Science.gov

Sample records for 3d shape descriptors

  1. 3D model retrieval using probability density-based shape descriptors.

    PubMed

    Akgül, Ceyhun Burak; Sankur, Bülent; Yemez, Yücel; Schmitt, Francis

    2009-06-01

    We address content-based retrieval of complete 3D object models by a probabilistic generative description of local shape properties. The proposed shape description framework characterizes a 3D object with sampled multivariate probability density functions of its local surface features. This density-based descriptor can be efficiently computed via kernel density estimation (KDE) coupled with fast Gauss transform. The non-parametric KDE technique allows reliable characterization of a diverse set of shapes and yields descriptors which remain relatively insensitive to small shape perturbations and mesh resolution. Density-based characterization also induces a permutation property which can be used to guarantee invariance at the shape matching stage. As proven by extensive retrieval experiments on several 3D databases, our framework provides state-of-the-art discrimination over a broad and heterogeneous set of shape categories. PMID:19372614

  2. Analyzing the relevance of shape descriptors in automated recognition of facial gestures in 3D images

    NASA Astrophysics Data System (ADS)

    Rodriguez A., Julian S.; Prieto, Flavio

    2013-03-01

    The present document shows and explains the results from analyzing shape descriptors (DESIRE and Spherical Spin Image) for facial recognition of 3D images. DESIRE is a descriptor made of depth images, silhouettes and rays extended from a polygonal mesh; whereas the Spherical Spin Image (SSI) associated to a polygonal mesh point, is a 2D histogram built from neighboring points by using the position information that captures features of the local shape. The database used contains images of facial expressions which in average were recognized 88.16% using a neuronal network and 91.11% with a Bayesian classifier in the case of the first descriptor; in contrast, the second descriptor only recognizes in average 32% and 23,6% using the same mentioned classifiers respectively.

  3. 3D shape descriptors for face segmentation and fiducial points detection: an anatomical-based analysis

    NASA Astrophysics Data System (ADS)

    Salazar, Augusto E.; Cerón, Alexander; Prieto, Flavio A.

    2011-03-01

    The behavior of nine 3D shape descriptors which were computed on the surface of 3D face models, is studied. The set of descriptors includes six curvature-based ones, SPIN images, Folded SPIN Images, and Finger prints. Instead of defining clusters of vertices based on the value of a given primitive surface feature, a face template composed by 28 anatomical regions, is used to segment the models and to extract the location of different landmarks and fiducial points. Vertices are grouped by: region, region boundaries, and subsampled versions of them. The aim of this study is to analyze the discriminant capacity of each descriptor to characterize regions and to identify key points on the facial surface. The experiment includes testing with data from neutral faces and faces showing expressions. Also, in order to see the usefulness of the bending-invariant canonical form (BICF) to handle variations due to facial expressions, the descriptors are computed directly from the surface and also from its BICF. In the results: the values, distributions, and relevance indexes of each set of vertices, were analyzed.

  4. Benchmarking of HPCC: A novel 3D molecular representation combining shape and pharmacophoric descriptors for efficient molecular similarity assessments.

    PubMed

    Karaboga, Arnaud S; Petronin, Florent; Marchetti, Gino; Souchet, Michel; Maigret, Bernard

    2013-04-01

    Since 3D molecular shape is an important determinant of biological activity, designing accurate 3D molecular representations is still of high interest. Several chemoinformatic approaches have been developed to try to describe accurate molecular shapes. Here, we present a novel 3D molecular description, namely harmonic pharma chemistry coefficient (HPCC), combining a ligand-centric pharmacophoric description projected onto a spherical harmonic based shape of a ligand. The performance of HPCC was evaluated by comparison to the standard ROCS software in a ligand-based virtual screening (VS) approach using the publicly available directory of useful decoys (DUD) data set comprising over 100,000 compounds distributed across 40 protein targets. Our results were analyzed using commonly reported statistics such as the area under the curve (AUC) and normalized sum of logarithms of ranks (NSLR) metrics. Overall, our HPCC 3D method is globally as efficient as the state-of-the-art ROCS software in terms of enrichment and slightly better for more than half of the DUD targets. Since it is largely admitted that VS results depend strongly on the nature of the protein families, we believe that the present HPCC solution is of interest over the current ligand-based VS methods. PMID:23467019

  5. Perception-based shape retrieval for 3D building models

    NASA Astrophysics Data System (ADS)

    Zhang, Man; Zhang, Liqiang; Takis Mathiopoulos, P.; Ding, Yusi; Wang, Hao

    2013-01-01

    With the help of 3D search engines, a large number of 3D building models can be retrieved freely online. A serious disadvantage of most rotation-insensitive shape descriptors is their inability to distinguish between two 3D building models which are different at their main axes, but appear similar when one of them is rotated. To resolve this problem, we present a novel upright-based normalization method which not only correctly rotates such building models, but also greatly simplifies and accelerates the abstraction and the matching of building models' shape descriptors. Moreover, the abundance of architectural styles significantly hinders the effective shape retrieval of building models. Our research has shown that buildings with different designs are not well distinguished by the widely recognized shape descriptors for general 3D models. Motivated by this observation and to further improve the shape retrieval quality, a new building matching method is introduced and analyzed based on concepts found in the field of perception theory and the well-known Light Field descriptor. The resulting normalized building models are first classified using the qualitative shape descriptors of Shell and Unevenness which outline integral geometrical and topological information. These models are then put in on orderly fashion with the help of an improved quantitative shape descriptor which we will term as Horizontal Light Field Descriptor, since it assembles detailed shape characteristics. To accurately evaluate the proposed methodology, an enlarged building shape database which extends previous well-known shape benchmarks was implemented as well as a model retrieval system supporting inputs from 2D sketches and 3D models. Various experimental performance evaluation results have shown that, as compared to previous methods, retrievals employing the proposed matching methodology are faster and more consistent with human recognition of spatial objects. In addition these performance

  6. Learning spectral descriptors for deformable shape correspondence.

    PubMed

    Litman, R; Bronstein, A M

    2014-01-01

    Informative and discriminative feature descriptors play a fundamental role in deformable shape analysis. For example, they have been successfully employed in correspondence, registration, and retrieval tasks. In recent years, significant attention has been devoted to descriptors obtained from the spectral decomposition of the Laplace-Beltrami operator associated with the shape. Notable examples in this family are the heat kernel signature (HKS) and the recently introduced wave kernel signature (WKS). The Laplacian-based descriptors achieve state-of-the-art performance in numerous shape analysis tasks; they are computationally efficient, isometry-invariant by construction, and can gracefully cope with a variety of transformations. In this paper, we formulate a generic family of parametric spectral descriptors. We argue that to be optimized for a specific task, the descriptor should take into account the statistics of the corpus of shapes to which it is applied (the "signal") and those of the class of transformations to which it is made insensitive (the "noise"). While such statistics are hard to model axiomatically, they can be learned from examples. Following the spirit of the Wiener filter in signal processing, we show a learning scheme for the construction of optimized spectral descriptors and relate it to Mahalanobis metric learning. The superiority of the proposed approach in generating correspondences is demonstrated on synthetic and scanned human figures. We also show that the learned descriptors are robust enough to be learned on synthetic data and transferred successfully to scanned shapes. PMID:24231874

  7. A Compact Shape Descriptor for Triangular Surface Meshes

    PubMed Central

    Gao, Zhanheng; Yu, Zeyun; Pang, Xiaoli

    2014-01-01

    Three-dimensional shape-based descriptors have been widely used in object recognition and database retrieval. In the current work, we present a novel method called compact Shape-DNA (cShape-DNA) to describe the shape of a triangular surface mesh. While the original Shape-DNA technique provides an effective and isometric-invariant descriptor for surface shapes, the number of eigenvalues used is typically large. To further reduce the space and time consumptions, especially for large-scale database applications, it is of great interest to find a more compact way to describe an arbitrary surface shape. In the present approach, the standard Shape-DNA is first computed from the given mesh and then processed by surface area-based normalization and line subtraction. The proposed cShape-DNA descriptor is composed of some low frequencies of the discrete Fourier transform of the processed Shape-DNA. Several experiments are shown to illustrate the effectiveness and efficiency of the cShape-DNA method on 3D shape analysis, particularly on shape comparison and classification. PMID:24910467

  8. Local intersection volume: a new 3D descriptor applied to develop a 3D-QSAR pharmacophore model for benzodiazepine receptor ligands.

    PubMed

    Verli, Hugo; Albuquerque, Magaly Girão; Bicca de Alencastro, Ricardo; Barreiro, Eliezer J

    2002-03-01

    In this work, we have developed a new descriptor, named local intersection volume (LIV), in order to compose a 3D-QSAR pharmacophore model for benzodiazepine receptor ligands. The LIV can be classified as a 3D local shape descriptor in contraposition to the global shape descriptors. We have selected from the literature 49 non-benzodiazepine compounds as a training data set and the model was obtained and evaluated by genetic algorithms (GA) and partial least-squares (PLS) methods using LIVs as descriptors. The LIV 3D-QSAR model has a good predictive capacity according the cross-validation test by "leave-one-out" procedure (Q(2)=0.72). The developed model was compared to a comprehensive and extensive SAR pharmacophore model, recently proposed by Cook and co-workers, for benzodiazepine receptor ligands [J. Med. Chem. 43 (2000) 71]. It showed a relevant correlation with the pharmacophore groups pointed out in that work. Our LIV 3D-QSAR model was also able to predict affinity values for a series of nine compounds (test data set) that was not included into the training data set. PMID:11900866

  9. Matching Shapes Using Local Descriptors

    SciTech Connect

    White, R; Newsam, S; Kamath, C

    2004-08-13

    We present a method for comparing shapes of grayscale images in noisy circumstances. By establishing correspondences in a new image with a shape model, we can estimate a transformation between the new region and the model. Using a cost function for deviations from the model, we can rank resulting shape matches. We compare two separate distinct region detectors: Scale Saliency and difference of gaussians. We show that this method is successful in comparing images of fluid mixing under anisotropic geometric distortions and additive gaussian noise. Scale Saliency outperforms the difference of Gaussians in this context.

  10. Protein-protein docking using region-based 3D Zernike descriptors

    PubMed Central

    2009-01-01

    Background Protein-protein interactions are a pivotal component of many biological processes and mediate a variety of functions. Knowing the tertiary structure of a protein complex is therefore essential for understanding the interaction mechanism. However, experimental techniques to solve the structure of the complex are often found to be difficult. To this end, computational protein-protein docking approaches can provide a useful alternative to address this issue. Prediction of docking conformations relies on methods that effectively capture shape features of the participating proteins while giving due consideration to conformational changes that may occur. Results We present a novel protein docking algorithm based on the use of 3D Zernike descriptors as regional features of molecular shape. The key motivation of using these descriptors is their invariance to transformation, in addition to a compact representation of local surface shape characteristics. Docking decoys are generated using geometric hashing, which are then ranked by a scoring function that incorporates a buried surface area and a novel geometric complementarity term based on normals associated with the 3D Zernike shape description. Our docking algorithm was tested on both bound and unbound cases in the ZDOCK benchmark 2.0 dataset. In 74% of the bound docking predictions, our method was able to find a near-native solution (interface C-αRMSD ≤ 2.5 Å) within the top 1000 ranks. For unbound docking, among the 60 complexes for which our algorithm returned at least one hit, 60% of the cases were ranked within the top 2000. Comparison with existing shape-based docking algorithms shows that our method has a better performance than the others in unbound docking while remaining competitive for bound docking cases. Conclusion We show for the first time that the 3D Zernike descriptors are adept in capturing shape complementarity at the protein-protein interface and useful for protein docking prediction

  11. 3D Face Recognition Based on Multiple Keypoint Descriptors and Sparse Representation

    PubMed Central

    Zhang, Lin; Ding, Zhixuan; Li, Hongyu; Shen, Ying; Lu, Jianwei

    2014-01-01

    Recent years have witnessed a growing interest in developing methods for 3D face recognition. However, 3D scans often suffer from the problems of missing parts, large facial expressions, and occlusions. To be useful in real-world applications, a 3D face recognition approach should be able to handle these challenges. In this paper, we propose a novel general approach to deal with the 3D face recognition problem by making use of multiple keypoint descriptors (MKD) and the sparse representation-based classification (SRC). We call the proposed method 3DMKDSRC for short. Specifically, with 3DMKDSRC, each 3D face scan is represented as a set of descriptor vectors extracted from keypoints by meshSIFT. Descriptor vectors of gallery samples form the gallery dictionary. Given a probe 3D face scan, its descriptors are extracted at first and then its identity can be determined by using a multitask SRC. The proposed 3DMKDSRC approach does not require the pre-alignment between two face scans and is quite robust to the problems of missing data, occlusions and expressions. Its superiority over the other leading 3D face recognition schemes has been corroborated by extensive experiments conducted on three benchmark databases, Bosphorus, GavabDB, and FRGC2.0. The Matlab source code for 3DMKDSRC and the related evaluation results are publicly available at http://sse.tongji.edu.cn/linzhang/3dmkdsrcface/3dmkdsrc.htm. PMID:24940876

  12. 3D face recognition based on multiple keypoint descriptors and sparse representation.

    PubMed

    Zhang, Lin; Ding, Zhixuan; Li, Hongyu; Shen, Ying; Lu, Jianwei

    2014-01-01

    Recent years have witnessed a growing interest in developing methods for 3D face recognition. However, 3D scans often suffer from the problems of missing parts, large facial expressions, and occlusions. To be useful in real-world applications, a 3D face recognition approach should be able to handle these challenges. In this paper, we propose a novel general approach to deal with the 3D face recognition problem by making use of multiple keypoint descriptors (MKD) and the sparse representation-based classification (SRC). We call the proposed method 3DMKDSRC for short. Specifically, with 3DMKDSRC, each 3D face scan is represented as a set of descriptor vectors extracted from keypoints by meshSIFT. Descriptor vectors of gallery samples form the gallery dictionary. Given a probe 3D face scan, its descriptors are extracted at first and then its identity can be determined by using a multitask SRC. The proposed 3DMKDSRC approach does not require the pre-alignment between two face scans and is quite robust to the problems of missing data, occlusions and expressions. Its superiority over the other leading 3D face recognition schemes has been corroborated by extensive experiments conducted on three benchmark databases, Bosphorus, GavabDB, and FRGC2.0. The Matlab source code for 3DMKDSRC and the related evaluation results are publicly available at http://sse.tongji.edu.cn/linzhang/3dmkdsrcface/3dmkdsrc.htm. PMID:24940876

  13. 3D bicipital groove shape analysis and relationship to tendopathy.

    PubMed

    Ward, Aaron D; Hamarneh, Ghassan; Schweitzer, Mark E

    2008-06-01

    The bicipital groove of the proximal humerus is formed by the medial and lateral tuberosities and serves to retain the long biceps tendon in its proper place as the arm moves. Bicipital root and proximal tendon disorders are an important symptom generator in the shoulder. The accuracy of the diagnosis of many shoulder disorders visually without quantitative shape analysis is limited, motivating a clinical need for some ancillary method to assess the proximal biceps. In previous studies, measurements of bicipital groove shape were 2-dimensional (2D), taken from a single axial slice. Because of significant variations in groove shape from one axial slice to another in a single patient, such approaches risk overlooking shape features important to long biceps tendon pathology. In this paper, we present a study of the relationship between bicipital groove shape and long biceps tendon pathology using a novel 3-dimensional (3D) shape descriptor for the bicipital groove. In addition to providing quantitative measures of the shape of the groove and its relation to tendopathy, the new descriptor allows for intuitive, descriptive visualization of the shape of the groove. PMID:17342555

  14. A spherical harmonics intensity model for 3D segmentation and 3D shape analysis of heterochromatin foci.

    PubMed

    Eck, Simon; Wörz, Stefan; Müller-Ott, Katharina; Hahn, Matthias; Biesdorf, Andreas; Schotta, Gunnar; Rippe, Karsten; Rohr, Karl

    2016-08-01

    The genome is partitioned into regions of euchromatin and heterochromatin. The organization of heterochromatin is important for the regulation of cellular processes such as chromosome segregation and gene silencing, and their misregulation is linked to cancer and other diseases. We present a model-based approach for automatic 3D segmentation and 3D shape analysis of heterochromatin foci from 3D confocal light microscopy images. Our approach employs a novel 3D intensity model based on spherical harmonics, which analytically describes the shape and intensities of the foci. The model parameters are determined by fitting the model to the image intensities using least-squares minimization. To characterize the 3D shape of the foci, we exploit the computed spherical harmonics coefficients and determine a shape descriptor. We applied our approach to 3D synthetic image data as well as real 3D static and real 3D time-lapse microscopy images, and compared the performance with that of previous approaches. It turned out that our approach yields accurate 3D segmentation results and performs better than previous approaches. We also show that our approach can be used for quantifying 3D shape differences of heterochromatin foci. PMID:27037463

  15. Fractal and Euclidean descriptors of platelet shape.

    PubMed

    Kraus, Max-Joseph; Neeb, Heiko; Strasser, Erwin F

    2014-01-01

    Platelet shape change is a dynamic membrane surface process that exhibits remarkable morphological heterogeneity. Once the outline of an irregular shape is identified and segmented from a digital image, several mathematical descriptors can be applied to numerical characterize the irregularity of the shapes surface. 13072 platelet outlines (PLO) were segmented automatically from 1928 microscopic images using a newly developed algorithm for the software product Matlab R2012b. The fractal dimension (FD), circularity, eccentricity, area and perimeter of each PLO were determined. 972 PLO were randomly assigned for computer-assisted manual measurement of platelet diameter as well as number, width and length of filopodia per platelet. FD can be used as a surrogate parameter for determining the roughness of the PLO and circularity can be used as a surrogate to estimate the number and length of filopodia. The relationship between FD and perimeter of the PLO reveals the existence of distinct groups of platelets with significant structural differences which may be caused by platelet activation. This new method allows for the standardized continuous numerical classification of platelet shape and its dynamic change, which is useful for the analysis of altered platelet activity (e.g. inflammatory diseases, contact activation, drug testing). PMID:24224894

  16. Comparison of 3D interest point detectors and descriptors for point cloud fusion

    NASA Astrophysics Data System (ADS)

    Hänsch, R.; Weber, T.; Hellwich, O.

    2014-08-01

    The extraction and description of keypoints as salient image parts has a long tradition within processing and analysis of 2D images. Nowadays, 3D data gains more and more importance. This paper discusses the benefits and limitations of keypoints for the task of fusing multiple 3D point clouds. For this goal, several combinations of 3D keypoint detectors and descriptors are tested. The experiments are based on 3D scenes with varying properties, including 3D scanner data as well as Kinect point clouds. The obtained results indicate that the specific method to extract and describe keypoints in 3D data has to be carefully chosen. In many cases the accuracy suffers from a too strong reduction of the available points to keypoints.

  17. Shape corrections for 3D EIT

    NASA Astrophysics Data System (ADS)

    Paridis, Kyriakos; Lionheart, William R. B.

    2010-04-01

    Movement of the boundary in biomedical Electrical Impedance Tomography (EIT) has been always a source of error in image reconstruction. In the case of pulmonary EIT, where the patient's chest shape changes during respiration, this is inevitable, so it is essential to be able to correct for shape changes and consequently avoid artifacts. Assuming that the conductivity is isotropic, an assumption that is reasonable for lung tissue but admittedly violated for muscle, the boundary shape up to a Möbius transformation (conformal mapping) as well as the conductivity can theoretically be determined by 3D EIT data. While in two dimensions the space of conformal mappings are infinite dimensional, in the three dimensional case the Möbius transformations are given by a finite number of parameters. In this paper, we concentrate on the three dimensional case and take a linear approximation. We will give results of numerical studies analogous to the two dimensional work of Boyle et al on the effect of electrode movement and shape error in 3D EIT.

  18. A 3D Feature Descriptor Recovered from a Single 2D Palmprint Image.

    PubMed

    Zheng, Qian; Kumar, Ajay; Pan, Gang

    2016-06-01

    Design and development of efficient and accurate feature descriptors is critical for the success of many computer vision applications. This paper proposes a new feature descriptor, referred to as DoN, for the 2D palmprint matching. The descriptor is extracted for each point on the palmprint. It is based on the ordinal measure which partially describes the difference of the neighboring points' normal vectors. DoN has at least two advantages: 1) it describes the 3D information, which is expected to be highly stable under commonly occurring illumination variations during contactless imaging; 2) the size of DoN for each point is only one bit, which is computationally simple to extract, easy to match, and efficient to storage. We show that such 3D information can be extracted from a single 2D palmprint image. The analysis for the effectiveness of ordinal measure for palmprint matching is also provided. Four publicly available 2D palmprint databases are used to evaluate the effectiveness of DoN, both for identification and the verification. Our method on all these databases achieves the state-of-the-art performance. PMID:27164564

  19. 3D Riesz-wavelet based Covariance descriptors for texture classification of lung nodule tissue in CT.

    PubMed

    Cirujeda, Pol; Muller, Henning; Rubin, Daniel; Aguilera, Todd A; Loo, Billy W; Diehn, Maximilian; Binefa, Xavier; Depeursinge, Adrien

    2015-08-01

    In this paper we present a novel technique for characterizing and classifying 3D textured volumes belonging to different lung tissue types in 3D CT images. We build a volume-based 3D descriptor, robust to changes of size, rigid spatial transformations and texture variability, thanks to the integration of Riesz-wavelet features within a Covariance-based descriptor formulation. 3D Riesz features characterize the morphology of tissue density due to their response to changes in intensity in CT images. These features are encoded in a Covariance-based descriptor formulation: this provides a compact and flexible representation thanks to the use of feature variations rather than dense features themselves and adds robustness to spatial changes. Furthermore, the particular symmetric definite positive matrix form of these descriptors causes them to lay in a Riemannian manifold. Thus, descriptors can be compared with analytical measures, and accurate techniques from machine learning and clustering can be adapted to their spatial domain. Additionally we present a classification model following a "Bag of Covariance Descriptors" paradigm in order to distinguish three different nodule tissue types in CT: solid, ground-glass opacity, and healthy lung. The method is evaluated on top of an acquired dataset of 95 patients with manually delineated ground truth by radiation oncology specialists in 3D, and quantitative sensitivity and specificity values are presented. PMID:26738126

  20. A 3-D shape model of Interamnia

    NASA Astrophysics Data System (ADS)

    Sato, Isao

    2015-08-01

    A 3-D shape model of the sixth largest of the main belt asteroids, (704) Interamnia, is presented. The model is reproduced from its two stellar occultation observations and six lightcurves between 1969 and 2011. The first stellar occultation was the occultation of TYC 234500183 on 1996 December 17 observed from 13 sites in the USA. An elliptical cross section of (344.6±9.6km)×(306.2±9.1km), for position angle P=73.4±12.5 was fitted. The lightcurve around the occultation shows that the peak-to-peak amplitude was 0.04 mag. and the occultation phase was just before the minimum. The second stellar occultation was the occultation of HIP 036189 on 2003 March 23 observed from 39 sites in Japan and Hawaii. An elliptical cross section of (349.8±0.9km)×(303.7±1.7km), for position angle P=86.0±1.1 was fitted. A companion of 8.5 mag. of the occulted star was discovered whose separation is 12±2 mas (milli-arcseconds), P=148±11 . A combined analysis of rotational lightcurves and occultation chords can return more information than can be obtained with either technique alone. From follow-up photometric observations of the asteroid between 2003 and 2011, its rotation period is determined to be 8.728967167±0.00000007 hours, which is accurate enough to fix the rotation phases at other occultation events. The derived north pole is λ2000=259±8, β2000=-50±5 (retrograde rotation); the lengths of the three principal axes are 2a=361.8±2.8km, 2b=324.4±5.0km, 2c=297.3±3.5km, and the mean diameter is D=326.8±3.0km. Supposing the mass of Interamnia as (3.5±0.9)×10-11 solar masses, the density is then ρ=3.8±1.0 g cm-3.

  1. Alpha shapes applied to molecular shape characterization exhibit novel properties compared to established shape descriptors

    PubMed Central

    Wilson, J. Anthony; Bender, Andreas; Kaya, Taner; Clemons, Paul A.

    2011-01-01

    Despite considerable efforts, description of molecular shape is still largely an unresolved problem. Given the importance of molecular shape in the description of spatial interactions in crystals or ligand-target complexes, this is not a satisfying state. In the current work, we propose a novel application of alpha shapes to the description of the shapes of small molecules. Alpha shapes are parameterized generalizations of the convex hull. For a specific value of α, the alpha shape is the geometric dual of the space-filling model of a molecule, with the parameter α allowing description of shape in varying degrees of detail. To date, alpha shapes have been used to find macromolecular cavities and to estimate molecular surface areas and volumes. We developed a novel methodology for computing molecular shape characteristics from the alpha shape. In this work, we show that alpha-shape descriptors reveal aspects of molecular shape that are complementary to other shape descriptors, and that accord well with chemists’ intuition about shape. While our implementation of alpha-shape descriptors is not computationally trivial, we suggest that the additional shape characteristics they provide can be used to improve and complement shape-analysis methods in domains such as crystallography and ligand-target interactions. In this communication, we present a unique methodology for computing molecular shape characteristics from the alpha shape. We first describe details of the alpha-shape calculation, an outline of validation experiments performed, and a discussion of the advantages and challenges we found while implementing this approach. The results show that, relative to known shape calculations, this method provides a high degree of shape resolution with even small changes in atomic coordinates. PMID:19775113

  2. A shape relationship descriptor for radiation therapy planning.

    PubMed

    Kazhdan, Michael; Simari, Patricio; McNutt, Todd; Wu, Binbin; Jacques, Robert; Chuang, Ming; Taylor, Russell

    2009-01-01

    In this paper we address the challenge of matching patient geometry to facilitate the design of patient treatment plans in radiotherapy. To this end we propose a novel shape descriptor, the Overlap Volume Histogram, which provides a rotation and translation invariant representation of a patient's organs at risk relative to the tumor volume. Using our descriptor, it is possible to accurately identify database patients with similar constellations of organ and tumor geometries, enabling the transfer of treatment plans between patients with similar geometries, We demonstrate the utility of our method for such tasks by outperforming state of the art shape descriptors in the retrieval of patients with similar treatment plans. We also preliminarily show its potential as a quality control tool by demonstrating how it is used to identify an organ at risk whose dose can be significantly reduced. PMID:20426101

  3. Novel 3D bio-macromolecular bilinear descriptors for protein science: Predicting protein structural classes.

    PubMed

    Marrero-Ponce, Yovani; Contreras-Torres, Ernesto; García-Jacas, César R; Barigye, Stephen J; Cubillán, Néstor; Alvarado, Ysaías J

    2015-06-01

    In the present study, we introduce novel 3D protein descriptors based on the bilinear algebraic form in the ℝ(n) space on the coulombic matrix. For the calculation of these descriptors, macromolecular vectors belonging to ℝ(n) space, whose components represent certain amino acid side-chain properties, were used as weighting schemes. Generalization approaches for the calculation of inter-amino acidic residue spatial distances based on Minkowski metrics are proposed. The simple- and double-stochastic schemes were defined as approaches to normalize the coulombic matrix. The local-fragment indices for both amino acid-types and amino acid-groups are presented in order to permit characterizing fragments of interest in proteins. On the other hand, with the objective of taking into account specific interactions among amino acids in global or local indices, geometric and topological cut-offs are defined. To assess the utility of global and local indices a classification model for the prediction of the major four protein structural classes, was built with the Linear Discriminant Analysis (LDA) technique. The developed LDA-model correctly classifies the 92.6% and 92.7% of the proteins on the training and test sets, respectively. The obtained model showed high values of the generalized square correlation coefficient (GC(2)) on both the training and test series. The statistical parameters derived from the internal and external validation procedures demonstrate the robustness, stability and the high predictive power of the proposed model. The performance of the LDA-model demonstrates the capability of the proposed indices not only to codify relevant biochemical information related to the structural classes of proteins, but also to yield suitable interpretability. It is anticipated that the current method will benefit the prediction of other protein attributes or functions. PMID:25843214

  4. Improved differential 3D shape retrieval

    NASA Astrophysics Data System (ADS)

    Liu, Tongchuan; Zhou, Canlin; Si, Shuchun; Li, Hui; Lei, Zhenkun

    2015-10-01

    Phase unwrapping is a complex step in three-dimensional (3D) surface measurement. To simplify the computation process, Martino et al. proposed a differential algorithm. However, it will result in large error when the orthogonal fringes are not in horizontal or vertical direction. To solve this problem, the relationship between projector's and camera's coordinate systems is introduced. With the data obtained from coordinate transformation, the improved differential algorithm can be used for orthogonal fringes in any direction. Besides that, taking advantage of Fourier differentiation theorem makes operation and calculation simpler. By contrast, the results of experiments show that the proposed method is applicable to the patterns with orthogonal fringes in every direction. In addition, Fourier differentiation theorem effectively increases the speed of differential process.

  5. 3D shape decomposition and comparison for gallbladder modeling

    NASA Astrophysics Data System (ADS)

    Huang, Weimin; Zhou, Jiayin; Liu, Jiang; Zhang, Jing; Yang, Tao; Su, Yi; Law, Gim Han; Chui, Chee Kong; Chang, Stephen

    2011-03-01

    This paper presents an approach to gallbladder shape comparison by using 3D shape modeling and decomposition. The gallbladder models can be used for shape anomaly analysis and model comparison and selection in image guided robotic surgical training, especially for laparoscopic cholecystectomy simulation. The 3D shape of a gallbladder is first represented as a surface model, reconstructed from the contours segmented in CT data by a scheme of propagation based voxel learning and classification. To better extract the shape feature, the surface mesh is further down-sampled by a decimation filter and smoothed by a Taubin algorithm, followed by applying an advancing front algorithm to further enhance the regularity of the mesh. Multi-scale curvatures are then computed on the regularized mesh for the robust saliency landmark localization on the surface. The shape decomposition is proposed based on the saliency landmarks and the concavity, measured by the distance from the surface point to the convex hull. With a given tolerance the 3D shape can be decomposed and represented as 3D ellipsoids, which reveal the shape topology and anomaly of a gallbladder. The features based on the decomposed shape model are proposed for gallbladder shape comparison, which can be used for new model selection. We have collected 19 sets of abdominal CT scan data with gallbladders, some shown in normal shape and some in abnormal shapes. The experiments have shown that the decomposed shapes reveal important topology features.

  6. An efficient memetic algorithm for 3D shape matching problems

    NASA Astrophysics Data System (ADS)

    Sharif Khan, Mohammad; Mohamad Ayob, Ahmad F.; Ray, Tapabrata

    2014-05-01

    Shape representation plays a vital role in any shape optimization exercise. The ability to identify a shape with good functional properties is dependent on the underlying shape representation scheme, the morphing mechanism and the efficiency of the optimization algorithm. This article presents a novel and efficient methodology for morphing 3D shapes via smart repair of control points. The repaired sequence of control points are subsequently used to define the 3D object using a B-spline surface representation. The control points are evolved within the framework of a memetic algorithm for greater efficiency. While the authors have already proposed an approach for 2D shape matching, this article extends it further to deal with 3D shape matching problems. Three 3D examples and a real customized 3D earplug design have been used as examples to illustrate the performance of the proposed approach and the effectiveness of the repair scheme. Complete details of the problems are presented for future work in this direction.

  7. Optofluidic fabrication for 3D-shaped particles.

    PubMed

    Paulsen, Kevin S; Di Carlo, Dino; Chung, Aram J

    2015-01-01

    Complex three-dimensional (3D)-shaped particles could play unique roles in biotechnology, structural mechanics and self-assembly. Current methods of fabricating 3D-shaped particles such as 3D printing, injection moulding or photolithography are limited because of low-resolution, low-throughput or complicated/expensive procedures. Here, we present a novel method called optofluidic fabrication for the generation of complex 3D-shaped polymer particles based on two coupled processes: inertial flow shaping and ultraviolet (UV) light polymerization. Pillars within fluidic platforms are used to deterministically deform photosensitive precursor fluid streams. The channels are then illuminated with patterned UV light to polymerize the photosensitive fluid, creating particles with multi-scale 3D geometries. The fundamental advantages of optofluidic fabrication include high-resolution, multi-scalability, dynamic tunability, simple operation and great potential for bulk fabrication with full automation. Through different combinations of pillar configurations, flow rates and UV light patterns, an infinite set of 3D-shaped particles is available, and a variety are demonstrated. PMID:25904062

  8. Optofluidic fabrication for 3D-shaped particles

    NASA Astrophysics Data System (ADS)

    Paulsen, Kevin S.; di Carlo, Dino; Chung, Aram J.

    2015-04-01

    Complex three-dimensional (3D)-shaped particles could play unique roles in biotechnology, structural mechanics and self-assembly. Current methods of fabricating 3D-shaped particles such as 3D printing, injection moulding or photolithography are limited because of low-resolution, low-throughput or complicated/expensive procedures. Here, we present a novel method called optofluidic fabrication for the generation of complex 3D-shaped polymer particles based on two coupled processes: inertial flow shaping and ultraviolet (UV) light polymerization. Pillars within fluidic platforms are used to deterministically deform photosensitive precursor fluid streams. The channels are then illuminated with patterned UV light to polymerize the photosensitive fluid, creating particles with multi-scale 3D geometries. The fundamental advantages of optofluidic fabrication include high-resolution, multi-scalability, dynamic tunability, simple operation and great potential for bulk fabrication with full automation. Through different combinations of pillar configurations, flow rates and UV light patterns, an infinite set of 3D-shaped particles is available, and a variety are demonstrated.

  9. Automatic Reconstruction of Spacecraft 3D Shape from Imagery

    NASA Astrophysics Data System (ADS)

    Poelman, C.; Radtke, R.; Voorhees, H.

    We describe a system that computes the three-dimensional (3D) shape of a spacecraft from a sequence of uncalibrated, two-dimensional images. While the mathematics of multi-view geometry is well understood, building a system that accurately recovers 3D shape from real imagery remains an art. A novel aspect of our approach is the combination of algorithms from computer vision, photogrammetry, and computer graphics. We demonstrate our system by computing spacecraft models from imagery taken by the Air Force Research Laboratory's XSS-10 satellite and DARPA's Orbital Express satellite. Using feature tie points (each identified in two or more images), we compute the relative motion of each frame and the 3D location of each feature using iterative linear factorization followed by non-linear bundle adjustment. The "point cloud" that results from this traditional shape-from-motion approach is typically too sparse to generate a detailed 3D model. Therefore, we use the computed motion solution as input to a volumetric silhouette-carving algorithm, which constructs a solid 3D model based on viewpoint consistency with the image frames. The resulting voxel model is then converted to a facet-based surface representation and is texture-mapped, yielding realistic images from arbitrary viewpoints. We also illustrate other applications of the algorithm, including 3D mensuration and stereoscopic 3D movie generation.

  10. Understanding 3D human torso shape via manifold clustering

    NASA Astrophysics Data System (ADS)

    Li, Sheng; Li, Peng; Fu, Yun

    2013-05-01

    Discovering the variations in human torso shape plays a key role in many design-oriented applications, such as suit designing. With recent advances in 3D surface imaging technologies, people can obtain 3D human torso data that provide more information than traditional measurements. However, how to find different human shapes from 3D torso data is still an open problem. In this paper, we propose to use spectral clustering approach on torso manifold to address this problem. We first represent high-dimensional torso data in a low-dimensional space using manifold learning algorithm. Then the spectral clustering method is performed to get several disjoint clusters. Experimental results show that the clusters discovered by our approach can describe the discrepancies in both genders and human shapes, and our approach achieves better performance than the compared clustering method.

  11. Light shaping along 3D curves and particle manipulation

    NASA Astrophysics Data System (ADS)

    Rodrigo, José A.; Alieva, Tatiana

    2015-03-01

    We present a non-iterative holographic technique for efficient and versatile laser beam shaping along arbitrary 3D curves. Light beams with intensity shaped for several 3D curves: Tilted ring, Viviani's curve, Archimedean spiral, and trefoil-knotted curve have been experimentally generated and applied for optical trapping of micrometer-sized dielectric particles. The high intensity gradients and independent phase control prescribed along the curve make this kind of laser trap attractive for multiple particle manipulation and allow for forward and backward motion to the light source. Indeed, different configurations of tractor beam traps are experimentally demonstrated. This technique can also be applied for laser micro-machining.

  12. Novel signal shape descriptors through wavelet transforms and dimensionality reduction

    NASA Astrophysics Data System (ADS)

    Hughes, Nicholas P.; Tarassenko, Lionel

    2003-11-01

    The wavelet transform is a powerful tool for capturing the joint time-frequency characteristics of a signal. However, the resulting wavelet coefficients are typically high-dimensional, since at each time sample the wavelet transform is evaluated at a number of distinct scales. Unfortunately, modelling these coefficients can be problematic because of the large number of parameters needed to capture the dependencies between different scales. In this paper we investigate the use of algorithms from the field of dimensionality reduction to extract informative and compact descriptions of shape from wavelet coefficients. These low-dimensional shape descriptors lead to models that are governed by only a small number of parameters and can be learnt successfully from limited amounts of data. The validity of our approach is demonstrated on the task of automatically segmenting an electrocardiogram signal into its constituent waveform features.

  13. Dynamic 3D Visualization of Vocal Tract Shaping During Speech

    PubMed Central

    Zhu, Yinghua; Kim, Yoon-Chul; Proctor, Michael I.; Narayanan, Shrikanth S.; Nayak, Krishna S.

    2014-01-01

    Noninvasive imaging is widely used in speech research as a means to investigate the shaping and dynamics of the vocal tract during speech production. 3D dynamic MRI would be a major advance, as it would provide 3D dynamic visualization of the entire vocal tract. We present a novel method for the creation of 3D dynamic movies of vocal tract shaping based on the acquisition of 2D dynamic data from parallel slices and temporal alignment of the image sequences using audio information. Multiple sagittal 2D real-time movies with synchronized audio recordings are acquired for English vowel-consonant-vowel stimuli /ala/, /aɹa/, /asa/ and /aʃa/. Audio data are aligned using mel-frequency cepstral coefficients (MFCC) extracted from windowed intervals of the speech signal. Sagittal image sequences acquired from all slices are then aligned using dynamic time warping (DTW). The aligned image sequences enable dynamic 3D visualization by creating synthesized movies of the moving airway in the coronal planes, visualizing desired tissue surfaces and tube-shaped vocal tract airway after manual segmentation of targeted articulators and smoothing. The resulting volumes allow for dynamic 3D visualization of salient aspects of lingual articulation, including the formation of tongue grooves and sublingual cavities, with a temporal resolution of 78 ms. PMID:23204279

  14. Shape control in wafer-based aperiodic 3D nanostructures

    NASA Astrophysics Data System (ADS)

    Jeong, Hyeon-Ho; Mark, Andrew G.; Gibbs, John G.; Reindl, Thomas; Waizmann, Ulrike; Weis, Jürgen; Fischer, Peer

    2014-06-01

    Controlled local fabrication of three-dimensional (3D) nanostructures is important to explore and enhance the function of single nanodevices, but is experimentally challenging. We present a scheme based on e-beam lithography (EBL) written seeds, and glancing angle deposition (GLAD) grown structures to create nanoscale objects with defined shapes but in aperiodic arrangements. By using a continuous sacrificial corral surrounding the features of interest we grow isolated 3D nanostructures that have complex cross-sections and sidewall morphology that are surrounded by zones of clean substrate.

  15. A Modified Exoskeleton for 3D Shape Description and Recognition

    NASA Astrophysics Data System (ADS)

    Lipikorn, Rajalida; Shimizu, Akinobu; Hagihara, Yoshihiro; Kobatake, Hidefumi

    Three-dimensional(3D) shape representation is a powerful tool in object recognition that is an essential process in an image processing and analysis system. Skeleton is one of the most widely used representations for object recognition, nevertheless most of the skeletons obtained from conventional methods are susceptible to rotation and noise disturbances. In this paper, we present a new 3D object representation called a modified exoskeleton (mES) which preserves skeleton properties including significant characteristics about an object that are meaningful for object recognition, and is more stable and less susceptible to rotation and noise than the skeletons. Then a 3D shape recognition methodology which determines the similarity between an observed object and other known objects in a database is introduced. Through a number of experiments on 3D artificial objects and real volumetric lung tumors extracted from CT images, it can be verified that our proposed methodology based on the mES is a simple yet efficient method that is less sensitive to rotation, noise, and independent of orientation and size of the objects.

  16. Aesthetic preference recognition of 3D shapes using EEG.

    PubMed

    Chew, Lin Hou; Teo, Jason; Mountstephens, James

    2016-04-01

    Recognition and identification of aesthetic preference is indispensable in industrial design. Humans tend to pursue products with aesthetic values and make buying decisions based on their aesthetic preferences. The existence of neuromarketing is to understand consumer responses toward marketing stimuli by using imaging techniques and recognition of physiological parameters. Numerous studies have been done to understand the relationship between human, art and aesthetics. In this paper, we present a novel preference-based measurement of user aesthetics using electroencephalogram (EEG) signals for virtual 3D shapes with motion. The 3D shapes are designed to appear like bracelets, which is generated by using the Gielis superformula. EEG signals were collected by using a medical grade device, the B-Alert X10 from advance brain monitoring, with a sampling frequency of 256 Hz and resolution of 16 bits. The signals obtained when viewing 3D bracelet shapes were decomposed into alpha, beta, theta, gamma and delta rhythm by using time-frequency analysis, then classified into two classes, namely like and dislike by using support vector machines and K-nearest neighbors (KNN) classifiers respectively. Classification accuracy of up to 80 % was obtained by using KNN with the alpha, theta and delta rhythms as the features extracted from frontal channels, Fz, F3 and F4 to classify two classes, like and dislike. PMID:27066153

  17. 3D-Geomorphometrics tooth shape analysis in hypodontia

    PubMed Central

    Al-Shahrani, Ibrahim; Dirks, Wendy; Jepson, Nicholas; Khalaf, Khaled

    2014-01-01

    Assessment of tooth morphology is an important part of the diagnosis and management of hypodontia patients. Several techniques have been used to analyze tooth form in hypodontia patients and these have shown smaller tooth dimensions and anomalous tooth shapes in patients with hypodontia when compared with controls. However, previous studies have mainly used 2D images and provided limited information. In the present study, 3D surface-imaging and statistical shape analysis were used to evaluate tooth form differences between hypodontia and control patients. Eighteen anatomical landmarks were recorded on the clinical crown of the lower left first permanent molar of 3D scanned study models of hypodontia and control subjects. The study sample group comprised of 120 hypodontia patients (40 mild, 40 moderate, and 40 severe hypodontia patients) and 40 age- and sex-matched controls. Procrustes coordinates were utilized to scale and superimpose the landmark coordinate data and then were subjected to principal component analysis (PCA). Subsequently, differences in shape as well as size were tested statistically using allometric analysis and MANOVA. Significant interaction was found between the two factor variables “group” and “sex” (p < 0.002). Overall expected accuracies were 66 and 56% for females and males, respectively, in the cross-validated discriminant-analysis using the first 20 PCs. Hypodontia groups showed significant shape differences compared with the control subjects (p < 0.0001). Significant differences in tooth crown shape were also found between sexes (p < 0.0001) within groups. Furthermore, the degree of variation in tooth form was proportional to the degree of the severity of the hypodontia. Thus, quantitative measurement of tooth shape in hypodontia patients may enhance the multidisciplinary management of those patients. PMID:24795649

  18. Predictive Modeling of Antioxidant Coumarin Derivatives Using Multiple Approaches: Descriptor-Based QSAR, 3D-Pharmacophore Mapping, and HQSAR.

    PubMed

    Mitra, Indrani; Saha, Achintya; Roy, Kunal

    2013-03-01

    The inability of the systemic antioxidants to alleviate the exacerbation of free radical formation from metabolic outputs and environmental pollutants claims an urgent demand for the identification and design of new chemical entities with potent antioxidant activity. In the present work, different QSAR approaches have been utilized for identifying the essential structural attributes imparting a potential antioxidant activity profile of the coumarin derivatives. The descriptor-based QSAR model provides a quantitative outline regarding the structural prerequisites of the molecules, while 3D pharmacophore and HQSAR models emphasize the favourable spatial arrangement of the various chemical features and the crucial molecular fragments, respectively. All the models infer that the fused benzene ring and the oxygen atom of the pyran ring constituting the parent coumarin nucleus capture the prime pharmacophoric features, imparting superior antioxidant activity to the molecules. The developed models may serve as indispensable query tools for screening untested molecules belonging to the class of coumarin derivatives. PMID:23641329

  19. Segmentation of Brain MRI Using SOM-FCM-Based Method and 3D Statistical Descriptors

    PubMed Central

    Ortiz, Andrés; Palacio, Antonio A.; Górriz, Juan M.; Ramírez, Javier; Salas-González, Diego

    2013-01-01

    Current medical imaging systems provide excellent spatial resolution, high tissue contrast, and up to 65535 intensity levels. Thus, image processing techniques which aim to exploit the information contained in the images are necessary for using these images in computer-aided diagnosis (CAD) systems. Image segmentation may be defined as the process of parcelling the image to delimit different neuroanatomical tissues present on the brain. In this paper we propose a segmentation technique using 3D statistical features extracted from the volume image. In addition, the presented method is based on unsupervised vector quantization and fuzzy clustering techniques and does not use any a priori information. The resulting fuzzy segmentation method addresses the problem of partial volume effect (PVE) and has been assessed using real brain images from the Internet Brain Image Repository (IBSR). PMID:23762192

  20. Automatic 3-D grayscale volume matching and shape analysis.

    PubMed

    Guétat, Grégoire; Maitre, Matthieu; Joly, Laurène; Lai, Sen-Lin; Lee, Tzumin; Shinagawa, Yoshihisa

    2006-04-01

    Recently, shape matching in three dimensions (3-D) has been gaining importance in a wide variety of fields such as computer graphics, computer vision, medicine, and biology, with applications such as object recognition, medical diagnosis, and quantitative morphological analysis of biological operations. Automatic shape matching techniques developed in the field of computer graphics handle object surfaces, but ignore intensities of inner voxels. In biology and medical imaging, voxel intensities obtained by computed tomography (CT), magnetic resonance imagery (MRI), and confocal microscopes are important to determine point correspondences. Nevertheless, most biomedical volume matching techniques require human interactions, and automatic methods assume matched objects to have very similar shapes so as to avoid combinatorial explosions of point. This article is aimed at decreasing the gap between the two fields. The proposed method automatically finds dense point correspondences between two grayscale volumes; i.e., finds a correspondent in the second volume for every voxel in the first volume, based on the voxel intensities. Mutiresolutional pyramids are introduced to reduce computational load and handle highly plastic objects. We calculate the average shape of a set of similar objects and give a measure of plasticity to compare them. Matching results can also be used to generate intermediate volumes for morphing. We use various data to validate the effectiveness of our method: we calculate the average shape and plasticity of a set of fly brain cells, and we also match a human skull and an orangutan skull. PMID:16617625

  1. 3D Shape and Indirect Appearance by Structured Light Transport.

    PubMed

    OToole, Matthew; Mather, John; Kutulakos, Kiriakos N

    2016-07-01

    We consider the problem of deliberately manipulating the direct and indirect light flowing through a time-varying, general scene in order to simplify its visual analysis. Our approach rests on a crucial link between stereo geometry and light transport: while direct light always obeys the epipolar geometry of a projector-camera pair, indirect light overwhelmingly does not. We show that it is possible to turn this observation into an imaging method that analyzes light transport in real time in the optical domain, prior to acquisition. This yields three key abilities that we demonstrate in an experimental camera prototype: (1) producing a live indirect-only video stream for any scene, regardless of geometric or photometric complexity; (2) capturing images that make existing structured-light shape recovery algorithms robust to indirect transport; and (3) turning them into one-shot methods for dynamic 3D shape capture. PMID:27295455

  2. High-speed 3D shape measurement using array projection

    NASA Astrophysics Data System (ADS)

    Heist, Stefan; Sieler, Marcel; Breitbarth, Andreas; Kühmstedt, Peter; Notni, Gunther

    2013-04-01

    Measuring the three-dimensional (3D) surface shape of objects in real time has become an important task e.g. in industrial quality management or medical sciences. Stereo vision-based arrangements in connection with pattern projection offer high data acquisition speed and low computation time. However, these coded-light techniques are limited by the projection speed which is conventionally in the range of 200. . .250Hz. In this contribution, we present the concepts and a realized setup of a so-called 3D array projector. It is ultra-slim, but nonetheless able to project fixed patterns with high brightness and depth of focus. Furthermore, frame rates up to the 100 kHz range are achievable without any need of mechanically moving parts since the projection speed is limited mainly by the switching frequency of the used LEDs. According to the measurement requirements, type and structure of the patterns can be chosen almost freely: linear or sinusoidal fringes, binary codes such as the Gray code, square, hexagonal or random patterns and many more. First investigations on the functionality of such a 3D array projector were conducted using a prototype with a combination of Gray codes and phase-shifted sinusoidal fringes. Our contribution proves the high brightness of the proposed projector, its sharpness and the good Michelson contrast of the fringe patterns. We deal with the patterns' homogeneity and the accuracy of the phase shift between the sinusoidal patterns. Furthermore, we present first measurement results and outline future research which is, inter alia, addressed to the use of other structured light techniques with the help of new purpose-built 3D array projector prototypes.

  3. A contour-based shape descriptor for biomedical image classification and retrieval

    NASA Astrophysics Data System (ADS)

    You, Daekeun; Antani, Sameer; Demner-Fushman, Dina; Thoma, George R.

    2013-12-01

    Contours, object blobs, and specific feature points are utilized to represent object shapes and extract shape descriptors that can then be used for object detection or image classification. In this research we develop a shape descriptor for biomedical image type (or, modality) classification. We adapt a feature extraction method used in optical character recognition (OCR) for character shape representation, and apply various image preprocessing methods to successfully adapt the method to our application. The proposed shape descriptor is applied to radiology images (e.g., MRI, CT, ultrasound, X-ray, etc.) to assess its usefulness for modality classification. In our experiment we compare our method with other visual descriptors such as CEDD, CLD, Tamura, and PHOG that extract color, texture, or shape information from images. The proposed method achieved the highest classification accuracy of 74.1% among all other individual descriptors in the test, and when combined with CSD (color structure descriptor) showed better performance (78.9%) than using the shape descriptor alone.

  4. Clarifying Level Descriptors for Childrens' Understanding of Some Basic 2-D Geometric Shapes.

    ERIC Educational Resources Information Center

    Pegg, John; Davey, Geoff

    1989-01-01

    Written descriptions by students in grades 3-7 (n=274) of common 2-dimensional geometric shapes were examined to compare the level descriptors of the van Hiele Theory and the SOLO Taxonomy. Results indicate that descriptors associated with the SOLO Taxonomy more accurately describe the quality of student thinking. (MDH)

  5. Classification and quantification of pore shapes in sandstone reservoir rocks with 3-D X-ray micro-computed tomography

    NASA Astrophysics Data System (ADS)

    Schmitt, Mayka; Halisch, Matthias; Müller, Cornelia; Peres Fernandes, Celso

    2016-02-01

    Recent years have seen a growing interest in the characterization of the pore morphologies of reservoir rocks and how the spatial organization of pore traits affects the macro behavior of rock-fluid systems. With the availability of 3-D high-resolution imaging, such as x-ray micro-computed tomography (µ-CT), the detailed quantification of particle shapes has been facilitated by progress in computer science. Here, we show how the shapes of irregular rock particles (pores) can be classified and quantified based on binary 3-D images. The methodology requires the measurement of basic 3-D particle descriptors (length, width, and thickness) and a shape classification that involves the similarity of artificial objects, which is based on main pore network detachments and 3-D sample sizes. Two main pore components were identified from the analyzed volumes: pore networks and residual pore ganglia. A watershed algorithm was applied to preserve the pore morphology after separating the main pore networks, which is essential for the pore shape characterization. The results were validated for three sandstones (S1, S2, and S3) from distinct reservoirs, and most of the pore shapes were found to be plate- and cube-like, ranging from 39.49 to 50.94 % and from 58.80 to 45.18 % when the Feret caliper descriptor was investigated in a 10003 voxel volume. Furthermore, this study generalizes a practical way to correlate specific particle shapes, such as rods, blades, cuboids, plates, and cubes to characterize asymmetric particles of any material type with 3-D image analysis.

  6. Scale Space Graph Representation and Kernel Matching for Non Rigid and Textured 3D Shape Retrieval.

    PubMed

    Garro, Valeria; Giachetti, Andrea

    2016-06-01

    In this paper we introduce a novel framework for 3D object retrieval that relies on tree-based shape representations (TreeSha) derived from the analysis of the scale-space of the Auto Diffusion Function (ADF) and on specialized graph kernels designed for their comparison. By coupling maxima of the Auto Diffusion Function with the related basins of attraction, we can link the information at different scales encoding spatial relationships in a graph description that is isometry invariant and can easily incorporate texture and additional geometrical information as node and edge features. Using custom graph kernels it is then possible to estimate shape dissimilarities adapted to different specific tasks and on different categories of models, making the procedure a powerful and flexible tool for shape recognition and retrieval. Experimental results demonstrate that the method can provide retrieval scores similar or better than state-of-the-art on textured and non textured shape retrieval benchmarks and give interesting insights on effectiveness of different shape descriptors and graph kernels. PMID:26372206

  7. Classification and quantification of pore shapes in sandstone reservoir rocks with 3-D X-ray micro-computed tomography

    NASA Astrophysics Data System (ADS)

    Schmitt, M.; Halisch, M.; Müller, C.; Fernandes, C. P.

    2015-12-01

    Recent years have seen a growing interest in the characterization of the pore morphologies of reservoir rocks and how the spatial organization of pore traits affects the macro behaviour of rock-fluid systems. With the availability of 3-D high-resolution imaging (e.g. μ-CT), the detailed quantification of particle shapes has been facilitated by progress in computer science. Here, we show how the shapes of irregular rock particles (pores) can be classified and quantified based on binary 3-D images. The methodology requires the measurement of basic 3-D particle descriptors and a shape classification that involves the similarity of artificial objects, which is based on main pore network detachments and 3-D sample sizes. The results were validated for three sandstones (S1, S2 and S3) from distinct reservoirs, and most of the pore shapes were found to be plate- and cube-like. Furthermore, this study generalizes a practical way to correlate specific particle shapes, such as rods, blades, cuboids, plates and cubes, to characterize asymmetric particles of any material type with 3-D image analysis.

  8. Automated robust generation of compact 3D statistical shape models

    NASA Astrophysics Data System (ADS)

    Vrtovec, Tomaz; Likar, Bostjan; Tomazevic, Dejan; Pernus, Franjo

    2004-05-01

    Ascertaining the detailed shape and spatial arrangement of anatomical structures is important not only within diagnostic settings but also in the areas of planning, simulation, intraoperative navigation, and tracking of pathology. Robust, accurate and efficient automated segmentation of anatomical structures is difficult because of their complexity and inter-patient variability. Furthermore, the position of the patient during image acquisition, the imaging device and protocol, image resolution, and other factors induce additional variations in shape and appearance. Statistical shape models (SSMs) have proven quite successful in capturing structural variability. A possible approach to obtain a 3D SSM is to extract reference voxels by precisely segmenting the structure in one, reference image. The corresponding voxels in other images are determined by registering the reference image to each other image. The SSM obtained in this way describes statistically plausible shape variations over the given population as well as variations due to imperfect registration. In this paper, we present a completely automated method that significantly reduces shape variations induced by imperfect registration, thus allowing a more accurate description of variations. At each iteration, the derived SSM is used for coarse registration, which is further improved by describing finer variations of the structure. The method was tested on 64 lumbar spinal column CT scans, from which 23, 38, 45, 46 and 42 volumes of interest containing vertebra L1, L2, L3, L4 and L5, respectively, were extracted. Separate SSMs were generated for each vertebra. The results show that the method is capable of reducing the variations induced by registration errors.

  9. Conveying the 3D Shape of Transparent Surfaces Via Texture

    NASA Technical Reports Server (NTRS)

    Interrante, Victoria; Fuchs, Henry; Pizer, Stephen

    1997-01-01

    Transparency can be a useful device for depicting multiple overlapping surfaces in a single image. The challenge is to render the transparent surfaces in such a way that their three-dimensional shape can be readily understood and their depth distance from underlying structures clearly perceived. This paper describes our investigations into the use of sparsely-distributed discrete, opaque texture as an 'artistic device' for more explicitly indicating the relative depth of a transparent surface and for communicating the essential features of its 3D shape in an intuitively meaningful and minimally occluding way. The driving application for this work is the visualization of layered surfaces in radiation therapy treatment planning data, and the technique is illustrated on transparent isointensity surfaces of radiation dose. We describe the perceptual motivation and artistic inspiration for defining a stroke texture that is locally oriented in the direction of greatest normal curvature (and in which individual strokes are of a length proportional to the magnitude of the curvature in the direction they indicate), and discuss several alternative methods for applying this texture to isointensity surfaces defined in a volume. We propose an experimental paradigm for objectively measuring observers' ability to judge the shape and depth of a layered transparent surface, in the course of a task relevant to the needs of radiotherapy treatment planning, and use this paradigm to evaluate the practical effectiveness of our approach through a controlled observer experiment based on images generated from actual clinical data.

  10. Automated full-3D shape measurement of cultural heritage objects

    NASA Astrophysics Data System (ADS)

    Sitnik, Robert; Karaszewski, Maciej; Zaluski, Wojciech; Bolewicki, Pawel

    2009-07-01

    In this paper a fully automated 3D shape measurement system is presented. It consists of rotary stage for cultural heritage objects placement, vertical linear stage with mounted robot arm (with six degrees of freedom) and structured light measurement set-up mounted to its head. All these manipulation devices are automatically controlled by collision detection and next-best-view calculation modules. The goal of whole system is to automatically (without any user attention) and rapidly (from days and weeks to hours) measure whole object. Measurement head is automatically calibrated by the system and its possible working volume starts from centimeters and ends up to one meter. We present some measurement results with different working scenarios along with discussion about its possible applications.

  11. Saddle-Shaped Cyclic Indole Tetramers: 3D Electroactive Molecules.

    PubMed

    Ruiz, Constanza; Monge, Ángeles; Gutiérrez-Puebla, Enrique; Alkorta, Ibon; Elguero, José; Navarrete, Juan T López; Ruiz Delgado, M Carmen; Gómez-Lor, Berta

    2016-07-18

    We present a joint theoretical and experimental study of a series of cyclic indole tetramers aimed at understanding the fundamental electronic properties of this 3D platform and evaluating its potential in the construction of new semiconductors. To this end, we combined absorption and Raman spectroscopy, cyclic voltammetry, and spectroelectrochemistry with DFT calculations. Our results suggest that this platform can be easily and reversibly oxidized. Additionally, it has a HOMO that matches very well with the workfunction of gold, therefore charge injection from a gold electrode is expected to occur without significant barriers. Interestingly, the cyclic tetraindoles allow for good electron delocalization in spite of their saddle-shaped structures. The steric constraints introduced by N-substitution significantly inhibits ring inversion of the central cyclooctatetraene unit, whereas it only barely affects the optical and electrochemical properties (a slightly higher oxidation potential and a blueshifted absorption upon alkylation are observed). PMID:27320301

  12. The sinogram polygonizer for reconstructing 3D shapes.

    PubMed

    Yamanaka, Daiki; Ohtake, Yutaka; Suzuki, Hiromasa

    2013-11-01

    This paper proposes a novel approach, the sinogram polygonizer, for directly reconstructing 3D shapes from sinograms (i.e., the primary output from X-ray computed tomography (CT) scanners consisting of projection image sequences of an object shown from different viewing angles). To obtain a polygon mesh approximating the surface of a scanned object, a grid-based isosurface polygonizer, such as Marching Cubes, has been conventionally applied to the CT volume reconstructed from a sinogram. In contrast, the proposed method treats CT values as a continuous function and directly extracts a triangle mesh based on tetrahedral mesh deformation. This deformation involves quadratic error metric minimization and optimal Delaunay triangulation for the generation of accurate, high-quality meshes. Thanks to the analytical gradient estimation of CT values, sharp features are well approximated, even though the generated mesh is very coarse. Moreover, this approach eliminates aliasing artifacts on triangle meshes. PMID:24029910

  13. The Sinogram Polygonizer for Reconstructing 3D Shapes.

    PubMed

    Yamanaka, Daiki; Ohtake, Yutaka; Suzuki, Hiromasa

    2013-05-24

    This paper proposes a novel approach, the sinogram polygonizer, for directly reconstructing 3D shapes from sinograms (i.e., the primary output from X-ray computed tomography (CT) scanners consisting of projection image sequences of an object shown from different viewing angles). To obtain a polygon mesh approximating the surface of a scanned object, a grid-based isosurface polygonizer, such as Marching Cubes, has been conventionally applied to the CT volume reconstructed from a sinogram. In contrast, the proposed method treats CT values as a continuous function and directly extracts a triangle mesh based on tetrahedral mesh deformation. This deformation involves quadratic error metric minimization and optimal Delaunay triangulation for the generation of accurate, high-quality meshes. Thanks to the analytical gradient estimation of CT values, sharp features are well approximated, even though the generated mesh is very coarse. Moreover, this approach eliminates aliasing artifacts on triangle meshes. PMID:23712999

  14. Polygonal Shapes Detection in 3d Models of Complex Architectures

    NASA Astrophysics Data System (ADS)

    Benciolini, G. B.; Vitti, A.

    2015-02-01

    A sequential application of two global models defined on a variational framework is proposed for the detection of polygonal shapes in 3D models of complex architectures. As a first step, the procedure involves the use of the Mumford and Shah (1989) 1st-order variational model in dimension two (gridded height data are processed). In the Mumford-Shah model an auxiliary function detects the sharp changes, i.e., the discontinuities, of a piecewise smooth approximation of the data. The Mumford-Shah model requires the global minimization of a specific functional to simultaneously produce both the smooth approximation and its discontinuities. In the proposed procedure, the edges of the smooth approximation derived by a specific processing of the auxiliary function are then processed using the Blake and Zisserman (1987) 2nd-order variational model in dimension one (edges are processed in the plane). This second step permits to describe the edges of an object by means of piecewise almost-linear approximation of the input edges themselves and to detects sharp changes of the first-derivative of the edges so to detect corners. The Mumford-Shah variational model is used in two dimensions accepting the original data as primary input. The Blake-Zisserman variational model is used in one dimension for the refinement of the description of the edges. The selection among all the boundaries detected by the Mumford-Shah model of those that present a shape close to a polygon is performed by considering only those boundaries for which the Blake-Zisserman model identified discontinuities in their first derivative. The output of the procedure are hence shapes, coming from 3D geometric data, that can be considered as polygons. The application of the procedure is suitable for, but not limited to, the detection of objects such as foot-print of polygonal buildings, building facade boundaries or windows contours. v The procedure is applied to a height model of the building of the Engineering

  15. Scaffold hopping through virtual screening using 2D and 3D similarity descriptors: ranking, voting, and consensus scoring.

    PubMed

    Zhang, Qiang; Muegge, Ingo

    2006-03-01

    The ability to find novel bioactive scaffolds in compound similarity-based virtual screening experiments has been studied comparing Tanimoto-based, ranking-based, voting, and consensus scoring protocols. Ligand sets for seven well-known drug targets (CDK2, COX2, estrogen receptor, neuraminidase, HIV-1 protease, p38 MAP kinase, thrombin) have been assembled such that each ligand represents its own unique chemotype, thus ensuring that each similarity recognition event between ligands constitutes a scaffold hopping event. In a series of virtual screening studies involving 9969 MDDR compounds as negative controls it has been found that atom pair descriptors and 3D pharmacophore fingerprints combined with ranking, voting, and consensus scoring strategies perform well in finding novel bioactive scaffolds. In addition, often superior performance has been observed for similarity-based virtual screening compared to structure-based methods. This finding suggests that information about a target obtained from known bioactive ligands is as valuable as knowledge of the target structures for identifying novel bioactive scaffolds through virtual screening. PMID:16509572

  16. The 3D Shape of the Dendrite by WDT Method

    NASA Astrophysics Data System (ADS)

    Tang, Chao; Mitobe, Kazutaka; Yoshimura, Noboru

    The purpose of this study is use of a three dimension (3D) measuring system that can automatically measure surface condition. We applied the WDT method that is one of the migration acceleration testing methods, to calculate the spatial variation of the electrodes of ion immigration on a glass epoxy printed wiring board. We also investigated the spatial shape and its variation of dendrite after short circuit for the cases of uniform and nonuniform field strength. As a result the phenomenon of immigration peak of separated matter from cathode to anode due to nonuniform was reported.The moving of the peak of the separated matter is supposed to be due to Cu(OH)2's change in accumulation status. Under the nonuniform and uniform situation, the behavior of separated matter will change after occurring short circuit between the electrodes. Therefore in order to avoid the progress of ion immigration, it is necessary to pay attention to the field strength in hardwiring and the curvature so that the field strength of the wiring pattern cannot be very high.

  17. Fast 3D shape measurements using laser speckle projection

    NASA Astrophysics Data System (ADS)

    Schaffer, Martin; Grosse, Marcus; Harendt, Bastian; Kowarschik, Richard

    2011-05-01

    3D measurement setups based on structured light projection are widely used for many industrial applications. Due to intense research in the past the accuracy is comparably high in connection with relatively low cost of the equipment. But facing higher acquisition rates in industries especially for chain assembling lines there are still hurdles to take when accelerating 3D measurements and at the same time retaining accuracies. We developed a projection technique that uses laser speckles to enable fast 3D measurements with statistically structured light patterns. In combination with a temporal correlation technique dense and accurate 3D reconstructions at nearly video rate can be achieved.

  18. 3D-Measuring for Head Shape Covering Hair

    NASA Astrophysics Data System (ADS)

    Kato, Tsukasa; Hattori, Koosuke; Nomura, Takuya; Taguchi, Ryo; Hoguro, Masahiro; Umezaki, Taizo

    3D-Measuring is paid to attention because 3D-Display is making rapid spread. Especially, face and head are required to be measured because of necessary or contents production. However, it is a present problem that it is difficult to measure hair. Then, in this research, it is a purpose to measure face and hair with phase shift method. By using sine images arranged for hair measuring, the problems on hair measuring, dark color and reflection, are settled.

  19. Faceless identification: a model for person identification using the 3D shape and 3D motion as cues

    NASA Astrophysics Data System (ADS)

    Klasen, Lena M.; Li, Haibo

    1999-02-01

    Person identification by using biometric methods based on image sequences, or still images, often requires a controllable and cooperative environment during the image capturing stage. In the forensic case the situation is more likely to be the opposite. In this work we propose a method that makes use of the anthropometry of the human body and human actions as cues for identification. Image sequences from surveillance systems are used, which can be seen as monocular image sequences. A 3D deformable wireframe body model is used as a platform to handle the non-rigid information of the 3D shape and 3D motion of the human body from the image sequence. A recursive method for estimating global motion and local shape variations is presented, using two recursive feedback systems.

  20. Multi-shape active composites by 3D printing of digital shape memory polymers

    NASA Astrophysics Data System (ADS)

    Wu, Jiangtao; Yuan, Chao; Ding, Zhen; Isakov, Michael; Mao, Yiqi; Wang, Tiejun; Dunn, Martin L.; Qi, H. Jerry

    2016-04-01

    Recent research using 3D printing to create active structures has added an exciting new dimension to 3D printing technology. After being printed, these active, often composite, materials can change their shape over time; this has been termed as 4D printing. In this paper, we demonstrate the design and manufacture of active composites that can take multiple shapes, depending on the environmental temperature. This is achieved by 3D printing layered composite structures with multiple families of shape memory polymer (SMP) fibers – digital SMPs - with different glass transition temperatures (Tg) to control the transformation of the structure. After a simple single-step thermomechanical programming process, the fiber families can be sequentially activated to bend when the temperature is increased. By tuning the volume fraction of the fibers, bending deformation can be controlled. We develop a theoretical model to predict the deformation behavior for better understanding the phenomena and aiding the design. We also design and print several flat 2D structures that can be programmed to fold and open themselves when subjected to heat. With the advantages of an easy fabrication process and the controllable multi-shape memory effect, the printed SMP composites have a great potential in 4D printing applications.

  1. Multi-shape active composites by 3D printing of digital shape memory polymers.

    PubMed

    Wu, Jiangtao; Yuan, Chao; Ding, Zhen; Isakov, Michael; Mao, Yiqi; Wang, Tiejun; Dunn, Martin L; Qi, H Jerry

    2016-01-01

    Recent research using 3D printing to create active structures has added an exciting new dimension to 3D printing technology. After being printed, these active, often composite, materials can change their shape over time; this has been termed as 4D printing. In this paper, we demonstrate the design and manufacture of active composites that can take multiple shapes, depending on the environmental temperature. This is achieved by 3D printing layered composite structures with multiple families of shape memory polymer (SMP) fibers - digital SMPs - with different glass transition temperatures (Tg) to control the transformation of the structure. After a simple single-step thermomechanical programming process, the fiber families can be sequentially activated to bend when the temperature is increased. By tuning the volume fraction of the fibers, bending deformation can be controlled. We develop a theoretical model to predict the deformation behavior for better understanding the phenomena and aiding the design. We also design and print several flat 2D structures that can be programmed to fold and open themselves when subjected to heat. With the advantages of an easy fabrication process and the controllable multi-shape memory effect, the printed SMP composites have a great potential in 4D printing applications. PMID:27071543

  2. Multi-shape active composites by 3D printing of digital shape memory polymers

    PubMed Central

    Wu, Jiangtao; Yuan, Chao; Ding, Zhen; Isakov, Michael; Mao, Yiqi; Wang, Tiejun; Dunn, Martin L.; Qi, H. Jerry

    2016-01-01

    Recent research using 3D printing to create active structures has added an exciting new dimension to 3D printing technology. After being printed, these active, often composite, materials can change their shape over time; this has been termed as 4D printing. In this paper, we demonstrate the design and manufacture of active composites that can take multiple shapes, depending on the environmental temperature. This is achieved by 3D printing layered composite structures with multiple families of shape memory polymer (SMP) fibers – digital SMPs - with different glass transition temperatures (Tg) to control the transformation of the structure. After a simple single-step thermomechanical programming process, the fiber families can be sequentially activated to bend when the temperature is increased. By tuning the volume fraction of the fibers, bending deformation can be controlled. We develop a theoretical model to predict the deformation behavior for better understanding the phenomena and aiding the design. We also design and print several flat 2D structures that can be programmed to fold and open themselves when subjected to heat. With the advantages of an easy fabrication process and the controllable multi-shape memory effect, the printed SMP composites have a great potential in 4D printing applications. PMID:27071543

  3. Status of 3D Ice Shape Measurement Effort

    NASA Technical Reports Server (NTRS)

    Lee, Sam

    2011-01-01

    (1) Main goal of the Airframe Icing Technical Challenge is to achieve acceptance of experimental and computational icing simulation tools -SupercooledLarge Droplet Icing (SLD) conditions -3D airframe components including swept wings; (2) It is necessary to develop suitable means of recording and archiving fully 3D descriptions of experimental ice accretion geometry; (3) Past research has shown that commercial laser scanners have the potential to be adapted to this task; and (4) A research plan has been developed to implement and validate the use of this technology for experimental ice accretions.

