Science.gov

Sample records for 3d simulation code

  1. VISRAD, 3-D Target Design and Radiation Simulation Code

    NASA Astrophysics Data System (ADS)

    Golovkina, Viktoriya; Macfarlane, Joseph; Golovkin, Igor; Kulkarni, Subodh

    2014-10-01

    The 3-D view factor code VISRAD is widely used in designing HEDP experiments at major laser and pulsed-power facilities, including NIF, OMEGA, OMEGA-EP, ORION, LMJ, Z, and PLX. It simulates target designs by generating a 3-D grid of surface elements, utilizing a variety of 3-D primitives and surface removal algorithms, and can be used to compute the radiation flux throughout the surface element grid by computing element-to-element view factors and solving power balance equations. Target set-up and beam pointing are facilitated by allowing users to specify positions and angular orientations using a variety of coordinates systems (e.g., that of any laser beam, target component, or diagnostic port). Analytic modeling for laser beam spatial profiles for OMEGA DPPs and NIF CPPs is used to compute laser intensity profiles throughout the grid of surface elements. We will discuss recent improvements to the software package and plans for future developments.

  2. VISRAD, 3-D Target Design and Radiation Simulation Code

    NASA Astrophysics Data System (ADS)

    Li, Yingjie; Macfarlane, Joseph; Golovkin, Igor

    2015-11-01

    The 3-D view factor code VISRAD is widely used in designing HEDP experiments at major laser and pulsed-power facilities, including NIF, OMEGA, OMEGA-EP, ORION, LMJ, Z, and PLX. It simulates target designs by generating a 3-D grid of surface elements, utilizing a variety of 3-D primitives and surface removal algorithms, and can be used to compute the radiation flux throughout the surface element grid by computing element-to-element view factors and solving power balance equations. Target set-up and beam pointing are facilitated by allowing users to specify positions and angular orientations using a variety of coordinates systems (e.g., that of any laser beam, target component, or diagnostic port). Analytic modeling for laser beam spatial profiles for OMEGA DPPs and NIF CPPs is used to compute laser intensity profiles throughout the grid of surface elements. We will discuss recent improvements to the software package and plans for future developments.

  3. 3D Convection-pulsation Simulations with the HERACLES Code

    NASA Astrophysics Data System (ADS)

    Felix, S.; Audit, E.; Dintrans, B.

    2015-10-01

    We present 3D simulations of the coupling between surface convection and pulsations due to the κ-mechanism in classical Cepheids of the red edge of Hertzsprung-Russell diagram's instability strip. We show that 3D convection is less powerful than 2D convection and does not quench the radiative pulsations, leading to an efficient 3D κ-mechanism. Thus, the 3D instability strip is closer to the observed one than the 1D or 2D were.

  4. Code System to Simulate 3D Tracer Dispersion in Atmosphere.

    2002-01-25

    Version 00 SHREDI is a shielding code system which executes removal-diffusion computations for bi-dimensional shields in r-z or x-y geometries. It may also deal with monodimensional problems (infinitely high cylinders or slabs). MESYST can simulate 3D tracer dispersion in the atmosphere. Three programs are part of this system: CRE_TOPO prepares the terrain data for MESYST. NOABL calculates three-dimensional free divergence windfields over complex terrain. PAS computes tracer concentrations and depositions on a given domain. Themore » purpose of this work is to develop a reliable simulation tool for pollutant atmospheric dispersion, which gives a realistic approach and allows one to compute the pollutant concentrations over complex terrains with good accuracy. The factional brownian model, which furnishes more accurate concentration values, is introduced to calculate pollutant atmospheric dispersion. The model was validated on SIESTA international experiments.« less

  5. ROAR: A 3-D tethered rocket simulation code

    SciTech Connect

    York, A.R. II; Ludwigsen, J.S.

    1992-04-01

    A high-velocity impact testing technique, utilizing a tethered rocket, is being developed at Sandia National Laboratories. The technique involves tethering a rocket assembly to a pivot location and flying it in a semicircular trajectory to deliver the rocket and payload to an impact target location. Integral to developing this testing technique is the parallel development of accurate simulation models. An operational computer code, called ROAR (Rocket-on-a-Rope), has been developed to simulate the three-dimensional transient dynamic behavior of the tether and motor/payload assembly. This report presents a discussion of the parameters modeled, the governing set of equations, the through-time integration scheme, and the input required to set up a model. Also included is a sample problem and a comparison with experimental results.

  6. 3D Direct Simulation Monte Carlo Code Which Solves for Geometrics

    1998-01-13

    Pegasus is a 3D Direct Simulation Monte Carlo Code which solves for geometries which can be represented by bodies of revolution. Included are all the surface chemistry enhancements in the 2D code Icarus as well as a real vacuum pump model. The code includes multiple species transport.

  7. Three-dimensional parallel UNIPIC-3D code for simulations of high-power microwave devices

    SciTech Connect

    Wang Jianguo; Chen Zaigao; Wang Yue; Zhang Dianhui; Qiao Hailiang; Fu Meiyan; Yuan Yuan; Liu Chunliang; Li Yongdong; Wang Hongguang

    2010-07-15

    This paper introduces a self-developed, three-dimensional parallel fully electromagnetic particle simulation code UNIPIC-3D. In this code, the electromagnetic fields are updated using the second-order, finite-difference time-domain method, and the particles are moved using the relativistic Newton-Lorentz force equation. The electromagnetic field and particles are coupled through the current term in Maxwell's equations. Two numerical examples are used to verify the algorithms adopted in this code, numerical results agree well with theoretical ones. This code can be used to simulate the high-power microwave (HPM) devices, such as the relativistic backward wave oscillator, coaxial vircator, and magnetically insulated line oscillator, etc. UNIPIC-3D is written in the object-oriented C++ language and can be run on a variety of platforms including WINDOWS, LINUX, and UNIX. Users can use the graphical user's interface to create the complex geometric structures of the simulated HPM devices, which can be automatically meshed by UNIPIC-3D code. This code has a powerful postprocessor which can display the electric field, magnetic field, current, voltage, power, spectrum, momentum of particles, etc. For the sake of comparison, the results computed by using the two-and-a-half-dimensional UNIPIC code are also provided for the same parameters of HPM devices, the numerical results computed from these two codes agree well with each other.

  8. Simulations of implosions with a 3D, parallel, unstructured-grid, radiation-hydrodynamics code

    SciTech Connect

    Kaiser, T B; Milovich, J L; Prasad, M K; Rathkopf, J; Shestakov, A I

    1998-12-28

    An unstructured-grid, radiation-hydrodynamics code is used to simulate implosions. Although most of the problems are spherically symmetric, they are run on 3D, unstructured grids in order to test the code's ability to maintain spherical symmetry of the converging waves. Three problems, of increasing complexity, are presented. In the first, a cold, spherical, ideal gas bubble is imploded by an enclosing high pressure source. For the second, we add non-linear heat conduction and drive the implosion with twelve laser beams centered on the vertices of an icosahedron. In the third problem, a NIF capsule is driven with a Planckian radiation source.

  9. Long-term radiation belt simulation with the VERB 3-D code: Comparison with CRRES observations

    NASA Astrophysics Data System (ADS)

    Subbotin, D. A.; Shprits, Y. Y.; Ni, B.

    2011-12-01

    Highly energetic electrons in the Earth’s radiation belts are hazardous for satellite equipment. Fluxes of relativistic electrons can vary by orders of magnitude during geomagnetic storms. The evolution of relativistic electron fluxes in the radiation belts is described by the 3-D Fokker-Planck equation in terms of the radial distance, energy, and equatorial pitch angle. To better understand the mechanisms that control radiation belt acceleration and loss and particle flux dynamics, we present a long-term radiation belt simulation for 100 days from 29 July to 6 November 1990 with the 3-D Versatile Electron Radiation Belt (VERB) code and compare the results with the electron fluxes observed by the Combined Release and Radiation Effects Satellite (CRRES). We also perform a comparison of Phase Space Density with a multisatellite reanalysis obtained by using Kalman filtering of observations from CRRES, Geosynchronous (GEO), GPS, and Akebono satellites. VERB 3-D simulations include radial, energy, and pitch angle diffusion and mixed energy and pitch angle diffusion driven by electromagnetic waves inside the magnetosphere with losses to the atmosphere. Boundary conditions account for the convective source of electrons and loss to the magnetopause. The results of the simulation that include all of the above processes show a good agreement with the data. The agreement implies that these processes are important for the radiation belt electron dynamics and therefore should be accounted for in outer radiation belt simulations. We also show that the results are very sensitive to the assumed wave model. Our simulations are driven only by the variation of the Kp index and variations of the seed electron population around geosynchronous orbit, which allows the model to be used for forecasting and nowcasting.

  10. GATOR: A 3-D time-dependent simulation code for helix TWTs

    SciTech Connect

    Zaidman, E.G.; Freund, H.P.

    1996-12-31

    A 3D nonlinear analysis of helix TWTs is presented. The analysis and simulation code is based upon a spectral decomposition using the vacuum sheath helix modes. The field equations are integrated on a grid and advanced in time using a MacCormack predictor-corrector scheme, and the electron orbit equations are integrated using a fourth order Runge-Kutta algorithm. Charge is accumulated on the grid and the field is interpolated to the particle location by a linear map. The effect of dielectric liners on the vacuum sheath helix dispersion is included in the analysis. Several numerical cases are considered. Simulation of the injection of a DC beam and a signal at a single frequency is compared with a linear field theory of the helix TWT interaction, and good agreement is found.

  11. Peach Bottom 2 Turbine Trip Simulation Using TRAC-BF1/COS3D, a Best-Estimate Coupled 3-D Core and Thermal-Hydraulic Code System

    SciTech Connect

    Ui, Atsushi; Miyaji, Takamasa

    2004-10-15

    The best-estimate coupled three-dimensional (3-D) core and thermal-hydraulic code system TRAC-BF1/COS3D has been developed. COS3D, based on a modified one-group neutronic model, is a 3-D core simulator used for licensing analyses and core management of commercial boiling water reactor (BWR) plants in Japan. TRAC-BF1 is a plant simulator based on a two-fluid model. TRAC-BF1/COS3D is a coupled system of both codes, which are connected using a parallel computing tool. This code system was applied to the OECD/NRC BWR Turbine Trip Benchmark. Since the two-group cross-section tables are provided by the benchmark team, COS3D was modified to apply to this specification. Three best-estimate scenarios and four hypothetical scenarios were calculated using this code system. In the best-estimate scenario, the predicted core power with TRAC-BF1/COS3D is slightly underestimated compared with the measured data. The reason seems to be a slight difference in the core boundary conditions, that is, pressure changes and the core inlet flow distribution, because the peak in this analysis is sensitive to them. However, the results of this benchmark analysis show that TRAC-BF1/COS3D gives good precision for the prediction of the actual BWR transient behavior on the whole. Furthermore, the results with the modified one-group model and the two-group model were compared to verify the application of the modified one-group model to this benchmark. This comparison shows that the results of the modified one-group model are appropriate and sufficiently precise.

  12. Simulation of a Synthetic Jet in Quiescent Air Using TLNS3D Flow Code

    NASA Technical Reports Server (NTRS)

    Vatsa, Veer N.; Turkel, Eli

    2007-01-01

    Although the actuator geometry is highly three-dimensional, the outer flowfield is nominally two-dimensional because of the high aspect ratio of the rectangular slot. For the present study, this configuration is modeled as a two-dimensional problem. A multi-block structured grid available at the CFDVAL2004 website is used as a baseline grid. The periodic motion of the diaphragm is simulated by specifying a sinusoidal velocity at the diaphragm surface with a frequency of 450 Hz, corresponding to the experimental setup. The amplitude is chosen so that the maximum Mach number at the jet exit is approximately 0.1, to replicate the experimental conditions. At the solid walls zero slip, zero injection, adiabatic temperature and zero pressure gradient conditions are imposed. In the external region, symmetry conditions are imposed on the side (vertical) boundaries and far-field conditions are imposed on the top boundary. A nominal free-stream Mach number of 0.001 is imposed in the free stream to simulate incompressible flow conditions in the TLNS3D code, which solves compressible flow equations. The code was run in unsteady (URANS) mode until the periodicity was established. The time-mean quantities were obtained by running the code for at least another 15 periods and averaging the flow quantities over these periods. The phase-locked average of flow quantities were assumed to be coincident with their values during the last full time period.

  13. Surface 3D nanostructuring by tightly focused laser pulse: simulations by Lagrangian code and molecular dynamics

    NASA Astrophysics Data System (ADS)

    Inogamov, Nail A.; Zhakhovsky, Vasily V.

    2016-02-01

    There are many important applications in which the ultrashort diffraction-limited and therefore tightly focused laser pulses irradiates metal films mounted on dielectric substrate. Here we present the detailed picture of laser peeling and 3D structure formation of the thin (relative to a depth of a heat affected zone in the bulk targets) gold films on glass substrate. The underlying physics of such diffraction-limited laser peeling was not well understood previously. Our approach is based on a physical model which takes into consideration the new calculations of the two-temperature (2T) equation of state (2T EoS) and the two-temperature transport coefficients together with the coupling parameter between electron and ion subsystems. The usage of the 2T EoS and the kinetic coefficients is required because absorption of an ultrashort pulse with duration of 10-1000 fs excites electron subsystem of metal and transfers substance into the 2T state with hot electrons (typical electron temperatures 1-3 eV) and much colder ions. It is shown that formation of submicrometer-sized 3D structures is a result of the electron-ion energy transfer, melting, and delamination of film from substrate under combined action of electron and ion pressures, capillary deceleration of the delaminated liquid metal or semiconductor, and ultrafast freezing of molten material. We found that the freezing is going in non-equilibrium regime with strongly overcooled liquid phase. In this case the Stefan approximation is non-applicable because the solidification front speed is limited by the diffusion rate of atoms in the molten material. To solve the problem we have developed the 2T Lagrangian code including all this reach physics in. We also used the high-performance combined Monte- Carlo and molecular dynamics code for simulation of surface 3D nanostructuring at later times after completion of electron-ion relaxation.

  14. Description of FEL3D: A three dimensional simulation code for TOK and FEL

    SciTech Connect

    Dutt, S.; Friedman, A.; Gover, A.

    1988-10-20

    FEL3D is a three dimensional simulation code, written for the purpose of calculating the parameters of coherent radiation emitted by electrons in an undulator. The program was written predominantly for simulating the coherent super-radiant harmonic frequency emission of electrons which are being bunched by an external laser beam while propagating in an undulator magnet. This super-radiant emission is to be studied in the TOK (transverse optical klystron) experiment, which is under construction in the NSLS department at Brookhaven National Laboratory. The program can also calculate the stimulated emission radiometric properties of a free electron laser (FEL) taking into account three dimensional effects. While this application is presently limited to the small gain operation regime of FEL's, extension to the high gain regime is expected to be relatively easy. The code is based on a semi-analytical concept. Instead of a full numerical solution of the Maxwell-Lorentz equations, the trajectories of the electron in the wiggler field are calculated analytically, and the radiation fields are expanded in terms of free space eigen-modes. This approach permits efficient computation, with a computation time of about 0.1 sec/electron on the BNL IBM 3090. The code reflects the important three dimensional features of the electron beam, the modulating laser beam, and the emitted radiation field. The statistical approach is based on averaging over the electron initial conditions according to a given distribution function in phase space, rather than via Monte-Carlo simulation. The present version of the program is written for uniform periodic wiggler field, but extension to nonuniform fields is straightforward. 4 figs., 5 tabs.

  15. Development of a GPU-Accelerated 3-D Full-Wave Code for Reflectometry Simulations

    NASA Astrophysics Data System (ADS)

    Reuther, K. S.; Kubota, S.; Feibush, E.; Johnson, I.

    2013-10-01

    1-D and 2-D full-wave codes used as synthetic diagnostics in microwave reflectometry are standard tools for understanding electron density fluctuations in fusion plasmas. The accuracy of the code depends on how well the wave properties along the ignored dimensions can be pre-specified or neglected. In a toroidal magnetic geometry, such assumptions are never strictly correct and ray tracing has shown that beam propagation is inherently a 3-D problem. Previously, we reported on the application of GPGPU's (General-Purpose computing on Graphics Processing Units) to a 2-D FDTD (Finite-Difference Time-Domain) code ported to utilize the parallel processing capabilities of the NVIDIA C870 and C1060. Here, we report on the development of a FDTD code for 3-D problems. Initial tests will use NVIDIA's M2070 GPU and concentrate on the launching and propagation of Gaussian beams in free space. If available, results using a plasma target will also be presented. Performance will be compared with previous generations of GPGPU cards as well as with NVIDIA's newest K20C GPU. Finally, the possibility of utilizing multiple GPGPU cards in a cluster environment or in a single node will also be discussed. Supported by U.S. DoE Grants DE-FG02-99-ER54527 and DE-AC02-09CH11466 and the DoE National Undergraduate Fusion Fellowship.

  16. Solar wind-magnetosphere interaction as simulated by a 3D, EM particle code

    NASA Technical Reports Server (NTRS)

    Buneman, O.; Nishikawa, Ken-Ichi; Neubert, T.

    1993-01-01

    The results of simulating the solar wind-magnetosphere interaction with a three dimensional, electromagnetic (EM) particle code are presented. Hitherto such global simulations were done with magnetohydrodynamic (MHD) codes while lower dimensional particle or hybrid codes served to account for microscopic processes and such transport parameters as have to be introduced ad hoc in MHD. The kinetic model combines macroscopic and microscopic tasks. It relies only on the Maxwell curl equations and the Lorentz equation for particles. The preliminary results are for an unmagnetized solar wind plasma streaming past a dipolar magnetic field. The results show the formation of a bow shock and a magnetotail, the penetration of energetic particles into cusp and radiation belt regions, and dawn to dusk asymmetries.

  17. Solar wind-magnetosphere interaction as simulated by a 3-D EM particle code

    NASA Technical Reports Server (NTRS)

    Buneman, Oscar; Neubert, Torsten; Nishikawa, Ken-Ichi

    1992-01-01

    We present here our first results of simulating the solar wind-magnetosphere interaction with a new three-dimensional electromagnetic particle code. Hitherto such global simulations were done with MHD codes while lower-dimensional particle or hybrid codes served to account for microscopic processes and such transport parameters as have to be introduced ad hoc in MHD. Our kinetic model attempts to combine the macroscopic and microscopic tasks. It relies only on the Maxwell curl equation and the Lorentz equation for particles, which are ideally suited for computers. The preliminary results shown here are for an unmagnetized solar wind plasma streaming past a dipolar magnetic field. The results show the formation of a bow shock and a magnetotail, the penetration of energetic particles into cusp and radiation belt regions, and dawn-dusk asymmetries.

  18. 3-D kinetics simulations of the NRU reactor using the DONJON code

    SciTech Connect

    Leung, T. C.; Atfield, M. D.; Koclas, J.

    2006-07-01

    The NRU reactor is highly heterogeneous, heavy-water cooled and moderated, with online refuelling capability. It is licensed to operate at a maximum power of 135 MW, with a peak thermal flux of approximately 4.0 x 10{sup 18} n.m{sup -2} . s{sup -1}. In support of the safe operation of NRU, three-dimensional kinetics calculations for reactor transients have been performed using the DONJON code. The code was initially designed to perform space-time kinetics calculations for the CANDU{sup R} power reactors. This paper describes how the DONJON code can be applied to perform neutronic simulations for the analysis of reactor transients in NRU, and presents calculation results for some transients. (authors)

  19. Simulation on a photocathode-based microtron using a 3D PIC code

    NASA Astrophysics Data System (ADS)

    Park, Sunjeong; Jeong, Young Uk; Park, Seong Hee; Jang, Kyu-Ha; Vinokurov, Nikolay A.; Kim, Eun-San

    2015-02-01

    The Korea Atomic Energy Research Institute (KAERI) has used a microtron accelerator based on a thermionic cathode for operating a compact terahertz (THz) FEL, where the electrons are emitted and accelerated automatically during the radio-frequency (RF) macro-pulse over threshold power for their emission. Usually a thermionic cathode is embedded inside the microtron cavity for electron-beam emission, and at the same time acceleration is due to the input RF source. In this case, the accelerator scheme is simple, but just a fraction of the emitted electrons are accelerated, and the electron bunch length is uncontrollable due to the RF phase condition for acceleration. In this paper, a photocathode-based microtron which is able to produce high peak (˜100 A) and ultrashort (˜1 ps) electron bunch is studied to adapt it for an electron injector of a THz generator. Especially, we analyzed the electron beam dynamics along the accelerating trajectory with a 3D PIC-code to find the optimized RF phase and laser input time.

  20. IM3D: A parallel Monte Carlo code for efficient simulations of primary radiation displacements and damage in 3D geometry

    PubMed Central

    Li, Yong Gang; Yang, Yang; Short, Michael P.; Ding, Ze Jun; Zeng, Zhi; Li, Ju

    2015-01-01

    SRIM-like codes have limitations in describing general 3D geometries, for modeling radiation displacements and damage in nanostructured materials. A universal, computationally efficient and massively parallel 3D Monte Carlo code, IM3D, has been developed with excellent parallel scaling performance. IM3D is based on fast indexing of scattering integrals and the SRIM stopping power database, and allows the user a choice of Constructive Solid Geometry (CSG) or Finite Element Triangle Mesh (FETM) method for constructing 3D shapes and microstructures. For 2D films and multilayers, IM3D perfectly reproduces SRIM results, and can be ∼102 times faster in serial execution and > 104 times faster using parallel computation. For 3D problems, it provides a fast approach for analyzing the spatial distributions of primary displacements and defect generation under ion irradiation. Herein we also provide a detailed discussion of our open-source collision cascade physics engine, revealing the true meaning and limitations of the “Quick Kinchin-Pease” and “Full Cascades” options. The issues of femtosecond to picosecond timescales in defining displacement versus damage, the limitation of the displacements per atom (DPA) unit in quantifying radiation damage (such as inadequacy in quantifying degree of chemical mixing), are discussed. PMID:26658477

  1. DYNA3D Code Practices and Developments

    SciTech Connect

    Lin, L.; Zywicz, E.; Raboin, P.

    2000-04-21

    DYNA3D is an explicit, finite element code developed to solve high rate dynamic simulations for problems of interest to the engineering mechanics community. The DYNA3D code has been under continuous development since 1976[1] by the Methods Development Group in the Mechanical Engineering Department of Lawrence Livermore National Laboratory. The pace of code development activities has substantially increased in the past five years, growing from one to between four and six code developers. This has necessitated the use of software tools such as CVS (Concurrent Versions System) to help manage multiple version updates. While on-line documentation with an Adobe PDF manual helps to communicate software developments, periodically a summary document describing recent changes and improvements in DYNA3D software is needed. The first part of this report describes issues surrounding software versions and source control. The remainder of this report details the major capability improvements since the last publicly released version of DYNA3D in 1996. Not included here are the many hundreds of bug corrections and minor enhancements, nor the development in DYNA3D between the manual release in 1993[2] and the public code release in 1996.

  2. Particle entry through "Sash" groove simulated by Global 3D Electromagnetic Particle code with duskward IMF By

    NASA Astrophysics Data System (ADS)

    Yan, X.; Cai, D.; Nishikawa, K.; Lembege, B.

    2004-12-01

    We made our efforts to parallelize the global 3D HPF Electromagnetic particle model (EMPM) for several years and have also reported our meaningful simulation results that revealed the essential physics involved in interaction of the solar wind with the Earth's magnetosphere using this EMPM (Nishikawa et al., 1995; Nishikawa, 1997, 1998a, b, 2001, 2002) in our PC cluster and supercomputer(D.S. Cai et al., 2001, 2003). Sash patterns and related phenomena have been observed and reported in some satellite observations (Fujumoto et al. 1997; Maynard, 2001), and have motivated 3D MHD simulations (White and al., 1998). We also investigated it with our global 3D parallelized HPF EMPM with dawnward IMF By (K.-I. Nishikawa, 1998) and recently new simulation with dusk-ward IMF By was accomplished in the new VPP5000 supercomputer. In the new simulations performed on the new VPP5000 supercomputer of Tsukuba University, we used larger domain size, 305×205×205, smaller grid size (Δ ), 0.5R E(the radium of the Earth), more total particle number, 220,000,000 (about 8 pairs per cell). At first, we run this code until we get the so-called quasi-stationary status; After the quasi-stationary status was established, we applied a northward IMF (B z=0.2), and then wait until the IMF arrives around the magnetopuase. After the arrival of IMF, we begin to change the IMF from northward to duskward (IMF B y=-0.2). The results revealed that the groove structure at the day-side magnetopause, that causes particle entry into inner magnetosphere and the cross structure or S-structure at near magneto-tail are formed. Moreover, in contrast with MHD simulations, kinetic characteristic of this event is also analyzed self-consistently with this simulation. The new simulation provides new and more detailed insights for the observed sash event.

  3. CFD Code Calibration and Inlet-Fairing Effects On a 3D Hypersonic Powered-Simulation Model

    NASA Technical Reports Server (NTRS)

    Huebner, Lawrence D.; Tatum, Kenneth E.

    1993-01-01

    A three-dimensional (3D) computational study has been performed addressing issues related to the wind tunnel testing of a hypersonic powered-simulation model. The study consisted of three objectives. The first objective was to calibrate a state-of-the-art computational fluid dynamics (CFD) code in its ability to predict hypersonic powered-simulation flows by comparing CFD solutions with experimental surface pressure data. Aftbody lower surface pressures were well predicted, but lower surface wing pressures were less accurately predicted. The second objective was to determine the 3D effects on the aftbody created by fairing over the inlet; this was accomplished by comparing the CFD solutions of two closed-inlet powered configurations with a flowing- inlet powered configuration. Although results at four freestream Mach numbers indicate that the exhaust plume tends to isolate the aftbody surface from most forebody flow- field differences, a smooth inlet fairing provides the least aftbody force and moment variation compared to a flowing inlet. The final objective was to predict and understand the 3D characteristics of exhaust plume development at selected points on a representative flight path. Results showed a dramatic effect of plume expansion onto the wings as the freestream Mach number and corresponding nozzle pressure ratio are increased.

  4. Version 3.0 of code Java for 3D simulation of the CCA model

    NASA Astrophysics Data System (ADS)

    Zhang, Kebo; Zuo, Junsen; Dou, Yifeng; Li, Chao; Xiong, Hailing

    2016-10-01

    In this paper we provide a new version of program for replacing the previous version. The frequency of traversing the clusters-list was reduced, and some code blocks were optimized properly; in addition, we appended and revised the comments of the source code for some methods or attributes. The compared experimental results show that new version has better time efficiency than the previous version.

  5. Cholla: 3D GPU-based hydrodynamics code for astrophysical simulation

    NASA Astrophysics Data System (ADS)

    Schneider, Evan E.; Robertson, Brant E.

    2016-07-01

    Cholla (Computational Hydrodynamics On ParaLLel Architectures) models the Euler equations on a static mesh and evolves the fluid properties of thousands of cells simultaneously using GPUs. It can update over ten million cells per GPU-second while using an exact Riemann solver and PPM reconstruction, allowing computation of astrophysical simulations with physically interesting grid resolutions (>256^3) on a single device; calculations can be extended onto multiple devices with nearly ideal scaling beyond 64 GPUs.

  6. Rn3D: A finite element code for simulating gas flow and radon transport in variably saturated, nonisothermal porous media. User`s manual, Version 1.0

    SciTech Connect

    Holford, D.J.

    1994-01-01

    This document is a user`s manual for the Rn3D finite element code. Rn3D was developed to simulate gas flow and radon transport in variably saturated, nonisothermal porous media. The Rn3D model is applicable to a wide range of problems involving radon transport in soil because it can simulate either steady-state or transient flow and transport in one-, two- or three-dimensions (including radially symmetric two-dimensional problems). The porous materials may be heterogeneous and anisotropic. This manual describes all pertinent mathematics related to the governing, boundary, and constitutive equations of the model, as well as the development of the finite element equations used in the code. Instructions are given for constructing Rn3D input files and executing the code, as well as a description of all output files generated by the code. Five verification problems are given that test various aspects of code operation, complete with example input files, FORTRAN programs for the respective analytical solutions, and plots of model results. An example simulation is presented to illustrate the type of problem Rn3D is designed to solve. Finally, instructions are given on how to convert Rn3D to simulate systems other than radon, air, and water.

  7. 3D Elastic Seismic Wave Propagation Code

    1998-09-23

    E3D is capable of simulating seismic wave propagation in a 3D heterogeneous earth. Seismic waves are initiated by earthquake, explosive, and/or other sources. These waves propagate through a 3D geologic model, and are simulated as synthetic seismograms or other graphical output.

  8. Recent Improvement of Measurement Instrumentation to Supervise Nuclear Operations and to Contribute Input Data to 3D Simulation Code - 13289

    SciTech Connect

    Mahe, Charly; Chabal, Caroline

    2013-07-01

    The CEA has developed many compact characterization tools to follow sensitive operations in a nuclear environment. Usually, these devices are made to carry out radiological inventories, to prepare nuclear interventions or to supervise some special operations. These in situ measurement techniques mainly take place at different stages of clean-up operations and decommissioning projects, but they are also in use to supervise sensitive operations when the nuclear plant is still operating. In addition to this, such tools are often associated with robots to access very highly radioactive areas, and thus can be used in accident situations. Last but not least, the radiological data collected can be entered in 3D calculation codes used to simulate the doses absorbed by workers in real time during operations in a nuclear environment. Faced with these ever-greater needs, nuclear measurement instrumentation always has to involve on-going improvement processes. Firstly, this paper will describe the latest developments and results obtained in both gamma and alpha imaging techniques. The gamma camera has been used by the CEA since the 1990's and several changes have made this device more sensitive, more compact and more competitive for nuclear plant operations. It is used to quickly identify hot spots, locating irradiating sources from 50 keV to 1500 keV. Several examples from a wide field of applications will be presented, together with the very latest developments. The alpha camera is a new camera used to see invisible alpha contamination on several kinds of surfaces. The latest results obtained allow real time supervision of a glove box cleaning operation (for {sup 241}Am contamination). The detection principle as well as the main trials and results obtained will be presented. Secondly, this paper will focus on in situ gamma spectrometry methods developed by the CEA with compact gamma spectrometry probes (CdZnTe, LaBr{sub 3}, NaI, etc.). The radiological data collected is used

  9. 3D Simulation: Microgravity Environments and Applications

    NASA Technical Reports Server (NTRS)

    Hunter, Steve L.; Dischinger, Charles; Estes, Samantha; Parker, Nelson C. (Technical Monitor)

    2001-01-01

    Most, if not all, 3-D and Virtual Reality (VR) software programs are designed for one-G gravity applications. Space environments simulations require gravity effects of one one-thousandth to one one-million of that of the Earth's surface (10(exp -3) - 10(exp -6) G), thus one must be able to generate simulations that replicate those microgravity effects upon simulated astronauts. Unfortunately, the software programs utilized by the National Aeronautical and Space Administration does not have the ability to readily neutralize the one-G gravity effect. This pre-programmed situation causes the engineer or analysis difficulty during micro-gravity simulations. Therefore, microgravity simulations require special techniques or additional code in order to apply the power of 3D graphic simulation to space related applications. This paper discusses the problem and possible solutions to allow microgravity 3-D/VR simulations to be completed successfully without program code modifications.

  10. TACO3D. 3-D Finite Element Heat Transfer Code

    SciTech Connect

    Mason, W.E.

    1992-03-04

    TACO3D is a three-dimensional, finite-element program for heat transfer analysis. An extension of the two-dimensional TACO program, it can perform linear and nonlinear analyses and can be used to solve either transient or steady-state problems. The program accepts time-dependent or temperature-dependent material properties, and materials may be isotropic or orthotropic. A variety of time-dependent and temperature-dependent boundary conditions and loadings are available including temperature, flux, convection, and radiation boundary conditions and internal heat generation. Additional specialized features treat enclosure radiation, bulk nodes, and master/slave internal surface conditions (e.g., contact resistance). Data input via a free-field format is provided. A user subprogram feature allows for any type of functional representation of any independent variable. A profile (bandwidth) minimization option is available. The code is limited to implicit time integration for transient solutions. TACO3D has no general mesh generation capability. Rows of evenly-spaced nodes and rows of sequential elements may be generated, but the program relies on separate mesh generators for complex zoning. TACO3D does not have the ability to calculate view factors internally. Graphical representation of data in the form of time history and spatial plots is provided through links to the POSTACO and GRAPE postprocessor codes.

  11. A Fast Parallel Simulation Code for Interaction between Proto-Planetary Disk and Embedded Proto-Planets: Implementation for 3D Code

    SciTech Connect

    Li, Shengtai; Li, Hui

    2012-06-14

    We develop a 3D simulation code for interaction between the proto-planetary disk and embedded proto-planets. The protoplanetary disk is treated as a three-dimensional (3D), self-gravitating gas whose motion is described by the locally isothermal Navier-Stokes equations in a spherical coordinate centered on the star. The differential equations for the disk are similar to those given in Kley et al. (2009) with a different gravitational potential that is defined in Nelson et al. (2000). The equations are solved by directional split Godunov method for the inviscid Euler equations plus operator-split method for the viscous source terms. We use a sub-cycling technique for the azimuthal sweep to alleviate the time step restriction. We also extend the FARGO scheme of Masset (2000) and modified in Li et al. (2001) to our 3D code to accelerate the transport in the azimuthal direction. Furthermore, we have implemented a reduced 2D (r, {theta}) and a fully 3D self-gravity solver on our uniform disk grid, which extends our 2D method (Li, Buoni, & Li 2008) to 3D. This solver uses a mode cut-off strategy and combines FFT in the azimuthal direction and direct summation in the radial and meridional direction. An initial axis-symmetric equilibrium disk is generated via iteration between the disk density profile and the 2D disk-self-gravity. We do not need any softening in the disk self-gravity calculation as we have used a shifted grid method (Li et al. 2008) to calculate the potential. The motion of the planet is limited on the mid-plane and the equations are the same as given in D'Angelo et al. (2005), which we adapted to the polar coordinates with a fourth-order Runge-Kutta solver. The disk gravitational force on the planet is assumed to evolve linearly with time between two hydrodynamics time steps. The Planetary potential acting on the disk is calculated accurately with a small softening given by a cubic-spline form (Kley et al. 2009). Since the torque is extremely sensitive to

  12. Numerical simulation of jet aerodynamics using the three-dimensional Navier-Stokes code PAB3D

    NASA Technical Reports Server (NTRS)

    Pao, S. Paul; Abdol-Hamid, Khaled S.

    1996-01-01

    This report presents a unified method for subsonic and supersonic jet analysis using the three-dimensional Navier-Stokes code PAB3D. The Navier-Stokes code was used to obtain solutions for axisymmetric jets with on-design operating conditions at Mach numbers ranging from 0.6 to 3.0, supersonic jets containing weak shocks and Mach disks, and supersonic jets with nonaxisymmetric nozzle exit geometries. This report discusses computational methods, code implementation, computed results, and comparisons with available experimental data. Very good agreement is shown between the numerical solutions and available experimental data over a wide range of operating conditions. The Navier-Stokes method using the standard Jones-Launder two-equation kappa-epsilon turbulence model can accurately predict jet flow, and such predictions are made without any modification to the published constants for the turbulence model.

  13. Development of Scientific Simulation 3D Full Wave ICRF Code for Stellarators and Heating/CD Scenarios Development

    SciTech Connect

    Vdovin V.L.

    2005-08-15

    In this report we describe theory and 3D full wave code description for the wave excitation, propagation and absorption in 3-dimensional (3D) stellarator equilibrium high beta plasma in ion cyclotron frequency range (ICRF). This theory forms a basis for a 3D code creation, urgently needed for the ICRF heating scenarios development for the operated LHD, constructed W7-X, NCSX and projected CSX3 stellarators, as well for re evaluation of ICRF scenarios in operated tokamaks and in the ITER . The theory solves the 3D Maxwell-Vlasov antenna-plasma-conducting shell boundary value problem in the non-orthogonal flux coordinates ({Psi}, {theta}, {var_phi}), {Psi} being magnetic flux function, {theta} and {var_phi} being the poloidal and toroidal angles, respectively. All basic physics, like wave refraction, reflection and diffraction are self consistently included, along with the fundamental ion and ion minority cyclotron resonances, two ion hybrid resonance, electron Landau and TTMP absorption. Antenna reactive impedance and loading resistance are also calculated and urgently needed for an antenna -generator matching. This is accomplished in a real confining magnetic field being varying in a plasma major radius direction, in toroidal and poloidal directions, through making use of the hot dense plasma wave induced currents with account to the finite Larmor radius effects. We expand the solution in Fourier series over the toroidal ({var_phi}) and poloidal ({theta}) angles and solve resulting ordinary differential equations in a radial like {Psi}-coordinate by finite difference method. The constructed discretization scheme is divergent-free one, thus retaining the basic properties of original equations. The Fourier expansion over the angle coordinates has given to us the possibility to correctly construct the ''parallel'' wave number k{sub //}, and thereby to correctly describe the ICRF waves absorption by a hot plasma. The toroidal harmonics are tightly coupled with each

  14. Parallel CARLOS-3D code development

    SciTech Connect

    Putnam, J.M.; Kotulski, J.D.

    1996-02-01

    CARLOS-3D is a three-dimensional scattering code which was developed under the sponsorship of the Electromagnetic Code Consortium, and is currently used by over 80 aerospace companies and government agencies. The code has been extensively validated and runs on both serial workstations and parallel super computers such as the Intel Paragon. CARLOS-3D is a three-dimensional surface integral equation scattering code based on a Galerkin method of moments formulation employing Rao- Wilton-Glisson roof-top basis for triangular faceted surfaces. Fully arbitrary 3D geometries composed of multiple conducting and homogeneous bulk dielectric materials can be modeled. This presentation describes some of the extensions to the CARLOS-3D code, and how the operator structure of the code facilitated these improvements. Body of revolution (BOR) and two-dimensional geometries were incorporated by simply including new input routines, and the appropriate Galerkin matrix operator routines. Some additional modifications were required in the combined field integral equation matrix generation routine due to the symmetric nature of the BOR and 2D operators. Quadrilateral patched surfaces with linear roof-top basis functions were also implemented in the same manner. Quadrilateral facets and triangular facets can be used in combination to more efficiently model geometries with both large smooth surfaces and surfaces with fine detail such as gaps and cracks. Since the parallel implementation in CARLOS-3D is at high level, these changes were independent of the computer platform being used. This approach minimizes code maintenance, while providing capabilities with little additional effort. Results are presented showing the performance and accuracy of the code for some large scattering problems. Comparisons between triangular faceted and quadrilateral faceted geometry representations will be shown for some complex scatterers.

  15. 3D MHD Simulations of Tokamak Disruptions

    NASA Astrophysics Data System (ADS)

    Woodruff, Simon; Stuber, James

    2014-10-01

    Two disruption scenarios are modeled numerically by use of the CORSICA 2D equilibrium and NIMROD 3D MHD codes. The work follows the simulations of pressure-driven modes in DIII-D and VDEs in ITER. The aim of the work is to provide starting points for simulation of tokamak disruption mitigation techniques currently in the CDR phase for ITER. Pressure-driven instability growth rates previously observed in simulations of DIIID are verified; Halo and Hiro currents produced during vertical displacements are observed in simulations of ITER with implementation of resistive walls in NIMROD. We discuss plans to exercise new code capabilities and validation.

  16. Development of a 3D FEL code for the simulation of a high-gain harmonic generation experiment.

    SciTech Connect

    Biedron, S. G.

    1999-02-26

    Over the last few years, there has been a growing interest in self-amplified spontaneous emission (SASE) free-electron lasers (FELs) as a means for achieving a fourth-generation light source. In order to correctly and easily simulate the many configurations that have been suggested, such as multi-segmented wigglers and the method of high-gain harmonic generation, we have developed a robust three-dimensional code. The specifics of the code, the comparison to the linear theory as well as future plans will be presented.

  17. Initial Self-Consistent 3D Electron-Cloud Simulations of the LHC Beam with the Code WARP+POSINST

    SciTech Connect

    Vay, J; Furman, M A; Cohen, R H; Friedman, A; Grote, D P

    2005-10-11

    We present initial results for the self-consistent beam-cloud dynamics simulations for a sample LHC beam, using a newly developed set of modeling capability based on a merge [1] of the three-dimensional parallel Particle-In-Cell (PIC) accelerator code WARP [2] and the electron-cloud code POSINST [3]. Although the storage ring model we use as a test bed to contain the beam is much simpler and shorter than the LHC, its lattice elements are realistically modeled, as is the beam and the electron cloud dynamics. The simulated mechanisms for generation and absorption of the electrons at the walls are based on previously validated models available in POSINST [3, 4].

  18. Particle entry through sash in the magnetopause with a dawndard IMF as simulated by a 3-D EM particle code

    NASA Astrophysics Data System (ADS)

    Cai, D.; Yan, X.; Lembege, B.; Nishikawa, K.

    2003-12-01

    We report a new progress in the long-term effort to represent the global interaction of the solar wind with the Earth's magnetosphere using a three-dimensional electromagnetic particle code with the improved resolutions using the HPF Tristan code. After a quasi-steady state is established with an unmagnetized solar wind we gradually switch on a northward interplanetary magnetic field (IMF), which causes a magnetic reconnection at the nightside cusps and the magnetosphere to be depolarized. In the case that the northward IMF is switched gradually to dawnward, there is no signature of reconnection in the near-Earth magnetotail as in the case with the southward turning. On the contrary analysis of magnetic fields in the magnetopause confirms a signature of magnetic reconnection at both the dawnside and duskside. And the plasma sheet in the near-Earth magnetotail clearly thins as in the case of southward turning. Arrival of dawnward IMF to the magnetopause creates a reconnection groove which cause particle entry into the deep region of the magnetosphere via field lines that go near the magnetopause. This deep connection is more fully recognized tailward of Earth. The flank weak-field fan joins onto the plasma sheet and the current sheet to form a geometrical feature called the cross-tail S that structurally integrates the magnetopause and the tail interior. This structure contributes to direct plasma entry between the magnetosheath to the inner magnetosphere and plasma sheet, in which the entry process heats the magnetosheath plasma to plasma sheet temperatures. These phenomena have been found by Cluster observations. Further investigation with Cluster observations will provide new insights for unsolved problems such as hot flow anomalies (HFAs), substorms, and storm-substorm relationship. 3-D movies with sash structure will be presented at the meeting.

  19. DRACO development for 3D simulations

    NASA Astrophysics Data System (ADS)

    Fatenejad, Milad; Moses, Gregory

    2006-10-01

    The DRACO (r-z) lagrangian radiation-hydrodynamics laser fusion simulation code is being extended to model 3D hydrodynamics in (x-y-z) coordinates with hexahedral cells on a structured grid. The equation of motion is solved with a lagrangian update with optional rezoning. The fluid equations are solved using an explicit scheme based on (Schulz, 1964) while the SALE-3D algorithm (Amsden, 1981) is used as a template for computing cell volumes and other quantities. A second order rezoner has been added which uses linear interpolation of the underlying continuous functions to preserve accuracy (Van Leer, 1976). Artificial restoring force terms and smoothing algorithms are used to avoid grid distortion in high aspect ratio cells. These include alternate node couplers along with a rotational restoring force based on the Tensor Code (Maenchen, 1964). Electron and ion thermal conduction is modeled using an extension of Kershaw's method (Kershaw, 1981) to 3D geometry. Test problem simulations will be presented to demonstrate the applicability of this new version of DRACO to the study of fluid instabilities in three dimensions.

  20. 3D Multigroup Sn Neutron Transport Code

    2001-02-14

    ATTILA is a 3D multigroup transport code with arbitrary order ansotropic scatter. The transport equation is solved in first order form using a tri-linear discontinuous spatial differencing on an arbitrary tetrahedral mesh. The overall solution technique is source iteration with DSA acceleration of the scattering source. Anisotropic boundary and internal sources may be entered in the form of spherical harmonics moments. Alpha and k eigenvalue problems are allowed, as well as fixed source problems. Forwardmore » and adjoint solutions are available. Reflective, vacumn, and source boundary conditions are available. ATTILA can perform charged particle transport calculations using slowing down (CSD) terms. ATTILA can also be used to peform infra-red steady-state calculations for radiative transfer purposes.« less

  1. Development of the 3D Parallel Particle-In-Cell Code IMPACT to Simulate the Ion Beam Transport System of VENUS (Abstract)

    NASA Astrophysics Data System (ADS)

    Qiang, J.; Leitner, D.; Todd, D. S.; Ryne, R. D.

    2005-03-01

    The superconducting ECR ion source VENUS serves as the prototype injector ion source for the Rare Isotope Accelerator (RIA) driver linac. The RIA driver linac requires a great variety of high charge state ion beams with up to an order of magnitude higher intensity than currently achievable with conventional ECR ion sources. In order to design the beam line optics of the low energy beam line for the RIA front end for the wide parameter range required for the RIA driver accelerator, reliable simulations of the ion beam extraction from the ECR ion source through the ion mass analyzing system are essential. The RIA low energy beam transport line must be able to transport intense beams (up to 10 mA) of light and heavy ions at 30 keV. For this purpose, LBNL is developing the parallel 3D particle-in-cell code IMPACT to simulate the ion beam transport from the ECR extraction aperture through the analyzing section of the low energy transport system. IMPACT, a parallel, particle-in-cell code, is currently used to model the superconducting RF linac section of RIA and is being modified in order to simulate DC beams from the ECR ion source extraction. By using the high performance of parallel supercomputing we will be able to account consistently for the changing space charge in the extraction region and the analyzing section. A progress report and early results in the modeling of the VENUS source will be presented.

  2. Development of the 3D Parallel Particle-In-Cell Code IMPACT to Simulate the Ion Beam Transport System of VENUS (Abstract)

    SciTech Connect

    Qiang, J.; Leitner, D.; Todd, D.S.; Ryne, R.D.

    2005-03-15

    The superconducting ECR ion source VENUS serves as the prototype injector ion source for the Rare Isotope Accelerator (RIA) driver linac. The RIA driver linac requires a great variety of high charge state ion beams with up to an order of magnitude higher intensity than currently achievable with conventional ECR ion sources. In order to design the beam line optics of the low energy beam line for the RIA front end for the wide parameter range required for the RIA driver accelerator, reliable simulations of the ion beam extraction from the ECR ion source through the ion mass analyzing system are essential. The RIA low energy beam transport line must be able to transport intense beams (up to 10 mA) of light and heavy ions at 30 keV.For this purpose, LBNL is developing the parallel 3D particle-in-cell code IMPACT to simulate the ion beam transport from the ECR extraction aperture through the analyzing section of the low energy transport system. IMPACT, a parallel, particle-in-cell code, is currently used to model the superconducting RF linac section of RIA and is being modified in order to simulate DC beams from the ECR ion source extraction. By using the high performance of parallel supercomputing we will be able to account consistently for the changing space charge in the extraction region and the analyzing section. A progress report and early results in the modeling of the VENUS source will be presented.

  3. 2D/3D Monte Carlo Feature Profile Simulator FPS-3D

    NASA Astrophysics Data System (ADS)

    Moroz, Paul

    2010-11-01

    Numerical simulation of etching/deposition profiles is important for semiconductor industry, as it allows analysis and prediction of the outcome of materials processing on a micron and sub-micron scale. The difficulty, however, is in making such a simulator a reliable, general, and easy to use tool applicable to different situations, for example, with different ratios of ion to neutral fluxes, different chemistries, different energies of incoming particles, and different angular and energy dependencies for surface reactions, without recompiling the code each time when the parameters change. The FPS-3D simulator [1] does not need recompilation when the features, materials, gases, or plasma are changed -- modifications to input, chemistry, and flux files are enough. The code allows interaction of neutral low-energy species with the surface mono-layer, while considering finite penetration depth into the volume for fast particles and ions. The FPS-3D code can simulate etching and deposition processes, both for 2D and 3D geometries. FPS-3D is using an advanced graphics package from HFS for presenting real-time process and profile evolution. The presentation will discuss the FPS-3D code with examples for different process conditions. The author is thankful to Drs. S.-Y. Kang of TEL TDC and P. Miller of HFS for valuable discussions. [4pt] [1] P. Moroz, URP.00101, GEC, Saratoga, NY, 2009.

  4. Streamlining of the RELAP5-3D Code

    SciTech Connect

    Mesina, George L; Hykes, Joshua; Guillen, Donna Post

    2007-11-01

    RELAP5-3D is widely used by the nuclear community to simulate general thermal hydraulic systems and has proven to be so versatile that the spectrum of transient two-phase problems that can be analyzed has increased substantially over time. To accommodate the many new types of problems that are analyzed by RELAP5-3D, both the physics and numerical methods of the code have been continuously improved. In the area of computational methods and mathematical techniques, many upgrades and improvements have been made decrease code run time and increase solution accuracy. These include vectorization, parallelization, use of improved equation solvers for thermal hydraulics and neutron kinetics, and incorporation of improved library utilities. In the area of applied nuclear engineering, expanded capabilities include boron and level tracking models, radiation/conduction enclosure model, feedwater heater and compressor components, fluids and corresponding correlations for modeling Generation IV reactor designs, and coupling to computational fluid dynamics solvers. Ongoing and proposed future developments include improvements to the two-phase pump model, conversion to FORTRAN 90, and coupling to more computer programs. This paper summarizes the general improvements made to RELAP5-3D, with an emphasis on streamlining the code infrastructure for improved maintenance and development. With all these past, present and planned developments, it is necessary to modify the code infrastructure to incorporate modifications in a consistent and maintainable manner. Modifying a complex code such as RELAP5-3D to incorporate new models, upgrade numerics, and optimize existing code becomes more difficult as the code grows larger. The difficulty of this as well as the chance of introducing errors is significantly reduced when the code is structured. To streamline the code into a structured program, a commercial restructuring tool, FOR_STRUCT, was applied to the RELAP5-3D source files. The

  5. M3D project for simulation studies of plasmas

    SciTech Connect

    Park, W.; Belova, E.V.; Fu, G.Y.; Strauss, H.R.; Sugiyama, L.E.

    1998-12-31

    The M3D (Multi-level 3D) project carries out simulation studies of plasmas of various regimes using multi-levels of physics, geometry, and mesh schemes in one code package. This paper and papers by Strauss, Sugiyama, and Belova in this workshop describe the project, and present examples of current applications. The currently available physics models of the M3D project are MHD, two-fluids, gyrokinetic hot particle/MHD hybrid, and gyrokinetic particle ion/two-fluid hybrid models. The code can be run with both structured and unstructured meshes.

  6. 3D Finite Element Trajectory Code with Adaptive Meshing

    NASA Astrophysics Data System (ADS)

    Ives, Lawrence; Bui, Thuc; Vogler, William; Bauer, Andy; Shephard, Mark; Beal, Mark; Tran, Hien

    2004-11-01

    Beam Optics Analysis, a new, 3D charged particle program is available and in use for the design of complex, 3D electron guns and charged particle devices. The code reads files directly from most CAD and solid modeling programs, includes an intuitive Graphical User Interface (GUI), and a robust mesh generator that is fully automatic. Complex problems can be set up, and analysis initiated in minutes. The program includes a user-friendly post processor for displaying field and trajectory data using 3D plots and images. The electrostatic solver is based on the standard nodal finite element method. The magnetostatic field solver is based on the vector finite element method and is also called during the trajectory simulation process to solve for self magnetic fields. The user imports the geometry from essentially any commercial CAD program and uses the GUI to assign parameters (voltages, currents, dielectric constant) and designate emitters (including work function, emitter temperature, and number of trajectories). The the mesh is generated automatically and analysis is performed, including mesh adaptation to improve accuracy and optimize computational resources. This presentation will provide information on the basic structure of the code, its operation, and it's capabilities.

  7. INCORPORATING DYNAMIC 3D SIMULATION INTO PRA

    SciTech Connect

    Steven R Prescott; Curtis Smith

    2011-07-01

    Through continued advancement in computational resources, development that was previously done by trial and error production is now performed through computer simulation. These virtual physical representations have the potential to provide accurate and valid modeling results and are being used in many different technical fields. Risk assessment now has the opportunity to use 3D simulation to improve analysis results and insights, especially for external event analysis. By using simulations, the modeler only has to determine the likelihood of an event without having to also predict the results of that event. The 3D simulation automatically determines not only the outcome of the event, but when those failures occur. How can we effectively incorporate 3D simulation into traditional PRA? Most PRA plant modeling is made up of components with different failure modes, probabilities, and rates. Typically, these components are grouped into various systems and then are modeled together (in different combinations) as a “system” with logic structures to form fault trees. Applicable fault trees are combined through scenarios, typically represented by event tree models. Though this method gives us failure results for a given model, it has limitations when it comes to time-based dependencies or dependencies that are coupled to physical processes which may themselves be space- or time-dependent. Since, failures from a 3D simulation are naturally time related, they should be used in that manner. In our simulation approach, traditional static models are converted into an equivalent state diagram representation with start states, probabilistic driven movements between states and terminal states. As the state model is run repeatedly, it converges to the same results as the PRA model in cases where time-related factors are not important. In cases where timing considerations are important (e.g., when events are dependent upon each other), then the simulation approach will typically

  8. FARGO3D: A New GPU-oriented MHD Code

    NASA Astrophysics Data System (ADS)

    Benítez-Llambay, Pablo; Masset, Frédéric S.

    2016-03-01

    We present the FARGO3D code, recently publicly released. It is a magnetohydrodynamics code developed with special emphasis on the physics of protoplanetary disks and planet-disk interactions, and parallelized with MPI. The hydrodynamics algorithms are based on finite-difference upwind, dimensionally split methods. The magnetohydrodynamics algorithms consist of the constrained transport method to preserve the divergence-free property of the magnetic field to machine accuracy, coupled to a method of characteristics for the evaluation of electromotive forces and Lorentz forces. Orbital advection is implemented, and an N-body solver is included to simulate planets or stars interacting with the gas. We present our implementation in detail and present a number of widely known tests for comparison purposes. One strength of FARGO3D is that it can run on either graphical processing units (GPUs) or central processing units (CPUs), achieving large speed-up with respect to CPU cores. We describe our implementation choices, which allow a user with no prior knowledge of GPU programming to develop new routines for CPUs, and have them translated automatically for GPUs.

  9. Parallel tree code for large N-body simulation: Dynamic load balance and data distribution on a CRAY T3D system

    NASA Astrophysics Data System (ADS)

    Becciani, U.; Ansaloni, R.; Antonuccio-Delogu, V.; Erbacci, G.; Gambera, M.; Pagliaro, A.

    1997-10-01

    N-body algorithms for long-range unscreened interactions like gravity belong to a class of highly irregular problems whose optimal solution is a challenging task for present-day massively parallel computers. In this paper we describe a strategy for optimal memory and work distribution which we have applied to our parallel implementation of the Barnes & Hut (1986) recursive tree scheme on a Cray T3D using the CRAFT programming environment. We have performed a series of tests to find an optimal data distribution in the T3D memory, and to identify a strategy for the Dynamic Load Balance in order to obtain good performances when running large simulations (more than 10 million particles). The results of tests show that the step duration depends on two main factors: the data locality and the T3D network contention. Increasing data locality we are able to minimize the step duration if the closest bodies (direct interaction) tend to be located in the same PE local memory (contiguous block subdivision, high granularity), whereas the tree properties have a fine grain distribution. In a very large simulation, due to network contention, an unbalanced load arises. To remedy this we have devised an automatic work redistribution mechanism which provided a good Dynamic Load Balance at the price of an insignificant overhead.

  10. 3D Simulations of the Beehive Proplyd

    NASA Astrophysics Data System (ADS)

    Feitosa, J. A.; Vasconcelos, M. J.; Cerqueira, A. H.

    2014-10-01

    Some star formation regions, like the Orion nebula, have stars of different masses, from massive stars, responsible for strong ionizing winds and HII regions, to low-mass stars, which spend a long time in the protostellar phase, and are frequently associated with protostellar disks and jets. Massive O or B stars emit a great deal of UV radiation, able to dissociate the hydrogen molecule (FUV radiation, energies between 6-13 eV), to ionize the atomic hydrogen (EUV radiation, energies greater than 13.6 eV) and heat the gas. Around these stars, a large and hot (10^{4}K) region is formed, known as HII region. T-Tauri stars inside HII regions produce a type of young stellar object, a proplyd, described with accuracy in O'Dell et al. (1993). Proplyds exhibit a cometary shape from which we can distinguish a central low-mass star with an accretion disk, an ionization front, a photodissociation region and, sometimes, an external bow shock and a protostellar jet. Its morphological characteristics depends on the distance between the low-mass star and the source of the ionizing radiation. The Beehive, a giant proplyd in Orion Nebula, has attracted attention due to its exotic system of rings coaxial to the HH540 jet's axis. Bally et al. (2005) suggested that the rings are perturbations due to the crossing of the ionization front by the jet. In this work, we test this hypothesis making 3D hydrodynamic numerical simulations over an adaptive grid, using the Yguazú-A code (Raga et al., 2000), properly adapted for the Beehive conditions. Our results show that the jet causes a perturbation in the ionization front of the proplyd, but is necessary to adjust carefully some parameters of the jet like its velocity and ejection frequency in order to have the results matching the observations.

  11. Crashworthiness simulations with DYNA3D

    SciTech Connect

    Schauer, D.A.; Hoover, C.G.; Kay, G.J.; Lee, A.S.; De Groot, A.J.

    1996-04-01

    Current progress in parallel algorithm research and applications in vehicle crash simulation is described for the explicit, finite element algorithms in DYNA3D. Problem partitioning methods and parallel algorithms for contact at material interfaces are the two challenging algorithm research problems that are addressed. Two prototype parallel contact algorithms have been developed for treating the cases of local and arbitrary contact. Demonstration problems for local contact are crashworthiness simulations with 222 locally defined contact surfaces and a vehicle/barrier collision modeled with arbitrary contact. A simulation of crash tests conducted for a vehicle impacting a U-channel small sign post embedded in soil has been run on both the serial and parallel versions of DYNA3D. A significant reduction in computational time has been observed when running these problems on the parallel version. However, to achieve maximum efficiency, complex problems must be appropriately partitioned, especially when contact dominates the computation.

  12. Faster Aerodynamic Simulation With Cart3D

    NASA Technical Reports Server (NTRS)

    2003-01-01

    A NASA-developed aerodynamic simulation tool is ensuring the safety of future space operations while providing designers and engineers with an automated, highly accurate computer simulation suite. Cart3D, co-winner of NASA's 2002 Software of the Year award, is the result of over 10 years of research and software development conducted by Michael Aftosmis and Dr. John Melton of Ames Research Center and Professor Marsha Berger of the Courant Institute at New York University. Cart3D offers a revolutionary approach to computational fluid dynamics (CFD), the computer simulation of how fluids and gases flow around an object of a particular design. By fusing technological advancements in diverse fields such as mineralogy, computer graphics, computational geometry, and fluid dynamics, the software provides a new industrial geometry processing and fluid analysis capability with unsurpassed automation and efficiency.

  13. 3D Ultrasonic Wave Simulations for Structural Health Monitoring

    NASA Technical Reports Server (NTRS)

    Campbell, Leckey Cara A/; Miler, Corey A.; Hinders, Mark K.

    2011-01-01

    Structural health monitoring (SHM) for the detection of damage in aerospace materials is an important area of research at NASA. Ultrasonic guided Lamb waves are a promising SHM damage detection technique since the waves can propagate long distances. For complicated flaw geometries experimental signals can be difficult to interpret. High performance computing can now handle full 3-dimensional (3D) simulations of elastic wave propagation in materials. We have developed and implemented parallel 3D elastodynamic finite integration technique (3D EFIT) code to investigate ultrasound scattering from flaws in materials. EFIT results have been compared to experimental data and the simulations provide unique insight into details of the wave behavior. This type of insight is useful for developing optimized experimental SHM techniques. 3D EFIT can also be expanded to model wave propagation and scattering in anisotropic composite materials.

  14. Multitasking the code ARC3D. [for computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Barton, John T.; Hsiung, Christopher C.

    1986-01-01

    The CRAY multitasking system was developed in order to utilize all four processors and sharply reduce the wall clock run time. This paper describes the techniques used to modify the computational fluid dynamics code ARC3D for this run and analyzes the achieved speedup. The ARC3D code solves either the Euler or thin-layer N-S equations using an implicit approximate factorization scheme. Results indicate that multitask processing can be used to achieve wall clock speedup factors of over three times, depending on the nature of the program code being used. Multitasking appears to be particularly advantageous for large-memory problems running on multiple CPU computers.

  15. Interface requirements to couple thermal-hydraulic codes to 3D neutronic codes

    SciTech Connect

    Langenbuch, S.; Austregesilo, H.; Velkov, K.

    1997-07-01

    The present situation of thermalhydraulics codes and 3D neutronics codes is briefly described and general considerations for coupling of these codes are discussed. Two different basic approaches of coupling are identified and their relative advantages and disadvantages are discussed. The implementation of the coupling for 3D neutronics codes in the system ATHLET is presented. Meanwhile, this interface is used for coupling three different 3D neutronics codes.

  16. Full vector (3-D) inflow simulation in natural and wind farm environments using an expanded version of the SNLWIND (Veers) turbulence code

    SciTech Connect

    Kelley, N.D.

    1992-11-01

    We have recently expanded the numerical turbulence simulation (SNLWIND) developed by Veers [1] to include all three components of the turbulent wind vector. We have also configured the code to simulate the characteristics of turbulent wind fields upwind and downwind of a large wind farm, as well as over uniform, flat terrain. Veers`s original method only simulates the longitudinal component of the wind in neutral flow. This paper overviews the development of spectral distribution, spatial coherence, and cross correlation models used to expired the SNLWIND code to include the three components of the turbulent wind over a range of atmospheric stabilities. These models are based on extensive measurements of the turbulence characteristics immediately upwind and downwind of a large wind farm in San Gorgonio Pass, California.

  17. Full vector (3-D) inflow simulation in natural and wind farm environments using an expanded version of the SNLWIND (Veers) turbulence code

    NASA Astrophysics Data System (ADS)

    Kelley, N. D.

    1992-11-01

    We have recently expanded the numerical turbulence simulation (SNLWIND) developed by Veers to include all three components of the turbulent wind vector. We have also configured the code to simulate the characteristics of turbulent wind fields upwind and downwind of a large wind farm, as well as over uniform, flat terrain. Veers's original method only simulates the longitudinal component of the wind in neutral flow. This paper overviews the development of spectral distribution, spatial coherence, and cross correlation models used to expired the SNLWIND code to include the three components of the turbulent wind over a range of atmospheric stabilities. These models are based on extensive measurements of the turbulence characteristics immediately upwind and downwind of a large wind farm in San Gorgonio Pass, California.

  18. 3d visualization of atomistic simulations on every desktop

    NASA Astrophysics Data System (ADS)

    Peled, Dan; Silverman, Amihai; Adler, Joan

    2013-08-01

    Once upon a time, after making simulations, one had to go to a visualization center with fancy SGI machines to run a GL visualization and make a movie. More recently, OpenGL and its mesa clone have let us create 3D on simple desktops (or laptops), whether or not a Z-buffer card is present. Today, 3D a la Avatar is a commodity technique, presented in cinemas and sold for home TV. However, only a few special research centers have systems large enough for entire classes to view 3D, or special immersive facilities like visualization CAVEs or walls, and not everyone finds 3D immersion easy to view. For maximum physics with minimum effort a 3D system must come to each researcher and student. So how do we create 3D visualization cheaply on every desktop for atomistic simulations? After several months of attempts to select commodity equipment for a whole room system, we selected an approach that goes back a long time, even predating GL. The old concept of anaglyphic stereo relies on two images, slightly displaced, and viewed through colored glasses, or two squares of cellophane from a regular screen/projector or poster. We have added this capability to our AViz atomistic visualization code in its new, 6.1 version, which is RedHat, CentOS and Ubuntu compatible. Examples using data from our own research and that of other groups will be given.

