonstrate that separate injuries to the rostral and caudal cortex produce the same subcortical, disturbances, and 3) the central nucleus of the amygdala, critical in the regulation of emotion, is vulnerable to concussion. PMID:25955025

  16. Flatbed-type 3D display systems using integral imaging method

    NASA Astrophysics Data System (ADS)

    Hirayama, Yuzo; Nagatani, Hiroyuki; Saishu, Tatsuo; Fukushima, Rieko; Taira, Kazuki

    2006-10-01

    We have developed prototypes of flatbed-type autostereoscopic display systems using one-dimensional integral imaging method. The integral imaging system reproduces light beams similar of those produced by a real object. Our display architecture is suitable for flatbed configurations because it has a large margin for viewing distance and angle and has continuous motion parallax. We have applied our technology to 15.4-inch displays. We realized horizontal resolution of 480 with 12 parallaxes due to adoption of mosaic pixel arrangement of the display panel. It allows viewers to see high quality autostereoscopic images. Viewing the display from angle allows the viewer to experience 3-D images that stand out several centimeters from the surface of the display. Mixed reality of virtual 3-D objects and real objects are also realized on a flatbed display. In seeking reproduction of natural 3-D images on the flatbed display, we developed proprietary software. The fast playback of the CG movie contents and real-time interaction are realized with the aid of a graphics card. Realization of the safety 3-D images to the human beings is very important. Therefore, we have measured the effects on the visual function and evaluated the biological effects. For example, the accommodation and convergence were measured at the same time. The various biological effects are also measured before and after the task of watching 3-D images. We have found that our displays show better results than those to a conventional stereoscopic display. The new technology opens up new areas of application for 3-D displays, including arcade games, e-learning, simulations of buildings and landscapes, and even 3-D menus in restaurants.

  17. Investigation of Presage 3D Dosimetry as a Method of Clinically Intuitive Quality Assurance and Comparison to a Semi-3D Delta4 System

    NASA Astrophysics Data System (ADS)

    Crockett, Ethan Van

    The need for clinically intuitive metrics for patient-specific quality assurance in radiation therapy has been well-documented (Zhen, Nelms et al. 2011). A novel transform method has shown to be effective at converting full-density 3D dose measurements made in a phantom to dose values in the patient geometry, enabling comparisons using clinically intuitive metrics such as dose-volume histograms (Oldham et al. 2011). This work investigates the transform method and compares its calculated dose-volume histograms (DVHs) to DVH values calculated by a Delta4 QA device (Scandidos), marking the first comparison of a true 3D system to a semi-3D device using clinical metrics. Measurements were made using Presage 3D dosimeters, which were readout by an in-house optical-CT scanner. Three patient cases were chosen for the study: one head-and-neck VMAT treatment and two spine IMRT treatments. The transform method showed good agreement with the planned dose values for all three cases. Furthermore, the transformed DVHs adhered to the planned dose with more accuracy than the Delta4 DVHs. The similarity between the Delta4 DVHs and the transformed DVHs, however, was greater for one of the spine cases than it was for the head-and-neck case, implying that the accuracy of the Delta4 Anatomy software may vary from one treatment site to another. Overall, the transform method, which incorporates data from full-density 3D dose measurements, provides clinically intuitive results that are more accurate and consistent than the corresponding results from a semi-3D Delta 4 system.

  18. Real time planning, guidance and validation of surgical acts using 3D segmentations, augmented reality projections and surgical tools video tracking

    NASA Astrophysics Data System (ADS)

    Osorio, Angel; Galan, Juan-Antonio; Nauroy, Julien; Donars, Patricia

    2010-02-01

    When performing laparoscopies and punctures, the precise anatomic localizations are required. Current techniques very often rely on the mapping between the real situation and preoperative images. The PC based software we present realizes 3D segmentations of regions of interest from CT or MR slices. It allows the planning of punctures or trocars insertion trajectories, taking anatomical constraints into account. Geometrical transformations allow the projection over the patient's body of the organs and lesions shapes, realistically reconstructed, using a standard video projector in the operating room. We developed specific image processing software which automatically segments and registers images of a webcam used in the operating room to give feedback to the user.

  19. High fidelity digital inline holographic method for 3D flow measurements.

    PubMed

    Toloui, Mostafa; Hong, Jiarong

    2015-10-19

    Among all the 3D optical flow diagnostic techniques, digital inline holographic particle tracking velocimetry (DIH-PTV) provides the highest spatial resolution with low cost, simple and compact optical setups. Despite these advantages, DIH-PTV suffers from major limitations including poor longitudinal resolution, human intervention (i.e. requirement for manually determined tuning parameters during tracer field reconstruction and extraction), limited tracer concentration, and expensive computations. These limitations prevent this technique from being widely used for high resolution 3D flow measurements. In this study, we present a novel holographic particle extraction method with the goal of overcoming all the major limitations of DIH-PTV. The proposed method consists of multiple steps involving 3D deconvolution, automatic signal-to-noise ratio enhancement and thresholding, and inverse iterative particle extraction. The entire method is implemented using GPU-based algorithm to increase the computational speed significantly. Validated with synthetic particle holograms, the proposed method can achieve particle extraction rate above 95% with fake particles less than 3% and maximum position error below 1.6 particle diameter for holograms with particle concentration above 3000 particles/mm3. The applicability of the proposed method for DIH-PTV has been further validated using the experiment of laminar flow in a microchannel and the synthetic tracer flow fields generated using a DNS turbulent channel flow database. Such improvements will substantially enhance the implementation of DIH-PTV for 3D flow measurements and enable the potential commercialization of this technique. PMID:26480377

  20. A 3-D aerodynamic method for the analysis of isolated horizontal-axis wind turbines

    SciTech Connect

    Ammara, I.; Masson, C.; Paraschivoiu, I.

    1997-12-31

    In most existing performance-analysis methods, wind turbines are considered isolated so that interference effects caused by other rotors or by the site topography are neglected. The main objective of this paper is to propose a practical 3-D method suitable for the study of these effects, in order to optimize the arrangement and the positioning of Horizontal-Axis Wind Turbines (HAWTs) in a wind farm. In the proposed methodology, the flow field around isolated HAWTs is predicted by solving the 3-D, time-averaged, steady-state, incompressible, Navier-Stokes equations in which the turbines are represented by distributions of momentum sources. The resulting governing equations are solved using a Control-Volume Finite Element Method (CVFEM). The fundamental aspects related to the development of a practical 3-D method are discussed in this paper, with an emphasis on some of the challenges that arose during its implementation. The current implementation is limited to the analysis of isolated HAWTs. Preliminary results have indicated that, the proposed 3-D method reaches the same level of accuracy, in terms of performance predictions, that the previously developed 2-D axisymmetric model and the well-known momentum-strip theory, while still using reasonable computers resources. It can be considered as a useful tool for the design of HAWTs. Its main advantages, however, are its intrinsic capacity to predict the details of the flow in the wake, and its capabilities of modelling arbitrary wind-turbine arrangements and including ground effects.

  1. Accident or homicide--virtual crime scene reconstruction using 3D methods.

    PubMed

    Buck, Ursula; Naether, Silvio; Räss, Beat; Jackowski, Christian; Thali, Michael J

    2013-02-10

    The analysis and reconstruction of forensically relevant events, such as traffic accidents, criminal assaults and homicides are based on external and internal morphological findings of the injured or deceased person. For this approach high-tech methods are gaining increasing importance in forensic investigations. The non-contact optical 3D digitising system GOM ATOS is applied as a suitable tool for whole body surface and wound documentation and analysis in order to identify injury-causing instruments and to reconstruct the course of event. In addition to the surface documentation, cross-sectional imaging methods deliver medical internal findings of the body. These 3D data are fused into a whole body model of the deceased. Additional to the findings of the bodies, the injury inflicting instruments and incident scene is documented in 3D. The 3D data of the incident scene, generated by 3D laser scanning and photogrammetry, is also included into the reconstruction. Two cases illustrate the methods. In the fist case a man was shot in his bedroom and the main question was, if the offender shot the man intentionally or accidentally, as he declared. In the second case a woman was hit by a car, driving backwards into a garage. It was unclear if the driver drove backwards once or twice, which would indicate that he willingly injured and killed the woman. With this work, we demonstrate how 3D documentation, data merging and animation enable to answer reconstructive questions regarding the dynamic development of patterned injuries, and how this leads to a real data based reconstruction of the course of event. PMID:22727689

  2. A Mortar Segment-to-Segment Frictional Contact Method for Large Deformations

    SciTech Connect

    Puso, M; Laursen, T

    2003-10-29

    Contact modeling is still one of the most difficult aspects of nonlinear implicit structural analysis. Most 3D contact algorithms employed today use node-on-segment approaches for contacting dissimilar meshes. Two pass node-on-segment contact approaches have the well known deficiency of locking due to over constraint. Furthermore, node-on-segment approaches suffer when individual nodes slide out of contact at contact surface boundaries or when contacting nodes slide from facet to facet. This causes jumps in the contact forces due to the discrete nature of the constraint enforcement and difficulties in convergence for implicit solution techniques. In a previous work, we developed a segment-to-segment contact approach based on the mortar method that was applicable to large deformation mechanics. The approach proved extremely robust since it eliminated the overconstraint which caused ''locking'' and provided smooth force variations in large sliding. Here, we extend this previous approach in to treat frictional contact problems. The proposed approach is then applied to several challenging frictional contact problems which demonstrate its effectiveness.

  3. A fast and accurate method to predict 2D and 3D aerodynamic boundary layer flows

    NASA Astrophysics Data System (ADS)

    Bijleveld, H. A.; Veldman, A. E. P.

    2014-12-01

    A quasi-simultaneous interaction method is applied to predict 2D and 3D aerodynamic flows. This method is suitable for offshore wind turbine design software as it is a very accurate and computationally reasonably cheap method. This study shows the results for a NACA 0012 airfoil. The two applied solvers converge to the experimental values when the grid is refined. We also show that in separation the eigenvalues remain positive thus avoiding the Goldstein singularity at separation. In 3D we show a flow over a dent in which separation occurs. A rotating flat plat is used to show the applicability of the method for rotating flows. The shown capabilities of the method indicate that the quasi-simultaneous interaction method is suitable for design methods for offshore wind turbine blades.

