Science.gov

Sample records for 3d seismic investigations

  1. 3-D Seismic Experimentation and Advanced Processing/Inversion Development for Investigations of the Shallow Subsurface

    SciTech Connect

    Levander, Alan R.

    2004-12-01

    Under ER63662, 3-D Seismic Experimentation and Advanced Processing/Inversion Development for Investigations of the Shallow Subsurface, we have completed a number of subprojects associated with the Hill Air Force Base (HAFB) high resolution 3-D reflection/tomography dataset.

  2. 3-D Seismic Interpretation

    NASA Astrophysics Data System (ADS)

    Moore, Gregory F.

    2009-05-01

    This volume is a brief introduction aimed at those who wish to gain a basic and relatively quick understanding of the interpretation of three-dimensional (3-D) seismic reflection data. The book is well written, clearly illustrated, and easy to follow. Enough elementary mathematics are presented for a basic understanding of seismic methods, but more complex mathematical derivations are avoided. References are listed for readers interested in more advanced explanations. After a brief introduction, the book logically begins with a succinct chapter on modern 3-D seismic data acquisition and processing. Standard 3-D acquisition methods are presented, and an appendix expands on more recent acquisition techniques, such as multiple-azimuth and wide-azimuth acquisition. Although this chapter covers the basics of standard time processing quite well, there is only a single sentence about prestack depth imaging, and anisotropic processing is not mentioned at all, even though both techniques are now becoming standard.

  3. High-resolution 3D seismic investigation of giant seafloor craters in the Barents Sea

    NASA Astrophysics Data System (ADS)

    Waage, Malin; Bünz, Stefan; Andreassen, Karin

    2016-04-01

    Multiple giant craters exist on the seafloor in an area of ~ 100 km2 east of Bear Island Trough in the west-central Barents Sea. It has been hypothesized that these craters might have been caused by gas eruptions following the last deglaciation. Gas seepage from the seafloor occurs abundantly in this area. The crater area is still likely to represent one of the largest hot-spots for shallow marine methane release in the arctic. In summer 2015, we acquired high-resolution P-Cable 3D seismic data in this area covering several of the craters and their associated pingo structures. Due to the shallow and hard Triassic bedrock, penetration of the seismic signals is limited to approximately 450 ms bsf. The crater structures are up to 1 km wide and 40 m deep. Pingo structures occur on the rim of some of the craters and are up to 700 m wide and up to 15 m high above the surrounding seafloor. The 3D seismic data reveals faults, fracture networks and weakness zone that resemble pipes or similar vertical, focused fluid-flow structures in the Triassic sedimentary rocks below the craters. The principal orientation of the faults is in a ~ NW-SE direction that coincides with regional faulting from Permo-Triassic extension. The seismic data also show high-amplitude anomalies beneath some of representing shallow gas accumulations that might be the intermediate source of the gas seepage. This might suggest that craters are caused by high pressured gas that migrated from deeper petroleum systems and accumulated in the shallow Triassic rocks during the last glaciation. Previous work indicate that craters of similar size are likely a cause of enormous blow-outs of gas. Our study discusses the formation mechanisms and timing of these potential blow-out craters and whether they formed during the last deglaciation, when this area was likely quite unstable as severe glacial erosion caused localized high isostatic rebound rates here. We also investigate the role of gas hydrates that might

  4. 3D Seismic Experimentation and Advanced Processing/Inversion Development for Investigations of the Shallow Subsurface

    SciTech Connect

    Levander, Alan Richard; Zelt, Colin A.

    2015-03-17

    The work plan for this project was to develop and apply advanced seismic reflection and wide-angle processing and inversion techniques to high resolution seismic data for the shallow subsurface to seismically characterize the shallow subsurface at hazardous waste sites as an aid to containment and cleanup activities. We proposed to continue work on seismic data that we had already acquired under a previous DoE grant, as well as to acquire additional new datasets for analysis. The project successfully developed and/or implemented the use of 3D reflection seismology algorithms, waveform tomography and finite-frequency tomography using compressional and shear waves for high resolution characterization of the shallow subsurface at two waste sites. These two sites have markedly different near-surface structures, groundwater flow patterns, and hazardous waste problems. This is documented in the list of refereed documents, conference proceedings, and Rice graduate theses, listed below.

  5. 3D Elastic Seismic Wave Propagation Code

    1998-09-23

    E3D is capable of simulating seismic wave propagation in a 3D heterogeneous earth. Seismic waves are initiated by earthquake, explosive, and/or other sources. These waves propagate through a 3D geologic model, and are simulated as synthetic seismograms or other graphical output.

  6. Investigation into 3D earth structure and sources using full seismic waveforms

    NASA Astrophysics Data System (ADS)

    Covellone, Brian M.

    Seismograms are the result of the complex interactions between a seismic source, a propagation medium and the seismograph's response. Through the use of 3-dimensional modeling and full seismic waveform data, we quantify and minimize errors associated with the source and propagation medium within our data sets. We compile a new and unique earthquake catalog for the Middle East that is openly available to the public. We quantify the benefits of using a 3-dimensional model relative to a 1-dimensional model to minimizing error in earthquake moment tensors and identify where in the waveform 3-dimensional models outperform 1-dimensional models. Two new and unique 3-dimensional seismic wave speed models are computed for the Ontong Java plateau and eastern North American margin.Both models are significant improvements to the resolution of wave speed structures in the crust and upper mantle and provide new information for the evaluation of tectonic features.

  7. Investigation of drilling failure of Well A1, E-Field, onshore Niger Delta, Nigeria, using 3-D seismic data

    NASA Astrophysics Data System (ADS)

    Akinmosin, A.; Oladele, S.; Oriade, O. F.

    2016-02-01

    This study aimed at investigating reasons for failure of Well A1 that is surrounded by hydrocarbon discoveries in onshore Niger delta with a view to propose optimal location for a new well through interpretation of new 3-D seismic data. Sands encountered by Well A1 were delineated and tied to seismic. Structural closure was mapped and reservoirs at various depths were stacked and sectioned. Porosity, Net to Gross, and Gross Rock Volume of the reservoirs were computed. Well A1 was correlated to a nearby Well K4 and a good correlation was observed. A fault assisted multi reservoirs Prospect-E with south-westerly shift with depth was delineated on the hanging wall of structure building E-Fault whose closing contours is expected to trap hydrocarbon. Petrophysical properties of the reservoirs range from fair to good. Well A1 either perforated prospect-E beneath the oil water contact, completely missed prospect-E or punctured the wet foot wall of E-fault. Consequently, Well A1 could not impact the objective sands and only able to produce water. Well A1 failed because of wrong surface positioning which unsuccessfully targeted the shifting reservoirs. A successful exploratory well in E-Field would be a gently south-westerly deviated well whose vertical section would encounter the shallower sands and deviated section targeting the deeper sands with surface location at about 1 km southeast of Well A1.

  8. Investigating a clay landslide site using 3D P-wave reflection seismics in Lilla Edet, Sweden

    NASA Astrophysics Data System (ADS)

    Lundberg, E.; Malehmir, A.; Juhlin, C.; Bastani, M.

    2012-04-01

    Landslides are one of the most commonly occurring natural disasters. Global damages range in the billions of dollars and cost hundreds of lives each year; Sweden is not an exception. The main objectives of this geohazard-related project are (1) to improve the understanding of the geometrical shape and structure of clay areas, (2) to develop tools for monitoring changes in their geometry and physical properties as critical factors for landslide triggering, and (3) to provide robust analytical methods for assessing risks associated with clay landslides both in short and long terms. The project is sponsored by the Geoscientists Without Borders (GWB) Program of the Society of Exploration Geophysicists and is multidisciplinary, involving several geophysical methods such as ground gravity and magnetics, geoelectrics, controlled source/radio magnetotellurics, as well as reflection/refraction seismic methods (both P- and S-wave source and receivers). The test site is located on the shoreline of the Göta river that runs from lake Vänern to Göteborg on the southwest coast. The Göta river is the largest river in Sweden and follows the Götaälv Zone, which is an approximately 4 km wide fault zone dipping towards the west. The 3D seismic survey covers a large landslide scar that occurred about 30-40 years ago. The main objective of the 3D seismic is to image the bedrock topography in detail and possibly define layering in the sediments above. The 3D seismic data were acquired in September 2011 using a weight-drop source, 4 m geophone spacing and 20 m line spacing with the source activated at most geophone positions. Ten lines with 60 geophones on each line were shot in two overlapping patches. The preliminary results are encouraging and depict the bedrock topography at 100-150 ms or about 70-100 m. The central line in the 3D seismic survey is overlapped by a longer 2D reflection seismic profile, acquired using a dynamite source. The 2D reflection stack, as well as a travel

  9. Automating Shallow 3D Seismic Imaging

    SciTech Connect

    Steeples, Don; Tsoflias, George

    2009-01-15

    Our efforts since 1997 have been directed toward developing ultra-shallow seismic imaging as a cost-effective method applicable to DOE facilities. This report covers the final year of grant-funded research to refine 3D shallow seismic imaging, which built on a previous 7-year grant (FG07-97ER14826) that refined and demonstrated the use of an automated method of conducting shallow seismic surveys; this represents a significant departure from conventional seismic-survey field procedures. The primary objective of this final project was to develop an automated three-dimensional (3D) shallow-seismic reflection imaging capability. This is a natural progression from our previous published work and is conceptually parallel to the innovative imaging methods used in the petroleum industry.

  10. Investigation of the presence of transverse anisotropy in the 3D baseline seismic data at Ketzin, Germany

    NASA Astrophysics Data System (ADS)

    Kruachanta, Mingkhwan; Ivandic, Monika; Juhlin, Christopher

    2015-04-01

    A 3D seismic baseline survey was acquired within the EU funded CO2SINK project at Ketzin, Germany in 2005. CO2 was injected at about 630-650 meters depth into the Stuttgart Formation. The formation is heterogeneous with lithological facies of channel sandstones interbedded with floodplain mudstones. It underlies an approximately 210 meters thick sequence of claystone, silty claystone and anhydrite of the Weser and Arnstadt Formations. Claystone is considered to be an intrinsic-type anisotropic medium due to the platy shape of clay minerals. A thick interval of claystone caprock may show seismic velocity variation with propagation angle or seismic anisotropy. In this study, the degree of anisotropy was assumed to be weak. The processing steps followed conventional seismic data processing, except for the velocity estimation used for the moveout correction. The velocity approximation used nonhyperbolic or 4th order moveout for transverse anisotropic (TI) media which was proposed by Alkhalifah (1997). The 4th order moveout velocity approximation used the zero-dip normal moveout velocity (V nmo) and eta (?) anisotropic parameter for the velocity correction as defined by the following equations. tx = √(t02+X2/Vnmo2-2? X4/vnmo2 / t2o[1+2?)X2/Vnmo2]) where ? = 12[ 2 ] VVh2- - 1 nmoand tx is the traveltime, to is traveltime at zero offset, X is the offset and V h is horizontal velocity. Preliminary results indicate the presence of anisotropy in the study area with an eta parameter ranging from -0.185 to +0.180. Moveout velocity corrected stacked sections show an improvement in the continuity of reflections in the shallow part of the survey (above 500 ms), whereas there is no significant difference in the deeper region.

  11. Application of 3D reflection seismic methods to mineral exploration

    NASA Astrophysics Data System (ADS)

    Urosevic, Milovan

    2013-04-01

    Seismic exploration for mineral deposits is often tested by excessively complex structures, regolith heterogeneity, intrinsically low signal to noise ratio, ground relief and accessibility. In brown fields, where the majority of the seismic surveys have been conducted, existing infrastructure, old pits and tailings, heavy machinery in operation, mine drainage and other mine related activities are further challenging the application of seismic methods and furthermore increasing its cost. It is therefore not surprising that the mining industry has been reluctant to use seismic methods, particularly 3D for mineral exploration, primarily due to the high cost, but also because of variable performance, and in some cases ambiguous interpretation results. However, shallow mineral reserves are becoming depleted and exploration is moving towards deeper targets. Seismic methods will be more important for deeper investigations and may become the primary exploration tool in the near future. The big issue is if we have an appropriate seismic "strategy" for exploration of deep, complex mineral reserves. From the existing case histories worldwide we know that massive ore deposits (VMS, VHMS) constitute the best case scenario for the application of 3D seismic. Direct targeting of massive ore bodies from seismic has been documented in several case histories. Sediment hosted deposits could, in some cases, can also produce a detectable seismic signature. Other deposit types such as IOCG and skarn are much more challenging for the application of seismic methods. The complexity of these deposits requires new thinking. Several 3D surveys acquired over different deposit types will be presented and discussed.

  12. 3D seismic imaging, example of 3D area in the middle of Banat

    NASA Astrophysics Data System (ADS)

    Antic, S.

    2009-04-01

    3D seismic imaging was carried out in the 3D seismic volume situated in the middle of Banat region in Serbia. The 3D area is about 300 km square. The aim of 3D investigation was defining geology structures and techtonics especially in Mesozoik complex. The investigation objects are located in depth from 2000 to 3000 m. There are number of wells in this area but they are not enough deep to help in the interpretation. It was necessary to get better seismic image in deeper area. Acquisition parameters were satisfactory (good quality of input parameters, length of input data was 5 s, fold was up to 4000 %) and preprocessed data was satisfied. GeoDepth is an integrated system for 3D velocity model building and for 3D seismic imaging. Input data for 3D seismic imaging consist of preprocessing data sorted to CMP gathers and RMS stacking velocity functions. Other type of input data are geological information derived from well data, time migrated images and time migrated maps. Workflow for this job was: loading and quality control the input data (CMP gathers and velocity), creating initial RMS Velocity Volume, PSTM, updating the RMS Velocity Volume, PSTM, building the Initial Interval Velocity Model, PSDM, updating the Interval Velocity Model, PSDM. In the first stage the attempt is to derive initial velocity model as simple as possible as.The higher frequency velocity changes are obtained in the updating stage. The next step, after running PSTM, is the time to depth conversion. After the model is built, we generate a 3D interval velocity volume and run 3D pre-stack depth migration. The main method for updating velocities is 3D tomography. The criteria used in velocity model determination are based on the flatness of pre-stack migrated gathers or the quality of the stacked image. The standard processing ended with poststack 3D time migration. Prestack depth migration is one of the powerful tool available to the interpretator to develop an accurate velocity model and get

  13. Walker Ranch 3D seismic images

    DOE Data Explorer

    Robert J. Mellors

    2016-03-01

    Amplitude images (both vertical and depth slices) extracted from 3D seismic reflection survey over area of Walker Ranch area (adjacent to Raft River). Crossline spacing of 660 feet and inline of 165 feet using a Vibroseis source. Processing included depth migration. Micro-earthquake hypocenters on images. Stratigraphic information and nearby well tracks added to images. Images are embedded in a Microsoft Word document with additional information. Exact location and depth restricted for proprietary reasons. Data collection and processing funded by Agua Caliente. Original data remains property of Agua Caliente.

  14. A comparative study between a rectilinear 3-D seismic survey and a concentric-circle 3-D seismic survey

    SciTech Connect

    Maldonado, B.; Hussein, H.S.

    1994-12-31

    Due to the rectilinear nature of the previous 3D seismic survey, the details necessary for proper interpretation were absent. Theoretically, concentric 3D seismic technology may provide an avenue for gaining more and higher quality data coverage. Problems associated with recording a rectilinear 3D seismic grid over the salt dome in this area have created the need to investigate the use of such procedures as the concentric-circle 3D seismic acquisition technique. The difficulty of imaging salt dome flanks with conventional rectilinear 3D seismic may be a result of the inability to precisely predict the lateral velocity-field variation adjacent to both salt and sediments. The dramatic difference in the interval velocities of salt and sediments causes the returning ray to severely deviate from being a hyperbolic path. This hampers the ability to predict imaging points near the salt/sediment interface. Perhaps the most difficult areas to image with rectilinear seismic surveys are underneath salt overhangs. Modeling suggests that a significant increase in the number of rays captured from beneath a salt overhang can be achieved with the concentric-circle method. This paper demonstrates the use of the ``circle shoot`` on a survey conducted over a salt dome in the Gulf of Mexico. A total of 80 concentric circles cover an area which is equivalent to 31,000 acres. The final post-stack data were sorted into bins with dimensions of 25 meters by 25 meters. A comparison of 3D rectilinear shooting vs. 3D concentric circle shooting over the same area will show an improvement in data quality and signal-to-noise characteristics.

  15. Imaging fault zones using 3D seismic image processing techniques

    NASA Astrophysics Data System (ADS)

    Iacopini, David; Butler, Rob; Purves, Steve

    2013-04-01

    Significant advances in structural analysis of deep water structure, salt tectonic and extensional rift basin come from the descriptions of fault system geometries imaged in 3D seismic data. However, even where seismic data are excellent, in most cases the trajectory of thrust faults is highly conjectural and still significant uncertainty exists as to the patterns of deformation that develop between the main faults segments, and even of the fault architectures themselves. Moreover structural interpretations that conventionally define faults by breaks and apparent offsets of seismic reflectors are commonly conditioned by a narrow range of theoretical models of fault behavior. For example, almost all interpretations of thrust geometries on seismic data rely on theoretical "end-member" behaviors where concepts as strain localization or multilayer mechanics are simply avoided. Yet analogue outcrop studies confirm that such descriptions are commonly unsatisfactory and incomplete. In order to fill these gaps and improve the 3D visualization of deformation in the subsurface, seismic attribute methods are developed here in conjunction with conventional mapping of reflector amplitudes (Marfurt & Chopra, 2007)). These signal processing techniques recently developed and applied especially by the oil industry use variations in the amplitude and phase of the seismic wavelet. These seismic attributes improve the signal interpretation and are calculated and applied to the entire 3D seismic dataset. In this contribution we will show 3D seismic examples of fault structures from gravity-driven deep-water thrust structures and extensional basin systems to indicate how 3D seismic image processing methods can not only build better the geometrical interpretations of the faults but also begin to map both strain and damage through amplitude/phase properties of the seismic signal. This is done by quantifying and delineating the short-range anomalies on the intensity of reflector amplitudes

  16. Exploring the seismic expression of fault zones in 3D seismic volumes

    NASA Astrophysics Data System (ADS)

    Iacopini, David; Butler, Rob; Purves, Steve

    2016-04-01

    Mapping and understanding distributed deformation is a major challenge for the structural interpretation of seismic data. However, volumes of seismic signal disturbance with low signal/noise ratio are systematically observed within 3D seismic datasets around fault systems. These seismic disturbance zones (SDZ) are commonly characterized by complex perturbations of the signal and occur at the sub-seismic to seismic scale. They may store important information on deformation distributed around those larger scale structures that may be readily interpreted in conventional amplitude displays of seismic data scale. We introduce a method to detect fault-related disturbance zones and to discriminate between this and other noise sources such as those associated with the seismic acquisition (footprint noise). Two case studies, from the Taranaki basin and deep-water Niger delta are presented. These resolve structure within SDZs using tensor and semblance attributes along with conventional seismic mapping. The tensor attribute is more efficient in tracking volumes containing structural displacements while structurally-oriented semblance coherency is commonly disturbed by small waveform variations around the fault throw. We propose a workflow to map and cross-plot seismic waveform signal properties extracted from the seismic disturbance zone as a tool to investigate the seismic signature and explore seismic facies of a SDZ.

  17. Exploring the seismic expression of fault zones in 3D seismic volumes

    NASA Astrophysics Data System (ADS)

    Iacopini, D.; Butler, R. W. H.; Purves, S.; McArdle, N.; De Freslon, N.

    2016-08-01

    Mapping and understanding distributed deformation is a major challenge for the structural interpretation of seismic data. However, volumes of seismic signal disturbance with low signal/noise ratio are systematically observed within 3D seismic datasets around fault systems. These seismic disturbance zones (SDZ) are commonly characterized by complex perturbations of the signal and occur at the sub-seismic (10 s m) to seismic scale (100 s m). They may store important information on deformation distributed around those larger scale structures that may be readily interpreted in conventional amplitude displays of seismic data. We introduce a method to detect fault-related disturbance zones and to discriminate between this and other noise sources such as those associated with the seismic acquisition (footprint noise). Two case studies from the Taranaki basin and deep-water Niger delta are presented. These resolve SDZs using tensor and semblance attributes along with conventional seismic mapping. The tensor attribute is more efficient in tracking volumes containing structural displacements while structurally-oriented semblance coherency is commonly disturbed by small waveform variations around the fault throw. We propose a workflow to map and cross-plot seismic waveform signal properties extracted from the seismic disturbance zone as a tool to investigate the seismic signature and explore seismic facies of a SDZ.

  18. 3D Seismic Reflection Experiment over the Galicia Deep Basin

    NASA Astrophysics Data System (ADS)

    Sawyer, D. S.; Jordan, B.; Reston, T. J.; Minshull, T. A.; Klaeschen, D.; Ranero, C.; Shillington, D. J.; Morgan, J. K.

    2014-12-01

    In June thru September, 2013, a 3D reflection and a long offset seismic experiment were conducted at the Galicia rifted margin by investigators from the US, UK, Germany, and Spain. The 3D multichannel experiment covered 64 km by 20 km (1280 km2), using the RV Marcus Langseth. Four streamers 6 km long were deployed at 12.5 m hydrophone channel spacing. The streamers were 200 m apart. Two airgun arrays, each 3300 cu in, were fired alternately every 37.5 m, to collectively yield a 400 m wide sail line consisting of 8 CMP lines at 50 m spacing. The long offset seismic experiment included 72 short period OBS's deployed below the 3D reflection survey box. Most of the instruments recorded all the shots from the airgun array shots. The 3D seismic box covered a variety of geologic features. The Peridotite Ridge (PR), is associated with the exhumation of upper mantle rocks to the seafloor during the final stage of the continental separation between the Galicia Bank and the Grand Banks of Newfoundland. The S reflector is present below most of the continental blocks under the deep Galicia basin. S is interpreted to be a low-angle detachment fault formed late in the rifting process, and a number of rotated fault block basins and ranges containing pre and syn-rift sediments. Initial observations from stacked 3D seismic data, and samples of 2D pre-stack time migrated (PSTM) 3D seismic data show that the PR is elevated above the present seafloor in the South and not exposed through the seafloor in the North. The relative smoothness of the PR surface for the entire 20 km N-S contrasts with the more complex, shorter wavelength, faulting of the continental crustal blocks to the east. The PR does not seem to show offsets or any apparent internal structure. The PSTM dip lines show substantial improvement for the structures in the deep sedimentary basin East of the PR. These seem to extend the S reflector somewhat farther to the West. The migrated data show a substantial network of

  19. 3-D seismic imaging of complex geologies

    SciTech Connect

    Womble, D.E.; Dosanjh, S.S.; VanDyke, J.P.; Oldfield, R.A.; Greenberg, D.S.

    1995-02-01

    We present three codes for the Intel Paragon that address the problem of three-dimensional seismic imaging of complex geologies. The first code models acoustic wave propagation and can be used to generate data sets to calibrate and validate seismic imaging codes. This code reported the fastest timings for acoustic wave propagation codes at a recent SEG (Society of Exploration Geophysicists) meeting. The second code implements a Kirchhoff method for pre-stack depth migration. Development of this code is almost complete, and preliminary results are presented. The third code implements a wave equation approach to seismic migration and is a Paragon implementation of a code from the ARCO Seismic Benchmark Suite.

  20. 3-D seismic imaging of complex geologies

    NASA Astrophysics Data System (ADS)

    Womble, David E.; Dosanjh, Sudip S.; Vandyke, John P.; Oldfield, Ron A.; Greenberg, David S.

    We present three codes for the Intel Paragon that address the problem of three-dimensional seismic imaging of complex geologies. The first code models acoustic wave propagation and can be used to generate data sets to calibrate and validate seismic imaging codes. This code reported the fastest timings for acoustic wave propagation codes at a recent SEG (Society of Exploration Geophysicists) meeting. The second code implements a Kirchhoff method for pre-stack depth migration. Development of this code is almost complete, and preliminary results are presented. The third code implements a wave equation approach to seismic migration and is a Paragon implementation of a code from the ARCO Seismic Benchmark Suite.

  1. 3D Seismic Reflection Experiment Over the Galicia Deep Basin

    NASA Astrophysics Data System (ADS)

    Sawyer, Dale; Jordan, Brian; Tesi Sanjurjo, Mari; Alexanian, Ara; Morgan, Julia; Shillington, Donna; Reston, Timothy; Minshull, Timothy; Klaeschen, Dirk; Ranero, César

    2014-05-01

    In June thru September, 2013, a 3D reflection and a long offset seismic experiment were conducted at the Galicia rifted margin by investigators from the US, UK, Germany, and Spain. The 3D multichannel experiment covered 64 km by 20 km (1280 km2), using the RV Marcus Langseth. Four streamers 6 km long were deployed at 12.5 m hydrophone channel spacing. The streamers were 200 m apart. Two airgun arrays, each 3300 cu in, were fired alternately every 37.5 m, to collectively yield a 400 m wide sail line consisting of 8 CMP lines at 50 m spacing. The long offset seismic experiment included 72 short period OBS's deployed below the 3D reflection survey box. Most of the instruments recorded all the shots from the airgun array shots. The 3D seismic box covered a variety of geologic features. The Peridotite Ridge (PR), is associated with the exhumation of upper mantle rocks to the seafloor during the final stage of the continental separation between the Galicia Bank and the Grand Banks of Newfoundland. The S reflector is present below most of the continental blocks under the deep Galicia basin. S is interpreted to be a low-angle detachment fault formed late in the rifting process, and a number of rotated fault block basins and ranges containing pre and syn-rift sediments. Initial observations from stacked, but not yet migrated, 3D seismic data show that the PR is elevated above the present seafloor in the South and not exposed through the seafloor in the North. The relative smoothness of the PR surface for the entire 20 km N-S contrasts with the more complex, shorter wavelength, faulting of the continental crustal blocks to the east. The PR does not seem to show offsets or any apparent internal structure. However, migration will be required to see internal structure of the PR. Between the PR and the western most rifted continental crustal blocks, is a sedimentary basin about as wide as the PR and very different from the sedimentary basins bounded by the continental crustal

  2. Imaging thin-bed reservoirs with 3-D seismic

    SciTech Connect

    Hardage, B.A.

    1996-12-01

    This article explains how a 3-D seismic data volume, a vertical seismic profile (VSP), electric well logs and reservoir pressure data can be used to image closely stacked thin-bed reservoirs. This interpretation focuses on the Oligocene Frio reservoir in South Texas which has multiple thin-beds spanning a vertical interval of about 3,000 ft.

  3. 3-D seismic exploration in the Ames hole

    SciTech Connect

    Ainsworth, K.R.

    1995-09-01

    The Ames Crater of Major County, Oklahoma has been one of the more controversial drilling projects to emerge in the Mid-Continent province in this decade. Within the crater, dolomitic and granodiorite breccias produce substantial quantities of oil and gas within structurally controlled accumulations. To understand the structural complexities of the crater, Continental Resources, in partnership with other Ames operators, acquired 3-D seismic data in four separate acquisition projects across various exploratory and development projects across the crater. Integrated seismic and subsurface control revealed four separate features within the principal crater floor oil and gas accumulation. Using the 3-D data as a lead tool, these companies identified and developed a significant number of commercial tests within the limits of the seismic surveys. Although the tool generally proved to be successful, reservoir variability, velocity variations, and interpretational errors resulted in some non-commercial and dry tests.

  4. Targeted infill drilling at Stratton field using 3-D seismic

    SciTech Connect

    Suydam, J.R.; Reitz, D.T.

    1994-12-31

    Stratton field is located on the Vicksburg flexure trend in Nueces and Kleberg Counties, South Texas. It has produced more than 2.8 Tcf of gas since 1937 from Frio fluvial/deltaic sandstones and Vicksburg shallow-marine sandstones. The field is a combination stratigraphic and faulted structural trap, and contains numerous highly compartmentalized sandstone reservoirs. Continuous infield drilling is required to keep the field producing, and 3-D seismic data have been used to select the best locations for these wells. In 1992, an 8-mi{sup 2} seismic survey was completed in the southern end of the field, and the resulting structural interpretation presented many more fault traps than were apparent in the 2-D seismic interpretation. So far, all of the new wells drilled within the survey have encountered untapped compartments enclosed by fault traps. Furthermore, fault cuts in the new wells have always been within 20 ft of the position predicted by seismic data.

  5. Advanced computational tools for 3-D seismic analysis

    SciTech Connect

    Barhen, J.; Glover, C.W.; Protopopescu, V.A.

    1996-06-01

    The global objective of this effort is to develop advanced computational tools for 3-D seismic analysis, and test the products using a model dataset developed under the joint aegis of the United States` Society of Exploration Geophysicists (SEG) and the European Association of Exploration Geophysicists (EAEG). The goal is to enhance the value to the oil industry of the SEG/EAEG modeling project, carried out with US Department of Energy (DOE) funding in FY` 93-95. The primary objective of the ORNL Center for Engineering Systems Advanced Research (CESAR) is to spearhead the computational innovations techniques that would enable a revolutionary advance in 3-D seismic analysis. The CESAR effort is carried out in collaboration with world-class domain experts from leading universities, and in close coordination with other national laboratories and oil industry partners.

  6. NORTH HILL CREEK 3-D SEISMIC EXPLORATION PROJECT

    SciTech Connect

    Marc T. Eckels; David H. Suek; Denise H. Harrison; Paul J. Harrison

    2004-05-06

    Wind River Resources Corporation (WRRC) received a DOE grant in support of its proposal to acquire, process and interpret fifteen square miles of high-quality 3-D seismic data on non-allotted trust lands of the Uintah and Ouray (Ute) Indian Reservation, northeastern Utah, in 2000. Subsequent to receiving notice that its proposal would be funded, WRRC was able to add ten square miles of adjacent state and federal mineral acreage underlying tribal surface lands by arrangement with the operator of the Flat Rock Field. The twenty-five square mile 3-D seismic survey was conducted during the fall of 2000. The data were processed through the winter of 2000-2001, and initial interpretation took place during the spring of 2001. The initial interpretation identified multiple attractive drilling prospects, two of which were staked and permitted during the summer of 2001. The two initial wells were drilled in September and October of 2001. A deeper test was drilled in June of 2002. Subsequently a ten-well deep drilling evaluation program was conducted from October of 2002 through March 2004. The present report discusses the background of the project; design and execution of the 3-D seismic survey; processing and interpretation of the data; and drilling, completion and production results of a sample of the wells drilled on the basis of the interpreted survey. Fifteen wells have been drilled to test targets identified on the North Hill Creek 3-D Seismic Survey. None of these wildcat exploratory wells has been a dry hole, and several are among the best gas producers in Utah. The quality of the data produced by this first significant exploratory 3-D survey in the Uinta Basin has encouraged other operators to employ this technology. At least two additional 3-D seismic surveys have been completed in the vicinity of the North Hill Creek Survey, and five additional surveys are being planned for the 2004 field season. This project was successful in finding commercial oil, natural gas

  7. Targeted infill drilling at Stratton Field using 3-D seismic

    SciTech Connect

    Suydam, J.; Reitz, D.

    1994-09-01

    Stratton field is located on the Vicksburg flexure trend in Nueces and Kleberg counties, south Texas. It has produced over 2.8 tcf of gas since 1937 from Frio fluvial/deltaic sandstones and Vicksburg shallow marine sandstones. The field is a combination stratigraphic and faulted structural trap, and contains numerous highly compartmentalized sandstone reservoirs. Continuous infield drilling is required to keep the field producing, and 3-D seismic data have been used to select the best locations for these wells. In 1992, the Bureau of Economic Geology shot an 8-mi{sup 2} survey in the southern end of the field, and the resulting structural interpretation presented many more fault traps that were not apparent in the 2-D seismic interpretation. So far, all of the new wells drilled within the survey have encountered untapped compartments enclosed by fault traps. Furthermore, fault cuts in the new wells have always been within 20 ft of the position predicted by seismic data.

  8. 3D seismic imaging on massively parallel computers

    SciTech Connect

    Womble, D.E.; Ober, C.C.; Oldfield, R.

    1997-02-01

    The ability to image complex geologies such as salt domes in the Gulf of Mexico and thrusts in mountainous regions is a key to reducing the risk and cost associated with oil and gas exploration. Imaging these structures, however, is computationally expensive. Datasets can be terabytes in size, and the processing time required for the multiple iterations needed to produce a velocity model can take months, even with the massively parallel computers available today. Some algorithms, such as 3D, finite-difference, prestack, depth migration remain beyond the capacity of production seismic processing. Massively parallel processors (MPPs) and algorithms research are the tools that will enable this project to provide new seismic processing capabilities to the oil and gas industry. The goals of this work are to (1) develop finite-difference algorithms for 3D, prestack, depth migration; (2) develop efficient computational approaches for seismic imaging and for processing terabyte datasets on massively parallel computers; and (3) develop a modular, portable, seismic imaging code.

  9. Recovering physical property information from subduction plate boundaries using 3D full-waveform seismic inversion

    NASA Astrophysics Data System (ADS)

    Bell, R. E.; Morgan, J. V.; Warner, M.

    2013-12-01

    Our understanding of subduction margin seismogenesis has been revolutionised in the last couple of decades with the discovery that the size of the seismogenic zone may not be controlled simply by temperature and a broad spectrum of seismic behaviour exists from stick-slip to stable sliding. Laboratory and numerical experiments suggest that physical properties, particularly fluid pressure may play an important role in controlling the seismic behaviour of subduction margins. Although drilling can provide information on physical properties along subduction thrust faults at point locations at relatively shallow depths, correlations between physical properties and seismic velocity using rock physics relationships are required to resolve physical properties along the margin and down-dip. Therefore, high resolution seismic velocity models are key to recovering physical property information at subduction plate boundaries away from drill sites. 3D Full waveform inversion (FWI) is a technique pioneered by the oil industry to obtain high-resolution high-fidelity models of physical properties in the sub-surface. 3D FWI involves the inversion of low-frequency (>2 to <7 Hz), early arriving (principally transmitted) seismic data, to recover the macro (intermediate to long-wavelength) velocity structure. Although 2D FWI has been used to improve velocity models of subduction plate boundaries before, 3D FWI has not yet been attempted. 3D inversions have superior convergence and accuracy, as they sample the subsurface with multi-azimuth multiply-crossing wavefields. In this contribution we perform a suite of synthetic tests to investigate if 3D FWI could be used to better resolve physical property information along subduction margin plate boundaries using conventionally collected 3D seismic data. We base our analysis on the Muroto Basin area of the Nankai margin and investigate if the acquisition parameters and geometry of the subduction margin render 3D seismic data collected across

  10. Exploration 3-D Seismic Field Test/Native Tribes Initiative

    SciTech Connect

    Carroll, Herbert B.; Chen, K.C.; Guo, Genliang; Johnson, W.I.; Reeves,T.K.; Sharma,Bijon

    1999-04-27

    To determine current acquisition procedures and costs and to further the goals of the President's Initiative for Native Tribes, a seismic-survey project is to be conducted on Osage tribal lands. The goals of the program are to demonstrate the capabilities, costs, and effectiveness of 3-D seismic work in a small-operator setting and to determine the economics of such a survey. For these purposes, typical small-scale independent-operator practices are being followed and a shallow target chose in an area with a high concentration of independent operators. The results will be analyzed in detail to determine if there are improvements and/or innovations which can be easily introduced in field-acquisition procedures, in processing, or in data manipulation and interpretation to further reduce operating costs and to make the system still more active to the small-scale operator.

  11. Seismic source inversion using Green's reciprocity and a 3-D structural model for the Japanese Islands

    NASA Astrophysics Data System (ADS)

    Simutė, S.; Fichtner, A.

    2015-12-01

    We present a feasibility study for seismic source inversions using a 3-D velocity model for the Japanese Islands. The approach involves numerically calculating 3-D Green's tensors, which is made efficient by exploiting Green's reciprocity. The rationale for 3-D seismic source inversion has several aspects. For structurally complex regions, such as the Japan area, it is necessary to account for 3-D Earth heterogeneities to prevent unknown structure polluting source solutions. In addition, earthquake source characterisation can serve as a means to delineate existing faults. Source parameters obtained for more realistic Earth models can then facilitate improvements in seismic tomography and early warning systems, which are particularly important for seismically active areas, such as Japan. We have created a database of numerically computed 3-D Green's reciprocals for a 40°× 40°× 600 km size area around the Japanese Archipelago for >150 broadband stations. For this we used a regional 3-D velocity model, recently obtained from full waveform inversion. The model includes attenuation and radial anisotropy and explains seismic waveform data for periods between 10 - 80 s generally well. The aim is to perform source inversions using the database of 3-D Green's tensors. As preliminary steps, we present initial concepts to address issues that are at the basis of our approach. We first investigate to which extent Green's reciprocity works in a discrete domain. Considering substantial amounts of computed Green's tensors we address storage requirements and file formatting. We discuss the importance of the initial source model, as an intelligent choice can substantially reduce the search volume. Possibilities to perform a Bayesian inversion and ways to move to finite source inversion are also explored.

  12. Frio, Yegua objectives of E. Texas 3D seismic

    SciTech Connect

    1996-07-01

    Houston companies plan to explore deeper formations along the Sabine River on the Texas and Louisiana Gulf Coast. PetroGuard Co. Inc. and Jebco Seismic Inc., Houston, jointly secured a seismic and leasing option from Hankamer family et al. on about 120 sq miles in Newton County, Tex., and Calcasieu Parish, La. PetroGuard, which specializes in oilfield rehabilitation, has production experience in the area. Historic production in the area spans three major geologic trends: Oligocene Frio/Hackberry, downdip and mid-dip Eocene Yegua, and Eocene Wilcox. In the southern part of the area, to be explored first, the trends lie at 9,000--10,000 ft, 10,000--12,000 ft, and 14,000--15,000 ft, respectively. Output Exploration Co., an affiliate of Input/Output Inc., Houston, acquired from PetroGuard and Jebco all exploratory drilling rights in the option area. Output will conduct 3D seismic operations over nearly half the acreage this summer. Data acquisition started late this spring. Output plans to use a combination of a traditional land recording system and I/O`s new RSR 24 bit radio telemetry system because the area spans environments from dry land to swamp.

  13. Northern California Seismic Attenuation: 3-D Qp and Qs models

    NASA Astrophysics Data System (ADS)

    Eberhart-Phillips, D. M.

    2015-12-01

    The northern California crust exhibits a wide range of rock types and deformation processes which produce pronounced heterogeneity in regional attenuation. Using local earthquakes, 3-D Qp and Qs crustal models have been obtained for this region which includes the San Andreas fault system, the Central Valley, the Sierra Nevada batholith, and the Mendocino subduction volcanic system. Path attenuation t* values were determined from P and S spectra of 959 spatially distributed earthquakes, magnitude 2.5-6.0 from 2005-2014, using 1254 stations from NCEDC networks and IRIS Mendocino and Sierra Nevada temporary arrays. The t* data were used in Q inversions, using existing hypocenters and 3-D velocity models, with basic 10-km node spacing. The uneven data coverage was accounted for with linking of nodes into larger areas in order to provide useful Q images across the 3-D volume. The results at shallow depth (< 2 km) show very low Q in the Sacramento Delta, the Eureka area, and parts of the Bay Area. In the brittle crust, fault zones that have high seismicity exhibit low Q. In the lower crust, low Q is observed along fault zones that have large cumulative displacement and have experienced grain size reduction. Underlying active volcanic areas, low Q features are apparent below 20-km depth. Moderately high Q is associated with igneous rocks of the Sierra Nevada and Salinian block, while the Franciscan subduction complex shows moderately low Q. The most prominent high Q feature is related to the Great Valley Ophiolite.

  14. Recognizing Basement Fault Reactivation in 3D Seismic Datasets

    NASA Astrophysics Data System (ADS)

    Imber, J.; McCaffrey, K.; Holdsworth, R.; England, R.; Freeman, S.; Dore, T.; Geldjvik, G.

    2003-04-01

    3D seismic data are now widely used for hydrocarbon exploration and production, and because of its ability to image sub-surface structures, the technology represents one of the most important conceptual advances in the Earth Sciences in recent years. It provides an important tool capable of addressing fundamental questions concerning the way in which fault systems evolve in the continental crust, the effects of inherited crustal weakness on rifting style and the control of fault networks on reservoir properties. Preliminary analyses of published offshore seismic data demonstrate that there are quantifiable differences in the geometric evolution and growth of "thin-skinned" normal fault systems in which there is no direct basement involvement compared to those developed above little- and highly-reactivated basement structures. Reactivated fault systems are characterised by rapid strain localisation and fault lengths that are controlled by up-dip propagation of basement structures (Walsh et al. 2002). Thus, fault growth during reactivation is likely to be achieved by increasing cumulative displacement with negligible lateral propagation. Important questions remain, however, concerning the way in which faults grow and localise displacement during the earliest stages of reactivation. In particular, we have little detailed understanding of the extent to which basement fault geometry (e.g. polarity, segmentation) influences the pattern of faulting observed in the cover sequence, the kinematics of up-dip fault propagation and/or linkage, or the degree of displacement localisation at low bulk strains. Normal faults that developed in response to glacial retreat on the NE Atlantic Margin reactivate pre-existing Mesozoic, Caledonian and/or Precambrian structures and are characterised by low displacements (throws typically 100--101 m), thus representing the earliest stages in the development of a reactivated fault system. Spectacular images of postglacial and underlying

  15. Investigations in massive 3D gravity

    SciTech Connect

    Accioly, Antonio; Helayeel-Neto, Jose; Morais, Jefferson; Turcati, Rodrigo; Scatena, Eslley

    2011-05-15

    Some interesting gravitational properties of the Bergshoeff-Hohm-Townsend model (massive 3D gravity), such as the presence of a short-range gravitational force in the nonrelativistic limit and the existence of an impact-parameter-dependent gravitational deflection angle, are studied. Interestingly enough, these phenomena have no counterpart in the usual Einstein 3D gravity. In order to better understand the two aforementioned gravitational properties, they are also analyzed in the framework of 3D higher-derivative gravity with the Einstein-Hilbert term with the 'wrong sign'.

  16. Intraplate Seismicity and Lithospheric Strength as Inferred from 3D Seismic Models

    NASA Astrophysics Data System (ADS)

    Mooney, W. D.; Pollitz, F. F.; Ritsema, J.

    2014-12-01

    Focal mechanism studies and other stress indicators indicate that intraplate earthquakes in central and eastern North America are consistent with an ENE-WSW compressive stress field that acts on existing faults. Here we argue that either locally thinned lithosphere (as beneath the Reelfoot Rift, central US) or regional lithospheric thinning (as beneath the edge of the North American craton or the rifted continental margin) constitutes zones of relatively low lithospheric strength where crustal strain accumulates. We use seismic surface waves to determine the 3D shear-wave seismic velocity structure of the lithosphere, and find that the Reelfoot Rift is underlain by a zone with low mantle seismic velocities that extends to at least 200 km depth. Thus, the Reelfoot Rift, which hosts the New Madrid Seismic Zone, is unique among North American paleo-rifts in term of the properties in the mantle. We hypothesize that this low-velocity mantle volume is weaker than its surroundings and that the Reelfoot Rift consequently has relatively lower elastic plate thickness that would tend to concentrate tectonic stress within this zone. On a continental scale, the 3D velocity model clearly identifies an approximately 220-km-thick, high seismic velocity lithospheric root beneath the North America craton which has a low rate of crustal seismicity and very few events with Mw≥6. We attribute the relatively aseismic nature of the craton to dry, cold conditions within the cratonic lower crust and mantle lithosphere. Conversely, we find that a high proportion of intraplate events are concentrated around the pronounced lateral gradient in lithospheric thickness that surrounds the craton. We attribute this observation to a lateral decrease in lithospheric strength at the edge of the North American craton. This relationship between intraplate seismicity and lithospheric properties is apparent in maps that compare regional and continental lithospheric thickness with crustal seismicity. We

  17. 3D geophysical investigations of shallow karstic structures

    NASA Astrophysics Data System (ADS)

    Rousset, D.; Genthon, P.; Perroud, H.; Sénéchal, G.

    2003-04-01

    The accurate determination of shallow kastified areas is of major importance for the quantitative modelling of fluid transfer as well as for geotechnical issues. Near surface geophysics offers a broad range of tools dedicated to the study of voids and other cavities filled with water or sediments. We present the results of various geophysical studies (seismics, GPR, 2-D and 3-D DC resitivity) in the Baget area, a hydrologically well monitored zone, in the vicinity of Moulis underground laboratory in the Central Pyrenees. The studied area is a 1Km long segment of a narrow EW valley, located on the boundary between limestones and shales, with emphasis on a 100m long anomalous zone. begin{itemize} Seismics doesn't allow to derive a focused image of the very shallow (< 2m) structure but amplitude anomalies suggest the presence of scattering structures in the valley. GPR data clearly show the sedimentary filling of the valley, overlying the generally transparent limestone basement. Two highly reflective zones evidence the presence of heterogeneities. 2-D DC resistivity exhibits very different results whether the lines are in the direction of the valley or perpendicular to it. Results suggest a strong influence of the topography leading to completely erroneous conclusions without complementary data. The presentation is focused on GPR and DC resitivity methods. The limitations of 3-D DC inversion is partly overcome by transforming the data from pole-pole pattern to dipole-dipole, allowing us to get more details on the shallow and short wavelenght structures with conventional software. Voids are indicated by the presence of a temporary river and speleological exploration but the results of the study show the absence of big cavities under the surface, within the first meters of limestone. GPR and DC resitivity studies reveal the presence of shallow metric heterogeneities which can be the water conduit system. 3-D investigation is necessary to get consistent results.

  18. Tracking Paths of Ocean Source Ambient Seismic Noise into, and through, the 3D Earth

    NASA Astrophysics Data System (ADS)

    Reading, A. M.; Gal, M.; Morse, P. E.; Koper, K. D.; Hemer, M. A.; Rawlinson, N.; Salmon, M.; De Kool, M.; Kennett, B. L. N.

    2014-12-01

    Array measurements of seismic noise (microseisms) are emerging as independent observables that inform our knowledge of ocean storms. Using an improved implementation of IAS Capon analysis, we can infer the location and amplitude of multiple sources of seismic noise over multiple decades. For the Southern Ocean, we can use seismic records to assist in identifying shifting patterns of ocean storms. Thus we can investigate topics such as the disparity between wave height trends identified using calibrated satellite records, which appear to be in increasing over multiple decades, and wave heights measured directly using a wave-rider buoy, which does not show a significant change over the same time frame. The passage of wave energy from the water column to the solid Earth, and through the 3D Earth to the seismic array must be tracked effectively. In this contribution, we focus on understanding the passage of seismic noise through the 3D Earth. In particular, we investigate path deviations from 1D Earth models for body waves sources from a variety of locations in the Southern Ocean recorded at Australian seismic arrays. We also investigate path deviations of surface waves travelling across the Australian continent, using the AusREM Earth model. We also appraise other factors affecting the interpretation of slowness, backazimuth and amplitude from seismic array records. These include the effect of the bathymetry-related transfer function controlling energy entering the solid Earth from the water column and the impact of local geology at the site of the seismic array. For a season of storms in the southern hemisphere winter, we simulate the path of energy from a representative range of locations to Australia seismic arrays. We employ a wavefront tracking technique, fast marching, that can support heterogeneous structure and the consideration of multiple arrivals. We find that storms in some locations are subject to a much larger deviation from the expected path of energy

  19. 3D Modelling of Seismically Active Parts of Underground Faults via Seismic Data Mining

    NASA Astrophysics Data System (ADS)

    Frantzeskakis, Theofanis; Konstantaras, Anthony

    2015-04-01

    During the last few years rapid steps have been taken towards drilling for oil in the western Mediterranean sea. Since most of the countries in the region benefit mainly from tourism and considering that the Mediterranean is a closed sea only replenishing its water once every ninety years careful measures are being taken to ensure safe drilling. In that concept this research work attempts to derive a three dimensional model of the seismically active parts of the underlying underground faults in areas of petroleum interest. For that purpose seismic spatio-temporal clustering has been applied to seismic data to identify potential distinct seismic regions in the area of interest. Results have been coalesced with two dimensional maps of underground faults from past surveys and seismic epicentres, having followed careful reallocation processing, have been used to provide information regarding the vertical extent of multiple underground faults in the region of interest. The end product is a three dimensional map of the possible underground location and extent of the seismically active parts of underground faults. Indexing terms: underground faults modelling, seismic data mining, 3D visualisation, active seismic source mapping, seismic hazard evaluation, dangerous phenomena modelling Acknowledgment This research work is supported by the ESPA Operational Programme, Education and Life Long Learning, Students Practical Placement Initiative. References [1] Alves, T.M., Kokinou, E. and Zodiatis, G.: 'A three-step model to assess shoreline and offshore susceptibility to oil spills: The South Aegean (Crete) as an analogue for confined marine basins', Marine Pollution Bulletin, In Press, 2014 [2] Ciappa, A., Costabile, S.: 'Oil spill hazard assessment using a reverse trajectory method for the Egadi marine protected area (Central Mediterranean Sea)', Marine Pollution Bulletin, vol. 84 (1-2), pp. 44-55, 2014 [3] Ganas, A., Karastathis, V., Moshou, A., Valkaniotis, S., Mouzakiotis

  20. 3-D seismic velocity and attenuation structures in the geothermal field

    SciTech Connect

    Nugraha, Andri Dian; Syahputra, Ahmad; Fatkhan,; Sule, Rachmat

    2013-09-09

    We conducted delay time tomography to determine 3-D seismic velocity structures (Vp, Vs, and Vp/Vs ratio) using micro-seismic events in the geothermal field. The P-and S-wave arrival times of these micro-seismic events have been used as input for the tomographic inversion. Our preliminary seismic velocity results show that the subsurface condition of geothermal field can be fairly delineated the characteristic of reservoir. We then extended our understanding of the subsurface physical properties through determining of attenuation structures (Qp, Qs, and Qs/Qp ratio) using micro-seismic waveform. We combined seismic velocities and attenuation structures to get much better interpretation of the reservoir characteristic. Our preliminary attanuation structures results show reservoir characterization can be more clearly by using the 3-D attenuation model of Qp, Qs, and Qs/Qp ratio combined with 3-D seismic velocity model of Vp, Vs, and Vp/Vs ratio.

  1. 3-D visualisation and interpretation of seismic attributes extracted from large 3-D seismic datasets: Subregional and prospect evaluation, deepwater Nigeria

    SciTech Connect

    Sola, M.; Haakon Nordby, L.; Dailey, D.V.; Duncan, E.A. )

    1996-01-01

    High resolution 3-D visualization of horizon interpretation and seismic attributes from large 3-D seismic surveys in deepwater Nigeria has greatly enhanced the exploration team's ability to quickly recognize prospective segments of subregional and prospect specific scale areas. Integrated workstation generated structure, isopach and extracted horizon consistent, interval and windowed attributes are particularly useful in illustrating the complex structural and stratigraphical prospectivity of deepwater Nigeria. Large 3-D seismic volumes acquired over 750 square kilometers can be manipulated within the visualization system with attribute tracking capability that allows for real time data interrogation and interpretation. As in classical seismic stratigraphic studies, pattern recognition is fundamental to effective depositions facies interpretation and reservoir model construction. The 3-D perspective enhances the data interpretation through clear representation of relative scale, spatial distribution and magnitude of attributes. In deepwater Nigeria, many prospective traps rely on an interplay between syndepositional structure and slope turbidite depositional systems. Reservoir systems in many prospects appear to be dominated by unconfined to moderately focused slope feeder channel facies. These units have spatially complex facies architecture with feeder channel axes separated by extensive interchannel areas. Structural culminations generally have a history of initial compressional folding with late in extensional collapse and accommodation faulting. The resulting complex trap configurations often have stacked reservoirs over intervals as thick as 1500 meters. Exploration, appraisal and development scenarios in these settings can be optimized by taking full advantage of integrating high resolution 3-D visualization and seismic workstation interpretation.

  2. 3-D visualisation and interpretation of seismic attributes extracted from large 3-D seismic datasets: Subregional and prospect evaluation, deepwater Nigeria

    SciTech Connect

    Sola, M.; Haakon Nordby, L.; Dailey, D.V.; Duncan, E.A.

    1996-12-31

    High resolution 3-D visualization of horizon interpretation and seismic attributes from large 3-D seismic surveys in deepwater Nigeria has greatly enhanced the exploration team`s ability to quickly recognize prospective segments of subregional and prospect specific scale areas. Integrated workstation generated structure, isopach and extracted horizon consistent, interval and windowed attributes are particularly useful in illustrating the complex structural and stratigraphical prospectivity of deepwater Nigeria. Large 3-D seismic volumes acquired over 750 square kilometers can be manipulated within the visualization system with attribute tracking capability that allows for real time data interrogation and interpretation. As in classical seismic stratigraphic studies, pattern recognition is fundamental to effective depositions facies interpretation and reservoir model construction. The 3-D perspective enhances the data interpretation through clear representation of relative scale, spatial distribution and magnitude of attributes. In deepwater Nigeria, many prospective traps rely on an interplay between syndepositional structure and slope turbidite depositional systems. Reservoir systems in many prospects appear to be dominated by unconfined to moderately focused slope feeder channel facies. These units have spatially complex facies architecture with feeder channel axes separated by extensive interchannel areas. Structural culminations generally have a history of initial compressional folding with late in extensional collapse and accommodation faulting. The resulting complex trap configurations often have stacked reservoirs over intervals as thick as 1500 meters. Exploration, appraisal and development scenarios in these settings can be optimized by taking full advantage of integrating high resolution 3-D visualization and seismic workstation interpretation.

  3. Thrust fault growth within accretionary wedges: New Insights from 3D seismic reflection data

    NASA Astrophysics Data System (ADS)

    Orme, H.; Bell, R. E.; Jackson, C. A. L.

    2015-12-01

    The shallow parts of subduction megathrust faults are typically thought to be aseismic and incapable of propagating seismic rupture. The 2011 Tohoku-Oki earthquake, however, ruptured all the way to the trench, proving that in some locations rupture can propagate through the accretionary wedge. An improved understanding of the structural character and physical properties of accretionary wedges is therefore crucial to begin to assess why such anomalously shallow seismic rupture occurs. Despite its importance, we know surprisingly little regarding the 3D geometry and kinematics of thrust network development in accretionary prisms, largely due to a lack of 3D seismic reflection data providing high-resolution, 3D images of entire networks. Thus our current understanding is largely underpinned by observations from analogue and numerical modelling, with limited observational data from natural examples. In this contribution we use PSDM, 3D seismic reflection data from the Nankai margin (3D Muroto dataset, available from the UTIG Academic Seismic Portal, Marine Geoscience Data System) to examine how imbricate thrust fault networks evolve during accretionary wedge growth. Previous studies have reported en-echelon thrust fault geometries from the NW part of the dataset, and have related this complex structure to seamount subduction. We unravel the evolution of faults within the protothrust and imbricate thrust zones by interpreting multiple horizons across faults and measuring fault displacement and fold amplitude along-strike; by doing this, we are able to investigate the three dimensional accrual of strain. We document a number of local displacement minima along-strike of faults, suggesting that, the protothrust and imbricate thrusts developed from the linkage of smaller, previously isolated fault segments. We also demonstrate that the majority of faults grew upward from the décollement, although there is some evidence for downward fault propagation. Our observations

  4. Initial Look at 3d Seismic Data Acquired Over the Galicia Margin

    NASA Astrophysics Data System (ADS)

    Sawyer, D. S.; Reston, T. J.; Shillington, D. J.; Minshull, T. A.; Klaeschen, D.; Morgan, J. K.

    2013-12-01

    In June thru September, 2013, a 3D reflection and long offset seismic experiment was conducted at the Galicia rifted margin by investigators from the US, UK, Germany, and Spain. The 3D multichannel experiment covered 64 km by 20 km (1280 km2), using the RV Marcus Langseth. Four streamers 6 km long were deployed at 12.5 m hydrophone channel spacing. The streamers were 200 m apart. Two airgun arrays, each 3300 cu in, were fired alternately every 37.5 m, to collectively yield a 400 m wide sail line consisting of 8 CMP lines at 50 m spacing. The long offset seismic experiment included 72 short period OBS's deployed below the 3D reflection survey box. Most of the instruments recorded all the shots from the airgun array shots. A few of the instruments were deployed twice, once to densify the instruments on a single profile and then to be moved into the full array. Finally, 6 of the OBS's were deployed on a profile extending 90 km to the west of the 3D box, in order to use combined MCS and OBS data to locate the boundary between the oceanic crust and exhumed upper mantle. The 3D seismic box covered a variety of geologic features including the Peridotite Ridge (PR) associated with the exhumation of upper mantle rocks to the seafloor, the S reflector interpreted to be a low-angle detachment fault formed late in the rifting process, and a number of rotated fault block basins and ranges containing pre- and syn-rift sediments. Initial observations, based only on 2D seismic dip lines (albeit 400 m apart), show the along strike variation of the PR: ~1050 m higher than adjacent basement in the South of the 3D box and much increased in size, ~2200 m high in the North. Some cross-sections of the PR show apparent internal structure that may help identify the emplacement mechanism of the feature and its relationship with the boundary between rifted continental crust blocks and exhumed upper mantle rocks. To the immediate East and West of the PR there are strong negative

  5. Assessing a 3D smoothed seismicity model of induced earthquakes

    NASA Astrophysics Data System (ADS)

    Zechar, Jeremy; Király, Eszter; Gischig, Valentin; Wiemer, Stefan

    2016-04-01

    As more energy exploration and extraction efforts cause earthquakes, it becomes increasingly important to control induced seismicity. Risk management schemes must be improved and should ultimately be based on near-real-time forecasting systems. With this goal in mind, we propose a test bench to evaluate models of induced seismicity based on metrics developed by the CSEP community. To illustrate the test bench, we consider a model based on the so-called seismogenic index and a rate decay; to produce three-dimensional forecasts, we smooth past earthquakes in space and time. We explore four variants of this model using the Basel 2006 and Soultz-sous-Forêts 2004 datasets to make short-term forecasts, test their consistency, and rank the model variants. Our results suggest that such a smoothed seismicity model is useful for forecasting induced seismicity within three days, and giving more weight to recent events improves forecast performance. Moreover, the location of the largest induced earthquake is forecast well by this model. Despite the good spatial performance, the model does not estimate the seismicity rate well: it frequently overestimates during stimulation and during the early post-stimulation period, and it systematically underestimates around shut-in. In this presentation, we also describe a robust estimate of information gain, a modification that can also benefit forecast experiments involving tectonic earthquakes.

  6. Geological characterisation of complex reservoirs using 3D seismic: Case studies

    NASA Astrophysics Data System (ADS)

    Benaissa, Zahia; Benaïssa, Abdelkader; Seghir Baghaoui, Mohamed; Bendali, Mohamed; Chami, Adel; Khelifi Touhami, Médina; Ouadfeul, Sid Ali; Boudella, Amar

    2014-05-01

    3D seismic allows getting a set of numerous closely-spaced seismic lines that provide a high spatially sampled measure of subsurface reflectivity. It leads to an accurate interpretation of seismic reflection data, which is one of the most important stages of a successful hydrocarbons exploration, especially in the reservoirs characterised by complex geological setting. We present here two case studies pertaining to two Algerian hydrocarbon fields. Considering the positive results obtained from 2D seismic interpretation, several wells were drilled. Some of them have proved dry, due certainly to inaccurate seismic interpretation because of non standard geological context. For the first case, the high quality of the 3D seismic data allowed to reveal, on all the inlines and crosslines, the existence of paleovalleys under the top of the Ordovician (unit IV) reservoir. The mapping of these paleovalleys clearly showed that the dry well, contrary to the other wells, was implanted outside paleovalleys. This fact was confirmed by the analysis of well data. The second case study concerns the problem of andesitic eruptive deposits on the top of the Ordovician reservoir, which condition the geometry and continuity of this reservoir and cause uncertainties in the mapping of the Hercynian unconformity. Well data associated with 3D seismic response shows that eruptive deposits generate high impedance anomaly because of the high density and velocity of andesites. We used this information to interpret these eruptive rocks as being responsible of high impedance anomalies, inside the Ordovician reservoir, on the impedance volume generated from the 3D seismic data. A 3D extraction of the anomalies allowed an accurate localisation of the andesites. So, it appears, according to these two case studies, that for an efficient recovery of hydrocarbons, we have to rely, first of all, on an accurate seismic interpretation before we use microscopic measurements. 3D seismic, once again, remains

  7. 3D Full Seismic Waveform Tomography of NW Turkey and Surroundings

    NASA Astrophysics Data System (ADS)

    Cubuk, Yesim; Fichtner, Andreas; Taymaz, Tuncay

    2015-04-01

    Northward collision of the Arabian plate with the Eurasian plate, and interaction of the motion between dynamic processes originated from the subduction of the African plate beneath the Aegean generated very complex tectonic structures in the study region. Western Turkey is among one of the most active extensional regions in the world and the study area is mainly located where the extensional Aegean and the right-lateral strike-slip North Anatolian Fault Zone (NAFZ) intersects. Therefore, the tectonic framework of the NW Turkey and the Marmara region is mainly characterized by the transition between the strike-slip tectonics to the extensional tectonics. The Sea of Marmara region has been subjected to several active and passive seismic investigations, nevertheless the accurate knowledge on the heterogeneity in the crust and upper mantle beneath the study area still remains enigmatic. On small-scale tomography problems, seismograms strongly reflect the effects of heterogeneities and the scattering properties of the Earth. Thus, the knowledge of high-resolution seismic imaging with an improved 3D radially anisotropic crustal model of the NW Turkey will enable better localization of earthquakes, identification of faults as well as the improvement of the seismic hazard assessment. For this purpose, we aim to develop 3D radially anisotropic subsurface structure of the Sea of Marmara and NW Turkey crust based on full waveform adjoint tomography method. The earthquake data were principally obtained from the Kandilli Observatory and Earthquake Research Institute (KOERI) and Earthquake Research Center (AFAD-DAD) database. In addition to this, some of the seismic waveform data extracted from the Hellenic Unified Seismic Network (HUSN) stations that are located within our study region were also used in this study. We have selected and simulated waveforms of earthquakes with magnitudes 4.0 ≤ Mw ≤ 6.7 occurred in the period between 2007-2014 to determine the 3D velocity

  8. Parallel 3D Simulation of Seismic Wave Propagation in the Structure of Nobi Plain, Central Japan

    NASA Astrophysics Data System (ADS)

    Kotani, A.; Furumura, T.; Hirahara, K.

    2003-12-01

    We performed large-scale parallel simulations of the seismic wave propagation to understand the complex wave behavior in the 3D basin structure of the Nobi Plain, which is one of the high population cities in central Japan. In this area, many large earthquakes occurred in the past, such as the 1891 Nobi earthquake (M8.0), the 1944 Tonankai earthquake (M7.9) and the 1945 Mikawa earthquake (M6.8). In order to mitigate the potential disasters for future earthquakes, 3D subsurface structure of Nobi Plain has recently been investigated by local governments. We referred to this model together with bouguer anomaly data to construct a detail 3D basin structure model for Nobi plain, and conducted computer simulations of ground motions. We first evaluated the ground motions for two small earthquakes (M4~5); one occurred just beneath the basin edge at west, and the other occurred at south. The ground motions from these earthquakes were well recorded by the strong motion networks; K-net, Kik-net, and seismic intensity instruments operated by local governments. We compare the observed seismograms with simulations to validate the 3D model. For the 3D simulation we sliced the 3D model into a number of layers to assign to many processors for concurrent computing. The equation of motions are solved using a high order (32nd) staggered-grid FDM in horizontal directions, and a conventional (4th-order) FDM in vertical direction with the MPI inter-processor communications between neighbor region. The simulation model is 128km by 128km by 43km, which is discritized at variable grid size of 62.5-125m in horizontal directions and of 31.25-62.5m in vertical direction. We assigned a minimum shear wave velocity is Vs=0.4km/s, at the top of the sedimentary basin. The seismic sources for the small events are approximated by double-couple point source and we simulate the seismic wave propagation at maximum frequency of 2Hz. We used the Earth Simulator (JAMSTEC, Yokohama Inst) to conduct such

  9. SCEC/CME CyberShake: Probabilistic Seismic Hazard Analysis Using 3D Seismic Waveform Modeling

    NASA Astrophysics Data System (ADS)

    Callaghan, S.; Maechling, P. J.; Cui, Y.; Faerman, M.; Field, E.; Graves, R.; Gupta, N.; Gupta, V.; Jordan, T. H.; Kesselman, C.; Mehta, G.; Okaya, D.; Vahi, K.; Zhao, L.

    2005-12-01

    Researchers on the SCEC Community Modeling Environment (SCEC/CME) Project are calculating Probabilistic Seismic Hazard Curves for several sites in the Los Angeles area. The hazard curves calculated in this study use Intensity Measure Relationships (IMRs) based on 3D ground motion simulations rather than on attenuation relationships. State-of-the-art Probabilistic Seismic Hazard Analysis (PSHA) is currently conducted using IMRs that use empirically-based attenuation relationships. These attenuation relationships represent relatively simple analytical models based on the regression of observed data. However, it is widely believed that significant improvements in SHA will rely on the use of more physics-based, waveform modeling. In fact, a more physics-based approach to PSHA was endorsed in a recent assessment of earthquake science by National Research Council (2003). In order to introduce the use of 3D seismic waveform modeling into PSHA hazard curve calculations, the SCEC/CME CyberShake group is integrating state-of-the-art PSHA software tools (OpenSHA), SCEC-developed geophysical models (SCEC CVM3.0), validated anelastic wave modeling (AWM) software, and state-of-the-art computational technologies including high performance computing and grid-based scientific workflows in an effort to develop an OpenSHA-compatible 3D waveform-based IMR component. This will allow researchers to combine a new class of waveform-based IMRs with the large number of existing PSHA components, such as Earthquake Rupture Forecasts (ERF's), that are currently implemented in the OpenSHA system. To calculate a probabilistic hazard curve for a site of interest, we use the OpenSHA implementation of the NSHMP-2002 ERF and identify all ruptures within 200km of the site of interest. For each of these ruptures, we convert the NSHMP-2002 rupture definition into one, or more, Ruptures with Slip Time History (Rupture Variations) using newly developed Rupture Generator software. Strain Green Tensors are

  10. Time-lapse 3-D seismic imaging of shallow subsurface contaminant flow.

    PubMed

    McKenna, J; Sherlock, D; Evans, B

    2001-12-01

    This paper presents a physical modelling study outlining a technique whereby buoyant contaminant flow within water-saturated unconsolidated sand was remotely monitored utilizing the time-lapse 3-D (TL3-D) seismic response. The controlled temperature and pressure conditions, along with the high level of acquisition repeatability attainable using sandbox physical models, allow the TL3-D seismic response to pore fluid movement to be distinguished from all other effects. TL3-D seismic techniques are currently being developed to monitor hydrocarbon reserves within producing reservoirs in an endeavour to improve overall recovery. However, in many ways, sandbox models under atmospheric conditions more accurately simulate the shallow subsurface than petroleum reservoirs. For this reason, perhaps the greatest application for analogue sandbox modelling is to improve our understanding of shallow groundwater and environmental flow mechanisms. Two fluid flow simulations were conducted whereby air and kerosene were injected into separate water-saturated unconsolidated sand models. In both experiments, a base 3-D seismic volume was recorded and compared with six later monitor surveys recorded while the injection program was conducted. Normal incidence amplitude and P-wave velocity information were extracted from the TL3-D seismic data to provide visualization of contaminant migration. Reflection amplitudes displayed qualitative areal distribution of fluids when a suitable impedance contrast existed between pore fluids. TL3-D seismic reflection tomography can potentially monitor the change in areal distribution of fluid contaminants over time, indicating flow patterns. However, other research and this current work have not established a quantifiable relationship between either normal reflection amplitudes and attenuation and fluid saturation. Generally, different pore fluids will have unique seismic velocities due to differences in compressibility and density. The predictable

  11. 3D seismic data interpretation of Boonsville Field, Texas

    NASA Astrophysics Data System (ADS)

    Alhakeem, Aamer Ali

    The Boonsville field is one of the largest gas fields in the US located in the Fort Worth Basin, north central Texas. The highest potential reservoirs reside in the Bend Conglomerate deposited during the Pennsylvanian. The Boonsville data set is prepared by the Bureau of Economic Geology at the University of Texas, Austin, as part of the secondary gas recovery program. The Boonsville field seismic data set covers an area of 5.5 mi2. It includes 38 wells data. The Bend Conglomerate is deposited in fluvio-deltaic transaction. It is subdivided into many genetic sequences which include depositions of sandy conglomerate representing the potential reserves in the Boonsville field. The geologic structure of the Boonsville field subsurface are visualized by constructing structure maps of Caddo, Davis, Runaway, Beans Cr, Vineyard, and Wade. The mapping includes time structure, depth structure, horizon slice, velocity maps, and isopach maps. Many anticlines and folds are illustrated. Karst collapse features are indicated specially in the lower Atoka. Dipping direction of the Bend Conglomerate horizons are changing from dipping toward north at the top to dipping toward east at the bottom. Stratigraphic interpretation of the Runaway Formation and the Vineyard Formation using well logs and seismic data integration showed presence of fluvial dominated channels, point bars, and a mouth bar. RMS amplitude maps are generated and used as direct hydrocarbon indicator for the targeted formations. As a result, bright spots are indicated and used to identify potential reservoirs. Petrophysical analysis is conducted to obtain gross, net pay, NGR, water saturation, shale volume, porosity, and gas formation factor. Volumetric calculations estimated 989.44 MMSCF as the recoverable original gas in-place for a prospect in the Runaway and 3.32 BSCF for a prospect in the Vineyard Formation.

  12. SEISVIZ3D: Stereoscopic system for the representation of seismic data - Interpretation and Immersion

    NASA Astrophysics Data System (ADS)

    von Hartmann, Hartwig; Rilling, Stefan; Bogen, Manfred; Thomas, Rüdiger

    2015-04-01

    The seismic method is a valuable tool for getting 3D-images from the subsurface. Seismic data acquisition today is not only a topic for oil and gas exploration but is used also for geothermal exploration, inspections of nuclear waste sites and for scientific investigations. The system presented in this contribution may also have an impact on the visualization of 3D-data of other geophysical methods. 3D-seismic data can be displayed in different ways to give a spatial impression of the subsurface.They are a combination of individual vertical cuts, possibly linked to a cubical portion of the data volume, and the stereoscopic view of the seismic data. By these methods, the spatial perception for the structures and thus of the processes in the subsurface should be increased. Stereoscopic techniques are e. g. implemented in the CAVE and the WALL, both of which require a lot of space and high technical effort. The aim of the interpretation system shown here is stereoscopic visualization of seismic data at the workplace, i.e. at the personal workstation and monitor. The system was developed with following criteria in mind: • Fast rendering of large amounts of data so that a continuous view of the data when changing the viewing angle and the data section is possible, • defining areas in stereoscopic view to translate the spatial impression directly into an interpretation, • the development of an appropriate user interface, including head-tracking, for handling the increased degrees of freedom, • the possibility of collaboration, i.e. teamwork and idea exchange with the simultaneous viewing of a scene at remote locations. The possibilities offered by the use of a stereoscopic system do not replace a conventional interpretation workflow. Rather they have to be implemented into it as an additional step. The amplitude distribution of the seismic data is a challenge for the stereoscopic display because the opacity level and the scaling and selection of the data have to

  13. Gray-level transformation and Canny edge detection for 3D seismic discontinuity enhancement

    NASA Astrophysics Data System (ADS)

    Di, Haibin; Gao, Dengliang

    2014-11-01

    In a 3D seismic survey, detecting seismic discontinuities is vital to robust structural and stratigraphic analysis in the subsurface. Previous methods have difficulty highlighting subtle discontinuities from seismic data in cases where the local amplitude variation is of non-zero mean. This study proposes implementing a gray-level transformation and the Canny edge detector for improved imaging of discontinuities. Specifically, the new process transforms seismic signals to be of zero mean and helps amplify subtle discontinuities, leading to an enhanced visualization for structural and stratigraphic details. Applications to various 3D seismic datasets demonstrate that the new algorithm helps better define channels, faults, and fractures than the traditional similarity, amplitude gradient, and semblance attributes.

  14. Poor boy 3D seismic effort yields South Central Kentucky discovery

    SciTech Connect

    Hanratty, M.

    1996-11-04

    Clinton County, Ky., is on the eastern flank of the Cincinnati arch and the western edge of the Appalachian basin and the Pine Mountain overthrust. Clinton County has long been known for high volume fractured carbonate wells. The discovery of these fractured reservoir, unfortunately, has historically been serendipitous. The author currently uses 2D seismic and satellite imagery to design 3D high resolution seismic shoots. This method has proven to be the most efficient and is the core of his program. The paper describes exploration methods, seismic acquisition, well data base, and seismic interpretation.