  4. 3D statistical shape models incorporating 3D random forest regression voting for robust CT liver segmentation

    NASA Astrophysics Data System (ADS)

    Norajitra, Tobias; Meinzer, Hans-Peter; Maier-Hein, Klaus H.

    2015-03-01

    During image segmentation, 3D Statistical Shape Models (SSM) usually conduct a limited search for target landmarks within one-dimensional search profiles perpendicular to the model surface. In addition, landmark appearance is modeled only locally based on linear profiles and weak learners, altogether leading to segmentation errors from landmark ambiguities and limited search coverage. We present a new method for 3D SSM segmentation based on 3D Random Forest Regression Voting. For each surface landmark, a Random Regression Forest is trained that learns a 3D spatial displacement function between the according reference landmark and a set of surrounding sample points, based on an infinite set of non-local randomized 3D Haar-like features. Landmark search is then conducted omni-directionally within 3D search spaces, where voxelwise forest predictions on landmark position contribute to a common voting map which reflects the overall position estimate. Segmentation experiments were conducted on a set of 45 CT volumes of the human liver, of which 40 images were randomly chosen for training and 5 for testing. Without parameter optimization, using a simple candidate selection and a single resolution approach, excellent results were achieved, while faster convergence and better concavity segmentation were observed, altogether underlining the potential of our approach in terms of increased robustness from distinct landmark detection and from better search coverage.

  5. 3D Printing: 3D Printing of Shape Memory Polymers for Flexible Electronic Devices (Adv. Mater. 22/2016).

    PubMed

    Zarek, Matt; Layani, Michael; Cooperstein, Ido; Sachyani, Ela; Cohn, Daniel; Magdassi, Shlomo

    2016-06-01

    On page 4449, D. Cohn, S. Magdassi, and co-workers describe a general and facile method based on 3D printing of methacrylated macromonomers to fabricate shape-memory objects that can be used in flexible and responsive electrical circuits. Such responsive objects can be used in the fabrication of soft robotics, minimal invasive medical devices, sensors, and wearable electronics. The use of 3D printing overcomes the poor processing characteristics of thermosets and enables complex geometries that are not easily accessible by other techniques. PMID:27273436

  6. An optical real-time 3D measurement for analysis of facial shape and movement

    NASA Astrophysics Data System (ADS)

    Zhang, Qican; Su, Xianyu; Chen, Wenjing; Cao, Yiping; Xiang, Liqun

    2003-12-01

    Optical non-contact 3-D shape measurement provides a novel and useful tool for analysis of facial shape and movement in presurgical and postsurgical regular check. In this article we present a system, which allows a precise 3-D visualization of the patient's facial before and after craniofacial surgery. We discussed, in this paper, the real time 3-D image capture, processing and the 3-D phase unwrapping method to recover complex shape deformation when the movement of the mouth. The result of real-time measurement for facial shape and movement will be helpful for the more ideal effect in plastic surgery.

  7. Computing a new family of shape descriptors for protein structures.

    PubMed

    Røgen, Peter; Sinclair, Robert

    2003-01-01

    The large-scale 3D structure of a protein can be represented by the polygonal curve through the carbon alpha atoms of the protein backbone. We introduce an algorithm for computing the average number of times that a given configuration of crossings on such polygonal curves is seen, the average being taken over all directions in space. Hereby, we introduce a new family of global geometric measures of protein structures, which we compare with the so-called generalized Gauss integrals. PMID:14632419

  8. 3D shape modeling by integration visual and tactile cues

    NASA Astrophysics Data System (ADS)

    Xiong, Hanwei; Xu, Jun; Xu, Chenxi; Pan, Ming

    2015-10-01

    With the progress in CAD (Computer Aided Design) systems, many mechanical components can be designed efficiently with high precision. But, such a system is unfit for some organic shapes, for example, a toy. In this paper, an easy way to dealing with such shapes is presented, combing visual perception with tangible interaction. The method is divided into three phases: two tangible interaction phases and one visual reconstruction. In the first tangible phase, a clay model is used to represent the raw shape, and the designer can change the shape intuitively with his hands. Then the raw shape is scanned into a digital volume model through a low cost vision system. In the last tangible phase, a desktop haptic device from SensAble is used to refine the scanned volume model and convert it into a surface model. A physical clay model and a virtual clay mode are all used in this method to deal with the main shape and the details respectively, and the vision system is used to bridge the two tangible phases. The vision reconstruction system is only made of a camera to acquire raw shape through shape from silhouettes method. All of the systems are installed on a single desktop, make it convenient for designers. The vision system details and a design example are presented in the papers.

  9. Shape-descriptor-based detection of concealed weapons in millimeter-wave data

    NASA Astrophysics Data System (ADS)

    Slamani, Mohamed-Adel; Ferris, David D., Jr.

    2001-03-01

    Shape parameters based on circularity, Fourier descriptors, and invariant moments are studied for the automatic detection of weapons in millimeter-wave data. The data is collected by a 30-frames-per-second millimeter-wave (MMW) imager manufactured by Trex Enterprises for the detection of weapons concealed underneath a person's clothing. Results are illustrated through processing real MMW data.

  10. Identifying Virtual 3D Geometric Shapes with a Vibrotactile Glove.

    PubMed

    Martínez, Jonatan; García, Arturo; Oliver, Miguel; Molina, José Pascual; González, Pascual

    2016-01-01

    The emergence of off-screen interaction devices is bringing the field of virtual reality to a broad range of applications where virtual objects can be manipulated without the use of traditional peripherals. However, to facilitate object interaction, other stimuli such as haptic feedback are necessary to improve the user experience. To enable the identification of virtual 3D objects without visual feedback, a haptic display based on a vibrotactile glove and multiple points of contact gives users an enhanced sensation of touching a virtual object with their hands. Experimental results demonstrate the capacity of this technology in practical applications. PMID:25137722

  11. 3D shape reconstruction of medical images using a perspective shape-from-shading method

    NASA Astrophysics Data System (ADS)

    Yang, Lei; Han, Jiu-qiang

    2008-06-01

    A 3D shape reconstruction approach for medical images using a shape-from-shading (SFS) method was proposed in this paper. A new reflectance map equation of medical images was analyzed with the assumption that the Lambertian reflectance surface was irradiated by a point light source located at the light center and the image was formed under perspective projection. The corresponding static Hamilton-Jacobi (H-J) equation of the reflectance map equation was established. So the shape-from-shading problem turned into solving the viscosity solution of the static H-J equation. Then with the conception of a viscosity vanishing approximation, the Lax-Friedrichs fast sweeping numerical method was used to compute the viscosity solution of the H-J equation and a new iterative SFS algorithm was gained. Finally, experiments on both synthetic images and real medical images were performed to illustrate the efficiency of the proposed SFS method.

  12. Shape 4.0: 3D Shape Modeling and Processing Using Semantics.

    PubMed

    Spagnuolo, Michela

    2016-01-01

    In the last decade, sensor, communication, and computing technologies have advanced rapidly, producing dramatic changes in our daily lives and in a variety of application domains. Emerging technologies are leading us to a gradual, but inescapable integration of our material and digital realities and the advent of cyber-physical worlds. Although attaining visual realism is within the grasp of current 3D modeling approaches, it is less clear whether current modeling techniques will accommodate the needs of human communication and of the applications that we can already envisage in those futuristic worlds. Inspired by the evolution trends of the Web, this article describes the evolution of shape modeling from the Shape 1.0 geometry-only, mesh-based stage to the forthcoming semantics-driven Shape 4.0 era. PMID:26780764

  13. 3D Printing of Shape Memory Polymers for Flexible Electronic Devices.

    PubMed

    Zarek, Matt; Layani, Michael; Cooperstein, Ido; Sachyani, Ela; Cohn, Daniel; Magdassi, Shlomo

    2016-06-01

    The formation of 3D objects composed of shape memory polymers for flexible electronics is described. Layer-by-layer photopolymerization of methacrylated semicrystalline molten macromonomers by a 3D digital light processing printer enables rapid fabrication of complex objects and imparts shape memory functionality for electrical circuits. PMID:26402320

  14. Conformal geometry and its applications on 3D shape matching, recognition, and stitching.

    PubMed

    Wang, Sen; Wang, Yang; Jin, Miao; Gu, Xianfeng David; Samaras, Dimitris

    2007-07-01

    Three-dimensional shape matching is a fundamental issue in computer vision with many applications such as shape registration, 3D object recognition, and classification. However, shape matching with noise, occlusion, and clutter is a challenging problem. In this paper, we analyze a family of quasi-conformal maps including harmonic maps, conformal maps, and least-squares conformal maps with regards to 3D shape matching. As a result, we propose a novel and computationally efficient shape matching framework by using least-squares conformal maps. According to conformal geometry theory, each 3D surface with disk topology can be mapped to a 2D domain through a global optimization and the resulting map is a diffeomorphism, i.e., one-to-one and onto. This allows us to simplify the 3D shape-matching problem to a 2D image-matching problem, by comparing the resulting 2D parametric maps, which are stable, insensitive to resolution changes and robust to occlusion, and noise. Therefore, highly accurate and efficient 3D shape matching algorithms can be achieved by using the above three parametric maps. Finally, the robustness of least-squares conformal maps is evaluated and analyzed comprehensively in 3D shape matching with occlusion, noise, and resolution variation. In order to further demonstrate the performance of our proposed method, we also conduct a series of experiments on two computer vision applications, i.e., 3D face recognition and 3D nonrigid surface alignment and stitching. PMID:17496378

  15. 3D shape measurements for non-diffusive objects using fringe projection techniques

    NASA Astrophysics Data System (ADS)

    Su, Wei-Hung; Tseng, Bae-Heng; Cheng, Nai-Jen

    2013-09-01

    A scanning approach using holographic techniques to perform the 3D shape measurement for a non-diffusive object is proposed. Even though the depth discontinuity on the inspected surface is pretty high, the proposed method can retrieve the 3D shape precisely.

  16. Free Shape Context Descriptors Optimized with Genetic Algorithm for the Detection of Dead Tree Trunks in ALS Point Clouds

    NASA Astrophysics Data System (ADS)

    Polewski, P.; Yao, W.; Heurich, M.; Krzystek, P.; Stilla, U.

    2015-08-01

    In this paper, a new family of shape descriptors called Free Shape Contexts (FSC) is introduced to generalize the existing 3D Shape Contexts. The FSC introduces more degrees of freedom than its predecessor by allowing the level of complexity to vary between its parts. Also, each part of the FSC has an associated activity state which controls whether the part can contribute a feature value. We describe a method of evolving the FSC parameters for the purpose of creating highly discriminative features suitable for detecting specific objects in sparse point clouds. The evolutionary process is built on a genetic algorithm (GA) which optimizes the parameters with respect to cross-validated overall classification accuracy. The GA manipulates both the structure of the FSC and the activity flags, allowing it to perform an implicit feature selection alongside the structure optimization by turning off segments which do not augment the discriminative capabilities. We apply the proposed descriptor to the problem of detecting single standing dead tree trunks from ALS point clouds. The experiment, carried out on a set of 285 objects, reveals that an FSC optimized through a GA with manually tuned recombination parameters is able to attain a classification accuracy of 84.2%, yielding an increase of 4.2 pp compared to features derived from eigenvalues of the 3D covariance matrix. Also, we address the issue of automatically tuning the GA recombination metaparameters. For this purpose, a fuzzy logic controller (FLC) which dynamically adjusts the magnitude of the recombination effects is co-evolved with the FSC parameters in a two-tier evolution scheme. We find that it is possible to obtain an FLC which retains the classification accuracy of the manually tuned variant, thereby limiting the need for guessing the appropriate meta-parameter values.

  17. 3D Shape Perception in Posterior Cortical Atrophy: A Visual Neuroscience Perspective

    PubMed Central

    Gillebert, Céline R.; Schaeverbeke, Jolien; Bastin, Christine; Neyens, Veerle; Bruffaerts, Rose; De Weer, An-Sofie; Seghers, Alexandra; Sunaert, Stefan; Van Laere, Koen; Versijpt, Jan; Vandenbulcke, Mathieu; Salmon, Eric; Todd, James T.; Orban, Guy A.

    2015-01-01

    Posterior cortical atrophy (PCA) is a rare focal neurodegenerative syndrome characterized by progressive visuoperceptual and visuospatial deficits, most often due to atypical Alzheimer's disease (AD). We applied insights from basic visual neuroscience to analyze 3D shape perception in humans affected by PCA. Thirteen PCA patients and 30 matched healthy controls participated, together with two patient control groups with diffuse Lewy body dementia (DLBD) and an amnestic-dominant phenotype of AD, respectively. The hierarchical study design consisted of 3D shape processing for 4 cues (shading, motion, texture, and binocular disparity) with corresponding 2D and elementary feature extraction control conditions. PCA and DLBD exhibited severe 3D shape-processing deficits and AD to a lesser degree. In PCA, deficient 3D shape-from-shading was associated with volume loss in the right posterior inferior temporal cortex. This region coincided with a region of functional activation during 3D shape-from-shading in healthy controls. In PCA patients who performed the same fMRI paradigm, response amplitude during 3D shape-from-shading was reduced in this region. Gray matter volume in this region also correlated with 3D shape-from-shading in AD. 3D shape-from-disparity in PCA was associated with volume loss slightly more anteriorly in posterior inferior temporal cortex as well as in ventral premotor cortex. The findings in right posterior inferior temporal cortex and right premotor cortex are consistent with neurophysiologically based models of the functional anatomy of 3D shape processing. However, in DLBD, 3D shape deficits rely on mechanisms distinct from inferior temporal structural integrity. SIGNIFICANCE STATEMENT Posterior cortical atrophy (PCA) is a neurodegenerative syndrome characterized by progressive visuoperceptual dysfunction and most often an atypical presentation of Alzheimer's disease (AD) affecting the ventral and dorsal visual streams rather than the medial

  18. Optimal ligand descriptor for pocket recognition based on the Beta-shape.

    PubMed

    Kim, Jae-Kwan; Won, Chung-In; Cha, Jehyun; Lee, Kichun; Kim, Deok-Soo

    2015-01-01

    Structure-based virtual screening is one of the most important and common computational methods for the identification of predicted hit at the beginning of drug discovery. Pocket recognition and definition is frequently a prerequisite of structure-based virtual screening, reducing the search space of the predicted protein-ligand complex. In this paper, we present an optimal ligand shape descriptor for a pocket recognition algorithm based on the beta-shape, which is a derivative structure of the Voronoi diagram of atoms. We investigate six candidates for a shape descriptor for a ligand using statistical analysis: the minimum enclosing sphere, three measures from the principal component analysis of atoms, the van der Waals volume, and the beta-shape volume. Among them, the van der Waals volume of a ligand is the optimal shape descriptor for pocket recognition and best tunes the pocket recognition algorithm based on the beta-shape for efficient virtual screening. The performance of the proposed algorithm is verified by a benchmark test. PMID:25835497

  19. Statistical Analysis of Interactive Surgical Planning Using Shape Descriptors in Mandibular Reconstruction with Fibular Segments.

    PubMed

    Nakao, Megumi; Aso, Shimpei; Imai, Yuichiro; Ueda, Nobuhiro; Hatanaka, Toshihide; Shiba, Mao; Kirita, Tadaaki; Matsuda, Tetsuya

    2016-01-01

    This study was performed to quantitatively analyze medical knowledge of, and experience with, decision-making in preoperative virtual planning of mandibular reconstruction. Three shape descriptors were designed to evaluate local differences between reconstructed mandibles and patients' original mandibles. We targeted an asymmetrical, wide range of cutting areas including the mandibular sidepiece, and defined a unique three-dimensional coordinate system for each mandibular image. The generalized algorithms for computing the shape descriptors were integrated into interactive planning software, where the user can refine the preoperative plan using the spatial map of the local shape distance as a visual guide. A retrospective study was conducted with two oral surgeons and two dental technicians using the developed software. The obtained 120 reconstruction plans show that the participants preferred a moderate shape distance rather than optimization to the smallest. We observed that a visually plausible shape could be obtained when considering specific anatomical features (e.g., mental foramen. mandibular midline). The proposed descriptors can be used to multilaterally evaluate reconstruction plans and systematically learn surgical procedures. PMID:27583465

  20. Experimental investigation on a novel 3D isolator made of shape memory alloy pseudo-rubber

    NASA Astrophysics Data System (ADS)

    Li, Su-chao; Guo, An-xin; Mao, Chen-xi; Li, Hui; Zhao, Yagebai

    2015-04-01

    Base isolation technology has been widely theoretically and experimentally investigated, and it has also been verified through many severe earthquakes. Three dimensional (3-D) isolation technology was proposed several years ago, and the 3-D isolation theory has well developed till now. However, the development of 3-D isolation technology was deeply affected by the 3-D isolator devices. Many presented 3-D isolators are generally made up of complicated components, such as rubber, springs, dampers or theirs combinations. These isolators have some problem in certain extent, such as difficult fabrication process or little energy dissipation ability along the vertical direction. This paper presents a novel 3- D isolator which is made up of martensitic shape memory alloy wires through weaving, rolling, and punching. Mechanical properties of 3-D shape memory alloy pseudo-rubber isolator (SMAPRI) are investigated including compression, shear, and compression-shear loading with different frequencies and amplitudes. The mechanical behavior of isolators with different parameters is also compared. Accordingly, the mechanism resulting in the above differences is also analyzed. Experimental results indicated that 3-D SMAPRI has good mechanical properties and energy dissipation ability along both of horizontal and vertical direction. The fabrication process of the proposed 3-D isolator is relatively easy and the mechanism of isolation is clearer than the traditional 3-D isolators. Therefore, this new kind of 3-D isolator has good potentiality in both of seismic isolation for civil infrastructures and industrial isolation for important or precision equipment.

  1. Shape design sensitivities using fully automatic 3-D mesh generation

    NASA Technical Reports Server (NTRS)

    Botkin, M. E.

    1990-01-01

    Previous work in three dimensional shape optimization involved specifying design variables by associating parameters directly with mesh points. More recent work has shown the use of fully-automatic mesh generation based upon a parameterized geometric representation. Design variables have been associated with a mathematical model of the part rather than the discretized representation. The mesh generation procedure uses a nonuniform grid intersection technique to place nodal points directly on the surface geometry. Although there exists an associativity between the mesh and the geometrical/topological entities, there is no mathematical functional relationship. This poses a problem during certain steps in the optimization process in which geometry modification is required. For the large geometrical changes which occur at the beginning of each optimization step, a completely new mesh is created. However, for gradient calculations many small changes must be made and it would be too costly to regenerate the mesh for each design variable perturbation. For that reason, a local remeshing procedure has been implemented which operates only on the specific edges and faces associated with the design variable being perturbed. Two realistic design problems are presented which show the efficiency of this process and test the accuracy of the gradient computations.

  2. New approach to the perception of 3D shape based on veridicality, complexity, symmetry and volume.

    PubMed

    Pizlo, Zygmunt; Sawada, Tadamasa; Li, Yunfeng; Kropatsch, Walter G; Steinman, Robert M

    2010-01-01

    This paper reviews recent progress towards understanding 3D shape perception made possible by appreciating the significant role that veridicality and complexity play in the natural visual environment. The ability to see objects as they really are "out there" is derived from the complexity inherent in the 3D object's shape. The importance of both veridicality and complexity was ignored in most prior research. Appreciating their importance made it possible to devise a computational model that recovers the 3D shape of an object from only one of its 2D images. This model uses a simplicity principle consisting of only four a priori constraints representing properties of 3D shapes, primarily their symmetry and volume. The model recovers 3D shapes from a single 2D image as well, and sometimes even better, than a human being. In the rare recoveries in which errors are observed, the errors made by the model and human subjects are very similar. The model makes no use of depth, surfaces or learning. Recent elaborations of this model include: (i) the recovery of the shapes of natural objects, including human and animal bodies with limbs in varying positions (ii) providing the model with two input images that allowed it to achieve virtually perfect shape constancy from almost all viewing directions. The review concludes with a comparison of some of the highlights of our novel, successful approach to the recovery of 3D shape from a 2D image with prior, less successful approaches. PMID:19800910

  3. The Extraction of 3D Shape from Texture and Shading in the Human Brain

    PubMed Central

    Georgieva, Svetlana S.; Todd, James T.; Peeters, Ronald

    2008-01-01

    We used functional magnetic resonance imaging to investigate the human cortical areas involved in processing 3-dimensional (3D) shape from texture (SfT) and shading. The stimuli included monocular images of randomly shaped 3D surfaces and a wide variety of 2-dimensional (2D) controls. The results of both passive and active experiments reveal that the extraction of 3D SfT involves the bilateral caudal inferior temporal gyrus (caudal ITG), lateral occipital sulcus (LOS) and several bilateral sites along the intraparietal sulcus. These areas are largely consistent with those involved in the processing of 3D shape from motion and stereo. The experiments also demonstrate, however, that the analysis of 3D shape from shading is primarily restricted to the caudal ITG areas. Additional results from psychophysical experiments reveal that this difference in neuronal substrate cannot be explained by a difference in strength between the 2 cues. These results underscore the importance of the posterior part of the lateral occipital complex for the extraction of visual 3D shape information from all depth cues, and they suggest strongly that the importance of shading is diminished relative to other cues for the analysis of 3D shape in parietal regions. PMID:18281304

  4. An insight into morphometric descriptors of cell shape that pertain to regenerative medicine.

    PubMed

    Lobo, Joana; See, Eugene Yong-Shun; Biggs, Manus; Pandit, Abhay

    2016-07-01

    Cellular morphology has recently been indicated as a powerful indicator of cellular function. The analysis of cell shape has evolved from rudimentary forms of microscopic visual inspection to more advanced methodologies that utilize high-resolution microscopy coupled with sophisticated computer hardware and software for data analysis. Despite this progress, there is still a lack of standardization in quantification of morphometric parameters. In addition, uncertainty remains as to which methodologies and parameters of cell morphology will yield meaningful data, which methods should be utilized to categorize cell shape, and the extent of reliability of measurements and the interpretation of the resulting analysis. A large range of descriptors has been employed to objectively assess the cellular morphology in two-dimensional and three-dimensional domains. Intuitively, simple and applicable morphometric descriptors are preferable and standardized protocols for cell shape analysis can be achieved with the help of computerized tools. In this review, cellular morphology is discussed as a descriptor of cellular function and the current morphometric parameters that are used quantitatively in two- and three-dimensional environments are described. Furthermore, the current problems associated with these morphometric measurements are addressed. Copyright © 2015 John Wiley & Sons, Ltd. PMID:25757807

  5. An accurate 3D shape context based non-rigid registration method for mouse whole-body skeleton registration

    NASA Astrophysics Data System (ADS)

    Xiao, Di; Zahra, David; Bourgeat, Pierrick; Berghofer, Paula; Acosta Tamayo, Oscar; Wimberley, Catriona; Gregoire, Marie C.; Salvado, Olivier

    2011-03-01

    Small animal image registration is challenging because of its joint structure, and posture and position difference in each acquisition without a standard scan protocol. In this paper, we face the issue of mouse whole-body skeleton registration from CT images. A novel method is developed for analyzing mouse hind-limb and fore-limb postures based on geodesic path descriptor and then registering the major skeletons and fore limb skeletons initially by thin-plate spline (TPS) transform based on the obtained geodesic paths and their enhanced correspondence fields. A target landmark correction method is proposed for improving the registration accuracy of the improved 3D shape context non-rigid registration method we previously proposed. A novel non-rigid registration framework, combining the skeleton posture analysis, geodesic path based initial alignment and 3D shape context model, is proposed for mouse whole-body skeleton registration. The performance of the proposed methods and framework was tested on 12 pairs of mouse whole-body skeletons. The experimental results demonstrated the flexibility, stability and accuracy of the proposed framework for automatic mouse whole body skeleton registration.

  6. Local plate/rod descriptors of 3D trabecular bone micro-CT images from medial axis topologic analysis

    SciTech Connect

    Peyrin, Francoise; Attali, Dominique; Chappard, Christine; Benhamou, Claude Laurent

    2010-08-15

    Purpose: Trabecular bone microarchitecture is made of a complex network of plate and rod structures evolving with age and disease. The purpose of this article is to propose a new 3D local analysis method for the quantitative assessment of parameters related to the geometry of trabecular bone microarchitecture. Methods: The method is based on the topologic classification of the medial axis of the 3D image into branches, rods, and plates. Thanks to the reversibility of the medial axis, the classification is next extended to the whole 3D image. Finally, the percentages of rods and plates as well as their mean thicknesses are calculated. The method was applied both to simulated test images and 3D micro-CT images of human trabecular bone. Results: The classification of simulated phantoms made of plates and rods shows that the maximum error in the quantitative percentages of plate and rods is less than 6% and smaller than with the structure model index (SMI). Micro-CT images of human femoral bone taken in osteoporosis and early or advanced osteoarthritis were analyzed. Despite the large physiological variability, the present method avoids the underestimation of rods observed with other local methods. The relative percentages of rods and plates were not significantly different between osteoarthritis and osteoporotic groups, whereas their absolute percentages were in relation to an increase of rod and plate thicknesses in advanced osteoarthritis with also higher relative and absolute number of nodes. Conclusions: The proposed method is model-independent, robust to surface irregularities, and enables geometrical characterization of not only skeletal structures but entire 3D images. Its application provided more accurate results than the standard SMI on simple simulated phantoms, but the discrepancy observed on the advanced osteoarthritis group raises questions that will require further investigations. The systematic use of such a local method in the characterization of

  7. 3D Printed Reversible Shape Changing Components with Stimuli Responsive Materials.

    PubMed

    Mao, Yiqi; Ding, Zhen; Yuan, Chao; Ai, Shigang; Isakov, Michael; Wu, Jiangtao; Wang, Tiejun; Dunn, Martin L; Qi, H Jerry

    2016-01-01

    The creation of reversibly-actuating components that alter their shapes in a controllable manner in response to environmental stimuli is a grand challenge in active materials, structures, and robotics. Here we demonstrate a new reversible shape-changing component design concept enabled by 3D printing two stimuli responsive polymers-shape memory polymers and hydrogels-in prescribed 3D architectures. This approach uses the swelling of a hydrogel as the driving force for the shape change, and the temperature-dependent modulus of a shape memory polymer to regulate the time of such shape change. Controlling the temperature and aqueous environment allows switching between two stable configurations - the structures are relatively stiff and can carry load in each - without any mechanical loading and unloading. Specific shape changing scenarios, e.g., based on bending, or twisting in prescribed directions, are enabled via the controlled interplay between the active materials and the 3D printed architectures. The physical phenomena are complex and nonintuitive, and so to help understand the interplay of geometric, material, and environmental stimuli parameters we develop 3D nonlinear finite element models. Finally, we create several 2D and 3D shape changing components that demonstrate the role of key parameters and illustrate the broad application potential of the proposed approach. PMID:27109063

  8. 3D Printed Reversible Shape Changing Components with Stimuli Responsive Materials

    PubMed Central

    Mao, Yiqi; Ding, Zhen; Yuan, Chao; Ai, Shigang; Isakov, Michael; Wu, Jiangtao; Wang, Tiejun; Dunn, Martin L.; Qi, H. Jerry

    2016-01-01

    The creation of reversibly-actuating components that alter their shapes in a controllable manner in response to environmental stimuli is a grand challenge in active materials, structures, and robotics. Here we demonstrate a new reversible shape-changing component design concept enabled by 3D printing two stimuli responsive polymers—shape memory polymers and hydrogels—in prescribed 3D architectures. This approach uses the swelling of a hydrogel as the driving force for the shape change, and the temperature-dependent modulus of a shape memory polymer to regulate the time of such shape change. Controlling the temperature and aqueous environment allows switching between two stable configurations – the structures are relatively stiff and can carry load in each – without any mechanical loading and unloading. Specific shape changing scenarios, e.g., based on bending, or twisting in prescribed directions, are enabled via the controlled interplay between the active materials and the 3D printed architectures. The physical phenomena are complex and nonintuitive, and so to help understand the interplay of geometric, material, and environmental stimuli parameters we develop 3D nonlinear finite element models. Finally, we create several 2D and 3D shape changing components that demonstrate the role of key parameters and illustrate the broad application potential of the proposed approach. PMID:27109063

  9. 3D Printed Reversible Shape Changing Components with Stimuli Responsive Materials

    NASA Astrophysics Data System (ADS)

    Mao, Yiqi; Ding, Zhen; Yuan, Chao; Ai, Shigang; Isakov, Michael; Wu, Jiangtao; Wang, Tiejun; Dunn, Martin L.; Qi, H. Jerry

    2016-04-01

    The creation of reversibly-actuating components that alter their shapes in a controllable manner in response to environmental stimuli is a grand challenge in active materials, structures, and robotics. Here we demonstrate a new reversible shape-changing component design concept enabled by 3D printing two stimuli responsive polymers—shape memory polymers and hydrogels—in prescribed 3D architectures. This approach uses the swelling of a hydrogel as the driving force for the shape change, and the temperature-dependent modulus of a shape memory polymer to regulate the time of such shape change. Controlling the temperature and aqueous environment allows switching between two stable configurations – the structures are relatively stiff and can carry load in each – without any mechanical loading and unloading. Specific shape changing scenarios, e.g., based on bending, or twisting in prescribed directions, are enabled via the controlled interplay between the active materials and the 3D printed architectures. The physical phenomena are complex and nonintuitive, and so to help understand the interplay of geometric, material, and environmental stimuli parameters we develop 3D nonlinear finite element models. Finally, we create several 2D and 3D shape changing components that demonstrate the role of key parameters and illustrate the broad application potential of the proposed approach.

  10. A generic shape/texture descriptor over multiscale edge field: 2-D walking ant histogram.

    PubMed

    Kiranyaz, Serkan; Ferreira, Miguel; Gabbouj, Moncef

    2008-03-01

    A novel shape descriptor, which can be extracted from the major object edges automatically and used for the multimedia content-based retrieval in multimedia databases, is presented. By adopting a multiscale approach over the edge field where the scale represents the amount of simplification, the most relevant edge segments, referred to as subsegments, which eventually represent the major object boundaries, are extracted from a scale-map. Similar to the process of a walking ant with a limited line of sight over the boundary of a particular object, we traverse through each subsegment and describe a certain line of sight, whether it is a continuous branch or a corner, using individual 2-D histograms. Furthermore, the proposed method can also be tuned to be an efficient texture descriptor, which achieves a superior performance especially for directional textures. Finally, integrating the whole process as feature extraction module into MUVIS framework allows us to test the mutual performance of the proposed shape descriptor in the context of multimedia indexing and retrieval. PMID:18270126

  11. 3D shape analysis for early diagnosis of malignant lung nodules.

    PubMed

    El-Baz, Ayman; Nitzken, Matthew; Elnakib, Ahmed; Khalifa, Fahmi; Gimel'farb, Georgy; Falk, Robert; El-Ghar, Mohamed Abou

    2011-01-01

    An alternative method of diagnosing malignant lung nodules by their shape, rather than conventional growth rate, is proposed. The 3D surfaces of the detected lung nodules are delineated by spherical harmonic analysis that represents a 3D surface of the lung nodule supported by the unit sphere with a linear combination of special basis functions, called Spherical Harmonics (SHs). The proposed 3D shape analysis is carried out in five steps: (i) 3D lung nodule segmentation with a deformable 3D boundary controlled by a new prior visual appearance model; (ii) 3D Delaunay triangulation to construct a 3D mesh model of the segmented lung nodule surface; (iii) mapping this model to the unit sphere; (iv) computing the SHs for the surface; and (v) determining the number of the SHs to delineate the lung nodule. We describe the lung nodule shape complexity with a new shape index, the estimated number of the SHs, and use it for the K-nearest classification into malignant and benign lung nodules. Preliminary experiments on 327 lung nodules (153 malignant and 174 benign) resulted in a classification accuracy of 93.6%, showing that the proposed method is a promising supplement to current technologies for the early diagnosis of lung cancer. PMID:22003697

  12. 3D shape analysis for early diagnosis of malignant lung nodules.

    PubMed

    El-Bazl, Ayman; Nitzken, Matthew; Khalifa, Fahmi; Elnakib, Ahmed; Gimel'farb, Georgy; Falk, Robert; El-Ghar, Mohammed Abo

    2011-01-01

    An alternative method for diagnosing malignant lung nodules by their shape rather than conventional growth rate is proposed. The 3D surfaces of the detected lung nodules are delineated by spherical harmonic analysis, which represents a 3D surface of the lung nodule supported by the unit sphere with a linear combination of special basis functions, called spherical harmonics (SHs). The proposed 3D shape analysis is carried out in five steps: (i) 3D lung nodule segmentation with a deformable 3D boundary controlled by two probabilistic visual appearance models (the learned prior and the estimated current appearance one); (ii) 3D Delaunay triangulation to construct a 3D mesh model of the segmented lung nodule surface; (iii) mapping this model to the unit sphere; (iv) computing the SHs for the surface, and (v) determining the number of the SHs to delineate the lung nodule. We describe the lung nodule shape complexity with a new shape index, the estimated number of the SHs, and use it for the K-nearest classification to distinguish malignant and benign lung nodules. Preliminary experiments on 327 lung nodules (153 malignant and 174 benign) resulted in the 93.6% correct classification (for the 95% confidence interval), showing that the proposed method is a promising supplement to current technologies for the early diagnosis of lung cancer. PMID:21761703

  13. Clarifying level descriptors for children's understanding of some basic 2-D geometric shapes

    NASA Astrophysics Data System (ADS)

    Pegg, John; Davey, Geoff

    1989-02-01

    The purpose of the study, in general terms, was to compare the level descriptors of the van Hiele Theory and those of the SOLO Taxonomy. More specifically, the study was designed to clarify inconsistencies between the two theories as they relate to the understandings of primary and early secondary school pupils. The study involved pupils from classes in Years 3-7 in New South Wales and Queensland, who were asked to describe a number of common 2-D geometric shapes. The results showed that the descriptors associated with the Solo Taxonomy more accurately described the `level' of student thinking. In addition support was found for: 1. the proposal that pupils often function within two modes of reasoning, i.e., many students need to support their answers with reasoning from more than one mode;

  14. Recovering 3D Shape with Absolute Size from Endoscope Images Using RBF Neural Network

    PubMed Central

    Tsuda, Seiya; Iwahori, Yuji; Bhuyan, M. K.; Woodham, Robert J.; Kasugai, Kunio

    2015-01-01

    Medical diagnosis judges the status of polyp from the size and the 3D shape of the polyp from its medical endoscope image. However the medical doctor judges the status empirically from the endoscope image and more accurate 3D shape recovery from its 2D image has been demanded to support this judgment. As a method to recover 3D shape with high speed, VBW (Vogel-Breuß-Weickert) model is proposed to recover 3D shape under the condition of point light source illumination and perspective projection. However, VBW model recovers the relative shape but there is a problem that the shape cannot be recovered with the exact size. Here, shape modification is introduced to recover the exact shape with modification from that with VBW model. RBF-NN is introduced for the mapping between input and output. Input is given as the output of gradient parameters of VBW model for the generated sphere. Output is given as the true gradient parameters of true values of the generated sphere. Learning mapping with NN can modify the gradient and the depth can be recovered according to the modified gradient parameters. Performance of the proposed approach is confirmed via computer simulation and real experiment. PMID:25949235

  15. An invariant descriptor for conjugate forced convection-conduction cooling of 3D protruding heaters in channel flow

    NASA Astrophysics Data System (ADS)

    Antonini Alves, Thiago; Santos, Paulo H. D.; Barbur, Murilo A.

    2015-09-01

    In this research, the temperatures of threedimensional (3D) protruding heaters mounted on a conductive substrate in a horizontal rectangular channel with laminar airflow are related to the independent power dissipation in each heater by using a matrix G + with invariant coefficients, which are dimensionless. These coefficients are defined in this study as the conjugate influence coefficients ( g +) caused by the forced convection- conduction nature of the heaters' cooling process. The temperature increase of each heater in the channel is quantified to clearly identify the contributions attributed to the self-heating and power dissipation in the other heaters (both upstream and downstream). The conjugate coefficients are invariant with the heat generation rate in the array of heaters when assuming a defined geometry, invariable fluid and flow rate, and constant substrate and heater conductivities. The results are numerically obtained by considering three 3D protruding heaters on a twodimensional (2D) array by ANSYS/Fluent™ 15.0 software. The conservation equations are solved by a coupled procedure within a single calculation domain comprising of solid and fluid regions and by considering a steady state laminar airflow with constant properties. Some examples are shown, indicating the effects of substrate thermal conductivity and Reynolds number on conjugate influence coefficients.

  16. Content-based image retrieval utilizing explicit shape descriptors: applications to breast MRI and prostate histopathology

    NASA Astrophysics Data System (ADS)

    Sparks, Rachel; Madabhushi, Anant

    2011-03-01

    Content-based image retrieval (CBIR) systems, in the context of medical image analysis, allow for a user to compare a query image to previously archived database images in terms of diagnostic and/or prognostic similarity. CBIR systems can therefore serve as a powerful computerized decision support tool for clinical diagnostics and also serve as a useful learning tool for medical students, residents, and fellows. An accurate CBIR system relies on two components, (1) image descriptors which are related to a previously defined notion of image similarity and (2) quantification of image descriptors in order to accurately characterize and capture the a priori defined image similarity measure. In many medical applications, the morphology of an object of interest (e.g. breast lesions on DCE-MRI or glands on prostate histopathology) may provide important diagnostic and prognostic information regarding the disease being investigated. Morphological attributes can be broadly categorized as being (a) model-based (MBD) or (b) non-model based (NMBD). Most computerized decision support tools leverage morphological descriptors (e.g. area, contour variation, and compactness) which belong to the latter category in that they do not explicitly model morphology for the object of interest. Conversely, descriptors such as Fourier descriptors (FDs) explicitly model the object of interest. In this paper, we present a CBIR system that leverages a novel set of MBD called Explicit Shape Descriptors (ESDs) which accurately describe the similarity between the morphology of objects of interest. ESDs are computed by: (a) fitting shape models to objects of interest, (b) pairwise comparison between shape models, and (c) a nonlinear dimensionality reduction scheme to extract a concise set of morphological descriptors in a reduced dimensional embedding space. We utilized our ESDs in the context of CBIR in three datasets: (1) the synthetic MPEG-7 Set B containing 1400 silhouette images, (2) DCE-MRI of

  17. 3D shape shearography with integrated structured light projection for strain inspection of curved objects

    NASA Astrophysics Data System (ADS)

    Anisimov, Andrei G.; Groves, Roger M.

    2015-05-01

    Shearography (speckle pattern shearing interferometry) is a non-destructive testing technique that provides full-field surface strain characterization. Although real-life objects especially in aerospace, transport or cultural heritage are not flat (e.g. aircraft leading edges or sculptures), their inspection with shearography is of interest for both hidden defect detection and material characterization. Accurate strain measuring of a highly curved or free form surface needs to be performed by combining inline object shape measuring and processing of shearography data in 3D. Previous research has not provided a general solution. This research is devoted to the practical questions of 3D shape shearography system development for surface strain characterization of curved objects. The complete procedure of calibration and data processing of a 3D shape shearography system with integrated structured light projector is presented. This includes an estimation of the actual shear distance and a sensitivity matrix correction within the system field of view. For the experimental part a 3D shape shearography system prototype was developed. It employs three spatially-distributed shearing cameras, with Michelson interferometers acting as the shearing devices, one illumination laser source and a structured light projector. The developed system performance was evaluated with a previously reported cylinder specimen (length 400 mm, external diameter 190 mmm) loaded by internal pressure. Further steps for the 3D shape shearography prototype and the technique development are also proposed.

  18. Embodied collaboration support system for 3D shape evaluation in virtual space

    NASA Astrophysics Data System (ADS)

    Okubo, Masashi; Watanabe, Tomio

    2005-12-01

    Collaboration mainly consists of two tasks; one is each partner's task that is performed by the individual, the other is communication with each other. Both of them are very important objectives for all the collaboration support system. In this paper, a collaboration support system for 3D shape evaluation in virtual space is proposed on the basis of both studies in 3D shape evaluation and communication support in virtual space. The proposed system provides the two viewpoints for each task. One is the viewpoint of back side of user's own avatar for the smooth communication. The other is that of avatar's eye for 3D shape evaluation. Switching the viewpoints satisfies the task conditions for 3D shape evaluation and communication. The system basically consists of PC, HMD and magnetic sensors, and users can share the embodied interaction by observing interaction between their avatars in virtual space. However, the HMD and magnetic sensors, which are put on the users, would restrict the nonverbal communication. Then, we have tried to compensate the loss of nodding of partner's avatar by introducing the speech-driven embodied interactive actor InterActor. Sensory evaluation by paired comparison of 3D shapes in the collaborative situation in virtual space and in real space and the questionnaire are performed. The result demonstrates the effectiveness of InterActor's nodding in the collaborative situation.

  19. Analysis of cancer cell morphology in fluorescence microscopy image exploiting shape descriptor

    NASA Astrophysics Data System (ADS)

    Kang, Mi-Sun; Kim, Hye-Ryun; Kim, Sudong; Ryu, Gyu Ha; Kim, Myoung-Hee

    2016-04-01

    Cancer cell morphology is closely related to their phenotype and activity. These characteristics are important in drug-response prediction for personalized cancer therapeutics. We used multi-channel fluorescence microscopy images to analyze the morphology of highly cohesive cancer cells. First, we detected individual nuclei regions in single-channel images using advanced simple linear iterative clustering. The center points of the nuclei regions were used as seeds for the Voronoi diagram method to extract spatial arrangement features from cell images. Human cancer cell populations form irregularly shaped aggregates, making their detection more difficult. We overcame this problem by identifying individual cells using an image-based shape descriptor. Finally, we analyzed the correlation between cell agglutination and cell shape.

  20. A channel for 3D environmental shape in anterior inferotemporal cortex

    PubMed Central

    Vaziri, Siavash; Carlson, Eric T.; Wang, Zhihong; Connor, Charles E.

    2014-01-01

    SUMMARY Inferotemporal cortex (IT) has long been studied as a single pathway dedicated to object vision, but connectivity analysis reveals anatomically distinct channels, through ventral superior temporal sulcus (STSv) and dorsal/ventral inferotemporal gyrus (TEd, TEv). Here, we report a major functional distinction between channels. We studied individual IT neurons in monkeys viewing stereoscopic 3D images projected on a large screen. We used adaptive stimuli to explore neural tuning for 3D abstract shapes ranging in scale and topology from small, closed, bounded objects to large, open, unbounded environments (landscape-like surfaces and cave-like interiors). In STSv, most neurons were more responsive to objects, as expected. In TEd, surprisingly, most neurons were more responsive to 3D environmental shape. Previous studies have localized environmental information to posterior cortical modules. Our results show it is also channeled through anterior IT, where extensive cross-connections between STSv and TEd could integrate object and environmental shape information. PMID:25242216

  1. Shape and 3D acoustically induced vibrations of the human eardrum characterized by digital holography

    NASA Astrophysics Data System (ADS)

    Khaleghi, Morteza; Furlong, Cosme; Cheng, Jeffrey Tao; Rosowski, John J.

    2014-07-01

    The eardrum or Tympanic Membrane (TM) transfers acoustic energy from the ear canal (at the external ear) into mechanical motions of the ossicles (at the middle ear). The acousto-mechanical-transformer behavior of the TM is determined by its shape and mechanical properties. For a better understanding of hearing mysteries, full-field-of-view techniques are required to quantify shape, nanometer-scale sound-induced displacement, and mechanical properties of the TM in 3D. In this paper, full-field-of-view, three-dimensional shape and sound-induced displacement of the surface of the TM are obtained by the methods of multiple wavelengths and multiple sensitivity vectors with lensless digital holography. Using our developed digital holographic systems, unique 3D information such as, shape (with micrometer resolution), 3D acoustically-induced displacement (with nanometer resolution), full strain tensor (with nano-strain resolution), 3D phase of motion, and 3D directional cosines of the displacement vectors can be obtained in full-field-ofview with a spatial resolution of about 3 million points on the surface of the TM and a temporal resolution of 15 Hz.

  2. Statistical 3D shape analysis of gender differences in lateral ventricles

    NASA Astrophysics Data System (ADS)

    He, Qing; Karpman, Dmitriy; Duan, Ye

    2010-03-01

    This paper aims at analyzing gender differences in the 3D shapes of lateral ventricles, which will provide reference for the analysis of brain abnormalities related to neurological disorders. Previous studies mostly focused on volume analysis, and the main challenge in shape analysis is the required step of establishing shape correspondence among individual shapes. We developed a simple and efficient method based on anatomical landmarks. 14 females and 10 males with matching ages participated in this study. 3D ventricle models were segmented from MR images by a semiautomatic method. Six anatomically meaningful landmarks were identified by detecting the maximum curvature point in a small neighborhood of a manually clicked point on the 3D model. Thin-plate spline was used to transform a randomly selected template shape to each of the rest shape instances, and the point correspondence was established according to Euclidean distance and surface normal. All shapes were spatially aligned by Generalized Procrustes Analysis. Hotelling T2 twosample metric was used to compare the ventricle shapes between males and females, and False Discovery Rate estimation was used to correct for the multiple comparison. The results revealed significant differences in the anterior horn of the right ventricle.

  3. Holographic and weak-phase projection system for 3D shape reconstruction using temporal phase unwrapping

    NASA Astrophysics Data System (ADS)

    González, C. A.; Dávila, A.; Garnica, G.

    2007-09-01

    Two projection systems that use an LCoS phase modulator are proposed for 3D shape reconstruction. The LCoS is used as an holographic system or as a weak phase projector, both configurations project a set of fringe patterns that are processed by the technique known as temporal phase unwrapping. To minimize the influence of camera sampling, and the speckle noise in the projected fringes, an speckle noise reduction technique is applied to the speckle patterns generated by the holographic optical system. Experiments with 3D shape reconstruction of ophthalmic mold and other testing specimens show the viability of the proposed techniques.

  4. Fast 3D shape measurement using Fourier transform profilometry without phase unwrapping

    NASA Astrophysics Data System (ADS)

    Song, Kechen; Hu, Shaopeng; Wen, Xin; Yan, Yunhui

    2016-09-01

    This paper presents a novel, simple, yet fast 3D shape measurement method using Fourier transform profilometry. Different from the conventional Fourier transform profilometry, this proposed method introduces the binocular stereo vision and employs two image pairs (i.e., original image pairs and fringe image pairs) to restructure 3D shape. In this proposed method, instead of phase unwrapping algorithm, a coarse disparity map is adopted as a constraint condition to realize phase matching using wrapped phase. Since the local phase matching and sub-pixel disparity refinement are proposed to obtain high measuring accuracy, high-quality phase is not required. The validity of the proposed method is verified by experiments.

  5. Advances in structural damage assessment using strain measurements and invariant shape descriptors

    NASA Astrophysics Data System (ADS)

    Patki, Amol Suhas

    to the area surrounding the damage, while damage in orthotropic materials tends to have more global repercussions. This calls for analysis of full-field strain distributions adding to the complexity of post-damage life estimation. This study explores shape descriptors used in the field of medical imagery, military targeting and biometric recognition for obtaining a qualitative and quantitative comparison between full-field strain data recorded from damaged composite panels using sophisticated experimental techniques. These descriptors are capable of decomposing images with 103 to 106 pixels into a feature vector with only a few hundred elements. This ability of shape descriptors to achieve enormous reduction in strain data, while providing unique representation, makes them a practical choice for the purpose of structural damage assessment. Consequently, it is relatively easy to statistically compare the shape descriptors of the full-field strain maps using similarity measures rather than the strain maps themselves. However, the wide range of geometric and design features in engineering components pose difficulties in the application of traditional shape description techniques. Thus a new shape descriptor is developed which is applicable to a wide range of specimen geometries. This work also illustrates how shape description techniques can be applied to full-field finite element model validations and updating.

  6. Electro-bending characterization of adaptive 3D fiber reinforced plastics based on shape memory alloys

    NASA Astrophysics Data System (ADS)

    Ashir, Moniruddoza; Hahn, Lars; Kluge, Axel; Nocke, Andreas; Cherif, Chokri

    2016-03-01

    The industrial importance of fiber reinforced plastics (FRPs) is growing steadily in recent years, which are mostly used in different niche products, has been growing steadily in recent years. The integration of sensors and actuators in FRP is potentially valuable for creating innovative applications and therefore the market acceptance of adaptive FRP is increasing. In particular, in the field of highly stressed FRP, structural integrated systems for continuous component parts monitoring play an important role. This presented work focuses on the electro-mechanical characterization of adaptive three-dimensional (3D)FRP with integrated textile-based actuators. Here, the friction spun hybrid yarn, consisting of shape memory alloy (SMA) in wire form as core, serves as an actuator. Because of the shape memory effect, the SMA-hybrid yarn returns to its original shape upon heating that also causes the deformation of adaptive 3D FRP. In order to investigate the influences of the deformation behavior of the adaptive 3D FRP, investigations in this research are varied according to the structural parameters such as radius of curvature of the adaptive 3D FRP, fabric types and number of layers of the fabric in the composite. Results show that reproducible deformations can be realized with adaptive 3D FRP and that structural parameters have a significant impact on the deformation capability.

  7. Does 3D Phenotyping Yield Substantial Insights in the Genetics of the Mouse Mandible Shape?

    PubMed Central

    Navarro, Nicolas; Maga, A. Murat

    2016-01-01

    We describe the application of high-resolution 3D microcomputed tomography, together with 3D landmarks and geometric morphometrics, to validate and further improve previous quantitative genetic studies that reported QTL responsible for variation in the mandible shape of laboratory mice using a new backcross between C57BL/6J and A/J inbred strains. Despite the increasing availability of 3D imaging techniques, artificial flattening of the mandible by 2D imaging techniques seems at first an acceptable compromise for large-scale phenotyping protocols, thanks to an abundance of low-cost digital imaging systems such as microscopes or digital cameras. We evaluated the gain of information from considering explicitly this additional third dimension, and also from capturing variation on the bone surface where no precise anatomical landmark can be marked. Multivariate QTL mapping conducted with different landmark configurations (2D vs. 3D; manual vs. semilandmarks) broadly agreed with the findings of previous studies. Significantly more QTL (23) were identified and more precisely mapped when the mandible shape was captured with a large set of semilandmarks coupled with manual landmarks. It appears that finer phenotypic characterization of the mandibular shape with 3D landmarks, along with higher density genotyping, yields better insights into the genetic architecture of mandibular development. Most of the main variation is, nonetheless, preferentially embedded in the natural 2D plane of the hemi-mandible, reinforcing the results of earlier influential investigations. PMID:26921296

  8. Shape optimization of 3D continuum structures via force approximation techniques

    NASA Technical Reports Server (NTRS)

    Vanderplaats, Garret N.; Kodiyalam, Srinivas

    1988-01-01

    The existing need to develop methods whereby the shape design efficiency can be improved through the use of high quality approximation methods is addressed. An efficient approximation method for stress constraints in 3D shape design problems is proposed based on expanding the nodal forces in Taylor series with respect to shape variations. The significance of this new method is shown through elementary beam theory calculations and via numerical computations using 3D solid finite elements. Numerical examples including the classical cantilever beam structure and realistic automotive parts like the engine connecting rod are designed for optimum shape using the proposed method. The numerical results obtained from these methods are compared with other published results, to assess the efficiency and the convergence rate of the proposed method.

  9. Automatic segmentation of the fetal cerebellum on ultrasound volumes, using a 3D statistical shape model.

    PubMed

    Gutiérrez-Becker, Benjamín; Arámbula Cosío, Fernando; Guzmán Huerta, Mario E; Benavides-Serralde, Jesús Andrés; Camargo-Marín, Lisbeth; Medina Bañuelos, Verónica

    2013-09-01

    Previous work has shown that the segmentation of anatomical structures on 3D ultrasound data sets provides an important tool for the assessment of the fetal health. In this work, we present an algorithm based on a 3D statistical shape model to segment the fetal cerebellum on 3D ultrasound volumes. This model is adjusted using an ad hoc objective function which is in turn optimized using the Nelder-Mead simplex algorithm. Our algorithm was tested on ultrasound volumes of the fetal brain taken from 20 pregnant women, between 18 and 24 gestational weeks. An intraclass correlation coefficient of 0.8528 and a mean Dice coefficient of 0.8 between cerebellar volumes measured using manual techniques and the volumes calculated using our algorithm were obtained. As far as we know, this is the first effort to automatically segment fetal intracranial structures on 3D ultrasound data. PMID:23686392

  10. 3D Morphometric and Posture Study of Felid Scapulae Using Statistical Shape Modelling

    PubMed Central

    Zhang, Kai Yu; Wiktorowicz-Conroy, Alexis; Hutchinson, John R.; Doube, Michael; Klosowski, Michal; Shefelbine, Sandra J.; Bull, Anthony M. J.

    2012-01-01

    We present a three dimensional (3D) morphometric modelling study of the scapulae of Felidae, with a focus on the correlations between forelimb postures and extracted scapular shape variations. Our shape modelling results indicate that the scapular infraspinous fossa becomes larger and relatively broader along the craniocaudal axis in larger felids. We infer that this enlargement of the scapular fossa may be a size-related specialization for postural support of the shoulder joint. PMID:22509335

  11. Shape-based 3D vascular tree extraction for perforator flaps

    NASA Astrophysics Data System (ADS)

    Wen, Quan; Gao, Jean

    2005-04-01

    Perforator flaps have been increasingly used in the past few years for trauma and reconstructive surgical cases. With the thinned perforated flaps, greater survivability and decrease in donor site morbidity have been reported. Knowledge of the 3D vascular tree will provide insight information about the dissection region, vascular territory, and fascia levels. This paper presents a scheme of shape-based 3D vascular tree reconstruction of perforator flaps for plastic surgery planning, which overcomes the deficiencies of current existing shape-based interpolation methods by applying rotation and 3D repairing. The scheme has the ability to restore the broken parts of the perforator vascular tree by using a probability-based adaptive connection point search (PACPS) algorithm with minimum human intervention. The experimental results evaluated by both synthetic and 39 harvested cadaver perforator flaps show the promise and potential of proposed scheme for plastic surgery planning.

  12. Mechanical properties and shape memory effect of 3D-printed PLA-based porous scaffolds.

    PubMed

    Senatov, F S; Niaza, K V; Zadorozhnyy, M Yu; Maksimkin, A V; Kaloshkin, S D; Estrin, Y Z

    2016-04-01

    In the present work polylactide (PLA)/15wt% hydroxyapatite (HA) porous scaffolds with pre-modeled structure were obtained by 3D-printing by fused filament fabrication. Composite filament was obtained by extrusion. Mechanical properties, structural characteristics and shape memory effect (SME) were studied. Direct heating was used for activation of SME. The average pore size and porosity of the scaffolds were 700μm and 30vol%, respectively. Dispersed particles of HA acted as nucleation centers during the ordering of PLA molecular chains and formed an additional rigid fixed phase that reduced molecular mobility, which led to a shift of the onset of recovery stress growth from 53 to 57°C. A more rapid development of stresses was observed for PLA/HA composites with the maximum recovery stress of 3.0MPa at 70°C. Ceramic particles inhibited the growth of cracks during compression-heating-compression cycles when porous PLA/HA 3D-scaffolds recovered their initial shape. Shape recovery at the last cycle was about 96%. SME during heating may have resulted in "self-healing" of scaffold by narrowing the cracks. PLA/HA 3D-scaffolds were found to withstand up to three compression-heating-compression cycles without delamination. It was shown that PLA/15%HA porous scaffolds obtained by 3D-printing with shape recovery of 98% may be used as self-fitting implant for small bone defect replacement owing to SME. PMID:26710259

  13. A Novel Approach for Weed Type Classification Based on Shape Descriptors and a Fuzzy Decision-Making Method

    PubMed Central

    Herrera, Pedro Javier; Dorado, José.; Ribeiro, Ángela.

    2014-01-01

    An important objective in weed management is the discrimination between grasses (monocots) and broad-leaved weeds (dicots), because these two weed groups can be appropriately controlled by specific herbicides. In fact, efficiency is higher if selective treatment is performed for each type of infestation instead of using a broadcast herbicide on the whole surface. This work proposes a strategy where weeds are characterised by a set of shape descriptors (the seven Hu moments and six geometric shape descriptors). Weeds appear in outdoor field images which display real situations obtained from a RGB camera. Thus, images present a mixture of both weed species under varying conditions of lighting. In the presented approach, four decision-making methods were adapted to use the best shape descriptors as attributes and a choice was taken. This proposal establishes a novel methodology with a high success rate in weed species discrimination. PMID:25195854

  14. A new 3D computational model for shaped charge jet breakup

    SciTech Connect

    Zernow, L.; Chapyak, E.J.; Mosso, S.J.

    1996-09-01

    This paper reviews prior 1D and 2D axisymmetric, analytical and computational studies, as well as empirical studies of the shaped charge jet particulation problem and discusses their associated insights and problems. It proposes a new 3D computational model of the particulation process, based upon a simplified version of the observed counter-rotating, double helical surface perturbations, found on softly recovered shaped charge jet particles, from both copper and tantalum jets. This 3D approach contrasts with the random, axisymmetric surface perturbations which have previously been used, to try to infer the observed length distribution of jet particles, on the basis of the most unstable wavelength concept, which leads to the expectation of a continuous distribution of particle lengths. The 3D model, by its very nature, leads to a non-random, periodic distribution of potential initial necking loci, on alternate sides of the stretching jet. This in turn infers a potentially periodic, overlapping, multi-modal distribution of associated jet particle lengths. Since it is unlikely that all potential initial necking sites will be activated simultaneously, the 3D model also suggests that longer jet particles containing partial, but unseparated necks, should be observed fairly often. The computational analysis is in its very early stages and the problems involved in inserting the two helical grooves and in defining the initial conditions and boundary conditions for the computation will be discussed. Available initial results from the 3D computation will be discussed and interpreted.

  15. Model-based 3D human shape estimation from silhouettes for virtual fitting

    NASA Astrophysics Data System (ADS)

    Saito, Shunta; Kouchi, Makiko; Mochimaru, Masaaki; Aoki, Yoshimitsu

    2014-03-01

    We propose a model-based 3D human shape reconstruction system from two silhouettes. Firstly, we synthesize a deformable body model from 3D human shape database consists of a hundred whole body mesh models. Each mesh model is homologous, so that it has the same topology and same number of vertices among all models. We perform principal component analysis (PCA) on the database and synthesize an Active Shape Model (ASM). ASM allows changing the body type of the model with a few parameters. The pose changing of our model can be achieved by reconstructing the skeleton structures from implanted joints of the model. By applying pose changing after body type deformation, our model can represents various body types and any pose. We apply the model to the problem of 3D human shape reconstruction from front and side silhouette. Our approach is simply comparing the contours between the model's and input silhouettes', we then use only torso part contour of the model to reconstruct whole shape. We optimize the model parameters by minimizing the difference between corresponding silhouettes by using a stochastic, derivative-free non-linear optimization method, CMA-ES.

  16. An improved 3D shape context registration method for non-rigid surface registration

    NASA Astrophysics Data System (ADS)

    Xiao, Di; Zahra, David; Bourgeat, Pierrick; Berghofer, Paula; Acosta Tamayo, Oscar; Wimberley, Catriona; Gregoire, Marie-Claude; Salvado, Olivier

    2010-03-01

    3D shape context is a method to define matching points between similar shapes as a pre-processing step to non-rigid registration. The main limitation of the approach is point mismatching, which includes long geodesic distance mismatch and neighbors crossing mismatch. In this paper, we propose a topological structure verification method to correct the long geodesic distance mismatch and a correspondence field smoothing method to correct the neighbors crossing mismatch. A robust 3D shape context model is proposed and further combined with thin-plate spline model for non-rigid surface registration. The method was tested on phantoms and rat hind limb skeletons from micro CT images. The results from experiments on mouse hind limb skeletons indicate that the approach is robust.

  17. Analysis of method of 3D shape reconstruction using scanning deflectometry

    NASA Astrophysics Data System (ADS)

    Novák, Jiří; Novák, Pavel; Mikš, Antonín.

    2013-04-01

    This work presents a scanning deflectometric approach to solving a 3D surface reconstruction problem, which is based on measurements of a surface gradient of optically smooth surfaces. It is shown that a description of this problem leads to a nonlinear partial differential equation (PDE) of the first order, from which the surface shape can be reconstructed numerically. The method for effective finding of the solution of this differential equation is proposed, which is based on the transform of the problem of PDE solving to the optimization problem. We describe different types of surface description for the shape reconstruction and a numerical simulation of the presented method is performed. The reconstruction process is analyzed by computer simulations and presented on examples. The performed analysis confirms a robustness of the reconstruction method and a good possibility for measurements and reconstruction of the 3D shape of specular surfaces.

  18. Real-time, high-accuracy 3D imaging and shape measurement.

    PubMed

    Nguyen, Hieu; Nguyen, Dung; Wang, Zhaoyang; Kieu, Hien; Le, Minh

    2015-01-01

    In spite of the recent advances in 3D shape measurement and geometry reconstruction, simultaneously achieving fast-speed and high-accuracy performance remains a big challenge in practice. In this paper, a 3D imaging and shape measurement system is presented to tackle such a challenge. The fringe-projection-profilometry-based system employs a number of advanced approaches, such as: composition of phase-shifted fringe patterns, externally triggered synchronization of system components, generalized system setup, ultrafast phase-unwrapping algorithm, flexible system calibration method, robust gamma correction scheme, multithread computation and processing, and graphics-processing-unit-based image display. Experiments have shown that the proposed system can acquire and display high-quality 3D reconstructed images and/or video stream at a speed of 45 frames per second with relative accuracy of 0.04% or at a reduced speed of 22.5 frames per second with enhanced accuracy of 0.01%. The 3D imaging and shape measurement system shows great promise of satisfying the ever-increasing demands of scientific and engineering applications. PMID:25967028

  19. A 3-D active shape model driven by fuzzy inference: application to cardiac CT and MR.

    PubMed

    van Assen, Hans C; Danilouchkine, Mikhail G; Dirksen, Martijn S; Reiber, Johan H C; Lelieveldt, Boudewijn P F

    2008-09-01

    Manual quantitative analysis of cardiac left ventricular function using Multislice CT and MR is arduous because of the large data volume. In this paper, we present a 3-D active shape model (ASM) for semiautomatic segmentation of cardiac CT and MR volumes, without the requirement of retraining the underlying statistical shape model. A fuzzy c-means based fuzzy inference system was incorporated into the model. Thus, relative gray-level differences instead of absolute gray values were used for classification of 3-D regions of interest (ROIs), removing the necessity of training different models for different modalities/acquisition protocols. The 3-D ASM was evaluated using 25 CT and 15 MR datasets. Automatically generated contours were compared to expert contours in 100 locations. For CT, 82.4% of epicardial contours and 74.1% of endocardial contours had a maximum error of 5 mm along 95% of the contour arc length. For MR, those numbers were 93.2% (epicardium) and 91.4% (endocardium). Volume regression analysis revealed good linear correlations between manual and semiautomatic volumes, r(2) >/= 0.98. This study shows that the fuzzy inference 3-D ASM is a robust promising instrument for semiautomatic cardiac left ventricle segmentation. Without retraining its statistical shape component, it is applicable to routinely acquired CT and MR studies. PMID:18779074

  20. ARCHAEO-SCAN: Portable 3D shape measurement system for archaeological field work

    NASA Astrophysics Data System (ADS)

    Knopf, George K.; Nelson, Andrew J.

    2004-10-01

    Accurate measurement and thorough documentation of excavated artifacts are the essential tasks of archaeological fieldwork. The on-site recording and long-term preservation of fragile evidence can be improved using 3D spatial data acquisition and computer-aided modeling technologies. Once the artifact is digitized and geometry created in a virtual environment, the scientist can manipulate the pieces in a virtual reality environment to develop a "realistic" reconstruction of the object without physically handling or gluing the fragments. The ARCHAEO-SCAN system is a flexible, affordable 3D coordinate data acquisition and geometric modeling system for acquiring surface and shape information of small to medium sized artifacts and bone fragments. The shape measurement system is being developed to enable the field archaeologist to manually sweep the non-contact sensor head across the relic or artifact surface. A series of unique data acquisition, processing, registration and surface reconstruction algorithms are then used to integrate 3D coordinate information from multiple views into a single reference frame. A novel technique for automatically creating a hexahedral mesh of the recovered fragments is presented. The 3D model acquisition system is designed to operate from a standard laptop with minimal additional hardware and proprietary software support. The captured shape data can be pre-processed and displayed on site, stored digitally on a CD, or transmitted via the Internet to the researcher's home institution.

  1. Heritability of Face Shape in Twins: A Preliminary Study using 3D Stereophotogrammetry and Geometric Morphometrics

    PubMed Central

    Weinberg, Seth M.; Parsons, Trish E.; Marazita, Mary L.; Maher, Brion S.

    2014-01-01

    Introduction Previous research suggests that aspects of facial surface morphology are heritable. Traditionally, heritability studies have used a limited set of linear distances to quantify facial morphology and often employ statistical methods poorly designed to deal with biological shape. In this preliminary report, we use a combination of 3D photogrammetry and landmark-based morphometrics to explore which aspects of face shape show the strongest evidence of heritability in a sample of twins. Methods 3D surface images were obtained from 21 twin pairs (10 monozygotic, 11 same-sex dizygotic). Thirteen 3D landmarks were collected from each facial surface and their coordinates subjected to geometric morphometric analysis. This involved superimposing the individual landmark configurations and then subjecting the resulting shape coordinates to a principal components analysis. The resulting PC scores were then used to calculate rough narrow-sense heritability estimates. Results Three principal components displayed evidence of moderate to high heritability and were associated with variation in the breadth of orbital and nasal structures, upper lip height and projection, and the vertical and forward projection of the root of the nose due to variation in the position of nasion. Conclusions Aspects of facial shape, primarily related to variation in length and breadth of central midfacial structures, were shown to demonstrate evidence of strong heritability. An improved understanding of which facial features are under strong genetic control is an important step in the identification of specific genes that underlie normal facial variation. PMID:24501696

  2. 3D shape measurement of shoeprint impression with structured illumination and fringe pattern analysis

    NASA Astrophysics Data System (ADS)

    Su, Xianyu; Cao, Yiping; Xiang, Liqun; Chen, Wenjing

    2002-06-01

    The shoeprint impressions of suspect left at the crime scene can sometimes tell investigators what type of shoes to be looked for. These shoeprint impressions as one of the important evidence are useful in the detection of criminals. In this paper we propose a novel technique for identifying and analyzing the 3D characteristics of shoeprint impressions. We also design 3D shoeprint impression analysis system based on the combination the 3D shape measurement with structured illumination and fringe pattern analysis. We give a detail discussion on the principle and configuration of the system. Laboratory experiments show the technique is efficient in the detection of shoeprint and in the offering the reference for judicial evidence.

  3. Interfacing electrogenic cells with 3D nanoelectrodes: position, shape, and size matter.

    PubMed

    Santoro, Francesca; Dasgupta, Sabyasachi; Schnitker, Jan; Auth, Thorsten; Neumann, Elmar; Panaitov, Gregory; Gompper, Gerhard; Offenhäusser, Andreas

    2014-07-22

    An in-depth understanding of the interface between cells and nanostructures is one of the key challenges for coupling electrically excitable cells and electronic devices. Recently, various 3D nanostructures have been introduced to stimulate and record electrical signals emanating from inside of the cell. Even though such approaches are highly sensitive and scalable, it remains an open question how cells couple to 3D structures, in particular how the engulfment-like processes of nanostructures work. Here, we present a profound study of the cell interface with two widely used nanostructure types, cylindrical pillars with and without a cap. While basic functionality was shown for these approaches before, a systematic investigation linking experimental data with membrane properties was not presented so far. The combination of electron microscopy investigations with a theoretical membrane deformation model allows us to predict the optimal shape and dimensions of 3D nanostructures for cell-chip coupling. PMID:24963873

  4. 3D time series analysis of cell shape using Laplacian approaches

    PubMed Central

    2013-01-01

    Background Fundamental cellular processes such as cell movement, division or food uptake critically depend on cells being able to change shape. Fast acquisition of three-dimensional image time series has now become possible, but we lack efficient tools for analysing shape deformations in order to understand the real three-dimensional nature of shape changes. Results We present a framework for 3D+time cell shape analysis. The main contribution is three-fold: First, we develop a fast, automatic random walker method for cell segmentation. Second, a novel topology fixing method is proposed to fix segmented binary volumes without spherical topology. Third, we show that algorithms used for each individual step of the analysis pipeline (cell segmentation, topology fixing, spherical parameterization, and shape representation) are closely related to the Laplacian operator. The framework is applied to the shape analysis of neutrophil cells. Conclusions The method we propose for cell segmentation is faster than the traditional random walker method or the level set method, and performs better on 3D time-series of neutrophil cells, which are comparatively noisy as stacks have to be acquired fast enough to account for cell motion. Our method for topology fixing outperforms the tools provided by SPHARM-MAT and SPHARM-PDM in terms of their successful fixing rates. The different tasks in the presented pipeline for 3D+time shape analysis of cells can be solved using Laplacian approaches, opening the possibility of eventually combining individual steps in order to speed up computations. PMID:24090312

  5. Simulated 3D ultrasound LV cardiac images for active shape model training

    NASA Astrophysics Data System (ADS)

    Butakoff, Constantine; Balocco, Simone; Ordas, Sebastian; Frangi, Alejandro F.