  4. On the evaluation of photogrammetric methods for dense 3D surface reconstruction in a metrological context

    NASA Astrophysics Data System (ADS)

    Toschi, I.; Capra, A.; De Luca, L.; Beraldin, J.-A.; Cournoyer, L.

    2014-05-01

    This paper discusses a methodology to evaluate the accuracy of recently developed image-based 3D modelling techniques. So far, the emergence of these novel methods has not been supported by the definition of an internationally recognized standard which is fundamental for user confidence and market growth. In order to provide an element of reflection and solution to the different communities involved in 3D imaging, a promising approach is presented in this paper for the assessment of both metric quality and limitations of an open-source suite of tools (Apero/MicMac), developed for the extraction of dense 3D point clouds from a set of unordered 2D images. The proposed procedural workflow is performed within a metrological context, through inter-comparisons with "reference" data acquired with two hemispherical laser scanners, one total station, and one laser tracker. The methodology is applied to two case studies, designed in order to analyse the software performances in dealing with both outdoor and environmentally controlled conditions, i.e. the main entrance of Cathédrale de la Major (Marseille, France) and a custom-made scene located at National Research Council of Canada 3D imaging Metrology Laboratory (Ottawa). Comparative data and accuracy evidence produced for both tests allow the study of some key factors affecting 3D model accuracy.

  5. Estimating the complexity of 3D structural models using machine learning methods

    NASA Astrophysics Data System (ADS)

    Mejía-Herrera, Pablo; Kakurina, Maria; Royer, Jean-Jacques

    2016-04-01

    Quantifying the complexity of 3D geological structural models can play a major role in natural resources exploration surveys, for predicting environmental hazards or for forecasting fossil resources. This paper proposes a structural complexity index which can be used to help in defining the degree of effort necessary to build a 3D model for a given degree of confidence, and also to identify locations where addition efforts are required to meet a given acceptable risk of uncertainty. In this work, it is considered that the structural complexity index can be estimated using machine learning methods on raw geo-data. More precisely, the metrics for measuring the complexity can be approximated as the difficulty degree associated to the prediction of the geological objects distribution calculated based on partial information on the actual structural distribution of materials. The proposed methodology is tested on a set of 3D synthetic structural models for which the degree of effort during their building is assessed using various parameters (such as number of faults, number of part in a surface object, number of borders, ...), the rank of geological elements contained in each model, and, finally, their level of deformation (folding and faulting). The results show how the estimated complexity in a 3D model can be approximated by the quantity of partial data necessaries to simulated at a given precision the actual 3D model without error using machine learning algorithms.

  6. A comparison study of atlas-based 3D cardiac MRI segmentation: global versus global and local transformations

    NASA Astrophysics Data System (ADS)

    Daryanani, Aditya; Dangi, Shusil; Ben-Zikri, Yehuda Kfir; Linte, Cristian A.

    2016-03-01

    Magnetic Resonance Imaging (MRI) is a standard-of-care imaging modality for cardiac function assessment and guidance of cardiac interventions thanks to its high image quality and lack of exposure to ionizing radiation. Cardiac health parameters such as left ventricular volume, ejection fraction, myocardial mass, thickness, and strain can be assessed by segmenting the heart from cardiac MRI images. Furthermore, the segmented pre-operative anatomical heart models can be used to precisely identify regions of interest to be treated during minimally invasive therapy. Hence, the use of accurate and computationally efficient segmentation techniques is critical, especially for intra-procedural guidance applications that rely on the peri-operative segmentation of subject-specific datasets without delaying the procedure workflow. Atlas-based segmentation incorporates prior knowledge of the anatomy of interest from expertly annotated image datasets. Typically, the ground truth atlas label is propagated to a test image using a combination of global and local registration. The high computational cost of non-rigid registration motivated us to obtain an initial segmentation using global transformations based on an atlas of the left ventricle from a population of patient MRI images and refine it using well developed technique based on graph cuts. Here we quantitatively compare the segmentations obtained from the global and global plus local atlases and refined using graph cut-based techniques with the expert segmentations according to several similarity metrics, including Dice correlation coefficient, Jaccard coefficient, Hausdorff distance, and Mean absolute distance error.

  7. Mixed-Mode Fracture and Fatigue Analysis of Cracked 3D Complex Structures using a 3D SGBEM-FEM Alternating Method

    NASA Astrophysics Data System (ADS)

    Bhavanam, Sharada

    The aim of this thesis is to numerically evaluate the mixed-mode Stress Intensity Factors (SIFs) of complex 3D structural geometries with arbitrary 3D cracks using the Symmetric Galerkin Boundary Element Method-Finite Element Method (SGBEM-FEM) Alternating Method. Various structural geometries with different loading scenarios and crack configurations were examined in this thesis to understand the behavior and trends of the mixed-mode SIFs as well as the fatigue life for these complex structural geometries. Although some 3D structures have empirical and numerical solutions that are readily available in the open literature, some do not; therefore this thesis presents the results of fracture and fatigue analyses of these 3D complex structures using the SGBEM-FEM Alternating Method to serve as reference for future studies. Furthermore, there are advantages of using the SGBEM-FEM Alternating Method compared to traditional FEM methods. For example, the fatigue-crack-growth and fatigue life can be better estimated for a structure because different fatigue models (i.e. Walker, Paris, and NASGRO) can be used within the same framework of the SGBEM-FEM Alternating Method. The FEM (un-cracked structure)/BEM(crack model) meshes are modeled independently, which speeds up the computation process and reduces the cost of human labor. A simple coarse mesh can be used for all fracture and fatigue analyses of complex structures. In this thesis, simple coarse meshes were used for 3D complex structures, which were below 5000 elements as compared to traditional FEM, which require meshes where the elements range on the order of ˜250,000 to ˜106 and sometimes even more than that.

  8. 2D and 3D Method of Characteristic Tools for Complex Nozzle Development

    NASA Technical Reports Server (NTRS)

    Rice, Tharen

    2003-01-01

    This report details the development of a 2D and 3D Method of Characteristic (MOC) tool for the design of complex nozzle geometries. These tools are GUI driven and can be run on most Windows-based platforms. The report provides a user's manual for these tools as well as explains the mathematical algorithms used in the MOC solutions.

  9. Simulation of surface tension in 2D and 3D with smoothed particle hydrodynamics method

    NASA Astrophysics Data System (ADS)

    Zhang, Mingyu

    2010-09-01

    The methods for simulating surface tension with smoothed particle hydrodynamics (SPH) method in two dimensions and three dimensions are developed. In 2D surface tension model, the SPH particle on the boundary in 2D is detected dynamically according to the algorithm developed by Dilts [G.A. Dilts, Moving least-squares particle hydrodynamics II: conservation and boundaries, International Journal for Numerical Methods in Engineering 48 (2000) 1503-1524]. The boundary curve in 2D is reconstructed locally with Lagrangian interpolation polynomial. In 3D surface tension model, the SPH particle on the boundary in 3D is detected dynamically according to the algorithm developed by Haque and Dilts [A. Haque, G.A. Dilts, Three-dimensional boundary detection for particle methods, Journal of Computational Physics 226 (2007) 1710-1730]. The boundary surface in 3D is reconstructed locally with moving least squares (MLS) method. By transforming the coordinate system, it is guaranteed that the interface function is one-valued in the local coordinate system. The normal vector and curvature of the boundary surface are calculated according to the reconstructed boundary surface and then surface tension force can be calculated. Surface tension force acts only on the boundary particle. Density correction is applied to the boundary particle in order to remove the boundary inconsistency. The surface tension models in 2D and 3D have been applied to benchmark tests for surface tension. The ability of the current method applying to the simulation of surface tension in 2D and 3D is proved.

  10. 3D Spectral Element Method Simulations Of The Seismic Response of Caracas (Venezuela) Basin

    NASA Astrophysics Data System (ADS)

    Delavaud, E.; Vilotte, J.; Festa, G.; Cupillard, P.

    2007-12-01

    We present here 3D numerical simulations of the response of the Caracas (Venezuela) valley up to 5 Hz for different scenarios of plane wave excitation based on the regional seismicity. Attention is focused on the effects of the 3D basin geometry and of the adjacent regional topography. The simulations are performed using Spectral Element method (SEM) together with an unstructured hexahedral mesh discretization and perfectly matched layers (PML). These simulations show 3D amplification phenomena associated with complex wave reflexion, diffraction and focalisation patterns linked to the geometry of the basin. Time and frequency analysis reveal some interesting features both in terms of amplification and energy residence in the basin. The low frequency amplification pattern is mainly controlled by the early response of the basin to the incident plane wave while the high frequency amplification patterns result mainly from late arrivals where complex 3D wave diffraction phenomena are dominating and the memory of the initial excitation is lost. Interestingly enough, it is shown that H/V method correctly predict the low frequency amplification pattern when apply to the late part of the recorded seismograms. The complex high frequency amplification pattern is shown to be associated with surface wave generation at, and propagation from, sharp edges of the basin. Importance of 3D phenomena is assessed by comparison with simple 2D simulations. Significant differences in terms of time of residence, energy and amplification levels point out the interest of complete 3D modeling. In conclusions some of the limitations associated with the use of unstructured hexahedral meshes will be adressed. Despite the use of unstructured meshing tool, modeling the geometry of geological basins remain a complex and time consuming task. Possible extensions using more elaborate techniques like non conforming domain decomposition will be also discussed in conclusion.

  11. A 3D metal artifact correction method in cone-beam CT bone imaging by using an implant image library

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Ning, Ruola; Conover, David

    2008-03-01

    Cone-beam CT (CBCT) technique has been used by orthopedists to monitor bone graft growth after orthopedic surgery. In order to correct severe metal artifacts in reconstructed images caused by metal implants used in bone grafting, a three-dimensional metal artifact correction method has been previously proposed. The implants' mathematic boundaries were generated to help to segment metal from reconstructed images. The segmented metal implants were forward-projected onto the detector to create metal-only projections to compensate for beam-hardening effect. This method was proved effective with the metal implants of regular shape which can be simulated by simple 3D primitives, such as cuboid, cylinder and cone. But for metal implants of arbitrary shape, their boundaries are difficult to define mathematically. To solve this problem, this paper proposed a method by setting up an implant image library and using the implants' a priori shape information from the library during the artifact correction. The implants were acquired and scanned before the surgery and their a priori information were stored in a library. During the artifact correction, the library was called to provide the shape information of the implants to help to do the implant segmentation. The segmented implants were forward-projected onto the detector to generate implant-only projections by a cone-beam forward-projection technique. Beam-hardening effect in the original projections was then compensated by high polynomial orders of implant projections. Finally, the corrected projections were back-projected to produce artifacts-reduced images. Both phantom studies and patient studies were conducted to test this correction method. Results from both studies show the artifacts have been greatly reduced and the accuracy of bone volume measurement has been increased.