  15. Q AS A LITHOLOGICAL/HYDROCARBON INDICATOR: FROM FULL WAVEFORM SONIC TO 3D SURFACE SEISMIC

    SciTech Connect

    Jorge O. Parra; C.L. Hackert; L. Wilson; H.A. Collier; J. Todd Thomas

    2006-03-31

    The goal of this project was to develop a method to exploit viscoelastic rock and fluid properties to greatly enhance the sensitivity of surface seismic measurements to the presence of hydrocarbon saturation. To reach the objective, Southwest Research Institute scientists used well log, lithology, production, and 3D seismic data from an oil reservoir located on the Waggoner Ranch in north central Texas. The project was organized in three phases. In the first phase, we applied modeling techniques to investigate seismic- and acoustic-frequency wave attenuation and its effect on observable wave attributes. We also gathered existing data and acquired new data from the Waggoner Ranch field, so that all needed information was in place for the second phase. During the second phase, we developed methods to extract attenuation from borehole acoustic and surface seismic data. These methods were tested on synthetic data constructed from realistic models and real data. In the third and final phase of the project, we applied this technology to a full data set from the Waggoner site. The results presented in this Final Report show that geological conditions at the site did not allow us to obtain interpretable results from the Q processing algorithm for 3D seismic data. However, the Q-log processing algorithm was successfully applied to full waveform sonic data from the Waggoner site. A significant part of this project was technology transfer. We have published several papers and conducted presentations at professional conferences. In particular, we presented the Q-log algorithm and applications at the Society of Exploration Geophysicists (SEG) Development and Production Forum in Austin, Texas, in May 2005. The presentation attracted significant interest from the attendees and, at the request of the SEG delegates, it was placed on the Southwest Research Institute Internet site. The presentation can be obtained from the following link: http://www.swri.org/4org/d15/elecsys

  16. Understanding North Texas Seismicity: A Joint Analysis of Seismic Data and 3D Pore Pressure Modeling

    NASA Astrophysics Data System (ADS)

    DeShon, H. R.; Hornbach, M. J.; Ellsworth, W. L.; Oldham, H. R.; Hayward, C.; Stump, B. W.; Frohlich, C.; Olson, J. E.; Luetgert, J. H.

    2014-12-01

    In November 2013, a series of earthquakes began along a mapped ancient fault system near Azle, Texas. The Azle events are the third felt earthquake sequence in the Fort Worth (Barnett Shale) Basin since 2008, and several production and injection wells in the area are drilled to depths near the recent seismic activity. Understanding if and/or how injection and removal of fluids in the crystalline crust reactivates faults have important implications for seismology, the energy industry, and society. We assessed whether the Azle earthquakes were induced using a joint analysis of the earthquake data, subsurface geology and fault structure, and 3D pore pressure modeling. Using a 12-station temporary seismic deployment, we have recorded and located >300 events large enough to be recorded on multiple stations and 1000s of events during periods of swarm activity. High-resolution locations and focal mechanisms indicate that events occurred on NE-SW trending, steeply dipping normal faults associated with the southern end of the Newark East Fault Zone with hypocenters between 2-8 km depth. We considered multiple causes that might have changed stress along this system. Earthquakes resulting from natural processes, though perhaps unlikely in this historically inactive region, can be neither ruled out nor confirmed due to lack of information on the natural stress state of these faults. Analysis of lake and groundwater variations near Azle showed that no significant stress changes occurred prior to or during the earthquake sequence. In contrast, analysis of pore-pressure models shows that the combination of formation water production and wastewater injection near the fault could have caused pressure increases that induced earthquakes on near-critically stressed faults.

  17. Investigating 3d Reconstruction Methods for Small Artifacts

    NASA Astrophysics Data System (ADS)

    Evgenikou, V.; Georgopoulos, A.

    2015-02-01

    Small artifacts have always been a real challenge when it comes to 3D modelling. They usually present severe difficulties for their 3D reconstruction. Lately, the demand for the production of 3D models of small artifacts, especially in the cultural heritage domain, has dramatically increased. As with many cases, there are no specifications and standards for this task. This paper investigates the efficiency of several mainly low cost methods for 3D model production of such small artifacts. Moreover, the material, the color and the surface complexity of these objects id also investigated. Both image based and laser scanning methods have been considered as alternative data acquisition methods. The evaluation has been confined to the 3D meshes, as texture depends on the imaging properties, which are not investigated in this project. The resulting meshes have been compared to each other for their completeness, and accuracy. It is hoped that the outcomes of this investigation will be useful to researchers who are planning to embark into mass production of 3D models of small artifacts.

  18. Thrust fault segmentation and downward fault propagation in accretionary wedges: New Insights from 3D seismic reflection data

    NASA Astrophysics Data System (ADS)

    Orme, Haydn; Bell, Rebecca; Jackson, Christopher

    2016-04-01

    The shallow parts of subduction megathrust faults are typically thought to be aseismic and incapable of propagating seismic rupture. The 2011 Tohoku-Oki earthquake, however, ruptured all the way to the trench, proving that in some locations rupture can propagate through the accretionary wedge. An improved understanding of the structural character and physical properties of accretionary wedges is therefore crucial to begin to assess why such anomalously shallow seismic rupture occurs. Despite its importance, we know surprisingly little regarding the 3D geometry and kinematics of thrust network development in accretionary prisms, largely due to a lack of 3D seismic reflection data providing high-resolution, 3D images of entire networks. Thus our current understanding is largely underpinned by observations from analogue and numerical modelling, with limited observational data from natural examples. In this contribution we use PSDM, 3D seismic reflection data from the Nankai margin (3D Muroto dataset, available from the UTIG Academic Seismic Portal, Marine Geoscience Data System) to examine how imbricate thrust fault networks evolve during accretionary wedge growth. We unravel the evolution of faults within the protothrust and imbricate thrust zones by interpreting multiple horizons across faults and measuring fault displacement and fold amplitude along-strike; by doing this, we are able to investigate the three dimensional accrual of strain. We document a number of local displacement minima along-strike of faults, suggesting that, the protothrust and imbricate thrusts developed from the linkage of smaller, previously isolated fault segments. Although we often assume imbricate faults are likely to have propagated upwards from the décollement we show strong evidence for fault nucleation at shallow depths and downward propagation to intersect the décollement. The complex fault interactions documented here have implications for hydraulic compartmentalisation and pore

  19. Development of seismic anisotropy during subduction-induced 3D mantle flow

    NASA Astrophysics Data System (ADS)

    Faccenda, M.; capitanio, F. A.

    2012-12-01

    Subduction zones are convergent margins where the rigid lithosphere sinks into the Earth's mantle inducing complex 3D flow patterns. Seismic anisotropy generated by strain-induced lattice/crystal preferred orientation (LPO/CPO) of intrinsically anisotropic minerals is commonly used to study flow in the mantle and its relations with plate motions. As the development of seismic anisotropy due to upper and lower plate motions occurs at depths and timescales such that it is not directly observable, numerical modelling provides a useful tool to investigate these processes. We computed the seismic anisotropy of dry olivine-enstatite aggregates due to strain-induced LPO in 3D mechanical models of dynamic subduction by using, respectively, D-Rex and Underworld. Subsequently, FSTRACK was used to compute seismogram synthetics and SKS splitting patterns. We found that for relatively narrow subducting plates, retreat motions are maximized producing strong subslab trench-parallel anisotropy. Here, synthetic data reproduce quite well the observations in analogous subduction systems like Calabria and South Sandwich, where the fast azimuths orients parallel to the trench in the forearc and follow the toroidal flow patterns on the slab edges. Furthermore, we found that the amount of anisotropy is proportional to the amount of subduction, while it does not depend on the rate at which the plate subducts. On the other hand, larger subducting plates subducts mainly by plate advance, favoring poloidal motions and trench-perpendicular anisotropy. Additional Earth-like plate geometries involving along-trench variation of the subducting plate age that induces differential slab retreat motions are considered. We also tested different olivine fabrics (A, B, C, E type), yielding distinct SKS splitting patterns that may help to constrain the composition of the upper mantle. Although more sophisticated numerical modelling taking into account temperature-dependent mantle rock rheologies and P

  20. Areal 3-D seismic technique for reservoir delineation: Case history from offshore Niger Delta

    SciTech Connect

    Idowu, A.O. )

    1993-02-01

    In the 1950s, early exploration period in the Niger Delta witnessed the use of 2-D (two dimensional) seismic reflection method which adequate for imaging large subsurface geologic features including growth faulting and roll-over anticlines. This technique involves the Common-Depth-Point method (CDP) which acquires a plane of seismic information in distance along the surface and in time into the geological section, and is used to improve the signal-to-noise (S/N) ratio, to remove multiples and consequently give a representation of the subsurface particularly if the data are collected up- or downdip. By mid-1980s, the obvious geological structures have, in general, been discovered and it became necessary to adopt a more sophisticated technique such as the 3-D (three dimensional) seismic method to delineate more subtle reservoirs and resolve complex fault patterns in order to aid exploration as well as facilitate efficient field development. The case history discussed in this paper involves the use of areal 3-D seismic method for delineating the reservoir characterization of the O-field located in a shallow water area of the western Niger Delta. The areal 3-D seismic technique is superior to the earlier CDP method in that a cube of seismic data can be collected in two dimensions in space and one in time by a variety of techniques including the swath seismic shooting pattern adopted for gathering the 3-D data for the O-field's reservoir which involves the line of sources. The objective is to adequately sample the subsurface so that changes in various parameters such as the amplitude phase or power in the siesmic signal or velocity of propagation can be mapped areally and interpreted as an indication of changes in the physical properties of the rock matrix.

  1. Automatic detection of karstic sinkholes in seismic 3D images using circular Hough transform

    NASA Astrophysics Data System (ADS)

    Heydari Parchkoohi, Mostafa; Keshavarz Farajkhah, Nasser; Salimi Delshad, Meysam

    2015-10-01

    More than 30% of hydrocarbon reservoirs are reported in carbonates that mostly include evidence of fractures and karstification. Generally, the detection of karstic sinkholes prognosticate good quality hydrocarbon reservoirs where looser sediments fill the holes penetrating hard limestone and the overburden pressure on infill sediments is mostly tolerated by their sturdier surrounding structure. They are also useful for the detection of erosional surfaces in seismic stratigraphic studies and imply possible relative sea level fall at the time of establishment. Karstic sinkholes are identified straightforwardly by using seismic geometric attributes (e.g. coherency, curvature) in which lateral variations are much more emphasized with respect to the original 3D seismic image. Then, seismic interpreters rely on their visual skills and experience in detecting roughly round objects in seismic attribute maps. In this paper, we introduce an image processing workflow to enhance selective edges in seismic attribute volumes stemming from karstic sinkholes and finally locate them in a high quality 3D seismic image by using circular Hough transform. Afterwards, we present a case study from an on-shore oilfield in southwest Iran, in which the proposed algorithm is applied and karstic sinkholes are traced.

  2. 3D seismic imaging around the 2.5 km deep COSC-1 scientific borehole, central Sweden

    NASA Astrophysics Data System (ADS)

    Hedin, Peter; Juhlin, Christopher; Buske, Stefan

    2015-04-01

    Following the successful completion of the COSC-1 drilling campaign, a number of geophysical investigations have been performed in and around the 2.5 km deep borehole. Three different seismic experiments were conducted simultaneously in the fall of 2014 to take advantage of the same source points; 1) a Vertical Seismic Profile (VSP) in the borehole, 2) three 2D seismic profiles across the borehole, and 3) a limited 3D seismic survey (presented here). The latter is the first 3D seismic survey on land in Scandinavia to target the Caledonian Nappes and will allow mapping a small part of the Seve Nappe Complex (SNC) in 3D. Furthermore, it will allow extrapolation of results from downhole logging, core analysis and other seismic surveys to structures surrounding the borehole. A total number of 429 receivers (10 Hz single component geophones) were planted with 20 m separation along 7 lines spaced 200 m apart. The total area with receivers covered approximately 1.5 km2 and was centered on the drill site. A combination of a mechanical source (a rock breaking hydraulic hammer, near offsets) and explosive charges (0.5 kg fired at 3.5 - 5 m depth, far offsets) were used. The source points were activated along roads radiating outwards from the COSC-1 drill site in a star pattern. The nominal shot spacing was 20 m (vibrating source) or 80 m (explosives) and maximum horizontal offset was about 5.75 km. The high-grade metamorphic SNC is well known from previous 2D seismic studies to be a highly reflective unit. However, due to the complex 3D geometry and lithological variation within the unit, it has not been clearly imaged. The new 3D data provide a means to image these structures in more detail and to follow the lithological and structural interfaces observed in the core into the surrounding unit. Preliminary results from the 3D processing and correlation with borehole data will be presented.

  3. A Geo-referenced 3D model of the Juan de Fuca Slab and associated seismicity

    USGS Publications Warehouse

    Blair, J.L.; McCrory, P.A.; Oppenheimer, D.H.; Waldhauser, F.

    2011-01-01

    We present a Geographic Information System (GIS) of a new 3-dimensional (3D) model of the subducted Juan de Fuca Plate beneath western North America and associated seismicity of the Cascadia subduction system. The geo-referenced 3D model was constructed from weighted control points that integrate depth information from hypocenter locations and regional seismic velocity studies. We used the 3D model to differentiate earthquakes that occur above the Juan de Fuca Plate surface from earthquakes that occur below the plate surface. This GIS project of the Cascadia subduction system supersedes the one previously published by McCrory and others (2006). Our new slab model updates the model with new constraints. The most significant updates to the model include: (1) weighted control points to incorporate spatial uncertainty, (2) an additional gridded slab surface based on the Generic Mapping Tools (GMT) Surface program which constructs surfaces based on splines in tension (see expanded description below), (3) double-differenced hypocenter locations in northern California to better constrain slab location there, and (4) revised slab shape based on new hypocenter profiles that incorporate routine depth uncertainties as well as data from new seismic-reflection and seismic-refraction studies. We also provide a 3D fly-through animation of the model for use as a visualization tool.

  4. Identifying High Potential Well Targets with 3D Seismic and Mineralogy

    SciTech Connect

    Mellors, R. J.

    2015-10-30

    Seismic reflection the primary tool used in petroleum exploration and production, but use in geothermal exploration is less standard, in part due to cost but also due to the challenges in identifying the highly-permeable zones essential for economic hydrothermal systems [e.g. Louie et al., 2011; Majer, 2003]. Newer technology, such as wireless sensors and low-cost high performance computing, has helped reduce the cost and effort needed to conduct 3D surveys. The second difficulty, identifying permeable zones, has been less tractable so far. Here we report on the use of seismic attributes from a 3D seismic survey to identify and map permeable zones in a hydrothermal area.

  5. An optimal transport approach for seismic tomography: application to 3D full waveform inversion

    NASA Astrophysics Data System (ADS)

    Métivier, L.; Brossier, R.; Mérigot, Q.; Oudet, E.; Virieux, J.

    2016-11-01

    The use of optimal transport distance has recently yielded significant progress in image processing for pattern recognition, shape identification, and histograms matching. In this study, the use of this distance is investigated for a seismic tomography problem exploiting the complete waveform; the full waveform inversion. In its conventional formulation, this high resolution seismic imaging method is based on the minimization of the L 2 distance between predicted and observed data. Application of this method is generally hampered by the local minima of the associated L 2 misfit function, which correspond to velocity models matching the data up to one or several phase shifts. Conversely, the optimal transport distance appears as a more suitable tool to compare the misfit between oscillatory signals, for its ability to detect shifted patterns. However, its application to the full waveform inversion is not straightforward, as the mass conservation between the compared data cannot be guaranteed, a crucial assumption for optimal transport. In this study, the use of a distance based on the Kantorovich-Rubinstein norm is introduced to overcome this difficulty. Its mathematical link with the optimal transport distance is made clear. An efficient numerical strategy for its computation, based on a proximal splitting technique, is introduced. We demonstrate that each iteration of the corresponding algorithm requires solving the Poisson equation, for which fast solvers can be used, relying either on the fast Fourier transform or on multigrid techniques. The development of this numerical method make possible applications to industrial scale data, involving tenths of millions of discrete unknowns. The results we obtain on such large scale synthetic data illustrate the potentialities of the optimal transport for seismic imaging. Starting from crude initial velocity models, optimal transport based inversion yields significantly better velocity reconstructions than those based on

  6. LLNL's 3-D A Priori Model Constraints and Uncertainties for Improving Seismic Location

    SciTech Connect

    Flanagan, M P; Myers, S C; Schultz, C A; Pasyanos, M E; Bhattacharyya, J

    2000-07-14

    Accurate seismic event location is key to monitoring the Comprehensive Nuclear-Test-Ban Treaty (CTBT) and is largely dependent on our understanding of the crust and mantle velocity structure. This is particularly challenging in aseismic regions, devoid of calibration data, which leads us to rely on a priori constraints on the velocities. We investigate our ability to improve seismic event location in the Middle East, North Africa, and the Former Soviet Union (ME/NA/FSU) by using a priori three-dimensional (3-D) velocity models in lieu of more commonly used one dimensional (1-D) models. Event locations based on 1-D models are often biased, as they do not account for significant travel-time variations that result from heterogeneous crust and mantle; it follows that 3-D velocity models have the potential to reduce this bias. Here, we develop a composite 3-D model for the ME/NA/FSU regions. This fully 3-D model is an amalgamation of studies ranging from seismic reflection to geophysical analogy. Our a priori model specifies geographic boundaries and velocity structures based on geology, tectonics, and seismicity and information taken from published literature, namely a global sediment thickness map of 1{sup o} resolution (Laske and Masters, 1997), a regionalized crustal model based on geology and tectonics (Sweeney and Walter, 1998; Bhattacharyya et al., 2000; Walter et al., 2000), and regionalized upper mantle (RUM) models developed from teleseismic travel times (Gudmundsson and Sambridge, 1998). The components of this model were chosen for the complementary structures they provide. The 1{sup o} sediment map and regionalized crustal model provide detailed structures and boundaries not available in the more coarse 5{sup o} models used for global-scale studies. The RUM models offer improved resolution over global tomography, most notably above depths of 300 km where heterogeneity is greatest; however, we plan to test other published upper mantle models of both P- and S

  7. Integrating 3D seismic curvature and curvature gradient attributes for fracture characterization: Methodologies and interpretational implications

    SciTech Connect

    Gao, Dengliang

    2013-03-01

    In 3D seismic interpretation, curvature is a popular attribute that depicts the geometry of seismic reflectors and has been widely used to detect faults in the subsurface; however, it provides only part of the solutions to subsurface structure analysis. This study extends the curvature algorithm to a new curvature gradient algorithm, and integrates both algorithms for fracture detection using a 3D seismic test data set over Teapot Dome (Wyoming). In fractured reservoirs at Teapot Dome known to be formed by tectonic folding and faulting, curvature helps define the crestal portion of the reservoirs that is associated with strong seismic amplitude and high oil productivity. In contrast, curvature gradient helps better define the regional northwest-trending and the cross-regional northeast-trending lineaments that are associated with weak seismic amplitude and low oil productivity. In concert with previous reports from image logs, cores, and outcrops, the current study based on an integrated seismic curvature and curvature gradient analysis suggests that curvature might help define areas of enhanced potential to form tensile fractures, whereas curvature gradient might help define zones of enhanced potential to develop shear fractures. In certain fractured reservoirs such as at Teapot Dome where faulting and fault-related folding contribute dominantly to the formation and evolution of fractures, curvature and curvature gradient attributes can be potentially applied to differentiate fracture mode, to predict fracture intensity and orientation, to detect fracture volume and connectivity, and to model fracture networks.

  8. Advancing New 3D Seismic Interpretation Methods for Exploration and Development of Fractured Tight Gas Reservoirs

    SciTech Connect

    James Reeves

    2005-01-31

    In a study funded by the U.S. Department of Energy and GeoSpectrum, Inc., new P-wave 3D seismic interpretation methods to characterize fractured gas reservoirs are developed. A data driven exploratory approach is used to determine empirical relationships for reservoir properties. Fractures are predicted using seismic lineament mapping through a series of horizon and time slices in the reservoir zone. A seismic lineament is a linear feature seen in a slice through the seismic volume that has negligible vertical offset. We interpret that in regions of high seismic lineament density there is a greater likelihood of fractured reservoir. Seismic AVO attributes are developed to map brittle reservoir rock (low clay) and gas content. Brittle rocks are interpreted to be more fractured when seismic lineaments are present. The most important attribute developed in this study is the gas sensitive phase gradient (a new AVO attribute), as reservoir fractures may provide a plumbing system for both water and gas. Success is obtained when economic gas and oil discoveries are found. In a gas field previously plagued with poor drilling results, four new wells were spotted using the new methodology and recently drilled. The wells have estimated best of 12-months production indicators of 2106, 1652, 941, and 227 MCFGPD. The latter well was drilled in a region of swarming seismic lineaments but has poor gas sensitive phase gradient (AVO) and clay volume attributes. GeoSpectrum advised the unit operators that this location did not appear to have significant Lower Dakota gas before the well was drilled. The other three wells are considered good wells in this part of the basin and among the best wells in the area. These new drilling results have nearly doubled the gas production and the value of the field. The interpretation method is ready for commercialization and gas exploration and development. The new technology is adaptable to conventional lower cost 3D seismic surveys.

  9. Prestack reverse time migration for 3D marine reflection seismic data

    SciTech Connect

    Jang, Seonghyung; Kim, Taeyoun

    2015-03-10

    Prestack reverse time migration (RTM) is a method for imaging the subsurface using the inner product of wavefield extrapolation in shot domain and in receiver domain. It is well known that RTM is better for preserving amplitudes and phases than other prestack migrations. Since 3D seismic data is huge data volume and it needs heavy computing works, it requires parallel computing in order to have a meaningful depth image of the 3D subsurface. We implemented a parallelized version of 3D RTM for prestack depth migration. The results of numerical example for 3D SEG/EAGE salt model showed good agreement with the original geological model. We applied RTM to offshore 3D seismic reflection data. The study area is 12 × 25 km with 120 survey lines. Shot and receiver spacing is 25 m and 12.5 m. The line spacing is 100 m. Shot gathers were preprocessed to enhance signal to noise ratio and velocity model was calculated from conventional stack velocity. Both of them were used to obtain 3D image using RTM. The results show reasonable subsurface image.

  10. P-Cable: New High-Resolution 3D Seismic Acquisition Technology

    NASA Astrophysics Data System (ADS)

    Planke, Sverre; Berndt, Christian; Mienert, Jürgen; Bünz, Stefan; Eriksen, Frode N.; Eriksen, Ola K.

    2010-05-01

    We have developed a new cost-efficient technology for acquisition of high-resolution 3D seismic data: the P-Cable system. This technology is very well suited for deep water exploration, site surveys, and studies of shallow gas and fluid migration associated with gas hydrates or leaking reservoirs. It delivers unparalleled 3D seismic images of subsurface sediment architectures. The P-Cable system consists of a seismic cable towed perpendicular to a vessel's steaming direction. This configuration allows us to image an up to 150 m wide swath of the sub-surface for each sail line. Conventional 3D seismic technology relies on several very long streamers (up to 10 km long streamers are common), large sources, and costly operations. In contrast, the P-Cable system is light-weight and fast to deploy from small vessels. Only a small source is required as the system is made for relatively shallow imaging, typically above the first water-bottom multiple. The P-Cable system is particularly useful for acquisition of small 3D cubes, 10-50 km2, in focus areas, rather than extensive mapping of large regions. The rapid deployment and recovery of the system makes it possible to acquire several small cubes (10 to 30 km2) with high-resolution (50-250 Hz) seismic data in during one cruise. The first development of the P-Cable system was a cooperative project achieved by Volcanic Basin Petroleum Research (VBPR), University of Tromsø, National Oceanography Centre, Southampton, and industry partners. Field trials using a 12-streamer system were conducted on sites with active fluid-leakage systems on the Norwegian-Barents-Svalbard margin, the Gulf of Cadiz, and the Mediterranean. The second phase of the development introduced digital streamers. The new P-Cable2 system also includes integrated tow and cross cables for power and data transmission and improved doors to spread the larger cross cable. This digital system has been successfully used during six cruises by the University of Troms

  11. 3-D Seismic Tomographic Modelling of the North-Western Spitsbergen Area

    NASA Astrophysics Data System (ADS)

    Czuba, W.

    2015-12-01

    Deep seismic sounding measurements were performed in the continent-ocean transition zone of the north-western Svalbard continental margin in 1976 - 1999 in an international co-operation. Seismic energy (airgun and TNT shots) was recorded by land (onshore) seismic stations, ocean bottom seismometers (OBS), and ocean bottom hydrophone systems (OBH). Data from archival and modern seismic profiles were altogether used for 3-D tomographic inversion using JIVE3D software. The modelling area was chosen to be a rectangle of 420 x 330 km (Fig.). The results are similar to the earlier 2-D modelling, supplemented by off-line information from the profiles and the SPITS permanent station, giving a 3-D image of the crustal structure and Moho interface shape. The continental crust thins to the west and north. A minimum depth of about 6 km to the Moho discontinuity was found east of the Molloy Deep and in the Knipovich Ridge. The Moho interface deepens to about 30 km beneath the continental crust of Spitsbergen.

  12. ActiveSeismoPick3D - automatic first arrival determination for large active seismic arrays

    NASA Astrophysics Data System (ADS)

    Paffrath, Marcel; Küperkoch, Ludger; Wehling-Benatelli, Sebastian; Friederich, Wolfgang

    2016-04-01

    We developed a tool for automatic determination of first arrivals in active seismic data based on an approach, that utilises higher order statistics (HOS) and the Akaike information criterion (AIC), commonly used in seismology, but not in active seismics. Automatic picking is highly desirable in active seismics as the number of data provided by large seismic arrays rapidly exceeds of what an analyst can evaluate in a reasonable amount of time. To bring the functionality of automatic phase picking into the context of active data, the software package ActiveSeismoPick3D was developed in Python. It uses a modified algorithm for the determination of first arrivals which searches for the HOS maximum in unfiltered data. Additionally, it offers tools for manual quality control and postprocessing, e.g. various visualisation and repicking functionalities. For flexibility, the tool also includes methods for the preparation of geometry information of large seismic arrays and improved interfaces to the Fast Marching Tomography Package (FMTOMO), which can be used for the prediction of travel times and inversion for subsurface properties. Output files are generated in the VTK format, allowing the 3D visualization of e.g. the inversion results. As a test case, a data set consisting of 9216 traces from 64 shots was gathered, recorded at 144 receivers deployed in a regular 2D array of a size of 100 x 100 m. ActiveSeismoPick3D automatically checks the determined first arrivals by a dynamic signal to noise ratio threshold. From the data a 3D model of the subsurface was generated using the export functionality of the package and FMTOMO.

  13. 3D Porosity Estimation of the Nankai Trough Sediments from Core-log-seismic Integration

    NASA Astrophysics Data System (ADS)

    Park, J. O.

    2015-12-01

    The Nankai Trough off southwest Japan is one of the best subduction-zone to study megathrust earthquake fault. Historic, great megathrust earthquakes with a recurrence interval of 100-200 yr have generated strong motion and large tsunamis along the Nankai Trough subduction zone. At the Nankai Trough margin, the Philippine Sea Plate (PSP) is being subducted beneath the Eurasian Plate to the northwest at a convergence rate ~4 cm/yr. The Shikoku Basin, the northern part of the PSP, is estimated to have opened between 25 and 15 Ma by backarc spreading of the Izu-Bonin arc. The >100-km-wide Nankai accretionary wedge, which has developed landward of the trench since the Miocene, mainly consists of offscraped and underplated materials from the trough-fill turbidites and the Shikoku Basin hemipelagic sediments. Particularly, physical properties of the incoming hemipelagic sediments may be critical for seismogenic behavior of the megathrust fault. We have carried out core-log-seismic integration (CLSI) to estimate 3D acoustic impedance and porosity for the incoming sediments in the Nankai Trough. For the CLSI, we used 3D seismic reflection data, P-wave velocity and density data obtained during IODP (Integrated Ocean Drilling Program) Expeditions 322 and 333. We computed acoustic impedance depth profiles for the IODP drilling sites from P-wave velocity and density data. We constructed seismic convolution models with the acoustic impedance profiles and a source wavelet which is extracted from the seismic data, adjusting the seismic models to observed seismic traces with inversion method. As a result, we obtained 3D acoustic impedance volume and then converted it to 3D porosity volume. In general, the 3D porosities show decrease with depth. We found a porosity anomaly zone with alteration of high and low porosities seaward of the trough axis. In this talk, we will show detailed 3D porosity of the incoming sediments, and present implications of the porosity anomaly zone for the

  14. Complex Crustal Structure Beneath Western Turkey Revealed by 3D Seismic Full Waveform Inversion (FWI)

    NASA Astrophysics Data System (ADS)

    Cubuk-Sabuncu, Yesim; Taymaz, Tuncay; Fichtner, Andreas

    2016-04-01

    We present a 3D radially anisotropic velocity model of the crust and uppermost mantle structure beneath the Sea of Marmara and surroundings based on the full waveform inversion method. The intense seismic activity and crustal deformation are observed in the Northwest Turkey due to transition tectonics between the strike-slip North Anatolian Fault (NAF) and the extensional Aegean region. We have selected and simulated complete waveforms of 62 earthquakes (Mw > 4.0) occurred during 2007-2015, and recorded at (Δ < 10°) distances. Three component earthquake data is obtained from broadband seismic stations of Kandilli Observatory and Earthquake Research Center (KOERI, Turkey), Hellenic Unified Seismic Network (HUSN, Greece) and Earthquake Research Center of Turkey (AFAD-DAD). The spectral-element solver of the wave equation, SES3D algorithm, is used to simulate seismic wave propagation in 3D spherical coordinates (Fichtner, 2009). The Large Scale Seismic Inversion Framework (LASIF) workflow tool is also used to perform full seismic waveform inversion (Krischer et al., 2015). The initial 3D Earth model is implemented from the multi-scale seismic tomography study of Fichtner et al. (2013). Discrepancies between the observed and simulated synthetic waveforms are determined using the time-frequency misfits which allows a separation between phase and amplitude information (Fichtner et al., 2008). The conjugate gradient optimization method is used to iteratively update the initial Earth model when minimizing the misfit. The inversion is terminated after 19 iterations since no further advances are observed in updated models. Our analysis revealed shear wave velocity variations of the shallow and deeper crustal structure beneath western Turkey down to depths of ~35-40 km. Low shear wave velocity anomalies are observed in the upper and mid crustal depths beneath major fault zones located in the study region. Low velocity zones also tend to mark the outline of young volcanic

  15. Estimating the detectability of faults in 3D-seismic data - A valuable input to Induced Seismic Hazard Assessment (ISHA)

    NASA Astrophysics Data System (ADS)

    Goertz, A.; Kraft, T.; Wiemer, S.; Spada, M.

    2012-12-01

    In the past several years, some geotechnical operations that inject fluid into the deep subsurface, such as oil and gas development, waste disposal, and geothermal energy development, have been found or suspected to cause small to moderate sized earthquakes. In several cases the largest events occurred on previously unmapped faults, within or in close vicinity to the operated reservoirs. The obvious conclusion drawn from this finding, also expressed in most recently published best practice guidelines and recommendations, is to avoid injecting into faults. Yet, how certain can we be that all faults relevant to induced seismic hazard have been identified, even around well studied sites? Here we present a probabilistic approach to assess the capability of detecting faults by means of 3D seismic imaging. First, we populate a model reservoir with seed faults of random orientation and slip direction. Drawing random samples from a Gutenberg-Richter distribution, each seed fault is assigned a magnitude and corresponding size using standard scaling relations based on a circular rupture model. We then compute the minimum resolution of a 3D seismic survey for given acquisition parameters and frequency bandwidth. Assuming a random distribution of medium properties and distribution of image frequencies, we obtain a probability that a fault of a given size is detected, or respectively overlooked, by the 3D seismic. Weighting the initial Gutenberg-Richter fault size distribution with the probability of imaging a fault, we obtain a modified fault size distribution in the imaged volume from which we can constrain the maximum magnitude to be considered in the seismic hazard assessment of the operation. We can further quantify the value of information associated with the seismic image by comparing the expected insured value loss between the image-weighted and the unweighted hazard estimates.

  16. Stratigraphic Interpretation and Reservoir Implications of the Arbuckle Group (Cambrian-Ordovician) using 3D Seismic, Osage County, Oklahoma

    NASA Astrophysics Data System (ADS)

    Keeling, Ryan Marc

    The Arbuckle Group in northeastern Oklahoma consists of multiple carbonate formations, along with several relatively thin sandstone units. The group is a part of the "Great American Carbonate Bank" of the mid-continent and can be found regionally as far east as the Arkoma Basin in Arkansas, and as far west as the Anadarko Basin in Oklahoma. The Arbuckle is part of the craton-wide Sauk sequence, which is both underlain and overlain by regional unconformities. Arbuckle is not deposited directly on top of a source rock. In order for reservoirs within the Arbuckle to become charged with hydrocarbons, they must be juxtaposed against source rocks or along migration pathways. Inspired by the petroleum potential of proximal Arbuckle reservoirs and the lack of local stratigraphic understanding, this study aims to subdivide Arbuckle stratigraphy and identify porosity networks using 3D seismic within the study area of western Osage County, Oklahoma. These methods and findings can then be applied to petroleum exploration in Cambro-Ordovician carbonates in other localities. My research question is: Can the Arbuckle in SW Osage County be stratigraphically subdivided based on 3D seismic characteristics? This paper outlines the depositional environment of the Arbuckle, synthesizes previous studies and examines the Arbuckle as a petroleum system in Northeastern Oklahoma. The investigation includes an interpretation of intra-Arbuckle unconformities, areas of secondary porosity (specifically, sequence boundaries), and hydrocarbon potential of the Arbuckle Group using 3D seismic data interpretation with a cursory analysis of cored intervals.

  17. Combining sequence stratigraphy with 3-D seismic imaging in low-accommodation basins

    SciTech Connect

    Hardage, B.A.; Carr, D.L.; Simmons, J.L. Jr.

    1995-12-31

    Pennsylvania-age rocks in several areas of the Midcontinent of the United States were deposited in low-accommodation basinal settings, that is, in basinal areas where only modest verticle reliefs could accept the sediment influx. Many thin Pennsylvanian sequences in these low-accommodation environments exhibit severe lateral heterogeneity because they have been extensively reworked by repeated transgressions and regressions of a fluctuating sea. Consequently, the distinctive geometries of relic depositional features (such as meandering channels) tend to be distorted or even totally destroyed, as compared with how such geometries appear in high-accommodation basins where depositional topography, once buried, is rarely exposed to destructive processes. Our objectives are to show examples of 3-D seismic images of several depositional topographies in a moderate- to low-accommodation basin and to explain how these thin sequences can be identified in well control and interpreted in 3-D seismic data volumes.

  18. Imaging of 3-D seismic velocity structure of Southern Sumatra region using double difference tomographic method

    SciTech Connect

    Lestari, Titik; Nugraha, Andri Dian

    2015-04-24

    Southern Sumatra region has a high level of seismicity due to the influence of the subduction system, Sumatra fault, Mentawai fault and stretching zone activities. The seismic activities of Southern Sumatra region are recorded by Meteorological Climatological and Geophysical Agency (MCGA’s) Seismograph network. In this study, we used earthquake data catalog compiled by MCGA for 3013 events from 10 seismic stations around Southern Sumatra region for time periods of April 2009 – April 2014 in order to invert for the 3-D seismic velocities structure (Vp, Vs, and Vp/Vs ratio). We applied double-difference seismic tomography method (tomoDD) to determine Vp, Vs and Vp/Vs ratio with hypocenter adjustment. For the inversion procedure, we started from the initial 1-D seismic velocity model of AK135 and constant Vp/Vs of 1.73. The synthetic travel time from source to receiver was calculated using ray pseudo-bending technique, while the main tomographic inversion was applied using LSQR method. The resolution model was evaluated using checkerboard test and Derivative Weigh Sum (DWS). Our preliminary results show low Vp and Vs anomalies region along Bukit Barisan which is may be associated with weak zone of Sumatran fault and migration of partial melted material. Low velocity anomalies at 30-50 km depth in the fore arc region may indicated the hydrous material circulation because the slab dehydration. We detected low seismic seismicity in the fore arc region that may be indicated as seismic gap. It is coincides contact zone of high and low velocity anomalies. And two large earthquakes (Jambi and Mentawai) also occurred at the contact of contrast velocity.

  19. 3-D Characterization of Seismic Properties at the Smart Weapons Test Range, YPG

    NASA Astrophysics Data System (ADS)

    Miller, Richard D.; Anderson, Thomas S.; Davis, John C.; Steeples, Don W.; Moran, Mark L.

    2001-10-01

    The Smart Weapons Test Range (SWTR) lies within the Yuma Proving Ground (YPG), Arizona. SWTR is a new facility constructed specifically for the development and testing of futuristic intelligent battlefield sensor networks. In this paper, results are presented for an extensive high-resolution geophysical characterization study at the SWTR site along with validation using 3-D modeling. In this study, several shallow seismic methods and novel processing techniques were used to generate a 3-D grid of earth seismic properties, including compressional (P) and shear (S) body-wave speeds (Vp and Vs), and their associated body-wave attenuation parameters (Qp, and Qs). These experiments covered a volume of earth measuring 1500 m by 300 m by 25 m deep (11 million cubic meters), centered on the vehicle test track at the SWTR site. The study has resulted in detailed characterizations of key geophysical properties. To our knowledge, results of this kind have not been previously achieved, nor have the innovative methods developed for this effort been reported elsewhere. In addition to supporting materiel developers with important geophysical information at this test range, the data from this study will be used to validate sophisticated 3-D seismic signature models for moving vehicles.

  20. Multi-hole seismic modeling in 3-D space and cross-hole seismic tomography analysis for boulder detection

    NASA Astrophysics Data System (ADS)

    Cheng, Fei; Liu, Jiangping; Wang, Jing; Zong, Yuquan; Yu, Mingyu

    2016-11-01

    A boulder stone, a common geological feature in south China, is referred to the remnant of a granite body which has been unevenly weathered. Undetected boulders could adversely impact the schedule and safety of subway construction when using tunnel boring machine (TBM) method. Therefore, boulder detection has always been a key issue demanded to be solved before the construction. Nowadays, cross-hole seismic tomography is a high resolution technique capable of boulder detection, however, the method can only solve for velocity in a 2-D slice between two wells, and the size and central position of the boulder are generally difficult to be accurately obtained. In this paper, the authors conduct a multi-hole wave field simulation and characteristic analysis of a boulder model based on the 3-D elastic wave staggered-grid finite difference theory, and also a 2-D imaging analysis based on first arrival travel time. The results indicate that (1) full wave field records could be obtained from multi-hole seismic wave simulations. Simulation results describe that the seismic wave propagation pattern in cross-hole high-velocity spherical geological bodies is more detailed and can serve as a basis for the wave field analysis. (2) When a cross-hole seismic section cuts through the boulder, the proposed method provides satisfactory cross-hole tomography results; however, when the section is closely positioned to the boulder, such high-velocity object in the 3-D space would impact on the surrounding wave field. The received diffracted wave interferes with the primary wave and in consequence the picked first arrival travel time is not derived from the profile, which results in a false appearance of high-velocity geology features. Finally, the results of 2-D analysis in 3-D modeling space are comparatively analyzed with the physical model test vis-a-vis the effect of high velocity body on the seismic tomographic measurements.

  1. Emplacement of pyroclastic deposits offshore Montserrat: Insights from 3D seismic data

    NASA Astrophysics Data System (ADS)

    Karstens, J.; Crutchley, G. J.; Berndt, C.; Talling, P. J.; Watt, S. F. L.; Hühnerbach, V.; Le Friant, A.; Lebas, E.; Trofimovs, J.

    2013-05-01

    During the current (1995-present) eruptive phase of the Soufrière Hills volcano on Montserrat, voluminous pyroclastic flows entered the sea off the eastern flank of the island, resulting in the deposition of well-defined submarine pyroclastic lobes. Previously reported bathymetric surveys documented the sequential construction of these deposits, but could not image their internal structure, the morphology or extent of their base, or interaction with the underlying sediments. We show, by combining these bathymetric data with new high-resolution three dimensional (3D) seismic data, that the sequence of previously detected pyroclastic deposits from different phases of the ongoing eruptive activity is still well preserved. A detailed interpretation of the 3D seismic data reveals the absence of significant (> 3 m) basal erosion in the distal extent of submarine pyroclastic deposits. We also identify a previously unrecognized seismic unit directly beneath the stack of recent lobes. We propose three hypotheses for the origin of this seismic unit, but prefer an interpretation that the deposit is the result of the subaerial flank collapse that formed the English's Crater scarp on the Soufrière Hills volcano. The 1995-recent volcanic activity on Montserrat accounts for a significant portion of the sediments on the southeast slope of Montserrat, in places forming deposits that are more than 60 m thick, which implies that the potential for pyroclastic flows to build volcanic island edifices is significant.

  2. Sequence stratigraphy and 3-D seismic imaging in low-accommodation basins

    SciTech Connect

    Hardage, B.A.; Carr, D.L.; Hamilton, D.S.; Simmons, J.L. Jr. )

    1996-01-01

    Pennsylvanian-age rocks in several areas of the Midcontinent of the United States were deposited in low-accommodation basinal settings. Many sequences in these low-accommodation environments exhibit severe lateral heterogeneity because they have been extensively reworked by repeated transgressions and regressions. Consequently, the distinctive geometries of relic depositional features tend to be distorted or totally destroyed, in contrast to such geometries in high-accommodation basins where depositional topography, once buried, is rarely exposed to erosional processes. Our objective is to show how these thin and obscure low-accommodation sequences can be identified in well control and interpreted in 3-D seismic data volumes. Numerous, deep-rooted karst-collapse zones affected the areal continuity of many sequences in some Midcontinent basins. We combine sequence stratigraphy with 3-D seismic imaging to document that many of these karst-collapse zones originate at deep Ellenburger ( ) levels and then extend vertically for a distance of 2,000 ft (600 m) or more into Pennsylvanian-age rocks. We also offer evidence that properly chosen seismic attributes, calculated in thin, accurately defined seismic time windows that correspond to log-defined sequences, show compartmented reservoir facies in low-accommodation basins.

  3. Sequence stratigraphy and 3-D seismic imaging in low-accommodation basins

    SciTech Connect

    Hardage, B.A.; Carr, D.L.; Hamilton, D.S.; Simmons, J.L. Jr.

    1996-12-31

    Pennsylvanian-age rocks in several areas of the Midcontinent of the United States were deposited in low-accommodation basinal settings. Many sequences in these low-accommodation environments exhibit severe lateral heterogeneity because they have been extensively reworked by repeated transgressions and regressions. Consequently, the distinctive geometries of relic depositional features tend to be distorted or totally destroyed, in contrast to such geometries in high-accommodation basins where depositional topography, once buried, is rarely exposed to erosional processes. Our objective is to show how these thin and obscure low-accommodation sequences can be identified in well control and interpreted in 3-D seismic data volumes. Numerous, deep-rooted karst-collapse zones affected the areal continuity of many sequences in some Midcontinent basins. We combine sequence stratigraphy with 3-D seismic imaging to document that many of these karst-collapse zones originate at deep Ellenburger (?) levels and then extend vertically for a distance of 2,000 ft (600 m) or more into Pennsylvanian-age rocks. We also offer evidence that properly chosen seismic attributes, calculated in thin, accurately defined seismic time windows that correspond to log-defined sequences, show compartmented reservoir facies in low-accommodation basins.

  4. Training toward Advanced 3D Seismic Methods for CO2 Monitoring, Verification, and Accounting

    SciTech Connect

    Christopher Liner

    2012-05-31

    The objective of our work is graduate and undergraduate student training related to improved 3D seismic technology that addresses key challenges related to monitoring movement and containment of CO{sub 2}, specifically better quantification and sensitivity for mapping of caprock integrity, fractures, and other potential leakage pathways. We utilize data and results developed through previous DOE-funded CO{sub 2} characterization project (DE-FG26-06NT42734) at the Dickman Field of Ness County, KS. Dickman is a type locality for the geology that will be encountered for CO{sub 2} sequestration projects from northern Oklahoma across the U.S. midcontinent to Indiana and Illinois. Since its discovery in 1962, the Dickman Field has produced about 1.7 million barrels of oil from porous Mississippian carbonates with a small structural closure at about 4400 ft drilling depth. Project data includes 3.3 square miles of 3D seismic data, 142 wells, with log, some core, and oil/water production data available. Only two wells penetrate the deep saline aquifer. In a previous DOE-funded project, geological and seismic data were integrated to create a geological property model and a flow simulation grid. We believe that sequestration of CO{sub 2} will largely occur in areas of relatively flat geology and simple near surface, similar to Dickman. The challenge is not complex geology, but development of improved, lower-cost methods for detecting natural fractures and subtle faults. Our project used numerical simulation to test methods of gathering multicomponent, full azimuth data ideal for this purpose. Our specific objectives were to apply advanced seismic methods to aide in quantifying reservoir properties and lateral continuity of CO{sub 2} sequestration targets. The purpose of the current project is graduate and undergraduate student training related to improved 3D seismic technology that addresses key challenges related to monitoring movement and containment of CO{sub 2

  5. 3D High-Resolution Seismic Imaging of Fluid Flow Anomalies on the Norwegian Continental Shelf

    NASA Astrophysics Data System (ADS)

    Planke, S.; Eriksen, F. N.; Eriksen, O. K.; Myklebust, R.; Stokke, H. H.

    2015-12-01

    Fluid flow anomalies are common on the Norwegian Continental Shelf. Such features are imaged by multiple P-Cable high resolution seismic 2D lines and 3D cubes in the Norwegian Barents Sea. P-Cable is a high resolution 3D seismic system consisting of multiple streamers attached to a cross cable that is towed perpendicular to the vessels steaming direction. The short offset, high frequency source and closely spaced streamers facilitates for excellent vertical and horizontal resolution that provides key information for understanding the sub-surface. Recent data have been broadband processed, and the method has proven to enhance the imaging of the sub-surface significantly. Barents Sea P-Cable surveys have targeted shallow fluid anomalies in the uppermost ca. 500 meters of the sub-surface. New data have been acquired in 2012, 2014 and 2015. The most recent data focus on the southeast part of the Norwegian Barents Sea where P-Cable data give a new insight into the subsurface not provided by conventional seismic data in the region. Geologically, the Barents Sea region is characterized by Paleozoic and Mesozoic siliciclastic successions overlaid in most areas by a thin cover of Cenozoic glacial sediments. Hydrocarbon-rich Jurassic and Triassic sequences are locally situated in the shallow sub-surface as a result of extensive late Cenozoic uplift and erosion. The unloading has been reported to reactivate and create new faults in addition to initiate further migration of fluids in the sub-surface (Chand et al., 2012). The presence of shallow hydrocarbon systems creates an optimal setting for imaging fluid flow anomalies with high resolution 3D seismic data. The Barents Sea P-Cable data image a range of fluid related features such as cross-cutting reflections and bright spots, chimney structures, acoustic masking, pockmarks and mud volcanoes.

  6. 3D seismic data reconstruction based on complex-valued curvelet transform in frequency domain

    NASA Astrophysics Data System (ADS)

    Zhang, Hua; Chen, Xiaohong; Li, Hongxing

    2015-02-01

    Traditional seismic data sampling must follow the Nyquist Sampling Theorem. However, the field data acquisition may not meet the sampling criteria due to missing traces or limits in exploration cost, causing a prestack data reconstruction problem. Recently researchers have proposed many useful methods to regularize the seismic data. In this paper, a 3D seismic data reconstruction method based on the Projections Onto Convex Sets (POCS) algorithm and a complex-valued curvelet transform (CCT) has been introduced in the frequency domain. In order to improve reconstruction efficiency and reduce the computation time, the seismic data are transformed from the t-x-y domain to the f-x-y domain and the data reconstruction is processed for every frequency slice during the reconstruction process. The selection threshold parameter is important for reconstruction efficiency for each iteration, therefore an exponential square root decreased (ESRD) threshold is proposed. The experimental results show that the ESRD threshold can greatly reduce iterations and improve reconstruction efficiency compared to the other thresholds for the same reconstruction result. We also analyze the antinoise ability of the CCT-based POCS reconstruction method. The example studies on synthetic and real marine seismic data showed that our proposed method is more efficient and applicable.

  7. Accelerating POCS interpolation of 3D irregular seismic data with Graphics Processing Units

    NASA Astrophysics Data System (ADS)

    Wang, Shu-Qin; Gao, Xing; Yao, Zhen-Xing

    2010-10-01

    Seismic trace interpolation is necessary for high-resolution imaging when the acquired data are not adequate or when some traces are missing. Projection-onto-convex-sets (POCS) interpolation can gradually recover missing traces with an iterative algorithm, but its computational cost in a 3D CPU-based implementation is too high for practical applications. We present a computing scheme to speedup 3D POCS interpolation with graphics processing units (GPUs). We accelerate the most time-consuming part of the 3D POCS algorithm (i.e. Fourier transforms) by taking advantage of a GPU-based Fourier transform library. Other parts are fine-tuned to maximize the utilization of GPU computing resources. We upload the whole input data set to the global memory of the GPUs and reuse it until the final result is obtained. This can avoid low-bandwidth data transfer between CPU and GPUs. We minimize the number of intermediate 3D arrays to save GPU global memory by optimizing the algorithm implementation. This allows us to handle a much larger input data set. When reducing the runtime of our GPU implementation, the coalescing of global memory access and the 3D CUFFT library provides us with the greatest performance improvements. Numerical results show that our scheme is 3-29× times faster than the optimized CPU-based implementation, depending on the size of 3D data set. Our GPU computing scheme allows a significant reduction of computational cost and would facilitate 3D POCS interpolation for practical applications.

  8. 3D Numerical Simulation on the Sloshing Waves Excited by the Seismic Shacking

    NASA Astrophysics Data System (ADS)

    Zhang, Lin; Wu, Tso-Ren

    2016-04-01

    In the event of 2015 Nepal earthquake, a video clip broadcasted worldwide showed a violent water spilling in a hotel swimming pool. This sloshing phenomenon indicates a potential water loss in the sensitive facilities, e.g. the spent fuel pools in nuclear power plant, has to be taken into account carefully under the consideration of seismic-induced ground acceleration. In the previous studies, the simulation of sloshing mainly focused on the pressure force on the structure by using a simplified Spring-Mass Method developed in the field of solid mechanics. However, restricted by the assumptions of plane water surface and limited wave height, significant error will be made in evaluating the amount of water loss in the tank. In this paper, the computational fluid dynamical model, Splash3D, was adopted for studying the sloshing problem accurately. Splash3D solved 3D Navier-Stokes Equation directly with Large-Eddy Simulation (LES) turbulent closure. The Volume-of-fluid (VOF) method with piecewise linear interface calculation (PLIC) was used to track the complex breaking water surface. The time series acceleration of a design seismic was loaded to excite the water. With few restrictions from the assumptions, the accuracy of the simulation results were improved dramatically. A series model validations were conducted by compared to a 2D theoretical solution, and a 3D experimental data. Good comparisons can be seen. After the validation, we performed the simulation for considering a sloshing case in a rectangular water tank with a dimension of 12 m long, 8 m wide, 8 m deep, which contained water with 7 m in depth. The seismic movement was imported by considering time-series acceleration in three dimensions, which were about 0.5 g to 1.2 g in the horizontal directions, and 0.3 g to 1 g in the vertical direction. We focused the discussions on the kinematics of the water surface, wave breaking, velocity field, pressure field, water force on the side walls, and, most

  9. Seismic Response of 3D Steel Buildings considering the Effect of PR Connections and Gravity Frames

    PubMed Central

    Haldar, Achintya; López-Barraza, Arturo; Rivera-Salas, J. Luz

    2014-01-01

    The nonlinear seismic responses of 3D steel buildings with perimeter moment resisting frames (PMRF) and interior gravity frames (IGF) are studied explicitly considering the contribution of the IGF. The effect on the structural response of the stiffness of the beam-to-column connections of the IGF, which is usually neglected, is also studied. It is commonly believed that the flexibility of shear connections is negligible and that 2D models can be used to properly represent 3D real structures. The results of the study indicate, however, that the moments developed on columns of IGF can be considerable and that modeling buildings as plane frames may result in very conservative designs. The contribution of IGF to the lateral structural resistance may be significant. The contribution increases when their connections are assumed to be partially restrained (PR). The incremented participation of IGF when the stiffness of their connections is considered helps to counteract the no conservative effect that results in practice when lateral seismic loads are not considered in IGF while designing steel buildings with PMRF. Thus, if the structural system under consideration is used, the three-dimensional model should be used in seismic analysis and the IGF and the stiffness of their connections should be considered as part of the lateral resistance system. PMID:24995357

  10. Detection of ancient morphology and potential hydrocarbon traps using 3-D seismic data and attribute analysis

    SciTech Connect

    Heggland, R.

    1995-12-31

    This paper presents the use of seismic attributes on 3D data to reveal Tertiary and Cretaceous geological features in Norwegian block 9/2. Some of the features would hardly be possible to map using only 2D seismic data. The method which involves a precise interpretation of horizons, attribute analysis and manipulation of colour displays, may be useful when studying morphology, faults and hydrocarbon traps. The interval of interest in this study was from 0 to 1.5 s TWT. Horizontal displays (timeslices and attribute maps), seemed to highlight very nicely geological features such as shallow channels, fractures, karst topography and faults. The attributes used for mapping these features were amplitude, total reflection energy (a volume or time interval attribute), dip and azimuth. The choice of colour scale and manipulation of colour displays were also critical for the results. The data examples clearly demonstrate how it is possible to achieve a very detailed mapping of geological features using 3D seismic data and attribute analysis. The results of this study were useful for the understanding of hydrocarbon migration paths and hydrocarbon traps.

  11. Seismic response of 3D steel buildings considering the effect of PR connections and gravity frames.

    PubMed

    Reyes-Salazar, Alfredo; Bojórquez, Edén; Haldar, Achintya; López-Barraza, Arturo; Rivera-Salas, J Luz

    2014-01-01

    The nonlinear seismic responses of 3D steel buildings with perimeter moment resisting frames (PMRF) and interior gravity frames (IGF) are studied explicitly considering the contribution of the IGF. The effect on the structural response of the stiffness of the beam-to-column connections of the IGF, which is usually neglected, is also studied. It is commonly believed that the flexibility of shear connections is negligible and that 2D models can be used to properly represent 3D real structures. The results of the study indicate, however, that the moments developed on columns of IGF can be considerable and that modeling buildings as plane frames may result in very conservative designs. The contribution of IGF to the lateral structural resistance may be significant. The contribution increases when their connections are assumed to be partially restrained (PR). The incremented participation of IGF when the stiffness of their connections is considered helps to counteract the no conservative effect that results in practice when lateral seismic loads are not considered in IGF while designing steel buildings with PMRF. Thus, if the structural system under consideration is used, the three-dimensional model should be used in seismic analysis and the IGF and the stiffness of their connections should be considered as part of the lateral resistance system.

  12. Seismic response of 3D steel buildings considering the effect of PR connections and gravity frames.

    PubMed

    Reyes-Salazar, Alfredo; Bojórquez, Edén; Haldar, Achintya; López-Barraza, Arturo; Rivera-Salas, J Luz

    2014-01-01

    The nonlinear seismic responses of 3D steel buildings with perimeter moment resisting frames (PMRF) and interior gravity frames (IGF) are studied explicitly considering the contribution of the IGF. The effect on the structural response of the stiffness of the beam-to-column connections of the IGF, which is usually neglected, is also studied. It is commonly believed that the flexibility of shear connections is negligible and that 2D models can be used to properly represent 3D real structures. The results of the study indicate, however, that the moments developed on columns of IGF can be considerable and that modeling buildings as plane frames may result in very conservative designs. The contribution of IGF to the lateral structural resistance may be significant. The contribution increases when their connections are assumed to be partially restrained (PR). The incremented participation of IGF when the stiffness of their connections is considered helps to counteract the no conservative effect that results in practice when lateral seismic loads are not considered in IGF while designing steel buildings with PMRF. Thus, if the structural system under consideration is used, the three-dimensional model should be used in seismic analysis and the IGF and the stiffness of their connections should be considered as part of the lateral resistance system. PMID:24995357

  13. 3D Seismic Flexure Analysis for Subsurface Fault Detection and Fracture Characterization

    NASA Astrophysics Data System (ADS)

    Di, Haibin; Gao, Dengliang

    2016-10-01

    Seismic flexure is a new geometric attribute with the potential of delineating subtle faults and fractures from three-dimensional (3D) seismic surveys, especially those overlooked by the popular discontinuity and curvature attributes. Although the concept of flexure and its related algorithms have been published in the literature, the attribute has not been sufficiently applied to subsurface fault detection and fracture characterization. This paper provides a comprehensive study of the flexure attribute, including its definition, computation, as well as geologic implications for evaluating the fundamental fracture properties that are essential to fracture characterization and network modeling in the subsurface, through applications to the fractured reservoir at Teapot Dome, Wyoming (USA). Specifically, flexure measures the third-order variation of the geometry of a seismic reflector and is dependent on the measuring direction in 3D space; among all possible directions, flexure is considered most useful when extracted perpendicular to the orientation of dominant deformation; and flexure offers new insights into qualitative/quantitative fracture characterization, with its magnitude indicating the intensity of faulting and fracturing, its azimuth defining the orientation of most-likely fracture trends, and its sign differentiating the sense of displacement of faults and fractures.

  14. A seismic modelling environment as a research and teaching tool for 3-D subsurface modelling

    NASA Astrophysics Data System (ADS)

    Burford, Dennis J.; Ger, Larry; Blake, Edwin H.; de Wit, Maarten J.; Doucouré, C. Moctar; Hart, Roger J.

    Early geological modelling and visualisation techniques were limited to manual cross-sections or isometric perspectives. Computer modelling has automated this task to a certain degree, but traditional approaches do not allow iterative validation during the modelling process. When the structure is complex and data sparse, as is often the case in geology, interactive 3-D modelling techniques should be employed that can interrogate new and existing data, guided by the geological experience of the modeller. Using the Vredefort dome in South Africa as a case study, we describe a Seismic Modelling Environment (SME) to demonstrate the potential of this type of computer-based modelling and geological visualisation. SME offers a novel approach to interactive 3-D modelling of complex geological structures using an extension of sweep representations and user-controlled forward modelling with seismic analysis for validation. Incorporation of validation techniques allows early confirmation or rejection of models. Tested by a group of third-year geology students, SME's iterative construction and exploration of a 3-D model clearly provided users with a superior understanding through visualisation. SME has, therefore, potential both as an educational as well as a research tool.

  15. Pennsylvanian Subsurface Sequence Stratigraphy Based on 3D Seismic and Wireline Data in Western Osage County, Oklahoma

    NASA Astrophysics Data System (ADS)

    West, Alexander

    The Pennsylvanian System in the Mid-Continent United States has been studied for nearly a century. In north central Oklahoma, the Pennsylvanian is primarily composed of cyclothems. These cyclothems are sequences of alternating carbonate, clastic, and shale members. Because of this, these zones can be difficult to differentiate. This project provides valuable insight into better understanding the Pennsylvanian System in western Osage County, Oklahoma. The scope of this project is to perform a subsurface study to produce a detailed interpretation of the depositional history and stratigraphy of Pennsylvanian sequences in western Osage County. This study features 3D seismic and well log investigations that will be used together for local and regional subsurface interpretations. The seismic surveys used in the project are the Wild Creek and Gray Horse 3D surveys in western Osage County. The well logs, digital and raster, provide respectable well control for western Osage County. Together, interpretations from the seismic data and well logs will be used to provide a better understanding of the subsurface stratigraphy and depositional history of Pennsylvanian sequences in western Osage County, Oklahoma.

  16. An Integrated Multi-component Processing and Interpretation Framework for 3D Borehole Seismic Data

    SciTech Connect

    M. Karrenbach

    2004-04-01

    This report covers the October 2003 until March 2004 time period. Work has continued successfully on several tasks 1 through 7. Most of these tasks have been executed independently. Due to availability of manpower during that time period we progressed steadily and completed some of the tasks, while others are still on going. We achieved the goals that we had set up in the task schedule. Reviewing the results of this work period indicates that our plan is on schedule and we did not encounter any unforeseen problems. The work plan will continue as projected. Several independent tasks pursuant the statement of project objectives have been executed simultaneously and are still on-going. This report summarizes the selection, test processing and test flow generation of a relevant 3D borehole seismic high-resolution test dataset. This multi-component data set is suitable for future use in this project due to data quality and unique acquisition characteristics. This report shows initial processing results that supported the data selection scheduled for Task 1. Use of real data is augmented by the creating a 3D layered synthetic geologic model in which multi-component 3D borehole seismic data were generated using 3D ray tracing. A gridded surface representation of the reflection interfaces as well as fully populated velocity grids were generated and archived. The model consists of a moderately dipping geologic setting with horizon undulations. A realistic velocity variation is used in between the three layers. Acquisition was simulated from a set of equidistant source locations at the surface of the model, while a close to vertical VSP well was used to capture the wave field data. The source pattern was close to a staggered grid pattern. Multi-component particle displacements were recorded every 50 ft down with an array length of 4,000 ft. P-P as well as P-S reflections were specified in the resulting wave field. We ensured a large enough aperture with enough fine sampling

  17. Technological advances cut collection costs for offshore 3-D seismic exploration

    SciTech Connect

    Lyle, D.

    1995-07-01

    New work in data collection and processing promises to lower costs drastically for offshore 3-D seismic work. Cost for offshore 3-D work was always a bargain. Since offshore is government property, operators don`t have to pay access fees to landowners. Collection crews don`t have to work around barns, houses and mountains. In spite of that bargain cost, the operator still has to foot the bill for boats, crews, and a tremendous application of computer power. The boats, crews and computer power still are there, but the costs are dropping. The major players in this business in the Gulf of Mexico are Western Geophysical Co., Geco Prakla, Petroleum Geo-Services (PGS) and Digicon Geophysical Corp., and they all know that technology allows them to raise their profit margins while lowering costs to clients.

  18. 3-D Seismic Exploration Project, Ute Indian Tribe, Uintah and Ouray Reservation, Uintah County, Utah

    SciTech Connect

    Eckels, Marc T.

    2002-09-09

    The objectives of this North Hill Creek 3-D seismic survey were to: (1) cover as large an area as possible with available budget; (2) obtain high quality data throughout the depth range of the prospective geologic formations of 2,000' to 12,000' to image both gross structures and more subtle structural and stratigraphic elements; (3) overcome the challenges posed by a hard, reflective sandstone that cropped out or was buried just a few feet below the surface under most of the survey area; and (4) run a safe survey.

  19. Complex patterns of faulting revealed by 3D seismic data at the West Galicia rifted margin

    NASA Astrophysics Data System (ADS)

    Reston, Timothy; Cresswell, Derren; Sawyer, Dale; Ranero, Cesar; Shillington, Donna; Morgan, Julia; Lymer, Gael

    2015-04-01

    The west Galicia margin is characterised by crust thinning to less than 3 km, well-defined fault blocks, which overlie a bright reflection (the S reflector) generally interpreted as a tectonic Moho. The margin exhibits neither voluminous magmatism nor thick sediment piles to obscure the structures and the amount of extension. As such is represents an ideal location to study the process of continental breakup both through seismic imaging and potentially through drilling. Prestack depth migration of existing 2D profiles has strongly supported the interpretation of the S reflector as both a detachment and as the crust-mantle boundary; wide-angle seismic has also shown that the mantle beneath S is serpentinised. Despite the quality of the existing 2D seismic images, a number of competing models have been advanced to explain the formation of this margin, including sequential faulting, polyphase faulting, multiple detachments and the gravitational collapse of the margin over exhumed mantle. As these models, all developed for the Galicia margin, have been subsequently applied to other margins, distinguishing between them has implications not only for the structure of the Galicia margin but for the process of rifting through to breakup more generally. To address these issues in summer of 2013 we collected a 3D combined seismic reflection and wide-angle dataset over this margin. Here we present some of the results of ongoing processing of the 3D volume, focussing on the internal structure of some of the fault blocks that overlies the S detachment. 2D processing of the data shows a relatively simple series of tilted fault block, bound by west-dipping faults that detach downwards onto the bright S reflector. However, inspection of the 3D volume produced by 3D pre-stack time migration reveals that the fault blocks contain a complex set of sedimentary packages, with strata tilted to the east, west, north and south, each package bound by faults. Furthermore, the top of crustal

  20. 3D seismic attribute-assisted analysis of microseismic events in the Marcellus Shale

    NASA Astrophysics Data System (ADS)

    Hart, Ariel Kelton

    Microseismic monitoring is often used during the process of oil and gas exploitation to monitor seismicity that may be triggered by hydraulic fracturing, a common practice in the Appalachian Basin. Anthropogenically-induced minor upward fracture growth is not uncommon in the Marcellus shale; however, in the area of study, significant microseismic activity was registered above the target zone. In order to ascertain whether out-of-zone growth might have been predictable and identify which areas are more likely to experience brittle failure first, 3D seismic and microseismic data were analyzed with a focus on better understanding variations in the acoustic properties associated with unconventional naturally fractured reservoirs. Ant Tracking was used to identify areas of increased local seismic discontinuity, as these areas are generally more intensely deformed and may represent zones of increased fracture intensity. Ant Tracking results reveal discontinuities in the Marcellus are oriented approximately at N52E and N41W; discontinuities do not coincide with N25E trending folds apparent in the 3D seismic, but tend to follow deeper structural trends instead. These discontinuity orientations are interpreted to be a result of continued movement on deeper faults throughout the Paleozoic; these faults possibly acted as seed points for fractures further upsection and potentially led to the precipitation of the large N25E trending imbricate backthrusts seen in the 3D seismic. The reservoir's response to hydraulic fracturing also provided insights into local stress anisotropy and into optimal well and stage spacing needed to maximize drainage area and locate additional wells during the field development phase. Microseismic, well, and pump data used to gauge the reservoir's response to a hydraulic fracture treatment indicated that the number of stages, lateral length, total proppant volume, and fracture energy heavily influence how a well produces. SHmax in the area is oriented

  1. 3D insight into fault geometries, deformation, and fluid-migration within the Hosgri Fault Zone offshore central California: Results from high-resolution 3D seismic data

    NASA Astrophysics Data System (ADS)

    Kluesner, J.; Brothers, D. S.; Johnson, S. Y.; Watt, J. T.

    2015-12-01

    High-resolution 3D seismic P-Cable data and advanced seismic attribute analyses were used to detect and interpret complex strike-slip fault geometries, deformation patterns, and fluid-pathways across a portion of the Hosgri Fault Zone (HFZ) offshore central California. Combination of the fault attribute results with structural analysis provides 3D insight into the geometry and internal structure of restraining and releasing bends, step-over zones, fault convergence zones, and apparent paired fault bends. The 3D seismic volume covers a 13.7 km2 region along the HFZ offshore of Point Sal and was collected in 2012 as part of the PG&E Central California Seismic Imaging Project (PG&E, 2014). Application of the fault attribute workflow isolated and delineated fault strands within the 3D volume. These results revealed that the northern and southern edges of the survey region are characterized by single fault strands that exhibit an approximate 6° change in strike across the 3D volume. Between these single faults strands is a complex network of fault splays, bends, stepovers, and convergence zones. Structural analysis reveals that the southern portion of the HFZ in the region is characterized by transtensional deformation, whereas transpressional-related folding dominates the central and northern portions of the HFZ. In the central region, convergence of the Lions Head Fault from the southeast results in an apparent impinging block, leading to development of a "paired fault bend" to the west. Combination of the fault and "chimney" attribute results indicates a strong connection between faults and fluid-migration pathways. Fluid-pathways are concentrated along discrete faults in the transtensional zones, but appear to be more broadly distributed amongst fault bounded anticlines and structurally controlled traps in the transpressional zones.

  2. High-resolution 3D seismic model of the crustal and uppermost mantle structure in Poland

    NASA Astrophysics Data System (ADS)

    Grad, Marek; Polkowski, Marcin; Ostaficzuk, Stanisław R.

    2016-01-01

    In the area of Poland a contact between the Precambrian and Phanerozoic Europe and the Carpathians has a complicated structure and a complex P-wave velocity of the sedimentary cover, crystalline crust, Moho depth and the uppermost mantle. The geometry of the uppermost several kilometers of sediments is relatively well recognized from over 100,000 boreholes. The vertical seismic profiling (VSP) from 1188 boreholes provided detailed velocity data for regional tectonic units and for stratigraphic successions from Permian to the Tertiary and Quaternary deposits. These data, however, do not provide information about the velocity and basement depth in the central part of the Trans-European suture zone (TESZ) and in the Carpathians. So, the data set is supplemented by 2D velocity models from 32 deep seismic sounding refraction profiles which also provide information about the crust and uppermost mantle. Together with the results of other methods: vertical seismic profiling, magnetotelluric, allow for the creation of a detailed, high-resolution 3D model for the entire Earth's crust and the uppermost mantle down to a depth of 60 km. The thinnest sedimentary cover in the Mazury-Belarus anteclise is only 0.3 to 1 km thick, which increases to 7 to 8 km along the East European Craton (EEC) margin, and 9 to 12 km in the TESZ. The Variscan domain is characterized by a 1-4 km thick sedimentary cover, while the Carpathians are characterized by very thick sedimentary layers, up to about 20 km. The crystalline crust is differentiated and has a layered structure. The crust beneath the West European Platform (WEP; Variscan domain) is characterized by P-wave velocities of 5.8-6.6 km/s. The upper and middle crusts beneath the EEC are characterized by velocities of 6.1-6.6 km/s, and are underlain by a high velocity lower crust with a velocity of about 7 km/s. A general decrease in velocity is observed from the older to the younger tectonic domains. The TESZ is associated with a steep dip

  3. 3D interpretation of SHARAD radargram data using seismic processing routines

    NASA Astrophysics Data System (ADS)

    Kleuskens, M. H. P.; Oosthoek, J. H. P.

    2009-04-01

    Ground penetrating radar on board a satellite has entered the field of planetary geology. Two radars enable subsurface observations of Mars. In 2003, ESA launched the Mars Express equipped with MARSIS, a low frequency radar which was able to detect only the base of the ice caps. Since December 2006, the Shallow Radar (SHARAD) of Agenzia Spaziale Italiana (ASI) on board the NASA Mars Reconnaissance Orbiter (MRO) is active in orbit around Mars. The SHARAD radar covers the frequency band between 15 and 25 MHz. The vertical resolution is about 15 m in free space. The horizontal resolution is 300-1000 m along track and 1500-8000 m across track. The radar penetrates the subsurface of Mars up to 2 km deep, and is capable of detecting multiple reflections in the ice caps of Mars. Considering the scarcity of planetary data relative to terrestrial data, it is essential to combine all available types of data of an area of interest. Up to now SHARAD data has only been interpreted separately as 2D radargrams. The Geological Survey of the Netherlands has decades of experience in interpreting 2D and 3D seismic data of the Dutch subsurface, especially for the 3D interpretation of reservoir characteristics of the deeper subsurface. In this abstract we present a methodology which can be used for 3D interpretation of SHARAD data combined with surface data using state-of-the art seismic software applied in the oil and gas industry. We selected a region that would be most suitable to demonstrate 3D interpretation. The Titania Lobe of the North Polar ice cap was selected based on the abundancy of radar data and the complexity of the ice lobe. SHARAD data is released to the scientific community via the Planetary Data System. It includes ‘Reduced Data Records' (RDR) data, a binary format which contains the radargram. First the binary radargram data and corresponding coordinates were combined and converted to the commonly used seismic seg-y format. Second, we used the reservoir

  4. New results from a 3D seismic academic dataset across the west Galicia margin

    NASA Astrophysics Data System (ADS)

    Lymer, Gaël; Cresswell, Derren; Reston, Tim; Stevenson, Carl; Sawyer, Dale

    2016-04-01

    The west Galicia margin (western Spain) is a magma-poor margin and has limited sedimentary cover, providing ideal conditions to study the processes of continental extension and break-up through seismic imaging. The margin is characterised by hyper-extended continental crust, well defined rotated faults blocks with associated syn-kinematic sedimentary wedges, and exhumed serpentinized continental mantle. Faulted blocks overlie a bright reflection, the S reflector, generally interpreted as both a detachment and the crust-mantle boundary. But open questions remain concerning the role of the S detachment in extension leading to breakup. To study further the S reflection and its role in continental breakup, a new 3D high-resolution multi-channel seismic dataset has been acquired over the Galicia margin during summer 2013. It consists in 800 inlines and 5000 crosslines distributed on a ~680 km2 areal. This 3D dataset is thus the largest academic one of its kind. It extends across the edge of the continental crust and captures the 3D nature of extension and break-up of the northern Atlantic continental margins. Here we present some results from our interpretations of the 3D volume, which allow various horizons, including the base of the post-rift sedimentary cover, the top basement and the S reflector, to be mapped out in 3D. These maps provide 3D views of the margin structure and also reveal the texture of each horizon. We also focus on the internal structure of some of the faulted blocks through interpretation of the crustal normal faults. The main normal faults are generally connected downward on the S reflector, revealing strong interactions between crustal thinning and the S. The half-grabens and the fault blocks are dominantly N-S oriented, but the crustal structures vary both along strike and cross strike. We particularly observe an intriguingly NW-SE trend, highlighted by a pronounced low within the crest of the fault blocks. We also observe this trend from

  5. Validating 3D Seismic Velocity Models Using the Spectral Element Method

    NASA Astrophysics Data System (ADS)

    Maceira, M.; Rowe, C. A.; Allen, R. M.; Obrebski, M. J.