    2007-03-01

    In this paper a study of 3D ultrasound cardiac segmentation using Active Shape Models (ASM) is presented. The proposed approach is based on a combination of a point distribution model constructed from a multitude of high resolution MRI scans and the appearance model obtained from simulated 3D ultrasound images. Usually the appearance model is learnt from a set of landmarked images. The significant level of noise, the low resolution of 3D ultrasound images (3D US) and the frequent failure to capture the complete wall of the left ventricle (LV) makes automatic or manual landmarking difficult. One possible solution is to use artificially simulated 3D US images since the generated images will match exactly the shape in question. In this way, by varying simulation parameters and generating corresponding images, it is possible to obtain a training set where the image matches the shape exactly. In this work the simulation of ultrasound images is performed by a convolutional approach. The evaluation of segmentation accuracy is performed on both simulated and in vivo images. The results obtained on 567 simulated images had an average error of 1.9 mm (1.73 +/- 0.05 mm for epicardium and 2 +/- 0.07 mm for endocardium, with 95% confidence) with voxel size being 1.1 × 1.1 × 0.7 mm. The error on 20 in vivo data was 3.5 mm (3.44 +/- 0.4 mm for epicardium and 3.73 +/- 0.4 mm for endocardium). In most images the model was able to approximate the borders of myocardium even when the latter was indistinguishable from the surrounding tissues.

  6. Facile 3D Metal Electrode Fabrication for Energy Applications via Inkjet Printing and Shape Memory Polymer

    NASA Astrophysics Data System (ADS)

    Roberts, R. C.; Wu, J.; Hau, N. Y.; Chang, Y. H.; Feng, S. P.; Li, D. C.

    2014-11-01

    This paper reports on a simple 3D metal electrode fabrication technique via inkjet printing onto a thermally contracting shape memory polymer (SMP) substrate. Inkjet printing allows for the direct patterning of structures from metal nanoparticle bearing liquid inks. After deposition, these inks require thermal curing steps to render a stable conductive film. By printing onto a SMP substrate, the metal nanoparticle ink can be cured and substrate shrunk simultaneously to create 3D metal microstructures, forming a large surface area topology well suited for energy applications. Polystyrene SMP shrinkage was characterized in a laboratory oven from 150-240°C, resulting in a size reduction of 1.97-2.58. Silver nanoparticle ink was patterned into electrodes, shrunk, and the topology characterized using scanning electron microscopy. Zinc-Silver Oxide microbatteries were fabricated to demonstrate the 3D electrodes compared to planar references. Characterization was performed using 10M potassium hydroxide electrolyte solution doped with zinc oxide (57g/L). After a 300s oxidation at 3Vdc, the 3D electrode battery demonstrated a 125% increased capacity over the reference cell. Reference cells degraded with longer oxidations, but the 3D electrodes were fully oxidized for 4 hours, and exhibited a capacity of 5.5mA-hr/cm2 with stable metal performance.

  7. 3D shape measurement for moving scenes using an interlaced scanning colour camera

    NASA Astrophysics Data System (ADS)

    Cao, Senpeng; Cao, Yiping; Lu, Mingteng; Zhang, Qican

    2014-12-01

    A Fourier transform deinterlacing algorithm (FTDA) is proposed to eliminate the blurring and dislocation of the fringe patterns on a moving object captured by an interlaced scanning colour camera in phase measuring profilometry (PMP). Every frame greyscale fringe from three colour channels of every colour fringe is divided into even and odd field fringes respectively, each of which is respectively processed by FTDA. All of the six frames deinterlaced fringes from one colour fringe form two sets of three-step phase-shifted greyscale fringes, with which two 3D shapes corresponding to two different moments are reconstructed by PMP within a frame period. The deinterlaced fringe is identical with the exact frame fringe at the same moment theoretically. The simulation and experiments show its feasibility and validity. The method doubles the time resolution, maintains the precision of the traditional phase measurement profilometry, and has potential applications in the moving and online object’s 3D shape measurements.

  8. Digital holography for recovering 3D shape of red blood cells

    NASA Astrophysics Data System (ADS)

    Memmolo, P.; Miccio, L.; Merola, F.; Gennari, O.; Netti, P.; Ferraro, Pietro

    2015-07-01

    Full morphometric data analysis and 3D rendering of Red Blood Cells (RBCs) is provided by means of Digital Holography (DH) in combination with Optical Tweezers (OT). The proposed method is compared with a geometrical model of RBC in order to evaluate its accuracy and tested for many kinds of RBCs, from healthy ones with double-concavity to that with abnormal shapes. Applications in diagnostics are foreseen.

  9. Amygdala–hippocampal shape differences in schizophrenia: the application of 3D shape models to volumetric MR data

    PubMed Central

    Shenton, Martha E.; Gerig, Guido; McCarley, Robert W.; Székely, Gábor; Kikinis, Ron

    2010-01-01

    Evidence suggests that some structural brain abnormalities in schizophrenia are neurodevelopmental in origin. There is also growing evidence to suggest that shape deformations in brain structure may reflect abnormalities in neurodevelopment. While many magnetic resonance (MR) imaging studies have investigated brain area and volume measures in schizophrenia, fewer have focused on shape deformations. In this MR study we used a 3D shape representation technique, based on spherical harmonic functions, to analyze left and right amygdala-hippocampus shapes in each of 15 patients with schizophrenia and 15 healthy controls matched for age, gender, handedness and parental socioeconomic status. Left/right asymmetry was also measured for both shape and volume differences. Additionally, shape and volume measurements were combined in a composite analysis. There were no differences between groups in overall volume or shape. Left/right amygdala–hippocampal asymmetry, however, was significantly larger in patients than controls for both relative volume and shape. The local brain regions responsible for the left/right asymmetry differences in patients with schizophrenia were in the tail of the hippocampus (including both the inferior aspect adjacent to parahippocampal gyrus and the superior aspect adjacent to the lateral geniculate nucleus and more anteriorly to the cerebral peduncles) and in portions of the amygdala body (including the anterior–superior aspect adjacent to the basal nucleus). Also, in patients, increased volumetric asymmetry tended to be correlated with increased left/right shape asymmetry. Furthermore, a combined analysis of volume and shape asymmetry resulted in improved differentiation between groups. Classification function analyses correctly classified 70% of cases using volume, 73.3% using shape, and 87% using combined volume and shape measures. These findings suggest that shape provides important new information toward characterizing the pathophysiology

  10. Small pitch fringe projection method with multiple linear fiber arrays for 3D shape measurement

    NASA Astrophysics Data System (ADS)

    Hayashi, Takumi; Fujigaki, Motoharu; Murata, Yorinobu

    2014-07-01

    3-D shape measurement systems by contactless method are required in the quality inspections of metal molds and electronic parts in industrial fields. A grating projection method with phase-shifting method has advantages of high precision and high speed. Recently, the size of a BGA (ball grid array) becomes smaller. So the pitch of a grating pattern projected onto the specimen should be smaller. In conventional method, fringe pattern is projected using an imaging lens. The focal depth becomes smaller in the case of reduced projection. It is therefore difficult to project a grating pattern with small pitch onto an object with large incident angles. Authors recently proposed a light source stepping method using a linear LED device. It is easy to shrink the projected grating pitch with a lens because this projection method does not use an imaging lens. The pitch of the projected grating depends on the width of the light source. There is a limit to shrink the projected grating pitch according to the size of the LED chip. In this paper, a small pitch fringe projection method with multiple linear fiber arrays for 3D shape measurement is proposed. The width of the fiber array is 30μm. It is one digit smaller than the width of the LED chip. The experimental result of 3-D shape measurement with small pitch projection with large incident angles is shown.

  11. 3-D Human Action Recognition by Shape Analysis of Motion Trajectories on Riemannian Manifold.

    PubMed

    Devanne, Maxime; Wannous, Hazem; Berretti, Stefano; Pala, Pietro; Daoudi, Mohamed; Del Bimbo, Alberto

    2015-07-01

    Recognizing human actions in 3-D video sequences is an important open problem that is currently at the heart of many research domains including surveillance, natural interfaces and rehabilitation. However, the design and development of models for action recognition that are both accurate and efficient is a challenging task due to the variability of the human pose, clothing and appearance. In this paper, we propose a new framework to extract a compact representation of a human action captured through a depth sensor, and enable accurate action recognition. The proposed solution develops on fitting a human skeleton model to acquired data so as to represent the 3-D coordinates of the joints and their change over time as a trajectory in a suitable action space. Thanks to such a 3-D joint-based framework, the proposed solution is capable to capture both the shape and the dynamics of the human body, simultaneously. The action recognition problem is then formulated as the problem of computing the similarity between the shape of trajectories in a Riemannian manifold. Classification using k-nearest neighbors is finally performed on this manifold taking advantage of Riemannian geometry in the open curve shape space. Experiments are carried out on four representative benchmarks to demonstrate the potential of the proposed solution in terms of accuracy/latency for a low-latency action recognition. Comparative results with state-of-the-art methods are reported. PMID:25216492

  12. Development and application of 3-D foot-shape measurement system under different loads

    NASA Astrophysics Data System (ADS)

    Liu, Guozhong; Wang, Boxiong; Shi, Hui; Luo, Xiuzhi

    2008-03-01

    The 3-D foot-shape measurement system under different loads based on laser-line-scanning principle was designed and the model of the measurement system was developed. 3-D foot-shape measurements without blind areas under different loads and the automatic extraction of foot-parameter are achieved with the system. A global calibration method for CCD cameras using a one-axis motion unit in the measurement system and the specialized calibration kits is presented. Errors caused by the nonlinearity of CCD cameras and other devices and caused by the installation of the one axis motion platform, the laser plane and the toughened glass plane can be eliminated by using the nonlinear coordinate mapping function and the Powell optimized method in calibration. Foot measurements under different loads for 170 participants were conducted and the statistic foot parameter measurement results for male and female participants under non-weight condition and changes of foot parameters under half-body-weight condition, full-body-weight condition and over-body-weight condition compared with non-weight condition are presented. 3-D foot-shape measurement under different loads makes it possible to realize custom-made shoe-making and shows great prosperity in shoe design, foot orthopaedic treatment, shoe size standardization, and establishment of a feet database for consumers and athletes.

  13. Deformation and 3D-shape measurement system based on phase-shifting digital holography

    NASA Astrophysics Data System (ADS)

    Lai, Songcan; Kolenovic, Ervin; Osten, Wolfgang; Jueptner, Werner P. O.

    2002-05-01

    This paper presents an endoscopic digital holographic interferometry system which is based on phase-shifting in-line digital holography. The system is able to measure both the shape and deformation of an object with the advantages of digital holography, such as real-time processing of the hologram. Two theoretical problems are briefly described: phase-shifting in- line holography and hologram data re-sampling for 2-wavelength contouring. In addition, initial experimental results of the deformation of a metal piece and surface 3D-shape measurement of a bottle cap are given.

  14. Cladding waveguide gratings in standard single-mode fiber for 3D shape sensing.

    PubMed

    Waltermann, Christian; Doering, Alexander; Köhring, Michael; Angelmahr, Martin; Schade, Wolfgang

    2015-07-01

    Femtosecond laser pulses were used for the direct point-by-point inscription of waveguides into the cladding of standard single-mode fibers. Homogeneous S-shaped waveguides have been processed as a bundle of overlapping lines without damaging the surrounding material. Within these structures, FBGs have been successfully inscribed and characterized. A sensor device to measure the bending direction of a fiber was created by two perpendicular inscribed cladding waveguides with FBG. Finally, a complete 3D shape sensor consisting of several bending sensor planes, capable of detecting bending radii even below 2.5 cm is demonstrated. PMID:26125379

  15. Learning the 3-D structure of objects from 2-D views depends on shape, not format

    PubMed Central

    Tian, Moqian; Yamins, Daniel; Grill-Spector, Kalanit

    2016-01-01

    Humans can learn to recognize new objects just from observing example views. However, it is unknown what structural information enables this learning. To address this question, we manipulated the amount of structural information given to subjects during unsupervised learning by varying the format of the trained views. We then tested how format affected participants' ability to discriminate similar objects across views that were rotated 90° apart. We found that, after training, participants' performance increased and generalized to new views in the same format. Surprisingly, the improvement was similar across line drawings, shape from shading, and shape from shading + stereo even though the latter two formats provide richer depth information compared to line drawings. In contrast, participants' improvement was significantly lower when training used silhouettes, suggesting that silhouettes do not have enough information to generate a robust 3-D structure. To test whether the learned object representations were format-specific or format-invariant, we examined if learning novel objects from example views transfers across formats. We found that learning objects from example line drawings transferred to shape from shading and vice versa. These results have important implications for theories of object recognition because they suggest that (a) learning the 3-D structure of objects does not require rich structural cues during training as long as shape information of internal and external features is provided and (b) learning generates shape-based object representations independent of the training format. PMID:27153196

  16. 3D shape measurements with a single interferometric sensor for in-situ lathe monitoring

    NASA Astrophysics Data System (ADS)

    Kuschmierz, R.; Huang, Y.; Czarske, J.; Metschke, S.; Löffler, F.; Fischer, A.

    2015-05-01

    Temperature drifts, tool deterioration, unknown vibrations as well as spindle play are major effects which decrease the achievable precision of computerized numerically controlled (CNC) lathes and lead to shape deviations between the processed work pieces. Since currently no measurement system exist for fast, precise and in-situ 3d shape monitoring with keyhole access, much effort has to be made to simulate and compensate these effects. Therefore we introduce an optical interferometric sensor for absolute 3d shape measurements, which was integrated into a working lathe. According to the spindle rotational speed, a measurement rate of 2,500 Hz was achieved. In-situ absolute shape, surface profile and vibration measurements are presented. While thermal drifts of the sensor led to errors of several mµm for the absolute shape, reference measurements with a coordinate machine show, that the surface profile could be measured with an uncertainty below one micron. Additionally, the spindle play of 0.8 µm was measured with the sensor.

  17. Shape representation for efficient landmark-based segmentation in 3-d.

    PubMed

    Ibragimov, Bulat; Likar, Boštjan; Pernuš, Franjo; Vrtovec, Tomaž

    2014-04-01

    In this paper, we propose a novel approach to landmark-based shape representation that is based on transportation theory, where landmarks are considered as sources and destinations, all possible landmark connections as roads, and established landmark connections as goods transported via these roads. Landmark connections, which are selectively established, are identified through their statistical properties describing the shape of the object of interest, and indicate the least costly roads for transporting goods from sources to destinations. From such a perspective, we introduce three novel shape representations that are combined with an existing landmark detection algorithm based on game theory. To reduce computational complexity, which results from the extension from 2-D to 3-D segmentation, landmark detection is augmented by a concept known in game theory as strategy dominance. The novel shape representations, game-theoretic landmark detection and strategy dominance are combined into a segmentation framework that was evaluated on 3-D computed tomography images of lumbar vertebrae and femoral heads. The best shape representation yielded symmetric surface distance of 0.75 mm and 1.11 mm, and Dice coefficient of 93.6% and 96.2% for lumbar vertebrae and femoral heads, respectively. By applying strategy dominance, the computational costs were further reduced for up to three times. PMID:24710155

  18. Learning the 3-D structure of objects from 2-D views depends on shape, not format.

    PubMed

    Tian, Moqian; Yamins, Daniel; Grill-Spector, Kalanit

    2016-05-01

    Humans can learn to recognize new objects just from observing example views. However, it is unknown what structural information enables this learning. To address this question, we manipulated the amount of structural information given to subjects during unsupervised learning by varying the format of the trained views. We then tested how format affected participants' ability to discriminate similar objects across views that were rotated 90° apart. We found that, after training, participants' performance increased and generalized to new views in the same format. Surprisingly, the improvement was similar across line drawings, shape from shading, and shape from shading + stereo even though the latter two formats provide richer depth information compared to line drawings. In contrast, participants' improvement was significantly lower when training used silhouettes, suggesting that silhouettes do not have enough information to generate a robust 3-D structure. To test whether the learned object representations were format-specific or format-invariant, we examined if learning novel objects from example views transfers across formats. We found that learning objects from example line drawings transferred to shape from shading and vice versa. These results have important implications for theories of object recognition because they suggest that (a) learning the 3-D structure of objects does not require rich structural cues during training as long as shape information of internal and external features is provided and (b) learning generates shape-based object representations independent of the training format. PMID:27153196

  19. Inter-point procrustes: identifying regional and large differences in 3D anatomical shapes.

    PubMed

    Lekadir, Karim; Frangi, Alejandro F; Yang, Guang-Zhong

    2012-01-01

    This paper presents a new approach for the robust alignment and interpretation of 3D anatomical structures with large and localized shape differences. In such situations, existing techniques based on the well-known Procrustes analysis can be significantly affected due to the introduced non-Gaussian distribution of the residuals. In the proposed technique, influential points that induce large dissimilarities are identified and displaced with the aim to obtain an intermediate template with an improved distribution of the residuals. The key element of the algorithm is the use of pose invariant shape variables to robustly guide both the influential point detection and displacement steps. The intermediate template is then used as the basis for the estimation of the final pose parameters between the source and destination shapes, enabling to effectively highlight the regional differences of interest. The validation using synthetic and real datasets of different morphologies demonstrates robustness up-to 50% regional differences and potential for shape classification. PMID:23286119

  20. A “loop” shape descriptor and its application to automated segmentation of airways from CT scans

    SciTech Connect

    Pu, Jiantao; Jin, Chenwang Yu, Nan; Qian, Yongqiang; Guo, Youmin; Wang, Xiaohua; Meng, Xin

    2015-06-15

    Purpose: A novel shape descriptor is presented to aid an automated identification of the airways depicted on computed tomography (CT) images. Methods: Instead of simplifying the tubular characteristic of the airways as an ideal mathematical cylindrical or circular shape, the proposed “loop” shape descriptor exploits the fact that the cross sections of any tubular structure (regardless of its regularity) always appear as a loop. In implementation, the authors first reconstruct the anatomical structures in volumetric CT as a three-dimensional surface model using the classical marching cubes algorithm. Then, the loop descriptor is applied to locate the airways with a concave loop cross section. To deal with the variation of the airway walls in density as depicted on CT images, a multiple threshold strategy is proposed. A publicly available chest CT database consisting of 20 CT scans, which was designed specifically for evaluating an airway segmentation algorithm, was used for quantitative performance assessment. Measures, including length, branch count, and generations, were computed under the aid of a skeletonization operation. Results: For the test dataset, the airway length ranged from 64.6 to 429.8 cm, the generation ranged from 7 to 11, and the branch number ranged from 48 to 312. These results were comparable to the performance of the state-of-the-art algorithms validated on the same dataset. Conclusions: The authors’ quantitative experiment demonstrated the feasibility and reliability of the developed shape descriptor in identifying lung airways.

  1. Quantitative prediction of 3D solution shape and flexibility of nucleic acid nanostructures.

    PubMed

    Kim, Do-Nyun; Kilchherr, Fabian; Dietz, Hendrik; Bathe, Mark

    2012-04-01

    DNA nanotechnology enables the programmed synthesis of intricate nanometer-scale structures for diverse applications in materials and biological science. Precise control over the 3D solution shape and mechanical flexibility of target designs is important to achieve desired functionality. Because experimental validation of designed nanostructures is time-consuming and cost-intensive, predictive physical models of nanostructure shape and flexibility have the capacity to enhance dramatically the design process. Here, we significantly extend and experimentally validate a computational modeling framework for DNA origami previously presented as CanDo [Castro,C.E., Kilchherr,F., Kim,D.-N., Shiao,E.L., Wauer,T., Wortmann,P., Bathe,M., Dietz,H. (2011) A primer to scaffolded DNA origami. Nat. Meth., 8, 221-229.]. 3D solution shape and flexibility are predicted from basepair connectivity maps now accounting for nicks in the DNA double helix, entropic elasticity of single-stranded DNA, and distant crossovers required to model wireframe structures, in addition to previous modeling (Castro,C.E., et al.) that accounted only for the canonical twist, bend and stretch stiffness of double-helical DNA domains. Systematic experimental validation of nanostructure flexibility mediated by internal crossover density probed using a 32-helix DNA bundle demonstrates for the first time that our model not only predicts the 3D solution shape of complex DNA nanostructures but also their mechanical flexibility. Thus, our model represents an important advance in the quantitative understanding of DNA-based nanostructure shape and flexibility, and we anticipate that this model will increase significantly the number and variety of synthetic nanostructures designed using nucleic acids. PMID:22156372

  2. 3D numerical simulation of the evolutionary process of aeolian downsized crescent-shaped dunes

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaosi; Zhang, Yang; Wang, Yuan; Li, Min

    2016-06-01

    A dune constitutive model was coupled with a large eddy simulation (LES) with the Smagorinsky subgrid-scale (SGS) model to accurately describe the evolutionary process of dunes from the macroscopic perspective of morphological dynamics. A 3D numerical simulation of the evolution of aeolian downsized crescent-shaped dunes was then performed. The evolution of the 3D structure of Gaussian-shaped dunes was simulated under the influence of gravity modulation, which was the same with the vertical oscillation of the sand bed to adjust the threshold of sand grain liftoff in wind tunnel experiments under the same wind speed. The influence of gravity modulation intensity on the characteristic scale parameter of the dune was discussed. Results indicated that the crescent shape of the dune was reproduced with the action of gravity during regulation of the saturation of wind-sand flow at specific times. The crescent shape was not dynamically maintained as time passed, and the dunes dwindled until they reached final decomposition because of wind erosion. The height of the dunes decreased over time, and the height-time curve converged as the intensity of modulation increased linearly. The results qualitatively agreed with those obtained from wind tunnel experiments.

  3. Sequential Self-Folding Structures by 3D Printed Digital Shape Memory Polymers.

    PubMed

    Mao, Yiqi; Yu, Kai; Isakov, Michael S; Wu, Jiangtao; Dunn, Martin L; Jerry Qi, H

    2015-01-01

    Folding is ubiquitous in nature with examples ranging from the formation of cellular components to winged insects. It finds technological applications including packaging of solar cells and space structures, deployable biomedical devices, and self-assembling robots and airbags. Here we demonstrate sequential self-folding structures realized by thermal activation of spatially-variable patterns that are 3D printed with digital shape memory polymers, which are digital materials with different shape memory behaviors. The time-dependent behavior of each polymer allows the temporal sequencing of activation when the structure is subjected to a uniform temperature. This is demonstrated via a series of 3D printed structures that respond rapidly to a thermal stimulus, and self-fold to specified shapes in controlled shape changing sequences. Measurements of the spatial and temporal nature of self-folding structures are in good agreement with the companion finite element simulations. A simplified reduced-order model is also developed to rapidly and accurately describe the self-folding physics. An important aspect of self-folding is the management of self-collisions, where different portions of the folding structure contact and then block further folding. A metric is developed to predict collisions and is used together with the reduced-order model to design self-folding structures that lock themselves into stable desired configurations. PMID:26346202

  4. Digital holographic measurements of shape and 3D sound-induced displacements of Tympanic Membrane

    PubMed Central

    Lu, Weina; Dobrev, Ivo; Cheng, Jeffrey Tao; Furlong, Cosme; Rosowski, John J

    2014-01-01

    Acoustically-induced vibrations of the Tympanic Membrane (TM) play a primary role in the hearing process, in that these motions are the initial mechanical response of the ear to airborne sound. Characterization of the shape and 3D displacement patterns of the TM is a crucial step to a better understanding of the complicated mechanics of sound reception by the ear. In this paper, shape and sound-induced 3D displacements of the TM in cadaveric chinchillas are measured by a lensless Dual-Wavelength Digital Holography system (DWDHS). The DWDHS consists of Laser Delivery (LD), Optical Head (OH), and Computing Platform (CP) subsystems. Shape measurements are performed in double-exposure mode and with the use of two wavelengths of a tunable laser while nanometer-scale displacements are measured along a single sensitivity direction and with a constant wavelength. In order to extract the three principal components of displacement in full-field-of-view, and taking into consideration the anatomical dimensions of the TM, we combine principles of thin-shell theory together with both, displacement measurements along the single sensitivity vector and TM surface shape. To computationally test this approach, Finite Element Methods (FEM) are applied to the study of artificial geometries. PMID:24790255

  5. Sequential Self-Folding Structures by 3D Printed Digital Shape Memory Polymers

    PubMed Central

    Mao, Yiqi; Yu, Kai; Isakov, Michael S.; Wu, Jiangtao; Dunn, Martin L.; Jerry Qi, H.

    2015-01-01

    Folding is ubiquitous in nature with examples ranging from the formation of cellular components to winged insects. It finds technological applications including packaging of solar cells and space structures, deployable biomedical devices, and self-assembling robots and airbags. Here we demonstrate sequential self-folding structures realized by thermal activation of spatially-variable patterns that are 3D printed with digital shape memory polymers, which are digital materials with different shape memory behaviors. The time-dependent behavior of each polymer allows the temporal sequencing of activation when the structure is subjected to a uniform temperature. This is demonstrated via a series of 3D printed structures that respond rapidly to a thermal stimulus, and self-fold to specified shapes in controlled shape changing sequences. Measurements of the spatial and temporal nature of self-folding structures are in good agreement with the companion finite element simulations. A simplified reduced-order model is also developed to rapidly and accurately describe the self-folding physics. An important aspect of self-folding is the management of self-collisions, where different portions of the folding structure contact and then block further folding. A metric is developed to predict collisions and is used together with the reduced-order model to design self-folding structures that lock themselves into stable desired configurations. PMID:26346202

  6. Sequential Self-Folding Structures by 3D Printed Digital Shape Memory Polymers

    NASA Astrophysics Data System (ADS)

    Mao, Yiqi; Yu, Kai; Isakov, Michael S.; Wu, Jiangtao; Dunn, Martin L.; Jerry Qi, H.

    2015-09-01

    Folding is ubiquitous in nature with examples ranging from the formation of cellular components to winged insects. It finds technological applications including packaging of solar cells and space structures, deployable biomedical devices, and self-assembling robots and airbags. Here we demonstrate sequential self-folding structures realized by thermal activation of spatially-variable patterns that are 3D printed with digital shape memory polymers, which are digital materials with different shape memory behaviors. The time-dependent behavior of each polymer allows the temporal sequencing of activation when the structure is subjected to a uniform temperature. This is demonstrated via a series of 3D printed structures that respond rapidly to a thermal stimulus, and self-fold to specified shapes in controlled shape changing sequences. Measurements of the spatial and temporal nature of self-folding structures are in good agreement with the companion finite element simulations. A simplified reduced-order model is also developed to rapidly and accurately describe the self-folding physics. An important aspect of self-folding is the management of self-collisions, where different portions of the folding structure contact and then block further folding. A metric is developed to predict collisions and is used together with the reduced-order model to design self-folding structures that lock themselves into stable desired configurations.

  7. Digital holographic measurements of shape and 3D sound-induced displacements of Tympanic Membrane.

    PubMed

    Khaleghi, Morteza; Lu, Weina; Dobrev, Ivo; Cheng, Jeffrey Tao; Furlong, Cosme; Rosowski, John J

    2013-10-01

    Acoustically-induced vibrations of the Tympanic Membrane (TM) play a primary role in the hearing process, in that these motions are the initial mechanical response of the ear to airborne sound. Characterization of the shape and 3D displacement patterns of the TM is a crucial step to a better understanding of the complicated mechanics of sound reception by the ear. In this paper, shape and sound-induced 3D displacements of the TM in cadaveric chinchillas are measured by a lensless Dual-Wavelength Digital Holography system (DWDHS). The DWDHS consists of Laser Delivery (LD), Optical Head (OH), and Computing Platform (CP) subsystems. Shape measurements are performed in double-exposure mode and with the use of two wavelengths of a tunable laser while nanometer-scale displacements are measured along a single sensitivity direction and with a constant wavelength. In order to extract the three principal components of displacement in full-field-of-view, and taking into consideration the anatomical dimensions of the TM, we combine principles of thin-shell theory together with both, displacement measurements along the single sensitivity vector and TM surface shape. To computationally test this approach, Finite Element Methods (FEM) are applied to the study of artificial geometries. PMID:24790255

  8. Interactive 3D medical data cutting using closed curve with arbitrary shape.

    PubMed

    Ning, Hai; Yang, Rongqian; Ma, Amin; Wu, Xiaoming

    2015-03-01

    Interactive 3D cutting is widely used as a flexible manual segmentation tool to extract medical data on regions of interest. A novel method for clipping 3D medical data is proposed to reveal the interior of volumetric data. The 3D cutting method retains or clips away selected voxels projected inside an arbitrary-shaped closed curve which is clipping geometry constructed by interactive tool to make cutting operation more flexible. Transformation between the world and screen coordinate frames is studied to project voxels of medical data onto the screen frame and avoid computing intersection of clipping geometry and volumetric data in 3D space. For facilitating the decision on whether the voxels should be retained, voxels through coordinate transformation are all projected onto a binary mask image on screen frame which the closed curve is also projected onto to conveniently obtain the voxels of intersection. The paper pays special attention to optimization algorithm of cutting process. The optimization algorithm that mixes octree with quad-tree decomposition is introduced to reduce computation complexity, save computation time, and match real time. The paper presents results obtained from raw and segmented medical volume datasets and the process time of cutting operation. PMID:25456145

  9. A Skeleton-Based 3D Shape Reconstruction of Free-Form Objects with Stereo Vision

    NASA Astrophysics Data System (ADS)

    Saini, Deepika; Kumar, Sanjeev

    2015-12-01

    In this paper, an efficient approach is proposed for recovering the 3D shape of a free-form object from its arbitrary pair of stereo images. In particular, the reconstruction problem is treated as the reconstruction of the skeleton and the external boundary of the object. The reconstructed skeleton is termed as the line-like representation or curve-skeleton of the 3D object. The proposed solution for object reconstruction is based on this evolved curve-skeleton. It is used as a seed for recovering shape of the 3D object, and the extracted boundary is used for terminating the growing process of the object. NURBS-skeleton is used to extract the skeleton of both views. Affine invariant property of the convex hulls is used to establish the correspondence between the skeletons and boundaries in the stereo images. In the growing process, a distance field is defined for each skeleton point as the smallest distance from that point to the boundary of the object. A sphere centered at a skeleton point of radius equal to the minimum distance to the boundary is tangential to the boundary. Filling in the spheres centered at each skeleton point reconstructs the object. Several results are presented in order to check the applicability and validity of the proposed algorithm.

  10. Avalanche for shape and feature-based virtual screening with 3D alignment.

    PubMed

    Diller, David J; Connell, Nancy D; Welsh, William J

    2015-11-01

    This report introduces a new ligand-based virtual screening tool called Avalanche that incorporates both shape- and feature-based comparison with three-dimensional (3D) alignment between the query molecule and test compounds residing in a chemical database. Avalanche proceeds in two steps. The first step is an extremely rapid shape/feature based comparison which is used to narrow the focus from potentially millions or billions of candidate molecules and conformations to a more manageable number that are then passed to the second step. The second step is a detailed yet still rapid 3D alignment of the remaining candidate conformations to the query conformation. Using the 3D alignment, these remaining candidate conformations are scored, re-ranked and presented to the user as the top hits for further visualization and evaluation. To provide further insight into the method, the results from two prospective virtual screens are presented which show the ability of Avalanche to identify hits from chemical databases that would likely be missed by common substructure-based or fingerprint-based search methods. The Avalanche method is extended to enable patent landscaping, i.e., structural refinements to improve the patentability of hits for deployment in drug discovery campaigns. PMID:26458937

  11. 3D Image Acquisition System Based on Shape from Focus Technique

    PubMed Central

    Billiot, Bastien; Cointault, Frédéric; Journaux, Ludovic; Simon, Jean-Claude; Gouton, Pierre

    2013-01-01

    This paper describes the design of a 3D image acquisition system dedicated to natural complex scenes composed of randomly distributed objects with spatial discontinuities. In agronomic sciences, the 3D acquisition of natural scene is difficult due to the complex nature of the scenes. Our system is based on the Shape from Focus technique initially used in the microscopic domain. We propose to adapt this technique to the macroscopic domain and we detail the system as well as the image processing used to perform such technique. The Shape from Focus technique is a monocular and passive 3D acquisition method that resolves the occlusion problem affecting the multi-cameras systems. Indeed, this problem occurs frequently in natural complex scenes like agronomic scenes. The depth information is obtained by acting on optical parameters and mainly the depth of field. A focus measure is applied on a 2D image stack previously acquired by the system. When this focus measure is performed, we can create the depth map of the scene. PMID:23591964

  12. Self-Assembly of Shaped Nanoparticles into Free-Standing 2D and 3D Superlattices.

    PubMed

    Li, Weikun; Wang, Ke; Zhang, Peng; He, Jie; Xu, Shaoyi; Liao, Yonggui; Zhu, Jintao; Xie, Xiaolin; Nie, Zhihong

    2016-01-27

    This article describes a novel supramolecular assembly-mediated strategy for the organization of Au nanoparticles (NPs) with different shapes (e.g., spheres, rods, and cubes) into large-area, free-standing 2D and 3D superlattices. This robust approach involves two major steps: (i) the organization of polymer-tethered NPs within the assemblies of supramolecular comblike block copolymers (CBCPs), and (ii) the disassembly of the assembled CBCP structures to produce free-standing NP superlattices. It is demonstrated that the crystal structures and lattice constants of the superlattices can be readily tailored by varying the molecular weight of tethered polymers, the volume fraction of NPs, and the matrix of CBCPs. This template-free approach may open a new avenue for the assembly of NPs into 2D and 3D structures with a wide range of potential applications. PMID:26649814

  13. Kinematic interpretation of the 3D shapes of metamorphic core complexes

    NASA Astrophysics Data System (ADS)

    Le Pourhiet, Laetitia; Huet, Benjamin; May, Dave A.; Labrousse, Loic; Jolivet, Laurent

    2012-09-01

    Metamorphic Core Complexes form dome shaped structures in which the ductile crust is exhumed beneath a detachment fault. The 3D dome geometry, inferred by mapping the schistosity in the exhumed crust, can be either elongated normal to the stretching direction or along it. In the first case, the domes are interpreted as having formed during extension. However, in the second case, they are interpreted either as strike-slip, transpressive or constrictive extensional structures, depending on the geodynamic context. Numerical models of metamorphic core complexes published to date are all two-dimensional and therefore, theoretically only apply to domes which are elongated normal to the stretching direction. Here, we explore by means of 3D thermomechanical modeling, the impact of 3D kinematic extensional boundary conditions on the shape of metamorphic core complexes. We examine the impact of a transtensional step over and of horsetail splay fault kinematics on the dynamics of exhumation, finite strain and P-T paths, and compare them to cylindrical 3D models. We show, for the first time, that domes formed in transtensional step over, or at the tip of propagating strike-slip faults, display a finite strain field which can be interpreted as characteristic of a transpressive domes, although no shortening was applied in the far-field. Applying our models to the Cyclades, we propose that the coeval formation of domes elongated normal and parallel to the stretching during the Miocene can be the result of horsetail splay fault kinematics, which could correspond to the formation of a tear in the Aegean slab.

  14. Magnetization reversal in 3D nano-structures of different shapes

    NASA Astrophysics Data System (ADS)

    Blachowicz, T.; Ehrmann, A.

    2016-04-01

    Magnetic nano-particles have been intensively studied during the last decade due to their potential utilization in various applications. An important topic is the dependence of magnetic properties on the exact samples shape. After demonstrating the influence of shape distortions in magnetic nano half-spheres on magnetization reversal processes and hysteresis shapes, a series of different 3D nano-objects from permalloy with shape modifications has been examined with respect to their magnetic properties. Modifications are performed by cutting parts of diverse samples between the extrema of a cuboid and a half-sphere. Simulations of these samples have been performed by Magpar, using external magnetic fields along two different axes, swept with two different speeds. Depending on the original particle shape and its modifications, several phenomena can be found: Cutting a hole in a cuboid can switch the hard axis from out-of-plane to the in-plane direction. In some nano-particles, strong oscillations occur which can be suppressed by appropriate shape modifications. In some of the nano-objects, the magnetization reversal mechanism is completely altered by a change in the field sweeping speed. The article gives an overview of the different possibilities to tailor magnetic properties of nano-systems.

  15. 3-D ice shape measurements using mid-infrared laser scanning.

    PubMed

    Gong, Xiaoliang; Bansmer, Stephan

    2015-02-23

    A general approach based on mid-infrared (MIR) laser scanning is proposed to measure the 3-D ice shape no matter whether the ice is composed of clear ice, rime ice, mixed ice, or even supercooled water droplets or films. This is possible because MIR radiation penetrates ice and water only within a depth of less than 10 micrometers. First, an MIR laser point scanning technique is implemented and verified on transparent glass and clear ice. Then, to improve efficiency, an MIR laser line scanning method is developed and validated on different models. At last, several sequential MIR laser line scans are applied to trace the 3-D shape evolution of the continuous ice accretion on an airfoil in an icing wind tunnel. The ice growth process can be well observed in the results. The MIR scan shows a good agreement with the traditional visible laser scan on a plastic replication of the final ice shape made by the mold and casting method. PMID:25836526

  16. Experimental and Numerical Investigation of Forging Process to Reproduce a 3D Aluminium Foam Complex Shape

    SciTech Connect

    Filice, Luigino; Gagliardi, Francesco; Umbrello, Domenico; Shivpuri, Rajiv

    2007-05-17

    Metallic foams represent one of the most exciting materials introduced in the manufacturing scenario in the last years. In the study here addressed, the experimental and numerical investigations on the forging process of a simple foam billet shaped into complex sculptured parts were carried out. In particular, the deformation behavior of metallic foams and the development of density gradients were investigated through a series of experimental forging tests in order to produce a selected portion of a hip prosthesis. The human bone replacement was chosen as case study due to its industrial demand and for its particular 3D complex shape. A finite element code (Deform 3D) was utilized for modeling the foam behavior during the forging process and an accurate material rheology description was used based on a porous material model which includes the measured local density. Once the effectiveness of the utilized Finite Element model was verified through the comparison with the experimental evidences, a numerical study of the influence of the foam density was investigated. The obtained numerical results shown as the initial billet density plays an important role on the prediction of the final shape, the optimization of the flash as well as the estimation of the punch load.

  17. A 3-D constitutive model for pressure-dependent phase transformation of porous shape memory alloys.

    PubMed

    Ashrafi, M J; Arghavani, J; Naghdabadi, R; Sohrabpour, S

    2015-02-01

    Porous shape memory alloys (SMAs) exhibit the interesting characteristics of porous metals together with shape memory effect and pseudo-elasticity of SMAs that make them appropriate for biomedical applications. In this paper, a 3-D phenomenological constitutive model for the pseudo-elastic behavior and shape memory effect of porous SMAs is developed within the framework of irreversible thermodynamics. Comparing to micromechanical and computational models, the proposed model is computationally cost effective and predicts the behavior of porous SMAs under proportional and non-proportional multiaxial loadings. Considering the pressure dependency of phase transformation in porous SMAs, proper internal variables, free energy and limit functions are introduced. With the aim of numerical implementation, time discretization and solution algorithm for the proposed model are also presented. Due to lack of enough experimental data on multiaxial loadings of porous SMAs, we employ a computational simulation method (CSM) together with available experimental data to validate the proposed constitutive model. The method is based on a 3-D finite element model of a representative volume element (RVE) with random pores pattern. Good agreement between the numerical predictions of the model and CSM results is observed for elastic and phase transformation behaviors in various thermomechanical loadings. PMID:25528691

  18. 3D nanopore shape control by current-stimulus dielectric breakdown

    NASA Astrophysics Data System (ADS)

    Ying, Cuifeng; Zhang, Yuechuan; Feng, Yanxiao; Zhou, Daming; Wang, Deqiang; Xiang, Yinxiao; Zhou, Wenyuan; Chen, Yongsheng; Du, Chunlei; Tian, Jianguo

    2016-08-01

    We propose a simple and cost-effect method, current-stimulus dielectric breakdown, to manipulate the 3D shapes of the nanochannels in 20-nm-thick SiNx membranes. Besides the precise control of nanopore size, the cone orientation can be determined by the pulse polarity. The cone angle of nanopores can be systematically tuned by simply changing the stimulus pulse waveform, allowing the gradual shape control from conical to obconical. After they are formed, the cone angle of these nanopores can be further tuned in a certain range by adjusting the widening pulse. Such size and 3D shape controllable abiotic nanopores can construct a constriction in the nanochannel and hence produce a sub-nm "sensing zone" to suit any desired bio-sensing or precise DNA sequencing. Using these conical nanopores, 20-nt ssDNA composed of homopolymers (poly(dA)20, poly(dC)20, and poly(dT)20) can be clearly differentiated by their ionic current signals.

  19. The ATLAS 3D project - XXIV. The intrinsic shape distribution of early-type galaxies

    NASA Astrophysics Data System (ADS)

    Weijmans, Anne-Marie; de Zeeuw, P. T.; Emsellem, Eric; Krajnović, Davor; Lablanche, Pierre-Yves; Alatalo, Katherine; Blitz, Leo; Bois, Maxime; Bournaud, Frédéric; Bureau, Martin; Cappellari, Michele; Crocker, Alison F.; Davies, Roger L.; Davis, Timothy A.; Duc, Pierre-Alain; Khochfar, Sadegh; Kuntschner, Harald; McDermid, Richard M.; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Scott, Nicholas; Serra, Paolo; Verdoes Kleijn, Gijs; Young, Lisa M.

    2014-11-01

    We use the ATLAS3D sample to perform a study of the intrinsic shapes of early-type galaxies, taking advantage of the available combined photometric and kinematic data. Based on our ellipticity measurements from the Sloan Digital Sky Survey Data Release 7, and additional imaging from the Isaac Newton Telescope, we first invert the shape distribution of fast and slow rotators under the assumption of axisymmetry. The so-obtained intrinsic shape distribution for the fast rotators can be described with a Gaussian with a mean flattening of q = 0.25 and standard deviation σq = 0.14, and an additional tail towards rounder shapes. The slow rotators are much rounder, and are well described with a Gaussian with mean q = 0.63 and σq = 0.09. We then checked that our results were consistent when applying a different and independent method to obtain intrinsic shape distributions, by fitting the observed ellipticity distributions directly using Gaussian parametrizations for the intrinsic axis ratios. Although both fast and slow rotators are identified as early-type galaxies in morphological studies, and in many previous shape studies are therefore grouped together, their shape distributions are significantly different, hinting at different formation scenarios. The intrinsic shape distribution of the fast rotators shows similarities with the spiral galaxy population. Including the observed kinematic misalignment in our intrinsic shape study shows that the fast rotators are predominantly axisymmetric, with only very little room for triaxiality. For the slow rotators though there are very strong indications that they are (mildly) triaxial.

  20. Illustrating Surface Shape in Volume Data via Principal Direction-Driven 3D Line Integral Convolution

    NASA Technical Reports Server (NTRS)

    Interrante, Victoria

    1997-01-01

    The three-dimensional shape and relative depth of a smoothly curving layered transparent surface may be communicated particularly effectively when the surface is artistically enhanced with sparsely distributed opaque detail. This paper describes how the set of principal directions and principal curvatures specified by local geometric operators can be understood to define a natural 'flow' over the surface of an object, and can be used to guide the placement of the lines of a stroke texture that seeks to represent 3D shape information in a perceptually intuitive way. The driving application for this work is the visualization of layered isovalue surfaces in volume data, where the particular identity of an individual surface is not generally known a priori and observers will typically wish to view a variety of different level surfaces from the same distribution, superimposed over underlying opaque structures. By advecting an evenly distributed set of tiny opaque particles, and the empty space between them, via 3D line integral convolution through the vector field defined by the principal directions and principal curvatures of the level surfaces passing through each gridpoint of a 3D volume, it is possible to generate a single scan-converted solid stroke texture that may intuitively represent the essential shape information of any level surface in the volume. To generate longer strokes over more highly curved areas, where the directional information is both most stable and most relevant, and to simultaneously downplay the visual impact of directional information in the flatter regions, one may dynamically redefine the length of the filter kernel according to the magnitude of the maximum principal curvature of the level surface at the point around which it is applied.

  1. Real-time lidar-based place recognition using distinctive shape descriptors

    NASA Astrophysics Data System (ADS)

    Collier, Jack; Se, Stephen; Kotamraju, Vinay; Jasiobedzki, Piotr

    2012-06-01

    A key component in the emerging localization and mapping paradigm is an appearance-based place recognition algorithm that detects when a place has been revisited. This algorithm can run in the background at a low frame rate and be used to signal a global geometric mapping algorithm when a loop is detected. An optimization technique can then be used to correct the map by 'closing the loop'. This allows an autonomous unmanned ground vehicle to improve localization and map accuracy and successfully navigate large environments. Image-based place recognition techniques lack robustness to sensor orientation and varying lighting conditions. Additionally, the quality of range estimates from monocular or stereo imagery can decrease the loop closure accuracy. Here, we present a lidar-based place recognition system that is robust to these challenges. This probabilistic framework learns a generative model of place appearance and determines whether a new observation comes from a new or previously seen place. Highly descriptive features called the Variable Dimensional Local Shape Descriptors are extracted from lidar range data to encode environment features. The range data processing has been implemented on a graphics processing unit to optimize performance. The system runs in real-time on a military research vehicle equipped with a highly accurate, 360 degree field of view lidar and can detect loops regardless of the sensor orientation. Promising experimental results are presented for both rural and urban scenes in large outdoor environments.

  2. Morphology descriptors of irregularly shaped particles from two-dimensional images

    SciTech Connect

    Daves, G.G.; Buckius, R.O.; Peters, J.E.; Schroeder, A.R. )

    1993-08-01

    Two techniques to predict surface area and volume from a two-dimensional image are examined by using images of objects of known surface area and volume. The orthographic intersection method intersects the two-dimensional images from all possible orthogonal axes. The resulting three-dimensional objects are averaged to obtain the final particle shape descriptors. The discrete revolution method first determines the major centroidal axis of the image and then rotates the silhouette about this axis. Because the silhouette is not symmetrical with respect to the major axis, the silhouette is divided into thin strips of area perpendicular to the major axis. Each of these strips is then rotated about its own centroidal axis (parallel to the major axis). Comparisons of the results of each method for specified particles provide estimates of the accuracy of each approach. The orthographic intersection and discrete revolution methods provide superior estimates of the surface area, volume, and surface area/volume ratio as compared with approaches using single length scale equivalent spheres. The method that provided the most accurate results was the discrete revolution technique. 12 refs., 4 figs., 3 tabs.

  3. Automatic 3D kidney segmentation based on shape constrained GC-OAAM

    NASA Astrophysics Data System (ADS)

    Chen, Xinjian; Summers, Ronald M.; Yao, Jianhua

    2011-03-01

    The kidney can be classified into three main tissue types: renal cortex, renal medulla and renal pelvis (or collecting system). Dysfunction of different renal tissue types may cause different kidney diseases. Therefore, accurate and efficient segmentation of kidney into different tissue types plays a very important role in clinical research. In this paper, we propose an automatic 3D kidney segmentation method which segments the kidney into the three different tissue types: renal cortex, medulla and pelvis. The proposed method synergistically combines active appearance model (AAM), live wire (LW) and graph cut (GC) methods, GC-OAAM for short. Our method consists of two main steps. First, a pseudo 3D segmentation method is employed for kidney initialization in which the segmentation is performed slice-by-slice via a multi-object oriented active appearance model (OAAM) method. An improved iterative model refinement algorithm is proposed for the AAM optimization, which synergistically combines the AAM and LW method. Multi-object strategy is applied to help the object initialization. The 3D model constraints are applied to the initialization result. Second, the object shape information generated from the initialization step is integrated into the GC cost computation. A multi-label GC method is used to segment the kidney into cortex, medulla and pelvis. The proposed method was tested on 19 clinical arterial phase CT data sets. The preliminary results showed the feasibility and efficiency of the proposed method.

  4. Novel high speed method using gray level vector modulation for 3D shape measurement

    NASA Astrophysics Data System (ADS)

    Lin, Gui-Wen; Li, Dong; Tian, Jin-Dong

    2014-11-01

    Binocular Vision Technique is widely used in three-dimensional (3-D) measurement. Matching of pictures captured from two cameras is the most critical and difficult step in 3-D shape reconstruction. The method combines codedstructured light and spatial phase is usually adopted. However, being time consuming in matching, this method could not meet the requirements of real-time 3-D vision. In order to satisfy the high speed characteristic of real-time measurement, a novel method using gray level vector modulation is introduced. Combining binary code with gray coding principle, new coding patterns using gray level vector method is designed and projected onto the object surface. Each pixel corresponds to the designed sequence of gray values as a feature vector. The unique gray level vector is then dimensionally reduced to a resulting value which could be used as characteristic information for binocular matching. Experimental results further demonstrated the correctness and feasibility of the proposed method with fewer component patterns and less computational time.

  5. The 3D EdgeRunner Pipeline: a novel shape-based analysis for neoplasms characterization

    NASA Astrophysics Data System (ADS)

    Yepes-C, Fernando; Johnson, Rebecca; Lao, Yi; Hwang, Darryl; Coloigner, Julie; Yap, Felix; Bushan, Desai; Cheng, Phillip; Gill, Inderbir; Duddalwar, Vinay; Lepore, Natasha

    2016-03-01

    The characterization of tumors after being imaged is currently a qualitative process performed by skilled professionals. If we can aid their diagnosis by identifying quantifiable features associated with tumor classification, we may avoid invasive procedures such as biopsies and enhance efficiency. The aim of this paper is to describe the 3D EdgeRunner Pipeline which characterizes the shape of a tumor. Shape analysis is relevant as malignant tumors tend to be more lobular and benign ones tare generally more symmetrical. The method described considers the distance from each point on the edge of the tumor to the centre of a synthetically created field of view. The method then determines coordinates where the measured distances are rapidly changing (peaks) using a second derivative found by five point differentiation. The list of coordinates considered to be peaks can then be used as statistical data to compare tumors quantitatively. We have found this process effectively captures the peaks on a selection of kidney tumors.

  6. Using 3-D shape models to guide segmentation of MR brain images.

    PubMed Central

    Hinshaw, K. P.; Brinkley, J. F.

    1997-01-01

    Accurate segmentation of medical images poses one of the major challenges in computer vision. Approaches that rely solely on intensity information frequently fail because similar intensity values appear in multiple structures. This paper presents a method for using shape knowledge to guide the segmentation process, applying it to the task of finding the surface of the brain. A 3-D model that includes local shape constraints is fitted to an MR volume dataset. The resulting low-resolution surface is used to mask out regions far from the cortical surface, enabling an isosurface extraction algorithm to isolate a more detailed surface boundary. The surfaces generated by this technique are comparable to those achieved by other methods, without requiring user adjustment of a large number of ad hoc parameters. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:9357670

  7. Gray coded trapezoidal fringes for 3-D surface-shape measurement

    NASA Astrophysics Data System (ADS)

    Pérez, Oscar G.; Flores, Jorge L.; García-Torales, G.; Muñoz-G, J. A.; Soto, Horacio; Balderas, Sandra E.

    2014-09-01

    We propose a two-step trapezoidal-pattern phase-shifting method for 3-D surface-shape measurements. Shape measurements by trapezoidal phase-shifting methods require high-quality trapezoidal patterns. Furthermore, most of the video projectors are nonlinear, making it difficult to generate high quality phase without nonlinearity calibration and correction. To overcome the limitations, we propose a method for synthesizing trapezoidal intensity fringes as a way to solve the problems caused by projector/camera gamma nonlinearity. The fringe generation technique consists of projecting and acquiring a temporal sequence of strictly binary color patterns (Gray code), whose (adequately weighted) average leads to trapezoidal fringe patterns with the required number of bits, which allows a reliable three-dimensional profile reconstruction using phase-shifting methods. Validation experiments are presented.

  8. Robust Detection of Round Shaped Pits Lying on 3D Meshes: Application to Impact Crater Recognition

    NASA Astrophysics Data System (ADS)

    Schmidt, Martin-Pierre; Muscato, Jennifer; Viseur, Sophie; Jorda, Laurent; Bouley, Sylvain; Mari, Jean-Luc

    2015-04-01

    Most celestial bodies display impacts of collisions with asteroids and meteoroids. These traces are called craters. The possibility of observing and identifying these craters and their characteristics (radius, depth and morphology) is the only method available to measure the age of different units at the surface of the body, which in turn allows to constrain its conditions of formation. Interplanetary space probes always carry at least one imaging instrument on board. The visible images of the target are used to reconstruct high-resolution 3D models of its surface as a cloud of points in the case of multi-image dense stereo, or as a triangular mesh in the case of stereo and shape-from-shading. The goal of this work is to develop a methodology to automatically detect the craters lying on these 3D models. The robust extraction of feature areas on surface objects embedded in 3D, like circular pits, is a challenging problem. Classical approaches generally rely on image processing and template matching on a 2D flat projection of the 3D object (i.e.: a high-resolution photograph). In this work, we propose a full-3D method that mainly relies on curvature analysis. Mean and Gaussian curvatures are estimated on the surface. They are used to label vertices that belong to concave parts corresponding to specific pits on the surface. The surface is thus transformed into binary map distinguishing potential crater features to other types of features. Centers are located in the targeted surface regions, corresponding to potential crater features. Concentric rings are then built around the found centers. They consist in circular closed lines exclusively composed of edges of the initial mesh. The first built ring represents the nearest vertex neighborhood of the found center. The ring is then optimally expanded using a circularity constrain and the curvature values of the ring vertices. This method has been tested on a 3D model of the asteroid Lutetia observed by the ROSETTA (ESA

  9. Segmentation of the common carotid artery with active shape models from 3D ultrasound images

    NASA Astrophysics Data System (ADS)

    Yang, Xin; Jin, Jiaoying; He, Wanji; Yuchi, Ming; Ding, Mingyue

    2012-03-01

    Carotid atherosclerosis is a major cause of stroke, a leading cause of death and disability. In this paper, we develop and evaluate a new segmentation method for outlining both lumen and adventitia (inner and outer walls) of common carotid artery (CCA) from three-dimensional ultrasound (3D US) images for carotid atherosclerosis diagnosis and evaluation. The data set consists of sixty-eight, 17× 2× 2, 3D US volume data acquired from the left and right carotid arteries of seventeen patients (eight treated with 80mg atorvastain and nine with placebo), who had carotid stenosis of 60% or more, at baseline and after three months of treatment. We investigate the use of Active Shape Models (ASMs) to segment CCA inner and outer walls after statin therapy. The proposed method was evaluated with respect to expert manually outlined boundaries as a surrogate for ground truth. For the lumen and adventitia segmentations, respectively, the algorithm yielded Dice Similarity Coefficient (DSC) of 93.6%+/- 2.6%, 91.8%+/- 3.5%, mean absolute distances (MAD) of 0.28+/- 0.17mm and 0.34 +/- 0.19mm, maximum absolute distances (MAXD) of 0.87 +/- 0.37mm and 0.74 +/- 0.49mm. The proposed algorithm took 4.4 +/- 0.6min to segment a single 3D US images, compared to 11.7+/-1.2min for manual segmentation. Therefore, the method would promote the translation of carotid 3D US to clinical care for the fast, safety and economical monitoring of the atherosclerotic disease progression and regression during therapy.

  10. 3D pulmonary airway color image reconstruction via shape from shading and virtual bronchoscopy imaging techniques

    NASA Astrophysics Data System (ADS)

    Suter, Melissa; Reinhardt, Joseph M.; Hoffman, Eric A.; McLennan, Geoffrey

    2005-04-01

    The dependence on macro-optical imaging of the human body in the assessment of possible disease is rapidly increasing concurrent with, and as a direct result of, advancements made in medical imaging technologies. Assessing the pulmonary airways through bronchoscopy is performed extensively in clinical practice however remains highly subjective due to limited visualization techniques and the lack of quantitative analyses. The representation of 3D structures in 2D visualization modes, although providing an insight to the structural content of the scene, may in fact skew the perception of the structural form. We have developed two methods for visualizing the optically derived airway mucosal features whilst preserving the structural scene integrity. Shape from shading (SFS) techniques can be used to extract 3D structural information from 2D optical images. The SFS technique presented addresses many limitations previously encountered in conventional techniques resulting in high-resolution 3D color images. The second method presented to combine both color and structural information relies on combined CT and bronchoscopy imaging modalities. External imaging techniques such as CT provide a means of determining the gross structural anatomy of the pulmonary airways, however lack the important optically derived mucosal color. Virtual bronchoscopy is used to provide a direct link between the CT derived structural anatomy and the macro-optically derived mucosal color. Through utilization of a virtual and true bronchoscopy matching technique we are able to directly extract combined structurally sound 3D color segments of the pulmonary airways. Various pulmonary airway diseases are assessed and the resulting combined color and texture results are presented demonstrating the effectiveness of the presented techniques.

  11. Measuring the 3D shape of high temperature objects using blue sinusoidal structured light

    NASA Astrophysics Data System (ADS)

    Zhao, Xianling; Liu, Jiansheng; Zhang, Huayu; Wu, Yingchun

    2015-12-01

    The visible light radiated by some high temperature objects (less than 1200 °C) almost lies in the red and infrared waves. It will interfere with structured light projected on a forging surface if phase measurement profilometry (PMP) is used to measure the shapes of objects. In order to obtain a clear deformed pattern image, a 3D measurement method based on blue sinusoidal structured light is proposed in this present work. Moreover, a method for filtering deformed pattern images is presented for correction of the unwrapping phase. Blue sinusoidal phase-shifting fringe pattern images are projected on the surface by a digital light processing (DLP) projector, and then the deformed patterns are captured by a 3-CCD camera. The deformed pattern images are separated into R, G and B color components by the software. The B color images filtered by a low-pass filter are used to calculate the fringe order. Consequently, the 3D shape of a high temperature object is obtained by the unwrapping phase and the calibration parameter matrixes of the DLP projector and 3-CCD camera. The experimental results show that the unwrapping phase is completely corrected with the filtering method by removing the high frequency noise from the first harmonic of the B color images. The measurement system can complete the measurement in a few seconds with a relative error of less than 1 : 1000.

  12. 2D and 3D shape based segmentation using deformable models.

    PubMed

    El-Baz, Ayman; Yuksel, Seniha E; Shi, Hongjian; Farag, Aly A; El-Ghar, Mohamed A; Eldiasty, Tarek; Ghoneim, Mohamed A

    2005-01-01

    A novel shape based segmentation approach is proposed by modifying the external energy component of a deformable model. The proposed external energy component depends not only on the gray level of the images but also on the shape information which is obtained from the signed distance maps of objects in a given data set. The gray level distribution and the signed distance map of the points inside and outside the object of interest are accurately estimated by modelling the empirical density function with a linear combination of discrete Gaussians (LCDG) with positive and negative components. Experimental results on the segmentation of the kidneys from low-contrast DCE-MRI and on the segmentation of the ventricles from brain MRI's show how the approach is accurate in segmenting 2-D and 3-D data sets. The 2D results for the kidney segmentation have been validated by a radiologist and the 3D results of the ventricle segmentation have been validated with a geometrical phantom. PMID:16686036

  13. A cone-shaped 3D carbon nanotube probe for neural recording.

    PubMed

    Su, Huan-Chieh; Lin, Chia-Min; Yen, Shiang-Jie; Chen, Yung-Chan; Chen, Chang-Hsiao; Yeh, Shih-Rung; Fang, Weileun; Chen, Hsin; Yao, Da-Jeng; Chang, Yen-Chung; Yew, Tri-Rung

    2010-09-15

    A novel cone-shaped 3D carbon nanotube (CNT) probe is proposed as an electrode for applications in neural recording. The electrode consists of CNTs synthesized on the cone-shaped Si (cs-Si) tip by catalytic thermal chemical vapor deposition (CVD). This probe exhibits a larger CNT surface area with the same footprint area and higher spatial resolution of neural recording compared to planar-type CNT electrodes. An approach to improve CNT characteristics by O(2) plasma treatment to modify the CNT surface will be also presented. Electrochemical characterization of O(2) plasma-treated 3D CNT (OT-CNT) probes revealed low impedance per unit area (∼64.5 Ω mm(-2)) at 1 kHz and high specific capacitance per unit area (∼2.5 mF cm(-2)). Furthermore, the OT-CNT probes were employed to record the neural signals of a crayfish nerve cord. Our findings suggest that OT-CNT probes have potential advantages as high spatial resolution and superb electrochemical properties which are suitable for neural recording applications. PMID:20685101

  14. A 3D endoscopy reconstruction as a saliency map for analysis of polyp shapes

    NASA Astrophysics Data System (ADS)

    Ruano, Josue; Martínez, Fabio; Gómez, Martín.; Romero, Eduardo

    2015-01-01

    A first diagnosis of colorectal cancer is performed by examination of polyp shape and appearance during an endoscopy routine procedure. However, the video-endoscopy is highly noisy because exacerbated physiological conditions like increased motility or secretion may limit the visual analysis of lesions. In this work a 3D reconstruction of the digestive tract is proposed, facilitating the polyp shape evaluation by highlighting its surface geometry and allowing an analysis from different perspectives. The method starts by a spatio-temporal map, constructed to group the different regions of the tract by their similar dynamic patterns during the sequence. Then, such map was convolved with a second derivative of a Gaussian kernel that emulates the camera distortion and allows to highlight the polyp surface. The position initialization in each frame of the kernel was computed from expert manual delineation and propagated along the sequence based on. Results show reliable reconstructions, with a salient 3D polyp structure that can then be better observed.

  15. Shape Analysis of 3D Head Scan Data for U.S. Respirator Users

    NASA Astrophysics Data System (ADS)

    Zhuang, Ziqing; Slice, DennisE; Benson, Stacey; Lynch, Stephanie; Viscusi, DennisJ

    2010-12-01

    In 2003, the National Institute for Occupational Safety and Health (NIOSH) conducted a head-and-face anthropometric survey of diverse, civilian respirator users. Of the 3,997 subjects measured using traditional anthropometric techniques, surface scans and 26 three-dimensional (3D) landmark locations were collected for 947 subjects. The objective of this study was to report the size and shape variation of the survey participants using the 3D data. Generalized Procrustes Analysis (GPA) was conducted to standardize configurations of landmarks associated with individuals into a common coordinate system. The superimposed coordinates for each individual were used as commensurate variables that describe individual shape and were analyzed using Principal Component Analysis (PCA) to identify population variation. The first four principal components (PC) account for 49% of the total sample variation. The first PC indicates that overall size is an important component of facial variability. The second PC accounts for long and narrow or short and wide faces. Longer narrow orbits versus shorter wider orbits can be described by PC3, and PC4 represents variation in the degree of ortho/prognathism. Geometric Morphometrics provides a detailed and interpretable assessment of morphological variation that may be useful in assessing respirators and devising new test and certification standards.

  16. 3D shape measurement of the aspheric mirror by advanced phase measuring deflectometry.

    PubMed

    Tang, Yan; Su, Xianyu; Liu, Yuankun; Jing, Hailong

    2008-09-15

    An advanced Phase Measuring Deflectometry(PMD) is proposed to measure the three dimensional (3D) shape of the aspheric mirror. In the measurement process, a liquid crystal display(LCD)screen displaying sinusoidal fringe patterns and a camera observing the fringe patterns reflected via the tested mirror, are moved along the tested mirror optical axis, respectively. At each movement position, the camera records the fringe patterns of the screen located at two different positions. Using these fringe patterns, every camera pixels can find a corresponding point on the tested mirror and gets its coordinate and slope. By integrating, the 3D shape of the tested mirror can be reconstructed. Compared with the traditional PMD, this method doesn???t need complex calibration and can measure the absolute height of the aspheric mirror which has large range of surface geometries unambiguously. Furthermore, this method also has strong anti-noise ability. Computer simulations and preliminary experiment validate the feasibility of this method. PMID:18795046

  17. New 3-D coordination polymers based on semi-rigid V-shape tetracarboxylates

    SciTech Connect

    Huang, Jing-Jing; Xu, Wei; Wang, Yan-Ning; Yu, Jie-Hui; Zhang, Ping; Xu, Ji-Qing

    2015-03-15

    Under the hydrothermal conditions, the reactions of transition-metal salts, tetracarboxylic acids and N,N′-donor ligands yielded three new coordination polymers as [Cu{sub 4}(fph){sub 2}(bpe){sub 3}(H{sub 2}O){sub 2}]·2H{sub 2}O (fph=4,4′-(hexafluoroisopropylidene)diphthalate, bpe=1,2-bis(pyridyl)ethylene) 1, [Co{sub 2}(fph)(bpa){sub 2}(H{sub 2}O){sub 2}]·3H{sub 2}O (bpa=1,2-bis(pyridyl)ethylane) 2, and [Ni(H{sub 2}O)(H{sub 2}oph)(bpa)] (oph=4,4′-oxydiphthalate) 3. X-ray single-crystal diffraction analysis revealed that the title three compounds all possess the three-dimensional (3-D) network structures. For compound 1, the fph molecules first link the Cu{sup 2+} ions into a two-dimensional (2-D) wave-like layer with a (4,4) topology. The bpe molecules act as the second linkers, extending the 2-D layers into a 3-D network. For compound 2, the fph molecules still serve as the first connectors, linking the Co{sup 2+} ions into a one-dimensional (1-D) tube-like chain. Then the bpa molecules propagate the chains into a 3-D (4,4,4)-connected network. In the formation of the 3-D network of compound 3, the oph molecule does not play a role. The bpa molecules as well as the water molecules act as a mixed bridge. Only a kind of 4-connected metal node is observed in compound 3. The magnetic properties of compounds 1–3 were investigated and all exhibit the predominant antiferromegnetic magnetic behaviors. - Graphical abstract: Structures of three semi-rigid V-shape tetracarboxylate-based coordination polymers were reported, and their magnetic properties were investigated. - Highlights: • Structures of three tetracarboxylate-based coordination polymers were reported. • Role of organic bases in metal–tetracarboxylate compounds was discussed. • Characters of V-shape and semi-rigidity for tetracarboxylate play a key role in crystal growth. • Their magnetic properties were investigated.

  18. Camera-based speckle noise reduction for 3-D absolute shape measurements.

    PubMed

    Zhang, Hao; Kuschmierz, Robert; Czarske, Jürgen; Fischer, Andreas

    2016-05-30

    Simultaneous position and velocity measurements enable absolute 3-D shape measurements of fast rotating objects for instance for monitoring the cutting process in a lathe. Laser Doppler distance sensors enable simultaneous position and velocity measurements with a single sensor head by evaluating the scattered light signals. The superposition of several speckles with equal Doppler frequency but random phase on the photo detector results in an increased velocity and shape uncertainty, however. In this paper, we present a novel image evaluation method that overcomes the uncertainty limitations due to the speckle effect. For this purpose, the scattered light is detected with a camera instead of single photo detectors. Thus, the Doppler frequency from each speckle can be evaluated separately and the velocity uncertainty decreases with the square root of the number of camera lines. A reduction of the velocity uncertainty by the order of one magnitude is verified by the numerical simulations and experimental results, respectively. As a result, the measurement uncertainty of the absolute shape is not limited by the speckle effect anymore. PMID:27410133

  19. Experimental and Numerical Investigation of Forging Process to Reproduce a 3D Aluminium Foam Complex Shape

    NASA Astrophysics Data System (ADS)

    Filice, Luigino; Gagliardi, Francesco; Shivpuri, Rajiv; Umbrello, Domenico

    2007-05-01

    Metallic foams represent one of the most exciting materials introduced in the manufacturing scenario in the last years. In the study here addressed, the experimental and numerical investigations on the forging process of a simple foam billet shaped into complex sculptured parts were carried out. In particular, the deformation behavior of metallic foams and the development of density gradients were investigated through a series of experimental forging tests in order to produce a selected portion of a hip prosthesis. The human bone replacement was chosen as case study due to its industrial demand and for its particular 3D complex shape. A finite element code (Deform 3D®) was utilized for modeling the foam behavior during the forging process and an accurate material rheology description was used based on a porous material model which includes the measured local density. Once the effectiveness of the utilized Finite Element model was verified through the comparison with the experimental evidences, a numerical study of the influence of the foam density was investigated. The obtained numerical results shown as the initial billet density plays an important role on the prediction of the final shape, the optimization of the flash as well as the estimation of the punch load.