  12. Statistical properties of polarization image and despeckling method by multiresolution block-matching 3D filter

    NASA Astrophysics Data System (ADS)

    Wen, D. H.; Jiang, Y. S.; Zhang, Y. Z.; Gao, Q.

    2014-03-01

    The theoretical and experimental investigations on the polarization imagery system of speckle statistical characteristics and speckle removing method are researched. A method to obtain two images encoded by polarization degree with a single measurement process is proposed. A theoretical model for polarization imagery system on Müller matrix is proposed. According to modern charge coupled device (CCD) imaging characteristics, speckles are divided into two kinds, namely small speckle and big speckle. Based on this model, a speckle reduction algorithm based on a dual-tree complex wavelet transform (DTCWT) and blockmatching 3D filter (BM3D) is proposed (DTBM3D). Original laser image data transformed by logarithmic compression is decomposed by DTCWT into approximation and detail subbands. Bilateral filtering is applied to the approximation subbands, and a suited BM3D filter is applied to the detail subbands. The despeckling results show that contrast improvement index and edge preserve index outperform those of traditional methods. The researches have important reference value in research of speckle noise level and removing speckle noise.

  13. Gap-filling methods for 3D PlanTIS data.

    PubMed

    Loukiala, A; Tuna, U; Beer, S; Jahnke, S; Ruotsalainen, U

    2010-10-21

    The range of positron emitters and their labeled compounds have led to high-resolution PET scanners becoming widely used, not only in clinical and pre-clinical studies but also in plant studies. A high-resolution PET scanner, plant tomographic imaging system (PlanTIS), was designed to study metabolic and physiological functions of plants noninvasively. The gantry of the PlanTIS scanner has detector-free regions. Even when the gantry of the PlanTIS is rotated during the scan, these regions result in missing sinogram bins in the acquired data. Missing data need to be estimated prior to the analytical image reconstructions in order to avoid artifacts in the final reconstructed images. In this study, we propose three gap-filling methods for estimation of the unique gaps existing in the 3D PlanTIS sinogram data. The 3D sinogram data were gap-filled either by linear interpolation in the transaxial planes or by the bicubic interpolation method (proposed for the ECAT high-resolution research tomograph) in the transradial planes or by the inpainting method in the transangular planes. Each gap-filling method independently compensates for slices in one of three orthogonal sinogram planes (transaxial, transradial and transangular planes). A 3D numerical Shepp-Logan phantom and the NEMA image quality phantom were used to evaluate the methods. The gap-filled sinograms were reconstructed using the analytical 3D reprojection (3DRP) method. The NEMA phantom sinograms were also reconstructed by the iterative reconstruction method, ordered subsets maximum a posteriori one step late (OSMAPOSL), to compare the results of gap filling followed by 3DRP with the results of OSMAPOSL reconstruction without gap filling. The three methods were evaluated quantitatively (by mean square error and coefficients of variation) over the selected regions of the 3D numerical Shepp-Logan phantom at eight different Poisson noise levels. Moreover, the NEMA phantom scan data were used in visual assessments

  14. Gap-filling methods for 3D PlanTIS data

    NASA Astrophysics Data System (ADS)

    Loukiala, A.; Tuna, U.; Beer, S.; Jahnke, S.; Ruotsalainen, U.

    2010-10-01

    The range of positron emitters and their labeled compounds have led to high-resolution PET scanners becoming widely used, not only in clinical and pre-clinical studies but also in plant studies. A high-resolution PET scanner, plant tomographic imaging system (PlanTIS), was designed to study metabolic and physiological functions of plants noninvasively. The gantry of the PlanTIS scanner has detector-free regions. Even when the gantry of the PlanTIS is rotated during the scan, these regions result in missing sinogram bins in the acquired data. Missing data need to be estimated prior to the analytical image reconstructions in order to avoid artifacts in the final reconstructed images. In this study, we propose three gap-filling methods for estimation of the unique gaps existing in the 3D PlanTIS sinogram data. The 3D sinogram data were gap-filled either by linear interpolation in the transaxial planes or by the bicubic interpolation method (proposed for the ECAT high-resolution research tomograph) in the transradial planes or by the inpainting method in the transangular planes. Each gap-filling method independently compensates for slices in one of three orthogonal sinogram planes (transaxial, transradial and transangular planes). A 3D numerical Shepp-Logan phantom and the NEMA image quality phantom were used to evaluate the methods. The gap-filled sinograms were reconstructed using the analytical 3D reprojection (3DRP) method. The NEMA phantom sinograms were also reconstructed by the iterative reconstruction method, ordered subsets maximum a posteriori one step late (OSMAPOSL), to compare the results of gap filling followed by 3DRP with the results of OSMAPOSL reconstruction without gap filling. The three methods were evaluated quantitatively (by mean square error and coefficients of variation) over the selected regions of the 3D numerical Shepp-Logan phantom at eight different Poisson noise levels. Moreover, the NEMA phantom scan data were used in visual assessments

  15. Efficient calculation method for realistic deep 3D scene hologram using orthographic projection

    NASA Astrophysics Data System (ADS)

    Igarashi, Shunsuke; Nakamura, Tomoya; Matsushima, Kyoji; Yamaguchi, Masahiro

    2016-03-01

    We propose a fast calculation method to synthesize a computer-generated hologram (CGH) of realistic deep three-dimensional (3D) scene. In our previous study, we have proposed a calculation method of CGH for reproducing such scene called ray-sampling-plane (RSP) method, in which light-ray information of a scene is converted to wavefront, and the wavefront is numerically propagated based on diffraction theory. In this paper, we introduce orthographic projection to the RSP method for accelerating calculation time. By numerical experiments, we verified the accelerated calculation with the ratio of 28-times compared to the conventional RSP method. The calculated CGH was fabricated by the printing system using laser lithography and demonstrated deep 3D image reconstruction in 52mm×52mm with realistic appearance effect such as gloss and translucent effect.

  16. Computational methods for constructing protein structure models from 3D electron microscopy maps

    PubMed Central

    Esquivel-Rodríguez, Juan; Kihara, Daisuke

    2013-01-01

    Protein structure determination by cryo-electron microscopy (EM) has made significant progress in the past decades. Resolutions of EM maps have been improving as evidenced by recently reported structures that are solved at high resolutions close to 3 Å. Computational methods play a key role in interpreting EM data. Among many computational procedures applied to an EM map to obtain protein structure information, in this article we focus on reviewing computational methods that model protein three-dimensional (3D) structures from a 3D EM density map that is constructed from two-dimensional (2D) maps. The computational methods we discuss range from de novo methods, which identify structural elements in an EM map, to structure fitting methods, where known high resolution structures are fit into a low-resolution EM map. A list of available computational tools is also provided. PMID:23796504

  17. Charged-particle Gun Design with 3D Finite-element Methods

    NASA Astrophysics Data System (ADS)

    Humphries, Stanley

    2002-04-01

    The DARHT second-axis injector poses a major challenge for computer simulation. The relativistic electrons are subject to strong beam-generated electric and magnetic forces. The beam and applied fields are fully three-dimensional. Furthermore, accurate field calculations at surfaces are critical to model Child-law emission. Although several 2D relativistic beam codes are available, there is presently no 3D tool that can address all important processes in the DARHT injector. As a result, we created the OmniTrak 3D finite-element code suite. This talk gives a basic tutorial on finite-element methods with emphasis on electron gun design via the ray-tracing technique. Four main areas are covered: 1) the mesh as a tool to organize space, 2) transformation of the Poisson equation through the minimum residual principle, 3) orbit tracking in a complex environment and 4) handling self-consistent beam-generated fields. The components of a volume mesh (elements, nodes and facets) are reviewed. We consider motivations for choosing a 3D mesh style: structured versus unstructured, tetrahedrons versus hexahedrons. We discuss methods for taking volume integrals over arbitrary hexahedrons through normal coordinates and shape functions, leading to the fundamental field equations. The special problems of 3D magnetic field solutions and the advantages of the reduced potential method are outlined. Accurate field interpolations for orbit calculations require fast identification of occupied elements. A method for fast element identification that also yields the orbit penetration point on the element surface is described. The final topics are the assignment of charge and current to meshes from calculated orbits and techniques for space-charge-limited emission from multiple arbitrary 3D surfaces.

  18. Importance of a 3D forward modeling tool for surface wave analysis methods

    NASA Astrophysics Data System (ADS)

    Pageot, Damien; Le Feuvre, Mathieu; Donatienne, Leparoux; Philippe, Côte; Yann, Capdeville

    2016-04-01

    Since a few years, seismic surface waves analysis methods (SWM) have been widely developed and tested in the context of subsurface characterization and have demonstrated their effectiveness for sounding and monitoring purposes, e.g., high-resolution tomography of the principal geological units of California or real time monitoring of the Piton de la Fournaise volcano. Historically, these methods are mostly developed under the assumption of semi-infinite 1D layered medium without topography. The forward modeling is generally based on Thomson-Haskell matrix based modeling algorithm and the inversion is driven by Monte-Carlo sampling. Given their efficiency, SWM have been transfered to several scale of which civil engineering structures in order to, e.g., determine the so-called V s30 parameter or assess other critical constructional parameters in pavement engineering. However, at this scale, many structures may often exhibit 3D surface variations which drastically limit the efficiency of SWM application. Indeed, even in the case of an homogeneous structure, 3D geometry can bias the dispersion diagram of Rayleigh waves up to obtain discontinuous phase velocity curves which drastically impact the 1D mean velocity model obtained from dispersion inversion. Taking advantages of high-performance computing center accessibility and wave propagation modeling algorithm development, it is now possible to consider the use of a 3D elastic forward modeling algorithm instead of Thomson-Haskell method in the SWM inversion process. We use a parallelized 3D elastic modeling code based on the spectral element method which allows to obtain accurate synthetic data with very low numerical dispersion and a reasonable numerical cost. In this study, we choose dike embankments as an illustrative example. We first show that their longitudinal geometry may have a significant effect on dispersion diagrams of Rayleigh waves. Then, we demonstrate the necessity of 3D elastic modeling as a forward

  19. A new 3D tracking method exploiting the capabilities of digital holography in microscopy

    NASA Astrophysics Data System (ADS)

    Miccio, L.; Memmolo, P.; Merola, F.; Fusco, S.; Embrione, V.; Netti, P. A.; Ferraro, P.