  19. 3D macrosegregation simulation with anisotropic remeshing

    NASA Astrophysics Data System (ADS)

    Gouttebroze, Sylvain; Bellet, Michel; Combeau, Hervé

    2007-05-01

    The article presents a three-dimensional coupled numerical solution of momentum, mass, energy and solute conservation equations, for binary alloy solidification. The interdendritic flow in the mushy zone is assumed to obey the Darcy's law. Microsegregation is governed by the lever rule, assuming local equilibrium at phase interfaces. The resulting energy and solute advection-diffusion equations are solved using the Streamline-Upwind/Petrov-Galerkin (SUPG) finite element method. A SUPG-PSPG velocity-pressure formulation is applied for the momentum equation. The full algorithm was implemented in the 3D code THERCAST, together with an anisotropic remeshing method. Two applications have been considered: a small ingot of Pb-48wt%Sn alloy and a large steel ingot. The numerical results of these two cases are presented with the evolution of temperature, liquid velocity, and solute concentration fields during solidification. To cite this article: S. Gouttebroze et al., C. R. Mecanique 335 (2007).

  20. Wall-touching kink mode calculations with the M3D code

    SciTech Connect

    Breslau, J. A. Bhattacharjee, A.

    2015-06-15

    This paper seeks to address a controversy regarding the applicability of the 3D nonlinear extended MHD code M3D [W. Park et al., Phys. Plasmas 6, 1796 (1999)] and similar codes to calculations of the electromagnetic interaction of a disrupting tokamak plasma with the surrounding vessel structures. M3D is applied to a simple test problem involving an external kink mode in an ideal cylindrical plasma, used also by the Disruption Simulation Code (DSC) as a model case for illustrating the nature of transient vessel currents during a major disruption. While comparison of the results with those of the DSC is complicated by effects arising from the higher dimensionality and complexity of M3D, we verify that M3D is capable of reproducing both the correct saturation behavior of the free boundary kink and the “Hiro” currents arising when the kink interacts with a conducting tile surface interior to the ideal wall.

  1. Recent update of the RPLUS2D/3D codes

    NASA Technical Reports Server (NTRS)

    Tsai, Y.-L. Peter

    1991-01-01

    The development of the RPLUS2D/3D codes is summarized. These codes utilize LU algorithms to solve chemical non-equilibrium flows in a body-fitted coordinate system. The motivation behind the development of these codes is the need to numerically predict chemical non-equilibrium flows for the National AeroSpace Plane Program. Recent improvements include vectorization method, blocking algorithms for geometric flexibility, out-of-core storage for large-size problems, and an LU-SW/UP combination for CPU-time efficiency and solution quality.

  2. GBS: Global 3D simulation of tokamak edge region

    NASA Astrophysics Data System (ADS)

    Zhu, Ben; Fisher, Dustin; Rogers, Barrett; Ricci, Paolo

    2012-10-01

    A 3D two-fluid global code, namely Global Braginskii Solver (GBS), is being developed to explore the physics of turbulent transport, confinement, self-consistent profile formation, pedestal scaling and related phenomena in the edge region of tokamaks. Aimed at solving drift-reduced Braginskii equations [1] in complex magnetic geometry, the GBS is used for turbulence simulation in SOL region. In the recent upgrade, the simulation domain is expanded into close flux region with twist-shift boundary conditions. Hence, the new GBS code is able to explore global transport physics in an annular full-torus domain from the top of the pedestal into the far SOL. We are in the process of identifying and analyzing the linear and nonlinear instabilities in the system using the new GBS code. Preliminary results will be presented and compared with other codes if possible.[4pt] [1] A. Zeiler, J. F. Drake and B. Rogers, Phys. Plasmas 4, 2134 (1997)

  3. HST3D; a computer code for simulation of heat and solute transport in three-dimensional ground-water flow systems

    USGS Publications Warehouse

    Kipp, K.L.

    1987-01-01

    The Heat- and Soil-Transport Program (HST3D) simulates groundwater flow and associated heat and solute transport in three dimensions. The three governing equations are coupled through the interstitial pore velocity, the dependence of the fluid density on pressure, temperature, the solute-mass fraction , and the dependence of the fluid viscosity on temperature and solute-mass fraction. The solute transport equation is for only a single, solute species with possible linear equilibrium sorption and linear decay. Finite difference techniques are used to discretize the governing equations using a point-distributed grid. The flow-, heat- and solute-transport equations are solved , in turn, after a particle Gauss-reduction scheme is used to modify them. The modified equations are more tightly coupled and have better stability for the numerical solutions. The basic source-sink term represents wells. A complex well flow model may be used to simulate specified flow rate and pressure conditions at the land surface or within the aquifer, with or without pressure and flow rate constraints. Boundary condition types offered include specified value, specified flux, leakage, heat conduction, and approximate free surface, and two types of aquifer influence functions. All boundary conditions can be functions of time. Two techniques are available for solution of the finite difference matrix equations. One technique is a direct-elimination solver, using equations reordered by alternating diagonal planes. The other technique is an iterative solver, using two-line successive over-relaxation. A restart option is available for storing intermediate results and restarting the simulation at an intermediate time with modified boundary conditions. This feature also can be used as protection against computer system failure. Data input and output may be in metric (SI) units or inch-pound units. Output may include tables of dependent variables and parameters, zoned-contour maps, and plots of the

  4. RELAP5-3D Code Validation for RBMK Phenomena

    SciTech Connect

    Fisher, James Ebberly

    1999-09-01

    The RELAP5-3D thermal-hydraulic code was assessed against Japanese Safety Experiment Loop (SEL) and Heat Transfer Loop (HTL) tests. These tests were chosen because the phenomena present are applicable to analyses of Russian RBMK reactor designs. The assessment cases included parallel channel flow fluctuation tests at reduced and normal water levels, a channel inlet pipe rupture test, and a high power, density wave oscillation test. The results showed that RELAP5-3D has the capability to adequately represent these RBMK-related phenomena.

  5. RELAP5-3D code validation for RBMK phenomena

    SciTech Connect

    Fisher, J.E.

    1999-09-01

    The RELAP5-3D thermal-hydraulic code was assessed against Japanese Safety Experiment Loop (SEL) and Heat Transfer Loop (HTL) tests. These tests were chosen because the phenomena present are applicable to analyses of Russian RBMK reactor designs. The assessment cases included parallel channel flow fluctuation tests at reduced and normal water levels, a channel inlet pipe rupture test, and a high power, density wave oscillation test. The results showed that RELAP5-3D has the capability to adequately represent these RBMK-related phenomena.

  6. 3D Data Assimilation using VERB Diffusion Code

    NASA Astrophysics Data System (ADS)

    Shprits, Y.; Kondrashov, D. A.; Kellerman, A. C.; Subbotin, D.

    2012-12-01

    Significant progress has been done in recent years in application of the data assimilation tools to the radiation belt research. Previous studies concentrated on the analysis of radial profiles of phase space density using multi-satellite measurements and radial transport models. In this study we present analysis of the 3D phase space density using the VERB-3D code blended with CRRES observations by means of operator-splitting Kalman filtering. Assimilation electron fluxes at various energies and pitch-angles into the model allows us to utilize a vast amount of data including information on pitch-angle distributions and radial energy spectra. 3D data assimilation of the radiation belts allows us to differentiate between various acceleration and loss mechanisms. We present reanalysis of the radiation belts and find tell-tale signatures of various physical processes.

  7. Beam Optics Analysis - An Advanced 3D Trajectory Code

    SciTech Connect

    Ives, R. Lawrence; Bui, Thuc; Vogler, William; Neilson, Jeff; Read, Mike; Shephard, Mark; Bauer, Andrew; Datta, Dibyendu; Beal, Mark

    2006-01-03

    Calabazas Creek Research, Inc. has completed initial development of an advanced, 3D program for modeling electron trajectories in electromagnetic fields. The code is being used to design complex guns and collectors. Beam Optics Analysis (BOA) is a fully relativistic, charged particle code using adaptive, finite element meshing. Geometrical input is imported from CAD programs generating ACIS-formatted files. Parametric data is inputted using an intuitive, graphical user interface (GUI), which also provides control of convergence, accuracy, and post processing. The program includes a magnetic field solver, and magnetic information can be imported from Maxwell 2D/3D and other programs. The program supports thermionic emission and injected beams. Secondary electron emission is also supported, including multiple generations. Work on field emission is in progress as well as implementation of computer optimization of both the geometry and operating parameters. The principle features of the program and its capabilities are presented.

  8. Beam Optics Analysis — An Advanced 3D Trajectory Code

    NASA Astrophysics Data System (ADS)

    Ives, R. Lawrence; Bui, Thuc; Vogler, William; Neilson, Jeff; Read, Mike; Shephard, Mark; Bauer, Andrew; Datta, Dibyendu; Beal, Mark

    2006-01-01

    Calabazas Creek Research, Inc. has completed initial development of an advanced, 3D program for modeling electron trajectories in electromagnetic fields. The code is being used to design complex guns and collectors. Beam Optics Analysis (BOA) is a fully relativistic, charged particle code using adaptive, finite element meshing. Geometrical input is imported from CAD programs generating ACIS-formatted files. Parametric data is inputted using an intuitive, graphical user interface (GUI), which also provides control of convergence, accuracy, and post processing. The program includes a magnetic field solver, and magnetic information can be imported from Maxwell 2D/3D and other programs. The program supports thermionic emission and injected beams. Secondary electron emission is also supported, including multiple generations. Work on field emission is in progress as well as implementation of computer optimization of both the geometry and operating parameters. The principle features of the program and its capabilities are presented.

  9. Towards a 3D Space Radiation Transport Code

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Tripathl, R. K.; Cicomptta, F. A.; Heinbockel, J. H.; Tweed, J.

    2002-01-01

    High-speed computational procedures for space radiation shielding have relied on asymptotic expansions in terms of the off-axis scatter and replacement of the general geometry problem by a collection of flat plates. This type of solution was derived for application to human rated systems in which the radius of the shielded volume is large compared to the off-axis diffusion limiting leakage at lateral boundaries. Over the decades these computational codes are relatively complete and lateral diffusion effects are now being added. The analysis for developing a practical full 3D space shielding code is presented.

  10. CALTRANS: A parallel, deterministic, 3D neutronics code

    SciTech Connect

    Carson, L.; Ferguson, J.; Rogers, J.

    1994-04-01

    Our efforts to parallelize the deterministic solution of the neutron transport equation has culminated in a new neutronics code CALTRANS, which has full 3D capability. In this article, we describe the layout and algorithms of CALTRANS and present performance measurements of the code on a variety of platforms. Explicit implementation of the parallel algorithms of CALTRANS using both the function calls of the Parallel Virtual Machine software package (PVM 3.2) and the Meiko CS-2 tagged message passing library (based on the Intel NX/2 interface) are provided in appendices.

  11. Verification and Validation of the k-kL Turbulence Model in FUN3D and CFL3D Codes

    NASA Technical Reports Server (NTRS)

    Abdol-Hamid, Khaled S.; Carlson, Jan-Renee; Rumsey, Christopher L.

    2015-01-01

    The implementation of the k-kL turbulence model using multiple computational uid dy- namics (CFD) codes is reported herein. The k-kL model is a two-equation turbulence model based on Abdol-Hamid's closure and Menter's modi cation to Rotta's two-equation model. Rotta shows that a reliable transport equation can be formed from the turbulent length scale L, and the turbulent kinetic energy k. Rotta's equation is well suited for term-by-term mod- eling and displays useful features compared to other two-equation models. An important di erence is that this formulation leads to the inclusion of higher-order velocity derivatives in the source terms of the scale equations. This can enhance the ability of the Reynolds- averaged Navier-Stokes (RANS) solvers to simulate unsteady ows. The present report documents the formulation of the model as implemented in the CFD codes Fun3D and CFL3D. Methodology, veri cation and validation examples are shown. Attached and sepa- rated ow cases are documented and compared with experimental data. The results show generally very good comparisons with canonical and experimental data, as well as matching results code-to-code. The results from this formulation are similar or better than results using the SST turbulence model.

  12. 3D MHD Simulations of Spheromak Compression

    NASA Astrophysics Data System (ADS)

    Stuber, James E.; Woodruff, Simon; O'Bryan, John; Romero-Talamas, Carlos A.; Darpa Spheromak Team

    2015-11-01

    The adiabatic compression of compact tori could lead to a compact and hence low cost fusion energy system. The critical scientific issues in spheromak compression relate both to confinement properties and to the stability of the configuration undergoing compression. We present results from the NIMROD code modified with the addition of magnetic field coils that allow us to examine the role of rotation on the stability and confinement of the spheromak (extending prior work for the FRC). We present results from a scan in initial rotation, from 0 to 100km/s. We show that strong rotational shear (10km/s over 1cm) occurs. We compare the simulation results with analytic scaling relations for adiabatic compression. Work performed under DARPA grant N66001-14-1-4044.

  13. Code portability and data management considerations in the SAS3D LMFBR accident-analysis code

    SciTech Connect

    Dunn, F.E.

    1981-01-01

    The SAS3D code was produced from a predecessor in order to reduce or eliminate interrelated problems in the areas of code portability, the large size of the code, inflexibility in the use of memory and the size of cases that can be run, code maintenance, and running speed. Many conventional solutions, such as variable dimensioning, disk storage, virtual memory, and existing code-maintenance utilities were not feasible or did not help in this case. A new data management scheme was developed, coding standards and procedures were adopted, special machine-dependent routines were written, and a portable source code processing code was written. The resulting code is quite portable, quite flexible in the use of memory and the size of cases that can be run, much easier to maintain, and faster running. SAS3D is still a large, long running code that only runs well if sufficient main memory is available.

  14. 3-D Particle Simulation of Current Sheet Instabilities

    NASA Astrophysics Data System (ADS)

    Wang, Zhenyu; Lin, Yu; Wang, Xueyi; Tummel, Kurt; Chen, Liu

    2015-11-01

    The electrostatic (ES) and electromagnetic (EM) instabilities of a Harris current sheet are investigated using a 3-D linearized (δf) gyrokinetic (GK) electron and fully kinetic (FK) ion (GeFi) particle simulation code. The equilibrium magnetic field consists of an asymptotic anti-parallel Bx 0 and a guide field BG. The ES simulations show the excitation of lower-hybrid drift instability (LHDI) at the current sheet edge. The growth rate of the 3-D LHDI is scanned through the (kx ,ky) space. The most unstable modes are found to be at k∥ = 0 for smaller ky. As ky increases, the growth rate shows two peaks at k∥ ≠ 0 , consistent with analytical GK theory. The eigenmode structure and growth rate of LHDI obtained from the GeFi simulation agree well with those obtained from the FK PIC simulation. Decreasing BG, the asymptotic βe 0, or background density can destabilize the LHDI. In the EM simulation, tearing mode instability is dominant in the cases with ky kx , there exist two unstable modes: a kink-like (LHDI) mode at the current sheet edge and a sausage-like mode at the sheet center. The results are compared with the GK eigenmode theory and the FK simulation.

  15. User Guide for the R5EXEC Coupling Interface in the RELAP5-3D Code

    SciTech Connect

    Forsmann, J. Hope; Weaver, Walter L.

    2015-04-01

    This report describes the R5EXEC coupling interface in the RELAP5-3D computer code from the users perspective. The information in the report is intended for users who want to couple RELAP5-3D to other thermal-hydraulic, neutron kinetics, or control system simulation codes.

  16. 3D Numerical simulations of oblique subduction

    NASA Astrophysics Data System (ADS)

    Malatesta, C.; Gerya, T.; Scambelluri, M.; Crispini, L.; Federico, L.; Capponi, G.

    2012-04-01

    In the past 2D numerical studies (e.g. Gerya et al., 2002; Gorczyk et al., 2007; Malatesta et al., 2012) provided evidence that during intraoceanic subduction a serpentinite channel forms above the downgoing plate. This channel forms as a result of hydration of the mantle wedge by uprising slab-fluids. Rocks buried at high depths are finally exhumed within this buoyant low-viscosity medium. Convergence rate in these 2D models was described by a trench-normal component of velocity. Several present and past subduction zones worldwide are however driven by oblique convergence between the plates, where trench-normal motion of the subducting slab is coupled with trench-parallel displacement of the plates. Can the exhumation mechanism and the exhumation rates of high-pressure rocks be affected by the shear component of subduction? And how uprise of these rocks can vary along the plate margin? We tried to address these questions performing 3D numerical models that simulate an intraoceanic oblique subduction. The models are based on thermo-mechanical equations that are solved with finite differences method and marker-in-cell techniques combined with multigrid approach (Gerya, 2010). In most of the models a narrow oceanic basin (500 km-wide) surrounded by continental margins is depicted. The basin is floored by either layered or heterogeneous oceanic lithosphere with gabbro as discrete bodies in serpentinized peridotite and a basaltic layer on the top. A weak zone in the mantle is prescribed to control the location of subduction initiation and therefore the plate margins geometry. Finally, addition of a third dimension in the simulations allowed us to test the role of different plate margin geometries on oblique subduction dynamics. In particular in each model we modified the dip angle of the weak zone and its "lateral" geometry (e.g. continuous, segmented). We consider "continuous" weak zones either parallel or increasingly moving away from the continental margins

  17. Development of 3D beam-beam simulation for the Tevatron

    SciTech Connect

    Stern, E.; Amundson, J.; Spentzouris, P.; Valishev, A.; Qiang, J.; Ryne, R.; /LBL, Berkeley

    2007-06-01

    We present status of development of a 3D Beam-Beam simulation code for simulating the Fermilab Tevatron collider. The essential features of the code are 3D particle-in-cell Poisson solver for calculating the Beam-Beam electromagnetic interactions with additional modules for linear optics, machine impedance and chromaticity, and multiple bunch tracking. The simulations match synchrobetatron oscillations measured at the VEPP-2M collider. The impedance calculations show beam instability development consistent with analytic expressions.

  18. MOM3D/EM-ANIMATE - MOM3D WITH ANIMATION CODE

    NASA Technical Reports Server (NTRS)

    Shaeffer, J. F.

    1994-01-01

    compare surface-current distribution due to various initial excitation directions or electric field orientations. The program can accept up to 50 planes of field data consisting of a grid of 100 by 100 field points. These planes of data are user selectable and can be viewed individually or concurrently. With these preset limits, the program requires 55 megabytes of core memory to run. These limits can be changed in the header files to accommodate the available core memory of an individual workstation. An estimate of memory required can be made as follows: approximate memory in bytes equals (number of nodes times number of surfaces times 14 variables times bytes per word, typically 4 bytes per floating point) plus (number of field planes times number of nodes per plane times 21 variables times bytes per word). This gives the approximate memory size required to store the field and surface-current data. The total memory size is approximately 400,000 bytes plus the data memory size. The animation calculations are performed in real time at any user set time step. For Silicon Graphics Workstations that have multiple processors, this program has been optimized to perform these calculations on multiple processors to increase animation rates. The optimized program uses the SGI PFA (Power FORTRAN Accelerator) library. On single processor machines, the parallelization directives are seen as comments to the program and will have no effect on compilation or execution. MOM3D and EM-ANIMATE are written in FORTRAN 77 for interactive or batch execution on SGI series computers running IRIX 3.0 or later. The RAM requirements for these programs vary with the size of the problem being solved. A minimum of 30Mb of RAM is required for execution of EM-ANIMATE; however, the code may be modified to accommodate the available memory of an individual workstation. For EM-ANIMATE, twenty-four bit, double-buffered color capability is suggested, but not required. Sample executables and sample input and

  19. RHALE: A 3-D MMALE code for unstructured grids

    SciTech Connect

    Peery, J.S.; Budge, K.G.; Wong, M.K.W.; Trucano, T.G.

    1993-08-01

    This paper describes RHALE, a multi-material arbitrary Lagrangian-Eulerian (MMALE) shock physics code. RHALE is the successor to CTH, Sandia`s 3-D Eulerian shock physics code, and will be capable of solving problems that CTH cannot adequately address. We discuss the Lagrangian solid mechanics capabilities of RHALE, which include arbitrary mesh connectivity, superior artificial viscosity, and improved material models. We discuss the MMALE algorithms that have been extended for arbitrary grids in both two- and three-dimensions. The MMALE addition to RHALE provides the accuracy of a Lagrangian code while allowing a calculation to proceed under very large material distortions. Coupling an arbitrary quadrilateral or hexahedral grid to the MMALE solution facilitates modeling of complex shapes with a greatly reduced number of computational cells. RHALE allows regions of a problem to be modeled with Lagrangian, Eulerian or ALE meshes. In addition, regions can switch from Lagrangian to ALE to Eulerian based on user input or mesh distortion. For ALE meshes, new node locations are determined with a variety of element based equipotential schemes. Element quantities are advected with donor, van Leer, or Super-B algorithms. Nodal quantities are advected with the second order SHALE or HIS algorithms. Material interfaces are determined with a modified Young`s high resolution interface tracker or the SLIC algorithm. RHALE has been used to model many problems of interest to the mechanics, hypervelocity impact, and shock physics communities. Results of a sampling of these problems are presented in this paper.

  20. Variational Symplectic Orbit Code in 3-D Tokamak Geometry

    NASA Astrophysics Data System (ADS)

    Ellison, Charles; Qin, Hong; Tang, William M.

    2011-10-01

    Since advanced tokamak experiments - including ITER - are long-pulse systems, it is important to develop accurate numerical methods to track plasma dynamics over an extended temporal period. When attempting to model the motion of individual particles, standard integrators (e.g. 4th order Runge-Kutta) discretize the differential equations of motion - but do not possess desired properties such as energy conservation. The variational symplectic integrator adopts instead a different approach via minimizing the action of the guiding center motion to determine iteration rules. Consequently, the Lagrangian symplectic structure is conserved, and the numerical energy error is bounded by a small number for all time-steps. In previous work, the theoretical basis for this method was introduced, but the implementation was for 2-D geometry. To address realistic experimental scenarios, the variational symplectic integrator has been implemented for 3-D tokamak geometry for the first time. Sample results will be presented and compared with those from standard Runge-Kutta-based 3-D tokamak orbit codes. This work was supported by the DOE contract # DE-AC02-09CH11466 and the DOE FES Fellowship.

  1. Edge Transport Modeling using the 3D EMC3-Eirene code on Tokamaks and Stellarators

    NASA Astrophysics Data System (ADS)

    Lore, J. D.; Ahn, J. W.; Briesemeister, A.; Ferraro, N.; Labombard, B.; McLean, A.; Reinke, M.; Shafer, M.; Terry, J.

    2015-11-01

    The fluid plasma edge transport code EMC3-Eirene has been applied to aid data interpretation and understanding the results of experiments with 3D effects on several tokamaks. These include applied and intrinsic 3D magnetic fields, 3D plasma facing components, and toroidally and poloidally localized heat and particle sources. On Alcator C-Mod, a series of experiments explored the impact of toroidally and poloidally localized impurity gas injection on core confinement and asymmetries in the divertor fluxes, with the differences between the asymmetry in L-mode and H-mode qualitatively reproduced in the simulations due to changes in the impurity ionization in the private flux region. Modeling of NSTX experiments on the effect of 3D fields on detachment matched the trend of a higher density at which the detachment occurs when 3D fields are applied. On DIII-D, different magnetic field models were used in the simulation and compared against the 2D Thomson scattering diagnostic. In simulating each device different aspects of the code model are tested pointing to areas where the model must be further developed. The application to stellarator experiments will also be discussed. Work supported by U.S. DOE: DE-AC05-00OR22725, DE AC02-09CH11466, DE-FC02-99ER54512, and DE-FC02-04ER54698.

  2. 3D simulation for falling papers

    NASA Astrophysics Data System (ADS)

    Aoki, Takayuki

    2001-12-01

    The combination of IDO (Interpolated Differential Operator) scheme, Cut Cell technique, and overlapping grid method make it possible to simulate the falling process of papers. We have the result of the falling with fluttering trajectory for a certain initial angle of the paper, and the fluttering mechanism becomes clear. It is shown that the simulation is applicable to the phenomena of falling leaves with complex shape.

  3. 3D visualization of port simulation.

    SciTech Connect

    Horsthemke, W. H.; Macal, C. M.; Nevins, M. R.

    1999-06-14

    Affordable and realistic three dimensional visualization technology can be applied to large scale constructive simulations such as the port simulation model, PORTSIM. These visualization tools enhance the experienced planner's ability to form mental models of how seaport operations will unfold when the simulation model is implemented and executed. They also offer unique opportunities to train new planners not only in the use of the simulation model but on the layout and design of seaports. Simulation visualization capabilities are enhanced by borrowing from work on interface design, camera control, and data presentation. Using selective fidelity, the designers of these visualization systems can reduce their time and efforts by concentrating on those features which yield the most value for their simulation. Offering the user various observational tools allows the freedom to simply watch or engage in the simulation without getting lost. Identifying the underlying infrastructure or cargo items with labels can provide useful information at the risk of some visual clutter. The PortVis visualization expands the PORTSIM user base which can benefit from the results provided by this capability, especially in strategic planning, mission rehearsal, and training. Strategic planners will immediately reap the benefits of seeing the impact of increased throughput visually without keeping track of statistical data. Mission rehearsal and training users will have an effective training tool to supplement their operational training exercises which are limited in number because of their high costs. Having another effective training modality in this visualization system allows more training to take place and more personnel to gain an understanding of seaport operations. This simulation and visualization training can be accomplished at lower cost than would be possible for the operational training exercises alone. The application of PORTSIM and PortVis will lead to more efficient

  4. Implementation of a kappa-epsilon turbulence model to RPLUS3D code

    NASA Technical Reports Server (NTRS)

    Chitsomboon, Tawit

    1992-01-01

    The RPLUS3D code has been developed at the NASA Lewis Research Center to support the National Aerospace Plane (NASP) project. The code has the ability to solve three dimensional flowfields with finite rate combustion of hydrogen and air. The combustion process of the hydrogen-air system are simulated by an 18 reaction path, 8 species chemical kinetic mechanism. The code uses a Lower-Upper (LU) decomposition numerical algorithm as its basis, making it a very efficient and robust code. Except for the Jacobian matrix for the implicit chemistry source terms, there is no inversion of a matrix even though a fully implicit numerical algorithm is used. A k-epsilon turbulence model has recently been incorporated into the code. Initial validations have been conducted for a flow over a flat plate. Results of the validation studies are shown. Some difficulties in implementing the k-epsilon equations to the code are also discussed.

  5. 3D MHD disruptions simulations of tokamaks plasmas

    NASA Astrophysics Data System (ADS)

    Paccagnella, Roberto; Strauss, Hank; Breslau, Joshua

    2008-11-01

    Tokamaks Vertical Displacement Events (VDEs) and disruptions simulations in toroidal geometry by means of a single fluid visco-resistive magneto-hydro-dynamic (MHD) model are presented in this paper. The plasma model, implemented in the M3D code [1], is completed with the presence of a 2D homogeneous wall with finite resistivity. This allows the study of the relatively slowly growing magneto-hydro-dynamical perturbation, the resistive wall mode (RWM), which is, in this work, the main drive of the disruptions. Amplitudes and asymmetries of the halo currents pattern at the wall are also calculated and comparisons with tokamak experimental databases and predictions for ITER are given. [1] W. Park, E.V. Belova, G.Y. Fu, X.Z. Tang, H.R. Strauss, L.E. Sugiyama, Phys. Plasmas 6 (1999) 1796.

  6. Surviving sepsis--a 3D integrative educational simulator.

    PubMed

    Ježek, Filip; Tribula, Martin; Kulhánek, Tomáš; Mateják, Marek; Privitzer, Pavol; Šilar, Jan; Kofránek, Jiří; Lhotská, Lenka

    2015-08-01

    Computer technology offers greater educational possibilities, notably simulation and virtual reality. This paper presents a technology which serves to integrate multiple modalities, namely 3D virtual reality, node-based simulator, Physiomodel explorer and explanatory physiological simulators employing Modelica language and Unity3D platform. This emerging tool chain should allow the authors to concentrate more on educational content instead of application development. The technology is demonstrated through Surviving sepsis educational scenario, targeted on Microsoft Windows Store platform. PMID:26737091

  7. Surviving sepsis--a 3D integrative educational simulator.

    PubMed

    Ježek, Filip; Tribula, Martin; Kulhánek, Tomáš; Mateják, Marek; Privitzer, Pavol; Šilar, Jan; Kofránek, Jiří; Lhotská, Lenka

    2015-08-01

    Computer technology offers greater educational possibilities, notably simulation and virtual reality. This paper presents a technology which serves to integrate multiple modalities, namely 3D virtual reality, node-based simulator, Physiomodel explorer and explanatory physiological simulators employing Modelica language and Unity3D platform. This emerging tool chain should allow the authors to concentrate more on educational content instead of application development. The technology is demonstrated through Surviving sepsis educational scenario, targeted on Microsoft Windows Store platform.

  8. ATHENA 3D: A finite element code for ultrasonic wave propagation

    NASA Astrophysics Data System (ADS)

    Rose, C.; Rupin, F.; Fouquet, T.; Chassignole, B.

    2014-04-01

    The understanding of wave propagation phenomena requires use of robust numerical models. 3D finite element (FE) models are generally prohibitively time consuming. However, advances in computing processor speed and memory allow them to be more and more competitive. In this context, EDF R&D developed the 3D version of the well-validated FE code ATHENA2D. The code is dedicated to the simulation of wave propagation in all kinds of elastic media and in particular, heterogeneous and anisotropic materials like welds. It is based on solving elastodynamic equations in the calculation zone expressed in terms of stress and particle velocities. The particularity of the code relies on the fact that the discretization of the calculation domain uses a Cartesian regular 3D mesh while the defect of complex geometry can be described using a separate (2D) mesh using the fictitious domains method. This allows combining the rapidity of regular meshes computation with the capability of modelling arbitrary shaped defects. Furthermore, the calculation domain is discretized with a quasi-explicit time evolution scheme. Thereby only local linear systems of small size have to be solved. The final step to reduce the computation time relies on the fact that ATHENA3D has been parallelized and adapted to the use of HPC resources. In this paper, the validation of the 3D FE model is discussed. A cross-validation of ATHENA 3D and CIVA is proposed for several inspection configurations. The performances in terms of calculation time are also presented in the cases of both local computer and computation cluster use.

  9. 3D neutronic codes coupled with thermal-hydraulic system codes for PWR, and BWR and VVER reactors

    SciTech Connect

    Langenbuch, S.; Velkov, K.; Lizorkin, M.

    1997-07-01

    This paper describes the objectives of code development for coupling 3D neutronics codes with thermal-hydraulic system codes. The present status of coupling ATHLET with three 3D neutronics codes for VVER- and LWR-reactors is presented. After describing the basic features of the 3D neutronic codes BIPR-8 from Kurchatov-Institute, DYN3D from Research Center Rossendorf and QUABOX/CUBBOX from GRS, first applications of coupled codes for different transient and accident scenarios are presented. The need of further investigations is discussed.

  10. PAB3D Simulations for the CAWAPI F-16XL

    NASA Technical Reports Server (NTRS)

    Elmiligui, Alaa; Abdol-Hamid, K. S.; Massey, Steven J.

    2007-01-01

    Numerical simulations of the flow around F-16XL are performed as a contribution to the Cranked Arrow Wing Aerodynamic Project International (CAWAPI) using the PAB3D CFD code. Two turbulence models are used in the calculations: a standard k-! model, and the Shih-Zhu-Lumley (SZL) algebraic stress model. Seven flight conditions are simulated for the flow around the F-16XL where the free stream Mach number varies from 0.242 to 0.97. The range of angles of attack varies from 0deg to 20deg. Computational results, surface static pressure, boundary layer velocity profiles, and skin friction are presented and compared with flight data. Numerical results are generally in good agreement with flight data, considering that only one grid resolution is utilized for the different flight conditions simulated in this study. The ASM results are closer to the flight data than the k-! model results. The ASM predicted a stronger primary vortex, however, the origin of the vortex and footprint is approximately the same as in the k-! predictions.

  11. Design of 3D simulation engine for oilfield safety training

    NASA Astrophysics Data System (ADS)

    Li, Hua-Ming; Kang, Bao-Sheng

    2015-03-01

    Aiming at the demand for rapid custom development of 3D simulation system for oilfield safety training, this paper designs and implements a 3D simulation engine based on script-driven method, multi-layer structure, pre-defined entity objects and high-level tools such as scene editor, script editor, program loader. A scripting language been defined to control the system's progress, events and operating results. Training teacher can use this engine to edit 3D virtual scenes, set the properties of entity objects, define the logic script of task, and produce a 3D simulation training system without any skills of programming. Through expanding entity class, this engine can be quickly applied to other virtual training areas.

  12. A Magnetic Diagnostic Code for 3D Fusion Equilibria

    SciTech Connect

    Samuel A. Lazerson, S. Sakakibara and Y. Suzuki

    2013-03-12

    A synthetic magnetic diagnostics code for fusion equilibria is presented. This code calculates the response of various magnetic diagnostics to the equilibria produced by the VMEC and PIES codes. This allows for treatment of equilibria with both good nested flux surfaces and those with stochastic regions. DIAGNO v2.0 builds upon previous codes through the implementation of a virtual casing principle. The code is validated against a vacuum shot on the Large Helical Device (LHD) where the vertical field was ramped. As an exercise of the code, the diagnostic response for various equilibria are calculated on the LHD.

  13. A Magnetic Diagnostic Code for 3D Fusion Equilibria

    SciTech Connect

    Samuel Aaron Lazerson

    2012-07-27

    A synthetic magnetic diagnostics code for fusion equilibria is presented. This code calculates the response of various magnetic diagnostics to the equilibria produced by the VMEC and PIES codes. This allows for treatment of equilibria with both good nested flux surfaces and those with stochastic regions. DIAGNO v2.0 builds upon previous codes through the implementation of a virtual casing principle. The codes is validated against a vacuum shot on the Large Helical Device where the vertical field was ramped. As an exercise of the code, the diagnostic response for various equilibria are calculated on the Large Helical Device (LHD).

  14. An Evaluative Review of Simulated Dynamic Smart 3d Objects

    NASA Astrophysics Data System (ADS)

    Romeijn, H.; Sheth, F.; Pettit, C. J.

    2012-07-01

    Three-dimensional (3D) modelling of plants can be an asset for creating agricultural based visualisation products. The continuum of 3D plants models ranges from static to dynamic objects, also known as smart 3D objects. There is an increasing requirement for smarter simulated 3D objects that are attributed mathematically and/or from biological inputs. A systematic approach to plant simulation offers significant advantages to applications in agricultural research, particularly in simulating plant behaviour and the influences of external environmental factors. This approach of 3D plant object visualisation is primarily evident from the visualisation of plants using photographed billboarded images, to more advanced procedural models that come closer to simulating realistic virtual plants. However, few programs model physical reactions of plants to external factors and even fewer are able to grow plants based on mathematical and/or biological parameters. In this paper, we undertake an evaluation of plant-based object simulation programs currently available, with a focus upon the components and techniques involved in producing these objects. Through an analytical review process we consider the strengths and weaknesses of several program packages, the features and use of these programs and the possible opportunities in deploying these for creating smart 3D plant-based objects to support agricultural research and natural resource management. In creating smart 3D objects the model needs to be informed by both plant physiology and phenology. Expert knowledge will frame the parameters and procedures that will attribute the object and allow the simulation of dynamic virtual plants. Ultimately, biologically smart 3D virtual plants that react to changes within an environment could be an effective medium to visually represent landscapes and communicate land management scenarios and practices to planners and decision-makers.

  15. 3D simulations of multipacting in the 56 MHz SRF cavity

    SciTech Connect

    Wu Q.; Belomestnykh, S.; Ge, L.; Ko, K.; Li, Z.; Ng, C.; Xiao, L.

    2012-05-20

    The 56 MHz SRF Quarter-Wave Resonator (QWR) is designed for RHIC as a storage cavity to improve the collider performance. 2D multipacting simulation has been done for the cavity alone. Ripples were added to the outer body of the cavity for multipacting suppression based on the simulation findings. During operation, there will be four higher order mode (HOM) couplers. All of these components will be exposed to high RF fields. In this paper we compare 2D and 3D codes simulation results for multipacting in the cavity. We also report 3D simulation results for multipacting simulation at the couplers.

  16. Virtual environment display for a 3D audio room simulation

    NASA Astrophysics Data System (ADS)

    Chapin, William L.; Foster, Scott

    1992-06-01

    Recent developments in virtual 3D audio and synthetic aural environments have produced a complex acoustical room simulation. The acoustical simulation models a room with walls, ceiling, and floor of selected sound reflecting/absorbing characteristics and unlimited independent localizable sound sources. This non-visual acoustic simulation, implemented with 4 audio ConvolvotronsTM by Crystal River Engineering and coupled to the listener with a Poihemus IsotrakTM, tracking the listener's head position and orientation, and stereo headphones returning binaural sound, is quite compelling to most listeners with eyes closed. This immersive effect should be reinforced when properly integrated into a full, multi-sensory virtual environment presentation. This paper discusses the design of an interactive, visual virtual environment, complementing the acoustic model and specified to: 1) allow the listener to freely move about the space, a room of manipulable size, shape, and audio character, while interactively relocating the sound sources; 2) reinforce the listener's feeling of telepresence into the acoustical environment with visual and proprioceptive sensations; 3) enhance the audio with the graphic and interactive components, rather than overwhelm or reduce it; and 4) serve as a research testbed and technology transfer demonstration. The hardware/software design of two demonstration systems, one installed and one portable, are discussed through the development of four iterative configurations. The installed system implements a head-coupled, wide-angle, stereo-optic tracker/viewer and multi-computer simulation control. The portable demonstration system implements a head-mounted wide-angle, stereo-optic display, separate head and pointer electro-magnetic position trackers, a heterogeneous parallel graphics processing system, and object oriented C++ program code.

  17. Video coding and transmission standards for 3D television — a survey

    NASA Astrophysics Data System (ADS)

    Buchowicz, A.

    2013-03-01

    The emerging 3D television systems require effective techniques for transmission and storage of data representing a 3-D scene. The 3-D scene representations based on multiple video sequences or multiple views plus depth maps are especially important since they can be processed with existing video technologies. The review of the video coding and transmission techniques is presented in this paper.

  18. 3D Dynamic Earthquake Fracture Simulation (Test Case)

    NASA Astrophysics Data System (ADS)

    Korkusuz Öztürk, Yasemin; Meral Özel, Nurcan; Ando, Ryosuke

    2016-04-01

    A 3D dynamic earthquake fracture simulation is being developed for the fault structures which are non-planar to understand heterogeneous stress states in the Marmara Sea. Locating in a seismic gap, a large earthquake is expected in the center of the Sea of Marmara. Concerning the fact that more than 14 million inhabitants of İstanbul, located very closely to the Marmara Sea, the importance of the analysis of the Central Marmara Sea is extremely high. A few 3D dynamic earthquake fracture studies have been already done in the Sea of Marmara for pure right lateral strike-slip stress regimes (Oglesby and Mai, 2012; Aochi and Ulrich, 2015). In this study, a 3D dynamic earthquake fracture model with heterogeneous stress patches from the TPV5, a SCEC code validation case, is adapted. In this test model, the fault and the ground surfaces are gridded by a scalene triangulation technique using GMSH program. For a grid size changing between 0.616 km and 1.050 km the number of elements for the fault surface is 1984 and for the ground surface is 1216. When these results are compared with Kaneko's results for TPV5 from SPECFEM3D, reliable findings could be observed for the first 6.5 seconds (stations on the fault) although a stability problem is encountered after this time threshold. To solve this problem grid sizes are made smaller, so the number of elements increase 7986 for the fault surface and 4867 for the ground surface. On the other hand, computational problems arise in that case, since the computation time is directly proportional to the number of total elements and the required memory also increases with the square of that. Therefore, it is expected that this method can be adapted for less coarse grid cases, regarding the main difficulty coming from the necessity of an effective supercomputer and run time limitations. The main objective of this research is to obtain 3D dynamic earthquake rupture scenarios, concerning not only planar and non-planar faults but also

  19. 3-D localization of gamma ray sources with coded apertures for medical applications

    NASA Astrophysics Data System (ADS)

    Kaissas, I.; Papadimitropoulos, C.; Karafasoulis, K.; Potiriadis, C.; Lambropoulos, C. P.

    2015-09-01

    Several small gamma cameras for radioguided surgery using CdTe or CdZnTe have parallel or pinhole collimators. Coded aperture imaging is a well-known method for gamma ray source directional identification, applied in astrophysics mainly. The increase in efficiency due to the substitution of the collimators by the coded masks renders the method attractive for gamma probes used in radioguided surgery. We have constructed and operationally verified a setup consisting of two CdTe gamma cameras with Modified Uniform Redundant Array (MURA) coded aperture masks of rank 7 and 19 and a video camera. The 3-D position of point-like radioactive sources is estimated via triangulation using decoded images acquired by the gamma cameras. We have also developed code for both fast and detailed simulations and we have verified the agreement between experimental results and simulations. In this paper we present a simulation study for the spatial localization of two point sources using coded aperture masks with rank 7 and 19.

  20. 3-D laser radar simulation for autonomous spacecraft landing

    NASA Technical Reports Server (NTRS)

    Reiley, Michael F.; Carmer, Dwayne C.; Pont, W. F.

    1991-01-01

    A sophisticated 3D laser radar sensor simulation, developed and applied to the task of autonomous hazard detection and avoidance, is presented. This simulation includes a backward ray trace to sensor subpixels, incoherent subpixel integration, range dependent noise, sensor point spread function effects, digitization noise, and AM-CW modulation. Specific sensor parameters, spacecraft lander trajectory, and terrain type have been selected to generate simulated sensor data.

  1. 3D two-fluid simulations of turbulence in LAPD

    NASA Astrophysics Data System (ADS)

    Fisher, Dustin M.

    The Large Plasma Device (LAPD) is modeled using a modified version of the 3D Global Braginskii Solver code (GBS) for a nominal Helium plasma. The unbiased low-flow regime is explored in simulations where there is an intrinsic E x B rotation of the plasma. In the simulations this rotation is caused primarily by sheath effects with the Reynolds stress and J x B torque due to a cross-field Pederson conductivity having little effect. Explicit biasing simulations are also explored for the first time where the intrinsic rotation of the plasma is modified through boundary conditions that mimic the biasable limiter used in LAPD. Comparisons to experimental measurements in the unbiased case show strong qualitative agreement with the data, particularly the radial dependence of the density fluctuations, cross-correlation lengths, radial flux dependence outside of the cathode edge, and camera imagery. Kelvin Helmholtz (KH) turbulence at relatively large scales is the dominant driver of cross-field transport in these simulations with smaller-scale drift waves and sheath modes playing a secondary role. Plasma holes and blobs arising from KH vortices are consistent with the scale sizes and overall appearance of those in LAPD camera images. The addition of ion-neutral collisions in the unbiased simulations at previously theorized values reduces the radial particle flux due to a modest stabilizing contribution of the collisions on the KH-modes driving the turbulent transport. In the biased runs the ion-neutral collisions have a much smaller effect due to the modification of the potential from sheath terms. In biasing the plasma to increase the intrinsic rotation, simulations show the emergence of a nonlinearly saturated coherent mode of order m = 6. In addition, the plasma inside of the cathode edge becomes quiescent due to the strong influence of the wall bias in setting up the equilibrium plasma potential. Biasing in the direction opposite to the intrinsic flow reduces the

  2. Spacecraft charging analysis with the implicit particle-in-cell code iPic3D

    SciTech Connect

    Deca, J.; Lapenta, G.; Marchand, R.; Markidis, S.

    2013-10-15

    We present the first results on the analysis of spacecraft charging with the implicit particle-in-cell code iPic3D, designed for running on massively parallel supercomputers. The numerical algorithm is presented, highlighting the implementation of the electrostatic solver and the immersed boundary algorithm; the latter which creates the possibility to handle complex spacecraft geometries. As a first step in the verification process, a comparison is made between the floating potential obtained with iPic3D and with Orbital Motion Limited theory for a spherical particle in a uniform stationary plasma. Second, the numerical model is verified for a CubeSat benchmark by comparing simulation results with those of PTetra for space environment conditions with increasing levels of complexity. In particular, we consider spacecraft charging from plasma particle collection, photoelectron and secondary electron emission. The influence of a background magnetic field on the floating potential profile near the spacecraft is also considered. Although the numerical approaches in iPic3D and PTetra are rather different, good agreement is found between the two models, raising the level of confidence in both codes to predict and evaluate the complex plasma environment around spacecraft.

  3. MOM3D method of moments code theory manual

    NASA Technical Reports Server (NTRS)

    Shaeffer, John F.

    1992-01-01

    MOM3D is a FORTRAN algorithm that solves Maxwell's equations as expressed via the electric field integral equation for the electromagnetic response of open or closed three dimensional surfaces modeled with triangle patches. Two joined triangles (couples) form the vector current unknowns for the surface. Boundary conditions are for perfectly conducting or resistive surfaces. The impedance matrix represents the fundamental electromagnetic interaction of the body with itself. A variety of electromagnetic analysis options are possible once the impedance matrix is computed including backscatter radar cross section (RCS), bistatic RCS, antenna pattern prediction for user specified body voltage excitation ports, RCS image projection showing RCS scattering center locations, surface currents excited on the body as induced by specified plane wave excitation, and near field computation for the electric field on or near the body.

  4. 3D unstructured-mesh radiation transport codes

    SciTech Connect

    Morel, J.

    1997-12-31

    Three unstructured-mesh radiation transport codes are currently being developed at Los Alamos National Laboratory. The first code is ATTILA, which uses an unstructured tetrahedral mesh in conjunction with standard Sn (discrete-ordinates) angular discretization, standard multigroup energy discretization, and linear-discontinuous spatial differencing. ATTILA solves the standard first-order form of the transport equation using source iteration in conjunction with diffusion-synthetic acceleration of the within-group source iterations. DANTE is designed to run primarily on workstations. The second code is DANTE, which uses a hybrid finite-element mesh consisting of arbitrary combinations of hexahedra, wedges, pyramids, and tetrahedra. DANTE solves several second-order self-adjoint forms of the transport equation including the even-parity equation, the odd-parity equation, and a new equation called the self-adjoint angular flux equation. DANTE also offers three angular discretization options: $S{_}n$ (discrete-ordinates), $P{_}n$ (spherical harmonics), and $SP{_}n$ (simplified spherical harmonics). DANTE is designed to run primarily on massively parallel message-passing machines, such as the ASCI-Blue machines at LANL and LLNL. The third code is PERICLES, which uses the same hybrid finite-element mesh as DANTE, but solves the standard first-order form of the transport equation rather than a second-order self-adjoint form. DANTE uses a standard $S{_}n$ discretization in angle in conjunction with trilinear-discontinuous spatial differencing, and diffusion-synthetic acceleration of the within-group source iterations. PERICLES was initially designed to run on workstations, but a version for massively parallel message-passing machines will be built. The three codes will be described in detail and computational results will be presented.

  5. ORBXYZ: a 3D single-particle orbit code for following charged-particle trajectories in equilibrium magnetic fields

    SciTech Connect

    Anderson, D.V.; Cohen, R.H.; Ferguson, J.R.; Johnston, B.M.; Sharp, C.B.; Willmann, P.A.

    1981-06-30

    The single particle orbit code, TIBRO, has been modified extensively to improve the interpolation methods used and to allow use of vector potential fields in the simulation of charged particle orbits on a 3D domain. A 3D cubic B-spline algorithm is used to generate spline coefficients used in the interpolation. Smooth and accurate field representations are obtained. When vector potential fields are used, the 3D cubic spline interpolation formula analytically generates the magnetic field used to push the particles. This field has del.BETA = 0 to computer roundoff. When magnetic induction is used the interpolation allows del.BETA does not equal 0, which can lead to significant nonphysical results. Presently the code assumes quadrupole symmetry, but this is not an essential feature of the code and could be easily removed for other applications. Many details pertaining to this code are given on microfiche accompanying this report.

  6. Implementation of the 3D edge plasma code EMC3-EIRENE on NSTX

    SciTech Connect

    Lore, J. D.; Canik, J. M.; Feng, Y.; Ahn, J. -W.; Maingi, R.; Soukhanovskii, V.

    2012-05-09

    The 3D edge transport code EMC3-EIRENE has been applied for the first time to the NSTX spherical tokamak. A new disconnected double null grid has been developed to allow the simulation of plasma where the radial separation of the inner and outer separatrix is less than characteristic widths (e.g. heat flux width) at the midplane. Modelling results are presented for both an axisymmetric case and a case where 3D magnetic field is applied in an n = 3 configuration. In the vacuum approximation, the perturbed field consists of a wide region of destroyed flux surfaces and helical lobes which are a mixture of long and short connection length field lines formed by the separatrix manifolds. This structure is reflected in coupled 3D plasma fluid (EMC3) and kinetic neutral particle (EIRENE) simulations. The helical lobes extending inside of the unperturbed separatrix are filled in by hot plasma from the core. The intersection of the lobes with the divertor results in a striated flux footprint pattern on the target plates. As a result, profiles of divertor heat and particle fluxes are compared with experimental data, and possible sources of discrepancy are discussed.

  7. Implementation of the 3D edge plasma code EMC3-EIRENE on NSTX

    DOE PAGES

    Lore, J. D.; Canik, J. M.; Feng, Y.; Ahn, J. -W.; Maingi, R.; Soukhanovskii, V.

    2012-05-09

    The 3D edge transport code EMC3-EIRENE has been applied for the first time to the NSTX spherical tokamak. A new disconnected double null grid has been developed to allow the simulation of plasma where the radial separation of the inner and outer separatrix is less than characteristic widths (e.g. heat flux width) at the midplane. Modelling results are presented for both an axisymmetric case and a case where 3D magnetic field is applied in an n = 3 configuration. In the vacuum approximation, the perturbed field consists of a wide region of destroyed flux surfaces and helical lobes which aremore » a mixture of long and short connection length field lines formed by the separatrix manifolds. This structure is reflected in coupled 3D plasma fluid (EMC3) and kinetic neutral particle (EIRENE) simulations. The helical lobes extending inside of the unperturbed separatrix are filled in by hot plasma from the core. The intersection of the lobes with the divertor results in a striated flux footprint pattern on the target plates. As a result, profiles of divertor heat and particle fluxes are compared with experimental data, and possible sources of discrepancy are discussed.« less

  8. 3D visualization for the MARS14 Code

    SciTech Connect

    Rzepecki, Jaroslaw P.; Kostin, Mikhail A; Mokhov, Nikolai V.

    2003-01-23

    A new three-dimensional visualization engine has been developed for the MARS14 code system. It is based on the OPENINVENTOR graphics library and integrated with the MARS built-in two-dimensional Graphical-User Interface, MARS-GUI-SLICE. The integrated package allows thorough checking of complex geometry systems and their fragments, materials, magnetic fields, particle tracks along with a visualization of calculated 2-D histograms. The algorithms and their optimization are described for two geometry classes along with examples in accelerator and detector applications.

  9. Development, Verification and Use of Gust Modeling in the NASA Computational Fluid Dynamics Code FUN3D

    NASA Technical Reports Server (NTRS)

    Bartels, Robert E.

    2012-01-01

    This paper presents the implementation of gust modeling capability in the CFD code FUN3D. The gust capability is verified by computing the response of an airfoil to a sharp edged gust. This result is compared with the theoretical result. The present simulations will be compared with other CFD gust simulations. This paper also serves as a users manual for FUN3D gust analyses using a variety of gust profiles. Finally, the development of an Auto-Regressive Moving-Average (ARMA) reduced order gust model using a gust with a Gaussian profile in the FUN3D code is presented. ARMA simulated results of a sequence of one-minus-cosine gusts is shown to compare well with the same gust profile computed with FUN3D. Proper Orthogonal Decomposition (POD) is combined with the ARMA modeling technique to predict the time varying pressure coefficient increment distribution due to a novel gust profile. The aeroelastic response of a pitch/plunge airfoil to a gust environment is computed with a reduced order model, and compared with a direct simulation of the system in the FUN3D code. The two results are found to agree very well.

  10. Extending ALE3D, an Arbitrarily Connected hexahedral 3D Code, to Very Large Problem Size (U)

    SciTech Connect

    Nichols, A L

    2010-12-15

    As the number of compute units increases on the ASC computers, the prospect of running previously unimaginably large problems is becoming a reality. In an arbitrarily connected 3D finite element code, like ALE3D, one must provide a unique identification number for every node, element, face, and edge. This is required for a number of reasons, including defining the global connectivity array required for domain decomposition, identifying appropriate communication patterns after domain decomposition, and determining the appropriate load locations for implicit solvers, for example. In most codes, the unique identification number is defined as a 32-bit integer. Thus the maximum value available is 231, or roughly 2.1 billion. For a 3D geometry consisting of arbitrarily connected hexahedral elements, there are approximately 3 faces for every element, and 3 edges for every node. Since the nodes and faces need id numbers, using 32-bit integers puts a hard limit on the number of elements in a problem at roughly 700 million. The first solution to this problem would be to replace 32-bit signed integers with 32-bit unsigned integers. This would increase the maximum size of a problem by a factor of 2. This provides some head room, but almost certainly not one that will last long. Another solution would be to replace all 32-bit int declarations with 64-bit long long declarations. (long is either a 32-bit or a 64-bit integer, depending on the OS). The problem with this approach is that there are only a few arrays that actually need to extended size, and thus this would increase the size of the problem unnecessarily. In a future computing environment where CPUs are abundant but memory relatively scarce, this is probably the wrong approach. Based on these considerations, we have chosen to replace only the global identifiers with the appropriate 64-bit integer. The problem with this approach is finding all the places where data that is specified as a 32-bit integer needs to be

  11. The PIES2012 Code for Calculating 3D Equilibria with Islands and Stochastic Regions

    NASA Astrophysics Data System (ADS)

    Monticello, Donald; Reiman, Allan; Raburn, Daniel

    2013-10-01

    We have made major modifications to the PIES 3D equilibrium code to produce a new version, PIES2012. The new version uses an adaptive radial grid for calculating equilibrium currents. A subset of the flux surfaces conform closely to island separatrices, providing an accurate treatment of the effects driving the neoclassical tearing mode. There is now a set of grid surfaces that conform to the flux surfaces in the interiors of the islands, allowing the proper treatment of the current profiles in the islands, which play an important role in tearing phenomena. We have verified that we can introduce appropriate current profiles in the islands to suppress their growth, allowing us to simulate situations where islands are allowed to grow at some rational surfaces but not others. Placement of grid surfaces between islands is guided by the locations of high order fixed points, allowing us to avoid spectral polution and providing a more robust, and smoother convergence of the code. The code now has an option for turning on a vertical magnetic field to fix the position of the magnetic axis, which models the horizontal feedback positioning of a tokamak plasma. The code has a new option for using a Jacobian-Free Newton Krylov scheme for convergence. The code now also contains a model that properly handles stochastic regions with nonzero pressure gradients. Work supported by DOE contract DE-AC02-09CH11466.

  12. Elastically deformable 3D organs for haptic surgical simulation.

    PubMed

    Webster, Roger; Haluck, Randy; Ravenscroft, Rob; Mohler, Betty; Crouthamel, Eric; Frack, Tyson; Terlecki, Steve; Sheaffer, Jeremy

    2002-01-01

    This paper describes a technique for incorporating real-time elastically deformable 3D organs in haptic surgical simulators. Our system is a physically based particle model utilizing a mass-springs-damper connectivity with an implicit predictor to speed up calculations during each time step. The solution involves repeated application of Newton's 2ndd Law of motion: F = ma using an implicit solver for numerically solving the differential equations.

  13. Comparative visual analysis of 3D urban wind simulations

    NASA Astrophysics Data System (ADS)

    Röber, Niklas; Salim, Mohamed; Grawe, David; Leitl, Bernd; Böttinger, Michael; Schlünzen, Heinke

    2016-04-01

    Climate simulations are conducted in large quantity for a variety of different applications. Many of these simulations focus on global developments and study the Earth's climate system using a coupled atmosphere ocean model. Other simulations are performed on much smaller regional scales, to study very small fine grained climatic effects. These microscale climate simulations pose similar, yet also different, challenges for the visualization and the analysis of the simulation data. Modern interactive visualization and data analysis techniques are very powerful tools to assist the researcher in answering and communicating complex research questions. This presentation discusses comparative visualization for several different wind simulations, which were created using the microscale climate model MITRAS. The simulations differ in wind direction and speed, but are all centered on the same simulation domain: An area of Hamburg-Wilhelmsburg that hosted the IGA/IBA exhibition in 2013. The experiments contain a scenario case to analyze the effects of single buildings, as well as examine the impact of the Coriolis force within the simulation. The scenario case is additionally compared with real measurements from a wind tunnel experiment to ascertain the accuracy of the simulation and the model itself. We also compare different approaches for tree modeling and evaluate the stability of the model. In this presentation, we describe not only our workflow to efficiently and effectively visualize microscale climate simulation data using common 3D visualization and data analysis techniques, but also discuss how to compare variations of a simulation and how to highlight the subtle differences in between them. For the visualizations we use a range of different 3D tools that feature techniques for statistical data analysis, data selection, as well as linking and brushing.

  14. Computer simulation on reconstruction of 3-D flame temperature distribution

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Yung, K. L.; Wu, Z.; Li, T.

    To measure non-symmetric unsteady three dimensional temperature distribution in flame by simple, economic, fast and accurate means, and to apply a priori information to the measurement both sufficiently and efficiently, we conducted computer simulations. Simulation results proved that finite series-expansion reconstruction method is more suitable for measurement of temperature distribution in flame than transform method which is widely used in medical scanning and nondestructive testing. By comparing errors of simulations with different numbers of views, different domain shapes, different numbers of projections per view, different angles of views and different grid shapes, etc., we find that circle domain, triangular grid and sufficient number of projections per view, can improve the accuracy in the reconstruction of 3-D temperature distribution with limited views. With six views, errors caused by reconstruction computation are reduced, they are smaller than those caused by measurement. Therefore, a comparatively better means of measuring 3-D temperature distribution in flame with limited projection views by emission tomography is achieved. Experimental results also showed that the method we used was appropriate for measurement of 3-D temperature distribution with limited number of views [1].

  15. Implementation of virtual models from sheet metal forming simulation into physical 3D colour models using 3D printing

    NASA Astrophysics Data System (ADS)

    Junk, S.

    2016-08-01

    Today the methods of numerical simulation of sheet metal forming offer a great diversity of possibilities for optimization in product development and in process design. However, the results from simulation are only available as virtual models. Because there are any forming tools available during the early stages of product development, physical models that could serve to represent the virtual results are therefore lacking. Physical 3D-models can be created using 3D-printing and serve as an illustration and present a better understanding of the simulation results. In this way, the results from the simulation can be made more “comprehensible” within a development team. This paper presents the possibilities of 3D-colour printing with particular consideration of the requirements regarding the implementation of sheet metal forming simulation. Using concrete examples of sheet metal forming, the manufacturing of 3D colour models will be expounded upon on the basis of simulation results.

  16. Radiation Coupling with the FUN3D Unstructured-Grid CFD Code

    NASA Technical Reports Server (NTRS)

    Wood, William A.

    2012-01-01

    The HARA radiation code is fully-coupled to the FUN3D unstructured-grid CFD code for the purpose of simulating high-energy hypersonic flows. The radiation energy source terms and surface heat transfer, under the tangent slab approximation, are included within the fluid dynamic ow solver. The Fire II flight test, at the Mach-31 1643-second trajectory point, is used as a demonstration case. Comparisons are made with an existing structured-grid capability, the LAURA/HARA coupling. The radiative surface heat transfer rates from the present approach match the benchmark values within 6%. Although radiation coupling is the focus of the present work, convective surface heat transfer rates are also reported, and are seen to vary depending upon the choice of mesh connectivity and FUN3D ux reconstruction algorithm. On a tetrahedral-element mesh the convective heating matches the benchmark at the stagnation point, but under-predicts by 15% on the Fire II shoulder. Conversely, on a mixed-element mesh the convective heating over-predicts at the stagnation point by 20%, but matches the benchmark away from the stagnation region.

  17. Reactive Flow Modeling of Liquid Explosives via ALE3D/Cheetah Simulations

    SciTech Connect

    Kuo, I W; Bastea, S; Fried, L E

    2010-03-10

    We carried out reactive flow simulations of liquid explosives such as nitromethane using the hydrodynamic code ALE3D coupled with equations of state and reaction kinetics modeled by the thermochemical code Cheetah. The simulation set-up was chosen to mimic cylinder experiments. For pure unconfined nitromethane we find that the failure diameter and detonation velocity dependence on charge diameter are in agreement with available experimental results. Such simulations are likely to be useful for determining detonability and failure behavior for a wide range of experimental conditions and explosive compounds.

  18. Simulation of human ischemic stroke in realistic 3D geometry

    NASA Astrophysics Data System (ADS)

    Dumont, Thierry; Duarte, Max; Descombes, Stéphane; Dronne, Marie-Aimée; Massot, Marc; Louvet, Violaine

    2013-06-01

    In silico research in medicine is thought to reduce the need for expensive clinical trials under the condition of reliable mathematical models and accurate and efficient numerical methods. In the present work, we tackle the numerical simulation of reaction-diffusion equations modeling human ischemic stroke. This problem induces peculiar difficulties like potentially large stiffness which stems from the broad spectrum of temporal scales in the nonlinear chemical source term as well as from the presence of steep spatial gradients in the reaction fronts, spatially very localized. Furthermore, simulations on realistic 3D geometries are mandatory in order to describe correctly this type of phenomenon. The main goal of this article is to obtain, for the first time, 3D simulations on realistic geometries and to show that the simulation results are consistent with those obtain in experimental studies or observed on MRI images in stroke patients. For this purpose, we introduce a new resolution strategy based mainly on time operator splitting that takes into account complex geometry coupled with a well-conceived parallelization strategy for shared memory architectures. We consider then a high order implicit time integration for the reaction and an explicit one for the diffusion term in order to build a time operator splitting scheme that exploits efficiently the special features of each problem. Thus, we aim at solving complete and realistic models including all time and space scales with conventional computing resources, that is on a reasonably powerful workstation. Consequently and as expected, 2D and also fully 3D numerical simulations of ischemic strokes for a realistic brain geometry, are conducted for the first time and shown to reproduce the dynamics observed on MRI images in stroke patients. Beyond this major step, in order to improve accuracy and computational efficiency of the simulations, we indicate how the present numerical strategy can be coupled with spatial

  19. i3Drive, a 3D interactive driving simulator.

    PubMed

    Ambroz, Miha; Prebil, Ivan

    2010-01-01

    i3Drive, a wheeled-vehicle simulator, can accurately simulate vehicles of various configurations with up to eight wheels in real time on a desktop PC. It presents the vehicle dynamics as an interactive animation in a virtual 3D environment. The application is fully GUI-controlled, giving users an easy overview of the simulation parameters and letting them adjust those parameters interactively. It models all relevant vehicle systems, including the mechanical models of the suspension, power train, and braking and steering systems. The simulation results generally correspond well with actual measurements, making the system useful for studying vehicle performance in various driving scenarios. i3Drive is thus a worthy complement to other, more complex tools for vehicle-dynamics simulation and analysis.