  20. Tuning Cell Differentiation into a 3D Scaffold Presenting a Pore Shape Gradient for Osteochondral Regeneration.

    PubMed

    Di Luca, Andrea; Lorenzo-Moldero, Ivan; Mota, Carlos; Lepedda, Antonio; Auhl, Dietmar; Van Blitterswijk, Clemens; Moroni, Lorenzo

    2016-07-01

    Osteochondral regeneration remains nowadays a major problem since the outcome of current techniques is not satisfactory in terms of functional tissue formation and development. A possible solution is the combination of human mesenchymal stem cells (hMSCs) with additive manufacturing technologies to fabricate scaffolds with instructive properties. In this study, the differentiation of hMSCs within a scaffold presenting a gradient in pore shape is presented. The variation in pore shape is determined by varying the angle formed by the fibers of two consequent layers. The fiber deposition patterns are 0-90, which generate squared pores, 0-45, 0-30, and 0-15, that generate rhomboidal pores with an increasing major axis as the deposition angle decreases. Within the gradient construct, squared pores support a better chondrogenic differentiation whereas cells residing in the rhomboidal pores display a better osteogenic differentiation. When cultured under osteochondral conditions the trend in both osteogenic and chondrogenic markers is maintained. Engineering the pore shape, thus creating axial gradients in structural properties, seems to be an instructive strategy to fabricate functional 3D scaffolds that are able to influence hMSCs differentiation for osteochondral tissue regeneration. PMID:27109461

  1. Direct electrospinning of 3D auricle-shaped scaffolds for tissue engineering applications.

    PubMed

    Walser, Jochen; Stok, Kathryn S; Caversaccio, Marco D; Ferguson, Stephen J

    2016-01-01

    Thirty-two poly(ε)caprolactone (PCL) scaffolds have been produced by electrospinning directly into an auricle-shaped mould and seeded with articular chondrocytes harvested from bovine ankle joints. After seeding, the auricle shaped constructs were cultured in vitro and analysed at days 1, 7, 14 and 21 for regional differences in total DNA, glycosaminoglycan (GAG) and collagen (COL) content as well as the expression of aggrecan (AGG), collagen type I and type II (COL1/2) and matrix metalloproteinase 3 and 13 (MMP3/13). Stress-relaxation indentation testing was performed to investigate regional mechanical properties of the electrospun constructs. Electrospinning into a conductive mould yielded stable 3D constructs both initially and for the whole in vitro culture period, with an equilibrium modulus in the MPa range. Rapid cell proliferation and COL accumulation was observed until week 3. Quantitative real time PCR analysis showed an initial increase in AGG, no change in COL2, a persistent increase in COL1, and only a slight decrease initially for MMP3. Electrospinning of fibrous scaffolds directly into an auricle-shape represents a promising option for auricular tissue engineering, as it can reduce the steps needed to achieve an implantable structure. PMID:27171651

  2. GEM printer: 3D gel printer for free shaping of functional gel engineering materials

    NASA Astrophysics Data System (ADS)

    Furukawa, Hidemitsu; Muroi, Hisato; Yamamoto, Kouki; Serizawa, Ryo; Gong, Jin

    2013-04-01

    In the past decade, several high-strength gels have been developed. These gels are expected to use as a kind of new engineering materials in the fields of industry and medical as substitutes to polyester fibers, which are materials of artificial blood vessels. The gels have both low surface friction and well permeability due to a large amount of water absorbed in the gels, which are superiority of the gels compering to the polyester fibers. It is, however, difficult for gels to be forked structure or cavity structure by using cutting or mold. Consequently, it is necessary to develop the additive manufacturing device to synthesize and mode freely gels at the same time. Here we try to develop an optical 3D gel printer that enables gels to be shaped precisely and freely. For the free forming of high-strength gels, the 1st gels are ground to particles and mixed with 2nd pregel solution, and the mixed solution is gelled by the irradiation of UV laser beam through an optical fiber. The use of the optical fiber makes one-point UV irradiation possible. Since the optical fiber is controlled by 3D-CAD, the precise and free molding in XYZ directions is easily realized. We successfully synthesized tough gels using the gel printer.

  3. Wrapping-free phase retrieval with applications to interferometry, 3D-shape profiling, and deflectometry.

    PubMed

    Perciante, César D; Strojnik, Marija; Paez, Gonzalo; Di Martino, J Matias; Ayubi, Gastón A; Flores, Jorge L; Ferrari, José A

    2015-04-01

    Phase unwrapping is probably the most challenging step in the phase retrieval process in phase-shifting and spatial-carrier interferometry. Likewise, phase unwrapping is required in 3D-shape profiling and deflectometry. In this paper, we present a novel phase retrieval method that completely sidesteps the phase unwrapping process, significantly eliminating the guessing in phase reconstruction and thus decreasing the time data processing. The proposed wrapping-free method is based on the direct integration of the spatial derivatives of the interference patterns under the single assumption that the phase is continuous. This assumption is valid in most physical applications. Validation experiments are presented confirming the robustness of the proposed method. PMID:25967217

  4. 3D shape measurement with binary phase-shifted technique and digital filters

    NASA Astrophysics Data System (ADS)

    Silva, Adriana; Legarda-Saenz, Ricardo; García-Torales, G.; Balderas-Mata, Sandra; Flores, Jorge L.

    2014-09-01

    Shape measurements by sinusoidal phase-shifting methods require high-quality sinusoidal fringes. Furthermore, most of the video projectors are nonlinear, making it difficult to generate high quality phase without nonlinearity calibration and correction. To overcome the limitations of the conventional digital fringe projection techniques, we proposed a method that involves the projection of digital binary patterns generated by the pulse-width modulation (PWM). We will demonstrate that applying digital filtering, in particular, low pass filters, one can obtain a high-quality sinusoidal pattern. Which in combination with phase-shifting methods, allows a reliable 3-D profiling surface reconstruction at large timerates. Validation experiments using a commercial video projector are presented.

  5. 3D prostate boundary segmentation from ultrasound images using 2D active shape models.

    PubMed

    Hodge, Adam C; Ladak, Hanif M

    2006-01-01

    Boundary outlining, or segmentation, of the prostate is an important task in diagnosis and treatment planning for prostate cancer. This paper describes an algorithm for semi-automatic, three-dimensional (3D) segmentation of the prostate boundary from ultrasound images based on two-dimensional (2D) active shape models (ASM) and rotation-based slicing. Evaluation of the algorithm used distance- and volume-based error metrics to compare algorithm generated boundary outlines to gold standard (manually generated) boundary outlines. The mean absolute distance between the algorithm and gold standard boundaries was 1.09+/-0.49 mm, the average percent absolute volume difference was 3.28+/-3.16%, and a 5x speed increase as compared manual planimetry was achieved. PMID:17946106

  6. Photoactive Self-Shaping Hydrogels as Noncontact 3D Macro/Microscopic Photoprinting Platforms.

    PubMed

    Liao, Yue; An, Ning; Wang, Ning; Zhang, Yinyu; Song, Junfei; Zhou, Jinxiong; Liu, Wenguang

    2015-12-01

    A photocleavable terpolymer hydrogel cross-linked with o-nitrobenzyl derivative cross-linker is shown to be capable of self-shaping without losing its physical integrity and robustness due to spontaneous asymmetric swelling of network caused by UV-light-induced gradient cleavage of chemical cross-linkages. The continuum model and finite element method are used to elucidate the curling mechanism underlying. Remarkably, based on the self-changing principle, the photosensitive hydrogels can be developed as photoprinting soft and wet platforms onto which specific 3D characters and images are faithfully duplicated in macro/microscale without contact by UV light irradiation under the cover of customized photomasks. Importantly, a quick response (QR) code is accurately printed on the photoactive hydrogel for the first time. Scanning QR code with a smartphone can quickly connect to a web page. This photoactive hydrogel is promising to be a new printing or recording material. PMID:26439808

  7. Solving tolerancing and 3D beam shaping problems by multifunctional wave optical design

    NASA Astrophysics Data System (ADS)

    Buehling, Sven; Wyrowski, Frank

    2000-10-01

    A strategy for designing optical systems that are optimized for multiple optical functions on the basis of wave optics is presented. Each optical function is composed of an input field, a set of fixed system parameters, and a merit function. A design algorithm is proposed which is applicable for optical systems consisting of an transmission operator followed by an arbitrary linear operator. The goal is to find the transmission operator which is optimal for all optical functions simultaneously. In later design steps, the found transmission operator can be transformed to real optical elements, for instance by using the thin element approximation. It is shown that the algorithm is efficiently applicable by investigating two sample applications for multifunctional wave optical design: the design of tolerant systems and 3D beam shaping.

  8. The Eta Carinae Homunculus in Full 3D with X-Shooter and Shape

    NASA Technical Reports Server (NTRS)

    Steffen, Wolfgang; Teodoro, Mairan; Madura, Thomas I.; Groh, Jose H.; Gull, Theodore R.; Mehner, Andrea; Corcoran, Michael F.; Damineli, Augusto; Hamaguchi, Kenji

    2014-01-01

    Massive stars like Eta Carinae are extremely rare in comparison to stars such as the Sun, and currently we know of only a handful of stars with masses of more than 100 solar mass in the Milky Way. Such massive stars were much more frequent in the early history of the Universe and had a huge impact on its evolution. Even among this elite club, Eta Car is outstanding, in particular because of its giant eruption around 1840 that produced the beautiful bipolar nebula now known as the Homunculus. In this study, we used detailed spatio-kinematic information obtained from X-shooter spectra to reconstruct the 3D structure of the Homunculus. The small-scale features suggest that the central massive binary played a significant role in shaping the Homunculus.

  9. The Eta Carinae Homunculus in Full 3D with X-shooter and Shape

    NASA Astrophysics Data System (ADS)

    Steffen, W.; Teodoro, M.; Madura, T. I.; Groh, J. H.; Gull, T. R.; Mehner, A.; Corcoran, M. F.; Damineli, A.; Hamaguchi, K.

    2014-12-01

    Massive stars like Eta Carinae are extremely rare in comparison to stars such as the Sun, and currently we know of only a handful of stars with masses of more than 100 Msun in the Milky Way. Such massive stars were much more frequent in the early history of the Universe and had a huge impact on its evolution. Even among this elite club, η Car is outstanding, in particular because of its giant eruption around 1840 that produced the beautiful bipolar nebula now known as the Homunculus. In this study, we used detailed spatio-kinematic information obtained from X-shooter spectra to reconstruct the 3D structure of the Homunculus. The small-scale features suggest that the central massive binary played a significant role in shaping the Homunculus.

  10. Shaping of light beams by 3D direct laser writing on facets of nonlinear crystals.

    PubMed

    Lightman, Shlomi; Gvishi, Raz; Hurvitz, Gilad; Arie, Ady

    2015-10-01

    We demonstrate experimentally spatial-mode conversions of light beams generated in a quadratic nonlinear process by micron-scale structures placed on the facets of nonlinear crystals. These structures were printed on the crystal facets using a three-dimensional (3D) direct laser writing system. The functional structures were designed to modify the phase of the beam at specific wavelengths, thereby enabling conversion of a fundamental Gaussian laser beam into different high-order Hermite-Gaussian modes, Laguerre-Gaussian modes, and zeroth-order Bessel beams of the second harmonic. This facet functionalization opens exciting new opportunities for robust and compact beam shaping in a nonlinear interaction without compromising the conversion efficiency. PMID:26421556

  11. Stylolite shape, roughness growth dynamics and related burial history: a 3D analysis.

    NASA Astrophysics Data System (ADS)

    Beaudoin, Nicolas; Koehn, Daniel

    2016-04-01

    Stylolites are dissolution features that develop under applied pressure and during chemical compaction. Stylolites are common in sedimentary basin, altering the chemistry and physical properties of rocks, as well as the small- to large-scale hydrological system. This contribution follows recent finding about the self-affine roughness growth properties leading to a fractal, stitch-like shape of stylolites. 3D surface scanning and X-ray computed microtomography imaging have been carried out onto numerous stylolites from the southern Permian Zechstein basin (Germany) and from the Umbria Marches fold-and-thrust belts (Italy). In these two environments stylolites have been sorted following a recent advanced classification of stylolite based on the shape and growth dynamics. This classification consists in four classes (rectangular layer type, seismogram pinning type suture/sharp peak type and simple wave-like type) and we aim to characterize the roughness properties for each of these classes. A fractal analysis has been conducted accordingly using Fourier transform and Correlation function signal analysis over roughness surfaces. These fractal analyses have been used to reconstruct the maximum burial depth recorded by each stylolite. The reconstruction of burial depths at the same place but regarding all stylolite classes returns and maximum depth evolution. This dataset is thus used 1- to understand the links between the roughness growth dynamics of stylolites and their final shape and 2- to establish a relationship linking the shape of roughness to the maximum burial depth recorded. We hope results and interpretation reported can push the community to consider stylolite as an efficient tool and reliable way to appraise burial history in sedimentary basins.

  12. A computational model that recovers the 3D shape of an object from a single 2D retinal representation.

    PubMed

    Li, Yunfeng; Pizlo, Zygmunt; Steinman, Robert M

    2009-05-01

    Human beings perceive 3D shapes veridically, but the underlying mechanisms remain unknown. The problem of producing veridical shape percepts is computationally difficult because the 3D shapes have to be recovered from 2D retinal images. This paper describes a new model, based on a regularization approach, that does this very well. It uses a new simplicity principle composed of four shape constraints: viz., symmetry, planarity, maximum compactness and minimum surface. Maximum compactness and minimum surface have never been used before. The model was tested with random symmetrical polyhedra. It recovered their 3D shapes from a single randomly-chosen 2D image. Neither learning, nor depth perception, was required. The effectiveness of the maximum compactness and the minimum surface constraints were measured by how well the aspect ratio of the 3D shapes was recovered. These constraints were effective; they recovered the aspect ratio of the 3D shapes very well. Aspect ratios recovered by the model were compared to aspect ratios adjusted by four human observers. They also adjusted aspect ratios very well. In those rare cases, in which the human observers showed large errors in adjusted aspect ratios, their errors were very similar to the errors made by the model. PMID:18621410

  13. Comparison of organs' shapes with geometric and Zernike 3D moments.

    PubMed

    Broggio, D; Moignier, A; Ben Brahim, K; Gardumi, A; Grandgirard, N; Pierrat, N; Chea, M; Derreumaux, S; Desbrée, A; Boisserie, G; Aubert, B; Mazeron, J-J; Franck, D

    2013-09-01

    The morphological similarity of organs is studied with feature vectors based on geometric and Zernike 3D moments. It is particularly investigated if outliers and average models can be identified. For this purpose, the relative proximity to the mean feature vector is defined, principal coordinate and clustering analyses are also performed. To study the consistency and usefulness of this approach, 17 livers and 76 hearts voxel models from several sources are considered. In the liver case, models with similar morphological feature are identified. For the limited amount of studied cases, the liver of the ICRP male voxel model is identified as a better surrogate than the female one. For hearts, the clustering analysis shows that three heart shapes represent about 80% of the morphological variations. The relative proximity and clustering analysis rather consistently identify outliers and average models. For the two cases, identification of outliers and surrogate of average models is rather robust. However, deeper classification of morphological feature is subject to caution and can only be performed after cross analysis of at least two kinds of feature vectors. Finally, the Zernike moments contain all the information needed to re-construct the studied objects and thus appear as a promising tool to derive statistical organ shapes. PMID:23846154

  14. Localization of spots in FISH images of breast cancer using 3-D shape analysis.

    PubMed

    Les, T; Markiewicz, T; Osowski, S; Jesiotr, M; Kozlowski, W

    2016-06-01

    The fluorescence in situ (FISH) belongs to the most often used molecular cytogenetic techniques, applied in many areas of diagnosis and research. The analysis of FISH images relies on localization and counting the red and green spots in order to determine HER2 status of the breast cancer samples. The algorithm of spot localization presented in the paper is based on 3-D shape analysis of the image objects. The subsequent regions of the image are matched to the reference pattern and the results of this matching influence localization of spots. The paper compares different shapes of the reference pattern and their efficiency in spot localization. The numerical experiments have been performed on the basis of 12 cases (patients), each represented by three images. Few thousands of cells have been analysed. The quantitative analyses comparing different versions of algorithm are presented and compared to the expert results. The best version of the procedure provides the absolute relative difference to the expert results smaller than 3%. These results confirm high efficiency of the proposed approach to the spot identification. The proposed method of FISH image analysis improves the efficiency of detecting fluorescent signals in FISH images. The evaluation results are encouraging for further testing of the developed automatic system directed to application in medical practice. PMID:26694535

  15. Human L3L4 intervertebral disc mean 3D shape, modes of variation, and their relationship to degeneration

    PubMed Central

    Peloquin, John M.; Yoder, Jonathon H.; Jacobs, Nathan T.; Moon, Sung M.; Wright, Alexander C.; Vresilovic, Edward J.; Elliott, Dawn M.

    2014-01-01

    Intervertebral disc mechanics are affected by both disc shape and disc degeneration, which in turn each affect the other; disc mechanics additionally have a role in the etiology of disc degeneration. Finite element analysis (FEA) is a favored tool to investigate these relationships, but limited data for intervertebral disc 3D shape has forced the use of simplified or single-subject geometries, with the effect of inter-individual shape variation investigated only in specialized studies. Similarly, most data on disc shape variation with degeneration is based on 2D mid-sagittal images, which incompletely define 3D shape changes. Therefore, the objective of this study was to quantify inter-individual disc shape variation in 3D, classify this variation into independently-occurring modes using a statistical shape model, and identify correlations between disc shape and degeneration. Three-dimensional disc shapes were obtained from MRI of 13 human male cadaver L3L4 discs. An average disc shape and four major modes of shape variation (representing 90% of the variance) were identified. The first mode represented disc axial area and was significantly correlated to degeneration (R2 = 0.44), indicating larger axial area in degenerate discs. Disc height variation occurred in three distinct modes, each also involving non-height variation. The statistical shape model provides an average L3L4 disc shape for FEA that is fully defined in 3D, and makes it convenient to generate a set of shapes with which to represent aggregate inter-individual variation. Degeneration grade-specific shapes can also be generated. To facilitate application, the model is included in this paper’s supplemental content. PMID:24792581

  16. Object Recognition in Flight: How Do Bees Distinguish between 3D Shapes?

    PubMed

    Werner, Annette; Stürzl, Wolfgang; Zanker, Johannes

    2016-01-01

    Honeybees (Apis mellifera) discriminate multiple object features such as colour, pattern and 2D shape, but it remains unknown whether and how bees recover three-dimensional shape. Here we show that bees can recognize objects by their three-dimensional form, whereby they employ an active strategy to uncover the depth profiles. We trained individual, free flying honeybees to collect sugar water from small three-dimensional objects made of styrofoam (sphere, cylinder, cuboids) or folded paper (convex, concave, planar) and found that bees can easily discriminate between these stimuli. We also tested possible strategies employed by the bees to uncover the depth profiles. For the card stimuli, we excluded overall shape and pictorial features (shading, texture gradients) as cues for discrimination. Lacking sufficient stereo vision, bees are known to use speed gradients in optic flow to detect edges; could the bees apply this strategy also to recover the fine details of a surface depth profile? Analysing the bees' flight tracks in front of the stimuli revealed specific combinations of flight maneuvers (lateral translations in combination with yaw rotations), which are particularly suitable to extract depth cues from motion parallax. We modelled the generated optic flow and found characteristic patterns of angular displacement corresponding to the depth profiles of our stimuli: optic flow patterns from pure translations successfully recovered depth relations from the magnitude of angular displacements, additional rotation provided robust depth information based on the direction of the displacements; thus, the bees flight maneuvers may reflect an optimized visuo-motor strategy to extract depth structure from motion signals. The robustness and simplicity of this strategy offers an efficient solution for 3D-object-recognition without stereo vision, and could be employed by other flying insects, or mobile robots. PMID:26886006

  17. Object Recognition in Flight: How Do Bees Distinguish between 3D Shapes?

    PubMed Central

    Werner, Annette; Stürzl, Wolfgang; Zanker, Johannes

    2016-01-01

    Honeybees (Apis mellifera) discriminate multiple object features such as colour, pattern and 2D shape, but it remains unknown whether and how bees recover three-dimensional shape. Here we show that bees can recognize objects by their three-dimensional form, whereby they employ an active strategy to uncover the depth profiles. We trained individual, free flying honeybees to collect sugar water from small three-dimensional objects made of styrofoam (sphere, cylinder, cuboids) or folded paper (convex, concave, planar) and found that bees can easily discriminate between these stimuli. We also tested possible strategies employed by the bees to uncover the depth profiles. For the card stimuli, we excluded overall shape and pictorial features (shading, texture gradients) as cues for discrimination. Lacking sufficient stereo vision, bees are known to use speed gradients in optic flow to detect edges; could the bees apply this strategy also to recover the fine details of a surface depth profile? Analysing the bees’ flight tracks in front of the stimuli revealed specific combinations of flight maneuvers (lateral translations in combination with yaw rotations), which are particularly suitable to extract depth cues from motion parallax. We modelled the generated optic flow and found characteristic patterns of angular displacement corresponding to the depth profiles of our stimuli: optic flow patterns from pure translations successfully recovered depth relations from the magnitude of angular displacements, additional rotation provided robust depth information based on the direction of the displacements; thus, the bees flight maneuvers may reflect an optimized visuo-motor strategy to extract depth structure from motion signals. The robustness and simplicity of this strategy offers an efficient solution for 3D-object-recognition without stereo vision, and could be employed by other flying insects, or mobile robots. PMID:26886006

  18. Analysis of two-dimensional shapes by principal component score descriptors: geological interpretations from sand grains, pebbles, benthic foraminifera, and bivalve mollusks

    SciTech Connect

    Parks, J.M.

    1987-05-01

    Computerized quantitative shape analysis provides useful geological information not readily obtained in other ways. Principal Components Analysis (PCA) of properly rotated images reduces digitized outlines to a few shape descriptors. R-mode PC loadings, displayed graphically, exhibit the distinctive components of shape (elongation, triangularity, rectangularity, etc) in different orientations. Q-mode estimated PC scores are the shape descriptors for individual objects. Six shape descriptors are adequate to characterize typical geological outline shapes, such as silhouettes of sand grains, pebbles, and fossils. The original outlines are reconstructed using these shape descriptors as proportions for recombining the PC loadings. Proportions and rates of sand mixing from two sources are revealed by shape analysis of populations of sand grains from the Kansas and Missouri rivers sampled above and below their confluence. Unmixing (differential sorting during transport) is revealed by gradual shape changes in sands sampled along 330 mi of the Rio Grande (Del Rio, Texas, to the Gulf of Mexico). Pebbles from the Jackson Hole, Wyoming, area are readily identified as to fluvial or glacial origin by quantified shape. Outline shapes of benthic foraminifera from Maryland Miocene assemblages are classified by cluster and discriminant analyses of PC scores into 20 or more morphological types. Relative proportions of each morpho-type in stratigraphic samples are statistically correlated with independent paleoenvironmental indicators. Intra- and inter-specific changes in shapes of several genera of middle Miocene bivalves from Maryland show three distinct patterns through time: minor irregular changes (= stasis.); abrupt jumps (= punctuated equilibria.); and gradual trends (= gradualism.).

  19. KOALA: 3-D shape of asteroids from multi-data inversion

    NASA Astrophysics Data System (ADS)

    Carry, B.; Kaasalainen, M.; Merline, W. J.; Drummond, J. D.; Durech, J.; Berthier, J.; Conrad, A.

    2011-10-01

    We describe our on-going observing program to determine the physical properties of asteroids from groundbased facilities. We combine disk-resolved images from adaptive optics, optical lightcurves, and stellar occultations to put tighter constraints on the spin, 3-D shape, and size of asteroids. We will discuss the relevance of the determination of physical properties to help understand the asteroid population (e.g., density, composition, and non-gravitational forces). We will then briefly describe our multi-data inversion algorithm KOALA (Carry et al. 2010a, Kaasalainen 2011, see also Kaasalainen et al., same meeting), which allows the determination of certain physical properties of an asteroid from the combination of different techniques of observation. A comparison of results obtained with KOALA on asteroid (21) Lutetia, prior to the ESA Rosetta flyby, with the high spatial resolution images returned from that flyby, will then be presented, showing the high accuracy of KOALA inversion. Finally, we will describe our current development of the algorithm, and focus on examples of other asteroids currently being studied with KOALA.

  20. General application of rapid 3-D digitizing and tool path generation for complex shapes

    SciTech Connect

    Kwok, K.S.; Loucks, C.S.; Driessen, B.J.

    1997-09-01

    A system for automatic tool path generation was developed at Sandia National Laboratories for finish machining operations. The system consists of a commercially available 5-axis milling machine controlled by Sandia developed software. This system was used to remove overspray on cast turbine blades. A laser-based, structured-light sensor, mounted on a tool holder, is used to collect 3D data points around the surface of the turbine blade. Using the digitized model of the blade, a tool path is generated which will drive a 0.375 inch grinding pin around the tip of the blade. A fuzzified digital filter was developed to properly eliminate false sensor readings caused by burrs, holes and overspray. The digital filter was found to successfully generate the correct tool path for a blade with intentionally scanned holes and defects. The fuzzified filter improved the computation efficiency by a factor of 25. For application to general parts, an adaptive scanning algorithm was developed and presented with simulation and experimental results. A right pyramid and an ellipsoid were scanned successfully with the adaptive algorithm in simulation studies. In actual experiments, a nose cone and a turbine blade were successfully scanned. A complex shaped turbine blade was successfully scanned and finished machined using these algorithms.

  1. Real-time 3-D shape measurement with composite phase-shifting fringes and multi-view system.

    PubMed

    Tao, Tianyang; Chen, Qian; Da, Jian; Feng, Shijie; Hu, Yan; Zuo, Chao

    2016-09-01

    In recent years, fringe projection has become an established and essential method for dynamic three-dimensional (3-D) shape measurement in different fields such as online inspection and real-time quality control. Numerous high-speed 3-D shape measurement methods have been developed by either employing high-speed hardware, minimizing the number of pattern projection, or both. However, dynamic 3-D shape measurement of arbitrarily-shaped objects with full sensor resolution without the necessity of additional pattern projections is still a big challenge. In this work, we introduce a high-speed 3-D shape measurement technique based on composite phase-shifting fringes and a multi-view system. The geometry constraint is adopted to search the corresponding points independently without additional images. Meanwhile, by analysing the 3-D position and the main wrapped phase of the corresponding point, pairs with an incorrect 3-D position or a considerable phase difference are effectively rejected. All of the qualified corresponding points are then corrected, and the unique one as well as the related period order is selected through the embedded triangular wave. Finally, considering that some points can only be captured by one of the cameras due to the occlusions, these points may have different fringe orders in the two views, so a left-right consistency check is employed to eliminate those erroneous period orders in this case. Several experiments on both static and dynamic scenes are performed, verifying that our method can achieve a speed of 120 frames per second (fps) with 25-period fringe patterns for fast, dense, and accurate 3-D measurement. PMID:27607632

  2. The use of 3D shape models of Rosetta targets for morphological studies

    NASA Astrophysics Data System (ADS)

    Capanna, C.; Jorda, L.; Auger, A.-T.; Groussin, O.; Gaskell, R.; Hviid, S.; Lamy, P.

    2015-10-01

    New 3D reconstruction techniques have been developed during the last decade to retrieve the global and/or local topography of small solar system bodies from visible images. These techniques can be separated into two categories: the so-called "photoclinometric" and the so-called "photogrammetric" techniques. Two implementations of the photoclinometric technique are available: the SPC technique (StereoPhotoClinometry) which combines sparse stereo with a classical clinometry algorithm[1] and a more recent method called MSPCD (Multi- Resolution Stereo-PhotoClinometry by Deformation) which proceeds by iterative deformation of a triangular mesh in a multi-resolution scheme[2], using stereo points as a guide during the deformation[3]. Our study is based on the 3D shape models of the asteroid Lutetia and of the comet 67P/Churyumov- Gerasimenko retrieved by the SPC and MSPCD methods. More specifically, we describe how the models produced by these two techniques can contribute to detailed and quantitative studies of the morphological properties of small bodies through three test cases shortly described below.• Measurement of crater depth and depth-to-diameter distribution. We show that the reconstruction techniques can lead to systematic differences in the measurement of crater depth. This will be illustrated by a set of craters[4] identified in the Achaia region at the surface of the asteroid 21 Lutetia. • Calculation of the volume of large boulders at the surface of comet 67P/C-G. We show how the reconstruction technique affects significantly the volume determination of a large boulder named Cheops in the Imhotep region. • Measurement of gravitational slopes. We discuss the differences between the gravitational slope distributions in Seth obtained with the SPC and MSPCD models[5]. Since no ground control points are available on small bodies, we use the comparison of high-resolution images with the corresponding synthetic images generated with the models[6] to assess

  3. Topology dictionary for 3D video understanding.

    PubMed

    Tung, Tony; Matsuyama, Takashi

    2012-08-01

    This paper presents a novel approach that achieves 3D video understanding. 3D video consists of a stream of 3D models of subjects in motion. The acquisition of long sequences requires large storage space (2 GB for 1 min). Moreover, it is tedious to browse data sets and extract meaningful information. We propose the topology dictionary to encode and describe 3D video content. The model consists of a topology-based shape descriptor dictionary which can be generated from either extracted patterns or training sequences. The model relies on 1) topology description and classification using Reeb graphs, and 2) a Markov motion graph to represent topology change states. We show that the use of Reeb graphs as the high-level topology descriptor is relevant. It allows the dictionary to automatically model complex sequences, whereas other strategies would require prior knowledge on the shape and topology of the captured subjects. Our approach serves to encode 3D video sequences, and can be applied for content-based description and summarization of 3D video sequences. Furthermore, topology class labeling during a learning process enables the system to perform content-based event recognition. Experiments were carried out on various 3D videos. We showcase an application for 3D video progressive summarization using the topology dictionary. PMID:22745004

  4. Dependence of Shape-Based Descriptors and Mass Segmentation Areas on Initial Contour Placement Using the Chan-Vese Method on Digital Mammograms

    PubMed Central

    Acho, S. N.; Rae, W. I. D.

    2015-01-01

    Variation in signal intensity within mass lesions and missing boundary information are intensity inhomogeneities inherent in digital mammograms. These inhomogeneities render the performance of a deformable contour susceptible to the location of its initial position and may lead to poor segmentation results for these images. We investigate the dependence of shape-based descriptors and mass segmentation areas on initial contour placement with the Chan-Vese segmentation method and compare these results to the active contours with selective local or global segmentation model. For each mass lesion, final contours were obtained by propagation of a proposed initial level set contour and by propagation of a manually drawn contour enclosing the region of interest. Differences in shape-based descriptors were quantified using absolute percentage differences, Euclidean distances, and Bland-Altman analysis. Segmented areas were evaluated with the area overlap measure. Differences were dependent upon the characteristics of the mass margins. Boundary moments presented large percentage differences. Pearson correlation analysis showed statistically significant correlations between shape-based descriptors from both initial locations. In conclusion, boundary moments of digital mass lesions are sensitive to the placement of initial level set contours while shape-based descriptors such as Fourier descriptors, shape convexity, and shape rectangularity exhibit a certain degree of robustness to changes in the location of the initial level set contours for both segmentation algorithms. PMID:26379762

  5. Feasibility study on 3-D shape analysis of high-aspect-ratio features using through-focus scanning optical microscopy

    PubMed Central

    Attota, Ravi Kiran; Weck, Peter; Kramar, John A.; Bunday, Benjamin; Vartanian, Victor

    2016-01-01

    In-line metrologies currently used in the semiconductor industry are being challenged by the aggressive pace of device scaling and the adoption of novel device architectures. Metrology and process control of three-dimensional (3-D) high-aspect-ratio (HAR) features are becoming increasingly important and also challenging. In this paper we present a feasibility study of through-focus scanning optical microscopy (TSOM) for 3-D shape analysis of HAR features. TSOM makes use of 3-D optical data collected using a conventional optical microscope for 3-D shape analysis. Simulation results of trenches and holes down to the 11 nm node are presented. The ability of TSOM to analyze an array of HAR features or a single isolated HAR feature is also presented. This allows for the use of targets with area over 100 times smaller than that of conventional gratings, saving valuable real estate on the wafers. Indications are that the sensitivity of TSOM may match or exceed the International Technology Roadmap for Semiconductors (ITRS) measurement requirements for the next several years. Both simulations and preliminary experimental results are presented. The simplicity, lowcost, high throughput, and nanometer scale 3-D shape sensitivity of TSOM make it an attractive inspection and process monitoring solution for nanomanufacturing. PMID:27464112

  6. Feasibility study on 3-D shape analysis of high-aspect-ratio features using through-focus scanning optical microscopy.

    PubMed

    Attota, Ravi Kiran; Weck, Peter; Kramar, John A; Bunday, Benjamin; Vartanian, Victor

    2016-07-25

    In-line metrologies currently used in the semiconductor industry are being challenged by the aggressive pace of device scaling and the adoption of novel device architectures. Metrology and process control of three-dimensional (3-D) high-aspect-ratio (HAR) features are becoming increasingly important and also challenging. In this paper we present a feasibility study of through-focus scanning optical microscopy (TSOM) for 3-D shape analysis of HAR features. TSOM makes use of 3-D optical data collected using a conventional optical microscope for 3-D shape analysis. Simulation results of trenches and holes down to the 11 nm node are presented. The ability of TSOM to analyze an array of HAR features or a single isolated HAR feature is also presented. This allows for the use of targets with area over 100 times smaller than that of conventional gratings, saving valuable real estate on the wafers. Indications are that the sensitivity of TSOM may match or exceed the International Technology Roadmap for Semiconductors (ITRS) measurement requirements for the next several years. Both simulations and preliminary experimental results are presented. The simplicity, lowcost, high throughput, and nanometer scale 3-D shape sensitivity of TSOM make it an attractive inspection and process monitoring solution for nanomanufacturing. PMID:27464112

  7. Flying triangulation - A motion-robust optical 3D sensor for the real-time shape acquisition of complex objects

    NASA Astrophysics Data System (ADS)

    Willomitzer, Florian; Ettl, Svenja; Arold, Oliver; Häusler, Gerd

    2013-05-01

    The three-dimensional shape acquisition of objects has become more and more important in the last years. Up to now, there are several well-established methods which already yield impressive results. However, even under quite common conditions like object movement or a complex shaping, most methods become unsatisfying. Thus, the 3D shape acquisition is still a difficult and non-trivial task. We present our measurement principle "Flying Triangulation" which enables a motion-robust 3D acquisition of complex-shaped object surfaces by a freely movable handheld sensor. Since "Flying Triangulation" is scalable, a whole sensor-zoo for different object sizes is presented. Concluding, an overview of current and future fields of investigation is given.

  8. Automatic building detection and 3D shape recovery from single monocular electro-optic imagery

    NASA Astrophysics Data System (ADS)

    Lavigne, Daniel A.; Saeedi, Parvaneh; Dlugan, Andrew; Goldstein, Norman; Zwick, Harold

    2007-04-01

    The extraction of 3D building geometric information from high-resolution electro-optical imagery is becoming a key element in numerous geospatial applications. Indeed, producing 3D urban models is a requirement for a variety of applications such as spatial analysis of urban design, military simulation, and site monitoring of a particular geographic location. However, almost all operational approaches developed over the years for 3D building reconstruction are semiautomated ones, where a skilled human operator is involved in the 3D geometry modeling of building instances, which results in a time-consuming process. Furthermore, such approaches usually require stereo image pairs, image sequences, or laser scanning of a specific geographic location to extract the 3D models from the imagery. Finally, with current techniques, the 3D geometric modeling phase may be characterized by the extraction of 3D building models with a low accuracy level. This paper describes the Automatic Building Detection (ABD) system and embedded algorithms currently under development. The ABD system provides a framework for the automatic detection of buildings and the recovery of 3D geometric models from single monocular electro-optic imagery. The system is designed in order to cope with multi-sensor imaging of arbitrary viewpoint variations, clutter, and occlusion. Preliminary results on monocular airborne and spaceborne images are provided. Accuracy assessment of detected buildings and extracted 3D building models from single airborne and spaceborne monocular imagery of real scenes are also addressed. Embedded algorithms are evaluated for their robustness to deal with relatively dense and complicated urban environments.

  9. Real-time 3D shape measurement with digital stripe projection by Texas Instruments Micro Mirror Devices DMD

    NASA Astrophysics Data System (ADS)

    Frankowski, Gottfried; Chen, Mai; Huth, Torsten

    2000-03-01

    The fast, contact-free and highly precise shape measurement of technical objects is of key importance in the scientific- technological area as well as the area of practical measurement technology. The application areas of contact- free surface measurement extend across widely different areas, e.g., the automation of production processes, the measurement and inspection of components in microsystem technology or the fast 3D in-vivo measurement of human skin surfaces in cosmetics and medical technology. This paper describes methodological and technological possibilities as well as measurement technology applications for fast optical 3D shape measurements using micromirror-based high-velocity stripe projection. Depending on the available projector and camera facilities, it will be possible to shoot and evaluate compete 3D surface profiles within only a few milliseconds.

  10. Face recognition using 3D facial shape and color map information: comparison and combination

    NASA Astrophysics Data System (ADS)

    Godil, Afzal; Ressler, Sandy; Grother, Patrick

    2004-08-01

    In this paper, we investigate the use of 3D surface geometry for face recognition and compare it to one based on color map information. The 3D surface and color map data are from the CAESAR anthropometric database. We find that the recognition performance is not very different between 3D surface and color map information using a principal component analysis algorithm. We also discuss the different techniques for the combination of the 3D surface and color map information for multi-modal recognition by using different fusion approaches and show that there is significant improvement in results. The effectiveness of various techniques is compared and evaluated on a dataset with 200 subjects in two different positions.

  11. Local 3D matrix confinement determines division axis through cell shape

    PubMed Central

    He, Lijuan; Chen, Weitong; Wu, Pei-Hsun; Jimenez, Angela; Wong, Bin Sheng; San, Angela; Konstantopoulos, Konstantinos; Wirtz, Denis

    2016-01-01

    How the division axis is determined in mammalian cells embedded in three-dimensional (3D) matrices remains elusive, despite that many types of cells divide in 3D environments. Cells on two-dimensional (2D) substrates typically round up completely to divide. Here, we show that in 3D collagen matrices, mammalian cells such as HT1080 human fibrosarcoma and MDA-MB-231 breast cancer cells exhibit division modes distinct from their Counterparts on 2D substrates, with a markedly higher fraction of cells remaining highly elongated through mitosis in 3D matrices. The long axis of elongated mitotic cells accurately predicts the division axis, independently of matrix density and cell-matrix interactions. This 3D-specific elongated division mode is determined by the local confinement produced by the matrix and the ability of cells to protrude and locally remodel the matrix via β1 integrin. Elongated division is readily recapitulated using collagen-coated microfabricated channels. Cells depleted of β1 integrin still divide in the elongated mode in microchannels, suggesting that 3D confinement is sufficient to induce the elongated cell-division phenotype. PMID:26515603

  12. Automated detection, 3D segmentation and analysis of high resolution spine MR images using statistical shape models

    NASA Astrophysics Data System (ADS)

    Neubert, A.; Fripp, J.; Engstrom, C.; Schwarz, R.; Lauer, L.; Salvado, O.; Crozier, S.

    2012-12-01

    Recent advances in high resolution magnetic resonance (MR) imaging of the spine provide a basis for the automated assessment of intervertebral disc (IVD) and vertebral body (VB) anatomy. High resolution three-dimensional (3D) morphological information contained in these images may be useful for early detection and monitoring of common spine disorders, such as disc degeneration. This work proposes an automated approach to extract the 3D segmentations of lumbar and thoracic IVDs and VBs from MR images using statistical shape analysis and registration of grey level intensity profiles. The algorithm was validated on a dataset of volumetric scans of the thoracolumbar spine of asymptomatic volunteers obtained on a 3T scanner using the relatively new 3D T2-weighted SPACE pulse sequence. Manual segmentations and expert radiological findings of early signs of disc degeneration were used in the validation. There was good agreement between manual and automated segmentation of the IVD and VB volumes with the mean Dice scores of 0.89 ± 0.04 and 0.91 ± 0.02 and mean absolute surface distances of 0.55 ± 0.18 mm and 0.67 ± 0.17 mm respectively. The method compares favourably to existing 3D MR segmentation techniques for VBs. This is the first time IVDs have been automatically segmented from 3D volumetric scans and shape parameters obtained were used in preliminary analyses to accurately classify (100% sensitivity, 98.3% specificity) disc abnormalities associated with early degenerative changes.

  13. Simultaneous acquisition of 3D shape and deformation by combination of interferometric and correlation-based laser speckle metrology

    PubMed Central

    Dekiff, Markus; Berssenbrügge, Philipp; Kemper, Björn; Denz, Cornelia; Dirksen, Dieter

    2015-01-01

    A metrology system combining three laser speckle measurement techniques for simultaneous determination of 3D shape and micro- and macroscopic deformations is presented. While microscopic deformations are determined by a combination of Digital Holographic Interferometry (DHI) and Digital Speckle Photography (DSP), macroscopic 3D shape, position and deformation are retrieved by photogrammetry based on digital image correlation of a projected laser speckle pattern. The photogrammetrically obtained data extend the measurement range of the DHI-DSP system and also increase the accuracy of the calculation of the sensitivity vector. Furthermore, a precise assignment of microscopic displacements to the object’s macroscopic shape for enhanced visualization is achieved. The approach allows for fast measurements with a simple setup. Key parameters of the system are optimized, and its precision and measurement range are demonstrated. As application examples, the deformation of a mandible model and the shrinkage of dental impression material are measured. PMID:26713197

  14. Simultaneous acquisition of 3D shape and deformation by combination of interferometric and correlation-based laser speckle metrology.

    PubMed

    Dekiff, Markus; Berssenbrügge, Philipp; Kemper, Björn; Denz, Cornelia; Dirksen, Dieter

    2015-12-01

    A metrology system combining three laser speckle measurement techniques for simultaneous determination of 3D shape and micro- and macroscopic deformations is presented. While microscopic deformations are determined by a combination of Digital Holographic Interferometry (DHI) and Digital Speckle Photography (DSP), macroscopic 3D shape, position and deformation are retrieved by photogrammetry based on digital image correlation of a projected laser speckle pattern. The photogrammetrically obtained data extend the measurement range of the DHI-DSP system and also increase the accuracy of the calculation of the sensitivity vector. Furthermore, a precise assignment of microscopic displacements to the object's macroscopic shape for enhanced visualization is achieved. The approach allows for fast measurements with a simple setup. Key parameters of the system are optimized, and its precision and measurement range are demonstrated. As application examples, the deformation of a mandible model and the shrinkage of dental impression material are measured. PMID:26713197

  15. High-resolution real-time 3D shape measurement on a portable device

    NASA Astrophysics Data System (ADS)

    Karpinsky, Nikolaus; Hoke, Morgan; Chen, Vincent; Zhang, Song

    2013-09-01

    Recent advances in technology have enabled the acquisition of high-resolution 3D models in real-time though the use of structured light scanning techniques. While these advances are impressive, they require large amounts of computing power, thus being limited to using large desktop computers with high end CPUs and sometimes GPUs. This is undesirable in making high-resolution real-time 3D scanners ubiquitous in our mobile lives. To address this issue, this work describes and demonstrates a real-time 3D scanning system that is realized on a mobile device, namely a laptop computer, which can achieve speeds of 20fps 3D at a resolution of 640x480 per frame. By utilizing a graphics processing unit (GPU) as a multipurpose parallel processor, along with a parallel phase shifting technique, we are able to realize the entire 3D processing pipeline in parallel. To mitigate high speed camera transfer problems, which typically require a dedicated frame grabber, we make use of USB 3.0 along with direct memory access (DMA) to transfer camera images to the GPU. To demonstrate the effectiveness of the technique, we experiment with the scanner on both static geometry of a statue and dynamic geometry of a deforming material sample in front of the system.

  16. Shape measurement by a multi-view methodology based on the remote tracking of a 3D optical scanner

    NASA Astrophysics Data System (ADS)

    Barone, Sandro; Paoli, Alessandro; Viviano Razionale, Armando

    2012-03-01

    Full field optical techniques can be reliably used for 3D measurements of complex shapes by multi-view processes, which require the computation of transformation parameters relating different views into a common reference system. Although, several multi-view approaches have been proposed, the alignment process is still the crucial step of a shape reconstruction. In this paper, a methodology to automatically align 3D views has been developed by integrating a stereo vision system and a full field optical scanner. In particular, the stereo vision system is used to remotely track the optical scanner within a working volume. The tracking system uses stereo images to detect the 3D coordinates of retro-reflective infrared markers rigidly connected to the scanner. Stereo correspondences are established by a robust methodology based on combining the epipolar geometry with an image spatial transformation constraint. The proposed methodology has been validated by experimental tests regarding both the evaluation of the measurement accuracy and the 3D reconstruction of an industrial shape.

  17. Shape analysis of hypertrophic and hypertensive heart disease using MRI-based 3D surface models of left ventricular geometry.

    PubMed

    Ardekani, Siamak; Jain, Saurabh; Sanzi, Alianna; Corona-Villalobos, Celia P; Abraham, Theodore P; Abraham, M Roselle; Zimmerman, Stefan L; Wu, Katherine C; Winslow, Raimond L; Miller, Michael I; Younes, Laurent

    2016-04-01

    The focus of this study was to develop advanced mathematical tools to construct high-resolution 3D models of left-ventricular (LV) geometry to evaluate focal geometric differences between patients with hypertrophic cardiomyopathy (HCM) and hypertensive heart disease (HHD) using cardiac magnetic resonance (MR) cross-sectional images. A limiting factor in 3D analysis of cardiac MR cross-sections is the low out-of-plane resolution of the acquired images. To overcome this problem, we have developed a mathematical framework to construct a population-based high-resolution 3D LV triangulated surface (template) in which an iterative matching algorithm maps a surface mesh of a normal heart to a set of cross-sectional contours that were extracted from short-axis cine cardiac MR images of patients who were diagnosed with either HCM or HHD. A statistical analysis was conducted on deformations that were estimated at each surface node to identify shape differences at end-diastole (ED), end-systole (ES), and motion-related shape variation from ED to ES. Some significant shape difference in radial thickness was detected at ES. Differences of LV 3D surface geometry were identified focally on the basal anterior septum wall. Further research is needed to relate these findings to the HCM morphological substrate and to design a classifier to discriminate among different etiologies of LV hypertrophy. PMID:26766206

  18. Dynamic shape modeling of the mitral valve from real-time 3D ultrasound images using continuous medial representation

    NASA Astrophysics Data System (ADS)

    Pouch, Alison M.; Yushkevich, Paul A.; Jackson, Benjamin M.; Gorman, Joseph H., III; Gorman, Robert C.; Sehgal, Chandra M.

    2012-03-01

    Purpose: Patient-specific shape analysis of the mitral valve from real-time 3D ultrasound (rt-3DUS) has broad application to the assessment and surgical treatment of mitral valve disease. Our goal is to demonstrate that continuous medial representation (cm-rep) is an accurate valve shape representation that can be used for statistical shape modeling over the cardiac cycle from rt-3DUS images. Methods: Transesophageal rt-3DUS data acquired from 15 subjects with a range of mitral valve pathology were analyzed. User-initialized segmentation with level sets and symmetric diffeomorphic normalization delineated the mitral leaflets at each time point in the rt-3DUS data series. A deformable cm-rep was fitted to each segmented image of the mitral leaflets in the time series, producing a 4D parametric representation of valve shape in a single cardiac cycle. Model fitting accuracy was evaluated by the Dice overlap, and shape interpolation and principal component analysis (PCA) of 4D valve shape were performed. Results: Of the 289 3D images analyzed, the average Dice overlap between each fitted cm-rep and its target segmentation was 0.880+/-0.018 (max=0.912, min=0.819). The results of PCA represented variability in valve morphology and localized leaflet thickness across subjects. Conclusion: Deformable medial modeling accurately captures valve geometry in rt-3DUS images over the entire cardiac cycle and enables statistical shape analysis of the mitral valve.

  19. Multi-shape memory polymers achieved by the spatio-assembly of 3D printable thermoplastic building blocks.

    PubMed

    Li, Hongze; Gao, Xiang; Luo, Yingwu

    2016-04-01

    Multi-shape memory polymers were prepared by the macroscale spatio-assembly of building blocks in this work. The building blocks were methyl acrylate-co-styrene (MA-co-St) copolymers, which have the St-block-(St-random-MA)-block-St tri-block chain sequence. This design ensures that their transition temperatures can be adjusted over a wide range by varying the composition of the middle block. The two St blocks at the chain ends can generate a crosslink network in the final device to achieve strong bonding force between building blocks and the shape memory capacity. Due to their thermoplastic properties, 3D printing was employed for the spatio-assembly to build devices. This method is capable of introducing many transition phases into one device and preparing complicated shapes via 3D printing. The device can perform a complex action via a series of shape changes. Besides, this method can avoid the difficult programing of a series of temporary shapes. The control of intermediate temporary shapes was realized via programing the shapes and locations of building blocks in the final device. PMID:26924759

  20. Evaluation of trapezoidal-shaped 3-D plates for internal fixation of mandibular subcondylar fractures in adults

    PubMed Central

    Chaudhary, Manoj; Pant, Harshvardhan; Singh, Manpreet; Vashistha, Arpit; Kaur, Gagandeep

    2015-01-01

    Aims The purpose of this study is to evaluate the clinical results and to assess the efficacy, stability, and rigidity of trapezoidal 3-D plates for osteosynthesis in adult mandibular subcondylar fracture patients. Methods This study included 15 cases of trauma having mandibular subcondylar fractures, in which open reduction and internal fixation are indicated. After selecting patient according to the inclusion criteria, all patients underwent open reduction and rigid fixation. Fracture was then stabilized using 4 hole, 2.0 mm trapezoidal-shaped 3-D titanium plates using retromandibular incision. Postoperative clinical examination was carried out on 3rd day; 1st, 2nd, and 4th weeks; and 3rd and 6th months. Results The results of this study suggest that the fixation of mandibular subcondylar fracture with trapezoidal-shaped 3-D plates provides three-dimensional stability and carries low morbidity. Conclusion Patients with gross displacement of condylar fragment, major reduction in posterior facial height, and deranged occlusion can be successfully managed by open reduction of condylar fracture and its fixation using 3-D plates. PMID:26587378

  1. Generation and Comparison of Tls and SFM Based 3d Models of Solid Shapes in Hydromechanic Research

    NASA Astrophysics Data System (ADS)

    Zhang, R.; Schneider, D.; Strauß, B.

    2016-06-01

    The aim of a current study at the Institute of Hydraulic Engineering and Technical Hydromechanics at TU Dresden is to develop a new injection method for quick and economic sealing of dikes or dike bodies, based on a new synthetic material. To validate the technique, an artificial part of a sand dike was built in an experimental hall. The synthetic material was injected, which afterwards spreads in the inside of the dike. After the material was fully solidified, the surrounding sand was removed with an excavator. In this paper, two methods, which applied terrestrial laser scanning (TLS) and structure from motion (SfM) respectively, for the acquisition of a 3D point cloud of the remaining shapes are described and compared. Combining with advanced software packages, a triangulated 3D model was generated and subsequently the volume of vertical sections of the shape were calculated. As the calculation of the volume revealed differences between the TLS and the SfM 3D model, a thorough qualitative comparison of the two models will be presented as well as a detailed accuracy assessment. The main influence of the accuracy is caused by generalisation in case of gaps due to occlusions in the 3D point cloud. Therefore, improvements for the data acquisition with TLS and SfM for such kind of objects are suggested in the paper.

  2. Statistical shape analysis using 3D Poisson equation-A quantitatively validated approach.

    PubMed

    Gao, Yi; Bouix, Sylvain

    2016-05-01

    Statistical shape analysis has been an important area of research with applications in biology, anatomy, neuroscience, agriculture, paleontology, etc. Unfortunately, the proposed methods are rarely quantitatively evaluated, and as shown in recent studies, when they are evaluated, significant discrepancies exist in their outputs. In this work, we concentrate on the problem of finding the consistent location of deformation between two population of shapes. We propose a new shape analysis algorithm along with a framework to perform a quantitative evaluation of its performance. Specifically, the algorithm constructs a Signed Poisson Map (SPoM) by solving two Poisson equations on the volumetric shapes of arbitrary topology, and statistical analysis is then carried out on the SPoMs. The method is quantitatively evaluated on synthetic shapes and applied on real shape data sets in brain structures. PMID:26874288

  3. Shaped 3D Singular Spectrum Analysis for Quantifying Gene Expression, with Application to the Early Zebrafish Embryo

    PubMed Central

    Shlemov, Alex; Golyandina, Nina; Holloway, David; Spirov, Alexander

    2015-01-01

    Recent progress in microscopy technologies, biological markers, and automated processing methods is making possible the development of gene expression atlases at cellular-level resolution over whole embryos. Raw data on gene expression is usually very noisy. This noise comes from both experimental (technical/methodological) and true biological sources (from stochastic biochemical processes). In addition, the cells or nuclei being imaged are irregularly arranged in 3D space. This makes the processing, extraction, and study of expression signals and intrinsic biological noise a serious challenge for 3D data, requiring new computational approaches. Here, we present a new approach for studying gene expression in nuclei located in a thick layer around a spherical surface. The method includes depth equalization on the sphere, flattening, interpolation to a regular grid, pattern extraction by Shaped 3D singular spectrum analysis (SSA), and interpolation back to original nuclear positions. The approach is demonstrated on several examples of gene expression in the zebrafish egg (a model system in vertebrate development). The method is tested on several different data geometries (e.g., nuclear positions) and different forms of gene expression patterns. Fully 3D datasets for developmental gene expression are becoming increasingly available; we discuss the prospects of applying 3D-SSA to data processing and analysis in this growing field. PMID:26495320

  4. Graph-regularized 3D shape reconstruction from highly anisotropic and noisy images

    PubMed Central

    Heinrich, Stephanie; Drewe, Philipp; Lou, Xinghua; Umrania, Shefali; Rätsch, Gunnar

    2014-01-01

    Analysis of microscopy images can provide insight into many biological processes. One particularly challenging problem is cellular nuclear segmentation in highly anisotropic and noisy 3D image data. Manually localizing and segmenting each and every cellular nucleus is very time-consuming, which remains a bottleneck in large-scale biological experiments. In this work, we present a tool for automated segmentation of cellular nuclei from 3D fluorescent microscopic data. Our tool is based on state-of-the-art image processing and machine learning techniques and provides a user-friendly graphical user interface. We show that our tool is as accurate as manual annotation and greatly reduces the time for the registration. PMID:25866587

  5. Changes in quantitative 3D shape features of the optic nerve head associated with age

    NASA Astrophysics Data System (ADS)

    Christopher, Mark; Tang, Li; Fingert, John H.; Scheetz, Todd E.; Abramoff, Michael D.

    2013-02-01

    Optic nerve head (ONH) structure is an important biological feature of the eye used by clinicians to diagnose and monitor progression of diseases such as glaucoma. ONH structure is commonly examined using stereo fundus imaging or optical coherence tomography. Stereo fundus imaging provides stereo views of the ONH that retain 3D information useful for characterizing structure. In order to quantify 3D ONH structure, we applied a stereo correspondence algorithm to a set of stereo fundus images. Using these quantitative 3D ONH structure measurements, eigen structures were derived using principal component analysis from stereo images of 565 subjects from the Ocular Hypertension Treatment Study (OHTS). To evaluate the usefulness of the eigen structures, we explored associations with the demographic variables age, gender, and race. Using regression analysis, the eigen structures were found to have significant (p < 0.05) associations with both age and race after Bonferroni correction. In addition, classifiers were constructed to predict the demographic variables based solely on the eigen structures. These classifiers achieved an area under receiver operating characteristic curve of 0.62 in predicting a binary age variable, 0.52 in predicting gender, and 0.67 in predicting race. The use of objective, quantitative features or eigen structures can reveal hidden relationships between ONH structure and demographics. The use of these features could similarly allow specific aspects of ONH structure to be isolated and associated with the diagnosis of glaucoma, disease progression and outcomes, and genetic factors.

  6. Construction of a neuroanatomical shape complex atlas from 3D MRI brain structures.

    PubMed

    Chen, Ting; Rangarajan, Anand; Eisenschenk, Stephan J; Vemuri, Baba C

    2012-04-15

    Brain atlas construction has attracted significant attention lately in the neuroimaging community due to its application to the characterization of neuroanatomical shape abnormalities associated with various neurodegenerative diseases or neuropsychiatric disorders. Existing shape atlas construction techniques usually focus on the analysis of a single anatomical structure in which the important inter-structural information is lost. This paper proposes a novel technique for constructing a neuroanatomical shape complex atlas based on an information geometry framework. A shape complex is a collection of neighboring shapes - for example, the thalamus, amygdala and the hippocampus circuit - which may exhibit changes in shape across multiple structures during the progression of a disease. In this paper, we represent the boundaries of the entire shape complex using the zero level set of a distance transform function S(x). We then re-derive the relationship between the stationary state wave function ψ(x) of the Schrödinger equation [formula in text] and the eikonal equation [formula in text] satisfied by any distance function. This leads to a one-to-one map (up to scale) between ψ(x) and S(x) via an explicit relationship. We further exploit this relationship by mapping ψ(x) to a unit hypersphere whose Riemannian structure is fully known, thus effectively turn ψ(x) into the square-root of a probability density function. This allows us to make comparisons - using elegant, closed-form analytic expressions - between shape complexes represented as square-root densities. A shape complex atlas is constructed by computing the Karcher mean ψ¯(x) in the space of square-root densities and then inversely mapping it back to the space of distance transforms in order to realize the atlas shape. We demonstrate the shape complex atlas computation technique via a set of experiments on a population of brain MRI scans including controls and epilepsy patients with either right anterior

  7. Derivatives in discrete mathematics: a novel graph-theoretical invariant for generating new 2/3D molecular descriptors. I. Theory and QSPR application.

    PubMed

    Marrero-Ponce, Yovani; Santiago, Oscar Martínez; López, Yoan Martínez; Barigye, Stephen J; Torrens, Francisco

    2012-11-01

    In this report, we present a new mathematical approach for describing chemical structures of organic molecules at atomic-molecular level, proposing for the first time the use of the concept of the derivative ([Formula: see text]) of a molecular graph (MG) with respect to a given event (E), to obtain a new family of molecular descriptors (MDs). With this purpose, a new matrix representation of the MG, which generalizes graph's theory's traditional incidence matrix, is introduced. This matrix, denominated the generalized incidence matrix, Q, arises from the Boolean representation of molecular sub-graphs that participate in the formation of the graph molecular skeleton MG and could be complete (representing all possible connected sub-graphs) or constitute sub-graphs of determined orders or types as well as a combination of these. The Q matrix is a non-quadratic and unsymmetrical in nature, its columns (n) and rows (m) are conditions (letters) and collection of conditions (words) with which the event occurs. This non-quadratic and unsymmetrical matrix is transformed, by algebraic manipulation, to a quadratic and symmetric matrix known as relations frequency matrix, F, which characterizes the participation intensity of the conditions (letters) in the events (words). With F, we calculate the derivative over a pair of atomic nuclei. The local index for the atomic nuclei i, Δ(i), can therefore be obtained as a linear combination of all the pair derivatives of the atomic nuclei i with all the rest of the j's atomic nuclei. Here, we also define new strategies that generalize the present form of obtaining global or local (group or atom-type) invariants from atomic contributions (local vertex invariants, LOVIs). In respect to this, metric (norms), means and statistical invariants are introduced. These invariants are applied to a vector whose components are the values Δ(i) for the atomic nuclei of the molecule or its fragments. Moreover, with the purpose of differentiating

  8. Estimation of aortic valve leaflets from 3D CT images using local shape dictionaries and linear coding

    NASA Astrophysics Data System (ADS)

    Liang, Liang; Martin, Caitlin; Wang, Qian; Sun, Wei; Duncan, James

    2016-03-01

    Aortic valve (AV) disease is a significant cause of morbidity and mortality. The preferred treatment modality for severe AV disease is surgical resection and replacement of the native valve with either a mechanical or tissue prosthetic. In order to develop effective and long-lasting treatment methods, computational analyses, e.g., structural finite element (FE) and computational fluid dynamic simulations, are very effective for studying valve biomechanics. These computational analyses are based on mesh models of the aortic valve, which are usually constructed from 3D CT images though many hours of manual annotation, and therefore an automatic valve shape reconstruction method is desired. In this paper, we present a method for estimating the aortic valve shape from 3D cardiac CT images, which is represented by triangle meshes. We propose a pipeline for aortic valve shape estimation which includes novel algorithms for building local shape dictionaries and for building landmark detectors and curve detectors using local shape dictionaries. The method is evaluated on real patient image dataset using a leave-one-out approach and achieves an average accuracy of 0.69 mm. The work will facilitate automatic patient-specific computational modeling of the aortic valve.

  9. Morphogenesis and mechanostabilization of complex natural and 3D printed shapes

    PubMed Central

    Tiwary, Chandra Sekhar; Kishore, Sharan; Sarkar, Suman; Mahapatra, Debiprosad Roy; Ajayan, Pulickel M.; Chattopadhyay, Kamanio

    2015-01-01

    The natural selection and the evolutionary optimization of complex shapes in nature are closely related to their functions. Mechanostabilization of shape of biological structure via morphogenesis has several beautiful examples. With the help of simple mechanics-based modeling and experiments, we show an important causality between natural shape selection as evolutionary outcome and the mechanostabilization of seashells. The effect of biological growth on the mechanostabilization process is identified with examples of two natural shapes of seashells, one having a diametrically converging localization of stresses and the other having a helicoidally concentric localization of stresses. We demonstrate how the evolved shape enables predictable protection of soft body parts of the species. The effect of bioavailability of natural material is found to be a secondary factor compared to shape selectivity, where material microstructure only acts as a constraint to evolutionary optimization. This is confirmed by comparing the mechanostabilization behavior of three-dimensionally printed synthetic polymer structural shapes with that of natural seashells consisting of ceramic and protein. This study also highlights interesting possibilities in achieving a new design of structures made of ordinary materials which have bio-inspired optimization objectives. PMID:26601170

  10. Construction of Neuroanatomical Shape Complex Atlas from 3D Brain MRI

    PubMed Central

    Chen, Ting; Rangarajan, Anand; Eisenschenk, Stephan J.; Vemuri, Baba C.

    2010-01-01

    This paper proposes a novel technique for constructing a neuroanatomical shape complex atlas using an information geometry framework. A shape complex is a collection of shapes in a local neighborhood. We represent the boundary of the entire shape complex using the zero level set of a distance function S(x). The spatial relations between the different anatomical structures constituting the shape complex are captured via the distance transform. We then leverage the well known relationship between the stationary state wave function ψ(x) of the Schrödinger equation −ħ2∇2ψ + ψ = 0 and the eikonal equation ‖∇S‖ = 1 satisfied by any distance function S(x). This leads to a one-to-one map between ψ(x) and S(x) and allows for recovery of S(x) from ψ(x) through an explicit mathematical relationship. Since the wave function can be regarded as a square-root density function, we are able to exploit this connection and convert shape complex distance transforms into probability density functions. Furthermore, square-root density functions can be seen as points on a unit hypersphere whose Riemannian structure is fully known. A shape complex atlas is constructed by first computing the Karcher mean ψ̄(x) of the wave functions, followed by an inverse mapping of the estimated mean back to the space of distance transforms in order to realize the atlas. We demonstrate the shape complex atlas computation via a set of experiments on a population of brain MRI scans. We also present modes of variation from the computed atlas for the control population to demonstrate the shape complex variability. PMID:20879384

  11. Construction of neuroanatomical shape complex atlas from 3D brain MRI.

    PubMed

    Chen, Ting; Rangarajan, Anand; Eisenschenk, Stephan J; Vemuri, Baba C

    2010-01-01

    This paper proposes a novel technique for constructing a neuroanatomical shape complex atlas using an information geometry framework. A shape complex is a collection of shapes in a local neighborhood. We represent the boundary of the entire shape complex using the zero level set of a distance function S(x). The spatial relations between the different anatomical structures constituting the shape complex are captured via the distance transform. We then leverage the well known relationship between the stationary state wave function psi(x) of the Schrödinger equation -h2nabla2 psi + psi = 0 and the eikonal equation //nablaS// = 1 satisfied by any distance function S(x). This leads to a one-to-one map between psi(x) and S(x) and allows for recovery of S(x) from psi(x) through an explicit mathematical relationship. Since the wave function can be regarded as a square-root density function, we are able to exploit this connection and convert shape complex distance transforms into probability density functions. Furthermore, square-root density functions can be seen as points on a unit hypersphere whose Riemannian structure is fully known. A shape complex atlas is constructed by first computing the Karcher mean psi(x) of the wave functions, followed by an inverse mapping of the estimated mean back to the space of distance transforms in order to realize the atlas. We demonstrate the shape complex atlas computation via a set of experiments on a population of brain MRI scans. We also present modes of variation from the computed atlas for the control population to demonstrate the shape complex variability. PMID:20879384

  12. ShapeShop: Free-Form 3D Design with Implicit Solid Modeling

    NASA Astrophysics Data System (ADS)

    Schmidt, Ryan; Wyvill, Brian

    A technique is described for inflating 2D contours into rounded three-dimensional implicit volumes. Sketch-based modeling operations are defined that combine these basic shapes using standard blending and CSG operators. Since the underlying volume hierarchy is by definition a construction history, individual sketched components can be non-linearly edited and removed. For example, holes can be interactively dragged through a shape. ShapeShop also provides 2D drawing assistance using a new curve-sketching system based on variational contours. A wide range of models can be sketched with ShapeShop, from cartoon-like characters to detailed mechanical parts. Examples are shown which demonstrate significantly higher model complexity than existing systems.

  13. On 3-D modeling and automatic regridding in shape design sensitivity analysis

    NASA Technical Reports Server (NTRS)

    Choi, Kyung K.; Yao, Tse-Min

    1987-01-01

    The material derivative idea of continuum mechanics and the adjoint variable method of design sensitivity analysis are used to obtain a computable expression for the effect of shape variations on measures of structural performance of three-dimensional elastic solids.

  14. 3D Segmentation of Rodent Brain Structures Using Hierarchical Shape Priors and Deformable Models

    PubMed Central

    Zhang, Shaoting; Huang, Junzhou; Uzunbas, Mustafa; Shen, Tian; Delis, Foteini; Huang, Xiaolei; Volkow, Nora; Thanos, Panayotis; Metaxas, Dimitris N.

    2016-01-01

    In this paper, we propose a method to segment multiple rodent brain structures simultaneously. This method combines deformable models and hierarchical shape priors within one framework. The deformation module employs both gradient and appearance information to generate image forces to deform the shape. The shape prior module uses Principal Component Analysis to hierarchically model the multiple structures at both global and local levels. At the global level, the statistics of relative positions among different structures are modeled. At the local level, the shape statistics within each structure is learned from training samples. Our segmentation method adaptively employs both priors to constrain the intermediate deformation result. This prior constraint improves the robustness of the model and benefits the segmentation accuracy. Another merit of our prior module is that the size of the training data can be small, because the shape prior module models each structure individually and combines them using global statistics. This scheme can preserve shape details better than directly applying PCA on all structures. We use this method to segment rodent brain structures, such as the cerebellum, the left and right striatum, and the left and right hippocampus. The experiments show that our method works effectively and this hierarchical prior improves the segmentation performance. PMID:22003750

  15. 3D segmentation of rodent brain structures using hierarchical shape priors and deformable models.

    PubMed

    Zhang, Shaoting; Huang, Junzhou; Uzunbas, Mustafa; Shen, Tian; Delis, Foteini; Huang, Xiaolei; Volkow, Nora; Thanos, Panayotis; Metaxas, Dimitris N

    2011-01-01

    In this paper, we propose a method to segment multiple rodent brain structures simultaneously. This method combines deformable models and hierarchical shape priors within one framework. The deformation module employs both gradient and appearance information to generate image forces to deform the shape. The shape prior module uses Principal Component Analysis to hierarchically model the multiple structures at both global and local levels. At the global level, the statistics of relative positions among different structures are modeled. At the local level, the shape statistics within each structure is learned from training samples. Our segmentation method adaptively employs both priors to constrain the intermediate deformation result. This prior constraint improves the robustness of the model and benefits the segmentation accuracy. Another merit of our prior module is that the size of the training data can be small, because the shape prior module models each structure individually and combines them using global statistics. This scheme can preserve shape details better than directly applying PCA on all structures. We use this method to segment rodent brain structures, such as the cerebellum, the left and right striatum, and the left and right hippocampus. The experiments show that our method works effectively and this hierarchical prior improves the segmentation performance. PMID:22003750

  16. Surface processes on the asteroid deduced from the external 3D shapes and surface features of Itokawa particles

    NASA Astrophysics Data System (ADS)

    Tsuchiyama, A.; Matsumoto, T.

    2015-10-01

    Particles on the surface of S-type Asteroid 25143 Itokawa were successfully recovered by the Hayabusa mission of JAXA (e.g., [1,2]). They are not only the first samples recovered from an asteroid, but also the second extraterrestrial regolith to have been sampled, the first being the Moon by Apollo and Luna missions. The analysis of tiny sample particles (20-200 μm) shows that the Itokawa surface material is consistent with LL chondrites suffered by space weathering as expected and brought an end to the origin of meteorites (e.g., [2-4]). In addition, the examination of Itokawa particles allow studies of surface processes on the asteroid because regolith particles can be regarded as an interface with the space environment, where the impacts of small objects and irradiation by the solar wind and galactic cosmic rays should have been recorded. External 3D shapes and surface features of Itokawa regolith particles were examined. Two kinds of surface modification, formation of space-weathering rims mainly by solar wind implantation and surface abrasion by grain migration, were recognized. Spectral change of the asteroid proceeded by formation of space-weathering rims and refreshment of the regolith surfaces. External 3D shapes and surface morphologies of the regolith particles can provide information about formation and evolution history of regolith particles in relation to asteroidal surface processes. 3D shapes of Itokawa regolith particles were obtained using microtomography [3]. The surface nanomiromorpholgy of Itokawa particles were also observed using FE-SEM [5]. However, the number of particles was limited and genial feature on the surface morphology has not been understood. In this study, the surface morphology of Itokawa regolith particles was systematically investigated together with their 3D structures.

  17. A new 3D shape measurement method using digital fringe projection technique

    NASA Astrophysics Data System (ADS)

    Zhang, Jiarui; Zhang, Yingjie; Yu, Mingrang; Xiang, Dehu

    2015-10-01

    This paper proposes a novel optical three-dimensional (3D) measurement method using the traditional space-time stereo system. In the proposed method, the projector not only shoots fringe pattern onto the measurement object to achieve precise matching, but also plays a vital role in the 3D information calculation. With the combination of two cameras and a projector, two digital fringe projection (DFP) measurement systems and one traditional space-time stereo measurement system can be obtained. In another word, the measurand will be measured three times simultaneously, which results in three independent point clouds of the same region of the object to be measured. So it is necessary to register these three sets of points for obtaining one final data set. The iterative closest points (ICP) method, which is known as the most popular registration approach, is sensitive to the initial estimation of the transformation between the two sets of points to be matched. Thus, a robust rough registration, which is introduced from Natasha, is useful for ICP to realize accurate registration. After registration, a scattered point set with redundant and errors, which are caused by overlapping, is obtained. Then some local surfaces are constructed for those overlapping regions using the moving least squares (MLS) method, and the points extracted from those surfaces are used to replace the points of the overlapping regions. Finally, a simplified, precise point cloud can be obtained.