    2013-04-01

    A method for 3D tracking has been developed exploiting Digital Holographic Microscopy (DHM) features. In the framework of self-consistent platform for manipulation and measurement of biological specimen we use DHM for quantitative and completely label free analysis of specimen with low amplitude contrast. Tracking capability extend the potentiality of DHM allowing to monitor the motion of appropriate probes and correlate it with sample properties. Complete 3D tracking has been obtained for the probes avoiding the issue of amplitude refocusing in traditional tracking processing. Our technique belongs to the video tracking methods that, conversely from Quadrant Photo-Diode method, opens the possibility to track multiples probes. All the common used video tracking algorithms are based on the numerical analysis of amplitude images in the focus plane and the shift of the maxima in the image plane are measured after the application of an appropriate threshold. Our approach for video tracking uses different theoretical basis. A set of interferograms is recorded and the complex wavefields are managed numerically to obtain three dimensional displacements of the probes. The procedure works properly on an higher number of probes and independently from their size. This method overcomes the traditional video tracking issues as the inability to measure the axial movement and the choice of suitable threshold mask. The novel configuration allows 3D tracking of micro-particles and simultaneously can furnish Quantitative Phase-contrast maps of tracked micro-objects by interference microscopy, without changing the configuration. In this paper, we show a new concept for a compact interferometric microscope that can ensure the multifunctionality, accomplishing accurate 3D tracking and quantitative phase-contrast analysis. Experimental results are presented and discussed for in vitro cells. Through a very simple and compact optical arrangement we show how two different functionalities

  20. Flexible 3D reconstruction method based on phase-matching in multi-sensor system.

    PubMed

    Wu, Qingyang; Zhang, Baichun; Huang, Jinhui; Wu, Zejun; Zeng, Zeng

    2016-04-01

    Considering the measuring range limitation of a single sensor system, multi-sensor system has become essential in obtaining complete image information of the object in the field of 3D image reconstruction. However, for the traditional multi-sensors worked independently in its system, there was some point in calibrating each sensor system separately. And the calibration between all single sensor systems was complicated and required a long time. In this paper, we present a flexible 3D reconstruction method based on phase-matching in multi-sensor system. While calibrating each sensor, it realizes the data registration of multi-sensor system in a unified coordinate system simultaneously. After all sensors are calibrated, the whole 3D image data directly exist in the unified coordinate system, and there is no need to calibrate the positions between sensors any more. Experimental results prove that the method is simple in operation, accurate in measurement, and fast in 3D image reconstruction. PMID:27137020

  1. Optic disc boundary segmentation from diffeomorphic demons registration of monocular fundus image sequences versus 3D visualization of stereo fundus image pairs for automated early stage glaucoma assessment

    NASA Astrophysics Data System (ADS)

    Gatti, Vijay; Hill, Jason; Mitra, Sunanda; Nutter, Brian

    2014-03-01

    Despite the current availability in resource-rich regions of advanced technologies in scanning and 3-D imaging in current ophthalmology practice, world-wide screening tests for early detection and progression of glaucoma still consist of a variety of simple tools, including fundus image-based parameters such as CDR (cup to disc diameter ratio) and CAR (cup to disc area ratio), especially in resource -poor regions. Reliable automated computation of the relevant parameters from fundus image sequences requires robust non-rigid registration and segmentation techniques. Recent research work demonstrated that proper non-rigid registration of multi-view monocular fundus image sequences could result in acceptable segmentation of cup boundaries for automated computation of CAR and CDR. This research work introduces a composite diffeomorphic demons registration algorithm for segmentation of cup boundaries from a sequence of monocular images and compares the resulting CAR and CDR values with those computed manually by experts and from 3-D visualization of stereo pairs. Our preliminary results show that the automated computation of CDR and CAR from composite diffeomorphic segmentation of monocular image sequences yield values comparable with those from the other two techniques and thus may provide global healthcare with a cost-effective yet accurate tool for management of glaucoma in its early stage.

  2. A correction method of color projection fringes in 3D contour measurement

    NASA Astrophysics Data System (ADS)

    Song, Li-mei; Li, Zong-yan; Chen, Chang-man; Xi, Jiang-tao; Guo, Qing-hua; Li, Xiao-jie

    2015-07-01

    In the three-dimensional (3D) contour measurement, the phase shift profilometry (PSP) method is the most widely used one. However, the measurement speed of PSP is very low because of the multiple projections. In order to improve the measurement speed, color grating stripes are used for measurement in this paper. During the measurement, only one color sinusoidal fringe is projected on the measured object. Therefore, the measurement speed is greatly improved. Since there is coupling or interference phenomenon between the adjacent color grating stripes, a color correction method is used to improve the measurement results. A method for correcting nonlinear error of measurement system is proposed in this paper, and the sinusoidal property of acquired image after correction is better than that before correction. Experimental results show that with these correction methods, the measurement errors can be reduced. Therefore, it can support a good foundation for the high-precision 3D reconstruction.

  3. A support-operator method for viscoelastic wave modelling in 3-D heterogeneous media

    NASA Astrophysics Data System (ADS)

    Ely, Geoffrey P.; Day, Steven M.; Minster, Jean-Bernard

    2008-01-01

    We apply the method of support operators (SOM) to solve the 3-D, viscoelastic equations of motion for use in earthquake simulations. SOM is a generalized finite-difference method that can utilize meshes of arbitrary structure and incorporate irregular geometry. Our implementation uses a 3-D, logically rectangular, hexahedral mesh. Calculations are second-order in space and time. A correction term is employed for suppression of spurious zero-energy modes (hourglass oscillations). We develop a free surface boundary condition, and an absorbing boundary condition using the method of perfectly matched layers (PML). Numerical tests using a layered material model in a highly deformed mesh show good agreement with the frequency-wavenumber method, for resolutions greater than 10 nodes per wavelength. We also test a vertically incident P wave on a semi-circular canyon, for which results match boundary integral solutions at resolutions greater that 20 nodes per wavelength. We also demonstrate excellent parallel scalability of our code.

  4. An improved 3D shape context registration method for non-rigid surface registration

    NASA Astrophysics Data System (ADS)

    Xiao, Di; Zahra, David; Bourgeat, Pierrick; Berghofer, Paula; Acosta Tamayo, Oscar; Wimberley, Catriona; Gregoire, Marie-Claude; Salvado, Olivier

    2010-03-01

    3D shape context is a method to define matching points between similar shapes as a pre-processing step to non-rigid registration. The main limitation of the approach is point mismatching, which includes long geodesic distance mismatch and neighbors crossing mismatch. In this paper, we propose a topological structure verification method to correct the long geodesic distance mismatch and a correspondence field smoothing method to correct the neighbors crossing mismatch. A robust 3D shape context model is proposed and further combined with thin-plate spline model for non-rigid surface registration. The method was tested on phantoms and rat hind limb skeletons from micro CT images. The results from experiments on mouse hind limb skeletons indicate that the approach is robust.

  5. Numerical solution of 3-D magnetotelluric using vector finite element method

    NASA Astrophysics Data System (ADS)

    Prihantoro, Rudy; Sutarno, Doddy; Nurhasan

    2015-09-01

    Magnetotelluric (MT) is a passive electromagnetic (EM) method which measure natural variations of electric and magnetic vector fields at the Earth surface to map subsurface electrical conductivity/resistivity structure. In this study, we obtained numerical solution of three-dimensional (3-D) MT using vector finite element method by solving second order Maxwell differential equation describing diffusion of plane wave through the conductive earth. Rather than the nodes of the element, the edges of the element is used as a vector basis to overcome the occurrence of nonphysical solutions that usually faced by scalar (node based) finite element method. Electric vector fields formulation was used and the resulting system of equation was solved using direct solution method to obtain the electric vector field distribution throughout the earth resistivity model structure. The resulting MT response functions was verified with 1-D layered Earth and 3-D2 COMMEMI outcropping structure. Good agreement is achieved for both structure models.

  6. Small pitch fringe projection method with multiple linear fiber arrays for 3D shape measurement

    NASA Astrophysics Data System (ADS)

    Hayashi, Takumi; Fujigaki, Motoharu; Murata, Yorinobu

    2014-07-01

    3-D shape measurement systems by contactless method are required in the quality inspections of metal molds and electronic parts in industrial fields. A grating projection method with phase-shifting method has advantages of high precision and high speed. Recently, the size of a BGA (ball grid array) becomes smaller. So the pitch of a grating pattern projected onto the specimen should be smaller. In conventional method, fringe pattern is projected using an imaging lens. The focal depth becomes smaller in the case of reduced projection. It is therefore difficult to project a grating pattern with small pitch onto an object with large incident angles. Authors recently proposed a light source stepping method using a linear LED device. It is easy to shrink the projected grating pitch with a lens because this projection method does not use an imaging lens. The pitch of the projected grating depends on the width of the light source. There is a limit to shrink the projected grating pitch according to the size of the LED chip. In this paper, a small pitch fringe projection method with multiple linear fiber arrays for 3D shape measurement is proposed. The width of the fiber array is 30μm. It is one digit smaller than the width of the LED chip. The experimental result of 3-D shape measurement with small pitch projection with large incident angles is shown.