    2010-12-01

    As seismic instrumentation, data storage and dissemination and computational power improve, seismic velocity models attempt to resolve smaller structures and cover larger areas. However, it is unclear how accurate these velocity models are and, while the best models available are used for event determination, it is difficult to put uncertainties on seismic event parameters. Model validation is typically done using resolution tests that assume the imaging theory used is accurate and thus only considers the impact of the data coverage on resolution. We present the results of a more rigorous approach to model validation via full three-dimensional waveform propagation using Spectral Element Methods (SEM). This approach makes no assumptions about the theory used to generate the models but require substantial computational resources. We first validate 3D tomographic models for the Western USA generated using both ray-theoretical and finite-frequency methods. The Dynamic North America (DNA) Models of P- and S- velocity structure (DNA09-P and DNA09-S) use teleseismic body-wave traveltime residuals recorded at over 800 seismic stations provided by the Earthscope USArray and regional seismic networks. We performed systematic computations of synthetics for the dataset used to generate the DNA models. Direct comparison of these synthetic seismograms to the actual observations allows us to accurately assess and validate the models. Implementation of the method for a densely instrumented region such as that covered by the DNA model provides a useful testbed for the validation methods that we will subsequently apply to other, more challenging study areas.

  6. 3D geometry of the strain-field at transform plate boundaries: Implications for seismic rupture

    SciTech Connect

    Bodin, P.; Bilham, R. |

    1994-11-01

    We examine the amplitude and distribution of slip on vertical frictionless faults in the zone of concentrated shear strain that is characteristic of transform plate boundaries. We study both a 2D and a 3D approximation to this strain field. Mean displacements on ruptures within the zone of concentrated shear strain are proportional to the shear strain at failure when they are short, and are limited by plate displacements since the last major earthquake when they are long. The transition between these two behaviors occurs when the length of the dislocation approaches twice the thickness of the seismogenic crust, approximately the breadth of the zone of concentrated shear strain observed geodetically at transform plate boundaries. This result explains the observed non-linear scaling relation between seismic moment and rupture length. A geometrical consequence of the 3D model, in which the strain-field tapers downward, is that moderate earthquakes with rupture lengths similar to the thickness of the crust tend to slip more at depth than near the surface. Seismic moments estimated from surface slip in moderate earthquakes (M less than or equal to 7) will thus be underestimated. Shallow creep, if its along-strike dimension is extensive, can reduce a surface slip deficit that would otherwise develop on faults on which M less than 7 events are typical. In the absence of surface creep or other forms of off-fault deformation great earthquakes may be necessary features of transform boundaries with downward-tapering strain-fields.

  7. Effect of damping and yielding on the seismic response of 3D steel buildings with PMRF.

    PubMed

    Reyes-Salazar, Alfredo; Haldar, Achintya; Rodelo-López, Ramon Eduardo; Bojórquez, Eden

    2014-01-01

    The effect of viscous damping and yielding, on the reduction of the seismic responses of steel buildings modeled as three-dimensional (3D) complex multidegree of freedom (MDOF) systems, is studied. The reduction produced by damping may be larger or smaller than that of yielding. This reduction can significantly vary from one structural idealization to another and is smaller for global than for local response parameters, which in turn depends on the particular local response parameter. The uncertainty in the estimation is significantly larger for local response parameter and decreases as damping increases. The results show the limitations of the commonly used static equivalent lateral force procedure where local and global response parameters are reduced in the same proportion. It is concluded that estimating the effect of damping and yielding on the seismic response of steel buildings by using simplified models may be a very crude approximation. Moreover, the effect of yielding should be explicitly calculated by using complex 3D MDOF models instead of estimating it in terms of equivalent viscous damping. The findings of this paper are for the particular models used in the study. Much more research is needed to reach more general conclusions.

  8. Effect of Damping and Yielding on the Seismic Response of 3D Steel Buildings with PMRF

    PubMed Central

    Haldar, Achintya; Rodelo-López, Ramon Eduardo; Bojórquez, Eden

    2014-01-01

    The effect of viscous damping and yielding, on the reduction of the seismic responses of steel buildings modeled as three-dimensional (3D) complex multidegree of freedom (MDOF) systems, is studied. The reduction produced by damping may be larger or smaller than that of yielding. This reduction can significantly vary from one structural idealization to another and is smaller for global than for local response parameters, which in turn depends on the particular local response parameter. The uncertainty in the estimation is significantly larger for local response parameter and decreases as damping increases. The results show the limitations of the commonly used static equivalent lateral force procedure where local and global response parameters are reduced in the same proportion. It is concluded that estimating the effect of damping and yielding on the seismic response of steel buildings by using simplified models may be a very crude approximation. Moreover, the effect of yielding should be explicitly calculated by using complex 3D MDOF models instead of estimating it in terms of equivalent viscous damping. The findings of this paper are for the particular models used in the study. Much more research is needed to reach more general conclusions. PMID:25097892

  9. 3-D seismic improves structural mapping of a gas storage reservoir (Paris basin)

    SciTech Connect

    Huguet, F. ); Pinson, C. )

    1993-09-01

    In the Paris basin, anticlinal structures with closure of no more than 80 m and surface area of a few km[sup 2] are used for underground gas storage. At Soings-en-Sologne, a three-dimensional (3-D) survey (13 km[sup 2]) was carried out over such a structure to establish its exact geometry and to detail its fault network. Various reflectors were picked automatically on the migrated data: the top of the Kimmeridgian, the top of the Bathoinian and the base of the Hettangian close to the top of the reservoir. The isochron maps were converted into depth using data from 12 wells. Horizon attributes (amplitude, dip, and azimuth) were used to reconstruct the fault's pattern with much greater accuracy than that supplied by interpretation from previous two-dimensional seismic. The Triassic and the Jurassic are affected by two systems of conjugate faults (N10-N110, inherited from the Hercynian basement and N30-N120). Alternating clay and limestone are the cause of numerous structural disharmonies, particularly on both sides of the Bathonian. Ridges associated with N30-N120 faults suggest compressive movements contemporaneous with the tertiary events. The northern structure in Soings-en-Sologne thus appear to be the result of polyphased tectonics. Its closure (25 m), which is associated either with dips or faults, is described in detail by 3-D seismic, permitting more accurate forecast of the volume available for gas storage.

  10. Effect of damping and yielding on the seismic response of 3D steel buildings with PMRF.

    PubMed

    Reyes-Salazar, Alfredo; Haldar, Achintya; Rodelo-López, Ramon Eduardo; Bojórquez, Eden

    2014-01-01

    The effect of viscous damping and yielding, on the reduction of the seismic responses of steel buildings modeled as three-dimensional (3D) complex multidegree of freedom (MDOF) systems, is studied. The reduction produced by damping may be larger or smaller than that of yielding. This reduction can significantly vary from one structural idealization to another and is smaller for global than for local response parameters, which in turn depends on the particular local response parameter. The uncertainty in the estimation is significantly larger for local response parameter and decreases as damping increases. The results show the limitations of the commonly used static equivalent lateral force procedure where local and global response parameters are reduced in the same proportion. It is concluded that estimating the effect of damping and yielding on the seismic response of steel buildings by using simplified models may be a very crude approximation. Moreover, the effect of yielding should be explicitly calculated by using complex 3D MDOF models instead of estimating it in terms of equivalent viscous damping. The findings of this paper are for the particular models used in the study. Much more research is needed to reach more general conclusions. PMID:25097892

  11. Real time 3D scanner: investigations and results

    NASA Astrophysics Data System (ADS)

    Nouri, Taoufik; Pflug, Leopold

    1993-12-01

    This article presents a concept of reconstruction of 3-D objects using non-invasive and touch loss techniques. The principle of this method is to display parallel interference optical fringes on an object and then to record the object under two angles of view. According to an appropriated treatment one reconstructs the 3-D object even when the object has no symmetrical plan. The 3-D surface data is available immediately in digital form for computer- visualization and for analysis software tools. The optical set-up for recording the 3-D object, the 3-D data extraction and treatment, as well as the reconstruction of the 3-D object are reported and commented on. This application is dedicated for reconstructive/cosmetic surgery, CAD, animation and research purposes.

  12. Combined interpretation of 3D seismic reflection attributes for geothermal exploration in the Polish Basin using self-organizing maps

    NASA Astrophysics Data System (ADS)

    Bauer, Klaus; Pussak, Marcin; Stiller, Manfred; Bujakowski, Wieslaw

    2014-05-01

    Self-organizing maps (SOM) are neural network techniques which can be used for the joint interpretation of multi-disciplinary data sets. In this investigation we apply SOM within a geothermal exploration project using 3D seismic reflection data. The study area is located in the central part of the Polish basin. Several sedimentary target horizons were identified at this location based on fluid flow rate measurements in the geothermal research well Kompina-2. The general objective is a seismic facies analysis and characterization of the major geothermal target reservoir. A 3D seismic reflection experiment with a sparse acquisition geometry was carried out around well Kompina-2. Conventional signal processing (amplitude corrections, filtering, spectral whitening, deconvolution, static corrections, muting) was followed by normal-moveout (NMO) stacking, and, alternatively, by common-reflection-surface (CRS) stacking. Different signal attributes were then derived from the stacked images including root-mean-square (RMS) amplitude, instantaneous frequency and coherency. Furthermore, spectral decomposition attributes were calculated based on the continuous wavelet transform. The resulting attribute maps along major target horizons appear noisy after the NMO stack and clearly structured after the CRS stack. Consequently, the following SOM-based multi-parameter signal attribute analysis was applied only to the CRS images. We applied our SOM work flow, which includes data preparation, unsupervised learning, segmentation of the trained SOM using image processing techniques, and final application of the learned knowledge. For the Lower Jurassic target horizon Ja1 we derived four different clusters with distinct seismic attribute signatures. As the most striking feature, a corridor parallel to a fault system was identified, which is characterized by decreased RMS amplitudes and low frequencies. In our interpretation we assume that this combination of signal properties can be

  13. DEVELOPMENT OF A 400 LEVEL 3C CLAMPED DOWNHOLE SEISMIC RECEIVER ARRAY FOR 3D BOREHOLE SEISMIC IMAGING OF GAS RESERVOIRS

    SciTech Connect

    Bjorn N.P Paulsson

    2002-05-01

    Borehole seismology is the highest resolution geophysical imaging technique available to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently frustrated by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This proposal takes direct aim at this shortcoming. P/GSI is developing a 400 level 3C clamped downhole seismic receiver array for borehole seismic 3D imaging. This array will remove the acquisition barrier to record the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. 3D VSP and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for economic use of 3D borehole seismic imaging for reservoir characterization and monitoring. By using 3C surface seismic or borehole seismic sources the 400 level receiver array will furthermore facilitate 9C reservoir imaging. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the fluid types. The data quality and the data volumes from a 400 level 3C array will allow us to develop the data processing technology necessary for high resolution reservoir imaging.

  14. DEVELOPMENT OF A 400 LEVEL 3C CLAMPED DOWNHOLE SEISMIC RECEIVER ARRAY FOR 3D BOREHOLE SEISMIC IMAGING OF GAS RESERVOIRS

    SciTech Connect

    Bjorn N.P. Paulsson

    2002-09-01

    Borehole seismology is the highest resolution geophysical imaging technique available to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently frustrated by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This proposal takes direct aim at this shortcoming. P/GSI is developing a 400 level 3C clamped downhole seismic receiver array for borehole seismic 3D imaging. This array will remove the acquisition barrier to record the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. 3D VSP and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for economic use of 3D borehole seismic imaging for reservoir characterization and monitoring. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver array will furthermore facilitate 9C reservoir imaging. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the fluid types. The data quality and the data volumes from a 400 level 3C array will allow us to develop the data processing technology necessary for high resolution reservoir imaging.

  15. New insights into the earliest Quaternary environments in the Central North Sea from 3D seismic

    NASA Astrophysics Data System (ADS)

    Lamb, Rachel; Huuse, Mads; Stewart, Margaret; Brocklehurst, Simon H.

    2014-05-01

    In the past the transition between an unconformable surface in the south to a conformable horizon towards the north has made identification and mapping the base-Quaternary in the central North Sea difficult (Sejrup et al 1991; Gatliff et al 1994). However recent integration of biostratigraphy, pollen analysis, paleomagnetism and amino acid analysis in the Dutch and Danish sectors (Rasmussen et al 2005; Kuhlmann et al 2006) has allowed greater confidence in the correlation to the region 3D seismic datasets and thus has allowed the base-Quaternary to be mapped across the entire basin. The base-Quaternary has been mapped using the PGS MegaSurvey dataset from wells in the Danish Sector along the initially unconformable horizon and down the delta front into the more conformable basin giving a high degree of confidence in the horizon pick. The revised base-Quaternary surface reaches a depth of 1248 ms TWT with an elongate basin shape which is significantly deeper than the traditionally mapped surface. Using RMS amplitudes and other seismic attributes the revised base-Quaternary has been investigated along the horizon and in time slice to interpret the environments of the earliest Quaternary prior to the onset of glaciation. Combined with analysis of aligned elongate furrows over 10 km long, 100 m wide and 100 m deep suggest a deep marine environment in an almost enclosed basin with persistent strong NW-SE bottom currents in the deepest parts. Pockmarks were formed by the escape of shallow gas on the sides of a small delta in the eastern part of the basin. The progradation of large deltas from both the north and south into the basin make up the majority of the deposition of sediment into the basin. Key Words: base-Quaternary; seismic interpretation; paleoenvironments References: Gatliff, R.W, Richards, P.C, Smith, K, Graham, C.C, McCormac, M, Smith, N.J.P, Long, D, Cameron, T.D.J, Evans, D, Stevenson, A.G, Bulat, J, Ritchie, J.D, (1994) 'United Kingdom offshore regional

  16. Testing & Validating: 3D Seismic Travel Time Tomography (Detailed Shallow Subsurface Imaging)

    NASA Astrophysics Data System (ADS)

    Marti, David; Marzan, Ignacio; Alvarez-Marron, Joaquina; Carbonell, Ramon

    2016-04-01

    A detailed full 3 dimensional P wave seismic velocity model was constrained by a high-resolution seismic tomography experiment. A regular and dense grid of shots and receivers was use to image a 500x500x200 m volume of the shallow subsurface. 10 GEODE's resulting in a 240 channels recording system and a 250 kg weight drop were used for the acquisition. The recording geometry consisted in 10x20m geophone grid spacing, and a 20x20 m stagered source spacing. A total of 1200 receivers and 676 source points. The study area is located within the Iberian Meseta, in Villar de Cañas (Cuenca, Spain). The lithological/geological target consisted in a Neogen sedimentary sequence formed from bottom to top by a transition from gyspum to silstones. The main objectives consisted in resolving the underground structure: contacts/discontinuities; constrain the 3D geometry of the lithology (possible cavities, faults/fractures). These targets were achieved by mapping the 3D distribution of the physical properties (P-wave velocity). The regularly space dense acquisition grid forced to acquire the survey in different stages and with a variety of weather conditions. Therefore, a careful quality control was required. More than a half million first arrivals were inverted to provide a 3D Vp velocity model that reached depths of 120 m in the areas with the highest ray coverage. An extended borehole campaign, that included borehole geophysical measurements in some wells provided unique tight constraints on the lithology an a validation scheme for the tomographic results. The final image reveals a laterally variable structure consisting of four different lithological units. In this methodological validation test travel-time tomography features a high capacity of imaging in detail the lithological contrasts for complex structures located at very shallow depths.

  17. Significant reserve additions from oligocene Hackberry Sands utilizing 3-D seismic, upper Texas and Louisiana Gulf Coast

    SciTech Connect

    Zamboras, R.L.

    1995-10-01

    The Oligocene Hackberry sands of the Hackberry Embayment represent a complex and elusive exploration target. 3-D seismic evaluation along the headward erosional limits of the embayment provides a reconstructive framework of tectonic and sedimentation patterns which facilitate hydrocarbon exploration. The 3-D seismic along the Orange County, Texas portion of the Oligocene Hackberry trend indicates: (1) similarities of Hackberry structural and depositional setting to that of the underlying Eocene Yegua Formation; (2) four distinct cyclical sedimentation episodes associated with basin floor slump faulting: (3) the usefulness of seismic attributes as direct hydrocarbon indicators, and (4) the potential for significant oil and gas reserves additions in a mature trend. The Hackberry embayment represents a microcosm of the basin structural and depositional processes. Utilizing 3-D seismic to lower risk and finding cost will renew interest in trends such as the Hackberry of the Upper Texas-Louisiana Gulf Coast.

  18. Analysis of Paleokarst Sinkholes in the Arkoma Basin using 3-D Seismic

    NASA Astrophysics Data System (ADS)

    Kumbalek, Michael

    Paleokarst features are important to understand, both with regards to research geologists and to the petroleum industry. In terms of geology, understanding paleokarst features can yield more information about the depositional and surface environments of past times, and how diagenetic alteration affected the environment during the formation of karst features. In the petroleum industry, paleokarst features can have positive or negative consequence resulting in a potential reservoir with enhanced porosity due to the paleokarst features, or as a geo-hazard to prepare for or avoid when drilling. Inspired by issues faced when drilling in the Ft. Worth basin, this study utilizes multiple 3-D seismic surveys and subsurface well control to map paleokarsts within the Viola Limestone in the Arkoma Basin. Calculated seismic attribute volumes used to identify paleokarst sinkholes within the Viola Group include coherency and curvature attributes. ImageJ software was used to aid in counting and measuring paleokarst sinkholes identified using seismic mapping, coherency, and curvature attribute volumes. In addition to mapping, a cumulative distribution plot was produced from the diameters of the seismically mapped paleokarst sinkholes, allowing for an estimate to be made as to what the total amount of paleokarst sinkholes are within the study area. The methods detailed in this study proved to be effective in mapping and analyzing paleokarst sinkholes within the Viola Group. The paleokarst sinkholes mapped were determined to have been formed on the outer edge of the Southern Oklahoma aulacogen, as a result of the Sylvan/Viola unconformity. In addition to this, it has been determined that these paleokarst sinkholes are linked in formation to visually similar paleokarst sinkholes located in the Ellenburger Group in the Fort Worth Basin.

  19. 3-D Seismic Imaging of Sedimentary Underplating at the Corner of the Cascadia Mantle Wedge

    NASA Astrophysics Data System (ADS)

    Calvert, A. J.; Preston, L. A.; Farahbod, A. M.

    2010-12-01

    In several subduction zones, teleseismic surveys have identified landward dipping zones with anomalously low seismic velocities at depths >20 km, which are interpreted to be the subducting oceanic crust. In the Cascadia subduction zone, two teleseismic profiles (CAFE and POLARIS) lie in an area of dense seismicity and mostly within a group of active source, crustal-scale seismic surveys that were acquired between 1995 and 1999. A 3-D P wave velocity model, which extends to depths as great as 65 km, has been derived by an integrated tomographic inversion of the areally distributed earthquakes and active source data. To identify the low velocity zone in the velocity model, we compare coincident linear sections extracted from the model with the P and S wave velocity perturbations derived from the teleseismic data. Given the uncertainties in the analysis of the different datasets, it is probable that the analyses of the teleseismic data and the tomographic inversion of local seismic travel time data have identified the same landward dipping low velocity zone. In the 3-D tomographic velocity model, the low velocity zone, which can be traced along strike between the two 2-D teleseismic surveys, outcrops in the Olympic Mountains where rocks of the accretionary wedge have been exhumed. The oceanic crust, which is located by PmP reflections, underlies the more shallowly dipping low velocity zone. At depths of 35-40 km, the low velocity zone separates from the descending plate and decreases in amplitude. The plate interface may be located at the top of the basaltic oceanic crust, i.e. near the base of the low velocity zone, but the boundary between the two plates could also be a vertically distributed shear zone corresponding to the deeper part of the low velocity region. At depth, the low velocity zone corresponds to previously identified seismic reflections, which we suggest represent rocks sheared at, or immediately above, the inter-plate boundary. The seismic reflectors

  20. An Integrated Multi-component Processing and Interpretation Framework for 3D Borehole Seismic Data

    SciTech Connect

    M. Karrenbach

    2004-10-15

    This report covers the April 2004-September 2004 time period. Work has been performed successfully on several tasks 1 through 16. Part of this work has been reported in 15418R03. Most of portions of these tasks have been executed independently. We progressed steadily and completed some of the sub-tasks, while others are still on going. We achieved the goals that we had set up in the task schedule. Reviewing the results of this work period indicates that our plan is solid and we did not encounter any unforeseen problems. The work plan will continue as scheduled. A midyear review will be presented in November or December 2004. Several independent tasks pursuant the statement of project objectives have been executed simultaneously and are still on-going. Use of real seismic test data is augmented by the creation a 3D ray tracing synthetic test data. We used the previously constructed 3D layered model and simulated data acquisition from a set of circular source locations at the surface of the model, while a close to vertical VSP well was used to capture the wave field data. The source pattern was optimized with respect to Fresnel zone width at the target depth. Multi-component particle displacements were recorded every 50 ft down with an array length of 4,000 ft. P-P as well as P-S reflections were specified in the resulting wave field. We ensured a large enough aperture with enough fine sampling to perform advanced processing, imaging and analysis tests in the future during this project. We constantly improved the interfacing of our software libraries with newly designed 3C display classes and mechanisms. We used the previously implemented 3C Work Bench tool as the primary prototyping tool. This work bench allows to load as well as manipulate and display data items in a flexible manner. We continued to demonstrate its basic functionality by loading source maps, horizons, seismic and velocity volumes, well logs into the tool, performing basic QC steps as is necessary

  1. Lithology Cubes and Geobodies from 3D Seismic Data - a Gulf of Mexico Case Study

    NASA Astrophysics Data System (ADS)

    Shelander, D. L.; Zhang, L.; Jacob, C.; Biles, N. E.

    2012-12-01

    Seismic data can be expressed in terms of lithology by utilizing a conversion process which was applied in a case study from the Gulf of Mexico shelf. This process uses rock physics analyses from well data to establish relationships between observed lithology/pore fluid types and physical properties that can be inverted from pre-stack seismic data, e.g. acoustic impedance, P-wave/S-wave velocity ratio (Vp/Vs), and density. Saturation of water (Sw) and volume of shale (Vshale) limits were used to define four lithology/fluid classes (litho-class) in terms of the physical properties; hydrocarbon (HC) sand, wet sand, shaly sand, and shale. Bayesian derived probability density functions (PDFs) for each litho-class were calculated from well log computations of acoustic impedance, Vp/Vs, and density. Using the PDFs, probability cubes for the individual lithologies are calculated from the seismic derived acoustic impedance, Vp/Vs, and density cubes. LithoCube probability cubes are calculated for 4 different litho-classes, and used to determine two additional cubes, a maximum probability cube and a ClassCube. Thus, six LithoCube volumes were generated: ClassCube (comprising the 4 litho-classes, plus an undefined class, assigned based on the highest probability for each sample), Maximum Probability (the value of the highest probability found for each sample, values 0-1.0), Probability of shale (values 0-1.0), Probability of shaly sand (values 0-1.0), Probability of wet sand (values 0-1.0), and Probability of HC sand (values 0 -1.0) The ClassCube provides a quick look, indicating which of the 4 lithology types is most probable for any one sample in the 3D cubes. The Probability for HC sand cube is very useful because it shows probability levels for HC sand occurrence. For example with the four litho-classes, probability for the HC sand may be as high as 1.0, or as low as 0.26. For 0.26 values, the probabilities for the other 3 litho-classes can be 0.25, 0.25 and 0.24. Both of

  2. Imaging 3D seismic velocity along the seismogenic zone of Algarve region (southern Portugal)

    NASA Astrophysics Data System (ADS)

    Rocha, João.; Bezzeghoud, Mourad; Caldeira, Bento; Dias, Nuno; Borges, José; Matias, Luís.; Dorbath, Catherine; Carrilho, Fernando

    2010-05-01

    The present seismic tomographic study is focused around Algarve region, in South of Portugal. To locate the seismic events and find the local velocity structure of epicentral area, the P and S arrival times at 38 stations are used. The data used in this study were obtained during the Algarve campaign which worked from January/2006 to July/2007. The preliminary estimate of origin times and hypocentral coordinates are determined by the Hypoinverse program. Linearized inversion procedure was applied to comprise the following two steps: 1) finding the minimum 1D velocity model using Velest and 2) simultaneous relocation of hypocenters and determination of local velocity structure. The velocity model we have reached is a 10 layer model which gave the lowest RMS, after several runnings of eight different velocity models that we used "a priori". The model parameterization assumes a continuous velocity field between 4.5 km/s and 7.0 km/s until 30 km depth. The earth structure is represented in 3D by velocity at discrete points, and velocity at any intervening point is determined by linear interpolation among the surrounding eight grid points. A preliminary analysis of the resolution capabilities of the dataset, based on the Derivative Weight Sum (DWS) distribution, shows that the velocity structure is better resolved in the West part of the region between the surface to15 km. The resulting tomographic image has a prominent low-velocity anomaly that shows a maximum decrease in P-wave velocity in the first 12 kms in the studied region. We also identified the occurrence of local seismic events of reduced magnitude not catalogued, in the neighbourhood of Almodôvar (low Alentejo). The spatial distribution of epicentres defines a NE-SW direction that coincides with the strike of the mapped geological faults of the region and issued from photo-interpretation. Is still expectable to refine the seismicity of the region of Almodôvar and establish more rigorously its role in the

  3. 3-D full waveform inversion of seismic data; Part I. Theory

    SciTech Connect

    Lee, Ki Ha

    2003-05-12

    Full waveform inversion of seismic data is a challenging subject partly because of the lack of precise knowledge of the source. Since currently available approaches involve some form of approximations to the source, inversion results are subject to the quality and the choice of the source information used. A new full waveform inversion scheme has been introduced (Lee and Kim, 2003) using normalized wavefield for simple two-dimensional (2-D) scalar problems. The method does not require source information, so potential inversion errors due to source estimation may be eliminated. A gather of seismic traces is first Fourier-transformed into the frequency domain and a normalized wavefield is obtained for each trace in the frequency domain. Normalization is done with respect to the frequency response of a reference trace selected from the gather, so the complex-valued normalized wavefield is source-independent and dimensionless. The inversion algorithm minimizes misfits between measured normalized wavefield and numerically computed normalized wavefield. In this paper the full waveform inversion is extended to three-dimensional (3-D) problems.

  4. Refining seismic parameters in low seismicity areas by 3D trenching: The Alhama de Murcia fault, SE Iberia

    NASA Astrophysics Data System (ADS)

    Ferrater, Marta; Ortuño, Maria; Masana, Eulàlia; Pallàs, Raimon; Perea, Hector; Baize, Stephane; García-Meléndez, Eduardo; Martínez-Díaz, José J.; Echeverria, Anna; Rockwell, Thomas K.; Sharp, Warren D.; Medialdea, Alicia; Rhodes, Edward J.

    2016-06-01

    Three-dimensional paleoseismology in strike-slip faults with slip rates less than 1 mm per year involves a great methodological challenge. We adapted 3D trenching to track buried channels offset by the Alhama de Murcia seismogenic left-lateral strike-slip fault (SE Iberia). A fault net slip of 0.9 ± 0.1 mm/yr was determined using statistical analysis of piercing lines for one buried channel, whose age is constrained between 15.2 ± 1.1 ka and 21.9-22.3 cal BP. This value is larger and more accurate than the previously published slip rates for this fault. The minimum number of five paleo-earthquakes identified since the deposition of dated layers suggests a maximum average recurrence interval of approximately 5 ka. The combination of both seismic parameters yields a maximum slip per event between 5.3 and 6.3 m. We show that accurately planned trenching strategies and data processing may be key to obtaining robust paleoseismic parameters in low seismicity areas.

  5. 3D Euler deconvolution in the New Madrid seismic zone (eastern US)

    NASA Astrophysics Data System (ADS)

    Arroucau, P.; Vlahovic, G.; Powell, C. A.

    2011-12-01

    The seismicity of intraplate continental interiors is one of the most challenging -though a bit overlooked- research topics in seismology. The most famous of those is undoubtedly the New Madrid seismic zone (NMSZ), named after the city of New Madrid, Missouri, that was destroyed by one of the three M>7.0 earthquakes that occurred in central United States during the winter 1811-1812. After two centuries, there is still no consensus about what caused that crisis, how it is related to the current moderate magnitude activity of that region, and how likely it is that similarly large events will occur again in a near future in the NMSZ or in its vicinity. As often in such geodynamic settings, a key question is the role of structural reactivation in the current stress field. As modern earthquakes of the NMSZ mostly occur in the Precambrian basement, below the Mississippi embayment sedimentary cover and at such depths that no deformation is observed at the surface, almost no direct observation is available about faults segments that would be responsible for that seismicity. Yet the activity of the NMSZ is known to coincide with a Precambrian failed rift, the Reelfoot rift, whose geometry is mostly inferred from potential field data. In this work, we apply 3D Euler deconvolution to the total magnetic intensity field of the NMSZ. Euler deconvolution is a technique commonly used in exploration geophysics to determine the depth of magnetic sources and more generally to produce depth-to-basement maps and image deep structures buried beneath non-magnetic sedimentary cover. We obtain basement topography maps that we compare with previously published maps and with the earthquake distribution in the NMSZ.

  6. Surface amplitude data: 3D-seismic for interpretation of sea floor geology (Louisiana Slope)

    SciTech Connect

    Roberts, H.H.

    1996-09-01

    Proliferation of 3D-seismic in support of hydrocarbon exploration/production has created new data for improved interpretation of sea floor and shallow subsurface geology. Processing of digital seismic data to enhance amplitude anomalies produces information for improved assessment of geohazards and identification of sensitive benthic communities protected by environmental regulations. Coupled with high resolution acoustic data and direct observation/sampling using a manned research submersible, surface amplitude maps add critical interpretive information for identification of sea floor features. Non-reflective zones (acoustic wipeouts) are associated with many slope features. Mud diapirs, mud mounds, mud volcanoes, gas-changed sediments, gas hydrates, slump deposits, carbonate hardgrounds, and various types of carbonate mounds are all features that exhibit this common response on high resolution seismic profiles. Amplitude data help make specific identifications. Since 1988, submersible data from mid-to-upper slope features (Garden Banks, Green Canyon, and Mississippi Canyon lease block areas) have been analyzed with conventional high resolution acoustic data and 313-amplitude extraction maps. Areas of rapid venting of sediment and hydrocarbon-charged formation fluids are clearly distinguishable from mud diapirs and areas of carbonate mounds (slow seepage). Gas hydrates occur as mounds and mounded zones along faults; products of moderate flux rates below (approx.) 500 in water depths. Gas hydrates function as stored trophic resources that support sensitive chemosynthetic communities. Amplitude extraction maps clearly identify these features by a strong low impedance amplitude anomaly. Refinement and {open_quotes}field calibration{close_quotes} of the surface amplitude extraction method may eventually lead to a new standard for evaluating geohazards and sensitive benthic communities.

  7. Modeling the Coast Mountains Batholith, British Columbia, Canada with 3D Seismic Tomography

    NASA Astrophysics Data System (ADS)

    Quinonez, S. M.; Olaya, J. C.; Miller, K. C.; Romero, R.; Velasco, A. A.; Harder, S. H.; Cerda, I.

    2011-12-01

    The Coast Mountains Batholith on the west coast of British Columbia, Canada comprises a series of granitic to tonalitic plutons; where felsic continental crust is generated from the subduction of mafic oceanic crust by partial melting and fractionation, leaving ultra-mafic roots. In July of 2009, a large controlled-source experiment was conducted along a 400km east - west transect from Bella Bella into central British Columbia. Student volunteers from multiple universities deployed 1,800 one-component and 200 three-component geophones plus 2400 Texan data recorders with 200-m spacing intervals and shot spacing at 30-km. The 18-point sources ranged from 160 to 1,000 kg of high explosive. The geoscience component of the NSF-funded Cyber-ShARE project at UTEP focuses on fusing models developed from different data sets to develop 3-D Earth models. Created in 2007, the Cyber-ShARE Center brings together experts in computer science, computational mathematics, education, earth science, and environmental science. We leverage the Cyber-ShARE work to implement an enhanced 3-D finite difference tomography approach for P-wave delays times (Hole, 1992) with a graphical user interface and visualization framework. In particular, to account for model sensitivity to picked P-wave arrival times, we use a model fusion approach (Ochoa et al., 2010) to generate a model with the lowest RMS residual that a combination of a set of Monte Carlo sample models. In order to make the seismic tomography process more interactive at many points, visualizations of model perturbation at each iteration will help to troubleshoot when a model is not converging to highlight where the RMS residual values are the highest to pinpoint where changes need to be made to achieve model convergence. Finally, a model of the upper mantle using 3-D P-wave tomography will be made to determine the location of these ultra-mafic roots.

  8. New 3D seismicity maps using chromo-stereoscopy with two alternative freewares

    NASA Astrophysics Data System (ADS)

    Okamoto, Y.

    2011-12-01

    Seismicity maps play a key role in an introduction of geosciences studies or outreach programs. Various techniques are used in order to show earthquakes in a three dimensional field. To use "chromo-stereoscopy" is our simple and easier-making solution. The Chroma Depth 3D Glasses are employed for this purpose. The glasses consist of two transparent blazed grating films covered with a paper holder and cost a little (1 US$). Looking through these glasses, the colored chart turns into three dimensional perspective due to the mechanism that the color codes make a depth dimension with dispersion. We use two complementary freewares to make maps, the GMT (Generic Mapping Tools, Wessel and Smith.1988) and the POV-Ray (Persistence of Vision Pty. Ltd. 2004). The two softwares have their own advantages; the GMT is specialized for map making with simple scripts, while the POV-Ray produces realistic 3D rendering images with more complicated scripts. The earthquakes are plotted with the rainbow color codes depending on their depths in a black background as printed or PC images. Therefore, the red colored shallow earthquakes are float in front and blue colored ones sink deeper. This effect is so amazing that the students who first wear these glasses are strongly moved and fascinated with this simple mechanism. The data used here are from JMA seismicity catalogue and USGS (ANSS) catalogue. The POV-Ray version needs coastline data, so we got them from the Coastline Extractor (NGDC) web site. Also, the POR-Ray has no function to draw lines in three dimensions, so we had to make some trials for showing them in relief. The main target of our map is "the Wadati-Beniof zone", in which the sub-ducting oceanic plate surface is fringed by deeper earthquakes colored yellow, green to blue. The active volcanic regions such as the Hawaii islands or the active fault regions such as the San Andreas Fault are also effective targets of our method. However, since their shallow complicated seismic

  9. A 3D seismic tomography of the Lesser Antilles Subduction Zone offshore Dominica and Martinique islands

    NASA Astrophysics Data System (ADS)

    Evain, Mikaël.; Galve, Audrey; Charvis, Philippe; Laigle, Mireille; Flueh, Ernst; Weinzierl, Wolfgang

    2010-05-01

    Along the eastern border of the Caribbean plate the Lesser Antilles islands form an active volcanic arc above the Atlantic subducting lithosphere. The crustal structure of this convergent margin is presented here from first arrival tomographic inversion of a 3D wide-angle seismic dataset acquired offshore Dominica and Martinique islands by a network of 27 Ocean Bottom Seismometers (OBS). The resulting 3D velocity model shows good resolution from 7-8 km down to ~15 km depth in a 150 km x 150 km area. Though our study area is located at the northern termination of one of the world's largest accretionary prisms we still observe about 5 to 7 km of sediment (v< 4 km/s) in the southeastern corner of our model. Our network is centered on a remarkable bathymetric feature: the Arawak Basin, a 6 km deep basin trending NW-SE, filled with 3 km of sediment on average. The western side of the Arawak Basin is bordered at depth by a basement high, highlighted by the rise of the 6.0-6.5 km/s velocity contours up to 2 km below seafloor. To the east of the Arawak Basin, below the accretionary prism, SW-NE cross-sections show two successive rises of velocity contours from 4.0 to 6.0 km/s. The first one, also clearly seen on the MCS data, is coincident with the eastern border of the Arawak Basin, while the second one seems located ~30 km to the East, below the thick accretionary prism. We interpret these highs as basement uplifts associated with the subduction of the Tiburon ridge. We do not sample the interplate contact mainly due to high seismic attenuation in the accretionary wedge. More insight into the geometry of this contact may arise from the processing of a ~285 km long wide-angle refraction/reflection profile parallel to the convergence that cross our 3D velocity model in its middle and continues across the entire subduction complex. Preliminary tomographic results from this dataset recorded by 45 densely spaced OBS confirm the observations described above. This new 2D line

  10. Interpretation of a 3D Seismic-Reflection Volume in the Basin and Range, Hawthorne, Nevada

    NASA Astrophysics Data System (ADS)

    Louie, J. N.; Kell, A. M.; Pullammanappallil, S.; Oldow, J. S.; Sabin, A.; Lazaro, M.

    2009-12-01

    A collaborative effort by the Great Basin Center for Geothermal Energy at the University of Nevada, Reno, and Optim Inc. of Reno has interpreted a 3d seismic data set recorded by the U.S. Navy Geothermal Programs Office (GPO) at the Hawthorne Army Depot, Nevada. The 3d survey incorporated about 20 NNW-striking lines covering an area of approximately 3 by 10 km. The survey covered an alluvial area below the eastern flank of the Wassuk Range. In the reflection volume the most prominent events are interpreted to be the base of Quaternary alluvium, the Quaternary Wassuk Range-front normal fault zone, and sequences of intercalated Tertiary volcanic flows and sediments. Such a data set is rare in the Basin and Range. Our interpretation reveals structural and stratigraphic details that form a basis for rapid development of the geothermal-energy resources underlying the Depot. We interpret a map of the time-elevation of the Wassuk Range fault and its associated splays and basin-ward step faults. The range-front fault is the deepest, and its isochron map provides essentially a map of "economic basement" under the prospect area. There are three faults that are the most readily picked through vertical sections. The fault reflections show an uncertainty in the time-depth that we can interpret for them of 50 to 200 ms, due to the over-migrated appearance of the processing contractor’s prestack time-migrated data set. Proper assessment of velocities for mitigating the migration artifacts through prestack depth migration is not possible from this data set alone, as the offsets are not long enough for sufficiently deep velocity tomography. The three faults we interpreted appear as gradients in potential-field maps. In addition, the southern boundary of a major Tertiary graben may be seen within the volume as the northward termination of the strong reflections from older Tertiary volcanics. Using a transparent volume view across the survey gives a view of the volcanics in full

  11. Development of a 400 Level 3C Clamped Downhole Seismic Receiver Array for 3D Borehole Seismic Imaging of Gas Reservoirs

    SciTech Connect

    Bjorn N.P. Paulsson

    2005-08-21

    Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently hampered by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. Massive 3D VSP{reg_sign} and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver arrays will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of

  12. Development of a 400 Level 3C Clamped Downhole Seismic Receiver Array for 3D Borehole Seismic Imaging of Gas Reservoirs

    SciTech Connect

    Bjorn N.P Paulsson

    2006-05-05

    Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently hampered by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. Massive 3D VSP{reg_sign} and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver arrays will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of

  13. Development of a 400 Level 3C Clamped Downhole Seismic Receiver Array for 3D Borehole Seismic Imaging of Gas Reservoirs

    SciTech Connect

    Bjorn N. P. Paulsson

    2005-09-30

    Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently hampered by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. Massive 3D VSP{reg_sign} and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver arrays will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of

  14. DEVELOPMENT OF A 400 LEVEL 3C CLAMPED DOWNHOLE SEISMIC RECEIVER ARRAY FOR 3D BOREHOLE SEISMIC IMAGING OF GAS RESERVOIRS

    SciTech Connect

    Bjorn N.P. Paulsson

    2004-12-31

    Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently frustrated by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. Massive 3D VSP{reg_sign} and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver arrays will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of

  15. DEVELOPMENT OF A 400 LEVEL 3C CLAMPED DOWNHOLE SEISMIC RECEIVER ARRAY FOR 3D BOREHOLE SEISMIC IMAGING OF GAS RESERVOIRS

    SciTech Connect

    Bjorn N.P. Paulsson

    2005-03-31

    Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently hampered by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. Massive 3D VSP{reg_sign} and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver arrays will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of

  16. DEVELOPMENT OF A 400 LEVEL 3C CLAMPED DOWNHOLE SEISMIC RECEIVER ARRAY FOR 3D BOREHOLE SEISMIC IMAGING OF GAS RESERVOIRS

    SciTech Connect

    Bjorn N.P. Paulsson

    2004-06-30

    Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently frustrated by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. 3D VSP and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver array will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the

  17. DEVELOPMENT OF A 400 LEVEL 3C CLAMPED DOWNHOLE SEISMIC RECEIVER ARRAY FOR 3D BOREHOLE SEISMIC IMAGING OF GAS RESERVOIRS

    SciTech Connect

    Bjorn N.P. Paulsson

    2002-12-01

    Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently frustrated by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. 3D VSP and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver array will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the

  18. DEVELOPMENT OF A 400 LEVEL 3C CLAMPED DOWNHOLE SEISMIC RECEIVER ARRAY FOR 3D BOREHOLE SEISMIC IMAGING OF GAS RESERVOIRS

    SciTech Connect

    Bjorn N.P. Paulsson

    2004-05-31

    Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently frustrated by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. 3D VSP and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver array will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the

  19. DEVELOPMENT OF A 400 LEVEL 3C CLAMPED DOWNHOLE SEISMIC RECEIVER ARRAY FOR 3D BOREHOLE SEISMIC IMAGING OF GAS RESERVOIRS

    SciTech Connect

    Bjorn N.P Paulsson

    2003-09-01

    Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently frustrated by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. 3D VSP and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver array will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the

  20. DEVELOPMENT OF A 400 LEVEL 3C CLAMPED DOWNHOLE SEISMIC RECEIVER ARRAY FOR 3D BOREHOLE SEISMIC IMAGING OF GAS RESERVOIRS.

    SciTech Connect

    Bjorn N.P Paulsson

    2003-01-01

    Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently frustrated by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. 3D VSP and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver array will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the

  1. DEVELOPMENT OF A 400 LEVEL 3C CLAMPED DOWNHOLE SEISMIC RECEIVER ARRAY FOR 3D BOREHOLE SEISMIC IMAGING OF GAS RESERVOIRS

    SciTech Connect

    Bjorn N.P. Paulsson

    2004-09-30

    Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently frustrated by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. Massive 3D VSP{reg_sign} and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver arrays will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of

  2. DEVELOPMENT OF A 400 LEVEL 3C CLAMPED DOWNHOLE SEISMIC RECEIVER ARRAY FOR 3D BOREHOLE SEISMIC IMAGING OF GAS RESERVOIRS

    SciTech Connect

    Bjorn N.P. Paulsson

    2003-12-01

    Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently frustrated by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. 3D VSP and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver array will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the

  3. DEVELOPMENT OF A 400 LEVEL 3C CLAMPED DOWNHOLE SEISMIC RECEIVER ARRAY FOR 3D BOREHOLE SEISMIC IMAGING OF GAS RESERVOIRS

    SciTech Connect

    Bjorn N.P Paulsson

    2003-07-01

    Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently frustrated by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. 3D VSP and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver array will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the

  4. DEVELOPMENT OF A 400 LEVEL 3C CLAMPED DOWNHOLE SEISMIC RECEIVER ARRAY FOR 3D BOREHOLE SEISMIC IMAGING OF GAS RESERVOIRS

    SciTech Connect

    Bjorn N.P. Paulsson

    2004-05-01

    Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to economically do high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology is currently frustrated by the lack of the acquisition technology necessary to record the large volumes of the high frequency, high signal-to-noise-ratio borehole seismic data needed to do 3D imaging. This project takes direct aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array will remove the technical acquisition barrier for recording the necessary volumes of data to do high resolution 3D VSP or 3D cross well seismic imaging. 3D VSP and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that will allow the Gas industry to take the next step in their quest for higher resolution images of the gas reservoirs for the purpose of improving the recovery of the natural gas resources. Today only a fraction of the original Oil or Gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of the detailed compartmentalization of the oil and gas reservoirs. The 400 level 3C borehole seismic receiver array will allow for the economic use of 3D borehole seismic imaging for reservoir characterization and monitoring by allowing the economic recording of the required large data volumes that have a sufficiently dense spatial sampling. By using 3C surface seismic or 3C borehole seismic sources the 400 level receiver array will furthermore allow 3D reservoir imaging using 9C data. The 9C borehole seismic data will provide P, SH and SV information for imaging of the complex deep gas reservoirs and allow quantitative prediction of the rock and the

  5. 3D Discontinuous Galerkin elastic seismic wave modeling based upon a grid injection method

    NASA Astrophysics Data System (ADS)

    Monteiller, V.

    2015-12-01

    Full waveform inversion (FWI) is a seismic imaging method that estimates thesub-surface physical properties with a spatial resolution of the order of thewavelength. FWI is generally recast as the iterative optimization of anobjective function that measures the distance between modeled and recordeddata. In the framework of local descent methods, FWI requires to perform atleast two seismic modelings per source and per FWI iteration.Due to the resulting computational burden, applications of elastic FWI have been usuallyrestricted to 2D geometries. Despite the continuous growth of high-performancecomputing facilities, application of 3D elastic FWI to real-scale problemsremain computationally too expensive. To perform elastic seismic modeling with a reasonable amount of time, weconsider a reduced computational domain embedded in a larger background modelin which seismic sources are located. Our aim is to compute repeatedly thefull wavefield in the targeted domain after model alteration, once theincident wavefield has been computed once for all in the background model. Toachieve this goal, we use a grid injection method referred to as the Total-Field/Scattered-Field (TF/SF) technique in theelectromagnetic community. We implemented the Total-Field/Scattered-Field approach in theDiscontinuous Galerkin Finite Element method (DG-FEM) that is used to performmodeling in the local domain. We show how to interface the DG-FEM with any modeling engine (analytical solution, finite difference or finite elements methods) that is suitable for the background simulation. One advantage of the Total-Field/Scattered-Field approach is related to thefact that the scattered wavefield instead of the full wavefield enter thePMLs, hence making more efficient the absorption of the outgoing waves at theouter edges of the computational domain. The domain reduction in which theDG-FEM is applied allows us to use modest computational resources opening theway for high-resolution imaging by full

  6. The 3D crustal structure of Northeastern Tibetan area from seismic tomography

    NASA Astrophysics Data System (ADS)

    Sun, Anhui

    2015-04-01

    The Northeastern Tibetan region is located in the border area of three sub-plates in China, i.e. the Tibetan plateau, North China block and Xinjiang block. Effected simultaneously by the extrusion driven by the India-Eurasia plat collision and the blockage of the Ordos basin, this area has complex geology, strong tectonics activities and suffered from several large historic earthquakes, such as the Haiyuan earthquake (M8.6) in 1920, the Gulang earthquake (M8.0) in 1927. To enhance our understanding of the crustal structure and the interaction between different tectonic blocks of this region, we conduct a three-dimensional (3D) tomographic study by using the arrival time date recorded by regional seismic network. We used 101101 P and 103313 S wave arrival times from 11650 local earthquakes during 1970 to 2013 recorded by 154 permanent seismic stations of the local Seismic Network, installed over five provinces in China, i.e. Gansu, Ningxia, Qinghai, Shanxi, Neimenggu. We first established a 1D primary crustal model from LITHO1.0, an updated crust and lithospheric model of the Earth by weighted averaging. To better performer ray tracing, our inversion involved three discontinuities (including the Moho) with depth variation over the mantle derived from LITHO1.0. Detailed three-dimensional seismic velocity (Vp and Vs) structures of the crust of the Northeastern Tibetan are determined with a horizontal resolution of about 35 km and a depth resolution of 6-20 km. The Poisson's ratio (σ) structure was also estimated after obtained Vp and Vs structures. We detected low-velocity anomalies in the lower crust and relative high-velocity anomalies in the upper crust beneath the Longmenshan faults zone, which are in good agreement with the results of most previous geophysical studies. Our results revealed clear different velocity variation beneath both sides of different tectonic blocks. In addition, we found the correlation between our tomographic result and previous

  7. 3D P-wave velocity structure of the deep Galicia rifted margin: A first analysis of the Galicia 3D wide-angle seismic dataset

    NASA Astrophysics Data System (ADS)

    Bayrakci, Gaye; Minshull, Timothy A.; Davy, Richard G.; Karplus, Marianne S.; Kaeschen, Dirk; Papenberg, Cord; Krabbenhoeft, Anne; Sawyer, Dale; Reston, Timothy J.; Shillington, Donna J.; Ranero, César R.

    2014-05-01

    Galicia 3D, a reflection-refraction and long offset seismic experiment was carried out from May through September 2013, at the Galicia rifted margin (in the northeast Atlantic Ocean, west of Spain) as a collaboration between US, UK, German and Spanish groups. The 3D multichannel seismic acquisition conducted by R/V Marcus Langseth covered a 64 km by 20 km (1280 km2) zone where the main geological features are the Peridotite Ridge (PR), composed of serpentinized peridotite and thought be upper mantle exhumed to the seafloor during rifting, and the S reflector which has been interpreted to be a low angle detachment fault overlain by fault bounded, rotated, continental crustal blocks. In the 3D box, two airgun arrays of 3300 cu.in. were fired alternately (in flip-flop configuration) every 37.5 m. All shots are recorded by 44 short period four component ocean bottom seismometers (OBS) and 26 ocean bottom hydrophones (OBH) deployed and recovered by R/V Poseidon, as well as four 6 km hydrophone streamers with 12.5 m channel spacing towed by R/V Marcus Langseth. We present the preliminary results of the first arrival time tomography study which is carried out with a subset of the wide-angle dataset, in order to generate a 3D P-wave velocity volume for the entire depth sampled by the reflection data. After the relocation of OBSs and OBHs, an automatic first-arrival time picking approach is applied to a subset of the dataset, which comprises more than 5.5 million source-receiver pairs. Then, the first-arrival times are checked visually, in 3-dimensions. The a priori model used for the first-arrival time tomography is built up using information from previous seismic surveys carried out at the Galicia margin (e.g. ISE, 1997). The FAST algorithm of Zelt and Barton (1998) is used for the first-arrival time inversion. The 3D P-wave velocity volume can be used in interpreting the reflection dataset, as a starting point for migration, to quantify the thinning of the crustal layers

  8. 3D Seismic and Magnetic characterization of the Borax Lake Hydrothermal System in the Alvord Desert, southeastern Oregon.

    NASA Astrophysics Data System (ADS)

    Hess, S.; Bradford, J.; Lyle, M.; Routh, P.; Liberty, L.; Donaldson, P.

    2004-05-01

    As part of an interdisciplinary project aiming to study the link between the physical characteristics of hydrothermal systems and biota that occupy those systems, we are conducting a detailed geophysical characterization of an active hydrothermal system. The Borax Lake Hydrothermal System (BLHS), consisting of Borax Lake and the surrounding hot springs. BLHS is located near the center of the Alvord Basin in southeastern Oregon. The Alvord Basin is a north-south trending graben in the Northern Great Basin bounded by the Steens Mountains to the west and the Trout Creek Mountains to the east. We conducted a 2D seismic survey to characterize the geologic structure of the basin, a high-resolution 3D seismic survey to characterize the geologic structure of the BLHS, and a high-resolution 3D magnetic survey to characterize any lineaments in the bedrock that might control fluid flow in the BLHS. Previous results from the 2D seismic survey show a mid-basin basement high aligned approximately with the hot springs. In this study we present the results from the high-resolution 3D seismic and magnetic survey of the BLHS. We acquired the 3D seismic data using an SKS rifle and 240 channel recording system. The seismic survey covers approximately 90,000 sq. m with a maximum inline offset aperture of 225 m, crossline aperture of 75 m, and 360 degree azimuthal coverage. The coincidental magnetic survey was collected using a Geometrics 858G cesium vapor magnetometer. We designed both surveys to span nearly 100 active hydrothermal springs, including an approximately 50 m stepover in the trend of the surface expression of the hot springs. After preliminary processing, the 3D seismic data show continuous reflections up to 300 ms (~ 480 m). The initial interpretation of features seen in the 3D data cube include: normal faults dipping to the east and west, near-surface disturbances that are consistent with the trend of the hot springs, and significant near surface velocity anomalies

  9. Microseismic monitoring of soft-rock landslide: contribution of a 3D velocity model for the location of seismic sources.

    NASA Astrophysics Data System (ADS)

    Floriane, Provost; Jean-Philippe, Malet; Cécile, Doubre; Julien, Gance; Alessia, Maggi; Agnès, Helmstetter

    2015-04-01

    Characterizing the micro-seismic activity of landslides is an important parameter for a better understanding of the physical processes controlling landslide behaviour. However, the location of the seismic sources on landslides is a challenging task mostly because of (a) the recording system geometry, (b) the lack of clear P-wave arrivals and clear wave differentiation, (c) the heterogeneous velocities of the ground. The objective of this work is therefore to test whether the integration of a 3D velocity model in probabilistic seismic source location codes improves the quality of the determination especially in depth. We studied the clay-rich landslide of Super-Sauze (French Alps). Most of the seismic events (rockfalls, slidequakes, tremors...) are generated in the upper part of the landslide near the main scarp. The seismic recording system is composed of two antennas with four vertical seismometers each located on the east and west sides of the seismically active part of the landslide. A refraction seismic campaign was conducted in August 2014 and a 3D P-wave model has been estimated using the Quasi-Newton tomography inversion algorithm. The shots of the seismic campaign are used as calibration shots to test the performance of the different location methods and to further update the 3D velocity model. Natural seismic events are detected with a semi-automatic technique using a frequency threshold. The first arrivals are picked using a kurtosis-based method and compared to the manual picking. Several location methods were finally tested. We compared a non-linear probabilistic method coupled with the 3D P-wave model and a beam-forming method inverted for an apparent velocity. We found that the Quasi-Newton tomography inversion algorithm provides results coherent with the original underlaying topography. The velocity ranges from 500 m.s-1 at the surface to 3000 m.s-1 in the bedrock. For the majority of the calibration shots, the use of a 3D velocity model

  10. 3D-seismic observations of Late Pleistocene glacial dynamics on the central West Greenland margin

    NASA Astrophysics Data System (ADS)

    Hofmann, Julia; Knutz, Paul; Cofaigh, Colm Ó.

    2016-04-01

    Fast-flowing ice streams and outlet glaciers exert a major control on glacial discharge from contemporary and palaeo ice sheets. Improving our understanding of the extent and dynamic behaviour of these palaeo-ice streams is therefore crucial for predictions of the response of ice sheets to present and future climate warming and the associated implications for global sea level. This poster presents results from two 3D-seismic surveys located on the shelf adjoining the Disko Bay trough-mouth fan (TMF), one of the largest glacial outlet systems in Greenland. Located at the seaward terminus of the c. 370 km long cross-shelf Disko Trough, the Disko Bay TMF was generated by highly efficient subglacial sediment delivery onto the continental slopes during repeated ice-stream advances. A variety of submarine glacial landform assemblages are recognised on the seabed reflecting past ice-stream activity presumably related to glacial-interglacial cycles. The 3D-seismic volumes cover the shallow banks located north and south of the Disko Trough. The focus of this study is the seabed and the uppermost stratigraphic interval associated with the Late Stage of TMF development, presumably covering the late Pleistocene (Hofmann et al., submitted). Seabed morphologies include multiple sets of ridges up to 20 m high that extend in NW-SE direction for c. 30 km, and cross-cutting curvilinear furrows with maximum lengths of c. 9 km and average depths of c. 4.5 m. Back-stepping, arcuate scarps facing NW define the shelf break on the northern survey, comprising average widths of c. 4.5 km and incision depths of c. 27.5 m. The large transverse ridge features on the southern survey are likely ice-marginal and are interpreted as terminal moraine ridges recording the existence of a shelf-edge terminating, grounded Late Weichselian ice sheet. The furrows, most prominent on the outer shelf adjoining the shallow banks and partly incising the moraine ridges, are interpreted as iceberg ploughmarks

  11. 3D multicomponent seismic characterization of a clastic reservoir in the Middle Magdalena Valley Basin, Colombia

    NASA Astrophysics Data System (ADS)

    Velasquez-Espejo, Antonio Jose

    The main goal of this research is to characterize the combined structural-stratigraphic trap of the Tenerife Field in the Middle Magdalena Valley Basin (MMVB), Colombia. For the first time in Colombia the structural and quantitative interpretation of modern three-dimensional multicomponent (3D-3C) seismic imaging enables a geometric description, a kinematic interpretation of the structural styles, and the facies distribution of the reservoir. A seismic petrophysics work-flow to better achieve the seismic well-tie. Edited and check-shot calibrated P-wave sonic logs were obtained and coefficients of the Gardner and Castagna equations were calibrated to match the density and shear-wave velocity depth trends for the basin. Seismic modeling was performed to evaluate the PP and PS seismic response of the reservoir interval (Mugrosa Formation). The structural interpretation methodology involves a 3D fault-correlation and horizon picking for both PP- and PS-PSTM data volumes. Geometric attributes such as coherence and curvature were used to enhance the structural discontinuities. The main unconformity of the Middle Eocene (MEU) was interpreted, and an attribute-assisted interpretation of the reservoir was conducted in detail. While P-wave data provided most of the structural interpretation, converted-wave data provide a better understanding of the faults. Traditionally, compressive thrust-propagation folds and tectonic inversion have been considered as the main mechanisms controlling the deformation in the MMVB. However, the new interpretation shown in this work provides a different structural concept that involves two major structural styles: 1. Under the MEU the Late Cretaceous and Early Paleocene deformation, dominated by east-verging thrust and partially inverted Mesozoic normal faults, is preserved. Associated folds exhibit a north-south strike, and their structural development is controlled by a long-lived structural element that dominates the area (the Infantas

  12. Investigation Into the Accuracy of 3D Surface Roughness Characteristics

    NASA Astrophysics Data System (ADS)

    Kumermanis, M.; Rudzitis, J.; Mozga, N.; Ancans, A.; Grislis, A.

    2014-04-01

    The existing standards for surface roughness cover only two dimensions, while in reality this is three-dimensional (3D). In particular, the 3D surface roughness parameters are important for solving the contact surface mechanics problems as related to the accuracy of 3D surface roughness characteristics. One of the most important factors for determination of 3D characteristics is the number of data points (NDP) on the x- and y-axes (i.e. in cut-off length). The NDP has a profound effect on the accuracy of measurement results, measuring time and volume of the output data (especially along the y-axis, where the NDP is identical to the number of parallel profiles). At a too small NDP the results will be incorrect and with too broad scatter, while a too large NDP - though not enlarging the range of basic information - considerably increases the measuring time. Therefore, the aim of the work was to find the optimal NDP for such surface processing methods as grinding, spark erosion and shot methods of surface treatment. Eksistējošie virsmas raupjuma standarti apskata virsmas raupjumu tikai divās dimensijās. Tomēr reālais virsmas raupjums pēc savas dabas ir trīsdimensiju (3D) objekts. Līdz ar to virsmas raupjums ir jāraksturo ar 3D parametriem. Un no šo parametru noteikšanas precizitātes ir atkarīgi tālākie virsmas aprēķini, piemēram, virsmu kontaktēšanās process. Viens no svarīgākajiem faktoriem, raksturojot virsmas raupjumu 3D, pielietojot kontakta tipa mēriekārtas, ir datu punktu skaits pa abām mērīšanas asīm x un y. Ar datu punktu skaitu mēs saprotam to skaitu mērīšanas bāzes garumā. Datu punktu skaits būtiski ietekmē sagaidāmo mērījumu rezultātu precizitāti, mērīšanai nepieciešamo laiku un izejas datu faila izmērus (sevišķi y-ass virzienā, kur katrs datu punkts ir paralēls profils). Datu punktu skaitam ir jābūt optimālam. Pārāk mazs punktu skaits noved pie neprecīziem rezultātiem un lielas to izkliedes, savuk

  13. Development of a 3D VHR seismic reflection system for lacustrine settings - a case study in Lake Geneva, Switzerland

    NASA Astrophysics Data System (ADS)

    Scheidhauer, M.; Dupuy, D.; Marillier, F.; Beres, M.

    2003-04-01

    For better understanding of geologic processes in complex lacustrine settings, detailed information on geologic features is required. In many cases, the 3D seismic method may be the only appropriate approach. The aim of this work is to develop an efficient very high-resolution 3D seismic reflection system for lake studies. In Lake Geneva, Switzerland, near the city of Lausanne, past high-resolution investigations revealed a complex fault zone, which was subsequently chosen for testing our new system of three 24-channel streamers and integrated differential GPS (dGPS) positioning. A survey, carried out in 9 days in August 2001, covered an area of 1500^om x 675^om and comprised 180 CMP lines sailed perpendicular to the fault strike always updip, since otherwise the asymmetric system would result in different stacks for opposite directions. Accurate navigation and shot spacing of 5^om is achieved with a specially developed navigation and shot-triggering software that uses differential GPS onboard and a reference base close to the lake shore. Hydrophone positions could be accurately (<^o0.5^om) calculated with the aid of three additional dGPS antennas mounted on rafts attached to the streamer tails. Towed at a distance of only 75^om behind the vessel, they allowed determination of possible feathering due to cross-line currents or small course variations. The multi-streamer system uses two retractable booms deployed on each side of the boat and rest on floats. They separate the two outer streamers from the one in the center by a distance of 7.5^om. Combined with a receiver spacing of 2.5^om, the bin dimension of the 3D data becomes 3.75^om in cross-line and 1.25^om in inline direction. Potential aliasing problems from steep reflectors up to 30^o within the fault zone motivated the use of a 15/15 cu. in. double-chamber bubble-canceling Mini G.I. air gun (operated at 80^obars and 1^om depth). Although its frequencies do not exceed 650^o Hz, it combines a penetration of

  14. Structure of the Lesser Antilles subduction forearc and backstop from 3D seismic refraction tomography

    NASA Astrophysics Data System (ADS)

    Evain, Mikael; Galve, Audrey; Charvis, Philippe; Laigle, Mireille; Kopp, Heidrun; Bécel, Anne; Weinzierl, Wolfgang; Hirn, Alfred; Flueh, Ernst R.; Gallart, Josep

    2013-09-01

    In 2007 the Sismantilles II experiment was conducted to constrain structure and seismicity in the central Lesser Antilles subduction zone. The seismic refraction data recorded by a network of 27 OBSs over an area of 65 km × 95 km provide new insights on the crustal structure of the forearc offshore Martinique and Dominica islands. The tomographic inversion of first arrival travel times provides a 3D P-wave velocity model down to 15 km. Basement velocity gradients depict that the forearc is made up of two distinct units: A high velocity gradient domain named the inner forearc in comparison to a lower velocity gradient domain located further trenchward named the outer forearc. Whereas the inner forearc appears as a rigid block uplifted and possibly tilted as a whole to the south, short wavelength deformations of the outer forearc basement are observed, beneath a 3 to 6 km thick sedimentary pile, in relation with the subduction of the Tiburon Ridge and associated seafloor reliefs. North, offshore Dominica Island, the outer forearc is 70 km wide. It extends as far as 180 km to the east of the volcanic front where it acts as a backstop on which the accretionary wedge developed. Its width decreases strongly to the south to terminate offshore Martinique where the inner forearc acts as the backstop. The inner forearc is likely the extension at depth of the Mesozoic magmatic crust outcropping to the north in La Désirade Island and along the scarp of the Karukera Spur. The outer forearc could be either the eastern prolongation of the inner forearc, but the crust was thinned and fractured during the past tectonic history of the area or by recent subduction processes, or an oceanic terrane more recently accreted to the island arc.

  15. Evolution of Submarine Gullies on a Prograding Slope: Insights from 3D Seismic Reflection Data

    NASA Astrophysics Data System (ADS)

    Shumaker, L.; Jobe, Z. R.

    2014-12-01

    Submarine gullies are common features on continental slopes on both passive and active margins, but the processes dictating gully formation and the role of gullies in deep-water sediment transport are topics of debate. The geometries of gullies can provide clues to understanding the processes by which they initiate and grow, particularly when considered in the context of surrounding submarine geomorphology. Further confidence in these interpretations can be gained by tracking the temporal history of gullies with evolution of the continental margin. The 500 km2 Tui 3D seismic survey from the Taranaki Basin, New Zealand, shows continental slope gullies and other channel features in a ~1 km-thick package of prograding shelf-slope clinoforms that developed over Pliocene-Pleistocene time. This dataset allows for documentation of gullies over ~3 Ma, through numerous cycles of initiation and burial. For this study, we manually interpreted clinoform packages to generate 'paleo-seafloor' surfaces that provide context such as position of the shelf edge, slope gradient and azimuth, and relative progradation and aggradation magnitudes. Gully geometries were obtained from detailed seismic interpretation guided by semblance and RMS amplitude imaging on these surfaces. Gullies are low sinuosity, with widths ranging from ~50-150 m and depths from a few tens to <100 m. Gullies are observed to grow in width and relief downslope without evidence for aggradational confinement (levees), and in some cases form gully 'complexes' hundreds of m wide in the lower slope region. These complexes are present through >150 m of stratigraphy, indicating that they are long-lived features on the slope. This further indicates that the frequency of flows along the gullies was enough to maintain their topographic expression during slope progradation and aggradation, and suggests that gullies play an integral role in transport processes on the slope.

  16. Comparative velocity structure of active Hawaiian volcanoes from 3-D onshore-offshore seismic tomography

    USGS Publications Warehouse

    Park, J.; Morgan, J.K.; Zelt, C.A.; Okubo, P.G.; Peters, L.; Benesh, N.

    2007-01-01

    We present a 3-D P-wave velocity model of the combined subaerial and submarine portions of the southeastern part of the Island of Hawaii, based on first-arrival seismic tomography of marine airgun shots recorded by the onland seismic network. Our model shows that high-velocity materials (6.5-7.0??km/s) lie beneath Kilauea's summit, Koae fault zone, and the upper Southwest Rift Zone (SWRZ) and upper and middle East Rift Zone (ERZ), indicative of magma cumulates within the volcanic edifice. A separate high-velocity body of 6.5-6.9??km/s within Kilauea's lower ERZ and upper Puna Ridge suggests a distinct body of magma cumulates, possibly connected to the summit magma cumulates at depth. The two cumulate bodies within Kilauea's ERZ may have undergone separate ductile flow seaward, influencing the submarine morphology of Kilauea's south flank. Low velocities (5.0-6.3??km/s) seaward of Kilauea's Hilina fault zone, and along Mauna Loa's seaward facing Kao'iki fault zone, are attributed to thick piles of volcaniclastic sediments deposited on the submarine flanks. Loihi seamount shows high-velocity anomalies beneath the summit and along the rift zones, similar to the interpreted magma cumulates below Mauna Loa and Kilauea volcanoes, and a low-velocity anomaly beneath the oceanic crust, probably indicative of melt within the upper mantle. Around Kilauea's submarine flank, a high-velocity anomaly beneath the outer bench suggests the presence of an ancient seamount that may obstruct outward spreading of the flank. Mauna Loa's southeast flank is also marked by a large, anomalously high-velocity feature (7.0-7.4??km/s), interpreted to define an inactive, buried volcanic rift zone, which might provide a new explanation for the westward migration of Mauna Loa's current SWRZ and the growth of Kilauea's SWRZ. ?? 2007 Elsevier B.V. All rights reserved.

  17. A 3D S-wave model of the Valhall subsurface from ambient seismic noise tomography

    NASA Astrophysics Data System (ADS)

    Mordret, A.; Landes, M.; Shapiro, N.; Singh, S. C.; Roux, P.

    2013-12-01

    We present a depth inversion of Scholte wave group and phase velocity maps obtained from cross-correlation of 6.5 hours of noise data from the Valhall Life of Field Seismic (LoFS) network. We computed 2 690 040 vertical-vertical component cross-correlations from the 2320 available sensors, turning each sensor into a virtual source emitting Scholte waves. We used a traditional straight-ray surface-wave tomography to compute the group velocity map. The phase velocity maps have been computed using the Eikonal tomography method. For every virtual source, we measured the Scholte wave phase travel times to all other stations and interpolated them on a regular grid. This phase travel-time surface is inverted into phase velocity map via applying the eikonal equation. The contributions from all 2320 virtual sources are stacked to create the final phase velocity map of the Valhall subsurface. Scholte wave isotropic phase velocity maps at periods between 0.65 s and 1.6 s show a coherent geomorphological pattern dominated by paleo-channels in the shallower part. We also retrieved the azimuthal anisotropy and its lateral variations showing a characteristic elliptical pattern around the central exploitation platform. The inversion of these maps in depth using the Neighbourhood Algorithm allowed us to create a high resolution 3D S-wave model of the first 600 m of the Valhall subsurface and to precise the locations of geological structures at depth. These results would have important implication for shear wave statics and monitoring of sea-floor subsidence due to oil extraction. The 3D model could also be a good candidate for a starting model used in full-waveform inversions.

  18. High-resolution 3-D S-wave Tomography of upper crust structures in Yilan Plain from Ambient Seismic Noise

    NASA Astrophysics Data System (ADS)

    Chen, Kai-Xun; Chen, Po-Fei; Liang, Wen-Tzong; Chen, Li-Wei; Gung, YuanCheng

    2015-04-01

    The Yilan Plain (YP) in NE Taiwan locates on the western YP of the Okinawa Trough and displays high geothermal gradients with abundant hot springs, likely resulting from magmatism associated with the back-arc spreading as attested by the offshore volcanic island (Kueishantao). YP features NS distinctive characteristics that the South YP exhibits thin top sedimentary layer, high on-land seismicity and significant SE movements, relative those of the northern counterpart. A dense network (~2.5 km station interval) of 89 Texan instruments was deployed in Aug. 2014, covering most of the YP and its vicinity. The ray path coverage density of each 0.015 degree cells are greater than 150 km that could provide the robustness assessment of tomographic results. We analyze ambient noise signals to invert a high-resolution 3D S-wave model for shallow velocity structures in and around YP. The aim is to investigate the velocity anomalies corresponding to geothermal resources and the NS geological distinctions aforementioned. We apply the Welch's method to generate empirical Rayleigh wave Green's functions between two stations records of continuous vertical components. The group velocities of thus derived functions are then obtained by the multiple-filter analysis technique measured at the frequency range between 0.25 and 1 Hz. Finally, we implement a wavelet-based multi-scale parameterization technique to construct 3D model of S-wave velocity. Our first month results exhibit low velocity in the plain, corresponding existing sediments, those of whole YP show low velocity offshore YP and those of high-resolution south YP reveal stark velocity contrast across the Sanshin fault. Key words: ambient seismic noises, Welch's method, S-wave, Yilan Plain

  19. 3D Seismic Reflection Data: Has the Geological Hubble Retained Its Focus?

    NASA Astrophysics Data System (ADS)

    Jackson, Christopher

    2016-04-01

    In their seminal paper in 2002, Joe Cartwright and Mads Huuse referred to 3D seismic reflection data as the 'Geological Hubble', illustrating how these data had the potential to revolutionise our understanding of the genesis and evolution of sedimentary basins. 14 years on, I will here outline just some of the key recent advances made in our understanding of basin structure and stratigraphy, focusing on: (i) the intrusion and extrusion of igneous rocks; (ii) salt tectonics, with particular emphasis on intrasalt structure and the kinematics and mechanics of diapirism; (iii) the geometry and growth of normal faults; and (iv) the structure and emplacement of mass-transport complexes (MTCs). I will stress that future advances at least partly relies on hydrocarbon exploration companies and government agencies continuing to make their data freely available via easy-to-access data portals. I will issue a clarion call to academics, stressing that 'geodynamicists', sedimentologists, structural geologists and geomorphologists, amongst others, can benefit from utilising what I believe are currently an underused data type.

  20. 3-D seismic evidence of the effects of carbonate karst collapse on overlying clastic stratigraphy and reservoir compartmentalization

    SciTech Connect

    Hardage, B.A.; Carr, D.L.; Simmons, J.L. Jr.; Jons, R.A.; Lancaster, D.E.; Elphick, R.Y.; Pendleton, V.M.

    1996-09-01

    A multidisciplinary team, composed of stratigraphers, petrophysicists, reservoir engineers, and geophysicists, studied a portion of Boonsville gas field in the Fort Worth Basin of north-central Texas to determine how modern techniques can be combined to understand the mechanisms by which fluvio-deltaic depositional processes create reservoir compartmentalization in a low- to moderate-accommodation basin. An extensive database involving well logs, cores, production, and pressure data from more than 200 wells, 26 mi{sup 2} of 3-D seismic data, vertical seismic profiles, and checkshots was assembled to support this investigation. The authors found the most important geologic influence on stratigraphy and reservoir compartmentalization in this basin to be the existence of numerous karst collapse chimneys over the area covered. These near-vertical karst collapses originated in, or near, the deep Ordovician-age Ellenburger carbonate section and created vertical chimneys extending as high as 2,500 ft above their point of origin, causing significant disruptions in the overlying clastic strata.

  1. Seismic 3D modelling of VHMS deposits: case studies from Pyhäsalmi and Vihanti, Finland

    NASA Astrophysics Data System (ADS)

    Heinonen, Suvi; Heikkinen, Pekka; Kukkonen, Ilmo; Snyder, David

    2013-04-01

    from the known deposit of Pyhäsalmi. Heterogeneous geological surroundings and an unfavourable shape of the ore deposit mask the seismic signal originating from the ore-host rock contact. Based on these experiences, hardrock seismic exploration is most efficiently done through geological 3D-modeling in which determination of a favourable geological setting for ore is used to target drill holes instead of only hunting bright spots. In both study areas seismic data has increased the knowledge about areal geological structures, continuation of ore-hosting lithologies in depth and also helped to understand better the tectonic evolution of the area. These studies show that 3D modelling of seismic profiles is efficient in improving geological understanding of the structures controlling the ore deposits in thus guiding exploration efforts.

  2. Effect of 3-D viscoelastic structure on post-seismic relaxation from the 2004 M = 9.2 Sumatra earthquake

    USGS Publications Warehouse

    Pollitz, F.; Banerjee, P.; Grijalva, K.; Nagarajan, B.; Burgmann, R.