  20. Near field 3D scene simulation for passive microwave imaging

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng; Wu, Ji

    2006-10-01

    Scene simulation is a necessary work in near field passive microwave remote sensing. A 3-D scene simulation model of microwave radiometric imaging based on ray tracing method is present in this paper. The essential influencing factors and general requirements are considered in this model such as the rough surface radiation, the sky radiation witch act as the uppermost illuminator in out door circumstance, the polarization rotation of the temperature rays caused by multiple reflections, and the antenna point spread function witch determines the resolution of the model final outputs. Using this model we simulate a virtual scene and analyzed the appeared microwave radiometric phenomenology, at last two real scenes of building and airstrip were simulated for validating the model. The comparison between the simulation and field measurements indicates that this model is completely feasible in practice. Furthermore, we analyzed the signatures of model outputs, and achieved some underlying phenomenology of microwave radiation witch is deferent with that in optical and infrared bands.

  1. 3D simulation of the Cluster-Cluster Aggregation model

    NASA Astrophysics Data System (ADS)

    Li, Chao; Xiong, Hailing

    2014-12-01

    We write a program to implement the Cluster-Cluster Aggregation (CCA) model with java programming language. By using the simulation program, the fractal aggregation growth process can be displayed dynamically in the form of a three-dimensional (3D) figure. Meanwhile, the related kinetics data of aggregation simulation can be also recorded dynamically. Compared to the traditional programs, the program has better real-time performance and is more helpful to observe the fractal growth process, which contributes to the scientific study in fractal aggregation. Besides, because of adopting java programming language, the program has very good cross-platform performance.

  2. Standards-based approaches to 3D and multiview video coding

    NASA Astrophysics Data System (ADS)

    Sullivan, Gary J.

    2009-08-01

    The extension of video applications to enable 3D perception, which typically is considered to include a stereo viewing experience, is emerging as a mass market phenomenon, as is evident from the recent prevalence of 3D major cinema title releases. For high quality 3D video to become a commonplace user experience beyond limited cinema distribution, adoption of an interoperable coded 3D digital video format will be needed. Stereo-view video can also be studied as a special case of the more general technologies of multiview and "free-viewpoint" video systems. The history of standardization work on this topic is actually richer than people may typically realize. The ISO/IEC Moving Picture Experts Group (MPEG), in particular, has been developing interoperability standards to specify various such coding schemes since the advent of digital video as we know it. More recently, the ITU-T Visual Coding Experts Group (VCEG) has been involved as well in the Joint Video Team (JVT) work on development of 3D features for H.264/14496-10 Advanced Video Coding, including Multiview Video Coding (MVC) extensions. This paper surveys the prior, ongoing, and anticipated future standardization efforts on this subject to provide an overview and historical perspective on feasible approaches to 3D and multiview video coding.

  3. A 3D Parallel Beam Dynamics Code for Modeling High Brightness Beams in Photoinjectors

    SciTech Connect

    Qiang, Ji; Lidia, S.; Ryne, R.D.; Limborg, C.; /SLAC

    2006-02-13

    In this paper we report on IMPACT-T, a 3D beam dynamics code for modeling high brightness beams in photoinjectors and rf linacs. IMPACT-T is one of the few codes used in the photoinjector community that has a parallel implementation, making it very useful for high statistics simulations of beam halos and beam diagnostics. It has a comprehensive set of beamline elements, and furthermore allows arbitrary overlap of their fields. It is unique in its use of space-charge solvers based on an integrated Green function to efficiently and accurately treat beams with large aspect ratio, and a shifted Green function to efficiently treat image charge effects of a cathode. It is also unique in its inclusion of energy binning in the space-charge calculation to model beams with large energy spread. Together, all these features make IMPACT-T a powerful and versatile tool for modeling beams in photoinjectors and other systems. In this paper we describe the code features and present results of IMPACT-T simulations of the LCLS photoinjectors. We also include a comparison of IMPACT-T and PARMELA results.

  4. A 3d Parallel Beam Dynamics Code for Modeling High BrightnessBeams in Photoinjectors

    SciTech Connect

    Qiang, J.; Lidia, S.; Ryne, R.; Limborg, C.

    2005-05-16

    In this paper we report on IMPACT-T, a 3D beam dynamics code for modeling high brightness beams in photoinjectors and rf linacs. IMPACT-T is one of the few codes used in the photoinjector community that has a parallel implementation, making it very useful for high statistics simulations of beam halos and beam diagnostics. It has a comprehensive set of beamline elements, and furthermore allows arbitrary overlap of their fields. It is unique in its use of space-charge solvers based on an integrated Green function to efficiently and accurately treat beams with large aspect ratio, and a shifted Green function to efficiently treat image charge effects of a cathode. It is also unique in its inclusion of energy binning in the space-charge calculation to model beams with large energy spread. Together, all these features make IMPACT-T a powerful and versatile tool for modeling beams in photoinjectors and other systems. In this paper we describe the code features and present results of IMPACT-T simulations of the LCLS photoinjectors. We also include a comparison of IMPACT-T and PARMELA results.

  5. Ground motion simulations in Marmara (Turkey) region from 3D finite difference method

    NASA Astrophysics Data System (ADS)

    Aochi, Hideo; Ulrich, Thomas; Douglas, John

    2016-04-01

    In the framework of the European project MARSite (2012-2016), one of the main contributions from our research team was to provide ground-motion simulations for the Marmara region from various earthquake source scenarios. We adopted a 3D finite difference code, taking into account the 3D structure around the Sea of Marmara (including the bathymetry) and the sea layer. We simulated two moderate earthquakes (about Mw4.5) and found that the 3D structure improves significantly the waveforms compared to the 1D layer model. Simulations were carried out for different earthquakes (moderate point sources and large finite sources) in order to provide shake maps (Aochi and Ulrich, BSSA, 2015), to study the variability of ground-motion parameters (Douglas & Aochi, BSSA, 2016) as well as to provide synthetic seismograms for the blind inversion tests (Diao et al., GJI, 2016). The results are also planned to be integrated in broadband ground-motion simulations, tsunamis generation and simulations of triggered landslides (in progress by different partners). The simulations are freely shared among the partners via the internet and the visualization of the results is diffused on the project's homepage. All these simulations should be seen as a reference for this region, as they are based on the latest knowledge that obtained during the MARSite project, although their refinement and validation of the model parameters and the simulations are a continuing research task relying on continuing observations. The numerical code used, the models and the simulations are available on demand.

  6. Accurate load prediction by BEM with airfoil data from 3D RANS simulations

    NASA Astrophysics Data System (ADS)

    Schneider, Marc S.; Nitzsche, Jens; Hennings, Holger

    2016-09-01

    In this paper, two methods for the extraction of airfoil coefficients from 3D CFD simulations of a wind turbine rotor are investigated, and these coefficients are used to improve the load prediction of a BEM code. The coefficients are extracted from a number of steady RANS simulations, using either averaging of velocities in annular sections, or an inverse BEM approach for determination of the induction factors in the rotor plane. It is shown that these 3D rotor polars are able to capture the rotational augmentation at the inner part of the blade as well as the load reduction by 3D effects close to the blade tip. They are used as input to a simple BEM code and the results of this BEM with 3D rotor polars are compared to the predictions of BEM with 2D airfoil coefficients plus common empirical corrections for stall delay and tip loss. While BEM with 2D airfoil coefficients produces a very different radial distribution of loads than the RANS simulation, the BEM with 3D rotor polars manages to reproduce the loads from RANS very accurately for a variety of load cases, as long as the blade pitch angle is not too different from the cases from which the polars were extracted.

  7. Simulation of AIMS measurements using rigorous mask 3D modeling

    NASA Astrophysics Data System (ADS)

    Chou, Chih-Shiang; Huang, Hsu-Ting; Chu, Fu-Sheng; Chu, Yuan-Chih; Huang, Wen-Chun; Liu, Ru-Gun; Gau, Tsai-Sheng

    2015-03-01

    Aerial image measurement system (AIMSTM) has been widely used for wafer level inspection of mask defects. Reported inspection flows include die-to-die (D2D) and die-to-database (D2DB) methods. For patterns that do not repeat in another die, only the D2DB approach is applicable. The D2DB method requires accurate simulation of AIMS measurements for a mask pattern. An optical vectorial model is needed to depict the mask diffraction effect in this simulation. To accurately simulate the imaging results, a rigorous electro-magnetic field (EMF) model is essential to correctly take account of the EMF scattering induced by the mask topography, which is usually called the mask 3D effect. In this study, the mask 3D model we use is rigorous coupled-wave analysis (RCWA), which calculates the diffraction fields from a single plane wave incidence. A hybrid Hopkins-Abbe method with RCWA is used to calculate the EMF diffraction at a desired accuracy level while keeping the computation time practical. We will compare the speed of the hybrid Hopkins-Abbe method to the rigorous Abbe method. The matching between simulation and experiment is more challenging for AIMS than CD-SEM because its measurements provide full intensity information. Parameters in the mask 3D model such as film stack thickness or film optical properties, is optimized during the fitting process. We will report the fitting results of AIMS images for twodimensional structures with various pitches. By accurately simulating the AIMS measurements, it provides a necessary tool to perform the mask inspection using the D2DB approach and to accurately predict the mask defects.

  8. Comparison between 2.5D and 3D simulations of coronal mass ejections

    NASA Astrophysics Data System (ADS)

    Jacobs, C.; van der Holst, B.; Poedts, S.

    2007-07-01

    Context: The shocks and magnetic clouds related to Coronal Mass Ejections (CMEs) in the solar corona and interplanetary space (IP) play an important role in the study of space weather. In order to study the evolution of these IP shocks, numerical simulations of a simplified CME model were performed. Aims: In an earlier study, the effect of the background wind on the evolution of interplanetary shock waves was investigated, where the computations were carried out under the assumption of axial symmetry. The assumption of axial symmetry might be a good approach for the solar corona under conditions of solar minimum, but for the study of CMEs this assumption is definitely no longer valid as CMEs possess clearly a fully three dimensional (3D) structure. From this perspective, the previous simulations were repeated, but now in a three dimensional set-up in order to point out the differences between the 2.5D and 3D simulations and to check the quality and reliability of the 2.5D simulations. Methods: The computations were performed in the framework of ideal magnetohydrodynamics (MHD) and to advance the ideal MHD equations in time a parallel finite volume code with explicit upwind solver was used. The shock waves are generated in a similar way in both the 3D and 2.5D simulations, namely by a simple density-blob model. The 3D and 2.5D simulations are all performed with the same numerical methods and on comparable grids, such that the differences between the simulations are purely due to the dimensionality of the problem, and/or the initial parameters for the CME generation. Results: Three different axisymmetric simulations of CME propagation are compared with the fully three dimensional computation. The 2.5D simulations differ from each other in the parameters used for CME initiation. In a first simulation, the same initial parameters as for the 3D case were taken, in a second simulation the initial amount of mass in the 2.5D and 3D CME was the same, and in a third

  9. Virtual environment display for a 3D audio room simulation

    NASA Technical Reports Server (NTRS)

    Chapin, William L.; Foster, Scott H.

    1992-01-01

    The development of a virtual environment simulation system integrating a 3D acoustic audio model with an immersive 3D visual scene is discussed. The system complements the acoustic model and is specified to: allow the listener to freely move about the space, a room of manipulable size, shape, and audio character, while interactively relocating the sound sources; reinforce the listener's feeling of telepresence in the acoustical environment with visual and proprioceptive sensations; enhance the audio with the graphic and interactive components, rather than overwhelm or reduce it; and serve as a research testbed and technology transfer demonstration. The hardware/software design of two demonstration systems, one installed and one portable, are discussed through the development of four iterative configurations.

  10. The 3D MHD code GOEMHD3 for astrophysical plasmas with large Reynolds numbers. Code description, verification, and computational performance

    NASA Astrophysics Data System (ADS)

    Skála, J.; Baruffa, F.; Büchner, J.; Rampp, M.

    2015-08-01

    Context. The numerical simulation of turbulence and flows in almost ideal astrophysical plasmas with large Reynolds numbers motivates the implementation of magnetohydrodynamical (MHD) computer codes with low resistivity. They need to be computationally efficient and scale well with large numbers of CPU cores, allow obtaining a high grid resolution over large simulation domains, and be easily and modularly extensible, for instance, to new initial and boundary conditions. Aims: Our aims are the implementation, optimization, and verification of a computationally efficient, highly scalable, and easily extensible low-dissipative MHD simulation code for the numerical investigation of the dynamics of astrophysical plasmas with large Reynolds numbers in three dimensions (3D). Methods: The new GOEMHD3 code discretizes the ideal part of the MHD equations using a fast and efficient leap-frog scheme that is second-order accurate in space and time and whose initial and boundary conditions can easily be modified. For the investigation of diffusive and dissipative processes the corresponding terms are discretized by a DuFort-Frankel scheme. To always fulfill the Courant-Friedrichs-Lewy stability criterion, the time step of the code is adapted dynamically. Numerically induced local oscillations are suppressed by explicit, externally controlled diffusion terms. Non-equidistant grids are implemented, which enhance the spatial resolution, where needed. GOEMHD3 is parallelized based on the hybrid MPI-OpenMP programing paradigm, adopting a standard two-dimensional domain-decomposition approach. Results: The ideal part of the equation solver is verified by performing numerical tests of the evolution of the well-understood Kelvin-Helmholtz instability and of Orszag-Tang vortices. The accuracy of solving the (resistive) induction equation is tested by simulating the decay of a cylindrical current column. Furthermore, we show that the computational performance of the code scales very

  11. Numerical simulation of vortex breakdown via 3-D Euler equations

    NASA Astrophysics Data System (ADS)

    Le, T. H.; Mege, P.; Morchoisne, Y.

    1990-06-01

    The long term goal is the modeling of vortex breakdown that occurs in some aerodynamic configurations at high angle of attack, (i.e., fighters with highly swept delta wings or missiles). A numerical simulation was made based on solving the 3-D Euler equations for an usteady incompressible flow. Preliminary results were obtained using a pressure-velocity formulation with periodic boundary conditions, the Euler equations being discretized by 2nd order finite difference schemes. The continuation to this work by implementing more realistic boundary conditions and 4th order finite difference discretization schemes are presented.

  12. Development of the PARVMEC Code for Rapid Analysis of 3D MHD Equilibrium

    NASA Astrophysics Data System (ADS)

    Seal, Sudip; Hirshman, Steven; Cianciosa, Mark; Wingen, Andreas; Unterberg, Ezekiel; Wilcox, Robert; ORNL Collaboration

    2015-11-01

    The VMEC three-dimensional (3D) MHD equilibrium has been used extensively for designing stellarator experiments and analyzing experimental data in such strongly 3D systems. Recent applications of VMEC include 2D systems such as tokamaks (in particular, the D3D experiment), where application of very small (delB/B ~ 10-3) 3D resonant magnetic field perturbations render the underlying assumption of axisymmetry invalid. In order to facilitate the rapid analysis of such equilibria (for example, for reconstruction purposes), we have undertaken the task of parallelizing the VMEC code (PARVMEC) to produce a scalable and temporally rapidly convergent equilibrium code for use on parallel distributed memory platforms. The parallelization task naturally splits into three distinct parts 1) radial surfaces in the fixed-boundary part of the calculation; 2) two 2D angular meshes needed to compute the Green's function integrals over the plasma boundary for the free-boundary part of the code; and 3) block tridiagonal matrix needed to compute the full (3D) pre-conditioner near the final equilibrium state. Preliminary results show that scalability is achieved for tasks 1 and 3, with task 2 still nearing completion. The impact of this work on the rapid reconstruction of D3D plasmas using PARVMEC in the V3FIT code will be discussed. Work supported by U.S. DOE under Contract DE-AC05-00OR22725 with UT-Battelle, LLC.

  13. Advanced system for 3D dental anatomy reconstruction and 3D tooth movement simulation during orthodontic treatment

    NASA Astrophysics Data System (ADS)

    Monserrat, Carlos; Alcaniz-Raya, Mariano L.; Juan, M. Carmen; Grau Colomer, Vincente; Albalat, Salvador E.

    1997-05-01

    This paper describes a new method for 3D orthodontics treatment simulation developed for an orthodontics planning system (MAGALLANES). We develop an original system for 3D capturing and reconstruction of dental anatomy that avoid use of dental casts in orthodontic treatments. Two original techniques are presented, one direct in which data are acquired directly form patient's mouth by mean of low cost 3D digitizers, and one mixed in which data are obtained by 3D digitizing of hydrocollids molds. FOr this purpose we have designed and manufactured an optimized optical measuring system based on laser structured light. We apply these 3D dental models to simulate 3D movement of teeth, including rotations, during orthodontic treatment. The proposed algorithms enable to quantify the effect of orthodontic appliance on tooth movement. The developed techniques has been integrated in a system named MAGALLANES. This original system present several tools for 3D simulation and planning of orthodontic treatments. The prototype system has been tested in several orthodontic clinic with very good results.

  14. Simulating Granular Materials Using a 3D Voronoi Subdivision Tree

    NASA Astrophysics Data System (ADS)

    Clothier, M.; Bailey, M.

    2015-12-01

    Our world is full of many different types of granular materials. This includes materials such as silt, sand, and gravel and have various sizes and properties. It is of interest to simulate and visualize granular media as it can provide additional analysis and insight into geologic events such as landslides or debris flows. Unfortunately, this can be a computationally complex problem due to the large amount of physical interaction between granular materials. To help alleviate this problem, we have developed a method to represent granular media using a technique called a 3D Voronoi Subdivision Tree. The idea behind our method is to take a convex terrain volume and use a subdivision tree to build smaller, granular subpieces contained within the volume. We use a 3D Voronoi subdivision technique to create smaller granular convex cells and then store them in the tree. The tree is dynamic and adaptive as it only represents individual granular media when they are needed. In addition, as each of the granular subpieces are created, we can also store attributes of that granular material in the tree node. This ensures a diversity of granular materials contained within the volume. In order to maintain performance during simulation, we can dynamically replace parts of the granular volume with smaller granular subpieces just by traversing the tree. In essence, this allows for many different granular materials to be represented within the volume while reducing computational complexity. As such, this helps with simulation performance so that focus can be placed on simulation analysis. We feel our method is helpful for simulating geologic events with granular materials and will assist geoscientists in understanding them.

  15. Validation of Heat Transfer and Film Cooling Capabilities of the 3-D RANS Code TURBO

    NASA Technical Reports Server (NTRS)

    Shyam, Vikram; Ameri, Ali; Chen, Jen-Ping

    2010-01-01

    The capabilities of the 3-D unsteady RANS code TURBO have been extended to include heat transfer and film cooling applications. The results of simulations performed with the modified code are compared to experiment and to theory, where applicable. Wilcox s k-turbulence model has been implemented to close the RANS equations. Two simulations are conducted: (1) flow over a flat plate and (2) flow over an adiabatic flat plate cooled by one hole inclined at 35 to the free stream. For (1) agreement with theory is found to be excellent for heat transfer, represented by local Nusselt number, and quite good for momentum, as represented by the local skin friction coefficient. This report compares the local skin friction coefficients and Nusselt numbers on a flat plate obtained using Wilcox's k-model with the theory of Blasius. The study looks at laminar and turbulent flows over an adiabatic flat plate and over an isothermal flat plate for two different wall temperatures. It is shown that TURBO is able to accurately predict heat transfer on a flat plate. For (2) TURBO shows good qualitative agreement with film cooling experiments performed on a flat plate with one cooling hole. Quantitatively, film effectiveness is under predicted downstream of the hole.

  16. Liner Optimization Studies Using the Ducted Fan Noise Prediction Code TBIEM3D

    NASA Technical Reports Server (NTRS)

    Dunn, M. H.; Farassat, F.

    1998-01-01

    In this paper we demonstrate the usefulness of the ducted fan noise prediction code TBIEM3D as a liner optimization design tool. Boundary conditions on the interior duct wall allow for hard walls or a locally reacting liner with axially segmented, circumferentially uniform impedance. Two liner optimization studies are considered in which farfield noise attenuation due to the presence of a liner is maximized by adjusting the liner impedance. In the first example, the dependence of optimal liner impedance on frequency and liner length is examined. Results show that both the optimal impedance and attenuation levels are significantly influenced by liner length and frequency. In the second example, TBIEM3D is used to compare radiated sound pressure levels between optimal and non-optimal liner cases at conditions designed to simulate take-off. It is shown that significant noise reduction is achieved for most of the sound field by selecting the optimal or near optimal liner impedance. Our results also indicate that there is relatively large region of the impedance plane over which optimal or near optimal liner behavior is attainable. This is an important conclusion for the designer since there are variations in liner characteristics due to manufacturing imprecisions.

  17. INS3D: An incompressible Navier-Stokes code in generalized three-dimensional coordinates

    NASA Technical Reports Server (NTRS)

    Rogers, S. E.; Kwak, D.; Chang, J. L. C.

    1987-01-01

    The operation of the INS3D code, which computes steady-state solutions to the incompressible Navier-Stokes equations, is described. The flow solver utilizes a pseudocompressibility approach combined with an approximate factorization scheme. This manual describes key operating features to orient new users. This includes the organization of the code, description of the input parameters, description of each subroutine, and sample problems. Details for more extended operations, including possible code modifications, are given in the appendix.

  18. Implementation of a 3D halo neutral model in the TRANSP code and application to projected NSTX-U plasmas

    NASA Astrophysics Data System (ADS)

    Medley, S. S.; Liu, D.; Gorelenkova, M. V.; Heidbrink, W. W.; Stagner, L.

    2016-02-01

    A 3D halo neutral code developed at the Princeton Plasma Physics Laboratory and implemented for analysis using the TRANSP code is applied to projected National Spherical Torus eXperiment-Upgrade (NSTX-U plasmas). The legacy TRANSP code did not handle halo neutrals properly since they were distributed over the plasma volume rather than remaining in the vicinity of the neutral beam footprint as is actually the case. The 3D halo neutral code uses a ‘beam-in-a-box’ model that encompasses both injected beam neutrals and resulting halo neutrals. Upon deposition by charge exchange, a subset of the full, one-half and one-third beam energy components produce first generation halo neutrals that are tracked through successive generations until an ionization event occurs or the descendant halos exit the box. The 3D halo neutral model and neutral particle analyzer (NPA) simulator in the TRANSP code have been benchmarked with the Fast-Ion D-Alpha simulation (FIDAsim) code, which provides Monte Carlo simulations of beam neutral injection, attenuation, halo generation, halo spatial diffusion, and photoemission processes. When using the same atomic physics database, TRANSP and FIDAsim simulations achieve excellent agreement on the spatial profile and magnitude of beam and halo neutral densities and the NPA energy spectrum. The simulations show that the halo neutral density can be comparable to the beam neutral density. These halo neutrals can double the NPA flux, but they have minor effects on the NPA energy spectrum shape. The TRANSP and FIDAsim simulations also suggest that the magnitudes of beam and halo neutral densities are relatively sensitive to the choice of the atomic physics databases.

  19. Coniferous Canopy BRF Simulation Based on 3-D Realistic Scene

    NASA Technical Reports Server (NTRS)

    Wang, Xin-yun; Guo, Zhi-feng; Qin, Wen-han; Sun, Guo-qing

    2011-01-01

    It is difficulties for the computer simulation method to study radiation regime at large-scale. Simplified coniferous model was investigate d in the present study. It makes the computer simulation methods such as L-systems and radiosity-graphics combined method (RGM) more powerf ul in remote sensing of heterogeneous coniferous forests over a large -scale region. L-systems is applied to render 3-D coniferous forest scenarios: and RGM model was used to calculate BRF (bidirectional refle ctance factor) in visible and near-infrared regions. Results in this study show that in most cases both agreed well. Meanwhiie at a tree and forest level. the results are also good.

  20. The Vajont disaster: a 3D numerical simulation for the slide and the waves

    NASA Astrophysics Data System (ADS)

    Rubino, Angelo; Androsov, Alexey; Vacondio, Renato; Zanchettin, Davide; Voltzinger, Naum

    2016-04-01

    A very high resolution O(5 m), 3D hydrostatic nonlinear numerical model was used to simulate the dynamics of both the slide and the surface waves produced during the Vajont disaster (north Italy, 1963), one of the major landslide-induced tsunamis ever documented. Different simulated wave phenomena like, e.g., maximum run-up on the opposite shore, maximum height, and water velocity were analyzed and compared with data available in literature, including the results of a fully 3D simulation obtained with a Smoothed Particle Hydrodynamic code. The difference between measured and simulated after-slide bathymetries was calculated and used in an attempt to quantify the relative magnitude and extension of rigid and fluid motion components during the event.

  1. The computer simulation of 3d gas dynamics in a gas centrifuge

    NASA Astrophysics Data System (ADS)

    Borman, V. D.; Bogovalov, S. V.; Borisevich, V. D.; Tronin, I. V.; Tronin, V. N.

    2016-09-01

    We argue on the basis of the results of 2D analysis of the gas flow in gas centrifuges that a reliable calculation of the circulation of the gas and gas content in the gas centrifuge is possible only in frameworks of 3D numerical simulation of gas dynamics in the gas centrifuge (hereafter GC). The group from National research nuclear university, MEPhI, has created a computer code for 3D simulation of the gas flow in GC. The results of the computer simulations of the gas flows in GC are presented. A model Iguassu centrifuge is explored for the simulations. A nonaxisymmetric gas flow is produced due to interaction of the hypersonic rotating flow with the scoops for extraction of the product and waste flows from the GC. The scoops produce shock waves penetrating into a working camera of the GC and form spiral waves there.

  2. Optimizing prostate needle biopsy through 3D simulation

    NASA Astrophysics Data System (ADS)

    Zeng, Jianchao; Kaplan, Charles; Xuan, Jian Hua; Sesterhenn, Isabell A.; Lynch, John H.; Freedman, Matthew T.; Mun, Seong K.

    1998-06-01

    Prostate needle biopsy is used for the detection of prostate cancer. The protocol of needle biopsy that is currently routinely used in the clinical environment is the systematic sextant technique, which defines six symmetric locations on the prostate surface for needle insertion. However, this protocol has been developed based on the long-term observation and experience of urologists. Little quantitative or scientific evidence supports the use of this biopsy technique. In this research, we aim at developing a statistically optimized new prostate needle biopsy protocol to improve the quality of diagnosis of prostate cancer. This new protocol will be developed by using a three-dimensional (3-D) computer- based probability map of prostate cancer. For this purpose, we have developed a computer-based 3-D visualization and simulation system with prostate models constructed from the digitized prostate specimens, in which the process of prostate needle biopsy can be simulated automatically by the computer. In this paper, we first develop an interactive biopsy simulation mode in the system, and evaluate the performance of the automatic biopsy simulation with the sextant biopsy protocol by comparing the results by the urologist using the interactive simulation mode with respect to 53 prostate models. This is required to confirm that the automatic simulation is accurate and reliable enough for the simulation with respect to a large number of prostate models. Then we compare the performance of the existing protocols using the automatic biopsy simulation system with respect to 107 prostate models, which will statistically identify if one protocol is better than another. Since the estimation of tumor volume is extremely important in determining the significance of a tumor and in deciding appropriate treatment methods, we further investigate correlation between the tumor volume and the positive core volume with 89 prostate models. This is done in order to develop a method to

  3. Unsteady Analysis of Inlet-Compressor Acoustic Interactions Using Coupled 3-D and 1-D CFD Codes

    NASA Technical Reports Server (NTRS)

    Suresh, A.; Cole, G. L.

    2000-01-01

    It is well known that the dynamic response of a mixed compression supersonic inlet is very sensitive to the boundary condition imposed at the subsonic exit (engine face) of the inlet. In previous work, a 3-D computational fluid dynamics (CFD) inlet code (NPARC) was coupled at the engine face to a 3-D turbomachinery code (ADPAC) simulating an isolated rotor and the coupled simulation used to study the unsteady response of the inlet. The main problem with this approach is that the high fidelity turbomachinery simulation becomes prohibitively expensive as more stages are included in the simulation. In this paper, an alternative approach is explored, wherein the inlet code is coupled to a lesser fidelity 1-D transient compressor code (DYNTECC) which simulates the whole compressor. The specific application chosen for this evaluation is the collapsing bump experiment performed at the University of Cincinnati, wherein reflections of a large-amplitude acoustic pulse from a compressor were measured. The metrics for comparison are the pulse strength (time integral of the pulse amplitude) and wave form (shape). When the compressor is modeled by stage characteristics the computed strength is about ten percent greater than that for the experiment, but the wave shapes are in poor agreement. An alternate approach that uses a fixed rise in duct total pressure and temperature (so-called 'lossy' duct) to simulate a compressor gives good pulse shapes but the strength is about 30 percent low.

  4. User's manual for PELE3D: a computer code for three-dimensional incompressible fluid dynamics

    SciTech Connect

    McMaster, W H

    1982-05-07

    The PELE3D code is a three-dimensional semi-implicit Eulerian hydrodynamics computer program for the solution of incompressible fluid flow coupled to a structure. The fluid and coupling algorithms have been adapted from the previously developed two-dimensional code PELE-IC. The PELE3D code is written in both plane and cylindrical coordinates. The coupling algorithm is general enough to handle a variety of structural shapes. The free surface algorithm is able to accommodate a top surface and several independent bubbles. The code is in a developmental status since all the intended options have not been fully implemented and tested. Development of this code ended in 1980 upon termination of the contract with the Nuclear Regulatory Commission.

  5. Study, simulation and design of a 3D clinostat

    NASA Astrophysics Data System (ADS)

    Pavone, Valentina; Guarnieri, Vincenzo; Lobascio, Cesare; Soma, Aurelio; Bosso, Nicola; Lamantea, Matteo Maria

    High cost and limited number of physically executable experiments in space have introduced the need for ground simulation systems that enable preparing experiments to be carried out on board, identifying phenomena associated with the altered gravity conditions, and taking advantage of these conditions, as in Biotechnology. Among systems developed to simulate microgravity, especially for life sciences experiments, different types of clinostats were realized. This work deals with mechanical design of a three-dimensional clinostat and simulation of the dynamic behavior of the system by varying the operating parameters. The design and simulation phase was preceded by a careful analysis of the state of art and by the review of the most recent results, in particular from the major investigators of Life Sciences in Space. The mechanical design is quite innovative by adoption of a structure entirely in aluminum, which allows robustness while reducing the overall weight. The transmission system of motion has been optimized by means of brushless DC micro motors, light and compact, which helped to reduce weight, dimensions, power consumption and increase the reliability and durability of the system. The study of the dynamic behavior using SIMPACK, a multibody simulation software, led to results in line with those found in the most important and recent scientific publications. This model was also appropriately configured to represent any desired operating condition, and for eventual system scalability. It would be interesting to generate simulated hypogravity - e.g.: 0.38-g (Mars) or 0.17-g (Moon). This would allow to investigate how terrestrial life forms can grow in other planetary habitats, or to determine the gravity threshold response of different organisms. At the moment, such a system can only be achieved by centrifuges in real microgravity. We are confident that simulation and associated tests with our 3D clinostat can help adjusting the parameters allowing variable g

  6. Unsteady 3D flow simulations in cranial arterial tree

    NASA Astrophysics Data System (ADS)

    Grinberg, Leopold; Anor, Tomer; Madsen, Joseph; Karniadakis, George

    2008-11-01

    High resolution unsteady 3D flow simulations in major cranial arteries have been performed. Two cases were considered: 1) a healthy volunteer with a complete Circle of Willis (CoW); and 2) a patient with hydrocephalus and an incomplete CoW. Computation was performed on 3344 processors of the new half petaflop supercomputer in TACC. Two new numerical approaches were developed and implemented: 1) a new two-level domain decomposition method, which couples continuous and discontinuous Galerkin discretization of the computational domain; and 2) a new type of outflow boundary conditions, which imposes, in an accurate and computationally efficient manner, clinically measured flow rates. In the first simulation, a geometric model of 65 cranial arteries was reconstructed. Our simulation reveals a high degree of asymmetry in the flow at the left and right parts of the CoW and the presence of swirling flow in most of the CoW arteries. In the second simulation, one of the main findings was a high pressure drop at the right anterior communicating artery (PCA). Due to the incompleteness of the CoW and the pressure drop at the PCA, the right internal carotid artery supplies blood to most regions of the brain.

  7. 3D Simulation Modeling of the Tooth Wear Process

    PubMed Central

    Dai, Ning; Hu, Jian; Liu, Hao

    2015-01-01

    Severe tooth wear is the most common non-caries dental disease, and it can seriously affect oral health. Studying the tooth wear process is time-consuming and difficult, and technological tools are frequently lacking. This paper presents a novel method of digital simulation modeling that represents a new way to study tooth wear. First, a feature extraction algorithm is used to obtain anatomical feature points of the tooth without attrition. Second, after the alignment of non-attrition areas, the initial homogeneous surface is generated by means of the RBF (Radial Basic Function) implicit surface and then deformed to the final homogeneous by the contraction and bounding algorithm. Finally, the method of bilinear interpolation based on Laplacian coordinates between tooth with attrition and without attrition is used to inversely reconstruct the sequence of changes of the 3D tooth morphology during gradual tooth wear process. This method can also be used to generate a process simulation of nonlinear tooth wear by means of fitting an attrition curve to the statistical data of attrition index in a certain region. The effectiveness and efficiency of the attrition simulation algorithm are verified through experimental simulation. PMID:26241942

  8. MPSalsa 3D Simulations of Chemically Reacting Flows

    DOE Data Explorer

    Many important scientific and engineering applications require a detailed analysis of complex systems with coupled fluid flow, thermal energy transfer, mass transfer and nonequilibrium chemical reactions. Currently, computer simulations of these complex reacting flow problems are limited to idealized systems in one or two spatial dimensions when coupled with a detailed, fundamental chemistry model. The goal of our research is to develop, analyze and implement advanced MP numerical algorithms that will allow high resolution 3D simulations with an equal emphasis on fluid flow and chemical kinetics modeling. In our research, we focus on the development of new, fully coupled, implicit solution strategies that are based on robust MP iterative solution methods (copied from http://www.cs.sandia.gov/CRF/MPSalsa/). These simulations are needed for scientific and technical areas such as: combustion research for transportation, atmospheric chemistry modeling for pollution studies, chemically reacting flow models for analysis and control of manufacturing processes, surface catalytic reactors for methane to methanol conversion and chemical vapor deposition (CVD) process modeling for production of advanced semiconductor materials (http://www.cs.sandia.gov/CRF/MPSalsa/).

    This project website provides six QuickTime videos of these simulations, along with a small image gallery and slideshow animations. A list of related publications and conference presentations is also made available.

  9. 3D Simulation Modeling of the Tooth Wear Process.

    PubMed

    Dai, Ning; Hu, Jian; Liu, Hao

    2015-01-01

    Severe tooth wear is the most common non-caries dental disease, and it can seriously affect oral health. Studying the tooth wear process is time-consuming and difficult, and technological tools are frequently lacking. This paper presents a novel method of digital simulation modeling that represents a new way to study tooth wear. First, a feature extraction algorithm is used to obtain anatomical feature points of the tooth without attrition. Second, after the alignment of non-attrition areas, the initial homogeneous surface is generated by means of the RBF (Radial Basic Function) implicit surface and then deformed to the final homogeneous by the contraction and bounding algorithm. Finally, the method of bilinear interpolation based on Laplacian coordinates between tooth with attrition and without attrition is used to inversely reconstruct the sequence of changes of the 3D tooth morphology during gradual tooth wear process. This method can also be used to generate a process simulation of nonlinear tooth wear by means of fitting an attrition curve to the statistical data of attrition index in a certain region. The effectiveness and efficiency of the attrition simulation algorithm are verified through experimental simulation.

  10. Advanced 3D Photocathode Modeling and Simulations Final Report

    SciTech Connect

    Dimitre A Dimitrov; David L Bruhwiler

    2005-06-06

    High brightness electron beams required by the proposed Next Linear Collider demand strong advances in photocathode electron gun performance. Significant improvement in the production of such beams with rf photocathode electron guns is hampered by the lack high-fidelity simulations. The critical missing piece in existing gun codes is a physics-based, detailed treatment of the very complex and highly nonlinear photoemission process.

  11. TOMO3D: 3-D joint refraction and reflection traveltime tomography parallel code for active-source seismic data—synthetic test

    NASA Astrophysics Data System (ADS)

    Meléndez, A.; Korenaga, J.; Sallarès, V.; Miniussi, A.; Ranero, C. R.

    2015-10-01

    We present a new 3-D traveltime tomography code (TOMO3D) for the modelling of active-source seismic data that uses the arrival times of both refracted and reflected seismic phases to derive the velocity distribution and the geometry of reflecting boundaries in the subsurface. This code is based on its popular 2-D version TOMO2D from which it inherited the methods to solve the forward and inverse problems. The traveltime calculations are done using a hybrid ray-tracing technique combining the graph and bending methods. The LSQR algorithm is used to perform the iterative regularized inversion to improve the initial velocity and depth models. In order to cope with an increased computational demand due to the incorporation of the third dimension, the forward problem solver, which takes most of the run time (˜90 per cent in the test presented here), has been parallelized with a combination of multi-processing and message passing interface standards. This parallelization distributes the ray-tracing and traveltime calculations among available computational resources. The code's performance is illustrated with a realistic synthetic example, including a checkerboard anomaly and two reflectors, which simulates the geometry of a subduction zone. The code is designed to invert for a single reflector at a time. A data-driven layer-stripping strategy is proposed for cases involving multiple reflectors, and it is tested for the successive inversion of the two reflectors. Layers are bound by consecutive reflectors, and an initial velocity model for each inversion step incorporates the results from previous steps. This strategy poses simpler inversion problems at each step, allowing the recovery of strong velocity discontinuities that would otherwise be smoothened.

  12. Optimizing Antenna Layout for ITER Low Field Side Reflectometer using 3D Ray Tracing Code

    NASA Astrophysics Data System (ADS)

    Newbury, Sarah; Zolfaghari, Ali

    2014-10-01

    The ITER Low Field Side Reflectometer (LFSR) is being designed to provide electron density profile measurements for both the core and edge plasma through the launching of millimeter waves into the plasma and the detection of the signal of the reflected wave by a receive antenna. Because the detection of the received signal is integral to the determination of the density profile, an important goal in designing the LFSR is to optimize the coupling between launch and receive antennas. This project investigates this subject by using Genray, a 3D ray tracing code, to simulate the propagation of millimeter waves launched into and reflected by the plasma for a typical ITER case. Based upon the results of the code, beam footprints will be estimated for different cases in which both the height and toroidal angle of the launch antenna are varied. The footprints will be compared, allowing conclusions to be drawn about the optimal antenna layout for the LFSR. This method will be carried out for various frequencies of both O-mode and X-mode waves, and the effect of the scrape-off layer of the plasma will also be considered.

  13. Full 3D simulations of BNL one-sided silicon 3D detectors and comparisons with other types of 3D detectors

    NASA Astrophysics Data System (ADS)

    Grönlund, Tanja; Li, Zheng; Carini, Gabriella; Li, Michael

    2008-02-01

    Full three-dimensional (3D) simulations have been carried out on the BNL one-sided single-type column and dual-type column 3D Si detectors (p-type substrate). Due to the facts that columns are not etched all the way through, all electrodes are on the front side, and the backside is neither supported nor processed at all, the BNL one-sided 3D detectors are true one-sided detectors. Simulations show that the volume under the columns, where it is supposed to be dead space (about 10%), can be depleted at high biases with some modest electric field, leading to the possibility of recovering some sensitivity from this region. This region can also provide some sensitivity to particle tracks directly through the columns. The dual-type column detectors are the best in radiation hardness due to their low depletion voltages and short drift distances. Single-type column detectors are more radiation hard than the planar detectors due to their lower depletion voltages. Single-type column detectors are easier to process than dual-type column detectors, but have a more complicated, non-uniform electric field profile. The BNL one-sided 3D detectors were compared to various 3D detector structures developed by other institutes. The field profiles for all types of dual-type column 3D detectors are similar with just some minor differences on both surfaces (front and back). The BNL single-type column one-sided 3D detectors have some major differences from the Trento ones: (1) the high electric field is on the sensing electrode side (pixel or strip); and (2) it can develop some high electric field along the junction column as the bias voltage increases.

  14. 3D dynamic simulation of crack propagation in extracorporeal shock wave lithotripsy

    NASA Astrophysics Data System (ADS)

    Wijerathne, M. L. L.; Hori, Muneo; Sakaguchi, Hide; Oguni, Kenji

    2010-06-01

    Some experimental observations of Shock Wave Lithotripsy(SWL), which include 3D dynamic crack propagation, are simulated with the aim of reproducing fragmentation of kidney stones with SWL. Extracorporeal shock wave lithotripsy (ESWL) is the fragmentation of kidney stones by focusing an ultrasonic pressure pulse onto the stones. 3D models with fine discretization are used to accurately capture the high amplitude shear shock waves. For solving the resulting large scale dynamic crack propagation problem, PDS-FEM is used; it provides numerically efficient failure treatments. With a distributed memory parallel code of PDS-FEM, experimentally observed 3D photoelastic images of transient stress waves and crack patterns in cylindrical samples are successfully reproduced. The numerical crack patterns are in good agreement with the experimental ones, quantitatively. The results shows that the high amplitude shear waves induced in solid, by the lithotriptor generated shock wave, play a dominant role in stone fragmentation.

  15. Colossal Tooling Design: 3D Simulation for Ergonomic Analysis

    NASA Technical Reports Server (NTRS)

    Hunter, Steve L.; Dischinger, Charles; Thomas, Robert E.; Babai, Majid

    2003-01-01

    The application of high-level 3D simulation software to the design phase of colossal mandrel tooling for composite aerospace fuel tanks was accomplished to discover and resolve safety and human engineering problems. The analyses were conducted to determine safety, ergonomic and human engineering aspects of the disassembly process of the fuel tank composite shell mandrel. Three-dimensional graphics high-level software, incorporating various ergonomic analysis algorithms, was utilized to determine if the process was within safety and health boundaries for the workers carrying out these tasks. In addition, the graphical software was extremely helpful in the identification of material handling equipment and devices for the mandrel tooling assembly/disassembly process.

  16. Validation of 3D simulations of reverse osmosis membrane biofouling.

    PubMed

    Pintelon, Thomas R R; Creber, Sarah A; von der Schulenburg, Daniel A Graf; Johns, Michael L

    2010-07-01

    The increasing demand for drinking water and its stricter quality requirements have resulted in an exponentially expanding industry of membrane filtration processes. Currently, reverse osmosis (RO) is the most common method of desalination, able to produce water that is virtually free of pollutants and pathogenic micro-organisms. Biofouling of these devices however is a significant limitation. Here we present a 3D simulation of RO membrane biofouling based on a lattice Boltzmann (LB) platform that we subsequently favorably compare with experimental data. This data consists of temporally (and spatially) resolved velocity measurements acquired for a RO membrane using magnetic resonance techniques. The effect of biofilm cohesive strength on system pressure drop is then explored; weaker biomass is observed to have a reduced impact on pressure drop (per unit biomass accumulated).

  17. Validation of 3D simulations of reverse osmosis membrane biofouling.

    PubMed

    Pintelon, Thomas R R; Creber, Sarah A; von der Schulenburg, Daniel A Graf; Johns, Michael L

    2010-07-01

    The increasing demand for drinking water and its stricter quality requirements have resulted in an exponentially expanding industry of membrane filtration processes. Currently, reverse osmosis (RO) is the most common method of desalination, able to produce water that is virtually free of pollutants and pathogenic micro-organisms. Biofouling of these devices however is a significant limitation. Here we present a 3D simulation of RO membrane biofouling based on a lattice Boltzmann (LB) platform that we subsequently favorably compare with experimental data. This data consists of temporally (and spatially) resolved velocity measurements acquired for a RO membrane using magnetic resonance techniques. The effect of biofilm cohesive strength on system pressure drop is then explored; weaker biomass is observed to have a reduced impact on pressure drop (per unit biomass accumulated). PMID:20205206

  18. Impact of packet losses in scalable 3D holoscopic video coding

    NASA Astrophysics Data System (ADS)

    Conti, Caroline; Nunes, Paulo; Ducla Soares, Luís.

    2014-05-01

    Holoscopic imaging became a prospective glassless 3D technology to provide more natural 3D viewing experiences to the end user. Additionally, holoscopic systems also allow new post-production degrees of freedom, such as controlling the plane of focus or the viewing angle presented to the user. However, to successfully introduce this technology into the consumer market, a display scalable coding approach is essential to achieve backward compatibility with legacy 2D and 3D displays. Moreover, to effectively transmit 3D holoscopic content over error-prone networks, e.g., wireless networks or the Internet, error resilience techniques are required to mitigate the impact of data impairments in the user quality perception. Therefore, it is essential to deeply understand the impact of packet losses in terms of decoding video quality for the specific case of 3D holoscopic content, notably when a scalable approach is used. In this context, this paper studies the impact of packet losses when using a three-layer display scalable 3D holoscopic video coding architecture previously proposed, where each layer represents a different level of display scalability (i.e., L0 - 2D, L1 - stereo or multiview, and L2 - full 3D holoscopic). For this, a simple error concealment algorithm is used, which makes use of inter-layer redundancy between multiview and 3D holoscopic content and the inherent correlation of the 3D holoscopic content to estimate lost data. Furthermore, a study of the influence of 2D views generation parameters used in lower layers on the performance of the used error concealment algorithm is also presented.

  19. Multitasking the INS3D-LU code on the Cray Y-MP

    NASA Technical Reports Server (NTRS)

    Fatoohi, Rod; Yoon, Seokkwan

    1991-01-01

    This paper presents the results of multitasking the INS3D-LU code on eight processors. The code is a full Navier-Stokes solver for incompressible fluid in three dimensional generalized coordinates using a lower-upper symmetric-Gauss-Seidel implicit scheme. This code has been fully vectorized on oblique planes of sweep and parallelized using autotasking with some directives and minor modifications. The timing results for five grid sizes are presented and analyzed. The code has achieved a processing rate of over one Gflops.

  20. RELAP5-3D Code for Supercritical-Pressure Light-Water-Cooled Reactors

    SciTech Connect

    Riemke, Richard Allan; Davis, Cliff Bybee; Schultz, Richard Raphael

    2003-04-01

    The RELAP5-3D computer program has been improved for analysis of supercritical-pressure, light-water-cooled reactors. Several code modifications were implemented to correct code execution failures. Changes were made to the steam table generation, steam table interpolation, metastable states, interfacial heat transfer coefficients, and transport properties (viscosity and thermal conductivity). The code modifications now allow the code to run slow transients above the critical pressure as well as blowdown transients (modified Edwards pipe and modified existing pressurized water reactor model) that pass near the critical point.

  1. Multi-scale simulations of space problems with iPIC3D

    NASA Astrophysics Data System (ADS)

    Lapenta, Giovanni; Bettarini, Lapo; Markidis, Stefano

    The implicit Particle-in-Cell method for the computer simulation of space plasma, and its im-plementation in a three-dimensional parallel code, called iPIC3D, are presented. The implicit integration in time of the Vlasov-Maxwell system removes the numerical stability constraints and enables kinetic plasma simulations at magnetohydrodynamics scales. Simulations of mag-netic reconnection in plasma are presented to show the effectiveness of the algorithm. In particular we will show a number of simulations done for large scale 3D systems using the physical mass ratio for Hydrogen. Most notably one simulation treats kinetically a box of tens of Earth radii in each direction and was conducted using about 16000 processors of the Pleiades NASA computer. The work is conducted in collaboration with the MMS-IDS theory team from University of Colorado (M. Goldman, D. Newman and L. Andersson). Reference: Stefano Markidis, Giovanni Lapenta, Rizwan-uddin Multi-scale simulations of plasma with iPIC3D Mathematics and Computers in Simulation, Available online 17 October 2009, http://dx.doi.org/10.1016/j.matcom.2009.08.038

  2. Validation of the BISON 3D Fuel Performance Code: Temperature Comparisons for Concentrically and Eccentrically Located Fuel Pellets

    SciTech Connect

    J. D. Hales; D. M. Perez; R. L. Williamson; S. R. Novascone; B. W. Spencer

    2013-03-01

    BISON is a modern finite-element based nuclear fuel performance code that has been under development at the Idaho National Laboratory (USA) since 2009. The code is applicable to both steady and transient fuel behaviour and is used to analyse either 2D axisymmetric or 3D geometries. BISON has been applied to a variety of fuel forms including LWR fuel rods, TRISO-coated fuel particles, and metallic fuel in both rod and plate geometries. Code validation is currently in progress, principally by comparison to instrumented LWR fuel rods. Halden IFA experiments constitute a large percentage of the current BISON validation base. The validation emphasis here is centreline temperatures at the beginning of fuel life, with comparisons made to seven rods from the IFA-431 and 432 assemblies. The principal focus is IFA-431 Rod 4, which included concentric and eccentrically located fuel pellets. This experiment provides an opportunity to explore 3D thermomechanical behaviour and assess the 3D simulation capabilities of BISON. Analysis results agree with experimental results showing lower fuel centreline temperatures for eccentric fuel with the peak temperature shifted from the centreline. The comparison confirms with modern 3D analysis tools that the measured temperature difference between concentric and eccentric pellets is not an artefact and provides a quantitative explanation for the difference.

  3. Enhancing Simulation of Sand Behavior through 3D Subdivision Techniques

    NASA Astrophysics Data System (ADS)

    Clothier, M.; Bailey, M.

    2011-12-01

    is a planetary rover interacting with our sand simulation. Sand that is actively interacting with a rover wheel will be represented as an individual particle whereas sand that is further under the surface will be represented by a 3D region that represents several particles. As a particle region moves closer to the surface, it subdivides into smaller regions until individual sand particles are left. Our technique uses a variation of a 3D Voronoi decomposition in order to generate regions of sand. However, in our iteration, sand on the surface will be subdivided as particles whereas sand deeper into the earth will be subdivided into subsequently larger regions. By doing this, we can represent many more particles of sand than through traditional means. In addition, we have the added benefit of being able to parallelize the interaction between active particles through the use of the GPU. As such, not only are we able to represent vast amounts of sand, but we can also utilize more individual particles at the interaction source. An enhanced sand model through the use of subdivision techniques and GPUs has great potential for earth science research. Our collaborations with JPL have helped to further refine our simulation framework. As a result, we feel this work could also benefit other earth science fields, such as understanding sinkholes and debris flows.

  4. Modeling and Analysis of a Lunar Space Reactor with the Computer Code RELAP5-3D/ATHENA

    SciTech Connect

    Carbajo, Juan J; Qualls, A L

    2008-01-01

    The transient analysis 3-dimensional (3-D) computer code RELAP5-3D/ATHENA has been employed to model and analyze a space reactor of 180 kW(thermal), 40 kW (net, electrical) with eight Stirling engines (SEs). Each SE will generate over 6 kWe; the excess power will be needed for the pumps and other power management devices. The reactor will be cooled by NaK (a eutectic mixture of sodium and potassium which is liquid at ambient temperature). This space reactor is intended to be deployed over the surface of the Moon or Mars. The reactor operating life will be 8 to 10 years. The RELAP5-3D/ATHENA code is being developed and maintained by Idaho National Laboratory. The code can employ a variety of coolants in addition to water, the original coolant employed with early versions of the code. The code can also use 3-D volumes and 3-D junctions, thus allowing for more realistic representation of complex geometries. A combination of 3-D and 1-D volumes is employed in this study. The space reactor model consists of a primary loop and two secondary loops connected by two heat exchangers (HXs). Each secondary loop provides heat to four SEs. The primary loop includes the nuclear reactor with the lower and upper plena, the core with 85 fuel pins, and two vertical heat exchangers (HX). The maximum coolant temperature of the primary loop is 900 K. The secondary loops also employ NaK as a coolant at a maximum temperature of 877 K. The SEs heads are at a temperature of 800 K and the cold sinks are at a temperature of ~400 K. Two radiators will be employed to remove heat from the SEs. The SE HXs surrounding the SE heads are of annular design and have been modeled using 3-D volumes. These 3-D models have been used to improve the HX design by optimizing the flows of coolant and maximizing the heat transferred to the SE heads. The transients analyzed include failure of one or more Stirling engines, trip of the reactor pump, and trips of the secondary loop pumps feeding the HXs of the

  5. GPU accelerated simulations of 3D deterministic particle transport using discrete ordinates method

    SciTech Connect

    Gong Chunye; Liu Jie; Chi Lihua; Huang Haowei; Fang Jingyue; Gong Zhenghu

    2011-07-01

    Graphics Processing Unit (GPU), originally developed for real-time, high-definition 3D graphics in computer games, now provides great faculty in solving scientific applications. The basis of particle transport simulation is the time-dependent, multi-group, inhomogeneous Boltzmann transport equation. The numerical solution to the Boltzmann equation involves the discrete ordinates (S{sub n}) method and the procedure of source iteration. In this paper, we present a GPU accelerated simulation of one energy group time-independent deterministic discrete ordinates particle transport in 3D Cartesian geometry (Sweep3D). The performance of the GPU simulations are reported with the simulations of vacuum boundary condition. The discussion of the relative advantages and disadvantages of the GPU implementation, the simulation on multi GPUs, the programming effort and code portability are also reported. The results show that the overall performance speedup of one NVIDIA Tesla M2050 GPU ranges from 2.56 compared with one Intel Xeon X5670 chip to 8.14 compared with one Intel Core Q6600 chip for no flux fixup. The simulation with flux fixup on one M2050 is 1.23 times faster than on one X5670.

  6. VizieR Online Data Catalog: ADAM: 3D asteroid shape reconstruction code (Viikinkoski+, 2015)

    NASA Astrophysics Data System (ADS)

    Viikinkoski, M.; Kaasalainen, M.; Durech, J.

    2015-02-01

    About the code: ADAM is a collection of routines for 3D asteroid shape reconstruction from disk-resolved observations. Any combination of lightcurves, adaptive optics images, HST/FGS data, range-Doppler radar images and disk-resolved thermal images may be used as data sources. The routines are implemented in a combination of MATLAB and C. (2 data files).

  7. Turbomachinery Heat Transfer and Loss Modeling for 3D Navier-Stokes Codes

    NASA Technical Reports Server (NTRS)

    DeWitt, Kenneth; Ameri, Ali

    2005-01-01

    This report's contents focus on making use of NASA Glenn on-site computational facilities,to develop, validate, and apply models for use in advanced 3D Navier-Stokes Computational Fluid Dynamics (CFD) codes to enhance the capability to compute heat transfer and losses in turbomachiney.

  8. Electrical Circuit Simulation Code

    SciTech Connect

    Wix, Steven D.; Waters, Arlon J.; Shirley, David

    2001-08-09

    Massively-Parallel Electrical Circuit Simulation Code. CHILESPICE is a massively-arallel distributed-memory electrical circuit simulation tool that contains many enhanced radiation, time-based, and thermal features and models. Large scale electronic circuit simulation. Shared memory, parallel processing, enhance convergence. Sandia specific device models.

  9. 3D mapping and simulation of Geneva Lake environmental data

    NASA Astrophysics Data System (ADS)

    Villard, Roch; Maignan, Michel; Kanevski, Mikhail; Rapin, Francois; Klein, Audrey

    2010-05-01

    The Geneva Lake is the biggest alpine and subalpine lake in central Europe. The depth of this lake is 309 meters and its total volume of water is 89 billions m3. It takes, on average, around twelve years so that waters of the lake are completely brewed. Furthermore the Geneva lake waters are rich in dissolved substances as carbonate, sulfate. The quantity of particles in suspension in the lake, which mainly arrived from the Rhône, is nowadays around height million of tones. The International Commission for the Leman Lake (CIPEL) works about the improvement of the quality of this lake since 1962. In the present study three dimensional environmental data (temperature, oxygen and nitrate) which cover the period from 1954 to 2008, for a total of 27'500 cases are investigated. We are interested to study the evolution of the temperature of the lake because there is an impact on the reproduction of fishes and also because the winter brewing of the water makes the re-oxygenation of deep-water. In order that biological balance is maintained in a lake, there must be enough oxygen in the water. Moreover, we work on nitrate distribution and evolution because contributions in fertilizers cause eutrophication of lake. The data are very numerous when we consider the time series, some of them with more than 300 occurrences, but there are between 2 and 15 data available for spatial cartography. The basic methodology used for the analysis, mapping and simulations of 3D patterns of environmental data is based on geostatistical predictions (family of kriging models) and conditional stochastic simulations. Spatial and temporal variability, 3D monitoring networks changing over time, make this study challenging. An important problem is also to make interpolation/simulations over a long period of time, like ten years. One way used to overcome this problem, consists in using a weighted average of ten variograms during this period. 3D mapping was carried out using environment data for

  10. 3D MHD simulations of radial wire arrays

    NASA Astrophysics Data System (ADS)

    Jennings, C.; Ampleford, D.; Ciardi, A.; Chittenden, J.; Bland, S.; Niasse, N.

    2008-04-01

    We present 3D resistive MHD simulations evaluating multi-MA radial wire arrays as a potential compact, high intensity source for inertial confinement fusion and laboratory astrophysics. A radial wire array consists of wires running radially outwards from a central electrode, and was first investigated at the 1 MA level on the MAGPIE generator at Imperial College. Originally used as a method of producing magnetic tower laboratory jets relevant to astrophysics[1], they have also shown potential as a high power x-ray source. Able to produce x-ray pulses with a rise time and peak power comparable to cylindrical wire arrays, radial arrays occupy a smaller volume and may consequently be able to access higher power densities. We discuss simulation results reproducing radial array experiments performed on the MAGPIE facility as a means of benchmarking our model. This model is then used to evaluate radial wire arrays in the multi-MA regime for planned experiments on the Saturn generator of Sandia National Laboratories. [1] A. Ciardi et al, Phys. Plasmas 14, 056501 (2007)

  11. Users manual for the NASA Lewis three-dimensional ice accretion code (LEWICE 3D)

    NASA Technical Reports Server (NTRS)

    Bidwell, Colin S.; Potapczuk, Mark G.

    1993-01-01

    A description of the methodology, the algorithms, and the input and output data along with an example case for the NASA Lewis 3D ice accretion code (LEWICE3D) has been produced. The manual has been designed to help the user understand the capabilities, the methodologies, and the use of the code. The LEWICE3D code is a conglomeration of several codes for the purpose of calculating ice shapes on three-dimensional external surfaces. A three-dimensional external flow panel code is incorporated which has the capability of calculating flow about arbitrary 3D lifting and nonlifting bodies with external flow. A fourth order Runge-Kutta integration scheme is used to calculate arbitrary streamlines. An Adams type predictor-corrector trajectory integration scheme has been included to calculate arbitrary trajectories. Schemes for calculating tangent trajectories, collection efficiencies, and concentration factors for arbitrary regions of interest for single droplets or droplet distributions have been incorporated. A LEWICE 2D based heat transfer algorithm can be used to calculate ice accretions along surface streamlines. A geometry modification scheme is incorporated which calculates the new geometry based on the ice accretions generated at each section of interest. The three-dimensional ice accretion calculation is based on the LEWICE 2D calculation. Both codes calculate the flow, pressure distribution, and collection efficiency distribution along surface streamlines. For both codes the heat transfer calculation is divided into two regions, one above the stagnation point and one below the stagnation point, and solved for each region assuming a flat plate with pressure distribution. Water is assumed to follow the surface streamlines, hence starting at the stagnation zone any water that is not frozen out at a control volume is assumed to run back into the next control volume. After the amount of frozen water at each control volume has been calculated the geometry is modified by

  12. Compressible Astrophysics Simulation Code

    SciTech Connect

    Howell, L.; Singer, M.

    2007-07-18

    This is an astrophysics simulation code involving a radiation diffusion module developed at LLNL coupled to compressible hydrodynamics and adaptive mesh infrastructure developed at LBNL. One intended application is to neutrino diffusion in core collapse supernovae.

  13. MHD Simulations of Spherical Tori and Compact Stellarators Using M3D

    NASA Astrophysics Data System (ADS)

    Strauss, H. R.; Park, W.; Tang, X.; Fu, G. Y.; Sugiyama, L.

    1999-11-01

    The M3D++ unstructured mesh version of the M3D code is being applied to low aspect ratio spherical torus disruption simulations. In addition to spherical tokamaks (ST), similar to NSTX, we also study spherical pinches (SP). It is possible to produce SP equilibria with 1 > q > 1/2, and toroidal current decreasing to zero at the wall. These SP equilibria have reverse magnetic shear except in a narrow layer near the wall. The equilibria are free of the global m=1 modes that plague low q pinches such as RFPs. However there can be unstable (m,n) = (2,3) modes. The M3D++ code has been extended to have the capability of using a 3D mesh in configuration space, suitable for stellarator equilibrium, stability, and nonlinear studies, including resistive effects. Equilibria can be initialized with VMEC output or generated from initial data. Applications to compact stellarator configurations such as the PPPL quasi axisymmetric design will be presented.

  14. 3D radiative transfer in colliding wind binaries: Application of the SimpleX algorithm to 3D SPH simulations

    NASA Astrophysics Data System (ADS)

    Madura, Thomas; Clementel, Nicola; Kruip, Chael; Icke, Vincent; Gull, Theodore

    2014-09-01

    We present the first results of full 3D radiative transfer simulations of the colliding stellar winds in a massive binary system. We accomplish this by applying the SIMPLEX algorithm for 3D radiative transfer on an unstructured Delaunay grid to recent 3D smoothed particle hydrodynamics (SPH) simulations of the colliding winds in the binary system η Carinae. We use SIMPLEX to obtain detailed ionization fractions of hydrogen and helium, in 3D, at the resolution of the original SPH simulations. We show how the SIMPLEX simulations can be used to generate synthetic spectral data cubes for comparison to data obtained with the Hubble Space Telescope (HST)/Space Telescope Imaging Spectrograph as part of a multi-cycle program to map changes in η Car's extended interacting wind structures across one binary cycle. Comparison of the HST observations to the SIMPLEX models can help lead to more accurate constraints on the orbital, stellar, and wind parameters of the η Car system, such as the primary's mass-loss rate and the companion's temperature and luminosity. While we initially focus specifically on the η Car binary, the numerical methods employed can be applied to numerous other colliding wind (WR140, WR137, WR19) and dusty 'pinwheel' (WR104, WR98a) binary systems. One of the biggest remaining mysteries is how dust can form and survive in such systems that contain a hot, luminous O star. Coupled with 3D hydrodynamical simulations, SIMPLEX simulations have the potential to help determine the regions where dust can form and survive in these unique objects.

  15. A new 3-D integral code for computation of accelerator magnets

    SciTech Connect

    Turner, L.R.; Kettunen, L.

    1991-01-01

    For computing accelerator magnets, integral codes have several advantages over finite element codes; far-field boundaries are treated automatically, and computed field in the bore region satisfy Maxwell's equations exactly. A new integral code employing edge elements rather than nodal elements has overcome the difficulties associated with earlier integral codes. By the use of field integrals (potential differences) as solution variables, the number of unknowns is reduced to one less than the number of nodes. Two examples, a hollow iron sphere and the dipole magnet of Advanced Photon Source injector synchrotron, show the capability of the code. The CPU time requirements are comparable to those of three-dimensional (3-D) finite-element codes. Experiments show that in practice it can realize much of the potential CPU time saving that parallel processing makes possible. 8 refs., 4 figs., 1 tab.

  16. Simulation of bootstrap current in 2D and 3D ideal magnetic fields in tokamaks

    NASA Astrophysics Data System (ADS)

    Raghunathan, M.; Graves, J. P.; Cooper, W. A.; Pedro, M.; Sauter, O.