  7. Image selection in photogrammetric multi-view stereo methods for metric and complete 3D reconstruction

    NASA Astrophysics Data System (ADS)

    Hosseininaveh Ahmadabadian, Ali; Robson, Stuart; Boehm, Jan; Shortis, Mark

    2013-04-01

    Multi-View Stereo (MVS) as a low cost technique for precise 3D reconstruction can be a rival for laser scanners if the scale of the model is resolved. A fusion of stereo imaging equipment with photogrammetric bundle adjustment and MVS methods, known as photogrammetric MVS, can generate correctly scaled 3D models without using any known object distances. Although a huge number of stereo images (e.g. 200 high resolution images from a small object) captured of the object contains redundant data that allows detailed and accurate 3D reconstruction, the capture and processing time is increased when a vast amount of high resolution images are employed. Moreover, some parts of the object are often missing due to the lack of coverage of all areas. These problems demand a logical selection of the most suitable stereo camera views from the large image dataset. This paper presents a method for clustering and choosing optimal stereo or optionally single images from a large image dataset. The approach focusses on the two key steps of image clustering and iterative image selection. The method is developed within a software application called Imaging Network Designer (IND) and tested by the 3D recording of a gearbox and three metric reference objects. A comparison is made between IND and CMVS, which is a free package for selecting vantage images. The final 3D models obtained from the IND and CMVS approaches are compared with datasets generated with an MMDx Nikon Laser scanner. Results demonstrate that IND can provide a better image selection for MVS than CMVS in terms of surface coordinate uncertainty and completeness.

  8. Development of direct-inverse 3-D methods for applied aerodynamic design and analysis

    NASA Technical Reports Server (NTRS)

    Carlson, Leland A.

    1988-01-01

    Several inverse methods have been compared and initial results indicate that differences in results are primarily due to coordinate systems and fuselage representations and not to design procedures. Further, results from a direct-inverse method that includes 3-D wing boundary layer effects, wake curvature, and wake displacement are presented. These results show that boundary layer displacements must be included in the design process for accurate results.

  9. Performance and sensitivity evaluation of 3D spot detection methods in confocal microscopy.

    PubMed

    Štěpka, Karel; Matula, Pavel; Matula, Petr; Wörz, Stefan; Rohr, Karl; Kozubek, Michal

    2015-08-01

    Reliable 3D detection of diffraction-limited spots in fluorescence microscopy images is an important task in subcellular observation. Generally, fluorescence microscopy images are heavily degraded by noise and non-specifically stained background, making reliable detection a challenging task. In this work, we have studied the performance and parameter sensitivity of eight recent methods for 3D spot detection. The study is based on both 3D synthetic image data and 3D real confocal microscopy images. The synthetic images were generated using a simulator modeling the complete imaging setup, including the optical path as well as the image acquisition process. We studied the detection performance and parameter sensitivity under different noise levels and under the influence of uneven background signal. To evaluate the parameter sensitivity, we propose a novel measure based on the gradient magnitude of the F1 score. We measured the success rate of the individual methods for different types of the image data and found that the type of image degradation is an important factor. Using the F1 score and the newly proposed sensitivity measure, we found that the parameter sensitivity is not necessarily proportional to the success rate of a method. This also provided an explanation why the best performing method for synthetic data was outperformed by other methods when applied to the real microscopy images. On the basis of the results obtained, we conclude with the recommendation of the HDome method for data with relatively low variations in quality, or the Sorokin method for image sets in which the quality varies more. We also provide alternative recommendations for high-quality images, and for situations in which detailed parameter tuning might be deemed expensive. PMID:26033916

  10. Combination of photogrammetric and geoelectric methods to assess 3d structures associated to natural hazards

    NASA Astrophysics Data System (ADS)

    Fargier, Yannick; Dore, Ludovic; Antoine, Raphael; Palma Lopes, Sérgio; Fauchard, Cyrille

    2016-04-01

    The extraction of subsurface materials is a key element for the economy of a nation. However, natural degradation of underground quarries is a major issue from an economic and public safety point of view. Consequently, the quarries stakeholders require relevant tools to define hazards associated to these structures. Safety assessment methods of underground quarries are recent and mainly based on rock physical properties. This kind of method leads to a certain homogeneity assumption of pillar internal properties that can cause an underestimation of the risk. Electrical Resistivity Imaging (ERI) is a widely used method that possesses two advantages to overcome this limitation. The first is to provide a qualitative understanding for the detection and monitoring of anomalies in the pillar body (e.g. faults). The second is to provide a quantitative description of the electrical resistivity distribution inside the pillar. This quantitative description can be interpreted with constitutive laws to help decision support (water content decreases the mechanical resistance of a chalk). However, conventional 2D and 3D Imaging techniques are usually applied to flat surface surveys or to surfaces with moderate topography. A 3D inversion of more complex media (case of the pillar) requires a full consideration of the geometry that was never taken into account before. The Photogrammetric technique presents a cost effective solution to obtain an accurate description of the external geometry of a complex media. However, this method has never been fully coupled with a geophysical method to enhance/improve the inversion process. Consequently we developed a complete procedure showing that photogrammetric and ERI tools can be efficiently combined to assess a complex 3D structure. This procedure includes in a first part a photogrammetric survey, a processing stage with an open source software and a post-processing stage finalizing a 3D surface model. The second part necessitates the

  11. Finite volume and finite element methods applied to 3D laminar and turbulent channel flows

    SciTech Connect

    Louda, Petr; Příhoda, Jaromír; Sváček, Petr; Kozel, Karel

    2014-12-10

    The work deals with numerical simulations of incompressible flow in channels with rectangular cross section. The rectangular cross section itself leads to development of various secondary flow patterns, where accuracy of simulation is influenced by numerical viscosity of the scheme and by turbulence modeling. In this work some developments of stabilized finite element method are presented. Its results are compared with those of an implicit finite volume method also described, in laminar and turbulent flows. It is shown that numerical viscosity can cause errors of same magnitude as different turbulence models. The finite volume method is also applied to 3D turbulent flow around backward facing step and good agreement with 3D experimental results is obtained.

  12. An Application of the Method of Arbitrary Lines to 3D Elastic Stress Analysis

    NASA Astrophysics Data System (ADS)

    Kaminishi, Ken; Ando, Ryuma

    The MAL (Method of Arbitrary Lines) is a technique of reducing a partial differential equation to a system of ordinary differential equations. It is known that relevant use of this procedure yields high accuracy in some problems of two-dimensional elasticity and elastoplasticity. Since the basic concept of MAL is simple and based on generality, it is expected that many problems in other fields will be effectively solvable by this method. In this study, we consider the application of MAL to 3D (three-dimensional) elasticity analysis. We first give a MAL formulation of 3D elasticity problems, and demonstrate its effectiveness and accuracy for a typical problem. The reported numerical results are compared with the exact solution or that of the finite element method (FEM).

  13. A fast method to measure the 3D surface of the human heart

    NASA Astrophysics Data System (ADS)

    Cao, Yiping; Su, Xianyu; Xiang, Liqun; Chen, Wenjing; Zhang, Qican

    2003-12-01

    Three-dimensional (3-D) automatic measurement of an object is widely used in many fields. In Biology and Medicine society, it can be applicable for surgery, orthopedics, viscera disease analysis and diagnosis etc. Here a new fast method to measure the 3D surface of human heart is proposed which can provide doctors a lot of information, such as the size of heart profile, the sizes of the left or right heart ventricle, and the curvature center and radius of heart ventricle, to fully analyze and diagnose pathobiology of human heart. The new fast method is optically and noncontacted and based upon the Phase Measurement Profilometry (PMP), which has higher measuring precision. A human heart specimen experiment has verified our method.

  14. Analysis of method of 3D shape reconstruction using scanning deflectometry

    NASA Astrophysics Data System (ADS)

    Novák, Jiří; Novák, Pavel; Mikš, Antonín.

    2013-04-01

    This work presents a scanning deflectometric approach to solving a 3D surface reconstruction problem, which is based on measurements of a surface gradient of optically smooth surfaces. It is shown that a description of this problem leads to a nonlinear partial differential equation (PDE) of the first order, from which the surface shape can be reconstructed numerically. The method for effective finding of the solution of this differential equation is proposed, which is based on the transform of the problem of PDE solving to the optimization problem. We describe different types of surface description for the shape reconstruction and a numerical simulation of the presented method is performed. The reconstruction process is analyzed by computer simulations and presented on examples. The performed analysis confirms a robustness of the reconstruction method and a good possibility for measurements and reconstruction of the 3D shape of specular surfaces.

  15. Intrathoracic tumour motion estimation from CT imaging using the 3D optical flow method

    NASA Astrophysics Data System (ADS)

    Guerrero, Thomas; Zhang, Geoffrey; Huang, Tzung-Chi; Lin, Kang-Ping

    2004-09-01

    The purpose of this work was to develop and validate an automated method for intrathoracic tumour motion estimation from breath-hold computed tomography (BH CT) imaging using the three-dimensional optical flow method (3D OFM). A modified 3D OFM algorithm provided 3D displacement vectors for each voxel which were used to map tumour voxels on expiration BH CT onto inspiration BH CT images. A thoracic phantom and simulated expiration/inspiration BH CT pairs were used for validation. The 3D OFM was applied to the measured inspiration and expiration BH CT images from one lung cancer and one oesophageal cancer patient. The resulting displacements were plotted in histogram format and analysed to provide insight regarding the tumour motion. The phantom tumour displacement was measured as 1.20 and 2.40 cm with full-width at tenth maximum (FWTM) for the distribution of displacement estimates of 0.008 and 0.006 cm, respectively. The maximum error of any single voxel's motion estimate was 1.1 mm along the z-dimension or approximately one-third of the z-dimension voxel size. The simulated BH CT pairs revealed an rms error of less than 0.25 mm. The displacement of the oesophageal tumours was nonuniform and up to 1.4 cm, this was a new finding. A lung tumour maximum displacement of 2.4 cm was found in the case evaluated. In conclusion, 3D OFM provided an accurate estimation of intrathoracic tumour motion, with estimated errors less than the voxel dimension in a simulated motion phantom study. Surprisingly, oesophageal tumour motion was large and nonuniform, with greatest motion occurring at the gastro-oesophageal junction. Presented at The IASTED Second International Conference on Biomedical Engineering (BioMED 2004), Innsbruck, Austria, 16-18 February 2004.