    2008-01-01

    The 2004 M=9.2 Sumatra-Andaman earthquake profoundly altered the state of stress in a large volume surrounding the ???1400 km long rupture. Induced mantle flow fields and coupled surface deformation are sensitive to the 3-D rheology structure. To predict the post-seismic motions from this earthquake, relaxation of a 3-D spherical viscoelastic earth model is simulated using the theory of coupled normal modes. The quasi-static deformation basis set and solution on the 3-D model is constructed using: a spherically stratified viscoelastic earth model with a linear stress-strain relation; an aspherical perturbation in viscoelastic structure; a 'static'mode basis set consisting of Earth's spheroidal and toroidal free oscillations; a "viscoelastic" mode basis set; and interaction kernels that describe the coupling among viscoelastic and static modes. Application to the 2004 Sumatra-Andaman earthquake illustrates the profound modification of the post-seismic flow field at depth by a slab structure and similarly large effects on the near-field post-seismic deformation field at Earth's surface. Comparison with post-seismic GPS observations illustrates the extent to which viscoelastic relaxation contributes to the regional post-seismic deformation. ?? Journal compilation ?? 2008 RAS.

  3. 3-D Seismic Images of Mud Volcano North Alex, West-Nile Delta, Egypt

    NASA Astrophysics Data System (ADS)

    Bialas, Joerg; Klaeschen, Dirk; Papenberg, Cord; Gehrmann, Romina; Sommer, Malte

    2010-05-01

    Mud volcanoes within shelf areas are the bathymetric expression of mobilized overpressured sediments causing a feature of possible instability within the slope. Such a scene is given in the West-Nile Delta offshore Alexandria, Egypt at 700 m water depth, ,which was studied during a RWE Dea funded research project. The West Nile Delta forms part of the source of the large turbiditic Nile Deep Sea Fan. Since the late Miocene sediments have formed an up to 10 km thick pile, which includes about 1 - 3 km of Messinian evaporates. The sediment load of the overburden implies strong overpressures and salt-related tectonic deformation. Both are favourable for fluid migration towards the seafloor guided by the fractured margin. Deep-cutting channel systems like the Rosetta channel characterize the continental slope. Bathymetric expressions of slides and numerous mud volcanoes in the area are expressions of active processes, which contribute to the ongoing modification of the slope. The western deltaic system, Rosetta branch, has formed an 80 km wide continental shelf. Here at 700 m water depth the mud volcano North Alex developed his circular bathymetric feature, which proved to be an active gas and mud-expelling structure. A grid of 2-D seismic profiles did reveal a large set of faults located within the main mud volcano as well as surrounding the structure. Internal faults are mainly related to episodic mud expulsion processes and continuous gas and fluid production. Deep cutting external faults surround the structure in a half circle shape. They can be tracked up to the seafloor indicating ongoing tectonic activity of the slope area. A recently build 3-D acquisition system (funded by RWE Dea) suitable for mid-size research vessels was applied to collect an active seismic cube of the mud volcano. Based on the P-Cable design 11 parallel streamers (each 12.5 m long with 1.5 m group interval) were used to record shots of a single 210 cinch GI airgun. Based on GPS positions of

  4. CO2 mass estimation visible in time-lapse 3D seismic data from a saline aquifer and uncertainties

    NASA Astrophysics Data System (ADS)

    Ivanova, A.; Lueth, S.; Bergmann, P.; Ivandic, M.

    2014-12-01

    At Ketzin (Germany) the first European onshore pilot scale project for geological storage of CO2 was initiated in 2004. This project is multidisciplinary and includes 3D time-lapse seismic monitoring. A 3D pre-injection seismic survey was acquired in 2005. Then CO2 injection into a sandstone saline aquifer started at a depth of 650 m in 2008. A 1st 3D seismic repeat survey was acquired in 2009 after 22 kilotons had been injected. The imaged CO2 signature was concentrated around the injection well (200-300 m). A 2nd 3D seismic repeat survey was acquired in 2012 after 61 kilotons had been injected. The imaged CO2 signature further extended (100-200 m). The injection was terminated in 2013. Totally 67 kilotons of CO2 were injected. Time-lapse seismic processing, petrophysical data and geophysical logging on CO2 saturation have allowed for an estimate of the amount of CO2 visible in the seismic data. This estimate is dependent upon a choice of a number of parameters and contains a number of uncertainties. The main uncertainties are following. The constant reservoir porosity and CO2 density used for the estimation are probably an over-simplification since the reservoir is quite heterogeneous. May be velocity dispersion is present in the Ketzin reservoir rocks, but we do not consider it to be large enough that it could affect the mass of CO2 in our estimation. There are only a small number of direct petrophysical observations, providing a weak statistical basis for the determination of seismic velocities based on CO2 saturation and we have assumed that the petrophysical experiments were carried out on samples that are representative for the average properties of the whole reservoir. Finally, the most of the time delay values in the both 3D seismic repeat surveys within the amplitude anomaly are near the noise level of 1-2 ms, however a change of 1 ms in the time delay affects significantly the mass estimate, thus the choice of the time-delay cutoff is crucial. In spite

  5. Planetary subsurface investigation by 3D visualization model .

    NASA Astrophysics Data System (ADS)

    Seu, R.; Catallo, C.; Tragni, M.; Abbattista, C.; Cinquepalmi, L.

    Subsurface data analysis and visualization represents one of the main aspect in Planetary Observation (i.e. search for water or geological characterization). The data are collected by subsurface sounding radars as instruments on-board of deep space missions. These data are generally represented as 2D radargrams in the perspective of space track and z axes (perpendicular to the subsurface) but without direct correlation to other data acquisition or knowledge on the planet . In many case there are plenty of data from other sensors of the same mission, or other ones, with high continuity in time and in space and specially around the scientific sites of interest (i.e. candidate landing areas or particular scientific interesting sites). The 2D perspective is good to analyse single acquisitions and to perform detailed analysis on the returned echo but are quite useless to compare very large dataset as now are available on many planets and moons of solar system. The best way is to approach the analysis on 3D visualization model generated from the entire stack of data. First of all this approach allows to navigate the subsurface in all directions and analyses different sections and slices or moreover navigate the iso-surfaces respect to a value (or interval). The last one allows to isolate one or more iso-surfaces and remove, in the visualization mode, other data not interesting for the analysis; finally it helps to individuate the underground 3D bodies. Other aspect is the needs to link the on-ground data, as imaging, to the underground one by geographical and context field of view.

  6. TOMO3D: 3-D joint refraction and reflection traveltime tomography parallel code for active-source seismic data—synthetic test

    NASA Astrophysics Data System (ADS)

    Meléndez, A.; Korenaga, J.; Sallarès, V.; Miniussi, A.; Ranero, C. R.

    2015-10-01

    We present a new 3-D traveltime tomography code (TOMO3D) for the modelling of active-source seismic data that uses the arrival times of both refracted and reflected seismic phases to derive the velocity distribution and the geometry of reflecting boundaries in the subsurface. This code is based on its popular 2-D version TOMO2D from which it inherited the methods to solve the forward and inverse problems. The traveltime calculations are done using a hybrid ray-tracing technique combining the graph and bending methods. The LSQR algorithm is used to perform the iterative regularized inversion to improve the initial velocity and depth models. In order to cope with an increased computational demand due to the incorporation of the third dimension, the forward problem solver, which takes most of the run time (˜90 per cent in the test presented here), has been parallelized with a combination of multi-processing and message passing interface standards. This parallelization distributes the ray-tracing and traveltime calculations among available computational resources. The code's performance is illustrated with a realistic synthetic example, including a checkerboard anomaly and two reflectors, which simulates the geometry of a subduction zone. The code is designed to invert for a single reflector at a time. A data-driven layer-stripping strategy is proposed for cases involving multiple reflectors, and it is tested for the successive inversion of the two reflectors. Layers are bound by consecutive reflectors, and an initial velocity model for each inversion step incorporates the results from previous steps. This strategy poses simpler inversion problems at each step, allowing the recovery of strong velocity discontinuities that would otherwise be smoothened.

  7. Well log analysis to assist the interpretation of 3-D seismic data at Milne Point, north slope of Alaska

    USGS Publications Warehouse

    Lee, Myung W.

    2005-01-01

    In order to assess the resource potential of gas hydrate deposits in the North Slope of Alaska, 3-D seismic and well data at Milne Point were obtained from BP Exploration (Alaska), Inc. The well-log analysis has three primary purposes: (1) Estimate gas hydrate or gas saturations from the well logs; (2) predict P-wave velocity where there is no measured P-wave velocity in order to generate synthetic seismograms; and (3) edit P-wave velocities where degraded borehole conditions, such as washouts, affected the P-wave measurement significantly. Edited/predicted P-wave velocities were needed to map the gas-hydrate-bearing horizons in the complexly faulted upper part of 3-D seismic volume. The estimated gas-hydrate/gas saturations from the well logs were used to relate to seismic attributes in order to map regional distribution of gas hydrate inside the 3-D seismic grid. The P-wave velocities were predicted using the modified Biot-Gassmann theory, herein referred to as BGTL, with gas-hydrate saturations estimated from the resistivity logs, porosity, and clay volume content. The effect of gas on velocities was modeled using the classical Biot-Gassman theory (BGT) with parameters estimated from BGTL.

  8. Tectonics Of Eastern Offshore Trinidad Based On Integration Of BOLIVAR 2D Seismic Lines With Industry 3D Seismic Surveys

    NASA Astrophysics Data System (ADS)

    Soto, M. D.; Mann, P.; Wood, L. J.

    2004-12-01

    New MCS lines in the eastern offshore area of Trinidad augmented by existing 3D seismic surveys by industry provide new insights into complex, strain partitioning produced along this segment of the South America-Caribbean plate boundary. Two major tectonosequences are imaged separated by a Middle Miocene angular unconformity known from wells and mapping in Trinidad. A thick section of deep-marine carbonate and clastic rocks are cleanly truncated by the Middle Miocene unconformity and are chaotically deformed along vertical to northwest-dipping thrust faults. This shortening event reflects a major pulse of pre-Middle Miocene southeastward overthrusting of the Caribbean arc over the passive margin of South America. An upper 2-7-km-thick tectonosequence consisting of late Miocene-Quaternary shelf-related sandstone and shale was deposited by the nearby Orinoco delta. This section is folded to lesser degree and deformed by the sub-vertical, right-lateral Central Range fault zone (CRFZ), known from GPS studies to accommodate 12 mm/yr, of the total 20 mm/yr of interplate motion. Deep, continuous reflec-tors are observed at a depth of 12-17 km beneath eastern Trinidad are correlated with authochthonous, late Cretaceous-early Tertiary carbonate and clastic rocks of the South American passive margin. The Darien fault southeast of the CRFZ accommodates active shortening, elevates passive margin rocks to the surface in Trinidad, and forms the northeastern limit of a large, 12-km-thick foreland basin (Columbus basin) that extends onshore.

  9. Development of a 400 Level 3C Clamped Downhole Seismic Receiver Array for 3D Borehole Seismic Imaging of Gas Reservoirs

    SciTech Connect

    Bjorn N. P. Paulsson

    2006-09-30

    Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to perform high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology has been hampered by the lack of acquisition technology necessary to record large volumes of high frequency, high signal-to-noise-ratio borehole seismic data. This project took aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array has removed the technical acquisition barrier for recording the data volumes necessary to do high resolution 3D VSP and 3D cross-well seismic imaging. Massive 3D VSP{reg_sign} and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that promise to take the gas industry to the next level in their quest for higher resolution images of deep and complex oil and gas reservoirs. Today only a fraction of the oil or gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of detailed compartmentalization of oil and gas reservoirs. In this project, we developed a 400 level 3C borehole seismic receiver array that allows for economic use of 3D borehole seismic imaging for reservoir characterization and monitoring. This new array has significantly increased the efficiency of recording large data volumes at sufficiently dense spatial sampling to resolve reservoir complexities. The receiver pods have been fabricated and tested to withstand high temperature (200 C/400 F) and high pressure (25,000 psi), so that they can operate in wells up to 7,620 meters (25,000 feet) deep. The receiver array is deployed on standard production or drill tubing. In combination with 3C surface seismic or 3C borehole seismic sources, the 400

  10. Seismic Hazard Maps for Seattle, Washington, Incorporating 3D Sedimentary Basin Effects, Nonlinear Site Response, and Rupture Directivity

    USGS Publications Warehouse

    Frankel, Arthur D.; Stephenson, William J.; Carver, David L.; Williams, Robert A.; Odum, Jack K.; Rhea, Susan

    2007-01-01

    This report presents probabilistic seismic hazard maps for Seattle, Washington, based on over 500 3D simulations of ground motions from scenario earthquakes. These maps include 3D sedimentary basin effects and rupture directivity. Nonlinear site response for soft-soil sites of fill and alluvium was also applied in the maps. The report describes the methodology for incorporating source and site dependent amplification factors into a probabilistic seismic hazard calculation. 3D simulations were conducted for the various earthquake sources that can affect Seattle: Seattle fault zone, Cascadia subduction zone, South Whidbey Island fault, and background shallow and deep earthquakes. The maps presented in this document used essentially the same set of faults and distributed-earthquake sources as in the 2002 national seismic hazard maps. The 3D velocity model utilized in the simulations was validated by modeling the amplitudes and waveforms of observed seismograms from five earthquakes in the region, including the 2001 M6.8 Nisqually earthquake. The probabilistic seismic hazard maps presented here depict 1 Hz response spectral accelerations with 10%, 5%, and 2% probabilities of exceedance in 50 years. The maps are based on determinations of seismic hazard for 7236 sites with a spacing of 280 m. The maps show that the most hazardous locations for this frequency band (around 1 Hz) are soft-soil sites (fill and alluvium) within the Seattle basin and along the inferred trace of the frontal fault of the Seattle fault zone. The next highest hazard is typically found for soft-soil sites in the Duwamish Valley south of the Seattle basin. In general, stiff-soil sites in the Seattle basin exhibit higher hazard than stiff-soil sites outside the basin. Sites with shallow bedrock outside the Seattle basin have the lowest estimated hazard for this frequency band.

  11. 3D Seismic Studies of Igneous Intrusions, Taranaki Basin, off-shore west New Zealand

    NASA Astrophysics Data System (ADS)

    Harbor, R. L.; Chrisitiansen, E. H.; Keach, R. W.

    2008-12-01

    Several off-shore volcano-plutonic complexes are imaged in a detailed 3D seismic survey acquired by Pogo New Zealand/Plains Exploration. The new data provide insight into the sizes, shapes, and wall rock deformation associated with the emplacement of plutons. The seismic survey, conducted in 2005, covers 1700 km2 and was processed with modern techniques used in hydrocarbon exploration. The images and structures have to be interpreted with care because of distortions caused by "velocity pull ups" created by the large seismic wave velocity contrast between sediment and igneous rock. The magmatic rocks may be part of the Mohakatino Volcanic Centre (15 to 1.5 Ma) that intrudes and partially fills the Taranaki graben, which began to form in the Cretaceous. Imaged plutons range from less than 1 to as much as 12 km across. The intrusions are steep-sided and do not resemble sills, but their bases are poorly resolved. The top of the largest complex is sharply delineated and marked by multiple apophyses as much as 2 km across and hundreds of meters high. Deformation along the sides of the intrusion is dominated by of a faulted rim anticline, with apparent dips of 45° or higher. Dips decrease rapidly away from the intrusion but doming extends several hundred meters from the margins. A series of high-angle faults fan out from the margin of the pluton and cut the folded strata along the margin. These faults terminate against the margins of the intrusion, extend as much as 1 pluton diameter away from the margin, and then merge with "regional" faults that are part of the Taranaki graben. Offset along these radiating faults is on the order of a few hundred meters. Strata on the top of the complex are thinned but are deformed into a faulted dome with an amplitude of about 1 km. Steep, dip-slip faults form a semi-radial pattern in the roof rocks but are strongly controlled by the regional stress field as many of the faults are sub-parallel to those that form the graben. The longest

  12. Potential Geophysical Field Transformations and Combined 3D Modelling for Estimation the Seismic Site Effects on Example of Israel

    NASA Astrophysics Data System (ADS)

    Eppelbaum, Lev; Meirova, Tatiana

    2015-04-01

    It is well-known that the local seismic site effects may have a significant contribution to the intensity of damage and destruction (e.g., Hough et al., 1990; Regnier et al., 2000; Bonnefoy-Claudet et al., 2006; Haase et al., 2010). The thicknesses of sediments, which play a large role in amplification, usually are derived from seismic velocities. At the same time, thickness of sediments may be determined (or defined) on the basis of 3D combined gravity-magnetic modeling joined with available geological materials, seismic data and borehole section examination. Final result of such investigation is a 3D physical-geological model (PGM) reflecting main geological peculiarities of the area under study. Such a combined study needs in application of a reliable 3D mathematical algorithm of computation together with advanced methodology of 3D modeling. For this analysis the developed GSFC software was selected. The GSFC (Geological Space Field Calculation) program was developed for solving a direct 3-D gravity and magnetic prospecting problem under complex geological conditions (Khesin et al., 1996; Eppelbaum and Khesin, 2004). This program has been designed for computing the field of Δg (Bouguer, free-air or observed value anomalies), ΔZ, ΔX, ΔY , ΔT , as well as second derivatives of the gravitational potential under conditions of rugged relief and inclined magnetization. The geological space can be approximated by (1) three-dimensional, (2) semi-infinite bodies and (3) those infinite along the strike closed, L.H. non-closed, R.H. on-closed and open). Geological bodies are approximated by horizontal polygonal prisms. The program has the following main advantages (besides abovementioned ones): (1) Simultaneous computing of gravity and magnetic fields; (2) Description of the terrain relief by irregularly placed characteristic points; (3) Computation of the effect of the earth-air boundary by the method of selection directly in the process of interpretation; (4

  13. Characterization of fracture reservoirs using static and dynamic data: From sonic and 3D seismic to permeability distribution. Annual report, March 1, 1996--February 28, 1997

    SciTech Connect

    Parra, J.O.; Collier, H.A.; Owen, T.E.

    1997-06-01

    In low porosity, low permeability zones, natural fractures are the primary source of permeability which affect both production and injection of fluids. The open fractures do not contribute much to porosity, but they provide an increased drainage network to any porosity. They also may connect the borehole to remote zones of better reservoir characteristics. An important approach to characterizing the fracture orientation and fracture permeability of reservoir formations is one based on the effects of such conditions on the propagation of acoustic and seismic waves in the rock. The project is a study directed toward the evaluation of acoustic logging and 3D-seismic measurement techniques as well as fluid flow and transport methods for mapping permeability anisotropy and other petrophysical parameters for the understanding of the reservoir fracture systems and associated fluid dynamics. The principal application of these measurement techniques and methods is to identify and investigate the propagation characteristics of acoustic and seismic waves in the Twin Creek hydrocarbon reservoir owned by Union Pacific Resources (UPR) and to characterize the fracture permeability distribution using production data. This site is located in the overthrust area of Utah and Wyoming. UPR drilled six horizontal wells, and presently UPR has two rigs running with many established drill hole locations. In addition, there are numerous vertical wells that exist in the area as well as 3D seismic surveys. Each horizontal well contains full FMS logs and MWD logs, gamma logs, etc.

  14. Development of a State-Wide 3-D Seismic Tomography Velocity Model for California

    NASA Astrophysics Data System (ADS)

    Thurber, C. H.; Lin, G.; Zhang, H.; Hauksson, E.; Shearer, P.; Waldhauser, F.; Hardebeck, J.; Brocher, T.

    2007-12-01

    We report on progress towards the development of a state-wide tomographic model of the P-wave velocity for the crust and uppermost mantle of California. The dataset combines first arrival times from earthquakes and quarry blasts recorded on regional network stations and travel times of first arrivals from explosions and airguns recorded on profile receivers and network stations. The principal active-source datasets are Geysers-San Pablo Bay, Imperial Valley, Livermore, W. Mojave, Gilroy-Coyote Lake, Shasta region, Great Valley, Morro Bay, Mono Craters-Long Valley, PACE, S. Sierras, LARSE 1 and 2, Loma Prieta, BASIX, San Francisco Peninsula and Parkfield. Our beta-version model is coarse (uniform 30 km horizontal and variable vertical gridding) but is able to image the principal features in previous separate regional models for northern and southern California, such as the high-velocity subducting Gorda Plate, upper to middle crustal velocity highs beneath the Sierra Nevada and much of the Coast Ranges, the deep low-velocity basins of the Great Valley, Ventura, and Los Angeles, and a high- velocity body in the lower crust underlying the Great Valley. The new state-wide model has improved areal coverage compared to the previous models, and extends to greater depth due to the data at large epicentral distances. We plan a series of steps to improve the model. We are enlarging and calibrating the active-source dataset as we obtain additional picks from investigators and perform quality control analyses on the existing and new picks. We will also be adding data from more quarry blasts, mainly in northern California, following an identification and calibration procedure similar to Lin et al. (2006). Composite event construction (Lin et al., in press) will be carried out for northern California for use in conventional tomography. A major contribution of the state-wide model is the identification of earthquakes yielding arrival times at both the Northern California Seismic

  15. Characterization of gas hydrate distribution using conventional 3D seismic data in the Pearl River Mouth Basin, South China Sea

    USGS Publications Warehouse

    Wang, Xiujuan; Qiang, Jin; Collett, Timothy S.; Shi, Hesheng; Yang, Shengxiong; Yan, Chengzhi; Li, Yuanping; Wang, Zhenzhen; Chen, Duanxin

    2016-01-01

    A new 3D seismic reflection data volume acquired in 2012 has allowed for the detailed mapping and characterization of gas hydrate distribution in the Pearl River Mouth Basin in the South China Sea. Previous studies of core and logging data showed that gas hydrate occurrence at high concentrations is controlled by the presence of relatively coarse-grained sediment and the upward migration of thermogenic gas from the deeper sediment section into the overlying gas hydrate stability zone (BGHSZ); however, the spatial distribution of the gas hydrate remains poorly defined. We used a constrained sparse spike inversion technique to generate acoustic-impedance images of the hydrate-bearing sedimentary section from the newly acquired 3D seismic data volume. High-amplitude reflections just above the bottom-simulating reflectors (BSRs) were interpreted to be associated with the accumulation of gas hydrate with elevated saturations. Enhanced seismic reflections below the BSRs were interpreted to indicate the presence of free gas. The base of the BGHSZ was established using the occurrence of BSRs. In areas absent of well-developed BSRs, the BGHSZ was calculated from a model using the inverted P-wave velocity and subsurface temperature data. Seismic attributes were also extracted along the BGHSZ that indicate variations reservoir properties and inferred hydrocarbon accumulations at each site. Gas hydrate saturations estimated from the inversion of acoustic impedance of conventional 3D seismic data, along with well-log-derived rock-physics models were also used to estimate gas hydrate saturations. Our analysis determined that the gas hydrate petroleum system varies significantly across the Pearl River Mouth Basin and that variability in sedimentary properties as a product of depositional processes and the upward migration of gas from deeper thermogenic sources control the distribution of gas hydrates in this basin.

  16. 3-D seismic and offset VSP data for delineation of a horizontal well trajectory: Bloque IV, Lake Maracaibo

    SciTech Connect

    Barrientos, C.; Johnston, S.; Leon, K.; Stewart, L.; Bryant, I.D.

    1996-08-01

    3-D seismic data were combined with well data to provide the broad structural framework necessary to define a horizontal infill well location in the Lower Lagunillas reservoir of Bloque IV; however, the low vertical resolution of the data precluded detailed interpretation of the thin (c. 30 ft) target horizon. Horizon slices through the 3-D volume indicated lineations that might represent faults or flexures that are below resolution of the data. An offset VSP was recorded in the pilot well with a source location positioned so as to illuminate the planned well path. The frequency content of the VSP (up to 50 Hz) was much higher the dominant frequency of the surface seismic (10 Hz). The VSP provided indications of good reservoir continuity and possible improvement in reservoir quality downdip. The dip of the formation in the plane of the well path, a critical parameter for steering the well, was confirmed as close to 3 degrees. The well subsequently confirmed these indications. it appears that offset VSPs offer the potential to significantly reduce drilling risks associated with horizontal wells in Lake Maracaibo, even when 3-D surface seismic is already available.

  17. An open-source Matlab code package for improved rank-reduction 3D seismic data denoising and reconstruction

    NASA Astrophysics Data System (ADS)

    Chen, Yangkang; Huang, Weilin; Zhang, Dong; Chen, Wei

    2016-10-01

    Simultaneous seismic data denoising and reconstruction is a currently popular research subject in modern reflection seismology. Traditional rank-reduction based 3D seismic data denoising and reconstruction algorithm will cause strong residual noise in the reconstructed data and thus affect the following processing and interpretation tasks. In this paper, we propose an improved rank-reduction method by modifying the truncated singular value decomposition (TSVD) formula used in the traditional method. The proposed approach can help us obtain nearly perfect reconstruction performance even in the case of low signal-to-noise ratio (SNR). The proposed algorithm is tested via one synthetic and field data examples. Considering that seismic data interpolation and denoising source packages are seldom in the public domain, we also provide a program template for the rank-reduction based simultaneous denoising and reconstruction algorithm by providing an open-source Matlab package.

  18. High-resolution 3-D P wave attenuation structure of the New Madrid Seismic Zone using local earthquake tomography

    NASA Astrophysics Data System (ADS)

    Bisrat, Shishay T.; DeShon, Heather R.; Pesicek, Jeremy; Thurber, Clifford

    2014-01-01

    A three-dimensional (3-D), high-resolution P wave seismic attenuation model for the New Madrid Seismic Zone (NMSZ) is determined using P wave path attenuation (t*) values of small-magnitude earthquakes (MD < 3.9). Events were recorded at 89 broadband and short-period seismometers of the Cooperative New Madrid Seismic Zone Network and 40 short-period seismometers of the Portable Array for Numerical Data Acquisition experiment. The amplitude spectra of all the earthquakes are simultaneously inverted for source, path (t*), and site parameters. The t* values are inverted for QP using local earthquake tomography methods and a known 3-D P wave velocity model for the region. The four major seismicity arms of the NMSZ exhibit reduced QP (higher attenuation) than the surrounding crust. The highest attenuation anomalies coincide with areas of previously reported high swarm activity attributed to fluid-rich fractures along the southeast extension of the Reelfoot fault. The QP results are consistent with previous attenuation studies in the region, which showed that active fault zones and fractured crust in the NMSZ are highly attenuating.

  19. Fluid Flow Processes Study: from a 3D seismic data set in the Pointer Ridge offshore SW Taiwan

    NASA Astrophysics Data System (ADS)

    Han, Wei-Chung; Liu, Char-Shine; Chen, Liwen; Chi, Wu-Cheng; Lin, Che-Chuan

    2016-04-01

    This study analyzes a 3D seismic cube in the Pointer Ridge for understanding the fluid flow processes in subsurface. Pointer Ridge is a ridge situated on the passive China continental margin and is suggested as a potential prospect for future gas hydrate development. High methane flux rate, active gas venting and seismic chimneys have been observed in this area, which are direct evidences for active ongoing fluid migration processes. To find the possible fluid conduits and to understand how the fluids have migrated along those conduits, we firstly identify the structural and sedimentary features from this 3D seismic cube in our study area. Secondly, seismic attribute analyses are carried out for detecting fluid conduits and evaluating the contribution of recognized faults/fractures for fluid flow, respectively. Finally, we propose conceptual models to illustrate how fluids have migrated along those conduits to the seafloor and how those conduits have developed. The results show: 1) a major NE-SW striking normal fault (PR Fault) separates a depositional field on the hanging wall and a erosional field on the footwall; 2) the PR Fault zone itself and the chimneys in its footwall act as main conduits for focused fluid flow migrating to the seafloor; 3) the development of the chimneys in the Pointer Ridge area are highly controlled by the erosion and deposition processes. Since the ongoing fluid flow processes will increase the seafloor instabilities and the Pointer Ridge is a gas hydrate leaking site, our results could provide useful information for further risk evaluation.

  20. Next-generation seismic experiments - II: wide-angle, multi-azimuth, 3-D, full-waveform inversion of sparse field data

    NASA Astrophysics Data System (ADS)

    Morgan, Joanna; Warner, Michael; Arnoux, Gillean; Hooft, Emilie; Toomey, Douglas; VanderBeek, Brandon; Wilcock, William

    2016-02-01

    3-D full-waveform inversion (FWI) is an advanced seismic imaging technique that has been widely adopted by the oil and gas industry to obtain high-fidelity models of P-wave velocity that lead to improvements in migrated images of the reservoir. Most industrial applications of 3-D FWI model the acoustic wavefield, often account for the kinematic effect of anisotropy, and focus on matching the low-frequency component of the early arriving refractions that are most sensitive to P-wave velocity structure. Here, we have adopted the same approach in an application of 3-D acoustic, anisotropic FWI to an ocean-bottom-seismometer (OBS) field data set acquired across the Endeavour oceanic spreading centre in the northeastern Pacific. Starting models for P-wave velocity and anisotropy were obtained from traveltime tomography; during FWI, velocity is updated whereas anisotropy is kept fixed. We demonstrate that, for the Endeavour field data set, 3-D FWI is able to recover fine-scale velocity structure with a resolution that is 2-4 times better than conventional traveltime tomography. Quality assurance procedures have been employed to monitor each step of the workflow; these are time consuming but critical to the development of a successful inversion strategy. Finally, a suite of checkerboard tests has been performed which shows that the full potential resolution of FWI can be obtained if we acquire a 3-D survey with a slightly denser shot and receiver spacing than is usual for an academic experiment. We anticipate that this exciting development will encourage future seismic investigations of earth science targets that would benefit from the superior resolution offered by 3-D FWI.

  1. Joint inversion of 3-D seismic, gravimetric and magnetotelluric data for sub-basalt imaging in the Faroe-Shetland Basin

    NASA Astrophysics Data System (ADS)

    Heincke, B.; Moorkamp, M.; Jegen, M.; Hobbs, R. W.

    2012-12-01

    Imaging of sub-basalt sediments with reflection seismic techniques is limited due to absorption, scattering and transmission effects and the presence of peg-leg multiples. Although many of the difficulties facing conventional seismic profiles can be overcome by recording long offset data resolution of sub-basalt sediments in seismic sections is typically still largely restricted. Therefore multi-parametric approaches in general and joint inversion strategies in particular (e.g. Colombo et al., 2008, Jordan et al., 2012) are considered as alternative to gain additional information from sub-basalt structures. Here, we combine in a 3-D joint inversion first-arrival time tomography, FTG gravity and MT data to identify the base basalt and resolve potential sediments underneath. For sub-basalt exploration the three methods complement each other such that the null space is reduced and significantly better resolved models can be obtained than would be possible by the individual methods: The seismic data gives a robust model for the supra-basalt sediments whilst the gravity field is dominated by the high density basalt and basement features. The MT on the other hand is sensitive to the conductivity in both the supra- and sub-basalt sediments. We will present preliminary individual and joint inversion result for a FTG, seismic and MT data set located in the Faroe-Shetland basin. Because the investigated area is rather large (~75 x 40 km) and the individual data sets are relatively huge, we use a joint inversion framework (see Moorkamp et al., 2011) which is designed to handle large amount of data/model parameters. This program has moreover the options to link the individual parameter models either petrophysically using fixed parameter relationships or structurally using the cross-gradient approach. The seismic data set consists of a pattern of 8 intersecting wide-angle seismic profiles with maximum offsets of up to ~24 km. The 3-D gravity data set (size :~ 30 x 30 km) is

  2. 3D joint inversion using seismic data and marine controlled-source electromagnetic data for evaluating gas hydrate concentrations

    NASA Astrophysics Data System (ADS)

    Kim, B.; Byun, J.; Seol, S. J.; Jeong, S.; Chung, Y.; Kwon, T.

    2015-12-01

    For many decades, gas hydrates have been received great attention as a potential source of natural gas. Therefore, the detailed information of structures of buried gas hydrates and their concentrations are prerequisite for the production for the gas hydrate as a reliable source of alternate energy. Recently, for this reason, a lot of gas hydrate assessment methods have been proposed by many researchers. However, it is still necessary to establish as new method for the further improvement of the accuracy of the 3D gas hydrate distribution. In this study, we present a 3D joint inversion method that provides superior quantitative information of gas hydrate distributions using 3D seismic data obtained by ocean-bottom cable (OBC) and marine controlled-source electromagnetic (CSEM) data. To verify our inversion method, we first built the general 3D gas hydrate model containing vertical methane-flow pathways. With the described model, we generated synthetic 3D OBC data and marine CSEM data using finite element modeling algorithms, respectively. In the joint inversion process, to obtain the high-resolution volumetric P-wave velocity structure, we applied the 3D full waveform inversion algorithm to the acquired OBC data. After that, the obtained P-wave velocity model is used as the structure constraint to compute cross-gradients with the updated resistivity model in the EM inversion process. Finally, petrophysical relations were applied to estimate volumetric gas hydrate concentrations. The proposed joint inversion process makes possible to obtain more precise quantitative gas hydrate assessment than inversion processes using only seismic or EM data. This technique can be helpful for accurate decision-making in gas hydrate development as well as in their production monitoring.

  3. Ryukyu Subduction Zone: 3D Geodynamic Simulations of the Effects of Slab Shape and Depth on Lattice-Preferred Orientation (LPO) and Seismic Anisotropy

    NASA Astrophysics Data System (ADS)

    Tarlow, S.; Tan, E.; Billen, M. I.

    2015-12-01

    At the Ryukyu subduction zone, seismic anisotropy observations suggest that there may be strong trench-parallel flow within the mantle wedge driven by complex 3D slab geometry. However, previous simulations have either failed to account for 3D flow or used the infinite strain axis (ISA) approximation for LPO, which is known to be inaccurate in complex flow fields. Additionally, both the slab depth and shape of the Ryukyu slab are contentious. Development of strong trench-parallel flow requires low viscosity to decouple the mantle wedge from entrainment by the sinking slab. Therefore, understanding the relationship between seismic anisotropy and the accompanying flow field will better constrain the material and dynamic properties of the mantle near subduction zones. In this study, we integrate a kinematic model for calculation of LPO (D-Rex) into a buoyancy-driven, instantaneous 3D flow simulation (ASPECT), using composite non-Newtonian rheology to investigate the dependence of LPO on slab geometry and depth at the Ryukyu Trench. To incorporate the 3D flow effects, the trench and slab extends from the southern tip of Japan to the western edge of Taiwan and the model region is approximately 1/4 of a spherical shell extending from the surface to the core-mantle boundary. In the southern-most region we vary the slab depth and shape to test for the effects of the uncertainties in the observations. We also investigate the effect of adding locally hydrated regions above the slab that affect both the mantle rheology and development of LPO through the consequent changes in mantle flow and dominate (weakest) slip system. We characterize how changes in the simulation conditions affect the LPO within the mantle wedge, subducting slab and sub-slab mantle and relate these to surface observations of seismic anisotropy.

  4. Segmentation of Hypocenters and 3-D Velocity Structure around the Kii Peninsula Revealed by Onshore and Offshore Seismic Observations

    NASA Astrophysics Data System (ADS)

    Akuhara, T.; Mochizuki, K.; Nakahigashi, K.; Yamada, T.; Shinohara, M.; Sakai, S.; Kanazawa, T.; Uehira, K.; Shimizu, H.

    2013-12-01

    The Philippine Sea Plate subducts beneath the Eurasian Plate at a rate of ~4 cm/year along the Nankai Trough, southwest of Japan. Around the Kii Peninsula, the rupture boundary of the historical Tonankai and Nankai large earthquakes is located, and previous researches have revealed along-strike segmentation of hypocenters [Mochizuki et al., 2010], P-wave anisotropy [Ishise et al., 2009], low frequency earthquake (LFE) distribution [e.g., Obara, 2010] and subduction depth of the Philippine Sea (PHS) Plate, or there may exist a split in the PHS Plate [Ide et al., 2010]. To investigate such segmentation, in our previous work we determined 3-D velocity structure and hypocenters using P- and S-wave arrival times of earthquakes recorded by both ocean bottom seismometers (OBSs) that were deployed from 2003 to 2007 and on-land stations [Akuhara et al., 2013]. As a result, it was discovered that Vp/Vs ratio is also segmented within the oceanic crust and at the bottom of the overriding plate, which coincides with the LFE distribution: segment A is located along the Kii Channel, segment B around the western Kii Peninsula, and segment C around the eastern Kii Peninsula. In segment B, Vp/Vs ratio is low within the oceanic crust and LFE cluster characterized by an anomalously small amount of cumulative slip, compared to the other LFE clusters around the Kii Peninsula, is located [Obara, 2010]. The difference of Vp/Vs ratio and LFE activity among segments were interpreted as difference of pore fluid pressure. In fact, similar segmentation can be seen in hypocenters: Segment A with concentrated seismicity in the oceanic mantle, segment B with that in the oceanic crust, and segment C with little seismicity. To derive characteristic patterns of the hypocenters, we conducted a cluster analysis of earthquakes based on waveform similarity represented by cross-correlation coefficients (CCs) [e.g., Cattaneo, 1999], in which we took varying structural site effects among the OBS stations

  5. 3D crustal architecture of the Alps-Apennines join — a new view on seismic data

    NASA Astrophysics Data System (ADS)

    Schumacher, M. E.; Laubscher, H. P.

    1996-08-01

    Seismic data from the Alps-Apennines join have usually been interpreted in the form of 2D cross-sections, passing either through the Western Alps or the Ligurian Alps-Monferrato Apennines. However, the oblique SE-NW convergence of Adria and Europa and superimposed rotations imply a distinct 3D kinematic development around the Adriatic Indenter (AI), the westernmost spur of Adria. In order to develop kinematic models, data on motion at the different margins of AI must be coordinated. Along the northern margin, the dextrally transpressive Insubric line (IL) was active between 25 and 16 Ma (Insubric-Helvetic phase of Alpine orogeny). Contemporaneously, along the southern margin (Paleo-Apenninic phase), a complementary sinistral motion took place along the Villalvernia-Varzi line (VVL). It emplaced the Monferrato Apennines westward to the north of the Ligurian Alps by carrying them westward on top of AI. Between 14 and 6 Ma (Jura-Lombardic phase of Alpine orogeny) the Lombardic thrust belt developed on the northern margin of AI, now largely hidden under the Po plain. Its continuation to the southwest is impeded by older thrust masses along the Western Alps that consist largely of basement, their sediments having been eroded, as noted on the deep reflection line CROP ALPI-1 by earlier investigators. This line, moreover, contains a deep reflection band originating in the autochthonous Mesozoic of the Apenninic foredeep. In order to better visualize this origin and the relation of further elements identified on reflection lines around the northwestern end of the Monferrato Apennines, a 3D fence diagram was constructed. It helps in establishing a 3D structural-kinematic model of the Alps-Apennines join based on the kinematics of AI. This model features an underthrust of AI under the western Alps in the Paleo-Apenninic phase. In the course of this underthrust, the Paleo-Apenninic elements of the Monferrato moved under the marginal thrusts of the western Alps. Subsequent Neo

  6. tomo3d: a new 3-D joint refraction and reflection travel-time tomography code for active-source seismic data

    NASA Astrophysics Data System (ADS)

    Meléndez, A.; Korenaga, J.; Sallares, V.; Ranero, C. R.

    2012-12-01

    We present the development state of tomo3d, a code for three-dimensional refraction and reflection travel-time tomography of wide-angle seismic data based on the previous two-dimensional version of the code, tomo2d. The core of both forward and inverse problems is inherited from the 2-D version. The ray tracing is performed by a hybrid method combining the graph and bending methods. The graph method finds an ordered array of discrete model nodes, which satisfies Fermat's principle, that is, whose corresponding travel time is a global minimum within the space of discrete nodal connections. The bending method is then applied to produce a more accurate ray path by using the nodes as support points for an interpolation with beta-splines. Travel time tomography is formulated as an iterative linearized inversion, and each step is solved using an LSQR algorithm. In order to avoid the singularity of the sensitivity kernel and to reduce the instability of inversion, regularization parameters are introduced in the inversion in the form of smoothing and damping constraints. Velocity models are built as 3-D meshes, and velocity values at intermediate locations are obtained by trilinear interpolation within the corresponding pseudo-cubic cell. Meshes are sheared to account for topographic relief. A floating reflector is represented by a 2-D grid, and depths at intermediate locations are calculated by bilinear interpolation within the corresponding square cell. The trade-off between the resolution of the final model and the associated computational cost is controlled by the relation between the selected forward star for the graph method (i.e. the number of nodes that each node considers as its neighbors) and the refinement of the velocity mesh. Including reflected phases is advantageous because it provides a better coverage and allows us to define the geometry of those geological interfaces with velocity contrasts sharp enough to be observed on record sections. The code also

  7. Estimation and 3-D modeling of seismic parameters for fluvial systems

    SciTech Connect

    Brown, R.L.; Levey, R.A.

    1994-12-31

    Borehole measurements of parameters related to seismic propagation (Vp, Vs, Qp and Qs) are seldom available at all the wells within an area of study. Well logs and other available data can be used along with certain results from laboratory measurements to predict seismic parameters at wells where these measurements are not available. Next, three dimensional interpolation techniques based upon geological constraints can then be used to estimate the spatial distribution of geophysical parameters within a given environment. The net product is a more realistic model of the distribution of geophysical parameters which can be used in the design of surface and borehole seismic methods for probing the reservoir.

  8. Galicia3D seismic volume: Connections between the western termination of the S reflector and eastern termination of the Peridotite Ridge

    NASA Astrophysics Data System (ADS)

    Sawyer, Dale; Jordan, Brian; Morgan, Julia; Shillington, Donna; Reston, Timothy; Ranero, Cesar

    2015-04-01

    In June thru September, 2013, a 3D reflection and a long offset seismic experiment were conducted at the Galicia rifted margin by investigators from the US, UK, Germany, and Spain. The 3D multichannel experiment covered 64 km by 20 km (1280 km2), using the RV Marcus Langseth. Four streamers 6 km long were deployed at 12.5 m hydrophone channel spacing. The streamers were 200 m apart. Two airgun arrays, each 3300 cu in, were fired alternately every 37.5 m, to collectively yield a 400 m wide sail line consisting of 8 CMP lines at 50 m spacing. We draw attention to the region from the Peridotite Ridge, PR, (on the west) and the western terminus of the S reflector (on the east). The S reflector is generally thought to separate continental crust and pre- and syn-rift sediment above, and serpentinized upper mantle below. In 2D and 3D seismic reflection data, the S reflector is very bright, generally horizontal, and is terminated very abruptly at the western end. The latter is particularly clear in the 3D volume. It is about 10-15 km wide between the end of the S reflector and the midpoint of the PR. In this interval, there appear to be fault bounded blocks that may be either continental crust or pre- or syn-rift sediments. The PR is a virtually straight, N-S ridge, without apparent fault offsets. The crest of the PR is at about 4800 mbsl at the S extent and is at 6070 mbsl at the N extent of the 3D volume. The crest is approximately linear in map view or N-S extent. Both sides, East and West of the PR, appear to show landslides and other mass wasting during the late stage of the syn-rifting interval. The PR rarely shows internal seismic structure in 2D and 3D. Most importantly, under the basin to the east of the PR there are substantially more recognizable structures connecting the S reflector and the PR. These were much less interpretable in previous 2D seismic profiles.

  9. Crustal density structure in northwestern South America derived from analysis and 3-D modeling of gravity and seismicity data

    NASA Astrophysics Data System (ADS)

    Sanchez-Rojas, J.; Palma, M.

    2014-11-01

    This paper presents a three-dimensional (3-D) interpretation of new gravity and seismicity datasets for northern South America. A 3-D forward density model was constructed on the basis of deep wide-angle seismic refraction sections, Moho depth from receiver functions, and surface geology. Density values were estimated from published borehole data for sediments by using empirical velocity-density functions and considering mineralogical-chemical composition variations under typical pressure-temperature conditions for upper and lower crustal rocks. The modeled 3-D density structure was kept as simple as possible. The continental and oceanic plates were formed by two sedimentary bodies, one crustal body, and one mantle lithosphere body overlying a sub-lithospheric mantle. The Caribbean plate was modeled with an atypical crustal thickness of ~ 18 km (including sediments). The geometry of the Caribbean plate was modeled using a combination of gravity modeling and analyses of the seismicity and focal-mechanism solutions. Intermediate seismicity and the orientation of the T-axes appeared aligned along the predicted position of the slab. As a result, the estimated slab dip angle under Maracaibo and the Mérida Andes was ~ 15° and increases up to ~ 20° after 100 km depth. The model shows two orientations in the slab strike: ~ N150°E ± 5 in western Colombia and southward underneath the Maracaibo block. The modeling results suggest that the northern South American upper and lower crusts are relatively light and the density of the Caribbean crust is typical for an oceanic crust.

  10. Determination of porosity and facies trends in a complex carbonate reservoir, by using 3-D seismic, borehole tools, and outcrop geology

    SciTech Connect

    Zacharakis, T.G. Jr.; Comet, J.N.; Murillo, A.A.

    1996-08-01

    Mesozoic carbonate reservoirs are found in the Mediterranean Sea, off the east coast of Spain. A wide variation of porosities are found in the core samples and logs: vuggy, breccia, fractures, and cavern porosity. In addition, complex Tertiary carbonate geometries include olistostromes, breccia bodies, and reef buildups, which are found on top of Mesozoic carbonates. Predicting the porosity trends within these oil productive reservoirs requires an understanding of how primary porosity was further enhanced by secondary processes, including fractures, karstification, and dolomitization in burial conditions. Through an extensive investigation of field histories, outcrop geology, and seismic data, a series of basic reservoir styles have been identified and characterized by well log signature and seismic response. The distribution pattern of the different reservoirs styles is highly heterogeneous, but by integrating subsurface data and outcrop analogs, it is possible to distinguish field-scale and local patterns of both vertical and local variations in reservoir properties. Finally, it is important to quantify these reservoir properties through the study of seismic attributes, such as amplitude variations, and log responses at the reservoir interval. By incorporating 3-D seismic data, through the use of seismic inversion, it is possible to predict porosity trends. Further, the use of geostatistics can lead to the prediction of reservoir development within the carbonate facies.

  11. Application of Cutting-Edge 3D Seismic Attribute Technology to the Assessment of Geological Reservoirs for CO2 Sequestration

    SciTech Connect

    Christopher Liner; Jianjun Zeng; Po Geng Heather King Jintan Li; Jennifer Califf; John Seales

    2010-03-31

    The goals of this project were to develop innovative 3D seismic attribute technologies and workflows to assess the structural integrity and heterogeneity of subsurface reservoirs with potential for CO{sub 2} sequestration. Our specific objectives were to apply advanced seismic attributes to aide in quantifying reservoir properies and lateral continuity of CO{sub 2} sequestration targets. Our study area is the Dickman field in Ness County, Kansas, a type locality for the geology that will be encountered for CO{sub 2} sequestration projects from northern Oklahoma across the U.S. midcontent to Indiana and beyond. Since its discovery in 1962, the Dickman Field has produced about 1.7 million barrels of oil from porous Mississippian carbonates with a small structural closure at about 4400 ft drilling depth. Project data includes 3.3 square miles of 3D seismic data, 142 wells, with log, some core, and oil/water production data available. Only two wells penetrate the deep saline aquifer. Geological and seismic data were integrated to create a geological property model and a flow simulation grid. We systematically tested over a dozen seismic attributes, finding that curvature, SPICE, and ANT were particularly useful for mapping discontinuities in the data that likely indicated fracture trends. Our simulation results in the deep saline aquifer indicate two effective ways of reducing free CO{sub 2}: (a) injecting CO{sub 2} with brine water, and (b) horizontal well injection. A tuned combination of these methods can reduce the amount of free CO{sub 2} in the aquifer from over 50% to less than 10%.

  12. Reducing disk storage of full-3D seismic waveform tomography (F3DT) through lossy online compression

    NASA Astrophysics Data System (ADS)

    Lindstrom, Peter; Chen, Po; Lee, En-Jui

    2016-08-01

    Full-3D seismic waveform tomography (F3DT) is the latest seismic tomography technique that can assimilate broadband, multi-component seismic waveform observations into high-resolution 3D subsurface seismic structure models. The main drawback in the current F3DT implementation, in particular the scattering-integral implementation (F3DT-SI), is the high disk storage cost and the associated I/O overhead of archiving the 4D space-time wavefields of the receiver- or source-side strain tensors. The strain tensor fields are needed for computing the data sensitivity kernels, which are used for constructing the Jacobian matrix in the Gauss-Newton optimization algorithm. In this study, we have successfully integrated a lossy compression algorithm into our F3DT-SI workflow to significantly reduce the disk space for storing the strain tensor fields. The compressor supports a user-specified tolerance for bounding the error, and can be integrated into our finite-difference wave-propagation simulation code used for computing the strain fields. The decompressor can be integrated into the kernel calculation code that reads the strain fields from the disk and compute the data sensitivity kernels. During the wave-propagation simulations, we compress the strain fields before writing them to the disk. To compute the data sensitivity kernels, we read the compressed strain fields from the disk and decompress them before using them in kernel calculations. Experiments using a realistic dataset in our California statewide F3DT project have shown that we can reduce the strain-field disk storage by at least an order of magnitude with acceptable loss, and also improve the overall I/O performance of the entire F3DT-SI workflow significantly. The integration of the lossy online compressor may potentially open up the possibilities of the wide adoption of F3DT-SI in routine seismic tomography practices in the near future.

  13. The application of seismic stratigraphic methods on exploration 3D seismic data to define a reservoir model in OPL 210, Deepwater Nigeria

    SciTech Connect

    Ragnhild, L.; Ventris, P.; Osahon, G.

    1995-08-01

    OPL 210 lies in deepwater on the northwestern flank of the Niger Delta. The partners in this block are Allied Energy and The Statoil and BP Alliance. The license has a 5 year initial exploration phase and carries a 2 well commitment. At present the database comprises a 1 x 1 km grid of 2D seismic across the block, and 450 sq. km of 3D in an area of special interest. A larger 3D survey is planned for 1995. Little is known about the reservoir in the deep water, but we expect our main target to be ponded slope and basin turbidites. As such the bulk of the shelf well data available has little or no relevance to the play type likely to be encountered. Prior to drilling, seismic stratigraphy has been one of several methods used to generate a consistent predictive reservoir model. The excellent quality and high resolution of the 3D data have allowed identification and detailed description of several distinctive seismic facies. These facies are described in terms of their internal geometries and stacking patterns. The geometries are then interpreted based on a knowledge of depositional processes from analog slope settings. This enables a predictive model to be constructed for the distribution of reservoir within the observed facies. These predictions will be tested by one of the first wells drilled in the Nigerian deepwater in mid 1995.

  14. Potential Geophysical Field Transformations and Combined 3D Modelling for Estimation the Seismic Site Effects on Example of Israel

    NASA Astrophysics Data System (ADS)

    Eppelbaum, Lev; Meirova, Tatiana

    2015-04-01

    It is well-known that the local seismic site effects may have a significant contribution to the intensity of damage and destruction (e.g., Hough et al., 1990; Regnier et al., 2000; Bonnefoy-Claudet et al., 2006; Haase et al., 2010). The thicknesses of sediments, which play a large role in amplification, usually are derived from seismic velocities. At the same time, thickness of sediments may be determined (or defined) on the basis of 3D combined gravity-magnetic modeling joined with available geological materials, seismic data and borehole section examination. Final result of such investigation is a 3D physical-geological model (PGM) reflecting main geological peculiarities of the area under study. Such a combined study needs in application of a reliable 3D mathematical algorithm of computation together with advanced methodology of 3D modeling. For this analysis the developed GSFC software was selected. The GSFC (Geological Space Field Calculation) program was developed for solving a direct 3-D gravity and magnetic prospecting problem under complex geological conditions (Khesin et al., 1996; Eppelbaum and Khesin, 2004). This program has been designed for computing the field of Δg (Bouguer, free-air or observed value anomalies), ΔZ, ΔX, ΔY , ΔT , as well as second derivatives of the gravitational potential under conditions of rugged relief and inclined magnetization. The geological space can be approximated by (1) three-dimensional, (2) semi-infinite bodies and (3) those infinite along the strike closed, L.H. non-closed, R.H. on-closed and open). Geological bodies are approximated by horizontal polygonal prisms. The program has the following main advantages (besides abovementioned ones): (1) Simultaneous computing of gravity and magnetic fields; (2) Description of the terrain relief by irregularly placed characteristic points; (3) Computation of the effect of the earth-air boundary by the method of selection directly in the process of interpretation; (4

  15. Modeling and validation of a 3D velocity structure for the Santa Clara Valley, California, for seismic-wave simulations

    USGS Publications Warehouse

    Hartzell, S.; Harmsen, S.; Williams, R.A.; Carver, D.; Frankel, A.; Choy, G.; Liu, P.-C.; Jachens, R.C.; Brocher, T.M.; Wentworth, C.M.

    2006-01-01

    A 3D seismic velocity and attenuation model is developed for Santa Clara Valley, California, and its surrounding uplands to predict ground motions from scenario earthquakes. The model is developed using a variety of geologic and geophysical data. Our starting point is a 3D geologic model developed primarily from geologic mapping and gravity and magnetic surveys. An initial velocity model is constructed by using seismic velocities from boreholes, reflection/refraction lines, and spatial autocorrelation microtremor surveys. This model is further refined and the seismic attenuation is estimated through waveform modeling of weak motions from small local events and strong-ground motion from the 1989 Loma Prieta earthquake. Waveforms are calculated to an upper frequency of 1 Hz using a parallelized finite-difference code that utilizes two regions with a factor of 3 difference in grid spacing to reduce memory requirements. Cenozoic basins trap and strongly amplify ground motions. This effect is particularly strong in the Evergreen Basin on the northeastern side of the Santa Clara Valley, where the steeply dipping Silver Creek fault forms the southwestern boundary of the basin. In comparison, the Cupertino Basin on the southwestern side of the valley has a more moderate response, which is attributed to a greater age and velocity of the Cenozoic fill. Surface waves play a major role in the ground motion of sedimentary basins, and they are seen to strongly develop along the western margins of the Santa Clara Valley for our simulation of the Loma Prieta earthquake.

  16. High-resolution 3D seismic imaging of a pull-apart basin in the Gulf of Cadiz

    NASA Astrophysics Data System (ADS)

    Crutchley, G.; Berndt, C.; Klaeschen, D.; Gutscher, M.

    2009-12-01

    In 2006, high-resolution 3D seismic data were acquired in the Gulf of Cadiz and the Mediterranean Sea aboard the RRS Charles Darwin as part of the HERMES (Hotspot Ecosystem Research on the Margins of European Seas) project. The P-Cable system, a cost-efficient set-up for fast acquisition of 3D seismic data on 12 single-channel streamers, was utilized to acquire seismic cubes at four different targets. Here, we present results from the second target - a WNW-ESE-oriented pull-apart basin in the southeastern Gulf of Cadiz. Initial processing has included: 1) spatial positioning of each recording channel from GPS data acquired on the outer two channels, 2) improved positioning of shot points and channels from the inversion of first arrival times, 3) application of a swell filter to improve reflection coherency, 4) CDP binning and stacking and 5) migration. The new data confirm that the southeastern Gulf of Cadiz north of the Rharb submarine valley is structurally controlled by numerous strike slip faults that were active until quite recently (within the resolution of the data). Given the location of this basin, between the extensional domain on the upper slope and the compressional toe of the accretionary wedge, we interpret the origin to be gravitational sliding on a detachment layer, possibly containing salt, but at this stage not imaged by our profiles.

  17. A web-based platform for simulating seismic wave propagation in 3D shallow Earth models with DEM surface topography

    NASA Astrophysics Data System (ADS)

    Luo, Cong; Friederich, Wolfgang

    2016-04-01

    Realistic shallow seismic wave propagation simulation is an important tool for studying induced seismicity (e.g., during geothermal energy development). However over a long time, there is a significant problem which constrains computational seismologists from performing a successful simulation conveniently: pre-processing. Conventional pre-processing has often turned out to be inefficient and unrobust because of the miscellaneous operations, considerable complexity and insufficiency of available tools. An integrated web-based platform for shallow seismic wave propagation simulation has been built. It is aiming at providing a user-friendly pre-processing solution, and cloud-based simulation abilities. The main features of the platform for the user include: revised digital elevation model (DEM) retrieving and processing mechanism; generation of multi-layered 3D shallow Earth model geometry (the computational domain) with user specified surface topography based on the DEM; visualization of the geometry before the simulation; a pipeline from geometry to fully customizable hexahedral element mesh generation; customization and running the simulation on our HPC; post-processing and retrieval of the results over cloud. Regarding the computational aspect, currently the widely accepted specfem3D is chosen as the computational package; packages using different types of elements can be integrated as well in the future. According to our trial simulation experiments, this web-based platform has produced accurate waveforms while significantly simplifying and enhancing the pre-processing and improving the simulation success rate.

  18. The use of exploration 3D seismic data to optimise oil exploration in OPL 210 deepwater, Nigeria

    SciTech Connect

    Nelson, L.C.; Lilletveit, R.; Sandvoll, T.

    1995-08-01

    Allied Energy and the Statoil and BP Alliance are currently partners in the OPL 210 license, in deepwater Nigeria. The license has a 5 year initial exploration phase which carries a two well commitment. To optimize the location of these wells in this challenging and costly drilling environment the partnership has decided to acquire extensive exploration 3D seismic data within the block. Interpretation of the first of two planned 3D surveys has led to a much clearer understanding of: (a) The structural segmentation of the prospect and thus a clearer idea of the likely hydrocarbon pool size. (b) The distribution of amplitude anomalies and thus, hopefully, a superior understanding of reservoir distribution and hydrocarbons. Here the limiting factor is clearly the lack of deepwater geophysical calibration, due to the absence of wells. Consequently, conclusions at this stage, are qualitative either than quantative. Combined with detailed seismic stratigraphic and high tech geophysical analysis, these two aspects will assist in the highgrading of segments in the prospect, prior to final decisions on the well locations. The first well, planned for 1995, will be one of the first wells drilled in the Nigerian deepwater area. Examples of both 2D and 3D data will be used to demonstrate the above and some of the first well results will be integrated into our interpretation to highlight how some of our perceptions may have changed.

  19. Seismicity patterns along the Ecuadorian subduction zone: new constraints from earthquake location in a 3-D a priori velocity model

    NASA Astrophysics Data System (ADS)

    Font, Yvonne; Segovia, Monica; Vaca, Sandro; Theunissen, Thomas

    2013-04-01

    To improve earthquake location, we create a 3-D a priori P-wave velocity model (3-DVM) that approximates the large velocity variations of the Ecuadorian subduction system. The 3-DVM is constructed from the integration of geophysical and geological data that depend on the structural geometry and velocity properties of the crust and the upper mantle. In addition, specific station selection is carried out to compensate for the high station density on the Andean Chain. 3-D synthetic experiments are then designed to evaluate the network capacity to recover the event position using only P arrivals and the MAXI technique. Three synthetic earthquake location experiments are proposed: (1) noise-free and (2) noisy arrivals used in the 3-DVM, and (3) noise-free arrivals used in a 1-DVM. Synthetic results indicate that, under the best conditions (exact arrival data set and 3-DVM), the spatiotemporal configuration of the Ecuadorian network can accurately locate 70 per cent of events in the frontal part of the subduction zone (average azimuthal gap is 289° ± 44°). Noisy P arrivals (up to ± 0.3 s) can accurately located 50 per cent of earthquakes. Processing earthquake location within a 1-DVM almost never allows accurate hypocentre position for offshore earthquakes (15 per cent), which highlights the role of using a 3-DVM in subduction zone. For the application to real data, the seismicity distribution from the 3-D-MAXI catalogue is also compared to the determinations obtained in a 1-D-layered VM. In addition to good-quality location uncertainties, the clustering and the depth distribution confirm the 3-D-MAXI catalogue reliability. The pattern of the seismicity distribution (a 13 yr record during the inter-seismic period of the seismic cycle) is compared to the pattern of rupture zone and asperity of the Mw = 7.9 1942 and the Mw = 7.7 1958 events (the Mw = 8.8 1906 asperity patch is not defined). We observe that the nucleation of 1942, 1958 and 1906 events coincides with

  20. Use of 3D Seismic Azimuthal Iso-Frequency Volumes for the Detection and Characterization of High Porosity/Permeability Zones in Carbonate Reservoirs

    NASA Astrophysics Data System (ADS)

    Toelle, Brian E.

    Among the most important properties controlling the production from conventional oil and gas reservoirs is the distribution of porosity and permeability within the producing geologic formation. The geometry of the pore space within these reservoirs, and the permeability associated with this pore space geometry, impacts not only where production can occur and at what flow rates but can also have significant influence on many other rock properties. Zones of high matrix porosity can result in an isotropic response for certain reservoir properties whereas aligned porosity/permeability, such as open, natural fracture trends, have been shown to result in reservoirs being anisotropic in many properties. The ability to identify zones within a subsurface reservoir where porosity/permeability is significantly higher and to characterize them according to their geometries would be of great significance when planning where new boreholes, particularly horizontal boreholes, should be drilled. The detection and characterization of these high porosity/permeability zones using their isotropic and anisotropic responses may be possible through the analysis of azimuthal (also referred to as azimuth-limited) 3D seismic volumes. During this study the porosity/permeability systems of a carbonate, pinnacle reef within the northern Michigan Basin undergoing enhanced oil recovery were investigated using selected seismic attributes extracted from azimuthal 3D seismic volumes. Based on the response of these seismic attributes an interpretation of the geometry of the porosity/permeability system within the reef was made. This interpretation was supported by well data that had been obtained during the primary production phase of the field. Additionally, 4D seismic data, obtained as part of the CO2 based EOR project, supported reservoir simulation results that were based on the porosity/permeability interpretation.

  1. tomo3d: a new 3-D joint refraction and reflection travel-time tomography code for active-source seismic data

    NASA Astrophysics Data System (ADS)

    Meléndez, A.; Korenaga, J.; Sallarès, V.; Ranero, C. R.

    2012-04-01

    We present the development state of tomo3d, a code for three-dimensional refraction and reflection travel-time tomography of wide-angle seismic data based on the previous two-dimensional version of the code, tomo2d. The core of both forward and inverse problems is inherited from the 2-D version. The ray tracing is performed by a hybrid method combining the graph and bending methods. The graph method finds an ordered array of discrete model nodes, which satisfies Fermat's principle, that is, whose corresponding travel time is a global minimum within the space of discrete nodal connections. The bending method is then applied to produce a more accurate ray path by using the nodes as support points for an interpolation with beta-splines. Travel time tomography is formulated as an iterative linearized inversion, and each step is solved using an LSQR algorithm. In order to avoid the singularity of the sensitivity kernel and to reduce the instability of inversion, regularization parameters are introduced in the inversion in the form of smoothing and damping constraints. Velocity models are built as 3-D meshes, and velocity values at intermediate locations are obtained by trilinear interpolation within the corresponding pseudo-cubic cell. Meshes are sheared to account for topographic relief. A floating reflector is represented by a 2-D grid, and depths at intermediate locations are calculated by bilinear interpolation within the corresponding square cell. The trade-off between the resolution of the final model and the associated computational cost is controlled by the relation between the selected forward star for the graph method (i.e. the number of nodes that each node considers as its neighbors) and the refinement of the velocity mesh. Including reflected phases is advantageous because it provides a better coverage and allows us to define the geometry of those geological interfaces with velocity contrasts sharp enough to be observed on record sections. The code also

  2. Using 3D Simulation of Elastic Wave Propagation in Laplace Domain for Electromagnetic-Seismic Inverse Modeling

    NASA Astrophysics Data System (ADS)

    Petrov, P.; Newman, G. A.

    2010-12-01

    -Fourier domain we had developed 3D code for full-wave field simulation in the elastic media which take into account nonlinearity introduced by free-surface effects. Our approach is based on the velocity-stress formulation. In the contrast to conventional formulation we defined the material properties such as density and Lame constants not at nodal points but within cells. This second order finite differences method formulated in the cell-based grid, generate numerical solutions compatible with analytical ones within the range errors determinate by dispersion analysis. Our simulator will be embedded in an inversion scheme for joint seismic- electromagnetic imaging. It also offers possibilities for preconditioning the seismic wave propagation problems in the frequency domain. References. Shin, C. & Cha, Y. (2009), Waveform inversion in the Laplace-Fourier domain, Geophys. J. Int. 177(3), 1067- 1079. Shin, C. & Cha, Y. H. (2008), Waveform inversion in the Laplace domain, Geophys. J. Int. 173(3), 922-931. Commer, M. & Newman, G. (2008), New advances in three-dimensional controlled-source electromagnetic inversion, Geophys. J. Int. 172(2), 513-535. Newman, G. A., Commer, M. & Carazzone, J. J. (2010), Imaging CSEM data in the presence of electrical anisotropy, Geophysics, in press.

  3. 3D seismic geomorphology and geologic controls on gas hydrate accumulation mechanism in the Miyazaki-oki forearc basin, Japan

    NASA Astrophysics Data System (ADS)

    Komatsu, Y.; Kobayashi, T.; Fujii, T.

    2015-12-01

    The stratigraphy of the Miyazaki-oki forearc basin along the Southwest Japan Arc comprises the early Miocene to early Pleistocene Miyazaki Group and the Hyuganada Group. These groups comprise sediments (up to 5000 m) deposited in deep marine to shallow marine environments. Based on characteristics of well data outside seismic exploration area and stratigraphy of land areas, the Miyazaki Group was divided into four seismic units and the Hyuganada Group was divided into two seismic units. In this area, bottom-simulating reflectors (BSRs) have been widely observed and considered as representing lower boundaries of methane-hydrate-bearing deposits. However, the gas hydrate accumulation mechanism for this area is not yet well understood. We show the relation between sandy sediment distribution identified from the 3D seismic geomorphological analysis and methane hydrate occurrence to identify the accumulation mechanism. A submarine fan system was subdivided into four seismic facies: Submarine canyon complexes; Leveed channel complexes; Submarine fan complexes; Mass transport complexes (MTD). Depositional systems of target layers are characterized by a transition from submarine fan deposits (Miyazaki Group) to channel-levee deposits and MTD (Hyuganada Group). This transition of depositional environments is strongly influenced by global tectonics since early Miocene in the Southwest Japan Arc. A part of channel-fill located around structural wing and middle fan deposits above the BSR is inferred as sediments intercalated with sandy layers. We consider that these deposits contain methane hydrate because the sandy sediment distribution approximately coincides with a high-velocity zone as an indicator of gas hydrate. The comparison of the areal extent of the seismic facies and the mapped structural configuration, suggest that the gas hydrate accumulation represent combination structural-stratigraphic trap.

  4. Seismic attribute analysis for 3-D structural interpretation of the offshore South Marsh Island, Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Horozal, Senay; Lee, Gwang Hoon; Cukur, Deniz; Pigott, John D.

    2013-04-01

    Structural and seismic attribute analyses of 3-D seismic reflection data from southwest offshore South Marsh Island, Louisiana, Gulf of Mexico, reveal complex structures affected by salt tectonics triggered by interaction between salt, faults and rapid deltaic sedimentation on the shallow continental shelf. Salt exercises the main control on the sedimentary processes in the study area to move, to divert sediment, to create instability, and to block sediment transport pathways. The depths of salt range about 4,300 m (14,000 ft) to 6,500 m (21,600 ft). Salt is very deep and forms a thin sheet in the southwestern part of the area, whereas it rises to shallow depths, forming a dome in the central part. Salt is seen at relatively shallow stratigraphic levels in the northwest and south where it forms thin salt rollers. The margins of Miocene strata are deformed by salt movement and faulting in the study area. The study area is riddled by numerous normal faults which are mostly E-trending and some N- and NW-trending with southward gradual increase in growth factors. Eight main normal faults were interpreted from seismic data which are mostly E-trending S-dipping, and are accompanied by smaller secondary faults. Three of E-trending down-to-the-basin growth faults cut across the study area separating the area into four blocks. These faults form a stair-stepping structure in the south direction. Two conjugate-crossing normal faults are located over the central salt dome which may indicate active salt doming. Seismic attribute analysis was applied as output of seismic volumes, and horizon and time-slice maps in order to identify the structure of study area. These attribute volumes together with time- and horizon-slices gave amplitude anomalies at discontinuities (faults) and lithological changes (sand to shale, salt). Faults interpreted and mapped from seismic profiles and those identified by seismic attribute slices are compatible, therefore, seismic attribute analysis can

  5. A Robust MEMS Based Multi-Component Sensor for 3D Borehole Seismic Arrays

    SciTech Connect

    Paulsson Geophysical Services

    2008-03-31

    The objective of this project was to develop, prototype and test a robust multi-component sensor that combines both Fiber Optic and MEMS technology for use in a borehole seismic array. The use such FOMEMS based sensors allows a dramatic increase in the number of sensors that can be deployed simultaneously in a borehole seismic array. Therefore, denser sampling of the seismic wave field can be afforded, which in turn allows us to efficiently and adequately sample P-wave as well as S-wave for high-resolution imaging purposes. Design, packaging and integration of the multi-component sensors and deployment system will target maximum operating temperature of 350-400 F and a maximum pressure of 15000-25000 psi, thus allowing operation under conditions encountered in deep gas reservoirs. This project aimed at using existing pieces of deployment technology as well as MEMS and fiber-optic technology. A sensor design and analysis study has been carried out and a laboratory prototype of an interrogator for a robust borehole seismic array system has been assembled and validated.

  6. Investigation Into the Utilization of 3D Printing in Laser Cooling Experiments

    NASA Astrophysics Data System (ADS)

    Hazlett, Eric; Nelson, Brandon; de Leon, Sam Diaz; Shaw, Jonah

    2016-05-01

    With the advancement of 3D printing new opportunities are abound in many different fields, but with the balance between the precisions of atomic physics experiments and the material properties of current 3D printers the benefit of 3D printing technology needs to be investigated. We report on the progress of two investigations of 3D printing of benefit to atomic physics experiments: laser feedback module and the other being an optical chopper. The first investigation looks into creation of a 3D printed laser diode feedback module. This 3D printed module would allow for the quick realization of an external cavity diode laser that would have an adjustable cavity distance. We will report on the first tests of this system, by looking at Rb spectroscopy and mode-hop free tuning range as well as possibilities of using these lasers for MOT generation. We will also discuss our investigation into a 3D-printed optical chopper that utilizes an Arduino and a computer hard drive motor. By implementing an additional Arduino we create a low cost way to quickly measure laser beam waists.

  7. Investigation Into the Utilization of 3D Printing in Laser Cooling Experiments

    NASA Astrophysics Data System (ADS)

    Hazlett, Eric

    With the advancement of 3D printing new opportunities are abound in many different fields, but with the balance between the precisions of atomic physics experiments and the material properties of current 3D printers the benefit of 3D printing technology needs to be investigated. We report on the progress of two investigations of 3D printing of benefit to atomic physics experiments: laser feedback module and the other being an optical chopper. The first investigation looks into creation of a 3D printed laser diode feedback module. This 3D printed module would allow for the quick realization of an external cavity diode laser that would have an adjustable cavity distance. We will report on the first tests of this system, by looking at Rb spectroscopy and mode-hop free tuning range as well as possibilities of using these lasers for MOT generation. We will also discuss our investigation into a 3D-printed optical chopper that utilizes an Arduino and a computer hard drive motor. By implementing an additional Arduino we create a low cost way to quickly measure laser beam waists

  8. 3-D seismic velocity structure of the crust and the uppermost mantle in the northeastern Japan Arc

    NASA Astrophysics Data System (ADS)

    Zhao, Dapeng; Horiuchi, Shigeki; Hasegawa, Akira

    1990-09-01

    3-D seismic velocity structure of the crust and the uppermost mantle beneath the northeastern Japan Arc is investigated by using arrival time data from local earthquakes. We use a velocity model composed of three layers corresponding to the upper crust, the lower crust and the uppermost mantle, respectively. Taking into account the observed regional variation of P n-velocity, the uppermost mantle is further divided into three parts by two P n-velocity boundaries near the coasts of the Japan Sea and the Pacific Ocean. The velocities within the upper crust, the lower crust and the three parts of the uppermost mantle are assumed to be constant. Locations of two P n-velocity boundaries and depth distributions of the Conrad and the Moho discontinuities are expressed by continuous functions of unknown parameters. Station corrections and hypocenters are also introduced to be unknowns. These unknown parameters are determined by inverting arrival time data of P- and S-wave first arrivals and clear later arrivals of P g- and P ∗-waves. The P n-velocity boundary between the land and the Pacific Ocean is located approximately along the Pacific coastline and that between the land and the Japan Sea is nearly along the Japan Sea coastline. The Conrad and the Moho discontinuities are at depths ranging from 14 to 20 km and from 27 to 36 km, respectively. The Conrad and the Moho depths have similar spatial distributions. They are deep beneath the land and become shallower toward the western and the eastern coastlines. Beneath the land, they are shallow in the central part of the Tohoku District and become deeper toward both the north and the south directions. In the north, they become shallow again.

  9. 9C-3D seismic interpretation of the Bakken Formation, Banner Field, North Dakota

    NASA Astrophysics Data System (ADS)

    Comegys, Lillian R.