    2016-09-01

    We aim to simulate the bootstrap current for a MAST-like spherical tokamak using two approaches for magnetic equilibria including externally caused 3D effects such as resonant magnetic perturbations (RMPs), the effect of toroidal ripple, and intrinsic 3D effects such as non-resonant internal kink modes. The first approach relies on known neoclassical coefficients in ideal MHD equilibria, using the Sauter (Sauter et al 1999 Phys. Plasmas 6 2834) expression valid for all collisionalities in axisymmetry, and the second approach being the quasi-analytic Shaing–Callen (Shaing and Callen 1983 Phys. Fluids 26 3315) model in the collisionless regime for 3D. Using the ideal free-boundary magnetohydrodynamic code VMEC, we compute the flux-surface averaged bootstrap current density, with the Sauter and Shaing–Callen expressions for 2D and 3D ideal MHD equilibria including an edge pressure barrier with the application of resonant magnetic perturbations, and equilibria possessing a saturated non-resonant 1/1 internal kink mode with a weak internal pressure barrier. We compare the applicability of the self-consistent iterative model on the 3D applications and discuss the limitations and advantages of each bootstrap current model for each type of equilibrium.

  17. Simulation of bootstrap current in 2D and 3D ideal magnetic fields in tokamaks

    NASA Astrophysics Data System (ADS)

    Raghunathan, M.; Graves, J. P.; Cooper, W. A.; Pedro, M.; Sauter, O.

    2016-09-01

    We aim to simulate the bootstrap current for a MAST-like spherical tokamak using two approaches for magnetic equilibria including externally caused 3D effects such as resonant magnetic perturbations (RMPs), the effect of toroidal ripple, and intrinsic 3D effects such as non-resonant internal kink modes. The first approach relies on known neoclassical coefficients in ideal MHD equilibria, using the Sauter (Sauter et al 1999 Phys. Plasmas 6 2834) expression valid for all collisionalities in axisymmetry, and the second approach being the quasi-analytic Shaing-Callen (Shaing and Callen 1983 Phys. Fluids 26 3315) model in the collisionless regime for 3D. Using the ideal free-boundary magnetohydrodynamic code VMEC, we compute the flux-surface averaged bootstrap current density, with the Sauter and Shaing-Callen expressions for 2D and 3D ideal MHD equilibria including an edge pressure barrier with the application of resonant magnetic perturbations, and equilibria possessing a saturated non-resonant 1/1 internal kink mode with a weak internal pressure barrier. We compare the applicability of the self-consistent iterative model on the 3D applications and discuss the limitations and advantages of each bootstrap current model for each type of equilibrium.

  18. 3D Kinetic Simulation of Plasma Jet Penetration in Magnetic Field

    NASA Astrophysics Data System (ADS)

    Galkin, Sergei A.; Bogatu, I. N.; Kim, J. S.

    2009-11-01

    A high velocity plasmoid penetration through a magnetic barrier is a problem of a great experimental and theoretical interest. Our LSP PIC code 3D fully kinetic numerical simulations of high density (10^16 cm-3) high velocity (30-140 km/sec) plasma jet/bullet, penetrating through the transversal magnetic field, demonstrate three different regimes: reflection by field, penetration by magnetic field expulsion and penetration by magnetic self-polarization. The behavior depends on plasma jet parameters and its composition: hydrogen, carbon (A=12) and C60-fullerene (A=720) plasmas were investigated. The 3D simulation of two plasmoid head-on injections along uniform magnetic field lines is analyzed. Mini rail plasma gun (accelerator) modeling is also presented and discussed.

  19. RELAP5-3D Code Includes ATHENA Features and Models

    SciTech Connect

    Riemke, Richard A.; Davis, Cliff B.; Schultz, Richard R.

    2006-07-01

    Version 2.3 of the RELAP5-3D computer program includes all features and models previously available only in the ATHENA version of the code. These include the addition of new working fluids (i.e., ammonia, blood, carbon dioxide, glycerol, helium, hydrogen, lead-bismuth, lithium, lithium-lead, nitrogen, potassium, sodium, and sodium-potassium) and a magnetohydrodynamic model that expands the capability of the code to model many more thermal-hydraulic systems. In addition to the new working fluids along with the standard working fluid water, one or more noncondensable gases (e.g., air, argon, carbon dioxide, carbon monoxide, helium, hydrogen, krypton, nitrogen, oxygen, SF{sub 6}, xenon) can be specified as part of the vapor/gas phase of the working fluid. These noncondensable gases were in previous versions of RELAP5-3D. Recently four molten salts have been added as working fluids to RELAP5-3D Version 2.4, which has had limited release. These molten salts will be in RELAP5-3D Version 2.5, which will have a general release like RELAP5-3D Version 2.3. Applications that use these new features and models are discussed in this paper. (authors)

  20. RELAP5-3D Code Includes Athena Features and Models

    SciTech Connect

    Richard A. Riemke; Cliff B. Davis; Richard R. Schultz

    2006-07-01

    Version 2.3 of the RELAP5-3D computer program includes all features and models previously available only in the ATHENA version of the code. These include the addition of new working fluids (i.e., ammonia, blood, carbon dioxide, glycerol, helium, hydrogen, lead-bismuth, lithium, lithium-lead, nitrogen, potassium, sodium, and sodium-potassium) and a magnetohydrodynamic model that expands the capability of the code to model many more thermal-hydraulic systems. In addition to the new working fluids along with the standard working fluid water, one or more noncondensable gases (e.g., air, argon, carbon dioxide, carbon monoxide, helium, hydrogen, krypton, nitrogen, oxygen, sf6, xenon) can be specified as part of the vapor/gas phase of the working fluid. These noncondensable gases were in previous versions of RELAP5- 3D. Recently four molten salts have been added as working fluids to RELAP5-3D Version 2.4, which has had limited release. These molten salts will be in RELAP5-3D Version 2.5, which will have a general release like RELAP5-3D Version 2.3. Applications that use these new features and models are discussed in this paper.

  1. Balloon Ascent: 3-D Simulation Tool for the Ascent and Float of High-Altitude Balloons

    NASA Technical Reports Server (NTRS)

    Farley, Rodger E.

    2005-01-01

    The BalloonAscent balloon flight simulation code represents a from-scratch development using Visual Basic 5 as the software platform. The simulation code is a transient analysis of balloon flight, predicting the skin and gas temperatures along with the 3-D position and velocity in a time and spatially varying environment. There are manual and automated controls for gas valving and the dropping of ballast. Also, there are many handy calculators, such as appropriate free lift, and steady-state thermal solutions with temperature gradients. The strength of this simulation model over others in the past is that the infrared environment is deterministic rather than guessed at. The ground temperature is specified along with the emissivity, which creates a ground level IR environment that is then partially absorbed as it travels upward through the atmosphere to the altitude of the balloon.

  2. 3D Hydrodynamical Simulations of Evolved Stars and Observations of Stellar Surfaces

    NASA Astrophysics Data System (ADS)

    Chiavassa, A.; Freytag, B.

    2015-08-01

    Evolved stars are among the largest and brightest stars and they are ideal targets for the new generation of sensitive, high resolution instrumentation that provides spectrophotometric, interferometric, astrometric, and imaging observables. The interpretation of the complex stellar surface images requires numerical simulations of stellar convection that take into account multi-dimensional time-dependent radiation hydrodynamics with realistic input physics. We show how the evolved star simulations are obtained using the radiative hydrodynamics code CO5BOLD and how the accurate observables are computed with the post-processing radiative transfer code OPTIM3D. The synergy between observations and theoretical work is supported by a proper and quantitative analysis using these simulations, and by strong constraints from the observational side.

  3. Development of Unsteady Aerodynamic and Aeroelastic Reduced-Order Models Using the FUN3D Code

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.; Vatsa, Veer N.; Biedron, Robert T.

    2009-01-01

    Recent significant improvements to the development of CFD-based unsteady aerodynamic reduced-order models (ROMs) are implemented into the FUN3D unstructured flow solver. These improvements include the simultaneous excitation of the structural modes of the CFD-based unsteady aerodynamic system via a single CFD solution, minimization of the error between the full CFD and the ROM unsteady aero- dynamic solution, and computation of a root locus plot of the aeroelastic ROM. Results are presented for a viscous version of the two-dimensional Benchmark Active Controls Technology (BACT) model and an inviscid version of the AGARD 445.6 aeroelastic wing using the FUN3D code.

  4. Turbine Internal and Film Cooling Modeling For 3D Navier-Stokes Codes

    NASA Technical Reports Server (NTRS)

    DeWitt, Kenneth; Garg Vijay; Ameri, Ali

    2005-01-01

    The aim of this research project is to make use of NASA Glenn on-site computational facilities in order to develop, validate and apply aerodynamic, heat transfer, and turbine cooling models for use in advanced 3D Navier-Stokes Computational Fluid Dynamics (CFD) codes such as the Glenn-" code. Specific areas of effort include: Application of the Glenn-HT code to specific configurations made available under Turbine Based Combined Cycle (TBCC), and Ultra Efficient Engine Technology (UEET) projects. Validating the use of a multi-block code for the time accurate computation of the detailed flow and heat transfer of cooled turbine airfoils. The goal of the current research is to improve the predictive ability of the Glenn-HT code. This will enable one to design more efficient turbine components for both aviation and power generation. The models will be tested against specific configurations provided by NASA Glenn.

  5. Status report on the 'Merging' of the Electron-Cloud Code POSINST with the 3-D Accelerator PIC CODE WARP

    SciTech Connect

    Vay, J.-L.; Furman, M.A.; Azevedo, A.W.; Cohen, R.H.; Friedman, A.; Grote, D.P.; Stoltz, P.H.

    2004-04-19

    We have integrated the electron-cloud code POSINST [1] with WARP [2]--a 3-D parallel Particle-In-Cell accelerator code developed for Heavy Ion Inertial Fusion--so that the two can interoperate. Both codes are run in the same process, communicate through a Python interpreter (already used in WARP), and share certain key arrays (so far, particle positions and velocities). Currently, POSINST provides primary and secondary sources of electrons, beam bunch kicks, a particle mover, and diagnostics. WARP provides the field solvers and diagnostics. Secondary emission routines are provided by the Tech-X package CMEE.

  6. Coupling of PIES 3-D Equilibrium Code and NIFS Bootstrap Code with Applications to the Computation of Stellarator Equilibria

    NASA Astrophysics Data System (ADS)

    Monticello, D. A.; Reiman, A. H.; Watanabe, K. Y.; Nakajima, N.; Okamoto, M.

    1997-11-01

    The existence of bootstrap currents in both tokamaks and stellarators was confirmed, experimentally, more than ten years ago. Such currents can have significant effects on the equilibrium and stability of these MHD devices. In addition, stellarators, with the notable exception of W7-X, are predicted to have such large bootstrap currents that reliable equilibrium calculations require the self-consistent evaluation of bootstrap currents. Modeling of discharges which contain islands requires an algorithm that does not assume good surfaces. Only one of the two 3-D equilibrium codes that exist, PIES( Reiman, A. H., Greenside, H. S., Compt. Phys. Commun. 43), (1986)., can easily be modified to handle bootstrap current. Here we report on the coupling of the PIES 3-D equilibrium code and NIFS bootstrap code(Watanabe, K., et al., Nuclear Fusion 35) (1995), 335.

  7. Equation-of-State Test Suite for the DYNA3D Code

    SciTech Connect

    Benjamin, Russell D.

    2015-11-05

    This document describes the creation and implementation of a test suite for the Equationof- State models in the DYNA3D code. A customized input deck has been created for each model, as well as a script that extracts the relevant data from the high-speed edit file created by DYNA3D. Each equation-of-state model is broken apart and individual elements of the model are tested, as well as testing the entire model. The input deck for each model is described and the results of the tests are discussed. The intent of this work is to add this test suite to the validation suite presently used for DYNA3D.

  8. Assessing the performance of a parallel MATLAB-based 3D convection code

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, G. J.; Hasenclever, J.; Phipps Morgan, J.; Shi, C.

    2008-12-01

    We are currently building 2D and 3D MATLAB-based parallel finite element codes for mantle convection and melting. The codes use the MATLAB implementation of core MPI commands (eg. Send, Receive, Broadcast) for message passing between computational subdomains. We have found that code development and algorithm testing are much faster in MATLAB than in our previous work coding in C or FORTRAN, this code was built from scratch with only 12 man-months of effort. The one extra cost w.r.t. C coding on a Beowulf cluster is the cost of the parallel MATLAB license for a >4core cluster. Here we present some preliminary results on the efficiency of MPI messaging in MATLAB on a small 4 machine, 16core, 32Gb RAM Intel Q6600 processor-based cluster. Our code implements fully parallelized preconditioned conjugate gradients with a multigrid preconditioner. Our parallel viscous flow solver is currently 20% slower for a 1,000,000 DOF problem on a single core in 2D as the direct solve MILAMIN MATLAB viscous flow solver. We have tested both continuous and discontinuous pressure formulations. We test with various configurations of network hardware, CPU speeds, and memory using our own and MATLAB's built in cluster profiler. So far we have only explored relatively small (up to 1.6GB RAM) test problems. We find that with our current code and Intel memory controller bandwidth limitations we can only get ~2.3 times performance out of 4 cores than 1 core per machine. Even for these small problems the code runs faster with message passing between 4 machines with one core each than 1 machine with 4 cores and internal messaging (1.29x slower), or 1 core (2.15x slower). It surprised us that for 2D ~1GB-sized problems with only 3 multigrid levels, the direct- solve on the coarsest mesh consumes comparable time to the iterative solve on the finest mesh - a penalty that is greatly reduced either by using a 4th multigrid level or by using an iterative solve at the coarsest grid level. We plan to

  9. Large-scale 3D simulations of ICF and HEDP targets

    NASA Astrophysics Data System (ADS)

    Marinak, Michael M.

    2000-10-01

    The radiation hydrodynamics code HYDRA continues to be developed and applied to 3D simulations of a variety of targets for both inertial confinement fusion (ICF) and high energy density physics. Several packages have been added enabling this code to perform ICF target simulations with similar accuracy as two-dimensional codes of long-time historical use. These include a laser ray trace and deposition package, a heavy ion deposition package, implicit Monte Carlo photonics, and non-LTE opacities, derived from XSN or the linearized response matrix approach.(R. More, T. Kato, Phys. Rev. Lett. 81, 814 (1998), S. Libby, F. Graziani, R. More, T. Kato, Proceedings of the 13th International Conference on Laser Interactions and Related Plasma Phenomena, (AIP, New York, 1997).) LTE opacities can also be calculated for arbitrary mixtures online by combining tabular values generated by different opacity codes. Thermonuclear burn, charged particle transport, neutron energy deposition, electron-ion coupling and conduction, and multigroup radiation diffusion packages are also installed. HYDRA can employ ALE hydrodynamics; a number of grid motion algorithms are available. Multi-material flows are resolved using material interface reconstruction. Results from large-scale simulations run on up to 1680 processors, using a combination of massively parallel processing and symmetric multiprocessing, will be described. A large solid angle simulation of Rayleigh-Taylor instability growth in a NIF ignition capsule has resolved simultaneously the full spectrum of the most dangerous modes that grow from surface roughness. Simulations of a NIF hohlraum illuminated with the initial 96 beam configuration have also been performed. The effect of the hohlraum’s 3D intrinsic drive asymmetry on the capsule implosion will be considered. We will also discuss results from a Nova experiment in which a copper sphere is crushed by a planar shock. Several interacting hydrodynamic instabilities, including

  10. Cognitive/emotional models for human behavior representation in 3D avatar simulations

    NASA Astrophysics Data System (ADS)

    Peterson, James K.

    2004-08-01

    Simplified models of human cognition and emotional response are presented which are based on models of auditory/ visual polymodal fusion. At the core of these models is a computational model of Area 37 of the temporal cortex which is based on new isocortex models presented recently by Grossberg. These models are trained using carefully chosen auditory (musical sequences), visual (paintings) and higher level abstract (meta level) data obtained from studies of how optimization strategies are chosen in response to outside managerial inputs. The software modules developed are then used as inputs to character generation codes in standard 3D virtual world simulations. The auditory and visual training data also enable the development of simple music and painting composition generators which significantly enhance one's ability to validate the cognitive model. The cognitive models are handled as interacting software agents implemented as CORBA objects to allow the use of multiple language coding choices (C++, Java, Python etc) and efficient use of legacy code.

  11. 2D and 3D Numerical Simulations of Flux Cancellation

    NASA Technical Reports Server (NTRS)

    Karpen, Judith T.; DeVore, C.; Antiochos, S. K.; Linton, M. G.

    2009-01-01

    Cancellation of magnetic flux in the solar photosphere and chromosphere has been linked observationally and theoretically to a broad range of solar activity, from filament channel formation to CME initiation. Because this phenomenon is typically measured at only a single layer in the atmosphere, in the radial (line of sight) component of the magnetic field, the actual processes behind this observational signature are ambiguous. It is clear that reconnection is involved in some way, but the location of the reconnection sites and associated connectivity changes remain uncertain in most cases. We are using numerical modeling to demystify flux cancellation, beginning with the simplest possible configuration: a subphotospheric Lundquist flux tube surrounded by a potential field, immersed in a gravitationally stratified atmosphere, spanning many orders of magnitude in plasma beta. In this system, cancellation is driven slowly by a 2-cell circulation pattern imposed in the convection zone, such that the tops of the cells are located around the beta=1 level (i.e., the photosphere) and the flows converge and form a downdraft at the polarity inversion line; note however that no flow is imposed along the neutral line. We will present the results of 2D and 3D MHD-AMR simulations of flux cancellation, in which the flux at the photosphere begins in either an unsheared or sheared state. In all cases, a low-lying flux rope is formed by reconnection at the polarity inversion line within a few thousand seconds. The flux rope remains stable and does not rise, however, in contrast to models which do not include the presence of significant mass loading.

  12. 20 and 3D Numerical Simulations of Flux Cancellation

    NASA Technical Reports Server (NTRS)

    Karpen, Judith T.; DeVore, C.; Antiochos, S. K.; Linton, M. G.

    2009-01-01

    Cancellation of magnetic flux in the solar photosphere and chromosphere has been linked observationally and theoretically to a broad range of solar activity, from filament channel formation to CME initiation. Because this phenomenon is typically measured at only a single layer in the atmosphere, in the radial (line of sight) component of the magnetic field, the actual processes behind this observational signature are ambiguous. It is clear that reconnection is involved in some way, but the location of the reconnection sites and associated connectivity changes remain uncertain in most cases. We are using numerical modeling to demystify flux cancellation, beginning with the simplest possible configuration: a subphotospheric Lundquist flux tube surrounded by a potential field, immersed in a gravitationally stratified atmosphere, spanning many orders of magnitude in plasma beta. In this system, cancellation is driven slowly by a 2-cell circulation pattern imposed in the convection zone, such that the tops of the cells are located around the beta= 1 level (Le., the photosphere) and the flows converge and form a downdraft at the polarity inversion line; note however that no flow is imposed along the neutral line. We will present the results of 2D and 3D MHD-AMR simulations of flux cancellation, in which the flux at the photosphere begins in either an unsheared or sheared state. In all cases, a lOW-lying flux rope is formed by reconnection at the polarity inversion line within a few thousand seconds. The flux rope remains stable and does not rise, however, in contrast to models which do not include the presence of significant mass loading.

  13. 3D numerical simulations of negative hydrogen ion extraction using realistic plasma parameters, geometry of the extraction aperture and full 3D magnetic field map

    NASA Astrophysics Data System (ADS)

    Mochalskyy, S.; Wünderlich, D.; Ruf, B.; Franzen, P.; Fantz, U.; Minea, T.

    2014-02-01

    Decreasing the co-extracted electron current while simultaneously keeping negative ion (NI) current sufficiently high is a crucial issue on the development plasma source system for ITER Neutral Beam Injector. To support finding the best extraction conditions the 3D Particle-in-Cell Monte Carlo Collision electrostatic code ONIX (Orsay Negative Ion eXtraction) has been developed. Close collaboration with experiments and other numerical models allows performing realistic simulations with relevant input parameters: plasma properties, geometry of the extraction aperture, full 3D magnetic field map, etc. For the first time ONIX has been benchmarked with commercial positive ions tracing code KOBRA3D. A very good agreement in terms of the meniscus position and depth has been found. Simulation of NI extraction with different e/NI ratio in bulk plasma shows high relevance of the direct negative ion extraction from the surface produced NI in order to obtain extracted NI current as in the experimental results from BATMAN testbed.

  14. Linking continuum mechanics and 3D discrete dislocation simulations

    SciTech Connect

    El-Azab, A. A.; Fivel, M.

    1998-10-18

    A technique is developed for linking the methods of discrete dislocation dynamics simulation and finite element to treat elasto-plasticity problems. The overall formulation views the plastically deforming crystal as an elastic crystal with continuously changing dislocation microstructure which is tracked by the numerical dynamics simulation. The FEM code needed in this regard is based on linear elasticity only. This formulation presented here is focused on a continuous updating of the outer shape of the crystal, for possible regeneration of the FEM mesh, and adjustment of the surface geometry, in particular the surface normal. The method is expected to be potentially applicable to the nano- indentation experiments, where the zone around the indenter-crystal contact undergoes significant permanent deformation, the rigorous determination of which is very important to the calculation of the indentation print area and in turn, the surface hardness. Furthermore, the technique is expected to account for the plastic history of the surface displacement under the indenter. Other potential applications are mentioned in the text.

  15. Interpreting Irradiance Distributions Using High-Resolution 3D MHD Simulations

    NASA Astrophysics Data System (ADS)

    Peck, Courtney; Rast, Mark; Criscuoli, Serena; Uitenbroek, Han; Rempel, Matthias D.

    2016-05-01

    We present initial results of studies aimed at understanding the impact of the unresolved magnetic field distribution on solar spectral irradiance. Using high-resolution 3D MHD simulations (from MURaM code) and spectral synthesis (with the RH code), we examine the emergent spectra of two atmospheres with similar mean field strengths but differing imposed-field conditions at wavelengths spanning from visible to infrared. Comparing the contrast against the magnetic field strength for the two magnetic simulations, we find differences in the distributions of contrasts versus field strength. We repeat the analysis after convolving the images with the PSF of a typical solar telescope (1-meter) and discuss the potential implications for irradiance modeling and future steps.

  16. 3D FEA simulation of segmented reinforcement variable stiffness composites

    NASA Astrophysics Data System (ADS)

    Henry, C. P.; McKnight, G. P.; Enke, A.; Bortolin, R.; Joshi, S.

    2008-03-01

    Reconfigurable and morphing structures may provide significant improvement in overall platform performance through optimization over broad operating conditions. The realization of this concept requires structures, which can accommodate the large deformations necessary with modest weight and strength penalties. Other studies suggest morphing structures need new materials to realize the benefits that morphing may provide. To help meet this need, we have developed novel composite materials based on specially designed segmented reinforcement and shape memory polymer matrices that provide unique combinations of deformation and stiffness properties. To tailor and optimize the design and fabrication of these materials for particular structural applications, one must understand the envelope of morphing material properties as a function of microstructural architecture and constituent properties. Here we extend our previous simulations of these materials by using 3D models to predict stiffness and deformation properties in variable stiffness segmented composite materials. To understand the effect of various geometry tradeoffs and constituent properties on the elastic stiffness in both the high and low stiffness states, we have performed a trade study using a commercial FEA analysis package. The modulus tensor is constructed and deformation properties are computed from representative volume elements (RVE) in which all (6) basic loading conditions are applied. Our test matrix consisted of four composite RVE geometries modeled using combinations of 5 SMP and 3 reinforcement elastic moduli. Effective composite stiffness and deformation results confirm earlier evidence of the essential performance tradeoffs of reduced stiffness for increasing reversible strain accommodation with especially heavy dependencies on matrix modulus and microstructural architecture. Furthermore, our results show these laminar materials are generally orthotropic and indicate that previous calculations of

  17. Simulation of a true-triaxial deformation test on anisotropic gneiss using FLAC3D

    NASA Astrophysics Data System (ADS)

    Ye, Shenghua; Sehizadeh, Mehdi; Nasseri, Mohammad; Young, Paul

    2016-04-01

    A series of true-triaxial experiments have been carried out at the University of Toronto's Rock Fracture Dynamics Laboratory. Isotropic pegmatite and gneiss have been used to systematically study the effect of anisotropy on the strength, behaviour and seismic response. Samples were loaded under true-triaxial stress conditions and subjected to complex loading and unloading histories associated with rock deformation around underground openings. The results show expected patterns of weakness from preferentially oriented samples and highlight the importance of unloading history under true-triaxial conditions on the deformation and seismic response of the samples. These tests have been used to validate a synthetic simulation using the Itasca FLAC3D numerical code. The paper describes the FLAC3D simulations of the complex true-triaxial loading and unloading history of the different anisotropic samples. Various parameters were created to describe the physico-mechanical properties of the synthetic rock samples. Foliation planes of preferential orientations with respect to the primary loading direction were added to the synthetic rock samples to reflect the anisotropy of the gneiss. These synthetic rock samples were subjected to the same loading and unloading paths as the real rock samples, and failed in the same mechanism as what was observed from the experiments, and thus it proved the validity of this numerical simulation with FLAC3D.

  18. Properties of lower-hybrid range wave activity at reconnection jet edge: 3D PIC simulations

    NASA Astrophysics Data System (ADS)

    Divin, Andrey; Khotyaintsev, Yuri; Vaivads, Andris; Andre, Mats; Lapenta, Giovanni; Markidis, Stefano

    2014-05-01

    Reconnection fronts are areas of intense currents and enhanced wave activity, since magnetic flux and plasma are piled up there when the accelerated flow encounters denser ambient current sheet. Observations and numerical simulations show that the fronts generate a variety of waves ranging from MHD frequencies up to lower hybrid frequency and above. In the present study we use 2D and 3D Particle-in-Cell (PIC) simulations to investigate the properties of the lower hybrid range waves developing at hot reconnected plasma - current sheet interface. Calculations are performed using implicit parallel code iPIC3D starting from conventional Harris current sheet. Initial evolution of the jet is simulated using 2D approach to save computational time, but 3D calculations are implemented at later stages in order to observe instability linear stage, saturation and transition to turbulence. Properties of the linear stage match closely theoretical predictions for the lower hybrid drift instability. During saturation, the mode produces intense electric fields (several Alfvén in electric fields normalized unit) that can provide an additional mechanism of electron heating at reconnection jet fronts.

  19. Application of FUN3D Solver for Aeroacoustics Simulation of a Nose Landing Gear Configuration

    NASA Technical Reports Server (NTRS)

    Vatsa, Veer N.; Lockard, David P.; Khorrami, Mehdi R.

    2011-01-01

    Numerical simulations have been performed for a nose landing gear configuration corresponding to the experimental tests conducted in the Basic Aerodynamic Research Tunnel at NASA Langley Research Center. A widely used unstructured grid code, FUN3D, is examined for solving the unsteady flow field associated with this configuration. A series of successively finer unstructured grids has been generated to assess the effect of grid refinement. Solutions have been obtained on purely tetrahedral grids as well as mixed element grids using hybrid RANS/LES turbulence models. The agreement of FUN3D solutions with experimental data on the same size mesh is better on mixed element grids compared to pure tetrahedral grids, and in general improves with grid refinement.

  20. Compact encoding of 3-D voxel surfaces based on pattern code representation.

    PubMed

    Kim, Chang-Su; Lee, Sang-Uk

    2002-01-01

    In this paper, we propose a lossless compression algorithm for three-dimensional (3-D) binary voxel surfaces, based on the pattern code representation (PCR). In PCR, a voxel surface is represented by a series of pattern codes. The pattern of a voxel v is defined as the 3 x 3 x 3 array of voxels, centered on v. Therefore, the pattern code for informs of the local shape of the voxel surface around . The proposed algorithm can achieve the coding gain, since the patterns of adjacent voxels are highly correlated to each other. The performance of the proposed algorithm is evaluated using various voxel surfaces, which are scan-converted from triangular mesh models. It is shown that the proposed algorithm requires only 0.5 approximately 1 bits per black voxel (bpbv) to store or transmit the voxel surfaces.

  1. Coupling Magnetic Fields and ALE Hydrodynamics for 3D Simulations of MFCG's

    SciTech Connect

    White, D; Rieben, R; Wallin, B

    2006-09-20

    We review the development of a full 3D multiphysics code for the simulation of explosively driven Magnetic Flux Compression Generators (MFCG) and related pulse power devices. In a typical MFCG the device is seeded with an initial electric current and the device is then detonated. The detonation compresses the magnetic field and amplifies the current. This is a multiphysics problem in that detonation kinetics, electromagnetic diffusion and induction, material deformation, and thermal effects are all important. This is a tightly coupled problem in that the different physical quantities have comparable spatial and temporal variation, and hence should be solved simultaneously on the same computational mesh.

  2. Finite Element Code For 3D-Hydraulic Fracture Propagation Equations (3-layer).

    1992-03-24

    HYFRACP3D is a finite element program for simulation of a pseudo three-dimensional fracture geometries with a two-dimensional planar solution. The model predicts the height, width and winglength over time for a hydraulic fracture propagating in a three-layered system of rocks with variable rock mechanics properties.

  3. Lightning strike simulation using coaxial line technique and 3D linear injection current analysis

    NASA Astrophysics Data System (ADS)

    Flourens, F.; Gauthier, D.; Serafin, D.

    1989-09-01

    The GORFFD code for determining aircraft responses to either a lightning event or to simulated current injection is based on the finite-difference solution of Maxwell's equation, and allows the simulation of complex, 3D metallic and dielectric composite structures. A transfer method is used to analyze the EM environment associated with in-flight measurements. Attention is given to a linear-analysis numerical model in which the lightning channel is simulated as a thin wire that is driven by a current source. Surface E-fields and current mappings are produced for the Transall transport and Mirage fighter aircraft. An experimental method has been devised for verification of these lightning-strike simulations.

  4. A new technique of recognition for coded targets in optical 3D measurement

    NASA Astrophysics Data System (ADS)

    Guo, Changye; Cheng, Xiaosheng; Cui, Haihua; Dai, Ning; Weng, Jinping

    2014-11-01

    A new technique for coded targets recognition in optical 3D-measurement application is proposed in this paper. Traditionally, point cloud registration is based on homologous features, such as the curvature, which is time-consuming and not reliable. For this, we paste some coded targets onto the surface of the object to be measured to improve the optimum target location and accurate correspondence among multi-source images. Circular coded targets are used, and an algorithm to automatically detecting them is proposed. This algorithm extracts targets with intensive bimodal histogram features from complex background, and filters noise according to their size, shape and intensity. In addition, the coded targets' identification is conducted out by their ring codes. We affine them around the circle inversely, set foreground and background respectively as 1 and 0 to constitute a binary number, and finally shift one bit every time to calculate a decimal one of the binary number to determine a minimum decimal number as its code. In this 3Dmeasurement application, we build a mutual relationship between different viewpoints containing three or more coded targets with different codes. Experiments show that it is of efficiency to obtain global surface data of an object to be measured and is robust to the projection angles and noise.

  5. Aeroacoustic Simulation of a Nose Landing Gear in an Open Jet Facility Using FUN3D

    NASA Technical Reports Server (NTRS)

    Vatsa, Veer N.; Lockhard, David P.; Khorrami, Mehdi R.; Carlson, Jan-Renee

    2012-01-01

    Numerical simulations have been performed for a partially-dressed, cavity-closed nose landing gear configuration that was tested in NASA Langley s closed-wall Basic Aerodynamic Research Tunnel (BART) and in the University of Florida s open-jet acoustic facility known as UFAFF. The unstructured-grid flow solver, FUN3D, developed at NASA Langley Research center is used to compute the unsteady flow field for this configuration. A hybrid Reynolds-averaged Navier-Stokes/large eddy simulation (RANS/LES) turbulence model is used for these computations. Time-averaged and instantaneous solutions compare favorably with the measured data. Unsteady flowfield data obtained from the FUN3D code are used as input to a Ffowcs Williams-Hawkings noise propagation code to compute the sound pressure levels at microphones placed in the farfield. Significant improvement in predicted noise levels is obtained when the flowfield data from the open jet UFAFF simulations is used as compared to the case using flowfield data from the closed-wall BART configuration.

  6. Aeroacoustic Simulation of Nose Landing Gear on Adaptive Unstructured Grids With FUN3D

    NASA Technical Reports Server (NTRS)

    Vatsa, Veer N.; Khorrami, Mehdi R.; Park, Michael A.; Lockhard, David P.

    2013-01-01

    Numerical simulations have been performed for a partially-dressed, cavity-closed nose landing gear configuration that was tested in NASA Langley s closed-wall Basic Aerodynamic Research Tunnel (BART) and in the University of Florida's open-jet acoustic facility known as the UFAFF. The unstructured-grid flow solver FUN3D, developed at NASA Langley Research center, is used to compute the unsteady flow field for this configuration. Starting with a coarse grid, a series of successively finer grids were generated using the adaptive gridding methodology available in the FUN3D code. A hybrid Reynolds-averaged Navier-Stokes/large eddy simulation (RANS/LES) turbulence model is used for these computations. Time-averaged and instantaneous solutions obtained on these grids are compared with the measured data. In general, the correlation with the experimental data improves with grid refinement. A similar trend is observed for sound pressure levels obtained by using these CFD solutions as input to a FfowcsWilliams-Hawkings noise propagation code to compute the farfield noise levels. In general, the numerical solutions obtained on adapted grids compare well with the hand-tuned enriched fine grid solutions and experimental data. In addition, the grid adaption strategy discussed here simplifies the grid generation process, and results in improved computational efficiency of CFD simulations.

  7. 3D kinetic simulations of the global interaction between the solar wind and the magnetosphere

    NASA Astrophysics Data System (ADS)

    Amaya, Jorge; Maneva, Yana; Deca, Jan; Lapenta, Giovanni

    2015-04-01

    We performed three dimensional simulations of the interaction between the solar wind and the magnetosphere, using the self-consistent fully kinetic code iPic3D. The main objective of our simulations is to link the global interaction phenomena to the local turbulence and reconnection processes in the magnetosphere. Other numerical approaches have been used before to study this problem, including MHD, hybrid and Vlasov codes. However, only particle-in-cell codes offer the possibility to study the kinetic effects of the diffusion regions of the Earth environment that drive the energy transfer from the solar wind to the magnetosphere. Previous attempts to perform such kinds of simulations were limited to unphysical thermal velocities of the ion and electron species, small simulation boxes or cell sizes that do not capture the local kinetic effects at the magnetopause. Using the implicit moment Particle-in-Cell approach we performed simulations that can capture these small scale effects and, at the same time, allow to study large scale phenomena such as the bow shock and the development of the magnetotail. We expect that these results will be used to maximize the impact of future space missions, such as THOR, MMS and BepiColombo, by improving our understanding of the planetary environment, from the conditions observed in the solar wind to the turbulence and reconnection processes downstream of the bow shock.

  8. The Transient 3-D Transport Coupled Code TORT-TD/ATTICA3D for High-Fidelity Pebble-Bed HTGR Analyses

    NASA Astrophysics Data System (ADS)

    Seubert, Armin; Sureda, Antonio; Lapins, Janis; Bader, Johannes; Laurien, Eckart

    2012-01-01

    This article describes the 3D discrete ordinates-based coupled code system TORT-TD/ATTICA3D that aims at steady state and transient analyses of pebble-bed high-temperature gas cooled reactors. In view of increasing computing power, the application of time-dependent neutron transport methods becomes feasible for best estimate evaluations of safety margins. The calculation capabilities of TORT-TD/ATTICA3D are presented along with the coupling approach, with focus on the time-dependent neutron transport features of TORT-TD. Results obtained for the OECD/NEA/NSC PBMR-400 benchmark demonstrate the transient capabilities of TORT-TD/ATTICA3D.

  9. A 3-D Vortex Code for Parachute Flow Predictions: VIPAR Version 1.0

    SciTech Connect

    STRICKLAND, JAMES H.; HOMICZ, GREGORY F.; PORTER, VICKI L.; GOSSLER, ALBERT A.

    2002-07-01

    This report describes a 3-D fluid mechanics code for predicting flow past bluff bodies whose surfaces can be assumed to be made up of shell elements that are simply connected. Version 1.0 of the VIPAR code (Vortex Inflation PARachute code) is described herein. This version contains several first order algorithms that we are in the process of replacing with higher order ones. These enhancements will appear in the next version of VIPAR. The present code contains a motion generator that can be used to produce a large class of rigid body motions. The present code has also been fully coupled to a structural dynamics code in which the geometry undergoes large time dependent deformations. Initial surface geometry is generated from triangular shell elements using a code such as Patran and is written into an ExodusII database file for subsequent input into VIPAR. Surface and wake variable information is output into two ExodusII files that can be post processed and viewed using software such as EnSight{trademark}.

  10. Benchmarking of 3D space charge codes using direct phase space measurements from photoemission high voltage dc gun

    NASA Astrophysics Data System (ADS)

    Bazarov, Ivan V.; Dunham, Bruce M.; Gulliford, Colwyn; Li, Yulin; Liu, Xianghong; Sinclair, Charles K.; Soong, Ken; Hannon, Fay

    2008-10-01

    We present a comparison between space charge calculations and direct measurements of the transverse phase space of space charge dominated electron bunches from a high voltage dc photoemission gun followed by an emittance compensation solenoid magnet. The measurements were performed using a double-slit emittance measurement system over a range of bunch charge and solenoid current values. The data are compared with detailed simulations using the 3D space charge codes GPT and Parmela3D. The initial particle distributions were generated from measured transverse and temporal laser beam profiles at the photocathode. The beam brightness as a function of beam fraction is calculated for the measured phase space maps and found to approach within a factor of 2 the theoretical maximum set by the thermal energy and the accelerating field at the photocathode.

  11. Full Core 3-D Simulation of a Partial MOX LWR Core

    SciTech Connect

    S. Bays; W. Skerjanc; M. Pope

    2009-05-01

    A comparative analysis and comparison of results obtained between 2-D lattice calculations and 3-D full core nodal calculations, in the frame of MOX fuel design, was conducted. This study revealed a set of advantages and disadvantages, with respect to each method, which can be used to guide the level of accuracy desired for future fuel and fuel cycle calculations. For the purpose of isotopic generation for fuel cycle analyses, the approach of using a 2-D lattice code (i.e., fuel assembly in infinite lattice) gave reasonable predictions of uranium and plutonium isotope concentrations at the predicted 3-D core simulation batch average discharge burnup. However, it was found that the 2-D lattice calculation can under-predict the power of pins located along a shared edge between MOX and UO2 by as much as 20%. In this analysis, this error did not occur in the peak pin. However, this was a coincidence and does not rule out the possibility that the peak pin could occur in a lattice position with high calculation uncertainty in future un-optimized studies. Another important consideration in realistic fuel design is the prediction of the peak axial burnup and neutron fluence. The use of 3-D core simulation gave peak burnup conditions, at the pellet level, to be approximately 1.4 times greater than what can be predicted using back-of-the-envelope assumptions of average specific power and irradiation time.

  12. PRONTO3D users` instructions: A transient dynamic code for nonlinear structural analysis

    SciTech Connect

    Attaway, S.W.; Mello, F.J.; Heinstein, M.W.; Swegle, J.W.; Ratner, J.A.; Zadoks, R.I.

    1998-06-01

    This report provides an updated set of users` instructions for PRONTO3D. PRONTO3D is a three-dimensional, transient, solid dynamics code for analyzing large deformations of highly nonlinear materials subjected to extremely high strain rates. This Lagrangian finite element program uses an explicit time integration operator to integrate the equations of motion. Eight-node, uniform strain, hexahedral elements and four-node, quadrilateral, uniform strain shells are used in the finite element formulation. An adaptive time step control algorithm is used to improve stability and performance in plasticity problems. Hourglass distortions can be eliminated without disturbing the finite element solution using either the Flanagan-Belytschko hourglass control scheme or an assumed strain hourglass control scheme. All constitutive models in PRONTO3D are cast in an unrotated configuration defined using the rotation determined from the polar decomposition of the deformation gradient. A robust contact algorithm allows for the impact and interaction of deforming contact surfaces of quite general geometry. The Smooth Particle Hydrodynamics method has been embedded into PRONTO3D using the contact algorithm to couple it with the finite element method.

  13. Robust 3D face landmark localization based on local coordinate coding.

    PubMed

    Song, Mingli; Tao, Dacheng; Sun, Shengpeng; Chen, Chun; Maybank, Stephen J

    2014-12-01

    In the 3D facial animation and synthesis community, input faces are usually required to be labeled by a set of landmarks for parameterization. Because of the variations in pose, expression and resolution, automatic 3D face landmark localization remains a challenge. In this paper, a novel landmark localization approach is presented. The approach is based on local coordinate coding (LCC) and consists of two stages. In the first stage, we perform nose detection, relying on the fact that the nose shape is usually invariant under the variations in the pose, expression, and resolution. Then, we use the iterative closest points algorithm to find a 3D affine transformation that aligns the input face to a reference face. In the second stage, we perform resampling to build correspondences between the input 3D face and the training faces. Then, an LCC-based localization algorithm is proposed to obtain the positions of the landmarks in the input face. Experimental results show that the proposed method is comparable to state of the art methods in terms of its robustness, flexibility, and accuracy. PMID:25296404

  14. The future of 3D and video coding in mobile and the internet

    NASA Astrophysics Data System (ADS)

    Bivolarski, Lazar

    2013-09-01

    The current Internet success has already changed our social and economic world and is still continuing to revolutionize the information exchange. The exponential increase of amount and types of data that is currently exchanged on the Internet represents significant challenge for the design of future architectures and solutions. This paper reviews the current status and trends in the design of solutions and research activities in the future Internet from point of view of managing the growth of bandwidth requirements and complexity of the multimedia that is being created and shared. Outlines the challenges that are present before the video coding and approaches to the design of standardized media formats and protocols while considering the expected convergence of multimedia formats and exchange interfaces. The rapid growth of connected mobile devices adds to the current and the future challenges in combination with the expected, in near future, arrival of multitude of connected devices. The new Internet technologies connecting the Internet of Things with wireless visual sensor networks and 3D virtual worlds requires conceptually new approaches of media content handling from acquisition to presentation in the 3D Media Internet. Accounting for the entire transmission system properties and enabling adaptation in real-time to context and content throughout the media proceeding path will be paramount in enabling the new media architectures as well as the new applications and services. The common video coding formats will need to be conceptually redesigned to allow for the implementation of the necessary 3D Media Internet features.

  15. A quasi-3D viscous-inviscid interaction code: Q3UIC

    NASA Astrophysics Data System (ADS)

    García, N. R.; Sørensen, J. N.; Shen, W. Z.

    2014-12-01

    A computational model for predicting the aerodynamic behavior of wind turbine airfoils under rotation and subjected to steady and unsteady motions developed in [1] is presented herein. The model is based on a viscous-inviscid interaction technique using strong coupling between the viscous and inviscid parts. The rotational effects generated by centrifugal and Coriolis forces are introduced in Q3UIC via the streamwise and spanwise integral boundary layer momentum equations. A special inviscid version of the code has been developed to cope with massive separation. To check the ability of the code wind turbine airfoils in steady and unsteady conditions for a large range of angles of attack are considered here. Further, the new quasi-3D code Q3UIC is used to perform a parametric study of a wind turbine airfoil under rotation confined to its boundary layer.

  16. M3D-K simulations of sawteeth and energetic particle transport in tokamak plasmas

    SciTech Connect

    Shen, Wei; Sheng, Zheng-Mao; Fu, G. Y.; Breslau, J. A.; Wang, Feng

    2014-09-15

    Nonlinear simulations of sawteeth and related energetic particle transport are carried out using the kinetic/magnetohydrodynamic (MHD) hybrid code M3D-K. MHD simulations show repeated sawtooth cycles for a model tokamak equilibrium. Furthermore, test particle simulations are carried out to study the energetic particle transport due to a sawtooth crash. The results show that energetic particles are redistributed radially in the plasma core, depending on pitch angle and energy. For trapped particles, the redistribution occurs for particle energy below a critical value in agreement with existing theories. For co-passing particles, the redistribution is strong with little dependence on particle energy. In contrast, the redistribution level of counter-passing particles decreases with increasing particle energy.

  17. Fully 3D Multiple Beam Dynamics Processes Simulation for the Fermilab Tevatron

    SciTech Connect

    Stern, E.; Amundson, J.; Spentzouris, P; Valishev, A.; /Fermilab

    2010-06-01

    The Fermilab Tevatron has been, until 2010, the premier high-energy physics collider in the world. The data collected over the last decade by high-energy physics experiments running at the Tevatron have been analyzed to make important measurements in fundamental areas such as B meson masses and flavor oscillation, searches for the Higgs boson, and supersymmetry. Collecting these data at the limits of detectability has required the Tevatron to operate reliably at high beam intensities to maximize the number of collisions to analyze. This impressive achievement has been assisted by the use of HPC resources and software provided through the SciDAC program. This paper describes the enhancements to the BeamBeam3d code to realistically simulate the Tevatron, the validation of these simulations, and the improvement in equipment reliability and personal safety achieved with the aid of simulations.

  18. Jupiter Magnetotail Interaction with a Variable Solar Wind: A 3D MHD Simulation

    NASA Astrophysics Data System (ADS)

    Ranquist, D. A.; Bagenal, F.; Delamere, P. A.; Ma, X.

    2015-12-01

    Jupiter's magnetosphere is the largest object within the heliosphere. Voyager 2 detected its influence at Saturn's orbit, 4.3 AU away. It takes considerable time, therefore, for the solar wind to propagate such lengths down the tail. This propagation time is much greater than typical periods between changes in direction of the interplanetary magnetic field (IMF). We expect these variable magnetic fields to create a jumbled structure in Jupiter's magnetotail, resulting in magnetic reconnection and other magnetic processes. We simulate the global interaction of the solar wind with Jupiter's magnetosphere using a 3D magnetohydrodynamics (MHD) code. Delamere & Bagenal (2010) argue that the interaction is largely viscous, so we simulate the jovian magnetosphere as a region where the momentum equation has an added loss term. We also use in situ data gathered by the Ulysses spacecraft near Jupiter's orbit for solar wind input. Here, we report on the simulated dynamics in Jupiter's tail region.

  19. Study of the internal magnetic field of Mercury through 3D hybrid simulations

    NASA Astrophysics Data System (ADS)

    Leclercq, Ludivine; Marcel Chanteur, Gerard; Modolo, Ronan; Leblanc, Francois; Schmidt, Carl; Langlais, Benoît; Thebault, Erwan

    2016-10-01

    In 1974, Mariner 10 discovered the intrinsic magnetic field of Mercury which interacts with the solar wind, leading to the formation of a magnetosphere. In spite of the recent MESSENGER observations, this magnetosphere remains quite unknown, especially in the Southern hemisphere. In order to improve our understanding of the Hermean magnetosphere, and to prepare the Bepi-Colombo mission (ESA/JAXA), we simulated the magnetized environment of Mercury using the model named LatHyS (LATMOS Hybrid Simulation). LatHyS is a 3D parallel multi-species hybrid code which has been applied to Mars, Titan and Ganymede, which has recently be improved by the implementation of a multi-grid method allowing to refine the spatial resolution near the planetary object (40 km in the case of Mercury). In order to investigate the Hermean environment, several hybrid simulations have been performed considering different internal field models, and results are compared with MESSENGER observations.

  20. GPU-accelerated 3D neutron diffusion code based on finite difference method

    SciTech Connect

    Xu, Q.; Yu, G.; Wang, K.

    2012-07-01

    Finite difference method, as a traditional numerical solution to neutron diffusion equation, although considered simpler and more precise than the coarse mesh nodal methods, has a bottle neck to be widely applied caused by the huge memory and unendurable computation time it requires. In recent years, the concept of General-Purpose computation on GPUs has provided us with a powerful computational engine for scientific research. In this study, a GPU-Accelerated multi-group 3D neutron diffusion code based on finite difference method was developed. First, a clean-sheet neutron diffusion code (3DFD-CPU) was written in C++ on the CPU architecture, and later ported to GPUs under NVIDIA's CUDA platform (3DFD-GPU). The IAEA 3D PWR benchmark problem was calculated in the numerical test, where three different codes, including the original CPU-based sequential code, the HYPRE (High Performance Pre-conditioners)-based diffusion code and CITATION, were used as counterpoints to test the efficiency and accuracy of the GPU-based program. The results demonstrate both high efficiency and adequate accuracy of the GPU implementation for neutron diffusion equation. A speedup factor of about 46 times was obtained, using NVIDIA's Geforce GTX470 GPU card against a 2.50 GHz Intel Quad Q9300 CPU processor. Compared with the HYPRE-based code performing in parallel on an 8-core tower server, the speedup of about 2 still could be observed. More encouragingly, without any mathematical acceleration technology, the GPU implementation ran about 5 times faster than CITATION which was speeded up by using the SOR method and Chebyshev extrapolation technique. (authors)

  1. Verification of the NIKE3D structural analysis code by comparison against the analytic solution for a spherical cavity under a far-field uniaxial stress

    SciTech Connect

    Kansa, E.J.

    1989-01-01

    The original scope of this task was to simulate the stresses and displacements of a hard rock tunnel experimental design using a suitable three-dimensional finite element code. NIKE3D was selected as a suitable code for performing these primarily approximate linearly elastic 3D analyses, but it required modifications to include initial stress, shear traction boundary condition and excavation options. During the summer of 1988, such capabilities were installed in a special version of NIKE3D. Subsequently, we verified both the LLNL's commonly used version of NIKE3D and our private modified version against the analytic solution for a spherical cavity in an elastic material deforming under a far-field uniaxial stress. We find the results produced by the unmodified and modified versions of NIKE3D to be in good agreement with the analytic solutions, except near the cavity, where the errors in the stress field are large. As can be expected from a code based on a displacement finite element formulation, the displacements are much more accurate than the stresses calculated from the 8-noded brick elements. To reduce these errors to acceptable levels, the grid must be refined further near the cavity wall. The level of grid refinement required to simulate accurately tunneling problems that do not have spatial symmetry in three dimensions using the current NIKE3D code is likely to exceed the memory capacity of the largest CRAY 1 computers at LLNL. 8 refs., 121 figs.

  2. A novel sensor system for 3D face scanning based on infrared coded light

    NASA Astrophysics Data System (ADS)

    Modrow, Daniel; Laloni, Claudio; Doemens, Guenter; Rigoll, Gerhard

    2008-02-01

    In this paper we present a novel sensor system for three-dimensional face scanning applications. Its operating principle is based on active triangulation with a color coded light approach. As it is implemented in the near infrared band, the used light is invisible for human perception. Though the proposed sensor is primarily designed for face scanning and biometric applications, its performance characteristics are beneficial for technical applications as well. The acquisition of 3d data is real-time capable, provides accurate and high resolution depthmaps and shows high robustness against ambient light. Hence most of the limiting factors of other sensors for 3d and face scanning applications are eliminated, such as blinding and annoying light patterns, motion constraints and highly restricted scenarios due to ambient light constraints.

  3. FEMFLOW3D; a finite-element program for the simulation of three-dimensional aquifers; version 1.0

    USGS Publications Warehouse

    Durbin, Timothy J.; Bond, Linda D.

    1998-01-01

    This document also includes model validation, source code, and example input and output files. Model validation was performed using four test problems. For each test problem, the results of a model simulation with FEMFLOW3D were compared with either an analytic solution or the results of an independent numerical approach. The source code, written in the ANSI x3.9-1978 FORTRAN standard, and the complete input and output of an example problem are listed in the appendixes.

  4. DREAM3D simulations of inner-belt dynamics

    SciTech Connect

    Cunningham, Gregory Scott

    2015-05-26

    A 1973 paper by Lyons and Thorne explains the two-belt structure for electrons in the inner magnetosphere as a balance between inward radial diffusion and loss to the atmosphere, where the loss to the atmosphere is enabled by pitch-angle scattering from Coulomb and wave-particle interactions. In the 1973 paper, equilibrium solutions to a decoupled set of 1D radial diffusion equations, one for each value of the first invariant of motion, μ, were computed to produce the equilibrium two-belt structure. Each 1D radial diffusion equation incorporated an L-and μ-dependent `lifetime' due to the Coulomb and wave-particle interactions. This decoupling of the problem is appropriate under the assumption that radial diffusion is slow in comparison to pitch-angle scattering. However, for some values of μ and L the lifetime associated with pitch-angle scattering is comparable to the timescale associated with radial diffusion, suggesting that the true equilibrium solutions might reflect `coupled modes' involving pitch-angle scattering and radial diffusion and thus requiring a 3D diffusion model. In the work we show here, we have computed the equilibrium solutions using our 3D diffusion model, DREAM3D, that allows for such coupling. We find that the 3D equilibrium solutions are quite similar to the solutions shown in the 1973 paper when we use the same physical models for radial diffusion and pitch-angle scattering from hiss. However, we show that the equilibrium solutions are quite sensitive to various aspects of the physics model employed in the 1973 paper that can be improved, suggesting that additional work needs to be done to understand the two-belt structure.

  5. FURN3D: A computer code for radiative heat transfer in pulverized coal furnaces

    SciTech Connect

    Ahluwalia, R.K.; Im, K.H.

    1992-08-01

    A computer code FURN3D has been developed for assessing the impact of burning different coals on heat absorption pattern in pulverized coal furnaces. The code is unique in its ability to conduct detailed spectral calculations of radiation transport in furnaces fully accounting for the size distributions of char, soot and ash particles, ash content, and ash composition. The code uses a hybrid technique of solving the three-dimensional radiation transport equation for absorbing, emitting and anisotropically scattering media. The technique achieves an optimal mix of computational speed and accuracy by combining the discrete ordinate method (S[sub 4]), modified differential approximation (MDA) and P, approximation in different range of optical thicknesses. The code uses spectroscopic data for estimating the absorption coefficients of participating gases C0[sub 2], H[sub 2]0 and CO. It invokes Mie theory for determining the extinction and scattering coefficients of combustion particulates. The optical constants of char, soot and ash are obtained from dispersion relations derived from reflectivity, transmissivity and extinction measurements. A control-volume formulation is adopted for determining the temperature field inside the furnace. A simple char burnout model is employed for estimating heat release and evolution of particle size distribution. The code is written in Fortran 77, has modular form, and is machine-independent. The computer memory required by the code depends upon the number of grid points specified and whether the transport calculations are performed on spectral or gray basis.

  6. FURN3D: A computer code for radiative heat transfer in pulverized coal furnaces

    SciTech Connect

    Ahluwalia, R.K.; Im, K.H.

    1992-08-01

    A computer code FURN3D has been developed for assessing the impact of burning different coals on heat absorption pattern in pulverized coal furnaces. The code is unique in its ability to conduct detailed spectral calculations of radiation transport in furnaces fully accounting for the size distributions of char, soot and ash particles, ash content, and ash composition. The code uses a hybrid technique of solving the three-dimensional radiation transport equation for absorbing, emitting and anisotropically scattering media. The technique achieves an optimal mix of computational speed and accuracy by combining the discrete ordinate method (S{sub 4}), modified differential approximation (MDA) and P, approximation in different range of optical thicknesses. The code uses spectroscopic data for estimating the absorption coefficients of participating gases C0{sub 2}, H{sub 2}0 and CO. It invokes Mie theory for determining the extinction and scattering coefficients of combustion particulates. The optical constants of char, soot and ash are obtained from dispersion relations derived from reflectivity, transmissivity and extinction measurements. A control-volume formulation is adopted for determining the temperature field inside the furnace. A simple char burnout model is employed for estimating heat release and evolution of particle size distribution. The code is written in Fortran 77, has modular form, and is machine-independent. The computer memory required by the code depends upon the number of grid points specified and whether the transport calculations are performed on spectral or gray basis.

  7. Simulation of a 3D unsteady flow in an axial turbine stage

    NASA Astrophysics Data System (ADS)

    Straka, Petr

    2012-04-01

    The contribution deals with a numerical simulation of an unsteady flow in an axial turbine stage. The solution is performed using an in-house numerical code developed in the Aeronautical and Test Institute, Plc. in Prague. The numerical code is based on a finite volume discretization of governing equations (Favre averaged Navier-Stokes equations) and a two-equations turbulence model. The temporal integration is based on the implicit second-order backward Euler formula, which is realized through the iteration process in dual time. The proposed numerical method is used for solution of the 3D, unsteady, viscous turbulent flow of a perfect gas in the axial turbine stage. The flow path consists of an input nozzle, stator blade-wheel, rotor blade-wheel, a shroud-seal gap and a diffuser. Attention is paid to the influence of a secondary flow structures, such as generated vortices and flow in shroud-seal gap.

  8. Method and simulation to study 3D crosstalk perception

    NASA Astrophysics Data System (ADS)

    Khaustova, Dar'ya; Blondé, Laurent; Huynh-Thu, Quan; Vienne, Cyril; Doyen, Didier

    2012-03-01

    To various degrees, all modern 3DTV displays suffer from crosstalk, which can lead to a decrease of both visual quality and visual comfort, and also affect perception of depth. In the absence of a perfect 3D display technology, crosstalk has to be taken into account when studying perception of 3D stereoscopic content. In order to improve 3D presentation systems and understand how to efficiently eliminate crosstalk, it is necessary to understand its impact on human perception. In this paper, we present a practical method to study the perception of crosstalk. The approach consists of four steps: (1) physical measurements of a 3DTV, (2) building of a crosstalk surface based on those measurements and representing specifically the behavior of that 3TV, (3) manipulation of the crosstalk function and application on reference images to produce test images degraded by crosstalk in various ways, and (4) psychophysical tests. Our approach allows both a realistic representation of the behavior of a 3DTV and the easy manipulation of its resulting crosstalk in order to conduct psycho-visual experiments. Our approach can be used in all studies requiring the understanding of how crosstalk affects perception of stereoscopic content and how it can be corrected efficiently.

  9. Using 3-D Numerical Weather Data in Piloted Simulations

    NASA Technical Reports Server (NTRS)

    Daniels, Taumi S.

    2016-01-01

    This report describes the process of acquiring and using 3-D numerical model weather data sets in NASA Langley's Research Flight Deck (RFD). A set of software tools implement the process and can be used for other purposes as well. Given time and location information of a weather phenomenon of interest, the user can download associated numerical weather model data. These data are created by the National Oceanic and Atmospheric Administration (NOAA) High Resolution Rapid Refresh (HRRR) model, and are then processed using a set of Mathworks' Matlab(TradeMark) scripts to create the usable 3-D weather data sets. Each data set includes radar re ectivity, water vapor, component winds, temperature, supercooled liquid water, turbulence, pressure, altitude, land elevation, relative humidity, and water phases. An open-source data processing program, wgrib2, is available from NOAA online, and is used along with Matlab scripts. These scripts are described with sucient detail to make future modi cations. These software tools have been used to generate 3-D weather data for various RFD experiments.

  10. Validation and Comparison of 2D and 3D Codes for Nearshore Motion of Long Waves Using Benchmark Problems

    NASA Astrophysics Data System (ADS)

    Velioǧlu, Deniz; Cevdet Yalçıner, Ahmet; Zaytsev, Andrey

    2016-04-01

    Tsunamis are huge waves with long wave periods and wave lengths that can cause great devastation and loss of life when they strike a coast. The interest in experimental and numerical modeling of tsunami propagation and inundation increased considerably after the 2011 Great East Japan earthquake. In this study, two numerical codes, FLOW 3D and NAMI DANCE, that analyze tsunami propagation and inundation patterns are considered. Flow 3D simulates linear and nonlinear propagating surface waves as well as long waves by solving three-dimensional Navier-Stokes (3D-NS) equations. NAMI DANCE uses finite difference computational method to solve 2D depth-averaged linear and nonlinear forms of shallow water equations (NSWE) in long wave problems, specifically tsunamis. In order to validate these two codes and analyze the differences between 3D-NS and 2D depth-averaged NSWE equations, two benchmark problems are applied. One benchmark problem investigates the runup of long waves over a complex 3D beach. The experimental setup is a 1:400 scale model of Monai Valley located on the west coast of Okushiri Island, Japan. Other benchmark problem is discussed in 2015 National Tsunami Hazard Mitigation Program (NTHMP) Annual meeting in Portland, USA. It is a field dataset, recording the Japan 2011 tsunami in Hilo Harbor, Hawaii. The computed water surface elevation and velocity data are compared with the measured data. The comparisons showed that both codes are in fairly good agreement with each other and benchmark data. The differences between 3D-NS and 2D depth-averaged NSWE equations are highlighted. All results are presented with discussions and comparisons. Acknowledgements: Partial support by Japan-Turkey Joint Research Project by JICA on earthquakes and tsunamis in Marmara Region (JICA SATREPS - MarDiM Project), 603839 ASTARTE Project of EU, UDAP-C-12-14 project of AFAD Turkey, 108Y227, 113M556 and 213M534 projects of TUBITAK Turkey, RAPSODI (CONCERT_Dis-021) of CONCERT

  11. The MiRa/THESIS3D-code package for resonator design and modeling of millimeter-wave material processing

    SciTech Connect

    Feher, L.; Link, G.; Thumm, M.

    1996-12-31

    Precise knowledge of millimeter-wave oven properties and design studies have to be obtained by 3D numerical field calculations. A simulation code solving the electromagnetic field problem based on a covariant raytracing scheme (MiRa-Code) has been developed. Time dependent electromagnetic field-material interactions during sintering as well as the heat transfer processes within the samples has been investigated. A numerical code solving the nonlinear heat transfer problem due to millimeter-wave heating has been developed (THESIS3D-Code). For a self consistent sintering simulation, a zip interface between both codes exchanging the time advancing fields and material parameters is implemented. Recent results and progress on calculations of field distributions in large overmoded resonators as well as results on modeling heating of materials with millimeter waves are presented in this paper. The calculations are compared to experiments.

  12. Implementation of a 3D mixing layer code on parallel computers

    NASA Technical Reports Server (NTRS)

    Roe, K.; Thakur, R.; Dang, T.; Bogucz, E.

    1995-01-01

    This paper summarizes our progress and experience in the development of a Computational-Fluid-Dynamics code on parallel computers to simulate three-dimensional spatially-developing mixing layers. In this initial study, the three-dimensional time-dependent Euler equations are solved using a finite-volume explicit time-marching algorithm. The code was first programmed in Fortran 77 for sequential computers. The code was then converted for use on parallel computers using the conventional message-passing technique, while we have not been able to compile the code with the present version of HPF compilers.

  13. Predictions of bubbly flows in vertical pipes using two-fluid models in CFDS-FLOW3D code

    SciTech Connect

    Banas, A.O.; Carver, M.B.; Unrau, D.

    1995-09-01

    This paper reports the results of a preliminary study exploring the performance of two sets of two-fluid closure relationships applied to the simulation of turbulent air-water bubbly upflows through vertical pipes. Predictions obtained with the default CFDS-FLOW3D model for dispersed flows were compared with the predictions of a new model (based on the work of Lee), and with the experimental data of Liu. The new model, implemented in the CFDS-FLOW3D code, included additional source terms in the {open_quotes}standard{close_quotes} {kappa}-{epsilon} transport equations for the liquid phase, as well as modified model coefficients and wall functions. All simulations were carried out in a 2-D axisymmetric format, collapsing the general multifluid framework of CFDS-FLOW3D to the two-fluid (air-water) case. The newly implemented model consistently improved predictions of radial-velocity profiles of both phases, but failed to accurately reproduce the experimental phase-distribution data. This shortcoming was traced to the neglect of anisotropic effects in the modelling of liquid-phase turbulence. In this sense, the present investigation should be considered as the first step toward the ultimate goal of developing a theoretically sound and universal CFD-type two-fluid model for bubbly flows in channels.

  14. An axis-free overset grid in spherical polar coordinates for simulating 3D self-gravitating flows

    NASA Astrophysics Data System (ADS)

    Wongwathanarat, A.; Hammer, N. J.; Müller, E.