  16. Standardization based on human factors for 3D display: performance characteristics and measurement methods

    NASA Astrophysics Data System (ADS)

    Uehara, Shin-ichi; Ujike, Hiroyasu; Hamagishi, Goro; Taira, Kazuki; Koike, Takafumi; Kato, Chiaki; Nomura, Toshio; Horikoshi, Tsutomu; Mashitani, Ken; Yuuki, Akimasa; Izumi, Kuniaki; Hisatake, Yuzo; Watanabe, Naoko; Umezu, Naoaki; Nakano, Yoshihiko

    2010-02-01

    We are engaged in international standardization activities for 3D displays. We consider that for a sound development of 3D displays' market, the standards should be based on not only mechanism of 3D displays, but also human factors for stereopsis. However, we think that there is no common understanding on what the 3D display should be and that the situation makes developing the standards difficult. In this paper, to understand the mechanism and human factors, we focus on a double image, which occurs in some conditions on an autostereoscopic display. Although the double image is generally considered as an unwanted effect, we consider that whether the double image is unwanted or not depends on the situation and that there are some allowable double images. We tried to classify the double images into the unwanted and the allowable in terms of the display mechanism and visual ergonomics for stereopsis. The issues associated with the double image are closely related to performance characteristics for the autostereoscopic display. We also propose performance characteristics, measurement and analysis methods to represent interocular crosstalk and motion parallax.

  17. Comparison of Parallel MRI Reconstruction Methods for Accelerated 3D Fast Spin-Echo Imaging

    PubMed Central

    Xiao, Zhikui; Hoge, W. Scott; Mulkern, R.V.; Zhao, Lei; Hu, Guangshu; Kyriakos, Walid E.

    2014-01-01

    Parallel MRI (pMRI) achieves imaging acceleration by partially substituting gradient-encoding steps with spatial information contained in the component coils of the acquisition array. Variable-density subsampling in pMRI was previously shown to yield improved two-dimensional (2D) imaging in comparison to uniform subsampling, but has yet to be used routinely in clinical practice. In an effort to reduce acquisition time for 3D fast spin-echo (3D-FSE) sequences, this work explores a specific nonuniform sampling scheme for 3D imaging, subsampling along two phase-encoding (PE) directions on a rectilinear grid. We use two reconstruction methods—2D-GRAPPA-Operator and 2D-SPACE RIP—and present a comparison between them. We show that high-quality images can be reconstructed using both techniques. To evaluate the proposed sampling method and reconstruction schemes, results via simulation, phantom study, and in vivo 3D human data are shown. We find that fewer artifacts can be seen in the 2D-SPACE RIP reconstructions than in 2D-GRAPPA-Operator reconstructions, with comparable reconstruction times. PMID:18727083

  18. Novel high speed method using gray level vector modulation for 3D shape measurement

    NASA Astrophysics Data System (ADS)

    Lin, Gui-Wen; Li, Dong; Tian, Jin-Dong

    2014-11-01

    Binocular Vision Technique is widely used in three-dimensional (3-D) measurement. Matching of pictures captured from two cameras is the most critical and difficult step in 3-D shape reconstruction. The method combines codedstructured light and spatial phase is usually adopted. However, being time consuming in matching, this method could not meet the requirements of real-time 3-D vision. In order to satisfy the high speed characteristic of real-time measurement, a novel method using gray level vector modulation is introduced. Combining binary code with gray coding principle, new coding patterns using gray level vector method is designed and projected onto the object surface. Each pixel corresponds to the designed sequence of gray values as a feature vector. The unique gray level vector is then dimensionally reduced to a resulting value which could be used as characteristic information for binocular matching. Experimental results further demonstrated the correctness and feasibility of the proposed method with fewer component patterns and less computational time.

  19. Active shape models for a fully automated 3D segmentation of the liver--an evaluation on clinical data.

    PubMed

    Heimann, Tobias; Wolf, Ivo; Meinzer, Hans-Peter

    2006-01-01

    This paper presents an evaluation of the performance of a three-dimensional Active Shape Model (ASM) to segment the liver in 48 clinical CT scans. The employed shape model is built from 32 samples using an optimization approach based on the minimum description length (MDL). Three different gray-value appearance models (plain intensity, gradient and normalized gradient profiles) are created to guide the search. The employed segmentation techniques are ASM search with 10 and 30 modes of variation and a deformable model coupled to a shape model with 10 modes of variation. To assess the segmentation performance, the obtained results are compared to manual segmentations with four different measures (overlap, average distance, RMS distance and ratio of deviations larger 5mm). The only appearance model delivering usable results is the normalized gradient profile. The deformable model search achieves the best results, followed by the ASM search with 30 modes. Overall, statistical shape modeling delivers very promising results for a fully automated segmentation of the liver. PMID:17354754

  20. Earthquake source tensor inversion with the gCAP method and 3D Green's functions

    NASA Astrophysics Data System (ADS)

    Zheng, J.; Ben-Zion, Y.; Zhu, L.; Ross, Z.

    2013-12-01

    We develop and apply a method to invert earthquake seismograms for source properties using a general tensor representation and 3D Green's functions. The method employs (i) a general representation of earthquake potency/moment tensors with double couple (DC), compensated linear vector dipole (CLVD), and isotropic (ISO) components, and (ii) a corresponding generalized CAP (gCap) scheme where the continuous wave trains are broken into Pnl and surface waves (Zhu & Ben-Zion, 2013). For comparison, we also use the waveform inversion method of Zheng & Chen (2012) and Ammon et al. (1998). Sets of 3D Green's functions are calculated on a grid of 1 km3 using the 3-D community velocity model CVM-4 (Kohler et al. 2003). A bootstrap technique is adopted to establish robustness of the inversion results using the gCap method (Ross & Ben-Zion, 2013). Synthetic tests with 1-D and 3-D waveform calculations show that the source tensor inversion procedure is reasonably reliable and robust. As initial application, the method is used to investigate source properties of the March 11, 2013, Mw=4.7 earthquake on the San Jacinto fault using recordings of ~45 stations up to ~0.2Hz. Both the best fitting and most probable solutions include ISO component of ~1% and CLVD component of ~0%. The obtained ISO component, while small, is found to be a non-negligible positive value that can have significant implications for the physics of the failure process. Work on using higher frequency data for this and other earthquakes is in progress.

  1. A Quality Assurance Method that Utilizes 3D Dosimetry and Facilitates Clinical Interpretation

    SciTech Connect

    Oldham, Mark; Thomas, Andrew; O'Daniel, Jennifer; Juang, Titania; Ibbott, Geoffrey; Adamovics, John; Kirkpatrick, John P.

    2012-10-01

    Purpose: To demonstrate a new three-dimensional (3D) quality assurance (QA) method that provides comprehensive dosimetry verification and facilitates evaluation of the clinical significance of QA data acquired in a phantom. Also to apply the method to investigate the dosimetric efficacy of base-of-skull (BOS) intensity-modulated radiotherapy (IMRT) treatment. Methods and Materials: Two types of IMRT QA verification plans were created for 6 patients who received BOS IMRT. The first plan enabled conventional 2D planar IMRT QA using the Varian portal dosimetry system. The second plan enabled 3D verification using an anthropomorphic head phantom. In the latter, the 3D dose distribution was measured using the DLOS/Presage dosimetry system (DLOS = Duke Large-field-of-view Optical-CT System, Presage Heuris Pharma, Skillman, NJ), which yielded isotropic 2-mm data throughout the treated volume. In a novel step, measured 3D dose distributions were transformed back to the patient's CT to enable calculation of dose-volume histograms (DVH) and dose overlays. Measured and planned patient DVHs were compared to investigate clinical significance. Results: Close agreement between measured and calculated dose distributions was observed for all 6 cases. For gamma criteria of 3%, 2 mm, the mean passing rate for portal dosimetry was 96.8% (range, 92.0%-98.9%), compared to 94.9% (range, 90.1%-98.9%) for 3D. There was no clear correlation between 2D and 3D passing rates. Planned and measured dose distributions were evaluated on the patient's anatomy, using DVH and dose overlays. Minor deviations were detected, and the clinical significance of these are presented and discussed. Conclusions: Two advantages accrue to the methods presented here. First, treatment accuracy is evaluated throughout the whole treated volume, yielding comprehensive verification. Second, the clinical significance of any deviations can be assessed through the generation of DVH curves and dose overlays on the patient

  2. Enhanced Rgb-D Mapping Method for Detailed 3d Modeling of Large Indoor Environments

    NASA Astrophysics Data System (ADS)

    Tang, Shengjun; Zhu, Qing; Chen, Wu; Darwish, Walid; Wu, Bo; Hu, Han; Chen, Min

    2016-06-01

    RGB-D sensors are novel sensing systems that capture RGB images along with pixel-wise depth information. Although they are widely used in various applications, RGB-D sensors have significant drawbacks with respect to 3D dense mapping of indoor environments. First, they only allow a measurement range with a limited distance (e.g., within 3 m) and a limited field of view. Second, the error of the depth measurement increases with increasing distance to the sensor. In this paper, we propose an enhanced RGB-D mapping method for detailed 3D modeling of large indoor environments by combining RGB image-based modeling and depth-based modeling. The scale ambiguity problem during the pose estimation with RGB image sequences can be resolved by integrating the information from the depth and visual information provided by the proposed system. A robust rigid-transformation recovery method is developed to register the RGB image-based and depth-based 3D models together. The proposed method is examined with two datasets collected in indoor environments for which the experimental results demonstrate the feasibility and robustness of the proposed method

  3. 3D multi-object segmentation of cardiac MSCT imaging by using a multi-agent approach.

    PubMed

    Fleureau, Julien; Garreau, Mireille; Boulmier, Dominique; Hernández, Alfredo

    2007-01-01

    We propose a new technique for general purpose, semi-interactive and multi-object segmentation in N-dimensional images, applied to the extraction of cardiac structures in MultiSlice Computed Tomography (MSCT) imaging. The proposed approach makes use of a multi-agent scheme combined with a supervised classification methodology allowing the introduction of a priori information and presenting fast computing times. The multi-agent system is organised around a communicating agent which manages a population of situated agents which segment the image through cooperative and competitive interactions. The proposed technique has been tested on several patient data sets. Some typical results are finally presented and discussed. PMID:18003382

  4. 3D Multi-Object Segmentation of Cardiac MSCT Imaging by using a Multi-Agent Approach

    PubMed Central

    Fleureau, Julien; Garreau, Mireille; Boulmier, Dominique; Hernandez, Alfredo

    2007-01-01

    We propose a new technique for general purpose, semi-interactive and multi-object segmentation in N-dimensional images, applied to the extraction of cardiac structures in MultiSlice Computed Tomography (MSCT) imaging. The proposed approach makes use of a multi-agent scheme combined with a supervised classification methodology allowing the introduction of a priori information and presenting fast computing times. The multi-agent system is organised around a communicating agent which manages a population of situated agents which segment the image through cooperative and competitive interactions. The proposed technique has been tested on several patient data sets. Some typical results are finally presented and discussed. PMID:18003382

  5. Equivalent Body Force Finite Elements Method and 3-D Earth Model Applied In 2004 Sumatra Earthquake

    NASA Astrophysics Data System (ADS)

    Qu, W.; Cheng, H.; Shi, Y.