    The Bakken Petroleum System is a multi-reservoir play with estimated total undiscovered resources of 3.649 BBO oil and 1.85 TCF natural gas in the United States portion of the Williston Basin (Pollastro 2008). The presence of natural fractures in all three members of the Bakken Formation have been linked to high initial production (IP) and cumulative production from the Antelope Field and better reservoir potential in the Elm Coulee Field and Sanish Fields (Sturm and Gomez 2009; Honsberger 2012; Theloy 2011). Therefore, the ability of seismic data to determine the presence, orientation, and density of natural fractures is an important achievement for petroleum exploration and exploitation. The STAMPEDE 9-component seismic survey is located in Mountrail County, North Dakota, in the Banner Field, southeast of the Parshall and Sanish Fields. It is the goal of the Reservoir Characterization Project to analyze the structural influences on reservoir properties in the STAMPEDE survey area using the compressional and pure shear seismic volumes supplemented by the public well information available on the North Dakota Industrial Commission website. Fracturing induced by basement faulting and lithology changes is detectable using multicomponent seismic data in the Stampede seismic survey. Shear wave splitting analysis delineates zones of different fracture orientation and density. These areas correlate to interpreted fault intersections and the predicted area of increased fracture frequency based on facies changes in the Middle Bakken Member and its mechanical stratigraphy. Wrench fault mechanics are at work in the study area, creating isolated convergent and divergent stress regimes in the separate fault blocks. Main fault interpretations are based on shear wave isochron mapping, wireline log mapping, seismic panel observations. Fracture interpretations were made on the analysis of shear time and amplitude anisotropy maps and the correlation of a P-wave Velocity Variation

  10. 3-D Seismic Methods for Geothermal Reservoir Exploration and Assessment--Summary

    SciTech Connect

    Majer, E.L.

    2003-07-14

    A wide variety of seismic methods covering the spectrum from DC to kilohertz have been employed at one time or the other in geothermal environments. The reasons have varied from exploration for a heat source to attempting to find individual fractures producing hot fluids. For the purposes here we will assume that overall objective of seismic imaging is for siting wells for successful location of permeable pathways (often fracture permeability) that are controlling flow and transport in naturally fractured reservoirs. The application could be for exploration of new resources or for in-fill/step-out drilling in existing fields. In most geothermal environments the challenge has been to separate the ''background'' natural complexity and heterogeneity of the matrix from the fracture/fault heterogeneity controlling the fluid flow. Ideally one not only wants to find the fractures, but the fractures that are controlling the flow of the fluids. Evaluated in this work is current state-of-the-art surface (seismic reflection) and borehole seismic methods (Vertical Seismic Profiling (VSP), Crosswell and Single Well) to locate and quantify geothermal reservoir characteristics. The focus is on active methods; the assumption being that accuracy is needed for successful well siting. Passive methods are useful for exploration and detailed monitoring for in-fill drilling, but in general the passive methods lack the precision and accuracy for well siting in new or step out areas. In addition, MEQ activity is usually associated with production, after the field has been taken to a mature state, thus in most cases it is assumed that there is not enough MEQ activity in unproduced areas to accurately find the permeable pathways. The premise of this review is that there may new developments in theory and modeling, as well as in data acquisition and processing, which could make it possible to image the subsurface in much more detail than 15 years ago. New understanding of the effect of

  11. Investigating rupture process of Parkfield seismicity

    NASA Astrophysics Data System (ADS)

    Kim, Ah Yi

    In this dissertation the result of four studies regarding earthquake source parameter determination, and three-dimensional (3D) wave propagation are presented. I have developed finite-source models for the September 28, 2004 M6 Parkfield earthquake using GPS and InSAR geodetic data, and seismic strong motion waveform data inverted both separately and jointly. The preferred model from the joint inversion shows that the rupture is predominantly unilateral to the NW with a small component to the SE. There are two primary high slip asperities one around the hypocenter and the other between 10 and 23 km to the NW both within the depth range of 5--13 km. The results from detailed sensitivity analyses indicate that the developed finite-source slip model is stable and the kinematic parameters are well resolved. I also examined the effect of the assumed velocity structure and corresponding Green's functions on the finite source inversion for the 2004 Parkfield earthquake using near-fault strong motion data with 1D and 3D velocity models. Using either the 1D or 3D velocity structures produce similar results, however there are significant differences in detail, where slip using 3D Green's functions is more compact, and the peak slip occurs in the hypocentral asperity in contrast to the 1D case where peak slip is located in the NW asperity. A comparison of seismic waveform derived slip models reveals that the 3D Green's function model predicts the GPS data significantly better. Both 1D and 3D Green's function models failed to model the strong motion waveform data from stations located very close to or within the fault-zone. Forward modeling revealed that accounting for a narrow low-velocity zone improves the fit to the data from these near-fault sites. Synthetic tests show that the influence of such fault-zone structure decreases rapidly with distance suggesting that excluding fault-zone stations from inversions and focusing on data from more distant stations may lead to less

  12. Successful gas hydrate prospecting using 3D seismic - A case study for the Mt. Elbert prospect, Milne Point, North Slope Alaska

    USGS Publications Warehouse

    Inks, T.L.; Agena, W.F.

    2008-01-01

    In February 2007, the Mt. Elbert Prospect stratigraphic test well, Milne Point, North Slope Alaska encountered thick methane gas hydrate intervals, as predicted by 3D seismic interpretation and modeling. Methane gas hydrate-saturated sediment was found in two intervals, totaling more than 100 ft., identified and mapped based on seismic character and wavelet modeling.

  13. Cataloguing Seismic Waveform Properties Recorded With a 3D Network in a Gold Mine in South Africa

    NASA Astrophysics Data System (ADS)

    Julia, J.; Nyblade, A. A.; Gok, R.; Walter, W. R.; Linzer, L.; Durrheim, R. J.; Dirks, P.

    2007-12-01

    The SAVUKA gold mine is located in the northwestern edge of the Witwatersrand basin, a Late Archean (3.07- 2.71~Ga) intracratonic basin in South Africa that hosts the largest known gold-uranium-pyrite ore deposits in the world. Seismic events related to the mine activity span several orders of magnitude through a variety of sources that include mine blasts, pillar collapses, and faulting events. These events are systematically recorded and catalogued through an in-mine, 3D seismic network consisting of 20, three-component, short-period stations with natural frequencies ranging between 4.5 and 28.0~Hz and deployed as deep as ~3.5 km. After 5 months of seismic monitoring of the mine, we have been able to assemble a database of over 6000 events spanning magnitudes in the -2.5 < ML < 4.4 range. The potential of this unique data set for characterizing the detailed seismic properties of the basin and studying source properties of non-double couple events is explored through simple, first-pass analysis on the recorded waveforms. Moreover, the in-mine network is complemented by a small array of 4 broadband stations interspaced ~10~km apart on the surface of the mine, and by a number of AfricaArray stations in South Africa and neighboring countries located at regional distances (50- 1000~km) from the mine. The largest mine-induced events are clearly recorded at distances as far away from the mine as 450~km and provide a unique opportunity for studying the regional propagation of seismic phases as well as the structure of the cratonic crust underlying the basin.

  14. Interpretation of Late Cretaceous Volcanic Mounds and Surrounding Gulfian Series Formations Using 3D Seismic Data in Zavala County, Texas

    NASA Astrophysics Data System (ADS)

    Bennett, Laura Claire

    The Late Cretaceous Gulfian series is a prominent and important series across the State of Texas that has been extensively studied since the nineteenth century. It is composed of series of southeast-dipping shelf carbonates and clastics deposited on the northwest margin of the Gulf of Mexico Basin. In south Texas, the Gulfian series was deposited in the Rio Grande Embayment and Maverick Basin and is comprised of the Eagle Ford Group, Austin Group, Anacacho Limestone, San Miguel Formation, Olmos Formation, and Escondido Formation that crop out and continue basinward in the subsurface. Late Cretaceous volcanism formed volcanic mounds composed of altered palagonite tuff that are clustered into two fields, including the Uvalde Field centered in Zavala County. Using the Pedernales 3D seismic survey, located in east-central Zavala County, several volcanic mounds were identified and mapped without the use of well log data by identifying structures and characteristics associated with the volcanic mounds. Isolating these mounds through mapping enabled the mapping of the tops surrounding Gulfian formations, Lower Eagle Ford, Upper Eagle Ford, Austin, Anacacho, and San Miguel, for which time-structure, amplitude, similarity/coherency attribute, and isochron maps were generated. By using 3D seismic data, the volcanic mounds and their relation to surrounding rocks can be better interpreted.

  15. 3D seismic velocity structure in the rupture area of the 2014 M8.2 Iquique earthquake in Northern Chile

    NASA Astrophysics Data System (ADS)

    Woollam, Jack; Fuenzallida, Amaya; Garth, Tom; Rietbrock, Andreas; Ruiz, Sergio; Tavera, Hernando

    2016-04-01

    Seismic velocity tomography is one of the key tools in Earth sciences to image the physical properties of the subsurface. In recent years significant advances have been made to image the Chilean subductions zone, especially in the area of the 2010 M8.8 Maule earthquake (e.g. Hicks et al., 2014), providing much needed physical constraints for earthquakes source inversions and rupture models. In 2014 the M8.2 Iquique earthquake struck the northern part of the Chilean subduction zone in close proximity to the Peruvian boarder. The pre- and aftershock sequence of this major earthquake was recorded by a densified seismological network in Northern Chile and Southern Peru, which provides an excellent data set to study in depth the 3D velocity structure along the subduction megathrust. Based on an automatic event catalogue of nearly 10,000 events spanning the time period March to May 2014 we selected approximately 450 events for a staggered 3D inversion approach. Events are selected to guarantee an even ray coverage through the inversion volume. We only select events with a minimum GAP of 200 to improve depth estimates and therefore increase resolution in the marine forearc. Additionally, we investigate secondary arrivals between the P- and S-wave arrival to improve depth location. Up to now we have processed about 450 events, from which about 150 with at least 30 P- and S-wave observations have been selected for the subsequent 3D tomography. Overall the data quality is very high, which allows arrival time estimates better than 0.05s on average. We will show results from the 1D, 2D, and preliminary 3D inversions and discuss the results together with the obtained seismicity distribution.

  16. Full Three-Dimensional Approach: Seismic Structure of the Mantle Beneath Western Pacific Using 3-D Fréchet Kernels

    NASA Astrophysics Data System (ADS)

    Chen, L.; Zhao, L.; Jordan, T. H.

    2002-12-01

    We present a full three-dimensional (3-D) model of the shear-speed structure for the mantle beneath western Pacific Ocean. Over 800 three-component recordings of earthquakes (Mw > 5.5) from the seismic zones around the western Pacific rim to station HON/KIP in Hawaii, MIDW in Midway, MAT/MAJO and ERM in Japan, and GUMO in Mariana Island were processed to obtain ~20,000 frequency-dependent phase delays for various of seismic waves, including S, SS, upper-mantle guided and surface waves, and ScS reverberations. The 3-D Fréchet kernels for these delay times are computed by the coupled normal mode theory described by Zhao, Jordan, and Chapman (2000), and the measurements were inverted for a 3-D radially anisotropic shear-speed model using a linear Gaussian-Bayesian scheme. The model parameters include shear-speed variations throughout the mantle and perturbations to radial shear-wave anisotropy in the uppermost mantle. The resolving power of the inversion has been investigated through a series of checkerboard and other tests, which indicate that the horizontal and vertical resolving lengths of about 700 and 200 km or less in the upper mantle. Our results for the large-scale variations in the isotropic shear speeds are generally consistent with published global tomographic models. For example, the uppermost mantle (< 200 km depth) shows fast anomalies in the interior of the Pacific plate and slow anomalies in the marginal basins along the Pacific rim, while this pattern is reversed in the transition zone (400-700 km). Our model reveals greater lateral heterogeneity than the global models, especially in the 200-400 km depth range, suggesting a complex 3-D mantle flow in the western Pacific upper mantle.

  17. Microgravity Characterization of the Hontomín CO2 Storage Site (Spain). Integration with 3D Seismic Results

    NASA Astrophysics Data System (ADS)

    Ayarza, P.; Andres, J.; Alcalde, J.; Martí, D.; Marzán, I.; Martinez-Catalan, J. R.; Carbonell, R.; García Lobón, J. L.; Pérez Estaún, A.

    2014-12-01

    Hontomín hosts the first Spanish CO2storage Technology Development Plant. The area, located in the southern part of Mesozoic Basque-Cantabrian Basin, presents E-W and ESE-WNW faults formed during a Permian-Triassic extensional event. The latter were reactivated during the opening of the Bay of Biscay, while a new set of NNE-SSW faults developed. Fractures were reactivated again during the Alpine compression. The resulting configuration is a dome-like structure that includes the Mesozoic succession (Upper Triassic to Lower Cretaceous) and is crowned by Upper Cretaceous and Eocene rocks lying unconformably. The target injection pointis located at 1500 m depth, within a Jurassic carbonate saline formation. Several multidisciplinary studies have been carried out in Hontomín aiming to obtain a thorough geological characterization. Among these, a microgravity survey, acquired under the umbrella of the CIUDEN foundation, has provided us with a complete 3D image of the site. A 4x4 km2area, coincident with that surveyed by 3D seismic reflection, has been sampled using a dense grid with a station spacing of 100 m. The result is a high resolution Bouguer anomaly gravity map capable of offering insights into the subsurface geology down to the depth of the injection point. The application of mathematical procedures to the data has further enhanced its potential for interpretation. The calculated regional anomaly indicates that the dome structure strikes E-W to ENE-WSW, sub-parallel to a major fault: the South Fault, part of the Ubierna fault system. The resulting residual anomaly enhances a number of NW-SE features that have also been interpreted as faults and that can be observed after performing vertical and horizontal derivatives to the data. Calculation of the Euler solutions confirms the previous results and brings out a new NNW-SSE feature, namely the East Fault. Integration with 3D seismic data suggests that faults affect different levels of the sedimentary sequence

  18. 3-D seismic data for field development: Landslide field case study

    SciTech Connect

    Raeuchle, S.K.; Carr, T.R.; Tucker, R.D. )

    1990-05-01

    The Landslide field is located on the extreme southern flank of the San Joaquin basin, approximately 25 mi south of Bakersfield, California. The field, discovered in 1985, has produced in excess 9 million bbl of oil with an estimated ultimate recovery of more than 13 MMBO. The Miocene Stevens sands, which form the reservoir units at Landslide field, are interpreted as a series of constructional submarine fan deposits. Deposition of the fans was controlled by paleotopography with an abrupt updip pinch-out of the sands to the southwest. The three-dimensional seismic data over the field was used to locate the bottom hole of the landslide 22X-30 development well as close to this abrupt updip pinchout as possible in order to maximize oil recovery. A location was selected two traces (330 ft) from the updip pinch-out as mapped on the seismic data. The well was successfully drilled during 1989, encountering 150 ft of net sand with initial production in excess of 1,500 bbl of oil/day. A pressure buildup test indicates the presence of a boundary approximately 200 ft from the well bore. This boundary is interpreted as the updip pinchout of the Stevens sands against the paleohigh. Based on examination of changes in amplitude, the absence or presence of reservoir-quality sand can be mapped across the paleohighs. Application of three-dimensional seismic data, integration with well data, and in particular reconstruction cuts tied closely to existing wells can be used to map the ultimate extent of the field and contribute to efficient development.

  19. 3D elastic full waveform inversion: case study from a land seismic survey

    NASA Astrophysics Data System (ADS)

    Kormann, Jean; Marti, David; Rodriguez, Juan-Esteban; Marzan, Ignacio; Ferrer, Miguel; Gutierrez, Natalia; Farres, Albert; Hanzich, Mauricio; de la Puente, Josep; Carbonell, Ramon

    2016-04-01

    Full Waveform Inversion (FWI) is one of the most advanced processing methods that is recently reaching a mature state after years of solving theoretical and technical issues such as the non-uniqueness of the solution and harnessing the huge computational power required by realistic scenarios. BSIT (Barcelona Subsurface Imaging Tools, www.bsc.es/bsit) includes a FWI algorithm that can tackle with very complex problems involving large datasets. We present here the application of this system to a 3D dataset acquired to constrain the shallow subsurface. This is where the wavefield is the most complicated, because most of the wavefield conversions takes place in the shallow region and also because the media is much more laterally heterogeneous. With this in mind, at least isotropic elastic approximation would be suitable as kernel engine for FWI. The current study explores the possibilities to apply elastic isotropic FWI using only the vertical component of the recorded seismograms. The survey covers an area of 500×500 m2, and consists in a receivers grid of 10 m×20 m combined with a 250 kg accelerated weight-drop as source on a displaced grid of 20 m×20 m. One of the main challenges in this case study is the costly 3D modeling that includes topography and substantial free surface effects. FWI is applied to a data subset (shooting lines 4 to 12), and is performed for 3 frequencies ranging from 15 to 25 Hz. The starting models are obtained from travel-time tomography and the all computation is run on 75 nodes of Mare Nostrum supercomputer during 3 days. The resulting models provide a higher resolution of the subsurface structures, and show a good correlation with the available borehole measurements. FWI allows to extend in a reliable way this 1D knowledge (borehole) to 3D.

  20. A western gray whale mitigation and monitoring program for a 3-D seismic survey, Sakhalin Island, Russia.

    PubMed

    Johnson, S R; Richardson, W J; Yazvenko, S B; Blokhin, S A; Gailey, G; Jenkerson, M R; Meier, S K; Melton, H R; Newcomer, M W; Perlov, A S; Rutenko, S A; Würsig, B; Martin, C R; Egging, D E

    2007-11-01

    The introduction of anthropogenic sounds into the marine environment can impact some marine mammals. Impacts can be greatly reduced if appropriate mitigation measures and monitoring are implemented. This paper concerns such measures undertaken by Exxon Neftegas Limited, as operator of the Sakhalin-1 Consortium, during the Odoptu 3-D seismic survey conducted during 17 August-9 September 2001. The key environmental issue was protection of the critically endangered western gray whale (Eschrichtius robustus), which feeds in summer and fall primarily in the Piltun feeding area off northeast Sakhalin Island. Existing mitigation and monitoring practices for seismic surveys in other jurisdictions were evaluated to identify best practices for reducing impacts on feeding activity by western gray whales. Two buffer zones were established to protect whales from physical injury or undue disturbance during feeding. A 1 km buffer protected all whales from exposure to levels of sound energy potentially capable of producing physical injury. A 4-5 km buffer was established to avoid displacing western gray whales from feeding areas. Trained Marine Mammal Observers (MMOs) on the seismic ship Nordic Explorer had the authority to shut down the air guns if whales were sighted within these buffers. Additional mitigation measures were also incorporated: Temporal mitigation was provided by rescheduling the program from June-August to August-September to avoid interference with spring arrival of migrating gray whales. The survey area was reduced by 19% to avoid certain waters <20 m deep where feeding whales concentrated and where seismic acquisition was a lower priority. The number of air guns and total volume of the air guns were reduced by about half (from 28 to 14 air guns and from 3,390 in(3) to 1,640 in(3)) relative to initial plans. "Ramp-up" (="soft-start") procedures were implemented. Monitoring activities were conducted as needed to implement some mitigation measures, and to assess

  1. Reducing Disk Storage of Full-3D Seismic Waveform Tomography (F3DT) Through Lossy Online Compression

    DOE PAGES

    Lindstrom, Peter; Chen, Po; Lee, En-Jui

    2016-05-05

    Full-3D seismic waveform tomography (F3DT) is the latest seismic tomography technique that can assimilate broadband, multi-component seismic waveform observations into high-resolution 3D subsurface seismic structure models. The main drawback in the current F3DT implementation, in particular the scattering-integral implementation (F3DT-SI), is the high disk storage cost and the associated I/O overhead of archiving the 4D space-time wavefields of the receiver- or source-side strain tensors. The strain tensor fields are needed for computing the data sensitivity kernels, which are used for constructing the Jacobian matrix in the Gauss-Newton optimization algorithm. In this study, we have successfully integrated a lossy compression algorithmmore » into our F3DT SI workflow to significantly reduce the disk space for storing the strain tensor fields. The compressor supports a user-specified tolerance for bounding the error, and can be integrated into our finite-difference wave-propagation simulation code used for computing the strain fields. The decompressor can be integrated into the kernel calculation code that reads the strain fields from the disk and compute the data sensitivity kernels. During the wave-propagation simulations, we compress the strain fields before writing them to the disk. To compute the data sensitivity kernels, we read the compressed strain fields from the disk and decompress them before using them in kernel calculations. Experiments using a realistic dataset in our California statewide F3DT project have shown that we can reduce the strain-field disk storage by at least an order of magnitude with acceptable loss, and also improve the overall I/O performance of the entire F3DT-SI workflow significantly. The integration of the lossy online compressor may potentially open up the possibilities of the wide adoption of F3DT-SI in routine seismic tomography practices in the near future.« less

  2. 3D imaging of the Corinth rift from a new passive seismic tomography and receiver function analysis

    NASA Astrophysics Data System (ADS)

    Godano, Maxime; Gesret, Alexandrine; Noble, Mark; Lyon-Caen, Hélène; Gautier, Stéphanie; Deschamps, Anne

    2016-04-01

    The Corinth Rift is the most seismically active zone in Europe. The area is characterized by very localized NS extension at a rate of ~ 1.5cm/year, the occurrence of frequent and intensive microseismic crises and occasional moderate to large earthquakes like in 1995 (Mw=6.1). Since the year 2000, the Corinth Rift Laboratory (CRL, http://crlab.eu) consisting in a multidisciplinary natural observatory, aims at understanding the mechanics of faulting and earthquake nucleation in the Rift. Recent studies have improved our view about fault geometry and mechanics within CRL, but there is still a critical need for a better knowledge of the structure at depth both for the accuracy of earthquake locations and for mechanical interpretation of the seismicity. In this project, we aim to analyze the complete seismological database (13 years of recordings) of CRL by using recently developed methodologies of structural imaging, in order to determine at the same time and with high resolution, the local 3D structure and the earthquake locations. We perform an iterative joint determination of 3D velocity model and earthquake coordinates. In a first step, P and S velocity models are determined using first arrival time tomography method proposed by Taillandier et al. (2009). It consists in the minimization of the cost function between observed and theoretical arrival times which is achieved by the steepest descent method (e.g. Tarantola 1987). This latter requires computing the gradient of the cost function by using the adjoint state method (Chavent 1974). In a second step, earthquakes are located in the new velocity model with a non-linear inversion method based on a Bayesian formulation (Gesret et al. 2015). Step 1 and 2 are repeated until the cost function no longer decreases. We present preliminary results consisting in: (1) the adjustement of a 1D velocity model that is used as initial model of the 3D tomography and (2) a first attempt of the joint determination of 3D velocity

  3. Rock formation characterization for carbon dioxide geosequestration: 3D seismic amplitude and coherency anomalies, and seismic petrophysical facies classification, Wellington and Anson-Bates Fields, Kansas, USA

    NASA Astrophysics Data System (ADS)

    Ohl, Derek; Raef, Abdelmoneam

    2014-04-01

    Higher resolution rock formation characterization is of paramount priority, amid growing interest in injecting carbon dioxide, CO2, into subsurface rock formations of depeleting/depleted hydrocarbon reservoirs or saline aquifers in order to reduce emissions of greenhouse gases. In this paper, we present a case study for a Mississippian carbonate characterization integrating post-stack seismic attributes, well log porosities, and seismic petrophysical facies classification. We evaluated changes in petrophysical lithofacies and reveal structural facies-controls in the study area. Three cross-plot clusters in a plot of well log porosity and acoustic impedance corroborated a Neural Network petrophysical facies classification, which was based on training and validation utilizing three petrophysically-different wells and three volume seismic attributes, extracted from a time window including the wavelet of the reservoir-top reflection. Reworked lithofacies along small-throw faults has been revealed based on comparing coherency and seismic petrophysical facies. The main objective of this study is to put an emphasis on reservoir characterization that is both optimized for and subsequently benefiting from pilot tertiary CO2 carbon geosequestration in a depleting reservoir and also in the deeper saline aquifer of the Arbuckle Group, south central Kansas. The 3D seismic coherency attribute, we calculated from a window embracing the Mississippian top reflection event, indicated anomalous features that can be interpreted as a change in lithofacies or faulting effect. An Artificial Neural Network (ANN) lithofacies modeling has been used to better understand these subtle features, and also provide petrophysical classes, which will benefit flow-simulation modeling and/or time-lapse seismic monitoring feasibility analysis. This paper emphasizes the need of paying greater attention to small-scale features when embarking upon characterization of a reservoir or saline-aquifer for CO2

  4. Fusion of terrestrial LiDAR and tomographic mapping data for 3D karst landform investigation

    NASA Astrophysics Data System (ADS)

    Höfle, B.; Forbriger, M.; Siart, C.; Nowaczinski, E.

    2012-04-01

    Highly detailed topographic information has gained in importance for studying Earth surface landforms and processes. LiDAR has evolved into the state-of-the-art technology for 3D data acquisition on various scales. This multi-sensor system can be operated on several platforms such as airborne LS (ALS), mobile LS (MLS) from moving vehicles or stationary on ground (terrestrial LS, TLS). In karst research the integral investigation of surface and subsurface components of solution depressions (e.g. sediment-filled dolines) is required to gather and quantify the linked geomorphic processes such as sediment flux and limestone dissolution. To acquire the depth of the different subsurface layers, a combination of seismic refraction tomography (SRT) and electrical resistivity tomography (ERT) is increasingly applied. This multi-method approach allows modeling the extension of different subsurface media (i.e. colluvial fill, epikarst zone and underlying basal bedrock). Subsequent fusion of the complementary techniques - LiDAR surface and tomographic subsurface data - first-time enables 3D prospection and visualization as well as quantification of geomorphometric parameters (e.g. depth, volume, slope and aspect). This study introduces a novel GIS-based method for semi-automated fusion of TLS and geophysical data. The study area is located in the Dikti Mountains of East Crete and covers two adjacent dolines. The TLS data was acquired with a Riegl VZ-400 scanner from 12 scan positions located mainly at the doline divide. The scan positions were co-registered using the iterative closest point (ICP) algorithm of RiSCAN PRO. For the digital elevation rasters a resolution of 0.5 m was defined. The digital surface model (DSM) of the study was derived by moving plane interpolation of all laser points (including objects) using the OPALS software. The digital terrain model (DTM) was generated by iteratively "eroding" objects in the DSM by minimum filter, which additionally accounts for

  5. 3D crustal seismic velocity model for the Gulf of Cadiz and adjacent areas (SW Iberia margin) based on seismic reflection and refraction profiles

    NASA Astrophysics Data System (ADS)

    Lozano, Lucía; Cantavella, Juan Vicente; Barco, Jaime; Carranza, Marta; Burforn, Elisa

    2016-04-01

    The Atlantic margin of the SW Iberian Peninsula and northern Morocco has been subject of study during the last 30 years. Many seismic reflection and refraction profiles have been carried out offshore, providing detailed information about the crustal structure of the main seafloor tectonic domains in the region, from the South Portuguese Zone and the Gulf of Cadiz to the Abyssal Plains and the Josephine Seamount. The interest to obtain a detailed and realistic velocity model for this area, integrating the available data from these studies, is clear, mainly to improve real-time earthquake hypocentral location and for tsunami and earthquake early warning. Since currently real-time seismic location tools allow the implementation of 3D velocity models, we aim to generate a full 3D crustal model. For this purpose we have reviewed more than 50 profiles obtained in different seismic surveys, from 1980 to 2008. Data from the most relevant and reliable 2D seismic velocity published profiles were retrieved. We first generated a Moho depth map of the studied area (latitude 32°N - 41°N and longitude 15°W - 5°W) by extracting Moho depths along each digitized profile with a 10 km spacing, and then interpolating this dataset using ordinary kriging method and generating the contour isodepth map. Then, a 3D crustal velocity model has been obtained. Selected vertical sections at different distances along each profile were considered to retrieve P-wave velocity values at each interface in order to reproduce the geometry and the velocity gradient within each layer. A double linear interpolation, both in distance and depth, with sampling rates of 10 km and 1 km respectively, was carried out to generate a (latitude, longitude, depth, velocity) matrix. This database of all the profiles was interpolated to obtain the P-wave velocity distribution map every kilometer of depth. The new 3D velocity model has been integrated in NonLinLoc location program to relocate several representative

  6. INCREASING OIL RECOVERY THROUGH ADVANCED REPROCESSING OF 3D SEISMIC, GRANT CANYON AND BACON FLAT FIELDS, NYE COUNTY, NEVADA

    SciTech Connect

    Eric H. Johnson; Don E. French

    2001-06-01

    Makoil, Inc., of Orange, California, with the support of the U.S. Department of Energy has reprocessed and reinterpreted the 3D seismic survey of the Grant Canyon area, Railroad Valley, Nye County, Nevada. The project was supported by Dept. of Energy Grant DE-FG26-00BC15257. The Grant Canyon survey covers an area of 11 square miles, and includes Grant Canyon and Bacon Flat oil fields. These fields have produced over 20 million barrels of oil since 1981, from debris slides of Devonian rocks that are beneath 3,500 to 5,000 ft of Tertiary syntectonic deposits that fill the basin of Railroad Valley. High-angle and low-angle normal faults complicate the trap geometry of the fields, and there is great variability in the acoustic characteristics of the overlying valley fill. These factors combine to create an area that is challenging to interpret from seismic reflection data. A 3D seismic survey acquired in 1992-93 by the operator of the fields has been used to identify development and wildcat locations with mixed success. Makoil believed that improved techniques of processing seismic data and additional well control could enhance the interpretation enough to improve the chances of success in the survey area. The project involved the acquisition of hardware and software for survey interpretation, survey reprocessing, and reinterpretation of the survey. SeisX, published by Paradigm Geophysical Ltd., was chosen as the interpretation software, and it was installed on a Dell Precision 610 computer work station with the Windows NT operating system. The hardware and software were selected based on cost, possible addition of compatible modeling software in the future, and the experience of consulting geophysicists in the Billings area. Installation of the software and integration of the hardware into the local office network was difficult at times but was accomplished with some technical support from Paradigm and Hewlett Packard, manufacturer of some of the network equipment. A

  7. Investigation of out of plane compressive strength of 3D printed sandwich composites

    NASA Astrophysics Data System (ADS)

    Dikshit, V.; Yap, Y. L.; Goh, G. D.; Yang, H.; Lim, J. C.; Qi, X.; Yeong, W. Y.; Wei, J.

    2016-07-01

    In this study, the 3D printing technique was utilized to manufacture the sandwich composites. Composite filament fabrication based 3D printer was used to print the face-sheet, and inkjet 3D printer was used to print the sandwich core structure. This work aims to study the compressive failure of the sandwich structure manufactured by using these two manufacturing techniques. Two different types of core structures were investigated with the same type of face-sheet configuration. The core structures were printed using photopolymer, while the face-sheet was made using nylon/glass. The out-of-plane compressive strength of the 3D printed sandwich composite structure has been examined in accordance with ASTM standards C365/C365-M and presented in this paper.

  8. 3D Anisotropic Velocity Structure beneath the Kii Peninsula from P-wave Traveltime Tomography: Diagnostics of Seismic Anisotropy in a Subduction Zone

    NASA Astrophysics Data System (ADS)

    Ishise, M.; Koketsu, K.; Miyake, H.

    2008-12-01

    Seismic anisotropy is one of key elements to understand geodynamics such as mantle convection, plate tectonics, and evolutional process of the crust. Thus, it is crucial to investigate seismic anisotropy in the subduction zone where various phenomena are attributed to dynamic processes caused by interaction among adjacent plates. Actually, recent studies of seismic anisotropy show that the determination of a 3D seismic anisotropy structure can be potential diagnostics of a geological lineament structure inside the crust, and probe earthquake rupture areas and rupture nucleation points. In this study, we have evaluated the three-dimensional (3D) P-wave anisotropic velocity structure in the Kii Peninsula, southwest Japan, as well as the isotropic velocity structure by P-wave travel times tomography. The study area lies on the Eurasian (Amulian) plate above the subducting Philippine Sea Plate. This belongs to an accretionary prism, which is being developed at the margin of the Asian Continent, and is characterized by E-W trending metamorphic belts including a segment of the active faults zone called the Median Tectonic Line (MTL). Additionally, the Kii Peninsula region is presumed to be source regions of megathrust earthquakes along the Nankai trough. The resultant images of both the isotropic and anisotropic tomography show that the upper crust is characterized by E-W trending structure similar to that of the geological structure over the peninsula region. Because deformation of the crust such as preferred mineral alignment and recrystallization associated with planar structures produces significant seismic anisotropy, the plausible factor of the crustal feature is interpreted as E-W orientation of the regional metamorphic belt. Furthermore, in the resultant tomographic image, the E-W trending pattern is found within the deeper crust. This fact indicates that the lineament structure is sustained in the deeper crust. Since our tomography has good resolution in the

  9. Calibration of 3D Upper Mantle Structure in Eurasia Using Regional and Teleseismic Full Waveform Seismic Data

    SciTech Connect

    Barbara Romanowicz; Mark Panning

    2005-04-23

    Adequate path calibrations are crucial for improving the accuracy of seismic event location and origin time, size, and mechanism, as required for CTBT monitoring. There is considerable information on structure in broadband seismograms that is currently not fully utilized. The limitations have been largely theoretical. the development and application to solid earth problems of powerful numerical techniques, such as the Spectral Element Method (SEM), has opened a new era, and theoretically, it should be possible to compute the complete predicted wavefield accurately without any restrictions on the strength or spatial extent of heterogeneity. This approach requires considerable computational power, which is currently not fully reachable in practice. We propose an approach which relies on a cascade of increasingly accurate theoretical approximations for the computation of the seismic wavefield to develop a model of regional structure for the area of Eurasia located between longitudes of 30 and 150 degrees E, and latitudes of -10 to 60 degrees North. The selected area is particularly suitable for the purpose of this experiment, as it is highly heterogeneous, presenting a challenge for calibration purposes, but it is well surrounded by earthquake sources and, even though they are sparsely distributed, a significant number of high quality broadband digital stations exist, for which data are readily accessible through IRIS (Incorporated Research Institutions for Seismology) and the FDSN (Federation of Digital Seismic Networks). The starting models used will be a combination of a-priori 3D models recently developed for this region, combining various geophysical and seismological data, and a major goal of this study will be to refine these models so as to fit a variety of seismic waveforms and phases.

  10. Improving Geologic and Engineering Models of Midcontinent Fracture and Karst-Modified Reservoirs Using New 3-D Seismic Attributes

    SciTech Connect

    Susan Nissen; Saibal Bhattacharya; W. Lynn Watney; John Doveton

    2009-03-31

    Our project goal was to develop innovative seismic-based workflows for the incremental recovery of oil from karst-modified reservoirs within the onshore continental United States. Specific project objectives were: (1) to calibrate new multi-trace seismic attributes (volumetric curvature, in particular) for improved imaging of karst-modified reservoirs, (2) to develop attribute-based, cost-effective workflows to better characterize karst-modified carbonate reservoirs and fracture systems, and (3) to improve accuracy and predictiveness of resulting geomodels and reservoir simulations. In order to develop our workflows and validate our techniques, we conducted integrated studies of five karst-modified reservoirs in west Texas, Colorado, and Kansas. Our studies show that 3-D seismic volumetric curvature attributes have the ability to re-veal previously unknown features or provide enhanced visibility of karst and fracture features compared with other seismic analysis methods. Using these attributes, we recognize collapse features, solution-enlarged fractures, and geomorphologies that appear to be related to mature, cockpit landscapes. In four of our reservoir studies, volumetric curvature attributes appear to delineate reservoir compartment boundaries that impact production. The presence of these compartment boundaries was corroborated by reservoir simulations in two of the study areas. Based on our study results, we conclude that volumetric curvature attributes are valuable tools for mapping compartment boundaries in fracture- and karst-modified reservoirs, and we propose a best practices workflow for incorporating these attributes into reservoir characterization. When properly calibrated with geological and production data, these attributes can be used to predict the locations and sizes of undrained reservoir compartments. Technology transfer of our project work has been accomplished through presentations at professional society meetings, peer-reviewed publications

  11. 3D seismic analysis of gravity-driven and basement influenced normal fault growth in the deepwater Otway Basin, Australia

    NASA Astrophysics Data System (ADS)

    Robson, A. G.; King, R. C.; Holford, S. P.

    2016-08-01

    We use three-dimensional (3D) seismic reflection data to analyse the structural style and growth of a normal fault array located at the present-day shelf-edge break and into the deepwater province of the Otway Basin, southern Australia. The Otway Basin is a Late Jurassic to Cenozoic, rift-to-passive margin basin. The seismic reflection data images a NW-SE (128-308) striking, normal fault array, located within Upper Cretaceous clastic sediments and which consists of ten fault segments. The fault array contains two hard-linked fault assemblages, separated by only 2 km in the dip direction. The gravity-driven, down-dip fault assemblage is entirely contained within the 3D seismic survey, is located over a basement plateau and displays growth commencing and terminating during the Campanian-Maastrichtian, with up to 1.45 km of accumulated throw (vertical displacement). The up-dip normal fault assemblage penetrates deeper than the base of the seismic survey, but is interpreted to be partially linked along strike at depth to major basement-involved normal faults that can be observed on regional 2D seismic lines. This fault assemblage displays growth initiating in the Turonian-Santonian and has accumulated up to 1.74 km of throw. Our detailed analysis of the 3D seismic data constraints post-Cenomanian fault growth of both fault assemblages into four evolutionary stages: [1] Turonian-Santonian basement reactivation during crustal extension between Australia and Antarctica. This either caused the upward propagation of basement-involved normal faults or the nucleation of a vertically isolated normal fault array in shallow cover sediments directly above the reactivated basement-involved faults; [2] continued Campanian-Maastrichtian crustal extension and sediment loading eventually created gravitational instability on the basement plateau, nucleating a second, vertically isolated normal fault array in the cover sediments; [3] eventual hard-linkage of fault segments in both fault

  12. 3-D seismic analysis of a carbonate platform in the Molasse Basin - reef distribution and internal separation with seismic attributes

    NASA Astrophysics Data System (ADS)

    von Hartmann, Hartwig; Buness, Hermann; Krawczyk, Charlotte M.; Schulz, Rüdiger

    2012-10-01

    Carbonate platforms differ from clastic sedimentary environments by a greater heterogeneity, so that key horizons for mapping and compartmentalisation of the reservoir are generally missing. We show that different seismic attributes help to compete with these difficulties and to identify different carbonate facies within the platform. The Upper Jurassic carbonate platform in Southern Germany in the Molasse Basin is a main exploration target for hydrogeothermal projects. Knowledge about the distribution of different carbonate facies within the platform, which is overprinted by faults, is important for a realistic reservoir simulation. The platform with an average thickness of 600 meters was artificially divided into four layers of equal thickness. Within each layer the characteristic seismic pattern was visualized by different attributes (travel time mapping, spectral decomposition), allowing additionally for further depositional classification. Within the uppermost layer the coral reef distribution could be mapped. The reefs form several complexes of up to 12 square kilometres in size. The surrounding slope and trough areas are identified as well. Within the platform , the distribution of sponge reefs could be visualized. They form either amalgamations in distinct areas, or are spread as small singular structures with diameters of approximately less than hundred meters. Comparing tectonic elements and reef distribution within the whole platform reveals that the early topography triggered the reef distribution, while these lithologic inhomogenities influenced later on the local shape of tectonic lineaments. The fault system which dominates the structural style in the area is visible in the different transformations but does not obscure the facies distribution, which hindered former interpretations of the data set. In this way a reservoir model can incorporate now the first time the reef distribution within an area.

  13. The Role of Faulting on the Growth of a Carbonate Platform: Evidence from 3D Seismic Analysis and Section Restoration

    NASA Astrophysics Data System (ADS)

    Nur Fathiyah Jamaludin, Siti; Pubellier, Manuel; Prasad Ghosh, Deva; Menier, David; Pierson, Bernard

    2014-05-01

    Tectonics in addition to other environmental factors impacts the growth of carbonate platforms and plays an important role in shaping the internal architecture of the platforms. Detailed of faults and fractures development and healing in carbonate environment have not been explored sufficiently. Using 3D seismic and well data, we attempt to reconstruct the structural evolution of a Miocene carbonate platform in Central Luconia Province, offshore Malaysia. Luconia Province is located in the NW coast of Borneo and has become one of the largest carbonate factories in SE Asia. Seismic interpretations including seismic attribute analysis are applied to the carbonate platform to discern its sedimentology and structural details. Detailed seismic interpretations highlight the relationships of carbonate deposition with syn-depositional faulting. Branching conjugate faults are common in this carbonate platform and have become a template for reef growth, attesting lateral facies changes within the carbonate environments. Structural restoration was then appropriately performed on the interpreted seismic sections based on sequential restoration techniques, and provided images different from those of horizon flattening methods. This permits us to compensate faults' displacement, remove recent sediment layers and finally restore the older rock units prior to the fault motions. It allows prediction of platform evolution as a response to faulting before and after carbonate deposition and also enhances the pitfalls of interpretation. Once updated, the reconstructions allow unravelling of the un-seen geological features underneath the carbonate platform, such as paleo-structures and paleo-topography which in turn reflects the paleo-environment before deformations took place. Interestingly, sections balancing and restoration revealed the late-phase (Late Oligocene-Early Miocene) rifting of South China Sea, otherwise difficult to visualize on seismic sections. Later it is shown that

  14. Calculating the Probability of Strong Ground Motions Using 3D Seismic Waveform Modeling - SCEC CyberShake

    NASA Astrophysics Data System (ADS)

    Gupta, N.; Callaghan, S.; Graves, R.; Mehta, G.; Zhao, L.; Deelman, E.; Jordan, T. H.; Kesselman, C.; Okaya, D.; Cui, Y.; Field, E.; Gupta, V.; Vahi, K.; Maechling, P. J.

    2006-12-01

    Researchers from the SCEC Community Modeling Environment (SCEC/CME) project are utilizing the CyberShake computational platform and a distributed high performance computing environment that includes USC High Performance Computer Center and the NSF TeraGrid facilities to calculate physics-based probabilistic seismic hazard curves for several sites in the Southern California area. Traditionally, probabilistic seismic hazard analysis (PSHA) is conducted using intensity measure relationships based on empirical attenuation relationships. However, a more physics-based approach using waveform modeling could lead to significant improvements in seismic hazard analysis. Members of the SCEC/CME Project have integrated leading-edge PSHA software tools, SCEC-developed geophysical models, validated anelastic wave modeling software, and state-of-the-art computational technologies on the TeraGrid to calculate probabilistic seismic hazard curves using 3D waveform-based modeling. The CyberShake calculations for a single probablistic seismic hazard curve require tens of thousands of CPU hours and multiple terabytes of disk storage. The CyberShake workflows are run on high performance computing systems including multiple TeraGrid sites (currently SDSC and NCSA), and the USC Center for High Performance Computing and Communications. To manage the extensive job scheduling and data requirements, CyberShake utilizes a grid-based scientific workflow system based on the Virtual Data System (VDS), the Pegasus meta-scheduler system, and the Globus toolkit. Probabilistic seismic hazard curves for spectral acceleration at 3.0 seconds have been produced for eleven sites in the Southern California region, including rock and basin sites. At low ground motion levels, there is little difference between the CyberShake and attenuation relationship curves. At higher ground motion (lower probability) levels, the curves are similar for some sites (downtown LA, I-5/SR-14 interchange) but different for

  15. Investigating the point seismic array concept with seismic rotation measurements.

    SciTech Connect

    Abbott, Robert E.; Aldridge, David Franklin

    2009-02-01

    Spatially-distributed arrays of seismometers are often utilized to infer the speed and direction of incident seismic waves. Conventionally, individual seismometers of the array measure one or more orthogonal components of rectilinear particle motion (displacement, velocity, or acceleration). The present work demonstrates that measure of both the particle velocity vector and the particle rotation vector at a single point receiver yields sufficient information to discern the type (compressional or shear), speed, and direction of an incident plane seismic wave. Hence, the approach offers the intriguing possibility of dispensing with spatially-extended received arrays, with their many problematic deployment, maintenance, relocation, and post-acquisition data processing issues. This study outlines straightforward mathematical theory underlying the point seismic array concept, and implements a simple cross-correlation scanning algorithm for determining the azimuth of incident seismic waves from measured acceleration and rotation rate data. The algorithm is successfully applied to synthetic seismic data generated by an advanced finite-difference seismic wave propagation modeling algorithm. Application of the same azimuth scanning approach to data acquired at a site near Yucca Mountain, Nevada yields ambiguous, albeit encouraging, results. Practical issues associated with rotational seismometry are recognized as important, but are not addressed in this investigation.

  16. 3-D seismic over the Fausse Pointe Field: A case history of acquisition in a harsh environment

    SciTech Connect

    Duncan, P.M.; Nester, D.C.; Martin, J.A.; Moles, J.R.

    1995-12-31

    A 50 square mile 3D seismic survey was successfully acquired over Fausse Point Field in the latter half of 1994. The geophysical and logistical challenges of this project were immense. The steep dips and extensive range of target depths required a large shoot area with a relatively fine sampling interval. The surface, while essentially flat, included areas of cane field, crawfish ponds, thick brush, swamp, open lakes and deep canals -- all typical of southern Louisiana. Planning and permitting of the survey began in late 1993. Field operations began in June 1994 and were complete in January 1995. Field personnel numbered 150 at the peak of operations. More than 19,000 crew hours were required to complete the job at a cost of over 5,000,000. The project was complete on time and on budget. The resulting images of the salt dome and surrounding rocks are not only beautiful but are revealing many opportunities for new hydrocarbon development.

  17. Cognitive 3D geological voxel modelling based on AEM and seismic data - a case from the southern part of Denmark

    NASA Astrophysics Data System (ADS)

    Jørgensen, Flemming; Møller, Rasmus R.; Sandersen, Peter B. E.; Høyer, Anne-Sophie

    2013-04-01

    The highly complex composition of the Quaternary and Tertiary near-surface deposits in Denmark is a challenging environment for 3D modelling. Geological elements like cross-cutting buried valleys, faults, glaciotectonic thrusts and folds, delta units and erosional unconformities are vital to identify and include in 3D geological models, but at the same time they all add to the complexity of the geological picture. Borehole data are rarely sufficient for the modelling; instead much more laterally dense data are needed. Airborne electromagnetic techniques therefore serve as perfect tools for providing an overview and spatial distribution of the geological elements and their composition. Such airborne surveys are perfectly supplemented by seismic data in order to map the stratigraphic framework within a model area. Translating airborne electromagnetic data to geology is a complicated task that requires a significant amount of geophysical and geological insight. It is necessary to implement thorough geological background knowledge in the interpretations while at the same time identify and acknowledge the inherent limitations of the method. In an area covering 730 km2 across the border between Germany and Denmark a combination of an airborne transient electromagnetic survey (3200 line km performed with the SkyTEM system) and a 38 km high-resolution 2D seismic survey has proven very successful for mapping geological elements like the above-mentioned. Although the south-westernmost part of the study area is saturated with saltwater and the TEM data therefore are influenced by increased electrical conductivity, the geology is still revealed here. Geological interpretations are supported by a high number of pre-existing seismic sections originating from hydrocarbon exploration and borehole data, though most of the borehole data and several of the seismic sections have very poor quality. A couple of new 300-m deep exploration boreholes have been drilled in order to obtain

  18. Acceleration of 3D Finite Difference AWP-ODC for seismic simulation on GPU Fermi Architecture

    NASA Astrophysics Data System (ADS)

    Zhou, J.; Cui, Y.; Choi, D.

    2011-12-01

    AWP-ODC, a highly scalable parallel finite-difference application, enables petascale 3D earthquake calculations. This application generates realistic dynamic earthquake source description and detailed physics-based anelastic ground motions at frequencies pertinent to safe building design. In 2010, the code achieved M8, a full dynamical simulation of a magnitude-8 earthquake on the southern San Andreas fault up to 2-Hz, the largest-ever earthquake simulation. Building on the success of the previous work, we have implemented CUDA on AWP-ODC to accelerate wave propagation on GPU platform. Our CUDA development aims on aggressive parallel efficiency, optimized global and shared memory access to make the best use of GPU memory hierarchy. The benchmark on NVIDIA Tesla C2050 graphics cards demonstrated many tens of speedup in single precision compared to serial implementation at a testing problem size, while an MPI-CUDA implementation is in the progress to extend our solver to multi-GPU clusters. Our CUDA implementation has been carefully verified for accuracy.

  19. Crustal high-velocity anomaly at the East European Craton margin in SE Poland (TESZ) modelled by 3-D seismic tomography of refracted and reflected arrivals

    NASA Astrophysics Data System (ADS)

    Środa, Piotr; Dec, Monika

    2016-04-01

    The area of Trans-European Suture Zone in SE Poland represents a contact of major tectonic units of different consolidation age - from the Precambrian East European Craton, through Palaeozoic West European Platform to Cenozoic Carpathian orogen. The region was built by several phases of crustal accretion, which resulted in a complex collage of tectonic blocks. In 2000, this region was studied by several seismic wide-angle profiles of CELEBRATION 2000 experiment, providing a dense coverage of seismic data in SE Poland and allowing for detailed investigations of the crustal structure and properties in this area. Beneath the marginal part of the EEC, the 2-D modelling of in-line data form several CELEBRATION profiles revealed a prominent high P-wave velocity anomaly in the upper crust, with Vp of 6.7-7.1 km/s, starting at 10-16 km depth (e.g., Środa et al., 2006). Anomalously high velocities are observed in the area located approximately beneath Lublin trough, to the NE of Teisseyre-Tornquist Zone. Based on 3-D tomography of first arrivals of in- and off-line CELEBRATION 2000 recordings (Malinowski et al., 2008), elevated velocities are also reported in the same area and seem to continue to the SW, off the craton margin. Gravimetric modelling also revealed anomalously high density in the same region at similar depths. High seismic velocities and densities are interpreted as indicative for a pronounced mafic intrusion, possibly related to extensional processes at the EEC margin. Previous 3-D models of the high-velocity intrusion were based on first arrivals (crustal refractions) only. In this study, also off-line reflections (not modelled up to now) are used, in order to enlarge the data set and to better constrain the geometry and properties of the velocity anomaly. A code for 3-D joint tomographic inversion of refracted and reflected arrivals, with model parametrization allowing for velocity discontinuities was used (Rawlinson, 2007). With this approach, besides the

  20. The growth of non-colinear normal fault systems; What can we learn from 3D seismic reflection data?

    NASA Astrophysics Data System (ADS)

    Reeve, Matthew T.; Bell, Rebecca E.; Duffy, Oliver B.; Jackson, Christopher A.-L.; Sansom, Eleanor

    2015-01-01

    Many rift zones exhibit a range of fault orientations, rather than simple colinear faults that strike orthogonal to the inferred least principal stress. The formation of non-colinear fault sets has implications for assessing rift-zone kinematics, as well as determining palaeo-stress state in extensional basins. Using 3D seismic reflection data, we deduce the likely mechanisms responsible for the formation of a population of non-colinear faults in the Måløy Slope area of the northern North Sea. Three basement-displacing fault populations exist on the Måløy Slope; (i) large (>1 km throw), N-S-striking faults, (ii) smaller (<250 m throw) N-S-striking faults and (iii) small (<250 m throw) NE-SW-striking faults. All were initiated in the Middle Jurassic. Coeval growth of these fault populations, and the apparent correlation between the NE-SW faults and a NE-SW-trending gravity and magnetic anomaly high lead us to suggest that the NE-SW faults are the result of deflection of the otherwise E-W-orientated least principal stress by NE-trending intrabasement weaknesses. Our study's results have implications for the large-scale kinematic evolution of the North Sea, arguing that major rotations in extension direction are not required to generate multiple fault sets locally or across the rift. This study also highlights the importance of using borehole-constrained 3D seismic data as a tool in understanding non-colinear fault growth, and its broader implications for regional tectonic history.

  1. Beyond the Seafloor: a Plio-Pleistocene Archive of Glacial Geomorphology from Basin-Wide 3D Seismic Reflection Data on the Mid-Norwegian Shelf

    NASA Astrophysics Data System (ADS)

    Newton, A.; Huuse, M.

    2015-12-01

    Oil and gas exploration on the mid-Norwegian shelf has created an extensive geophysical and geological database. As such, this margin has become one of the most comprehensively studied formerly-glaciated continental margins in the world. Industrial operations have concentrated on the structure and geohazard potential of glacial sediments whilst academic work has looked at reconstructing environmental conditions during and since the Last Glacial Maximum (LGM). This has generally consisted of mapping seafloor glacial geomorphology and a limited number of shallow sediment cores. Despite the increasingly large volume of 3D seismic reflection data available across the majority of the shelf, only limited work has been carried out investigating the oldest glaciations. A Plio-Pleistocene archive of glacial-interglacial history is preserved offshore and represents a unique study site because of the availability of 100s of 3D seismic reflection datasets. This database allows numerous different glacial erosion events and glacial landforms to be imaged throughout the glacially-derived NAUST Formation. We present an inventory of glacial history for the mid-Norwegian shelf and review the implications for the glacial history of Northwest Europe. This record shows glacial landforms such as iceberg scours, mega-scale glacial lineations and grounding-zone wedges, each of which provides an insight into ice characteristics. Dating is limited to a few tentative dates based on side-wall core data but we infer a further dating chronology based on dated sediments from the Voring Plateau, fluctuations in the benthic δ18O derived global sea level record, interpretation of seismic facies and the overall architecture. Glacial evidence is present regularly throughout the stratigraphy with the earliest evidence for marine terminating ice found at the base of the NAUST Formation at ~2.8 Ma.

  2. Correlation of generation interval and scale of large-scale submarine landslides using 3D seismic data off Shimokita Peninsula, Northeast Japan

    NASA Astrophysics Data System (ADS)

    Nakamura, Yuki; Ashi, Juichiro; Morita, Sumito

    2016-04-01

    To clarify timing and scale of past submarine landslides is important to understand formation processes of the landslides. The study area is in a part of continental slope of the Japan Trench, where a number of large-scale submarine landslide (slump) deposits have been identified in Pliocene and Quaternary formations by analysing METI's 3D seismic data "Sanrikuoki 3D" off Shimokita Peninsula (Morita et al., 2011). As structural features, swarm of parallel dikes which are likely dewatering paths formed accompanying the slumping deformation, and slip directions are basically perpendicular to the parallel dikes. Therefore, parallel dikes are good indicator for estimation of slip directions. Slip direction of each slide was determined one kilometre grid in the survey area of 40 km x 20 km. The remarkable slip direction varies from Pliocene to Quaternary in the survey area. Parallel dike structure is also available for the distinguishment of the slump deposit and normal deposit on time slice images. By tracing outline of slump deposits at each depth, we identified general morphology of the overall slump deposits, and calculated the volume of the extracted slump deposits so as to estimate the scale of each event. We investigated temporal and spatial variation of depositional pattern of the slump deposits. Calculating the generation interval of the slumps, some periodicity is likely recognized, especially large slump do not occur in succession. Additionally, examining the relationship of the cumulative volume and the generation interval, certain correlation is observed in Pliocene and Quaternary. Key words: submarine landslides, 3D seismic data, Shimokita Peninsula

  3. Seismic fabric and 3-D structure of the southwestern intracontinental Palmyride fold belt, Syria

    SciTech Connect

    Chaimov, T.A.; Barazangi, M. ); Al-Saad, D.; Sawaf, T.; Khaddour, M. )

    1993-12-01

    The Palmyride fold belt, a 400 x 100 km transpressive belt in central Syria that is the northeastern arm of the Syrian arc, is the result of late Mesozoic and Cenozoic inversion of a late Paleozoic and Mesozoic, northeast-trending, linear intracontinental basin located within the northern Arabian platform. The southwestern Palmyrides, near the Dead Sea transform fault system and the Anti-Lebanon mountains, are characterized by short wavelength (5--10 km) en echelon folds separated by small intermontane basins that developed mainly in the Neogene to Holocene. A new three-dimensional data cube, 60 x 70 x 10 km, generated on a Landmark Graphics workstation and based on approximately 700 km of two-dimensional seismic reflection profiles, elucidates the structure of the upper 10 km of the crust in the southwestern Palmyrides. Visualization of the subsurface structure, which is represented by a prominent Upper Cretaceous reflection surface in the data cube, is augmented by topographical and Bouguer gravity data of the same region. Preexisting discontinuities, probable normal fault relicts of the Mesozoic Palmyride rift, likely controlled the development of individual Neogene thrusts. The new subsurface image shows important structural features not identified in outcrop. Short, west-northwest-trending transcurrent (or transfer) faults like the short, en echelon northeast-trending thrust faults and blind thrusts of the Palmyrides. A pervasive regional decollment is not observed, even though Triassic evaporites host local detachments. Unlike topographic relief, which only roughly resembles subsurface structures, the Bouguer gravity signature of the southwestern Palmyrides closely mimics underlying shallow geologic structures both on a large ([approximately]50 km wavelength) and a small ([approximately]5--10 km wavelength) scale. The structural analysis and many other recent studies of the region indicate minor right-lateral shear coupled with compression in the Palmyrides.

  4. Numerical Investigation of 3D multichannel analysis of surface wave method

    NASA Astrophysics Data System (ADS)

    Wang, Limin; Xu, Yixian; Luo, Yinhe

    2015-08-01

    Multichannel analysis of surface wave (MASW) method is an efficient tool to obtain near-surface S-wave velocity, and it has gained popularity in engineering practice. Up to now, most examples of using the MASW technique are focused on 2D models or data from a 1D linear receiver spread. We propose a 3D MASW scheme. A finite-difference (FD) method is used to investigate the method using linear and fan-shaped receiver spreads. Results show that the 3D topography strongly affects propagation of Rayleigh waves. The energy concentration of dispersion image is distorted and bifurcated because of the influence of free-surface topography. These effects are reduced with the 3D MASW method. Lastly we investigate the relation between the array size and the resolution of dispersion measurement.

  5. Multi-step damped multichannel singular spectrum analysis for simultaneous reconstruction and denoising of 3D seismic data

    NASA Astrophysics Data System (ADS)

    Zhang, Dong; Chen, Yangkang; Huang, Weilin; Gan, Shuwei

    2016-10-01

    Multichannel singular spectrum analysis (MSSA) is an effective approach for simultaneous seismic data reconstruction and denoising. MSSA utilizes truncated singular value decomposition (TSVD) to decompose the noisy signal into a signal subspace and a noise subspace and weighted projection onto convex sets (POCS)-like method to reconstruct the missing data in the appropriately constructed block Hankel matrix at each frequency slice. However, there still exists some residual noise in signal space due to two major factors: the deficiency of traditional TSVD and the iteratively inserted observed noisy data during the process of weighted POCS like iterations. In this paper, we first further extend the recently proposed damped MSSA (DMSSA) for random noise attenuation, which is more powerful in distinguishing between signal and noise, to simultaneous reconstruction and denoising. Then combined with DMSSA, we propose a multi-step strategy, named multi-step damped MSSA (MS-DMSSA), to efficiently reduce the inserted noise during the POCS like iterations, thus can improve the final performance of simultaneous reconstruction and denoising. Application of the MS-DMSSA approach on 3D synthetic and field seismic data demonstrates a better performance compared with the conventional MSSA approach.

  6. Analysis of time-structure of BSRs using 3D seismic data in the Eastern Nankai Trough, Japan

    NASA Astrophysics Data System (ADS)

    Nagakubo, S.; Inamori, T.; Kobayashi, T.; Fujii, T.

    2005-12-01

    According to the result of METI Exploratory Wells "Tokai-Oki to Kumano-nada" conducted in FY2003 in Japan, it is suggested that methane hydrate bearing layers in the Eastern Nanakai Trough distribute heterogeneously above BSRs (Bottom Simulating Reflectors). To understand the heterogeneity of distribution of methane hydrate bearing layers and explore concentrated hydrate bearing layers, we conducted a detailed analysis of time-structure map of BSR using 3D seismic survey data acquired in the Eastern Nankai Trough. Since P-wave velocity of hydrate bearing layers are high, it was expected that two-way-time from sea bottom to BSR is short above concentrated hydrate bearing layers compared to hydrate bearing zones. Although significant anomalies are recognized on time-structure map, it seems that anomalies are corresponding to heterogeneous thermal-structure in preference to distribution of hydrate bearing layers around surveyed area. It should be considered that these thermal anomalies are depending on fluid migration with hydrocarbons through faults, unconformities and permeable sand layers from deeper formations. Since occurrences of methane hydrates are strongly restricted by temperature and pressure, analysis of time-structure of BSR acquired by seismic data could be helpful to understand the accumulation mechanism of methane hydrates in sediments.

  7. The Effects of Chemically Distinct LLSVPs on the Geoid: the Results from Both 3-D Thermochemical Convection and Seismically Constrained Instantaneous Flow Models

    NASA Astrophysics Data System (ADS)

    Liu, X.; Zhong, S.

    2014-12-01

    The long-wavelength geoid anomalies provide important constraints on mantle dynamics and mantle viscosity structure. Hager and Ricard and their colleagues successfully reproduced the observed geoid using seismically imaged mantle structure as buoyancy force in an isochemical, whole mantle convection model. However, it has been generally agreed that the seismically observed large low shear velocity provinces (LLSVPs) underneath the Pacific and the Africa in the lower mantle are chemically distinct and likely more dense than the ambient mantle. In this study, we investigate how chemically distinct LLSVPs or chemical piles affect the geoid using both time-dependent thermochemical convection model and instantaneous flow model driven by buoyancy derived from seismic models. First, by conducting a series of 3D spherical thermochemical convection calculations, we found that the chemically dense piles above the CMB have a compensation effect on the geoid, and as a result, the total geoid is only controlled by the upper ~1600 km of the mantle. Second, we use buoyancy structure derived from seismic model Smean to study whether the observed geoid can be reproduced by considering the compensation effects of the LLSVPs. The geoid modeling requires a viscosity profile η and a seismic velocity to density scaling f. We define a four-layer viscosity model with viscosities for lithosphere η_lt, the upper mantle η_um, the transition zone η_tz, and the lower mantle η_lm. With a fixed η_lt of 20, we compute the geoid and search for η_um, η_tz, η_lm, and f that lead to the maximum variance reduction for the geoid. For the whole mantle, isochemical model, the best model with variance reduction of ~71% for degrees 2-9 has viscosities of 20, 0.5, 0.5, 35, for η_lt, η_um, η_tz, and η_lm, respectively, and the scaling f is 0.24. For the thermochemical model with the bottom 1000 km of structure removed, the best model has a viscosity profile of 20, 0.5, 0.5, 30 for the four

  8. Investigation on the contribution of LiDAR data in 3D cadastre

    NASA Astrophysics Data System (ADS)

    Giannaka, Olga; Dimopoulou, Efi; Georgopoulos, Andreas

    2014-08-01

    The existing 2D cadastral systems worldwide cannot provide a proper registration and representation of the land ownership rights, restrictions and responsibilities in a 3D context, which appear in our complex urban environment. Ιn such instances, it may be necessary to consider the development of a 3D Cadastre in which proprietary rights acquire appropriate three-dimensional space both above and below conventional ground level. Such a system should contain the topology and the coordinates of the buildings' outlines and infrastructure. The augmented model can be formed as a full 3D Cadastre, a hybrid Cadastre or a 2D Cadastre with 3D tags. Each country has to contemplate which alternative is appropriate, depending on the specific situation, the legal framework and the available technical means. In order to generate a 3D model for cadastral purposes, a system is required which should be able to exploit and represent 3D data such as LiDAR, a remote sensing technology which acquires three-dimensional point clouds that describe the earth's surface and the objects on it. LiDAR gives a direct representation of objects on the ground surface and measures their coordinates by analyzing the reflecting light. Moreover, it provides very accurate position and height information, although direct information about the objects' geometrical shape is not conveyed. In this study, an experimental implementation of 3D Cadastre using LiDAR data is developed, in order to investigate if this information can satisfy the specifications that are set for the purposes of the Hellenic Cadastre. GIS tools have been used for analyzing DSM and true orthophotos of the study area. The results of this study are presented and evaluated in terms of usability and efficiency.

  9. Exploring the tecto-sedimentary history of the lower Kumano basin: insights from 3D seismic analysis

    NASA Astrophysics Data System (ADS)

    Ramirez, S. G.; Gulick, S. P.; Hayman, N. W.

    2013-12-01

    The Nankai accretionary margin is seismically active, representing a hazard for the people living along the southwestern Japanese shores. In an effort to better understand its behavior, 3D seismic and well data have been acquired in the area. We are using such data in order to address open research topics such as: the conditions for forearc basin initiation, the role of former slope basins and slope cover sediments in the formation of forearc basins and the role of changes in sedimentation as a major controlling factor in forearc basin evolution. New 3D maps of key surfaces that bound and lie within the lower Kumano basin help us illuminate these topics. The lower bounding surface, UC4, represents missing section between 5.6-3.8 Ma. Toward the SE UC4 is relatively undeformed, with some structures approximately parallel to the modern-day trench. In contrast, toward the NW UC4 is intensely deformed with two main synforms whose hinges are oriented 15 degrees to the modern-trench. The two synforms have similar wavelengths and amplitudes and define the thickest sediment accumulations in the lower Kumano basin. We hypothesize that UC4 had a protracted evolution with early synform (thrust-bound slope-basins?) followed by a change in the maximum strain/plate convergence direction. This change caused the structural trend observed to the SE. This interpretation is in agreement with previous independent estimations of block rotation based on paleomagnetic analysis of samples from core recovered in the area. The upper bounding surface of the lower Kumano basin, UC2, underlies 1.6 Ma and younger sediments. Its morphology resembles a much smoother and less deformed version of UC4. It is slightly tilted landward. Seaward, it pinches out against UC4. Between the two bounding surfaces we recognized a major unconformity that we called UC3a and that we were able to track through most of the studied part of the seismic volume. Morphologically, UC3a is very similar to UC2. We interpret

  10. 3-D Tomography Study of Seismic Refraction/Wide-Angle Reflection Data Across the Variscides, SW Ireland

    NASA Astrophysics Data System (ADS)

    O'Reilly, B. M.; Landes, M.; Readman, P. W.; Shannon, P. M.; Prodehl, C.

    2002-12-01

    The VARNET-96 seismic experiment acquired three seismic refraction/wide-angle reflection profiles in order to examine the crustal structure in the south-west of Ireland. 170 seismic stations were used on 300 recording sites. The shotpoint geometry was designed to allow for both in-line and off-line fan shot recordings on the three profiles. A total of 34 water shots was fired. Results from 3-D raytrace and inversion modelling illustrate the pervasive lateral heterogeneity of the study area south of the Shannon Estuary. Palaeozoic strata at the south coast are about 5-6 km thick associated with the sedimentary infill of the Munster and South Munster Basins. To the north, shallow upper crust in the vicinity of the Killarney-Mallow Fault Zone is followed by a 3-4 km thick sedimentary succession in the Dingle-Shannon Basin. A zone of high-velocity upper crust (6.4-6.6 km/s) beneath the South Munster Basin correlates with a gravity high between the Kenmare-Killarney and the Leinster Granite gravity lows. Other high-velocity zones were found beneath Dingle Bay and the Kenmare River region and may be associated with the deep traces of the Killarney-Mallow Fault Zone and the Cork-Kenmare Line. The 3-D velocity model was taken as a basis for the computation of PmP reflected arrivals from the crust-mantle boundary. The Moho depth varies from about 28-29 km at the south coast to about 32-33 km beneath the Dingle-Shannon Basin, the region where the 2-D inline model shows a south-dipping reflector in the upper mantle. Pervasive Variscan deformation appears to be confined to the sedimentary and upper crustal structure and has not deformed the entire crust supporting a thin-skinned tectonic model for Variscan deformation. Deep-crustal variations only occur where they can be correlated with major tectonic features such as the Caledonian Iapetus Suture near the Shannon Estuary. The shallowing of the Moho towards the coast may result from Mesozoic crustal extension in the adjacent

  11. Quasi 3D Geoelectrical Imaging as a new application for permafrost investigations: Some methodological aspects

    NASA Astrophysics Data System (ADS)

    Bast, A.; Kneisel, C.

    2009-04-01

    The two-dimensional electrical resistivity tomography (ERT) application is a common tool to investigate periglacial environments and has evolved rapidly over the last years. The method has been often applied with great success in mountainous systems even though they are characterized by a complex heterogeonous and rough terrain. Despite the development of advanced instrumentation and commercial three-dimensional processing software, in general the two-dimensional approach is used. True three-dimensional measurements in high mountain environments are difficult to realize due to the rough and complex domain. However, up to now, an efficient three-dimensional geophysical mapping of the subsurface characteristics and lithology in alpine environments has not been possible. An auspicious approach is to sound the subsurface with two-dimensional measurements, each of them is routinely being interpreted with commercial software packages and then the results are merged to generate a quasi or pseudo three-dimensional geoelectrical image of the subsurface. Our study presents first results of two quasi 3D geoelectrical images, located in the Val Muragl glacier forefield, Upper Engadin, Swiss Alps. The site of the first model is in the lower part of the forefield the second in the upper part. They distinguish between the surface material: While the lower part is characterized by coarse blocky but although finer grained surface material, the upper site consists of much more finer grained substrate. At both sites a permanently geoelectrical monitoring survey-line is installed, as well as a borehole, which was drilled in summer of 2006 and extent to a depth of 8m below ground surface. Furthermore, miniature temperature logger, BTS (bottom temperature of snow cover) and seismic refraction data are available for the glacier forefield. Data acquisition has been undertaken with a multi-electrode Iris Syscal Junior Switch equipment, data processing with different commercial software

  12. Investigation on 3D morphological changes of in vitro cells through digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Memmolo, Pasquale; Miccio, Lisa; Merola, Francesco; Netti, Paolo A.; Coppola, Giuseppe; Ferraro, Pietro

    2013-04-01

    We report the investigation of the identification and measurement of region of interest (ROI) in quantitative phase-contrast maps (QPMs) of biological cells by digital holographic microscopy (DHM), with the aim to analyze the 3D positions and 3D morphology together. We consider as test case for our tool the in vitro bull sperm head morphometry analysis. Extraction and measurement of various morphological parameters are performed by using two methods: the anisotropic diffusion filter, that is based on the Gaussian diffusivity function which allows more accuracy of the edge position, and the simple thresholding filter. In particular we consider the calculation of area, ellipticity, perimeter, major axis, minor axis and shape factor as a morphological parameter, instead, for the estimation of 3D position, we compute the centroid, the weighted centroid and the maximum phase values. A statistical analysis on a data set composed by N = 14 holograms relative to bovine spermatozoa and its reference holograms is reported.

  13. Method for identifying subsurface fluid migration and drainage pathways in and among oil and gas reservoirs using 3-D and 4-D seismic imaging

    DOEpatents

    Anderson, Roger N.; Boulanger, Albert; Bagdonas, Edward P.; Xu, Liqing; He, Wei

    1996-01-01

    The invention utilizes 3-D and 4-D seismic surveys as a means of deriving information useful in petroleum exploration and reservoir management. The methods use both single seismic surveys (3-D) and multiple seismic surveys separated in time (4-D) of a region of interest to determine large scale migration pathways within sedimentary basins, and fine scale drainage structure and oil-water-gas regions within individual petroleum producing reservoirs. Such structure is identified using pattern recognition tools which define the regions of interest. The 4-D seismic data sets may be used for data completion for large scale structure where time intervals between surveys do not allow for dynamic evolution. The 4-D seismic data sets also may be used to find variations over time of small scale structure within individual reservoirs which may be used to identify petroleum drainage pathways, oil-water-gas regions and, hence, attractive drilling targets. After spatial orientation, and amplitude and frequency matching of the multiple seismic data sets, High Amplitude Event (HAE) regions consistent with the presence of petroleum are identified using seismic attribute analysis. High Amplitude Regions are grown and interconnected to establish plumbing networks on the large scale and reservoir structure on the small scale. Small scale variations over time between seismic surveys within individual reservoirs are identified and used to identify drainage patterns and bypassed petroleum to be recovered. The location of such drainage patterns and bypassed petroleum may be used to site wells.

  14. Method for identifying subsurface fluid migration and drainage pathways in and among oil and gas reservoirs using 3-D and 4-D seismic imaging

    DOEpatents

    Anderson, R.N.; Boulanger, A.; Bagdonas, E.P.; Xu, L.; He, W.

    1996-12-17

    The invention utilizes 3-D and 4-D seismic surveys as a means of deriving information useful in petroleum exploration and reservoir management. The methods use both single seismic surveys (3-D) and multiple seismic surveys separated in time (4-D) of a region of interest to determine large scale migration pathways within sedimentary basins, and fine scale drainage structure and oil-water-gas regions within individual petroleum producing reservoirs. Such structure is identified using pattern recognition tools which define the regions of interest. The 4-D seismic data sets may be used for data completion for large scale structure where time intervals between surveys do not allow for dynamic evolution. The 4-D seismic data sets also may be used to find variations over time of small scale structure within individual reservoirs which may be used to identify petroleum drainage pathways, oil-water-gas regions and, hence, attractive drilling targets. After spatial orientation, and amplitude and frequency matching of the multiple seismic data sets, High Amplitude Event (HAE) regions consistent with the presence of petroleum are identified using seismic attribute analysis. High Amplitude Regions are grown and interconnected to establish plumbing networks on the large scale and reservoir structure on the small scale. Small scale variations over time between seismic surveys within individual reservoirs are identified and used to identify drainage patterns and bypassed petroleum to be recovered. The location of such drainage patterns and bypassed petroleum may be used to site wells. 22 figs.

  15. Investigating the Enrichment of a 3D City Model with Various CityGML Modules

    NASA Astrophysics Data System (ADS)

    Floros, G.; Dimopoulou, E.