  18. 3D shape analysis of the brain's third ventricle using a midplane encoded symmetric template model

    PubMed Central

    Kim, Jaeil; Valdés Hernández, Maria del C.; Royle, Natalie A.; Maniega, Susana Muñoz; Aribisala, Benjamin S.; Gow, Alan J.; Bastin, Mark E.; Deary, Ian J.; Wardlaw, Joanna M.; Park, Jinah

    2016-01-01

    Background Structural changes of the brain's third ventricle have been acknowledged as an indicative measure of the brain atrophy progression in neurodegenerative and endocrinal diseases. To investigate the ventricular enlargement in relation to the atrophy of the surrounding structures, shape analysis is a promising approach. However, there are hurdles in modeling the third ventricle shape. First, it has topological variations across individuals due to the inter-thalamic adhesion. In addition, as an interhemispheric structure, it needs to be aligned to the midsagittal plane to assess its asymmetric and regional deformation. Method To address these issues, we propose a model-based shape assessment. Our template model of the third ventricle consists of a midplane and a symmetric mesh of generic shape. By mapping the template's midplane to the individuals’ brain midsagittal plane, we align the symmetric mesh on the midline of the brain before quantifying the third ventricle shape. To build the vertex-wise correspondence between the individual third ventricle and the template mesh, we employ a minimal-distortion surface deformation framework. In addition, to account for topological variations, we implement geometric constraints guiding the template mesh to have zero width where the inter-thalamic adhesion passes through, preventing vertices crossing between left and right walls of the third ventricle. The individual shapes are compared using a vertex-wise deformity from the symmetric template. Results Experiments on imaging and demographic data from a study of aging showed that our model was sensitive in assessing morphological differences between individuals in relation to brain volume (i.e. proxy for general brain atrophy), gender and the fluid intelligence at age 72. It also revealed that the proposed method can detect the regional and asymmetrical deformation unlike the conventional measures: volume (median 1.95 ml, IQR 0.96 ml) and width of the third

  19. Estimating 3D Leaf and Stem Shape of Nursery Paprika Plants by a Novel Multi-Camera Photography System.

    PubMed

    Zhang, Yu; Teng, Poching; Shimizu, Yo; Hosoi, Fumiki; Omasa, Kenji

    2016-01-01

    For plant breeding and growth monitoring, accurate measurements of plant structure parameters are very crucial. We have, therefore, developed a high efficiency Multi-Camera Photography (MCP) system combining Multi-View Stereovision (MVS) with the Structure from Motion (SfM) algorithm. In this paper, we measured six variables of nursery paprika plants and investigated the accuracy of 3D models reconstructed from photos taken by four lens types at four different positions. The results demonstrated that error between the estimated and measured values was small, and the root-mean-square errors (RMSE) for leaf width/length and stem height/diameter were 1.65 mm (R² = 0.98) and 0.57 mm (R² = 0.99), respectively. The accuracies of the 3D model reconstruction of leaf and stem by a 28-mm lens at the first and third camera positions were the highest, and the number of reconstructed fine-scale 3D model shape surfaces of leaf and stem is the most. The results confirmed the practicability of our new method for the reconstruction of fine-scale plant model and accurate estimation of the plant parameters. They also displayed that our system is a good system for capturing high-resolution 3D images of nursery plants with high efficiency. PMID:27314348

  20. Estimating 3D Leaf and Stem Shape of Nursery Paprika Plants by a Novel Multi-Camera Photography System

    PubMed Central

    Zhang, Yu; Teng, Poching; Shimizu, Yo; Hosoi, Fumiki; Omasa, Kenji

    2016-01-01

    For plant breeding and growth monitoring, accurate measurements of plant structure parameters are very crucial. We have, therefore, developed a high efficiency Multi-Camera Photography (MCP) system combining Multi-View Stereovision (MVS) with the Structure from Motion (SfM) algorithm. In this paper, we measured six variables of nursery paprika plants and investigated the accuracy of 3D models reconstructed from photos taken by four lens types at four different positions. The results demonstrated that error between the estimated and measured values was small, and the root-mean-square errors (RMSE) for leaf width/length and stem height/diameter were 1.65 mm (R2 = 0.98) and 0.57 mm (R2 = 0.99), respectively. The accuracies of the 3D model reconstruction of leaf and stem by a 28-mm lens at the first and third camera positions were the highest, and the number of reconstructed fine-scale 3D model shape surfaces of leaf and stem is the most. The results confirmed the practicability of our new method for the reconstruction of fine-scale plant model and accurate estimation of the plant parameters. They also displayed that our system is a good system for capturing high-resolution 3D images of nursery plants with high efficiency. PMID:27314348

  1. Classification of mathematics deficiency using shape and scale analysis of 3D brain structures

    NASA Astrophysics Data System (ADS)

    Kurtek, Sebastian; Klassen, Eric; Gore, John C.; Ding, Zhaohua; Srivastava, Anuj

    2011-03-01

    We investigate the use of a recent technique for shape analysis of brain substructures in identifying learning disabilities in third-grade children. This Riemannian technique provides a quantification of differences in shapes of parameterized surfaces, using a distance that is invariant to rigid motions and re-parameterizations. Additionally, it provides an optimal registration across surfaces for improved matching and comparisons. We utilize an efficient gradient based method to obtain the optimal re-parameterizations of surfaces. In this study we consider 20 different substructures in the human brain and correlate the differences in their shapes with abnormalities manifested in deficiency of mathematical skills in 106 subjects. The selection of these structures is motivated in part by the past links between their shapes and cognitive skills, albeit in broader contexts. We have studied the use of both individual substructures and multiple structures jointly for disease classification. Using a leave-one-out nearest neighbor classifier, we obtained a 62.3% classification rate based on the shape of the left hippocampus. The use of multiple structures resulted in an improved classification rate of 71.4%.

  2. Engineering anatomically shaped vascularized bone grafts with hASCs and 3D-printed PCL scaffolds.

    PubMed

    Temple, Joshua P; Hutton, Daphne L; Hung, Ben P; Huri, Pinar Yilgor; Cook, Colin A; Kondragunta, Renu; Jia, Xiaofeng; Grayson, Warren L

    2014-12-01

    The treatment of large craniomaxillofacial bone defects is clinically challenging due to the limited availability of transplantable autologous bone grafts and the complex geometry of the bones. The ability to regenerate new bone tissues that faithfully replicate the anatomy would revolutionize treatment options. Advances in the field of bone tissue engineering over the past few decades offer promising new treatment alternatives using biocompatible scaffold materials and autologous cells. This approach combined with recent advances in three-dimensional (3D) printing technologies may soon allow the generation of large, bioartificial bone grafts with custom, patient-specific architecture. In this study, we use a custom-built 3D printer to develop anatomically shaped polycaprolactone (PCL) scaffolds with varying internal porosities. These scaffolds are assessed for their ability to support induction of human adipose-derived stem cells (hASCs) to form vasculature and bone, two essential components of functional bone tissue. The development of functional tissues is assessed in vitro and in vivo. Finally, we demonstrate the ability to print large mandibular and maxillary bone scaffolds that replicate fine details extracted from patient's computed tomography scans. The findings of this study illustrate the capabilities and potential of 3D printed scaffolds to be used for engineering autologous, anatomically shaped, vascularized bone grafts. PMID:24510413

  3. Microwave and camera sensor fusion for the shape extraction of metallic 3D space objects

    NASA Technical Reports Server (NTRS)

    Shaw, Scott W.; Defigueiredo, Rui J. P.; Krishen, Kumar

    1989-01-01

    The vacuum of space presents special problems for optical image sensors. Metallic objects in this environment can produce intense specular reflections and deep shadows. By combining the polarized RCS with an incomplete camera image, it has become possible to better determine the shape of some simple three-dimensional objects. The radar data are used in an iterative procedure that generates successive approximations to the target shape by minimizing the error between computed scattering cross-sections and the observed radar returns. Favorable results have been obtained for simulations and experiments reconstructing plates, ellipsoids, and arbitrary surfaces.

  4. Synthesis of various 3D porous gold-based alloy nanostructures with branched shapes.

    PubMed

    Swiatkowska-Warkocka, Zaneta; Pyatenko, Alexander; Koshizaki, Naoto; Kawaguchi, Kenji

    2016-12-01

    This paper presents a facile and flexible synthesis platform for various 3D porous gold-iron nanostructures based on selective laser heating of colloidal nanoparticles and selective acid treatment. The presented approach allows to create porous gold-based nanostructures with different morphologies. In addition, for the first time, our studies indicate that various nanoarchitectures (brain-like, flower-like, cage-like, or raspberry-like structures) can be obtained by varying the experimental conditions such as size of Au and Fe3O4 nanoparticles, solvent, laser fluence, and irradiation time. We believe that these porous structures will find immediate applications in catalysis and separations, where high surface area and magnetic properties are often simultaneously required. PMID:27565959

  5. Points based reconstruction and rendering of 3D shapes from large volume dataset

    NASA Astrophysics Data System (ADS)

    Zhao, Mingchang; Tian, Jie; He, Huiguang; Li, Guangming

    2003-05-01

    In the field of medical imaging, researchers often need visualize lots of 3D datasets to get the informaiton contained in these datasets. But the huge data genreated by modern medical imaging device challenge the real time processing and rendering algorithms at all the time. Spurring by the great achievement of Points Based Rendering (PBR) in the fields of computer graphics to render very large meshes, we propose a new algorithm to use the points as basic primitive of surface reconstruction and rendering to interactively reconstruct and render very large volume dataset. By utilizing the special characteristics of medical image datasets, we obtain a fast and efficient points-based reconstruction and rendering algorithm in common PC. The experimental results show taht this algorithm is feasible and efficient.

  6. Non-rigid registration of small animal skeletons from micro-CT using 3D shape context

    NASA Astrophysics Data System (ADS)

    Xiao, Di; Bourgeat, Pierrick; Fripp, Jurgen; Acosta Tamayo, Oscar; Gregoire, Marie Claude; Salvado, Olivier

    2009-02-01

    Small animal registration is an important step for molecular image analysis. Skeleton registration from whole-body or only partial micro Computerized Tomography (CT) image is often performed to match individual rats to atlases and templates, for example to identify organs in positron emission tomography (PET). In this paper, we extend the shape context matching technique for 3D surface registration and apply it for rat hind limb skeleton registration from CT images. Using the proposed method, after standard affine iterative closest point (ICP) registration, correspondences between the 3D points from sour and target objects were robustly found and used to deform the limb skeleton surface with thin-plate-spline (TPS). Experiments are described using phantoms and actual rat hind limb skeletons. On animals, mean square errors were decreased by the proposed registration compared to that of its initial alignment. Visually, skeletons were successfully registered even in cases of very different animal poses.

  7. 3D shape tracking of minimally invasive medical instruments using optical frequency domain reflectometry

    NASA Astrophysics Data System (ADS)

    Parent, Francois; Kanti Mandal, Koushik; Loranger, Sebastien; Watanabe Fernandes, Eric Hideki; Kashyap, Raman; Kadoury, Samuel

    2016-03-01

    We propose here a new alternative to provide real-time device tracking during minimally invasive interventions using a truly-distributed strain sensor based on optical frequency domain reflectometry (OFDR) in optical fibers. The guidance of minimally invasive medical instruments such as needles or catheters (ex. by adding a piezoelectric coating) has been the focus of extensive research in the past decades. Real-time tracking of instruments in medical interventions facilitates image guidance and helps the user to reach a pre-localized target more precisely. Image-guided systems using ultrasound imaging and shape sensors based on fiber Bragg gratings (FBG)-embedded optical fibers can provide retroactive feedback to the user in order to reach the targeted areas with even more precision. However, ultrasound imaging with electro-magnetic tracking cannot be used in the magnetic resonance imaging (MRI) suite, while shape sensors based on FBG embedded in optical fibers provides discrete values of the instrument position, which requires approximations to be made to evaluate its global shape. This is why a truly-distributed strain sensor based on OFDR could enhance the tracking accuracy. In both cases, since the strain is proportional to the radius of curvature of the fiber, a strain sensor can provide the three-dimensional shape of medical instruments by simply inserting fibers inside the devices. To faithfully follow the shape of the needle in the tracking frame, 3 fibers glued in a specific geometry are used, providing 3 degrees of freedom along the fiber. Near real-time tracking of medical instruments is thus obtained offering clear advantages for clinical monitoring in remotely controlled catheter or needle guidance. We present results demonstrating the promising aspects of this approach as well the limitations of using the OFDR technique.

  8. Determination of a new uniform thorax density representative of the living population from 3D external body shape modeling.

    PubMed

    Amabile, Celia; Choisne, Julie; Nérot, Agathe; Pillet, Hélène; Skalli, Wafa

    2016-05-01

    Body segment parameters (BSP) for each body׳s segment are needed for biomechanical analysis. To provide population-specific BSP, precise estimation of body׳s segments volume and density are needed. Widely used uniform densities, provided by cadavers׳ studies, did not consider the air present in the lungs when determining the thorax density. The purpose of this study was to propose a new uniform thorax density representative of the living population from 3D external body shape modeling. Bi-planar X-ray radiographies were acquired on 58 participants allowing 3D reconstructions of the spine, rib cage and human body shape. Three methods of computing the thorax mass were compared for 48 subjects: (1) the Dempster Uniform Density Method, currently in use for BSPs calculation, using Dempster density data, (2) the Personalized Method using full-description of the thorax based on 3D reconstruction of the rib cage and spine and (3) the Improved Uniform Density Method using a uniform thorax density resulting from the Personalized Method. For 10 participants, comparison was made between the body mass obtained from a force-plate and the body mass computed with each of the three methods. The Dempster Uniform Density Method presented a mean error of 4.8% in the total body mass compared to the force-plate vs 0.2% for the Personalized Method and 0.4% for the Improved Uniform Density Method. The adjusted thorax density found from the 3D reconstruction was 0.74g/cm(3) for men and 0.73g/cm(3) for women instead of the one provided by Dempster (0.92g/cm(3)), leading to a better estimate of the thorax mass and body mass. PMID:26976227

  9. Design and fabrication of 3D-printed anatomically shaped lumbar cage for intervertebral disc (IVD) degeneration treatment.

    PubMed

    Serra, T; Capelli, C; Toumpaniari, R; Orriss, I R; Leong, J J H; Dalgarno, K; Kalaskar, D M

    2016-01-01

    Spinal fusion is the gold standard surgical procedure for degenerative spinal conditions when conservative therapies have been unsuccessful in rehabilitation of patients. Novel strategies are required to improve biocompatibility and osseointegration of traditionally used materials for lumbar cages. Furthermore, new design and technologies are needed to bridge the gap due to the shortage of optimal implant sizes to fill the intervertebral disc defect. Within this context, additive manufacturing technology presents an excellent opportunity to fabricate ergonomic shape medical implants. The goal of this study is to design and manufacture a 3D-printed lumbar cage for lumbar interbody fusion. Optimisations of the proposed implant design and its printing parameters were achieved via in silico analysis. The final construct was characterised via scanning electron microscopy, contact angle, x-ray micro computed tomography (μCT), atomic force microscopy, and compressive test. Preliminary in vitro cell culture tests such as morphological assessment and metabolic activities were performed to access biocompatibility of 3D-printed constructs. Results of in silico analysis provided a useful platform to test preliminary cage design and to find an optimal value of filling density for 3D printing process. Surface characterisation confirmed a uniform coating of nHAp with nanoscale topography. Mechanical evaluation showed mechanical properties of final cage design similar to that of trabecular bone. Preliminary cell culture results showed promising results in terms of cell growth and activity confirming biocompatibility of constructs. Thus for the first time, design optimisation based on computational and experimental analysis combined with the 3D-printing technique for intervertebral fusion cage has been reported in a single study. 3D-printing is a promising technique for medical applications and this study paves the way for future development of customised implants in spinal

  10. Mixed-scale channel networks including Kingfisher-beak-shaped 3D microfunnels for efficient single particle entrapment.

    PubMed

    Lee, Yunjeong; Lim, Yeongjin; Shin, Heungjoo

    2016-06-01

    Reproducible research results for nanofluidics and their applications require viable fabrication technologies to produce nanochannels integrated with microchannels that can guide fluid flow and analytes into/out of the nanochannels. We present the simple fabrication of mixed-scale polydimethylsiloxane (PDMS) channel networks consisting of nanochannels and microchannels via a single molding process using a monolithic mixed-scale carbon mold. The monolithic carbon mold is fabricated by pyrolyzing a polymer mold patterned by photolithography. During pyrolysis, the polymer mold shrinks by ∼90%, which enables nanosized carbon molds to be produced without a complex nanofabrication process. Because of the good adhesion between the polymer mold and the Si substrate, non-uniform volume reduction occurs during pyrolysis resulting in the formation of curved carbon mold side walls. These curved side walls and the relatively low surface energy of the mold provide efficient demolding of the PDMS channel networks. In addition, the trigonal prismatic shape of the polymer is converted into to a Kingfisher-beak-shaped carbon structure due to the non-uniform volume reduction. The transformation of this mold architecture produces a PDMS Kingfisher-beak-shaped 3D microfunnel that connects the microchannel and the nanochannel smoothly. The smooth reduction in the cross-sectional area of the 3D microfunnels enables efficient single microparticle trapping at the nanochannel entrance; this is beneficial for studies of cell transfection. PMID:27279423

  11. Reconstruction of 3D Shapes of Opaque Cumulus Clouds from Airborne Multiangle Imaging: A Proof-of-Concept

    NASA Astrophysics Data System (ADS)

    Davis, A. B.; Bal, G.; Chen, J.

    2015-12-01

    Operational remote sensing of microphysical and optical cloud properties is invariably predicated on the assumption of plane-parallel slab geometry for the targeted cloud. The sole benefit of this often-questionable assumption about the cloud is that it leads to one-dimensional (1D) radiative transfer (RT)---a textbook, computationally tractable model. We present new results as evidence that, thanks to converging advances in 3D RT, inverse problem theory, algorithm implementation, and computer hardware, we are at the dawn of a new era in cloud remote sensing where we can finally go beyond the plane-parallel paradigm. Granted, the plane-parallel/1D RT assumption is reasonable for spatially extended stratiform cloud layers, as well as the smoothly distributed background aerosol layers. However, these 1D RT-friendly scenarios exclude cases that are critically important for climate physics. 1D RT---whence operational cloud remote sensing---fails catastrophically for cumuliform clouds that have fully 3D outer shapes and internal structures driven by shallow or deep convection. For these situations, the first order of business in a robust characterization by remote sensing is to abandon the slab geometry framework and determine the 3D geometry of the cloud, as a first step toward bone fide 3D cloud tomography. With this specific goal in mind, we deliver a proof-of-concept for an entirely new kind of remote sensing applicable to 3D clouds. It is based on highly simplified 3D RT and exploits multi-angular suites of cloud images at high spatial resolution. Airborne sensors like AirMSPI readily acquire such data. The key element of the reconstruction algorithm is a sophisticated solution of the nonlinear inverse problem via linearization of the forward model and an iteration scheme supported, where necessary, by adaptive regularization. Currently, the demo uses a 2D setting to show how either vertical profiles or horizontal slices of the cloud can be accurately reconstructed

  12. Sloped irradiation techniques in deep x-ray lithography for 3D shaping of microstructures

    NASA Astrophysics Data System (ADS)

    Feiertag, Gregor; Ehrfeld, Wolfgang; Lehr, Heinz; Schmidt, Martin

    1997-07-01

    Deep x-ray lithography (DXRL) makes use of synchrotron radiation (SR) to transfer an absorber pattern from a mask into a thick resist layer. For most applications the direction of the SR beam is perpendicular to the mask and the resist plane. Subsequent replication techniques, e.g. electroforming, moulding or hot embossing, convert the resist relief obtained after development into micromechanical, microfluidic or micro- optical elements made from metals, polymers or ceramic materials. This process sequence is well known as the LIGA technique. The normal shadow printing process is complemented and enhanced by advanced techniques, e.g. by tilting the mask and the resist with respect to the SR beam or aligned multiple exposures to produce step-like structures. In this paper a technology for the fabrication of multidirectional inclined microstructures applying multiple tilted DXRL will be presented. Instead of one exposure with the mask/substrate assembly perpendicular to the SR beam, irradiation is performed several times applying tilt and rotational angles of the mask/substrate assembly relative to the SR beam. A huge variety of 3-D structures can be obtained using this technique. Some possible applications will be discussed.

  13. Mandibular shape analysis in fossil hominins: Fourier descriptors in norma lateralis.

    PubMed

    Lestrel, P E; Wolfe, C A; Bodt, A

    2013-08-01

    Biological shape can be defined as the boundary of a form in 2-space (R(2)). An earlier study (Lestrel et al., 2010, HOMO-J. Comp. Hum. Biol.) of the cranial vault found that there were statistically significant differences between each of the three groups: H. erectus, H. heidelbergensis, and H. neanderthalensis compared with H. sapiens. In contrast, there was no statistically significant difference among the first three groups. These results suggest that these three groups may have formed single evolving lineage while H. sapiens represents a separate evolutionary development. The purpose of the current research was to discern if the mandible reflected a similar pattern as the cranial vault data. This study used lateral jpeg images of the mandible. Five fossil samples were used: A. robustus (n=7), H. erectus (n=12), H. heidelbergensis (n=4), H. neanderthalensis (n=22) and H. sapiens (n=61). Each mandible image was pre-processed with Photoshop Elements. Each image was then submitted to a specially written routine that digitized the 84 points along the mandible boundary. Each mandible was fitted with elliptical Fourier functions (EFFs). Procrustes superimposition was imposed to insure minimum shape differences. The mandible results largely mirrored the earlier cranial vault study with one exception. Statistically significant results were obtained for the mandible between the H. erectus and H. neanderthalensis samples in contrast to the earlier cranial vault data. F-tests disclosed that the statistical significance was limited to the anterior symphysis of the mandible. This mosaic pattern may be explained by the reduction in prognathism with the concomitant if rudimentary development of the chin as seen in H. neanderthalensis compared to H. erectus. PMID:23769600

  14. GPU accelerated registration of a statistical shape model of the lumbar spine to 3D ultrasound images

    NASA Astrophysics Data System (ADS)

    Khallaghi, Siavash; Abolmaesumi, Purang; Gong, Ren Hui; Chen, Elvis; Gill, Sean; Boisvert, Jonathan; Pichora, David; Borschneck, Dan; Fichtinger, Gabor; Mousavi, Parvin

    2011-03-01

    We present a parallel implementation of a statistical shape model registration to 3D ultrasound images of the lumbar vertebrae (L2-L4). Covariance Matrix Adaptation Evolution Strategy optimization technique, along with Linear Correlation of Linear Combination similarity metric have been used, to improve the robustness and capture range of the registration approach. Instantiation and ultrasound simulation have been implemented on a graphics processing unit for a faster registration. Phantom studies show a mean target registration error of 3.2 mm, while 80% of all the cases yield target registration error of below 3.5 mm.

  15. 3D active shape models of human brain structures: application to patient-specific mesh generation

    NASA Astrophysics Data System (ADS)

    Ravikumar, Nishant; Castro-Mateos, Isaac; Pozo, Jose M.; Frangi, Alejandro F.; Taylor, Zeike A.

    2015-03-01

    The use of biomechanics-based numerical simulations has attracted growing interest in recent years for computer-aided diagnosis and treatment planning. With this in mind, a method for automatic mesh generation of brain structures of interest, using statistical models of shape (SSM) and appearance (SAM), for personalised computational modelling is presented. SSMs are constructed as point distribution models (PDMs) while SAMs are trained using intensity profiles sampled from a training set of T1-weighted magnetic resonance images. The brain structures of interest are, the cortical surface (cerebrum, cerebellum & brainstem), lateral ventricles and falx-cerebri membrane. Two methods for establishing correspondences across the training set of shapes are investigated and compared (based on SSM quality): the Coherent Point Drift (CPD) point-set registration method and B-spline mesh-to-mesh registration method. The MNI-305 (Montreal Neurological Institute) average brain atlas is used to generate the template mesh, which is deformed and registered to each training case, to establish correspondence over the training set of shapes. 18 healthy patients' T1-weightedMRimages form the training set used to generate the SSM and SAM. Both model-training and model-fitting are performed over multiple brain structures simultaneously. Compactness and generalisation errors of the BSpline-SSM and CPD-SSM are evaluated and used to quantitatively compare the SSMs. Leave-one-out cross validation is used to evaluate SSM quality in terms of these measures. The mesh-based SSM is found to generalise better and is more compact, relative to the CPD-based SSM. Quality of the best-fit model instance from the trained SSMs, to test cases are evaluated using the Hausdorff distance (HD) and mean absolute surface distance (MASD) metrics.

  16. Materials ``alchemy'': Shape-preserving chemical transformation of micro-to-macroscopic 3-D structures

    NASA Astrophysics Data System (ADS)

    Sandhage, Kenneth H.

    2010-06-01

    The scalable fabrication of nano-structured materials with complex morphologies and tailorable chemistries remains a significant challenge. One strategy for such synthesis consists of the generation of a solid structure with a desired morphology (a “preform”), followed by reactive conversion of the preform into a new chemistry. Several gas/solid and liquid/solid reaction processes that are capable of such chemical conversion into new micro-to-nano-structured materials, while preserving the macroscopic-to-microscopic preform morphologies, are described in this overview. Such shape-preserving chemical transformation of one material into another could be considered a modern type of materials “alchemy.”

  17. Novel invariant Zernike moments as a shape descriptor for machine vision

    NASA Astrophysics Data System (ADS)

    Cao, Danhua; Jiang, Shixiong; Wu, Yubin; Zhu, Song

    2013-12-01

    We present a way to construct a complete set of scaling rotation and translation invariants extract directly from Zernike moments. Zernike moment can be constructed by Radial moment. In our method in order to construct invariant Zernike moment is to achieve invariant Radial moment which is component of Zernike moment. We use matrix form to denote relationship between Radial and Zernike moment, which makes derivation more comprehensible. The translation invariant Radial moment is first introduced, for it is most complicated part of all the three invariant. Rotation and scaling invariant Radial moment is achieved by normalizing the factor caused by rotation and scaling. The form of invariant radial moment is to combine three parts of invariant. Some experiment has done to test the performance of invariance. In this experiment we take an image library containing 23,329 files which are built by translation rotation and zoom in out of one origin Latin character image. Most of the value of standard deviation ratio by mean of proposed moments is nearly 1%. In addition, retrieval experiment is to test the discrimination ability. MPEG-7 CE shape1 - Part A library is taken in this experiment. The recall rate in part A1 is 96.6% and is 100% in part A2.

  18. Quantitative Computed Tomographic Descriptors Associate Tumor Shape Complexity and Intratumor Heterogeneity with Prognosis in Lung Adenocarcinoma

    PubMed Central

    Grove, Olya; Berglund, Anders E.; Schabath, Matthew B.; Aerts, Hugo J. W. L.; Dekker, Andre; Wang, Hua; Velazquez, Emmanuel Rios; Lambin, Philippe; Gu, Yuhua; Balagurunathan, Yoganand; Eikman, Edward; Gatenby, Robert A.; Eschrich, Steven; Gillies, Robert J.

    2015-01-01

    Two CT features were developed to quantitatively describe lung adenocarcinomas by scoring tumor shape complexity (feature 1: convexity) and intratumor density variation (feature 2: entropy ratio) in routinely obtained diagnostic CT scans. The developed quantitative features were analyzed in two independent cohorts (cohort 1: n = 61; cohort 2: n = 47) of patients diagnosed with primary lung adenocarcinoma, retrospectively curated to include imaging and clinical data. Preoperative chest CTs were segmented semi-automatically. Segmented tumor regions were further subdivided into core and boundary sub-regions, to quantify intensity variations across the tumor. Reproducibility of the features was evaluated in an independent test-retest dataset of 32 patients. The proposed metrics showed high degree of reproducibility in a repeated experiment (concordance, CCC≥0.897; dynamic range, DR≥0.92). Association with overall survival was evaluated by Cox proportional hazard regression, Kaplan-Meier survival curves, and the log-rank test. Both features were associated with overall survival (convexity: p = 0.008; entropy ratio: p = 0.04) in Cohort 1 but not in Cohort 2 (convexity: p = 0.7; entropy ratio: p = 0.8). In both cohorts, these features were found to be descriptive and demonstrated the link between imaging characteristics and patient survival in lung adenocarcinoma. PMID:25739030

  19. A contractile and counterbalancing adhesion system controls the 3D shape of crawling cells

    PubMed Central

    Burnette, Dylan T.; Shao, Lin; Ott, Carolyn; Pasapera, Ana M.; Fischer, Robert S.; Baird, Michelle A.; Der Loughian, Christelle; Delanoe-Ayari, Helene; Paszek, Matthew J.; Davidson, Michael W.; Betzig, Eric

    2014-01-01

    How adherent and contractile systems coordinate to promote cell shape changes is unclear. Here, we define a counterbalanced adhesion/contraction model for cell shape control. Live-cell microscopy data showed a crucial role for a contractile meshwork at the top of the cell, which is composed of actin arcs and myosin IIA filaments. The contractile actin meshwork is organized like muscle sarcomeres, with repeating myosin II filaments separated by the actin bundling protein α-actinin, and is mechanically coupled to noncontractile dorsal actin fibers that run from top to bottom in the cell. When the meshwork contracts, it pulls the dorsal fibers away from the substrate. This pulling force is counterbalanced by the dorsal fibers’ attachment to focal adhesions, causing the fibers to bend downward and flattening the cell. This model is likely to be relevant for understanding how cells configure themselves to complex surfaces, protrude into tight spaces, and generate three-dimensional forces on the growth substrate under both healthy and diseased conditions. PMID:24711500

  20. A general approach for DC apparent resistivity evaluation on arbitrarily shaped 3D structures

    NASA Astrophysics Data System (ADS)

    Marescot, Laurent; Rigobert, Stéphane; Palma Lopes, Sérgio; Lagabrielle, Richard; Chapellier, Dominique

    2006-09-01

    This paper presents a general and comprehensive way to evaluate the geometric factors used for the computation of apparent resistivities in the context of DC resistivity mapping and non-destructive investigations, in laboratory or in the field. This technique enables one to consider 3-dimensional objects with arbitrary shape. The expression of the geometric factor results from the early definition of apparent resistivitiy. It is expressed as the ratio of the resistances obtained from measurements to the resistances induced in the medium with unitary resistivity considering the same object geometry and electrode set-up. In this work, a finite element code is used for the computation of the geometric factor. In this code, the electrodes do not need to be located on the nodes of the mesh. This option makes the finite element mesh generation task easier. A first synthetical example illustrates how the present approach could be applied to apparent resistivity mapping in an environment with a complex underground topography. A second example, based on real data in a water tank, illustrates the simulation of a resistivity survey on a structure with finite extent, e.g. a laboratory sample. In both examples, topographic artefacts and effects of material sample shapes are successfully taken into account and reliable apparent resistivity descriptions of the structures are obtained. The effectiveness of the method for the detection of heterogeneities in apparent resistivity maps is highlighted.

  1. Uneven fringe projection for efficient calibration in high-resolution 3D shape metrology

    SciTech Connect

    Zhang Zonghua; Towers, Catherine E.; Towers, David P

    2007-08-20

    A novel uneven fringe projection technique is presented whereby nonuniformly spaced fringes are generated at a digital video projector to give evenly spaced fringes in the measurement volume. The proposed technique simplifies the relation between the measured phase and the object's depth independent of pixel position. This method needs just one coefficient set for calibration and depth calculation. With uneven fringe projection the shape data are referenced to a virtual plane instead of a physical reference plane, so an improved measurement with lower uncertainty is achieved. Further,the method can be combined with a radial lens distortion model. The theoretical foundation of the method is presented and experimentally validated to demonstrate the advantages of the uneven fringe projection approach compared with existing methods.Measurement results on a National Physical Laboratory (UK) 'step standard' confirm the measurement uncertainty using the proposed method.

  2. 3D granulometry: grain-scale shape and size distribution from point cloud dataset of river environments

    NASA Astrophysics Data System (ADS)

    Steer, Philippe; Lague, Dimitri; Gourdon, Aurélie; Croissant, Thomas; Crave, Alain

    2016-04-01

    The grain-scale morphology of river sediments and their size distribution are important factors controlling the efficiency of fluvial erosion and transport. In turn, constraining the spatial evolution of these two metrics offer deep insights on the dynamics of river erosion and sediment transport from hillslopes to the sea. However, the size distribution of river sediments is generally assessed using statistically-biased field measurements and determining the grain-scale shape of river sediments remains a real challenge in geomorphology. Here we determine, with new methodological approaches based on the segmentation and geomorphological fitting of 3D point cloud dataset, the size distribution and grain-scale shape of sediments located in river environments. Point cloud segmentation is performed using either machine-learning algorithms or geometrical criterion, such as local plan fitting or curvature analysis. Once the grains are individualized into several sub-clouds, each grain-scale morphology is determined using a 3D geometrical fitting algorithm applied on the sub-cloud. If different geometrical models can be conceived and tested, only ellipsoidal models were used in this study. A phase of results checking is then performed to remove grains showing a best-fitting model with a low level of confidence. The main benefits of this automatic method are that it provides 1) an un-biased estimate of grain-size distribution on a large range of scales, from centimeter to tens of meters; 2) access to a very large number of data, only limited by the number of grains in the point-cloud dataset; 3) access to the 3D morphology of grains, in turn allowing to develop new metrics characterizing the size and shape of grains. The main limit of this method is that it is only able to detect grains with a characteristic size greater than the resolution of the point cloud. This new 3D granulometric method is then applied to river terraces both in the Poerua catchment in New-Zealand and

  3. An effective 3D leapfrog scheme for electromagnetic modelling of arbitrary shaped dielectric objects using unstructured meshes

    NASA Astrophysics Data System (ADS)

    Gansen, A.; El Hachemi, M.; Belouettar, S.; Hassan, O.; Morgan, K.

    2015-12-01

    In computational electromagnetics, the advantages of the standard Yee algorithm are its simplicity and its low computational costs. However, because of the accuracy losses resulting from the staircased representation of curved interfaces, it is normally not the method of choice for modelling electromagnetic interactions with objects of arbitrary shape. For these problems, an unstructured mesh finite volume time domain method is often employed, although the scheme does not satisfy the divergence free condition at the discrete level. In this paper, we generalize the standard Yee algorithm for use on unstructured meshes and solve the problem concerning the loss of accuracy linked to staircasing, while preserving the divergence free nature of the algorithm. The scheme is implemented on high quality primal Delaunay and dual Voronoi meshes. The performance of the approach was validated in previous work by simulating the scattering of electromagnetic waves by spherical 3D PEC objects in free space. In this paper we demonstrate the performance of this scheme for penetration problems in lossy dielectrics using a new averaging technique for Delaunay and Voronoi edges at the interface. A detailed explanation of the implementation of the method, and a demonstration of the quality of the results obtained for transmittance and scattering simulations by 3D objects of arbitrary shapes, are presented.

  4. 3D mouse shape reconstruction based on phase-shifting algorithm for fluorescence molecular tomography imaging system.

    PubMed

    Zhao, Yue; Zhu, Dianwen; Baikejiang, Reheman; Li, Changqing

    2015-11-10

    This work introduces a fast, low-cost, robust method based on fringe pattern and phase shifting to obtain three-dimensional (3D) mouse surface geometry for fluorescence molecular tomography (FMT) imaging. We used two pico projector/webcam pairs to project and capture fringe patterns from different views. We first calibrated the pico projectors and the webcams to obtain their system parameters. Each pico projector/webcam pair had its own coordinate system. We used a cylindrical calibration bar to calculate the transformation matrix between these two coordinate systems. After that, the pico projectors projected nine fringe patterns with a phase-shifting step of 2π/9 onto the surface of a mouse-shaped phantom. The deformed fringe patterns were captured by the corresponding webcam respectively, and then were used to construct two phase maps, which were further converted to two 3D surfaces composed of scattered points. The two 3D point clouds were further merged into one with the transformation matrix. The surface extraction process took less than 30 seconds. Finally, we applied the Digiwarp method to warp a standard Digimouse into the measured surface. The proposed method can reconstruct the surface of a mouse-sized object with an accuracy of 0.5 mm, which we believe is sufficient to obtain a finite element mesh for FMT imaging. We performed an FMT experiment using a mouse-shaped phantom with one embedded fluorescence capillary target. With the warped finite element mesh, we successfully reconstructed the target, which validated our surface extraction approach. PMID:26560789

  5. Recovery of the 3-D shape of the left ventricle from echocardiographic images.

    PubMed

    Coppini, G; Poli, R; Valli, G

    1995-01-01

    A computational method is reported which allows the fully automated recovery of the three-dimensional shape of the cardiac left ventricle from a reduced set of apical echo views. Two typically ill-posed problems have been faced: 1) the detection of the left ventricle contours in each view, and 2) the integration of the detected contour points (which form a sparse and partially inconsistent data set) into a single surface representation. The authors' solution to these problems is based on a careful integration of standard computer vision algorithms with neural networks. Boundary detection comprises three steps: edge detection, edge grouping, and edge classification. The first and second steps (which are typical early-vision tasks not involving specific domain-knowledge) have been performed through fast, well-established algorithms of computer vision. The higher level task of left ventricle-edge discrimination, which involves the exploitation of specific knowledge about the left ventricle silhouette, has been performed by feedforward neural networks. Following the most recent results in the field of computer vision, the first step in solving the problem of recovering the ventricle surface has been the adoption of a physically inspired model of it. Basically, the authors have modeled the left ventricle surface as a closed, thin, elastic surface and the data as a set of radial springs acting on it. The recovery process is equivalent to the settling of the surface-plus-springs system into a stable configuration of minimum potential energy. The finite element discretization of this model leads directly to an analog neural-network implementation. The efficiency of such an implementation has been remarkably enhanced through a learning algorithm which embeds specific knowledge about the shape of the left ventricle in the network. Experiments using clinical echographic sequences are described. Four apical views (each with a different rotation of the probe) have been acquired

  6. 3D shape measurements of fast moving rough surfaces by two tilted interference fringe systems

    NASA Astrophysics Data System (ADS)

    Kuschmierz, Robert; Günther, Philipp; Czarske, Jürgen W.

    2013-04-01

    Shape measurement of moving, especially rotating objects is an important task in the field of process control. The Laser Doppler Distance Sensor was invented for this purpose. It is realized by two tilted interference fringe systems and enables the simultaneous measurement of the surface velocity and profile. The distance is coded in the phase difference between the generated interference signals of two photo detectors. In order to achieve a distance uncertainty of below 1μm a steep calibration function is necessary. This can be achieved by increasing the tilting angle. However, due to the speckle effect at rough surfaces, random envelopes and phase jumps occur disturbing the phase difference estimation with increasing tilting angle. This problem was overcome recently by employing a receiving optics matching reducing the distance uncertainty by about one magnitude. By evaluating the Doppler frequencies of the two fringe systems the surface velocity and thereby the objects mean diameter can be calculated as well as angular misalignment of the sensor can be detected.

  7. 3D Shape and Structure of the Homunculus of eta Carinae

    NASA Astrophysics Data System (ADS)

    Currie, D. G.; Christou, J.; Tyler, D.; Jefferies, S.; Le Mignant, D.; Bonaccini, D.

    2000-12-01

    The three-dimensional shape of the Homunculus of eta Carinae, as well as the detailed features of the SouthEast Lobe have been observed using the ADONIS system on the ESO 3.6 meter telescope at La Silla. To measure the normally invisible back wall of the Homunculus, we have observed in the infrared (to reduce the opacity of the front wall) and used the Fabry-Perot Interferometer (to distinguish between the Doppler shifts of the light reflected from the back wall and the brighter light reflected from the front wall). This analysis confirms the Double-Flask model and the orientation of the symmetry axis obtained from the previous analysis of the front wall emission and the assumption of rotational symmetry (Currie et. al. 1995, Currie et. al. 1996, Dowling 1996). To evaluate the fine detail of the turbulent motions in the front wall of the SouthEast Lobe, we use broad band observations in the H and K bands. This will be compared to the similar features seen in the shorter wavelengths (at the same resolution) by the WFPC. In the infrared, we see more detail of the shear behavior already seen at the visible wavelengths (Dowling, 1996). To further explore these features, the results of several types of deconvolution will be considered in order to obtain the optimal resolution for the AO data, and to compare the different data processing methodologies. We wish to thank ESO for the observation time, and the 3.6 meter team for observational support. We also wish to thank the STScI and WFPC IDT team. Support for individual authors has come from ESO, the University of Maryland, AFOSR, and CfAO.

  8. Quantification of perspective-induced shape change of clavicles at radiography and 3D scanning to assist human identification.

    PubMed

    Stephan, Carl N; Guyomarc'h, Pierre

    2014-03-01

    Change in perspective between antemortem and postmortem imaging sessions (radiograph to radiograph and surface scan to radiograph) may cause different 2D renderings of the same osseous element complicating comparisons for identification. In this study, clavicle shape changes due to radiographic positioning and 3D laser scanning were examined in 20 right-side specimens, as pertinent to chest radiograph comparisons. Results indicate substantial changes in clavicle form with short source-to-image receptor distance, elevation of the element from the image receptor, and movement of the element away from the center beam (10% mean square for shape). Although quantitative shape differences were small when the clavicle was in close opposition to the image receptor (3% mean square), important qualitative differences remained with large distances from the center beam (e.g., conoid tubercle presence/absence). The significance of these results for image superimposition and computer-automated-shape-based searches of radiographic libraries to find matching candidates is discussed. PMID:24313366

  9. Mixed-scale channel networks including Kingfisher-beak-shaped 3D microfunnels for efficient single particle entrapment

    NASA Astrophysics Data System (ADS)

    Lee, Yunjeong; Lim, Yeongjin; Shin, Heungjoo

    2016-06-01

    Reproducible research results for nanofluidics and their applications require viable fabrication technologies to produce nanochannels integrated with microchannels that can guide fluid flow and analytes into/out of the nanochannels. We present the simple fabrication of mixed-scale polydimethylsiloxane (PDMS) channel networks consisting of nanochannels and microchannels via a single molding process using a monolithic mixed-scale carbon mold. The monolithic carbon mold is fabricated by pyrolyzing a polymer mold patterned by photolithography. During pyrolysis, the polymer mold shrinks by ~90%, which enables nanosized carbon molds to be produced without a complex nanofabrication process. Because of the good adhesion between the polymer mold and the Si substrate, non-uniform volume reduction occurs during pyrolysis resulting in the formation of curved carbon mold side walls. These curved side walls and the relatively low surface energy of the mold provide efficient demolding of the PDMS channel networks. In addition, the trigonal prismatic shape of the polymer is converted into to a Kingfisher-beak-shaped carbon structure due to the non-uniform volume reduction. The transformation of this mold architecture produces a PDMS Kingfisher-beak-shaped 3D microfunnel that connects the microchannel and the nanochannel smoothly. The smooth reduction in the cross-sectional area of the 3D microfunnels enables efficient single microparticle trapping at the nanochannel entrance; this is beneficial for studies of cell transfection.Reproducible research results for nanofluidics and their applications require viable fabrication technologies to produce nanochannels integrated with microchannels that can guide fluid flow and analytes into/out of the nanochannels. We present the simple fabrication of mixed-scale polydimethylsiloxane (PDMS) channel networks consisting of nanochannels and microchannels via a single molding process using a monolithic mixed-scale carbon mold. The monolithic

  10. Generation of 3D shape, density, cortical thickness and finite element mesh of proximal femur from a DXA image.

    PubMed

    Väänänen, Sami P; Grassi, Lorenzo; Flivik, Gunnar; Jurvelin, Jukka S; Isaksson, Hanna

    2015-08-01

    Areal bone mineral density (aBMD), as measured by dual-energy X-ray absorptiometry (DXA), predicts hip fracture risk only moderately. Simulation of bone mechanics based on DXA imaging of the proximal femur, may help to improve the prediction accuracy. Therefore, we collected three (1-3) image sets, including CT images and DXA images of 34 proximal cadaver femurs (set 1, including 30 males, 4 females), 35 clinical patient CT images of the hip (set 2, including 27 males, 8 females) and both CT and DXA images of clinical patients (set 3, including 12 female patients). All CT images were segmented manually and landmarks were placed on both femurs and pelvises. Two separate statistical appearance models (SAMs) were built using the CT images of the femurs and pelvises in sets 1 and 2, respectively. The 3D shape of the femur was reconstructed from the DXA image by matching the SAMs with the DXA images. The orientation and modes of variation of the SAMs were adjusted to minimize the sum of the absolute differences between the projection of the SAMs and a DXA image. The mesh quality and the location of the SAMs with respect to the manually placed control points on the DXA image were used as additional constraints. Then, finite element (FE) models were built from the reconstructed shapes. Mean point-to-surface distance between the reconstructed shape and CT image was 1.0 mm for cadaver femurs in set 1 (leave-one-out test) and 1.4 mm for clinical subjects in set 3. The reconstructed volumetric BMD showed a mean absolute difference of 140 and 185 mg/cm(3) for set 1 and set 3 respectively. The generation of the SAM and the limitation of using only one 2D image were found to be the most significant sources of errors in the shape reconstruction. The noise in the DXA images had only small effect on the accuracy of the shape reconstruction. DXA-based FE simulation was able to explain 85% of the CT-predicted strength of the femur in stance loading. The present method can be used to

  11. Effect of shape, size, and aspect ratio on nanoparticle penetration and distribution inside solid tissues using 3D spheroid models.

    PubMed

    Agarwal, Rachit; Jurney, Patrick; Raythatha, Mansi; Singh, Vikramjit; Sreenivasan, Sidlgata V; Shi, Li; Roy, Krishnendu

    2015-10-28

    Efficient penetration and uniform distribution of nanoparticles (NPs) inside solid tissues and tumors is paramount to their therapeutic and diagnostic success. While many studies have reported the effect of NP size and charge on intratissue distribution, role of shape, and aspect ratio on NP transport inside solid tissues remain unclear. Here experimental and theoretical studies are reported on how nanoscale geometry of Jet and Flash Imprint Lithography-fabricated, polyethylene-glycol-based anionic nanohydrogels affect their penetration and distribution inside 3D spheroids, a model representing the intervascular region of solid, tumor-like tissues. Unexpectedly, low aspect ratio cylindrical NPs (H/D ≈0.3; disk-like particles, 100 nm height, and 325 nm diameter) show maximal intratissue delivery (>50% increase in total cargo delivered) and more uniform penetration compared to nanorods or smaller NPs of the same shape. This is in contrast to spherical NPs where smaller NP size resulted in deeper, more uniform penetration. Our results provide fundamental new knowledge on NP transport inside solid tissues and further establish shape and aspect ratio as important design parameters in developing more efficient, better penetrating, nanocarriers for drug, or contrast-agent delivery. PMID:26376024

  12. Highly efficient full-wave electromagnetic analysis of 3-D arbitrarily shaped waveguide microwave devices using an integral equation technique

    NASA Astrophysics Data System (ADS)

    Vidal, A.; San-Blas, A. A.; Quesada-Pereira, F. D.; Pérez-Soler, J.; Gil, J.; Vicente, C.; Gimeno, B.; Boria, V. E.

    2015-07-01

    A novel technique for the full-wave analysis of 3-D complex waveguide devices is presented. This new formulation, based on the Boundary Integral-Resonant Mode Expansion (BI-RME) method, allows the rigorous full-wave electromagnetic characterization of 3-D arbitrarily shaped metallic structures making use of extremely low CPU resources (both time and memory). The unknown electric current density on the surface of the metallic elements is represented by means of Rao-Wilton-Glisson basis functions, and an algebraic procedure based on a singular value decomposition is applied to transform such functions into the classical solenoidal and nonsolenoidal basis functions needed by the original BI-RME technique. The developed tool also provides an accurate computation of the electromagnetic fields at an arbitrary observation point of the considered device, so it can be used for predicting high-power breakdown phenomena. In order to validate the accuracy and efficiency of this novel approach, several new designs of band-pass waveguides filters are presented. The obtained results (S-parameters and electromagnetic fields) are successfully compared both to experimental data and to numerical simulations provided by a commercial software based on the finite element technique. The results obtained show that the new technique is specially suitable for the efficient full-wave analysis of complex waveguide devices considering an integrated coaxial excitation, where the coaxial probes may be in contact with the metallic insets of the component.

  13. Prostate boundary segmentation from ultrasound images using 2D active shape models: optimisation and extension to 3D.

    PubMed

    Hodge, Adam C; Fenster, Aaron; Downey, Dónal B; Ladak, Hanif M

    2006-12-01

    Boundary outlining, or segmentation, of the prostate is an important task in diagnosis and treatment planning for prostate cancer. This paper describes an algorithm based on two-dimensional (2D) active shape models (ASM) for semi-automatic segmentation of the prostate boundary from ultrasound images. Optimisation of the 2D ASM for prostatic ultrasound was done first by examining ASM construction and image search parameters. Extension of the algorithm to three-dimensional (3D) segmentation was then done using rotational-based slicing. Evaluation of the 3D segmentation algorithm used distance- and volume-based error metrics to compare algorithm generated boundary outlines to gold standard (manually generated) boundary outlines. Minimum description length landmark placement for ASM construction, and specific values for constraints and image search were found to be optimal. Evaluation of the algorithm versus gold standard boundaries found an average mean absolute distance of 1.09+/-0.49 mm, an average percent absolute volume difference of 3.28+/-3.16%, and a 5x speed increase versus manual segmentation. PMID:16930764

  14. Reference Frames and 3-D Shape Perception of Pictured Objects: On Verticality and Viewpoint-From-Above

    PubMed Central

    van Doorn, Andrea J.; Wagemans, Johan

    2016-01-01

    Research on the influence of reference frames has generally focused on visual phenomena such as the oblique effect, the subjective visual vertical, the perceptual upright, and ambiguous figures. Another line of research concerns mental rotation studies in which participants had to discriminate between familiar or previously seen 2-D figures or pictures of 3-D objects and their rotated versions. In the present study, we disentangled the influence of the environmental and the viewer-centered reference frame, as classically done, by comparing the performances obtained in various picture and participant orientations. However, this time, the performance is the pictorial relief: the probed 3-D shape percept of the depicted object reconstructed from the local attitude settings of the participant. Comparisons between the pictorial reliefs based on different picture and participant orientations led to two major findings. First, in general, the pictorial reliefs were highly similar if the orientation of the depicted object was vertical with regard to the environmental or the viewer-centered reference frame. Second, a viewpoint-from-above interpretation could almost completely account for the shears occurring between the pictorial reliefs. More specifically, the shears could largely be considered as combinations of slants generated from the viewpoint-from-above, which was determined by the environmental as well as by the viewer-centered reference frame. PMID:27433329

  15. Single-frame digital phase-shifting 3D shape measurement using pixel-wise moiré-wavelength refinement

    NASA Astrophysics Data System (ADS)

    Mohammadi, Fatemeh; Kofman, Jonathan

    2016-03-01

    A novel pixel-wise moiré-wavelength refinement technique was developed for system calibration in single-frame digital phase-shifting 3D shape measurement. The method requires projection of only a single binary grid and capture of a single image frame. Phase-shifted images are generated by digitally phase-shifting a synthetic grid superimposed on the captured frame. The grid patterns are removed from the generated images by wavelet-Fourier transform to extract moiré patterns, from which phase and surface height are computed. A wavelength-height function, computed during system calibration, accounts for moiré-wavelength variation over calibration depth in phase-to-height mapping. Novel pixel-wise wavelength and height (depth) refinement, using this function, improved measurement accuracy compared to measurement using a single global wavelength across all pixels. The method was demonstrated in measurement of a flat plate, hemispherical object, and manikin head.

  16. Coronates, spherical containers, bowl-shaped surfaces, porous 1D-, 2D-, 3D-metallo-coordination polymers, and metallodendrimers.

    PubMed

    Saalfrank, Rolf W; Scheurer, Andreas

    2012-01-01

    Supramolecular coordination cages and polymers bear exceptional advantages over their organic counterparts. They are available in one-pot reactions and in high yields and display physical properties that are generally inaccessible with organic species. Moreover, their weak, reversible, noncovalent bonding interactions facilitate error checking and self-correction. This review emphasizes the achievements in supramolecular coordination container as well as polymer chemistry initiated by serendipity and their materialization based on rational design. The recognition of similarities in the synthesis of different supramolecular assemblies allows prediction of potential structures in related cases. The combination of detailed symmetry considerations with the basic rules of coordination chemistry has only recently allowed for the design of rational strategies for the construction of a variety of nanosized spherical containers, bowls, 1D-, 2D-, and 3D-coordination polymers with specified size and shape. PMID:22160460

  17. Flexible Fabrication of Shape-Controlled Collagen Building Blocks for Self-Assembly of 3D Microtissues.

    PubMed

    Zhang, Xu; Meng, Zhaoxu; Ma, Jingyun; Shi, Yang; Xu, Hui; Lykkemark, Simon; Qin, Jianhua

    2015-08-12

    Creating artificial tissue-like structures that possess the functionality, specificity, and architecture of native tissues remains a big challenge. A new and straightforward strategy for generating shape-controlled collagen building blocks with a well-defined architecture is presented, which can be used for self-assembly of complex 3D microtissues. Collagen blocks with tunable geometries are controllably produced and released via a membrane-templated microdevice. The formation of functional microtissues by embedding tissue-specific cells into collagen blocks with expression of specific proteins is described. The spontaneous self-assembly of cell-laden collagen blocks into organized tissue constructs with predetermined configurations is demonstrated, which are largely driven by the synergistic effects of cell-cell and cell-matrix interactions. This new strategy would open up new avenues for the study of tissue/organ morphogenesis, and tissue engineering applications. PMID:25920010

  18. Dynamic DNA devices and assemblies formed by shape-complementary, non-base pairing 3D components

    NASA Astrophysics Data System (ADS)

    Gerling, Thomas; Wagenbauer, Klaus F.; Neuner, Andrea M.; Dietz, Hendrik

    2015-03-01

    We demonstrate that discrete three-dimensional (3D) DNA components can specifically self-assemble in solution on the basis of shape-complementarity and without base pairing. Using this principle, we produced homo- and heteromultimeric objects, including micrometer-scale one- and two-stranded filaments and lattices, as well as reconfigurable devices, including an actuator, a switchable gear, an unfoldable nanobook, and a nanorobot. These multidomain assemblies were stabilized via short-ranged nucleobase stacking bonds that compete against electrostatic repulsion between the components’ interfaces. Using imaging by electron microscopy, ensemble and single-molecule fluorescence resonance energy transfer spectroscopy, and electrophoretic mobility analysis, we show that the balance between attractive and repulsive interactions, and thus the conformation of the assemblies, may be finely controlled by global parameters such as cation concentration or temperature and by an allosteric mechanism based on strand-displacement reactions.

  19. Dynamic DNA devices and assemblies formed by shape-complementary, non-base pairing 3D components.

    PubMed

    Gerling, Thomas; Wagenbauer, Klaus F; Neuner, Andrea M; Dietz, Hendrik

    2015-03-27

    We demonstrate that discrete three-dimensional (3D) DNA components can specifically self-assemble in solution on the basis of shape-complementarity and without base pairing. Using this principle, we produced homo- and heteromultimeric objects, including micrometer-scale one- and two-stranded filaments and lattices, as well as reconfigurable devices, including an actuator, a switchable gear, an unfoldable nanobook, and a nanorobot. These multidomain assemblies were stabilized via short-ranged nucleobase stacking bonds that compete against electrostatic repulsion between the components' interfaces. Using imaging by electron microscopy, ensemble and single-molecule fluorescence resonance energy transfer spectroscopy, and electrophoretic mobility analysis, we show that the balance between attractive and repulsive interactions, and thus the conformation of the assemblies, may be finely controlled by global parameters such as cation concentration or temperature and by an allosteric mechanism based on strand-displacement reactions. PMID:25814577

  20. 3D absolute shape measurement of live rabbit hearts with a superfast two-frequency phase-shifting technique.

    PubMed

    Wang, Yajun; Laughner, Jacob I; Efimov, Igor R; Zhang, Song

    2013-03-11

    This paper presents a two-frequency binary phase-shifting technique to measure three-dimensional (3D) absolute shape of beating rabbit hearts. Due to the low contrast of the cardiac surface, the projector and the camera must remain focused, which poses challenges for any existing binary method where the measurement accuracy is low. To conquer this challenge, this paper proposes to utilize the optimal pulse width modulation (OPWM) technique to generate high-frequency fringe patterns, and the error-diffusion dithering technique to produce low-frequency fringe patterns. Furthermore, this paper will show that fringe patterns produced with blue light provide the best quality measurements compared to fringe patterns generated with red or green light; and the minimum data acquisition speed for high quality measurements is around 800 Hz for a rabbit heart beating at 180 beats per minute. PMID:23482151

  1. An Approach to 3d Digital Modeling of Surfaces with Poor Texture by Range Imaging Techniques. `SHAPE from Stereo' VS. `SHAPE from Silhouette' in Digitizing Jorge Oteiza's Sculptures

    NASA Astrophysics Data System (ADS)

    García Fernández, J.; Álvaro Tordesillas, A.; Barba, S.

    2015-02-01

    Despite eminent development of digital range imaging techniques, difficulties persist in the virtualization of objects with poor radiometric information, in other words, objects consisting of homogeneous colours (totally white, black, etc.), repetitive patterns, translucence, or materials with specular reflection. This is the case for much of the Jorge Oteiza's works, particularly in the sculpture collection of the Museo Fundación Jorge Oteiza (Navarra, Spain). The present study intend to analyse and asses the performance of two digital 3D-modeling methods based on imaging techniques, facing cultural heritage in singular cases, determined by radiometric characteristics as mentioned: Shape from Silhouette and Shape from Stereo. On the other hand, the text proposes the definition of a documentation workflow and presents the results of its application in the collection of sculptures created by Oteiza.

  2. 3D shape and eccentricity measurements of fast rotating rough objects by two mutually tilted interference fringe systems

    NASA Astrophysics Data System (ADS)

    Czarske, J. W.; Kuschmierz, R.; Günther, P.

    2013-06-01

    Precise measurements of distance, eccentricity and 3D-shape of fast moving objects such as turning parts of lathes, gear shafts, magnetic bearings, camshafts, crankshafts and rotors of vacuum pumps are on the one hand important tasks. On the other hand they are big challenges, since contactless precise measurement techniques are required. Optical techniques are well suitable for distance measurements of non-moving surfaces. However, measurements of laterally fast moving surfaces are still challenging. For such tasks the laser Doppler distance sensor technique was invented by the TU Dresden some years ago. This technique has been realized by two mutually tilted interference fringe systems, where the distance is coded in the phase difference between the generated interference signals. However, due to the speckle effect different random envelopes and phase jumps of the interference signals occur. They disturb the phase difference estimation between the interference signals. In this paper, we will report on a scientific breakthrough on the measurement uncertainty budget which has been achieved recently. Via matching of the illumination and receiving optics the measurement uncertainty of the displacement and distance can be reduced by about one magnitude. For displacement measurements of a recurring rough surface a standard deviation of 110 nm were attained at lateral velocities of 5 m / s. Due to the additionally measured lateral velocity and the rotational speed, the two-dimensional shape of rotating objects is calculated. The three-dimensional shape can be conducted by employment of a line camera. Since the measurement uncertainty of the displacement, vibration, distance, eccentricity, and shape is nearly independent of the lateral surface velocity, this technique is predestined for fast-rotating objects. Especially it can be advantageously used for the quality control of workpieces inside of a lathe towards the reduction of process tolerances, installation times and

  3. Chemical Synthesis of Sea-Urchin Shaped 3D-MnO2 Nano Structures and Their Application in Supercapacitors.

    PubMed

    Singu, Bal Sydulu; Hong, Sang Eun; Yoon, Kuk Ro

    2016-06-01

    Sea-urchin shaped α-MnO2 hierarchical nano structures have been synthesized by facile thermal method without using any hard or soft template under the mild conditions. The structural and morphology of the 3D-MnO2 was characterized by X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM). From the XRD analysis indicates that MnO2 present in the α form. Morphology analysis shows that α-MnO2 sea-urchins are made by stacked nanorods, the diameter and length of the stacked nanorods present in the range of 50-120 nm and 200-400 nm respectively. The electrochemical behaviour of α-MnO2 has been investigated by cyclic voltammetry (CV) and charge-discharge (CD). The specific capacitance, energy density and power density are 212.0 F g(-1), 21.2 Wh kg(-1) and 1200 W kg(-1) respectively at the current density of 2 A g(-1). The retention of the specific capacitance after completion of 1000 charge-discharge cycles is around 97%. The results reveal that the prepared Sea-urchin shaped α-MnO2 has high specific capacitance and exhibit excellent cycle life. PMID:27427676

  4. Microfabrics and 3D grain shape of Gorleben rock salt: Constraints on deformation mechanisms and paleodifferential stress

    NASA Astrophysics Data System (ADS)

    Thiemeyer, Nicolas; Zulauf, Gernold; Mertineit, Michael; Linckens, Jolien; Pusch, Maximilian; Hammer, Jörg

    2016-04-01

    The Permian Knäuel- and Streifensalz formations (z2HS1 and z2HS2) are main constituents of the Gorleben salt dome (Northern Germany) and show different amounts and distributions of anhydrite. The reconstruction of 3D halite grain shape ellipsoids reveals small grain size (3.4 ± 0.6 mm) and heterogeneous grain shapes in both formations, the latter attributed to the polyphase deformation of the rock salt during diapirism. The halite microfabrics of both formations indicate that strain-induced grain boundary migration was active during deformation. Crystal plastic deformation of halite is further documented by lattice bending, subgrain formation and minor subgrain rotation. Evidence for pressure solution of halite has not been found, but cannot be excluded because of the small grain size, the lack of LPO and the low differential stress (1.1-1.3 MPa) as deduced from subgrain-size piezometry. Anhydrite has been deformed in the brittle-ductile regime by solution precipitation creep, minor dislocation creep and brittle boudinage. No continuous anhydrite layers are preserved, and halite has acted as a sealing matrix embedding the disrupted anhydrite fragments prohibiting any potential migration pathways for fluids. Thus, anhydrite should not have a negative effect on the barrier properties of the Gorleben rock salts investigated in this study.

  5. Molecular Descriptors

    NASA Astrophysics Data System (ADS)

    Consonni, Viviana; Todeschini, Roberto

    In the last decades, several scientific researches have been focused on studying how to encompass and convert - by a theoretical pathway - the information encoded in the molecular structure into one or more numbers used to establish quantitative relationships between structures and properties, biological activities, or other experimental properties. Molecular descriptors are formally mathematical representations of a molecule obtained by a well-specified algorithm applied to a defined molecular representation or a well-specified experimental procedure. They play a fundamental role in chemistry, pharmaceutical sciences, environmental protection policy, toxicology, ecotoxicology, health research, and quality control. Evidence of the interest of the scientific community in the molecular descriptors is provided by the huge number of descriptors proposed up today: more than 5000 descriptors derived from different theories and approaches are defined in the literature and most of them can be calculated by means of dedicated software applications. Molecular descriptors are of outstanding importance in the research fields of quantitative structure-activity relationships (QSARs) and quantitative structure-property relationships (QSPRs), where they are the independent chemical information used to predict the properties of interest. Along with the definition of appropriate molecular descriptors, the molecular structure representation and the mathematical tools for deriving and assessing models are other fundamental components of the QSAR/QSPR approach. The remarkable progress during the last few years in chemometrics and chemoinformatics has led to new strategies for finding mathematical meaningful relationships between the molecular structure and biological activities, physico-chemical, toxicological, and environmental properties of chemicals. Different approaches for deriving molecular descriptors here reviewed and some of the most relevant descriptors are presented in

  6. Dynamic 3D shape of the plantar surface of the foot using coded structured light: a technical report

    PubMed Central

    2014-01-01

    Background The foot provides a crucial contribution to the balance and stability of the musculoskeletal system, and accurate foot measurements are important in applications such as designing custom insoles/footwear. With better understanding of the dynamic behavior of the foot, dynamic foot reconstruction techniques are surfacing as useful ways to properly measure the shape of the foot. This paper presents a novel design and implementation of a structured-light prototype system providing dense three dimensional (3D) measurements of the foot in motion. The input to the system is a video sequence of a foot during a single step; the output is a 3D reconstruction of the plantar surface of the foot for each frame of the input. Methods Engineering and clinical tests were carried out to test the accuracy and repeatability of the system. Accuracy experiments involved imaging a planar surface from different orientations and elevations and measuring the fitting errors of the data to a plane. Repeatability experiments were done using reconstructions from 27 different subjects, where for each one both right and left feet were reconstructed in static and dynamic conditions over two different days. Results The static accuracy of the system was found to be 0.3 mm with planar test objects. In tests with real feet, the system proved repeatable, with reconstruction differences between trials one week apart averaging 2.4 mm (static case) and 2.8 mm (dynamic case). Conclusion The results obtained in the experiments show positive accuracy and repeatability results when compared to current literature. The design also shows to be superior to the systems available in the literature in several factors. Further studies need to be done to quantify the reliability of the system in clinical environments. PMID:24456711

  7. Automatic 3D segmentation of the kidney in MR images using wavelet feature extraction and probability shape model

    NASA Astrophysics Data System (ADS)

    Akbari, Hamed; Fei, Baowei

    2012-02-01

    Numerical estimation of the size of the kidney is useful in evaluating conditions of the kidney, especially, when serial MR imaging is performed to evaluate the kidney function. This paper presents a new method for automatic segmentation of the kidney in three-dimensional (3D) MR images, by extracting texture features and statistical matching of geometrical shape of the kidney. A set of Wavelet-based support vector machines (W-SVMs) is trained on the MR images. The W-SVMs capture texture priors of MRI for classification of the kidney and non-kidney tissues in different zones around the kidney boundary. In the segmentation procedure, these W-SVMs are trained to tentatively label each voxel around the kidney model as a kidney or non-kidney voxel by texture matching. A probability kidney model is created using 10 segmented MRI data. The model is initially localized based on the intensity profiles in three directions. The weight functions are defined for each labeled voxel for each Wavelet-based, intensity-based, and model-based label. Consequently, each voxel has three labels and three weights for the Wavelet feature, intensity, and probability model. Using a 3D edge detection method, the model is re-localized and the segmented kidney is modified based on a region growing method in the model region. The probability model is re-localized based on the results and this loop continues until the segmentation converges. Experimental results with mouse MRI data show the good performance of the proposed method in segmenting the kidney in MR images.

  8. 3D printing of soft and wet systems benefit from hard-to-soft transition of transparent shape memory gels (presentation video)

    NASA Astrophysics Data System (ADS)

    Furukawa, Hidemitsu; Gong, Jin; Makino, Masato; Kabir, Md. Hasnat

    2014-04-01

    Recently we successfully developed novel transparent shape memory gels. The SMG memorize their original shapes during the gelation process. In the room temperature, the SMG are elastic and show plasticity (yielding) under deformation. However when heated above about 50˚C, the SMG induce hard-to-soft transition and go back to their original shapes automatically. We focus on new soft and wet systems made of the SMG by 3-D printing technology.