    2015-12-01

    The 26 December 2004 Sumatra-Andaman earthquake with moment magnitude (Mw) of 9.1 to 9.3 is the first great earthquake recorded by digital broadband, high-dynamic-range seismometers and global positioning system (GPS) equipment, which recorded many high-quality geophysical data sets. The spherical curvature is not negligible in far field especially for large event and the real Earth is laterally inhomogeneity and the analytical results still are difficult to explain the geodetic measurements. We use equivalent body force finite elements method Zhang et al. (2015) and mesh the whole earth, to compute global co-seismic displacements using four fault slip models of the 2004 Sumatra earthquake provided by different authors. Comparisons of calculated co-seismic displacements and GPS show that the confidences are well in near field for four models, and the confidences are according to different models. In the whole four models, the Chlieh model (Chlieh et al., 2007) is the best as this slip model not only accord well with near field data but also far field data. And then we use the best slip model, Chlieh model to explore influence of three dimensional lateral earth structure on both layered spherically symmetric (PREM) and real 3-D heterogeneous earth model (Crust 1.0 model and GyPSuM). Results show that the effects of 3-D heterogeneous earth model are not negligible and decrease concomitantly with increasing distance from the epicenter. The relative effects of 3-D crust model are 23% and 40% for horizontal and vertical displacements, respectively. The effects of the 3-D mantle model are much smaller than that of 3-D crust model but with wider impacting area.

  6. The RNA 3D Motif Atlas: Computational methods for extraction, organization and evaluation of RNA motifs.

    PubMed

    Parlea, Lorena G; Sweeney, Blake A; Hosseini-Asanjan, Maryam; Zirbel, Craig L; Leontis, Neocles B

    2016-07-01

    RNA 3D motifs occupy places in structured RNA molecules that correspond to the hairpin, internal and multi-helix junction "loops" of their secondary structure representations. As many as 40% of the nucleotides of an RNA molecule can belong to these structural elements, which are distinct from the regular double helical regions formed by contiguous AU, GC, and GU Watson-Crick basepairs. With the large number of atomic- or near atomic-resolution 3D structures appearing in a steady stream in the PDB/NDB structure databases, the automated identification, extraction, comparison, clustering and visualization of these structural elements presents an opportunity to enhance RNA science. Three broad applications are: (1) identification of modular, autonomous structural units for RNA nanotechnology, nanobiology and synthetic biology applications; (2) bioinformatic analysis to improve RNA 3D structure prediction from sequence; and (3) creation of searchable databases for exploring the binding specificities, structural flexibility, and dynamics of these RNA elements. In this contribution, we review methods developed for computational extraction of hairpin and internal loop motifs from a non-redundant set of high-quality RNA 3D structures. We provide a statistical summary of the extracted hairpin and internal loop motifs in the most recent version of the RNA 3D Motif Atlas. We also explore the reliability and accuracy of the extraction process by examining its performance in clustering recurrent motifs from homologous ribosomal RNA (rRNA) structures. We conclude with a summary of remaining challenges, especially with regard to extraction of multi-helix junction motifs. PMID:27125735

  7. Methods for Measuring the Orientation and Rotation Rate of 3D-printed Particles in Turbulence.

    PubMed

    Cole, Brendan C; Marcus, Guy G; Parsa, Shima; Kramel, Stefan; Ni, Rui; Voth, Greg A

    2016-01-01

    Experimental methods are presented for measuring the rotational and translational motion of anisotropic particles in turbulent fluid flows. 3D printing technology is used to fabricate particles with slender arms connected at a common center. Shapes explored are crosses (two perpendicular rods), jacks (three perpendicular rods), triads (three rods in triangular planar symmetry), and tetrads (four arms in tetrahedral symmetry). Methods for producing on the order of 10,000 fluorescently dyed particles are described. Time-resolved measurements of their orientation and solid-body rotation rate are obtained from four synchronized videos of their motion in a turbulent flow between oscillating grids with Rλ = 91. In this relatively low-Reynolds number flow, the advected particles are small enough that they approximate ellipsoidal tracer particles. We present results of time-resolved 3D trajectories of position and orientation of the particles as well as measurements of their rotation rates. PMID:27404898

  8. A novel 3D constellation-masked method for physical security in hierarchical OFDMA system.

    PubMed

    Zhang, Lijia; Liu, Bo; Xin, Xiangjun; Liu, Deming

    2013-07-01

    This paper proposes a novel 3D constellation-masked method to ensure the physical security in hierarchical optical orthogonal frequency division multiplexing access (OFDMA) system. The 3D constellation masking is executed on the two levels of hierarchical modulation and among different OFDM subcarriers, which is realized by the masking vectors. The Lorenz chaotic model is adopted for the generation of masking vectors in the proposed scheme. A 9.85 Gb/s encrypted hierarchical QAM OFDM signal is successfully demonstrated in the experiment. The performance of illegal optical network unit (ONU) with different masking vectors is also investigated. The proposed method is demonstrated to be secure and efficient against the commonly known attacks in the experiment. PMID:23842348

  9. TRAIL protein localization in human primary T cells by 3D microscopy using 3D interactive surface plot: a new method to visualize plasma membrane.

    PubMed

    Gras, Christophe; Smith, Nikaïa; Sengmanivong, Lucie; Gandini, Mariana; Kubelka, Claire Fernandes; Herbeuval, Jean-Philippe

    2013-01-31

    The apoptotic ligand TNF-related apoptosis ligand (TRAIL) is expressed on the membrane of immune cells during HIV infection. The intracellular stockade of TRAIL in human primary CD4(+) T cells is not known. Here we investigated whether primary CD4(+) T cells expressed TRAIL in their intracellular compartment and whether TRAIL is relocalized on the plasma membrane under HIV activation. We found that TRAIL protein was stocked in intracellular compartment in non activated CD4(+) T cells and that the total level of TRAIL protein was not increased under HIV-1 stimulation. However, TRAIL was massively relocalized on plasma membrane when cells were cultured with HIV. Using three dimensional (3D) microscopy we localized TRAIL protein in human T cells and developed a new method to visualize plasma membrane without the need of a membrane marker. This method used the 3D interactive surface plot and bright light acquired images. PMID:23085529

  10. CONTINUOUS-ENERGY MONTE CARLO METHODS FOR CALCULATING GENERALIZED RESPONSE SENSITIVITIES USING TSUNAMI-3D

    SciTech Connect

    Perfetti, Christopher M; Rearden, Bradley T

    2014-01-01

    This work introduces a new approach for calculating sensitivity coefficients for generalized neutronic responses to nuclear data uncertainties using continuous-energy Monte Carlo methods. The approach presented in this paper, known as the GEAR-MC method, allows for the calculation of generalized sensitivity coefficients for multiple responses in a single Monte Carlo calculation with no nuclear data perturbations or knowledge of nuclear covariance data. The theory behind the GEAR-MC method is presented here, and proof of principle is demonstrated by using the GEAR-MC method to calculate sensitivity coefficients for responses in several 3D, continuous-energy Monte Carlo applications.

  11. Efficient solution on solving 3D Maxwell equations using stable semi-implicit splitting method

    NASA Astrophysics Data System (ADS)

    Cen, Wei; Gu, Ning

    2016-05-01

    In this paper, we propose an efficient solution on solving 3-dimensional (3D) time-domain Maxwell equations using the semi-implicit Crank-Nicholson (CN) method for time domain discretization with advantage of unconditional time stability. By applying the idea of fractional steps method (FSM) to the CN scheme, the proposed method provides a much simpler and efficient implementation than a direct implementation of the CN scheme. Compared with the alternating-direction implicit (ADI) method and explicit finite-difference time-domain approach (FDTD), it significantly saves the computational resource like memory and CPU time while remains similar numerical accuracy.

  12. Reconstruction of 3D structure using stochastic methods: morphology and transport properties

    NASA Astrophysics Data System (ADS)

    Karsanina, Marina; Gerke, Kirill; Čapek, Pavel; Vasilyev, Roman; Korost, Dmitry; Skvortsova, Elena

    2013-04-01

    One of the main factors defining numerous flow phenomena in rocks, soils and other porous media, including fluid and solute movements, is pore structure, e.g., pore sizes and their connectivity. Numerous numerical methods were developed to quantify single and multi-phase flow in such media on microscale. Among most popular ones are: 1) a wide range of finite difference/element/volume solutions of Navier-Stokes equations and its simplifications; 2) lattice-Boltzmann method; 3) pore-network models, among others. Each method has some advantages and shortcomings, so that different research teams usually utilize more than one, depending on the study case. Recent progress in 3D imaging of internal structure, e.g., X-ray tomography, FIB-SEM and confocal microscopy, made it possible to obtain digitized input pore parameters for such models, however, a trade-off between resolution and sample size is usually unavoidable. There are situations then only standard two-dimensional information of porous structure is known due to tomography high cost or resolution limitations. However, physical modeling on microscale requires 3D information. There are three main approaches to reconstruct (using 2D cut(s) or some other limited information/properties) porous media: 1) statistical methods (correlation functions and simulated annealing, multi-point statistics, entropy methods), 2) sequential methods (sphere or other granular packs) and 3) morphological methods. Stochastic reconstructions using correlation functions possess some important advantage - they provide a statistical description of the structure, which is known to have relationships with all physical properties. In addition, this method is more flexible for other applications to characterize porous media. Taking different 3D scans of natural and artificial porous materials (sandstones, soils, shales, ceramics) we choose some 2D cut/s as sources of input correlation functions. Based on different types of correlation functions

  13. Analysis of the 3D acoustic cloaking problems using optimization method

    NASA Astrophysics Data System (ADS)

    Alekseev, G. V.; Spivak, Yu E.

    2016-06-01

    Control problems for the 3D model of acoustic scattering which describes scattering acoustic waves by a permeable obstacle with the form of a spherical layer are considered. These problems arise while developing the design technologies of acoustic cloaking devices using the wave flow method. The solvability of direct and control problems for the acoustic scattering model under study is proved. The sufficient conditions which provide local uniqueness and stability of optimal solutions are established.