    2016-10-01

    Recent developments in the massive 3D acquisition area made possible the generation of dense and precise 3D data, ranging from the representation of a simple building to a whole city. Nowadays, increasing urbanization, rapid growth of urban areas, and subsequently development of mega cities, are among the most important changes occurring worldwide. Therefore, developing techniques to manage these cities seems quite necessary. The aim of this paper is to investigate the enrichment of a 3D City Model with additional attributes, via appropriate CityGML Modules. The paper focuses on addressing the challenging issues that derive from a complex virtual 3D city modeling. More specifically, the paper investigates a complex built-up area, presenting and analyzing its constituting structures. Within this framework, the following CityGML modules are investigated: Bridge, Transportation Complex, CityFurniture, Land Use and Vegetation. To this purpose, the BIM-Standard software Trimble SketchUp and the data conversion tool FME are used. The processes of both modeling and converting are analyzed in detail. General conclusions and future research considerations are presented.

  16. Land 3D-seismic data: Preprocessing quality control utilizing survey design specifications, noise properties, normal moveout, first breaks, and offset

    USGS Publications Warehouse

    Raef, A.

    2009-01-01

    The recent proliferation of the 3D reflection seismic method into the near-surface area of geophysical applications, especially in response to the emergence of the need to comprehensively characterize and monitor near-surface carbon dioxide sequestration in shallow saline aquifers around the world, justifies the emphasis on cost-effective and robust quality control and assurance (QC/QA) workflow of 3D seismic data preprocessing that is suitable for near-surface applications. The main purpose of our seismic data preprocessing QC is to enable the use of appropriate header information, data that are free of noise-dominated traces, and/or flawed vertical stacking in subsequent processing steps. In this article, I provide an account of utilizing survey design specifications, noise properties, first breaks, and normal moveout for rapid and thorough graphical QC/QA diagnostics, which are easy to apply and efficient in the diagnosis of inconsistencies. A correlated vibroseis time-lapse 3D-seismic data set from a CO2-flood monitoring survey is used for demonstrating QC diagnostics. An important by-product of the QC workflow is establishing the number of layers for a refraction statics model in a data-driven graphical manner that capitalizes on the spatial coverage of the 3D seismic data. ?? China University of Geosciences (Wuhan) and Springer-Verlag GmbH 2009.

  17. The Effects of Chemically Distinct LLSVPs on the Geoid: the Results from Both 3-D Thermochemical Convection and Seismically Constrained Instantaneous Flow Models

    NASA Astrophysics Data System (ADS)

    Liu, Xi; Zhong, Shijie

    2015-04-01

    The long-wavelength geoid anomalies provide important constraints on mantle dynamics and mantle viscosity structure. Hager and Ricard and their colleagues successfully reproduced the observed geoid using seismically imaged mantle structure as buoyancy force in an isochemical, whole mantle convection model. However, it has been generally agreed that the seismically observed large low shear velocity provinces (LLSVPs) underneath the Pacific and the Africa in the lower mantle are chemically distinct and likely more dense than the ambient mantle. In this study, we investigate how chemically distinct LLSVPs or chemical piles affect the geoid using both time-dependent thermochemical convection model and instantaneous flow model driven by buoyancy derived from seismic models. First, by conducting a series of 3D spherical thermochemical convection calculations, we found that the chemically dense piles above the CMB have a compensation effect on the geoid, and as a result, the total geoid is only controlled by the upper ~1600 km of the mantle. Second, we use buoyancy structure derived from seismic models (e.g., Smean and other models) to study whether the observed geoid can be reproduced by considering the compensation effects of the LLSVPs. The geoid modeling requires a viscosity profile and a seismic velocity to density scaling f. We define a four-layer viscosity model with viscosities for lithosphere, the upper mantle, the transition zone, and the lower mantle . With a fixed non-dimensional lithospheric viscosity at 20, we compute the geoid and search for other three viscosity parameters and scaling parameter f that lead to the maximum variance reduction for the geoid. For the whole mantle, isochemical model, the best model with variance reduction of ~71% for degrees 2-9 has viscosities of 0.5, 0.5, and 35, for the upper mantle, transition zone, and lower mantle, respectively, and the scaling f is 0.24. For the thermochemical model with the bottom 1000 km of structure

  18. Reactivating of a mature oil field in the Finca-Yopales area, Venezuela, Using 3-D seismic

    SciTech Connect

    Sanchez, M.; Betancourt, H.

    1996-08-01

    The area of Finca-Yopales is located in the Eastern Venezuelan Basin in the Anzoategui State where Corpoven has the Trico and Yopales Norte fields. Based on the interpretation of 134 km{sup 2} of 3-D seismic and the geologic interpretation from 145 wells in the area, we define a better geological and structural model. We were also able to map 6 seismic reflectors corresponding to the units A8, F7, L4U and SI from the Oficina Formation, U2 top of Merecure Formation and the top of the Cretaceous, in order to generate a fault plane for all the area which was converted to depth with a lineal relationship which was obtained from wells available. From this interpretation we obtain the structural levels B4, J2, M1 and U2 which are references for the area, those being regional and trangressive events. The main feature of the structure is a high at the southeast of the area and three fault systems of Cretaceous, Miocene and post-Miocene age. This area has been exploited for a long time, having more than 93% of the inactive drilled wells. The total production up to April, 1995 is 59.14 MMbls; the Trico field is the most prolific, with more than 95% of the production. The sands L`s, U`s, O`s and S`s are the most prospective. This paper present the evaluation of the area and the analysis of the reservoir where we increased the computed reserves.

  19. A 3D Seismic Velocity Model Offshore Southern California from Ambient Noise Tomography of the ALBACORE OBS Array

    NASA Astrophysics Data System (ADS)

    Kohler, M. D.; Bowden, D. C.; Tsai, V. C.; Weeraratne, D. S.

    2015-12-01

    The Pacific-North America plate boundary in Southern California extends far west of the coastline, and a 12-month ocean bottom seismometer (OBS) array spanned the western side of the plate boundary to image lithospheric seismic velocities. Velocities are modeled through stacked cross correlations of ambient noise data. Twelve months of continuous data were used from 22 OBS stations and ~30 coastal and island Southern California Seismic Network stations. Particular attention has been paid to improving signal-to-noise ratios in the noise correlations with OBS stations by removing the effects of instrument tilt and infragravity waves. Different applications of preprocessing techniques allow us to distinguish the fundamental and first higher order Rayleigh modes, especially in deep water OBS pairs where the water layer dominates crustal sensitivity of the fundamental mode. Standard time domain and frequency domain methods are used to examine surface wave dispersion curves for group and phase velocities between 5 and 50 second periods, and these are inverted for 3D velocity structure. The results define the transition in three dimensions from continental lithospheric structure in the near-shore region to oceanic structure west of the continental borderland. While the most prominent features of the model relate to thinning of the crust west of the Patton Escarpment, other notable anomalies are present north-to-south throughout the continental borderland and along the coast from the Los Angeles Basin to the Peninsular Ranges. The velocity model will help describe the region's tectonic history, as well as provide new constraints for determination of earthquake relocations and rupture styles.

  20. Shallow 3-D vertical seismic profiling around a contaminant withdrawal well on the Lawrence Livermore National Laboratory Site

    SciTech Connect

    Rector, J.; Bainer, R.; Milligan, P.; Tong, C.

    1997-01-30

    One of the major problems associated with ground water contaminant remediation is well placement. Optimal-placement of wells requires an accurate knowledge of geologic structure and stratigraphy in the near surface sediments and rock (0 to 100 m). Without the development of remote imaging provided by geophysical techniques, the required spacing between treatment wells may be less than 2 m in order to be confident that all contaminant reservoirs had been remediated. One method for characterizing geologic structure and stratigraphy in the near surface is vertical seismic profiling (VSP), a technique often used on deep exploration wells to calibrate surface seismic reflection data. For near-surface applications, VSP data can be acquired efficiently using an array of hydrophones lowered into a fluid-filled borehole (Milligan et al, 1997). In this paper we discuss the acquisition and processing of a 3-D VSP collected at a shallow remediation site located on the grounds of the Lawrence Livermore National Laboratory (LLNL) near Livermore, California. The site was used by the United States Navy as an air training base. At this time, initial releases of hazardous materials to the environment occurred in the form of solvents [volatile organic compounds (VOCs)] that were used for the cleaning of airplanes and their parts. Gasoline, diesel and other petroleum-based compounds are also known to have leaked into the ground. California Research and Development Company, a subsidy of Standard Oil, occupied the southeastern portion of the site from 1950 to 1954. The first releases of radioactive materials to the environment occurred at this time, with the beginning of testing of radioactive materials at the site. In 1952, LLNL acquired the site. Additional releases of VOCS, polychlorinated biphenyls (PCBs), metals, radionuclides (primarily tritium), gasoline and pesticides have occurred since. These releases were due to localized spills, landfills, surface impoundments, disposal pits

  1. Impact of 3-D seismic data on the Nigerian National Petroleum Corporation/Chevron Nigeria Limited joint venture development drilling program

    SciTech Connect

    Quam, S. )

    1993-09-01

    The Nigerian National Petroleum Corporation/Chevron Nigeria Limited joint venture has been acquiring three-dimensional (3-D) seismic data over its concessions since 1984. To date, 1700 km[sup 2] have been recorded and processed at a cumulative cost of US $39 million. During 1991 - 1992, 20 development wells were drilled based directly on new 3-D seismic interpretations. These wells have added 148 million bbl of oil in new recoverable reserves, and to date have added 37,000 bbl/day to the joint venture's production. In addition, the 3-D interpretations have resulted in a sizable inventory of wells for future development drilling. The new 3-D interpretations provided more accurate pictures of fault patterns, fluid contacts, channel trends, stratigraphic continuity, and velocity/amplitude anomalies. In addition, the 3-D data were invaluable in designing low risk, directional well trajectories to tap relatively thin oil legs under large gas caps. Wells often were programmed to hit several objectives at their respective gas/oil contacts, resulting in maximized net oil sand pays and reducing the risk of gas production. In order to do this, directional [open quotes]sharpshooting,[close quotes] accurate depth conversion of the seismic time maps, was critical. By using the 3-D seismic, checkshot, and sonic data to develop a variable velocity space, well-top prognoses within 50 ft at depths of 6,000-10,000 ft were possible, and were key to the success of the program. As the joint venture acreage becomes more mature, development wells will be drilled for smaller numbers of stacked objectives, and sometimes for single sands. Highly accurate 3-D interpretations and depth conversions will become even more critical in order to tap thinner pay zones in a cost-effect manner.

  2. Seafloor surface processes and subsurface paleo-channel unconformities mapped using multi-channel seismic and multi-beam sonar data from the Galicia 3D seismic experiment.

    NASA Astrophysics Data System (ADS)

    Gibson, J. C.; Shillington, D. J.; Sawyer, D. S.; Jordan, B.; Morgan, J. K.; Ranero, C.; Reston, T. J.

    2015-12-01

    In this study we use geophysical methods, stratigraphic relationships, and coring/drilling leg results to assess possible controls on deep-sea channel formation in order to further constrain paleo-channel (PC) and associated unconformity timing/source processes. A series of cut and fill PC are mapped in 3D multi-channel seismic (MCS) data and compared with multi-beam (MB) sonar bathymetry/backscatter data collected during the Galicia 3D survey with the R/V Marcus G. Langseth (2013). The MCS data were collected using four 6 km streamers spaced at 200 m resulting in 25 m x 25 m common mid-point bins within the ~67 km x 20 km 3D volume. The MB data were collected at an average depth of ~4900 m with a constrained swath width of 4.5 km resulting in 11.25x overlap while enabling 25-m bathymetry and 10-m backscatter grids. The PC lie below the mouth of a submarine canyon at the edge of the Galicia abyssal plain and cut pre/syn-rift sediments; they are bound by a rift block to the north and paleo-levees to the south (maximum height of ~180m). From drilling results, the most recent PC is late Miocene in age. In this study, four PC are traced into the basin as unconformities. Several of the PC/unconformities are tentatively correlated with previously interpreted Pyrenean orogeny/compressional Miocene/Oligocene tectonic events. However, one PC/unconformity within this interval has not been previously interpreted. In order test the hypothesis that the unconformities are the result of a significant change in base level indicated by a low shale/sand (SS) ratio, we use seismic surface attributes to calculate the SS ratio and trace the horizontal extent of the unconformities. Additionally, the MB/MCS seafloor morphology reveals sedimentary waves outboard of the canyon mouth. We use backscatter data to compare the extent of recent processes (e.g., Pleistocene glaciation/de-glaciation) with the unconformities by mapping the surface/shallow subsurface SS ratio (volume scattering).

  3. Possible migration front of gas-related fluid inferred from 3D seismic in the eastern Nankai Trough

    NASA Astrophysics Data System (ADS)

    Otsuka, H.; Morita, S.; Tanahashi, M.; Ashi, J.; Nagakubo, S.

    2010-12-01

    High resolution 3D seismic survey, “Tokai-oki to Kumano-nada”, was conducted for methane hydrate exploration in the eastern Nankai Trough by METI in 2002. Our study focuses on a series of accordion-shaped reflectors with horizontal axis of fold back. They are connected to the edge of BSRs and alternate their polarities at every fold back hinge. We call the reflectors “Foldback Reflectors (FBRs)” in this study. Sedimentary horizons are successive across these series of reflectors with no fault displacement as a general rule. FBR generally corresponds to lateral seismic facies boundary between BSR distribution area and outside of the BSR area. The formation beneath the BSR shows dimmed facies characterized by relatively low amplitude and lack of high frequency components in contrast to outside of the BSR area with normal facies. Seismic velocity analysis suggests that FBRs correspond to velocity boundaries, where the dimmed faceis below the BSR coinsides with relatively low velocity. The polarities of FBRs are also consistent with such velocity changes. Such dimmed facies with low velocity and low amplitude anomaly suggests effects of gas components in the pore water. In this area, FBRs are mostly developed in the well-stratified formation but not in the area of frequent fractures and the area of major lateral lithological change. The observed FBRs are clustered in northern slope of the uplifted outer ridge, whereas few FBRs are developed in the southern slope of the outer ridge with frequent compressive and strike-slip deformations related to major fault systems including the Kodaiba faults and the Tokai faults. The estimated strike directions of each FBRs are probably controlled by the dip direction of crossing formation. Another important character of FBRs is that it never crosses major unconformities into lower strata. In addition, high amplitude layers are sometimes recognized at hinges of foldbacks convex to the outside of the BSR area. These high

  4. Delineating Potential Quick-clay Areas Using High-resolution Seismic Methods: Towards a 3D Model of an Area Prone to Slide in SW Sweden

    NASA Astrophysics Data System (ADS)

    Salas Romero, S.; Malehmir, A.; Snowball, I.

    2015-12-01

    Quick clay can liquefy under increased stress and is responsible for major landslides in Sweden, Norway and Canada, but despite extensive investigations delineating quick clay remains a challenge. As part of a large multidisciplinary project, this study focuses on an area prone to quick-clay landslides in SW Sweden. P- and S-wave seismic, electrical resistivity tomography, and RMT (radio-magnetotelluric) data obtained in 2011 (Malehmir et al. 2013) suggested the presence of a coarse-grained layer of variable thickness sandwiched between clays, with quick clay above. The coarse-grained layer was assumed to accelerate the formation of quick clay, influencing its thickness. Additional geophysical data (reflection and refraction seismic, and RMT) and studies of three boreholes drilled in 2013, with the aim to intersect the coarse-grained layer, extended the area covered in 2011. Here we report on four seismic profiles (total length 3.5 km) acquired in 2013, combined with side-scan and single channel reflection seismic data along a river, which was believed to be important in the context of quick-clay landslides. Wireless (50-1C-10 Hz and 24-3C-broadband) and cabled sensors (323-28 Hz), 4-10 m apart, were used for the data acquisition of the longest profile (nearly 2 km long). Dynamite, accelerated weight-drop and sledgehammer were used as seismic sources. Simultaneous data acquisition for two parallel profiles, about 300 m apart, provides additional information. Preliminary results delineate the bedrock and its undulation near and in the river. We believe that overlying reflections are caused by the coarse-grained materials, whose lateral extension is considerably larger than previously thought. This may imply a wider area containing quick clay and hence at risk of slope failure. The new data and previous results are combined to construct a high-resolution 3D subsurface model that focuses on the coarse-grained layer and potential quick-clay areas. Malehmir A, Bastani M

  5. Hypocenter relocation using a fast grid search method and a 3-D seismic velocity model for the Sumatra region

    SciTech Connect

    Nugroho, Hendro; Widiyantoro, Sri; Nugraha, Andri Dian

    2013-09-09

    Determination of earthquake hypocenter in Indonesia conducted by the Meteorological, Climatological, and Geophysical Agency (MCGA) has still used a 1-D seismic velocity model. In this research, we have applied a Fast Grid Search (FGM) method and a 3-D velocity model resulting from tomographic imaging to relocate earthquakes in the Sumatran region. The data were taken from the MCGA data catalog from 2009 to 2011 comprising of subduction zone and on land fault earthquakes with magnitude greater than 4 Mw. Our preliminary results show some significant changes in the depths of the relocated earthquakes which are in general deeper than the depths of hypocenters from the MCGA data catalog. The residual times resulting from the relocation process are smaller than those prior to the relocation. Encouraged by these results, we will continue to conduct hypocenter relocation for all events from the MCGA data catalog periodically in order to produce a new data catalog with good quality. We hope that the new data catalog will be useful for further studies.

  6. 3-D seismic results in the discovery of significant reserves bypassed for 55 years in the Chocolate Bayou Field

    SciTech Connect

    Pennington, A.; Plant, C.; Davis, C.

    1994-12-31

    The Chocolate Bayou Field is located 25 miles south of Houston, in Southeast Brazoria County, Texas. Discovered in 1938, the field has produced over 2 trillion cubic feet of natural gas and 65 million barrels of oil from approximately 30 sands and 300 wellbores. The majority of the production is from the sands of the upper and middle Frio (Oligocene) section. Accumulation is found on structural highs on both the downthrown and upthrown side of a major basinward growth fault. A 3-D seismic survey was conducted over the field in 1988 in an effort to locate bypassed reserves. Interpretation of the data revealed and unexpected paleo structure associated with a buried and previously undetected counter-regional fault located almost 3 miles south of the structural crest at the Upper Frio level. Detailed structural and isochron mapping with adequate depth conversions indicated that the structure was prospective for trapping of the Lower Frio Sand which were well developed but wet under the Upper Frio structural crest. Although the feature was located on the absolute edge of the survey, the data were adequate to locate two wells which have now been completed in the Lower Frio (RA{sub 4}) section. The sands ranged in thickness from 65 to 115 feet of net pay with porosities from 27 to 30% with sustained production rates in excess of 10,000 million cubic feet of gas and 140 barrels of oil per day per completion.

  7. Investigation of Presage 3D Dosimetry as a Method of Clinically Intuitive Quality Assurance and Comparison to a Semi-3D Delta4 System

    NASA Astrophysics Data System (ADS)

    Crockett, Ethan Van

    The need for clinically intuitive metrics for patient-specific quality assurance in radiation therapy has been well-documented (Zhen, Nelms et al. 2011). A novel transform method has shown to be effective at converting full-density 3D dose measurements made in a phantom to dose values in the patient geometry, enabling comparisons using clinically intuitive metrics such as dose-volume histograms (Oldham et al. 2011). This work investigates the transform method and compares its calculated dose-volume histograms (DVHs) to DVH values calculated by a Delta4 QA device (Scandidos), marking the first comparison of a true 3D system to a semi-3D device using clinical metrics. Measurements were made using Presage 3D dosimeters, which were readout by an in-house optical-CT scanner. Three patient cases were chosen for the study: one head-and-neck VMAT treatment and two spine IMRT treatments. The transform method showed good agreement with the planned dose values for all three cases. Furthermore, the transformed DVHs adhered to the planned dose with more accuracy than the Delta4 DVHs. The similarity between the Delta4 DVHs and the transformed DVHs, however, was greater for one of the spine cases than it was for the head-and-neck case, implying that the accuracy of the Delta4 Anatomy software may vary from one treatment site to another. Overall, the transform method, which incorporates data from full-density 3D dose measurements, provides clinically intuitive results that are more accurate and consistent than the corresponding results from a semi-3D Delta 4 system.

  8. 3D geological to geophysical modelling and seismic wave propagation simulation: a case study from the Lalor Lake VMS (Volcanogenic Massive Sulphides) mining camp

    NASA Astrophysics Data System (ADS)

    Miah, Khalid; Bellefleur, Gilles

    2014-05-01

    The global demand for base metals, uranium and precious metals has been pushing mineral explorations at greater depth. Seismic techniques and surveys have become essential in finding and extracting mineral rich ore bodies, especially for deep VMS mining camps. Geophysical parameters collected from borehole logs and laboratory measurements of core samples provide preliminary information about the nature and type of subsurface lithologic units. Alteration halos formed during the hydrothermal alteration process contain ore bodies, which are of primary interests among geologists and mining industries. It is known that the alteration halos are easier to detect than the ore bodies itself. Many 3D geological models are merely projection of 2D surface geology based on outcrop inspections and geochemical analysis of a small number of core samples collected from the area. Since a large scale 3D multicomponent seismic survey can be prohibitively expensive, performance analysis of such geological models can be helpful in reducing exploration costs. In this abstract, we discussed challenges and constraints encountered in geophysical modelling of ore bodies and surrounding geologic structures from the available coarse 3D geological models of the Lalor Lake mining camp, located in northern Manitoba, Canada. Ore bodies in the Lalor lake VMS camp are rich in gold, zinc, lead and copper, and have an approximate weight of 27 Mt. For better understanding of physical parameters of these known ore bodies and potentially unknown ones at greater depth, we constructed a fine resolution 3D seismic model with dimensions: 2000 m (width), 2000 m (height), and 1500 m (vertical depth). Seismic properties (P-wave, S-wave velocities, and density) were assigned based on a previous rock properties study of the same mining camp. 3D finite-difference elastic wave propagation simulation was performed in the model using appropriate parameters. The generated synthetic 3D seismic data was then compared to

  9. Do fault-related folds follow the same scaling law as their associated faults? A study using 3D seismic reflection data

    NASA Astrophysics Data System (ADS)

    Pitcher, Eleanor; Imber, Jonathan

    2016-04-01

    Fractal distributions are largely agreed to follow a power-law distribution. Power-law scaling relationships describe the size distribution of fault lengths or displacements. Being able to identify these scaling properties provides a powerful tool for predicting the numbers of geological structures, such as small-scale faults in sedimentary basins that are below the resolution of seismic reflection data. The aim of this study is to determine whether fault-related folds follow the same power law scaling properties, or if they follow a different scaling law. We use TrapTester to interpret a 3D seismic volume from the Gulf of Mexico to construct fault planes and cut-off lines along selected horizons in the vicinity of fault upper tip lines. Fault-related folds are particularly well developed above steeply plunging tip lines, but are discontinuous along the strike of the fault plane. Folding is less well developed on horizons that intersect, or lie close to, the locus of maximum throw (bullseye) of the fault plane. We then measured fold amplitudes and fault throws across these same horizons using a one-dimensional multi-line sampling approach. Graphs of fault throw and fold amplitude vs. distance parallel to fault strike show that folds occur where there is no resolvable fault throw, and that fault throw and fold amplitudes show an approximately inverse relationship. Close to the locus of maximum throw, there is largely just faulting, whilst at the upper tip line folding predominates. By plotting cumulative frequency against throw for the fault and fold data we can investigate whether the data follow a power law, log normal or exponential distribution. Plotting the data on log vs. log (power law), linear vs. log (log normal) and log vs. linear (exponential) axes allow us to establish which displays the best "straight-line fit". We observed that the fault throw data satisfied a straight-line on a log vs. log graph - implying a power law distribution - and also returned

  10. Mapping the North Sea base-Quaternary: using 3D seismic to fill a gap in the geological record

    NASA Astrophysics Data System (ADS)

    Lamb, Rachel; Huuse, Mads; Stewart, Margaret; Brocklehurst, Simon H.

    2014-05-01

    The identification and mapping of the base-Quaternary boundary in the central parts of the North Sea is problematic due to the change from an unconformable transition between Pliocene and Pleistocene deltaic deposits in the southern North Sea to a conformable one further north (Sejrup et al 1991; Gatliff et al 1994). The best estimates of the transition use seismic reflection data to identify a 'crenulated reflector' (Buckley 2012), or rely on correlating sparse biostratigraphy (Cameron et al 1987). Recent integration of biostratigraphy, pollen analysis, paleomagnetism and amino acid analysis in the Dutch and Danish sectors (Rasmussen et al 2005; Kuhlmann et al 2006) allows greater confidence in the correlation to a regional 3D seismic dataset and show that the base-Quaternary can be mapped across the entire basin. The base-Quaternary has been mapped using the PGS MegaSurvey dataset from wells in the Danish Sector along the initially unconformable horizon and down the delta front into the more conformable basin giving a high degree of confidence in the horizon pick. The mapped horizon is presented here alongside the difference between this new interpretation and the previously interpreted base-Quaternary (Buckley 2012). The revised base-Quaternary surface reaches a depth of 1248 ms TWT or approximately 1120 m (assuming average velocity of 1800 m/s) showing an elongate basin shape that follows the underlying structure of the Central Graben. The difference between the revised base-Quaternary and the traditional base-Quaternary reaches a maximum of over 600 ms TWT or approximately 540 m in the south-west with over 300 ms TWT or approximately 270 m at the Josephine well (56° 36.11'N, 2° 27.09'E) in the centre of the basin. Mapping this new base-Quaternary allows for the interpretation of the paleo-envionrment during the earliest Quaternary. Seismic attribute analysis indicates a deep water basin with sediment deposition from multiple deltas and redistribution by deep

  11. Rock formation characterization for CO2-EOR and carbon geosequestration; 3D seismic amplitude and coherency anomalies, Wellington Field, Kansas, USA

    USGS Publications Warehouse

    Ohl, D.; Raef, A.; Watnef, L.; Bhattacharya, S.

    2011-01-01

    In this paper, we present a workflow for a Mississipian carbonates characterization case-study integrating post-stack seismic attributes, well-logs porosities, and seismic modeling to explore relating changes in small-scale "lithofacies" properties and/or sub-seismic resolution faulting to key amplitude and coherency 3D seismic attributes. The main objective of this study is to put emphasis on reservoir characterization that is both optimized for and subsequently benefiting from pilot tertiary CO2-EOR in preparation for future carbon geosequestration in a depleting reservoir and a deep saline aquifer. The extracted 3D seismic coherency attribute indicated anomalous features that can be interpreted as a lithofacies change or a sub-seismic resolution faulting. A 2D finite difference modeling has been undertaken to understand and potentially build discriminant attributes to map structural and/or lithofacies anomalies of interest especially when embarking upon CO2-EOR and/or carbon sequestration monitoring and management projects. ?? 2011 Society of Exploration Geophysicists.

  12. Geomorphologic characteristics of debris flows in the Ulleung Basin, East Sea (Japan Sea) interpreted from 3-D seismic data and their implications

    NASA Astrophysics Data System (ADS)

    MO, C.; Park, G.; Lee, G.; Yi, B.; Yoo, D.

    2012-12-01

    We processed and analyzed the 3-D seismic data from the southern central part of the Ulleung Basin, East Sea (Japan Sea) to investigate the geomorphologic characteristics of the debris flows. The data processing included dip moveout, post-stack migration, and acquisition footprint removal. The curvature attributes of the seafloor show numerous bubble- or dot-like features that form a N-S to NNE-SSW trending narrow (ca. 2 km wide) zone in the western part of the area. The bubble-like features correspond to the irregular seafloor in the seismic profiles. At least nine debris flows, which advanced largely north and northeastward, were identified from the seafloor to the sub-seafloor depth of about 300 m. The debris flows are lens- or wedge-shaped in cross section, characterized by structureless or transparent to chaotic internal reflections, and elongate or lobate in plan view. The largest debris flow exceeds the 3D seismic data coverage (16 km by 25 km) and its thickness reaches about 60 m. Some debris flows are very thin and amalgamated or coalesced, making it difficult to interpret the individual flows. The similarity and curvature attributes of the basal contact of some debris flows show numerous long grooves, erosional scars, and bubble- or dot-like features similar to those seen in the seafloor. The grooves, interpreted to be caused by large clasts imbedded at the base of the debris flows, diverge and become slightly wider (< 500 m in width) downslope. The grooves are better imaged away from the main transport axis of the debris flows where the bubble-like features obscure the grooves. The zone with the bubble-like features in the seafloor coincides with the main axis of the thickest and most extensive debris flow. The bubble-like features in both the seafoor and the basal contact of the debris flows may represent the active fluid seeps. The decrease in the number of the bubble-like features away from the axis of the debris flows probably suggest decreasing pore

  13. Release of thermogenic-methane in the Hammerfest Basin after the Last Glacial Maximum. Indications from numerical modelling and 3D seismic reflection data

    NASA Astrophysics Data System (ADS)

    Anka, Z.; Rodrigues, E.; Ostanin, I.; di Primio, R.; Stoddart, D.; Horsfield, B.

    2012-04-01

    The Hammerfest Basin, located in the SW Barents Sea, is characterized by present-day under-filled hydrocarbon accumulations, which are known to have leaked in the past (Dimakis, 1998; Ohm et al. 2008). Late Cenozoic erosion and high latitude glaciations are thought to have driven the redistribution and leakage of these thermogenic fluids providing a source of thermogenic methane to the hydrosphere. The timing, extent and driving factors for the leakage events are still largely unconstrained. Therefore, we investigated present and past leakage of liquid and gaseous hydrocarbons over the Snøhvit and Albatross gas fields of the Hammerfest Basin and analyse its dynamics in response to multiple phases of tectonic uplift and glaciations by means of a combined approach of numerical modelling and interpretation of a high resolution 3D seismic reflection cube. Our data-constrained 3D basin model of the basin allowed us to quantify the masses of hydrocarbons generated, accumulated and eventually leaked from the reservoirs during the evolution of the basin. Particular emphasis was placed on analysing the fate of leaked volumes of methane within the dynamics of Plio-Quaternary glacial cycles and possible formation or destabilization of gas hydrate deposits. Besides reproducing quite accurately the composition and volume of the hydrocarbons -particularly the gaseous phase- present in the main reservoirs, the model predicts the development of overpressures in the reservoirs due to the ice loading of the basin during the glacial periods. Predicted reservoir pressure fluctuations derived from cyclic loading-unloading during the glacial-interglacial periods are up to 5 MPa. The under-filled nature of the present-day accumulations would result from leakage events during the episodes of glacial retreat, in the transition from glacial to interglacial periods. Considerations of the gas hydrate stability conditions in the basin during the time span between 1.00Ma and ≈11,500 years

  14. 3D-Seismic images reveal the external structure of igneous intrusions, off-shore New Zealand

    NASA Astrophysics Data System (ADS)

    Christiansen, E. H.; Luke, J.; Keach, R. W., II

    2011-12-01

    Several volcano-plutonic complexes are imaged in a 3D seismic survey by Pogo New Zealand/Plains Exploration. The data provide insight into the sizes, shapes, and wall rock deformation associated with emplacement of plutons. The magmatic rocks are part of the Mohakatino Volcanic Centre (15 to 1.6 Ma) that intrudes and partially fills the Taranaki graben. Imaged plutons range from >1 to 12 km across. The large intrusions are steep-sided and do not resemble sills, but their bases are poorly resolved. The top of the complex is sharply delineated and marked by multiple apophyses as much as 2 km across and hundreds of meters high. Deformation along the sides of the intrusion is dominated by highly attenuated dipping strata with apparent dips >45°. Dips decrease away from the intrusion but doming extends several hundred meters from the margins. High-angle faults fan out from the margin of the pluton and cut the folded strata along the margin. These faults terminate against the intrusion, extend as much as 1 pluton diameter away from the margin, and then merge with regional normal faults that are part of the graben. Offset along these faults is on the order of a few hundred meters. Strata on the top of the complex are thinned and deformed into a faulted dome with an amplitude of about 1 km. Steep, dip-slip faults form a semi-radial pattern in the roof rocks but their orientations are strongly controlled by the regional stress field as many of the faults are sub-parallel to those that form the graben. The longest roof faults are about the same length as the diameter of the pluton and cut through approximately 1 km of overlying strata, but offset gradually diminishes vertically away from the top of the intrusion. The pluton appears to be composite and formed from multiple, steep-sided intrusions as evidenced by the complex margins, roof domes, and multiple apophyses. Small sills are apparent several hundreds of meters above the top of the main complex. Multiple episodes of

  15. DC-Electrical Resistivity Imaging for embankment dike investigation: A 3D extended normalisation approach

    NASA Astrophysics Data System (ADS)

    Fargier, Yannick; Lopes, Sérgio Palma; Fauchard, Cyrille; François, Daniel; Côte, Philippe

    2014-04-01

    Levee, dike and earth embankment dam structures are difficult to assess because of their length and complexity. Managers often include geophysical investigations in the overall dike condition assessment and the DC-Electrical Resistivity Imaging (ERI) method is particularly applicable owing to its cost-effectiveness and its potential sensitivity to internal erosion. However, due to the truly 3D nature of embankment dikes, implementing inline longitudinal tomographies along with conventional 2D inversion is likely to yield image artefacts. 3D effects from external causes (geometry, water reservoir) can be predicted and therefore we present a new approach based on redefining the normalisation principle to derive apparent resistivities from the measured data. The aim is to provide a set of pre-processed apparent resistivities that are not contaminated by external 3D effects and that yield more reliable results when processed within a 2D conventional inversion scheme. The presented approach is successfully applied to synthetic and real data sets, proving superior to the conventional 2D approach, although data acquisition approach is the same thus keeping the same cost-effectiveness.

  16. Investigating the feasibility of 3D dosimetry in the RPC IMRT H&N phantom

    NASA Astrophysics Data System (ADS)

    Sakhalkar, H. S.; Sterling, D.; Adamovics, J.; Ibbott, G.; Oldham, M.

    2009-05-01

    An urgent requirement for 3D dosimetry has been recognized because of high failure rate (~25%) in RPC credentialing, which relies on point and 2D dose measurements. Comprehensive 3D dosimetry is likely to resolve more errors and improve IMRT quality assurance. This work presents an investigation of the feasibility of PRESAGE/optical-CT 3D dosimetry in the Radiologic Physics Center (RPC) IMRT H&N phantom. The RPC H&N phantom (with standard and PRESAGE dosimetry inserts alternately) was irradiated with the same IMRT plan. The TLD and EBT film measurement data from standard insert irradiation was provided by RPC. The 3D dose measurement data from PRESAGE insert irradiation was readout using the OCTOPUS™ 5X optical-CT scanner at Duke. TLD, EBT and PRESAGE dose measurements were inter-compared with Eclipse calculations to evaluate consistency of planning and delivery. Results showed that the TLD point dose measurements agreed with Eclipse calculations to within 5% dose-difference. Relative dose comparison between Eclipse dose, EBT dose and PRESAGE dose was conducted using profiles and gamma comparisons (4% dose-difference and 4 mm distance-to-agreement). Profiles showed good agreement between measurement and calculation except along steep dose gradient regions where Eclipse modelling might be inaccurate. Gamma comparisons showed that the measurement and calculation showed good agreement (>96%) if edge artefacts in measurements are ignored. In conclusion, the PRESAGE/optical-CT dosimetry system was found to be feasible as an independent dosimetry tool in the RPC IMRT H&N phantom.

  17. Shallow Gas and Gas Hydrates in the Barents Sea Imaged by High-Resolution 3D Seismic Data

    NASA Astrophysics Data System (ADS)

    Planke, S.; Eriksen, O.; Eriksen, F. N.; Bunz, S.; Berndt, C.

    2012-12-01

    Shallow gas and gas hydrates are potential hazards for the petroleum industry, but may also represent future resources. Detailed mapping of shallow gas and gas hydrates is important to reduce drilling risks, to exploit hydrocarbon resources, and to better understand procesesse of gas migration and accumulation. We have collected two high resolution 3D seismic cubes of 10-20 km2 in areas with shallow gas in the Barents Sea. The cubes were acquired using the P-Cable system in water depths of 300-500 m with the vessel R/V Jan Mayen. The data were processed using the RadexPro software and a standard sequence including geometry, tide corrections, binning, filtering, and migration. Two main sedimentary sequences are present in the data, a sub-horizontal glacial package overlying a westward-dipping Paleogene sequence. The seabed is characterized by up to 15 m deep glacial ploughmarks. An upper regional unconformity (URU) separates the glacial and Paleogene sediments. Three levels of high-amplitude reflections are interpreted as evidence of shallow gas. Minor gas accumulations are present as semi-circular anomalies within the glacial sequence and as north-south trending anomalies just below the URU. More extensive gas accumulations are found within the Paleogene sediments, and the top gas reflections are clearly cross-cutting the dipping Paleogene sequence. Several paleo-pockmarks are interpreted within the glacial sequence, whereas no pockmarks are identified on the seafloor. The gas is interpreted to be sealed by overlying gas hydrates. Gas hydrate models show that pure methane is outside the gas hydrate stability field in the surveyed region, but within the gas hydrate stability field if methane is mixed with minor amounts of higher-order hydrocarbons (ethane and propane).

  18. Rotary slanted single wire CTA - a useful tool for 3D flows investigations

    NASA Astrophysics Data System (ADS)

    Jonáš, P.

    2013-04-01

    The procedure is described of experimental investigation of a statistically stationary generally nonisothermal 3D flow by means of a constant temperature anemometer (CTA) using single slanted heated wire, rotary round the fixed axis. The principle of this procedure is quite clear. The change of the heated wire temperature modifies ratio of CTA sensitivities to temperature and velocity fluctuations. Turning the heated wire through a proper angle changes the sensitivity to components of the instantaneous velocity vector. Some recommendations are presented based on long time experiences, e.g. on the choice of probe, on the probe calibration, to the measurement organization and to the evaluation of results.

  19. Experimental and Numerical Investigation of Forging Process to Reproduce a 3D Aluminium Foam Complex Shape

    SciTech Connect

    Filice, Luigino; Gagliardi, Francesco; Umbrello, Domenico; Shivpuri, Rajiv

    2007-05-17

    Metallic foams represent one of the most exciting materials introduced in the manufacturing scenario in the last years. In the study here addressed, the experimental and numerical investigations on the forging process of a simple foam billet shaped into complex sculptured parts were carried out. In particular, the deformation behavior of metallic foams and the development of density gradients were investigated through a series of experimental forging tests in order to produce a selected portion of a hip prosthesis. The human bone replacement was chosen as case study due to its industrial demand and for its particular 3D complex shape. A finite element code (Deform 3D) was utilized for modeling the foam behavior during the forging process and an accurate material rheology description was used based on a porous material model which includes the measured local density. Once the effectiveness of the utilized Finite Element model was verified through the comparison with the experimental evidences, a numerical study of the influence of the foam density was investigated. The obtained numerical results shown as the initial billet density plays an important role on the prediction of the final shape, the optimization of the flash as well as the estimation of the punch load.

  20. 3D seismic detection of shallow faults and fluid migration pathways offshore Southern Costa Rica: Application of neural-network meta-attributes

    NASA Astrophysics Data System (ADS)

    Kluesner, J. W.; Silver, E. A.; Nale, S. M.; Bangs, N. L.; McIntosh, K. D.

    2013-12-01

    We employ a seismic meta-attribute workflow to detect and analyze probable faults and fluid-pathways in 3D within the sedimentary section offshore Southern Costa Rica. During the CRISP seismic survey in 2011 we collected an 11 x 55 km grid of 3D seismic reflection data and high-resolvability EM122 multibeam data, with coverage extending from the incoming plate to the outer-shelf. We mapped numerous seafloor seep indicators, with distributions ranging from the lower-slope to ~15 km landward of the shelf break [Kluesner et al., 2013, G3, doi:10.1002/ggge.20058; Silver et al., this meeting]. We used the OpendTect software package to calculate meta-attribute volumes from the 3D seismic data in order to detect and visualize seismic discontinuities in 3D. This methodology consists of dip-steered filtering to pre-condition the data, followed by combining a set of advanced dip-steered seismic attributes into a single object probability attribute using a user-trained neural-network pattern-recognition algorithm. The parameters of the advanced seismic attributes are set for optimal detection of the desired geologic discontinuity (e.g. faults or fluid-pathways). The product is a measure of probability for the desired target that ranges between 0 and 1, with 1 representing the highest probability. Within the sedimentary section of the CRISP survey the results indicate focused fluid-migration pathways along dense networks of intersecting normal faults with approximately N-S and E-W trends. This pattern extends from the middle slope to the outer-shelf region. Dense clusters of fluid-migration pathways are located above basement highs and deeply rooted reverse faults [see Bangs et al., this meeting], including a dense zone of fluid-pathways imaged below IODP Site U1413. In addition, fault intersections frequently show an increased signal of fluid-migration and these zones may act as major conduits for fluid-flow through the sedimentary cover. Imaged fluid pathways root into high

  1. Multicomponent, 3-D, and High-Resolution 2-D Seismic Characterization of Gas Hydrate Study Sites in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Haines, S. S.; Hart, P. E.; Ruppel, C. D.; Collett, T. S.; Shedd, W.; Lee, M. W.; Miller, J.

    2012-12-01

    High saturations of gas hydrates have been identified within coarse-grained sediments in the Green Canyon 955 and Walker Ridge 313 lease blocks of the deepwater northern Gulf of Mexico. The thickness, lateral extent, and hydrate saturations in these deposits are constrained by geological and geophysical data and state-of-the-art logging-while-drilling information obtained in multiple boreholes at each site during a 2009 expedition. Presently lacking are multicomponent seismic data that can provide a thorough understanding of the in-situ compressional and shear seismic properties of the hydrate-bearing sediments. Such data may represent an important tool for future characterization of gas hydrate resources. To address this data gap, the U.S. Geological Survey, the U.S. Department of Energy, and the Bureau of Ocean Energy Management will collaborate on a 20-day research expedition to acquire wide-angle ocean bottom seismometer and high-resolution vertical incidence 2-D seismic data at the study sites. In preparation for this mid-2013 expedition, we have analyzed existing industry 3-D seismic data, along with numerically modeled multicomponent data. The 3-D seismic data allow us to identify and rank specific survey targets and can be combined with the numerical modeling results to determine optimal survey line orientation and acquisition parameters. Together, these data also provide a more thorough understanding of the gas hydrate systems at these two sites.

  2. Joint environmental assessment for Chevron USA, Inc. and Santa Fe Energy Resources, Inc.: Midway Valley 3D seismic project, Kern County, California

    SciTech Connect

    1996-10-01

    The proposed Midway Valley 3D Geophysical Exploration Project covers approximately 31,444 aces of private lands, 6,880 acres of Department of Energy (DOE) Lands within Naval Petroleum Reserve 2 (NPR2) and 3,840 acres of lands administered by the Bureau of Land Management (BLM), in western Kern County, California. This environmental assessment (EA) presents an overview of the affected environment within the project area using results of a literature review of biological field surveys previously conducted within or adjacent to a proposed 3D seismic project. The purpose is to provide background information to identify potential and known locations of sensitive wildlife and special status plant species within the proposed seismic project area. Biological field surveys, following agency approved survey protocols, will be conducted during October through November 1996 to acquire current resources data to provide avoidance as the project is being implemented in the field.

  3. An investigation of PRESAGE® 3D dosimetry for IMRT and VMAT radiation therapy treatment verification

    NASA Astrophysics Data System (ADS)

    Jackson, Jake; Juang, Titania; Adamovics, John; Oldham, Mark

    2015-03-01

    The purpose of this work was to characterize three formulations of PRESAGE® dosimeters (DEA-1, DEA-2, and DX) and to identify optimal readout timing and procedures for accurate in-house 3D dosimetry. The optimal formulation and procedure was then applied for the verification of an intensity modulated radiation therapy (IMRT) and a volumetric modulated arc therapy (VMAT) treatment technique. PRESAGE® formulations were studied for their temporal stability post-irradiation, sensitivity, and linearity of dose response. Dosimeters were read out using a high-resolution optical-CT scanner. Small volumes of PRESAGE® were irradiated to investigate possible differences in sensitivity for large and small volumes (‘volume effect’). The optimal formulation and read-out technique was applied to the verification of two patient treatments: an IMRT plan and a VMAT plan. A gradual decrease in post-irradiation optical-density was observed in all formulations with DEA-1 exhibiting the best temporal stability with less than 4% variation between 2-22 h post-irradiation. A linear dose response at the 4 h time point was observed for all formulations with an R2 value >0.99. A large volume effect was observed for DEA-1 with sensitivity of the large dosimeter being ~63% less than the sensitivity of the cuvettes. For the IMRT and VMAT treatments, the 3D gamma passing rates for 3%/3 mm criteria using absolute measured dose were 99.6 and 94.5% for the IMRT and VMAT treatments, respectively. In summary, this work shows that accurate 3D dosimetry is possible with all three PRESAGE® formulations. The optimal imaging windows post-irradiation were 3-24 h, 2-6 h, and immediately for the DEA-1, DEA-2, and DX formulations, respectively. Because of the large volume effect, small volume cuvettes are not yet a reliable method for calibration of larger dosimeters to absolute dose. Finally, PRESAGE® is observed to be a useful method of 3D verification when careful consideration is given

  4. An investigation of PRESAGE® 3D dosimetry for IMRT and VMAT radiation therapy treatment verification

    PubMed Central

    Jackson, Jake; Juang, Titania; Adamovics, John; Oldham, Mark

    2016-01-01

    The purpose of this work was to characterize three formulations of PRESAGE® dosimeters (DEA-1, DEA-2, and DX) and to identify optimal readout timing and procedures for accurate in-house 3D dosimetry. The optimal formulation and procedure was then applied for the verification of an intensity modulated radiation therapy (IMRT) and a volumetric modulated arc therapy (VMAT) treatment technique. PRESAGE® formulations were studied for their temporal stability postirradiation, sensitivity, and linearity of dose response. Dosimeters were read out using a high-resolution optical-CT scanner. Small volumes of PRESAGE® were irradiated to investigate possible differences in sensitivity for large and small volumes (‘volume effect’). The optimal formulation and read-out technique was applied to the verification of two patient treatments: an IMRT plan and a VMAT plan. A gradual decrease in post-irradiation optical-density was observed in all formulations with DEA-1 exhibiting the best temporal stability with less than 4% variation between 2–22 h post-irradiation. A linear dose response at the 4 h time point was observed for all formulations with an R2 value >0.99. A large volume effect was observed for DEA-1 with sensitivity of the large dosimeter being ~63% less than the sensitivity of the cuvettes. For the IMRT and VMAT treatments, the 3D gamma passing rates for 3%/3 mm criteria using absolute measured dose were 99.6 and 94.5% for the IMRT and VMAT treatments, respectively. In summary, this work shows that accurate 3D dosimetry is possible with all three PRESAGE® formulations. The optimal imaging windows post-irradiation were 3–24 h, 2–6 h, and immediately for the DEA-1, DEA-2, and DX formulations, respectively. Because of the large volume effect, small volume cuvettes are not yet a reliable method for calibration of larger dosimeters to absolute dose. Finally, PRESAGE® is observed to be a useful method of 3D verification when careful consideration is given to the

  5. Magma Migration Through the Continental Crust - 3-D Seismic and Thermo-mechanical Constraints on Sites of Crustal Contamination

    NASA Astrophysics Data System (ADS)

    Wilson, M.; Wheeler, W.

    2002-12-01

    Current understanding of the processes and pathways by which magma travels from its mantle source, through the crust to the Earth's surface is limited by the lack of continuously exposed sections through "fossil" magmatic systems. We report results from a 50 x 30 km 3-D seismic reflection survey of part of the Voring rifted continental margin of Norway which provide the first detailed images of an entire crustal magmatic plumbing system, from a Moho-level magma chamber, through complexes of sills and dykes in the mid to upper crust, to lavas and vent fields extruded at the early Tertiary paleosurface. The Voring margin of Norway formed during a period of Late Cretaceous to early Tertiary (Eocene) continental break-up when Greenland rifted away from Eurasia, resulting in the opening the NE Atlantic Ocean. Rifting was accompanied by widespread magmatic activity, inferred to be related to the impingement of the Iceland mantle plume on the base of the continental lithosphere. Regionally, magma migration occurred in at least two pulses: 62-59 Ma (main initial phase) and 57-54 Ma (continental break-up phase). Wide-angle seismic experiments indicate the presence of a laccolith-like "high-velocity body" (HVB) in the lower crust beneath most of the outer Voring Basin with P-wave velocities (Vp 7.1-7.4 km/s) characteristic of basaltic igneous rocks, overlying typical mantle rocks with Vp of over 8 km/s. The HVB locally reaches 8 km thickness and at break-up (54 Ma) measured 300 km x 500 km - corresponding to a volume of 450,000 cubic km of basaltic magma. It is interpreted as a magmatic underplate formed over a period of several million years as rising basaltic magmas ponded at the Moho at their level of neutral buoyancy. A laterally extensive sill complex (1000 m thick) occurs at the interface between thinned crystalline basement and the overlying Mesozoic sedimentary sequence. This is interpreted as one of the main intra-crustal magma storage reservoirs and is the most

  6. 3D seismic analysis of the Collyhurst Sandstone: implications for CO2 sequestration in the East Irish Sea Basin

    NASA Astrophysics Data System (ADS)

    Gamboa, Davide; Williams, John; Kirk, Karen; Gent, Christopher; Bentham, Michelle; Fellgett, Mark; Schofield, David

    2016-04-01

    Carbon Capture and Storage (CCS) is a vital technology towards low-carbon energy resources and the mitigation of global warming trends induced by rising CO2 levels in the atmosphere. The East Irish Sea Basin (EISB) is a key area for CCS in the western UK, having high CO2 storage potentials in explored hydrocarbon fields and in saline aquifers within the Permo-Triassic Sherwood Sandstone Formation. However, the theoretical storage potential of the EISB could be poorly estimated as the reservoir-prone Lower Permian formations are not considered in detail by current estimations. This work aims to fill this gap, focusing on the characterisation of the Lower Permian Collyhurst Sandstone Formation as a viable storage unit. The potential for CO2 storage is estimated as the total volume/area of suitable closures that are isolated by structural traps, occurring at depths suitable for CO2 injection and containment (>800m). Detailed structural and stratigraphic interpretations were made using 3D seismic data to assess the storage potential of the Collyhurst Sandstone Formation in the southern EISB. The basin strata is compartmentalised by numerous N-S trending faults. A higher degree of compartmentalisation occurs within regional anticlines where elongated tilted blocks are observed, bound by predominantly west-dipping faults that induce a variable offset of the Collyhurst Sandstone strata. Contrastingly, higher lateral continuity of this formation is observed within graben basins were faults are less frequent and with minor offset, thus potentially creating larger storage closures. Fault dip orientation in the grabens is variable, with west and east dipping faults occurring as a function of large east-dipping listric faults. This study was complemented by the stress modelling of the interpreted faults in order to assess the risk of CO2 leakage. Analysis of borehole breakouts observed in four approximately vertical wells in the EISB suggest a maximum horizontal stress

  7. Numerical dispersion, stability, and phase-speed for 3D time-domain finite-difference seismic wave propagation algorithms

    NASA Astrophysics Data System (ADS)

    Haney, M. M.; Aldridge, D. F.; Symons, N. P.

    2005-12-01

    Numerical solution of partial differential equations by explicit, time-domain, finite-difference (FD) methods entails approximating temporal and spatial derivatives by discrete function differences. Thus, the solution of the difference equation will not be identical to the solution of the underlying differential equation. Solution accuracy degrades if temporal and spatial gridding intervals are too large. Overly coarse spatial gridding leads to spurious artifacts in the calculated results referred to as numerical dispersion, whereas coarse temporal sampling may produce numerical instability (manifest as unbounded growth in the calculations as FD timestepping proceeds). Quantitative conditions for minimizing dispersion and avoiding instability are developed by deriving the dispersion relation appropriate for the discrete difference equation (or coupled system of difference equations) under examination. A dispersion relation appropriate for FD solution of the 3D velocity-stress system of isotropic elastodynamics, on staggered temporal and spatial grids, is developed. The relation applies to either compressional or shear wave propagation, and reduces to the proper form for acoustic propagation in the limit of vanishing shear modulus. A stability condition and a plane-wave phase-speed formula follow as consequences of the dispersion relation. The mathematical procedure utilized for the derivation is a modern variant of classical von Neumann analysis, and involves a 4D discrete space/time Fourier transform of the nine, coupled, FD updating formulae for particle velocity vector and stress tensor components. The method is generalized to seismic wave propagation within anelastic and poroelastic media, as well as sound wave propagation within a uniformly-moving atmosphere. A significant extension of the approach yields a stability condition for wave propagation across an interface between dissimilar media with strong material contrast (e.g., the earth's surface, the seabed

  8. Investigating Glioblastoma Angiogenesis Using A 3D in Vitro GelMA Microwell Platform.

    PubMed

    Nguyen, Duong Thanh; Fan, Yantao; Akay, Yasemin M; Akay, Metin

    2016-04-01

    Angiogenesis is an indispensable mechanism in physiological and pathological development of tumors that requires an adequate blood supply. Therefore, understanding the angiogenesis mechanism of tumors has become an important research area to develop reliable and effective therapies for the treatment of tumors. Although several in vivo and in vitro models were developed and used to study the underlying mechanism of angiogenesis, they showed limited success. Therefore, there is an urgent need to build a stable and cost-effective three-dimensional (3D) in vitro angiogenesis model to investigate the tumor formation. In this study, we designed a 3D in vitro angiogenesis model based on gelatin methacrylate (GelMA) hydrogel microwells to mimic an in vivo-like microenvironment for co-cultured glioblastoma and endothelial cells. Our results confirmed the in vitro formation of microtubules during the angiogenic process. We believe that our cost-effective platform can be used for the high-throughput screening of anti-angiogenesis drugs and even for the development of better treatment strategies.

  9. Experimental Investigation About Stamping Behaviour of 3D Warp Interlock Composite Preforms

    NASA Astrophysics Data System (ADS)

    Dufour, Clément; Wang, Peng; Boussu, François; Soulat, Damien

    2014-10-01

    Forming of continuous fibre reinforcements and thermoplastic resin commingled prepregs can be performed at room temperature due to its similar textile structure. The "cool" forming stage is better controlled and more economical. The increase of temperature and the resin consolidation phases after the forming can be carried out under the isothermal condition thanks to a closed system. It can avoid the manufacturing defects easily experienced in the non-isothermal thermoforming, in particular the wrinkling [1]. Glass/Polypropylene commingled yarns have been woven inside different three-dimensional (3D) warp interlock fabrics and then formed using a double-curved shape stamping tool. The present study investigates the in-plane and through-thickness behaviour of the 3D warp interlock fibrous reinforcements during forming with a hemispherical punch. Experimental data allow analysing the forming behaviour in the warp and weft directions and on the influence of warp interlock architectures. The results point out that the layer to layer warp interlock preform has a better stamping behaviour, in particular no forming defects and good homogeneity in thickness.

  10. Gas in Place Resource Assessment for Concentrated Hydrate Deposits in the Kumano Forearc Basin, Offshore Japan, from NanTroSEIZE and 3D Seismic Data

    NASA Astrophysics Data System (ADS)

    Taladay, K.; Boston, B.

    2015-12-01

    Natural gas hydrates (NGHs) are crystalline inclusion compounds that form within the pore spaces of marine sediments along continental margins worldwide. It has been proposed that these NGH deposits are the largest dynamic reservoir of organic carbon on this planet, yet global estimates for the amount of gas in place (GIP) range across several orders of magnitude. Thus there is a tremendous need for climate scientists and countries seeking energy security to better constrain the amount of GIP locked up in NGHs through the development of rigorous exploration strategies and standardized reservoir characterization methods. This research utilizes NanTroSEIZE drilling data from International Ocean Drilling Program (IODP) Sites C0002 and C0009 to constrain 3D seismic interpretations of the gas hydrate petroleum system in the Kumano Forearc Basin. We investigate the gas source, fluid migration mechanisms and pathways, and the 3D distribution of prospective HCZs. There is empirical and interpretive evidence that deeply sourced fluids charge concentrated NGH deposits just above the base of gas hydrate stability (BGHS) appearing in the seismic data as continuous bottoms simulating reflections (BSRs). These HCZs cover an area of 11 by 18 km, range in thickness between 10 - 80 m with an average thickness of 40 m, and are analogous to the confirmed HCZs at Daini Atsumi Knoll in the eastern Nankai Trough where the first offshore NGH production trial was conducted in 2013. For consistency, we calculated a volumetric GIP estimate using the same method employed by Japan Oil, Gas and Metals National Corporation (JOGMEC) to estimate GIP in the eastern Nankai Trough. Double BSRs are also common throughout the basin, and BGHS modeling along with drilling indicators for gas hydrates beneath the primary BSRs provides compelling evidence that the double BSRs reflect a BGHS for structure-II methane-ethane hydrates beneath a structure-I methane hydrate phase boundary. Additional drilling

  11. A Detailed 3D Seismic Velocity Structure of the Subducting Pacific Slab Beneath Hokkaido, Tohoku and Kanto, Japan, by Double-Difference Tomography

    NASA Astrophysics Data System (ADS)

    Tsuji, Y.; Nakajima, J.; Kita, S.; Okada, T.; Matsuzawa, T.; Hasegawa, A.

    2007-12-01

    Three-dimensional heterogeneous structure beneath northeastern (NE) Japan has been investigated by previous studies and an inclined seismic low-velocity zone is imaged in the mantle wedge sub-parallel to the down-dip direction of the subducting slab (Zhao et al., 1992, Nakajima et al., 2001). However, the heterogeneous structure within the slab has not been well studied even though it is very important to understand the whole process of water transportation from the slab to the surface. Here we show a detailed 3D seismic velocity structure within the subducted Pacific slab around Japan and propose a water-transportation path from the slab to the mantle wedge. In this study, we estimated 3D velocity structure within the Pacific slab by the double-difference tomography (Zhang and Thurber, 2003). We divided the study area, from Hokkaido to Kanto, into 6 areas due to the limitation of memory and computation time. In each area, arrival-time data of 7,500-17,000 events recorded at 70-170 stations were used in the analysis. The total number of absolute travel-time data was about 140,000-312,000 for P wave and 123,000-268,000 for S wave, and differential data were about 736,000-1,920,000 for P wave and 644,000-1,488,000 for S wave. Horizontal and vertical grid separations are 10-25 km and 6.5 km, respectively. RMS residuals of travel times for P wave decreased from 0.23s to 0.09s and for S wave from 0.35s to 0.13s. The obtained results are as follows: (1) a remarkable low-Vs zone exists in the uppermost part of the subducting slab, (2) it extends down to a depth of about 80 km, (3) the termination of this low-Vs zone almost corresponds to the "seismic belt" recently detected in the upper plane of the double seismic zone (Kita et al.,2006; Hasegawa et al., 2007), (4) at depths deeper than 80 km, a low-Vs and high-Vp/Vs zone is apparently distributed in the mantle wedge, immediately above the slab crust. We consider that these features reflect water-transportation processes

  12. Earthquake relocation using a 3D a-priori geological velocity model from the western Alps to Corsica: Implication for seismic hazard

    NASA Astrophysics Data System (ADS)

    Béthoux, Nicole; Theunissen, Thomas; Beslier, Marie-Odile; Font, Yvonne; Thouvenot, François; Dessa, Jean-Xavier; Simon, Soazig; Courrioux, Gabriel; Guillen, Antonio

    2016-02-01

    The region between the inner zones of the Alps and Corsica juxtaposes an overthickened crust to an oceanic domain, which makes difficult to ascertain the focal depth of seismic events using routine location codes and average 1D velocity models. The aim of this article is to show that, even with a rather lose monitoring network, accurate routine locations can be achieved by using realistic 3D modelling and advanced location techniques. Previous earthquake tomography studies cover the whole region with spatial resolutions of several tens of kilometres on land, but they fail to resolve the marine domain due to the absence of station coverage and sparse seismicity. To overcome these limitations, we first construct a 3D a-priori P and S velocity model integrating known geophysical and geological information. Significant progress has been achieved in the 3D numerical modelling of complex geological structures by the development of dedicated softwares (e.g. 3D GeoModeller), capable at once of elaborating a 3D structural model from geological and geophysical constraints and, possibly, of refining it by inversion processes (Calcagno et al., 2008). Then, we build an arrival-time catalogue of 1500 events recorded from 2000 to 2011. Hypocentres are then located in this model using a numerical code based on the maximum intersection method (Font et al., 2004), updated by Theunissen et al. (2012), as well as another 3D location technique, the NonLinLoc software (Lomax and Curtis, 2001). The reduction of arrival-time residuals and uncertainties (dh, dz) with respect to classical 1D locations demonstrates the improved accuracy allowed by our approach and confirms the coherence of the 3D geological model built and used in this study. Our results are also compared with previous works that benefitted from the installation of dense temporary networks surrounding the studied epicentre area. The resulting 3D location catalogue allows us to improve the regional seismic hazard assessment

  13. Investigating the guiding of streamers in nitrogen/oxygen mixtures with 3D simulations

    NASA Astrophysics Data System (ADS)

    Teunissen, Jannis; Nijdam, Sander; Takahashi, Eiichi; Ebert, Ute

    2014-10-01

    Recent experiments by S. Nijdam and E. Takahashi have demonstrated that streamers can be guided by weak pre-ionization in nitrogen/oxygen mixtures, as long as there is not too much oxygen (less than 1%). The pre-ionization was created by a laser beam, and was orders of magnitude lower than the density in a streamer channel. Here, we will study the guiding of streamers with 3D numerical simulations. First, we present simulations that can be compared with the experiments and confirm that the laser pre-ionization does not introduce space charge effects by itself. Then we investigate topics as: the conditions under which guiding can occur; how photoionization reduces the guiding at higher oxygen concentrations and whether guided streamers keep their propagation direction outside the pre-ionization. JT was supported by STW Project 10755, SN by the FY2012 Researcher Exchange Program between JSPS and NWO, and ET by JSPS KAKENHI Grant Number 24560249.

  14. New High-Resolution 3D Seismic Imagery of Deformation and Fault Architecture Along Newport-Inglewood/Rose Canyon Fault in the Inner California Borderlands

    NASA Astrophysics Data System (ADS)

    Holmes, J. J.; Bormann, J. M.; Driscoll, N. W.; Kent, G.; Harding, A. J.; Wesnousky, S. G.

    2014-12-01

    The tectonic deformation and geomorphology of the Inner California Borderlands (ICB) records the transition from a convergent plate margin to a predominantly dextral strike-slip system. Geodetic measurements of plate boundary deformation onshore indicate that approximately 15%, or 6-8 mm/yr, of the total Pacific-North American relative plate motion is accommodated by faults offshore. The largest near-shore fault system, the Newport-Inglewood/Rose Canyon (NI/RC) fault complex, has a Holocene slip rate estimate of 1.5-2.0 mm/yr, according to onshore trenching, and current models suggest the potential to produce an Mw 7.0+ earthquake. The fault zone extends approximately 120 km, initiating from the south near downtown San Diego and striking northwards with a constraining bend north of Mt. Soledad in La Jolla and continuing northwestward along the continental shelf, eventually stepping onshore at Newport Beach, California. In late 2013, we completed the first high-resolution 3D seismic survey (3.125 m bins) of the NI/RC fault offshore of San Onofre as part of the Southern California Regional Fault Mapping project. We present new constraints on fault geometry and segmentation of the fault system that may play a role in limiting the extent of future earthquake ruptures. In addition, slip rate estimates using piercing points such as offset channels will be explored. These new observations will allow us to investigate recent deformation and strain transfer along the NI/RC fault system.

  15. Numerical Investigation of T-joints with 3D Four Directional Braided Composite Fillers Under Tensile Loading

    NASA Astrophysics Data System (ADS)

    Li, Xiao-kang; Liu, Zhen-guo; Hu, Long; Wang, Yi-bo; Lei, Bing; Huang, Xiang

    2016-08-01

    Numerical studied on T-joints with three-dimensional four directional (3D4D) braided composite fillers was presented in this article. Compared with conventional unidirectional prepreg fillers, the 3D braided composite fillers have excellent ability to prevent crack from penetrating trigone fillers, which constantly occurred in the conventional fillers. Meanwhile, the 3D braided composite fillers had higher fiber volume fraction and eliminated the fiber folding problem in unidirectional prepreg fillers. The braiding technology and mechanical performance of 3D4D braided fillers were studied. The numerical model of carbon fiber T-joints with 3D4D braided composite fillers was built by finite element analysis software. The damage formation, extension and failing process of T-joints with 3D4D braided fillers under tensile load were investigated. Further investigation was extended to the effect of 3D4D braided fillers with different braiding angles on mechanical behavior of the T-joints. The study results revealed that the filling area was the weakest part of the T-joints where the damage first appeared and the crack then rapidly spread to the glue film around the filling area and the interface between over-laminate and soleplate. The 3D4D braided fillers were undamaged and the braiding angle change induced a little effect on the bearing capacity of T-joints.

  16. Abundance, behavior, and movement patterns of western gray whales in relation to a 3-D seismic survey, Northeast Sakhalin Island, Russia.

    PubMed

    Gailey, Glenn; Würsig, Bernd; McDonald, Trent L

    2007-11-01

    A geophysical seismic survey was conducted in the summer of 2001 off the northeastern coast of Sakhalin Island, Russia. The area of seismic exploration was immediately adjacent to the Piltun feeding grounds of the endangered western gray whale (Eschrichtius robustus). This study investigates relative abundance, behavior, and movement patterns of gray whales in relation to occurrence and proximity to the seismic survey by employing scan sampling, focal follow, and theodolite tracking methodologies. These data were analyzed in relation to temporal, environmental, and seismic related variables to evaluate potential disturbance reactions of gray whales to the seismic survey. The relative numbers of whales and pods recorded from five shore-based stations were not significantly different during periods when seismic surveys were occurring compared to periods when no seismic surveys were occurring and to the post-seismic period. Univariate analyses indicated no significant statistical correlation between seismic survey variables and any of the eleven movement and behavior variables. Multiple regression analyses indicated that, after accounting for temporal and environmental variables, 6 of 11 movement and behavior variables (linearity, acceleration, mean direction, blows per surfacing, and surface-dive blow rate) were not significantly associated with seismic survey variables, and 5 of 11 variables (leg speed, reorientation rate, distance-from-shore, blow interval, and dive time) were significantly associated with seismic survey variables. In summary, after accounting for environmental variables, no correlation was found between seismic survey variables and the linearity of whale movements, changes in whale swimming speed between theodolite fixes, mean direction of whale movement, mean number of whale exhalations per minute at the surface, mean time at the surface, and mean number of exhalations per minute during a whales surface-to-dive cycle. In contrast, at higher

  17. Experimental and Numerical Investigation of Forging Process to Reproduce a 3D Aluminium Foam Complex Shape

    NASA Astrophysics Data System (ADS)

    Filice, Luigino; Gagliardi, Francesco; Shivpuri, Rajiv; Umbrello, Domenico

    2007-05-01

    Metallic foams represent one of the most exciting materials introduced in the manufacturing scenario in the last years. In the study here addressed, the experimental and numerical investigations on the forging process of a simple foam billet shaped into complex sculptured parts were carried out. In particular, the deformation behavior of metallic foams and the development of density gradients were investigated through a series of experimental forging tests in order to produce a selected portion of a hip prosthesis. The human bone replacement was chosen as case study due to its industrial demand and for its particular 3D complex shape. A finite element code (Deform 3D®) was utilized for modeling the foam behavior during the forging process and an accurate material rheology description was used based on a porous material model which includes the measured local density. Once the effectiveness of the utilized Finite Element model was verified through the comparison with the experimental evidences, a numerical study of the influence of the foam density was investigated. The obtained numerical results shown as the initial billet density plays an important role on the prediction of the final shape, the optimization of the flash as well as the estimation of the punch load.

  18. Design of Learning Spaces in 3D Virtual Worlds: An Empirical Investigation of "Second Life"

    ERIC Educational Resources Information Center

    Minocha, Shailey; Reeves, Ahmad John

    2010-01-01

    "Second Life" (SL) is a three-dimensional (3D) virtual world, and educational institutions are adopting SL to support their teaching and learning. Although the question of how 3D learning spaces should be designed to support student learning and engagement has been raised among SL educators and designers, there is hardly any guidance or research…

  19. 3D numerical investigation on landslide generated tsunamis around a conical island

    NASA Astrophysics Data System (ADS)

    Montagna, Francesca; Bellotti, Giorgio

    2010-05-01

    This paper presents numerical computations of tsunamis generated by subaerial and submerged landslides falling along the flank of a conical island. The study is inspired by the tsunamis that on 30th December 2002 attacked the coast of the volcanic island of Stromboli (South Tyrrhenian sea, Italy). In particular this paper analyzes the important feature of the lateral spreading of landside generated tsunamis and the associated flooding hazard. The numerical model used in this study is the full three dimensional commercial code FLOW-3D. The model has already been successfully used (Choi et al., 2007; 2008; Chopakatla et al, 2008) to study the interaction of waves and structures. In the simulations carried out in this work a particular feature of the code has been employed: the GMO (General Moving Object) algorithm. It allows to reproduce the interaction between moving objects, as a landslide, and the water. FLOW-3D has been firstly validated using available 3D experiments reproducing tsunamis generated by landslides at the flank of a conical island. The experiments have been carried out in the LIC laboratory of the Polytechnic of Bari, Italy (Di Risio et al., 2009). Numerical and experimental time series of run-up and sea level recorded at gauges located at the flanks of the island and offshore have been successfully compared. This analysis shows that the model can accurately represent the generation, the propagation and the inundation of landslide generated tsunamis and suggests the use of the numerical model as a tool for preparing inundation maps. At the conference we will present the validation of the model and parametric analyses aimed to investigate how wave properties depend on the landslide kinematic and on further parameters such as the landslide volume and shape, as well as the radius of the island. The expected final results of the research are precomputed inundation maps that depend on the characteristics of the landslide and of the island. Finally we

  20. Urban shear-wave reflection seismics: Reconstruction support by combined shallow seismic and engineering geology investigations

    NASA Astrophysics Data System (ADS)

    Polom, U.; Guenther, A.; Arsyad, I.; Wiyono, P.; Krawczyk, C. M.

    2009-12-01

    After the big 2004 Sumatra-Andaman earthquake, the massive reconstruction activities in the Aceh province (Northern Sumatra) were promoted by the Republic of Indonesia and the Federal Ministry of Economic Cooperation and Development. The aims of the project MANGEONAD (Management of Georisk Nanggroe Aceh Darussalam). are to establish geoscientific on the ground support for a sustainable development and management of save building constructions, lifelines, infrastructure and also natural resources. Therefore, shallow shear-wave reflection seismics was applied in close combination to engineering geology investigations in the period between 2005-2009 since depth and internal structure of the Krueng Aceh River delta (mainly young alluvial sediments) were widely unknown. Due to the requirements in the densely populated Banda Aceh region, lacking also traffic infrastructure, a small and lightweight engineering seismic setup of high mobility and high subsurface resolution capability was chosen. The S-wave land streamer system with 48 channels was applied successfully together with the ELVIS vibratory source using S- and P-waves on paved roads within the city of Banda Aceh. The performance of the S-wave system enabled the detailed seismic investigation of the shallow subsurface down to 50-150 m depth generating shaking frequencies between 20 Hz to 200 Hz. This also provides depth information extending the maximum depths of boreholes and Standard Penetrometer Testings (SPT), which could only be applied to max. 20 m depth. To integrate the results gained from all three methods, and further to provide a fast statistical analysis tool for engineering use, the Information System Engineering Geology (ISEG, BGR) was developed. This geospatial information tool includes the seismic data, all borehole information, geotechnical SPT and laboratory results from samples available in the investigation area. Thereby, the geotechnical 3D analysis of the subsurface units is enabled. The

  1. Intersymbol Interference Investigations Using a 3D Time-Dependent Traveling Wave Tube Model

    NASA Technical Reports Server (NTRS)

    Kory, Carol L.; Andro, Monty; Downey, Alan (Technical Monitor)

    2001-01-01

    For the first time, a physics based computational model has been used to provide a direct description of the effects of the TWT (Traveling Wave Tube) on modulated digital signals. The TWT model comprehensively takes into account the effects of frequency dependent AM/AM and AM/PM conversion; gain and phase ripple; drive-induced oscillations; harmonic generation; intermodulation products; and backward waves. Thus, signal integrity can be investigated in the presence of these sources of potential distortion as a function of the physical geometry of the high power amplifier and the operational digital signal. This method promises superior predictive fidelity compared to methods using TWT models based on swept amplitude and/or swept frequency data. The fully three-dimensional (3D), time-dependent, TWT interaction model using the electromagnetic code MAFIA is presented. This model is used to investigate assumptions made in TWT black box models used in communication system level simulations. In addition, digital signal performance, including intersymbol interference (ISI), is compared using direct data input into the MAFIA model and using the system level analysis tool, SPW (Signal Processing Worksystem).

  2. Intersymbol Interference Investigations Using a 3D Time-Dependent Traveling Wave Tube Model

    NASA Technical Reports Server (NTRS)

    Kory, Carol L.; Andro, Monty

    2002-01-01

    For the first time, a time-dependent, physics-based computational model has been used to provide a direct description of the effects of the traveling wave tube amplifier (TWTA) on modulated digital signals. The TWT model comprehensively takes into account the effects of frequency dependent AM/AM and AM/PM conversion; gain and phase ripple; drive-induced oscillations; harmonic generation; intermodulation products; and backward waves. Thus, signal integrity can be investigated in the presence of these sources of potential distortion as a function of the physical geometry and operating characteristics of the high power amplifier and the operational digital signal. This method promises superior predictive fidelity compared to methods using TWT models based on swept- amplitude and/or swept-frequency data. First, the TWT model using the three dimensional (3D) electromagnetic code MAFIA is presented. Then, this comprehensive model is used to investigate approximations made in conventional TWT black-box models used in communication system level simulations. To quantitatively demonstrate the effects these approximations have on digital signal performance predictions, including intersymbol interference (ISI), the MAFIA results are compared to the system level analysis tool, Signal Processing Workstation (SPW), using high order modulation schemes including 16 and 64-QAM.