  9. Multi-frequency color-marked fringe projection profilometry for fast 3D shape measurement of complex objects.

    PubMed

    Jiang, Chao; Jia, Shuhai; Dong, Jun; Bao, Qingchen; Yang, Jia; Lian, Qin; Li, Dichen

    2015-09-21

    We propose a novel multi-frequency color-marked fringe projection profilometry approach to measure the 3D shape of objects with depth discontinuities. A digital micromirror device projector is used to project a color map consisting of a series of different-frequency color-marked fringe patterns onto the target object. We use a chromaticity curve to calculate the color change caused by the height of the object. The related algorithm to measure the height is also described in this paper. To improve the measurement accuracy, a chromaticity curve correction method is presented. This correction method greatly reduces the influence of color fluctuations and measurement error on the chromaticity curve and the calculation of the object height. The simulation and experimental results validate the utility of our method. Our method avoids the conventional phase shifting and unwrapping process, as well as the independent calculation of the object height required by existing techniques. Thus, it can be used to measure complex and dynamic objects with depth discontinuities. These advantages are particularly promising for industrial applications. PMID:26406621

  10. Compact Optical Fiber 3D Shape Sensor Based on a Pair of Orthogonal Tilted Fiber Bragg Gratings.

    PubMed

    Feng, Dingyi; Zhou, Wenjun; Qiao, Xueguang; Albert, Jacques

    2015-01-01

    In this work, a compact fiber-optic 3D shape sensor consisting of two serially connected 2° tilted fiber Bragg gratings (TFBGs) is proposed, where the orientations of the grating planes of the two TFBGs are orthogonal. The measurement of the reflective transmission spectrum from the pair of TFBGs was implemented by Fresnel reflection of the cleaved fiber end. The two groups of cladding mode resonances in the reflection spectrum respond differentially to bending, which allows for the unique determination of the magnitude and orientation of the bend plane (i.e. with a ± 180 degree uncertainty). Bending responses ranging from -0.33 to + 0.21 dB/m(-1) (depending on orientation) are experimentally demonstrated with bending from 0 to 3.03 m(-1). In the third (axial) direction, the strain is obtained directly by the shift of the TFBG Bragg wavelengths with a sensitivity of 1.06 pm/με. PMID:26617191

  11. Development of energy efficient mixing strategies in egg-shaped anaerobic reactors through 3D CFD simulation.

    PubMed

    Hernandez-Aguilar, Eduardo; Alvarado-Lassman, Alejandro; Osorio-Mirón, Anselmo; Méndez-Contreras, Juan M

    2016-01-01

    This work describes a 3D computational fluid dynamic model, which characterizes the hydrodynamic behavior of a mixing strategy applied to egg-shaped reactors that lack a mechanical stirring device. The model is based on Navier-Stokes and material balance equations without a chemical reaction. To describe the behavior of mixing, initial water feed flows of 6, 7.5 and 9 mL s(-1) were used. An experimental validation was subsequently carried out using a pulse technique, with NaCl as a tracer. The residence time distributions were quantitatively determined. Then, the degradation process of the wastewater sludge was characterized by studying the time dependence of the dynamic viscosity, the concentration of volatile solids and the density of wastewater sludge. The data resulting were introduced into the validated model, and five feed flows from 9 to 13 mL s(-1), the best performance found was with feed flow of 11 mL s(-1). PMID:26950282

  12. Compact Optical Fiber 3D Shape Sensor Based on a Pair of Orthogonal Tilted Fiber Bragg Gratings

    PubMed Central

    Feng, Dingyi; Zhou, Wenjun; Qiao, Xueguang; Albert, Jacques

    2015-01-01

    In this work, a compact fiber-optic 3D shape sensor consisting of two serially connected 2° tilted fiber Bragg gratings (TFBGs) is proposed, where the orientations of the grating planes of the two TFBGs are orthogonal. The measurement of the reflective transmission spectrum from the pair of TFBGs was implemented by Fresnel reflection of the cleaved fiber end. The two groups of cladding mode resonances in the reflection spectrum respond differentially to bending, which allows for the unique determination of the magnitude and orientation of the bend plane (i.e. with a ± 180 degree uncertainty). Bending responses ranging from −0.33 to + 0.21 dB/m−1 (depending on orientation) are experimentally demonstrated with bending from 0 to 3.03 m−1. In the third (axial) direction, the strain is obtained directly by the shift of the TFBG Bragg wavelengths with a sensitivity of 1.06 pm/με. PMID:26617191

  13. Quantifying floral shape variation in 3D using microcomputed tomography: a case study of a hybrid line between actinomorphic and zygomorphic flowers

    PubMed Central

    Wang, Chun-Neng; Hsu, Hao-Chun; Wang, Cheng-Chun; Lee, Tzu-Kuei; Kuo, Yan-Fu

    2015-01-01

    The quantification of floral shape variations is difficult because flower structures are both diverse and complex. Traditionally, floral shape variations are quantified using the qualitative and linear measurements of two-dimensional (2D) images. The 2D images cannot adequately describe flower structures, and thus lead to unsatisfactory discrimination of the flower shape. This study aimed to acquire three-dimensional (3D) images by using microcomputed tomography (μCT) and to examine the floral shape variations by using geometric morphometrics (GM). To demonstrate the advantages of the 3D-μCT-GM approach, we applied the approach to a second-generation population of florist's gloxinia (Sinningia speciosa) crossed from parents of zygomorphic and actinomorphic flowers. The flowers in the population considerably vary in size and shape, thereby served as good materials to test the applicability of the proposed phenotyping approach. Procedures were developed to acquire 3D volumetric flower images using a μCT scanner, to segment the flower regions from the background, and to select homologous characteristic points (i.e., landmarks) from the flower images for the subsequent GM analysis. The procedures identified 95 landmarks for each flower and thus improved the capability of describing and illustrating the flower shapes, compared with typically lower number of landmarks in 2D analyses. The GM analysis demonstrated that flower opening and dorsoventral symmetry were the principal shape variations of the flowers. The degrees of flower opening and corolla asymmetry were then subsequently quantified directly from the 3D flower images. The 3D-μCT-GM approach revealed shape variations that could not be identified using typical 2D approaches and accurately quantified the flower traits that presented a challenge in 2D images. The approach opens new avenues to investigate floral shape variations. PMID:26442038

  14. Instantiation and registration of statistical shape models of the femur and pelvis using 3D ultrasound imaging.

    PubMed

    Barratt, Dean C; Chan, Carolyn S K; Edwards, Philip J; Penney, Graeme P; Slomczykowski, Mike; Carter, Timothy J; Hawkes, David J

    2008-06-01

    Statistical shape modelling potentially provides a powerful tool for generating patient-specific, 3D representations of bony anatomy for computer-aided orthopaedic surgery (CAOS) without the need for a preoperative CT scan. Furthermore, freehand 3D ultrasound (US) provides a non-invasive method for digitising bone surfaces in the operating theatre that enables a much greater region to be sampled compared with conventional direct-contact (i.e., pointer-based) digitisation techniques. In this paper, we describe how these approaches can be combined to simultaneously generate and register a patient-specific model of the femur and pelvis to the patient during surgery. In our implementation, a statistical deformation model (SDM) was constructed for the femur and pelvis by performing a principal component analysis on the B-spline control points that parameterise the freeform deformations required to non-rigidly register a training set of CT scans to a carefully segmented template CT scan. The segmented template bone surface, represented by a triangulated surface mesh, is instantiated and registered to a cloud of US-derived surface points using an iterative scheme in which the weights corresponding to the first five principal modes of variation of the SDM are optimised in addition to the rigid-body parameters. The accuracy of the method was evaluated using clinically realistic data obtained on three intact human cadavers (three whole pelves and six femurs). For each bone, a high-resolution CT scan and rigid-body registration transformation, calculated using bone-implanted fiducial markers, served as the gold standard bone geometry and registration transformation, respectively. After aligning the final instantiated model and CT-derived surfaces using the iterative closest point (ICP) algorithm, the average root-mean-square distance between the surfaces was 3.5mm over the whole bone and 3.7mm in the region of surgical interest. The corresponding distances after aligning the

  15. Evaluation of expansion algorithm of measurement range suited for 3D shape measurement using two pitches of projected grating with light source-stepping method

    NASA Astrophysics Data System (ADS)

    Sakaguchi, Toshimasa; Fujigaki, Motoharu; Murata, Yorinobu

    2015-03-01

    Accurate and wide-range shape measurement method is required in industrial field. The same technique is possible to be used for a shape measurement of a human body for the garment industry. Compact 3D shape measurement equipment is also required for embedding in the inspection system. A shape measurement by a phase shifting method can measure the shape with high spatial resolution because the coordinates can be obtained pixel by pixel. A key-device to develop compact equipment is a grating projector. Authors developed a linear LED projector and proposed a light source stepping method (LSSM) using the linear LED projector. The shape measurement euipment can be produced with low-cost and compact without any phase-shifting mechanical systems by using this method. Also it enables us to measure 3D shape in very short time by switching the light sources quickly. A phase unwrapping method is necessary to widen the measurement range with constant accuracy for phase shifting method. A general phase unwrapping method with difference grating pitches is often used. It is one of a simple phase unwrapping method. It is, however, difficult to apply the conventional phase unwrapping algorithm to the LSSM. Authors, therefore, developed an expansion unwrapping algorithm for the LSSM. In this paper, an expansion algorithm of measurement range suited for 3D shape measurement using two pitches of projected grating with the LSSM was evaluated.

  16. Shape vocabulary: a robust and efficient shape representation for shape matching.

    PubMed

    Bai, Xiang; Rao, Cong; Wang, Xinggang

    2014-09-01

    In this paper, a learning-based shape descriptor for shape matching is demonstrated. Formulated in a bag-of-words like framework, the proposed method summarizes the local features extracted from certain shape to generate a integrated representation. It contributes to the speed-up of shape matching, since the distance metric in the vector space analysis can be directly applied to compare the constructed global descriptors, eliminating the time consuming stage of local feature matching. Similar to the philosophy in spatial pyramid matching, a strategy for feature division is applied in the phase of encoded feature pooling and vocabulary learning, which helps to construct a more discriminative descriptor incorporating both global and local information. Also, a local contour-based feature extraction method is designed for 2D shapes, while significant properties of the local contours are inspected for the design of feature division rules. The designed local feature extraction method and the feature division rules manage to reduce the variances of shape representation due to the changes in rotation. In addition to 2D shape, we also present a simple and natural method to extend the proposed method to the scenario of 3D shape representation. The proposed shape descriptor is validated on several benchmark data sets for evaluating 2D and 3D shape matching algorithms, and it is observed that the investigated shape descriptor maintains superior discriminative power as well as high time efficiency. PMID:25020090

  17. Micrometer-scale 3-D shape characterization of eight cements: Particle shape and cement chemistry, and the effect of particle shape on laser diffraction particle size measurement

    SciTech Connect

    Erdogan, S.T.; Nie, X.; Stutzman, P.E.; Garboczi, E.J.

    2010-05-15

    Eight different portland cements were imaged on a synchrotron beam line at Brookhaven National Laboratory using X-ray microcomputed tomography at a voxel size of about 1 mum per cubic voxel edge. The particles ranged in size roughly between 10 mum and 100 mum. The shape and size of individual particles were computationally analyzed using spherical harmonic analysis. The particle shape difference between cements was small but significant, as judged by several different quantitative shape measures, including the particle length, width, and thickness distributions. It was found that the average shape of cement particles was closely correlated with the volume fraction of C{sub 3}S (alite) and C{sub 2}S (belite) making up the cement powder. It is shown that the non-spherical particle shape of the cements strongly influence laser diffraction results, at least in the sieve size range of 20 mum to 38 mum. Since laser diffraction particle size measurement is being increasingly used by the cement industry, while cement chemistry is always a main factor in cement production, these results could have important implications for how this kind of particle size measurement should be understood and used in the cement industry.

  18. Mechanical Characterization and Shape Optimization of Fascicle-Like 3D Skeletal Muscle Tissues Contracted with Electrical and Optical Stimuli.

    PubMed

    Neal, Devin; Sakar, Mahmut Selman; Bashir, Rashid; Chan, Vincent; Asada, Haruhiko Harry

    2015-06-01

    In this study, we present a quantitative approach to construct effective 3D muscle tissues through shape optimization and load impedance matching with electrical and optical stimulation. We have constructed long, thin, fascicle-like skeletal muscle tissue and optimized its form factor through mechanical characterization. A new apparatus was designed and built, which allowed us to measure force-displacement characteristics with diverse load stiffnesses. We have found that (1) there is an optimal form factor that maximizes the muscle stress, (2) the energy transmitted to the load can be maximized with matched load stiffness, and (3) optical stimulation using channelrhodopsin2 in the muscle tissue can generate a twitch force as large as its electrical counterpart for well-developed muscle tissue. Using our tissue construct method, we found that an optimal initial diameter of 500 μm outperformed tissues using 250 μm by more than 60% and tissues using 760 μm by 105%. Using optimal load stiffness, our tissues have generated 12 pJ of energy per twitch at a peak generated stress of 1.28 kPa. Additionally, the difference in optically stimulated twitch performance versus electrically stimulated is a function of how well the overall tissue performs, with average or better performing strips having less than 10% difference. The unique mechanical characterization method used is generalizable to diverse load conditions and will be used to match load impedance to muscle tissue impedance for a wide variety of applications. PMID:25714129

  19. 3D bone mineral density distribution and shape reconstruction of the proximal femur from a single simulated DXA image: an in vitro study

    NASA Astrophysics Data System (ADS)

    Whitmarsh, Tristan; Humbert, Ludovic; De Craene, Mathieu; del Río Barquero, Luis M.; Fritscher, Karl; Schubert, Rainer; Eckstein, Felix; Link, Thomas; Frangi, Alejandro F.

    2010-03-01

    Area Bone Mineral Density (aBMD) measured by Dual-energy X-ray Absorptiometry (DXA) is an established criterion in the evaluation of hip fracture risk. The evaluation from these planar images, however, is limited to 2D while it has been shown that proper 3D assessment of both the shape and the Bone Mineral Density (BMD) distribution improves the fracture risk estimation. In this work we present a method to reconstruct both the 3D bone shape and 3D BMD distribution of the proximal femur from a single DXA image. A statistical model of shape and a separate statistical model of the BMD distribution were automatically constructed from a set of Quantitative Computed Tomography (QCT) scans. The reconstruction method incorporates a fully automatic intensity based 3D-2D registration process, maximizing the similarity between the DXA and a digitally reconstructed radiograph of the combined model. For the construction of the models, an in vitro dataset of QCT scans of 60 anatomical specimens was used. To evaluate the reconstruction accuracy, experiments were performed on simulated DXA images from the QCT scans of 30 anatomical specimens. Comparisons between the reconstructions and the same subject QCT scans showed a mean shape accuracy of 1.2mm, and a mean density error of 81mg/cm3. The results show that this method is capable of accurately reconstructing both the 3D shape and 3D BMD distribution of the proximal femur from DXA images used in clinical routine, potentially improving the diagnosis of osteoporosis and fracture risk assessments at a low radiation dose and low cost.

  20. 3D modeling of the molten zone shape created by an asymmetric HF EM field during the FZ crystal growth process

    NASA Astrophysics Data System (ADS)

    Rudevics, A.; Muiznieks, A.; Ratnieks, G.; Riemann, H.

    2005-06-01

    In the modern industrial floating zone (FZ) silicon crystal growth process by the needle-eye technique, the high frequency (HF) electromagnetic (EM) field plays a crucial role. The EM field melts a rotating poly silicon feed rod and maintains the zone of molten silicon, which is held by the rotating single crystal. To model such a system, the 2D axi-symmetric models can be used, however, due to the system's asymmetry (e.g., the asymmetry of the HF inductor) the applicability of such models is restricted. Therefore, the modeling of FZ process in three dimensions (3D) is necessary. This paper describes a new complex 3D mathematical model of the FZ crystal growth and a correspondingly developed software package Shape3D. A 3D calculation example for the realistic FZ system is also presented. Figs 25, Refs 9.

  1. A new 3-D open-framework cadmium borovanadate with plane-shaped channels and high catalytic activity for the oxidation of cyclohexanol.

    PubMed

    Feng, Yuquan; Qiu, Dongfang; Fan, Huitao; Li, Min; Huang, Qunzeng; Shi, Hengzhen

    2015-05-21

    A new 3-D open-framework cadmium borovanadate with 6-connected topology was hydrothermally obtained and structurally characterized. It not only features new cadmium(II) borovanadate which possesses an open-framework structure with unique plane-shaped channels, but also exhibits interesting absorption properties and high catalytic activities for the oxidation of cyclohexanol. PMID:25882921

  2. Exploring the use of shape and texture descriptors of positron emission tomography tracer distribution in imaging studies of neurodegenerative disease.

    PubMed

    Klyuzhin, Ivan S; Gonzalez, Marjorie; Shahinfard, Elham; Vafai, Nasim; Sossi, Vesna

    2016-06-01

    Positron emission tomography (PET) data related to neurodegeneration are most often quantified using methods based on tracer kinetic modeling. In contrast, here we investigate the ability of geometry and texture-based metrics that are independent of kinetic modeling to convey useful information on disease state. The study was performed using data from Parkinson's disease subjects imaged with (11)C-dihydrotetrabenazine and (11)C-raclopride. The pattern of the radiotracer distribution in the striatum was quantified using image-based metrics evaluated over multiple regions of interest that were defined on co-registered PET and MRI images. Regression analysis showed a significant degree of correlation between several investigated metrics and clinical evaluations of the disease (p < 0.01). The best results were obtained with the first-order moment invariant of the radioactivity concentration values estimated over the full structural extent of the region as defined by MRI (R(2 )= 0.94). These results demonstrate that there is clinically relevant quantitative information in the tracer distribution pattern that can be captured using geometric and texture descriptors. Such metrics may provide an alternate and complementary data analysis approach to traditional kinetic modeling. PMID:26661171

  3. Controlled synthesis of monodispersed AgGaS{sub 2} 3D nanoflowers and the shape evolution from nanoflowers to colloids

    SciTech Connect

    Yuan, Yanping; Zai, Jiantao; Su, Yuezeng; Qian, Xuefeng

    2011-05-15

    Monodispersed AgGaS{sub 2} three-dimensional (3D) nanoflowers have been successfully synthesized in a 'soft-chemical' system with the mixture of 1-octyl alcohol and cyclohexane as reaction medium and oleylamine as surfactant. The crystal phase, morphology and chemical composition of the as-prepared products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and high-resolution TEM (HTEM), respectively. Results reveal that the as-synthesized AgGaS{sub 2} nanoflowers are in tetragonal structure with 3D flower-like shape. Controlled experiments demonstrated that the shape transformation of AgGaS{sub 2} nanocrystals from 3D nanoflowers (50 nm) to nanoparticles (10-20 nm) could be readily realized by tuning the reaction parameters, e.g., the ratio of octanol to cyclohexane, the length of carbon chain of fatty alcohol, the concentration of oleylamine, etc. The UV-vis and PL spectra of the obtained AgGaS{sub 2} nanoflowers and colloids were researched. In addition, the photoelectron energy conversion (SPV) of AgGaS{sub 2} nanoflowers was further researched by the surface photovoltage spectra. -- Graphical abstract: Various AgGaS{sub 2} nanocrystals with different morphologies and sizes including 3D nanoflowers (a) and colloids (b) were synthesized in mixed solvent reaction system and their PL spectra was researched (c). Display Omitted highlights: > Ternary chalcogenide AgGaS{sub 2} nanocrystals were synthesized in a simple mixed solvent system. > The shape and size transformation of AgGaS{sub 2} from 3D nanoflowers to colloids could be tuned effectively. > AgGaS{sub 2} nanoflowers was obtained with relatively insufficient ligands protection in reaction system, otherwise, AgGaS{sub 2} colloids was obtained. > Provide a new choice to prepare ternary nanomaterials and further understand the reaction mechanisms along with the growth kinetics of ternary nanocrystals.

  4. Numerical parameter studies of 3D melt flow and interface shape for directional solidification of silicon in a traveling magnetic field

    NASA Astrophysics Data System (ADS)

    Vizman, D.; Dadzis, K.; Friedrich, J.

    2013-10-01

    The role of various growth and process conditions (Lorentz force, temperature gradients in the melt and the crystal, steady-state crystallization velocity) in directional solidification of multicrystalline silicon in a traveling magnetic field is analyzed for a research-scale furnace (melt size of 22×22×11 cm3). The influence on the melt flow pattern, the typical melt flow velocity, the oscillation amplitude of the velocity and the temperature, the shape of the crystallization interface is determined using three-dimensional (3D) numerical calculations with the STHAMAS3D software and a local quasi steady-state model. It was found that both the interface shape and the melt flow are sensitive to the variation of the considered growth and process parameters.

  5. EM modelling of arbitrary shaped anisotropic dielectric objects using an efficient 3D leapfrog scheme on unstructured meshes

    NASA Astrophysics Data System (ADS)

    Gansen, A.; Hachemi, M. El; Belouettar, S.; Hassan, O.; Morgan, K.

    2016-09-01

    The standard Yee algorithm is widely used in computational electromagnetics because of its simplicity and divergence free nature. A generalization of the classical Yee scheme to 3D unstructured meshes is adopted, based on the use of a Delaunay primal mesh and its high quality Voronoi dual. This allows the problem of accuracy losses, which are normally associated with the use of the standard Yee scheme and a staircased representation of curved material interfaces, to be circumvented. The 3D dual mesh leapfrog-scheme which is presented has the ability to model both electric and magnetic anisotropic lossy materials. This approach enables the modelling of problems, of current practical interest, involving structured composites and metamaterials.

  6. Minimum slice spacing required to reconstruct 3D shape for serial sections of breast tissue for comparison with medical imaging

    NASA Astrophysics Data System (ADS)

    Reis, Sara; Eiben, Bjoern; Mertzanidou, Thomy; Hipwell, John; Hermsen, Meyke; van der Laak, Jeroen; Pinder, Sarah; Bult, Peter; Hawkes, David

    2015-03-01

    There is currently an increasing interest in combining the information obtained from radiology and histology with the intent of gaining a better understanding of how different tumour morphologies can lead to distinctive radiological signs which might predict overall treatment outcome. Relating information at different resolution scales is challenging. Reconstructing 3D volumes from histology images could be the key to interpreting and relating the radiological image signal to tissue microstructure. The goal of this study is to determine the minimum sampling (maximum spacing between histological sections through a fixed surgical specimen) required to create a 3D reconstruction of the specimen to a specific tolerance. We present initial results for one lumpectomy specimen case where 33 consecutive histology slides were acquired.

  7. Shape and Surface: The challenges and advantages of 3D techniques in innovative fashion, knitwear and product design

    NASA Astrophysics Data System (ADS)

    Bendt, E.

    2016-07-01

    The presentation wants to show what kind of problems fashion and textile designers are facing in 3D-knitwear design, especially regarding fashionable flat-knit styles, and how they can use different kinds of techniques and processes to generate new types of 3D-designs and structures. To create really new things we have to overcome standard development methods and traditional thinking and should start to open our minds again for the material itself to generate new advanced textile solutions. This paper mainly introduces different results of research projects worked out in the master program “Textile Produkte” during lectures in “Innovative Product Design” and “Experimental Knitting”.

  8. An Universal and Easy-to-Use Model for the Pressure of Arbitrary-Shape 3D Multifunctional Integumentary Cardiac Membranes.

    PubMed

    Su, Yewang; Liu, Zhuangjian; Xu, Lizhi

    2016-04-01

    Recently developed concepts for 3D, organ-mounted electronics for cardiac applications require a universal and easy-to-use mechanical model to calculate the average pressure associated with operation of the device, which is crucial for evaluation of design efficacy and optimization. This work proposes a simple, accurate, easy-to-use, and universal model to quantify the average pressure for arbitrary-shape organs. PMID:26891347

  9. Novel DOCK clique driven 3D similarity database search tools for molecule shape matching and beyond: adding flexibility to the search for ligand kin.

    PubMed

    Good, Andrew C

    2007-10-01

    With readily available CPU power and copious disk storage, it is now possible to undertake rapid comparison of 3D properties derived from explicit ligand overlay experiments. With this in mind, shape software tools originally devised in the 1990s are revisited, modified and applied to the problem of ligand database shape comparison. The utility of Connolly surface data is highlighted using the program MAKESITE, which leverages surface normal data to a create ligand shape cast. This cast is applied directly within DOCK, allowing the program to be used unmodified as a shape searching tool. In addition, DOCK has undergone multiple modifications to create a dedicated ligand shape comparison tool KIN. Scoring has been altered to incorporate the original incarnation of Gaussian function derived shape description based on STO-3G atomic electron density. In addition, a tabu-like search refinement has been added to increase search speed by removing redundant starting orientations produced during clique matching. The ability to use exclusion regions, again based on Gaussian shape overlap, has also been integrated into the scoring function. The use of both DOCK with MAKESITE and KIN in database screening mode is illustrated using a published ligand shape virtual screening template. The advantages of using a clique-driven search paradigm are highlighted, including shape optimization within a pharmacophore constrained framework, and easy incorporation of additional scoring function modifications. The potential for further development of such methods is also discussed. PMID:17482856

  10. Shifting Sands and Turning Tides: Using 3D Visualization Technology to Shape the Environment for Undergraduate Students

    NASA Astrophysics Data System (ADS)

    Jenkins, H. S.; Gant, R.; Hopkins, D.

    2014-12-01

    Teaching natural science in a technologically advancing world requires that our methods reach beyond the traditional computer interface. Innovative 3D visualization techniques and real-time augmented user interfaces enable students to create realistic environments to understand the world around them. Here, we present a series of laboratory activities that utilize an Augmented Reality Sandbox to teach basic concepts of hydrology, geology, and geography to undergraduates at Harvard University and the University of Redlands. The Augmented Reality (AR) Sandbox utilizes a real sandbox that is overlain by a digital projection of topography and a color elevation map. A Microsoft Kinect 3D camera feeds altimetry data into a software program that maps this information onto the sand surface using a digital projector. Students can then manipulate the sand and observe as the Sandbox augments their manipulations with projections of contour lines, an elevation color map, and a simulation of water. The idea for the AR Sandbox was conceived at MIT by the Tangible Media Group in 2002 and the simulation software used here was written and developed by Dr. Oliver Kreylos of the University of California - Davis as part of the NSF funded LakeViz3D project. Between 2013 and 2014, we installed AR Sandboxes at Harvard and the University of Redlands, respectively, and developed laboratory exercises to teach flooding hazard, erosion and watershed development in undergraduate earth and environmental science courses. In 2013, we introduced a series of AR Sandbox laboratories in Introductory Geology, Hydrology, and Natural Disasters courses. We found laboratories that utilized the AR Sandbox at both universities allowed students to become quickly immersed in the learning process, enabling a more intuitive understanding of the processes that govern the natural world. The physical interface of the AR Sandbox reduces barriers to learning, can be used to rapidly illustrate basic concepts of geology

  11. Image based cardiac acceleration map using statistical shape and 3D+t myocardial tracking models; in-vitro study on heart phantom

    NASA Astrophysics Data System (ADS)

    Pashaei, Ali; Piella, Gemma; Planes, Xavier; Duchateau, Nicolas; de Caralt, Teresa M.; Sitges, Marta; Frangi, Alejandro F.

    2013-03-01

    It has been demonstrated that the acceleration signal has potential to monitor heart function and adaptively optimize Cardiac Resynchronization Therapy (CRT) systems. In this paper, we propose a non-invasive method for computing myocardial acceleration from 3D echocardiographic sequences. Displacement of the myocardium was estimated using a two-step approach: (1) 3D automatic segmentation of the myocardium at end-diastole using 3D Active Shape Models (ASM); (2) propagation of this segmentation along the sequence using non-rigid 3D+t image registration (temporal di eomorphic free-form-deformation, TDFFD). Acceleration was obtained locally at each point of the myocardium from local displacement. The framework has been tested on images from a realistic physical heart phantom (DHP-01, Shelley Medical Imaging Technologies, London, ON, CA) in which the displacement of some control regions was known. Good correlation has been demonstrated between the estimated displacement function from the algorithms and the phantom setup. Due to the limited temporal resolution, the acceleration signals are sparse and highly noisy. The study suggests a non-invasive technique to measure the cardiac acceleration that may be used to improve the monitoring of cardiac mechanics and optimization of CRT.

  12. Body image, shape, and volumetric assessments using 3D whole body laser scanning and 2D digital photography in females with a diagnosed eating disorder: preliminary novel findings.

    PubMed

    Stewart, Arthur D; Klein, Susan; Young, Julie; Simpson, Susan; Lee, Amanda J; Harrild, Kirstin; Crockett, Philip; Benson, Philip J

    2012-05-01

    We piloted three-dimensional (3D) body scanning in eating disorder (ED) patients. Assessments of 22 ED patients (including nine anorexia nervosa (AN) patients, 12 bulimia nervosa (BN) patients, and one patient with eating disorder not otherwise specified) and 22 matched controls are presented. Volunteers underwent visual screening, two-dimensional (2D) digital photography to assess perception and dissatisfaction (via computerized image distortion), and adjunctive 3D full-body scanning. Patients and controls perceived themselves as bigger than their true shape (except in the chest region for controls and anorexia patients). All participants wished to be smaller across all body regions. Patients had poorer veridical perception and greater dissatisfaction than controls. Perception was generally poorer and dissatisfaction greater in bulimia compared with anorexia patients. 3D-volume:2D-area relationships showed that anorexia cases had least tissue on the torso and most on the arms and legs relative to frontal area. The engagement of patients with the scanning process suggests a validation study is viable. This would enable mental constructs of body image to be aligned with segmental volume of body areas, overcoming limitations, and errors associated with 2D instruments restricted to frontal (coronal) shapes. These novel data could inform the design of clinical trials in adjunctive treatments for eating disorders. PMID:22506746

  13. Quantitative trait loci affecting the 3D skull shape and size in mouse and prioritization of candidate genes in-silico

    PubMed Central

    Maga, A. Murat; Navarro, Nicolas; Cunningham, Michael L.; Cox, Timothy C.

    2015-01-01

    We describe the first application of high-resolution 3D micro-computed tomography, together with 3D landmarks and geometric morphometrics, to map QTL responsible for variation in skull shape and size using a backcross between C57BL/6J and A/J inbred strains. Using 433 animals, 53 3D landmarks, and 882 SNPs from autosomes, we identified seven QTL responsible for the skull size (SCS.qtl) and 30 QTL responsible for the skull shape (SSH.qtl). Size, sex, and direction-of-cross were all significant factors and included in the analysis as covariates. All autosomes harbored at least one SSH.qtl, sometimes up to three. Effect sizes of SSH.qtl appeared to be small, rarely exceeding 1% of the overall shape variation. However, they account for significant amount of variation in some specific directions of the shape space. Many QTL have stronger effect on the neurocranium than expected from a random vector that will parcellate uniformly across the four cranial regions. On the contrary, most of QTL have an effect on the palate weaker than expected. Combined interval length of 30 SSH.qtl was about 315 MB and contained 2476 known protein coding genes. We used a bioinformatics approach to filter these candidate genes and identified 16 high-priority candidates that are likely to play a role in the craniofacial development and disorders. Thus, coupling the QTL mapping approach in model organisms with candidate gene enrichment approaches appears to be a feasible way to identify high-priority candidates genes related to the structure or tissue of interest. PMID:25859222

  14. Minimum cross-sectional stream power as the criteria of shaping 3-D network-scale landscape

    NASA Astrophysics Data System (ADS)

    Paik, K.

    2008-12-01

    It has been widely accepted that the minimum total energy expenditure (MTEE) [Rodríguez-Iturbe et al., 1992] is the important tendency in the formation of self-similar tree river networks. However, this formulation has simplified the 3-D nature of landscape adaptation as a 2-D network connectivity problem. As a result, MTEE cannot capture other signatures of landform such as meandering. This leads to an idea that there could be another optimality condition which can better represent landscape evolution than MTEE. In this study, I focused on the theory of minimum cross-sectional stream power (MCSP) [Chang and Hill, 1977] which has been successfully used in channel-scale problems. I investigated the applicability of this rule of MCSP to the network-scale landscape formation. To test this idea, I devised a dynamic 2-D genetic algorithm which can handle the adaptation of 3-D landscape over time. The result shows that the landscape formed under the criteria of both MCSP and MTEE exhibit self-similar tree structure of natural river networks. However, the landscape formed by MCSP criteria also exhibits the meandering pattern of natural streams, which cannot be captured by MTEE. Chang, H. H., and J. C. Hill (1977), Minimum stream power for rivers and deltas, Journal of the Hydraulics Division (ASCE), 103, 1375--1389. Rodríguez-Iturbe, I., A. Rinaldo, R. Rigon, R. L. Bras, A. Marani, and E. J. Ijjasz-Váquez (1992), Energy dissipation, runoff production, and the three-dimensional structure of river basins, Water Resour. Res., 28, 1095--1103.

  15. Spring Characteristics of Circular Arc Shaped 3D Micro-cantilevers Fabricated Using III-V Semiconductor Strain-driven Bending Process

    NASA Astrophysics Data System (ADS)

    Sasaki, T. K.; Iwase, H.; Wang, J.; Akabori, M.; Yamada, S.

    2011-12-01

    We have investigated the characteristics of the circular arc shaped 3D micro-cantilever. The cantilever was fabricated using strain driven self-bending process based on the epitaxial growth. The arc shape can be used as the spring element in the various micro electro- mechanical- system (MEMS) applications. In this work, we focused on the force-deflection relationships, which would give the spring constant of the arc spring. In the case of the arc spring, spring constant depends on the dimensional parameters such as width, thickness and curvature radius. From the dependence of curvature radius on width, there seems no stress relaxation in width direction (transverse to deformation direction). Moreover, the measured spring constants of the fabricated cantilevers were also larger than the estimated ones from the curvature radius. The discrepancy indicates a possibility of stiffness enhancement of the circular arc shaped cantilevers.

  16. Active shape models for a fully automated 3D segmentation of the liver--an evaluation on clinical data.

    PubMed

    Heimann, Tobias; Wolf, Ivo; Meinzer, Hans-Peter

    2006-01-01

    This paper presents an evaluation of the performance of a three-dimensional Active Shape Model (ASM) to segment the liver in 48 clinical CT scans. The employed shape model is built from 32 samples using an optimization approach based on the minimum description length (MDL). Three different gray-value appearance models (plain intensity, gradient and normalized gradient profiles) are created to guide the search. The employed segmentation techniques are ASM search with 10 and 30 modes of variation and a deformable model coupled to a shape model with 10 modes of variation. To assess the segmentation performance, the obtained results are compared to manual segmentations with four different measures (overlap, average distance, RMS distance and ratio of deviations larger 5mm). The only appearance model delivering usable results is the normalized gradient profile. The deformable model search achieves the best results, followed by the ASM search with 30 modes. Overall, statistical shape modeling delivers very promising results for a fully automated segmentation of the liver. PMID:17354754

  17. Quantitative 3D shape description of dust particles from treated seeds by means of X-ray micro-CT.

    PubMed

    Devarrewaere, Wouter; Foqué, Dieter; Heimbach, Udo; Cantre, Dennis; Nicolai, Bart; Nuyttens, David; Verboven, Pieter

    2015-06-16

    Crop seeds are often treated with pesticides before planting. Pesticide-laden dust particles can be abraded from the seed coating during planting and expelled into the environment, damaging nontarget organisms. Drift of these dust particles depends on their size, shape and density. In this work, we used X-ray micro-CT to examine the size, shape (sphericity) and porosity of dust particles from treated seeds of various crops. The dust properties quantified in this work were very variable in different crops. This variability may be a result of seed morphology, seed batch, treatment composition, treatment technology, seed cleaning or an interaction of these factors. The intraparticle porosity of seed treatment dust particles varied from 0.02 to 0.51 according to the crop and generally increased with particle size. Calculated settling velocities demonstrated that accounting for particle shape and porosity is important in drift studies. For example, the settling velocity of dust particles with an equivalent diameter of 200 μm may vary between 0.1 and 1.2 m s(-1), depending on their shape and density. Our analysis shows that in a wind velocity of 5 m s(-1), such particles ejected at 1 m height may travel between 4 and 50 m from the source before settling. Although micro-CT is a valuable tool to characterize dust particles, the current image processing methodology limits the number of particles that can be analyzed. PMID:26023822

  18. Numerical time-dependent 3D simulation of flow pattern and heat distribution in an ammonothermal system with various baffle shapes

    NASA Astrophysics Data System (ADS)

    Erlekampf, J.; Seebeck, J.; Savva, P.; Meissner, E.; Friedrich, J.; Alt, N. S. A.; Schlücker, E.; Frey, L.

    2014-10-01

    A numerical analysis of an ammonothermal synthesis process for the bulk growth of nitride crystals was performed. The analysis includes the development of a thermal model for a lab-scale ammonothermal autoclave, which was validated by in situ temperature measurements and applied to tailor the temperature field inside the autoclave. Based on the results of the global thermal 2D simulations, a local 3D model was used to include convective phenomena in the analysis. Moreover, the influence of the baffle and different baffle shapes on the flow velocity was investigated. Fluctuations of the temperature as well as the flow velocities occur, indicating that 3D considerations are essential to accurately investigate the heat and mass transport in ammonothermal systems.

  19. Ryukyu Subduction Zone: 3D Geodynamic Simulations of the Effects of Slab Shape and Depth on Lattice-Preferred Orientation (LPO) and Seismic Anisotropy

    NASA Astrophysics Data System (ADS)

    Tarlow, S.; Tan, E.; Billen, M. I.

    2015-12-01

    At the Ryukyu subduction zone, seismic anisotropy observations suggest that there may be strong trench-parallel flow within the mantle wedge driven by complex 3D slab geometry. However, previous simulations have either failed to account for 3D flow or used the infinite strain axis (ISA) approximation for LPO, which is known to be inaccurate in complex flow fields. Additionally, both the slab depth and shape of the Ryukyu slab are contentious. Development of strong trench-parallel flow requires low viscosity to decouple the mantle wedge from entrainment by the sinking slab. Therefore, understanding the relationship between seismic anisotropy and the accompanying flow field will better constrain the material and dynamic properties of the mantle near subduction zones. In this study, we integrate a kinematic model for calculation of LPO (D-Rex) into a buoyancy-driven, instantaneous 3D flow simulation (ASPECT), using composite non-Newtonian rheology to investigate the dependence of LPO on slab geometry and depth at the Ryukyu Trench. To incorporate the 3D flow effects, the trench and slab extends from the southern tip of Japan to the western edge of Taiwan and the model region is approximately 1/4 of a spherical shell extending from the surface to the core-mantle boundary. In the southern-most region we vary the slab depth and shape to test for the effects of the uncertainties in the observations. We also investigate the effect of adding locally hydrated regions above the slab that affect both the mantle rheology and development of LPO through the consequent changes in mantle flow and dominate (weakest) slip system. We characterize how changes in the simulation conditions affect the LPO within the mantle wedge, subducting slab and sub-slab mantle and relate these to surface observations of seismic anisotropy.

  20. Left-ventricle segmentation in real-time 3D echocardiography using a hybrid active shape model and optimal graph search approach

    NASA Astrophysics Data System (ADS)

    Zhang, Honghai; Abiose, Ademola K.; Campbell, Dwayne N.; Sonka, Milan; Martins, James B.; Wahle, Andreas

    2010-03-01

    Quantitative analysis of the left ventricular shape and motion patterns associated with left ventricular mechanical dyssynchrony (LVMD) is essential for diagnosis and treatment planning in congestive heart failure. Real-time 3D echocardiography (RT3DE) used for LVMD analysis is frequently limited by heavy speckle noise or partially incomplete data, thus a segmentation method utilizing learned global shape knowledge is beneficial. In this study, the endocardial surface of the left ventricle (LV) is segmented using a hybrid approach combining active shape model (ASM) with optimal graph search. The latter is used to achieve landmark refinement in the ASM framework. Optimal graph search translates the 3D segmentation into the detection of a minimum-cost closed set in a graph and can produce a globally optimal result. Various information-gradient, intensity distributions, and regional-property terms-are used to define the costs for the graph search. The developed method was tested on 44 RT3DE datasets acquired from 26 LVMD patients. The segmentation accuracy was assessed by surface positioning error and volume overlap measured for the whole LV as well as 16 standard LV regions. The segmentation produced very good results that were not achievable using ASM or graph search alone.

  1. Optimized design of a LED-array-based TOF range imaging sensor for fast 3-D shape measurement

    NASA Astrophysics Data System (ADS)

    Wang, Huanqin; Wang, Ying; Xu, Jun; He, Deyong; Zhao, Tianpeng; Ming, Hai; Kong, Deyi

    2011-06-01

    A LED-array-based range imaging sensor using Time-of-Flight (TOF) distance measurement was developed to capture the depth information of three-dimensional (3-D) object. By time-division electronic scanning of the LED heterodyne phase-shift TOF range finders in array, the range images were fast obtained without any mechanical moving parts. The design of LED-array-based range imaging sensor was adequately described and a range imaging theoretical model based on photoelectric signal processing was built, which showed there was mutual restriction relationship among the measurement time of a depth pixel, the bandwidth of receiver and the sensor's signal-to-noise ratio (SNR). In order to improve the key parameters of sensor such as range resolution and measurement speed simultaneously, some optimized designs needed to be done for the proposed range imaging sensor, including choosing proper parameters for the filters in receiver, adopting special structure feedback automatic gain control (AGC) circuit with short response time, etc. The final experiment results showed the sensor after optimization could acquire the range images at a rate of 10 frames per second with a range resolution as high as +/-2mm in the range of 50-1200mm. The essential advantages of the proposed range imaging sensor were construction with simple structure, high range resolution, short measurement time and low cost, which was sufficient for many robotic and industrial automation applications.

  2. Measured symmetry of facial 3D shape and perceived facial symmetry and attractiveness before and after orthognathic surgery.

    PubMed

    Ostwald, Julia; Berssenbrügge, Philipp; Dirksen, Dieter; Runte, Christoph; Wermker, Kai; Kleinheinz, Johannes; Jung, Susanne

    2015-05-01

    One aim of cranio-maxillo-facial surgery is to strive for an esthetical appearance. Do facial symmetry and attractiveness correlate? How are they affected by surgery? Within this study faces of patients with orthognathic surgery were captured and analyzed regarding their symmetry. A total of 25 faces of patients were measured three-dimensionally by an optical sensor using the fringe projection technique before and after orthognathic surgery. Based upon this data an asymmetry index was calculated for each case. In order to gather subjective ratings each face was presented to 100 independent test subjects in a 3D rotation sequence. Those were asked to rate the symmetry and the attractiveness of the faces. It was analyzed to what extend the ratings correlate with the measured asymmetry indices and whether pre- and post-surgical data differ. The measured asymmetry indices correlate significantly with the subjective ratings of both items. The measured symmetry as well as the rated symmetry and attractiveness increased on average after surgery. The increase of the ratings was even statistically significant. A larger enhancement of symmetry is achieved in pre-surgical strongly asymmetric faces than in rather symmetric faces. PMID:25841308

  3. Recent developments in multi-layer flat knitting technology for waste free production of complex shaped 3D-reinforcing structures for composites

    NASA Astrophysics Data System (ADS)

    Trümper, W.; Lin, H.; Callin, T.; Bollengier, Q.; Cherif, C.; Krzywinski, S.

    2016-07-01

    Constantly increasing prices for raw materials and energy as well as the current discourse on the reduction of CO2-emissions places a special emphasis on the advantages of lightweight constructions and its resource conserving production methods. Fibre-reinforced composites are already seeing a number of applications in automobile, energy and mechanical engineering. Future applications within the named areas require greater material and energy efficiency and therefore manufacturing methods for textile preforms and lightweight constructions enabling an optimal arrangement of the reinforcing fibres while in the same time limiting waste to a minimum. One manufacturing method for textile reinforced preforms fulfilling quite many of the named requirements is the multilayer weft knitting technology. Multilayer weft knitted fabrics containing straight reinforcing yarns at least in two directions. The arrangement of these yarns is fixed by the loop yarn. Used yarn material in each knitting row is adaptable e. g. according to the load requirements or for the local integration of sensors. Draping properties of these fabrics can be varied within a great range and through this enabling draping of very complex shaped 3D-preforms without wrinkles from just one uncut fabric. The latest developments at ITM are concentrating on the development of a full production chain considering the 3D-CAD geometry, the load analysis, the generation of machine control programs as well as the development of technology and machines to enable the manufacturing of innovative net shape 3D-multilayer weft knitted fabrics such as complex shaped spacer fabrics and tubular fabrics with biaxial reinforcement.

  4. A generalized operational formula based on total electronic densities to obtain 3D pictures of the dual descriptor to reveal nucleophilic and electrophilic sites accurately on closed-shell molecules.

    PubMed

    Martínez-Araya, Jorge I

    2016-09-30

    By means of the conceptual density functional theory, the so-called dual descriptor (DD) has been adapted to be used in any closed-shell molecule that presents degeneracy in its frontier molecular orbitals. The latter is of paramount importance because a correct description of local reactivity will allow to predict the most favorable sites on a molecule to undergo nucleophilic or electrophilic attacks; on the contrary, an incomplete description of local reactivity might have serio us consequences, particularly for those experimental chemists that have the need of getting an insight about reactivity of chemical reagents before using them in synthesis to obtain a new compound. In the present work, the old approach based only on electronic densities of frontier molecular orbitals is replaced by the most accurate procedure that implies the use of total electronic densities thus keeping consistency with the essential principle of the DFT in which the electronic density is the fundamental variable and not the molecular orbitals. As a result of the present work, the DD will be able to properly describe local reactivities only in terms of total electronic densities. To test the proposed operational formula, 12 very common molecules were selected as the original definition of the DD was not able to describe their local reactivities properly. The ethylene molecule was additionally used to test the capability of the proposed operational formula to reveal a correct local reactivity even in absence of degeneracy in frontier molecular orbitals. © 2016 Wiley Periodicals, Inc. PMID:27443264

  5. Efficient computation of the spontaneous decay rate of arbitrarily shaped 3D nanosized resonators: a Krylov model-order reduction approach

    NASA Astrophysics Data System (ADS)

    Zimmerling, Jörn; Wei, Lei; Urbach, Paul; Remis, Rob

    2016-03-01

    We present a Krylov model-order reduction approach to efficiently compute the spontaneous decay (SD) rate of arbitrarily shaped 3D nanosized resonators. We exploit the symmetry of Maxwell's equations to efficiently construct so-called reduced-order models that approximate the SD rate of a quantum emitter embedded in a resonating nanostructure. The models allow for frequency sweeps, meaning that a single model provides SD rate approximations over an entire spectral interval of interest. Field approximations and dominant quasinormal modes can be determined at low cost as well.

  6. Alpha shape theory for 3D visualization and volumetric measurement of brain tumor progression using magnetic resonance images.

    PubMed

    Hamoud Al-Tamimi, Mohammed Sabbih; Sulong, Ghazali; Shuaib, Ibrahim Lutfi

    2015-07-01

    Resection of brain tumors is a tricky task in surgery due to its direct influence on the patients' survival rate. Determining the tumor resection extent for its complete information via-à-vis volume and dimensions in pre- and post-operative Magnetic Resonance Images (MRI) requires accurate estimation and comparison. The active contour segmentation technique is used to segment brain tumors on pre-operative MR images using self-developed software. Tumor volume is acquired from its contours via alpha shape theory. The graphical user interface is developed for rendering, visualizing and estimating the volume of a brain tumor. Internet Brain Segmentation Repository dataset (IBSR) is employed to analyze and determine the repeatability and reproducibility of tumor volume. Accuracy of the method is validated by comparing the estimated volume using the proposed method with that of gold-standard. Segmentation by active contour technique is found to be capable of detecting the brain tumor boundaries. Furthermore, the volume description and visualization enable an interactive examination of tumor tissue and its surrounding. Admirable features of our results demonstrate that alpha shape theory in comparison to other existing standard methods is superior for precise volumetric measurement of tumor. PMID:25865822

  7. Automated 3-D Segmentation of Lungs With Lung Cancer in CT Data Using a Novel Robust Active Shape Model Approach

    PubMed Central

    Sun, Shanhui; Bauer, Christian; Beichel, Reinhard

    2013-01-01

    Segmentation of lungs with (large) lung cancer regions is a nontrivial problem. We present a new fully automated approach for segmentation of lungs with such high-density pathologies. Our method consists of two main processing steps. First, a novel robust active shape model (RASM) matching method is utilized to roughly segment the outline of the lungs. The initial position of the RASM is found by means of a rib cage detection method. Second, an optimal surface finding approach is utilized to further adapt the initial segmentation result to the lung. Left and right lungs are segmented individually. An evaluation on 30 data sets with 40 abnormal (lung cancer) and 20 normal left/right lungs resulted in an average Dice coefficient of 0.975 ± 0.006 and a mean absolute surface distance error of 0.84 ± 0.23 mm, respectively. Experiments on the same 30 data sets showed that our methods delivered statistically significant better segmentation results, compared to two commercially available lung segmentation approaches. In addition, our RASM approach is generally applicable and suitable for large shape models. PMID:21997248

  8. The Heliospheric 2-3 kHz Radiation, the IBEX Ribbon, and the 3-D Shape of the Heliopause

    NASA Astrophysics Data System (ADS)

    Cairns, I. H.; Fuselier, S. A.

    2012-12-01

    Intense episodic bursts of radio emission at 2-4 kHz are observed by the Voyager spacecraft. Most likely the radiation is produced in the outer heliosheath as a shock wave in front of a Global Merged Interaction Region (GMIR) moves through the region where the interstellar magnetic field is draped over the heliopause. Pick-up ion instabilities due to charge-exchange of neutrals from the solar wind or inner heliosheath also play a major role. Recently the IBEX team observed a ribbon of energetic neutrals from the vicinity of the heliopause. The ribbon is believed to follow the locus where the interstellar magnetic field is tangential to the heliopause. Here we address the striking correspondence between the ribbon location and the time-varying source locations of the 2-4 kHz radiation inferred from Voyager observations: in both ecliptic and galactic coordinates the radiation sources form a line parallel to, but offset by about 30 degrees, from the ribbon. The new ideas are (i) that a plasma depletion layer (PDL) is formed in the draping region beyond the heliopause, (ii) the draping region dominates the interstellar medium - solar wind interaction under the sub-Alfvenic conditions that are now believed to exist beyond the heliopause, (iii) the minimum inner heliosheath thickness is found along the ribbon rather than in the direction of motion of the Sun through the interstellar medium (the nose direction), and (iv) the heliopause shape can be inferred from the angular offset of the radio sources and ribbon. These ideas are elaborated, arguing that the density gradients and temperature structure of the PDL are well suited to the radiation's generation and then propagation into the heliosphere, with a strong role for scattering of the radiation by enhanced density turbulence. Initial constraints on the shape of the PDL-dominated heliopause are also given.

  9. Three-dimensional Content-Based Cardiac Image Retrieval using global and local descriptors

    PubMed Central

    Bergamasco, Leila C. C.; Nunes, Fátima L. S.

    2015-01-01

    The increase in volume of medical images generated and stored has created difficulties in accurate image retrieval. An alternative is to generate three-dimensional (3D) models from such medical images and use them in the search. Some of the main cardiac illnesses, such as Congestive Heart Failure (CHF), have deformation in the heart’s shape as one of the main symptoms, which can be identified faster in a 3D object than in slices. This article presents techniques developed to retrieve 3D cardiac models using global and local descriptors within a content-based image retrieval system. These techniques were applied in pre-classified 3D models with and without the CHF disease and they were evaluated by using Precision vs. Recall metric. We observed that local descriptors achieved better results than a global descriptor, reaching 85% of accuracy. The results confirmed the potential of using 3D models retrieval in the medical context to aid in the diagnosis. PMID:26958280

  10. Three-dimensional Content-Based Cardiac Image Retrieval using global and local descriptors.

    PubMed

    Bergamasco, Leila C C; Nunes, Fátima L S

    2015-01-01

    The increase in volume of medical images generated and stored has created difficulties in accurate image retrieval. An alternative is to generate three-dimensional (3D) models from such medical images and use them in the search. Some of the main cardiac illnesses, such as Congestive Heart Failure (CHF), have deformation in the heart's shape as one of the main symptoms, which can be identified faster in a 3D object than in slices. This article presents techniques developed to retrieve 3D cardiac models using global and local descriptors within a content-based image retrieval system. These techniques were applied in pre-classified 3D models with and without the CHF disease and they were evaluated by using Precision vs. Recall metric. We observed that local descriptors achieved better results than a global descriptor, reaching 85% of accuracy. The results confirmed the potential of using 3D models retrieval in the medical context to aid in the diagnosis. PMID:26958280

  11. High-performance III-V MOSFET with nano-stacked high-k gate dielectric and 3D fin-shaped structure

    PubMed Central

    2012-01-01

    A three-dimensional (3D) fin-shaped field-effect transistor structure based on III-V metal-oxide-semiconductor field-effect transistor (MOSFET) fabrication has been demonstrated using a submicron GaAs fin as the high-mobility channel. The fin-shaped channel has a thickness-to-width ratio (TFin/WFin) equal to 1. The nano-stacked high-k Al2O3 dielectric was adopted as a gate insulator in forming a metal-oxide-semiconductor structure to suppress gate leakage. The 3D III-V MOSFET exhibits outstanding gate controllability and shows a high Ion/Ioff ratio > 105 and a low subthreshold swing of 80 mV/decade. Compared to a conventional Schottky gate metal–semiconductor field-effect transistor or planar III-V MOSFETs, the III-V MOSFET in this work exhibits a significant performance improvement and is promising for future development of high-performance n-channel devices based on III-V materials. PMID:22853458

  12. High-performance III-V MOSFET with nano-stacked high-k gate dielectric and 3D fin-shaped structure.

    PubMed

    Chen, Szu-Hung; Liao, Wen-Shiang; Yang, Hsin-Chia; Wang, Shea-Jue; Liaw, Yue-Gie; Wang, Hao; Gu, Haoshuang; Wang, Mu-Chun

    2012-01-01

    A three-dimensional (3D) fin-shaped field-effect transistor structure based on III-V metal-oxide-semiconductor field-effect transistor (MOSFET) fabrication has been demonstrated using a submicron GaAs fin as the high-mobility channel. The fin-shaped channel has a thickness-to-width ratio (TFin/WFin) equal to 1. The nano-stacked high-k Al2O3 dielectric was adopted as a gate insulator in forming a metal-oxide-semiconductor structure to suppress gate leakage. The 3D III-V MOSFET exhibits outstanding gate controllability and shows a high Ion/Ioff ratio > 105 and a low subthreshold swing of 80 mV/decade. Compared to a conventional Schottky gate metal-semiconductor field-effect transistor or planar III-V MOSFETs, the III-V MOSFET in this work exhibits a significant performance improvement and is promising for future development of high-performance n-channel devices based on III-V materials. PMID:22853458

  13. 3D object retrieval using salient views.

    PubMed

    Atmosukarto, Indriyati; Shapiro, Linda G

    2013-06-01

    This paper presents a method for selecting salient 2D views to describe 3D objects for the purpose of retrieval. The views are obtained by first identifying salient points via a learning approach that uses shape characteristics of the 3D points (Atmosukarto and Shapiro in International workshop on structural, syntactic, and statistical pattern recognition, 2008; Atmosukarto and Shapiro in ACM multimedia information retrieval, 2008). The salient views are selected by choosing views with multiple salient points on the silhouette of the object. Silhouette-based similarity measures from Chen et al. (Comput Graph Forum 22(3):223-232, 2003) are then used to calculate the similarity between two 3D objects. Retrieval experiments were performed on three datasets: the Heads dataset, the SHREC2008 dataset, and the Princeton dataset. Experimental results show that the retrieval results using the salient views are comparable to the existing light field descriptor method (Chen et al. in Comput Graph Forum 22(3):223-232, 2003), and our method achieves a 15-fold speedup in the feature extraction computation time. PMID:23833704

  14. 3D object retrieval using salient views

    PubMed Central

    Shapiro, Linda G.

    2013-01-01

    This paper presents a method for selecting salient 2D views to describe 3D objects for the purpose of retrieval. The views are obtained by first identifying salient points via a learning approach that uses shape characteristics of the 3D points (Atmosukarto and Shapiro in International workshop on structural, syntactic, and statistical pattern recognition, 2008; Atmosukarto and Shapiro in ACM multimedia information retrieval, 2008). The salient views are selected by choosing views with multiple salient points on the silhouette of the object. Silhouette-based similarity measures from Chen et al. (Comput Graph Forum 22(3):223–232, 2003) are then used to calculate the similarity between two 3D objects. Retrieval experiments were performed on three datasets: the Heads dataset, the SHREC2008 dataset, and the Princeton dataset. Experimental results show that the retrieval results using the salient views are comparable to the existing light field descriptor method (Chen et al. in Comput Graph Forum 22(3):223–232, 2003), and our method achieves a 15-fold speedup in the feature extraction computation time. PMID:23833704

  15. Towards automated firearm identification based on high resolution 3D data: rotation-invariant features for multiple line-profile-measurement of firing pin shapes

    NASA Astrophysics Data System (ADS)

    Fischer, Robert; Vielhauer, Claus

    2015-03-01

    Understanding and evaluation of potential evidence, as well as evaluation of automated systems for forensic examinations currently play an important role within the domain of digital crime scene analysis. The application of 3D sensing and pattern recognition systems for automatic extraction and comparison of firearm related tool marks is an evolving field of research within this domain. In this context, the design and evaluation of rotation-invariant features for use on topography data play a particular important role. In this work, we propose and evaluate a 3D imaging system along with two novel features based on topography data and multiple profile-measurement-lines for automatic matching of firing pin shapes. Our test set contains 72 cartridges of three manufactures shot by six different 9mm guns. The entire pattern recognition workflow is addressed. This includes the application of confocal microscopy for data acquisition, preprocessing covers outlier handling, data normalization, as well as necessary segmentation and registration. Feature extraction involves the two introduced features for automatic comparison and matching of 3D firing pin shapes. The introduced features are called `Multiple-Circle-Path' (MCP) and `Multiple-Angle-Path' (MAP). Basically both features are compositions of freely configurable amounts of circular or straight path-lines combined with statistical evaluations. During the first part of evaluation (E1), we examine how well it is possible to differentiate between two 9mm weapons of the same mark and model. During second part (E2), we evaluate the discrimination accuracy regarding the set of six different 9mm guns. During the third part (E3), we evaluate the performance of the features in consideration of different rotation angles. In terms of E1, the best correct classification rate is 100% and in terms of E2 the best result is 86%. The preliminary results for E3 indicate robustness of both features regarding rotation. However, in future

  16. Syzygium aromaticum extract mediated, rapid and facile biogenic synthesis of shape-controlled (3D) silver nanocubes.

    PubMed

    Chaudhari, Anuj N; Ingale, Arun G

    2016-06-01

    The synthesis of metal nano materials with controllable geometry has received extensive attention of researchers from the past decade. In this study, we report an unexplored new route for rapid and facile biogenic synthesis of silver nanocubes (AgNCs) by systematic reduction of silver ions with crude clove (Syzygium aromaticum) extract at room temperature. The formation and plasmonic properties of AgNCs were observed and the UV-vis spectra show characteristic absorption peak of AgNCs with broaden region at 430 nm along with the intense (124), (686), (454) and (235) peak in X-ray diffraction pattern confirmed the formation and crystallinity of AgNCs. The average size of AgNC cubes were found to be in the range of ~80 to 150 nm and it was confirmed by particles size distribution, scanning and transmission electron microscopy with elemental detection by EDAX. Further FTIR spectra provide the various functional groups present in the S. aromaticum extract which are supposed to be responsible and participating in the reaction for the synthesis of AgNCs. The AgNCs casted over glass substrate show an electrical conductivity of ~0.55 × 10(6) S/m demonstrating AgNCs to be a potential next generation conducting material due to its high conductivity. This work provides a novel and effective approach to control the shape of silver nanomaterial for impending applications. The current synthesis mode is eco-friendly, low cost and promises different potential applications such as biosensing, nanoelectronics, etc. PMID:26921103

  17. Femtosecond laser processing of evanescence field coupled waveguides in single mode glass fibers for optical 3D shape sensing and navigation

    NASA Astrophysics Data System (ADS)

    Waltermann, Christian; Baumann, Anna Lena; Bethmann, Konrad; Doering, Alexander; Koch, Jan; Angelmahr, Martin; Schade, Wolfgang

    2015-05-01

    Fiber Bragg grating based optical shape sensing is a new and promising approach to gather position and path information in environments where classical imaging systems fail. Especially a real-time in-vivo navigation of medical catheter or endoscope without any further requirements (such as the continuous exposure to x-rays) could provide a huge advantage in countless areas in medicine. Multicore fibers or bundles of glass fibers have been suggested for realizing such shape sensors, but to date all suffer from severe disadvantages. We present the realization of a third approach. With femtosecond laser pulses local waveguides are inscribed into the cladding of a standard single mode glass fiber. The evanescence field of the main fiber core couples to two S-shaped waveguides, which carry the light to high reflective fiber Bragg gratings located approx. 30 μm away from the centered fiber core in an orthogonal configuration. Part of the reflected light is coupled back to the fiber core and can be read out by a fiber Bragg grating interrogator. A typical spectrum is presented as well as the sensor signal for bending in all directions and with different radii. The entire sensor plane has an elongation of less than 4 mm and therefore enables even complicated and localized navigation applications such as medical catheters. Finally a complete 3D shape sensor in a single mode fiber is presented together with an exemplary application for motion capturing.

  18. Fusion and Visualization of HiRISE Super-Resolution, Shape-from-Shading DTM with MER Stereo 3D Reconstructions

    NASA Astrophysics Data System (ADS)

    Gupta, S.; Paar, G.; Muller, J. P.; Tao, Y.; Tyler, L.; Traxler, C.; Hesina, G.; Huber, B.; Nauschnegg, B.

    2014-12-01

    The FP7-SPACE project PRoViDE has assembled a major portion of the imaging data gathered so far from rover vehicles, landers and probes on extra-terrestrial planetary surfaces into a unique database, bringing them into a common planetary geospatial context and providing access to a complete set of 3D vision products. One major aim of PRoViDE is the fusion between orbiter and rover image products. To close the gap between HiRISE imaging resolution (down to 25cm for the OrthoRectified image (ORI), down to 1m for the DTM) and surface vision products, images from multiple HiRISE acquisitions are combined into a super resolution data set (Tao & Muller, 2014), increasing to 5cm resolution the Ortho images. Furthermore, shape-from-shading is applied to one of the ORIs at its original resolution for refinement of the HiRISE DTM, leading to DTM ground resolutions of up to 25 cm. After texture-based co-registration with these refined orbiter 3D products, MER PanCam and NavCam 3D image products can be smoothly pasted into a multi-resolution 3D data representation. Typical results from the MER mission are presented by a dedicated real-time rendering tool which is fed by a hierarchical 3D data structure that is able to cope with all involved scales from global planetary scale down to close-up reconstructions in the mm range. This allows us to explore and analyze the geological characteristics of rock outcrops, for example the detailed geometry and internal features of sedimentary rock layers, to aid paleoenvironmental interpretation. This integrated approach enables more efficient development of geological models of martian rock outcrops. The rendering tool also provides measurement tools to obtain geospatial data of surface points and distances between them. We report on novel scientific use cases and the added value potential of the resultant high-quality data set and presentation means to support further geologic investigations. The research leading to these results has

  19. Laser-ignited frontal polymerization of shape-controllable poly(VI-co-AM) hydrogels based on 3D templates toward adsorption of heavy metal ions

    NASA Astrophysics Data System (ADS)

    Fan, Suzhen; Liu, Sisi; Wang, Xiao-Qiao; Wang, Cai-Feng; Chen, Su

    2016-06-01

    Given the increasing heavy metal pollution issue, fast preparation of polymeric hydrogels with excellent adsorption property toward heavy metal ions is very attractive. In this work, a series of poly( N-vinylimidazole-co-acrylamide) (poly(VI-co-AM)) hydrogels were synthesized via laser-ignited frontal polymerization (LIFP) for the first time. The dependence of frontal velocity and temperature on two factors monomer ratios and initiator concentrations was systematically investigated. Poly(VI-co-AM) hydrogels with any self-supporting shapes can be synthesized by a one-step LIFP in seconds through the application of 3D templates. These shape-persistent hydrogels are pH-responsive and exhibit excellent adsorption/desorption characteristics toward Mn(II), Zn(II), Cd(II), Ni(II), Cu(II) and Co(II) ions, and the adsorption conformed to the pseudo-second-order kinetic model. The reusability of the hydrogels toward mental ions adsorption was further researched, which suggested that the hydrogels can be reused without serious decrease in adsorption capacity. This work might open a promising strategy to facilely prepare shape-controllable hydrogels and expand the application of LIFP.

  20. Temperature dependences of self- and N2-broadened line-shape parameters in the ν3 and ν5 bands of 12CH3D: Measurements and calculations

    NASA Astrophysics Data System (ADS)

    Predoi-Cross, A.; Malathy Devi, V.; Sutradhar, P.; Sinyakova, T.; Buldyreva, J.; Sung, K.; Smith, M. A. H.; Mantz, A. W.

    2016-07-01

    This paper presents the results of a spectroscopic line shape study of self- and nitrogen-broadened 12CH3D transitions in the ν3 and ν5 bands in the Triad region. We combined five pure gas spectra with eighteen spectra of lean mixtures of 12CH3D and nitrogen, all recorded with a Bruker IFS-125 HR Fourier transform spectrometer. The spectra have been analyzed simultaneously using a multispectrum nonlinear least squares fitting technique. N2-broadened line parameters for 184 transitions in the ν3 band and 205 transitions in the ν5 band were measured. In addition, line positions and line intensities were measured for 168 transitions in the ν3 band and 214 transitions in the ν5 band. We have observed 10 instances of weak line mixing corresponding to K″=3 A1 or A2 transitions. Comparisons were made for the N2-broadening coefficients and associated temperature exponents with corresponding values calculated using a semi-classical Robert Bonamy type formalism that involved an inter-molecular potential with terms corresponding to short- and long-range interactions, and exact classical molecular trajectories. The theoretical N2-broadened coefficients are overestimated for high J values, but are in good agreement with the experimental values for small and middle range J values.

  1. The darker-is-deeper heuristic for the perception of 3D shape from shading: Is it perceptually or ecologically valid?

    PubMed

    Todd, James T; Egan, Eric J L; Kallie, Christopher S

    2015-01-01

    The darker-is-deeper heuristic was originally proposed by Langer and Zucker (1994) for approximating 3D shape from shading under conditions of diffuse illumination that typically occur for outdoor scenes on a cloudy day, and it is based on the assumption that vignetting is the primary source of luminance variation under those conditions. It was later rejected as a model of human perception by Langer and Bülthoff (2000), because points in concavities that appear to be the deepest are most often located on local luminance maxima. Despite that result, this heuristic has continued to be described in the literature as a viable model of human perception (e.g., Chen & Tyler, 2015; Tyler, 1998), based entirely on the appearance of image intensity gratings, which have little or no connection to real 3D surfaces or patterns of illumination. In this article we will present a large number of examples to show what actually happens when surfaces are viewed under directional and diffuse illuminations. The results will highlight a number of well-known phenomena in addition to vignetting that can influence the pattern of shading on a surface under diffuse illumination, and they will also demonstrate that the darker-is-deeper heuristic is generally invalid for all types of illumination, except in unusual circumstances. PMID:26562310

  2. GRID3D-v2: An updated version of the GRID2D/3D computer program for generating grid systems in complex-shaped three-dimensional spatial domains

    NASA Technical Reports Server (NTRS)

    Steinthorsson, E.; Shih, T. I-P.; Roelke, R. J.

    1991-01-01

    In order to generate good quality systems for complicated three-dimensional spatial domains, the grid-generation method used must be able to exert rather precise controls over grid-point distributions. Several techniques are presented that enhance control of grid-point distribution for a class of algebraic grid-generation methods known as the two-, four-, and six-boundary methods. These techniques include variable stretching functions from bilinear interpolation, interpolating functions based on tension splines, and normalized K-factors. The techniques developed in this study were incorporated into a new version of GRID3D called GRID3D-v2. The usefulness of GRID3D-v2 was demonstrated by using it to generate a three-dimensional grid system in the coolent passage of a radial turbine blade with serpentine channels and pin fins.

  3. Anionic 3D cage networks self-assembled by iodine and V-shaped pentaiodides using dimeric oxoammonium cations produced in situ as templates.

    PubMed

    Pang, Xue; Wang, Hui; Zhao, Xiao Ran; Jin, Wei Jun

    2013-06-28

    A novel co-crystal, [(BTEMPO)2(2+)·4I2·2I5(-)] (BTEMPO(+) = 4-benzoyloxy-2,2,6,6-tetramethylpiperidinyl-1-oxoammonium cation), was successfully constructed using iodine and 4-benzoyloxy-2,2,6,6-tetramethylpiperidinyl-1-oxy free radical (BTEMPO) as starting materials and was well characterized by XRD, Raman and calculation. The co-crystal possesses a fascinating 3D anionic cage structure formed by V-shaped-pentaiodides and iodine via multiple halogen bonding and on a template of dimeric (BTEMPO)2(2+) cations. The cationic dimers are held together by a pair of reversed C-H···O=C hydrogen bonds and stabilized the 3D cage structure by C-H···I hydrogen bonds between methyl-protons of BTEMPO(+) and iodine in the framework. The reaction mechanism of producing BTEMPO(+) and I5(-) is proposed and verified by UV-Vis spectroscopy and ESI-MS, which initially goes through a halogen bonding complex between iodine and BTEMPO free radical and then Milliken inner charge transfer and charge separation reaction. UV-Vis absorption spectroscopy confirms the halogen bonding complex between I2 and BTEMPO with a formation constant of 6.94 M(-1) and a 1 : 1 stoichiometry in chloroform. The ESI-MS directly led to observation of the less stable intermediates in the mechanism. It is believed that the mechanism proposed here is helpful in understanding the interactions between I2 and organic electron donors, which are debated frequently, and fills the gaps in the reaction mechanism of I2 with free radicals or analogues. PMID:23640048

  4. Automatic Segmentation of the Eye in 3D Magnetic Resonance Imaging: A Novel Statistical Shape Model for Treatment Planning of Retinoblastoma

    SciTech Connect

    Ciller, Carlos; De Zanet, Sandro I.; Rüegsegger, Michael B.; Pica, Alessia; Sznitman, Raphael; Thiran, Jean-Philippe; Maeder, Philippe; Munier, Francis L.; Kowal, Jens H.; and others

    2015-07-15

    Purpose: Proper delineation of ocular anatomy in 3-dimensional (3D) imaging is a big challenge, particularly when developing treatment plans for ocular diseases. Magnetic resonance imaging (MRI) is presently used in clinical practice for diagnosis confirmation and treatment planning for treatment of retinoblastoma in infants, where it serves as a source of information, complementary to the fundus or ultrasonographic imaging. Here we present a framework to fully automatically segment the eye anatomy for MRI based on 3D active shape models (ASM), and we validate the results and present a proof of concept to automatically segment pathological eyes. Methods and Materials: Manual and automatic segmentation were performed in 24 images of healthy children's eyes (3.29 ± 2.15 years of age). Imaging was performed using a 3-T MRI scanner. The ASM consists of the lens, the vitreous humor, the sclera, and the cornea. The model was fitted by first automatically detecting the position of the eye center, the lens, and the optic nerve, and then aligning the model and fitting it to the patient. We validated our segmentation method by using a leave-one-out cross-validation. The segmentation results were evaluated by measuring the overlap, using the Dice similarity coefficient (DSC) and the mean distance error. Results: We obtained a DSC of 94.90 ± 2.12% for the sclera and the cornea, 94.72 ± 1.89% for the vitreous humor, and 85.16 ± 4.91% for the lens. The mean distance error was 0.26 ± 0.09 mm. The entire process took 14 seconds on average per eye. Conclusion: We provide a reliable and accurate tool that enables clinicians to automatically segment the sclera, the cornea, the vitreous humor, and the lens, using MRI. We additionally present a proof of concept for fully automatically segmenting eye pathology. This tool reduces the time needed for eye shape delineation and thus can help clinicians when planning eye treatment and confirming the extent of the tumor.