    2010-05-01

    Aims: Three dimensional explicit hydrodynamic codes based on spherical polar coordinates using a single spherical polar grid suffer from a severe restriction of the time step size due to the convergence of grid lines near the poles of the coordinate system. More importantly, numerical artifacts are encountered at the symmetry axis of the grid where boundary conditions have to be imposed that flaw the flow near the axis. The first problem can be eased and the second one avoided by applying an overlapping grid technique. Methods: A type of overlapping grid in spherical coordinates is adopted. This so called “Yin-Yang” grid is a two-patch overset grid proposed by Kageyama and Sato for geophysical simulations. Its two grid patches contain only the low-latitude regions of the usual spherical polar grid and are combined together in a simple manner. This property of the Yin-Yang grid greatly simplifies its implementation into a 3D code already employing spherical polar coordinates. It further allows for a much larger time step in 3D simulations using high angular resolution (⪉1°) than that required in 3D simulations using a regular spherical grid with the same angular resolution. Results: The Yin-Yang grid is successfully implemented into a 3D version of the explicit Eulerian grid-based code PROMETHEUS including self-gravity. The modified code successfully passed several standard hydrodynamic tests producing results which are in very good agreement with analytic solutions. Moreover, the solutions obtained with the Yin-Yang grid exhibit no peculiar behaviour at the boundary between the two grid patches. The code has also been successfully used to model astrophysically relevant situations, namely equilibrium polytropes, a Taylor-Sedov explosion, and Rayleigh-Taylor instabilities. According to our results, the usage of the Yin-Yang grid greatly enhances the suitability and efficiency of 3D explicit Eulerian codes based on spherical polar coordinates for astrophysical

  15. Newly-Developed 3D GRMHD Code and its Application to Jet Formation

    NASA Technical Reports Server (NTRS)

    Mizuno, Y.; Nishikawa, K.-I.; Koide, S.; Hardee, P.; Fishman, G. J.

    2006-01-01

    We have developed a new three-dimensional general relativistic magnetohydrodynamic code by using a conservative, high-resolution shock-capturing scheme. The numerical fluxes are calculated using the HLL approximate Riemann solver scheme. The flux-interpolated constrained transport scheme is used to maintain a divergence-free magnetic field. We have performed various 1-dimensional test problems in both special and general relativity by using several reconstruction methods and found that the new 3D GRMHD code shows substantial improvements over our previous model. The . preliminary results show the jet formations from a geometrically thin accretion disk near a non-rotating and a rotating black hole. We will discuss the jet properties depended on the rotation of a black hole and the magnetic field strength.

  16. RF study and 3-D simulations of a side-coupling thermionic RF-gun

    NASA Astrophysics Data System (ADS)

    Rimjaem, S.; Kusoljariyakul, K.; Thongbai, C.

    2014-02-01

    A thermionic RF-gun for generating ultra-short electron bunches was optimized, developed and used as a source at a linac-based THz radiation research laboratory of the Plasma and Beam Physics Research Facility, Chiang Mai University, Thailand. The RF-gun is a π/2-mode standing wave structure, which consists of two S-band accelerating cells and a side-coupling cavity. The 2856 MHz RF wave is supplied from an S-band klystron to the gun through the waveguide input-port at the cylindrical wall of the second cell. A fraction of the RF power is coupled from the second cell to the first one via a side-coupling cavity. Both the waveguide input-port and the side-coupling cavity lead to an asymmetric geometry of the gun. RF properties and electromagnetic field distributions inside the RF-gun were studied and numerically simulated by using computer codes SUPERFISH 7.19 and CST Microwave Studio 2012©. RF characterizations and tunings of the RF-gun were performed to ensure the reliability of the gun operation. The results from 3D simulations and measurements are compared and discussed in this paper. The influence of asymmetric field distributions inside the RF-gun on the electron beam properties was investigated via 3D beam dynamics simulations. A change in the coupling-plane of the side-coupling cavity is suggested to improve the gun performance.

  17. Synthetic 3D modeling of active regions and simulation of their multi-wavelength emission

    NASA Astrophysics Data System (ADS)

    Nita, Gelu M.; Fleishman, Gregory; Kuznetsov, Alexey A.; Loukitcheva, Maria A.; Viall, Nicholeen M.; Klimchuk, James A.; Gary, Dale E.

    2015-04-01

    To facilitate the study of solar active regions, we have created a synthetic modeling framework that combines 3D magnetic structures obtained from magnetic extrapolations with simplified 1D thermal models of the chromosphere, transition region, and corona. To handle, visualize, and use such synthetic data cubes to compute multi-wavelength emission maps and compare them with observations, we have undertaken a major enhancement of our simulation tools, GX_Simulator (ftp://sohoftp.nascom.nasa.gov/solarsoft/packages/gx_simulator/), developed earlier for modeling emission from flaring loops. The greatly enhanced, object-based architecture, which now runs on Windows, Mac, and UNIX platform, offers important new capabilities that include the ability to either import 3D density and temperature distribution models, or to assign to each individual voxel numerically defined coronal or chromospheric temperature and densities, or coronal Differential Emission Measure distributions. Due to these new capabilities, the GX_Simulator can now apply parametric heating models involving average properties of the magnetic field lines crossing a given voxel volume, as well as compute and investigate the spatial and spectral properties of radio (to be compared with VLA or EOVSA data), (sub-)millimeter (ALMA), EUV (AIA/SDO), and X-ray (RHESSI) emission calculated from the model. The application integrates shared-object libraries containing fast free-free, gyrosynchrotron, and gyroresonance emission codes developed in FORTRAN and C++, and soft and hard X-ray and EUV codes developed in IDL. We use this tool to model and analyze an active region and compare the synthetic emission maps obtained in different wavelengths with observations.This work was partially supported by NSF grants AGS-1250374, AGS-1262772, NASA grant NNX14AC87G, the Marie Curie International Research Staff Exchange Scheme "Radiosun" (PEOPLE-2011-IRSES-295272), RFBR grants 14-02-91157, 15-02-01089, 15-02-03717, 15

  18. Building a 3D Virtual Liver: Methods for Simulating Blood Flow and Hepatic Clearance on 3D Structures.

    PubMed

    White, Diana; Coombe, Dennis; Rezania, Vahid; Tuszynski, Jack

    2016-01-01

    In this paper, we develop a spatio-temporal modeling approach to describe blood and drug flow, as well as drug uptake and elimination, on an approximation of the liver. Extending on previously developed computational approaches, we generate an approximation of a liver, which consists of a portal and hepatic vein vasculature structure, embedded in the surrounding liver tissue. The vasculature is generated via constrained constructive optimization, and then converted to a spatial grid of a selected grid size. Estimates for surrounding upscaled lobule tissue properties are then presented appropriate to the same grid size. Simulation of fluid flow and drug metabolism (hepatic clearance) are completed using discretized forms of the relevant convective-diffusive-reactive partial differential equations for these processes. This results in a single stage, uniformly consistent method to simulate equations for blood and drug flow, as well as drug metabolism, on a 3D structure representative of a liver. PMID:27649537

  19. Building a 3D Virtual Liver: Methods for Simulating Blood Flow and Hepatic Clearance on 3D Structures

    PubMed Central

    Rezania, Vahid; Tuszynski, Jack

    2016-01-01

    In this paper, we develop a spatio-temporal modeling approach to describe blood and drug flow, as well as drug uptake and elimination, on an approximation of the liver. Extending on previously developed computational approaches, we generate an approximation of a liver, which consists of a portal and hepatic vein vasculature structure, embedded in the surrounding liver tissue. The vasculature is generated via constrained constructive optimization, and then converted to a spatial grid of a selected grid size. Estimates for surrounding upscaled lobule tissue properties are then presented appropriate to the same grid size. Simulation of fluid flow and drug metabolism (hepatic clearance) are completed using discretized forms of the relevant convective-diffusive-reactive partial differential equations for these processes. This results in a single stage, uniformly consistent method to simulate equations for blood and drug flow, as well as drug metabolism, on a 3D structure representative of a liver. PMID:27649537

  20. 3D stress field simulation for Greater Munich, Germany

    NASA Astrophysics Data System (ADS)

    Ziegler, Moritz; Heidbach, Oliver; Reinecker, John; Przybycin, Anna Maria; Scheck-Wenderoth, Magdalena

    2016-04-01

    Geotechnical applications such as tunneling, storage of waste, wellbore planning, or reservoir engineering requires detailed 3D information on the rock properties and behavior of the continuum. One of the key parameters is the contemporary crustal in-situ stress state. However, generally the availability of stress data on reservoir scale is scarce or no data exists at all. Furthermore, stress data is often limited to the orientation of the maximum horizontal stress. Hence, geomechanical-numerical modelling provides an approximation of a continuous description of the 3D in-situ stress state. We present a model workflow that shows (1) how to calibrate a regional scale model of Greater Munich with stress orientations and magnitudes mainly from borehole data and (2) how to derive from the regional model boundary conditions for a local high-resolution model of a geothermal reservoir site. This approach using two models is an alternative to the required trade-off between resolution, computational cost and a sufficient number of calibration data which is otherwise inevitable for a single model. The incorporated 3D geological models contain the topography from a digital elevation model and 6 stratigraphic units with different elasto-plastic rock properties. The local model mimics the area of a planned reservoir and its resolution is significantly higher than in the regional model and down to 10 m near the planned borehole trajectories using 21×106 tetrahedron finite elements with linear approximation functions. The uncertainties of the calibrated regional model are large since no information on the magnitude of the maximum horizontal stress is available. Even in the entire Greater Munich area only two reliable leak-off tests that deliver the magnitude of the minimum horizontal stress could be used. These uncertainties are transferred also to the local model. Hence we also show how to quantify for the workflow in general the systematic uncertainties and discuss

  1. 3-D model-based frame interpolation for distributed video coding of static scenes.

    PubMed

    Maitre, Matthieu; Guillemot, Christine; Morin, Luce

    2007-05-01

    This paper addresses the problem of side information extraction for distributed coding of videos captured by a camera moving in a 3-D static environment. Examples of targeted applications are augmented reality, remote-controlled robots operating in hazardous environments, or remote exploration by drones. It explores the benefits of the structure-from-motion paradigm for distributed coding of this type of video content. Two interpolation methods constrained by the scene geometry, based either on block matching along epipolar lines or on 3-D mesh fitting, are first developed. These techniques are based on a robust algorithm for sub-pel matching of feature points, which leads to semi-dense correspondences between key frames. However, their rate-distortion (RD) performances are limited by misalignments between the side information and the actual Wyner-Ziv (WZ) frames due to the assumption of linear motion between key frames. To cope with this problem, two feature point tracking techniques are introduced, which recover the camera parameters of the WZ frames. A first technique, in which the frames remain encoded separately, performs tracking at the decoder and leads to significant RD performance gains. A second technique further improves the RD performances by allowing a limited tracking at the encoder. As an additional benefit, statistics on tracks allow the encoder to adapt the key frame frequency to the video motion content.

  2. Terascale direct numerical simulations of turbulent combustion using S3D

    NASA Astrophysics Data System (ADS)

    Chen, J. H.; Choudhary, A.; de Supinski, B.; DeVries, M.; Hawkes, E. R.; Klasky, S.; Liao, W. K.; Ma, K. L.; Mellor-Crummey, J.; Podhorszki, N.; Sankaran, R.; Shende, S.; Yoo, C. S.

    2009-01-01

    Computational science is paramount to the understanding of underlying processes in internal combustion engines of the future that will utilize non-petroleum-based alternative fuels, including carbon-neutral biofuels, and burn in new combustion regimes that will attain high efficiency while minimizing emissions of particulates and nitrogen oxides. Next-generation engines will likely operate at higher pressures, with greater amounts of dilution and utilize alternative fuels that exhibit a wide range of chemical and physical properties. Therefore, there is a significant role for high-fidelity simulations, direct numerical simulations (DNS), specifically designed to capture key turbulence-chemistry interactions in these relatively uncharted combustion regimes, and in particular, that can discriminate the effects of differences in fuel properties. In DNS, all of the relevant turbulence and flame scales are resolved numerically using high-order accurate numerical algorithms. As a consequence terascale DNS are computationally intensive, require massive amounts of computing power and generate tens of terabytes of data. Recent results from terascale DNS of turbulent flames are presented here, illustrating its role in elucidating flame stabilization mechanisms in a lifted turbulent hydrogen/air jet flame in a hot air coflow, and the flame structure of a fuel-lean turbulent premixed jet flame. Computing at this scale requires close collaborations between computer and combustion scientists to provide optimized scaleable algorithms and software for terascale simulations, efficient collective parallel I/O, tools for volume visualization of multiscale, multivariate data and automating the combustion workflow. The enabling computer science, applied to combustion science, is also required in many other terascale physics and engineering simulations. In particular, performance monitoring is used to identify the performance of key kernels in the DNS code, S3D and especially memory

  3. Terascale direct numerical simulations of turbulent combustion using S3D.

    SciTech Connect

    Sankaran, Ramanan; Mellor-Crummy, J.; DeVries, M.; Yoo, Chun Sang; Ma, K. L.; Podhorski, N.; Liao, W. K.; Klasky, S.; de Supinski, B.; Choudhary, A.; Hawkes, Evatt R.; Chen, Jacqueline H.; Shende, Sameer

    2008-08-01

    Computational science is paramount to the understanding of underlying processes in internal combustion engines of the future that will utilize non-petroleum-based alternative fuels, including carbon-neutral biofuels, and burn in new combustion regimes that will attain high efficiency while minimizing emissions of particulates and nitrogen oxides. Next-generation engines will likely operate at higher pressures, with greater amounts of dilution and utilize alternative fuels that exhibit a wide range of chemical and physical properties. Therefore, there is a significant role for high-fidelity simulations, direct numerical simulations (DNS), specifically designed to capture key turbulence-chemistry interactions in these relatively uncharted combustion regimes, and in particular, that can discriminate the effects of differences in fuel properties. In DNS, all of the relevant turbulence and flame scales are resolved numerically using high-order accurate numerical algorithms. As a consequence terascale DNS are computationally intensive, require massive amounts of computing power and generate tens of terabytes of data. Recent results from terascale DNS of turbulent flames are presented here, illustrating its role in elucidating flame stabilization mechanisms in a lifted turbulent hydrogen/air jet flame in a hot air co-flow, and the flame structure of a fuel-lean turbulent premixed jet flame. Computing at this scale requires close collaborations between computer and combustion scientists to provide optimized scaleable algorithms and software for terascale simulations, efficient collective parallel I/O, tools for volume visualization of multiscale, multivariate data and automating the combustion workflow. The enabling computer science, applied to combustion science, is also required in many other terascale physics and engineering simulations. In particular, performance monitoring is used to identify the performance of key kernels in the DNS code, S3D and especially memory

  4. Modeling and simulation of charge collection properties for 3D-trench electrode detector

    NASA Astrophysics Data System (ADS)

    Ding, Hao; Chen, Jianwei; Li, Zheng; Yan, Shaoan

    2015-10-01

    3D-trench electrode detectors were simulated in this paper. Charge collection of 3D-trench electrode detector was simulated using the full 3D device simulation. The induced current and collected charge caused by drifting carriers, generated by a minimum ionizing particle (MIP) incident through the detector, have been modeled and calculated. The results indicate that the total collected charge in irradiated detector change with particle incident position and radiation fluence. In addition, we have estimated the average total collected charge generated by a MIP incident in 3D-trench electrode detector.

  5. TEMPUS: Simulating personnel and tasks in a 3-D environment

    NASA Technical Reports Server (NTRS)

    Badler, N. I.; Korein, J. D.

    1985-01-01

    The latest TEMPUS installation occurred in March, 1985. Another update is slated for early June, 1985. An updated User's Manual is in preparation and will be delivered approximately mid-June, 1985. NASA JSC has full source code listings and internal documentation for installed software. NASA JSC staff has received instruction in the use of TEMPUS. Telephone consultations have augmented on-site instruction.

  6. Simulation Environment for the Evaluation of 3D Coronary Tree Reconstruction Algorithms in Rotational Angiography

    PubMed Central

    Yang, Guanyu; Bousse, Alexandre; Toumoulin, Christine; Shu, Huazhong

    2007-01-01

    We present a preliminary version of a simulation environment to evaluate the 3D reconstruction algorithms of the coronary arteries in rotational angiography. It includes the construction of a 3D dynamic model of the coronary tree from patient data, the modeling of the rotational angiography acquisition system to simulate different acquisition and gating strategies and the calculation of radiographic projections of the 3D model of coronary tree throughout several cardiac cycles. PMID:18003001

  7. Conclusions of the M3D/NIMROD Cross-Code Benchmark

    NASA Astrophysics Data System (ADS)

    Breslau, J.; Park, W.; Jardin, S.; Strauss, H.; Schnack, D.; Pankin, A.

    2004-11-01

    Cross-validation of the nonlinear M3D [1] and NIMROD [2] codes in the resistive MHD regime in tokamaks has been brought to a successful conclusion. The small but well-diagnosed CDX-U device was selected for the benchmark because its low temperature (S < 10^5) is readily handled by the two codes. The test problem consisted of determining the growth rates, eigenfunctions, and nonlinear evolution of resistive internal kink modes from a base equilibrium with q_0≈ 0.92. Good agreement between the codes is observed in all three predictions. However, there is an unexpected lack of agreement between these predictions and experimental observations: whereas the 1,1 sawtooth crash in the device is a repeating phenomenon consistent with the survival of the discharge, both codes predict a spectrum of unstable resistive ballooning modes whose growth rate increases with toroidal mode number n>1, occurring near the plasma boundary and present even when q_0>1. These findings call into question the applicability of the resistive MHD model even to low temperature tokamak plasmas and suggest the need for the addition of two-fluid terms or other new physics to make accurate predictions of their behavior. [1] W. Park, et al., Phys. Plasmas 6, 1796 (1999). [2] C.R. Sovinec, et al., Phys. Plasmas 10, 1727 (2003).

  8. Characterization of an SRF gun: a 3D full wave simulation

    SciTech Connect

    Wang, E.; Ben-Zvi, I.; Wang, J.

    2011-03-28

    We characterized a BNL 1.3GHz half-cell SRF gun is tested for GaAs photocathode. The gun already was simulated several years ago via two-dimensional (2D) numerical codes (i.e., Superfish and Parmela) with and without the beam. In this paper, we discuss our investigation of its characteristics using a three dimensional (3D) full-wave code (CST STUDIO SUITE{trademark}).The input/pickup couplers are sited symmetrically on the same side of the gun at an angle of 180{sup o}. In particular, the inner conductor of the pickup coupler is considerably shorter than that of the input coupler. We evaluated the cross-talk between the beam (trajectory) and the signal on the input coupler compared our findings with published results based on analytical models. The CST STUDIO SUITE{trademark} also was used to predict the field within the cavity; particularly, a combination of transient/eigenmode solvers was employed to accurately construct the RF field for the particles, which also includes the effects of the couplers. Finally, we explored the beam's dynamics with a particle in cell (PIC) simulation, validated the results and compare them with 2D code result.

  9. New aspects of whistler waves driven by an electron beam studied by a 3-D electromagnetic code

    NASA Technical Reports Server (NTRS)

    Nishikawa, Ken-Ichi; Buneman, Oscar; Neubert, Torsten

    1994-01-01

    We have restudied electron beam driven whistler waves with a 3-D electromagnetic particle code. The simulation results show electromagnetic whistler wave emissions and electrostatic beam modes like those observed in the Spacelab 2 electron beam experiment. It has been suggested in the past that the spatial bunching of beam electrons associated with the beam mode may directly generate whistler waves. However, the simulation results indicate several inconsistencies with this picture: (1) whistler waves continue to be generated even after the beam mode space charge modulation looses its coherence, (2) the parallel (to the background magnetic field) wavelength of the whistler wave is longer than that of the beam instability, and (3) the parallel phase velocity of the whistler wave is smaller than that of the beam mode. The complex structure of the whistler waves in the vicinity of the beam suggest that the transverse motion (gyration) of the beam and background electrons is also involved in the generation of whistler waves.

  10. Numerical Simulation of the Effect of 3D Needle Movement on Cavitation and Spray Formation in a Diesel Injector

    NASA Astrophysics Data System (ADS)

    Mandumpala Devassy, B.; Edelbauer, W.; Greif, D.

    2015-12-01

    Cavitation and its effect on spray formation and its dispersion play a crucial role in proper engine combustion and controlled emission. This study focuses on these effects in a typical common rail 6-hole diesel injector accounting for 3D needle movement and flow compressibility effects. Coupled numerical simulations using 1D and 3D CFD codes are used for this investigation. Previous studies in this direction have already presented a detailed structure of the adopted methodology. Compared to the previous analysis, the present study investigates the effect of 3D needle movement and cavitation on the spray formation for pilot and main injection events for a typical diesel engine operating point. The present setup performs a 3D compressible multiphase simulation coupled with a standalone 1D high pressure flow simulation. The simulation proceeds by the mutual communication between 1D and 3D solvers. In this work a typical common rail injector with a mini-sac nozzle is studied. The lateral and radial movement of the needle and its effect on the cavitation generation and the subsequent spray penetration are analyzed. The result indicates the effect of compressibility of the liquid on damping the needle forces, and also the difference in the spray penetration levels due to the asymmetrical flow field. Therefore, this work intends to provide an efficient and user-friendly engineering tool for simulating a complete fuel injector including spray propagation.

  11. Simple 3-D stimulus for motion parallax and its simulation.

    PubMed

    Ono, Hiroshi; Chornenkyy, Yevgen; D'Amour, Sarah

    2013-01-01

    Simulation of a given stimulus situation should produce the same perception as the original. Rogers et al (2009 Perception 38 907-911) simulated Wheeler's (1982, PhD thesis, Rutgers University, NJ) motion parallax stimulus and obtained quite different perceptions. Wheeler's observers were unable to reliably report the correct direction of depth, whereas Rogers's were. With three experiments we explored the possible reasons for the discrepancy. Our results suggest that Rogers was able to see depth from the simulation partly due to his experience seeing depth with random dot surfaces. PMID:23964382

  12. Tensor3D: A computer graphics program to simulate 3D real-time deformation and visualization of geometric bodies

    NASA Astrophysics Data System (ADS)

    Pallozzi Lavorante, Luca; Dirk Ebert, Hans

    2008-07-01

    Tensor3D is a geometric modeling program with the capacity to simulate and visualize in real-time the deformation, specified through a tensor matrix and applied to triangulated models representing geological bodies. 3D visualization allows the study of deformational processes that are traditionally conducted in 2D, such as simple and pure shears. Besides geometric objects that are immediately available in the program window, the program can read other models from disk, thus being able to import objects created with different open-source or proprietary programs. A strain ellipsoid and a bounding box are simultaneously shown and instantly deformed with the main object. The principal axes of strain are visualized as well to provide graphical information about the orientation of the tensor's normal components. The deformed models can also be saved, retrieved later and deformed again, in order to study different steps of progressive strain, or to make this data available to other programs. The shape of stress ellipsoids and the corresponding Mohr circles defined by any stress tensor can also be represented. The application was written using the Visualization ToolKit, a powerful scientific visualization library in the public domain. This development choice, allied to the use of the Tcl/Tk programming language, which is independent on the host computational platform, makes the program a useful tool for the study of geometric deformations directly in three dimensions in teaching as well as research activities.

  13. Comparison of the LLNL ALE3D and AKTS Thermal Safety Computer Codes for Calculating Times to Explosion in ODTX and STEX Thermal Cookoff Experiments

    SciTech Connect

    Wemhoff, A P; Burnham, A K

    2006-04-05

    Cross-comparison of the results of two computer codes for the same problem provides a mutual validation of their computational methods. This cross-validation exercise was performed for LLNL's ALE3D code and AKTS's Thermal Safety code, using the thermal ignition of HMX in two standard LLNL cookoff experiments: the One-Dimensional Time to Explosion (ODTX) test and the Scaled Thermal Explosion (STEX) test. The chemical kinetics model used in both codes was the extended Prout-Tompkins model, a relatively new addition to ALE3D. This model was applied using ALE3D's new pseudospecies feature. In addition, an advanced isoconversional kinetic approach was used in the AKTS code. The mathematical constants in the Prout-Tompkins code were calibrated using DSC data from hermetically sealed vessels and the LLNL optimization code Kinetics05. The isoconversional kinetic parameters were optimized using the AKTS Thermokinetics code. We found that the Prout-Tompkins model calculations agree fairly well between the two codes, and the isoconversional kinetic model gives very similar results as the Prout-Tompkins model. We also found that an autocatalytic approach in the beta-delta phase transition model does affect the times to explosion for some conditions, especially STEX-like simulations at ramp rates above 100 C/hr, and further exploration of that effect is warranted.

  14. Reconstructing 3D CAD models for simulation using imaging-based reverse engineering

    NASA Astrophysics Data System (ADS)

    Voisin, Sophie; Page, David; Koschan, Andreas; Abidi, Mongi

    2006-05-01

    The purpose of this research is to investigate imaging-based methods to reconstruct 3D CAD models of real-world objects. The methodology uses structured lighting technologies such as coded-pattern projection and laser-based triangulation to sample 3D points on the surfaces of objects and then to reconstruct these surfaces from the dense point samples. This reverse engineering (RE) research presents reconstruction results for a military tire that is important to tire-soil simulations. The limitations of this approach are the current level of accuracy that imaging-based systems offer relative to more traditional CMM modeling systems. The benefit however is the potential for denser point samples and increased scanning speeds of objects, and with time, the imaging technologies should continue to improve to compete with CMM accuracy. This approach to RE should lead to high fidelity models of manufactured and prototyped components for comparison to the original CAD models and for simulation analysis. We focus this paper on the data collection and view registration problems within the RE pipeline.

  15. Electromagnetic particle simulation codes

    NASA Technical Reports Server (NTRS)

    Pritchett, P. L.

    1985-01-01

    Electromagnetic particle simulations solve the full set of Maxwell's equations. They thus include the effects of self-consistent electric and magnetic fields, magnetic induction, and electromagnetic radiation. The algorithms for an electromagnetic code which works directly with the electric and magnetic fields are described. The fields and current are separated into transverse and longitudinal components. The transverse E and B fields are integrated in time using a leapfrog scheme applied to the Fourier components. The particle pushing is performed via the relativistic Lorentz force equation for the particle momentum. As an example, simulation results are presented for the electron cyclotron maser instability which illustrate the importance of relativistic effects on the wave-particle resonance condition and on wave dispersion.

  16. Interpretation of 3D void measurements with Tripoli4.6/JEFF3.1.1 Monte Carlo code

    SciTech Connect

    Blaise, P.; Colomba, A.

    2012-07-01

    The present work details the first analysis of the 3D void phase conducted during the EPICURE/UM17x17/7% mixed UOX/MOX configuration. This configuration is composed of a homogeneous central 17x17 MOX-7% assembly, surrounded by portions of 17x17 1102 assemblies with guide-tubes. The void bubble is modelled by a small waterproof 5x5 fuel pin parallelepiped box of 11 cm height, placed in the centre of the MOX assembly. This bubble, initially placed at the core mid-plane, is then moved in different axial positions to study the evolution in the core of the axial perturbation. Then, to simulate the growing of this bubble in order to understand the effects of increased void fraction along the fuel pin, 3 and 5 bubbles have been stacked axially, from the core mid-plane. The C/E comparison obtained with the Monte Carlo code Tripoli4 for both radial and axial fission rate distributions, and in particular the reproduction of the very important flux gradients at the void/water interfaces, changing as the bubble is displaced along the z-axis are very satisfactory. It demonstrates both the capability of the code and its library to reproduce this kind of situation, as the very good quality of the experimental results, confirming the UM-17x17 as an excellent experimental benchmark for 3D code validation. This work has been performed within the frame of the V and V program for the future APOLL03 deterministic code of CEA starting in 2012, and its V and V benchmarking database. (authors)

  17. Graphical interface for the physics-based generation of inputs to 3D MEEC SGEMP and SREMP simulations

    SciTech Connect

    Bland, M; Wondra, J; Nunan, S; Walters, D

    1998-12-01

    A graphical user interface (GUI) is under development for the MEEC family of SGEMP and SREMP simulation codes. These codes are workhorse legacy codes that have been in use for nearly two decades, with modifications and enhanced physics models added throughout the years. The MEEC codes are currently being evaluated for use by the DOE in the Dual Revalidation program and experiments at NIF. The new GUI makes the codes more accessible and less prone to input errors by automatically generating the parameters and grids that previously had to be designed by hand. physics-based algorithms define the simulation volume with expanding meshes. Users are able to specify objects, materials, and emission surfaces through dialogs and input boxes. 3D and orthographic views are available to view objects in the volume. Zone slice views are available for stepping through the overlay of objects on the mesh in planes aligned with the primary axes.

  18. Graphical interface for the physics-based generation of inputs to 3D MEEC SGEMP and SREMP simulations

    SciTech Connect

    Bland, M; Walters, D; Wondra, J

    1999-06-01

    A graphical user interface (GUI) is under development for the MEEC family of SGEMP and SREMP simulation codes [1,2]. These codes are ''workhorse'' legacy codes that have been in use for nearly two decades, with modifications and enhanced physics models added throughout the years. The MEEC codes are currently being evaluated for use by the DOE in the Dual Revalidation Program and experiments at NIF. The new GUI makes the codes more accessible and less prone to input errors by automatically generating the parameters and grids that previously had to be designed ''by hand''. Physics-based algorithms define the simulation volume with expanding meshes. Users are able to specify objects, materials, and emission surfaces through dialogs and input boxes. 3D and orthographic views are available to view objects in the volume. Zone slice views are available for stepping through the overlay of objects on the mesh in planes aligned with the primary axes.

  19. 3D Simulations of methane convective storms on Titan's atmosphere

    NASA Astrophysics Data System (ADS)

    Hueso, R.; Sánchez-Lavega, A.

    2005-08-01

    The arrival of the Cassini/Huygens mission to Titan has opened an unprecedented opportunity to study the atmosphere of this satellite. Under the pressure-temperature conditions on Titan, methane, a large atmospheric component amounting perhaps to a 3-5% of the atmosphere, is close to its triple point, potentially playing a similar role as water on Earth. The Huygens probe has shown a terrain shaped by erosion of probably liquid origin, suggestive of past rain. On the other hand, Voyager IRIS spectroscopic observations of Titan imply a saturated atmosphere of methane (amounting perhaps to 150 covered by methane clouds, if we think on Earth meteorology. However, observations from Earth and Cassini have shown that clouds are localized, transient and fast evolving, in particular in the South Pole (currently in its summer season). This might imply a lack of widespread presence on Titan of nuclei where methane could initiate condensation and particle growth with subsequent precipitation. We investigate different scenarios of moist convective storms on Titan using a complete 3D atmospheric model that incorporates a full microphysics treatment required to study cloud formation processes under a saturated atmosphere with low concentration of condensation nuclei. We study local convective development under a variety of atmospheric conditions: sub-saturation, super-saturation, abundances of condensation nuclei fall, condensation nuclei lifted from the ground or gently falling from the stratosphere. We show that under the appropriate circumstances, precipitation rates comparable to typical tropical storms on Earth can be found. Acknowledgements: This work has been funded by Spanish MCYT PNAYA2003-03216, fondos FEDER and Grupos UPV 15946/2004. R. Hueso acknowledges a post-doc fellowship from Gobierno Vasco.

  20. SIERRA - A 3-D device simulator for reliability modeling

    NASA Astrophysics Data System (ADS)

    Chern, Jue-Hsien; Arledge, Lawrence A., Jr.; Yang, Ping; Maeda, John T.

    1989-05-01

    SIERRA is a three-dimensional general-purpose semiconductor-device simulation program which serves as a foundation for investigating integrated-circuit (IC) device and reliability issues. This program solves the Poisson and continuity equations in silicon under dc, transient, and small-signal conditions. Executing on a vector/parallel minisupercomputer, SIERRA utilizes a matrix solver which uses an incomplete LU (ILU) preconditioned conjugate gradient square (CGS, BCG) method. The ILU-CGS method provides a good compromise between memory size and convergence rate. The authors have observed a 5x to 7x speedup over standard direct methods in simulations of transient problems containing highly coupled Poisson and continuity equations such as those found in reliability-oriented simulations. The application of SIERRA to parasitic CMOS latchup and dynamic random-access memory single-event-upset studies is described.

  1. Code verification for unsteady 3-D fluid-solid interaction problems

    NASA Astrophysics Data System (ADS)

    Yu, Kintak Raymond; Étienne, Stéphane; Hay, Alexander; Pelletier, Dominique

    2015-12-01

    This paper describes a procedure to synthesize Manufactured Solutions for Code Verification of an important class of Fluid-Structure Interaction (FSI) problems whose behaviors can be modeled as rigid body vibrations in incompressible fluids. We refer this class of FSI problems as Fluid-Solid Interaction problems, which can be found in many practical engineering applications. The methodology can be utilized to develop Manufactured Solutions for both 2-D and 3-D cases. We demonstrate the procedure with our numerical code. We present details of the formulation and methodology. We also provide the reasonings behind our proposed approach. Results from grid and time step refinement studies confirm the verification of our solver and demonstrate the versatility of the simple synthesis procedure. In addition, the results also demonstrate that the modified decoupled approach to verify flow problems with high-order time-stepping schemes can be employed equally well to verify code for multi-physics problems (here, those of the Fluid-Solid Interaction) when the numerical discretization is based on the Method of Lines.

  2. Parallel 3-D Electromagnetic Particle Code Using High Performance FORTRAN: Parallel TRISTAN

    NASA Astrophysics Data System (ADS)

    Cai, D.; Li, Y.; Nishikawa, K.-I.; et al.

    A three-dimensional full electromagnetic particle-in-cell (PIC ) code, TRISTAN (Tridimensional Stanford) code, has been parallelized using High Performance Fortran (HPF) as a RPM (Real Parallel Machine). In the parallelized HPF code, the simulation domain is decomposed in one-dimension, and both the particle and field data located in each domain that we call the sub-domain are distributed on each processor. Both the particle and field data on a sub-domain are needed by the neighbor sub-domains and thus communications between the sub-domains are inevitable. Our simulation results using HPF exhibit the promising applicability of the HPF communications to a large scale scientific computing such as solar wind-magnetosphere interactions.

  3. 3-D spreadsheet simulation of a modern particle detector

    NASA Astrophysics Data System (ADS)

    Scott, Alan J.

    2004-01-01

    A spreadsheet simulation of a modern particle detector has been developed and can be readily used as an instructional tool in the physics classroom. The spreadsheet creates a three-dimensional model that can be rotated and helical trajectories can be highlighted. An associated student worksheet is also presented.

  4. 3-D MHD disk wind simulations of protostellar jets

    NASA Astrophysics Data System (ADS)

    Staff, Jan E.; Koning, Nico; Ouyed, Rachid; Tanaka, Kei; Tan, Jonathan C.

    2016-01-01

    We present the results of large scale, three-dimensional magnetohydrodynamics simulations of disk winds for different initial magnetic field configurations. The jets are followed from the source to distances, which are resolvable by HST and ALMA observations. Our simulations show that jets are heated along their length by many shocks. The mass of the protostar is a free parameter that can be inserted in the post processing of the data, and we apply the simulations to both low mass and high mass protostars. For the latter we also compute the expected diagnostics when the outflow is photoionized by the protostar. We compute the emission lines that are produced, and find excellent agreement with observations. For a one solar mass protostar, we find the jet width to be between 20 and 30 au while the maximum velocities perpendicular to the jet are found to be 100 km s-1. The initially less open magnetic field configuration simulations result in a wider, two-component jet; a cylindrically shaped outer jet surrounding a narrow and much faster, inner jet. For the initially most open magnetic field configuration the kink mode creates a narrow corkscrew-like jet without a clear Keplerian rotation profile and even regions where we observe rotation opposite to the disk (counter-rotating). This is not seen in the less open field configurations.

  5. 3-D Spreadsheet Simulation of a Modern Particle Detector

    ERIC Educational Resources Information Center

    Scott, Alan J.

    2004-01-01

    A spreadsheet simulation of a modern particle detector has been developed and can be readily used as an instructional tool in the physics classroom. The spreadsheet creates a three-dimensional model that can be rotated and helical trajectories can be highlighted. An associated student worksheet is also presented.

  6. Vectors in Use in a 3D Juggling Game Simulation

    ERIC Educational Resources Information Center

    Kynigos, Chronis; Latsi, Maria

    2006-01-01

    The new representations enabled by the educational computer game the "Juggler" can place vectors in a central role both for controlling and measuring the behaviours of objects in a virtual environment simulating motion in three-dimensional spaces. The mathematical meanings constructed by 13 year-old students in relation to vectors as objects, as a…

  7. RoboCup 3D Soccer Simulation Server: A Progressing Testbed for AI Researchers

    NASA Astrophysics Data System (ADS)

    Darab, Mohammad Ali Darvish; Ebrahimi, Mosalam

    RoboCup 3D Soccer Simulation is a growing domain that makes a wide variety of AI and Multi-Agent researches possible. The RoboCup 3D Soccer Simulation Server is a Multi-Agent environment that supports 22 independent agents to play a soccer match within a real-time and complex environment. Many researchers from all over the world have been using this simulator to pursue their researches in a wide variety of areas such as multiagent learning, cooperative actions and multiagent planning. This paper illustrates the current organization of RoboCup 3D Soccer Simulation Server.

  8. Particle Acceleration in the Low Corona Over Broad Longitudes: Coupling MHD and 3D Particle Simulations

    NASA Astrophysics Data System (ADS)

    Gorby, M.; Schwadron, N.; Torok, T.; Downs, C.; Lionello, R.; Linker, J.; Titov, V. S.; Mikic, Z.; Riley, P.; Desai, M. I.; Dayeh, M. A.

    2014-12-01

    Recent work on the coupling between the Energetic Particle Radiation Environment Module (EPREM, a 3D energetic particle model) and Magnetohydrodynamics Around a Sphere (MAS, an MHD code developed at Predictive Science, Inc.) has demonstrated the efficacy of compression regions around fast coronal mass ejections (CMEs) for particle acceleration low in the corona (˜ 3 - 6 solar radii). These couplings show rapid particle acceleration over a broad longitudinal extent (˜ 80 degrees) resulting from the pile-up of magnetic flux in the compression regions and their subsequent expansion. The challenge for forming large SEP events in such compression-acceleration scenarios is to have enhanced scattering within the acceleration region while also allowing for efficient escape of accelerated particles downstream (away from the Sun) from the compression region. We present here the most recent simulation results including energetic particle and CME plasma profiles, the subsequent flux and dosages at 1AU, and an analysis of the compressional regions as efficient accelerators.

  9. Simulated square kilometre array maps from Galactic 3D-emission models

    NASA Astrophysics Data System (ADS)

    Sun, X. H.; Reich, W.

    2009-11-01

    Context: Planning of the Square Kilometre Array (SKA) requires simulations of the expected sky emission at arcsec angular resolution to evaluate its scientific potential, to constrain its technical realization in the best possible way, and to guide the observing strategy. Aims: We simulate high-resolution total intensity, polarization, and rotation measure (RM) maps of selected fields based on our recent global 3D-model of Galactic emission. Methods: Simulations of diffuse Galactic emission were conducted using the hammurabi code modified for arcsec angular resolution patches towards various Galactic directions. The random magnetic field components are set to follow a Kolmogorov-like power-law spectrum. We analysed the simulated maps in terms of their probability density functions (PDFs) and structure functions. Results: We present maps for various Galactic longitudes and latitudes at 1.4 GHz, which is the frequency where deep SKA surveys are proposed. The maps are about 1.5 ° in size and have an angular resolution of about 1.6 °. Total intensity emission is smoother in the plane than at high latitudes because of the different contributions from the regular and random magnetic field. The high-latitude fields show more extended polarized emission and RM structures than those in the plane, where patchy emission structures dominate on very small scales. The RM PDFs in the plane are close to Gaussians, but clearly deviate from that at high latitudes. The RM structure functions show smaller amplitudes and steeper slopes towards high latitudes. These results emerge from much more turbulent cells being passed through by the line-of-sights in the plane. Although the simulated random magnetic field components distribute in 3D, the magnetic field spectrum extracted from the structure functions of RMs conforms to 2D in the plane and approaches 3D at high latitudes. This is partly related to the outer scale of the turbulent magnetic field, but mainly to the different lengths

  10. Insights from 3D numerical simulations on the dynamics of the India-Asia collision zone

    NASA Astrophysics Data System (ADS)

    Pusok, A. E.; Kaus, B.; Popov, A.

    2013-12-01

    The dynamics of the India-Asia collision zone remains one of the most remarkable topics of the current research interest: the transition from subduction to collision and uplift, followed by the rise of the abnormally thick Tibetan plateau, and the deformation at its Eastern and Western syntaxes, are processes still not fully understood. Models that have addressed this topic include wholescale underthrusting of Indian lithospheric mantle under Tibet, distributed homogeneous shortening or the thin-sheet model, slip-line field model for lateral extrusion or lower crustal flow models for the exhumation of the Himalayan units and lateral spreading of the Tibetan plateau. Of these, the thin-sheet model has successfully illustrated some of the basic physics of continental collision and has the advantage of a 3D model being reduced to 2D, but one of its major shortcomings is that it cannot simultaneously represent channel flow and gravitational collapse of the mantle lithosphere, since these mechanisms require the lithosphere to interact with the underlying mantle, or to have a vertically non-homogeneous rheology. As a consequence, 3D models are emerging as powerful tools to understand the dynamics of coupled systems. However, because of yet recent developments and various complexities, the current 3D models simulating the dynamics of continent collision zones have relied on certain explicit assumptions, such as replacing part of the asthenosphere with various types of boundary conditions that mimic the effect of mantle flow, in order to focus on the lithospheric/crustal deformation. Here, we employ the parallel 3D code LaMEM (Lithosphere and Mantle Evolution Model), with a finite difference staggered grid solver, which is capable of simulating lithospheric deformation while simultaneously taking mantle flow and a free surface into account. We present qualitative results on lithospheric and upper-mantle scale simulations in which the Indian lithosphere is subducted and

  11. 3D Simulation of Missing Pellet Surface Defects in Light Water Reactor Fuel Rods

    SciTech Connect

    B.W. Spencer; J.D. Hales; S.R. Novascone; R.L. Williamson

    2012-09-01

    The cladding on light water reactor (LWR) fuel rods provides a stable enclosure for fuel pellets and serves as a first barrier against fission product release. Consequently, it is important to design fuel to prevent cladding failure due to mechanical interactions with fuel pellets. Cladding stresses can be effectively limited by controlling power increase rates. However, it has been shown that local geometric irregularities caused by manufacturing defects known as missing pellet surfaces (MPS) in fuel pellets can lead to elevated cladding stresses that are sufficiently high to cause cladding failure. Accurate modeling of these defects can help prevent these types of failures. Nuclear fuel performance codes commonly use a 1.5D (axisymmetric, axially-stacked, one-dimensional radial) or 2D axisymmetric representation of the fuel rod. To study the effects of MPS defects, results from 1.5D or 2D fuel performance analyses are typically mapped to thermo-mechanical models that consist of a 2D plane-strain slice or a full 3D representation of the geometry of the pellet and clad in the region of the defect. The BISON fuel performance code developed at Idaho National Laboratory employs either a 2D axisymmetric or 3D representation of the full fuel rod. This allows for a computational model of the full fuel rod to include local defects. A 3D thermo-mechanical model is used to simulate the global fuel rod behavior, and includes effects on the thermal and mechanical behavior of the fuel due to accumulation of fission products, fission gas production and release, and the effects of fission gas accumulation on thermal conductivity across the fuel-clad gap. Local defects can be modeled simply by including them in the 3D fuel rod model, without the need for mapping between two separate models. This allows for the complete set of physics used in a fuel performance analysis to be included naturally in the computational representation of the local defect, and for the effects of the

  12. 3D MHD Simulations of Laser Plasma Guiding in Curved Magnetic Field

    NASA Astrophysics Data System (ADS)

    Roupassov, S.; Rankin, R.; Tsui, Y.; Capjack, C.; Fedosejevs, R.

    1999-11-01

    The guiding and confinement of laser produced plasma in a curved magnetic field has been investigated numerically. These studies were motivated by experiments on pulsed laser deposition of diamond-like films [1] in which a 1kG magnetic field in a curved solenoid geometry was utilized to steer a carbon plasma around a curved trajectory and thus to separate it from unwanted macroparticles produced by the laser ablation. The purpose of the modeling was to characterize the plasma dynamics during the propagation through the magnetic guide field and to investigate the effect of different magnetic field configurations. A 3D curvilinear ADI code developed on the basis of an existing Cartesian code [2] was employed to simulate the underlying resistive one-fluid MHD model. Issues such as large regions of low background density and nonreflective boundary conditions were addressed. Results of the simulations in a curved guide field will be presented and compared to experimental results. [1] Y.Y. Tsui, D. Vick and R. Fedosejevs, Appl. Phys. Lett. 70 (15), pp. 1953-57, 1997. [2] R. Rankin, and I. Voronkov, in "High Performance Computing Systems and Applications", pp. 59-69, Kluwer AP, 1998.

  13. Dynamic 3D simulations of earthquakes on en echelon faults

    USGS Publications Warehouse

    Harris, R.A.; Day, S.M.

    1999-01-01

    One of the mysteries of earthquake mechanics is why earthquakes stop. This process determines the difference between small and devastating ruptures. One possibility is that fault geometry controls earthquake size. We test this hypothesis using a numerical algorithm that simulates spontaneous rupture propagation in a three-dimensional medium and apply our knowledge to two California fault zones. We find that the size difference between the 1934 and 1966 Parkfield, California, earthquakes may be the product of a stepover at the southern end of the 1934 earthquake and show how the 1992 Landers, California, earthquake followed physically reasonable expectations when it jumped across en echelon faults to become a large event. If there are no linking structures, such as transfer faults, then strike-slip earthquakes are unlikely to propagate through stepovers >5 km wide. Copyright 1999 by the American Geophysical Union.

  14. Coupled Neutron-Photon, 3-D, Combinatorial Geometry, Time Dependent, Monte Carlo Transport Code System.

    2013-06-24

    Version 07 TART2012 is a coupled neutron-photon Monte Carlo transport code designed to use three-dimensional (3-D) combinatorial geometry. Neutron and/or photon sources as well as neutron induced photon production can be tracked. It is a complete system to assist you with input preparation, running Monte Carlo calculations, and analysis of output results. TART2012 is also incredibly FAST; if you have used similar codes, you will be amazed at how fast this code is compared tomore » other similar codes. Use of the entire system can save you a great deal of time and energy. TART2012 extends the general utility of the code to even more areas of application than available in previous releases by concentrating on improving the physics, particularly with regard to improved treatment of neutron fission, resonance self-shielding, molecular binding, and extending input options used by the code. Several utilities are included for creating input files and displaying TART results and data. TART2012 uses the latest ENDF/B-VI, Release 8, data. New for TART2012 is the use of continuous energy neutron cross sections, in addition to its traditional multigroup cross sections. For neutron interaction, the data are derived using ENDF-ENDL2005 and include both continuous energy cross sections and 700 group neutron data derived using a combination of ENDF/B-VI, Release 8, and ENDL data. The 700 group structure extends from 10-5 eV up to 1 GeV. Presently nuclear data are only available up to 20 MeV, so that only 616 of the groups are currently used. For photon interaction, 701 point photon data were derived using the Livermore EPDL97 file. The new 701 point structure extends from 100 eV up to 1 GeV, and is currently used over this entire energy range. TART2012 completely supersedes all older versions of TART, and it is strongly recommended that one use only the most recent version of TART2012 and its data files. Check author’s homepage for related information: http

  15. Status and future of the 3D MAFIA group of codes

    SciTech Connect

    Ebeling, F.; Klatt, R.; Krawzcyk, F.; Lawinsky, E.; Weiland, T.; Wipf, S.G.; Steffen, B.; Barts, T.; Browman, J.; Cooper, R.K.; and others

    1988-12-01

    The group of fully three dimensional computer codes for solving Maxwell's equations for a wide range of applications, MAFIA, is already well established. Extensive comparisons with measurements have demonstrated the accuracy of the computations. A large numer of components have been designed for accelerators, such as kicker magnets, non cyclindrical cavities, ferrite loaded cavities, vacuum chambers with slots and transitions, etc. The latest additions to the system include a new static solver that can calculate 3D magneto- and electrostatic fields, and a self consistent version of the 2D-BCI that solves the field equations and the equations of motion in parallel. Work on new eddy current modules has started, which will allow treatment of laminated and/or solid iron cores excited by low frequency currents. Based on our experience with the present releases 1 and 2, we have started a complete revision of the whole user interface and data structure, which will make the codes even more user-friendly and flexible.

  16. Aeroacoustic Simulations of a Nose Landing Gear Using FUN3D on Pointwise Unstructured Grids

    NASA Technical Reports Server (NTRS)

    Vatsa, Veer N.; Khorrami, Mehdi R.; Rhoads, John; Lockard, David P.

    2015-01-01

    Numerical simulations have been performed for a partially-dressed, cavity-closed (PDCC) nose landing gear configuration that was tested in the University of Florida's open-jet acoustic facility known as the UFAFF. The unstructured-grid flow solver FUN3D is used to compute the unsteady flow field for this configuration. Mixed-element grids generated using the Pointwise(TradeMark) grid generation software are used for these simulations. Particular care is taken to ensure quality cells and proper resolution in critical areas of interest in an effort to minimize errors introduced by numerical artifacts. A hybrid Reynolds-averaged Navier-Stokes/large eddy simulation (RANS/LES) turbulence model is used for these simulations. Solutions are also presented for a wall function model coupled to the standard turbulence model. Time-averaged and instantaneous solutions obtained on these Pointwise grids are compared with the measured data and previous numerical solutions. The resulting CFD solutions are used as input to a Ffowcs Williams-Hawkings noise propagation code to compute the farfield noise levels in the flyover and sideline directions. The computed noise levels compare well with previous CFD solutions and experimental data.

  17. The Virtual Radiopharmacy Laboratory: A 3-D Simulation for Distance Learning

    ERIC Educational Resources Information Center

    Alexiou, Antonios; Bouras, Christos; Giannaka, Eri; Kapoulas, Vaggelis; Nani, Maria; Tsiatsos, Thrasivoulos

    2004-01-01

    This article presents Virtual Radiopharmacy Laboratory (VR LAB), a virtual laboratory accessible through the Internet. VR LAB is designed and implemented in the framework of the VirRAD European project. This laboratory represents a 3D simulation of a radio-pharmacy laboratory, where learners, represented by 3D avatars, can experiment on…

  18. FERM3D: A finite element R-matrix electron molecule scattering code

    NASA Astrophysics Data System (ADS)

    Tonzani, Stefano

    2007-01-01

    FERM3D is a three-dimensional finite element program, for the elastic scattering of a low energy electron from a general polyatomic molecule, which is converted to a potential scattering problem. The code is based on tricubic polynomials in spherical coordinates. The electron-molecule interaction is treated as a sum of three terms: electrostatic, exchange, and polarization. The electrostatic term can be extracted directly from ab initio codes ( GAUSSIAN 98 in the work described here), while the exchange term is approximated using a local density functional. A local polarization potential based on density functional theory [C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37 (1988) 785] describes the long range attraction to the molecular target induced by the scattering electron. Photoionization calculations are also possible and illustrated in the present work. The generality and simplicity of the approach is important in extending electron-scattering calculations to more complex targets than it is possible with other methods. Program summaryTitle of program:FERM3D Catalogue identifier:ADYL_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADYL_v1_0 Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Computer for which the program is designed and others on which it has been tested:Intel Xeon, AMD Opteron 64 bit, Compaq Alpha Operating systems or monitors under which the program has been tested:HP Tru64 Unix v5.1, Red Hat Linux Enterprise 3 Programming language used:Fortran 90 Memory required to execute with typical data:900 MB (neutral CO 2), 2.3 GB (ionic CO 2), 1.4 GB (benzene) No. of bits in a word:32 No. of processors used:1 Has the code been vectorized?:No No. of lines in distributed program, including test data, etc.:58 383 No. of bytes in distributed program, including test data, etc.:561 653 Distribution format:tar.gzip file CPC Program library subprograms used:ADDA, ACDP Nature of physical problem:Scattering of an

  19. Code System for 2-Group, 3D Neutronic Kinetics Calculations Coupled to Core Thermal Hydraulics.

    2000-05-12

    Version 00 QUARK is a combined computer program comprising a revised version of the QUANDRY three-dimensional, two-group neutron kinetics code and an upgraded version of the COBRA transient core analysis code (COBRA-EN). Starting from either a critical steady-state (k-effective or critical dilute Boron problem) or a subcritical steady-state (fixed source problem) in a PWR plant, the code allows one to simulate the neutronic and thermal-hydraulic core transient response to reactivity accidents initiated both inside themore » vessel (such as a control rod ejection) and outside the vessel (such as the sudden change of the Boron concentration in the coolant). QUARK output can be used as input to PSR-470/NORMA-FP to perform a subchannel analysis from converged coarse-mesh nodal solutions.« less

  20. Computer-assisted three-dimensional surgical planning and simulation: 3D virtual osteotomy.

    PubMed

    Xia, J; Ip, H H; Samman, N; Wang, D; Kot, C S; Yeung, R W; Tideman, H

    2000-02-01

    A computer-assisted three-dimensional virtual osteotomy system for orthognathic surgery (CAVOS) is presented. The virtual reality workbench is used for surgical planning. The surgeon immerses in a virtual reality environment with stereo eyewear, holds a virtual "scalpel" (3D Mouse) and operates on a "real" patient (3D visualization) to obtain pre-surgical prediction (3D bony segment movements). Virtual surgery on a computer-generated 3D head model is simulated and can be visualized from any arbitrary viewing point in a personal computer system.

  1. Structured Light Based 3d Scanning for Specular Surface by the Combination of Gray Code and Phase Shifting

    NASA Astrophysics Data System (ADS)

    Zhang, Yujia; Yilmaz, Alper

    2016-06-01

    Surface reconstruction using coded structured light is considered one of the most reliable techniques for high-quality 3D scanning. With a calibrated projector-camera stereo system, a light pattern is projected onto the scene and imaged by the camera. Correspondences between projected and recovered patterns are computed in the decoding process, which is used to generate 3D point cloud of the surface. However, the indirect illumination effects on the surface, such as subsurface scattering and interreflections, will raise the difficulties in reconstruction. In this paper, we apply maximum min-SW gray code to reduce the indirect illumination effects of the specular surface. We also analysis the errors when comparing the maximum min-SW gray code and the conventional gray code, which justifies that the maximum min-SW gray code has significant superiority to reduce the indirect illumination effects. To achieve sub-pixel accuracy, we project high frequency sinusoidal patterns onto the scene simultaneously. But for specular surface, the high frequency patterns are susceptible to decoding errors. Incorrect decoding of high frequency patterns will result in a loss of depth resolution. Our method to resolve this problem is combining the low frequency maximum min-SW gray code and the high frequency phase shifting code, which achieves dense 3D reconstruction for specular surface. Our contributions include: (i) A complete setup of the structured light based 3D scanning system; (ii) A novel combination technique of the maximum min-SW gray code and phase shifting code. First, phase shifting decoding with sub-pixel accuracy. Then, the maximum min-SW gray code is used to resolve the ambiguity resolution. According to the experimental results and data analysis, our structured light based 3D scanning system enables high quality dense reconstruction of scenes with a small number of images. Qualitative and quantitative comparisons are performed to extract the advantages of our new

  2. Recent advances in 3D computed tomography techniques for simulation and navigation in hepatobiliary pancreatic surgery.

    PubMed

    Uchida, Masafumi

    2014-04-01

    A few years ago it could take several hours to complete a 3D image using a 3D workstation. Thanks to advances in computer science, obtaining results of interest now requires only a few minutes. Many recent 3D workstations or multimedia computers are equipped with onboard 3D virtual patient modeling software, which enables patient-specific preoperative assessment and virtual planning, navigation, and tool positioning. Although medical 3D imaging can now be conducted using various modalities, including computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), and ultrasonography (US) among others, the highest quality images are obtained using CT data, and CT images are now the most commonly used source of data for 3D simulation and navigation image. If the 2D source image is bad, no amount of 3D image manipulation in software will provide a quality 3D image. In this exhibition, the recent advances in CT imaging technique and 3D visualization of the hepatobiliary and pancreatic abnormalities are featured, including scan and image reconstruction technique, contrast-enhanced techniques, new application of advanced CT scan techniques, and new virtual reality simulation and navigation imaging.

  3. The early phases of galaxy clusters formation in IR: coupling hydrodynamical simulations with GRASIL-3D

    NASA Astrophysics Data System (ADS)

    Granato, Gian Luigi; Ragone-Figueroa, Cinthia; Domínguez-Tenreiro, Rosa; Obreja, Aura; Borgani, Stefano; De Lucia, Gabriella; Murante, Giuseppe

    2015-06-01

    We compute and study the infrared and sub-mm properties of high-redshift (z ≳ 1) simulated clusters and protoclusters. The results of a large set of hydrodynamical zoom-in simulations including active galactic nuclei (AGN) feedback, have been treated with the recently developed radiative transfer code GRASIL-3D, which accounts for the effect of dust reprocessing in an arbitrary geometry. Here, we have slightly generalized the code to adapt it to the present purpose. Then we have post-processed boxes of physical size 2 Mpc encompassing each of the 24 most massive clusters identified at z = 0, at several redshifts between 0.5 and 3, producing IR and sub-mm mock images of these regions and spectral energy distributions (SEDs) of the radiation coming out from them. While this field is in its infancy from the observational point of view, rapid development is expected in the near future thanks to observations performed in the far-IR and sub-mm bands. Notably, we find that in this spectral regime our prediction are little affected by the assumption required by this post-processing, and the emission is mostly powered by star formation (SF) rather than accretion on to super massive black hole (SMBH). The comparison with the little observational information currently available, highlights that the simulated cluster regions never attain the impressive star formation rates suggested by these observations. This problem becomes more intriguing taking into account that the brightest cluster galaxies (BCGs) in the same simulations turn out to be too massive. It seems that the interplay between the feedback schemes and the star formation model should be revised, possibly incorporating a positive feedback mode.

  4. A study of the earth radiation budget using a 3D Monte-Carlo radiative transer code

    NASA Astrophysics Data System (ADS)

    Okata, M.; Nakajima, T.; Sato, Y.; Inoue, T.; Donovan, D. P.

    2013-12-01

    The purpose of this study is to evaluate the earth's radiation budget when data are available from satellite-borne active sensors, i.e. cloud profiling radar (CPR) and lidar, and a multi-spectral imager (MSI) in the project of the Earth Explorer/EarthCARE mission. For this purpose, we first developed forward and backward 3D Monte Carlo radiative transfer codes that can treat a broadband solar flux calculation including thermal infrared emission calculation by k-distribution parameters of Sekiguchi and Nakajima (2008). In order to construct the 3D cloud field, we tried the following three methods: 1) stochastic cloud generated by randomized optical thickness each layer distribution and regularly-distributed tilted clouds, 2) numerical simulations by a non-hydrostatic model with bin cloud microphysics model and 3) Minimum cloud Information Deviation Profiling Method (MIDPM) as explained later. As for the method-2 (numerical modeling method), we employed numerical simulation results of Californian summer stratus clouds simulated by a non-hydrostatic atmospheric model with a bin-type cloud microphysics model based on the JMA NHM model (Iguchi et al., 2008; Sato et al., 2009, 2012) with horizontal (vertical) grid spacing of 100m (20m) and 300m (20m) in a domain of 30km (x), 30km (y), 1.5km (z) and with a horizontally periodic lateral boundary condition. Two different cell systems were simulated depending on the cloud condensation nuclei (CCN) concentration. In the case of horizontal resolution of 100m, regionally averaged cloud optical thickness, , and standard deviation of COT, were 3.0 and 4.3 for pristine case and 8.5 and 7.4 for polluted case, respectively. In the MIDPM method, we first construct a library of pair of observed vertical profiles from active sensors and collocated imager products at the nadir footprint, i.e. spectral imager radiances, cloud optical thickness (COT), effective particle radius (RE) and cloud top temperature (Tc). We then select a

  5. Numerical simulation of unsteady flow characteristics for cavitation around a 3-D hydrofoil

    NASA Astrophysics Data System (ADS)

    Ahn, S. H.; Xiao, Y. X.; Wang, Z. W.

    2015-01-01

    At present it is possible to predict more accurately by various numerical methods established for cavitation simulation around a hydrofoil. However, for the solution of the complex unsteady cavity flow, it is still marginal. In this paper, numerical method is adopted to simulate cavitation around 3-D NACA0015 hydrofoil with homogeneous two-phase flow calculation using commercial code CFX-solver with two turbulence models, the standard RNG k-epsilon turbulence model and the modified RNG k-epsilon turbulence model respectively. First, pressure coefficient for non-cavitating flow, time averaged values of unsteady cavity flow around a hydrofoil are verified to simulate more closely to an actual cavity flow. And then frequency analysis is performed with Fast Fourier Transform. The results show that the calculation results with modified RNG k-epsilon turbulence model agree with experimental results in terms of mean cavity length and pressure drop, but the unsteady flow characteristics of oscillating cavitation still deviate slightly in terms of unsteady cavity flow.

  6. 3D Visualization of Monte-Carlo Simulation's of HZE Track Structure and Initial Chemical Species

    NASA Technical Reports Server (NTRS)

    Plante, Ianik; Cucinotta, Francis A.

    2009-01-01

    Heavy ions biophysics is important for space radiation risk assessment [1] and hadron-therapy [2]. The characteristic of heavy ions tracks include a very high energy deposition region close to the track (<20 nm) denoted as the track core, and an outer penumbra region consisting of individual secondary electrons (6-rays). A still open question is the radiobiological effects of 6- rays relative to the track core. Of importance is the induction of double-strand breaks (DSB) [3] and oxidative damage to the biomolecules and the tissue matrix, considered the most important lesions for acute and long term effects of radiation. In this work, we have simulated a 56Fe26+ ion track of 1 GeV/amu with our Monte-Carlo code RITRACKS [4]. The simulation results have been used to calculate the energy depiction and initial chemical species in a "voxelized" space, which is then visualized in 3D. Several voxels with dose >1000 Gy are found in the penumbra, some located 0.1 mm from the track core. In computational models, the DSB induction probability is calculated with radial dose [6], which may not take into account the higher RBE of electron track ends for DSB induction. Therefore, these simulations should help improve models of DSB induction and our understanding of heavy ions biophysics.

  7. 3D electromagnetic simulation of spatial autoresonance acceleration of electron beams

    NASA Astrophysics Data System (ADS)

    Dugar-Zhabon, V. D.; González, J. D.; Orozco, E. A.

    2016-02-01

    The results of full electromagnetic simulations of the electron beam acceleration by a TE 112 linear polarized electromagnetic field through Space Autoresonance Acceleration mechanism are presented. In the simulations, both the self-sustaned electric field and selfsustained magnetic field produced by the beam electrons are included into the elaborated 3D Particle in Cell code. In this system, the space profile of the magnetostatic field maintains the electron beams in the acceleration regime along their trajectories. The beam current density evolution is calculated applying the charge conservation method. The full magnetic field in the superparticle positions is found by employing the trilinear interpolation of the mesh node data. The relativistic Newton-Lorentz equation presented in the centered finite difference form is solved using the Boris algorithm that provides visualization of the beam electrons pathway and energy evolution. A comparison between the data obtained from the full electromagnetic simulations and the results derived from the motion equation depicted in an electrostatic approximation is carried out. It is found that the self-sustained magnetic field is a factor which improves the resonance phase conditions and reduces the beam energy spread.

  8. DELightcurveSimulation: Light curve simulation code

    NASA Astrophysics Data System (ADS)

    Connolly, Samuel D.