  14. A Method for 3D Histopathology Reconstruction Supporting Mouse Microvasculature Analysis.

    PubMed

    Xu, Yiwen; Pickering, J Geoffrey; Nong, Zengxuan; Gibson, Eli; Arpino, John-Michael; Yin, Hao; Ward, Aaron D

    2015-01-01

    Structural abnormalities of the microvasculature can impair perfusion and function. Conventional histology provides good spatial resolution with which to evaluate the microvascular structure but affords no 3-dimensional information; this limitation could lead to misinterpretations of the complex microvessel network in health and disease. The objective of this study was to develop and evaluate an accurate, fully automated 3D histology reconstruction method to visualize the arterioles and venules within the mouse hind-limb. Sections of the tibialis anterior muscle from C57BL/J6 mice (both normal and subjected to femoral artery excision) were reconstructed using pairwise rigid and affine registrations of 5 µm-thick, paraffin-embedded serial sections digitized at 0.25 µm/pixel. Low-resolution intensity-based rigid registration was used to initialize the nucleus landmark-based registration, and conventional high-resolution intensity-based registration method. The affine nucleus landmark-based registration was developed in this work and was compared to the conventional affine high-resolution intensity-based registration method. Target registration errors were measured between adjacent tissue sections (pairwise error), as well as with respect to a 3D reference reconstruction (accumulated error, to capture propagation of error through the stack of sections). Accumulated error measures were lower (p < 0.01) for the nucleus landmark technique and superior vasculature continuity was observed. These findings indicate that registration based on automatic extraction and correspondence of small, homologous landmarks may support accurate 3D histology reconstruction. This technique avoids the otherwise problematic "banana-into-cylinder" effect observed using conventional methods that optimize the pairwise alignment of salient structures, forcing them to be section-orthogonal. This approach will provide a valuable tool for high-accuracy 3D histology tissue reconstructions for

  15. A harmonic polynomial cell (HPC) method for 3D Laplace equation with application in marine hydrodynamics

    SciTech Connect

    Shao, Yan-Lin Faltinsen, Odd M.

    2014-10-01

    We propose a new efficient and accurate numerical method based on harmonic polynomials to solve boundary value problems governed by 3D Laplace equation. The computational domain is discretized by overlapping cells. Within each cell, the velocity potential is represented by the linear superposition of a complete set of harmonic polynomials, which are the elementary solutions of Laplace equation. By its definition, the method is named as Harmonic Polynomial Cell (HPC) method. The characteristics of the accuracy and efficiency of the HPC method are demonstrated by studying analytical cases. Comparisons will be made with some other existing boundary element based methods, e.g. Quadratic Boundary Element Method (QBEM) and the Fast Multipole Accelerated QBEM (FMA-QBEM) and a fourth order Finite Difference Method (FDM). To demonstrate the applications of the method, it is applied to some studies relevant for marine hydrodynamics. Sloshing in 3D rectangular tanks, a fully-nonlinear numerical wave tank, fully-nonlinear wave focusing on a semi-circular shoal, and the nonlinear wave diffraction of a bottom-mounted cylinder in regular waves are studied. The comparisons with the experimental results and other numerical results are all in satisfactory agreement, indicating that the present HPC method is a promising method in solving potential-flow problems. The underlying procedure of the HPC method could also be useful in other fields than marine hydrodynamics involved with solving Laplace equation.

  16. Graph-based active learning of agglomeration (GALA): a Python library to segment 2D and 3D neuroimages

    PubMed Central

    Nunez-Iglesias, Juan; Kennedy, Ryan; Plaza, Stephen M.; Chakraborty, Anirban; Katz, William T.

    2014-01-01

    The aim in high-resolution connectomics is to reconstruct complete neuronal connectivity in a tissue. Currently, the only technology capable of resolving the smallest neuronal processes is electron microscopy (EM). Thus, a common approach to network reconstruction is to perform (error-prone) automatic segmentation of EM images, followed by manual proofreading by experts to fix errors. We have developed an algorithm and software library to not only improve the accuracy of the initial automatic segmentation, but also point out the image coordinates where it is likely to have made errors. Our software, called gala (graph-based active learning of agglomeration), improves the state of the art in agglomerative image segmentation. It is implemented in Python and makes extensive use of the scientific Python stack (numpy, scipy, networkx, scikit-learn, scikit-image, and others). We present here the software architecture of the gala library, and discuss several designs that we consider would be generally useful for other segmentation packages. We also discuss the current limitations of the gala library and how we intend to address them. PMID:24772079

  17. A new combined prior based reconstruction method for compressed sensing in 3D ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Uddin, Muhammad S.; Islam, Rafiqul; Tahtali, Murat; Lambert, Andrew J.; Pickering, Mark R.

    2015-03-01

    Ultrasound (US) imaging is one of the most popular medical imaging modalities, with 3D US imaging gaining popularity recently due to its considerable advantages over 2D US imaging. However, as it is limited by long acquisition times and the huge amount of data processing it requires, methods for reducing these factors have attracted considerable research interest. Compressed sensing (CS) is one of the best candidates for accelerating the acquisition rate and reducing the data processing time without degrading image quality. However, CS is prone to introduce noise-like artefacts due to random under-sampling. To address this issue, we propose a combined prior-based reconstruction method for 3D US imaging. A Laplacian mixture model (LMM) constraint in the wavelet domain is combined with a total variation (TV) constraint to create a new regularization regularization prior. An experimental evaluation conducted to validate our method using synthetic 3D US images shows that it performs better than other approaches in terms of both qualitative and quantitative measures.

  18. Topographical surveys: Classical method versus 3D laser scanning. Case study - An application in civil engineering

    NASA Astrophysics Data System (ADS)

    Grigoraş, I.-R.; Covăsnianu, A.; Pleşu, G.; Benedict, B.

    2009-04-01

    The paper describes an experiment which took place in Iasi town, Romania, consisted in two different topographical survey techniques applied for one and the same objective placed in a block within the city (western part) - a thermal power station. The purpose was to compare those methods and to determine which one is proper to be used in this domain in terms of fastness, optimization and speed of data processing. First technique applied for our survey was the classical one, with a total station. Using the CAD technique, we obtained a final product (a dwg file) and a list of coordinates (a text file). The second method, which we focused our attention more, was the measurement with a very precise 3D laser scanstation, also very suitable in archeology. The data obtained were processed with special software. Result was a 3D model of the thermal power plant composed of measurable cloud point data. Finally, analyzing the advantages and disadvantages of each method, we came to the conclusion that the 3D laser scanning which we used matches well the application, in this case civil engineering, but the future of accepting and implementing this technique is in the hands of Romanian authorities.

  19. Comparing a novel automatic 3D method for LGE-CMR quantification of scar size with established methods.

    PubMed

    Woie, Leik; Måløy, Frode; Eftestøl, Trygve; Engan, Kjersti; Edvardsen, Thor; Kvaløy, Jan Terje; Ørn, Stein

    2014-02-01

    Current methods for the estimation of infarct size by late-enhanced cardiac magnetic imaging are based upon 2D analysis that first determines the size of the infarction in each slice, and thereafter adds the infarct sizes from each slice to generate a volume. We present a novel, automatic 3D method that estimates infarct size by a simultaneous analysis of all pixels from all slices. In a population of 54 patients with ischemic scars, the infarct size estimated by the automatic 3D method was compared with four established 2D methods. The new 3D method defined scar as the sum of all pixels with signal intensity (SI) ≥35 % of max SI from the complete myocardium, border zone: SI 35-50 % of max SI and core as SI ≥50 % of max SI. The 3D method yielded smaller infarct size (-2.8 ± 2.3 %) and core size (-3.0 ± 1.7 %) than the 2D method most similar to ours. There was no difference in the size of the border zone (0.2 ± 1.4 %). The 3D method demonstrated stronger correlations between scar size and left ventricular (LV) remodelling parameters (LV ejection fraction: r = -0.71, p < 0.0005, LV end-diastolic index: r = 0.54, p < 0.0005, and LV end-systolic index: r = 0.59, p < 0.0005) compared with conventional 2D methods. Infarct size estimation by our novel 3D automatic method is without the need for manual demarcation of the scar; it is less time-consuming and has a stronger correlation with remodelling parameters compared with existing methods. PMID:24249515

  20. A Novel 2D-to-3D Video Conversion Method Using Time-Coherent Depth Maps

    PubMed Central

    Yin, Shouyi; Dong, Hao; Jiang, Guangli; Liu, Leibo; Wei, Shaojun

    2015-01-01

    In this paper, we propose a novel 2D-to-3D video conversion method for 3D entertainment applications. 3D entertainment is getting more and more popular and can be found in many contexts, such as TV and home gaming equipment. 3D image sensors are a new method to produce stereoscopic video content conveniently and at a low cost, and can thus meet the urgent demand for 3D videos in the 3D entertaiment market. Generally, 2D image sensor and 2D-to-3D conversion chip can compose a 3D image sensor. Our study presents a novel 2D-to-3D video conversion algorithm which can be adopted in a 3D image sensor. In our algorithm, a depth map is generated by combining global depth gradient and local depth refinement for each frame of 2D video input. Global depth gradient is computed according to image type while local depth refinement is related to color information. As input 2D video content consists of a number of video shots, the proposed algorithm reuses the global depth gradient of frames within the same video shot to generate time-coherent depth maps. The experimental results prove that this novel method can adapt to different image types, reduce computational complexity and improve the temporal smoothness of generated 3D video. PMID:26131674

  1. A Novel 2D-to-3D Video Conversion Method Using Time-Coherent Depth Maps.

    PubMed

    Yin, Shouyi; Dong, Hao; Jiang, Guangli; Liu, Leibo; Wei, Shaojun

    2015-01-01

    In this paper, we propose a novel 2D-to-3D video conversion method for 3D entertainment applications. 3D entertainment is getting more and more popular and can be found in many contexts, such as TV and home gaming equipment. 3D image sensors are a new method to produce stereoscopic video content conveniently and at a low cost, and can thus meet the urgent demand for 3D videos in the 3D entertaiment market. Generally, 2D image sensor and 2D-to-3D conversion chip can compose a 3D image sensor. Our study presents a novel 2D-to-3D video conversion algorithm which can be adopted in a 3D image sensor. In our algorithm, a depth map is generated by combining glo