  5. Global magnetosphere-like 3D structure formation in kinetics by hot magnetized plasma flow characterized by shape of the particle distribution function

    NASA Astrophysics Data System (ADS)

    Gubchenko, Vladimir

    The task was to provide an analytical elementary magnetosphere-like model in kinetics for verification of the 3D EM PIC codes created for space/aerospace and HED plasmas applications. Kinetic approach versus cold MHD approach takes into account different behavior in the EM fields of resonant and non resonant particles in the velocity phase space, which appears via shape characteristics of the particle velocity distribution function (PVDF) and via the spatial dispersion effect forming the collisionless dissipation in the EM fields. The external flow is a hot collisionless plasma characterized by the particle velocity distribution function (PVDF) with different shapes: Maxwellian, kappa, etc. The flow is in a “hot regime”: it can be supersonic but its velocity remains less the thermal velocity of the electrons. The “internal” part of the magnetosphere formed by trapped particles is the prescribed 3D stationary magnetization considered as a spherical “quasiparticle” with internal magnetodipole and toroidal moments represented as a broadband EM driver. We obtain after the linearization of Vlasov/Maxwell equations a self-consistent 3D large scale kinetic solution of the classic problem. Namely, we: model the “outer” part of the magnetosphere formed by external hot plasma flow of the flyby particles. Solution of the Vlasov equation expressed via a tensor of dielectric permittivity of nonmagnetized and magnetized flowing plasma. Here, we obtain the direct kinetic dissipative effect of the magnetotail formation and the opposite diamagnetic effect of the magnetosphere “dipolization”. We get MHD wave cone in flow magnetized by external guiding magnetic (GM) field. Magnetosphere in our consideration is a 3D dissipative “wave” package structure of the skinned EM fields formed by the “waves” excited at frequency bands where we obtain negative values and singularities (resonances) of squared EM refractive index of the cold plasma. The hot regime

  6. In situ 3D topographic and shape analysis by synchrotron radiation X-ray microtomography for crystal form identification in polymorphic mixtures.

    PubMed

    Yin, Xian-Zhen; Xiao, Ti-Qiao; Nangia, Ashwini; Yang, Shuo; Lu, Xiao-Long; Li, Hai-Yan; Shao, Qun; He, You; York, Peter; Zhang, Ji-Wen

    2016-01-01

    Polymorphism denotes the existence of more than one crystal structure of a substance, and great practical and theoretical interest for the chemical and pharmaceutical industries. In many cases, it is challenging to produce a pure crystal form and establish a sensitive detection method for the identification of crystal form in a mixture of polymorphs. In this study, an accurate and sensitive method based on synchrotron radiation X-ray computed microtomography (SR-μCT) was devised to identify the polymorphs of clopidogrel bisulphate (CLP). After 3D reconstruction, crystal particles were extracted and dozens of structural parameters were calculated. Whilst, the particle shapes of the two crystal forms were all irregular, the surface of CLP II was found to be rougher than CLP I. In order to classify the crystal form based on the quantitative morphological property of particles, Volume Bias Percentage based on Surface Smoothing (VBP) was defined and a new method based on VBP was successfully developed, with a total matching rate of 99.91% for 4544 particles and a lowest detectable limit of 1%. More important for the mixtures in solid pharmaceutical formulations, the interference of excipients can be avoided, a feature cannot achieved by other available analytical methods. PMID:27097672

  7. In situ 3D topographic and shape analysis by synchrotron radiation X-ray microtomography for crystal form identification in polymorphic mixtures

    PubMed Central

    Yin, Xian-Zhen; Xiao, Ti-Qiao; Nangia, Ashwini; Yang, Shuo; Lu, Xiao-Long; Li, Hai-Yan; Shao, Qun; He, You; York, Peter; Zhang, Ji-Wen

    2016-01-01

    Polymorphism denotes the existence of more than one crystal structure of a substance, and great practical and theoretical interest for the chemical and pharmaceutical industries. In many cases, it is challenging to produce a pure crystal form and establish a sensitive detection method for the identification of crystal form in a mixture of polymorphs. In this study, an accurate and sensitive method based on synchrotron radiation X-ray computed microtomography (SR-μCT) was devised to identify the polymorphs of clopidogrel bisulphate (CLP). After 3D reconstruction, crystal particles were extracted and dozens of structural parameters were calculated. Whilst, the particle shapes of the two crystal forms were all irregular, the surface of CLP II was found to be rougher than CLP I. In order to classify the crystal form based on the quantitative morphological property of particles, Volume Bias Percentage based on Surface Smoothing (VBP) was defined and a new method based on VBP was successfully developed, with a total matching rate of 99.91% for 4544 particles and a lowest detectable limit of 1%. More important for the mixtures in solid pharmaceutical formulations, the interference of excipients can be avoided, a feature cannot achieved by other available analytical methods. PMID:27097672

  8. In situ 3D topographic and shape analysis by synchrotron radiation X-ray microtomography for crystal form identification in polymorphic mixtures

    NASA Astrophysics Data System (ADS)

    Yin, Xian-Zhen; Xiao, Ti-Qiao; Nangia, Ashwini; Yang, Shuo; Lu, Xiao-Long; Li, Hai-Yan; Shao, Qun; He, You; York, Peter; Zhang, Ji-Wen

    2016-04-01

    Polymorphism denotes the existence of more than one crystal structure of a substance, and great practical and theoretical interest for the chemical and pharmaceutical industries. In many cases, it is challenging to produce a pure crystal form and establish a sensitive detection method for the identification of crystal form in a mixture of polymorphs. In this study, an accurate and sensitive method based on synchrotron radiation X-ray computed microtomography (SR-μCT) was devised to identify the polymorphs of clopidogrel bisulphate (CLP). After 3D reconstruction, crystal particles were extracted and dozens of structural parameters were calculated. Whilst, the particle shapes of the two crystal forms were all irregular, the surface of CLP II was found to be rougher than CLP I. In order to classify the crystal form based on the quantitative morphological property of particles, Volume Bias Percentage based on Surface Smoothing (VBP) was defined and a new method based on VBP was successfully developed, with a total matching rate of 99.91% for 4544 particles and a lowest detectable limit of 1%. More important for the mixtures in solid pharmaceutical formulations, the interference of excipients can be avoided, a feature cannot achieved by other available analytical methods.

  9. Analysis of trabecular bone architectural changes induced by osteoarthritis in rabbit femur using 3D active shape model and digital topology

    NASA Astrophysics Data System (ADS)

    Saha, P. K.; Rajapakse, C. S.; Williams, D. S.; Duong, L.; Coimbra, A.

    2007-03-01

    Osteoarthritis (OA) is the most common chronic joint disease, which causes the cartilage between the bone joints to wear away, leading to pain and stiffness. Currently, progression of OA is monitored by measuring joint space width using x-ray or cartilage volume using MRI. However, OA affects all periarticular tissues, including cartilage and bone. It has been shown previously that in animal models of OA, trabecular bone (TB) architecture is particularly affected. Furthermore, relative changes in architecture are dependent on the depth of the TB region with respect to the bone surface and main direction of load on the bone. The purpose of this study was to develop a new method for accurately evaluating 3D architectural changes induced by OA in TB. Determining the TB test domain that represents the same anatomic region across different animals is crucial for studying disease etiology, progression and response to therapy. It also represents a major technical challenge in analyzing architectural changes. Here, we solve this problem using a new active shape model (ASM)-based approach. A new and effective semi-automatic landmark selection approach has been developed for rabbit distal femur surface that can easily be adopted for many other anatomical regions. It has been observed that, on average, a trained operator can complete the user interaction part of landmark specification process in less than 15 minutes for each bone data set. Digital topological analysis and fuzzy distance transform derived parameters are used for quantifying TB architecture. The method has been applied on micro-CT data of excised rabbit femur joints from anterior cruciate ligament transected (ACLT) (n = 6) and sham (n = 9) operated groups collected at two and two-to-eight week post-surgery, respectively. An ASM of the rabbit right distal femur has been generated from the sham group micro-CT data. The results suggest that, in conjunction with ASM, digital topological parameters are suitable for

  10. GRID2D/3D: A computer program for generating grid systems in complex-shaped two- and three-dimensional spatial domains. Part 1: Theory and method

    NASA Technical Reports Server (NTRS)

    Shih, T. I.-P.; Bailey, R. T.; Nguyen, H. L.; Roelke, R. J.

    1990-01-01

    An efficient computer program, called GRID2D/3D was developed to generate single and composite grid systems within geometrically complex two- and three-dimensional (2- and 3-D) spatial domains that can deform with time. GRID2D/3D generates single grid systems by using algebraic grid generation methods based on transfinite interpolation in which the distribution of grid points within the spatial domain is controlled by stretching functions. All single grid systems generated by GRID2D/3D can have grid lines that are continuous and differentiable everywhere up to the second-order. Also, grid lines can intersect boundaries of the spatial domain orthogonally. GRID2D/3D generates composite grid systems by patching together two or more single grid systems. The patching can be discontinuous or continuous. For continuous composite grid systems, the grid lines are continuous and differentiable everywhere up to the second-order except at interfaces where different single grid systems meet. At interfaces where different single grid systems meet, the grid lines are only differentiable up to the first-order. For 2-D spatial domains, the boundary curves are described by using either cubic or tension spline interpolation. For 3-D spatial domains, the boundary surfaces are described by using either linear Coon's interpolation, bi-hyperbolic spline interpolation, or a new technique referred to as 3-D bi-directional Hermite interpolation. Since grid systems generated by algebraic methods can have grid lines that overlap one another, GRID2D/3D contains a graphics package for evaluating the grid systems generated. With the graphics package, the user can generate grid systems in an interactive manner with the grid generation part of GRID2D/3D. GRID2D/3D is written in FORTRAN 77 and can be run on any IBM PC, XT, or AT compatible computer. In order to use GRID2D/3D on workstations or mainframe computers, some minor modifications must be made in the graphics part of the program; no

  11. Novel 3D resist shaping process via e-beam lithography, with application for the formation of blased planar waveguide gratings and planar lenses on GaAs

    NASA Astrophysics Data System (ADS)

    Poli, Louis C.; Kondek, Christine A.; Novembre, Anthony E.; McLane, George F.

    1995-06-01

    saw tooth ramp. Successive features of increasing dose will build an increasingly thicker ramp of resist. Images are developed in ethanol, a first rinse in methanol and a final rinse in IPA/H2O. Planar lenses may also be attempted in this way by again doing a piece-wise construction of the shape, using a varying dose. The processed 3-D resist pattern is then transferred to the wafer by a magnetron RIE dry etch in an argon and boron trichloride atmosphere. Etching of the resist pattern and the wafer is performed so that protected areas of the wafer receive the least etch and the smallest relief. Etching selectivity may in part be set by choosing an appropriate mix in the etching atmosphere.

  12. Landmark detection from 3D mesh facial models for image-based analysis of dysmorphology.

    PubMed

    Chendeb, Marwa; Tortorici, Claudio; Al Muhairi, Hassan; Al Safar, Habiba; Linguraru, Marius; Werghi, Naoufel

    2015-01-01

    Facial landmark detection is a task of interest for facial dysmorphology, an important factor in the diagnosis of genetic conditions. In this paper, we propose a framework for feature points detection from 3D face images. The method is based on 3D Constrained Local Model (CLM) which learns both global variations in the 3D facial scan and local changes around every vertex landmark. Compared to state of the art methods our framework is distinguished by the following novel aspects: 1) It operates on facial surfaces, 2) It allows fusion of shape and color information on the mesh surface, 3) It introduces the use of LBP descriptors on the mesh. We showcase our landmarks detection framework on a set of scans including down syndrome and control cases. We also validate our method through a series of quantitative experiments conducted with the publicly available Bosphorus database. PMID:26736227

  13. Characterization of cerebral aneurysms using 3D moment invariants

    NASA Astrophysics Data System (ADS)

    Millan, Raul D.; Hernandez, Monica; Gallardo, Daniel; Cebral, Juan R.; Putman, Christopher; Dempere-Marco, Laura; Frangi, Alejandro F.

    2005-04-01

    The rupture mechanism of intracranial aneurysms is still not fully understood. Although the size of the aneurysm is the shape index most commonly used to predict rupture, some controversy still exists about its adequateness as an aneurysm rupture predictor. In this work, an automatic method to geometrically characterize the shape of cerebral saccular aneurysms using 3D moment invariants is proposed. Geometric moments are efficiently computed via application of the Divergence Theorem over the aneurysm surface using a non-structured mesh. 3D models of the aneurysm and its connected parent vessels have been reconstructed from segmentations of both 3DRA and CTA images. Two alternative approaches have been used for segmentation, the first one based on isosurface deformable models, and the second one based on the level set method. Several experiments were also conducted to both assess the influence of pre-processing steps in the stability of the aneurysm shape descriptors, and to know the robustness of the proposed method. Moment invariants have proved to be a robust technique while providing a reliable way to discriminate between ruptured and unruptured aneurysms (Sensitivity=0.83, Specificity=0.74) on a data set containing 55 aneurysms. Further investigation over larger databases is necessary to establish their adequateness as reliable predictors of rupture risk.

  14. DYNAMIC 3D QSAR TECHNIQUES: APPLICATIONS IN TOXICOLOGY

    EPA Science Inventory

    Two dynamic techniques recently developed to account for conformational flexibility of chemicals in 3D QSARs are presented. In addition to the impact of conformational flexibility of chemicals in 3D QSAR models, the applicability of various molecular descriptors is discussed. The...

  15. High-resolution 3D analyses of the shape and internal constituents of small volcanic ash particles: The contribution of SEM micro-computed tomography (SEM micro-CT)

    NASA Astrophysics Data System (ADS)

    Vonlanthen, Pierre; Rausch, Juanita; Ketcham, Richard A.; Putlitz, Benita; Baumgartner, Lukas P.; Grobéty, Bernard

    2015-02-01

    The morphology of small volcanic ash particles is fundamental to our understanding of magma fragmentation, and in transport modeling of volcanic plumes and clouds. Until recently, the analysis of 3D features in small objects (< 250 μm) was either restricted to extrapolations from 2D approaches, partial stereo-imaging, or CT methods having limited spatial resolution and/or accessibility. In this study, an X-ray computed-tomography technique known as SEM micro-CT, also called 3D X-ray ultramicroscopy (3D XuM), was used to investigate the 3D morphology of small volcanic ash particles (125-250 μm sieve fraction), as well as their vesicle and microcrystal distribution. The samples were selected from four stratigraphically well-established tephra layers of the Meerfelder Maar (West Eifel Volcanic Field, Germany). Resolution tests performed on a Beametr v1 pattern sample along with Monte Carlo simulations of X-ray emission volumes indicated that a spatial resolution of 0.65 μm was obtained for X-ray shadow projections using a standard thermionic SEM and a bulk brass target as X-ray source. Analysis of a smaller volcanic ash particle (64-125 μm sieve fraction) showed that features with volumes > 20 μm3 (~ 3.5 μm in diameter) can be successfully reconstructed and quantified. In addition, new functionalities of the Blob3D software were developed to allow the particle shape factors frequently used as input parameters in ash transport and dispersion models to be calculated. This study indicates that SEM micro-CT is very well suited to quantify the various aspects of shape in fine volcanic ash, and potentially also to investigate the 3D morphology and internal structure of any object < 0.1 mm3.

  16. Dominant color correlogram descriptor for content-based image retrieval

    NASA Astrophysics Data System (ADS)

    Fierro-Radilla, Atoany; Perez-Daniel, Karina; Nakano-Miyatake, Mariko; Benois, Jenny

    2015-03-01

    Content-based image retrieval (CBIR) has become an interesting and urgent research topic due to the increase of necessity of indexing and classification of multimedia content in large databases. The low level visual descriptors, such as color-based, texture-based and shape-based descriptors, have been used for the CBIR task. In this paper we propose a color-based descriptor which describes well image contents, integrating both global feature provided by dominant color and local features provided by color correlogram. The performance of the proposed descriptor, called Dominant Color Correlogram descriptor (DCCD), is evaluated comparing with some MPEG-7 visual descriptors and other color-based descriptors reported in the literature, using two image datasets with different size and contents. The performance of the proposed descriptor is assessed using three different metrics commonly used in image retrieval task, which are ARP (Average Retrieval Precision), ARR (Average Retrieval Rate) and ANMRR (Average Normalized Modified Retrieval Rank). Also precision-recall curves are provided to show a better performance of the proposed descriptor compared with other color-based descriptors.

  17. Organ-Mounted Electronics: An Universal and Easy-to-Use Model for the Pressure of Arbitrary-Shape 3D Multifunctional Integumentary Cardiac Membranes (Adv. Healthcare Mater. 8/2016).

    PubMed

    Su, Yewang; Liu, Zhuangjian; Xu, Lizhi

    2016-04-01

    Recently developed concepts for 3D, organ-mounted electronics for cardiac applications require an universal and easy-to-use mechanical model to calculate the average pressure associated with operation of the device, which is crucial for evaluation of design efficacy and optimization. A simple, accurate, easy-to-use, and universal model to quantify the average pressure for arbitrarily shaped organs is proposed by Y. Su and colleagues on page 889. Cover designed by Zhenhai Li. PMID:27091775

  18. 3D ear identification based on sparse representation.

    PubMed

    Zhang, Lin; Ding, Zhixuan; Li, Hongyu; Shen, Ying

    2014-01-01

    Biometrics based personal authentication is an effective way for automatically recognizing, with a high confidence, a person's identity. Recently, 3D ear shape has attracted tremendous interests in research field due to its richness of feature and ease of acquisition. However, the existing ICP (Iterative Closet Point)-based 3D ear matching methods prevalent in the literature are not quite efficient to cope with the one-to-many identification case. In this paper, we aim to fill this gap by proposing a novel effective fully automatic 3D ear identification system. We at first propose an accurate and efficient template-based ear detection method. By utilizing such a method, the extracted ear regions are represented in a common canonical coordinate system determined by the ear contour template, which facilitates much the following stages of feature extraction and classification. For each extracted 3D ear, a feature vector is generated as its representation by making use of a PCA-based local feature descriptor. At the stage of classification, we resort to the sparse representation based classification approach, which actually solves an l1-minimization problem. To the best of our knowledge, this is the first work introducing the sparse representation framework into the field of 3D ear identification. Extensive experiments conducted on a benchmark dataset corroborate the effectiveness and efficiency of the proposed approach. The associated Matlab source code and the evaluation results have been made publicly online available at http://sse.tongji.edu.cn/linzhang/ear/srcear/srcear.htm. PMID:24740247

  19. Bioprinting of 3D hydrogels.

    PubMed

    Stanton, M M; Samitier, J; Sánchez, S

    2015-08-01

    Three-dimensional (3D) bioprinting has recently emerged as an extension of 3D material printing, by using biocompatible or cellular components to build structures in an additive, layer-by-layer methodology for encapsulation and culture of cells. These 3D systems allow for cell culture in a suspension for formation of highly organized tissue or controlled spatial orientation of cell environments. The in vitro 3D cellular environments simulate the complexity of an in vivo environment and natural extracellular matrices (ECM). This paper will focus on bioprinting utilizing hydrogels as 3D scaffolds. Hydrogels are advantageous for cell culture as they are highly permeable to cell culture media, nutrients, and waste products generated during metabolic cell processes. They have the ability to be fabricated in customized shapes with various material properties with dimensions at the micron scale. 3D hydrogels are a reliable method for biocompatible 3D printing and have applications in tissue engineering, drug screening, and organ on a chip models. PMID:26066320

  20. Europeana and 3D

    NASA Astrophysics Data System (ADS)

    Pletinckx, D.

    2011-09-01

    The current 3D hype creates a lot of interest in 3D. People go to 3D movies, but are we ready to use 3D in our homes, in our offices, in our communication? Are we ready to deliver real 3D to a general public and use interactive 3D in a meaningful way to enjoy, learn, communicate? The CARARE project is realising this for the moment in the domain of monuments and archaeology, so that real 3D of archaeological sites and European monuments will be available to the general public by 2012. There are several aspects to this endeavour. First of all is the technical aspect of flawlessly delivering 3D content over all platforms and operating systems, without installing software. We have currently a working solution in PDF, but HTML5 will probably be the future. Secondly, there is still little knowledge on how to create 3D learning objects, 3D tourist information or 3D scholarly communication. We are still in a prototype phase when it comes to integrate 3D objects in physical or virtual museums. Nevertheless, Europeana has a tremendous potential as a multi-facetted virtual museum. Finally, 3D has a large potential to act as a hub of information, linking to related 2D imagery, texts, video, sound. We describe how to create such rich, explorable 3D objects that can be used intuitively by the generic Europeana user and what metadata is needed to support the semantic linking.

  1. A novel orthogonal transmission-virtual grating method and its applications in measuring micro 3-D shape of deformed liquid surface

    NASA Astrophysics Data System (ADS)

    Liu, Zhanwei; Huang, Xianfu; Xie, Huimin

    2013-02-01

    Deformed liquid surface directly involves the surface tension, which can always be used to account for the kinematics of aquatic insects in gas-liquid interface and the light metal floating on the water surface. In this paper a novel method based upon deformed transmission-virtual grating is proposed for determination of deformed liquid surface. By addressing an orthogonal grating (1-5 line/mm) under the transparent water groove and then capturing images from upset of the deformed water surface, a displacement vector of full-field which directly associates the 3-D deformed liquid surface then can be evaluated by processing the recorded deformed fringe pattern in the two directions (x- and y-direction). Theories and equations for the method are thoroughly delivered. Validation test to measure the deformed water surface caused by a Chinese 1-cent coin has been conducted to demonstrate the ability of the developed method. The obtained results show that the method is robust in determination of micro 3-D surface of deformed liquid with a submicron scale resolution and with a wide range application scope.

  2. Student Descriptor Scale Manual.

    ERIC Educational Resources Information Center

    Goetz, Lori; And Others

    The Student Descriptor Scale (SDS) was developed as a validation measure to determine whether students described and counted by states as "severely handicapped" were, indeed, students with severe disabilities. The SDS addresses nine characteristics: intellectual disability, health impairment, need for toileting assistance, upper torso motor…

  3. Learning discriminant face descriptor.

    PubMed

    Lei, Zhen; Pietikäinen, Matti; Li, Stan Z

    2014-02-01

    Local feature descriptor is an important module for face recognition and those like Gabor and local binary patterns (LBP) have proven effective face descriptors. Traditionally, the form of such local descriptors is predefined in a handcrafted way. In this paper, we propose a method to learn a discriminant face descriptor (DFD) in a data-driven way. The idea is to learn the most discriminant local features that minimize the difference of the features between images of the same person and maximize that between images from different people. In particular, we propose to enhance the discriminative ability of face representation in three aspects. First, the discriminant image filters are learned. Second, the optimal neighborhood sampling strategy is soft determined. Third, the dominant patterns are statistically constructed. Discriminative learning is incorporated to extract effective and robust features. We further apply the proposed method to the heterogeneous (cross-modality) face recognition problem and learn DFD in a coupled way (coupled DFD or C-DFD) to reduce the gap between features of heterogeneous face images to improve the performance of this challenging problem. Extensive experiments on FERET, CAS-PEAL-R1, LFW, and HFB face databases validate the effectiveness of the proposed DFD learning on both homogeneous and heterogeneous face recognition problems. The DFD improves POEM and LQP by about 4.5 percent on LFW database and the C-DFD enhances the heterogeneous face recognition performance of LBP by over 25 percent. PMID:24356350

  4. Isotropic 3D Nuclear Morphometry of Normal, Fibrocystic and Malignant Breast Epithelial Cells Reveals New Structural Alterations

    PubMed Central

    Nandakumar, Vivek; Kelbauskas, Laimonas; Hernandez, Kathryn F.; Lintecum, Kelly M.; Senechal, Patti; Bussey, Kimberly J.; Davies, Paul C. W.; Johnson, Roger H.; Meldrum, Deirdre R.

    2012-01-01

    Background Grading schemes for breast cancer diagnosis are predominantly based on pathologists' qualitative assessment of altered nuclear structure from 2D brightfield microscopy images. However, cells are three-dimensional (3D) objects with features that are inherently 3D and thus poorly characterized in 2D. Our goal is to quantitatively characterize nuclear structure in 3D, assess its variation with malignancy, and investigate whether such variation correlates with standard nuclear grading criteria. Methodology We applied micro-optical computed tomographic imaging and automated 3D nuclear morphometry to quantify and compare morphological variations between human cell lines derived from normal, benign fibrocystic or malignant breast epithelium. To reproduce the appearance and contrast in clinical cytopathology images, we stained cells with hematoxylin and eosin and obtained 3D images of 150 individual stained cells of each cell type at sub-micron, isotropic resolution. Applying volumetric image analyses, we computed 42 3D morphological and textural descriptors of cellular and nuclear structure. Principal Findings We observed four distinct nuclear shape categories, the predominant being a mushroom cap shape. Cell and nuclear volumes increased from normal to fibrocystic to metastatic type, but there was little difference in the volume ratio of nucleus to cytoplasm (N/C ratio) between the lines. Abnormal cell nuclei had more nucleoli, markedly higher density and clumpier chromatin organization compared to normal. Nuclei of non-tumorigenic, fibrocystic cells exhibited larger textural variations than metastatic cell nuclei. At p<0.0025 by ANOVA and Kruskal-Wallis tests, 90% of our computed descriptors statistically differentiated control from abnormal cell populations, but only 69% of these features statistically differentiated the fibrocystic from the metastatic cell populations. Conclusions Our results provide a new perspective on nuclear structure variations

  5. Stereological estimation of particle shape and orientation from volume tensors.

    PubMed

    Rafati, A H; Ziegel, J F; Nyengaard, J R; Jensen, E B Vedel

    2016-09-01

    In the present paper, we describe new robust methods of estimating cell shape and orientation in 3D from sections. The descriptors of 3D cell shape and orientation are based on volume tensors which are used to construct an ellipsoid, the Miles ellipsoid, approximating the average cell shape and orientation in 3D. The estimators of volume tensors are based on observations in several optical planes through sampled cells. This type of geometric sampling design is known as the optical rotator. The statistical behaviour of the estimator of the Miles ellipsoid is studied under a flexible model for 3D cell shape and orientation. In a simulation study, the lengths of the axes of the Miles ellipsoid can be estimated with coefficients of variation of about 2% if 100 cells are sampled. Finally, we illustrate the use of the developed methods in an example, involving neurons in the medial prefrontal cortex of rat. PMID:26823192

  6. 3d-3d correspondence revisited

    NASA Astrophysics Data System (ADS)

    Chung, Hee-Joong; Dimofte, Tudor; Gukov, Sergei; Sułkowski, Piotr

    2016-04-01

    In fivebrane compactifications on 3-manifolds, we point out the importance of all flat connections in the proper definition of the effective 3d {N}=2 theory. The Lagrangians of some theories with the desired properties can be constructed with the help of homological knot invariants that categorify colored Jones polynomials. Higgsing the full 3d theories constructed this way recovers theories found previously by Dimofte-Gaiotto-Gukov. We also consider the cutting and gluing of 3-manifolds along smooth boundaries and the role played by all flat connections in this operation.

  7. Image-Based Airborne LiDAR Point Cloud Encoding for 3d Building Model Retrieval

    NASA Astrophysics Data System (ADS)

    Chen, Yi-Chen; Lin, Chao-Hung

    2016-06-01

    With the development of Web 2.0 and cyber city modeling, an increasing number of 3D models have been available on web-based model-sharing platforms with many applications such as navigation, urban planning, and virtual reality. Based on the concept of data reuse, a 3D model retrieval system is proposed to retrieve building models similar to a user-specified query. The basic idea behind this system is to reuse these existing 3D building models instead of reconstruction from point clouds. To efficiently retrieve models, the models in databases are compactly encoded by using a shape descriptor generally. However, most of the geometric descriptors in related works are applied to polygonal models. In this study, the input query of the model retrieval system is a point cloud acquired by Light Detection and Ranging (LiDAR) systems because of the efficient scene scanning and spatial information collection. Using Point clouds with sparse, noisy, and incomplete sampling as input queries is more difficult than that by using 3D models. Because that the building roof is more informative than other parts in the airborne LiDAR point cloud, an image-based approach is proposed to encode both point clouds from input queries and 3D models in databases. The main goal of data encoding is that the models in the database and input point clouds can be consistently encoded. Firstly, top-view depth images of buildings are generated to represent the geometry surface of a building roof. Secondly, geometric features are extracted from depth images based on height, edge and plane of building. Finally, descriptors can be extracted by spatial histograms and used in 3D model retrieval system. For data retrieval, the models are retrieved by matching the encoding coefficients of point clouds and building models. In experiments, a database including about 900,000 3D models collected from the Internet is used for evaluation of data retrieval. The results of the proposed method show a clear superiority

  8. Viewpoint independent representation and recognition of polygonal faced in 3-D

    SciTech Connect

    Bunke, H.; Glauser, T.

    1993-08-01

    The recognition of polygons in 3-D space is an important task in robot vision. Two particular problems are addressed in the paper. First a new set of local shape descriptors for polygons are proposed that are invariant under affine transformation. Furthermore, they are complete in the sense that they allow the reconstruction of any polygon in 3-D space from three consecutive vertices. The second problem discussed in this paper is the recognition of 2-D polygonal objects under affine transformation and the presence of partial occlusion. A recognition procedure that is based on the matching of edge length ratios is introduced using a simplified version of the standard dynamic programming procedure commonly employed for string matching. The algorithm is conceptually very simple, easy to implement and has a low computational complexity. It will be shown in a set of experiments that the method is reliable and robust.

  9. Incorporation of learned shape priors into a graph-theoretic approach with application to the 3D segmentation of intraretinal surfaces in SD-OCT volumes of mice

    NASA Astrophysics Data System (ADS)

    Antony, Bhavna J.; Song, Qi; Abràmoff, Michael D.; Sohn, Eliott; Wu, Xiaodong; Garvin, Mona K.

    2014-03-01

    Spectral-domain optical coherence tomography (SD-OCT) finds widespread use clinically for the detection and management of ocular diseases. This non-invasive imaging modality has also begun to find frequent use in research studies involving animals such as mice. Numerous approaches have been proposed for the segmentation of retinal surfaces in SD-OCT images obtained from human subjects; however, the segmentation of retinal surfaces in mice scans is not as well-studied. In this work, we describe a graph-theoretic segmentation approach for the simultaneous segmentation of 10 retinal surfaces in SD-OCT scans of mice that incorporates learned shape priors. We compared the method to a baseline approach that did not incorporate learned shape priors and observed that the overall unsigned border position errors reduced from 3.58 +/- 1.33 μm to 3.20 +/- 0.56 μm.

  10. Flow-through PCR on a 3D qiandu-shaped polydimethylsiloxane (PDMS) microdevice employing a single heater: toward microscale multiplex PCR.

    PubMed

    Wu, Wenming; Loan, Kieu The Loan; Lee, Nae Yoon

    2012-05-01

    Consistent temperature control in an on-chip flow-through polymerase chain reaction (PCR) employing two or more heaters is one of the main obstacles for device miniaturization and integration when realizing micro total analysis systems (μTAS), and also leads to operational complexity. In this study, we propose a qiandu (right triangular prism)-shaped polydimethylsiloxane (PDMS) microdevice with serpentine microchannels fabricated on its slanted plane, and apply the device for an on-chip flow-through PCR employing a single heater. The inclined nature of the qiandu-shaped microdevice enables the formation of a surface temperature gradient along the slanted plane of the microdevice in a height-dependent manner by the use of a single heater, and enables liquid to traverse over wide ranges of temperatures, including the three temperature zones--denaturation, annealing, and extension temperatures--required in a typical PCR. The feasibility of the qiandu-shaped PDMS microdevice as a versatile platform for performing a flow-through PCR was examined by employing multiple templates and varying the inclination angle of the device. In addition, the potential of performing a multiplex PCR using a single qiandu-shaped PDMS microdevice was explored. A 409 bp long gene fragment effective as a marker for diagnosing lung cancer and a 230 bp long gene fragment from a plasmid vector were simultaneously amplified in less than 25 min on a single microdevice, paving the way for a microscale, multiplex PCR on a single device employing a single heater. PMID:22434151

  11. PVP Assisted Shape-Controlled Synthesis of Self-Assembled 1D ZnO and 3D CuO Nanostructures

    NASA Astrophysics Data System (ADS)

    Haque, Fozia Z.; Parra, Mohammad Ramzan; Siddiqui, Hafsa; Singh, Neha; Singh, Nitu; Pandey, Padmini; Mishra, K. M.

    2016-03-01

    Self-assembled one-dimensional (1D) zinc oxide (ZnO) rods and three-dimensional (3D) cupric oxide (CuO) cubes like nanostructures with a mean crystallite size of approximately 33 and 32 nm were synthesized through chemical route in the presence of polyvinylpyrrolidone (PVP) under mild synthesis conditions. The technique used for the synthesis of nanoparticles seems to be an efficient, inexpensive and easy method. X-Ray diffraction patterns confirmed well crystallinity and phase purity of the as prepared samples, followed by the compositional investigation using Fourier Transform Infrared (FT-IR) spectroscopy. The formation of ZnO nanorods and CuO nanocubes like structures were through Scanning Electron Microscopy (SEM) images. The mechanism and the formation factors of the self-assembly were discussed in detail. It was clearly observed from results that the concentration of precursors and PVP were important factors in the synthesis of self-assembly ZnO and CuO nanostructures. These self-assembly nanostructures maybe used as novel materials in various potential applications.

  12. 'Diamond' in 3-D

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This 3-D, microscopic imager mosaic of a target area on a rock called 'Diamond Jenness' was taken after NASA's Mars Exploration Rover Opportunity ground into the surface with its rock abrasion tool for a second time.

    Opportunity has bored nearly a dozen holes into the inner walls of 'Endurance Crater.' On sols 177 and 178 (July 23 and July 24, 2004), the rover worked double-duty on Diamond Jenness. Surface debris and the bumpy shape of the rock resulted in a shallow and irregular hole, only about 2 millimeters (0.08 inch) deep. The final depth was not enough to remove all the bumps and leave a neat hole with a smooth floor. This extremely shallow depression was then examined by the rover's alpha particle X-ray spectrometer.

    On Sol 178, Opportunity's 'robotic rodent' dined on Diamond Jenness once again, grinding almost an additional 5 millimeters (about 0.2 inch). The rover then applied its Moessbauer spectrometer to the deepened hole. This double dose of Diamond Jenness enabled the science team to examine the rock at varying layers. Results from those grindings are currently being analyzed.

    The image mosaic is about 6 centimeters (2.4 inches) across.

  13. 3D and Education

    NASA Astrophysics Data System (ADS)

    Meulien Ohlmann, Odile

    2013-02-01

    Today the industry offers a chain of 3D products. Learning to "read" and to "create in 3D" becomes an issue of education of primary importance. 25 years professional experience in France, the United States and Germany, Odile Meulien set up a personal method of initiation to 3D creation that entails the spatial/temporal experience of the holographic visual. She will present some different tools and techniques used for this learning, their advantages and disadvantages, programs and issues of educational policies, constraints and expectations related to the development of new techniques for 3D imaging. Although the creation of display holograms is very much reduced compared to the creation of the 90ies, the holographic concept is spreading in all scientific, social, and artistic activities of our present time. She will also raise many questions: What means 3D? Is it communication? Is it perception? How the seeing and none seeing is interferes? What else has to be taken in consideration to communicate in 3D? How to handle the non visible relations of moving objects with subjects? Does this transform our model of exchange with others? What kind of interaction this has with our everyday life? Then come more practical questions: How to learn creating 3D visualization, to learn 3D grammar, 3D language, 3D thinking? What for? At what level? In which matter? for whom?

  14. Osteochondral Regeneration: Tuning Cell Differentiation into a 3D Scaffold Presenting a Pore Shape Gradient for Osteochondral Regeneration (Adv. Healthcare Mater. 14/2016).

    PubMed

    Di Luca, Andrea; Lorenzo-Moldero, Ivan; Mota, Carlos; Lepedda, Antonio; Auhl, Dietmar; Van Blitterswijk, Clemens; Moroni, Lorenzo

    2016-07-01

    A combination of human mesenchymal stem cells with additive manufacturing technology for the fabrication of scaffolds with instructive properties is presented by Lorenzo Moroni and co-workers on page 1753. This new fiber deposition pattern allows the generation of pores of different shapes within the same construct. The most rhomboidal pore geometry sustained enhances alkaline phosphatase activity and osteogenic related genes expression with respect to the other gradient zones when the gradient scaffold is cultured in a medium supporting both osteogenic and chondrogenic differentiation. This may contribute to enhance osteochondral regeneration in orthopedic treatments. PMID:27436107

  15. Unsteady coupled 3D calculations of melt flow, interface shape, and species transport for directional solidification of silicon in a traveling magnetic field

    NASA Astrophysics Data System (ADS)

    Dadzis, K.; Vizman, D.; Friedrich, J.

    2013-03-01

    Directional solidification of large multi-crystalline silicon ingots is a distinctly unsteady process with a complex interaction between melt flow, crystallization interface, and species transport. Both the different time-scales and the three-dimensional character make numerical simulations of this process a challenging task. The complexity of such simulations increases further if external magnetic fields are used to enhance the melt flow. In this contribution, several three-dimensional coupled unsteady calculations are carried out for a 22×22×11 cm3 silicon melt directionally solidified in a traveling magnetic field. The justification of various approximations in the numerical models is discussed with an emphasis on the frequently used quasi steady-state models for the calculation of the interface shape. It is shown that an upward traveling magnetic field leads to a symmetric concave interface shape while a downward field results in a convex interface with a distinct asymmetry at the current supplies. These results agree in both unsteady and quasi steady-state calculations, but only unsteady calculations reveal the flow-induced local oscillations of the interface. The unsteady segregation process of carbon and oxygen impurities exhibits a non-uniform concentration along the crystallization interface although the bulk concentration is near to the complete mixing limit in the cases with a traveling magnetic field.

  16. A multiple-shape memory polymer-metal composite actuator capable of programmable control, creating complex 3D motion of bending, twisting, and oscillation

    PubMed Central

    Shen, Qi; Trabia, Sarah; Stalbaum, Tyler; Palmre, Viljar; Kim, Kwang; Oh, Il-Kwon

    2016-01-01

    Development of biomimetic actuators has been an essential motivation in the study of smart materials. However, few materials are capable of controlling complex twisting and bending deformations simultaneously or separately using a dynamic control system. Here, we report an ionic polymer-metal composite actuator having multiple-shape memory effect, and is able to perform complex motion by two external inputs, electrical and thermal. Prior to the development of this type of actuator, this capability only could be realized with existing actuator technologies by using multiple actuators or another robotic system. This paper introduces a soft multiple-shape-memory polymer-metal composite (MSMPMC) actuator having multiple degrees-of-freedom that demonstrates high maneuverability when controlled by two external inputs, electrical and thermal. These multiple inputs allow for complex motions that are routine in nature, but that would be otherwise difficult to obtain with a single actuator. To the best of the authors’ knowledge, this MSMPMC actuator is the first solitary actuator capable of multiple-input control and the resulting deformability and maneuverability. PMID:27080134

  17. A multiple-shape memory polymer-metal composite actuator capable of programmable control, creating complex 3D motion of bending, twisting, and oscillation.

    PubMed

    Shen, Qi; Trabia, Sarah; Stalbaum, Tyler; Palmre, Viljar; Kim, Kwang; Oh, Il-Kwon

    2016-01-01

    Development of biomimetic actuators has been an essential motivation in the study of smart materials. However, few materials are capable of controlling complex twisting and bending deformations simultaneously or separately using a dynamic control system. Here, we report an ionic polymer-metal composite actuator having multiple-shape memory effect, and is able to perform complex motion by two external inputs, electrical and thermal. Prior to the development of this type of actuator, this capability only could be realized with existing actuator technologies by using multiple actuators or another robotic system. This paper introduces a soft multiple-shape-memory polymer-metal composite (MSMPMC) actuator having multiple degrees-of-freedom that demonstrates high maneuverability when controlled by two external inputs, electrical and thermal. These multiple inputs allow for complex motions that are routine in nature, but that would be otherwise difficult to obtain with a single actuator. To the best of the authors' knowledge, this MSMPMC actuator is the first solitary actuator capable of multiple-input control and the resulting deformability and maneuverability. PMID:27080134

  18. A multiple-shape memory polymer-metal composite actuator capable of programmable control, creating complex 3D motion of bending, twisting, and oscillation

    NASA Astrophysics Data System (ADS)

    Shen, Qi; Trabia, Sarah; Stalbaum, Tyler; Palmre, Viljar; Kim, Kwang; Oh, Il-Kwon

    2016-04-01

    Development of biomimetic actuators has been an essential motivation in the study of smart materials. However, few materials are capable of controlling complex twisting and bending deformations simultaneously or separately using a dynamic control system. Here, we report an ionic polymer-metal composite actuator having multiple-shape memory effect, and is able to perform complex motion by two external inputs, electrical and thermal. Prior to the development of this type of actuator, this capability only could be realized with existing actuator technologies by using multiple actuators or another robotic system. This paper introduces a soft multiple-shape-memory polymer-metal composite (MSMPMC) actuator having multiple degrees-of-freedom that demonstrates high maneuverability when controlled by two external inputs, electrical and thermal. These multiple inputs allow for complex motions that are routine in nature, but that would be otherwise difficult to obtain with a single actuator. To the best of the authors’ knowledge, this MSMPMC actuator is the first solitary actuator capable of multiple-input control and the resulting deformability and maneuverability.

  19. 360-degree 3D profilometry

    NASA Astrophysics Data System (ADS)

    Song, Yuanhe; Zhao, Hong; Chen, Wenyi; Tan, Yushan

    1997-12-01

    A new method of 360 degree turning 3D shape measurement in which light sectioning and phase shifting techniques are both used is presented in this paper. A sine light field is applied in the projected light stripe, meanwhile phase shifting technique is used to calculate phases of the light slit. Thereafter wrapped phase distribution of the slit is formed and the unwrapping process is made by means of the height information based on the light sectioning method. Therefore phase measuring results with better precision can be obtained. At last the target 3D shape data can be produced according to geometric relationships between phases and the object heights. The principles of this method are discussed in detail and experimental results are shown in this paper.

  20. Identification and optimization of novel Hsp90 inhibitors with tetrahydropyrido[4,3-d]pyrimidines core through shape-based screening.

    PubMed

    Sun, Hao-Peng; Jia, Jian-Min; Jiang, Fen; Xu, Xiao-Li; Liu, Fang; Guo, Xiao-Ke; Cherfaoui, Bahidja; Huang, Hao-Ze; Pan, Yang; You, Qi-Dong

    2014-05-22

    Rapid Overlay of Chemical Structures (ROCS), which can rapidly identify potentially active compounds by shape comparison, is recognized as a powerful virtual screening tool. By ROCS, a class of novel Hsp90 inhibitors was identified. The calculated binding mode of the most potent hit 36 guided us to design and synthesize a series of analogs (57a-57h). Over 100-fold improvement was achieved in the target-based assay. The most potent compound 57h inhibited Hsp90 with IC50 0.10 ± 0.01 μM. It also showed much improved cell potency and ligand efficiency. Our study showed that ROCS is efficient in the identification of novel cores of Hsp90 inhibitors. 57h can be ideal leads for further optimization. PMID:24763261

  1. Nuclear shape descriptors by automated morphometry may distinguish aggressive variants of squamous cell carcinoma from relatively benign skin proliferative lesions: a pilot study.

    PubMed

    Yang, Weixi; Tian, Rong; Xue, Tongqing

    2015-08-01

    We evaluated whether degrees of dysplasia may be consistently accessed in an automatic fashion, using different kinds of non-melanoma skin cancer (NMSC) as a validatory model. Namely, we compared Bowen disease, actinic keratosis, basal cell carcinoma, low-grade squamous cell carcinoma, and invasive squamous cell carcinoma. We hypothesized that characterizing the shape of nuclei may be important to consistently diagnose the aggressiveness of a skin tumor. While basal cell carcinoma is comparatively relatively benign, management of squamous cell carcinoma is controversial because of its potential to recur and intraoperative dilemma regarding choice of the margin or the depth for the excision. We provide evidence here that progressive nuclear dysplasia may be automatically estimated through the thresholded images of skin cancer and quantitative parameters estimated to provide a quasi-quantitative data, which can thenceforth guide the management of the particular cancer. For circularity, averaging more than 2500 nuclei in each group estimated the means ± SD as 0.8 ± 0.007 vs. 0.78 ± 0.0063 vs. 0.42 ± 0.014 vs. 0.63 ± 0.02 vs. 0.51 ± 0.02 (F = 318063.56, p < 0.0001, one-way analyses of variance). The mean aspect ratios were (means ± SD) 0.97 ± 0.0014 vs. 0.95 ± 0.002 vs. 0.38 ± 0.018 vs. 0.84 ± 0.0035 vs. 0.74 ± 0.019 (F = 1022631.931, p < 0.0001, one-way analyses of variance). The Feret diameters averaged over 2500 nuclei in each group were the following: 1 ± 0.0001 vs. 0.9 ± 0.002 vs. 5 ± 0.031 vs. 1.5 ± 0.01 vs. 1.9 ± 0.004 (F = 33105614.194, p < 0.0001, one-way analyses of variance). Multivariate analyses of composite parameters potentially detect aggressive variants of squamous cell carcinoma as the most dysplastic form, in comparison to locally occurring squamous cell carcinoma and basal cell carcinoma, or benign skin lesions. PMID:25753477

  2. Sphere-shaped nano-hydroxyapatite/chitosan/gelatin 3D porous scaffolds increase proliferation and osteogenic differentiation of human induced pluripotent stem cells from gingival fibroblasts.

    PubMed

    Ji, Jun; Tong, Xin; Huang, Xiaofeng; Wang, Tiancong; Lin, Zitong; Cao, Yazhou; Zhang, Junfeng; Dong, Lei; Qin, Haiyan; Hu, Qingang

    2015-08-01

    Hydroxyapatite (HA) is an important component of human bone and bone tissue engineering scaffolds. A plethora of bone tissue engineering scaffolds have been synthesized so far, including nano-HA/chitosan/gelatin (nHA/CG) scaffolds; and for seeding cells, stem cells, especially induced pluripotent stem cells (iPSCs), have been a promising cell source for bone tissue engineering recently. However, the influence of different HA nano-particle morphologies on the osteogenic differentiation of human iPSCs (hiPSCs) from human gingival fibroblasts (hGFs) is unknown. The purpose of this study was to investigate the osteogenic differentiation of hiPSCs from hGFs seeded on nHA/CG scaffolds with 2 shapes (rod and sphere) of nHA particles. Firstly, hGFs isolated from discarded normal gingival tissues were reprogrammed into hiPSCs. Secondly, hiPSCs were seeded on rod-like nHA/CG (rod-nHA/CG) and sphere-shaped nHA/CG (sphere-nHA/CG) scaffolds respectively and then cell/scaffold complexes were cultured in vitro. Scanning electron microscope, hematoxyline and eosin (HE) staining, Masson's staining, and quantitative real-time polymerase chain reaction techniques were used to examine hiPSC morphology, proliferation, and differentiation on rod-nHA/CG and sphere-nHA/CG scaffolds. Finally, hiPSCs composited with 2 kinds of nHA/CG were transplanted in vivo in a subcutaneous implantation model for 12 weeks; pure scaffolds were also transplanted as a blank control. HE, Masson's, and immunohistochemistry staining were applied to detect new bone regeneration ability. The results showed that sphere-nHA/CG significantly increased hiPSCs from hGF proliferation and osteogenic differentiation in vitro. hiPSCs and sphere-nHA/CG composities generated large bone, whereas hiPSCs and rod-nHA/CG composities produced tiny bone in vivo. Moreover, pure scaffolds without cells almost produced no bone. In conclusion, our work provided a potential innovative bone tissue engineering approach using

  3. 3D Imaging.

    ERIC Educational Resources Information Center

    Hastings, S. K.

    2002-01-01

    Discusses 3 D imaging as it relates to digital representations in virtual library collections. Highlights include X-ray computed tomography (X-ray CT); the National Science Foundation (NSF) Digital Library Initiatives; output peripherals; image retrieval systems, including metadata; and applications of 3 D imaging for libraries and museums. (LRW)

  4. Ear biometric recognition using local texture descriptors

    NASA Astrophysics Data System (ADS)

    Benzaoui, Amir; Hadid, Abdenour; Boukrouche, Abdelhani

    2014-09-01

    Automated personal identification using the shape of the human ear is emerging as an appealing modality in biometric and forensic domains. This is mainly due to the fact that the ear pattern can provide rich and stable information to differentiate and recognize people. In the literature, there are many approaches and descriptors that achieve relatively good results in constrained environments. The recognition performance tends, however, to significantly decrease under illumination variation, pose variation, and partial occlusion. In this work, we investigate the use of local texture descriptors, namely local binary patterns, local phase quantization, and binarized statistical image features for robust human identification from two-dimensional ear imaging. In contrast to global image descriptors which compute features directly from the entire image, local descriptors representing the features in small local image patches have proven to be more effective in real-world conditions. Our extensive experimental results on the benchmarks IIT Delhi-1, IIT Delhi-2, and USTB ear databases show that local texture features in general and BSIF in particular provide a significant performance improvement compared to the state-of-the-art.

  5. From 3D view to 3D print

    NASA Astrophysics Data System (ADS)

    Dima, M.; Farisato, G.; Bergomi, M.; Viotto, V.; Magrin, D.; Greggio, D.; Farinato, J.; Marafatto, L.; Ragazzoni, R.; Piazza, D.

    2014-08-01

    In the last few years 3D printing is getting more and more popular and used in many fields going from manufacturing to industrial design, architecture, medical support and aerospace. 3D printing is an evolution of bi-dimensional printing, which allows to obtain a solid object from a 3D model, realized with a 3D modelling software. The final product is obtained using an additive process, in which successive layers of material are laid down one over the other. A 3D printer allows to realize, in a simple way, very complex shapes, which would be quite difficult to be produced with dedicated conventional facilities. Thanks to the fact that the 3D printing is obtained superposing one layer to the others, it doesn't need any particular work flow and it is sufficient to simply draw the model and send it to print. Many different kinds of 3D printers exist based on the technology and material used for layer deposition. A common material used by the toner is ABS plastics, which is a light and rigid thermoplastic polymer, whose peculiar mechanical properties make it diffusely used in several fields, like pipes production and cars interiors manufacturing. I used this technology to create a 1:1 scale model of the telescope which is the hardware core of the space small mission CHEOPS (CHaracterising ExOPlanets Satellite) by ESA, which aims to characterize EXOplanets via transits observations. The telescope has a Ritchey-Chrétien configuration with a 30cm aperture and the launch is foreseen in 2017. In this paper, I present the different phases for the realization of such a model, focusing onto pros and cons of this kind of technology. For example, because of the finite printable volume (10×10×12 inches in the x, y and z directions respectively), it has been necessary to split the largest parts of the instrument in smaller components to be then reassembled and post-processed. A further issue is the resolution of the printed material, which is expressed in terms of layers

  6. Color-invariant three-dimensional feature descriptor for color-shift-model-based image processing

    NASA Astrophysics Data System (ADS)

    Lim, Joohyun; Paik, Joonki

    2011-11-01

    We present a novel color-invariant depth feature descriptor for color-shift-model (CSM)-based image processing. Color images acquired by a single camera equipped with multiple color-filter aperture (MCA) contain depth-dependent color misalignment. The amount and direction of the misalignment provides object's distance from the camera. The CSM-based image processing, which represents the combined image-acquisition and depth-estimation framework, requires a color-invariant feature descriptor that can convey depth information. For improving depth-estimation performance, color boosting is performed on a color image acquired by the MCA camera, and CSM-based channel-shifting descriptor vectors, or channel-shifting vectors (CSVs), are generated by using the feasibility test. Color-invariant features are also extracted in the luminance image. The proposed color-invariant three-dimensional (3-D) feature descriptor is finally obtained by combining the CSVs and luminance features. We present experimental analysis of the proposed feature descriptor and show that the descriptors are proportional to the depth of an object. The proposed descriptor can be used for feature-based image matching in various applications, including 3-D scene modeling, 3-D object recognition, 3-D video tracking, and multifocusing, to name a few.

  7. TRACE 3-D documentation

    SciTech Connect

    Crandall, K.R.

    1987-08-01

    TRACE 3-D is an interactive beam-dynamics program that calculates the envelopes of a bunched beam, including linear space-charge forces, through a user-defined transport system. TRACE 3-D provides an immediate graphics display of the envelopes and the phase-space ellipses and allows nine types of beam-matching options. This report describes the beam-dynamics calculations and gives detailed instruction for using the code. Several examples are described in detail.

  8. High efficient methods of content-based 3D model retrieval

    NASA Astrophysics Data System (ADS)

    Wu, Yuanhao; Tian, Ling; Li, Chenggang

    2013-03-01

    Content-based 3D model retrieval is of great help to facilitate the reuse of existing designs and to inspire designers during conceptual design. However, there is still a gap to apply it in industry due to the low time efficiency. This paper presents two new methods with high efficiency to build a Content-based 3D model retrieval system. First, an improvement is made on the "Shape Distribution (D2)" algorithm, and a new algorithm named "Quick D2" is proposed. Four sample 3D mechanical models are used in an experiment to compare the time cost of the two algorithms. The result indicates that the time cost of Quick D2 is much lower than that of D2, while the descriptors extracted by the two algorithms are almost the same. Second, an expandable 3D model repository index method with high performance, namely, RBK index, is presented. On the basis of RBK index, the search space is pruned effectively during the search process, leading to a speed up of the whole system. The factors that influence the values of the key parameters of RBK index are discussed and an experimental method to find the optimal values of the key parameters is given. Finally, "3D Searcher", a content-based 3D model retrieval system is developed. By using the methods proposed, the time cost for the system to respond one query online is reduced by 75% on average. The system has been implemented in a manufacturing enterprise, and practical query examples during a case of the automobile rear axle design are also shown. The research method presented shows a new research perspective and can effectively improve the content-based 3D model retrieval efficiency.

  9. 3D finite element analysis of electrostatic deflection of commercial and FIB-modified cantilevers for electric and Kelvin force microscopy: I. Triangular shaped cantilevers with symmetric pyramidal tips

    NASA Astrophysics Data System (ADS)

    Valdrè, Giovanni; Moro, Daniele

    2008-10-01

    The investigation of the nanoscale distribution of electrostatic forces on material surfaces is of paramount importance for the development of nanotechnology, since these confined forces govern many physical processes on which a large number of technological applications are based. For instance, electric force microscopy (EFM) and micro-electro-mechanical-systems (MEMS) are technologies based on an electrostatic interaction between a cantilever and a specimen. In the present work we report on a 3D finite element analysis of the electrostatic deflection of cantilevers for electric and Kelvin force microscopy. A commercial triangular shaped cantilever with a symmetric pyramidal tip was modelled. In addition, the cantilever was modified by a focused ion beam (FIB) in order to reduce its parasitic electrostatic force, and its behaviour was studied by computation analysis. 3D modelling of the electrostatic deflection was realized by using a multiphysics finite element analysis software and it was applied to the real geometry of the cantilevers and probes obtained by using basic CAD tools. The results of the modelling are in good agreement with experimental data.

  10. 3D finite element analysis of electrostatic deflection and shielding of commercial and FIB-modified cantilevers for electric and Kelvin force microscopy: II. Rectangular shaped cantilevers with asymmetric pyramidal tips.

    PubMed

    Valdrè, Giovanni; Moro, Daniele

    2008-10-01

    This paper deals with an application of 3D finite element analysis to the electrostatic interaction between (i) a commercial rectangular shaped cantilever (with an integrated anisotropic pyramidal tip) and a conductive sample, when a voltage difference is applied between them, and (ii) a focused ion beam (FIB) modified cantilever in order to realize a probe with reduced parasitic electrostatic force. The 3D modelling of their electrostatic deflection was realized by using multiphysics finite element analysis software and applied to the real geometry of the cantilevers and probes as used in conventional electric and Kelvin force microscopy to evaluate the contribution of the various part of a cantilever to the total force, and derive practical criteria to optimize the probe performances. We report also on the simulation of electrostatic shielding of nanometric features, in order to quantitatively evaluate an alternative way of reducing the systematic error caused by the cantilever-to-sample capacitive coupling. Finally, a quantitative comparison between the performances of rectangular and triangular cantilevers (part I of this work) is reported. PMID:21832618

  11. 3D finite element analysis of electrostatic deflection of commercial and FIB-modified cantilevers for electric and Kelvin force microscopy: I. Triangular shaped cantilevers with symmetric pyramidal tips.

    PubMed

    Valdrè, Giovanni; Moro, Daniele

    2008-10-01

    The investigation of the nanoscale distribution of electrostatic forces on material surfaces is of paramount importance for the development of nanotechnology, since these confined forces govern many physical processes on which a large number of technological applications are based. For instance, electric force microscopy (EFM) and micro-electro-mechanical-systems (MEMS) are technologies based on an electrostatic interaction between a cantilever and a specimen. In the present work we report on a 3D finite element analysis of the electrostatic deflection of cantilevers for electric and Kelvin force microscopy. A commercial triangular shaped cantilever with a symmetric pyramidal tip was modelled. In addition, the cantilever was modified by a focused ion beam (FIB) in order to reduce its parasitic electrostatic force, and its behaviour was studied by computation analysis. 3D modelling of the electrostatic deflection was realized by using a multiphysics finite element analysis software and it was applied to the real geometry of the cantilevers and probes obtained by using basic CAD tools. The results of the modelling are in good agreement with experimental data. PMID:21832617

  12. Hippocampal shape analysis: surface-based representation and classification

    NASA Astrophysics Data System (ADS)

    Shen, Li; Ford, James; Makedon, Fillia; Saykin, Andrew

    2003-05-01

    Surface-based representation and classification techniques are studied for hippocampal shape analysis. The goal is twofold: (1) develop a new framework of salient feature extraction and accurate classification for 3D shape data; (2) detect hippocampal abnormalities in schizophrenia using this technique. A fine-scale spherical harmonic expansion is employed to describe a closed 3D surface object. The expansion can then easily be transformed to extract only shape information (i.e., excluding translation, rotation, and scaling) and create a shape descriptor comparable across different individuals. This representation captures shape features and is flexible enough to do shape modeling, identify statistical group differences, and generate similar synthetic shapes. Principal component analysis is used to extract a small number of independent features from high dimensional shape descriptors, and Fisher's linear discriminant is applied for pattern classification. This framework is shown to be able to perform well in distinguishing clear group differences as well as small and noisy group differences using simulated shape data. In addition, the application of this technique to real data indicates that group shape differences exist in hippocampi between healthy controls and schizophrenic patients.

  13. Implicit Shape Parameterization for Kansei Design Methodology

    NASA Astrophysics Data System (ADS)

    Nordgren, Andreas Kjell; Aoyama, Hideki

    Implicit shape parameterization for Kansei design is a procedure that use 3D-models, or concepts, to span a shape space for surfaces in the automotive field. A low-dimensional, yet accurate shape descriptor was found by Principal Component Analysis of an ensemble of point-clouds, which were extracted from mesh-based surfaces modeled in a CAD-program. A theoretical background of the procedure is given along with step-by-step instructions for the required data-processing. The results show that complex surfaces can be described very efficiently, and encode design features by an implicit approach that does not rely on error-prone explicit parameterizations. This provides a very intuitive way to explore shapes for a designer, because various design features can simply be introduced by adding new concepts to the ensemble. Complex shapes have been difficult to analyze with Kansei methods due to the large number of parameters involved, but implicit parameterization of design features provides a low-dimensional shape descriptor for efficient data collection, model-building and analysis of emotional content in 3D-surfaces.

  14. 3D palmprint data fast acquisition and recognition

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoxu; Huang, Shujun; Gao, Nan; Zhang, Zonghua

    2014-11-01

    This paper presents a fast 3D (Three-Dimension) palmprint capturing system and develops an efficient 3D palmprint feature extraction and recognition method. In order to fast acquire accurate 3D shape and texture of palmprint, a DLP projector triggers a CCD camera to realize synchronization. By generating and projecting green fringe pattern images onto the measured palm surface, 3D palmprint data are calculated from the fringe pattern images. The periodic feature vector can be derived from the calculated 3D palmprint data, so undistorted 3D biometrics is obtained. Using the obtained 3D palmprint data, feature matching test have been carried out by Gabor filter, competition rules and the mean curvature. Experimental results on capturing 3D palmprint show that the proposed acquisition method can fast get 3D shape information of palmprint. Some initial experiments on recognition show the proposed method is efficient by using 3D palmprint data.

  15. Radiochromic 3D Detectors

    NASA Astrophysics Data System (ADS)

    Oldham, Mark

    2015-01-01

    Radiochromic materials exhibit a colour change when exposed to ionising radiation. Radiochromic film has been used for clinical dosimetry for many years and increasingly so recently, as films of higher sensitivities have become available. The two principle advantages of radiochromic dosimetry include greater tissue equivalence (radiologically) and the lack of requirement for development of the colour change. In a radiochromic material, the colour change arises direct from ionising interactions affecting dye molecules, without requiring any latent chemical, optical or thermal development, with important implications for increased accuracy and convenience. It is only relatively recently however, that 3D radiochromic dosimetry has become possible. In this article we review recent developments and the current state-of-the-art of 3D radiochromic dosimetry, and the potential for a more comprehensive solution for the verification of complex radiation therapy treatments, and 3D dose measurement in general.

  16. Bootstrapping 3D fermions

    NASA Astrophysics Data System (ADS)

    Iliesiu, Luca; Kos, Filip; Poland, David; Pufu, Silviu S.; Simmons-Duffin, David; Yacoby, Ran

    2016-03-01

    We study the conformal bootstrap for a 4-point function of fermions < ψψψψ> in 3D. We first introduce an embedding formalism for 3D spinors and compute the conformal blocks appearing in fermion 4-point functions. Using these results, we find general bounds on the dimensions of operators appearing in the ψ × ψ OPE, and also on the central charge C T . We observe features in our bounds that coincide with scaling dimensions in the GrossNeveu models at large N . We also speculate that other features could coincide with a fermionic CFT containing no relevant scalar operators.

  17. Active Exploration of Large 3D Model Repositories.

    PubMed

    Gao, Lin; Cao, Yan-Pei; Lai, Yu-Kun; Huang, Hao-Zhi; Kobbelt, Leif; Hu, Shi-Min

    2015-12-01

    With broader availability of large-scale 3D model repositories, the need for efficient and effective exploration becomes more and more urgent. Existing model retrieval techniques do not scale well with the size of the database since often a large number of very similar objects are returned for a query, and the possibilities to refine the search are quite limited. We propose an interactive approach where the user feeds an active learning procedure by labeling either entire models or parts of them as "like" or "dislike" such that the system can automatically update an active set of recommended models. To provide an intuitive user interface, candidate models are presented based on their estimated relevance for the current query. From the methodological point of view, our main contribution is to exploit not only the similarity between a query and the database models but also the similarities among the database models themselves. We achieve this by an offline pre-processing stage, where global and local shape descriptors are computed for each model and a sparse distance metric is derived that can be evaluated efficiently even for very large databases. We demonstrate the effectiveness of our method by interactively exploring a repository containing over 100 K models. PMID:26529460

  18. An Automatic Registration Algorithm for 3D Maxillofacial Model

    NASA Astrophysics Data System (ADS)

    Qiu, Luwen; Zhou, Zhongwei; Guo, Jixiang; Lv, Jiancheng

    2016-09-01

    3D image registration aims at aligning two 3D data sets in a common coordinate system, which has been widely used in computer vision, pattern recognition and computer assisted surgery. One challenging problem in 3D registration is that point-wise correspondences between two point sets are often unknown apriori. In this work, we develop an automatic algorithm for 3D maxillofacial models registration including facial surface model and skull model. Our proposed registration algorithm can achieve a good alignment result between partial and whole maxillofacial model in spite of ambiguous matching, which has a potential application in the oral and maxillofacial reparative and reconstructive surgery. The proposed algorithm includes three steps: (1) 3D-SIFT features extraction and FPFH descriptors construction; (2) feature matching using SAC-IA; (3) coarse rigid alignment and refinement by ICP. Experiments on facial surfaces and mandible skull models demonstrate the efficiency and robustness of our algorithm.

  19. Surface parametrization and shape description

    NASA Astrophysics Data System (ADS)

    Brechbuehler, Christian; Gerig, Guido; Kuebler, Olaf

    1992-09-01

    Procedures for the parameterization and description of the surface of simply connected 3-D objects are presented. Critical issues for shape-based categorization and comparison of 3-D objects are addressed, which are generality with respect to object complexity, invariance to standard transformations, and descriptive power in terms of object geometry. Starting from segmented volume data, a relational data structure describing the adjacency of local surface elements is generated. The representation is used to parametrize the surface by defining a continuous, one-to-one mapping from the surface of the original object to the surface of a unit sphere. The mapping is constrained by two requirements, minimization of distortions and preservation of area. The former is formulated as the goal function of a nonlinear optimization problem and the latter as its constraints. Practicable starting values are obtained by an initial mapping based on a heat conduction model. In contract to earlier approaches, the novel parameterization method provides a mapping of arbitrarily shaped simply connected objects, i.e., it performs an unfolding of convoluted surface structures. This global parameterization allows the systematical scanning of the object surface by the variation of two parameters. As one possible approach to shape analysis, it enables us to expand the object surface into a series of spherical harmonic functions, extending the concept of elliptical Fourier descriptors for 2-D closed curves. The novel parameterization overcomes the traditional limitations of expressing an object surface in polar coordinates, which restricts such descriptions to star-shaped objects. The numerical coefficients in the Fourier series form an object-centered, surface-oriented descriptor of the object''s form. Rotating the coefficients in parameter space and object space puts the object into a standard position and yields a spherical harmonic descriptor which is invariant to translations, rotations

  20. A rotation-translation invariant molecular descriptor of partial charges and its use in ligand-based virtual screening

    PubMed Central

    2014-01-01

    Background Measures of similarity for chemical molecules have been developed since the dawn of chemoinformatics. Molecular similarity has been measured by a variety of methods including molecular descriptor based similarity, common molecular fragments, graph matching and 3D methods such as shape matching. Similarity measures are widespread in practice and have proven to be useful in drug discovery. Because of our interest in electrostatics and high throughput ligand-based virtual screening, we sought to exploit the information contained in atomic coordinates and partial charges of a molecule. Results A new molecular descriptor based on partial charges is proposed. It uses the autocorrelation function and linear binning to encode all atoms of a molecule into two rotation-translation invariant vectors. Combined with a scoring function, the descriptor allows to rank-order a database of compounds versus a query molecule. The proposed implementation is called ACPC (AutoCorrelation of Partial Charges) and released in open source. Extensive retrospective ligand-based virtual screening experiments were performed and other methods were compared with in order to validate the method and associated protocol. Conclusions While it is a simple method, it performed remarkably well in experiments. At an average speed of 1649 molecules per second, it reached an average median area under the curve of 0.81 on 40 different targets; hence validating the proposed protocol and implementation. PMID:24887178

  1. Automatic detection of anatomical features on 3D ear impressions for canonical representation.

    PubMed

    Baloch, Sajjad; Melkisetoglu, Rupen; Flöry, Simon; Azernikov, Sergei; Slabaugh, Greg; Zouhar, Alexander; Fang, Tong

    2010-01-01

    We propose a shape descriptor for 3D ear impressions, derived from a comprehensive set of anatomical features. Motivated by hearing aid (HA) manufacturing, the selection of the anatomical features is carried out according to their uniqueness and importance in HA design. This leads to a canonical ear signature that is highly distinctive and potentially well suited for classification. First, the anatomical features are characterized into generic topological and geometric features, namely concavities, elbows, ridges, peaks, and bumps on the surface of the ear. Fast and robust algorithms are then developed for their detection. This indirect approach ensures the generality of the algorithms with potential applications in biomedicine, biometrics, and reverse engineering. PMID:20879444

  2. ANN expert system screening for illicit amphetamines using molecular descriptors

    NASA Astrophysics Data System (ADS)

    Gosav, S.; Praisler, M.; Dorohoi, D. O.

    2007-05-01

    The goal of this study was to develop and an artificial neural network (ANN) based on computed descriptors, which would be able to classify the molecular structures of potential illicit amphetamines and to derive their biological activity according to the similarity of their molecular structure with amphetamines of known toxicity. The system is necessary for testing new molecular structures for epidemiological, clinical, and forensic purposes. It was built using a database formed by 146 compounds representing drugs of abuse (mainly central stimulants, hallucinogens, sympathomimetic amines, narcotics and other potent analgesics), precursors, or derivatized counterparts. Their molecular structures were characterized by computing three types of descriptors: 38 constitutional descriptors (CDs), 69 topological descriptors (TDs) and 160 3D-MoRSE descriptors (3DDs). An ANN system was built for each category of variables. All three networks (CD-NN, TD-NN and 3DD-NN) were trained to distinguish between stimulant amphetamines, hallucinogenic amphetamines, and nonamphetamines. A selection of variables was performed when necessary. The efficiency with which each network identifies the class identity of an unknown sample was evaluated by calculating several figures of merit. The results of the comparative analysis are presented.

  3. 3D microscope

    NASA Astrophysics Data System (ADS)

    Iizuka, Keigo

    2008-02-01

    In order to circumvent the fact that only one observer can view the image from a stereoscopic microscope, an attachment was devised for displaying the 3D microscopic image on a large LCD monitor for viewing by multiple observers in real time. The principle of operation, design, fabrication, and performance are presented, along with tolerance measurements relating to the properties of the cellophane half-wave plate used in the design.

  4. 3D PDF - a means of public access to geological 3D - objects, using the example of GTA3D

    NASA Astrophysics Data System (ADS)

    Slaby, Mark-Fabian; Reimann, Rüdiger

    2013-04-01

    In geology, 3D modeling has become very important. In the past, two-dimensional data such as isolines, drilling profiles, or cross-sections based on those, were used to illustrate the subsurface geology, whereas now, we can create complex digital 3D models. These models are produced with special software, such as GOCAD ®. The models can be viewed, only through the software used to create them, or through viewers available for free. The platform-independent PDF (Portable Document Format), enforced by Adobe, has found a wide distribution. This format has constantly evolved over time. Meanwhile, it is possible to display CAD data in an Adobe 3D PDF file with the free Adobe Reader (version 7). In a 3D PDF, a 3D model is freely rotatable and can be assembled from a plurality of objects, which can thus be viewed from all directions on their own. In addition, it is possible to create moveable cross-sections (profiles), and to assign transparency to the objects. Based on industry-standard CAD software, 3D PDFs can be generated from a large number of formats, or even be exported directly from this software. In geoinformatics, different approaches to creating 3D PDFs exist. The intent of the Authority for Mining, Energy and Geology to allow free access to the models of the Geotectonic Atlas (GTA3D), could not be realized with standard software solutions. A specially designed code converts the 3D objects to VRML (Virtual Reality Modeling Language). VRML is one of the few formats that allow using image files (maps) as textures, and to represent colors and shapes correctly. The files were merged in Acrobat X Pro, and a 3D PDF was generated subsequently. A topographic map, a display of geographic directions and horizontal and vertical scales help to facilitate the use.