    2016-02-01

    DELightcurveSimulation simulates light curves with any given power spectral density and any probability density function, following the algorithm described in Emmanoulopoulos et al. (2013). The simulated products have exactly the same variability and statistical properties as the observed light curves. The code is a Python implementation of the Mathematica code provided by Emmanoulopoulos et al.

  9. Simulation on an optimal combustion control strategy for 3-D temperature distributions in tangentially pc-fired utility boiler furnaces.

    PubMed

    Wang, Xi-fen; Zhou, Huai-chun

    2005-01-01

    The control of 3-D temperature distribution in a utility boiler furnace is essential for the safe, economic and clean operation of pc-fired furnace with multi-burner system. The development of the visualization of 3-D temperature distributions in pc-fired furnaces makes it possible for a new combustion control strategy directly with the furnace temperature as its goal to improve the control quality for the combustion processes. Studied in this paper is such a new strategy that the whole furnace is divided into several parts in the vertical direction, and the average temperature and its bias from the center in every cross section can be extracted from the visualization results of the 3-D temperature distributions. In the simulation stage, a computational fluid dynamics (CFD) code served to calculate the 3-D temperature distributions in a furnace, then a linear model was set up to relate the features of the temperature distributions with the input of the combustion processes, such as the flow rates of fuel and air fed into the furnaces through all the burners. The adaptive genetic algorithm was adopted to find the optimal combination of the whole input parameters which ensure to form an optimal 3-D temperature field in the furnace desired for the operation of boiler. Simulation results showed that the strategy could soon find the factors making the temperature distribution apart from the optimal state and give correct adjusting suggestions.

  10. 3D simulations of the early stages of AGN jets: geometry, thermodynamics and backflow

    NASA Astrophysics Data System (ADS)

    Cielo, S.; Antonuccio-Delogu, V.; Macciò, A. V.; Romeo, A. D.; Silk, J.

    2014-04-01

    We investigate the interplay between jets from active galactic nuclei (AGNs) and the surrounding interstellar medium (ISM) through full 3D, high-resolution, adaptive mesh refinement simulations performed with the FLASH code. We follow the jet-ISM system for several Myr in its transition from an early, compact source to an extended one including a large cocoon. During the jet evolution, we identify three major evolutionary stages and we find that, contrary to the prediction of popular theoretical models, none of the simulations shows a self-similar behaviour. We also follow the evolution of the energy budget, and find that the fraction of input power deposited into the ISM (the AGN coupling constant) is of the order of a few per cent during the first few Myr. This is in broad agreement with galaxy formation models employing AGN feedback. However, we find that in these early stages, this energy is deposited only in a small fraction (<1 per cent) of the total ISM volume. Finally, we demonstrate the relevance of backflows arising within the extended cocoon generated by a relativistic AGN jet within the ISM of its host galaxy, previously proposed as a mechanism for self-regulating the gas accretion on to the central object. These backflows tend later to be destabilized by the 3D dynamics, rather than by hydrodynamic (Kelvin-Helmholtz) instabilities. Yet, in the first few hundred thousand years, backflows may create a central accretion region of significant extent, and convey there as much as a few millions of solar masses.

  11. A Methodology to Validate 3-D Arbitrary Lagrangian Eulerian Codes with Applications to Alegra

    SciTech Connect

    Chhabildas, L.C.; Duggins, B.D.; Konrad, C.H.; Mosher, D.A.; Perry, J.S.; Reinhart, W.D.; Summers, R.M.; Trucano, T.G.

    1998-11-04

    In this study we provided an experimental test bed for validating features of the Arbitrary Lagrangian Eulerian Grid for Research Applications (ALEGRA) code over a broad range of strain rates with overlapping diagnostics that encompass the multiple responses. A unique feature of the ALEGRA code is that it allows simultaneous computational treatment, within one code, of a wide range of strain-rates varying from hydrodynamic to structural conditions. This range encompasses strain rates characteristic of shock-wave propagation (107/s) and those characteristics of structural response (102/s). Most previous code validation experimental &udies, however, have been restricted to simulating or investigating a single strain-rate regime. What is new and different in this investigation is that we have performed well-controlled and well-instrumented experiments, which capture features relevant to both hydrodynamic and structural response in a single experiment. Aluminum was chosen for use in this study because it is a well-characterized material. The current experiments span strain rate regimes of over 107/s to less than 102/s in a single experiment. The input conditions were extremely well defined. Velocity interferometers were used to record the high' strain-rate response, while low strain rate data were collected using strain gauges. Although the current tests were conducted at a nominal velocity of - 1.5 km/s, it is the test methodology that is being emphasized herein. Results of a three-dimensional experiment are also presented.

  12. The Effects of 3D Computer Simulation on Biology Students' Achievement and Memory Retention

    ERIC Educational Resources Information Center

    Elangovan, Tavasuria; Ismail, Zurida

    2014-01-01

    A quasi experimental study was conducted for six weeks to determine the effectiveness of two different 3D computer simulation based teaching methods, that is, realistic simulation and non-realistic simulation on Form Four Biology students' achievement and memory retention in Perak, Malaysia. A sample of 136 Form Four Biology students in Perak,…

  13. Validation Studies of the Finite Orbit Width version of the CQL3D code

    NASA Astrophysics Data System (ADS)

    Petrov, Yu. V.; Harvey, R. W.

    2014-10-01

    The Finite-Orbit-Width (FOW) version of the CQL3D bounce-averaged Fokker-Planck (FP) code has been further developed and tested. The neoclassical radial transport appears naturally in this version by averaging the local collision coefficients along guiding center orbits, with a proper transformation matrix from local (R,Z) coordinates to the midplane computational coordinates, where the FP equation is solved. In a similar way, the local quasilinear rf diffusion terms give rise to additional radial transport of orbits. The main challenge is the internal boundary conditions (IBC) which add many elements into the matrix of coefficients for the solution of FPE on the computational grid, effectively making it a non-banded matrix (but still sparse). Steady state runs have been achieved at NERSC supercomputers in typically 10 time steps. Validation tests are performed for NSTX conditions, but using different scaling factors of equilibrium magnetic field, from 0.5 to 8.0. The bootstrap current calculations for ions show a reasonable agreement of current density profiles with Sauter et al. model equations which are based on 1st order expansion, although the magnitudes of currents may differ by up to 30%. Supported by USDOE grants SC0006614, ER54744, and ER44649.

  14. LINFLUX-AE: A Turbomachinery Aeroelastic Code Based on a 3-D Linearized Euler Solver

    NASA Technical Reports Server (NTRS)

    Reddy, T. S. R.; Bakhle, M. A.; Trudell, J. J.; Mehmed, O.; Stefko, G. L.

    2004-01-01

    This report describes the development and validation of LINFLUX-AE, a turbomachinery aeroelastic code based on the linearized unsteady 3-D Euler solver, LINFLUX. A helical fan with flat plate geometry is selected as the test case for numerical validation. The steady solution required by LINFLUX is obtained from the nonlinear Euler/Navier Stokes solver TURBO-AE. The report briefly describes the salient features of LINFLUX and the details of the aeroelastic extension. The aeroelastic formulation is based on a modal approach. An eigenvalue formulation is used for flutter analysis. The unsteady aerodynamic forces required for flutter are obtained by running LINFLUX for each mode, interblade phase angle and frequency of interest. The unsteady aerodynamic forces for forced response analysis are obtained from LINFLUX for the prescribed excitation, interblade phase angle, and frequency. The forced response amplitude is calculated from the modal summation of the generalized displacements. The unsteady pressures, work done per cycle, eigenvalues and forced response amplitudes obtained from LINFLUX are compared with those obtained from LINSUB, TURBO-AE, ASTROP2, and ANSYS.

  15. Implementation of wall boundary conditions for transpiration in F3D thin-layer Navier-Stokes code

    NASA Technical Reports Server (NTRS)

    Kandula, M.; Martin, F. W., Jr.

    1991-01-01

    Numerical boundary conditions for mass injection/suction at the wall are incorporated in the thin-layer Navier-Stokes code, F3D. The accuracy of the boundary conditions and the code is assessed by a detailed comparison of the predictions of velocity distributions and skin-friction coefficients with exact similarity solutions for laminar flow over a flat plate with variable blowing/suction, and measurements for turbulent flow past a flat plate with uniform blowing. In laminar flow, F3D predictions for friction coefficient compare well with exact similarity solution with and without suction, but produces large errors at moderate-to-large values of blowing. A slight Mach number dependence of skin-friction coefficient due to blowing in turbulent flow is computed by F3D code. Predicted surface pressures for turbulent flow past an airfoil with mass injection are in qualitative agreement with measurements for a flat plate.

  16. Code and Solution Verification of 3D Numerical Modeling of Flow in the Gust Erosion Chamber

    NASA Astrophysics Data System (ADS)

    Yuen, A.; Bombardelli, F. A.

    2014-12-01

    Erosion microcosms are devices commonly used to investigate the erosion and transport characteristics of sediments at the bed of rivers, lakes, or estuaries. In order to understand the results these devices provide, the bed shear stress and flow field need to be accurately described. In this research, the UMCES Gust Erosion Microcosm System (U-GEMS) is numerically modeled using Finite Volume Method. The primary aims are to simulate the bed shear stress distribution at the surface of the sediment core/bottom of the microcosm, and to validate the U-GEMS produces uniform bed shear stress at the bottom of the microcosm. The mathematical model equations are solved by on a Cartesian non-uniform grid. Multiple numerical runs were developed with different input conditions and configurations. Prior to developing the U-GEMS model, the General Moving Objects (GMO) model and different momentum algorithms in the code were verified. Code verification of these solvers was done via simulating the flow inside the top wall driven square cavity on different mesh sizes to obtain order of convergence. The GMO model was used to simulate the top wall in the top wall driven square cavity as well as the rotating disk in the U-GEMS. Components simulated with the GMO model were rigid bodies that could have any type of motion. In addition cross-verification was conducted as results were compared with numerical results by Ghia et al. (1982), and good agreement was found. Next, CFD results were validated by simulating the flow within the conventional microcosm system without suction and injection. Good agreement was found when the experimental results by Khalili et al. (2008) were compared. After the ability of the CFD solver was proved through the above code verification steps. The model was utilized to simulate the U-GEMS. The solution was verified via classic mesh convergence study on four consecutive mesh sizes, in addition to that Grid Convergence Index (GCI) was calculated and based on

  17. Multigrid direct numerical simulation of the whole process of flow transition in 3-D boundary layers

    NASA Technical Reports Server (NTRS)

    Liu, Chaoqun; Liu, Zhining

    1993-01-01

    A new technology was developed in this study which provides a successful numerical simulation of the whole process of flow transition in 3-D boundary layers, including linear growth, secondary instability, breakdown, and transition at relatively low CPU cost. Most other spatial numerical simulations require high CPU cost and blow up at the stage of flow breakdown. A fourth-order finite difference scheme on stretched and staggered grids, a fully implicit time marching technique, a semi-coarsening multigrid based on the so-called approximate line-box relaxation, and a buffer domain for the outflow boundary conditions were all used for high-order accuracy, good stability, and fast convergence. A new fine-coarse-fine grid mapping technique was developed to keep the code running after the laminar flow breaks down. The computational results are in good agreement with linear stability theory, secondary instability theory, and some experiments. The cost for a typical case with 162 x 34 x 34 grid is around 2 CRAY-YMP CPU hours for 10 T-S periods.

  18. Acceleration of 3D Finite Difference AWP-ODC for seismic simulation on GPU Fermi Architecture

    NASA Astrophysics Data System (ADS)

    Zhou, J.; Cui, Y.; Choi, D.

    2011-12-01

    AWP-ODC, a highly scalable parallel finite-difference application, enables petascale 3D earthquake calculations. This application generates realistic dynamic earthquake source description and detailed physics-based anelastic ground motions at frequencies pertinent to safe building design. In 2010, the code achieved M8, a full dynamical simulation of a magnitude-8 earthquake on the southern San Andreas fault up to 2-Hz, the largest-ever earthquake simulation. Building on the success of the previous work, we have implemented CUDA on AWP-ODC to accelerate wave propagation on GPU platform. Our CUDA development aims on aggressive parallel efficiency, optimized global and shared memory access to make the best use of GPU memory hierarchy. The benchmark on NVIDIA Tesla C2050 graphics cards demonstrated many tens of speedup in single precision compared to serial implementation at a testing problem size, while an MPI-CUDA implementation is in the progress to extend our solver to multi-GPU clusters. Our CUDA implementation has been carefully verified for accuracy.

  19. tomo3d: a new 3-D joint refraction and reflection travel-time tomography code for active-source seismic data

    NASA Astrophysics Data System (ADS)

    Meléndez, A.; Korenaga, J.; Sallares, V.; Ranero, C. R.

    2012-12-01

    We present the development state of tomo3d, a code for three-dimensional refraction and reflection travel-time tomography of wide-angle seismic data based on the previous two-dimensional version of the code, tomo2d. The core of both forward and inverse problems is inherited from the 2-D version. The ray tracing is performed by a hybrid method combining the graph and bending methods. The graph method finds an ordered array of discrete model nodes, which satisfies Fermat's principle, that is, whose corresponding travel time is a global minimum within the space of discrete nodal connections. The bending method is then applied to produce a more accurate ray path by using the nodes as support points for an interpolation with beta-splines. Travel time tomography is formulated as an iterative linearized inversion, and each step is solved using an LSQR algorithm. In order to avoid the singularity of the sensitivity kernel and to reduce the instability of inversion, regularization parameters are introduced in the inversion in the form of smoothing and damping constraints. Velocity models are built as 3-D meshes, and velocity values at intermediate locations are obtained by trilinear interpolation within the corresponding pseudo-cubic cell. Meshes are sheared to account for topographic relief. A floating reflector is represented by a 2-D grid, and depths at intermediate locations are calculated by bilinear interpolation within the corresponding square cell. The trade-off between the resolution of the final model and the associated computational cost is controlled by the relation between the selected forward star for the graph method (i.e. the number of nodes that each node considers as its neighbors) and the refinement of the velocity mesh. Including reflected phases is advantageous because it provides a better coverage and allows us to define the geometry of those geological interfaces with velocity contrasts sharp enough to be observed on record sections. The code also

  20. 3-D Simulations of Megathrust Earthquakes - Application to the 2003 M8.3 Tokachi-Oki Earthquake

    NASA Astrophysics Data System (ADS)

    Wirth, E. A.; Frankel, A. D.; Vidale, J. E.

    2015-12-01

    Numerical modeling of megathrust earthquakes is an important tool for seismic hazard assessment, particularly in subduction systems where recordings of great earthquakes are sparse or non-existent. Here, we produce broadband synthetic seismograms for the 2003 M8.3 Tokachi-Oki, Japan earthquake. At long periods (> 1 sec), synthetic waveforms are produced using numerical simulations with the 3D Japan Integrated Velocity Structure Model (Koketsu et al., 2008). For comparison, these 3D numerical simulations were carried out using both (1) a finite difference method and (2) the finite element code, SPECFEM3D. The 3D simulations were used to validate a compound rupture model, in which slip on the fault consisted of multiple M7 high stress drop asperities superimposed on a background slip distribution with longer rise times. At short periods (< 1 sec), we used a summation of stochastic seismograms from point sources, and combined the short and long period synthetics using a matched filter. We compared the broadband synthetics to actual waveform data and the observed response spectral accelerations from the Tokachi-Oki event. We found that the synthetic response spectra are sensitive to the coherence of the rupture front. This work serves to validate this methodology for predicting ground motions for future M8-9 megathrust events in Cascadia.

  1. Simulation of a new 3D imaging sensor for identifying difficult military targets

    NASA Astrophysics Data System (ADS)

    Harvey, Christophe; Wood, Jonathan; Randall, Peter; Watson, Graham; Smith, Gordon

    2008-04-01

    This paper reports the successful application of automatic target recognition and identification (ATR/I) algorithms to simulated 3D imagery of 'difficult' military targets. QinetiQ and Selex S&AS are engaged in a joint programme to build a new 3D laser imaging sensor for UK MOD. The sensor is a 3D flash system giving an image containing range and intensity information suitable for targeting operations from fast jet platforms, and is currently being integrated with an ATR/I suite for demonstration and testing. The sensor has been extensively modelled and a set of high fidelity simulated imagery has been generated using the CAMEO-SIM scene generation software tool. These include a variety of different scenarios (varying range, platform altitude, target orientation and environments), and some 'difficult' targets such as concealed military vehicles. The ATR/I algorithms have been tested on this image set and their performance compared to 2D passive imagery from the airborne trials using a Wescam MX-15 infrared sensor and real-time ATR/I suite. This paper outlines the principles behind the sensor model and the methodology of 3D scene simulation. An overview of the 3D ATR/I programme and algorithms is presented, and the relative performance of the ATR/I against the simulated image set is reported. Comparisons are made to the performance of typical 2D sensors, confirming the benefits of 3D imaging for targeting applications.

  2. Parallel contact detection algorithm for transient solid dynamics simulations using PRONTO3D

    SciTech Connect

    Attaway, S.W.; Hendrickson, B.A.; Plimpton, S.J.

    1996-09-01

    An efficient, scalable, parallel algorithm for treating material surface contacts in solid mechanics finite element programs has been implemented in a modular way for MIMD parallel computers. The serial contact detection algorithm that was developed previously for the transient dynamics finite element code PRONTO3D has been extended for use in parallel computation by devising a dynamic (adaptive) processor load balancing scheme.

  3. Unequal-period combination approach of gray code and phase-shifting for 3-D visual measurement

    NASA Astrophysics Data System (ADS)

    Yu, Shuang; Zhang, Jing; Yu, Xiaoyang; Sun, Xiaoming; Wu, Haibin

    2016-09-01

    Combination of Gray code and phase-shifting is the most practical and advanced approach for the structured light 3-D measurement so far, which is able to measure objects with complex and discontinuous surface. However, for the traditional combination of the Gray code and phase-shifting, the captured Gray code images are not always sharp cut-off in the black-white conversion boundaries, which may lead to wrong decoding analog code orders. Moreover, during the actual measurement, there also exists local decoding error for the wrapped analog code obtained with the phase-shifting approach. Therefore, for the traditional approach, the wrong analog code orders and the local decoding errors will consequently introduce the errors which are equivalent to a fringe period when the analog code is unwrapped. In order to avoid one-fringe period errors, we propose an approach which combines Gray code with phase-shifting according to unequal period. With theoretical analysis, we build the measurement model of the proposed approach, determine the applicable condition and optimize the Gray code encoding period and phase-shifting fringe period. The experimental results verify that the proposed approach can offer a reliable unwrapped analog code, which can be used in 3-D shape measurement.

  4. Quantification of Ground Motion Reductions by Fault Zone Plasticity with 3D Spontaneous Rupture Simulations

    NASA Astrophysics Data System (ADS)

    Roten, D.; Olsen, K. B.; Cui, Y.; Day, S. M.

    2015-12-01

    We explore the effects of fault zone nonlinearity on peak ground velocities (PGVs) by simulating a suite of surface rupturing earthquakes in a visco-plastic medium. Our simulations, performed with the AWP-ODC 3D finite difference code, cover magnitudes from 6.5 to 8.0, with several realizations of the stochastic stress drop for a given magnitude. We test three different models of rock strength, with friction angles and cohesions based on criteria which are frequently applied to fractured rock masses in civil engineering and mining. We use a minimum shear-wave velocity of 500 m/s and a maximum frequency of 1 Hz. In rupture scenarios with average stress drop (~3.5 MPa), plastic yielding reduces near-fault PGVs by 15 to 30% in pre-fractured, low-strength rock, but less than 1% in massive, high quality rock. These reductions are almost insensitive to the scenario earthquake magnitude. In the case of high stress drop (~7 MPa), however, plasticity reduces near-fault PGVs by 38 to 45% in rocks of low strength and by 5 to 15% in rocks of high strength. Because plasticity reduces slip rates and static slip near the surface, these effects can partially be captured by defining a shallow velocity-strengthening layer. We also perform a dynamic nonlinear simulation of a high stress drop M 7.8 earthquake rupturing the southern San Andreas fault along 250 km from Indio to Lake Hughes. With respect to the viscoelastic solution (a), nonlinearity in the fault damage zone and in near-surface deposits would reduce long-period (> 1 s) peak ground velocities in the Los Angeles basin by 15-50% (b), depending on the strength of crustal rocks and shallow sediments. These simulation results suggest that nonlinear effects may be relevant even at long periods, especially for earthquakes with high stress drop.

  5. 3D Simulation of External Flooding Events for the RISMC Pathway

    SciTech Connect

    Prescott, Steven; Mandelli, Diego; Sampath, Ramprasad; Smith, Curtis; Lin, Linyu

    2015-09-01

    Incorporating 3D simulations as part of the Risk-Informed Safety Margins Characterization (RISMIC) Toolkit allows analysts to obtain a more complete picture of complex system behavior for events including external plant hazards. External events such as flooding have become more important recently – however these can be analyzed with existing and validated simulated physics toolkits. In this report, we describe these approaches specific to flooding-based analysis using an approach called Smoothed Particle Hydrodynamics. The theory, validation, and example applications of the 3D flooding simulation are described. Integrating these 3D simulation methods into computational risk analysis provides a spatial/visual aspect to the design, improves the realism of results, and can prove visual understanding to validate the analysis of flooding.

  6. Prototype Development Capabilities of 3D Spatial Interactions and Failures During Scenario Simulation

    SciTech Connect

    Steven Prescott; Ramprasad Sampath; Curtis Smith; Tony Koonce

    2014-09-01

    Computers have been used for 3D modeling and simulation, but only recently have computational resources been able to give realistic results in a reasonable time frame for large complex models. This report addressed the methods, techniques, and resources used to develop a prototype for using 3D modeling and simulation engine to improve risk analysis and evaluate reactor structures and components for a given scenario. The simulations done for this evaluation were focused on external events, specifically tsunami floods, for a hypothetical nuclear power facility on a coastline.

  7. Structural response to 3D simulated earthquake motions in San Bernardino Valley

    USGS Publications Warehouse

    Safak, E.; Frankel, A.

    1994-01-01

    Structural repsonse to one- and three-dimensional (3D) simulated motions in San Bernardino Valley from a hypothetical earthquake along the San Andreas fault with moment magnitude 6.5 and rupture length of 30km is investigated. The results show that the ground motions and the structural response vary dramatically with the type of simulation and the location. -from Authors

  8. Waveform Simulations For TAIGER Data Sets From Taiwan 3D Reference Velocity And Moho Boundary Models

    NASA Astrophysics Data System (ADS)

    Hsieh, M.; Chen, H.; Zhao, L.

    2008-12-01

    Studying seismic waveform variations in space and time is an important issue to investigate structural heterogeneities and ground motion responses for seismic hazard mitigation. The available 3D reference velocity models from transmission tomography studies are mainly limited by depth resolution, refraction arrival picks without explicit considering later phases and the spatial distribution of earthquakes and stations. Seismic data collected from the TAIGER (TAiwan Integrated GEodynamics Research) project can provide a valuable opportunity for studying deep crust structures. Evaluation of 3D reference models and update their shallow velocity structure is presented through travel-time and waveforms studies. Even though a well-defined multi-scaled reference velocity model of Taiwan is being debated, existing models are still important to study the structural heterogeneities and path effects through parallel computation of 4th-order staggered grid FD 3D waveform simulation. Simulation utilizes both far-field point and finite-dimensional moment tensor sources to investigate effects on Moho reflections and lateral velocity variations. Constraints on Moho reference boundary obtained from receiver function studies is discussed and compared with data collected from TAIGER project. For controlled source experiments, synthetic simulations show clear and focused Moho reflections in the 3-C data. Simultaneous 3D simulation of all available seismic records provides unique constraints on reference velocity model known so far. The waveform simulation will provide a fundamental research platform for future full 3D waveform inversion.

  9. Acoustic Scattering by Three-Dimensional Stators and Rotors Using the SOURCE3D Code. Volume 2; Scattering Plots

    NASA Technical Reports Server (NTRS)

    Meyer, Harold D.

    1999-01-01

    This second volume of Acoustic Scattering by Three-Dimensional Stators and Rotors Using the SOURCE3D Code provides the scattering plots referenced by Volume 1. There are 648 plots. Half are for the 8750 rpm "high speed" operating condition and the other half are for the 7031 rpm "mid speed" operating condition.

  10. tomo3d: a new 3-D joint refraction and reflection travel-time tomography code for active-source seismic data

    NASA Astrophysics Data System (ADS)

    Meléndez, A.; Korenaga, J.; Sallarès, V.; Ranero, C. R.

    2012-04-01

    We present the development state of tomo3d, a code for three-dimensional refraction and reflection travel-time tomography of wide-angle seismic data based on the previous two-dimensional version of the code, tomo2d. The core of both forward and inverse problems is inherited from the 2-D version. The ray tracing is performed by a hybrid method combining the graph and bending methods. The graph method finds an ordered array of discrete model nodes, which satisfies Fermat's principle, that is, whose corresponding travel time is a global minimum within the space of discrete nodal connections. The bending method is then applied to produce a more accurate ray path by using the nodes as support points for an interpolation with beta-splines. Travel time tomography is formulated as an iterative linearized inversion, and each step is solved using an LSQR algorithm. In order to avoid the singularity of the sensitivity kernel and to reduce the instability of inversion, regularization parameters are introduced in the inversion in the form of smoothing and damping constraints. Velocity models are built as 3-D meshes, and velocity values at intermediate locations are obtained by trilinear interpolation within the corresponding pseudo-cubic cell. Meshes are sheared to account for topographic relief. A floating reflector is represented by a 2-D grid, and depths at intermediate locations are calculated by bilinear interpolation within the corresponding square cell. The trade-off between the resolution of the final model and the associated computational cost is controlled by the relation between the selected forward star for the graph method (i.e. the number of nodes that each node considers as its neighbors) and the refinement of the velocity mesh. Including reflected phases is advantageous because it provides a better coverage and allows us to define the geometry of those geological interfaces with velocity contrasts sharp enough to be observed on record sections. The code also

  11. M3D Simulations of Energetic Particle-driven MHD Mode with Unstructured Mesh

    NASA Astrophysics Data System (ADS)

    Fu, G. Y.; Park, W.; Strauss, H. R.

    2001-10-01

    The energetic particle-driven MHD modes are studied using a multi-level extended MHD code M3D(W. Park et al., Phys. Plasmas 6, 1796 (1999)). In a Extended-MHD model, the plasma is divided into the bulk part and the energetic particle component. The bulk plasma is treated as either a single fluid or two fluids. The energetic particles are described by gyrokinetic particles following the self-consistent electromagnetic field. The model is self-consistent, including nonlinear effects of hot particles on the MHD dynamics and the nonlinear MHD mode coupling. Previously we had shown the results of nonlinear saturation of TAEfootnote G.Y. Fu and W. Park, Phys. Rev. Lett. 74, 1594 (1995), energetic particle stabilization of an internal kink and excitation of fishbone^2, and nonlinear saturation of fishbone in circular tokamaks (G.Y. Fu et al, 2000 Sherwood Meeting, Paper 2C2.). In this work, we extend the simulations to general geometry using unstructured mesh(H.R. Strauss and W. Park, Phys. Plasmas 5, 2676 (1998). We also use a gyrofluid model for fishbone in order to study the role of MHD nonlinearity in saturation near the marginal stability. Results of applications to tokamaks and spherical tokamaks will be presented.

  12. Error coding simulations in C

    NASA Technical Reports Server (NTRS)

    Noble, Viveca K.

    1994-01-01

    When data is transmitted through a noisy channel, errors are produced within the data rendering it indecipherable. Through the use of error control coding techniques, the bit error rate can be reduced to any desired level without sacrificing the transmission data rate. The Astrionics Laboratory at Marshall Space Flight Center has decided to use a modular, end-to-end telemetry data simulator to simulate the transmission of data from flight to ground and various methods of error control. The simulator includes modules for random data generation, data compression, Consultative Committee for Space Data Systems (CCSDS) transfer frame formation, error correction/detection, error generation and error statistics. The simulator utilizes a concatenated coding scheme which includes CCSDS standard (255,223) Reed-Solomon (RS) code over GF(2(exp 8)) with interleave depth of 5 as the outermost code, (7, 1/2) convolutional code as an inner code and CCSDS recommended (n, n-16) cyclic redundancy check (CRC) code as the innermost code, where n is the number of information bits plus 16 parity bits. The received signal-to-noise for a desired bit error rate is greatly reduced through the use of forward error correction techniques. Even greater coding gain is provided through the use of a concatenated coding scheme. Interleaving/deinterleaving is necessary to randomize burst errors which may appear at the input of the RS decoder. The burst correction capability length is increased in proportion to the interleave depth. The modular nature of the simulator allows for inclusion or exclusion of modules as needed. This paper describes the development and operation of the simulator, the verification of a C-language Reed-Solomon code, and the possibility of using Comdisco SPW(tm) as a tool for determining optimal error control schemes.

  13. Error coding simulations in C

    NASA Astrophysics Data System (ADS)

    Noble, Viveca K.

    1994-10-01

    When data is transmitted through a noisy channel, errors are produced within the data rendering it indecipherable. Through the use of error control coding techniques, the bit error rate can be reduced to any desired level without sacrificing the transmission data rate. The Astrionics Laboratory at Marshall Space Flight Center has decided to use a modular, end-to-end telemetry data simulator to simulate the transmission of data from flight to ground and various methods of error control. The simulator includes modules for random data generation, data compression, Consultative Committee for Space Data Systems (CCSDS) transfer frame formation, error correction/detection, error generation and error statistics. The simulator utilizes a concatenated coding scheme which includes CCSDS standard (255,223) Reed-Solomon (RS) code over GF(2(exp 8)) with interleave depth of 5 as the outermost code, (7, 1/2) convolutional code as an inner code and CCSDS recommended (n, n-16) cyclic redundancy check (CRC) code as the innermost code, where n is the number of information bits plus 16 parity bits. The received signal-to-noise for a desired bit error rate is greatly reduced through the use of forward error correction techniques. Even greater coding gain is provided through the use of a concatenated coding scheme. Interleaving/deinterleaving is necessary to randomize burst errors which may appear at the input of the RS decoder. The burst correction capability length is increased in proportion to the interleave depth. The modular nature of the simulator allows for inclusion or exclusion of modules as needed. This paper describes the development and operation of the simulator, the verification of a C-language Reed-Solomon code, and the possibility of using Comdisco SPW(tm) as a tool for determining optimal error control schemes.

  14. An orthognathic simulation system integrating teeth, jaw and face data using 3D cephalometry.

    PubMed

    Noguchi, N; Tsuji, M; Shigematsu, M; Goto, M

    2007-07-01

    A method for simulating the movement of teeth, jaw and face caused by orthognathic surgery is proposed, characterized by the use of 3D cephalometric data for 3D simulation. Computed tomography data are not required. The teeth and facial data are obtained by a laser scanner and the data for the patient's mandible are reconstructed and integrated according to 3D cephalometry using a projection-matching technique. The mandibular form is simulated by transforming a generic model to match the patient's cephalometric data. This system permits analysis of bone movement at each individual part, while also helping in the choice of optimal osteotomy design considering the influences on facial soft-tissue form.

  15. LFSC - Linac Feedback Simulation Code

    SciTech Connect

    Ivanov, Valentin; /Fermilab

    2008-05-01

    The computer program LFSC (Simulation Code>) is a numerical tool for simulation beam based feedback in high performance linacs. The code LFSC is based on the earlier version developed by a collective of authors at SLAC (L.Hendrickson, R. McEwen, T. Himel, H. Shoaee, S. Shah, P. Emma, P. Schultz) during 1990-2005. That code was successively used in simulation of SLC, TESLA, CLIC and NLC projects. It can simulate as pulse-to-pulse feedback on timescale corresponding to 5-100 Hz, as slower feedbacks, operating in the 0.1-1 Hz range in the Main Linac and Beam Delivery System. The code LFSC is running under Matlab for MS Windows operating system. It contains about 30,000 lines of source code in more than 260 subroutines. The code uses the LIAR ('Linear Accelerator Research code') for particle tracking under ground motion and technical noise perturbations. It uses the Guinea Pig code to simulate the luminosity performance. A set of input files includes the lattice description (XSIF format), and plane text files with numerical parameters, wake fields, ground motion data etc. The Matlab environment provides a flexible system for graphical output.

  16. Parametric Analysis of a Turbine Trip Event in a BWR Using a 3D Nodal Code

    SciTech Connect

    Gorzel, A.

    2006-07-01

    Two essential thermal hydraulics safety criteria concerning the reactor core are that even during operational transients there is no fuel melting and not-permissible cladding temperatures are avoided. A common concept for boiling water reactors is to establish a minimum critical power ratio (MCPR) for steady state operation. For this MCPR it is shown that only a very small number of fuel rods suffers a short-term dryout during the transient. It is known from experience that the limiting transient for the determination of the MCPR is the turbine trip with blocked bypass system. This fast transient was simulated for a German BWR by use of the three-dimensional reactor analysis transient code SIMULATE-3K. The transient behaviour of the hot channels was used as input for the dryout calculation with the transient thermal hydraulics code FRANCESCA. By this way the maximum reduction of the CPR during the transient could be calculated. The fast increase in reactor power due to the pressure increase and to an increased core inlet flow is limited mainly by the Doppler effect, but automatically triggered operational measures also can contribute to the mitigation of the turbine trip. One very important method is the short-term fast reduction of the recirculation pump speed which is initiated e. g. by a pressure increase in front of the turbine. The large impacts of the starting time and of the rate of the pump speed reduction on the power progression and hence on the deterioration of CPR is presented. Another important procedure to limit the effects of the transient is the fast shutdown of the reactor that is caused when the reactor power reaches the limit value. It is shown that the SCRAM is not fast enough to reduce the first power maximum, but is able to prevent the appearance of a second - much smaller - maximum that would occur around one second after the first one in the absence of a SCRAM. (author)

  17. Fully Kinetic 3D Simulations of the Interaction of the Solar Wind with Mercury

    NASA Astrophysics Data System (ADS)

    Amaya, J.; Deca, J.; Lembege, B.; Lapenta, G.

    2015-12-01

    The planet Mercury has been studied by the space mission Mariner 10, in the 1970's, and by the MESSENGER mission launched in 2004. Interest in the first planet of the Solar System has now been renewed by the launch in 2017 of the BepiColombo mission. MESSENGER and BepiColombo give access to information about the local conditions of the magnetosphere of Mercury. This data must be evaluated in the context of the global interaction between the solar wind and the planet's magnetosphere. Global scale simulations of the planet's environment are necessary to fully understand the data gathered from in-situ measurements. We use three-dimensional simulations to support the scientific goals of the two missions. In contrast with the results based on MHD (Kabin et al., 2000) and hybrid codes (Kallio et Janhumen, 2003; Travnicek et al., 2007, 2010; Richer et al., 2012), the present work is based on the implicit moment Particle-in-Cell (PiC) method, which allows to use large time and space steps, while granting access to the dynamics of the smaller electron scales in the plasma. The purpose of these preliminary PIC simulations is to retrieve the top-level features of Mercury's magnetosphere and its frontiers. We compare the results obtained with the implicit moment PiC method against 3D hybrid simulations. We perform simulations of the global plasma environment of Mercury using the solar wind conditions measured by MESSENGER. We show that complex flows form around the planet, including the development of Kelvin-Helmoltz instabilities at the flanks. We evaluate the dynamics of the shock, magnetosheath, magnetopause, the reconnection areas, the formation of plasma sheet and magnetotail, and the variation of ion/electron plasma flows when crossing these frontiers. The simulations also give access to detailed information about the particle dynamics and their velocity distribution at locations that can be used for comparison with data from MESSENGER and later on with the forthcoming

  18. Stem dependence on stiffness in 3D RNA simulation using SimRNA

    NASA Astrophysics Data System (ADS)

    Dawson, Wayne; Boniecki, Michal; Bujnicki, Janusz

    2015-03-01

    SimRNA is a recently developed de novo 3D structure prediction program in our laboratory that uses the Monte Carlo method to search the conformation space of RNA using knowledge based energy functions. In developing the 3D model, we have also be exploring the larger physical questions about what generates differences in Kuhn length (a measure of stiffness) in biopolymers. In previoius work, this was shown to depend on the stem length and to be a function of the length and Young's modulus. A complete theoretical model was of the entropy changes due to the freezing out of degrees of freedom was developed base on this model. In this study, we find that this is further supported in the development of the 3D statitstical potentials for actual 3D simulations of RNA.

  19. Mixed reality orthognathic surgical simulation by entity model manipulation and 3D-image display

    NASA Astrophysics Data System (ADS)

    Shimonagayoshi, Tatsunari; Aoki, Yoshimitsu; Fushima, Kenji; Kobayashi, Masaru

    2005-12-01

    In orthognathic surgery, the framing of 3D-surgical planning that considers the balance between the front and back positions and the symmetry of the jawbone, as well as the dental occlusion of teeth, is essential. In this study, a support system for orthodontic surgery to visualize the changes in the mandible and the occlusal condition and to determine the optimum position in mandibular osteotomy has been developed. By integrating the operating portion of a tooth model that is to determine the optimum occlusal position by manipulating the entity tooth model and the 3D-CT skeletal images (3D image display portion) that are simultaneously displayed in real-time, the determination of the mandibular position and posture in which the improvement of skeletal morphology and occlusal condition is considered, is possible. The realistic operation of the entity model and the virtual 3D image display enabled the construction of a surgical simulation system that involves augmented reality.

  20. 3D Printing Meets Computational Astrophysics: Deciphering the Structure of Eta Carinae’s Colliding Winds Using 3D Prints of Smoothed Particle Hydrodynamics Simulations

    NASA Astrophysics Data System (ADS)

    Madura, Thomas; Gull, Theodore R.; Clementel, Nicola; Paardekooper, Jan-Pieter; Kruip, Chael; Corcoran, Michael F.; Hamaguchi, Kenji; Teodoro, Mairan

    2015-01-01

    We present the first 3D prints of output from a supercomputer simulation of a complex astrophysical system, the colliding stellar winds in the massive (>120 MSun), highly eccentric (e ~ 0.9) binary Eta Carinae. Using a consumer-grade 3D printer (Makerbot Replicator 2X), we successfully printed 3D smoothed particle hydrodynamics simulations of Eta Carinae's inner (r ~110 AU) wind-wind collision interface at multiple orbital phases. These 3D prints reveal important, previously unknown 'finger-like' structures at orbital phases shortly after periastron (φ ~1.045) that protrude radially outward from the spiral wind-wind collision region. We speculate that these fingers are related to instabilities (e.g. Rayleigh-Taylor) that arise at the interface between the radiatively-cooled layer of dense post-shock primary-star wind and the hot, adiabatic post-shock companion-star wind. The success of our work and easy identification of previously unknown physical features highlight the important role 3D printing can play in the visualization and understanding of complex 3D time-dependent numerical simulations of astrophysical phenomena.

  1. Magnetotelluric 3-D inversion—a review of two successful workshops on forward and inversion code testing and comparison

    NASA Astrophysics Data System (ADS)

    Miensopust, Marion P.; Queralt, Pilar; Jones, Alan G.; 3D MT modellers

    2013-06-01

    Over the last half decade the need for, and importance of, three-dimensional (3-D) modelling of magnetotelluric (MT) data have increased dramatically and various 3-D forward and inversion codes are in use and some have become commonly available. Comparison of forward responses and inversion results is an important step for code testing and validation prior to `production' use. The various codes use different mathematical approximations to the problem (finite differences, finite elements or integral equations), various orientations of the coordinate system, different sign conventions for the time dependence and various inversion strategies. Additionally, the obtained results are dependent on data analysis, selection and correction as well as on the chosen mesh, inversion parameters and regularization adopted, and therefore, a careful and knowledge-based use of the codes is essential. In 2008 and 2011, during two workshops at the Dublin Institute for Advanced Studies over 40 people from academia (scientists and students) and industry from around the world met to discuss 3-D MT inversion. These workshops brought together a mix of code writers as well as code users to assess the current status of 3-D modelling, to compare the results of different codes, and to discuss and think about future improvements and new aims in 3-D modelling. To test the numerical forward solutions, two 3-D models were designed to compare the responses obtained by different codes and/or users. Furthermore, inversion results of these two data sets and two additional data sets obtained from unknown models (secret models) were also compared. In this manuscript the test models and data sets are described (supplementary files are available) and comparisons of the results are shown. Details regarding the used data, forward and inversion parameters as well as computational power are summarized for each case, and the main discussion points of the workshops are reviewed. In general, the responses

  2. DCM3D: A dual-continuum, three-dimensional, ground-water flow code for unsaturated, fractured, porous media

    SciTech Connect

    Updegraff, C.D. ); Lee, C.E. ); Gallegos, D.P. )

    1991-02-01

    This report constitutes the user's manual for DCM3D. DCM3D is a computer code for solving three-dimensional, ground-water flow problems in variably saturated, fractured porous media. The code is based on a dual-continuum model with porous media comprising one continuum and fractures comprising the other. The continua are connected by a transfer term that depends on the unsaturated permeability of the porous medium. An integrated finite-difference scheme is used to discretize the governing equations in space. The time-dependent term is allowed to remain continuous. The resulting set of ordinary differential equations (ODE's) is solved with a general ODE solver, LSODES. The code is capable of handling transient, spatially dependent source terms and boundary conditions. The boundary conditions can either prescribed head or prescribed flux. 24 refs., 22 figs., 5 tabs.

  3. Methods for obtaining 3D training images for multiple-point statistics simulations: a comparative study

    NASA Astrophysics Data System (ADS)

    Jha, S. K.; Comunian, A.; Mariethoz, G.; Kelly, B. F.

    2013-12-01

    In recent years, multiple-point statistics (MPS) has been used in several studies for characterizing facies heterogeneity in geological formations. MPS uses a conceptual representation of the expected facies distribution, called a Training image (TI), to generate patterns of facies heterogeneity. In two-dimensional (2D) simulations the TI can be a hand-drawn image, an analogue outcrop image, or derived from geological reconstructions using a combination of geological analogues and geophysical data. However, obtaining suitable TI in three-dimensions (3D) from geological analogues or geophysical data is harder and has limited the use of MPS for simulating facies heterogeneity in 3D. There have been attempts to generate 3D training images using object-based simulation (OBS). However, determining suitable values for the large number of parameters required by OBS is often challenging. In this study, we compare two approaches for generating three-dimensional training images to model a valley filling sequence deposited by meandering rivers. The first approach is based on deriving statistical information from two-dimensional TIs. The 3D domain is simulated with a sequence of 2D MPS simulation steps, performed along different directions on slices of the 3D domain. At each 2D simulation step, the facies simulated at the previous steps that lie on the current 2D slice are used as conditioning data. The second approach uses hand-drawn two-dimensional TIs and produces complex patterns resembling the geological structures by applying rotation and affinity transformations in the facies simulation. The two techniques are compared using transition probabilities, facies proportions, and connectivity metrics. In the presentation we discuss the benefits of each approach for generating three-dimensional facies models.

  4. Precipitation Processes Developed During ARM (1997), TOGA COARE (1992) GATE (1974), SCSMEX (1998), and KWAJEX (1999): Consistent 3D, Semi-3D and 3D Cloud Resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Hou, A.; Atlas, R.; Starr, D.; Sud, Y.

    2003-01-01

    Real clouds and cloud systems are inherently three-dimensional (3D). Because of the limitations in computer resources, however, most cloud-resolving models (CRMs) today are still two-dimensional (2D) have been used to study the response of clouds to large-scale forcing. IN these 3D simulators, the model domain was small, and the integration time was 6 hours. Only recently have 3D experiments been performed for multi-day periods for tropical clouds systems with large horizontal domains at the National Center of Atmospheric Research (NCAR) and at NASA Goddard Space Center. At Goddard, a 3D cumulus Ensemble (GCE) model was used to simulate periods during TOGA COARE, GATE, SCSMEX, ARM, and KWAJEX using a 512 by 512 km domain (with 2-km resolution). The result indicate that surface precipitation and latent heating profiles are very similar between the 2D and 3D GCE model simulation. The major objective of this paper are: (1) to assess the performance of the super-parametrization technique, (2) calculate and examine the surface energy (especially radiation) and water budget, and (3) identify the differences and similarities in the organization and entrainment rates of convection between simulated 2D and 3D cloud systems.

  5. PAB3D: Its History in the Use of Turbulence Models in the Simulation of Jet and Nozzle Flows

    NASA Technical Reports Server (NTRS)

    Abdol-Hamid, Khaled S.; Pao, S. Paul; Hunter, Craig A.; Deere, Karen A.; Massey, Steven J.; Elmiligui, Alaa

    2006-01-01

    This is a review paper for PAB3D s history in the implementation of turbulence models for simulating jet and nozzle flows. We describe different turbulence models used in the simulation of subsonic and supersonic jet and nozzle flows. The time-averaged simulations use modified linear or nonlinear two-equation models to account for supersonic flow as well as high temperature mixing. Two multiscale-type turbulence models are used for unsteady flow simulations. These models require modifications to the Reynolds Averaged Navier-Stokes (RANS) equations. The first scheme is a hybrid RANS/LES model utilizing the two-equation (k-epsilon) model with a RANS/LES transition function, dependent on grid spacing and the computed turbulence length scale. The second scheme is a modified version of the partially averaged Navier-Stokes (PANS) formulation. All of these models are implemented in the three-dimensional Navier-Stokes code PAB3D. This paper discusses computational methods, code implementation, computed results for a wide range of nozzle configurations at various operating conditions, and comparisons with available experimental data. Very good agreement is shown between the numerical solutions and available experimental data over a wide range of operating conditions.

  6. 2D-3D hybrid stabilized finite element method for tsunami runup simulations

    NASA Astrophysics Data System (ADS)

    Takase, S.; Moriguchi, S.; Terada, K.; Kato, J.; Kyoya, T.; Kashiyama, K.; Kotani, T.

    2016-09-01

    This paper presents a two-dimensional (2D)-three-dimensional (3D) hybrid stabilized finite element method that enables us to predict a propagation process of tsunami generated in a hypocentral region, which ranges from offshore propagation to runup to urban areas, with high accuracy and relatively low computational costs. To be more specific, the 2D shallow water equation is employed to simulate the propagation of offshore waves, while the 3D Navier-Stokes equation is employed for the runup in urban areas. The stabilized finite element method is utilized for numerical simulations for both of the 2D and 3D domains that are independently discretized with unstructured meshes. The multi-point constraint and transmission methods are applied to satisfy the continuity of flow velocities and pressures at the interface between the resulting 2D and 3D meshes, since neither their spatial dimensions nor node arrangements are consistent. Numerical examples are presented to demonstrate the performance of the proposed hybrid method to simulate tsunami behavior, including offshore propagation and runup to urban areas, with substantially lower computation costs in comparison with full 3D computations.

  7. Simulation-Guided 3D Nanomanufacturing via Focused Electron Beam Induced Deposition

    DOE PAGES

    Fowlkes, Jason D.; Winkler, Robert; Lewis, Brett B.; Stanford, Michael G.; Plank, Harald; Rack, Philip D.

    2016-06-10

    Focused electron beam induced deposition (FEBID) is one of the few techniques that enables direct-write synthesis of free-standing 3D nanostructures. While the fabrication of simple architectures such as vertical or curving nanowires has been achieved by simple trial and error, processing complex 3D structures is not tractable with this approach. This is due, inpart, to the dynamic interplay between electron–solid interactions and the transient spatial distribution of absorbed precursor molecules on the solid surface. Here, we demonstrate the ability to controllably deposit 3D lattice structures at the micro/nanoscale, which have received recent interest owing to superior mechanical and optical properties.more » Moreover, a hybrid Monte Carlo–continuum simulation is briefly overviewed, and subsequently FEBID experiments and simulations are directly compared. Finally, a 3D computer-aided design (CAD) program is introduced, which generates the beam parameters necessary for FEBID by both simulation and experiment. In using this approach, we demonstrate the fabrication of various 3D lattice structures using Pt-, Au-, and W-based precursors.« less

  8. Learning Dictionaries of Sparse Codes of 3D Movements of Body Joints for Real-Time Human Activity Understanding

    PubMed Central

    Qi, Jin; Yang, Zhiyong

    2014-01-01

    Real-time human activity recognition is essential for human-robot interactions for assisted healthy independent living. Most previous work in this area is performed on traditional two-dimensional (2D) videos and both global and local methods have been used. Since 2D videos are sensitive to changes of lighting condition, view angle, and scale, researchers begun to explore applications of 3D information in human activity understanding in recently years. Unfortunately, features that work well on 2D videos usually don't perform well on 3D videos and there is no consensus on what 3D features should be used. Here we propose a model of human activity recognition based on 3D movements of body joints. Our method has three steps, learning dictionaries of sparse codes of 3D movements of joints, sparse coding, and classification. In the first step, space-time volumes of 3D movements of body joints are obtained via dense sampling and independent component analysis is then performed to construct a dictionary of sparse codes for each activity. In the second step, the space-time volumes are projected to the dictionaries and a set of sparse histograms of the projection coefficients are constructed as feature representations of the activities. Finally, the sparse histograms are used as inputs to a support vector machine to recognize human activities. We tested this model on three databases of human activities and found that it outperforms the state-of-the-art algorithms. Thus, this model can be used for real-time human activity recognition in many applications. PMID:25473850

  9. Linking 3D and 2D binding kinetics of membrane proteins by multiscale simulations

    PubMed Central

    Xie, Zhong-Ru; Chen, Jiawen; Wu, Yinghao

    2014-01-01

    Membrane proteins are among the most functionally important proteins in cells. Unlike soluble proteins, they only possess two translational degrees of freedom on cell surfaces, and experience significant constraints on their rotations. As a result, it is currently challenging to characterize the in situ binding of membrane proteins. Using the membrane receptors CD2 and CD58 as a testing system, we developed a multiscale simulation framework to study the differences of protein binding kinetics between 3D and 2D environments. The association and dissociation processes were implemented by a coarse-grained Monte-Carlo algorithm, while the dynamic properties of proteins diffusing on lipid bilayer were captured from all-atom molecular dynamic simulations. Our simulations show that molecular diffusion, linker flexibility and membrane fluctuations are important factors in adjusting binding kinetics. Moreover, by calibrating simulation parameters to the measurements of 3D binding, we derived the 2D binding constant which is quantitatively consistent with the experimental data, indicating that the method is able to capture the difference between 3D and 2D binding environments. Finally, we found that the 2D dissociation between CD2 and CD58 is about 100-fold slower than the 3D dissociation. In summary, our simulation framework offered a generic approach to study binding mechanisms of membrane proteins. PMID:25271078

  10. 3-D FDTD simulation of shear waves for evaluation of complex modulus imaging.

    PubMed

    Orescanin, Marko; Wang, Yue; Insana, Michael

    2011-02-01

    The Navier equation describing shear wave propagation in 3-D viscoelastic media is solved numerically with a finite differences time domain (FDTD) method. Solutions are formed in terms of transverse scatterer velocity waves and then verified via comparison to measured wave fields in heterogeneous hydrogel phantoms. The numerical algorithm is used as a tool to study the effects on complex shear modulus estimation from wave propagation in heterogeneous viscoelastic media. We used an algebraic Helmholtz inversion (AHI) technique to solve for the complex shear modulus from simulated and experimental velocity data acquired in 2-D and 3-D. Although 3-D velocity estimates are required in general, there are object geometries for which 2-D inversions provide accurate estimations of the material properties. Through simulations and experiments, we explored artifacts generated in elastic and dynamic-viscous shear modulus images related to the shear wavelength and average viscosity.

  11. 3D numerical simulation analysis of passive drag near free surface in swimming

    NASA Astrophysics Data System (ADS)

    Zhan, Jie-min; Li, Tian-zeng; Chen, Xue-bin; Li, Yok-sheung; Wai, Wing-hong Onyx

    2015-04-01

    The aim of this work is to build a 3D numerical model to study the characteristics of passive drag on competitive swimmers taking into account the impact of the free surface. This model solves the 3D incompressible Navier-Stokes equations using RNG k- ɛ turbulence closure. The volume of fluid (VOF) method is used to locate the free surface. The 3D virtual model is created by Computer Aided Industrial Design (CAID) software, Rhinoceros. Firstly, a specific posture of swimming is studied. The simulation results are in good agreement with the data from mannequin towing experiments. The effects of a swimmer's arms and legs positions on swimming performance are then studied. Finally, it is demonstrated that the present method is capable of simulating gliding near the free surface.

  12. Application of the Finite Orbit Width Version of the CQL3D Code to NBI +RF Heating of NSTX Plasma

    NASA Astrophysics Data System (ADS)

    Petrov, Yu. V.; Harvey, R. W.

    2015-11-01

    The CQL3D bounce-averaged Fokker-Planck (FP) code has been upgraded to include Finite-Orbit-Width (FOW) effects. The calculations can be done either with a fast Hybrid-FOW option or with a slower but neoclassically complete full-FOW option. The banana regime neoclassical radial transport appears naturally in the full-FOW version by averaging the local collision coefficients along guiding center orbits, with a proper transformation matrix from local (R, Z) coordinates to the midplane computational coordinates, where the FP equation is solved. In a similar way, the local quasilinear rf diffusion terms give rise to additional radial transport of orbits. The full-FOW version is applied to simulation of ion heating in NSTX plasma. It is demonstrated that it can describe the physics of transport phenomena in plasma with auxiliary heating, in particular, the enhancement of the radial transport of ions by RF heating and the occurrence of the bootstrap current. Because of the bounce-averaging on the FPE, the results are obtained in a relatively short computational time. A typical full-FOW run time is 30 min using 140 MPI cores. Due to an implicit solver, calculations with a large time step (tested up to dt = 0.5 sec) remain stable. Supported by USDOE grants SC0006614, ER54744, and ER44649.

  13. Flexible simulation framework to couple processes in complex 3D models for subsurface utilization assessment

    NASA Astrophysics Data System (ADS)

    Kempka, Thomas; Nakaten, Benjamin; De Lucia, Marco; Nakaten, Natalie; Otto, Christopher; Pohl, Maik; Tillner, Elena; Kühn, Michael

    2016-04-01

    Utilization of the geological subsurface for production and storage of hydrocarbons, chemical energy and heat as well as for waste disposal requires the quantification and mitigation of environmental impacts as well as the improvement of georesources utilization in terms of efficiency and sustainability. The development of tools for coupled process simulations is essential to tackle these challenges, since reliable assessments are only feasible by integrative numerical computations. Coupled processes at reservoir to regional scale determine the behaviour of reservoirs, faults and caprocks, generally demanding for complex 3D geological models to be considered besides available monitoring and experimenting data in coupled numerical simulations. We have been developing a flexible numerical simulation framework that provides efficient workflows for integrating the required data and software packages to carry out coupled process simulations considering, e.g., multiphase fluid flow, geomechanics, geochemistry and heat. Simulation results are stored in structured data formats to allow for an integrated 3D visualization and result interpretation as well as data archiving and its provision to collaborators. The main benefits in using the flexible simulation framework are the integration of data geological and grid data from any third party software package as well as data export to generic 3D visualization tools and archiving formats. The coupling of the required process simulators in time and space is feasible, while different spatial dimensions in the coupled simulations can be integrated, e.g., 0D batch with 3D dynamic simulations. User interaction is established via high-level programming languages, while computational efficiency is achieved by using low-level programming languages. We present three case studies on the assessment of geological subsurface utilization based on different process coupling approaches and numerical simulations.

  14. Numerical simulations and vorticity dynamics of self-propelled swimming of 3D bionic fish

    NASA Astrophysics Data System (ADS)

    Xin, ZhiQiang; Wu, ChuiJie

    2012-02-01

    Numerical simulations and the control of self-propelled swimming of three-dimensional bionic fish in a viscous flow and the mechanism of fish swimming are carried out in this study, with a 3D computational fluid dynamics package, which includes the immersed boundary method and the volume of fluid method, the adaptive multi-grid finite volume method, and the control strategy of fish swimming. Firstly, the mechanism of 3D fish swimming was studied and the vorticity dynamics root was traced to the moving body surface by using the boundary vorticity-flux theory. With the change of swimming speed, the contributions of the fish body and caudal fin to thrust are analyzed quantitatively. The relationship between vortex structures of fish swimming and the forces exerted on the fish body are also given in this paper. Finally, the 3D wake structure of self-propelled swimming of 3D bionic fish is presented. The in-depth analysis of the 3D vortex structure in the role of 3D biomimetic fish swimming is also performed.

  15. 3-D Direct Simulation Monte Carlo modeling of comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Liao, Y.; Su, C.; Finklenburg, S.; Rubin, M.; Ip, W.; Keller, H.; Knollenberg, J.; Kührt, E.; Lai, I.; Skorov, Y.; Thomas, N.; Wu, J.; Chen, Y.

    2014-07-01

    After deep-space hibernation, ESA's Rosetta spacecraft has been successfully woken up and obtained the first images of comet 67P /Churyumov-Gerasimenko (C-G) in March 2014. It is expected that Rosetta will rendezvous with comet 67P and start to observe the nucleus and coma of the comet in the middle of 2014. As the comet approaches the Sun, a significant increase in activity is expected. Our aim is to understand the physical processes in the coma with the help of modeling in order to interpret the resulting measurements and establish observational and data analysis strategies. DSMC (Direct Simulation Monte Carlo) [1] is a very powerful numerical method to study rarefied gas flows such as cometary comae and has been used by several authors over the past decade to study cometary outflow [2,3]. Comparisons between DSMC and fluid techniques have also been performed to establish the limits of these techniques [2,4]. The drawback with 3D DSMC is that it is computationally highly intensive and thus time consuming. However, the performance can be dramatically increased with parallel computing on Graphic Processor Units (GPUs) [5]. We have already studied a case with comet 9P/Tempel 1 where the Deep Impact observations were used to define the shape of the nucleus and the outflow was simulated with the DSMC approach [6,7]. For comet 67P, we intend to determine the gas flow field in the innermost coma and the surface outgassing properties from analyses of the flow field, to investigate dust acceleration by gas drag, and to compare with observations (including time variability). The boundary conditions are implemented with a nucleus shape model [8] and thermal models which are based on the surface heat-balance equation. Several different parameter sets have been investigated. The calculations have been performed using the PDSC^{++} (Parallel Direct Simulation Monte Carlo) code [9] developed by Wu and his coworkers [10-12]. Simulation tasks can be accomplished within 24

  16. [Pre-surgical simulation of microvascular decompression for hemifacial spasm using 3D-models].

    PubMed

    Mashiko, Toshihiro; Yang, Qiang; Kaneko, Naoki; Konno, Takehiko; Yamaguchi, Takashi; Watanabe, Eiju

    2015-01-01

    We have been performing pre-surgical simulations using custom-built patient-specific 3D-models. Here we report the advantageous use of 3D-models for simulating microvascular decompression(MVD)for hemifacial spasms. Seven cases of MVD surgery were performed. Two types of 3D-printers were used to fabricate the 3D-models:one using plaster as the modeling material(Z Printer®450, 3D systems, Rock Hill, SC, USA)and the other using acrylonitrile butadiene styrene(ABS)(UP! Plus 3D printer®, Beijing Tiertime Technology, Beijing). We tested three types of models. Type 1 was a plaster model of the brainstem, cerebellum, facial nerve, and the artery compressing the root exit zone of the facial nerve. Part of the cerebellum was digitally trimmed off to observe "the compressing point" from the same angle as that used during actual surgery. Type 2 was a modified Type 1 in which part of the skull was opened digitally to mimic a craniectomy. Type 3 was a combined model in which the cerebellum and the artery of the Type 2 model were replaced by a soft retractable cerebellum and an elastic artery. The cerebellum was made from polyurethane and cast from a plaster prototype. To fabricate elastic arteries, liquid silicone was painted onto the surface of an ABS artery and the inner ABS model was dissolved away using solvent. In all cases, the 3D-models were very useful. Although each type has advantages, the Type-3 model was judged extremely useful for training junior surgeons in microsurgical approaches.

  17. Flight code validation simulator

    SciTech Connect

    Sims, B.A.

    1995-08-01

    An End-To-End Simulation capability for software development and validation of missile flight software on the actual embedded computer has been developed utilizing a 486 PC, i860 DSP coprocessor, embedded flight computer and custom dual port memory interface hardware. This system allows real-time interrupt driven embedded flight software development and checkout. The flight software runs in a Sandia Digital Airborne Computer (SANDAC) and reads and writes actual hardware sensor locations in which IMU (Inertial Measurements Unit) data resides. The simulator provides six degree of freedom real-time dynamic simulation, accurate real-time discrete sensor data and acts on commands and discretes from the flight computer. This system was utilized in the development and validation of the successful premier flight of the Digital Miniature Attitude Reference System (DMARS) in January 1995 at the White Sands Missile Range on a two stage attitude controlled sounding rocket.

  18. Finite-element simulation of flanging in the deform 3D software package

    NASA Astrophysics Data System (ADS)

    Vostrov, V. N.; Kononov, P. V.

    2016-05-01

    The results of a finite element simulation of the rolling of cylindrical workpieces using the DEFORM 3D software package are presented. The curve of the limiting plasticity of L63 brass that corresponds to various schemes of the state of stress in a workpiece is plotted. The deformation paths of the characteristic regions in a rolled part are calculated.

  19. Building Chondrites: SPH Simulations of a Jet Flow in a 3D Protoplanetary Disc

    NASA Astrophysics Data System (ADS)

    Pignatale, F. C.; Gonzalez, J.-F.; Cuello, N.; Bourdon, B.; Fitoussi, C.

    2016-08-01

    We present SPH simulations of jet flows in 3D discs to investigate the transport of refractory material toward the outer cold disc regions. Dust grains are captured by the disc at distances up to 40 AU, with dust aggregates mimicking chondrites.

  20. Learning Patterns as Criterion for Forming Work Groups in 3D Simulation Learning Environments

    ERIC Educational Resources Information Center

    Maria Cela-Ranilla, Jose; Molías, Luis Marqués; Cervera, Mercè Gisbert

    2016-01-01

    This study analyzes the relationship between the use of learning patterns as a grouping criterion to develop learning activities in the 3D simulation environment at University. Participants included 72 Spanish students from the Education and Marketing disciplines. Descriptive statistics and non-parametric tests were conducted. The process was…

  1. Qualitative Assessment of a 3D Simulation Program: Faculty, Students, and Bio-Organic Reaction Animations

    ERIC Educational Resources Information Center

    Günersel, Adalet B.; Fleming, Steven A.

    2013-01-01

    Research shows that computer-based simulations and animations are especially helpful in fields such as chemistry where concepts are abstract and cannot be directly observed. Bio-Organic Reaction Animations (BioORA) is a freely available 3D visualization software program developed to help students understand the chemistry of biomolecular events.…

  2. Online Stereo 3D Simulation in Studying the Spherical Pendulum in Conservative Force Field

    ERIC Educational Resources Information Center

    Zabunov, Svetoslav S.