  3. A high-resolution 3D seismic velocity model of the 2010 Mw 8.8 Maule, Chile earthquake rupture zone using land & OBS networks

    NASA Astrophysics Data System (ADS)

    Hicks, S. P.; Rietbrock, A.; Ryder, I. M.; Miller, M.; Lee, C.

    2013-12-01

    Knowledge of seismic properties along a subduction megathrust can shed light on the composition and structure of rocks along the fault. By comparing seismic velocity structure with models of interseismic locking, co-seismic slip and afterslip, we can begin to understand how physical properties may affect fault dynamics throughout the subduction seismic cycle. The Maule earthquake, which hit the coast of central Chile in 2010, is the 6th largest earthquake ever recorded, rupturing a 500 x 80 km area of the Chilean megathrust. Published models demonstrate a complex bilateral rupture, with most co-seismic slip occurring to the north of the mainshock epicentre, although significant slip likely stopped short of the trench and the continental Moho. Here, we show a new high-resolution 3D velocity model (vp and vp/vs ratio) of the central Chilean margin Our velocity model is based on manually picked P- and S-wave arrival times from 670 aftershocks recorded by the International Maule Aftershock Deployment (IMAD) network. Seismic properties of the marine forearc are poorly understood in subduction zones, but by incorporating picks from two ocean-bottom seismometer (OBS) networks, we can resolve the velocity structure of the megathrust as far as the trench. In total, the catalogue used for the tomographic inversion yields a total of ~50,000 high quality P- and S-wave picks. We analyse the quality of our model by analysis of the resolution matrix and by testing characteristic models. The 3D velocity model shows the main structures associated within a subduction forearc: the marine forearc basin (vp < 6.0 km/s), continental mantle (vp > 7.5 km/s), and subducting oceanic crust (vp ~ 7.7 km/s). The plate interface is well defined by relocated aftershock seismicity. P-wave velocities along the megathrust range from 6.5 km/s beneath the marine forearc to 7.7 km/s at the intersection of the megathrust with the continental Moho. We infer several high vp anomalies within the South

  4. Investigation of Dynamic Crack Coalescence Using a Gypsum-Like 3D Printing Material

    NASA Astrophysics Data System (ADS)

    Jiang, Chao; Zhao, Gao-Feng; Zhu, Jianbo; Zhao, Yi-Xin; Shen, Luming

    2016-10-01

    Dynamic crack coalescence attracts great attention in rock mechanics. However, specimen preparation in experimental study is a time-consuming and difficult procedure. In this work, a gypsum-like material by powder bed and inkjet 3D printing technique was applied to produce specimens with preset cracks for split Hopkinson pressure bar (SHPB) test. From micro X-ray CT test, it was found that the 3D printing technique could successfully prepare specimens that contain preset cracks with width of 0.2 mm. Basic mechanical properties of the 3D printing material, i.e., the elastic modulus, the Poisson's ratio, the density, the compressive strength, the indirect tensile strength, and the fracture toughness, were obtained and reported. Unlike 3D printed specimens using polylactic acid, these gypsum-like specimens can produce failure patterns much closer to those observed in classical rock mechanical tests. Finally, the dynamic crack coalescence of the 3D printed specimens with preset cracks were captured using a high-speed camera during SHPB tests. Failure patterns of these 3D printed specimens are similar to the specimens made by Portland cement concrete. Our results indicate that sample preparation by 3D printing is highly competitive due to its quickness in prototyping, precision and flexibility on the geometry, and high material homogeneity.

  5. pySeismicFMM: Python based travel time calculation in regular 2D and 3D grids in Cartesian and geographic coordinates using Fast Marching Method

    NASA Astrophysics Data System (ADS)

    Polkowski, Marcin

    2016-04-01

    Seismic wave travel time calculation is the most common numerical operation in seismology. The most efficient is travel time calculation in 1D velocity model - for given source, receiver depths and angular distance time is calculated within fraction of a second. Unfortunately, in most cases 1D is not enough to encounter differentiating local and regional structures. Whenever possible travel time through 3D velocity model has to be calculated. It can be achieved using ray calculation or time propagation in space. While single ray path calculation is quick it is complicated to find the ray path that connects source with the receiver. Time propagation in space using Fast Marching Method seems more efficient in most cases, especially when there are multiple receivers. In this presentation a Python module pySeismicFMM is presented - simple and very efficient tool for calculating travel time from sources to receivers. Calculation requires regular 2D or 3D velocity grid either in Cartesian or geographic coordinates. On desktop class computer calculation speed is 200k grid cells per second. Calculation has to be performed once for every source location and provides travel time to all receivers. pySeismicFMM is free and open source. Development of this tool is a part of authors PhD thesis. National Science Centre Poland provided financial support for this work via NCN grant DEC-2011/02/A/ST10/00284.

  6. Investigation on reconstruction methods applied to 3D terahertz computed tomography.

    PubMed

    Recur, B; Younus, A; Salort, S; Mounaix, P; Chassagne, B; Desbarats, P; Caumes, J-P; Abraham, E

    2011-03-14

    3D terahertz computed tomography has been performed using a monochromatic millimeter wave imaging system coupled with an infrared temperature sensor. Three different reconstruction methods (standard back-projection algorithm and two iterative analysis) have been compared in order to reconstruct large size 3D objects. The quality (intensity, contrast and geometric preservation) of reconstructed cross-sectional images has been discussed together with the optimization of the number of projections. Final demonstration to real-life 3D objects has been processed to illustrate the potential of the reconstruction methods for applied terahertz tomography.

  7. Seismic investigations in downtown Copenhagen, Denmark

    NASA Astrophysics Data System (ADS)

    Martinez, K.; Mendoza, J. A.; Olsen, H.

    2009-12-01

    Near surface geophysics are gaining widespread use in major infrastructure projects with respect to geotechnical and engineering applications. The development of data acquisition, processing tools and interpretation methods have optimized survey production, reduced logistics costs and increase results reliability of seismic surveys during the last decades. However, the use of geophysical methods under urban environments continues to face challenges due to multiple noise sources and obstacles inherent to cities. A seismic investigation was conducted in Copenhagen aiming to produce information needed for hydrological, geotechnical and groundwater modeling assessments related to the planned Cityringen underground metro project. The particular objectives were a) map variations in subsurface Quaternary and limestone properties b) to map for near surface structural features. The geological setting in the Copenhagen region is characterized by several interlaced layers of glacial till and meltwater sand deposits. These layers, which are found unevenly distributed throughout the city and present in varying thicknesses, overlie limestone of different generations. There are common occurrences of incised valley structures containing localized instances of weathered or fractured limestone. The surveys consisted of combined seismic reflection and refraction profiles accounting for approximately 13 km along sections of the projected metro line. The data acquisition was carried out using standard 192 channels arrays, receiver groups with 5 m spacing and a Vibroseis as a source at 5 m spacing. In order to improve the resolution of the data, 29 Walkaway-Vertical Seismic Profiles were performed at selected wells along the surface seismic lines. The refraction data was processed with travel-time tomography and the reflection data underwent standard interpretation. The refraction data inversion was performed twofold; a surface refraction alone and combined with the VSP data. Three

  8. Investigation of thermal degradation with extrusion-based dispensing modules for 3D bioprinting technology.

    PubMed

    Lee, Hyungseok; Yoo, James J; Kang, Hyun-Wook; Cho, Dong-Woo

    2016-02-04

    Recently, numerous three-dimensional (3D) bioprinting systems have been introduced for the artificial regeneration of tissues. Among them, the extrusion-based dispensing module is the most widely used because of the processability it gives various biomaterials. The module uses high forces and temperature to dispense materials through a micro-nozzle. Generally, the harsh conditions induce thermal degradation of the material in the dispensing procedure. The thermal degradation affects the properties of the materials, and the change of the properties should be carefully controlled, because it severely affects the regeneration of tissues. Therefore, in this research, the relationship between the dispensing module and the thermal degradation of material was investigated. Extrusion-based dispensing modules can be divided into the syringe type (ST) and filament type (FT) based on working principles. We prepared a poly lactic-co-glycolic acid (PLGA) scaffold with the two methods at various time points. Then, the characteristics of the printed scaffolds were assessed by measuring molecular weight (M w), glass transition temperature (T g), in vitro degradation, compressive modulus, and cytocompatibility. The results showed that the PLGA scaffold with the FT dispensing module maintained its properties regardless of printing time points. In contrast, severe thermal degradation was observed in the scaffold group prepared by the ST dispensing module. Consequentially, it was obvious that the FT dispensing module was more suitable for producing scaffolds without severe thermal degradation.

  9. Mixing and entrainment in mantle plumes: A 3D experimental investigation

    NASA Astrophysics Data System (ADS)

    Newsome, William; Cotel, Aline; Lithgow-Bertelloni, Carolina; Hart, Stanley; Whitehead, John

    2011-11-01

    Significant differences exist between isotopic signatures of typical mid-ocean ridge basalts (MORB) and those associated with many ocean islands, with ocean island basalts (OIB) generally exhibiting more variability in trace element concentrations and also a bias towards enrichment in radiogenic isotopes such as Sr, Nd, Hf and Pb. Such observations coupled with other geophysical evidence have been used to suggest that OIB's are surface manifestations of thermal plumes originating in the deep interior near the core-mantle boundary that interact with distinct, heterogeneous reservoirs as material is transported from the Earth's interior to the surface. We experimentally investigate the structure and transport characteristics of isolated thermal plumes in corn syrup. The 3D velocity field is measured using a scanning stereoscopic particle image velocimetry system. Two types of tracer particles are simultaneously utilized, with thermochromic liquid crystals providing an estimate of the temperature field. Lagrangian coherent structures computed from the velocity field identify key material lines and surfaces that provide a taxonomic picture of plumes operating in different regimes. These govern how the plume interacts with the ambient during its ascent.

  10. An extensive 3D dislocation dynamics investigation of stage-I fatigue crack propagation

    NASA Astrophysics Data System (ADS)

    Déprés, C.; Prasad Reddy, G. V.; Robertson, C.; Fivel, M.

    2014-12-01

    Stage-I fatigue crack propagation is investigated using 3D discrete dislocation dynamics (DD) simulations. Slip-based propagation mechanisms and the role of the pre-existing slip band on the crack path are emphasized. Stage-I crack growth is found to be compatible with successive decohesion of the persistent slip band/matrix interface rather than a mere effect of plastic irreversibility. Corresponding crack tip slip displacement magnitude and the associated crack growth rate are evaluated quantitatively at various tip distances from the grain boundary. This shows that grain boundaries systematically amplify slip dispersion ahead of the crack tip and consequently, slow down the stage-I crack growth rate. The results help in developing an original crack propagation model, accounting for the boundary effects relevant to polycrystals. The crack growth trend is then evaluated from calculations of the energy changes due to crack length increments. It is shown that the crack necessarily propagates by increments smaller than 10 nm.

  11. Investigation of molten metal droplet deposition and solidification for 3D printing techniques

    NASA Astrophysics Data System (ADS)

    Wang, Chien-Hsun; Tsai, Ho-Lin; Wu, Yu-Che; Hwang, Weng-Sing

    2016-09-01

    This study investigated the transient transport phenomenon during the pile up of molten lead-free solder via the inkjet printing method. With regard to the droplet impact velocity, the distance from nozzle to substrate can be controlled by using the pulse voltage and distance control apparatus. A high-speed digital camera was used to record the solder impact and examine the accuracy of the pile up. These impact conditions correspond to We  =  2.1-15.1 and Oh  =  5.4  ×  10-3-3.8  ×  10-3. The effects of impact velocity and relative distance between two types of molten droplets on the shape of the impact mode are examined. The results show that the optimal parameters of the distance from nozzle to substrate and the spreading factor in this experiment are 0.5 mm and 1.33. The diameter, volume and velocity of the inkjet solder droplet are around 37-65 μm, 25-144 picoliters, and 2.0-3.7 m s-1, respectively. The vertical and inclined column structures of molten lead-free solder can be fabricated using piezoelectric ink-jet printing systems. The end-shapes of the 3D micro structure have been found to be dependent upon the distance from nozzle to substrate and the impact velocity of the molten lead-free solder droplet.

  12. Investigation of thermal degradation with extrusion-based dispensing modules for 3D bioprinting technology.

    PubMed

    Lee, Hyungseok; Yoo, James J; Kang, Hyun-Wook; Cho, Dong-Woo

    2016-03-01

    Recently, numerous three-dimensional (3D) bioprinting systems have been introduced for the artificial regeneration of tissues. Among them, the extrusion-based dispensing module is the most widely used because of the processability it gives various biomaterials. The module uses high forces and temperature to dispense materials through a micro-nozzle. Generally, the harsh conditions induce thermal degradation of the material in the dispensing procedure. The thermal degradation affects the properties of the materials, and the change of the properties should be carefully controlled, because it severely affects the regeneration of tissues. Therefore, in this research, the relationship between the dispensing module and the thermal degradation of material was investigated. Extrusion-based dispensing modules can be divided into the syringe type (ST) and filament type (FT) based on working principles. We prepared a poly lactic-co-glycolic acid (PLGA) scaffold with the two methods at various time points. Then, the characteristics of the printed scaffolds were assessed by measuring molecular weight (M w), glass transition temperature (T g), in vitro degradation, compressive modulus, and cytocompatibility. The results showed that the PLGA scaffold with the FT dispensing module maintained its properties regardless of printing time points. In contrast, severe thermal degradation was observed in the scaffold group prepared by the ST dispensing module. Consequentially, it was obvious that the FT dispensing module was more suitable for producing scaffolds without severe thermal degradation. PMID:26844711

  13. Joint 3D seismic travel time and full channel electrical resistivity inversion with cross gradient structure constraint

    NASA Astrophysics Data System (ADS)

    Gao, J.; Zhang, H.

    2015-12-01

    Near surface geophysical exploration for the purpose of engineering design or construction For this reason, geophysical imaging demands a higher resolution and a better quantitative interpretation. Seismic travel time tomography and direct current resistivity tomography are two main methods for the near surface survey. Because of the limited coverage of observation system and the complex physical relationship between physical parameters and observations, individual geophysical method suffers issues of non-uniqueness and resolution limitation to some degree. We have developed a joint inversion method to combine seismic travel time tomography and full channel resistivity tomography. For the full channel resistivity survey, it uses two electrodes for power supply and all the other electrodes for recording. Compared with the traditional resistivity method, it collects more data and has a better model converge. Our joint inversion strategy relies on the structure constraint enforced through minimizing cross gradients between seismic velocity and resistivity models (Gallardo, 2003). For resistivity tomography, sensitivity kernels are obtained through the adjoint method by solving the electrostatic field equation with the finite-difference method. For seismic travel time tomography, ray paths and travel times are calculated using the fast marching method. We have tested our joint inversion method for a 2D cross-hole problem where two small zones with high and low velocity/resistivity anomalies. Seismic/electrical sources/receivers are installed in two boreholes. For separate seismic inversion, the smearing effect is evident and two anomaly zones are distorted and misplaced. For separate electric resistivity inversion, although two anomaly zones are positioned correctly their values are not accurate. By joint inversion, two velocity anomaly zones are clearly imaged and the smearing effect is greatly reduced. In comparison, for the resistivity model, the two anomaly zones

  14. 3D Seismic Reflection Images of An Off-Axis Melt Lens And Its Associated Upper Crust Around 9°39'N, East Pacific Rise

    NASA Astrophysics Data System (ADS)

    Han, S.; Carton, H. D.; Carbotte, S. M.; Mutter, J. C.; Canales, J.; Nedimović, M. R.

    2011-12-01

    During the 3D multi-channel seismic (MCS) survey MGL0812 aboard the R/V Langseth, several mid-crust reflectors were discovered off axis on both flanks of the East Pacific Rise from 9°35.6-57.0'N. The reversed polarity of these off-axis reflections with respect to the seafloor and Moho reflections and the high attenuation of the crust detected beneath two of them in the north suggest that they arise from melts residing at the mid-crust level outside the axial low velocity zone (Canales et al. 2010). These off-axis melt lenses (OAML) are probable sites of off-axis volcanism and potential heat sources for localized hydrothermal circulation on the ridge flanks. We focus here on a prominent OAML discovered on the eastern flank around 9°39'N. Results from 1D travel time modeling and 2D streamer tomography of downward continued shot gathers show the presence of a thinner seismic layer 2A above the center of the OAML compared with its surrounding crust. We attribute this thinning to the effects of alteration associated with localized off-axis hydrothermal circulation driven by the OAML, where precipitation of secondary minerals infills pore space within the lower basalt section, leading to increased seismic velocities and thereby converting the lowermost seismic layer 2A into seismic layer 2B. To further constrain the respective 3D geometries of the OAML and the AMC, their spatial relations, and the spatial extent and shape of the region of altered upper crust associated with the OAML, we conduct 3D processing of a small MCS grid that encompasses most of this OAML, aimed at imaging both on- and off-axis melt lens events and the base of seismic layer 2A. This grid covers an ~4 km x 24 km area centered on the ridge crest between ˜9°37.5'-40'N and extending on both flanks, within which a third order ridge axis discontinuity and two high temperature hydrothermal vents identified during Alvin dives in 1991 and 1994 are present. The data were recorded by four 468-channel

  15. 2D and 3D seismic measurements to evaluate the collapse risk of an important prehistoric cave in soft carbonate rock

    NASA Astrophysics Data System (ADS)

    Leucci, Giovanni; De Giorgi, Lara

    2015-02-01

    The southern part of the Apulia region (the Salento peninsula) has been the site of at least fifteen collapse events due to sinkholes in the last twenty years. The majority of these occurred in "soft" carbonate rocks (calcarenites). Man-made and/or natural cavities are sometimes assets of historical and archaeological significance. This paper provides a methodology for the evaluation of sinkhole hazard in "soft" carbonate rocks, combining seismic and mine engineering methods.Acase study of a natural cavity which is called Grotta delle Veneri is illustrated. For this example the approach was: i) 2D and 3D seismic methods to study the physical-mechanical characteristics of the rock mass that constitutes the roof of the cave; and ii) scaled span empirical analysis in order to evaluate the instability of the crown pillar's caves.

  16. 3D seismic interpretation of subsurface eruptive centers in a Permian large igneous province, Tazhong Uplift, central Tarim Basin, NW China

    NASA Astrophysics Data System (ADS)

    Yang, Jiangfeng; Zhu, Wenbin; Guan, Da; Zhu, Beibei; Yuan, Liansheng; Xiang, Xuemei; Su, Jinbao; He, Jingwen; Wu, Xinhui

    2015-12-01

    A 1445-km2 high-resolution 3D seismic reflection dataset is used to analyze the Permian large igneous province in the subsurface of the Tazhong area in the central Tarim Basin in northwestern China. Constrained by the synthetic seismograms of four wells, the top and base of the igneous rocks were identified in the seismic data. Seven large volcanic craters, each >10 km2 in area, have been discovered via the application of coherency and amplitude attributes. The thickness and volume of the igneous rocks were obtained by time-depth transformation. In the study area, all of the igneous rocks, with thicknesses from 120 to 1133 m, were formed by eruptions in the Early Permian. These events produced huge erupted volumes (178 km3) and multiple closely spaced volcanic edifices (<13 km). These features suggest that the study area may be the part of the eruptive center of the Permian igneous rocks in the Tarim Basin.

  17. 3-D Modeling for Upper Mantle Anisotropy Beneath Idaho-Oregon (IDOR) Region Using Sks Splitting Intensity Measurements from IDOR Passive Seismic Project Dataset

    NASA Astrophysics Data System (ADS)

    Hongsresawat, S.; Panning, M. P.; Russo, R. M.; Mocanu, V. I.; Stanciu, A. C.; Bremner, P. M.; Torpey, M. E.; VanDecar, J. C.

    2014-12-01

    We used data recorded at 86 broadband seismic stations of the IDOR Passive Seismic Project to determine upper mantle anisotropy across the suture along which Blue Mountain island-arc terranes accreted to North America during Cretaceous. This suture is currently associated with the Western Idaho Shear Zone (WISZ), a narrow, highly-deformed ductile fault that was the locus of both dextral strike-slip along, and subduction beneath, the Paleozoic margin of the North American craton. We measured shear wave splitting intensity (SI), a seismic observable that is suitable for use in 3-D inversions of upper mantle seismic anisotropy, to determine these fabrics beneath the IDOR network. SI fast-polarization directions are spatially coherent across the region, and fall into three main groups: a group with fast azimuths trending ENE-WSW, observed at stations in eastern Oregon and the NW-SE-striking western Snake River Plain; a group with E-W trending fast azimuths observed at stations along the WISZ and the Idaho Batholith, which outcrops immediately east of the suture zone; and a group with ENE-WSW trending fast azimuths observed at stations situated in the Basin-and-Range extended region of southeastern Idaho. SI delay times range from 0.46 to 1.85 seconds, with a mean of 1.1 s. We also used backazimuthal variations of SI at all stations to invert for for 3-D anisotropic fabric using the finite-frequency approach called vectorial tomography (Chevrot and Monteiller, 2009). Our preliminary results are consistent with alignment of upper mantle fabrics in the extension direction as Basin-and-Range extension propagates northward into less-extended regions of Idaho and Oregon.

  18. Analysis of ancient-river systems by 3D seismic time-slice technique: A case study in northeast Malay Basin, offshore Terengganu, Malaysia

    NASA Astrophysics Data System (ADS)

    Sulaiman, Noorzamzarina; Hamzah, Umar; Samsudin, Abdul Rahim

    2014-09-01

    Fluvial sandstones constitute one of the major clastic petroleum reservoir types in many sedimentary basins around the world. This study is based on the analysis of high-resolution, shallow (seabed to 500 m depth) 3D seismic data which generated three-dimensional (3D) time slices that provide exceptional imaging of the geometry, dimension and temporal and spatial distribution of fluvial channels. The study area is in the northeast of Malay Basin about 280 km to the east of Terengganu offshore. The Malay Basin comprises a thick (> 8 km), rift to post-rift Oligo-Miocene to Pliocene basin-fill. The youngest (Miocene to Pliocene), post-rift succession is dominated by a thick (1-5 km), cyclic succession of coastal plain and coastal deposits, which accumulated in a humid-tropical climatic setting. This study focuses on the Pleistocene to Recent (500 m thick) succession, which comprises a range of seismic facies analysis of the two-dimensional (2D) seismic sections, mainly reflecting changes in fluvial channel style and river architecture. The succession has been divided into four seismic units (Unit S1-S4), bounded by basin-wide strata surfaces. Two types of boundaries have been identified: 1) a boundary that is defined by a regionally-extensive erosion surface at the base of a prominent incised valley (S3 and S4); 2) a sequence boundary that is defined by more weakly-incised, straight and low-sinuosity channels which is interpreted as low-stand alluvial bypass channel systems (S1 and S2). Each unit displays a predictable vertical change of the channel pattern and scale, with wide low-sinuosity channels at the base passing gradationally upwards into narrow high-sinuosity channels at the top. The wide variation in channel style and size is interpreted to be controlled mainly by the sea-level fluctuations on the widely flat Sunda land Platform.

  19. 3D modelling of the active normal fault network in the Apulian Ridge (Eastern Mediterranean Sea): Integration of seismic and bathymetric data with implicit surface methods

    NASA Astrophysics Data System (ADS)

    Bistacchi, Andrea; Pellegrini, Caludio; Savini, Alessandra; Marchese, Fabio

    2016-04-01

    The Apulian ridge (North-eastern Ionian Sea, Mediterranean), interposed between the facing Apennines and Hellenides subduction zones (to the west and east respectively), is characterized by thick cretaceous carbonatic sequences and discontinuous tertiary deposits crosscut by a penetrative network of NNW-SSE normal faults. These are exposed onshore in Puglia, and are well represented offshore in a dataset composed of 2D seismics and wells collected by oil companies from the '60s to the '80s, more recent seismics collected during research projects in the '90s, recent very high resolution seismics (VHRS - Sparker and Chirp-sonar data), multibeam echosounder bathymetry, and sedimentological and geo-chronological analyses of sediment samples collected on the seabed. Faults are evident in 2D seismics at all scales, and their along-strike geometry and continuity can be characterized with multibeam bathymetric data, which show continuous fault scarps on the seabed (only partly reworked by currents and covered by landslides). Fault scarps also reveal the finite displacement accumulated in the Holocene-Pleistocene. We reconstructed a 3D model of the fault network and suitable geological boundaries (mainly unconformities due to the discontinuous distribution of quaternary and tertiary sediments) with implicit surface methods implemented in SKUA/GOCAD. This approach can be considered very effective and allowed reconstructing in details complex structures, like the frequent relay zones that are particularly well imaged by seafloor geomorphology. Mutual cross-cutting relationships have been recognized between fault scarps and submarine mass-wasting deposits (Holocene-Pleistocene), indicating that, at least in places, these features are coeval, hence the fault network should be considered active. At the regional scale, the 3D model allowed measuring the horizontal WSW-ENE stretching, which can be associated to the bending moment applied to the Apulian Plate by the combined effect

  20. Analysis of ancient-river systems by 3D seismic time-slice technique: A case study in northeast Malay Basin, offshore Terengganu, Malaysia

    SciTech Connect

    Sulaiman, Noorzamzarina; Hamzah, Umar; Samsudin, Abdul Rahim

    2014-09-03

    Fluvial sandstones constitute one of the major clastic petroleum reservoir types in many sedimentary basins around the world. This study is based on the analysis of high-resolution, shallow (seabed to 500 m depth) 3D seismic data which generated three-dimensional (3D) time slices that provide exceptional imaging of the geometry, dimension and temporal and spatial distribution of fluvial channels. The study area is in the northeast of Malay Basin about 280 km to the east of Terengganu offshore. The Malay Basin comprises a thick (> 8 km), rift to post-rift Oligo-Miocene to Pliocene basin-fill. The youngest (Miocene to Pliocene), post-rift succession is dominated by a thick (1–5 km), cyclic succession of coastal plain and coastal deposits, which accumulated in a humid-tropical climatic setting. This study focuses on the Pleistocene to Recent (500 m thick) succession, which comprises a range of seismic facies analysis of the two-dimensional (2D) seismic sections, mainly reflecting changes in fluvial channel style and river architecture. The succession has been divided into four seismic units (Unit S1-S4), bounded by basin-wide strata surfaces. Two types of boundaries have been identified: 1) a boundary that is defined by a regionally-extensive erosion surface at the base of a prominent incised valley (S3 and S4); 2) a sequence boundary that is defined by more weakly-incised, straight and low-sinuosity channels which is interpreted as low-stand alluvial bypass channel systems (S1 and S2). Each unit displays a predictable vertical change of the channel pattern and scale, with wide low-sinuosity channels at the base passing gradationally upwards into narrow high-sinuosity channels at the top. The wide variation in channel style and size is interpreted to be controlled mainly by the sea-level fluctuations on the widely flat Sunda land Platform.

  1. Oscillating optical tweezer-based 3-D confocal microrheometer for investigating the intracellular micromechanics and structures

    NASA Astrophysics Data System (ADS)

    Ou-Yang, H. D.; Rickter, E. A.; Pu, C.; Latinovic, O.; Kumar, A.; Mengistu, M.; Lowe-Krentz, L.; Chien, S.

    2005-08-01

    Mechanical properties of living biological cells are important for cells to maintain their shapes, support mechanical stresses and move through tissue matrix. The use of optical tweezers to measure micromechanical properties of cells has recently made significant progresses. This paper presents a new approach, the oscillating optical tweezer cytorheometer (OOTC), which takes advantage of the coherent detection of harmonically modulated particle motions by a lock-in amplifier to increase sensitivity, temporal resolution and simplicity. We demonstrate that OOTC can measure the dynamic mechanical modulus in the frequency range of 0.1-6,000 Hz at a rate as fast as 1 data point per second with submicron spatial resolution. More importantly, OOTC is capable of distinguishing the intrinsic non-random temporal variations from random fluctuations due to Brownian motion; this capability, not achievable by conventional approaches, is particular useful because living systems are highly dynamic and often exhibit non-thermal, rhythmic behavior in a broad time scale from a fraction of a second to hours or days. Although OOTC is effective in measuring the intracellular micromechanical properties, unless we can visualize the cytoskeleton in situ, the mechanical property data would only be as informative as that of "Blind men and the Elephant". To solve this problem, we take two steps, the first, to use of fluorescent imaging to identify the granular structures trapped by optical tweezers, and second, to integrate OOTC with 3-D confocal microscopy so we can take simultaneous, in situ measurements of the micromechanics and intracellular structure in living cells. In this paper, we discuss examples of applying the oscillating tweezer-based cytorheometer for investigating cultured bovine endothelial cells, the identification of caveolae as some of the granular structures in the cell as well as our approach to integrate optical tweezers with a spinning disk confocal microscope.

  2. Investigation of resins suitable for the preparation of biological sample for 3-D electron microscopy.

    PubMed

    Kizilyaprak, Caroline; Longo, Giovanni; Daraspe, Jean; Humbel, Bruno M

    2015-02-01

    In the last two decades, the third-dimension has become a focus of attention in electron microscopy to better understand the interactions within subcellular compartments. Initially, transmission electron tomography (TEM tomography) was introduced to image the cell volume in semi-thin sections (∼ 500 nm). With the introduction of the focused ion beam scanning electron microscope, a new tool, FIB-SEM tomography, became available to image much larger volumes. During TEM tomography and FIB-SEM tomography, the resin section is exposed to a high electron/ion dose such that the stability of the resin embedded biological sample becomes an important issue. The shrinkage of a resin section in each dimension, especially in depth, is a well-known phenomenon. To ensure the dimensional integrity of the final volume of the cell, it is important to assess the properties of the different resins and determine the formulation which has the best stability in the electron/ion beam. Here, eight different resin formulations were examined. The effects of radiation damage were evaluated after different times of TEM irradiation. To get additional information on mass-loss and the physical properties of the resins (stiffness and adhesion), the topography of the irradiated areas was analysed with atomic force microscopy (AFM). Further, the behaviour of the resins was analysed after ion milling of the surface of the sample with different ion currents. In conclusion, two resin formulations, Hard Plus and the mixture of Durcupan/Epon, emerged that were considerably less affected and reasonably stable in the electron/ion beam and thus suitable for the 3-D investigation of biological samples. PMID:25433274

  3. Investigation of molten metal droplet deposition and solidification for 3D printing techniques

    NASA Astrophysics Data System (ADS)

    Wang, Chien-Hsun; Tsai, Ho-Lin; Wu, Yu-Che; Hwang, Weng-Sing

    2016-09-01

    This study investigated the transient transport phenomenon during the pile up of molten lead-free solder via the inkjet printing method. With regard to the droplet impact velocity, the distance from nozzle to substrate can be controlled by using the pulse voltage and distance control apparatus. A high-speed digital camera was used to record the solder impact and examine the accuracy of the pile up. These impact conditions correspond to We  =  2.1–15.1 and Oh  =  5.4  ×  10‑3–3.8  ×  10‑3. The effects of impact velocity and relative distance between two types of molten droplets on the shape of the impact mode are examined. The results show that the optimal parameters of the distance from nozzle to substrate and the spreading factor in this experiment are 0.5 mm and 1.33. The diameter, volume and velocity of the inkjet solder droplet are around 37–65 μm, 25–144 picoliters, and 2.0–3.7 m s‑1, respectively. The vertical and inclined column structures of molten lead-free solder can be fabricated using piezoelectric ink-jet printing systems. The end-shapes of the 3D micro structure have been found to be dependent upon the distance from nozzle to substrate and the impact velocity of the molten lead-free solder droplet.

  4. Experimental Investigation of Material Flows Within FSWs Using 3D Tomography

    SciTech Connect

    Charles R. Tolle; Timothy A. White; Karen S. Miller; Denis E. Clark; Herschel B. Smartt

    2008-06-01

    There exists significant prior work using tracers or pre-placed hardened markers within friction stir welding (FSWing) to experimentally explore material flow within the FSW process. Our experiments replaced markers with a thin sheet of copper foil placed between the 6061 aluminum lap and butt joints that were then welded. The absorption characteristics of x-rays for copper and aluminum are significantly different allowing for non-destructive evaluation (NDE) methods such as x-ray computed tomography (CT) to be used to demonstrate the material movement within the weldment on a much larger scale than previously shown. 3D CT reconstruction of the copper components of the weldment allows for a unique view into the final turbulent state of the welding process as process parameters are varied. The x-ray CT data of a section of the weld region was collected using a cone-beam x-ray imaging system developed at the INL. Six-hundred projections were collected over 360-degrees using a 160-kVp Bremsstrahlung x-ray generator (25-micrometer focal spot) and amorphoussilicon x-ray detector. The region of the object that was imaged was about 3cm tall and 1.5cm x 1cm in cross section, and was imaged at a magnification of about 3.6x. The data were reconstructed on a 0.5x0.5x0.5 mm3 voxel grid. After reconstruction, the aluminum and copper could be easily discriminated using a gray level threshold allowing visualization of the copper components. Fractal analysis of the tomographic reconstructed material topology is investigated as a means to quantify macro level material flow based on process parameters. The results of multi-pass FSWs show increased refinement of the copper trace material. Implications of these techniques for quantifying process flow are discussed.

  5. Spectroscopic investigation of the 3d 2D → nf 2F transitions in lithium

    NASA Astrophysics Data System (ADS)

    Shahzada, S.; Shah, M.; Haq, S. U.; Nawaz, M.; Ahmed, M.; Nadeem, Ali

    2016-05-01

    We report term energies and effective quantum numbers of the odd parity 3d 2D → nf 2F series of lithium using multi-step and multi-photon laser excitation schemes. The experiments were performed using three dye lasers simultaneously pumped by the second harmonic (532 nm) of a Q-switched Nd:YAG laser in conjunction with an atomic beam apparatus and thermionic diode ion detector. The first ionization potential of lithium has been determined as 43,487.13 ± 0.02 cm- 1 from the much extended 3d 2D → nf 2F (17 ≤ n ≤ 70) series. In addition, the oscillator strengths of the 3d 2D → nf 2F (15 ≤ n ≤ 48) transitions have been determined, showing a decreasing trend with the increase in principal quantum number n.

  6. State-of-The-Art and Applications of 3D Imaging Sensors in Industry, Cultural Heritage, Medicine, and Criminal Investigation

    PubMed Central

    Sansoni, Giovanna; Trebeschi, Marco; Docchio, Franco

    2009-01-01

    3D imaging sensors for the acquisition of three dimensional (3D) shapes have created, in recent years, a considerable degree of interest for a number of applications. The miniaturization and integration of the optical and electronic components used to build them have played a crucial role in the achievement of compactness, robustness and flexibility of the sensors. Today, several 3D sensors are available on the market, even in combination with other sensors in a “sensor fusion” approach. An importance equal to that of physical miniaturization has the portability of the measurements, via suitable interfaces, into software environments designed for their elaboration, e.g., CAD-CAM systems, virtual renders, and rapid prototyping tools. In this paper, following an overview of the state-of-art of 3D imaging sensors, a number of significant examples of their use are presented, with particular reference to industry, heritage, medicine, and criminal investigation applications. PMID:22389618

  7. Investigation of the 3-D actinic flux field in mountainous terrain

    NASA Astrophysics Data System (ADS)

    Wagner, J. E.; Angelini, F.; Blumthaler, M.; Fitzka, M.; Gobbi, G. P.; Kift, R.; Kreuter, A.; Rieder, H. E.; Simic, S.; Webb, A.; Weihs, P.

    2011-11-01

    During three field campaigns spectral actinic flux was measured from 290-500 nm under clear sky conditions in Alpine terrain and the associated O3- and NO2-photolysis frequencies were calculated and the measurement products were then compared with 1-D- and 3-D-model calculations. To do this 3-D-radiative transfer model was adapted for actinic flux calculations in mountainous terrain and the maps of the actinic flux field at the surface, calculated with the 3-D-radiative transfer model, are given. The differences between the 3-D- and 1-D-model results for selected days during the campaigns are shown, together with the ratios of the modeled actinic flux values to the measurements. In many cases the 1-D-model overestimates actinic flux by more than the measurement uncertainty of 10%. The results of using a 3-D-model generally show significantly lower values, and can underestimate the actinic flux by up to 30%. This case study attempts to quantify the impact of snow cover in combination with topography on spectral actinic flux. The impact of snow cover on the actinic flux was ~ 25% in narrow snow covered valleys, but for snow free areas there were no significant changes due snow cover in the surrounding area and it is found that the effect snow-cover at distances over 5 km from the point of interest was below 5%. Overall the 3-D-model can calculate actinic flux to the same accuracy as the 1-D-model for single points, but gives a much more realistic view of the surface actinic flux field in mountains as topography and obstruction of the horizon are taken into account.

  8. Investigation of leakage current and breakdown voltage in irradiated double-sided 3D silicon sensors

    NASA Astrophysics Data System (ADS)

    Dalla Betta, G.-F.; Ayllon, N.; Boscardin, M.; Hoeferkamp, M.; Mattiazzo, S.; McDuff, H.; Mendicino, R.; Povoli, M.; Seidel, S.; Sultan, D. M. S.; Zorzi, N.

    2016-09-01

    We report on an experimental study aimed at gaining deeper insight into the leakage current and breakdown voltage of irradiated double-sided 3D silicon sensors from FBK, so as to improve both the design and the fabrication technology for use at future hadron colliders such as the High Luminosity LHC. Several 3D diode samples of different technologies and layout are considered, as well as several irradiations with different particle types. While the leakage current follows the expected linear trend with radiation fluence, the breakdown voltage is found to depend on both the bulk damage and the surface damage, and its values can vary significantly with sensor geometry and process details.

  9. The comparison of DYNA3D to approximate solutions for a partially- full waste storage tank subjected to seismic loading

    SciTech Connect

    Zaslawsky, M.; Kennedy, W.N.

    1992-09-30

    Mathematical solutions to the problem consisting of a partially-full waste tank subjected to seismic loading, embedded in soil, is classically difficult in that one has to address: soil-structure interaction, fluid-structure interaction, non-linear behavior of material, dynamic effects. Separating the problem and applying numerous assumptions will yield approximate solutions. This paper explores methods for generating these solutions accurately.

  10. 3D Seismic Interpretation, Mechanical Stratigraphy and Production Analysis of the Marcellus Shale in Northern West Virginia

    NASA Astrophysics Data System (ADS)

    Kish, Mollie K.

    The Marcellus shale is one of the most developed unconventional shale gas reservoirs in the world with a calculated 84.5 trillion cubic feet in proved natural gas reserves in Pennsylvania and West Virginia. To better exploit this resource all geological aspects of the Marcellus shale are being studied. In this study, mechanical stratigraphy and interpreted seismic fracture zones within the Marcellus shale are examined. These geologic criteria are assessed for potential to impact gas production by analyzing the gas production of fourteen horizontal Marcellus shale wells within and around the study area. Mechanical stratigraphy is evaluated from the top of the Tully limestone to the base of the Onondaga limestone to assess vertical heterogeneity of brittleness within and around the Marcellus shale. Brittleness estimations are derived from petrophysical well logs including bulk density, shear velocity and compressional velocity. Mineralogy assessment is completed using Schlumberger's SpectroLithRTM gamma ray spectroscopy mineralogy logs. Elastic moduli including Young's modulus, Poisson's ratio and Lame's parameters are assessed in terms of brittleness and total organic content to develop constraints for areas of high brittleness and high total organic content. The constraints developed at the study well are compared to studies at four other unconventional shale gas sites. The results suggest that mechanical properties are variable and site dependent. Conclusive ranges for Poisson's ratio and Young's modulus constraints for areas of high brittleness and high total organic cannot be developed for an entire shale play but may be useful in local analyses. Seismic discontinuities were extracted from two three dimensional seismic surveys using a post-stack processing workflow that included Ant-Tracking. They are interpreted to be associated with small faults and fracture zones. The relationship between the number of seismic discontinuities intersecting horizontal wells in

  11. Investigating Stress and Seismicity in the Charlevoix Seismic Zone: Evidence from Seismic Anisotropy

    NASA Astrophysics Data System (ADS)

    Baird, A. F.; Bastow, I. D.

    2013-12-01

    The Charlevoix seismic zone, located in the St. Lawrence Valley of Quebec Canada, is one of the most seismically active intra-plate regions in the World, with five earthquakes larger than magnitude 6 occurring since records began in the 1660s. The region is structurally complex, comprising rift faults formed during the opening of the Iapetus Ocean (the St. Lawrence rift), superimposed by a 350 Ma meteorite impact structure. Seismicity occurs along the rift, both in the region of overlap with the crater and extending outside the crater to the NE. A difficulty in explaining the seismicity is that the rift faults strike NE-SW, subparallel to the regional compressive stress orientation, and thus are poorly oriented for reactivation. However, a recent stress inversion from earthquake focal mechanisms suggest that the stress field within the CSZ may be locally very complex, with some regions deviating from the regional orientation by as much as a 50 degree CW rotation [1]. Here we investigate the strain and stress fields around the CSZ by measuring seismic anisotropy by shear-wave splitting. We analysed both upper mantle anisotropic fabrics using teleseismic SKS arrivals, and shallow crustal anisotropy using local earthquakes. While the SKS results show relatively consistent E-W fast directions across all stations, the local results show strong local perturbations. Events outside the crater to the NE have predominately NE-SW oriented fast directions parallel to both the St. Lawrence and the regional tectonic stress field. Inside the crater most fast directions are roughly E-W, matching the deeper SKS results, and also similar in orientation to the perturbed stress field from the focal mechanism stress inversion [1]. A possible explanation for the lateral crustal variation is that anisotropy outside the crater may be dominated by stress aligned cracks, while inside the crater the heavily fractured crust may be unable to maintain a large horizontal stress difference

  12. Method for inverting reflection trace data from 3-D and 4-D seismic surveys and identifying subsurface fluid and pathways in and among hydrocarbon reservoirs based on impedance models

    DOEpatents

    He, Wei; Anderson, Roger N.

    1998-01-01

    A method is disclosed for inverting 3-D seismic reflection data obtained from seismic surveys to derive impedance models for a subsurface region, and for inversion of multiple 3-D seismic surveys (i.e., 4-D seismic surveys) of the same subsurface volume, separated in time to allow for dynamic fluid migration, such that small scale structure and regions of fluid and dynamic fluid flow within the subsurface volume being studied can be identified. The method allows for the mapping and quantification of available hydrocarbons within a reservoir and is thus useful for hydrocarbon prospecting and reservoir management. An iterative seismic inversion scheme constrained by actual well log data which uses a time/depth dependent seismic source function is employed to derive impedance models from 3-D and 4-D seismic datasets. The impedance values can be region grown to better isolate the low impedance hydrocarbon bearing regions. Impedance data derived from multiple 3-D seismic surveys of the same volume can be compared to identify regions of dynamic evolution and bypassed pay. Effective Oil Saturation or net oil thickness can also be derived from the impedance data and used for quantitative assessment of prospective drilling targets and reservoir management.

  13. Method for inverting reflection trace data from 3-D and 4-D seismic surveys and identifying subsurface fluid and pathways in and among hydrocarbon reservoirs based on impedance models

    DOEpatents

    He, W.; Anderson, R.N.

    1998-08-25

    A method is disclosed for inverting 3-D seismic reflection data obtained from seismic surveys to derive impedance models for a subsurface region, and for inversion of multiple 3-D seismic surveys (i.e., 4-D seismic surveys) of the same subsurface volume, separated in time to allow for dynamic fluid migration, such that small scale structure and regions of fluid and dynamic fluid flow within the subsurface volume being studied can be identified. The method allows for the mapping and quantification of available hydrocarbons within a reservoir and is thus useful for hydrocarbon prospecting and reservoir management. An iterative seismic inversion scheme constrained by actual well log data which uses a time/depth dependent seismic source function is employed to derive impedance models from 3-D and 4-D seismic datasets. The impedance values can be region grown to better isolate the low impedance hydrocarbon bearing regions. Impedance data derived from multiple 3-D seismic surveys of the same volume can be compared to identify regions of dynamic evolution and bypassed pay. Effective Oil Saturation or net oil thickness can also be derived from the impedance data and used for quantitative assessment of prospective drilling targets and reservoir management. 20 figs.

  14. How Children Determine the Size of 3D Structures: Investigating Factors Influencing Strategy Choice

    ERIC Educational Resources Information Center

    Vasilyeva, Marina; Ganley, Colleen M.; Casey, Beth M.; Dulaney, Alana; Tillinger, Miriam; Anderson, Karen

    2013-01-01

    This study explores changes in students' strategies as they solve different types of volume problems. Fifth graders were presented with pictures showing 3D objects and a unit cube; they determined how many cubes made up the object and explained their responses. We examined whether children transferred strategies across problem types, varying in…

  15. Experimental investigation of 3D scanheads for laser micro-processing

    NASA Astrophysics Data System (ADS)

    Penchev, Pavel; Dimov, Stefan; Bhaduri, Debajyoti

    2016-07-01

    The broader use of laser micro-processing technology increases the demand for executing complex machining and joining operations on free-from (3D) workpieces. To satisfy these growing requirements it is necessary to utilise 3D scanheads that integrate beam deflectors (X and Y optical axes) and Z modules with high dynamics. The research presented in this communication proposes an experimental technique to quantify the dynamic capabilities of Z modules, also called Dynamic Focusing Modules (DFM), of such 3D scanheads that are essential for efficient, accurate and repeatable laser micro-processing of free form surfaces. The proposed experimental technique is validated on state-of-art laser micro-machining platform and the results show that the DFM dynamic capabilities are substantially inferior than those of X and Y beam deflectors, in particular the maximum speed of the Z module is less than 10% of the maximum speeds achievable with X and Y optical axes of the scanhead. Thus, the DFM dynamics deficiencies can become a major obstacle for the broader use of high frequency laser sources that necessitate high dynamics 3D scanheads for executing cost effectively free-form surface processing operations.

  16. a Multiple Data Set Joint Inversion Global 3d P-Velocity Model of the Earth's Crust and Mantle for Improved Seismic Event Location

    NASA Astrophysics Data System (ADS)

    Ballard, S.; Begnaud, M. L.; Hipp, J. R.; Chael, E. P.; Encarnacao, A.; Maceira, M.; Yang, X.; Young, C. J.; Phillips, W.

    2013-12-01

    SALSA3D is a global 3D P wave velocity model of the Earth's crust and mantle developed specifically to provide seismic event locations that are more accurate and more precise than are locations from 1D and 2.5D models. In this paper, we present the most recent version of our model, for the first time jointly derived from multiple types of data: body wave travel times, surface wave group velocities, and gravity. The latter two are added to provide information in areas with poor body wave coverage, and are down-weighted in areas where body wave coverage is good. To constrain the inversions, we invoked empirical relations among the density, S velocity, and P velocity. We demonstrate the ability of the new SALSA3D model to reduce mislocations and generate statistically robust uncertainty estimates for a large set of realizations derived from a carefully chosen set of globally-distributed ground truth events. We obtain path-dependent travel time prediction uncertainties for our model by computing the full 3D model covariance matrix of our tomographic system and integrating the model slowness variance and covariance along paths of interest. This approach yields very low travel time prediction uncertainties for well-sampled paths through the Earth and higher uncertainties for paths that are poorly represented in the data set used to develop the model. While the calculation of path-dependent prediction uncertainties with this approach is computationally expensive, uncertainties can be pre-computed for a network of stations and stored in 3D lookup tables that can be quickly and efficiently interrogated using GeoTess software.

  17. 3D constraints on a possible deep > 2.5 km massive sulphide mineralization from 2D crooked-line seismic reflection data in the Kristineberg mining area, northern Sweden

    NASA Astrophysics Data System (ADS)

    Malehmir, Alireza; Schmelzbach, Cedric; Bongajum, Emmanuel; Bellefleur, Gilles; Juhlin, Christopher; Tryggvason, Ari

    2009-12-01

    2D crooked-line seismic reflection surveys in crystalline environments are often considered challenging in their processing and interpretation. These challenges are more evident when complex diffraction signals that can originate from out-of-the-plane and a variety of geological features are present. A seismic profile in the Kristineberg mining area in northern Sweden shows an impressive diffraction package, covering an area larger than 25 km 2 in the subsurface at depths greater than 2.5 km. We present here a series of scenarios in which each can, to some extent, explain the nature of this extraordinarily large package of diffractions. Cross-dip analysis, diffraction imaging and modeling, as well as 3D processing of the crooked-line data provided constraints on the interpretation of the diffraction package. Overall, the results indicate that the diffraction package can be associated with at least four main short south-dipping diffractors in a depth range of 2.5-4.5 km. Candidate scenarios for the origin of the diffraction package are: (1) a series of massive sulphide deposits, (2) a series of mafic-ultramafic intrusions, (3) a major shear-zone and (4) multiple contact lithologies. We have also investigated the possible contribution of mode-converted scattered energy in the diffraction package using a modified converted-wave 3D prestack depth migration algorithm with the results indicating that a majority of the diffractions are P-wave diffractions. The 3D prestack migration of the data provided improved images of a series of steeply north-dipping mafic-ultramafic sill intrusions to a depth of about 4 km, where the diffractions appear to focus after the migration. The results and associated interpretations presented in this paper have improved our understanding of this conspicuous package of diffractions and may lead to re-evaluation of the 3D geological model of the Kristineberg mining area.

  18. 3D Reservoir Modeling of Semutang Gas Field: A lonely Gas field in Chittagong-Tripura Fold Belt, with Integrated Well Log, 2D Seismic Reflectivity and Attributes.

    NASA Astrophysics Data System (ADS)

    Salehin, Z.; Woobaidullah, A. S. M.; Snigdha, S. S.

    2015-12-01

    Bengal Basin with its prolific gas rich province provides needed energy to Bangladesh. Present energy situation demands more Hydrocarbon explorations. Only 'Semutang' is discovered in the high amplitude structures, where rest of are in the gentle to moderate structures of western part of Chittagong-Tripura Fold Belt. But it has some major thrust faults which have strongly breached the reservoir zone. The major objectives of this research are interpretation of gas horizons and faults, then to perform velocity model, structural and property modeling to obtain reservoir properties. It is needed to properly identify the faults and reservoir heterogeneities. 3D modeling is widely used to reveal the subsurface structure in faulted zone where planning and development drilling is major challenge. Thirteen 2D seismic and six well logs have been used to identify six gas bearing horizons and a network of faults and to map the structure at reservoir level. Variance attributes were used to identify faults. Velocity model is performed for domain conversion. Synthetics were prepared from two wells where sonic and density logs are available. Well to seismic tie at reservoir zone shows good match with Direct Hydrocarbon Indicator on seismic section. Vsh, porosity, water saturation and permeability have been calculated and various cross plots among porosity logs have been shown. Structural modeling is used to make zone and layering accordance with minimum sand thickness. Fault model shows the possible fault network, those liable for several dry wells. Facies model have been constrained with Sequential Indicator Simulation method to show the facies distribution along the depth surfaces. Petrophysical models have been prepared with Sequential Gaussian Simulation to estimate petrophysical parameters away from the existing wells to other parts of the field and to observe heterogeneities in reservoir. Average porosity map for each gas zone were constructed. The outcomes of the research

  19. Magmatic Systems in 3-D

    NASA Astrophysics Data System (ADS)

    Kent, G. M.; Harding, A. J.; Babcock, J. M.; Orcutt, J. A.; Bazin, S.; Singh, S.; Detrick, R. S.; Canales, J. P.; Carbotte, S. M.; Diebold, J.

    2002-12-01

    Multichannel seismic (MCS) images of crustal magma chambers are ideal targets for advanced visualization techniques. In the mid-ocean ridge environment, reflections originating at the melt-lens are well separated from other reflection boundaries, such as the seafloor, layer 2A and Moho, which enables the effective use of transparency filters. 3-D visualization of seismic reflectivity falls into two broad categories: volume and surface rendering. Volumetric-based visualization is an extremely powerful approach for the rapid exploration of very dense 3-D datasets. These 3-D datasets are divided into volume elements or voxels, which are individually color coded depending on the assigned datum value; the user can define an opacity filter to reject plotting certain voxels. This transparency allows the user to peer into the data volume, enabling an easy identification of patterns or relationships that might have geologic merit. Multiple image volumes can be co-registered to look at correlations between two different data types (e.g., amplitude variation with offsets studies), in a manner analogous to draping attributes onto a surface. In contrast, surface visualization of seismic reflectivity usually involves producing "fence" diagrams of 2-D seismic profiles that are complemented with seafloor topography, along with point class data, draped lines and vectors (e.g. fault scarps, earthquake locations and plate-motions). The overlying seafloor can be made partially transparent or see-through, enabling 3-D correlations between seafloor structure and seismic reflectivity. Exploration of 3-D datasets requires additional thought when constructing and manipulating these complex objects. As numbers of visual objects grow in a particular scene, there is a tendency to mask overlapping objects; this clutter can be managed through the effective use of total or partial transparency (i.e., alpha-channel). In this way, the co-variation between different datasets can be investigated

  20. 3-D architecture modeling using high-resolution seismic data and sparse well control: Example from the Mars {open_quotes}Pink{close_quotes} reservoir, Mississippi Canyon Area, Gulf of Mexico

    SciTech Connect

    Chapin, M.A.; Tiller, G.M.; Mahaffie, M.J.

    1996-12-31

    Economic considerations of the deep-water turbidite play, in the Gulf of Mexico and elsewhere, require large reservoir volumes to be drained by relatively few, very expensive wells. Deep-water development projects to date have been planned on the basis of high-quality 3-D seismic data and sparse well control. The link between 3-D seismic, well control, and the 3-D geological and reservoir architecture model are demonstrated here for Pliocene turbidite sands of the {open_quotes}Pink{close_quotes} reservoir, Prospect Mars, Mississippi Canyon Areas 763 and 807, Gulf of Mexico. This information was used to better understand potential reservoir compartments for development well planning.

  1. Investigating the Use of 3d Geovisualizations for Urban Design in Informal Settlement Upgrading in South Africa

    NASA Astrophysics Data System (ADS)

    Rautenbach, V.; Coetzee, S.; Çöltekin, A.

    2016-06-01

    Informal settlements are a common occurrence in South Africa, and to improve in-situ circumstances of communities living in informal settlements, upgrades and urban design processes are necessary. Spatial data and maps are essential throughout these processes to understand the current environment, plan new developments, and communicate the planned developments. All stakeholders need to understand maps to actively participate in the process. However, previous research demonstrated that map literacy was relatively low for many planning professionals in South Africa, which might hinder effective planning. Because 3D visualizations resemble the real environment more than traditional maps, many researchers posited that they would be easier to interpret. Thus, our goal is to investigate the effectiveness of 3D geovisualizations for urban design in informal settlement upgrading in South Africa. We consider all involved processes: 3D modelling, visualization design, and cognitive processes during map reading. We found that procedural modelling is a feasible alternative to time-consuming manual modelling, and can produce high quality models. When investigating the visualization design, the visual characteristics of 3D models and relevance of a subset of visual variables for urban design activities of informal settlement upgrades were qualitatively assessed. The results of three qualitative user experiments contributed to understanding the impact of various levels of complexity in 3D city models and map literacy of future geoinformatics and planning professionals when using 2D maps and 3D models. The research results can assist planners in designing suitable 3D models that can be used throughout all phases of the process.

  2. Effects of changes in rock microstructures on permeability: 3-D printing investigation

    NASA Astrophysics Data System (ADS)

    Head, D.; Vanorio, T.

    2016-07-01

    Rocks are naturally heterogeneous; two rock samples with identical bulk properties can vary widely in microstructure. Understanding how the microstructure and bulk properties of rocks then evolve during experiments and computations simulating diagenesis is inherently a multiscale problem. The advent of modern 3-D printing has provided an unprecedented opportunity to link those scales by combining the strengths of digital and experimental rock physics. In this study, we take a computerized tomography-scanned model of a natural carbonate pore space then iteratively digitally manipulate, 3-D print, and measure the flow properties in the laboratory. This approach allows us to access multiple scales digitally and experimentally and test hypotheses about how changes in rock microstructure due to compaction and dissolution affect bulk transport properties in a repeatable manner.

  3. Investigation of anal motor characteristics of the sensorimotor response (SMR) using 3-D anorectal pressure topography

    PubMed Central

    Cheeney, Gregory; Remes-Troche, Jose M.; Attaluri, Ashok

    2011-01-01

    Desire to defecate is associated with a unique anal contractile response, the sensorimotor response (SMR). However, the precise muscle(s) involved is not known. We aimed to examine the role of external and internal anal sphincter and the puborectalis muscle in the genesis of SMR. Anorectal 3-D pressure topography was performed in 10 healthy subjects during graded rectal balloon distention using a novel high-definition manometry system consisting of a probe with 256 pressure sensors arranged circumferentially. The anal pressure changes before, during, and after the onset of SMR were measured at every millimeter along the length of anal canal and in 3-D by dividing the anal canal into 4 × 2.1-mm grids. Pressures were assessed in the longitudinal and anterior-posterior axis. Anal ultrasound was performed to assess puborectalis morphology. 3-D topography demonstrated that rectal distention produced an SMR coinciding with desire to defecate and predominantly induced by contraction of puborectalis. Anal ultrasound showed that the puborectalis was located at mean distance of 3.5 cm from anal verge, which corresponded with peak pressure difference between the anterior and posterior vectors observed at 3.4 cm with 3-D topography (r = 0.77). The highest absolute and percentage increases in pressure during SMR were seen in the superior-posterior portion of anal canal, reaffirming the role of puborectalis. The SMR anal pressure profile showed a peak pressure at 1.6 cm from anal verge in the anterior and posterior vectors and distinct increase in pressure only posteriorly at 3.2 cm corresponding to puborectalis. We concluded that SMR is primarily induced by the activation and contraction of the puborectalis muscle in response to a sensation of a desire to defecate. PMID:21109594

  4. Investigating the capabilities of semantic enrichment of 3D CityEngine data

    NASA Astrophysics Data System (ADS)

    Solou, Dimitra; Dimopoulou, Efi

    2016-08-01

    In recent years the development of technology and the lifting of several technical limitations, has brought the third dimension to the fore. The complexity of urban environments and the strong need for land administration, intensify the need of using a three-dimensional cadastral system. Despite the progress in the field of geographic information systems and 3D modeling techniques, there is no fully digital 3D cadastre. The existing geographic information systems and the different methods of three-dimensional modeling allow for better management, visualization and dissemination of information. Nevertheless, these opportunities cannot be totally exploited because of deficiencies in standardization and interoperability in these systems. Within this context, CityGML was developed as an international standard of the Open Geospatial Consortium (OGC) for 3D city models' representation and exchange. CityGML defines geometry and topology for city modeling, also focusing on semantic aspects of 3D city information. The scope of CityGML is to reach common terminology, also addressing the imperative need for interoperability and data integration, taking into account the number of available geographic information systems and modeling techniques. The aim of this paper is to develop an application for managing semantic information of a model generated based on procedural modeling. The model was initially implemented in CityEngine ESRI's software, and then imported to ArcGIS environment. Final goal was the original model's semantic enrichment and then its conversion to CityGML format. Semantic information management and interoperability seemed to be feasible by the use of the 3DCities Project ESRI tools, since its database structure ensures adding semantic information to the CityEngine model and therefore automatically convert to CityGML for advanced analysis and visualization in different application areas.

  5. Regional seismic wavefield computation on a 3-D heterogeneous Earth model by means of coupled traveling wave synthesis

    USGS Publications Warehouse

    Pollitz, F.F.

    2002-01-01

    I present a new algorithm for calculating seismic wave propagation through a three-dimensional heterogeneous medium using the framework of mode coupling theory originally developed to perform very low frequency (f < ???0.01-0.05 Hz) seismic wavefield computation. It is a Greens function approach for multiple scattering within a defined volume and employs a truncated traveling wave basis set using the locked mode approximation. Interactions between incident and scattered wavefields are prescribed by mode coupling theory and account for the coupling among surface waves, body waves, and evanescent waves. The described algorithm is, in principle, applicable to global and regional wave propagation problems, but I focus on higher frequency (typically f ??????0.25 Hz) applications at regional and local distances where the locked mode approximation is best utilized and which involve wavefields strongly shaped by propagation through a highly heterogeneous crust. Synthetic examples are shown for P-SV-wave propagation through a semi-ellipsoidal basin and SH-wave propagation through a fault zone.

  6. Numerical investigation of band gaps in 3D printed cantilever-in-mass metamaterials

    PubMed Central

    Qureshi, Awais; Li, Bing; Tan, K. T.

    2016-01-01

    In this research, the negative effective mass behavior of elastic/mechanical metamaterials is exhibited by a cantilever-in-mass structure as a proposed design for creating frequency stopping band gaps, based on local resonance of the internal structure. The mass-in-mass unit cell model is transformed into a cantilever-in-mass model using the Bernoulli-Euler beam theory. An analytical model of the cantilever-in-mass structure is derived and the effects of geometrical dimensions and material parameters to create frequency band gaps are examined. A two-dimensional finite element model is created to validate the analytical results, and excellent agreement is achieved. The analytical model establishes an easily tunable metamaterial design to realize wave attenuation based on locally resonant frequency. To demonstrate feasibility for 3D printing, the analytical model is employed to design and fabricate 3D printable mechanical metamaterial. A three-dimensional numerical experiment is performed using COMSOL Multiphysics to validate the wave attenuation performance. Results show that the cantilever-in-mass metamaterial is capable of mitigating stress waves at the desired resonance frequency. Our study successfully presents the use of one constituent material to create a 3D printed cantilever-in-mass metamaterial with negative effective mass density for stress wave mitigation purposes. PMID:27329828

  7. Numerical investigation of band gaps in 3D printed cantilever-in-mass metamaterials

    NASA Astrophysics Data System (ADS)

    Qureshi, Awais; Li, Bing; Tan, K. T.

    2016-06-01

    In this research, the negative effective mass behavior of elastic/mechanical metamaterials is exhibited by a cantilever-in-mass structure as a proposed design for creating frequency stopping band gaps, based on local resonance of the internal structure. The mass-in-mass unit cell model is transformed into a cantilever-in-mass model using the Bernoulli-Euler beam theory. An analytical model of the cantilever-in-mass structure is derived and the effects of geometrical dimensions and material parameters to create frequency band gaps are examined. A two-dimensional finite element model is created to validate the analytical results, and excellent agreement is achieved. The analytical model establishes an easily tunable metamaterial design to realize wave attenuation based on locally resonant frequency. To demonstrate feasibility for 3D printing, the analytical model is employed to design and fabricate 3D printable mechanical metamaterial. A three-dimensional numerical experiment is performed using COMSOL Multiphysics to validate the wave attenuation performance. Results show that the cantilever-in-mass metamaterial is capable of mitigating stress waves at the desired resonance frequency. Our study successfully presents the use of one constituent material to create a 3D printed cantilever-in-mass metamaterial with negative effective mass density for stress wave mitigation purposes.

  8. Planar Gradient Diffusion System to Investigate Chemotaxis in a 3D Collagen Matrix.

    PubMed

    Stout, David A; Toyjanova, Jennet; Franck, Christian

    2015-01-01

    The importance of cell migration can be seen through the development of human life. When cells migrate, they generate forces and transfer these forces to their surrounding area, leading to cell movement and migration. In order to understand the mechanisms that can alter and/or affect cell migration, one can study these forces. In theory, understanding the fundamental mechanisms and forces underlying cell migration holds the promise of effective approaches for treating diseases and promoting cellular transplantation. Unfortunately, modern chemotaxis chambers that have been developed are usually restricted to two dimensions (2D) and have complex diffusion gradients that make the experiment difficult to interpret. To this end, we have developed, and describe in this paper, a direct-viewing chamber for chemotaxis studies, which allows one to overcome modern chemotaxis chamber obstacles able to measure cell forces and specific concentration within the chamber in a 3D environment to study cell 3D migration. More compelling, this approach allows one to successfully model diffusion through 3D collagen matrices and calculate the coefficient of diffusion of a chemoattractant through multiple different concentrations of collagen, while keeping the system simple and user friendly for traction force microscopy (TFM) and digital volume correlation (DVC) analysis. PMID:26131645

  9. Investigating the Potential of Using Off-Axis 3D Woven Composites in Composite Joints' Applications

    NASA Astrophysics Data System (ADS)

    Saleh, Mohamed Nasr; Wang, Ying; Yudhanto, Arief; Joesbury, Adam; Potluri, Prasad; Lubineau, Gilles; Soutis, Constantinos

    2016-09-01

    The effect of circular notch has been evaluated for three different architectures of three-dimensional (3D) carbon fibre woven composites (orthogonal, ORT; layer-to-layer, LTL; angle interlock, AI) through open-hole quasi-static tension and double-lap bearing strength tests in the off-axis (45°) direction. Damage characterisation is monitored using Digital Image correlation (DIC) for open-hole testing and X-ray Computed Tomography (CT) for double-lap bearing strength test. The off-axis notched 3D woven composites exhibits minor reduction (less than 10 %) of the notched strength compared to the un-notched strength. DIC strain contour clearly show stress/strain localisation regions around the hole periphery and stress/strain redistribution away from the whole due to the z-binder existence, especially for ORT architecture. Up to 50 % bearing strain, no significant difference in the bearing stress/bearing strain response is observed. However when ORT architecture was loaded up to failure, it demonstrates higher strain to failure (~140 %) followed by AI (~105 %) and lastly LTL (~85 %). X-ray CT scans reveal the effect of the z-binder architecture on damage evolution and delamination resistance. The study suggests that off-axis loaded 3D woven composites, especially ORT architecture, has a great potential of overcoming the current challenges facing composite laminates when used in composite joints' applications.

  10. Numerical investigation of band gaps in 3D printed cantilever-in-mass metamaterials.

    PubMed

    Qureshi, Awais; Li, Bing; Tan, K T

    2016-01-01

    In this research, the negative effective mass behavior of elastic/mechanical metamaterials is exhibited by a cantilever-in-mass structure as a proposed design for creating frequency stopping band gaps, based on local resonance of the internal structure. The mass-in-mass unit cell model is transformed into a cantilever-in-mass model using the Bernoulli-Euler beam theory. An analytical model of the cantilever-in-mass structure is derived and the effects of geometrical dimensions and material parameters to create frequency band gaps are examined. A two-dimensional finite element model is created to validate the analytical results, and excellent agreement is achieved. The analytical model establishes an easily tunable metamaterial design to realize wave attenuation based on locally resonant frequency. To demonstrate feasibility for 3D printing, the analytical model is employed to design and fabricate 3D printable mechanical metamaterial. A three-dimensional numerical experiment is performed using COMSOL Multiphysics to validate the wave attenuation performance. Results show that the cantilever-in-mass metamaterial is capable of mitigating stress waves at the desired resonance frequency. Our study successfully presents the use of one constituent material to create a 3D printed cantilever-in-mass metamaterial with negative effective mass density for stress wave mitigation purposes. PMID:27329828

  11. 3D ultrasound system to investigate intraventricular hemorrhage in preterm neonates

    NASA Astrophysics Data System (ADS)

    Kishimoto, J.; de Ribaupierre, S.; Lee, D. S. C.; Mehta, R.; St. Lawrence, K.; Fenster, A.

    2013-11-01

    Intraventricular hemorrhage (IVH) is a common disorder among preterm neonates that is routinely diagnosed and monitored by 2D cranial ultrasound (US). The cerebral ventricles of patients with IVH often have a period of ventricular dilation (ventriculomegaly). This initial increase in ventricle size can either spontaneously resolve, which often shows clinically as a period of stabilization in ventricle size and eventual decline back towards a more normal size, or progressive ventricular dilation that does not stabilize and which may require interventional therapy to reduce symptoms relating to increased intracranial pressure. To improve the characterization of ventricle dilation, we developed a 3D US imaging system that can be used with a conventional clinical US scanner to image the ventricular system of preterm neonates at risk of ventriculomegaly. A motorized transducer housing was designed specifically for hand-held use inside an incubator using a transducer commonly used for cranial 2D US scans. This system was validated using geometric phantoms, US/MRI compatible ventricle volume phantoms, and patient images to determine 3D reconstruction accuracy and inter- and intra-observer volume estimation variability. 3D US geometric reconstruction was found to be accurate with an error of <0.2%. Measured volumes of a US/MRI compatible ventricle-like phantom were within 5% of gold standard water displacement measurements. Intra-class correlation for the three observers was 0.97, showing very high agreement between observers. The coefficient of variation was between 1.8-6.3% for repeated segmentations of the same patient. The minimum detectable difference was calculated to be 0.63 cm3 for a single observer. Results from ANOVA for three observers segmenting three patients of IVH grade II did not show any significant differences (p > 0.05) for the measured ventricle volumes between observers. This 3D US system can reliably produce 3D US images of the neonatal ventricular

  12. Improved 3D seismic attribute mapping by CRS stacking instead of NMO stacking: Application to a geothermal reservoir in the Polish Basin

    NASA Astrophysics Data System (ADS)

    Pussak, Marcin; Bauer, Klaus; Stiller, Manfred; Bujakowski, Wieslaw

    2014-04-01

    Within a seismic reflection processing work flow, the common-reflection-surface (CRS) stack can be applied as an alternative for the conventional normal moveout (NMO) or the dip moveout (DMO) stack. The advantages of the CRS stack include (1) data-driven automatic determination of stacking operator parameters, (2) imaging of arbitrarily curved geological boundaries, and (3) significant increase in signal-to-noise (S/N) ratio by stacking far more traces than used in a conventional stack. In this paper we applied both NMO and CRS stackings to process a sparse 3D seismic data set acquired within a geothermal exploration study in the Polish Basin. The stacked images show clear enhancements in quality achieved by the CRS stack in comparison with the conventional stack. While this was expected from previous studies, we also found remarkable improvements in the quality of seismic attributes when the CRS stack was applied instead of the conventional stack. For the major geothermal target reservoir (Lower Jurassic horizon Ja1), we present a comparison between both stacking methods for a number of common attributes, including root-mean-square (RMS) amplitudes, instantaneous frequencies, coherency, and spectral decomposition attributes derived from the continuous wavelet transform. The attribute maps appear noisy and highly fluctuating after the conventional stack, and are clearly structured after the CRS stack. A seismic facies analysis was finally carried out for the Ja1 horizon using the attributes derived from the CRS stack by using self-organizing map clustering techniques. A corridor parallel to a fault system was identified, which is characterized by decreased RMS amplitudes and decreased instantaneous frequencies. In our interpretation, this region represents a fractured, fluid-bearing compartment within the sandstone reservoir, which indicates favorable conditions for geothermal exploitation.

  13. Deep structure of the crust beneath the Sea of Okhotsk inferred from 3D seismic density modeling

    NASA Astrophysics Data System (ADS)

    Piskarev, A. L.; Butsenko, V. V.; Poselov, V. A.; Savin, V. A.

    2012-05-01

    Potential field anomalies of the Sea of Okhotsk region are analyzed for compiling a map of the basement's tectonic structures. A 3D density model of the Earth's crust is constructed using seismogeological and experimental-petrophysical data, which made it possible to obtain a visual image of main structures of the region reflecting the observable geophysical anomalies. The obtained data allow a domain located in the central part of the Sea of Okhotsk beyond the limits of the exclusive economic zone of the Russian Federation to be considered as a natural continuation of the continental shelf since the latter is structurally similar to western Kamchatka. The deep structural boundaries rise beneath the large sedimentary Deryugin and Tinro basins, which is characteristic of petroliferous basins.

  14. Seismically Inferred Rupture Process of the 2011 Tohoku-Oki Earthquake by Using Data-Validated 3D and 2.5D Green's Tensor Waveforms

    NASA Astrophysics Data System (ADS)

    Okamoto, T.; Takenaka, H.; Hara, T.; Nakamura, T.; Aoki, T.

    2014-12-01

    We analyze "seismic" rupture process of the March 11, 2011 Tohoku-Oki earthquake (GCMT Mw9.1) by using a non-linear multi-time-window waveform inversion method. We incorporate the effect of the near-source laterally heterogeneous structure on the synthetic Green's tensor waveforms; otherwise the analysis may result in erroneous solutions [1]. To increase the resolution we use teleseismic and strong-motion seismograms jointly because the one-sided distribution of strong-motion station may cause reduced resolution near the trench axis [2]. We use a 2.5D FDM [3] for teleseismic P-waves and a full 3D FDM that incorporates topography, oceanic water layer, 3D heterogeneity and attenuation for strong-motions [4]. We apply multi-GPU acceleration by using the TSUBAME supercomputer in Tokyo Institute of Technology [5]. We "validated" the Green's tensor waveforms with a point-source moment tensor inversion analysis for a small (Mw5.8) shallow event: we confirm the observed waveforms are reproduced well with the synthetics.The inferred slip distribution using the 2.5D and 3D Green's functions has large slips (max. 37 m) near the hypocenter and small slips near the trench (figure). Also an isolated slip region is identified close to Fukushima prefecture. These features are similar to those obtained by our preliminary study [4]. The land-ward large slips and trench-ward small slips have also been reported by [2]. It is remarkable that we confirmed these features by using data-validated Green's functions. On the other hand very large slips are inferred close to the trench when we apply "1D" Green's functions that do not incorporate the lateral heterogeneity. Our result suggests the trench-ward large deformation that caused large tsunamis did not radiate strong seismic waves. Very slow slips (e.g., the tsunami earthquake), delayed slips and anelastic deformation are among the candidates of the physical processes of the deformation.[1] Okamoto and Takenaka, EPS, 61, e17-e20, 2009

  15. Neoarchaean tectonic history of the Witwatersrand Basin and Ventersdorp Supergroup: New constraints from high-resolution 3D seismic reflection data

    NASA Astrophysics Data System (ADS)

    Manzi, Musa S. D.; Hein, Kim A. A.; King, Nick; Durrheim, Raymond J.