  5. Multiviewer 3D monitor

    NASA Astrophysics Data System (ADS)

    Kostrzewski, Andrew A.; Aye, Tin M.; Kim, Dai Hyun; Esterkin, Vladimir; Savant, Gajendra D.

    1998-09-01

    Physical Optics Corporation has developed an advanced 3-D virtual reality system for use with simulation tools for training technical and military personnel. This system avoids such drawbacks of other virtual reality (VR) systems as eye fatigue, headaches, and alignment for each viewer, all of which are due to the need to wear special VR goggles. The new system is based on direct viewing of an interactive environment. This innovative holographic multiplexed screen technology makes it unnecessary for the viewer to wear special goggles.

  6. 3D Audio System

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Ames Research Center research into virtual reality led to the development of the Convolvotron, a high speed digital audio processing system that delivers three-dimensional sound over headphones. It consists of a two-card set designed for use with a personal computer. The Convolvotron's primary application is presentation of 3D audio signals over headphones. Four independent sound sources are filtered with large time-varying filters that compensate for motion. The perceived location of the sound remains constant. Possible applications are in air traffic control towers or airplane cockpits, hearing and perception research and virtual reality development.

  7. Phase unwrapping in the dynamic 3D measurement

    NASA Astrophysics Data System (ADS)

    Su, Xianyu; Zhang, Qican

    2010-04-01

    In the dynamic 3D shape measurement phase distribution has 3D character, in which phase changes along x and y directions in space and also along t direction in time. 3D phase unwrapping plays a very important role in the dynamic 3D shape measurement. In the dynamic 3D shape measurement methods based on the structured illumination, Fourier transformation profilometry (FTP) is particularly fit for dynamic 3D measurement, because of only one fringe pattern needed and full field analysis. In this paper some 3D phase unwrapping techniques for dynamic 3D shape measurement mainly in our Lab. are presented and reviewed. The basic methods and algorithm design are introduced. The basic methods include direct 3D phase unwrapping, 3D diamond phase unwrapping, 3D phase unwrapping based on reliability ordering, 3D phase unwrapping based on marked fringe tracing. The advantage of the phase unwrapping based on reliability ordering is that the path of phase unwrapping is always along the direction from the pixel with higher reliability parameter value to the pixel with low reliability parameter value. Therefore, in the worse case the error is limited, if there is any, to local minimum areas.

  8. A fast contour descriptor algorithm for supernova imageclassification

    SciTech Connect

    Aragon, Cecilia R.; Aragon, David Bradburn

    2006-07-16

    We describe a fast contour descriptor algorithm and its application to a distributed supernova detection system (the Nearby Supernova Factory) that processes 600,000 candidate objects in 80 GB of image data per night. Our shape-detection algorithm reduced the number of false positives generated by the supernova search pipeline by 41% while producing no measurable impact on running time. Fourier descriptors are an established method of numerically describing the shapes of object contours, but transform-based techniques are ordinarily avoided in this type of application due to their computational cost. We devised a fast contour descriptor implementation for supernova candidates that meets the tight processing budget of the application. Using the lowest-order descriptors (F{sub 1} and F{sub -1}) and the total variance in the contour, we obtain one feature representing the eccentricity of the object and another denoting its irregularity. Because the number of Fourier terms to be calculated is fixed and small, the algorithm runs in linear time, rather than the O(n log n) time of an FFT. Constraints on object size allow further optimizations so that the total cost of producing the required contour descriptors is about 4n addition/subtraction operations, where n is the length of the contour.

  9. 3D Surgical Simulation

    PubMed Central

    Cevidanes, Lucia; Tucker, Scott; Styner, Martin; Kim, Hyungmin; Chapuis, Jonas; Reyes, Mauricio; Proffit, William; Turvey, Timothy; Jaskolka, Michael

    2009-01-01

    This paper discusses the development of methods for computer-aided jaw surgery. Computer-aided jaw surgery allows us to incorporate the high level of precision necessary for transferring virtual plans into the operating room. We also present a complete computer-aided surgery (CAS) system developed in close collaboration with surgeons. Surgery planning and simulation include construction of 3D surface models from Cone-beam CT (CBCT), dynamic cephalometry, semi-automatic mirroring, interactive cutting of bone and bony segment repositioning. A virtual setup can be used to manufacture positioning splints for intra-operative guidance. The system provides further intra-operative assistance with the help of a computer display showing jaw positions and 3D positioning guides updated in real-time during the surgical procedure. The CAS system aids in dealing with complex cases with benefits for the patient, with surgical practice, and for orthodontic finishing. Advanced software tools for diagnosis and treatment planning allow preparation of detailed operative plans, osteotomy repositioning, bone reconstructions, surgical resident training and assessing the difficulties of the surgical procedures prior to the surgery. CAS has the potential to make the elaboration of the surgical plan a more flexible process, increase the level of detail and accuracy of the plan, yield higher operative precision and control, and enhance documentation of cases. Supported by NIDCR DE017727, and DE018962 PMID:20816308

  10. 3D Printed Bionic Ears

    PubMed Central

    Mannoor, Manu S.; Jiang, Ziwen; James, Teena; Kong, Yong Lin; Malatesta, Karen A.; Soboyejo, Winston O.; Verma, Naveen; Gracias, David H.; McAlpine, Michael C.

    2013-01-01

    The ability to three-dimensionally interweave biological tissue with functional electronics could enable the creation of bionic organs possessing enhanced functionalities over their human counterparts. Conventional electronic devices are inherently two-dimensional, preventing seamless multidimensional integration with synthetic biology, as the processes and materials are very different. Here, we present a novel strategy for overcoming these difficulties via additive manufacturing of biological cells with structural and nanoparticle derived electronic elements. As a proof of concept, we generated a bionic ear via 3D printing of a cell-seeded hydrogel matrix in the precise anatomic geometry of a human ear, along with an intertwined conducting polymer consisting of infused silver nanoparticles. This allowed for in vitro culturing of cartilage tissue around an inductive coil antenna in the ear, which subsequently enables readout of inductively-coupled signals from cochlea-shaped electrodes. The printed ear exhibits enhanced auditory sensing for radio frequency reception, and complementary left and right ears can listen to stereo audio music. Overall, our approach suggests a means to intricately merge biologic and nanoelectronic functionalities via 3D printing. PMID:23635097

  11. 3D printed bionic ears.

    PubMed

    Mannoor, Manu S; Jiang, Ziwen; James, Teena; Kong, Yong Lin; Malatesta, Karen A; Soboyejo, Winston O; Verma, Naveen; Gracias, David H; McAlpine, Michael C

    2013-06-12

    The ability to three-dimensionally interweave biological tissue with functional electronics could enable the creation of bionic organs possessing enhanced functionalities over their human counterparts. Conventional electronic devices are inherently two-dimensional, preventing seamless multidimensional integration with synthetic biology, as the processes and materials are very different. Here, we present a novel strategy for overcoming these difficulties via additive manufacturing of biological cells with structural and nanoparticle derived electronic elements. As a proof of concept, we generated a bionic ear via 3D printing of a cell-seeded hydrogel matrix in the anatomic geometry of a human ear, along with an intertwined conducting polymer consisting of infused silver nanoparticles. This allowed for in vitro culturing of cartilage tissue around an inductive coil antenna in the ear, which subsequently enables readout of inductively-coupled signals from cochlea-shaped electrodes. The printed ear exhibits enhanced auditory sensing for radio frequency reception, and complementary left and right ears can listen to stereo audio music. Overall, our approach suggests a means to intricately merge biologic and nanoelectronic functionalities via 3D printing. PMID:23635097

  12. Assessing 3d Photogrammetry Techniques in Craniometrics

    NASA Astrophysics Data System (ADS)

    Moshobane, M. C.; de Bruyn, P. J. N.; Bester, M. N.

    2016-06-01

    Morphometrics (the measurement of morphological features) has been revolutionized by the creation of new techniques to study how organismal shape co-varies with several factors such as ecophenotypy. Ecophenotypy refers to the divergence of phenotypes due to developmental changes induced by local environmental conditions, producing distinct ecophenotypes. None of the techniques hitherto utilized could explicitly address organismal shape in a complete biological form, i.e. three-dimensionally. This study investigates the use of the commercial software, Photomodeler Scanner® (PMSc®) three-dimensional (3D) modelling software to produce accurate and high-resolution 3D models. Henceforth, the modelling of Subantarctic fur seal (Arctocephalus tropicalis) and Antarctic fur seal (Arctocephalus gazella) skulls which could allow for 3D measurements. Using this method, sixteen accurate 3D skull models were produced and five metrics were determined. The 3D linear measurements were compared to measurements taken manually with a digital caliper. In addition, repetitive measurements were recorded by varying researchers to determine repeatability. To allow for comparison straight line measurements were taken with the software, assuming that close accord with all manually measured features would illustrate the model's accurate replication of reality. Measurements were not significantly different demonstrating that realistic 3D skull models can be successfully produced to provide a consistent basis for craniometrics, with the additional benefit of allowing non-linear measurements if required.

  13. Shim3d Helmholtz Solution Package

    2009-01-29

    This suite of codes solves the Helmholtz Equation for the steady-state propagation of single-frequency electromagnetic radiation in an arbitrary 2D or 3D dielectric medium. Materials can be either transparent or absorptive (including metals) and are described entirely by their shape and complex dielectric constant. Dielectric boundaries are assumed to always fall on grid boundaries and the material within a single grid cell is considered to be uniform. Input to the problem is in the formmore » of a Dirichlet boundary condition on a single boundary, and may be either analytic (Gaussian) in shape, or a mode shape computed using a separate code (such as the included eigenmode solver vwave20), and written to a file. Solution is via the finite difference method using Jacobi iteration for 3D problems or direct matrix inversion for 2D problems. Note that 3D problems that include metals will require different iteration parameters than described in the above reference. For structures with curved boundaries not easily modeled on a rectangular grid, the auxillary codes helmholtz11(2D), helm3d (semivectoral), and helmv3d (full vectoral) are provided. For these codes the finite difference equations are specified on a topological regular triangular grid and solved using Jacobi iteration or direct matrix inversion as before. An automatic grid generator is supplied.« less

  14. Lifting Object Detection Datasets into 3D.

    PubMed

    Carreira, Joao; Vicente, Sara; Agapito, Lourdes; Batista, Jorge

    2016-07-01

    While data has certainly taken the center stage in computer vision in recent years, it can still be difficult to obtain in certain scenarios. In particular, acquiring ground truth 3D shapes of objects pictured in 2D images remains a challenging feat and this has hampered progress in recognition-based object reconstruction from a single image. Here we propose to bypass previous solutions such as 3D scanning or manual design, that scale poorly, and instead populate object category detection datasets semi-automatically with dense, per-object 3D reconstructions, bootstrapped from:(i) class labels, (ii) ground truth figure-ground segmentations and (iii) a small set of keypoint annotations. Our proposed algorithm first estimates camera viewpoint using rigid structure-from-motion and then reconstructs object shapes by optimizing over visual hull proposals guided by loose within-class shape similarity assumptions. The visual hull sampling process attempts to intersect an object's projection cone with the cones of minimal subsets of other similar objects among those pictured from certain vantage points. We show that our method is able to produce convincing per-object 3D reconstructions and to accurately estimate cameras viewpoints on one of the most challenging existing object-category detection datasets, PASCAL VOC. We hope that our results will re-stimulate interest on joint object recognition and 3D reconstruction from a single image. PMID:27295458

  15. 3D polarimetric purity

    NASA Astrophysics Data System (ADS)

    Gil, José J.; San José, Ignacio

    2010-11-01

    From our previous definition of the indices of polarimetric purity for 3D light beams [J.J. Gil, J.M. Correas, P.A. Melero and C. Ferreira, Monogr. Semin. Mat. G. de Galdeano 31, 161 (2004)], an analysis of their geometric and physical interpretation is presented. It is found that, in agreement with previous results, the first parameter is a measure of the degree of polarization, whereas the second parameter (called the degree of directionality) is a measure of the mean angular aperture of the direction of propagation of the corresponding light beam. This pair of invariant, non-dimensional, indices of polarimetric purity contains complete information about the polarimetric purity of a light beam. The overall degree of polarimetric purity is obtained as a weighted quadratic average of the degree of polarization and the degree of directionality.

  16. 3D field harmonics

    SciTech Connect

    Caspi, S.; Helm, M.; Laslett, L.J.

    1991-03-30

    We have developed an harmonic representation for the three dimensional field components within the windings of accelerator magnets. The form by which the field is presented is suitable for interfacing with other codes that make use of the 3D field components (particle tracking and stability). The field components can be calculated with high precision and reduced cup time at any location (r,{theta},z) inside the magnet bore. The same conductor geometry which is used to simulate line currents is also used in CAD with modifications more readily available. It is our hope that the format used here for magnetic fields can be used not only as a means of delivering fields but also as a way by which beam dynamics can suggest correction to the conductor geometry. 5 refs., 70 figs.

  17. 'Bonneville' in 3-D!

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The Mars Exploration Rover Spirit took this 3-D navigation camera mosaic of the crater called 'Bonneville' after driving approximately 13 meters (42.7 feet) to get a better vantage point. Spirit's current position is close enough to the edge to see the interior of the crater, but high enough and far enough back to get a view of all of the walls. Because scientists and rover controllers are so pleased with this location, they will stay here for at least two more martian days, or sols, to take high resolution panoramic camera images of 'Bonneville' in its entirety. Just above the far crater rim, on the left side, is the rover's heatshield, which is visible as a tiny reflective speck.

  18. 3D face analysis for demographic biometrics

    SciTech Connect

    Tokola, Ryan A; Mikkilineni, Aravind K; Boehnen, Chris Bensing

    2015-01-01

    Despite being increasingly easy to acquire, 3D data is rarely used for face-based biometrics applications beyond identification. Recent work in image-based demographic biometrics has enjoyed much success, but these approaches suffer from the well-known limitations of 2D representations, particularly variations in illumination, texture, and pose, as well as a fundamental inability to describe 3D shape. This paper shows that simple 3D shape features in a face-based coordinate system are capable of representing many biometric attributes without problem-specific models or specialized domain knowledge. The same feature vector achieves impressive results for problems as diverse as age estimation, gender classification, and race classification.

  19. Recent developments in DFD (depth-fused 3D) display and arc 3D display

    NASA Astrophysics Data System (ADS)

    Suyama, Shiro; Yamamoto, Hirotsugu

    2015-05-01

    We will report our recent developments in DFD (Depth-fused 3D) display and arc 3D display, both of which have smooth movement parallax. Firstly, fatigueless DFD display, composed of only two layered displays with a gap, has continuous perceived depth by changing luminance ratio between two images. Two new methods, called "Edge-based DFD display" and "Deep DFD display", have been proposed in order to solve two severe problems of viewing angle and perceived depth limitations. Edge-based DFD display, layered by original 2D image and its edge part with a gap, can expand the DFD viewing angle limitation both in 2D and 3D perception. Deep DFD display can enlarge the DFD image depth by modulating spatial frequencies of front and rear images. Secondly, Arc 3D display can provide floating 3D images behind or in front of the display by illuminating many arc-shaped directional scattering sources, for example, arcshaped scratches on a flat board. Curved Arc 3D display, composed of many directional scattering sources on a curved surface, can provide a peculiar 3D image, for example, a floating image in the cylindrical bottle. The new active device has been proposed for switching arc 3D images by using the tips of dual-frequency liquid-crystal prisms as directional scattering sources. Directional scattering can be switched on/off by changing liquid-crystal refractive index, resulting in switching of arc 3D image.

  20. Prominent rocks - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Many prominent rocks near the Sagan Memorial Station are featured in this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. Wedge is at lower left; Shark, Half-Dome, and Pumpkin are at center. Flat Top, about four inches high, is at lower right. The horizon in the distance is one to two kilometers away.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  1. GRID2D/3D: A computer program for generating grid systems in complex-shaped two- and three-dimensional spatial domains. Part 2: User's manual and program listing

    NASA Technical Reports Server (NTRS)

    Bailey, R. T.; Shih, T. I.-P.; Nguyen, H. L.; Roelke, R. J.

    1990-01-01

    An efficient computer program, called GRID2D/3D, was developed to generate single and composite grid systems within geometrically complex two- and three-dimensional (2- and 3-D) spatial domains that can deform with time. GRID2D/3D generates single grid systems by using algebraic grid generation methods based on transfinite interpolation in which the distribution of grid points within the spatial domain is controlled by stretching functions. All single grid systems generated by GRID2D/3D can have grid lines that are continuous and differentiable everywhere up to the second-order. Also, grid lines can intersect boundaries of the spatial domain orthogonally. GRID2D/3D generates composite grid systems by patching together two or more single grid systems. The patching can be discontinuous or continuous. For continuous composite grid systems, the grid lines are continuous and differentiable everywhere up to the second-order except at interfaces where different single grid systems meet. At interfaces where different single grid systems meet, the grid lines are only differentiable up to the first-order. For 2-D spatial domains, the boundary curves are described by using either cubic or tension spline interpolation. For 3-D spatial domains, the boundary surfaces are described by using either linear Coon's interpolation, bi-hyperbolic spline interpolation, or a new technique referred to as 3-D bi-directional Hermite interpolation. Since grid systems generated by algebraic methods can have grid lines that overlap one another, GRID2D/3D contains a graphics package for evaluating the grid systems generated. With the graphics package, the user can generate grid systems in an interactive manner with the grid generation part of GRID2D/3D. GRID2D/3D is written in FORTRAN 77 and can be run on any IBM PC, XT, or AT compatible computer. In order to use GRID2D/3D on workstations or mainframe computers, some minor modifications must be made in the graphics part of the program; no

  2. 3D surface analysis and classification in neuroimaging segmentation.

    PubMed

    Zagar, Martin; Mlinarić, Hrvoje; Knezović, Josip

    2011-06-01

    This work emphasizes new algorithms for 3D edge and corner detection used in surface extraction and new concept of image segmentation in neuroimaging based on multidimensional shape analysis and classification. We propose using of NifTI standard for describing input data which enables interoperability and enhancement of existing computing tools used widely in neuroimaging research. In methods section we present our newly developed algorithm for 3D edge and corner detection, together with the algorithm for estimating local 3D shape. Surface of estimated shape is analyzed and segmented according to kernel shapes. PMID:21755723

  3. 3D model reconstruction of underground goaf

    NASA Astrophysics Data System (ADS)

    Fang, Yuanmin; Zuo, Xiaoqing; Jin, Baoxuan

    2005-10-01

    Constructing 3D model of underground goaf, we can control the process of mining better and arrange mining work reasonably. However, the shape of goaf and the laneway among goafs are very irregular, which produce great difficulties in data-acquiring and 3D model reconstruction. In this paper, we research on the method of data-acquiring and 3D model construction of underground goaf, building topological relation among goafs. The main contents are as follows: a) The paper proposed an efficient encoding rule employed to structure the field measurement data. b) A 3D model construction method of goaf is put forward, which by means of combining several TIN (triangulated irregular network) pieces, and an efficient automatic processing algorithm of boundary of TIN is proposed. c) Topological relation of goaf models is established. TIN object is the basic modeling element of goaf 3D model, and the topological relation among goaf is created and maintained by building the topological relation among TIN objects. Based on this, various 3D spatial analysis functions can be performed including transect and volume calculation of goaf. A prototype is developed, which can realized the model and algorithm proposed in this paper.

  4. Metrological characterization of 3D imaging devices

    NASA Astrophysics Data System (ADS)

    Guidi, G.

    2013-04-01

    Manufacturers often express the performance of a 3D imaging device in various non-uniform ways for the lack of internationally recognized standard requirements for metrological parameters able to identify the capability of capturing a real scene. For this reason several national and international organizations in the last ten years have been developing protocols for verifying such performance. Ranging from VDI/VDE 2634, published by the Association of German Engineers and oriented to the world of mechanical 3D measurements (triangulation-based devices), to the ASTM technical committee E57, working also on laser systems based on direct range detection (TOF, Phase Shift, FM-CW, flash LADAR), this paper shows the state of the art about the characterization of active range devices, with special emphasis on measurement uncertainty, accuracy and resolution. Most of these protocols are based on special objects whose shape and size are certified with a known level of accuracy. By capturing the 3D shape of such objects with a range device, a comparison between the measured points and the theoretical shape they should represent is possible. The actual deviations can be directly analyzed or some derived parameters can be obtained (e.g. angles between planes, distances between barycenters of spheres rigidly connected, frequency domain parameters, etc.). This paper shows theoretical aspects and experimental results of some novel characterization methods applied to different categories of active 3D imaging devices based on both principles of triangulation and direct range detection.

  5. Visualization of liver in 3-D

    NASA Astrophysics Data System (ADS)

    Chen, Chin-Tu; Chou, Jin-Shin; Giger, Maryellen L.; Kahn, Charles E., Jr.; Bae, Kyongtae T.; Lin, Wei-Chung

    1991-05-01

    Visualization of the liver in three dimensions (3-D) can improve the accuracy of volumetric estimation and also aid in surgical planning. We have developed a method for 3-D visualization of the liver using x-ray computed tomography (CT) or magnetic resonance (MR) images. This method includes four major components: (1) segmentation algorithms for extracting liver data from tomographic images; (2) interpolation techniques for both shape and intensity; (3) schemes for volume rendering and display, and (4) routines for electronic surgery and image analysis. This method has been applied to cases from a living-donor liver transplant project and appears to be useful for surgical planning.

  6. Acquisition and applications of 3D images

    NASA Astrophysics Data System (ADS)

    Sterian, Paul; Mocanu, Elena

    2007-08-01

    The moiré fringes method and their analysis up to medical and entertainment applications are discussed in this paper. We describe the procedure of capturing 3D images with an Inspeck Camera that is a real-time 3D shape acquisition system based on structured light techniques. The method is a high-resolution one. After processing the images, using computer, we can use the data for creating laser fashionable objects by engraving them with a Q-switched Nd:YAG. In medical field we mention the plastic surgery and the replacement of X-Ray especially in pediatric use.

  7. 3D-dynamic representation of DNA sequences.

    PubMed

    Wąż, Piotr; Bielińska-Wąż, Dorota

    2014-03-01

    A new 3D graphical representation of DNA sequences is introduced. This representation is called 3D-dynamic representation. It is a generalization of the 2D-dynamic dynamic representation. The sequences are represented by sets of "material points" in the 3D space. The resulting 3D-dynamic graphs are treated as rigid bodies. The descriptors characterizing the graphs are analogous to the ones used in the classical dynamics. The classification diagrams derived from this representation are presented and discussed. Due to the third dimension, "the history of the graph" can be recognized graphically because the 3D-dynamic graph does not overlap with itself. Specific parts of the graphs correspond to specific parts of the sequence. This feature is essential for graphical comparisons of the sequences. Numerically, both 2D and 3D approaches are of high quality. In particular, a difference in a single base between two sequences can be identified and correctly described (one can identify which base) by both 2D and 3D methods. PMID:24567158

  8. Multi-view and 3D deformable part models.

    PubMed

    Pepik, Bojan; Stark, Michael; Gehler, Peter; Schiele, Bernt

    2015-11-01

    As objects are inherently 3D, they have been modeled in 3D in the early days of computer vision. Due to the ambiguities arising from mapping 2D features to 3D models, 3D object representations have been neglected and 2D feature-based models are the predominant paradigm in object detection nowadays. While such models have achieved outstanding bounding box detection performance, they come with limited expressiveness, as they are clearly limited in their capability of reasoning about 3D shape or viewpoints. In this work, we bring the worlds of 3D and 2D object representations closer, by building an object detector which leverages the expressive power of 3D object representations while at the same time can be robustly matched to image evidence. To that end, we gradually extend the successful deformable part model [1] to include viewpoint information and part-level 3D geometry information, resulting in several different models with different level of expressiveness. We end up with a 3D object model, consisting of multiple object parts represented in 3D and a continuous appearance model. We experimentally verify that our models, while providing richer object hypotheses than the 2D object models, provide consistently better joint object localization and viewpoint estimation than the state-of-the-art multi-view and 3D object detectors on various benchmarks (KITTI [2] , 3D object classes [3] , Pascal3D+ [4] , Pascal VOC 2007 [5] , EPFL multi-view cars[6] ). PMID:26440264

  9. Statistical shape model reconstruction with sparse anomalous deformations: Application to intervertebral disc herniation.

    PubMed

    Neubert, Aleš; Fripp, Jurgen; Engstrom, Craig; Schwarz, Daniel; Weber, Marc-André; Crozier, Stuart

    2015-12-01

    Many medical image processing techniques rely on accurate shape modeling of anatomical features. The presence of shape abnormalities challenges traditional processing algorithms based on strong morphological priors. In this work, a sparse shape reconstruction from a statistical shape model is presented. It combines the advantages of traditional statistical shape models (defining a 'normal' shape space) and previously presented sparse shape composition (providing localized descriptors of anomalies). The algorithm was incorporated into our image segmentation and classification software. Evaluation was performed on simulated and clinical MRI data from 22 sciatica patients with intervertebral disc herniation, containing 35 herniated and 97 normal discs. Moderate to high correlation (R=0.73) was achieved between simulated and detected herniations. The sparse reconstruction provided novel quantitative features describing the herniation morphology and MRI signal appearance in three dimensions (3D). The proposed descriptors of local disc morphology resulted to the 3D segmentation accuracy of 1.07±1.00mm (mean absolute vertex-to-vertex mesh distance over the posterior disc region), and improved the intervertebral disc classification from 0.888 to 0.931 (area under receiver operating curve). The results show that the sparse shape reconstruction may improve computer-aided diagnosis of pathological conditions presenting local morphological alterations, as seen in intervertebral disc herniation. PMID:26060085

  10. 3D Spectroscopy in Astronomy

    NASA Astrophysics Data System (ADS)

    Mediavilla, Evencio; Arribas, Santiago; Roth, Martin; Cepa-Nogué, Jordi; Sánchez, Francisco

    2011-09-01

    Preface; Acknowledgements; 1. Introductory review and technical approaches Martin M. Roth; 2. Observational procedures and data reduction James E. H. Turner; 3. 3D Spectroscopy instrumentation M. A. Bershady; 4. Analysis of 3D data Pierre Ferruit; 5. Science motivation for IFS and galactic studies F. Eisenhauer; 6. Extragalactic studies and future IFS science Luis Colina; 7. Tutorials: how to handle 3D spectroscopy data Sebastian F. Sánchez, Begona García-Lorenzo and Arlette Pécontal-Rousset.

  11. 3D Elevation Program—Virtual USA in 3D

    USGS Publications Warehouse

    Lukas, Vicki; Stoker, J.M.

    2016-01-01

    The U.S. Geological Survey (USGS) 3D Elevation Program (3DEP) uses a laser system called ‘lidar’ (light detection and ranging) to create a virtual reality map of the Nation that is very accurate. 3D maps have many uses with new uses being discovered all the time.  

  12. 3D fast wavelet network model-assisted 3D face recognition

    NASA Astrophysics Data System (ADS)

    Said, Salwa; Jemai, Olfa; Zaied, Mourad; Ben Amar, Chokri

    2015-12-01

    In last years, the emergence of 3D shape in face recognition is due to its robustness to pose and illumination changes. These attractive benefits are not all the challenges to achieve satisfactory recognition rate. Other challenges such as facial expressions and computing time of matching algorithms remain to be explored. In this context, we propose our 3D face recognition approach using 3D wavelet networks. Our approach contains two stages: learning stage and recognition stage. For the training we propose a novel algorithm based on 3D fast wavelet transform. From 3D coordinates of the face (x,y,z), we proceed to voxelization to get a 3D volume which will be decomposed by 3D fast wavelet transform and modeled after that with a wavelet network, then their associated weights are considered as vector features to represent each training face . For the recognition stage, an unknown identity face is projected on all the training WN to obtain a new vector features after every projection. A similarity score is computed between the old and the obtained vector features. To show the efficiency of our approach, experimental results were performed on all the FRGC v.2 benchmark.

  13. 'Berries' on the Ground 2 (3-D)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This is the 3-D anaglyph showing a microscopic image taken of soil featuring round, blueberry-shaped rock formations on the crater floor at Meridiani Planum, Mars. This image was taken on the 13th day of the Mars Exploration Rover Opportunity's journey, before the Moessbauer spectrometer, an instrument located on the rover's instrument deployment device, or 'arm,' was pressed down to take measurements. The area in this image is approximately 3 centimeters (1.2 inches) across.

  14. A novel method of target recognition based on 3D-color-space locally adaptive regression kernels model

    NASA Astrophysics Data System (ADS)

    Liu, Jiaqi; Han, Jing; Zhang, Yi; Bai, Lianfa

    2015-10-01

    Locally adaptive regression kernels model can describe the edge shape of images accurately and graphic trend of images integrally, but it did not consider images' color information while the color is an important element of an image. Therefore, we present a novel method of target recognition based on 3-D-color-space locally adaptive regression kernels model. Different from the general additional color information, this method directly calculate the local similarity features of 3-D data from the color image. The proposed method uses a few examples of an object as a query to detect generic objects with incompact, complex and changeable shapes. Our method involves three phases: First, calculating the novel color-space descriptors from the RGB color space of query image which measure the likeness of a voxel to its surroundings. Salient features which include spatial- dimensional and color -dimensional information are extracted from said descriptors, and simplifying them to construct a non-similar local structure feature set of the object class by principal components analysis (PCA). Second, we compare the salient features with analogous features from the target image. This comparison is done using a matrix generalization of the cosine similarity measure. Then the similar structures in the target image are obtained using local similarity structure statistical matching. Finally, we use the method of non-maxima suppression in the similarity image to extract the object position and mark the object in the test image. Experimental results demonstrate that our approach is effective and accurate in improving the ability to identify targets.

  15. 'Berries' on the Ground 2 (3-D)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This is the 3-D anaglyph showing a microscopic image taken of soil featuring round, blueberry-shaped rock formations on the crater floor at Meridiani Planum, Mars. This image was taken on the 13th day of the Mars Exploration Rover Opportunity's journey, after the Moessbauer spectrometer, an instrument located on the rover's instrument deployment device, or 'arm,' was pressed down to measure the soil's iron mineralogy. Note the donut-shaped imprint of the instrument in the lower part of the image. The area in this image is approximately 3 centimeters (1.2 inches) across.

  16. Modular 3-D Transport model

    EPA Science Inventory

    MT3D was first developed by Chunmiao Zheng in 1990 at S.S. Papadopulos & Associates, Inc. with partial support from the U.S. Environmental Protection Agency (USEPA). Starting in 1990, MT3D was released as a pubic domain code from the USEPA. Commercial versions with enhanced capab...

  17. Market study: 3-D eyetracker

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A market study of a proposed version of a 3-D eyetracker for initial use at NASA's Ames Research Center was made. The commercialization potential of a simplified, less expensive 3-D eyetracker was ascertained. Primary focus on present and potential users of eyetrackers, as well as present and potential manufacturers has provided an effective means of analyzing the prospects for commercialization.

  18. LLNL-Earth3D

    2013-10-01

    Earth3D is a computer code designed to allow fast calculation of seismic rays and travel times through a 3D model of the Earth. LLNL is using this for earthquake location and global tomography efforts and such codes are of great interest to the Earth Science community.

  19. [3-D ultrasound in gastroenterology].

    PubMed

    Zoller, W G; Liess, H

    1994-06-01

    Three-dimensional (3D) sonography represents a development of noninvasive diagnostic imaging by real-time two-dimensional (2D) sonography. The use of transparent rotating scans, comparable to a block of glass, generates a 3D effect. The objective of the present study was to optimate 3D presentation of abdominal findings. Additional investigations were made with a new volumetric program to determine the volume of selected findings of the liver. The results were compared with the estimated volumes of 2D sonography and 2D computer tomography (CT). For the processing of 3D images, typical parameter constellations were found for the different findings, which facilitated processing of 3D images. In more than 75% of the cases examined we found an optimal 3D presentation of sonographic findings with respect to the evaluation criteria developed by us for the 3D imaging of processed data. Great differences were found for the estimated volumes of the findings of the liver concerning the three different techniques applied. 3D ultrasound represents a valuable method to judge morphological appearance in abdominal findings. The possibility of volumetric measurements enlarges its potential diagnostic significance. Further clinical investigations are necessary to find out if definite differentiation between benign and malign findings is possible. PMID:7919882

  20. 3D World Building System

    SciTech Connect

    2013-10-30

    This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.

  1. 3D World Building System

    ScienceCinema

    None

    2014-02-26

    This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.

  2. Euro3D Science Conference

    NASA Astrophysics Data System (ADS)

    Walsh, J. R.

    2004-02-01

    The Euro3D RTN is an EU funded Research Training Network to foster the exploitation of 3D spectroscopy in Europe. 3D spectroscopy is a general term for spectroscopy of an area of the sky and derives its name from its two spatial + one spectral dimensions. There are an increasing number of instruments which use integral field devices to achieve spectroscopy of an area of the sky, either using lens arrays, optical fibres or image slicers, to pack spectra of multiple pixels on the sky (``spaxels'') onto a 2D detector. On account of the large volume of data and the special methods required to reduce and analyse 3D data, there are only a few centres of expertise and these are mostly involved with instrument developments. There is a perceived lack of expertise in 3D spectroscopy spread though the astronomical community and its use in the armoury of the observational astronomer is viewed as being highly specialised. For precisely this reason the Euro3D RTN was proposed to train young researchers in this area and develop user tools to widen the experience with this particular type of data in Europe. The Euro3D RTN is coordinated by Martin M. Roth (Astrophysikalisches Institut Potsdam) and has been running since July 2002. The first Euro3D science conference was held in Cambridge, UK from 22 to 23 May 2003. The main emphasis of the conference was, in keeping with the RTN, to expose the work of the young post-docs who are funded by the RTN. In addition the team members from the eleven European institutes involved in Euro3D also presented instrumental and observational developments. The conference was organized by Andy Bunker and held at the Institute of Astronomy. There were over thirty participants and 26 talks covered the whole range of application of 3D techniques. The science ranged from Galactic planetary nebulae and globular clusters to kinematics of nearby galaxies out to objects at high redshift. Several talks were devoted to reporting recent observations with newly

  3. PLOT3D user's manual

    NASA Technical Reports Server (NTRS)

    Walatka, Pamela P.; Buning, Pieter G.; Pierce, Larry; Elson, Patricia A.

    1990-01-01

    PLOT3D is a computer graphics program designed to visualize the grids and solutions of computational fluid dynamics. Seventy-four functions are available. Versions are available for many systems. PLOT3D can handle multiple grids with a million or more grid points, and can produce varieties of model renderings, such as wireframe or flat shaded. Output from PLOT3D can be used in animation programs. The first part of this manual is a tutorial that takes the reader, keystroke by keystroke, through a PLOT3D session. The second part of the manual contains reference chapters, including the helpfile, data file formats, advice on changing PLOT3D, and sample command files.

  4. 3D printing in dentistry.

    PubMed

    Dawood, A; Marti Marti, B; Sauret-Jackson, V; Darwood, A

    2015-12-01

    3D printing has been hailed as a disruptive technology which will change manufacturing. Used in aerospace, defence, art and design, 3D printing is becoming a subject of great interest in surgery. The technology has a particular resonance with dentistry, and with advances in 3D imaging and modelling technologies such as cone beam computed tomography and intraoral scanning, and with the relatively long history of the use of CAD CAM technologies in dentistry, it will become of increasing importance. Uses of 3D printing include the production of drill guides for dental implants, the production of physical models for prosthodontics, orthodontics and surgery, the manufacture of dental, craniomaxillofacial and orthopaedic implants, and the fabrication of copings and frameworks for implant and dental restorations. This paper reviews the types of 3D printing technologies available and their various applications in dentistry and in maxillofacial surgery. PMID:26657435

  5. A local average distance descriptor for flexible protein structure comparison

    PubMed Central

    2014-01-01

    Background Protein structures are flexible and often show conformational changes upon binding to other molecules to exert biological functions. As protein structures correlate with characteristic functions, structure comparison allows classification and prediction of proteins of undefined functions. However, most comparison methods treat proteins as rigid bodies and cannot retrieve similarities of proteins with large conformational changes effectively. Results In this paper, we propose a novel descriptor, local average distance (LAD), based on either the geodesic distances (GDs) or Euclidean distances (EDs) for pairwise flexible protein structure comparison. The proposed method was compared with 7 structural alignment methods and 7 shape descriptors on two datasets comprising hinge bending motions from the MolMovDB, and the results have shown that our method outperformed all other methods regarding retrieving similar structures in terms of precision-recall curve, retrieval success rate, R-precision, mean average precision and F1-measure. Conclusions Both ED- and GD-based LAD descriptors are effective to search deformed structures and overcome the problems of self-connection caused by a large bending motion. We have also demonstrated that the ED-based LAD is more robust than the GD-based descriptor. The proposed algorithm provides an alternative approach for blasting structure database, discovering previously unknown conformational relationships, and reorganizing protein structure classification. PMID:24694083

  6. 3D Face Modeling Using the Multi-Deformable Method

    PubMed Central

    Hwang, Jinkyu; Yu, Sunjin; Kim, Joongrock; Lee, Sangyoun

    2012-01-01

    In this paper, we focus on the problem of the accuracy performance of 3D face modeling techniques using corresponding features in multiple views, which is quite sensitive to feature extraction errors. To solve the problem, we adopt a statistical model-based 3D face modeling approach in a mirror system consisting of two mirrors and a camera. The overall procedure of our 3D facial modeling method has two primary steps: 3D facial shape estimation using a multiple 3D face deformable model and texture mapping using seamless cloning that is a type of gradient-domain blending. To evaluate our method's performance, we generate 3D faces of 30 individuals and then carry out two tests: accuracy test and robustness test. Our method shows not only highly accurate 3D face shape results when compared with the ground truth, but also robustness to feature extraction errors. Moreover, 3D face rendering results intuitively show that our method is more robust to feature extraction errors than other 3D face modeling methods. An additional contribution of our method is that a wide range of face textures can be acquired by the mirror system. By using this texture map, we generate realistic 3D face for individuals at the end of the paper. PMID:23201976

  7. PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITH TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into

  8. PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITHOUT TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into

  9. A local adaptive image descriptor

    NASA Astrophysics Data System (ADS)

    Zahid Ishraque, S. M.; Shoyaib, Mohammad; Abdullah-Al-Wadud, M.; Monirul Hoque, Md; Chae, Oksam

    2013-12-01

    The local binary pattern (LBP) is a robust but computationally simple approach in texture analysis. However, LBP performs poorly in the presence of noise and large illumination variation. Thus, a local adaptive image descriptor termed as LAID is introduced in this proposal. It is a ternary pattern and is able to generate persistent codes to represent microtextures in a given image, especially in noisy conditions. It can also generate stable texture codes if the pixel intensities change abruptly due to the illumination changes. Experimental results also show the superiority of the proposed method over other state-of-the-art methods.

  10. CASTLE3D - A Computer Aided System for Labelling Archaeological Excavations in 3D

    NASA Astrophysics Data System (ADS)

    Houshiar, H.; Borrmann, D.; Elseberg, J.; Nüchter, A.; Näth, F.; Winkler, S.

    2015-08-01

    one label. Further information such as color, orientation and archaeological notes are added to the label to improve the documentation. The available 3D information allows for easy measurements in the data. The full 3D information of a region of interest can be segmented from the entire data. By joining this data from different georeferenced views the full 3D shape of findings is stored. All the generated documentation in CASTLE3D is exported to an XML format and serves as input for other systems and databases. Apart from presenting the functionalities of CASTLE3D we evaluate its documentation process in a sample project. For this purpose we export the data to the Adiuvabit database (http://adiuvabit.de) where more information is added for further analysis. The documentation process is compared to traditional documentation methods and it is shown how the automated system helps in accelerating the documentation process and decreases errors to a minimum.

  11. Modelling mesoporous alumina microstructure with 3D random models of platelets.

    PubMed

    Wang, H; Pietrasanta, A; Jeulin, D; Willot, F; Faessel, M; Sorbier, L; Moreaud, M

    2015-12-01

    This work focuses on a mesoporous material made up of nanometric alumina 'platelets' of unknown shape. We develope a 3D random microstructure to model the porous material, based on 2D transmission electron microscopy (TEM) images, without prior knowledge on the spatial distribution of alumina inside the material. The TEM images, acquired on samples with thickness 300 nm, a scale much larger than the platelets's size, are too blurry and noisy to allow one to distinguish platelets or platelets aggregates individually. In a first step, the TEM images correlation function and integral range are estimated. The presence of long-range fluctuations, due to the TEM inhomogeneous detection, is detected and corrected by filtering. The corrected correlation function is used as a morphological descriptor for the model. After testing a Boolean model of platelets, a two-scale model of microstructure is introduced to replicate the statistical dispersion of platelets observed on TEM images. Accordingly, a set of two-scale Boolean models with varying physically admissible platelets shapes is proposed. Upon optimization, the model takes into account the dispersion of platelets in the microstructure as observed on TEM images. Comparing it to X-ray diffraction and nitrogen porosimetry data, the model is found to be in good agreement with the material in terms of specific surface area. PMID:26280446

  12. How diverse are diversity assessment methods? A comparative analysis and benchmarking of molecular descriptor space.

    PubMed

    Koutsoukas, Alexios; Paricharak, Shardul; Galloway, Warren R J D; Spring, David R; Ijzerman, Adriaan P; Glen, Robert C; Marcus, David; Bender, Andreas

    2014-01-27

    Chemical diversity is a widely applied approach to select structurally diverse subsets of molecules, often with the objective of maximizing the number of hits in biological screening. While many methods exist in the area, few systematic comparisons using current descriptors in particular with the objective of assessing diversity in bioactivity space have been published, and this shortage is what the current study is aiming to address. In this work, 13 widely used molecular descriptors were compared, including fingerprint-based descriptors (ECFP4, FCFP4, MACCS keys), pharmacophore-based descriptors (TAT, TAD, TGT, TGD, GpiDAPH3), shape-based descriptors (rapid overlay of chemical structures (ROCS) and principal moments of inertia (PMI)), a connectivity-matrix-based descriptor (BCUT), physicochemical-property-based descriptors (prop2D), and a more recently introduced molecular descriptor type (namely, "Bayes Affinity Fingerprints"). We assessed both the similar behavior of the descriptors in assessing the diversity of chemical libraries, and their ability to select compounds from libraries that are diverse in bioactivity space, which is a property of much practical relevance in screening library design. This is particularly evident, given that many future targets to be screened are not known in advance, but that the library should still maximize the likelihood of containing bioactive matter also for future screening campaigns. Overall, our results showed that descriptors based on atom topology (i.e., fingerprint-based descriptors and pharmacophore-based descriptors) correlate well in rank-ordering compounds, both within and between descriptor types. On the other hand, shape-based descriptors such as ROCS and PMI showed weak correlation with the other descriptors utilized in this study, demonstrating significantly different behavior. We then applied eight of the molecular descriptors compared in this study to sample a diverse subset of sample compounds (4%) from an

  13. Unassisted 3D camera calibration

    NASA Astrophysics Data System (ADS)

    Atanassov, Kalin; Ramachandra, Vikas; Nash, James; Goma, Sergio R.

    2012-03-01

    With the rapid growth of 3D technology, 3D image capture has become a critical part of the 3D feature set on mobile phones. 3D image quality is affected by the scene geometry as well as on-the-device processing. An automatic 3D system usually assumes known camera poses accomplished by factory calibration using a special chart. In real life settings, pose parameters estimated by factory calibration can be negatively impacted by movements of the lens barrel due to shaking, focusing, or camera drop. If any of these factors displaces the optical axes of either or both cameras, vertical disparity might exceed the maximum tolerable margin and the 3D user may experience eye strain or headaches. To make 3D capture more practical, one needs to consider unassisted (on arbitrary scenes) calibration. In this paper, we propose an algorithm that relies on detection and matching of keypoints between left and right images. Frames containing erroneous matches, along with frames with insufficiently rich keypoint constellations, are detected and discarded. Roll, pitch yaw , and scale differences between left and right frames are then estimated. The algorithm performance is evaluated in terms of the remaining vertical disparity as compared to the maximum tolerable vertical disparity.

  14. Arena3D: visualization of biological networks in 3D

    PubMed Central

    Pavlopoulos, Georgios A; O'Donoghue, Seán I; Satagopam, Venkata P; Soldatos, Theodoros G; Pafilis, Evangelos; Schneider, Reinhard

    2008-01-01

    Background Complexity is a key problem when visualizing biological networks; as the number of entities increases, most graphical views become incomprehensible. Our goal is to enable many thousands of entities to be visualized meaningfully and with high performance. Results We present a new visualization tool, Arena3D, which introduces a new concept of staggered layers in 3D space. Related data – such as proteins, chemicals, or pathways – can be grouped onto separate layers and arranged via layout algorithms, such as Fruchterman-Reingold, distance geometry, and a novel hierarchical layout. Data on a layer can be clustered via k-means, affinity propagation, Markov clustering, neighbor joining, tree clustering, or UPGMA ('unweighted pair-group method with arithmetic mean'). A simple input format defines the name and URL for each node, and defines connections or similarity scores between pairs of nodes. The use of Arena3D is illustrated with datasets related to Huntington's disease. Conclusion Arena3D is a user friendly visualization tool that is able to visualize biological or any other network in 3D space. It is free for academic use and runs on any platform. It can be downloaded or lunched directly from . Java3D library and Java 1.5 need to be pre-installed for the software to run. PMID:19040715

  15. Fdf in US3D

    NASA Astrophysics Data System (ADS)

    Otis, Collin; Ferrero, Pietro; Candler, Graham; Givi, Peyman

    2013-11-01

    The scalar filtered mass density function (SFMDF) methodology is implemented into the computer code US3D. This is an unstructured Eulerian finite volume hydrodynamic solver and has proven very effective for simulation of compressible turbulent flows. The resulting SFMDF-US3D code is employed for large eddy simulation (LES) on unstructured meshes. Simulations are conducted of subsonic and supersonic flows under non-reacting and reacting conditions. The consistency and the accuracy of the simulated results are assessed along with appraisal of the overall performance of the methodology. The SFMDF-US3D is now capable of simulating high speed flows in complex configurations.

  16. Geomatics for precise 3D breast imaging.

    PubMed

    Alto, Hilary

    2005-02-01

    Canadian women have a one in nine chance of developing breast cancer during their lifetime. Mammography is the most common imaging technology used for breast cancer detection in its earliest stages through screening programs. Clusters of microcalcifications are primary indicators of breast cancer; the shape, size and number may be used to determine whether they are malignant or benign. However, overlapping images of calcifications on a mammogram hinder the classification of the shape and size of each calcification and a misdiagnosis may occur resulting in either an unnecessary biopsy being performed or a necessary biopsy not being performed. The introduction of 3D imaging techniques such as standard photogrammetry may increase the confidence of the radiologist when making his/her diagnosis. In this paper, traditional analytical photogrammetric techniques for the 3D mathematical reconstruction of microcalcifications are presented. The techniques are applied to a specially designed and constructed x-ray transparent Plexiglas phantom (control object). The phantom was embedded with 1.0 mm x-ray opaque lead pellets configured to represent overlapping microcalcifications. Control points on the phantom were determined by standard survey methods and hand measurements. X-ray films were obtained using a LORAD M-III mammography machine. The photogrammetric techniques of relative and absolute orientation were applied to the 2D mammographic films to analytically generate a 3D depth map with an overall accuracy of 0.6 mm. A Bundle Adjustment and the Direct Linear Transform were used to confirm the results. PMID:15649085

  17. Wavefront construction in 3-D

    SciTech Connect

    Chilcoat, S.R. Hildebrand, S.T.

    1995-12-31

    Travel time computation in inhomogeneous media is essential for pre-stack Kirchhoff imaging in areas such as the sub-salt province in the Gulf of Mexico. The 2D algorithm published by Vinje, et al, has been extended to 3D to compute wavefronts in complicated inhomogeneous media. The 3D wavefront construction algorithm provides many advantages over conventional ray tracing and other methods of computing travel times in 3D. The algorithm dynamically maintains a reasonably consistent ray density without making a priori guesses at the number of rays to shoot. The determination of caustics in 3D is a straight forward geometric procedure. The wavefront algorithm also enables the computation of multi-valued travel time surfaces.

  18. Heterodyne 3D ghost imaging

    NASA Astrophysics Data System (ADS)

    Yang, Xu; Zhang, Yong; Yang, Chenghua; Xu, Lu; Wang, Qiang; Zhao, Yuan

    2016-06-01

    Conventional three dimensional (3D) ghost imaging measures range of target based on pulse fight time measurement method. Due to the limit of data acquisition system sampling rate, range resolution of the conventional 3D ghost imaging is usually low. In order to take off the effect of sampling rate to range resolution of 3D ghost imaging, a heterodyne 3D ghost imaging (HGI) system is presented in this study. The source of HGI is a continuous wave laser instead of pulse laser. Temporal correlation and spatial correlation of light are both utilized to obtain the range image of target. Through theory analysis and numerical simulations, it is demonstrated that HGI can obtain high range resolution image with low sampling rate.

  19. Combinatorial 3D Mechanical Metamaterials

    NASA Astrophysics Data System (ADS)

    Coulais, Corentin; Teomy, Eial; de Reus, Koen; Shokef, Yair; van Hecke, Martin

    2015-03-01

    We present a class of elastic structures which exhibit 3D-folding motion. Our structures consist of cubic lattices of anisotropic unit cells that can be tiled in a complex combinatorial fashion. We design and 3d-print this complex ordered mechanism, in which we combine elastic hinges and defects to tailor the mechanics of the material. Finally, we use this large design space to encode smart functionalities such as surface patterning and multistability.

  20. Application of the quantum mechanical IEF/PCM-MST hydrophobic descriptors to selectivity in ligand binding.

    PubMed

    Ginex, Tiziana; Muñoz-Muriedas, Jordi; Herrero, Enric; Gibert, Enric; Cozzini, Pietro; Luque, F Javier

    2016-06-01

    We have recently reported the development and validation of quantum mechanical (QM)-based hydrophobic descriptors derived from the parametrized IEF/PCM-MST continuum solvation model for 3D-QSAR studies within the framework of the Hydrophobic Pharmacophore (HyPhar) method. In this study we explore the applicability of these descriptors to the analysis of selectivity fields. To this end, we have examined a series of 88 compounds with inhibitory activities against thrombin, trypsin and factor Xa, and the HyPhar results have been compared with 3D-QSAR models reported in the literature. The quantitative models obtained by combining the electrostatic and non-electrostatic components of the octanol/water partition coefficient yield results that compare well with the predictive potential of standard CoMFA and CoMSIA techniques. The results also highlight the potential of HyPhar descriptors to discriminate the selectivity of the compounds against thrombin, trypsin, and factor Xa. Moreover, the graphical representation of the hydrophobic maps provides a direct linkage with the pattern of interactions found in crystallographic structures. Overall, the results support the usefulness of the QM/MST-based hydrophobic descriptors as a complementary approach for disclosing structure-activity relationships in drug design and for gaining insight into the molecular determinants of ligand selectivity. Graphical Abstract Quantum Mechanical continuum solvation calculations performed with the IEF/PCM-MST method are used to derived atomic hydrophobic descriptors, which are then used to discriminate the selectivity of ligands against thrombin, trypsin and factor Xa. The descriptors provide complementary view to standard 3D-QSAR analysis, leading to a more comprehensive understanding of ligand recognition. PMID:27188723

  1. Ice Accretion Calculations for a Commercial Transport Using the LEWICE3D, ICEGRID3D and CMARC Programs

    NASA Technical Reports Server (NTRS)

    Bidwell, Colin S.; Pinella, David; Garrison, Peter

    1999-01-01

    Collection efficiency and ice accretion calculations were made for a commercial transport using the NASA Lewis LEWICE3D ice accretion code, the ICEGRID3D grid code and the CMARC panel code. All of the calculations were made on a Windows 95 based personal computer. The ice accretion calculations were made for the nose, wing, horizontal tail and vertical tail surfaces. Ice shapes typifying those of a 30 minute hold were generated. Collection efficiencies were also generated for the entire aircraft using the newly developed unstructured collection efficiency method. The calculations highlight the flexibility and cost effectiveness of the LEWICE3D, ICEGRID3D, CMARC combination.

  2. 3D Multifunctional Ablative Thermal Protection System

    NASA Technical Reports Server (NTRS)

    Feldman, Jay; Venkatapathy, Ethiraj; Wilkinson, Curt; Mercer, Ken

    2015-01-01

    NASA is developing the Orion spacecraft to carry astronauts farther into the solar system than ever before, with human exploration of Mars as its ultimate goal. One of the technologies required to enable this advanced, Apollo-shaped capsule is a 3-dimensional quartz fiber composite for the vehicle's compression pad. During its mission, the compression pad serves first as a structural component and later as an ablative heat shield, partially consumed on Earth re-entry. This presentation will summarize the development of a new 3D quartz cyanate ester composite material, 3-Dimensional Multifunctional Ablative Thermal Protection System (3D-MAT), designed to meet the mission requirements for the Orion compression pad. Manufacturing development, aerothermal (arc-jet) testing, structural performance, and the overall status of material development for the 2018 EM-1 flight test will be discussed.

  3. Tomographic compressive holographic reconstruction of 3D objects

    NASA Astrophysics Data System (ADS)

    Nehmetallah, G.; Williams, L.; Banerjee, P. P.

    2012-10-01

    Compressive holography with multiple projection tomography is applied to solve the inverse ill-posed problem of reconstruction of 3D objects with high axial accuracy. To visualize the 3D shape, we propose Digital Tomographic Compressive Holography (DiTCH), where projections from more than one direction as in tomographic imaging systems can be employed, so that a 3D shape with better axial resolution can be reconstructed. We compare DiTCH with single-beam holographic tomography (SHOT) which is based on Fresnel back-propagation. A brief theory of DiTCH is presented, and experimental results of 3D shape reconstruction of objects using DITCH and SHOT are compared.

  4. Skin injury model classification based on shape vector analysis

    PubMed Central

    2012-01-01

    Background: Skin injuries can be crucial in judicial decision making. Forensic experts base their classification on subjective opinions. This study investigates whether known classes of simulated skin injuries are correctly classified statistically based on 3D surface models and derived numerical shape descriptors. Methods: Skin injury surface characteristics are simulated with plasticine. Six injury classes – abrasions, incised wounds, gunshot entry wounds, smooth and textured strangulation marks as well as patterned injuries - with 18 instances each are used for a k-fold cross validation with six partitions. Deformed plasticine models are captured with a 3D surface scanner. Mean curvature is estimated for each polygon surface vertex. Subsequently, distance distributions and derived aspect ratios, convex hulls, concentric spheres, hyperbolic points and Fourier transforms are used to generate 1284-dimensional shape vectors. Subsequent descriptor reduction maximizing SNR (signal-to-noise ratio) result in an average of 41 descriptors (varying across k-folds). With non-normal multivariate distribution of heteroskedastic data, requirements for LDA (linear discriminant analysis) are not met. Thus, shrinkage parameters of RDA (regularized discriminant analysis) are optimized yielding a best performance with λ = 0.99 and γ = 0.001. Results: Receiver Operating Characteristic of a descriptive RDA yields an ideal Area Under the Curve of 1.0for all six categories. Predictive RDA results in an average CRR (correct recognition rate) of 97,22% under a 6 partition k-fold. Adding uniform noise within the range of one standard deviation degrades the average CRR to 71,3%. Conclusions: Digitized 3D surface shape data can be used to automatically classify idealized shape models of simulated skin injuries. Deriving some well established descriptors such as histograms, saddle shape of hyperbolic points or convex hulls with subsequent reduction of dimensionality while maximizing SNR

  5. The assess facility descriptor module

    SciTech Connect

    Jordan, S.E.; Winblad, A.; Key, B.; Walker, S.; Renis, T.; Saleh, R.

    1989-01-01

    The Facility Descriptor (Facility) module is part of the Analytic System and Software for Evaluating Safeguards and Security (ASSESS). Facility is the foundational software application in the ASSESS system for modelling a nuclear facility's safeguards and security system to determine the effectiveness against theft of special nuclear material. The Facility module provides the tools for an analyst to define a complete description of a facility's physical protection system which can then be used by other ASSESS software modules to determine vulnerability to a spectrum of insider and outsider threats. The analyst can enter a comprehensive description of the protection system layout including all secured areas, target locations, and detailed safeguards specifications. An extensive safeguard component catalog provides the reference data for calculating delay and detection performance. Multiple target locations within the same physical area may be specified, and the facility may be defined for two different operational states such as dayshift and nightshift. 6 refs., 5 figs.

  6. THESAURUS OF ERIC DESCRIPTORS (INTERIM) JANUARY 1967.

    ERIC Educational Resources Information Center

    1967

    THE "THESAURUS OF ERIC DESCRIPTORS (INTERIM)" SUPERSEDES, AND REPRESENTS A REFINEMENT OF, THE "THESAURUS OF ERIC DESCRIPTORS." THE INTERIM ISSUE IS A PRELIMINARY ERIC SYSTEM TOOL AND IS NOT TO BE CONSIDERED A COMPLETE REPRESENTATION OF THE FINAL PRODUCT. THIS REFINEMENT IS THE RESULT OF TWO MAJOR PROJECTS--(1) THE INCORPORATION OF SUGGESTIONS…

  7. YouDash3D: exploring stereoscopic 3D gaming for 3D movie theaters

    NASA Astrophysics Data System (ADS)

    Schild, Jonas; Seele, Sven; Masuch, Maic

    2012-03-01

    Along with the success of the digitally revived stereoscopic cinema, events beyond 3D movies become attractive for movie theater operators, i.e. interactive 3D games. In this paper, we present a case that explores possible challenges and solutions for interactive 3D games to be played by a movie theater audience. We analyze the setting and showcase current issues related to lighting and interaction. Our second focus is to provide gameplay mechanics that make special use of stereoscopy, especially depth-based game design. Based on these results, we present YouDash3D, a game prototype that explores public stereoscopic gameplay in a reduced kiosk setup. It features live 3D HD video stream of a professional stereo camera rig rendered in a real-time game scene. We use the effect to place the stereoscopic effigies of players into the digital game. The game showcases how stereoscopic vision can provide for a novel depth-based game mechanic. Projected trigger zones and distributed clusters of the audience video allow for easy adaptation to larger audiences and 3D movie theater gaming.

  8. Aircraft noise descriptor and its application

    NASA Astrophysics Data System (ADS)

    Igarashi, Juichi

    The methods and indices used in Japan to evaluate aircraft noise and the government-enforced countermeasures are discussed. The ECPNL descriptor was modified so as to make the new descriptor, WECPNL', approximately equivalent to Lden, and the noise contours were calculated for each airport in Japan. The government enforced the policy of land purchase within the WECPNL' of 85, and the houses within the value of 75 were declared as needing insulation. The noise descriptor Leq or Ldn has been used to describe human responses to various kinds of noises. However, a single value descriptor was found to have a limit of applicability, because the human response is not a linear function of a sound level. Another defect of the descriptor is a failure to represent the human response adequately for a small number of flights. It is noted that the house vibration caused by low-frequency components of aircraft noise cannot yet be evaluated.

  9. Remote 3D Medical Consultation

    NASA Astrophysics Data System (ADS)

    Welch, Greg; Sonnenwald, Diane H.; Fuchs, Henry; Cairns, Bruce; Mayer-Patel, Ketan; Yang, Ruigang; State, Andrei; Towles, Herman; Ilie, Adrian; Krishnan, Srinivas; Söderholm, Hanna M.

    Two-dimensional (2D) video-based telemedical consultation has been explored widely in the past 15-20 years. Two issues that seem to arise in most relevant case studies are the difficulty associated with obtaining the desired 2D camera views, and poor depth perception. To address these problems we are exploring the use of a small array of cameras to synthesize a spatially continuous range of dynamic three-dimensional (3D) views of a remote environment and events. The 3D views can be sent across wired or wireless networks to remote viewers with fixed displays or mobile devices such as a personal digital assistant (PDA). The viewpoints could be specified manually or automatically via user head or PDA tracking, giving the remote viewer virtual head- or hand-slaved (PDA-based) remote cameras for mono or stereo viewing. We call this idea remote 3D medical consultation (3DMC). In this article we motivate and explain the vision for 3D medical consultation; we describe the relevant computer vision/graphics, display, and networking research; we present a proof-of-concept prototype system; and we present some early experimental results supporting the general hypothesis that 3D remote medical consultation could offer benefits over conventional 2D televideo.

  10. Speaking Volumes About 3-D

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In 1999, Genex submitted a proposal to Stennis Space Center for a volumetric 3-D display technique that would provide multiple users with a 360-degree perspective to simultaneously view and analyze 3-D data. The futuristic capabilities of the VolumeViewer(R) have offered tremendous benefits to commercial users in the fields of medicine and surgery, air traffic control, pilot training and education, computer-aided design/computer-aided manufacturing, and military/battlefield management. The technology has also helped NASA to better analyze and assess the various data collected by its satellite and spacecraft sensors. Genex capitalized on its success with Stennis by introducing two separate products to the commercial market that incorporate key elements of the 3-D display technology designed under an SBIR contract. The company Rainbow 3D(R) imaging camera is a novel, three-dimensional surface profile measurement system that can obtain a full-frame 3-D image in less than 1 second. The third product is the 360-degree OmniEye(R) video system. Ideal for intrusion detection, surveillance, and situation management, this unique camera system offers a continuous, panoramic view of a scene in real time.

  11. Descriptors, physical properties, and drug-likeness.

    PubMed

    Brüstle, Matthias; Beck, Bernd; Schindler, Torsten; King, William; Mitchell, Timothy; Clark, Timothy

    2002-08-01

    We have investigated techniques for distinguishing between drugs and nondrugs using a set of molecular descriptors derived from semiempirical molecular orbital (AM1) calculations. The "drug" data set of 2105 compounds was derived from the World Drug Index (WDI) using a procedure designed to select real drugs. The "nondrug" data set was the Maybridge database. We have first investigated the dimensionality of physical properties space based on a set of 26 descriptors that we have used successfully to build absorption, distribution, metabolism, and excretion-related quantitative structure-property relationship models. We discuss the general nature of the descriptors for physical property space and the ability of these descriptors to distinguish between drugs and nondrugs. The third most significant principal component of this set of descriptors serves as a useful numerical index of drug-likeness, but no others are able to distinguish between drugs and nondrugs. We have therefore extended our set of descriptors to a total of 66 and have used recursive partitioning to identify the descriptors that can distinguish between drugs and nondrugs. This procedure pointed to two of the descriptors that play an important role in the principal component found above and one more from the set of 40 extra descriptors. These three descriptors were then used to train a Kohonen artificial neural net for the entire Maybridge data set. Projecting the drug database onto the map obtained resulted in a clear distinction not only between drugs and nondrugs but also, for instance, between hormones and other drugs. Projection of 42 131 compounds from the WDI onto the Kohonen map also revealed pronounced clustering in the regions of the map assigned as druglike. PMID:12139446

  12. 3D-Printed Microfluidics.

    PubMed

    Au, Anthony K; Huynh, Wilson; Horowitz, Lisa F; Folch, Albert

    2016-03-14

    The advent of soft lithography allowed for an unprecedented expansion in the field of microfluidics. However, the vast majority of PDMS microfluidic devices are still made with extensive manual labor, are tethered to bulky control systems, and have cumbersome user interfaces, which all render commercialization difficult. On the other hand, 3D printing has begun to embrace the range of sizes and materials that appeal to the developers of microfluidic devices. Prior to fabrication, a design is digitally built as a detailed 3D CAD file. The design can be assembled in modules by remotely collaborating teams, and its mechanical and fluidic behavior can be simulated using finite-element modeling. As structures are created by adding materials without the need for etching or dissolution, processing is environmentally friendly and economically efficient. We predict that in the next few years, 3D printing will replace most PDMS and plastic molding techniques in academia. PMID:26854878

  13. 3D Computations and Experiments

    SciTech Connect

    Couch, R; Faux, D; Goto, D; Nikkel, D

    2004-04-05

    This project consists of two activities. Task A, Simulations and Measurements, combines all the material model development and associated numerical work with the materials-oriented experimental activities. The goal of this effort is to provide an improved understanding of dynamic material properties and to provide accurate numerical representations of those properties for use in analysis codes. Task B, ALE3D Development, involves general development activities in the ALE3D code with the focus of improving simulation capabilities for problems of mutual interest to DoD and DOE. Emphasis is on problems involving multi-phase flow, blast loading of structures and system safety/vulnerability studies.

  14. 3D Computations and Experiments

    SciTech Connect

    Couch, R; Faux, D; Goto, D; Nikkel, D

    2003-05-12

    This project is in its first full year after the combining of two previously funded projects: ''3D Code Development'' and ''Dynamic Material Properties''. The motivation behind this move was to emphasize and strengthen the ties between the experimental work and the computational model development in the materials area. The next year's activities will indicate the merging of the two efforts. The current activity is structured in two tasks. Task A, ''Simulations and Measurements'', combines all the material model development and associated numerical work with the materials-oriented experimental activities. Task B, ''ALE3D Development'', is a continuation of the non-materials related activities from the previous project.

  15. Colloid Science of Metal Nanoparticle Catalysts in 2D and 3D Structures. Challenges of Nucleation, Growth, Composition, Particle Shape, Size Control and their Influence on Activity and Selectivity

    SciTech Connect

    Somorjai, Gabor A.; Park, Jeong Y.

    2008-02-13

    Recent breakthroughs in synthesis in nanosciences have achieved control of size and shapes of nanoparticles that are relevant for catalyst design. In this article, we review the advance of synthesis of nanoparticles, fabrication of two and three dimensional model catalyst system, characterization, and studies of activity and selectivity. The ability to synthesize monodispersed platinum and rhodium nanoparticles in the 1-10 nm range permitted us to study the influence of composition, structure, and dynamic properties of monodispersed metal nanoparticle on chemical reactivity and selectivity. We review the importance of size and shape of nanoparticles to determine the reaction selectivity in multi-path reactions. The influence of metal-support interaction has been studied by probing the hot electron flows through the metal-oxide interface in catalytic nanodiodes. Novel designs of nanoparticle catalytic systems are discussed.

  16. 3-D Mesh Generation Nonlinear Systems

    1994-04-07

    INGRID is a general-purpose, three-dimensional mesh generator developed for use with finite element, nonlinear, structural dynamics codes. INGRID generates the large and complex input data files for DYNA3D, NIKE3D, FACET, and TOPAZ3D. One of the greatest advantages of INGRID is that virtually any shape can be described without resorting to wedge elements, tetrahedrons, triangular elements or highly distorted quadrilateral or hexahedral elements. Other capabilities available are in the areas of geometry and graphics. Exact surfacemore » equations and surface intersections considerably improve the ability to deal with accurate models, and a hidden line graphics algorithm is included which is efficient on the most complicated meshes. The primary new capability is associated with the boundary conditions, loads, and material properties required by nonlinear mechanics programs. Commands have been designed for each case to minimize user effort. This is particularly important since special processing is almost always required for each load or boundary condition.« less

  17. FELIX: a volumetric 3D laser display

    NASA Astrophysics Data System (ADS)

    Bahr, Detlef; Langhans, Knut; Gerken, Martin; Vogt, Carsten; Bezecny, Daniel; Homann, Dennis

    1996-03-01

    In this paper, an innovative approach of a true 3D image presentation in a space filling, volumetric laser display will be described. The introduced prototype system is based on a moving target screen that sweeps the display volume. Net result is the optical equivalent of a 3D array of image points illuminated to form a model of the object which occupies a physical space. Wireframe graphics are presented within the display volume which a group of people can walk around and examine simultaneously from nearly any orientation and without any visual aids. Further to the detailed vector scanning mode, a raster scanned system and a combination of both techniques are under development. The volumetric 3D laser display technology for true reproduction of spatial images can tremendously improve the viewers ability to interpret data and to reliably determine distance, shape and orientation. Possible applications for this development range from air traffic control, where moving blips of light represent individual aircrafts in a true to scale projected airspace of an airport, to various medical applications (e.g. electrocardiography, computer-tomography), to entertainment and education visualization as well as imaging in the field of engineering and Computer Aided Design.

  18. Complex light in 3D printing

    NASA Astrophysics Data System (ADS)

    Moser, Christophe; Delrot, Paul; Loterie, Damien; Morales Delgado, Edgar; Modestino, Miguel; Psaltis, Demetri

    2016-03-01

    3D printing as a tool to generate complicated shapes from CAD files, on demand, with different materials from plastics to metals, is shortening product development cycles, enabling new design possibilities and can provide a mean to manufacture small volumes cost effectively. There are many technologies for 3D printing and the majority uses light in the process. In one process (Multi-jet modeling, polyjet, printoptical©), a printhead prints layers of ultra-violet curable liquid plastic. Here, each nozzle deposits the material, which is then flooded by a UV curing lamp to harden it. In another process (Stereolithography), a focused UV laser beam provides both the spatial localization and the photo-hardening of the resin. Similarly, laser sintering works with metal powders by locally melting the material point by point and layer by layer. When the laser delivers ultra-fast focused pulses, nonlinear effects polymerize the material with high spatial resolution. In these processes, light is either focused in one spot and the part is made by scanning it or the light is expanded and covers a wide area for photopolymerization. Hence a fairly "simple" light field is used in both cases. Here, we give examples of how "complex light" brings a