    2013-01-01

    The current paper aims at presenting a modern e-learning method and tool that is utilized in teaching physics in the universities. An online stereo 3D simulation is used for e-learning mechanics and specifically the teaching of spherical pendulum as part of the General Physics course for students in the universities. This approach was realized on…

  3. An object-oriented simulator for 3D digital breast tomosynthesis imaging system.

    PubMed

    Seyyedi, Saeed; Cengiz, Kubra; Kamasak, Mustafa; Yildirim, Isa

    2013-01-01

    Digital breast tomosynthesis (DBT) is an innovative imaging modality that provides 3D reconstructed images of breast to detect the breast cancer. Projections obtained with an X-ray source moving in a limited angle interval are used to reconstruct 3D image of breast. Several reconstruction algorithms are available for DBT imaging. Filtered back projection algorithm has traditionally been used to reconstruct images from projections. Iterative reconstruction algorithms such as algebraic reconstruction technique (ART) were later developed. Recently, compressed sensing based methods have been proposed in tomosynthesis imaging problem. We have developed an object-oriented simulator for 3D digital breast tomosynthesis (DBT) imaging system using C++ programming language. The simulator is capable of implementing different iterative and compressed sensing based reconstruction methods on 3D digital tomosynthesis data sets and phantom models. A user friendly graphical user interface (GUI) helps users to select and run the desired methods on the designed phantom models or real data sets. The simulator has been tested on a phantom study that simulates breast tomosynthesis imaging problem. Results obtained with various methods including algebraic reconstruction technique (ART) and total variation regularized reconstruction techniques (ART+TV) are presented. Reconstruction results of the methods are compared both visually and quantitatively by evaluating performances of the methods using mean structural similarity (MSSIM) values. PMID:24371468

  4. 3D radiative transfer in η Carinae: application of the SIMPLEX algorithm to 3D SPH simulations of binary colliding winds

    NASA Astrophysics Data System (ADS)

    Clementel, N.; Madura, T. I.; Kruip, C. J. H.; Icke, V.; Gull, T. R.

    2014-09-01

    Eta Carinae is an ideal astrophysical laboratory for studying massive binary interactions and evolution, and stellar wind-wind collisions. Recent three-dimensional (3D) simulations set the stage for understanding the highly complex 3D flows in η Car. Observations of different broad high- and low-ionization forbidden emission lines provide an excellent tool to constrain the orientation of the system, the primary's mass-loss rate, and the ionizing flux of the hot secondary. In this work, we present the first steps towards generating synthetic observations to compare with available and future HST/STIS data. We present initial results from full 3D radiative transfer simulations of the interacting winds in η Car. We use the SIMPLEX algorithm to post-process the output from 3D smoothed particle hydrodynamics (SPH) simulations and obtain the ionization fractions of hydrogen and helium assuming three different mass-loss rates for the primary star. The resultant ionization maps of both species constrain the regions where the observed forbidden emission lines can form. Including collisional ionization is necessary to achieve a better description of the ionization states, especially in the areas shielded from the secondary's radiation. We find that reducing the primary's mass-loss rate increases the volume of ionized gas, creating larger areas where the forbidden emission lines can form. We conclude that post-processing 3D SPH data with SIMPLEX is a viable tool to create ionization maps for η Car.

  5. 3D Radiative Transfer in Eta Carinae: Application of the SimpleX Algorithm to 3D SPH Simulations of Binary Colliding Winds

    NASA Technical Reports Server (NTRS)

    Clementel, N.; Madura, T. I.; Kruip, C. J. H.; Icke, V.; Gull, T. R.

    2014-01-01

    Eta Carinae is an ideal astrophysical laboratory for studying massive binary interactions and evolution, and stellar wind-wind collisions. Recent three-dimensional (3D) simulations set the stage for understanding the highly complex 3D flows in Eta Car. Observations of different broad high- and low-ionization forbidden emission lines provide an excellent tool to constrain the orientation of the system, the primary's mass-loss rate, and the ionizing flux of the hot secondary. In this work we present the first steps towards generating synthetic observations to compare with available and future HST/STIS data. We present initial results from full 3D radiative transfer simulations of the interacting winds in Eta Car. We use the SimpleX algorithm to post-process the output from 3D SPH simulations and obtain the ionization fractions of hydrogen and helium assuming three different mass-loss rates for the primary star. The resultant ionization maps of both species constrain the regions where the observed forbidden emission lines can form. Including collisional ionization is necessary to achieve a better description of the ionization states, especially in the areas shielded from the secondary's radiation. We find that reducing the primary's mass-loss rate increases the volume of ionized gas, creating larger areas where the forbidden emission lines can form. We conclude that post processing 3D SPH data with SimpleX is a viable tool to create ionization maps for Eta Car.

  6. 3D Radiative Transfer in Eta Carinae: Application of the SimpleX Algorithm to 3D SPH Simulations of Binary Colliding Winds

    NASA Technical Reports Server (NTRS)

    Clementel, N.; Madura, T. I.; Kruip, C.J.H.; Icke, V.; Gull, T. R.

    2014-01-01

    Eta Carinae is an ideal astrophysical laboratory for studying massive binary interactions and evolution, and stellar wind-wind collisions. Recent three-dimensional (3D) simulations set the stage for understanding the highly complex 3D flows in eta Car. Observations of different broad high- and low-ionization forbidden emission lines provide an excellent tool to constrain the orientation of the system, the primary's mass-loss rate, and the ionizing flux of the hot secondary. In this work we present the first steps towards generating synthetic observations to compare with available and future HST/STIS data. We present initial results from full 3D radiative transfer simulations of the interacting winds in eta Car.We use the SimpleX algorithm to post-process the output from 3D SPH simulations and obtain the ionization fractions of hydrogen and helium assuming three different mass-loss rates for the primary star. The resultant ionization maps of both species constrain the regions where the observed forbidden emission lines can form. Including collisional ionization is necessary to achieve a better description of the ionization states, especially in the areas shielded from the secondary's radiation. We find that reducing the primary's mass-loss rate increases the volume of ionized gas, creating larger areas where the forbidden emission lines can form.We conclude that post processing 3D SPH data with SimpleX is a viable tool to create ionization maps for eta Car.

  7. 3D relaxation MHD modeling with FOI-PERFECT code for electromagnetically driven HED systems

    NASA Astrophysics Data System (ADS)

    Wang, Ganghua; Duan, Shuchao; Xie, Weiping; Kan, Mingxian; Institute of Fluid Physics Collaboration

    2015-11-01

    One of the challenges in numerical simulations of electromagnetically driven high energy density (HED) systems is the existence of vacuum region. The electromagnetic part of the conventional model adopts the magnetic diffusion approximation (magnetic induction model). The vacuum region is approximated by artificially increasing the resistivity. On one hand the phase/group velocity is superluminal and hence non-physical in the vacuum region, on the other hand a diffusion equation with large diffusion coefficient can only be solved by implicit scheme. Implicit method is usually difficult to parallelize and converge. A better alternative is to solve the full electromagnetic equations for the electromagnetic part. Maxwell's equations coupled with the constitutive equation, generalized Ohm's law, constitute a relaxation model. The dispersion relation is given to show its transition from electromagnetic propagation in vacuum to resistive MHD in plasma in a natural way. The phase and group velocities are finite for this system. A better time stepping is adopted to give a 3rd full order convergence in time domain without the stiff relaxation term restriction. Therefore it is convenient for explicit & parallel computations. Some numerical results of FOI-PERFECT code are also given. Project supported by the National Natural Science Foundation of China (Grant No. 11172277,11205145).

  8. Parallel 3D Multi-Stage Simulation of a Turbofan Engine

    NASA Technical Reports Server (NTRS)

    Turner, Mark G.; Topp, David A.

    1998-01-01

    A 3D multistage simulation of each component of a modern GE Turbofan engine has been made. An axisymmetric view of this engine is presented in the document. This includes a fan, booster rig, high pressure compressor rig, high pressure turbine rig and a low pressure turbine rig. In the near future, all components will be run in a single calculation for a solution of 49 blade rows. The simulation exploits the use of parallel computations by using two levels of parallelism. Each blade row is run in parallel and each blade row grid is decomposed into several domains and run in parallel. 20 processors are used for the 4 blade row analysis. The average passage approach developed by John Adamczyk at NASA Lewis Research Center has been further developed and parallelized. This is APNASA Version A. It is a Navier-Stokes solver using a 4-stage explicit Runge-Kutta time marching scheme with variable time steps and residual smoothing for convergence acceleration. It has an implicit K-E turbulence model which uses an ADI solver to factor the matrix. Between 50 and 100 explicit time steps are solved before a blade row body force is calculated and exchanged with the other blade rows. This outer iteration has been coined a "flip." Efforts have been made to make the solver linearly scaleable with the number of blade rows. Enough flips are run (between 50 and 200) so the solution in the entire machine is not changing. The K-E equations are generally solved every other explicit time step. One of the key requirements in the development of the parallel code was to make the parallel solution exactly (bit for bit) match the serial solution. This has helped isolate many small parallel bugs and guarantee the parallelization was done correctly. The domain decomposition is done only in the axial direction since the number of points axially is much larger than the other two directions. This code uses MPI for message passing. The parallel speed up of the solver portion (no 1/0 or body force

  9. Recent Hydrodynamics Improvements to the RELAP5-3D Code

    SciTech Connect

    Richard A. Riemke; Cliff B. Davis; Richard.R. Schultz

    2009-07-01

    The hydrodynamics section of the RELAP5-3D computer program has been recently improved. Changes were made as follows: (1) improved turbine model, (2) spray model for the pressurizer model, (3) feedwater heater model, (4) radiological transport model, (5) improved pump model, and (6) compressor model.

  10. Software Development: 3D Animations and Creating User Interfaces for Realistic Simulations

    NASA Technical Reports Server (NTRS)

    Gordillo, Orlando Enrique

    2015-01-01

    My fall 2015 semester was spent at the Lyndon B. Johnson Space Center working in the Integrated Graphics, Operations, and Analysis Laboratory (IGOAL). My first project was to create a video animation that could tell the story of OMICS. OMICS is a term being used in the field of biomedical science to describe the collective technologies that study biological systems, such as what makes up a cell and how it functions with other systems. In the IGOAL I used a large 23 inch Wacom monitor to draw storyboards, graphics, and line art animations. I used Blender as the 3D environment to sculpt, shape, cut or modify the several scenes and models for the video. A challenge creating this video was to take a term used in biomedical science and describe it in such a way that an 8th grade student can understand. I used a line art style because it would visually set the tone for what we thought was an educational style. In order to get a handle on the perspective and overall feel for the animation without overloading my workspace, I split up the 2 minute animation into several scenes. I used Blender's python scripting capabilities which allowed for the addition of plugins to add or modify tools. The scripts can also directly interact with the objects to create naturalistic patterns or movements. After collecting the rendered scenes, I used Blender's built-in video editing workspace to output the animation. My second project was to write software that emulates a physical system's interface. The interface was to simulate a boat, ROV, and winch system. Simulations are a time and cost effective way to test complicated data and provide training for operators without having to use expensive hardware. We created the virtual controls with 3-D Blender models and 2-D graphics, and then add functionality in C# using the Unity game engine. The Unity engine provides several essential behaviors of a simulator, such as the start and update functions. A framework for Unity, which was developed in

  11. Finite-Difference Algorithm for Simulating 3D Electromagnetic Wavefields in Conductive Media

    NASA Astrophysics Data System (ADS)

    Aldridge, D. F.; Bartel, L. C.; Knox, H. A.

    2013-12-01

    Electromagnetic (EM) wavefields are routinely used in geophysical exploration for detection and characterization of subsurface geological formations of economic interest. Recorded EM signals depend strongly on the current conductivity of geologic media. Hence, they are particularly useful for inferring fluid content of saturated porous bodies. In order to enhance understanding of field-recorded data, we are developing a numerical algorithm for simulating three-dimensional (3D) EM wave propagation and diffusion in heterogeneous conductive materials. Maxwell's equations are combined with isotropic constitutive relations to obtain a set of six, coupled, first-order partial differential equations governing the electric and magnetic vectors. An advantage of this system is that it does not contain spatial derivatives of the three medium parameters electric permittivity, magnetic permeability, and current conductivity. Numerical solution methodology consists of explicit, time-domain finite-differencing on a 3D staggered rectangular grid. Temporal and spatial FD operators have order 2 and N, where N is user-selectable. We use an artificially-large electric permittivity to maximize the FD timestep, and thus reduce execution time. For the low frequencies typically used in geophysical exploration, accuracy is not unduly compromised. Grid boundary reflections are mitigated via convolutional perfectly matched layers (C-PMLs) imposed at the six grid flanks. A shared-memory-parallel code implementation via OpenMP directives enables rapid algorithm execution on a multi-thread computational platform. Good agreement is obtained in comparisons of numerically-generated data with reference solutions. EM wavefields are sourced via point current density and magnetic dipole vectors. Spatially-extended inductive sources (current carrying wire loops) are under development. We are particularly interested in accurate representation of high-conductivity sub-grid-scale features that are common

  12. Ion counting from explicit-solvent simulations and 3D-RISM.

    PubMed

    Giambaşu, George M; Luchko, Tyler; Herschlag, Daniel; York, Darrin M; Case, David A

    2014-02-18

    The ionic atmosphere around nucleic acids remains only partially understood at atomic-level detail. Ion counting (IC) experiments provide a quantitative measure of the ionic atmosphere around nucleic acids and, as such, are a natural route for testing quantitative theoretical approaches. In this article, we replicate IC experiments involving duplex DNA in NaCl(aq) using molecular dynamics (MD) simulation, the three-dimensional reference interaction site model (3D-RISM), and nonlinear Poisson-Boltzmann (NLPB) calculations and test against recent buffer-equilibration atomic emission spectroscopy measurements. Further, we outline the statistical mechanical basis for interpreting IC experiments and clarify the use of specific concentration scales. Near physiological concentrations, MD simulation and 3D-RISM estimates are close to experimental results, but at higher concentrations (>0.7 M), both methods underestimate the number of condensed cations and overestimate the number of excluded anions. The effect of DNA charge on ion and water atmosphere extends 20-25 Å from its surface, yielding layered density profiles. Overall, ion distributions from 3D-RISMs are relatively close to those from corresponding MD simulations, but with less Na(+) binding in grooves and tighter binding to phosphates. NLPB calculations, on the other hand, systematically underestimate the number of condensed cations at almost all concentrations and yield nearly structureless ion distributions that are qualitatively distinct from those generated by both MD simulation and 3D-RISM. These results suggest that MD simulation and 3D-RISM may be further developed to provide quantitative insight into the characterization of the ion atmosphere around nucleic acids and their effect on structure and stability.

  13. Ion Counting from Explicit-Solvent Simulations and 3D-RISM

    PubMed Central

    Giambaşu, George M.; Luchko, Tyler; Herschlag, Daniel; York, Darrin M.; Case, David A.

    2014-01-01

    The ionic atmosphere around nucleic acids remains only partially understood at atomic-level detail. Ion counting (IC) experiments provide a quantitative measure of the ionic atmosphere around nucleic acids and, as such, are a natural route for testing quantitative theoretical approaches. In this article, we replicate IC experiments involving duplex DNA in NaCl(aq) using molecular dynamics (MD) simulation, the three-dimensional reference interaction site model (3D-RISM), and nonlinear Poisson-Boltzmann (NLPB) calculations and test against recent buffer-equilibration atomic emission spectroscopy measurements. Further, we outline the statistical mechanical basis for interpreting IC experiments and clarify the use of specific concentration scales. Near physiological concentrations, MD simulation and 3D-RISM estimates are close to experimental results, but at higher concentrations (>0.7 M), both methods underestimate the number of condensed cations and overestimate the number of excluded anions. The effect of DNA charge on ion and water atmosphere extends 20–25 Å from its surface, yielding layered density profiles. Overall, ion distributions from 3D-RISMs are relatively close to those from corresponding MD simulations, but with less Na+ binding in grooves and tighter binding to phosphates. NLPB calculations, on the other hand, systematically underestimate the number of condensed cations at almost all concentrations and yield nearly structureless ion distributions that are qualitatively distinct from those generated by both MD simulation and 3D-RISM. These results suggest that MD simulation and 3D-RISM may be further developed to provide quantitative insight into the characterization of the ion atmosphere around nucleic acids and their effect on structure and stability. PMID:24559991

  14. Reactor Dosimetry Applications Using RAPTOR-M3G:. a New Parallel 3-D Radiation Transport Code

    NASA Astrophysics Data System (ADS)

    Longoni, Gianluca; Anderson, Stanwood L.

    2009-08-01

    The numerical solution of the Linearized Boltzmann Equation (LBE) via the Discrete Ordinates method (SN) requires extensive computational resources for large 3-D neutron and gamma transport applications due to the concurrent discretization of the angular, spatial, and energy domains. This paper will discuss the development RAPTOR-M3G (RApid Parallel Transport Of Radiation - Multiple 3D Geometries), a new 3-D parallel radiation transport code, and its application to the calculation of ex-vessel neutron dosimetry responses in the cavity of a commercial 2-loop Pressurized Water Reactor (PWR). RAPTOR-M3G is based domain decomposition algorithms, where the spatial and angular domains are allocated and processed on multi-processor computer architectures. As compared to traditional single-processor applications, this approach reduces the computational load as well as the memory requirement per processor, yielding an efficient solution methodology for large 3-D problems. Measured neutron dosimetry responses in the reactor cavity air gap will be compared to the RAPTOR-M3G predictions. This paper is organized as follows: Section 1 discusses the RAPTOR-M3G methodology; Section 2 describes the 2-loop PWR model and the numerical results obtained. Section 3 addresses the parallel performance of the code, and Section 4 concludes this paper with final remarks and future work.

  15. Development of a 3D-printed external ventricular drain placement simulator: technical note.

    PubMed

    Tai, Bruce L; Rooney, Deborah; Stephenson, Francesca; Liao, Peng-Siang; Sagher, Oren; Shih, Albert J; Savastano, Luis E

    2015-10-01

    In this paper, the authors present a physical model developed to simulate accurate external ventricular drain (EVD) placement with realistic haptic and visual feedbacks to serve as a platform for complete procedural training. Insertion of an EVD via ventriculostomy is a common neurosurgical procedure used to monitor intracranial pressures and/or drain CSF. Currently, realistic training tools are scarce and mainly limited to virtual reality simulation systems. The use of 3D printing technology enables the development of realistic anatomical structures and customized design for physical simulators. In this study, the authors used the advantages of 3D printing to directly build the model geometry from stealth head CT scans and build a phantom brain mold based on 3D scans of a plastinated human brain. The resultant simulator provides realistic haptic feedback during a procedure, with visualization of catheter trajectory and fluid drainage. A multiinstitutional survey was also used to prove content validity of the simulator. With minor refinement, this simulator is expected to be a cost-effective tool for training neurosurgical residents in EVD placement.

  16. XML-based 3D model visualization and simulation framework for dynamic models

    NASA Astrophysics Data System (ADS)

    Kim, Taewoo; Fishwick, Paul A.

    2002-07-01

    Relatively recent advances in computer technology enable us to create three-dimensional (3D) dynamic models and simulate them within a 3D web environment. The use of such models is especially valuable when teaching simulation, and the concepts behind dynamic models, since the models are made more accessible to the students. Students tend to enjoy a construction process in which they are able to employ their own cultural and aesthetic forms. The challenge is to create a language that allows for a grammar for modeling, while simultaneously permitting arbitrary presentation styles. For further flexibility, we need an effective way to represent and simulate dynamic models that can be shared by modelers over the Internet. We present an Extensible Markup Language (XML)-based framework that will guide a modeler in creating personalized 3D models, visualizing its dynamic behaviors, and simulating the created models. A model author will use XML files to represent geometries and topology of a dynamic model. Model Fusion Engine, written in Extensible Stylesheet Language Transformation (XSLT), expedites the modeling process by automating the creation of dynamic models with the user-defined XML files. Modelers can also link simulation programs with a created model to analyze the characteristics of the model. The advantages of this system lie in the education of modeling and simulating dynamic models, and in the exploitation of visualizing the dynamic model behaviors.

  17. Development of a 3D-printed external ventricular drain placement simulator: technical note.

    PubMed

    Tai, Bruce L; Rooney, Deborah; Stephenson, Francesca; Liao, Peng-Siang; Sagher, Oren; Shih, Albert J; Savastano, Luis E

    2015-10-01

    In this paper, the authors present a physical model developed to simulate accurate external ventricular drain (EVD) placement with realistic haptic and visual feedbacks to serve as a platform for complete procedural training. Insertion of an EVD via ventriculostomy is a common neurosurgical procedure used to monitor intracranial pressures and/or drain CSF. Currently, realistic training tools are scarce and mainly limited to virtual reality simulation systems. The use of 3D printing technology enables the development of realistic anatomical structures and customized design for physical simulators. In this study, the authors used the advantages of 3D printing to directly build the model geometry from stealth head CT scans and build a phantom brain mold based on 3D scans of a plastinated human brain. The resultant simulator provides realistic haptic feedback during a procedure, with visualization of catheter trajectory and fluid drainage. A multiinstitutional survey was also used to prove content validity of the simulator. With minor refinement, this simulator is expected to be a cost-effective tool for training neurosurgical residents in EVD placement. PMID:26115472

  18. Preliminary Results from the Application of Automated Adjoint Code Generation to CFL3D

    NASA Technical Reports Server (NTRS)

    Carle, Alan; Fagan, Mike; Green, Lawrence L.

    1998-01-01

    This report describes preliminary results obtained using an automated adjoint code generator for Fortran to augment a widely-used computational fluid dynamics flow solver to compute derivatives. These preliminary results with this augmented code suggest that, even in its infancy, the automated adjoint code generator can accurately and efficiently deliver derivatives for use in transonic Euler-based aerodynamic shape optimization problems with hundreds to thousands of independent design variables.

  19. CELSS-3D: a broad computer model simulating a controlled ecological life support system.

    PubMed

    Schneegurt, M A; Sherman, L A

    1997-01-01

    CELSS-3D is a dynamic, deterministic, and discrete computer simulation of a controlled ecological life support system (CELSS) focusing on biological issues. A series of linear difference equations within a graphic-based modeling environment, the IThink program, was used to describe a modular CELSS system. The overall model included submodels for crop growth chambers, food storage reservoirs, the human crew, a cyanobacterial growth chamber, a waste processor, fixed nitrogen reservoirs, and the atmospheric gases, CO, O2, and N2. The primary process variable was carbon, although oxygen and nitrogen flows were also modeled. Most of the input data used in CELSS-3D were from published sources. A separate linear optimization program, What'sBest!, was used to compare options for the crew's vegetarian diet. CELSS-3D simulations were run for the equivalent of 3 years with a 1-h time interval. Output from simulations run under nominal conditions was used to illustrate dynamic changes in the concentrations of atmospheric gases. The modular design of CELSS-3D will allow other configurations and various failure scenarios to be tested and compared.

  20. CELSS-3D: a broad computer model simulating a controlled ecological life support system.

    PubMed

    Schneegurt, M A; Sherman, L A

    1997-01-01

    CELSS-3D is a dynamic, deterministic, and discrete computer simulation of a controlled ecological life support system (CELSS) focusing on biological issues. A series of linear difference equations within a graphic-based modeling environment, the IThink program, was used to describe a modular CELSS system. The overall model included submodels for crop growth chambers, food storage reservoirs, the human crew, a cyanobacterial growth chamber, a waste processor, fixed nitrogen reservoirs, and the atmospheric gases, CO, O2, and N2. The primary process variable was carbon, although oxygen and nitrogen flows were also modeled. Most of the input data used in CELSS-3D were from published sources. A separate linear optimization program, What'sBest!, was used to compare options for the crew's vegetarian diet. CELSS-3D simulations were run for the equivalent of 3 years with a 1-h time interval. Output from simulations run under nominal conditions was used to illustrate dynamic changes in the concentrations of atmospheric gases. The modular design of CELSS-3D will allow other configurations and various failure scenarios to be tested and compared. PMID:11540449

  1. Analysis and Compensation for Lateral Chromatic Aberration in a Color Coding Structured Light 3D Measurement System

    PubMed Central

    Huang, Junhui; Xue, Qi; Wang, Zhao; Gao, Jianmin

    2016-01-01

    While color-coding methods have improved the measuring efficiency of a structured light three-dimensional (3D) measurement system, they decreased the measuring accuracy significantly due to lateral chromatic aberration (LCA). In this study, the LCA in a structured light measurement system is analyzed, and a method is proposed to compensate the error caused by the LCA. Firstly, based on the projective transformation, a 3D error map of LCA is constructed in the projector images by using a flat board and comparing the image coordinates of red, green and blue circles with the coordinates of white circles at preselected sample points within the measurement volume. The 3D map consists of the errors, which are the equivalent errors caused by LCA of the camera and projector. Then in measurements, error values of LCA are calculated and compensated to correct the projector image coordinates through the 3D error map and a tri-linear interpolation method. Eventually, 3D coordinates with higher accuracy are re-calculated according to the compensated image coordinates. The effectiveness of the proposed method is verified in the following experiments. PMID:27598174

  2. Analysis and Compensation for Lateral Chromatic Aberration in a Color Coding Structured Light 3D Measurement System.

    PubMed

    Huang, Junhui; Xue, Qi; Wang, Zhao; Gao, Jianmin

    2016-01-01

    While color-coding methods have improved the measuring efficiency of a structured light three-dimensional (3D) measurement system, they decreased the measuring accuracy significantly due to lateral chromatic aberration (LCA). In this study, the LCA in a structured light measurement system is analyzed, and a method is proposed to compensate the error caused by the LCA. Firstly, based on the projective transformation, a 3D error map of LCA is constructed in the projector images by using a flat board and comparing the image coordinates of red, green and blue circles with the coordinates of white circles at preselected sample points within the measurement volume. The 3D map consists of the errors, which are the equivalent errors caused by LCA of the camera and projector. Then in measurements, error values of LCA are calculated and compensated to correct the projector image coordinates through the 3D error map and a tri-linear interpolation method. Eventually, 3D coordinates with higher accuracy are re-calculated according to the compensated image coordinates. The effectiveness of the proposed method is verified in the following experiments. PMID:27598174

  3. Time-Dependent Distribution Functions in C-Mod Calculated with the CQL3D-Hybrid-FOW, AORSA Full-Wave, and DC Lorentz Codes

    NASA Astrophysics Data System (ADS)

    Harvey, R. W. (Bob); Petrov, Yu. V.; Jaeger, E. F.; Berry, L. A.; Bonoli, P. T.; Bader, A.

    2015-11-01

    A time-dependent simulation of C-Mod pulsed ICRF power is made calculating minority hydrogen ion distribution functions with the CQL3D-Hybrid-FOW finite-orbit-width Fokker-Planck code. ICRF fields are calculated with the AORSA full wave code, and RF diffusion coefficients are obtained from these fields using the DC Lorentz gyro-orbit code. Prior results with a zero-banana-width simulation using the CQL3D/AORSA/DC time-cycles showed a pronounced enhancement of the H distribution in the perpendicular velocity direction compared to results obtained from Stix's quasilinear theory, in general agreement with experiment. The present study compares the new FOW results, including relevant gyro-radius effects, to determine the importance of these effects on the the NPA synthetic diagnostic time-dependence. The new NPA results give increased agreement with experiment, particularly in the ramp-down time after the ICRF pulse. Funded, through subcontract with Massachusetts Institute of Technology, by USDOE sponsored SciDAC Center for Simulation of Wave-Plasma Interactions.

  4. European Pressurized water Reactor (EPR) SAR ATWS Accident Analyses by using 3D Code Internal Coupling Method

    SciTech Connect

    Gagner, Renata; Lafitte, Helene; Dormeau, Pascal; Stoudt, Roger H.

    2004-07-01

    Anticipated Transients Without Scram (ATWS) accident analyses make part of the Safety Analysis Report of the European Pressurized water Reactor (EPR), covering Risk Reduction Category A (Core Melt Prevention) events. This paper deals with three of the most penalizing RRC-A sequences of ATWS caused by mechanical blockage of the control/shutdown rods, regarding their consequences on the Reactor Coolant System (RCS) and core integrity. A new 3D code internal coupling calculation method has been introduced. (authors)

  5. HADES, A Radiographic Simulation Code

    SciTech Connect

    Aufderheide, M.B.; Slone, D.M.; Schach von Wittenau, A.E.

    2000-08-18

    We describe features of the HADES radiographic simulation code. We begin with a discussion of why it is useful to simulate transmission radiography. The capabilities of HADES are described, followed by an application of HADES to a dynamic experiment recently performed at the Los Alamos Neutron Science Center. We describe quantitative comparisons between experimental data and HADES simulations using a copper step wedge. We conclude with a short discussion of future work planned for HADES.

  6. The program FANS-3D (finite analytic numerical simulation 3-dimensional) and its applications

    NASA Technical Reports Server (NTRS)

    Bravo, Ramiro H.; Chen, Ching-Jen

    1992-01-01

    In this study, the program named FANS-3D (Finite Analytic Numerical Simulation-3 Dimensional) is presented. FANS-3D was designed to solve problems of incompressible fluid flow and combined modes of heat transfer. It solves problems with conduction and convection modes of heat transfer in laminar flow, with provisions for radiation and turbulent flows. It can solve singular or conjugate modes of heat transfer. It also solves problems in natural convection, using the Boussinesq approximation. FANS-3D was designed to solve heat transfer problems inside one, two and three dimensional geometries that can be represented by orthogonal planes in a Cartesian coordinate system. It can solve internal and external flows using appropriate boundary conditions such as symmetric, periodic and user specified.

  7. Parallel implementation of 3D FFT with volumetric decomposition schemes for efficient molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Jung, Jaewoon; Kobayashi, Chigusa; Imamura, Toshiyuki; Sugita, Yuji

    2016-03-01

    Three-dimensional Fast Fourier Transform (3D FFT) plays an important role in a wide variety of computer simulations and data analyses, including molecular dynamics (MD) simulations. In this study, we develop hybrid (MPI+OpenMP) parallelization schemes of 3D FFT based on two new volumetric decompositions, mainly for the particle mesh Ewald (PME) calculation in MD simulations. In one scheme, (1d_Alltoall), five all-to-all communications in one dimension are carried out, and in the other, (2d_Alltoall), one two-dimensional all-to-all communication is combined with two all-to-all communications in one dimension. 2d_Alltoall is similar to the conventional volumetric decomposition scheme. We performed benchmark tests of 3D FFT for the systems with different grid sizes using a large number of processors on the K computer in RIKEN AICS. The two schemes show comparable performances, and are better than existing 3D FFTs. The performances of 1d_Alltoall and 2d_Alltoall depend on the supercomputer network system and number of processors in each dimension. There is enough leeway for users to optimize performance for their conditions. In the PME method, short-range real-space interactions as well as long-range reciprocal-space interactions are calculated. Our volumetric decomposition schemes are particularly useful when used in conjunction with the recently developed midpoint cell method for short-range interactions, due to the same decompositions of real and reciprocal spaces. The 1d_Alltoall scheme of 3D FFT takes 4.7 ms to simulate one MD cycle for a virus system containing more than 1 million atoms using 32,768 cores on the K computer.

  8. Trapping solids at the inner edge of the dead zone: 3-D global MHD simulations

    NASA Astrophysics Data System (ADS)

    Dzyurkevich, N.; Flock, M.; Turner, N. J.; Klahr, H.; Henning, Th.

    2010-06-01

    Context. The poorly-ionized interior of the protoplanetary disk or “dead zone” is the location where dust coagulation processes may be most efficient. However even here, planetesimal formation may be limited by the loss of solid material through radial drift, and by collisional fragmentation of the particles. Both depend on the turbulent properties of the gas. Aims: Our aim here is to investigate the possibility that solid particles are trapped at local pressure maxima in the dynamically evolving disk. We perform the first 3-D global non-ideal magnetohydrodynamical (MHD) calculations of a section of the disk treating the turbulence driven by the magneto-rotational instability (MRI). Methods: We use the ZeusMP code with a fixed Ohmic resistivity distribution. The domain contains an inner MRI-active region near the young star and an outer midplane dead zone, with the transition between the two modeled by a sharp increase in the magnetic diffusivity. Results: The azimuthal magnetic fields generated in the active zone oscillate over time, changing sign about every 150 years. We thus observe the radial structure of the “butterfly pattern” seen previously in local shearing-box simulations. The mean magnetic field diffuses from the active zone into the dead zone, where the Reynolds stress nevertheless dominates, giving a residual α between 10-4 and 10-3. The greater total accretion stress in the active zone leads to a net reduction in the surface density, so that after 800 years an approximate steady state is reached in which a local radial maximum in the midplane pressure lies near the transition radius. We also observe the formation of density ridges within the active zone. Conclusions: The dead zone in our models possesses a mean magnetic field, significant Reynolds stresses and a steady local pressure maximum at the inner edge, where the outward migration of planetary embryos and the efficient trapping of solid material are possible.

  9. Compressible Magma/Mantle Dynamics: 3d, Adaptive Simulations in ASPECT

    NASA Astrophysics Data System (ADS)

    Dannberg, Juliane; Heister, Timo

    2016-09-01

    Melt generation and migration are an important link between surface processes and the thermal and chemical evolution of the Earth's interior. However, their vastly different time scales make it difficult to study mantle convection and melt migration in a unified framework, especially for three-dimensional, global models. And although experiments suggest an increase in melt volume of up to 20% from the depth of melt generation to the surface, previous computations have neglected the individual compressibilities of the solid and the fluid phase. Here, we describe our extension of the finite element mantle convection code ASPECT that adds melt generation and migration. We use the original compressible formulation of the McKenzie equations, augmented by an equation for the conservation of energy. Applying adaptive mesh refinement to this type of problems is particularly advantageous, as the resolution can be increased in areas where melt is present and viscosity gradients are high, whereas a lower resolution is sufficient in regions without melt. Together with a high-performance, massively parallel implementation, this allows for high resolution, 3d, compressible, global mantle convection simulations coupled with melt migration. We evaluate the functionality and potential of this method using a series of benchmarks and model setups, compare results of the compressible and incompressible formulation, and show the effectiveness of adaptive mesh refinement when applied to melt migration. Our model of magma dynamics provides a framework for modelling processes on different scales and investigating links between processes occurring in the deep mantle and melt generation and migration. This approach could prove particularly useful applied to modelling the generation of komatiites or other melts originating in greater depths. The implementation is available in the Open Source ASPECT repository.

  10. Simulation Code Development and Its Applications

    NASA Astrophysics Data System (ADS)

    Li, Zenghai

    2015-10-01

    Under the support of the U.S. DOE SciDAC program, SLAC has been developing a suite of 3D parallel finite-element codes aimed at high-accuracy, high-fidelity electromagnetic and beam physics simulations for the design and optimization of next-generation particle accelerators. Running on the latest supercomputers, these codes have made great strides in advancing the state of the art in applied math and computer science at the petascale that enable the integrated modeling of electromagnetics, self-consistent Particle-In-Cell (PIC) particle dynamics as well as thermal, mechanical, and multi-physics effects. This paper will present the latest development and application of ACE3P to a wide range of accelerator projects.

  11. Efficient spectral and pseudospectral algorithms for 3D simulations of whistler-mode waves in a plasma

    SciTech Connect

    Gumerov, Nail A.; Karavaev, Alexey V.; Surjalal Sharma, A.; Shao Xi; Papadopoulos, Konstantinos D.

    2011-04-01

    Efficient spectral and pseudospectral algorithms for simulation of linear and nonlinear 3D whistler waves in a cold electron plasma are developed. These algorithms are applied to the simulation of whistler waves generated by loop antennas and spheromak-like stationary waves of considerable amplitude. The algorithms are linearly stable and show good stability properties for computations of nonlinear waves over tens of thousands of time steps. Additional speedups by factors of 10-20 (comparing single core CPU and one GPU) are achieved by using graphics processors (GPUs), which enable efficient numerical simulation of the wave propagation on relatively high resolution meshes (tens of millions nodes) in personal computing environment. Comparisons of the numerical results with analytical solutions and experiments show good agreement. The limitations of the codes and the performance of the GPU computing are discussed.

  12. 2D and 3D simulations of damage in 5-grain copper gas gun samples

    SciTech Connect

    Tonks, Davis L; Cerreta, Ellen K; Dennis - Koller, Darcie; Escobedo - Diaz, Juan P; Trujillo, Carl P; Luo, Shengian; Bingert, John F

    2010-12-16

    2D and 3D Hydrocode simulations were done of a gas gun damage experiment involving a 5 grain sample with a polycrystalline flyer with a velocity of about 140 m/s. The simulations were done with the Flag hydrocode and involved explicit meshing of the 5 grains with a single crystal plasticity model and a pressure based damage model. The calculated fields were compared with two cross sections from the recovered sample. The sample exhibited grain boundary cracks at high angle and tilt grain boundaries in the sample but not at a sigma 3 twin boundary. However, the calculation showed large gradients in stress and strain at only the twin boundary, contrary to expectation. This indicates that the twin boundary is quite strong to resist the predicted high gradients and that the calculation needs the addition of a grain boundary fracture mode. The 2D and 3D simulations were compared.

  13. Full 3D visualization tool-kit for Monte Carlo and deterministic transport codes

    SciTech Connect

    Frambati, S.; Frignani, M.

    2012-07-01

    We propose a package of tools capable of translating the geometric inputs and outputs of many Monte Carlo and deterministic radiation transport codes into open source file formats. These tools are aimed at bridging the gap between trusted, widely-used radiation analysis codes and very powerful, more recent and commonly used visualization software, thus supporting the design process and helping with shielding optimization. Three main lines of development were followed: mesh-based analysis of Monte Carlo codes, mesh-based analysis of deterministic codes and Monte Carlo surface meshing. The developed kit is considered a powerful and cost-effective tool in the computer-aided design for radiation transport code users of the nuclear world, and in particular in the fields of core design and radiation analysis. (authors)

  14. Development of a Top-View Numeric Coding Teaching-Learning Trajectory within an Elementary Grades 3-D Visualization Design Research Project

    ERIC Educational Resources Information Center

    Sack, Jacqueline J.

    2013-01-01

    This article explicates the development of top-view numeric coding of 3-D cube structures within a design research project focused on 3-D visualization skills for elementary grades children. It describes children's conceptual development of 3-D cube structures using concrete models, conventional 2-D pictures and abstract top-view numeric…

  15. Development of a 3-D upwind PNS code for chemically reacting hypersonic flowfields

    NASA Technical Reports Server (NTRS)

    Tannehill, J. C.; Wadawadigi, G.

    1992-01-01

    Two new parabolized Navier-Stokes (PNS) codes were developed to compute the three-dimensional, viscous, chemically reacting flow of air around hypersonic vehicles such as the National Aero-Space Plane (NASP). The first code (TONIC) solves the gas dynamic and species conservation equations in a fully coupled manner using an implicit, approximately-factored, central-difference algorithm. This code was upgraded to include shock fitting and the capability of computing the flow around complex body shapes. The revised TONIC code was validated by computing the chemically-reacting (M(sub infinity) = 25.3) flow around a 10 deg half-angle cone at various angles of attack and the Ames All-Body model at 0 deg angle of attack. The results of these calculations were in good agreement with the results from the UPS code. One of the major drawbacks of the TONIC code is that the central-differencing of fluxes across interior flowfield discontinuities tends to introduce errors into the solution in the form of local flow property oscillations. The second code (UPS), originally developed for a perfect gas, has been extended to permit either perfect gas, equilibrium air, or nonequilibrium air computations. The code solves the PNS equations using a finite-volume, upwind TVD method based on Roe's approximate Riemann solver that was modified to account for real gas effects. The dissipation term associated with this algorithm is sufficiently adaptive to flow conditions that, even when attempting to capture very strong shock waves, no additional smoothing is required. For nonequilibrium calculations, the code solves the fluid dynamic and species continuity equations in a loosely-coupled manner. This code was used to calculate the hypersonic, laminar flow of chemically reacting air over cones at various angles of attack. In addition, the flow around the McDonnel Douglas generic option blended-wing-body was computed and comparisons were made between the perfect gas, equilibrium air, and the

  16. A 3D-CFD code for accurate prediction of fluid flows and fluid forces in seals

    NASA Technical Reports Server (NTRS)

    Athavale, M. M.; Przekwas, A. J.; Hendricks, R. C.

    1994-01-01

    Current and future turbomachinery requires advanced seal configurations to control leakage, inhibit mixing of incompatible fluids and to control the rotodynamic response. In recognition of a deficiency in the existing predictive methodology for seals, a seven year effort was established in 1990 by NASA's Office of Aeronautics Exploration and Technology, under the Earth-to-Orbit Propulsion program, to develop validated Computational Fluid Dynamics (CFD) concepts, codes and analyses for seals. The effort will provide NASA and the U.S. Aerospace Industry with advanced CFD scientific codes and industrial codes for analyzing and designing turbomachinery seals. An advanced 3D CFD cylindrical seal code has been developed, incorporating state-of-the-art computational methodology for flow analysis in straight, tapered and stepped seals. Relevant computational features of the code include: stationary/rotating coordinates, cylindrical and general Body Fitted Coordinates (BFC) systems, high order differencing schemes, colocated variable arrangement, advanced turbulence models, incompressible/compressible flows, and moving grids. This paper presents the current status of code development, code demonstration for predicting rotordynamic coefficients, numerical parametric study of entrance loss coefficients for generic annular seals, and plans for code extensions to labyrinth, damping, and other seal configurations.

  17. A Coupled Neutron-Photon 3-D Combinatorial Geometry Monte Carlo Transport Code

    1998-06-12

    TART97 is a coupled neutron-photon, 3 dimensional, combinatorial geometry, time dependent Monte Carlo transport code. This code can run on any modern computer. It is a complete system to assist you with input preparation, running Monte Carlo calculations, and analysis of output results. TART97 is also incredibly fast: if you have used similar codes, you will be amazed at how fast this code is compared to other similar codes. Use of the entire system canmore » save you a great deal of time and energy. TART 97 is distributed on CD. This CD contains on-line documentation for all codes included in the system, the codes configured to run on a variety of computers, and many example problems that you can use to familiarize yourself with the system. TART97 completely supersedes all older versions of TART, and it is strongly recommended that users only use the most recent version of TART97 and ist data files.« less

  18. 3D high-efficiency video coding for multi-view video and depth data.

    PubMed

    Muller, Karsten; Schwarz, Heiko; Marpe, Detlev; Bartnik, Christian; Bosse, Sebastian; Brust, Heribert; Hinz, Tobias; Lakshman, Haricharan; Merkle, Philipp; Rhee, Franz Hunn; Tech, Gerhard; Winken, Martin; Wiegand, Thomas

    2013-09-01

    This paper describes an extension of the high efficiency video coding (HEVC) standard for coding of multi-view video and depth data. In addition to the known concept of disparity-compensated prediction, inter-view motion parameter, and inter-view residual prediction for coding of the dependent video views are developed and integrated. Furthermore, for depth coding, new intra coding modes, a modified motion compensation and motion vector coding as well as the concept of motion parameter inheritance are part of the HEVC extension. A novel encoder control uses view synthesis optimization, which guarantees that high quality intermediate views can be generated based on the decoded data. The bitstream format supports the extraction of partial bitstreams, so that conventional 2D video, stereo video, and the full multi-view video plus depth format can be decoded from a single bitstream. Objective and subjective results are presented, demonstrating that the proposed approach provides 50% bit rate savings in comparison with HEVC simulcast and 20% in comparison with a straightforward multi-view extension of HEVC without the newly developed coding tools. PMID:23715605

  19. 3D high-efficiency video coding for multi-view video and depth data.

    PubMed

    Muller, Karsten; Schwarz, Heiko; Marpe, Detlev; Bartnik, Christian; Bosse, Sebastian; Brust, Heribert; Hinz, Tobias; Lakshman, Haricharan; Merkle, Philipp; Rhee, Franz Hunn; Tech, Gerhard; Winken, Martin; Wiegand, Thomas

    2013-09-01

    This paper describes an extension of the high efficiency video coding (HEVC) standard for coding of multi-view video and depth data. In addition to the known concept of disparity-compensated prediction, inter-view motion parameter, and inter-view residual prediction for coding of the dependent video views are developed and integrated. Furthermore, for depth coding, new intra coding modes, a modified motion compensation and motion vector coding as well as the concept of motion parameter inheritance are part of the HEVC extension. A novel encoder control uses view synthesis optimization, which guarantees that high quality intermediate views can be generated based on the decoded data. The bitstream format supports the extraction of partial bitstreams, so that conventional 2D video, stereo video, and the full multi-view video plus depth format can be decoded from a single bitstream. Objective and subjective results are presented, demonstrating that the proposed approach provides 50% bit rate savings in comparison with HEVC simulcast and 20% in comparison with a straightforward multi-view extension of HEVC without the newly developed coding tools.

  20. The simulation of 3D microcalcification clusters in 2D digital mammography and breast tomosynthesis

    SciTech Connect

    Shaheen, Eman; Van Ongeval, Chantal; Zanca, Federica; Cockmartin, Lesley; Marshall, Nicholas; Jacobs, Jurgen; Young, Kenneth C.; Dance, David R.; Bosmans, Hilde

    2011-12-15

    Purpose: This work proposes a new method of building 3D models of microcalcification clusters and describes the validation of their realistic appearance when simulated into 2D digital mammograms and into breast tomosynthesis images. Methods: A micro-CT unit was used to scan 23 breast biopsy specimens of microcalcification clusters with malignant and benign characteristics and their 3D reconstructed datasets were segmented to obtain 3D models of microcalcification clusters. These models were then adjusted for the x-ray spectrum used and for the system resolution and simulated into 2D projection images to obtain mammograms after image processing and into tomographic sequences of projection images, which were then reconstructed to form 3D tomosynthesis datasets. Six radiologists were asked to distinguish between 40 real and 40 simulated clusters of microcalcifications in two separate studies on 2D mammography and tomosynthesis datasets. Receiver operating characteristic (ROC) analysis was used to test the ability of each observer to distinguish between simulated and real microcalcification clusters. The kappa statistic was applied to assess how often the individual simulated and real microcalcification clusters had received similar scores (''agreement'') on their realistic appearance in both modalities. This analysis was performed for all readers and for the real and the simulated group of microcalcification clusters separately. ''Poor'' agreement would reflect radiologists' confusion between simulated and real clusters, i.e., lesions not systematically evaluated in both modalities as either simulated or real, and would therefore be interpreted as a success of the present models. Results: The area under the ROC curve, averaged over the observers, was 0.55 (95% confidence interval [0.44, 0.66]) for the 2D study, and 0.46 (95% confidence interval [0.29, 0.64]) for the tomosynthesis study, indicating no statistically significant difference between real and simulated

  1. Numerical simulation of 3D boundary-driven acoustic streaming in microfluidic devices.

    PubMed

    Lei, Junjun; Hill, Martyn; Glynne-Jones, Peter

    2014-02-01

    This article discusses three-dimensional (3D) boundary-driven streaming in acoustofluidic devices. Firstly, the 3D Rayleigh streaming pattern in a microchannel is simulated and its effect on the movement of microparticles of various sizes is demonstrated. The results obtained from this model show good comparisons with 3D experimental visualisations and demonstrate the fully 3D nature of the acoustic streaming field and the associated acoustophoretic motion of microparticles in acoustofluidic devices. This method is then applied to another acoustofluidic device in order to gain insights into an unusual in-plane streaming pattern. The origin of this streaming has not been fully described and its characteristics cannot be explained from the classical theory of Rayleigh streaming. The simulated in-plane streaming pattern was in good agreement with the experimental visualisation. The mechanism behind it is shown to be related to the active sound intensity field, which supports our previous findings on the mechanism of the in-plane acoustic streaming pattern visualised and modelled in a thin-layered capillary device.

  2. Development of discrete gas kinetic scheme for simulation of 3D viscous incompressible and compressible flows

    NASA Astrophysics Data System (ADS)

    Yang, L. M.; Shu, C.; Wang, Y.; Sun, Y.

    2016-08-01

    The sphere function-based gas kinetic scheme (GKS), which was presented by Shu and his coworkers [23] for simulation of inviscid compressible flows, is extended to simulate 3D viscous incompressible and compressible flows in this work. Firstly, we use certain discrete points to represent the spherical surface in the phase velocity space. Then, integrals along the spherical surface for conservation forms of moments, which are needed to recover 3D Navier-Stokes equations, are approximated by integral quadrature. The basic requirement is that these conservation forms of moments can be exactly satisfied by weighted summation of distribution functions at discrete points. It was found that the integral quadrature by eight discrete points on the spherical surface, which forms the D3Q8 discrete velocity model, can exactly match the integral. In this way, the conservative variables and numerical fluxes can be computed by weighted summation of distribution functions at eight discrete points. That is, the application of complicated formulations resultant from integrals can be replaced by a simple solution process. Several numerical examples including laminar flat plate boundary layer, 3D lid-driven cavity flow, steady flow through a 90° bending square duct, transonic flow around DPW-W1 wing and supersonic flow around NACA0012 airfoil are chosen to validate the proposed scheme. Numerical results demonstrate that the present scheme can provide reasonable numerical results for 3D viscous flows.

  3. Real-time 3D radiation risk assessment supporting simulation of work in nuclear environments.

    PubMed

    Szőke, I; Louka, M N; Bryntesen, T R; Bratteli, J; Edvardsen, S T; RøEitrheim, K K; Bodor, K

    2014-06-01

    This paper describes the latest developments at the Institute for Energy Technology (IFE) in Norway, in the field of real-time 3D (three-dimensional) radiation risk assessment for the support of work simulation in nuclear environments. 3D computer simulation can greatly facilitate efficient work planning, briefing, and training of workers. It can also support communication within and between work teams, and with advisors, regulators, the media and public, at all the stages of a nuclear installation's lifecycle. Furthermore, it is also a beneficial tool for reviewing current work practices in order to identify possible gaps in procedures, as well as to support the updating of international recommendations, dissemination of experience, and education of the current and future generation of workers.IFE has been involved in research and development into the application of 3D computer simulation and virtual reality (VR) technology to support work in radiological environments in the nuclear sector since the mid 1990s. During this process, two significant software tools have been developed, the VRdose system and the Halden Planner, and a number of publications have been produced to contribute to improving the safety culture in the nuclear industry.This paper describes the radiation risk assessment techniques applied in earlier versions of the VRdose system and the Halden Planner, for visualising radiation fields and calculating dose, and presents new developments towards implementing a flexible and up-to-date dosimetric package in these 3D software tools, based on new developments in the field of radiation protection. The latest versions of these 3D tools are capable of more accurate risk estimation, permit more flexibility via a range of user choices, and are applicable to a wider range of irradiation situations than their predecessors. PMID:24727389

  4. 3D thermal modeling of TRISO fuel coupled with neutronic simulation

    SciTech Connect

    Hu, Jianwei; Uddin, Rizwan

    2010-01-01

    The Very High Temperature Gas Reactor (VHTR) is widely considered as one of the top candidates identified in the Next Generation Nuclear Power-plant (NGNP) Technology Roadmap under the U.S . Depanment of Energy's Generation IV program. TRlSO particle is a common element among different VHTR designs and its performance is critical to the safety and reliability of the whole reactor. A TRISO particle experiences complex thermo-mechanical changes during reactor operation in high temperature and high burnup conditions. TRISO fuel performance analysis requires evaluation of these changes on micro scale. Since most of these changes are temperature dependent, 3D thermal modeling of TRISO fuel is a crucial step of the whole analysis package. In this paper, a 3D numerical thermal model was developed to calculate temperature distribution inside TRISO and pebble under different scenarios. 3D simulation is required because pebbles or TRISOs are always subjected to asymmetric thermal conditions since they are randomly packed together. The numerical model was developed using finite difference method and it was benchmarked against ID analytical results and also results reported from literature. Monte-Carlo models were set up to calculate radial power density profile. Complex convective boundary condition was applied on the pebble outer surface. Three reactors were simulated using this model to calculate temperature distribution under different power levels. Two asymmetric boundary conditions were applied to the pebble to test the 3D capabilities. A gas bubble was hypothesized inside the TRISO kernel and 3D simulation was also carried out under this scenario. Intuition-coherent results were obtained and reported in this paper.

  5. Parallel 3D Simulation of Seismic Wave Propagation in the Structure of Nobi Plain, Central Japan

    NASA Astrophysics Data System (ADS)

    Kotani, A.; Furumura, T.; Hirahara, K.

    2003-12-01

    We performed large-scale parallel simulations of the seismic wave propagation to understand the complex wave behavior in the 3D basin structure of the Nobi Plain, which is one of the high population cities in central Japan. In this area, many large earthquakes occurred in the past, such as the 1891 Nobi earthquake (M8.0), the 1944 Tonankai earthquake (M7.9) and the 1945 Mikawa earthquake (M6.8). In order to mitigate the potential disasters for future earthquakes, 3D subsurface structure of Nobi Plain has recently been investigated by local governments. We referred to this model together with bouguer anomaly data to construct a detail 3D basin structure model for Nobi plain, and conducted computer simulations of ground motions. We first evaluated the ground motions for two small earthquakes (M4~5); one occurred just beneath the basin edge at west, and the other occurred at south. The ground motions from these earthquakes were well recorded by the strong motion networks; K-net, Kik-net, and seismic intensity instruments operated by local governments. We compare the observed seismograms with simulations to validate the 3D model. For the 3D simulation we sliced the 3D model into a number of layers to assign to many processors for concurrent computing. The equation of motions are solved using a high order (32nd) staggered-grid FDM in horizontal directions, and a conventional (4th-order) FDM in vertical direction with the MPI inter-processor communications between neighbor region. The simulation model is 128km by 128km by 43km, which is discritized at variable grid size of 62.5-125m in horizontal directions and of 31.25-62.5m in vertical direction. We assigned a minimum shear wave velocity is Vs=0.4km/s, at the top of the sedimentary basin. The seismic sources for the small events are approximated by double-couple point source and we simulate the seismic wave propagation at maximum frequency of 2Hz. We used the Earth Simulator (JAMSTEC, Yokohama Inst) to conduct such

  6. Simulating long term nitrate-N contamination processes in the Woodville Karst Plain using CFPv2 with UMT3D

    NASA Astrophysics Data System (ADS)

    Xu, Zexuan; Hu, Bill X.; Davis, Hal; Cao, Jianhua

    2015-05-01

    A research version of CFP (Conduit Flow Process) code, CFPv2, is applied with UMT3D to simulate long term (1966-2018) nitrate-N contamination transport processes in the Woodville Karst Plain (WKP), northern Florida, where karst conduit networks are well developed. Groundwater flow in the WKP limestone porous matrix is simulated using Darcy's law, and non-laminar flow within conduits is described by Darcy-Weisbach equation. Nitrate-N conduit transport and advective exchanges of groundwater and nitrate-N between conduits and limestone matrix are calculated by CFPv2 and UMT3D, instead of MODFLOW and MT3DMS since Reynolds numbers for flows in conduits are over the criteria of laminar flow. The developed numerical model is calibrated by field observations and then applied to simulate nitrate-N transport in the WKP. The numerical simulations verify the theories that two sprayfields near the City of Tallahassee and septic tanks in the rural area are major nitrate-N point sources within the WKP. High nitrate-N concentrations occur near Lost Creek Sink, and conduits of Wakulla Spring and Spring Creek Springs where aquifer discharge groundwater. Conduit networks control nitrate-N transport and regional contaminant distributions in the WKP, as nitrate-N is transported through conduits rapidly and spread over large areas.

  7. Determination of key parameters of SEU occurrence using 3-D full cell SRAM simulations

    SciTech Connect

    Roche, P.; Palau, J.M.; Bruguier, G.; Tavernier, C.; Ecoffet, R.; Gasiot, J.

    1999-12-01

    A 3-D entire SRAM cell, based on a 0.35-{micro}m current CMOS technology, is simulated in this work with a DEVICE simulator. The transient current, resulting from a heavy ion strike in the most sensitive region of the cell, is studied as a function of the LET value, the cell layout and the ion penetration depth. A definition of the critical charge is proposed and two new methods are presented to compute this basic amount of charge only using SPICE simulations. Numerical applications are performed with two different generations of submicron CMOS technologies, including the determination of the sensitive thicknesses.

  8. A cut cell method for the 3D simulation of Crookes radiometer

    SciTech Connect

    Dechriste, Guillaume; Mieussens, Luc

    2014-12-09

    Devices involved in engineering applications, such as vacuum pumps or MEMS, may be made of several moving parts. This raise the issue of the simulation of rarefied gas flow around moving boundaries. We propose a simple process, known as cut cell method, to treat the motion of a solid body in the framework of the deterministic solving of a kinetic equation. Up to our knowledge, this is the first time that this approach has been used for this kind of simulations. The method is illustrated by the 2D and 3D simulations of a Crookes radiometer.

  9. Random Telegraph Signal Amplitudes in Sub 100 nm (Decanano) MOSFETs: A 3D 'Atomistic' Simulation Study

    NASA Technical Reports Server (NTRS)

    Asenov, Asen; Balasubramaniam, R.; Brown, A. R.; Davies, J. H.; Saini, Subhash

    2000-01-01

    In this paper we use 3D simulations to study the amplitudes of random telegraph signals (RTS) associated with the trapping of a single carrier in interface states in the channel of sub 100 nm (decanano) MOSFETs. Both simulations using continuous doping charge and random discrete dopants in the active region of the MOSFETs are presented. We have studied the dependence of the RTS amplitudes on the position of the trapped charge in the channel and on the device design parameters. We have observed a significant increase in the maximum RTS amplitude when discrete random dopants are employed in the simulations.

  10. Users manual for CAFE-3D : a computational fluid dynamics fire code.

    SciTech Connect

    Khalil, Imane; Lopez, Carlos; Suo-Anttila, Ahti Jorma

    2005-03-01

    The Container Analysis Fire Environment (CAFE) computer code has been developed to model all relevant fire physics for predicting the thermal response of massive objects engulfed in large fires. It provides realistic fire thermal boundary conditions for use in design of radioactive material packages and in risk-based transportation studies. The CAFE code can be coupled to commercial finite-element codes such as MSC PATRAN/THERMAL and ANSYS. This coupled system of codes can be used to determine the internal thermal response of finite element models of packages to a range of fire environments. This document is a user manual describing how to use the three-dimensional version of CAFE, as well as a description of CAFE input and output parameters. Since this is a user manual, only a brief theoretical description of the equations and physical models is included.

  11. Fast wave current drive modeling using the combined RANT3D and PICES Codes

    NASA Astrophysics Data System (ADS)

    Jaeger, E. F.; Murakami, M.; Stallings, D. C.; Carter, M. D.; Wang, C. Y.; Galambos, J. D.; Batchelor, D. B.; Baity, F. W.; Bell, G. L.; Wilgen, J. B.; Chiu, S. C.; DeGrassie, J. S.; Forest, C. B.; Kupfer, K.; Petty, C. C.; Pinsker, R. T.; Prater, R.; Lohr, J.; Lee, K. M.

    1996-02-01

    Two numerical codes are combined to give a theoretical estimate of the current drive and direct electron heating by fast waves launched from phased antenna arrays on the DIII-D tokamak. Results are compared with experiment.

  12. Momentum Transport: 2D and 3D Cloud Resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2001-01-01

    The major objective of this study is to investigate the momentum budgets associated with several convective systems that developed during the TOGA COARE IOP (west Pacific warm pool region) and GATE (east Atlantic region). The tool for this study is the improved Goddard Cumulas Ensemble (GCE) model which includes a 3-class ice-phase microphysical scheme, explicit cloud radiative interactive processes and air-sea interactive surface processes. The model domain contains 256 x 256 grid points (with 2 km resolution) in the horizontal and 38 grid points (to a depth of 22 km) in the vertical. The 2D domain has 1024 grid points. The simulations were performed over a 7-day time period (December 19-26, 1992, for TOGA COARE and September 1-7, 1994 for GATE). Cyclic literal boundary conditions are required for this type of long-term integration. Two well organized squall systems (TOGA, COARE February 22, 1993, and GATE September 12, 1994) were also simulated using the 3D GCE model. Only 9 h simulations were required to cover the life time of the squall systems. the lateral boundary conditions were open for these two squall systems simulations. the following will be examined: (1) the momentum budgets in the convective and stratiform regions, (2) the relationship between momentum transport and cloud organization (i.e., well organized squall lines versus less organized convective), (3) the differences and similarities in momentum transport between 2D and 3D simulated convective systems, and (4) the differences and similarities in momentum budgets between cloud systems simulated with open and cyclic lateral boundary conditions. Preliminary results indicate that there are only small differences between 2D and 3D simulated momentum budgets. Major differences occur, however, between momentum budgets associated with squall systems simulated using different lateral boundary conditions.

  13. Confocal 3D DNA Cytometry: Assessment of Required Coefficient of Variation by Computer Simulation

    PubMed Central

    Ploeger, Lennert S.; Beliën, Jeroen A.M.; Poulin, Neal M.; Grizzle, William; van Diest, Paul J.

    2004-01-01

    Background: Confocal Laser Scanning Microscopy (CLSM) provides the opportunity to perform 3D DNA content measurements on intact cells in thick histological sections. So far, sample size has been limited by the time consuming nature of the technology. Since the power of DNA histograms to resolve different stemlines depends on both the sample size and the coefficient of variation (CV) of histogram peaks, interpretation of 3D CLSM DNA histograms might be hampered by both a small sample size and a large CV. The aim of this study was to analyze the required CV for 3D CLSM DNA histograms given a realistic sample size. Methods: By computer simulation, virtual histograms were composed for sample sizes of 20000, 10000, 5000, 1000, and 273 cells and CVs of 30, 25, 20, 15, 10 and 5%. By visual inspection, the histogram quality with respect to resolution of G0/1 and G2/M peaks of a diploid stemline was assessed. Results: As expected, the interpretability of DNA histograms deteriorated with decreasing sample sizes and higher CVs. For CVs of 15% and lower, a clearly bimodal peak pattern with well distinguishable G0/1 and G2/M peaks were still seen at a sample size of 273 cells, which is our current average sample size with 3D CLSM DNA cytometry. Conclusions: For unambiguous interpretation of DNA histograms obtained using 3D CLSM, a CV of at most 15% is tolerable at currently achievable sample sizes. To resolve smaller near diploid stemlines, a CV of 10% or better should be aimed at. With currently available 3D imaging technology, this CV is achievable. PMID:15371645

  14. Comparison of a 3-D GPU-Assisted Maxwell Code and Ray Tracing for Reflectometry on ITER

    NASA Astrophysics Data System (ADS)

    Gady, Sarah; Kubota, Shigeyuki; Johnson, Irena

    2015-11-01

    Electromagnetic wave propagation and scattering in magnetized plasmas are important diagnostics for high temperature plasmas. 1-D and 2-D full-wave codes are standard tools for measurements of the electron density profile and fluctuations; however, ray tracing results have shown that beam propagation in tokamak plasmas is inherently a 3-D problem. The GPU-Assisted Maxwell Code utilizes the FDTD (Finite-Difference Time-Domain) method for solving the Maxwell equations with the cold plasma approximation in a 3-D geometry. Parallel processing with GPGPU (General-Purpose computing on Graphics Processing Units) is used to accelerate the computation. Previously, we reported on initial comparisons of the code results to 1-D numerical and analytical solutions, where the size of the computational grid was limited by the on-board memory of the GPU. In the current study, this limitation is overcome by using domain decomposition and an additional GPU. As a practical application, this code is used to study the current design of the ITER Low Field Side Reflectometer (LSFR) for the Equatorial Port Plug 11 (EPP11). A detailed examination of Gaussian beam propagation in the ITER edge plasma will be presented, as well as comparisons with ray tracing. This work was made possible by funding from the Department of Energy for the Summer Undergraduate Laboratory Internship (SULI) program. This work is supported by the US DOE Contract No.DE-AC02-09CH11466 and DE-FG02-99-ER54527.

  15. 3D SPH numerical simulation of the wave generated by the Vajont rockslide

    NASA Astrophysics Data System (ADS)

    Vacondio, R.; Mignosa, P.; Pagani, S.

    2013-09-01

    A 3D numerical modeling of the wave generated by the Vajont slide, one of the most destructive ever occurred, is presented in this paper. A meshless Lagrangian Smoothed Particle Hydrodynamics (SPH) technique was adopted to simulate the highly fragmented violent flow generated by the falling slide in the artificial reservoir. The speed-up achievable via General Purpose Graphic Processing Units (GP-GPU) allowed to adopt the adequate resolution to describe the phenomenon. The comparison with the data available in literature showed that the results of the numerical simulation reproduce satisfactorily the maximum run-up, also the water surface elevation in the residual lake after the event. Moreover, the 3D velocity field of the flow during the event and the discharge hydrograph which overtopped the dam, were obtained.