    2013-04-01

    First-order scale structures in the West Wits Line and West Rand goldfields of the Witwatersrand Basin (South Africa) were mapped using the high-resolution 3D reflection seismic method. Structural models constrain the magnitude of displacement of thrusts and faults, the gross structural architecture and Neoarchaean tectonic evolution of the West Rand and Bank fault zones, which offset the gold-bearing reefs of the basin. The merging of several 3D seismic surveys made clear the gross strato-structural architecture of the goldfields; a macroscopic fold-thrust belt is crosscut by a macroscopic extensional fault array. These are dissected, eroded and overlain by the Transvaal Supergroup above an angular unconformity. The seismic sections confirm that the West Rand Group (ca. 2985-2902 Ma) is unconformably overlain by the Central Rand Group (ca. 2902-2849 Ma), with tilting of the West Rand Group syn- to post-erosion at ca. 2.9 Ga. The seismic sections also confirm that an unconformable relationship exists between the Central Rand Group and the auriferous Ventersdorp Contact Reef (VCR), with an easterly-verging fold-thrust belt being initiated concomitant to deposition of the VCR at approximately 2.72 Ga. Fold-thrust formation included development of the (1) newly identified first-order scale Libanon Anticline, (2) Tandeka and Jabulani thrusts which displace the West Rand Group, and (3) parasite folds. The fold-thrust belt is crosscut by a macroscopic extensional fault array (or rift-like system of faults) which incepted towards the end of extrusion of the Ventersdorp lavas, and certainly during deposition of the Platberg Group (2709-2643 Ma) when a mantle plume may have heated the lithosphere. The West Rand and Bank fault zones formed at this time and include (1) the West Rand and Bank faults which are scissors faults; (2) second and third-order scale normal faults in the immediate footwall and hanging wall of the faults; (3) drag synclines, and (4) rollover anticlines.

  16. Experimental and theoretical investigations of four 3d-4f butterfly single-molecule magnets.

    PubMed

    Zou, Hua-Hong; Sheng, Liang-Bing; Liang, Fu-Pei; Chen, Zi-Lu; Zhang, Yi-Quan

    2015-11-14

    The syntheses, structures, and characterization of four 3d-4f butterfly clusters are described. With different polyhydroxy Schiff-base ligands 2-(((2-hydroxy-3-methoxyphenyl)methylene)amino)-2-(hydroxymethyl)-1,3-propanediol (H4L1) and 2-(2,3-dihydroxpropyliminomethyl)-6-methoxyphenol (H3L2), three heterotetranuclear NiLn complexes (NiDy-L1 (1), NiTb-L2 (2), NiDy-L2 (3)) and one heterohexanuclear CoDy complex (4) were obtained. The three heterotetranuclear NiLn complexes display a central planar butterfly topology. The heterohexanuclear complex was built from butterfly CoDy clusters and two Dy(III) ions by the bridging of pivalate. The vertices of the body positions of the butterfly are occupied by transition metal ions in all four complexes. Magnetic analyses indicate that the complexes exhibit typical single-molecule magnet behaviour with anisotropy barriers of 33.7 cm(-1), 60.3 cm(-1), 39.6 cm(-1), and 18.4 cm(-1) for 1-4, respectively. Ab initio calculations were performed on these complexes, and the low lying electronic structure of each Ln(III) (Ln = Dy, Tb) ion and the magnetic interactions were determined. It was found that the two Ln ions may have much more contribution to the total relaxation barrier through the stronger 3d-4f exchange couplings compared to weak Ln-Ln interactions.

  17. Earthquakes in Action: Incorporating Multimedia, Internet Resources, Large-scale Seismic Data, and 3-D Visualizations into Innovative Activities and Research Projects for Today's High School Students

    NASA Astrophysics Data System (ADS)

    Smith-Konter, B.; Jacobs, A.; Lawrence, K.; Kilb, D.

    2006-12-01

    The most effective means of communicating science to today's "high-tech" students is through the use of visually attractive and animated lessons, hands-on activities, and interactive Internet-based exercises. To address these needs, we have developed Earthquakes in Action, a summer high school enrichment course offered through the California State Summer School for Mathematics and Science (COSMOS) Program at the University of California, San Diego. The summer course consists of classroom lectures, lab experiments, and a final research project designed to foster geophysical innovations, technological inquiries, and effective scientific communication (http://topex.ucsd.edu/cosmos/earthquakes). Course content includes lessons on plate tectonics, seismic wave behavior, seismometer construction, fault characteristics, California seismicity, global seismic hazards, earthquake stress triggering, tsunami generation, and geodetic measurements of the Earth's crust. Students are introduced to these topics through lectures-made-fun using a range of multimedia, including computer animations, videos, and interactive 3-D visualizations. These lessons are further enforced through both hands-on lab experiments and computer-based exercises. Lab experiments included building hand-held seismometers, simulating the frictional behavior of faults using bricks and sandpaper, simulating tsunami generation in a mini-wave pool, and using the Internet to collect global earthquake data on a daily basis and map earthquake locations using a large classroom map. Students also use Internet resources like Google Earth and UNAVCO/EarthScope's Jules Verne Voyager Jr. interactive mapping tool to study Earth Science on a global scale. All computer-based exercises and experiments developed for Earthquakes in Action have been distributed to teachers participating in the 2006 Earthquake Education Workshop, hosted by the Visualization Center at Scripps Institution of Oceanography (http

  18. Structural control on the Tohoku earthquake rupture process investigated by 3D FEM, tsunami and geodetic data

    PubMed Central

    Romano, F.; Trasatti, E.; Lorito, S.; Piromallo, C.; Piatanesi, A.; Ito, Y.; Zhao, D.; Hirata, K.; Lanucara, P.; Cocco, M.

    2014-01-01

    The 2011 Tohoku earthquake (Mw = 9.1) highlighted previously unobserved features for megathrust events, such as the large slip in a relatively limited area and the shallow rupture propagation. We use a Finite Element Model (FEM), taking into account the 3D geometrical and structural complexities up to the trench zone, and perform a joint inversion of tsunami and geodetic data to retrieve the earthquake slip distribution. We obtain a close spatial correlation between the main deep slip patch and the local seismic velocity anomalies, and large shallow slip extending also to the North coherently with a seismically observed low-frequency radiation. These observations suggest that the friction controlled the rupture, initially confining the deeper rupture and then driving its propagation up to the trench, where it spreads laterally. These findings are relevant to earthquake and tsunami hazard assessment because they may help to detect regions likely prone to rupture along the megathrust, and to constrain the probability of high slip near the trench. Our estimate of ~40 m slip value around the JFAST (Japan Trench Fast Drilling Project) drilling zone contributes to constrain the dynamic shear stress and friction coefficient of the fault obtained by temperature measurements to ~0.68 MPa and ~0.10, respectively. PMID:25005351

  19. Structural control on the Tohoku earthquake rupture process investigated by 3D FEM, tsunami and geodetic data.

    PubMed

    Romano, F; Trasatti, E; Lorito, S; Piromallo, C; Piatanesi, A; Ito, Y; Zhao, D; Hirata, K; Lanucara, P; Cocco, M

    2014-01-01

    The 2011 Tohoku earthquake (Mw = 9.1) highlighted previously unobserved features for megathrust events, such as the large slip in a relatively limited area and the shallow rupture propagation. We use a Finite Element Model (FEM), taking into account the 3D geometrical and structural complexities up to the trench zone, and perform a joint inversion of tsunami and geodetic data to retrieve the earthquake slip distribution. We obtain a close spatial correlation between the main deep slip patch and the local seismic velocity anomalies, and large shallow slip extending also to the North coherently with a seismically observed low-frequency radiation. These observations suggest that the friction controlled the rupture, initially confining the deeper rupture and then driving its propagation up to the trench, where it spreads laterally. These findings are relevant to earthquake and tsunami hazard assessment because they may help to detect regions likely prone to rupture along the megathrust, and to constrain the probability of high slip near the trench. Our estimate of ~40 m slip value around the JFAST (Japan Trench Fast Drilling Project) drilling zone contributes to constrain the dynamic shear stress and friction coefficient of the fault obtained by temperature measurements to ~0.68 MPa and ~0.10, respectively. PMID:25005351

  20. Basement structure of the Hontomín CO2 storage site (Spain) determined by integration of microgravity and 3-D seismic data

    NASA Astrophysics Data System (ADS)

    Andrés, Juvenal; Alcalde, Juan; Ayarza, Puy; Saura, Eduard; Marzán, Ignacio; Martí, David; Ramón Martínez Catalán, José; Carbonell, Ramón; Pérez-Estaún, Andrés; García-Lobón, José Luis; Rubio, Félix Manuel

    2016-05-01

    A multidisciplinary study has been carried out in Hontomín (Spain) to determine the basement structural setting, its geometry and the geometry of the sedimentary succession of an area aimed to be the first Spanish pilot plant for CO2 storage. An integration of coincident 3-D seismic results, borehole data and unpublished microgravity data were used to reproduce the deep structure and topography of the basement and to quantify the thickness of the Triassic Keuper evaporites. The subsurface structure is characterized by a half-graben setting filled with Keuper evaporites (up to 2000 m thick), forming an extensional forced fold. All data sets clearly identify two main fault systems, compartmentalizing the main structural domain into three differentiated blocks. These faults have been interpreted to be reactivated normal faults that have led to the formation of the Hontomín dome.

  1. Advanced Reservoir Characterization and Development through High-Resolution 3C3D Seismic and Horizontal Drilling: Eva South Marrow Sand Unit, Texas County, Oklahoma

    SciTech Connect

    Wheeler,David M.; Miller, William A.; Wilson, Travis C.

    2002-03-11

    The Eva South Morrow Sand Unit is located in western Texas County, Oklahoma. The field produces from an upper Morrow sandstone, termed the Eva sandstone, deposited in a transgressive valley-fill sequence. The field is defined as a combination structural stratigraphic trap; the reservoir lies in a convex up -dip bend in the valley and is truncated on the west side by the Teepee Creek fault. Although the field has been a successful waterflood since 1993, reservoir heterogeneity and compartmentalization has impeded overall sweep efficiency. A 4.25 square mile high-resolution, three component three-dimensional (3C3D) seismic survey was acquired in order to improve reservoir characterization and pinpoint the optimal location of a new horizontal producing well, the ESU 13-H.

  2. 3D modeling of the Buhi debris avalanche deposit of Iriga Volcano, Philippines by integrating shallow-seismic reflection and geological data

    NASA Astrophysics Data System (ADS)

    Minimo, Likha G.; Lagmay, Alfredo Mahar Francisco A.

    2016-06-01

    Numerical models for simulating volcanic debris avalanches commonly lack a critical initiation parameter, the source volume, which is difficult to estimate without data on the deposit thickness. This, in turn, limits how rheology can be characterized for simulating flow. Leapfrog Geo, a 3D geological modeling software, was used to integrate shallow-seismic reflection profiles with field and borehole data to determine the volume of the Buhi debris avalanche and the pre-collapse structure of Iriga Volcano. Volumes of the deposit calculated in this way are 34-71% larger than previous estimates. This technique may improve models of debris avalanches elsewhere in the world, and more precisely depict landslide runout and lateral extent, thus improving disaster prevention and mitigation for the many cities located near volcanoes.

  3. Along-strike variations of structural styles in the imbricated Molasse of Salzburg and Upper Austria: a 3-D seismic perspective

    NASA Astrophysics Data System (ADS)

    Hinsch, Ralph; Linzer, Hans-Gert

    2010-05-01

    At the southern border of the Northern Alpine Foreland Basin syntectonic deposits (Molasse Sediments) are partly incorporated into Alpine contractional deformation. Along the alpine chain style and timing of this deformation varies significantly. In this study we use one of the largest European on-shore 3-D seismic datasets, spanning the Molasse basin of Upper Austria and Salzburg states, to investigate the along-strike structural architecture of the alpine deformation front. In the Austrian Part of the Molasse basin, foredeep sedimentation started in Upper-Eocene times (Wagner, 1996). The sediments cover the European margin, consisting of a crystalline basement covered by variously thick Mesozoic sediments (Nachtmann und Wagner, 1987). In Oligocene to Lower Miocene times, syntectonic foredeep sedimentation took place in a deep marine environment, comprising an axial channel system (Linzer 2001, DeRuig and Hubbard, 2006). Parts of these syntectonic sediments are subsequently affected by the advancing thrust wedge. Within the study area, three distinct fold-and-thrust belt segments of different structural architecture can be defined. 1) The Perwang Imbricates are a promontory mostly situated in Salzburg at the border to Germany. Complexly deformed small thrust sheets evolve above a detachment horizon situated in Late Cretaceous shaly marls in Oligocene times. Syntectonic piggy-back and thrust top basins evolve (Covault et al. 2008), which are partly affected by subsequent Miocene overthrusting. 2) The Regau Segment is the area west of the Perwang lobe. It is dominated by few number of thrust sheets in the Molasse sediments. Instead, over-thrusting by the alpine wedge (pre-deformed Flysch and Helvetic thrust sheets) dominates. 3) The Sierning Imbricates segment is located further to the east, at the border of Upper Austria to Lower Austria. The structural inventory of this thrust belt is comprises varying numbers of thrust sheets along strike (1-5), ramp

  4. Integrated Tsunami Database: simulation and identification of seismic tsunami sources, 3D visualization and post-disaster assessment on the shore

    NASA Astrophysics Data System (ADS)

    Krivorot'ko, Olga; Kabanikhin, Sergey; Marinin, Igor; Karas, Adel; Khidasheli, David

    2013-04-01

    One of the most important problems of tsunami investigation is the problem of seismic tsunami source reconstruction. Non-profit organization WAPMERR (http://wapmerr.org) has provided a historical database of alleged tsunami sources around the world that obtained with the help of information about seaquakes. WAPMERR also has a database of observations of the tsunami waves in coastal areas. The main idea of presentation consists of determining of the tsunami source parameters using seismic data and observations of the tsunami waves on the shore, and the expansion and refinement of the database of presupposed tsunami sources for operative and accurate prediction of hazards and assessment of risks and consequences. Also we present 3D visualization of real-time tsunami wave propagation and loss assessment, characterizing the nature of the building stock in cities at risk, and monitoring by satellite images using modern GIS technology ITRIS (Integrated Tsunami Research and Information System) developed by WAPMERR and Informap Ltd. The special scientific plug-in components are embedded in a specially developed GIS-type graphic shell for easy data retrieval, visualization and processing. The most suitable physical models related to simulation of tsunamis are based on shallow water equations. We consider the initial-boundary value problem in Ω := {(x,y) ?R2 : x ?(0,Lx ), y ?(0,Ly ), Lx,Ly > 0} for the well-known linear shallow water equations in the Cartesian coordinate system in terms of the liquid flow components in dimensional form Here ?(x,y,t) defines the free water surface vertical displacement, i.e. amplitude of a tsunami wave, q(x,y) is the initial amplitude of a tsunami wave. The lateral boundary is assumed to be a non-reflecting boundary of the domain, that is, it allows the free passage of the propagating waves. Assume that the free surface oscillation data at points (xm, ym) are given as a measured output data from tsunami records: fm(t) := ? (xm, ym,t), (xm

  5. Contrasting fluvial styles across the mid-Pleistocene climate transition in the northern shelf of the South China Sea: Evidence from 3D seismic data

    NASA Astrophysics Data System (ADS)

    Zhuo, Haiteng; Wang, Yingmin; Shi, Hesheng; He, Min; Chen, Weitao; Li, Hua; Wang, Ying; Yan, Weiyao

    2015-12-01

    Multiple successions of buried fluvial channel systems were identified in the Quaternary section of the mid-shelf region of the northern South China Sea, providing a new case study for understanding the interplay between sea level variations and climate change. Using three commercial 3D seismic surveys, accompanied by several 2D lines and a few shallow boreholes, the sequence stratigraphy, seismic geomorphology and stratal architecture of these fluvial channels were carefully investigated. Based on their origin, dimensions, planform geometries and infill architectures, six classes of channel systems, from Class 1 to Class 6, were recognized within five sequences of Quaternary section (SQ1 to SQ5). Three types of fluvial systems among them are incised in their nature, including the trunk incised valleys (Class 1), medium incised valleys (Class 2) and incised tributaries (Class 3). The other three types are unincised, which comprise the trunk channels (Class 4), lateral migrating channels (Class 5) and the stable channels (Class 6). The trunk channels and/or the major valleys that contain braided channels at their base are hypothesized to be a product of deposition from the "big rivers" that have puzzled the sedimentologists for the last decade, providing evidence for the existence of such rivers in the ancient record. Absolute age dates from a few shallow boreholes indicate that the landscapes that were associated with these fluvial systems changed significantly near the completion of the mid-Pleistocene climate transition (MPT), which approximately corresponds to horizon SB2 with an age of ˜0.6 Ma BP. Below SB2, the Early Pleistocene sequence (SQ1) is dominated by a range of different types of unincised fluvial systems. Evidence of incised valleys is absent in SQ1. In contrast, extensive fluvial incision occurred in the successions above horizon SB2 (within SQ2-SQ5). Although recent studies call for increased incision being a product of climate-controlled increase

  6. Novel 3D plasmonic nano-electrodes for cellular investigations and neural interfaces

    NASA Astrophysics Data System (ADS)

    Malerba, Mario; Dipalo, Michele; Messina, Gabriele C.; Amin, Hayder; La Rocca, Rosanna; Shalabaeva, Victoria; Simi, Alessandro; Maccione, Alessandro; Berdondini, Luca; De Angelis, Francesco

    2014-08-01

    We propose the development of an innovative plasmonic-electronic multifunctional platform, capable at the same time of performing chemical analysis and electronic recordings from a cellular interface. The system, based on 3D hollow metallic nanotubes, integrated on customized multi-electrode-arrays, allows the study of neuronal signaling over different lengths, spanning from the molecular, to the cellular, to the network scale. Here we show that the same structures are efficient electric field enhancers, despite the continuous metal layer at the base, which connects them to the electric components of the integrated circuits. The methodology we propose, due to its simplicity and high throughput, has the potential for further improvements both in the field of plasmonics, and in the integration on large areas of commercial active electronic devices.

  7. Investigation of gas-solids flow in a circulating fluidized bed using 3D electrical capacitance tomography

    NASA Astrophysics Data System (ADS)

    Mao, Mingxu; Ye, Jiamin; Wang, Haigang; Yang, Wuqiang

    2016-09-01

    The hydrodynamics of gas-solids flow in the bottom of a circulating fluidized bed (CFB) are complicated. Three-dimensional (3D) electrical capacitance tomography (ECT) has been used to investigate the hydrodynamics in risers of different shapes. Four different ECT sensors with 12 electrodes each are designed according to the dimension of risers, including two circular ECT sensors, a square ECT sensor and a rectangular ECT sensor. The electrodes are evenly arranged in three planes to obtain capacitance in different heights and to reconstruct the 3D images by linear back projection (LBP) algorithm. Experiments were carried out on the four risers using sands as the solids material. The capacitance and differential pressure are measured under the gas superficial velocity from 0.6 m s-1 to 3.0 m s-1 with a step of 0.2 m s-1. The flow regime is investigated according to the solids concentration and differential pressure. The dynamic property of bubbling flows is analyzed theoretically and the performance of the 3D ECT sensors is evaluated. The experimental results show that 3D ECT can be used in the CFB with different risers to predict the hydrodynamics of gas-solids bubbling flows.

  8. Investigation of gas–solids flow in a circulating fluidized bed using 3D electrical capacitance tomography

    NASA Astrophysics Data System (ADS)

    Mao, Mingxu; Ye, Jiamin; Wang, Haigang; Yang, Wuqiang

    2016-09-01

    The hydrodynamics of gas–solids flow in the bottom of a circulating fluidized bed (CFB) are complicated. Three-dimensional (3D) electrical capacitance tomography (ECT) has been used to investigate the hydrodynamics in risers of different shapes. Four different ECT sensors with 12 electrodes each are designed according to the dimension of risers, including two circular ECT sensors, a square ECT sensor and a rectangular ECT sensor. The electrodes are evenly arranged in three planes to obtain capacitance in different heights and to reconstruct the 3D images by linear back projection (LBP) algorithm. Experiments were carried out on the four risers using sands as the solids material. The capacitance and differential pressure are measured under the gas superficial velocity from 0.6 m s‑1 to 3.0 m s‑1 with a step of 0.2 m s‑1. The flow regime is investigated according to the solids concentration and differential pressure. The dynamic property of bubbling flows is analyzed theoretically and the performance of the 3D ECT sensors is evaluated. The experimental results show that 3D ECT can be used in the CFB with different risers to predict the hydrodynamics of gas–solids bubbling flows.

  9. Detailed structure and geological background of Foldback Reflectors near Methane-hydrate BSRs inferred from 3D seismic in the eastern Nankai Trough

    NASA Astrophysics Data System (ADS)

    Otsuka, H.; Morita, S.; Kioka, A.; Ashi, J.

    2015-12-01

    Understanding subsurface gas/fluid behavior is significant for revealing hydrocarbon pathways or for discussions on global carbon cycle. Conventional hydrocarbon indicators in seismic profiles are in practice useful for detection of gas hydrates or gas in shallow sedimentary sequences. We herein study uniquely distinct seismic reflectors imaged in 3D seismic data acquired in the eastern Nankai Trough. The reflectors termed here as Foldback reflectors (FBRs), which occur along the edge of BSR and have accordion shaped characteristics. The FBRs resemble but differ from vertically stacked stratigraphic traps, in terms of that all the reflectors cut the formational sequences. FBRs are distributed in thick, well-stratified and less deformed sediments of the north-western slope of the uplifted outer ridge. Two-dimensional thermal structure taking into account topographic effects on the seafloor in our model undoubtedly shows that FBRs are developed well below depths of the base of gas hydrate stability (BGHS), even with changing hydrocarbon proportion including methane and ethane. P-wave velocity strongly suggests that the FBRs serve as a boundary of gas distribution below the BGHS. The polarity reversed at the edge of each FBR is consistent with a velocity model. Relatively fast regional uplift possibly produces the trapped free gas in pore spaces that is related to dissociation of gas hydrates. Morphology of FBRs is controlled by lithology and structure of their surrounding formation. The edge of FBRs might be corresponded to the boundary of the sandy/muddy seismic unit that is inferred from an instantaneous amplitude attribute analysis. Previously reported distribution of gas hydrates in this region can be well-constrained by lithology which is consistent with the seismic unit defined in this study. FBRs strike almost in the same direction with hosting formation, and they are always developed in downdip of the formation below BSRs. It is thus inferred that the

  10. Characterizing the Inner Accretionary Prism of the Nankai Trough with 3D Seismic and Logging While Drilling at IODP Site C0002

    NASA Astrophysics Data System (ADS)

    Boston, B.; Moore, G. F.; Jurado, M. J.; Sone, H.; Tobin, H. J.; Saffer, D. M.; Hirose, T.; Toczko, S.; Maeda, L.

    2014-12-01

    The deeper, inner parts of active accretionary prisms have been poorly studied due the lack of drilling data, low seismic image quality and typically thick overlying sediments. Our project focuses on the interior of the Nankai Trough inner accretionary prism using deep scientific drilling and a 3D seismic cube. International Ocean Discovery Program (IODP) Expedition 348 extended the existing riser hole to more than 3000 meters below seafloor (mbsf) at Site C0002. Logging while drilling (LWD) data included gamma ray, resistivity, resistivity image, and sonic logs. LWD analysis of the lower section revealed on the borehole images intense deformation characterized by steep bedding, faults and fractures. Bedding plane orientations were measured throughout, with minor gaps at heavily deformed zones disrupting the quality of the resistivity images. Bedding trends are predominantly steeply dipping (60-90°) to the NW. Interpretation of fractures and faults in the image log revealed the existence of different sets of fractures and faults and variable fracture density, remarkably high at fault zones. Gamma ray, resistivity and sonic logs indicated generally homogenous lithology interpretation along this section, consistent with the "silty-claystone" predominant lithologies described on cutting samples. Drops in sonic velocity were observed at the fault zones defined on borehole images. Seismic reflection interpretation of the deep faults in the inner prism is exceedingly difficult due to a strong seafloor multiple, high-angle bedding dips, and low frequency of the data. Structural reconstructions were employed to test whether folding of seismic horizons in the overlying forearc basin could be from an interpreted paleothrust within the inner prism. We used a trishear-based restoration to estimate fault slip on folded horizons landward of C0002. We estimate ~500 m of slip from a steeply dipping deep thrust within the last ~0.9 Ma. Folding is not found in the Kumano sediments

  11. SU-E-J-135: An Investigation of Ultrasound Imaging for 3D Intra-Fraction Prostate Motion Estimation

    SciTech Connect

    O'Shea, T; Harris, E; Bamber, J; Evans, P

    2014-06-01

    Purpose: This study investigates the use of a mechanically swept 3D ultrasound (US) probe to estimate intra-fraction motion of the prostate during radiation therapy using an US phantom and simulated transperineal imaging. Methods: A 3D motion platform was used to translate an US speckle phantom while simulating transperineal US imaging. Motion patterns for five representative types of prostate motion, generated from patient data previously acquired with a Calypso system, were using to move the phantom in 3D. The phantom was also implanted with fiducial markers and subsequently tracked using the CyberKnife kV x-ray system for comparison. A normalised cross correlation block matching algorithm was used to track speckle patterns in 3D and 2D US data. Motion estimation results were compared with known phantom translations. Results: Transperineal 3D US could track superior-inferior (axial) and anterior-posterior (lateral) motion to better than 0.8 mm root-mean-square error (RMSE) at a volume rate of 1.7 Hz (comparable with kV x-ray tracking RMSE). Motion estimation accuracy was poorest along the US probe's swept axis (right-left; RL; RMSE < 4.2 mm) but simple regularisation methods could be used to improve RMSE (< 2 mm). 2D US was found to be feasible for slowly varying motion (RMSE < 0.5 mm). 3D US could also allow accurate radiation beam gating with displacement thresholds of 2 mm and 5 mm exhibiting a RMSE of less than 0.5 mm. Conclusion: 2D and 3D US speckle tracking is feasible for prostate motion estimation during radiation delivery. Since RL prostate motion is small in magnitude and frequency, 2D or a hybrid (2D/3D) US imaging approach which also accounts for potential prostate rotations could be used. Regularisation methods could be used to ensure the accuracy of tracking data, making US a feasible approach for gating or tracking in standard or hypo-fractionated prostate treatments.

  12. Interplate and Intraplate Decoupling: A 3D View from Surface Geology and Seismicity, Eastern Hellenic Forearc, Greece

    NASA Astrophysics Data System (ADS)

    Kleinspehn, K. L.; Russo, R. M.

    2003-12-01

    Shallow active seismicity and neotectonic structures reveal important changes in the degree of interplate and intraplate coupling along the convergent Hellenic plate boundary from Crete to Rhodes. The onshore/offshore Pliocene-Holocene surface geology of the Hellenic forearc records three different deformation states: 1) A western segment (western Crete) where incipient continent-continent collision produces shortening under strong interplate coupling; 2) a central segment (central-eastern Crete) partly coupled to Africa where oblique convergence is partitioned into sinistral strike slip and orthogonal shortening which is confined to the accretionary wedge; and 3) an eastern trantensional segment (Rhodes), mechanically decoupled from African oblique convergence, instead reflecting slab rollback and Aegea's southward motion relative to Anatolia. Such along-strike heterogeneity of neotectonic structures suggests each segment should also display distinct crustal-scale stress patterns. Abundant earthquake focal mechanisms provide a means to gauge stress regimes. Shallowly plunging P (compression) and T (tension) axes of crustal events differ systematically along the three forearc segments. Above the brittle-ductile transition (<13 km), the western segment records N-S P axes and E-W T axes. In the central Crete transition zone, P and T axes vary, whereas sparse P axes in the decoupled eastern forearc (Rhodes) parallel the NNE plate margin. Below the brittle-ductile transition (13 < h < 40 km), P axes beneath western Crete trend N-S normal to the subduction trace, signifying interplate coupling given their similarity to plate-convergence vectors. T axes trend WNW consistent with margin-parallel extension at depth due to Africa's northward convergence. Stress patterns reverse for the wrench-dominated transition zone: P axes trend WNW-ESE and T axes trend N-S, indicating that northward convergence is less important than slab roll back. In the transtensional forearc east of

  13. Possible migration front of gas-related fluid inferred from interpretation on 3D-seismic data in the eastern Nankai Trough

    NASA Astrophysics Data System (ADS)

    Otsuka, H.; Morita, S.; Tanahashi, M.; Ashi, J.; Nagakubo, S.; Fujii, T.

    2008-12-01

    High resolution 3D seismic survey, "Tokai-oki to Kumano-nada", was conducted for methane hydrate exploration in the eastern Nankai Trough by METI in 2002. Our study focuses on zigzag-shaped specific reflectors on BSR margins, which have been recognized by JOGMEC on the 3D data. We call the reflectors "gFoldback Reflectors (FBRs)"h in this study. From the edge of BSR, the 1st FBR generally extends down to lower formation below the BSR crossing sedimentary horizons. The following FBRs (often the 2nd, sometimes 3rd and above) extend down from the edge of the last FBR forming bellows-like shape. The 1st FBR indicates normal polarity (antiphase of BSR), and the following FBRs change their polarities alternately. FBRs are mostly developed in the well-stratified formation but not in the area of frequent fractures and the area of major lateral lithological change. FBR generally corresponds to lateral seismic facies boundary between BSR distribution area and outside the BSR area. The formation beneath the BSR shows dimmed facies characterized by relatively low amplitude and lack of high frequency components in contrast to outside the BSR area of normal facies. Seismic velocity analysis (JOGMEC, personal communication) suggests that FBRs correspond to velocity boundaries, where the dimmed faceis below the BSR coinsides with relatively low velocity. The polarities of FBRs are also consistent with such velocity changes. Such dimmed facies with low velocity and low amplitude anomaly suggests relation to gas components in the formation water. The lowest FBR does not cross major unconformities, which often exhibit negative polarity suggesting fluid migration from the lower unit. In this case, the lowest FBR which shows negative polarity and reaches the unconformity is to be merged to the negative reflection of the unconformity. In addition, high amplitude layers are sometimes recognized at foldbacks convex to the outside the BSR area. These high amplitude layers probably having

  14. Coronary 3D reconstruction using IVUS images only: a numeric phantom investigation

    NASA Astrophysics Data System (ADS)

    Matsumoto, Monica Mitiko Soares; Cardoso, Fernando Mitsuyama; Lemos, Pedro Alves; Furuie, Sergio Shiguemi

    2010-03-01

    Intravascular ultrasound (IVUS) examination offers a tomographic view of the vessel, having the catheter tip as reference. During examination, the catheter is pulled back with a constant speed (0.5 or 1.0 mm/s) and the ultrasound transducer captures cross-sectional slices of the coronary. Currently, 3D IVUS reconstruction is based on single-plane or biplane angiography together with IVUS images. In this work, we present a preliminary approach to reconstruct tridimensionally the catheter path and coronary, based only on IVUS sequence. We have proposed a numeric phantom framework: coronary simulation, catheter dynamic path simulation, IVUS acquisition, reconstruction and validation. Our method infers the catheter path inside the coronary, based on shortest path graph algorithm. To reconstruct morphology, we have associated the catheter path and the position of the frame with smoothness costs, and solved it as a minimization problem. In this experiment we have used three different morphologies (straight, one curve and two curves) and 60 random initializations each for the initial point and angle of catheter insertion. The results for the plane containing the centerline of the catheter were 95.8% true positive and 8.5% false positive rates.

  15. Monte Carlo - Metropolis Investigations of Shape and Matrix Effects in 2D and 3D Spin-Crossover Nanoparticles

    NASA Astrophysics Data System (ADS)

    Guerroudj, Salim; Caballero, Rafael; De Zela, Francisco; Jureschi, Catalin; Linares, Jorge; Boukheddaden, Kamel

    2016-08-01

    The Ising like model, taking into account short-, long-range interaction as well as surface effects is used to investigate size and shape effects on the thermal behaviour of 2D and 3D spin crossover (SCO) nanoparticles embedded in a matrix. We analyze the role of the parametert, representing the ratio between the number of surface and volume molecules, on the unusual thermal hysteresis behaviour (appearance of the hysteresis and a re-entrance phase transition) at small scales.

  16. SU-E-T-393: Investigation of Hot Spots in Tomotherapy 3D Conformal Breast Plan

    SciTech Connect

    Chen, Q; Siebers, J; Khandelwal, S

    2014-06-01

    Purpose: The purpose of this study is to determine the root-cause of hotspots inherent to Tomotherapy static beam 3D conformal radiotherapy (3DCRT) for breast treatment. ASTRO (ref here) recommends that IMRT be avoided for breast treatments. Despite Tomotherapy's inherent IMRT-like optimization and delivery, our experience at a Tomotherapy-only site has been that Tomotherapy 3DCRT fail to produce a clinically acceptable plan for 79% of our breast patients. Hot-spots have been one of the major obstacles. Methods: Eight lumpectomy patients were planned according to RTOG-1005 specification. Two or four tangential beams were used for 3DCRT breast planning. To spare the contralateral breast and ipsilateral lung, part of the PTV was not covered by the primary beam, yielding adjacent hot-spots. We hypothesize that the planning system creates hotspots adjacent to the cold spots to yield scatter radiation dose compensation in the blocked region. Various phantom and patient setup were used to test the hypothesis. Results: Hot spots outside of PTV in the range of 135% - 174% were observed for patient plan. It is confirmed that the PTV partial block causes the adjacent hot spot. The root cause is the optimizer quadratic objective function over- weighs improving the cold spot. The IMRT flexibility offered by Tomotherapy is counter-productive in static-beam 3DCRT breast treatment. For phantom case, as the Modulation-Factor increases from 1.1 to 5, the hot spot increases from 110% to 300%. Limiting the 3DCRT intensity modulation is shown to produce clinically acceptable plan. Conclusion: Most of the hot spots in Tomotherapy 3DCRT breast plan originate from the planning-system optimizer attempting to cover PTV cold spots rather than from the beam energy. Altering the objective function could improve clinical acceptability of static beam Tomotherapy 3DCRT.

  17. Meteoroid and debris special investigation group; status of 3-D crater analysis from binocular imagery

    NASA Technical Reports Server (NTRS)

    Sapp, Clyde A.; See, Thomas H.; Zolensky, Michael E.

    1992-01-01

    During the 3 month deintegration of the LDEF, the M&D SIG generated approximately 5000 digital color stereo image pairs of impact related features from all space exposed surfaces. Currently, these images are being processed at JSC to yield more accurate feature information. Work is currently underway to determine the minimum number of data points necessary to parametrically define impact crater morphologies in order to minimize the man-hour intensive task of tie point selection. Initial attempts at deriving accurate crater depth and diameter measurements from binocular imagery were based on the assumption that the crater geometries were best defined by paraboloid. We made no assumptions regarding the crater depth/diameter ratios but instead allowed each crater to define its own coefficients by performing a least-squares fit based on user-selected tiepoints. Initial test cases resulted in larger errors than desired, so it was decided to test our basic assumptions that the crater geometries could be parametrically defined as paraboloids. The method for testing this assumption was to carefully slice test craters (experimentally produced in an appropriate aluminum alloy) vertically through the center resulting in a readily visible cross-section of the crater geometry. Initially, five separate craters were cross-sectioned in this fashion. A digital image of each cross-section was then created, and the 2-D crater geometry was then hand-digitized to create a table of XY position for each crater. A 2nd order polynomial (parabolic) was fitted to the data using a least-squares approach. The differences between the fit equation and the actual data were fairly significant, and easily large enough to account for the errors found in the 3-D fits. The differences between the curve fit and the actual data were consistent between the caters. This consistency suggested that the differences were due to the fact that a parabola did not sufficiently define the generic crater geometry

  18. 3D micro-XRF for cultural heritage objects: new analysis strategies for the investigation of the Dead Sea Scrolls.

    PubMed

    Mantouvalou, Ioanna; Wolff, Timo; Hahn, Oliver; Rabin, Ira; Lühl, Lars; Pagels, Marcel; Malzer, Wolfgang; Kanngiesser, Birgit

    2011-08-15

    A combination of 3D micro X-ray fluorescence spectroscopy (3D micro-XRF) and micro-XRF was utilized for the investigation of a small collection of highly heterogeneous, partly degraded Dead Sea Scroll parchment samples from known excavation sites. The quantitative combination of the two techniques proves to be suitable for the identification of reliable marker elements which may be used for classification and provenance studies. With 3D micro-XRF, the three-dimensional nature, i.e. the depth-resolved elemental composition as well as density variations, of the samples was investigated and bromine could be identified as a suitable marker element. It is shown through a comparison of quantitative and semiquantitative values for the bromine content derived using both techniques that, for elements which are homogeneously distributed in the sample matrix, quantification with micro-XRF using a one-layer model is feasible. Thus, the possibility for routine provenance studies using portable micro-XRF instrumentation on a vast amount of samples, even on site, is obtained through this work.

  19. 3D QSAR investigations on locomotor activity of 5-cyano-N1,6-disubstituted 2-thiouracil derivatives.

    PubMed

    Kuchekar, B S; Pore, Y V

    2010-06-01

    Three dimensional quantitative structure activity relationship (3D QSAR) investigations were carried out on a series of 5-cyano-N1,6-disubstituted 2-thiouracil derivatives for their locomotor activity. The structures of all compounds were built on a workspace of VlifeMDS3.5 molecular modeling software and 3D QSAR models were generated by applying a partial least square (PLS) linear regression analysis coupled with a stepwise variable selection method. Both derived models were found to be statistically significant in terms of regression and internal and external predictive ability (r(2) = 0.9414 and 0.8511, q(2) = 0.8582 and 0.6222, pred_r(2) = 0.5142 and 0.7917). The QSAR models indicated that both electrostatic and steric interaction energies were contributing significantly to locomotor activity of thiouracil derivatives. PMID:22491179

  20. 3D seismic imaging of an active, normal fault zone in southern Apennines (Italy): Clues on fluid-driven microearthquake fracturing

    NASA Astrophysics Data System (ADS)

    Amoroso, O.; Zollo, A.; Virieux, J.

    2012-12-01

    We have reconstructed a 3D detailed image of the crustal volume embedding the active normal fault system in southern Apennines (Italy). It is obtained by the inversion of P and S first arrival times from microearthquakes recorded in the area. The issues of data quality and the implementation of robust tomographic inversion strategy have been addressed to improve the resolution of the seismic image. The arrival times measurements are enhanced by applying techniques based on polarization filtering and refined re-picking. Data inversion has been performed by using a delay-time 3D tomographic method for the joint determination of source locations and velocity model. The dataset consists of 1311 events with magnitude ranging between [0.1, 3.2], recorded from August 2005 to April 2011 by 42 stations operated by the consortium AMRA scarl and INGV. We used a multi-scale inversion approach, in order to first estimate the large wavelength components of the velocity model and then to progressively introduce smaller scale components. P- and S-wave velocity models show a strong lateral variation along a direction orthogonal to the Apeninic chain, between 0-15 km depth. This variation defines two geological formations which are characterized by relatively low and high P-wave velocities. The sharpest lateral transition occurs in the NE direction: it is well correlated with the location of the NW-SE oriented, primary normal fault associated with the 1980, Ms 6.9 earthquake, which cuts at SW the outcrops of the carbonatic Campanian platform, and separates at NE the older Mesozoic limestone formations from the younger Pliocene-Quaternary basin deposits. The main lithological formations, as identified in the referenced active seismic CROP04 profile, can be recognized in the inferred velocity model. In particular, the structural feature associated with the uplift of the Apulian Platform is well detected by the high P-velocity anomaly ranging between 6.0-6.8 km/s. The thickening of the

  1. Tomography 3D models of S wave from cross-correlation of seismic noise to explore irregularities of subsoil under the artificial lake of Chapultepec Park

    NASA Astrophysics Data System (ADS)

    Cárdenas-Soto, M.; Valdes, J. E.; Escobedo-Zenil, D.

    2013-05-01

    In June 2006, the base of the artificial lake in Chapultepec Park collapsed. 20 thousand liters of water were filtered to the ground through a crack increasing the dimensions of initial gap. Studies indicated that the collapse was due to saturated material associated with a sudden and massive water filtration process. Geological studies indicates that all the area of this section the subsoil is composed of vulcano-sedimentary materials that were economically exploited in the mid-20th century, leaving a series of underground mines that were rehabilitated for the construction of the Park. Currently, the Lake is rehabilitated and running for recreational activities. In this study we have applied two methods of seismic noise correlation; seismic interferometry (SI) in time domain and the Spatial Power Auto Correlation (SPAC) in frequency domain, in order to explore the 3D subsoil velocity structure. The aim is to highlight major variations in velocity that can be associated with irregularities in the subsoil that may pose a risk to the stability of the Lake. For this purpose we use 96 vertical geophones of 4.5 Hz with 5-m spacing that conform a semi-circular array that provide a length of 480 m around the lake zone. For both correlation methods, we extract the phase velocity associated with the dispersion characteristics between each pair of stations in the frequency range from 4 to 12 Hz. In the SPAC method the process was through the dispersion curve, and in SI method we use the time delay of the maximum amplitude in the correlation pulse, which was previously filtered in multiple frequency bands. The results of both processes were captured in 3D velocity volumes (in the case SI a process of traveltime tomography was applied). We observed that in the frequency range from 6 to 8 Hz, appear irregular structures, with high velocity contrast in relation with the shear wave velocity of surface layer (ten thick m of saturated sediments). One of these anomalies is related

  2. 3D seismic studies of unconventional reservoirs, Badger Basin Wyoming; and Viking Group Turbidite systems, Norwegian Block 35/11, northern North Sea

    NASA Astrophysics Data System (ADS)

    Buggenhagen, John Edmund

    By integrating geologic and geophysical interpretations it is possible to form an accurate, high resolution, 3D model of the subsurface. The primary purpose of this model is to characterize heterogeneities within a potential reservoir and locate anomalous zones that correspond to potential high-quality reservoir intervals. Individual techniques used to create the final reservoir model include 3D seismic fault and horizon mapping, continuity analysis, and detailed velocity modeling from seismic stacking velocity analysis. The final model is centered around geologic interpretations from well log and core analysis. The methodology described above for Badger Basin was successful in identifying a regional abnormal underpressured compartment and locating a "sweet spot" corresponding to the best know production in the field. Integrating all of these interpretations confirmed previous analysis and has significantly reduced the uncertainty of the reservoir model for the Frontier Formation in Badger Basin. If this model was available prior to drilling the field it could have been more efficiently and cost effectively produced. The final proposed model for the Upper Jurassic Turbidites systems in Norwegian Block 35/11 suggests the presence of both axially and transversely transported turbidite systems within the elongated, fault-controlled sub-basins that developed during Late Jurassic extension. These systems appear to be sourced from the same updip depositional system, most likely from an Upper Jurassic Sognefjord Formation equivalent system. Detailed descriptions of these systems show that the architecture and shape of the turbidite systems vary greatly with respect to local tectonic setting. Comparison of the axial and transverse systems shows that although the two systems have the same transport and depositional elements, and were sourced from the same system, each has a different architecture. The axial turbidite system is represented by thinner, low width/length ratio

  3. Enigmatic structures within salt walls of the Santos Basin-Part 1: Geometry and kinematics from 3D seismic reflection and well data

    NASA Astrophysics Data System (ADS)

    Jackson, Christopher A.-L.; Jackson, Martin P. A.; Hudec, Michael R.; Rodriguez, Clara R.

    2015-06-01

    Understanding intrasalt structure may elucidate the fundamental kinematics and, ultimately, the mechanics of diapir growth. However, there have been relatively few studies of the internal structure of salt diapirs outside the mining industry because their cores are only partly exposed in the field and poorly imaged on seismic reflection data. This study uses 3D seismic reflection and borehole data from the São Paulo Plateau, Santos Basin, offshore Brazil to document the variability in intrasalt structural style in natural salt diapirs. We document a range of intrasalt structures that record: (i) initial diapir rise; (ii) rise of lower mobile halite through an arched and thinned roof of denser, layered evaporites, and emplacement of an intrasalt sheet or canopy; (iii) formation of synclinal flaps kinematically linked to emplacement of the intrasalt allochthonous bodies; and (iv) diapir squeezing. Most salt walls contain simple internal anticlines. Only a few salt walls contain allochthonous bodies and breakout-related flaps. The latter occur in an area having a density inversion within the autochthonous salt layer, such that upper, anhydrite-rich, layered evaporites are denser than lower, more halite-rich evaporites. We thus interpret that most diapirs rose through simple fold amplification of internal salt stratigraphy but that locally, where a density inversion existed in the autochthonous salt, Rayleigh-Taylor overturn within the growing diapir resulted in the ascent of less dense evaporites into the diapir crest by breaching of the internal anticline. This resulted in the formation of steep salt-ascension zones or feeders and the emplacement of high-level intrasalt allocthonous sheets underlain by breakout-related flaps. Although regional shortening undoubtedly occurred on the São Paulo Plateau during the Late Cretaceous, we suggest this was only partly responsible for the complex intrasalt deformation. We suggest that, although based on the Santos Basin, our

  4. Flow dynamics and sedimentation of lateral accretion packages in sinuous deep-water channels: A 3D seismic case study from the northwestern South China Sea margin

    NASA Astrophysics Data System (ADS)

    Li, Shengli; Gong, Chenglin

    2016-07-01

    The current study uses 3D seismic data to document architectural styles and flow dynamics of lateral accretion packages (LAPs) associated with sinuous deep-water channels, contributing to a better understanding of flow processes and sedimentation associated with LAPs. The documented LAPs underwent three main stages of architectural evolution, including the early incision stages characterized by intense downcutting, active migration stages characterized by active migration and avulsion of the individual channels, and late abandonment stages characterized by the termination of sediment gravity-flows and LAP growth. These three stages of LAP growth repeated through time, yielding a fining-upward pattern from sandy channel-fill turbidites, into sand-mud couplets, all capped by muddy turbidites. A river-reversed helical flow circulation was created by an imbalance, through the flow depth, of inwardly directed pressure gradient forces near the bed and outwardly directed centrifugal forces near the surface. It consists of low-velocity cores near the outer banks and low-velocity cores along the inner banks. Such river-reversed helical flow pattern is evidenced by volumetrically extensive LAPs and toplap and downlap terminations along the gentle banks and by aerially restricted, seismically unresolvable levees and truncation terminations near the steep banks. This river-reversed helical flow circulation favors asymmetric intra-channel deposition characterized by inner bank deposition versus outer bank erosion, and which, in turn, forced individual channels to consistently migrate towards outer banks, resulting in significant asymmetric cross-channel profiles with aerially extensive LAPs along inner banks.

  5. 3D seismic analysis of the Coast Shear Zone in SE Alaska and Western British Columbia: Broadside analysis of ACCRETE wide-angle data

    NASA Astrophysics Data System (ADS)

    Li, Hongyan; Morozov, Igor B.; Smithson, Scott B.

    2008-02-01

    The multidisciplinary ACCRETE project addresses the question of continental assemblage in southeast Alaska and western British Columbia by terrane accretion and magmatic addition. The previous studies of this project yielded important information for understanding the structures across the Coast Shear Zone (CSZ) and the formation of the CSZ and the Coast Mountains Batholith (CMB). The present study extends these interpretations into pseudo-3-D by using two additional wide-angle ACCRETE seismic lines. By analyzing the broadside wide-angle data using a series of laterally homogeneous 2-D models, we derive a lower-resolution 3-D velocity model of the outboard terranes and constrain variations in crustal thickness across and along the CSZ. Models of the broadside data confirms major structural and compositional trends extend along strike to the northwest. The key features are: a) a steep Moho ramp only ˜ 15-km wide is coincident with the CSZ and divides thin (˜25 ± 1 km) crust to the west below the west-vergent thrust belt (WTB) from thicker (˜ 31 ± 1 km) crust to the east below the CMB, (b) low-velocity mantle (7.7--7.9 km/s) extends beneath the entire study region indicating high crustal and upper-mantle temperatures below the WTB and CMB, and (c) the Alexander terrane is characterized by strong mid-crustal reflectivity and high lower crustal velocities that are consistent with gabbroic composition. This study extends the earlier interpretation and implies that the ramp is indeed likely associated with transpressional tectonics and magmatic crustal addition east of the CSZ.

  6. Numerical investigation of 3-D constraint effects on brittle fracture in SE(B) and C(T) specimens

    SciTech Connect

    Nevalainen, M.; Dodds, R.H. Jr.

    1996-07-01

    This investigation employs 3-D nonlinear finite element analyses to conduct an extensive parametric evaluation of crack front stress triaxiality for deep notch SE(B) and C(T) specimens and shallow notch SE(B) specimens, with and without side grooves. Crack front conditions are characterized in terms of J-Q trajectories and the constraint scaling model for cleavage fracture toughness proposed previously by Dodds and Anderson. The 3-D computational results imply that a significantly less strict size/deformation limit, relative to the limits indicated by previous plane-strain computations, is needed to maintain small-scale yielding conditions at fracture by a stress- controlled, cleavage mechanism in deep notch SE(B) and C(T) specimens. Additional new results made available from the 3-D analyses also include revised {eta}-plastic factors for use in experimental studies to convert measured work quantities to thickness average and maximum (local) J-values over the crack front.

  7. A System to investigate 3-D droplet impact on leaf surfaces

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A system was developed to investigate droplet dynamic impact and retention on leaf surfaces. The system consisted of a uniform droplet generator, two high speed digital video cameras, a constant speed track, a leaf holder, and a cool light source. The droplet generator produced mono-sized droplets r...

  8. 3D architecture modeling of reservoir compartments in a Shingled Turbidite Reservoir using high-resolution seismic data and sparse well control, example from Mars {open_quotes}Pink{close_quotes} reservoir, Mississippi Canyon Area, Gulf of Mexico

    SciTech Connect

    Chapin, M.A.; Mahaffie, M.J.; Tiller, G.M.

    1996-12-31

    Economics of most deep-water development projects require large reservoir volumes to be drained with relatively few wells. The presence of reservoir compartments must therefore be detected and planned for in a pre-development stage. We have used 3-D seismic data to constrain large-scale, deterministic reservoir bodies in a 3-D architecture model of Pliocene-turbidite sands of the {open_quotes}E{close_quotes} or {open_quotes}Pink{close_quotes} reservoir, Prospect Mars, Mississippi Canyon Areas 763 and 807, Gulf of Mexico. Reservoir compartmentalization is influenced by stratigraphic shingling, which in turn is caused by low accommodation space predentin the upper portion of a ponded seismic sequence within a salt withdrawal mini-basin. The accumulation is limited by updip onlap onto a condensed section marl, and by lateral truncation by a large scale submarine erosion surface. Compartments were suggested by RFT pressure variations and by geochemical analysis of RFT fluid samples. A geological interpretation derived from high-resolution 3-D seismic and three wells was linked to 3-D architecture models through seismic inversion, resulting in a reservoir all available data. Distinguishing subtle stratigraphical shingles from faults was accomplished by detailed, loop-level mapping, and was important to characterize the different types of reservoir compartments. Seismic inversion was used to detune the seismic amplitude, adjust sandbody thickness, and update the rock properties. Recent development wells confirm the architectural style identified. This modeling project illustrates how high-quality seismic data and architecture models can be combined in a pre-development phase of a prospect, in order to optimize well placement.

  9. Structure Segmentation and Transfer Faults in the Marcellus Shale, Clearfield County, Pennsylvania: Implications for Gas Recovery Efficiency and Risk Assessment Using 3D Seismic Attribute Analysis

    NASA Astrophysics Data System (ADS)

    Roberts, Emily D.

    The Marcellus Shale has become an important unconventional gas reservoir in the oil and gas industry. Fractures within this organic-rich black shale serve as an important component of porosity and permeability useful in enhancing production. Horizontal drilling is the primary approach for extracting hydrocarbons in the Marcellus Shale. Typically, wells are drilled perpendicular to natural fractures in an attempt to intersect fractures for effective hydraulic stimulation. If the fractures are contained within the shale, then hydraulic fracturing can enhance permeability by further breaking the already weakened rock. However, natural fractures can affect hydraulic stimulations by absorbing and/or redirecting the energy away from the wellbore, causing a decreased efficiency in gas recovery, as has been the case for the Clearfield County, Pennsylvania study area. Estimating appropriate distances away from faults and fractures, which may limit hydrocarbon recovery, is essential to reducing the risk of injection fluid migration along these faults. In an attempt to mitigate the negative influences of natural fractures on hydrocarbon extraction within the Marcellus Shale, fractures were analyzed through the aid of both traditional and advanced seismic attributes including variance, curvature, ant tracking, and waveform model regression. Through the integration of well log interpretations and seismic data, a detailed assessment of structural discontinuities that may decrease the recovery efficiency of hydrocarbons was conducted. High-quality 3D seismic data in Central Pennsylvania show regional folds and thrusts above the major detachment interval of the Salina Salt. In addition to the regional detachment folds and thrusts, cross-regional, northwest-trending lineaments were mapped. These lineaments may pose a threat to hydrocarbon productivity and recovery efficiency due to faults and fractures acting as paths of least resistance for induced hydraulic stimulation fluids

  10. LLNL-Earth3D

    SciTech Connect

    2013-10-01

    Earth3D is a computer code designed to allow fast calculation of seismic rays and travel times through a 3D model of the Earth. LLNL is using this for earthquake location and global tomography efforts and such codes are of great interest to the Earth Science community.

  11. Microstructure of 3D-Printed Polymer Composites Investigated by Small-Angle Neutron Scattering

    NASA Astrophysics Data System (ADS)

    Kang, Tae Hui; Compton, Brett G.; Heller, William T.; Urban, Voker S.; Duty, Chad E.; Do, Changwoo

    Polymer composites printed from the large scale printer at Manufacturing Demonstration Facility at Oak Ridge National Laboratory have been investigated by small-angle neutron scattering (SANS). For the Acrylonitrile Butadiene Styrene (ABS)/Carbon Fiber (CF) composites, the microstructure of polymer domains and the alignment of CF have been characterized across the layer from the printed piece. CF shows strong anisotropic alignment along the printing direction due to the flow of polymer melt at the nozzle. Order parameter of the anisotropy which ranges from -0.11 to -0.06 exhibits strong correlation with the position within the layer: stronger alignment near the layer interface. It is also confirmed that the existence of CF reduces the polymer domain correlation length significantly and reinforces the mechanical strength of the polymer composites. For the Epoxy/nano-clay platelet composites, the effect of processing condition, nozzle size, and the addition of the another filler, Silicon Carbide (SC), have been investigated by SANS. Nano-clay platelet shows strong anisotropic alignment along the printing direction as well. Order parameter of the anisotropy varies according to nozzle size and presence of the SC, and difference disappears at high Q region. Scientific User Facilities Division and Materials Sciences and Energy Division, Office of Basic Energy Sciences, U.S. Department of Energy.

  12. Deformation above mobile substrates, salt rheology and spatial distribution of salt structures: A 3D seismic study of the Permian southern North Sea

    NASA Astrophysics Data System (ADS)

    Hernandez, Karina; Mitchell, Neil; Huuse, Mads

    2016-04-01

    At ~255 Ma, cycles of evaporation of seawater led to deposition of evaporites including halite (rock salt) in the North Sea Basin. After later burial by denser sediments, the salt beds rose as pillows and diapirs. Assuming mobilization is due to Rayleigh-Taylor gravitational instability of heavy fluid (sediments) overlying light fluid (salts), theory suggests that the spacing between diapirs should be proportional to the original thickness of the salt layer. For example, a description of the theory in Turcotte and Schubert (1982) predicts structure wavelength to be 2.6 times the salt thickness. Previous research has explored mobilization of salt deposits assuming they have uniform rheology. However, this is not justified as halite rheology varies with temperature, grain size and pore brine content. Furthermore, evaporitic sequences contain various minerals besides halite (e.g., anhydrite, gypsum), which have different rheological properties. 3D seismic and well data reveal the internal structure of salt beds. The data have allowed characterization of structure wavelengths and salt thickness, so that the impact of internal composition and other properties on halokinetic behaviour can be assessed.

  13. Supra-salt normal fault growth during the rise and fall of a diapir: Perspectives from 3D seismic reflection data, Norwegian North Sea

    NASA Astrophysics Data System (ADS)

    Tvedt, Anette B. M.; Rotevatn, Atle; Jackson, Christopher A.-L.

    2016-10-01

    Normal faulting and the deep subsurface flow of salt are key processes controlling the structural development of many salt-bearing sedimentary basins. However, our detailed understanding of the spatial and temporal relationship between normal faulting and salt movement is poor due to a lack of natural examples constraining their geometric and kinematic relationship in three-dimensions. To improve our understanding of these processes, we here use 3D seismic reflection and borehole data from the Egersund Basin, offshore Norway, to determine the structure and growth of a normal fault array formed during the birth, growth and decay of an array of salt structures. We show that the fault array and salt structures developed in response to: (i) Late Triassic-to-Middle Jurassic extension, which involved thick-skinned, sub-salt and thin-skinned supra-salt faulting with the latter driving reactive diapirism; (ii) Early Cretaceous extensional collapse of the walls; and (iii) Jurassic-to-Neogene, active and passive diapirism, which was at least partly coeval with and occurred along-strike from areas of reactive diapirism and wall collapse. Our study supports physical model predictions, showcasing a three-dimensional example of how protracted, multiphase salt diapirism can influence the structure and growth of normal fault arrays.

  14. Seismic site characterization of an urban dedimentary basin, Livermore Valley, California: Site tesponse, basin-edge-induced surface waves, and 3D simulations

    USGS Publications Warehouse

    Hartzell, Stephen; Leeds, Alena L.; Ramirez-Guzman, Leonardo; Allen, James P.; Schmitt, Robert G.

    2016-01-01

    Thirty‐two accelerometers were deployed in the Livermore Valley, California, for approximately one year to study sedimentary basin effects. Many local and near‐regional earthquakes were recorded, including the 24 August 2014 Mw 6.0 Napa, California, earthquake. The resulting ground‐motion data set is used to quantify the seismic response of the Livermore basin, a major structural depression in the California Coast Range Province bounded by active faults. Site response is calculated by two methods: the reference‐site spectral ratio method and a source‐site spectral inversion method. Longer‐period (≥1  s) amplification factors follow the same general pattern as Bouguer gravity anomaly contours. Site response spectra are inverted for shallow shear‐wave velocity profiles, which are consistent with independent information. Frequency–wavenumber analysis is used to analyze plane‐wave propagation across the Livermore Valley and to identify basin‐edge‐induced surface waves with back azimuths different from the source back azimuth. Finite‐element simulations in a 3D velocity model of the region illustrate the generation of basin‐edge‐induced surface waves and point out strips of elevated ground velocities along the margins of the basin.

  15. 3D MR Sialography as a Tool to Investigate Radiation-Induced Xerostomia: Feasibility Study

    SciTech Connect

    Astreinidou, Eleftheria . E-mail: E.Astreinidou@umcutrecht.nl; Roesink, Judith M.; Raaijmakers, Cornelis P.J.; Bartels, Lambertus W.; Witkamp, Theo D.; Lagendijk, Jan J.W.; Terhaard, Chris H.J.

    2007-08-01

    Purpose: To evaluate whether magnetic-resonance (MR) sialography can be used to investigate radiation-induced xerostomia. Preradiotherapy (pre-RT) and postradiotherapy (post-RT) MR sialographic images of the major salivary ducts (parotid and submandibular) were compared. Methods and Materials: Magnetic-resonance sialography was performed pre-RT, and 6 weeks and 6 months post-RT on 9 patients with T1-4N0-2M0 naso- or oropharyngeal tumors, on a 1.5-T MR scanner. Patients were positioned in the scanner, using a radiotherapy immobilization mask. Image registration of the MR sialograms pre- and post-RT with each other and with the CT and consequently the dose distribution was performed. A categorical scoring system was used to compare the visibility of ducts pre-RT and post-RT. Results: Good-quality MR sialographic images were obtained, and image registration was successful in all cases. The visibility score of the parotid ducts and submandibular ducts was reduced at 6 weeks post-RT, which means that the full trajectory of the salivary ducts, from the intraglandular space to the mouth cavity, was only partially visualized. For some of the parotid ducts, the visibility score improved at 6 months post-RT, but not for the submandibular ducts. The mean dose for the parotid glands was 35 Gy (1 standard deviation [SD] 3 Gy), and for the submandibular glands it was 62 Gy (SD, 8 Gy). Conclusion: Three-dimensional MR sialography is a promising approach for investigating xerostomia, because radiation-induced changes to the saliva content of the ducts can be visualized.

  16. Experimental Investigation of Terminal Fans Prograding on a Salt Substrate: 3-d Physical Experiments

    NASA Astrophysics Data System (ADS)

    Chatmas, E.; Kim, W.

    2015-12-01

    Interactions between geologic features and a mobile substrate layer are present in several passive margin locations throughout the world. Deformation of a substrate layer is primarily due to differential loading of sediment and results in complexities within the morphology and subsequently the stratigraphic record. By using simplified scaled tank experiments, we investigated the relationship between substrate deformation and fan evolution in a fluvial-dump-wind-redistribution setting. In this system, sediment is being eroded from a mountain range and creating terminal fans; fluvial channels form off of the fan body and the deposited fluvial sediment is the source for an aeolian dune field. Several past experimental studies have focused on how deltas and dunes are affected on when deposited on a salt substrate, however terminal fans and channel formation off of fans have not been thoroughly investigated. The current experiments focused on which variables are the most significant in controlling fan growth, channel initiation and channel behavior on the salt substrate. Our experimental basin is 120 cm long, 60 cm wide and 30 cm tall. The materials used for a suite of five experiments involved a polymer polydimethylsiloxane (PDMS) as the deformable substrate analog and 100-μm quartz sand. By isolating certain variables such as substrate thickness, basin slope and sediment discharge we are able to see how terminal fans and channels are affected in different settings. The experimental results show that 1) increase in substrate thickness increased the amount of subsidence around the fan body, limiting sediment transport to channels off of the toe of the fan, 2) a higher basin slope increased the number of channels formed and increased sinuosity and width variations of channels over distance, and 3) a higher sediment discharge rate on a thin substrate allowed for the farthest downstream fan deposits. Preliminary results show that channel behavior and fan morphology is

  17. Time lapse investigation of antibiotic susceptibility using a microfluidic linear gradient 3D culture device.

    PubMed

    Hou, Zining; An, Yu; Hjort, Karin; Hjort, Klas; Sandegren, Linus; Wu, Zhigang

    2014-09-01

    This study reports a novel approach to quantitatively investigate the antibacterial effect of antibiotics on bacteria using a three-dimensional microfluidic culture device. In particular, our approach is suitable for studying the pharmacodynamics effects of antibiotics on bacterial cells temporally and with a continuous range of concentrations in a single experiment. The responses of bacterial cells to a linear concentration gradient of antibiotics were observed using time-lapse photography, by encapsulating bacterial cells in an agarose-based gel located in a commercially available microfluidics chamber. This approach generates dynamic information with high resolution, in a single operation, e.g., growth curves and antibiotic pharmacodynamics, in a well-controlled environment. No pre-labelling of the cells is needed and therefore any bacterial sample can be tested in this setup. It also provides static information comparable to that of standard techniques for measuring minimum inhibitory concentration (MIC). Five antibiotics with different mechanisms were analysed against wild-type Escherichia coli, Staphylococcus aureus and Salmonella Typhimurium. The entire process, including data analysis, took 2.5-4 h and from the same analysis, high-resolution growth curves were obtained. As a proof of principle, a pharmacodynamic model of streptomycin against Salmonella Typhimurium was built based on the maximal effect model, which agreed well with the experimental results. Our approach has the potential to be a simple and flexible solution to study responding behaviours of microbial cells under different selection pressures both temporally and in a range of concentrations.

  18. Numerical investigation of the 3D flow field generated by a self-propelling manta ray

    NASA Astrophysics Data System (ADS)

    Pederzani, Jean-Noel; Haj-Hariri, Hossein

    2010-11-01

    A mixed Lagrangian-Eulerian approach is used to solve the three dimensional Navier-Stokes equation around a self-propelling manta ray. The motion of the manta ray is prescribed using a kinematic model fitted to actual biological data. The dependence of thrust production mechanism on Strouhal and Reynolds numbers is investigated. The vortex core structures are accurately plotted using the λ2 criteria; and a correlation between wake structures and propulsive performance is established. This insight is critical in understanding the key flow features that a bio-inspired autonomous vehicle should reproduce in order to swim efficiently. The solution method is implemented on a block-structured Cartesian grid using a volume of fluid approach. To enhance the computational efficiency, a parallel adaptive mesh refinement technique is used. The present method is validated for the flow around a sphere. A basic station keeping control problem for a pitching and lagging wing is also analyzed to show the capability of the code to aid in controller design and stability analysis.

  19. Experimental investigation of 3-D turbulent free shear flow past propellers and windmills

    SciTech Connect

    Kotb, M.A.

    1984-01-01

    An experimental investigation of the flowfield region near a 0.49 m (1.615 ft), 3 bladed, horizontal axis rotor was conducted in the VPI 2 m x 2 m (6 ft x 6 ft) wind tunnel. Two different modes of operations were studied - propeller and windmill. For each case, tests were run with a uniform approach flow as a base line condition, and the main test series was run with a variable mesh wire grid upstream to produce an approach flow with an essentially linear velocity gradient. The results are compared to elucidate the effects of the non-uniform approach flow. Several types of measurements are reported. First are gross quantities such as overall thrust and power. The second type of measurements are mean (in the turbulence sense) quantities obtained with a five port yawhead tube. All three components of mean velocity and static pressure were obtained. The third type of measurements were made with an x-wire anemometer and an r.m.s. meter. These measurements yield all components of the turbulence intensities and stresses at a point averaged over many passes of the rotor blades.

  20. 3D experimental investigation of the interplay between dielectrophoresis and induced-charge electroosmosis

    NASA Astrophysics Data System (ADS)

    Boymelgreen, Alicia; Zehavi, Matan; Yossifon, Gilad

    2014-11-01

    It is well-known that the advent non-linear electrokinetic flows, such as induced-charge electroosmosis, are strongly dependent on the frequency of the applied field. However, to date, there exists no unifying theory which can exactly predict both the strength and frequency dispersion of such electrokinetic flows. Using microPIV and temperature sensitive dyes we demonstrate the presence of a number of competing non-linear effects including dielectrophoresis, electrothermal flow and wall effects which compete with induced-charge electrokinetic flow, potentially causing a distortion of both the strength and frequency dispersion predicted for pure induced-charge effects. In terms of the wall effects, we investigate the differences between channels in which the walls are conducting (the field is perpendicular to the wall) and insulating (the field is parallel to the wall). This work is of both fundamental and practical importance and may be used to further refine non-linear electrokinetic theory and optimize the flow parameters of electroosmotic pumps and the mobility of electrokinetically driven micromotors or carriers in lab-on-a-chip analysis systems.

  1. Investigation on 3D t wake flow structures of swimming bionic fish

    NASA Astrophysics Data System (ADS)

    Shen, G.-X.; Tan, G.-K.; Lai, G.-J.

    2012-10-01

    A bionic experimental platform was designed for the purpose of investigating time accurate three-dimensional flow field, using digital particle image velocimetry (DSPIV). The wake behind the flapping trail of a robotic fish model was studied at high spatial resolution. The study was performed in a water channel. A robot fish model was designed and built. The model was fixed onto a rigid support framework using a cable-supporting method, with twelve stretched wires. The entire tail of the model can perform prescribed motions in two degrees of freedom, mainly in carangiform mode, by driving its afterbody and lunate caudal fin respectively. The DSPIV system was set up to operate in a translational manner, measuring velocity field in a series of parallel slices. Phase locked measurements were repeated for a number of runs, allowing reconstruction of phase average flow field. Vortex structures with phase history of the wake were obtained. The study reveals some new and complex three-dimensional flow structures in the wake of the fish, including "reverse hairpin vortex" and "reverse Karman S-H vortex rings", allowing insight into physics of this complex flow.

  2. The Florence Baptistery: 3-D Survey as a Knowledge Tool for Historical and Structural Investigations

    NASA Astrophysics Data System (ADS)

    Tucci, G.; Bonora, V.; Fiorini, L.; Conti, A.

    2016-06-01

    The Baptistery of San Giovanni is one of the most important pieces of architecture in Florence. It is an octagonal building, encrusted with marble both internally and externally (including the pyramidal roof) and covered inside by a magnificent dome with sparkling gold mosaics. During Dante's time, it appeared much older than the other monuments, so its origins were considered as hailing straight from Florence's most remote and mythical history. Even though we have much more data now, scholars still disagree over the interpretations on the origin and construction sequence of the monument. Survey has always been considered a main instrument for understanding historical architecture, mostly from constructional and structural points of view. During the last century, the Baptistery was surveyed using both traditional techniques and the most up-to-date instruments available at the time, such as topography, close-range photogrammetry and laser scanning. So, a review of those early applications, even if partial or isolated, can significantly attest to the state of the art and evolution of survey techniques. During recent years, the Opera di Santa Maria del Fiore promoted new research and a wide range of diagnostic investigations aimed at acquiring greater knowledge of the monument in anticipation of the cleaning and restoration of the outer wall surfaces during 2015. Among this research, GeCo Lab carried out a new systematic and complete laser scanner survey of the whole Baptistery, acquiring data for the more inaccessible parts that were given little attention during other survey campaigns. First of all, the paper analyses recent contributions given by instrumental surveys in advancing knowledge of the building, with references to the cutting-edge techniques and measurement tools used at the time. Then, it describes the new survey campaign, illustrating the approach followed in the planning, data acquisition and data elaboration phases; finally, it gives examples of some

  3. Cross-correlative 3D micro-structural investigation of human bone processed into bone allografts.

    PubMed

    Singh, Atul Kumar; Gajiwala, Astrid Lobo; Rai, Ratan Kumar; Khan, Mohd Parvez; Singh, Chandan; Barbhuyan, Tarun; Vijayalakshmi, S; Chattopadhyay, Naibedya; Sinha, Neeraj; Kumar, Ashutosh; Bellare, Jayesh R

    2016-05-01

    Bone allografts (BA) are a cost-effective and sustainable alternative in orthopedic practice as they provide a permanent solution for preserving skeletal architecture and function. Such BA however, must be processed to be disease free and immunologically safe as well as biologically and clinically useful. Here, we have demonstrated a processing protocol for bone allografts and investigated the micro-structural properties of bone collected from osteoporotic and normal human donor samples. In order to characterize BA at different microscopic levels, a combination of techniques such as Solid State Nuclear Magnetic Resonance (ssNMR), Scanning Electron Microscope (SEM), micro-computed tomography (μCT) and Thermal Gravimetric Analysis (TGA) were used for delineating the ultra-structural property of bone. ssNMR revealed the extent of water, collagen fine structure and crystalline order in the bone. These were greatly perturbed in the bone taken from osteoporotic bone donor. Among the processing methods analyzed, pasteurization at 60 °C and radiation treatment appeared to substantially alter the bone integrity. SEM study showed a reduction in Ca/P ratio and non-uniform distribution of elements in osteoporotic bones. μ-CT and MIMICS (Materialize Interactive Medical Image Control System) demonstrated that pasteurization and radiation treatment affects the BA morphology and cause a shift in the HU unit. However, the combination of all these processes restored all-important parameters that are critical for BA integrity and sustainability. Cross-correlation between the various probes we used quantitatively demonstrated differences in morphological and micro-structural properties between BA taken from normal and osteoporotic human donor. Such details could also be instrumental in designing an appropriate bone scaffold. For the best restoration of bone microstructure and to be used as a biomaterial allograft, a step-wise processing method is recommended that preserves all

  4. Seismic Investigation of Chemical Stratification in Stars

    NASA Astrophysics Data System (ADS)

    Théado, S.

    2012-09-01

    The chemical elements present in the stellar material are subject, during stellar evolution, to various physical processes which tend to build or on the contrary to smooth composition gradients. The oscillation properties and (often) their excitation mechanism being highly sensitive to the chemical distribution, their detailed analysis offer a unique opportunity to probe the stellar chemical stratification and to infer information about the internal physics of stars. In this paper I will first review the case where the chemical distribution acts as a driving or stabilizing agent for oscillations; in this context, I will present the progress in understanding the physics of stars inferred from seismic analyses. In a second part I will recall, in the case of solar-type stars, the possible asteroseismic tests of internal chemical composition as well as the first attempts to look for these signatures. In the last part I will discuss the effects on stratification and oscillations of an often forgotten process in main-sequence stars, the thermohaline convection. I will show that this double diffusive instability is a fundamental process which may strongly affect the chemical stratification and must then be included in stellar evolutionary computations and derived seismic analysis.

  5. Investigating the interaction between positions and signals of height-channel loudspeakers in reproducing immersive 3d sound

    NASA Astrophysics Data System (ADS)

    Karampourniotis, Antonios

    Since transmission capacitie