  16. Blob Dynamics in 3D BOUT Simulations of Tokamak Edge Turbulence

    SciTech Connect

    Russell, D; D'Ippolito, D; Myra, J; Nevins, W; Xu, X

    2004-08-23

    Propagating filaments of enhanced plasma density, or blobs, observed in 3D numerical simulations of a diverted, neutral-fueled tokamak are studied. Fluctuations of vorticity, electrical potential {phi}, temperature T{sub e} and current density J{sub {parallel}} associated with the blobs have a dipole structure perpendicular to the magnetic field and propagate radially with large E {center_dot} B drift velocities (> 1 km/s). The simulation results are consistent with a 3D blob dynamics model that incorporates increased parallel plasma resistivity (from neutral cooling of the X-point region), blob disconnection from the divertor sheath, X-point closure of the current loops, and collisional physics to sustain the {phi}, T{sub e}, J{sub {parallel}} dipoles.

  17. Stability of 3D Textile Composite Reinforcement Simulations: Solutions to Spurious Transverse Modes

    NASA Astrophysics Data System (ADS)

    Mathieu, S.; Hamila, N.; Dupé, F.; Descamps, C.; Boisse, P.

    2016-08-01

    The simulation of thick 3D composite reinforcement forming brings to light new modeling challenges. The specific anisotropic material behavior due to the possible slippage between fibers induces, among other phenomena, the development of spurious transverse modes in bending-dominated 3D simulations. To obtain coherent finite element responses, two solutions are proposed. The first one uses a simple assumed strain formulation usually prescribed to prevent volumetric locking. This solution avoids spurious transverse modes by stiffening of the hourglass modes. Nevertheless the deformation obtained by this approach still suffers from the inability of the standard continuum mechanics of Cauchy to describe fibrous material deformation. The second proposed approach is based on the introduction of a bending stiffness which both avoids the spurious transverse modes and also improves the global behavior of the element formulation by enriching the underlying continuum. To emphasize the differences between different formulations, element stiffnesses are explicitly calculated and compared.

  18. Co-located haptic and 3D graphic interface for medical simulations.

    PubMed

    Berkelman, Peter; Miyasaka, Muneaki; Bozlee, Sebastian

    2013-01-01

    We describe a system which provides high-fidelity haptic feedback in the same physical location as a 3D graphical display, in order to enable realistic physical interaction with virtual anatomical tissue during modelled procedures such as needle driving, palpation, and other interventions performed using handheld instruments. The haptic feedback is produced by the interaction between an array of coils located behind a thin flat LCD screen, and permanent magnets embedded in the instrument held by the user. The coil and magnet configuration permits arbitrary forces and torques to be generated on the instrument in real time according to the dynamics of the simulated tissue by activating the coils in combination. A rigid-body motion tracker provides position and orientation feedback of the handheld instrument to the computer simulation, and the 3D display is produced using LCD shutter glasses and a head-tracking system for the user.

  19. SEM simulation for 2D and 3D inspection metrology and defect review

    NASA Astrophysics Data System (ADS)

    Levi, Shimon; Schwartsband, Ishai; Khristo, Sergey; Ivanchenko, Yan; Adan, Ofer

    2014-03-01

    Advanced SEM simulation has become a key element in the ability of SEM inspection, metrology and defect review to meet the challenges of advanced technologies. It grants additional capabilities to the end user, such as 3D height measurements, accurate virtual metrology, and supports Design Based Metrology to bridge the gap between design layout and SEM image. In this paper we present SEM simulations capabilities, which take into consideration all parts of the SEM physical and electronic path, interaction between Electron beam and material, multi perspective SEM imaging and shadowing derived from proximity effects caused by the interaction of the Secondary Electrons signal with neighboring pattern edges. Optimizing trade-off between simulation accuracy, calibration procedures and computational complexity, the simulation is running in real-time with minimum impact on throughput. Experiment results demonstrate Height measurement capacities, and CAD based simulated pattern is compared with SEM image to evaluate simulated pattern fidelity.

  20. Implementation and validation of a Reynolds stress model in the COMMIX-1C/RSM and CAPS-3D/RSM codes

    SciTech Connect

    Chang, F.C.; Bottoni, M.

    1995-08-01

    A Reynolds stress model (RSM) of turbulence, based on seven transport equations, has been linked to the COMMIX-1C/RSM and CAPS-3D/RSM computer codes. Six of the equations model the transport of the components of the Reynolds stress tensor and the seventh models the dissipation of turbulent kinetic energy. When a fluid is heated, four additional transport equations are used: three for the turbulent heat fluxes and one for the variance of temperature fluctuations. All of the analytical and numerical details of the implementation of the new turbulence model are documented. The model was verified by simulation of homogeneous turbulence.

  1. Acoustic Scattering by Three-Dimensional Stators and Rotors Using the SOURCE3D Code. Volume 1; Analysis and Results

    NASA Technical Reports Server (NTRS)

    Meyer, Harold D.

    1999-01-01

    This report provides a study of rotor and stator scattering using the SOURCE3D Rotor Wake/Stator Interaction Code. SOURCE3D is a quasi-three-dimensional computer program that uses three-dimensional acoustics and two-dimensional cascade load response theory to calculate rotor and stator modal reflection and transmission (scattering) coefficients. SOURCE3D is at the core of the TFaNS (Theoretical Fan Noise Design/Prediction System), developed for NASA, which provides complete fully coupled (inlet, rotor, stator, exit) noise solutions for turbofan engines. The reason for studying scattering is that we must first understand the behavior of the individual scattering coefficients provided by SOURCE3D, before eventually understanding the more complicated predictions from TFaNS. To study scattering, we have derived a large number of scattering curves for vane and blade rows. The curves are plots of output wave power divided by input wave power (in dB units) versus vane/blade ratio. Some of these plots are shown in this report. All of the plots are provided in a separate volume. To assist in understanding the plots, formulas have been derived for special vane/blade ratios for which wavefronts are either parallel or normal to rotor or stator chords. From the plots, we have found that, for the most part, there was strong transmission and weak reflection over most of the vane/blade ratio range for the stator. For the rotor, there was little transmission loss.

  2. The 3D numerical simulation of waste heat inside the end-pumped DPAL

    NASA Astrophysics Data System (ADS)

    Hua, Weihong; Yang, Zining; Wang, Hongyan

    2012-01-01

    The thermal effect produced by quantum defect is an important factor that affects the performance of DPAL. We report on 3D simulation results of temperature distribution inside the alkali gain medium. The results show a high and non-uniform temperature rise under CW pumped condition, and the current models that assume uniform alkali density distribution needs to be modified. A convective cooling scheme should be applied for high power DPALs.

  3. Optimisation of trench isolated bipolar transistors on SOI substrates by 3D electro-thermal simulations

    NASA Astrophysics Data System (ADS)

    Nigrin, S.; Armstrong, G. A.; Kranti, A.

    2007-09-01

    This paper provides a comprehensive analysis of thermal resistance of trench isolated bipolar transistors on SOI substrates based on 3D electro-thermal simulations calibrated to experimental data. The impact of emitter length, width, spacing and number of emitter fingers on thermal resistance is analysed in detail. The results are used to design and optimise transistors with minimum thermal resistance and minimum transistor area.

  4. 3D Immersive Patient Simulators and Their Impact on Learning Success: A Thematic Review

    PubMed Central

    Wahba, Roger; Chang, De-Hua; Plum, Patrick; Hölscher, Arnulf H; Stippel, Dirk L

    2015-01-01

    Background Immersive patient simulators (IPSs) combine the simulation of virtual patients with a three-dimensional (3D) environment and, thus, allow an illusionary immersion into a synthetic world, similar to computer games. Playful learning in a 3D environment is motivating and allows repetitive training and internalization of medical workflows (ie, procedural knowledge) without compromising real patients. The impact of this innovative educational concept on learning success requires review of feasibility and validity. Objective It was the aim of this paper to conduct a survey of all immersive patient simulators currently available. In addition, we address the question of whether the use of these simulators has an impact on knowledge gain by summarizing the existing validation studies. Methods A systematic literature search via PubMed was performed using predefined inclusion criteria (ie, virtual worlds, focus on education of medical students, validation testing) to identify all available simulators. Validation testing was defined as the primary end point. Results There are currently 13 immersive patient simulators available. Of these, 9 are Web-based simulators and represent feasibility studies. None of these simulators are used routinely for student education. The workstation-based simulators are commercially driven and show a higher quality in terms of graphical quality and/or data content. Out of the studies, 1 showed a positive correlation between simulated content and real content (ie, content validity). There was a positive correlation between the outcome of simulator training and alternative training methods (ie, concordance validity), and a positive coherence between measured outcome and future professional attitude and performance (ie, predictive validity). Conclusions IPSs can promote learning and consolidation of procedural knowledge. The use of immersive patient simulators is still marginal, and technical and educational approaches are heterogeneous

  5. Benchmarks of 3D Laplace Equation Solvers in a Cubic Configuration for Streamer Simulation

    NASA Astrophysics Data System (ADS)

    Joseph-Marie, Plewa; Olivier, Ducasse; Philippe, Dessante; Carolyn, Jacobs; Olivier, Eichwald; Nicolas, Renon; Mohammed, Yousfi

    2016-05-01

    The aim of this paper is to test a developed SOR R&B method using the Chebyshev accelerator algorithm to solve the Laplace equation in a cubic 3D configuration. Comparisons are made in terms of precision and computing time with other elliptic equation solvers proposed in the open source LIS library. The first results, obtained by using a single core on a HPC, show that the developed SOR R&B method is efficient when the spectral radius needed for the Chebyshev acceleration is carefully pre-estimated. Preliminary results obtained with a parallelized code using the MPI library are also discussed when the calculation is distributed over one hundred cores.

  6. A 3D-PNS computer code for the calculation of supersonic combusting flows

    NASA Technical Reports Server (NTRS)

    Chitsomboon, Tawit; Northam, G. Burton

    1988-01-01

    A computer code has been developed based on the three-dimensional parabolized Navier-Stokes (PNS) equations which govern the supersonic combusting flow of the hydrogen-air system. The finite difference algorithm employed was a hybrid of the Schiff-Steger algorithm and the Vigneron, et al., algorithm which is fully implicit and fully coupled. The combustion of hydrogen and air was modeled by the finite-rate two-step combustion model of Rogers-Chinitz. A new dependent variable vector was introduced to simplify the numerical algorithm. Robustness of the algorithm was considerably enhanced by introducing an adjustable parameter. The computer code was used to solve a premixed shock-induced combustion problem and the results were compared with those of a full Navier-Stokes code. Reasonably good agreement was obtained at a fraction of the cost of the full Navier-Stokes procedure.

  7. 3D printing method for freeform fabrication of optical phantoms simulating heterogeneous biological tissue

    NASA Astrophysics Data System (ADS)

    Wang, Minjie; Shen, Shuwei; Yang, Jie; Dong, Erbao; Xu, Ronald

    2014-03-01

    The performance of biomedical optical imaging devices heavily relies on appropriate calibration. However, many of existing calibration phantoms for biomedical optical devices are based on homogenous materials without considering the multi-layer heterogeneous structures observed in biological tissue. Using such a phantom for optical calibration may result in measurement bias. To overcome this problem, we propose a 3D printing method for freeform fabrication of tissue simulating phantoms with multilayer heterogeneous structure. The phantom simulates not only the morphologic characteristics of biological tissue but also absorption and scattering properties. The printing system is based on a 3D motion platform with coordinated control of the DC motors. A special jet nozzle is designed to mix base, scattering, and absorption materials at different ratios. 3D tissue structures are fabricated through layer-by-layer printing with selective deposition of phantom materials of different ingredients. Different mixed ratios of base, scattering and absorption materials have been tested in order to optimize the printing outcome. A spectrometer and a tissue spectrophotometer are used for characterizing phantom absorption and scattering properties. The goal of this project is to fabricate skin tissue simulating phantoms as a traceable standard for the calibration of biomedical optical spectral devices.

  8. Simulation and testing of a multichannel system for 3D sound localization

    NASA Astrophysics Data System (ADS)

    Matthews, Edward Albert

    Three-dimensional (3D) audio involves the ability to localize sound anywhere in a three-dimensional space. 3D audio can be used to provide the listener with the perception of moving sounds and can provide a realistic listening experience for applications such as gaming, video conferencing, movies, and concerts. The purpose of this research is to simulate and test 3D audio by incorporating auditory localization techniques in a multi-channel speaker system. The objective is to develop an algorithm that can place an audio event in a desired location by calculating and controlling the gain factors of each speaker. A MATLAB simulation displays the location of the speakers and perceived sound, which is verified through experimentation. The scenario in which the listener is not equidistant from each of the speakers is also investigated and simulated. This research is envisioned to lead to a better understanding of human localization of sound, and will contribute to a more realistic listening experience.

  9. A modular numerical method for implicit 0D/3D coupling in cardiovascular finite element simulations

    NASA Astrophysics Data System (ADS)

    Moghadam, Mahdi Esmaily; Vignon-Clementel, Irene E.; Figliola, Richard; Marsden, Alison L.; Modeling Of Congenital Hearts Alliance (Mocha) Investigators

    2013-07-01

    Implementation of boundary conditions in cardiovascular simulations poses numerical challenges due to the complex dynamic behavior of the circulatory system. The use of elaborate closed-loop lumped parameter network (LPN) models of the heart and the circulatory system as boundary conditions for computational fluid dynamics (CFD) simulations can provide valuable global dynamic information, particularly for patient specific simulations. In this paper, the necessary formulation for coupling an arbitrary LPN to a finite element Navier-Stokes solver is presented. A circuit analogy closed-loop LPN is solved numerically, and pressure and flow information is iteratively passed between the 0D and 3D domains at interface boundaries, resulting in a time-implicit scheme. For Neumann boundaries, an implicit method, regardless of the LPN, is presented to achieve the desired stability and convergence properties. Numerical procedures for passing flow and pressure information between the 0D and 3D domains are described, and implicit, semi-implicit, and explicit quasi-Newton formulations are compared. The issue of divergence in the presence of backflow is addressed via a stabilized boundary formulation. The requirements for coupling Dirichlet boundary conditions are also discussed and this approach is compared in detail to that of the Neumann coupled boundaries. Having the option to select between Dirichlet and Neumann coupled boundary conditions increases the flexibility of current framework by allowing a wide range of components to be used at the 3D-0D interface.

  10. Modeling and simulating the adaptive electrical properties of stochastic polymeric 3D networks

    NASA Astrophysics Data System (ADS)

    Sigala, R.; Smerieri, A.; Schüz, A.; Camorani, P.; Erokhin, V.

    2013-10-01

    Memristors are passive two-terminal circuit elements that combine resistance and memory. Although in theory memristors are a very promising approach to fabricate hardware with adaptive properties, there are only very few implementations able to show their basic properties. We recently developed stochastic polymeric matrices with a functionality that evidences the formation of self-assembled three-dimensional (3D) networks of memristors. We demonstrated that those networks show the typical hysteretic behavior observed in the ‘one input-one output’ memristive configuration. Interestingly, using different protocols to electrically stimulate the networks, we also observed that their adaptive properties are similar to those present in the nervous system. Here, we model and simulate the electrical properties of these self-assembled polymeric networks of memristors, the topology of which is defined stochastically. First, we show that the model recreates the hysteretic behavior observed in the real experiments. Second, we demonstrate that the networks modeled indeed have a 3D instead of a planar functionality. Finally, we show that the adaptive properties of the networks depend on their connectivity pattern. Our model was able to replicate fundamental qualitative behavior of the real organic 3D memristor networks; yet, through the simulations, we also explored other interesting properties, such as the relation between connectivity patterns and adaptive properties. Our model and simulations represent an interesting tool to understand the very complex behavior of self-assembled memristor networks, which can finally help to predict and formulate hypotheses for future experiments.

  11. Far field 3D localization of radioactive hot spots using a coded aperture camera.

    PubMed

    Shifeng, Sun; Zhiming, Zhang; Lei, Shuai; Daowu, Li; Yingjie, Wang; Yantao, Liu; Xianchao, Huang; Haohui, Tang; Ting, Li; Pei, Chai; Yiwen, Zhang; Wei, Zhou; Mingjie, Yang; Cunfeng, Wei; Chuangxin, Ma; Long, Wei

    2016-01-01

    This paper presents a coded aperture method to remotely estimate the radioactivity of a source. The activity is estimated from the detected counts and the estimated source location, which is extracted by factoring the effect of aperture magnification. A 6mm thick tungsten-copper alloy coded aperture mask is used to modulate the incoming gamma-rays. The location of point and line sources in all three dimensions was estimated with an accuracy of less than 10% when the source-camera distance was about 4 m. The estimated activities were 17.6% smaller and 50.4% larger than the actual activities for the point and line sources, respectively.

  12. 3D Numerical Simulation on the Sloshing Waves Excited by the Seismic Shacking

    NASA Astrophysics Data System (ADS)

    Zhang, Lin; Wu, Tso-Ren

    2016-04-01

    In the event of 2015 Nepal earthquake, a video clip broadcasted worldwide showed a violent water spilling in a hotel swimming pool. This sloshing phenomenon indicates a potential water loss in the sensitive facilities, e.g. the spent fuel pools in nuclear power plant, has to be taken into account carefully under the consideration of seismic-induced ground acceleration. In the previous studies, the simulation of sloshing mainly focused on the pressure force on the structure by using a simplified Spring-Mass Method developed in the field of solid mechanics. However, restricted by the assumptions of plane water surface and limited wave height, significant error will be made in evaluating the amount of water loss in the tank. In this paper, the computational fluid dynamical model, Splash3D, was adopted for studying the sloshing problem accurately. Splash3D solved 3D Navier-Stokes Equation directly with Large-Eddy Simulation (LES) turbulent closure. The Volume-of-fluid (VOF) method with piecewise linear interface calculation (PLIC) was used to track the complex breaking water surface. The time series acceleration of a design seismic was loaded to excite the water. With few restrictions from the assumptions, the accuracy of the simulation results were improved dramatically. A series model validations were conducted by compared to a 2D theoretical solution, and a 3D experimental data. Good comparisons can be seen. After the validation, we performed the simulation for considering a sloshing case in a rectangular water tank with a dimension of 12 m long, 8 m wide, 8 m deep, which contained water with 7 m in depth. The seismic movement was imported by considering time-series acceleration in three dimensions, which were about 0.5 g to 1.2 g in the horizontal directions, and 0.3 g to 1 g in the vertical direction. We focused the discussions on the kinematics of the water surface, wave breaking, velocity field, pressure field, water force on the side walls, and, most

  13. Understanding fiber mixture by simulation in 3D Polarized Light Imaging.

    PubMed

    Dohmen, Melanie; Menzel, Miriam; Wiese, Hendrik; Reckfort, Julia; Hanke, Frederike; Pietrzyk, Uwe; Zilles, Karl; Amunts, Katrin; Axer, Markus

    2015-05-01

    3D Polarized Light Imaging (3D-PLI) is a neuroimaging technique that has opened up new avenues to study the complex architecture of nerve fibers in postmortem brains. The spatial orientations of the fibers are derived from birefringence measurements of unstained histological brain sections that are interpreted by a voxel-based analysis. This, however, implies that a single fiber orientation vector is obtained for each voxel and reflects the net effect of all comprised fibers. The mixture of various fiber orientations within an individual voxel is a priori not accessible by a standard 3D-PLI measurement. In order to better understand the effects of fiber mixture on the measured 3D-PLI signal and to improve the interpretation of real data, we have developed a simulation method referred to as SimPLI. By means of SimPLI, it is possible to reproduce the entire 3D-PLI analysis starting from synthetic fiber models in user-defined arrangements and ending with measurement-like tissue images. For the simulation, each synthetic fiber is considered as an optical retarder, i.e., multiple fibers within one voxel are described by multiple retarder elements. The investigation of different synthetic crossing fiber arrangements generated with SimPLI demonstrated that the derived fiber orientations are strongly influenced by the relative mixture of crossing fibers. In case of perpendicularly crossing fibers, for example, the derived fiber direction corresponds to the predominant fiber direction. The derived fiber inclination turned out to be not only influenced by myelin density but also systematically overestimated due to signal attenuation. Similar observations were made for synthetic models of optic chiasms of a human and a hooded seal which were opposed to experimental 3D-PLI data sets obtained from the chiasms of both species. Our study showed that SimPLI is a powerful method able to test hypotheses on the underlying fiber structure of brain tissue and, therefore, to improve the

  14. Stability and accuracy of 3D neutron transport simulations using the 2D/1D method in MPACT

    DOE PAGES

    Collins, Benjamin; Stimpson, Shane; Kelley, Blake W.; Young, Mitchell T. H.; Kochunas, Brendan; Graham, Aaron; Larsen, Edward W.; Downar, Thomas; Godfrey, Andrew

    2016-08-25

    We derived a consistent “2D/1D” neutron transport method from the 3D Boltzmann transport equation, to calculate fuel-pin-resolved neutron fluxes for realistic full-core Pressurized Water Reactor (PWR) problems. The 2D/1D method employs the Method of Characteristics to discretize the radial variables and a lower order transport solution to discretize the axial variable. Our paper describes the theory of the 2D/1D method and its implementation in the MPACT code, which has become the whole-core deterministic neutron transport solver for the Consortium for Advanced Simulations of Light Water Reactors (CASL) core simulator VERA-CS. We also performed several applications on both leadership-class and industry-classmore » computing clusters. Results are presented for whole-core solutions of the Watts Bar Nuclear Power Station Unit 1 and compared to both continuous-energy Monte Carlo results and plant data.« less

  15. The Impact of 3D Data Quality on Improving GNSS Performance Using City Models Initial Simulations

    NASA Astrophysics Data System (ADS)

    Ellul, C.; Adjrad, M.; Groves, P.

    2016-10-01

    There is an increasing demand for highly accurate positioning information in urban areas, to support applications such as people and vehicle tracking, real-time air quality detection and navigation. However systems such as GPS typically perform poorly in dense urban areas. A number of authors have made use of 3D city models to enhance accuracy, obtaining good results, but to date the influence of the quality of the 3D city model on these results has not been tested. This paper addresses the following question: how does the quality, and in particular the variation in height, level of generalization and completeness and currency of a 3D dataset, impact the results obtained for the preliminary calculations in a process known as Shadow Matching, which takes into account not only where satellite signals are visible on the street but also where they are predicted to be absent. We describe initial simulations to address this issue, examining the variation in elevation angle - i.e. the angle above which the satellite is visible, for three 3D city models in a test area in London, and note that even within one dataset using different available height values could cause a difference in elevation angle of up to 29°. Missing or extra buildings result in an elevation variation of around 85°. Variations such as these can significantly influence the predicted satellite visibility which will then not correspond to that experienced on the ground, reducing the accuracy of the resulting Shadow Matching process.

  16. Characterizing the propagation of gravity waves in 3D nonlinear simulations of solar-like stars

    NASA Astrophysics Data System (ADS)

    Alvan, L.; Strugarek, A.; Brun, A. S.; Mathis, S.; Garcia, R. A.

    2015-09-01

    Context. The revolution of helio- and asteroseismology provides access to the detailed properties of stellar interiors by studying the star's oscillation modes. Among them, gravity (g) modes are formed by constructive interferences between progressive internal gravity waves (IGWs), propagating in stellar radiative zones. Our new 3D nonlinear simulations of the interior of a solar-like star allows us to study the excitation, propagation, and dissipation of these waves. Aims: The aim of this article is to clarify our understanding of the behavior of IGWs in a 3D radiative zone and to provide a clear overview of their properties. Methods: We use a method of frequency filtering that reveals the path of individual gravity waves of different frequencies in the radiative zone. Results: We are able to identify the region of propagation of different waves in 2D and 3D, to compare them to the linear raytracing theory and to distinguish between propagative and standing waves (g-modes). We also show that the energy carried by waves is distributed in different planes in the sphere, depending on their azimuthal wave number. Conclusions: We are able to isolate individual IGWs from a complex spectrum and to study their propagation in space and time. In particular, we highlight in this paper the necessity of studying the propagation of waves in 3D spherical geometry, since the distribution of their energy is not equipartitioned in the sphere.

  17. Sedimentary basin effects in Seattle, Washington: Ground-motion observations and 3D simulations

    USGS Publications Warehouse

    Frankel, Arthur; Stephenson, William; Carver, David

    2009-01-01

    Seismograms of local earthquakes recorded in Seattle exhibit surface waves in the Seattle basin and basin-edge focusing of S waves. Spectral ratios of Swaves and later arrivals at 1 Hz for stiff-soil sites in the Seattle basin show a dependence on the direction to the earthquake, with earthquakes to the south and southwest producing higher average amplification. Earthquakes to the southwest typically produce larger basin surface waves relative to S waves than earthquakes to the north and northwest, probably because of the velocity contrast across the Seattle fault along the southern margin of the Seattle basin. S to P conversions are observed for some events and are likely converted at the bottom of the Seattle basin. We model five earthquakes, including the M 6.8 Nisqually earthquake, using 3D finite-difference simulations accurate up to 1 Hz. The simulations reproduce the observed dependence of amplification on the direction to the earthquake. The simulations generally match the timing and character of basin surface waves observed for many events. The 3D simulation for the Nisqually earth-quake produces focusing of S waves along the southern margin of the Seattle basin near the area in west Seattle that experienced increased chimney damage from the earthquake, similar to the results of the higher-frequency 2D simulation reported by Stephenson et al. (2006). Waveforms from the 3D simulations show reasonable agreement with the data at low frequencies (0.2-0.4 Hz) for the Nisqually earthquake and an M 4.8 deep earthquake west of Seattle.

  18. Simulation of 3-D Magnetic Reconnection by Gyrokinetic Electron and Fully Kinetic Ion Particle Model

    NASA Astrophysics Data System (ADS)

    Wang, X.; Lin, Y.; Chen, L.

    2015-12-01

    3-D collisionless magnetic reconnection is investigated using the gyrokinetic electron and fully-kinetic ion (GeFi) particle simulation model. The simulation is carried out for cases with various finite guide field BG in a current sheet as occurring in space and laboratory plasmas. Turbulence power spectrum of magenetic field is found in the reconnection current sheet, with a clear k-5/3 dependence. The wave properties are analyzed. The anomalous resistivity in the electron diffusion region is estimated. The Dependence of the reconnection physics on the ion-to-electron mass ratio mi/me, beta values, and the half-width of the current sheet are also investigated.

  19. Improving light propagation Monte Carlo simulations with accurate 3D modeling of skin tissue

    SciTech Connect

    Paquit, Vincent C; Price, Jeffery R; Meriaudeau, Fabrice; Tobin Jr, Kenneth William

    2008-01-01

    In this paper, we present a 3D light propagation model to simulate multispectral reflectance images of large skin surface areas. In particular, we aim to simulate more accurately the effects of various physiological properties of the skin in the case of subcutaneous vein imaging compared to existing models. Our method combines a Monte Carlo light propagation model, a realistic three-dimensional model of the skin using parametric surfaces and a vision system for data acquisition. We describe our model in detail, present results from the Monte Carlo modeling and compare our results with those obtained with a well established Monte Carlo model and with real skin reflectance images.

  20. Implementation of Headtracking and 3D Stereo with Unity and VRPN for Computer Simulations

    NASA Technical Reports Server (NTRS)

    Noyes, Matthew A.

    2013-01-01

    This paper explores low-cost hardware and software methods to provide depth cues traditionally absent in monocular displays. The use of a VRPN server in conjunction with a Microsoft Kinect and/or Nintendo Wiimote to provide head tracking information to a Unity application, and NVIDIA 3D Vision for retinal disparity support, is discussed. Methods are suggested to implement this technology with NASA's EDGE simulation graphics package, along with potential caveats. Finally, future applications of this technology to astronaut crew training, particularly when combined with an omnidirectional treadmill for virtual locomotion and NASA's ARGOS system for reduced gravity simulation, are discussed.

  1. Performance of dental students versus prosthodontics residents on a 3D immersive haptic simulator.

    PubMed

    Eve, Elizabeth J; Koo, Samuel; Alshihri, Abdulmonem A; Cormier, Jeremy; Kozhenikov, Maria; Donoff, R Bruce; Karimbux, Nadeem Y

    2014-04-01

    This study evaluated the performance of dental students versus prosthodontics residents on a simulated caries removal exercise using a newly designed, 3D immersive haptic simulator. The intent of this study was to provide an initial assessment of the simulator's construct validity, which in the context of this experiment was defined as its ability to detect a statistically significant performance difference between novice dental students (n=12) and experienced prosthodontics residents (n=14). Both groups received equivalent calibration training on the simulator and repeated the same caries removal exercise three times. Novice and experienced subjects' average performance differed significantly on the caries removal exercise with respect to the percentage of carious lesion removed and volume of surrounding sound tooth structure removed (p<0.05). Experienced subjects removed a greater portion of the carious lesion, but also a greater volume of the surrounding tooth structure. Efficiency, defined as percentage of carious lesion removed over drilling time, improved significantly over the course of the experiment for both novice and experienced subjects (p<0.001). Within the limitations of this study, experienced subjects removed a greater portion of carious lesion on a 3D immersive haptic simulator. These results are a first step in establishing the validity of this device. PMID:24706694

  2. Performance of dental students versus prosthodontics residents on a 3D immersive haptic simulator.

    PubMed

    Eve, Elizabeth J; Koo, Samuel; Alshihri, Abdulmonem A; Cormier, Jeremy; Kozhenikov, Maria; Donoff, R Bruce; Karimbux, Nadeem Y

    2014-04-01

    This study evaluated the performance of dental students versus prosthodontics residents on a simulated caries removal exercise using a newly designed, 3D immersive haptic simulator. The intent of this study was to provide an initial assessment of the simulator's construct validity, which in the context of this experiment was defined as its ability to detect a statistically significant performance difference between novice dental students (n=12) and experienced prosthodontics residents (n=14). Both groups received equivalent calibration training on the simulator and repeated the same caries removal exercise three times. Novice and experienced subjects' average performance differed significantly on the caries removal exercise with respect to the percentage of carious lesion removed and volume of surrounding sound tooth structure removed (p<0.05). Experienced subjects removed a greater portion of the carious lesion, but also a greater volume of the surrounding tooth structure. Efficiency, defined as percentage of carious lesion removed over drilling time, improved significantly over the course of the experiment for both novice and experienced subjects (p<0.001). Within the limitations of this study, experienced subjects removed a greater portion of carious lesion on a 3D immersive haptic simulator. These results are a first step in establishing the validity of this device.

  3. 3D simulation and analytical model of chemical heating during silicon wet etching in microchannels

    NASA Astrophysics Data System (ADS)

    Konakov, S. A.; Krzhizhanovskaya, V. V.

    2016-02-01

    We investigate chemical heating of a Silicon-on-Glass (SOG) chip during a highly exothermic reaction of silicon etching in potassium hydroxide (KOH) solution in a microchannel of 100-micron width inside a 1x1 cm SOG chip. Two modeling approaches have been developed, implemented and compared. (1) A detailed 3D model is based on unsteady Navier-Stokes equations, heat and mass transfer equations of a laminar flow of viscous incompressible fluid in microchannel, coupled to the heat transfer equation in the solid chip. 3D simulation results predicted temperature distributions for different KOH flow rates and silicon etching areas. Microchannels of a small diameter do not heat the chip due to the insufficient chemical heating of the cold fluid, whereas large-area etching (large channel diameter and/or length) leads to local overheating that may have negative effects on the device performance and durability. (2) A simplified analytical model solves a thermal balance equation describing the heating by chemical reactions inside the microchannel and energy loss by free convection of air around the chip. Analytical results compare well with the 3D simulations of a single straight microchannel, therefore the analytical model is suitable for quick estimation of process parameters. For complex microstructures, this simplified approach may be used as the first approximation.

  4. Interactive 3D Visualization of Humboldt Bay Bridge Earthquake Simulation With High Definition Stereo Output

    NASA Astrophysics Data System (ADS)

    Ang, P. B.; Nayak, A.; Yan, J.; Elgamal, A.

    2006-12-01

    This visualization project involves the study of the Humboldt Bay Middle Channel Bridge, a Pacific Earthquake Engineering Research (PEER) testbed site, subjected to an earthquake simulated by the Department of Structural Engineering, UCSD. The numerical simulation and data generation was carried out using the OpenSees finite element analysis platform, and GiD was employed for the mesh generation in preprocessing. In collaboration with the Scripps Visualization Center, the data was transformed into a virtual 3D world that a viewer could rotate around, zoom into, pan about, step through each timestep or examine in true stereo. The data consists of the static mesh of the bridge-foundation-ground elements, material indices for each type of element, the displacement amount of each element nodes over time, and the shear stress levels for each ground element over time. The Coin3D C++ Open Inventor API was used to parse the data and to render the bridge system in full 3D at 1130 individual time steps to show how the bridge structure and the surrounding soil elements interact during the full course of an earthquake. The results can be viewed interactively while using the program, saved as images and processed into animated movies, in resolutions as high as High Definition (1920x1080), or in stereo modes such as red-blue anaglyph.

  5. Phenomenological modelling and simulation of cell clusters in 3D cultures.

    PubMed

    González-Valverde, I; Semino, C; García-Aznar, J M

    2016-10-01

    Cell clustering and aggregation are fundamental processes in the development of several tissues and the progression of many diseases. The formation of these aggregates also has a direct impact on the oxygen concentration in their surroundings due to cellular respiration and poor oxygen diffusion through clusters. In this work, we propose a mathematical model that is capable of simulating cell cluster formation in 3D cultures through combining a particle-based and a finite element approach to recreate complex experimental conditions. Cells are modelled considering cell proliferation, cell death and cell-cell mechanical interactions. Additionally, the oxygen concentration profile is calculated through finite element analysis using a reaction-diffusion model that considers cell oxygen consumption and diffusion through the extracellular matrix and the cell clusters. In our model, the local oxygen concentration in the medium determines both cell proliferation and cell death. Numerical predictions are also compared with experimental data from the literature. The simulation results indicate that our model can predict cell clustering, cluster growth and oxygen distribution in 3D cultures. We conclude that the initial cell distribution, cell death and cell proliferation dynamics determine the size and density of clusters. Moreover, these phenomena are directly affected by the oxygen transport in the 3D culture. PMID:27615191

  6. Drug-laden 3D biodegradable label using QR code for anti-counterfeiting of drugs.

    PubMed

    Fei, Jie; Liu, Ran

    2016-06-01

    Wiping out counterfeit drugs is a great task for public health care around the world. The boost of these drugs makes treatment to become potentially harmful or even lethal. In this paper, biodegradable drug-laden QR code label for anti-counterfeiting of drugs is proposed that can provide the non-fluorescence recognition and high capacity. It is fabricated by the laser cutting to achieve the roughness over different surface which causes the difference in the gray levels on the translucent material the QR code pattern, and the micro mold process to obtain the drug-laden biodegradable label. We screened biomaterials presenting the relevant conditions and further requirements of the package. The drug-laden microlabel is on the surface of the troches or the bottom of the capsule and can be read by a simple smartphone QR code reader application. Labeling the pill directly and decoding the information successfully means more convenient and simple operation with non-fluorescence and high capacity in contrast to the traditional methods. PMID:27040262

  7. Numerical model of water flow and solute accumulation in vertisols using HYDRUS 2D/3D code

    NASA Astrophysics Data System (ADS)

    Weiss, Tomáš; Dahan, Ofer; Turkeltub, Tuvia

    2015-04-01

    Keywords: dessication-crack-induced-salinization, preferential flow, conceptual model, numerical model, vadose zone, vertisols, soil water retention function, HYDRUS 2D/3D Vertisols cover a hydrologically very significant area of semi-arid regions often through which water infiltrates to groundwater aquifers. Understanding of water flow and solute accumulation is thus very relevant to agricultural activity and water resources management. Previous works suggest a conceptual model of dessication-crack-induced-salinization where salinization of sediment in the deep section of the vadose zone (up to 4 m) is induced by subsurface evaporation due to convective air flow in the dessication cracks. It suggests that the salinization is induced by the hydraulic gradient between the dry sediment in the vicinity of cracks (low potential) and the relatively wet sediment further from the main cracks (high potential). This paper presents a modified previously suggested conceptual model and a numerical model. The model uses a simple uniform flow approach but unconventionally prescribes the boundary conditions and the hydraulic parameters of soil. The numerical model is bound to one location close to a dairy farm waste lagoon, but the application of the suggested conceptual model could be possibly extended to all semi-arid regions with vertisols. Simulations were conducted using several modeling approaches with an ultimate goal of fitting the simulation results to the controlling variables measured in the field: temporal variation in water content across thick layer of unsaturated clay sediment (>10 m), sediment salinity and salinity the water draining down the vadose zone to the water table. The development of the model was engineered in several steps; all computed as forward solutions by try-and-error approach. The model suggests very deep instant infiltration of fresh water up to 12 m, which is also supported by the field data. The paper suggests prescribing a special atmospheric

  8. Multi-Cell Simulations of Development and Disease Using the CompuCell3D Simulation Environment

    PubMed Central

    Swat, Maciej H.; Hester, Susan D.; Heiland, Randy W.; Zaitlen, Benjamin L.; Glazier, James A.

    2009-01-01

    Mathematical modeling and computer simulation have become crucial to biological fields from genomics to ecology. However, multi-cell, tissue-level simulations of development and disease have lagged behind other areas because they are mathematically more complex and lack easy-to-use software tools that allow building and running in-silico experiments without requiring in-depth knowledge of programming. This tutorial introduces Glazier-Graner-Hogeweg (GGH) multi-cell simulations and CompuCell3D, a simulation framework that allows users to build, test and run GGH simulations. PMID:19399437

  9. Comparison between 2D and 3D Numerical Modelling of a hot forging simulative test

    SciTech Connect

    Croin, M.; Ghiotti, A.; Bruschi, S.

    2007-04-07

    The paper presents the comparative analysis between 2D and 3D modelling of a simulative experiment, performed in laboratory environment, in which operating conditions approximate hot forging of a turbine aerofoil section. The plane strain deformation was chosen as an ideal case to analyze the process because of the thickness variations in the final section and the consequent distributions of contact pressure and sliding velocity at the interface that are closed to the conditions of the real industrial process. In order to compare the performances of 2D and 3D approaches, two different analyses were performed and compared with the experiments in terms of loads and temperatures peaks at the interface between the dies and the workpiece.

  10. Stabilization procedures for near-wall full Reynolds stress closures in complex 3-D CFD simulations

    SciTech Connect

    Kunz, R.F.; Siebert, B.W.

    1996-06-01

    Near-wall full Reynolds stress models (FRSMs) were implemented in an implicit, incompressible full Navier-Stokes algorithm. The method was applied to flow in a 3-D duct with significant curvature induced secondary motions as well as 2-D and 3-D turbine cascade flows. FRSM computation of such flows, provides several numerical challenges germane to the very highly clustered near-wall meshes required, and to the incorporation of FRSMs themselves. Several stabilization procedures have been deployed within the scheme, which enable convergent solutions to large scale flow simulations of engineering interest. This paper summarizes the numerical strategies employed. it is shown that near-wall FRSM convergence rates commensurate with those of two-equation models are obtained.

  11. 3D Simulations of Solar Observations in Radio, Millimeter and Submillimeter Wavelengths.

    NASA Astrophysics Data System (ADS)

    de La Luz, V. H.; Lara, A.; Mendoza, E.

    2007-05-01

    In this work we present 3D simulations of solar radio emission at different frequencies (1.4, 3.9, 17, 34, 43, 110GHz and 12GHz), in the centimeter - submilimeter wavelength range. We build a 3D, spherically symetric, solar model and solve the clasical equation of radiative transfer using quiet Sun temperature and electron density models. We compare our results with observations from Nobeyama Radio Heliograph and SMT submillimeter telescope at CASILEO. The 3.9 and 43 GHz images will be useful to calibrate the observations of new millimeter telescope (RT5) which is being constructed at "Sierra Negra" Volcano, in the state of Puebla, Mexico, at an altitude of 4,600 m. This project is a collaboration between Universidad Nacional Autonoma de Mexico (UNAM) and Instituto Nacional de Astrofisica Optica y Electronica (INAOE).

  12. Toward high-speed 3D nonlinear soft tissue deformation simulations using Abaqus software.

    PubMed

    Idkaidek, Ashraf; Jasiuk, Iwona

    2015-12-01

    We aim to achieve a fast and accurate three-dimensional (3D) simulation of a porcine liver deformation under a surgical tool pressure using the commercial finite element software Abaqus. The liver geometry is obtained using magnetic resonance imaging, and a nonlinear constitutive law is employed to capture large deformations of the tissue. Effects of implicit versus explicit analysis schemes, element type, and mesh density on computation time are studied. We find that Abaqus explicit and implicit solvers are capable of simulating nonlinear soft tissue deformations accurately using first-order tetrahedral elements in a relatively short time by optimizing the element size. This study provides new insights and guidance on accurate and relatively fast nonlinear soft tissue simulations. Such simulations can provide force feedback during robotic surgery and allow visualization of tissue deformations for surgery planning and training of surgical residents. PMID:26530842

  13. Correlated 3D Nanoscale Mapping and Simulation of Coupled Plasmonic Nanoparticles

    PubMed Central

    2015-01-01

    Electron tomography in combination with electron energy-loss spectroscopy (EELS) experiments and simulations was used to unravel the interplay between structure and plasmonic properties of a silver nanocuboid dimer. The precise 3D geometry of the particles fabricated by means of electron beam lithography was reconstructed through electron tomography, and the full three-dimensional information was used as an input for simulations of energy-loss spectra and plasmon resonance maps. Excellent agreement between experiment and theory was found throughout, bringing the comparison between EELS imaging and simulations to a quantitative and correlative level. In addition, interface mode patterns, normally masked by the projection nature of a transmission microscopy investigation, could be unambiguously identified through tomographic reconstruction. This work overcomes the need for geometrical assumptions or symmetry restrictions of the sample in simulations and paves the way for detailed investigations of realistic and complex plasmonic nanostructures. PMID:26495933

  14. Toward high-speed 3D nonlinear soft tissue deformation simulations using Abaqus software.

    PubMed

    Idkaidek, Ashraf; Jasiuk, Iwona

    2015-12-01

    We aim to achieve a fast and accurate three-dimensional (3D) simulation of a porcine liver deformation under a surgical tool pressure using the commercial finite element software Abaqus. The liver geometry is obtained using magnetic resonance imaging, and a nonlinear constitutive law is employed to capture large deformations of the tissue. Effects of implicit versus explicit analysis schemes, element type, and mesh density on computation time are studied. We find that Abaqus explicit and implicit solvers are capable of simulating nonlinear soft tissue deformations accurately using first-order tetrahedral elements in a relatively short time by optimizing the element size. This study provides new insights and guidance on accurate and relatively fast nonlinear soft tissue simulations. Such simulations can provide force feedback during robotic surgery and allow visualization of tissue deformations for surgery planning and training of surgical residents.

  15. PEPT: An invaluable tool for 3-D particle tracking and CFD simulation verification in hydrocyclone studies

    NASA Astrophysics Data System (ADS)

    Chang, Yu-Fen; Adamsen, Tom C. H.; Pisarev, Gleb I.; Hoffmann, Alex C.

    2013-05-01

    Particle tracks in a hydrocyclone generated both experimentally by positron emission particle tracking (PEPT) and numerically with Eulerian-Lagranian CFD have been studied and compared. A hydrocyclone with a cylinder-on-cone design was used in this study, the geometries used in the CFD simulations and in the experiments being identical. It is shown that it is possible to track a fast-moving particle in a hydrocyclone using PEPT with high temporal and spatial resolutions. The numerical 3-D particle trajectories were generated using the Large Eddy Simulation (LES) turbulence model for the fluid and Lagrangian particle tracking for the particles. The behaviors of the particles were analyzed in detail and were found to be consistent between experiments and CFD simulations. The tracks of the particles are discussed and related to the fluid flow field visualized in the CFD simulations using the cross-sectional static pressure distribution.

  16. Introduction and guide to LLNL's relativistic 3-D nuclear hydrodynamics code

    SciTech Connect

    Zingman, J.A.; McAbee, T.L.; Alonso, C.T.; Wilson, J.R.

    1987-11-01

    We have constructed a relativistic hydrodynamic model to investigate Bevalac and higher energy, heavy-ion collisions. The basis of the model is a finite-difference solution to covariant hydrodynamics, which will be described in the rest of this paper. This paper also contains: a brief review of the equations and numerical methods we have employed in the solution to the hydrodynamic equations, a detailed description of several of the most important subroutines, and a numerical test on the code. 30 refs., 8 figs., 1 tab.

  17. Simulating 3-D lung dynamics using a programmable graphics processing unit.

    PubMed

    Santhanam, Anand P; Hamza-Lup, Felix G; Rolland, Jannick P

    2007-09-01

    Medical simulations of lung dynamics promise to be effective tools for teaching and training clinical and surgical procedures related to lungs. Their effectiveness may be greatly enhanced when visualized in an augmented reality (AR) environment. However, the computational requirements of AR environments limit the availability of the central processing unit (CPU) for the lung dynamics simulation for different breathing conditions. In this paper, we present a method for computing lung deformations in real time by taking advantage of the programmable graphics processing unit (GPU). This will save the CPU time for other AR-associated tasks such as tracking, communication, and interaction management. An approach for the simulations of the three-dimensional (3-D) lung dynamics using Green's formulation in the case of upright position is taken into consideration. We extend this approach to other orientations as well as the subsequent changes in breathing. Specifically, the proposed extension presents a computational optimization and its implementation in a GPU. Results show that the computational requirements for simulating the deformation of a 3-D lung model are significantly reduced for point-based rendering.

  18. Multiple-mode Lamb wave scattering simulations using 3D elastodynamic finite integration technique.

    PubMed

    Leckey, Cara A C; Rogge, Matthew D; Miller, Corey A; Hinders, Mark K

    2012-02-01

    We have implemented three-dimensional (3D) elastodynamic finite integration technique (EFIT) simulations to model Lamb wave scattering for two flaw-types in an aircraft-grade aluminum plate, a rounded rectangle flat-bottom hole and a disbond of the same shape. The plate thickness and flaws explored in this work include frequency-thickness regions where several Lamb wave modes exist and sometimes overlap in phase and/or group velocity. For the case of the flat-bottom hole the depth was incrementally increased to explore progressive changes in multiple-mode Lamb wave scattering due to the damage. The flat-bottom hole simulation results have been compared to experimental data and are shown to provide key insight for this well-defined experimental case by explaining unexpected results in experimental waveforms. For the rounded rectangle disbond flaw, which would be difficult to implement experimentally, we found that Lamb wave behavior differed significantly from the flat-bottom hole flaw. Most of the literature in this field is restricted to low frequency-thickness regions due to difficulties in interpreting data when multiple modes exist. We found that benchmarked 3D EFIT simulations can yield an understanding of scattering behavior for these higher frequency-thickness regions and in cases that would be difficult to set up experimentally. Additionally, our results show that 2D simulations would not have been sufficient for modeling the complicated scattering that occurred. PMID:21908011

  19. Validation of a Node-Centered Wall Function Model for the Unstructured Flow Code FUN3D

    NASA Technical Reports Server (NTRS)

    Carlson, Jan-Renee; Vasta, Veer N.; White, Jeffery

    2015-01-01

    In this paper, the implementation of two wall function models in the Reynolds averaged Navier-Stokes (RANS) computational uid dynamics (CFD) code FUN3D is described. FUN3D is a node centered method for solving the three-dimensional Navier-Stokes equations on unstructured computational grids. The first wall function model, based on the work of Knopp et al., is used in conjunction with the one-equation turbulence model of Spalart-Allmaras. The second wall function model, also based on the work of Knopp, is used in conjunction with the two-equation k-! turbulence model of Menter. The wall function models compute the wall momentum and energy flux, which are used to weakly enforce the wall velocity and pressure flux boundary conditions in the mean flow momentum and energy equations. These wall conditions are implemented in an implicit form where the contribution of the wall function model to the Jacobian are also included. The boundary conditions of the turbulence transport equations are enforced explicitly (strongly) on all solid boundaries. The use of the wall function models is demonstrated on four test cases: a at plate boundary layer, a subsonic di user, a 2D airfoil, and a 3D semi-span wing. Where possible, different near-wall viscous spacing tactics are examined. Iterative residual convergence was obtained in most cases. Solution results are compared with theoretical and experimental data for several variations of grid spacing. In general, very good comparisons with data were achieved.

  20. A Dynamic 3D Graphical Representation for RNA Structure Analysis and Its Application in Non-Coding RNA Classification

    PubMed Central

    Dong, Xiaoqing; Fang, Yiliang; Wang, Kejing; Zhu, Lijuan; Wang, Ke; Huang, Tao

    2016-01-01

    With the development of new technologies in transcriptome and epigenetics, RNAs have been identified to play more and more important roles in life processes. Consequently, various methods have been proposed to assess the biological functions of RNAs and thus classify them functionally, among which comparative study of RNA structures is perhaps the most important one. To measure the structural similarity of RNAs and classify them, we propose a novel three dimensional (3D) graphical representation of RNA secondary structure, in which an RNA secondary structure is first transformed into a characteristic sequence based on chemical property of nucleic acids; a dynamic 3D graph is then constructed for the characteristic sequence; and lastly a numerical characterization of the 3D graph is used to represent the RNA secondary structure. We tested our algorithm on three datasets: (1) Dataset I consisting of nine RNA secondary structures of viruses, (2) Dataset II consisting of complex RNA secondary structures including pseudo-knots, and (3) Dataset III consisting of 18 non-coding RNA families. We also compare our method with other nine existing methods using Dataset II and III. The results demonstrate that our method is better than other methods in similarity measurement and classification of RNA secondary structures. PMID:27213271

  1. Analysis of the beam halo in negative ion sources by using 3D3V PIC code.

    PubMed

    Miyamoto, K; Nishioka, S; Goto, I; Hatayama, A; Hanada, M; Kojima, A; Hiratsuka, J

    2016-02-01

    The physical mechanism of the formation of the negative ion beam halo and the heat loads of the multi-stage acceleration grids are investigated with the 3D PIC (particle in cell) simulation. The following physical mechanism of the beam halo formation is verified: The beam core and the halo consist of the negative ions extracted from the center and the periphery of the meniscus, respectively. This difference of negative ion extraction location results in a geometrical aberration. Furthermore, it is shown that the heat loads on the first acceleration grid and the second acceleration grid are quantitatively improved compared with those for the 2D PIC simulation result.

  2. Analysis of the beam halo in negative ion sources by using 3D3V PIC code.

    PubMed

    Miyamoto, K; Nishioka, S; Goto, I; Hatayama, A; Hanada, M; Kojima, A; Hiratsuka, J

    2016-02-01

    The physical mechanism of the formation of the negative ion beam halo and the heat loads of the multi-stage acceleration grids are investigated with the 3D PIC (particle in cell) simulation. The following physical mechanism of the beam halo formation is verified: The beam core and the halo consist of the negative ions extracted from the center and the periphery of the meniscus, respectively. This difference of negative ion extraction location results in a geometrical aberration. Furthermore, it is shown that the heat loads on the first acceleration grid and the second acceleration grid are quantitatively improved compared with those for the 2D PIC simulation result. PMID:26932006

  3. 3-D numerical simulations of a growing planet with the core formation by the impact

    NASA Astrophysics Data System (ADS)

    Furuichi, M.; Nakagawa, T.

    2011-12-01

    The formation of a metallic core is widely accepted as the biggest differentiation event during the final stage of the planetary formation [e.g. Stevenson, 1990]. The early Earth hypothesis also suggested that the core formation process would be an important for understanding the initial condition (both thermal and chemical) of mantle convection [Labrosse et al., 2007]. Although the formation process of metallic core is still not clear, it is clear that the different time-scale of dynamics in solid and liquid contribute to that. Here, we assume the scenario that the planetesimal impact induces a significant volume of melt which laterally spreads over the global (magma ocean) or regional area (magma pond) in the short crystallization time scale (~300yr) [Reese and Solomatov, 2006]. After the solidification of magma ocean/pond, hot metallic and silicate rich layers are created [e.g. Senshu et al., 2002]. Since the heavy metal rich material causes the gravitational instability in the viscous planet's interior, the planetary core would form with sinking the metallic material into the center. The silicate layer which floods from the magma pond, deforms as a viscous flow on the planetary surface due to the isostatic adjustment. A series of event on the core formation would have the time-scale of ~100 Mys at the maximum. In order to investigate the scenario described above, we developed the simulation code to solve the Stokes flow with the free surface under the self-gravitating field in 3-D, designed for the massively parallel/vector supercomputer system Earth Simulator 2(ES2) [Furuichi, 2011]. Expressing the free surface motion, a stick air layer, which is the low viscosity layer surrounding the planetary surface, is assumed [e.g. Furuichi et al, 2009]. An ill conditioned Stokes problem of the finite difference discretization on a staggered grid, is solved by iterative Stokes flow solver, robust to large viscosity jumps, using a strong Schur complement preconditioner

  4. DISCO: A 3D Moving-mesh Magnetohydrodynamics Code Designed for the Study of Astrophysical Disks

    NASA Astrophysics Data System (ADS)

    Duffell, Paul C.

    2016-09-01

    This work presents the publicly available moving-mesh magnetohydrodynamics (MHD) code DISCO. DISCO is efficient and accurate at evolving orbital fluid motion in two and three dimensions, especially at high Mach numbers. DISCO employs a moving-mesh approach utilizing a dynamic cylindrical mesh that can shear azimuthally to follow the orbital motion of the gas. The moving mesh removes diffusive advection errors and allows for longer time-steps than a static grid. MHD is implemented in DISCO using an HLLD Riemann solver and a novel constrained transport (CT) scheme that is compatible with the mesh motion. DISCO is tested against a wide variety of problems, which are designed to test its stability, accuracy, and scalability. In addition, several MHD tests are performed which demonstrate the accuracy and stability of the new CT approach, including two tests of the magneto-rotational instability, one testing the linear growth rate and the other following the instability into the fully turbulent regime.

  5. ShrinkWrap: 3D model abstraction for remote sensing simulation

    SciTech Connect

    Pope, Paul A

    2009-01-01

    Remote sensing simulations often require the use of 3D models of objects of interest. There are a multitude of these models available from various commercial sources. There are image processing, computational, database storage, and . data access advantages to having a regularized, encapsulating, triangular mesh representing the surface of a 3D object model. However, this is usually not how these models are stored. They can have too much detail in some areas, and not enough detail in others. They can have a mix of planar geometric primitives (triangles, quadrilaterals, n-sided polygons) representing not only the surface of the model, but also interior features. And the exterior mesh is usually not regularized nor encapsulating. This paper presents a method called SHRlNKWRAP which can be used to process 3D object models to achieve output models having the aforementioned desirable traits. The method works by collapsing an encapsulating sphere, which has a regularized triangular mesh on its surface, onto the surface of the model. A GUI has been developed to make it easy to leverage this capability. The SHRlNKWRAP processing chain and use of the GUI are described and illustrated.

  6. RV functional imaging: 3-D echo-derived dynamic geometry and flow field simulations.

    PubMed

    Pasipoularides, Ares D; Shu, Ming; Womack, Michael S; Shah, Ashish; Von Ramm, Olaf; Glower, Donald D

    2003-01-01

    We describe a novel functional imaging approach for quantitative analysis of right ventricular (RV) blood flow patterns in specific experimental animals (or humans) using real-time, three-dimensional (3-D) echocardiography (RT3D). The method is independent of the digital imaging modality used. It comprises three parts. First, a semiautomated segmentation aided by intraluminal contrast medium locates the RV endocardial surface. Second, a geometric scheme for dynamic RV chamber reconstruction applies a time interpolation procedure to the RT3D data to quantify wall geometry and motion at 400 Hz. A volumetric prism method validated the dynamic geometric reconstruction against simultaneous sonomicrometric canine measurements. Finally, the RV endocardial border motion information is used for mesh generation on a computational fluid dynamics solver to simulate development of the early RV diastolic inflow field. Boundary conditions (tessellated endocardial surface nodal velocities) for the solver are directly derived from the endocardial geometry and motion information. The new functional imaging approach may yield important kinematic information on the distribution of instantaneous velocities in the RV diastolic flow field of specific normal or diseased hearts. PMID:12388220

  7. Toward realistic radiofrequency ablation of hepatic tumors 3D simulation and planning

    NASA Astrophysics Data System (ADS)

    Villard, Caroline; Soler, Luc; Gangi, Afshin; Mutter, Didier; Marescaux, Jacques

    2004-05-01

    Radiofrequency ablation (RFA) has become an increasingly used technique in the treatment of patients with unresectable hepatic tumors. Evaluation of vascular architecture, post-RFA tissue necrosis prediction, and the choice of a suitable needle placement strategy using conventional radiological techniques remain difficult. In an attempt to enhance the safety of RFA, a 3D simulator and treatment planning tool, that simulates the necrosis of the treated area, and proposes an optimal placement for the needle, has been developed. From enhanced spiral CT scans with 2 mm cuts, 3D reconstructions of patients with liver metastases are automatically generated. Virtual needles can be added to the 3D scene, together with their corresponding zones of necrosis that are displayed as a meshed spheroids representing the 60° C isosurface. The simulator takes into account the cooling effect of local vessels greater than 3mm in diameter, making necrosis shapes more realistic. Using a voxel-based algorithm, RFA spheroids are deformed following the shape of the vessels, extended by an additional cooled area. This operation is performed in real-time, allowing updates while needle is adjusted. This allows to observe whether the considered needle placement strategy would burn the whole cancerous zone or not. Planned needle positioning can also be automatically generated by the software to produce complete destruction of the tumor with a 1 cm margin, with maximum respect of the healthy liver and of all major extrahepatic and intrahepatic structures to avoid. If he wishes, the radiologist can select on the skin an insertion window for the needle, focusing the research of the trajectory.

  8. 3D CFD simulations of trailing suction hopper dredger plume mixing: comparison with field measurements.

    PubMed

    de Wit, Lynyrd; Talmon, A M; van Rhee, C

    2014-11-15

    A 3D computational fluid dynamics (CFD) model is used to simulate mixing of an overflow plume within 400 m from a trailing suction hopper dredger (TSHD). The simulations are compared with new field measurements. It is the first time simulations of overflow dredging plumes are compared in such detail to field measurements this close to a TSHD. Seven cases with a large variety in overflow flux and plume characteristics are used. Measured maximum suspended sediment concentrations (SSC) vary between 30 and 500 mg/l and fluxes vary between 0.7% and 20% of the total overflow flux; the CFD model has, subject to the limitations of the field data, been shown to reproduce this in a satisfactory way. The model gives better understanding of important near field processes, which helps to assess the frequency, duration and intensity of stresses like turbidity and sedimentation needed to find the environmental impact of dredging projects.

  9. 3-D Simulations of Plasma Wakefield Acceleration with Non-Idealized Plasmas and Beams

    SciTech Connect

    Deng, S.; Katsouleas, T.; Lee, S.; Muggli, P.; Mori, W.B.; Hemker, R.; Ren, C.; Huang, C.; Dodd, E.; Blue, B.E.; Clayton, C.E.; Joshi, C.; Wang, S.; Decker, F.J.; Hogan, M.J.; Iverson, R.H.; O'Connell, C.; Raimondi, P.; Walz, D.; /SLAC

    2005-09-27

    3-D Particle-in-cell OSIRIS simulations of the current E-162 Plasma Wakefield Accelerator Experiment are presented in which a number of non-ideal conditions are modeled simultaneously. These include tilts on the beam in both planes, asymmetric beam emittance, beam energy spread and plasma inhomogeneities both longitudinally and transverse to the beam axis. The relative importance of the non-ideal conditions is discussed and a worst case estimate of the effect of these on energy gain is obtained. The simulation output is then propagated through the downstream optics, drift spaces and apertures leading to the experimental diagnostics to provide insight into the differences between actual beam conditions and what is measured. The work represents a milestone in the level of detail of simulation comparisons to plasma experiments.

  10. 3D MHD Simulations of accreting neutron stars: evidence of QPO emission from the surface

    SciTech Connect

    Bachetti, Matteo; Burderi, Luciano; Romanova, Marina M.; Kulkarni, Akshay; Salvo, Tiziana di

    2010-07-15

    3D Magnetohydrodynamic simulations show that when matter accretes onto neutron stars, in particular if the misalignment angle is small, it does not constantly fall at a fixed spot. Instead, the location at which matter reaches the star moves. These moving hot spots can be produced both during stable accretion, where matter falls near the magnetic poles of the star, and unstable accretion, characterized by the presence of several tongues of matter which fall on the star near the equator, due to Rayleigh-Taylor instabilities. Precise modeling with Monte Carlo simulations shows that those movements could be observed as high frequency Quasi Periodic Oscillations. We performed a number of new simulation runs with a much wider set of parameters, focusing on neutron stars with a small misalignment angle. In most cases we observe oscillations whose frequency is correlated with the mass accretion rate M. Moreover, in some cases double QPOs appear, each of them showing the same correlation with M.

  11. 3D printing of tissue-simulating phantoms as a traceable standard for biomedical optical measurement

    NASA Astrophysics Data System (ADS)

    Dong, Erbao; Wang, Minjie; Shen, Shuwei; Han, Yilin; Wu, Qiang; Xu, Ronald

    2016-01-01

    Optical phantoms are commonly used to validate and calibrate biomedical optical devices in order to ensure accurate measurement of optical properties in biological tissue. However, commonly used optical phantoms are based on homogenous materials that reflect neither optical properties nor multi-layer heterogeneities of biological tissue. Using these phantoms for optical calibration may result in significant bias in biological measurement. We propose to characterize and fabricate tissue simulating phantoms that simulate not only the multi-layer heterogeneities but also optical properties of biological tissue. The tissue characterization module detects tissue structural and functional properties in vivo. The phantom printing module generates 3D tissue structures at different scales by layer-by-layer deposition of phantom materials with different optical properties. The ultimate goal is to fabricate multi-layer tissue simulating phantoms as a traceable standard for optimal calibration of biomedical optical spectral devices.

  12. Effect of Single-Electron Interface Trapping in Decanano MOSFETs: A 3D Atomistic Simulation Study

    NASA Technical Reports Server (NTRS)

    Asenov, Asen; Balasubramaniam, R.; Brown, A. R.; Davies, J. H.

    2000-01-01

    We study the effect of trapping/detrapping of a single-electron in interface states in the channel of n-type MOSFETs with decanano dimensions using 3D atomistic simulation techniques. In order to highlight the basic dependencies, the simulations are carried out initially assuming continuous doping charge, and discrete localized charge only for the trapped electron. The dependence of the random telegraph signal (RTS) amplitudes on the device dimensions and on the position of the trapped charge in the channel are studied in detail. Later, in full-scale, atomistic simulations assuming discrete charge for both randomly placed dopants and the trapped electron, we highlight the importance of current percolation and of traps with strategic position where the trapped electron blocks a dominant current path.

  13. 3D numerical simulation of the evolutionary process of aeolian downsized crescent-shaped dunes

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaosi; Zhang, Yang; Wang, Yuan; Li, Min

    2016-06-01

    A dune constitutive model was coupled with a large eddy simulation (LES) with the Smagorinsky subgrid-scale (SGS) model to accurately describe the evolutionary process of dunes from the macroscopic perspective of morphological dynamics. A 3D numerical simulation of the evolution of aeolian downsized crescent-shaped dunes was then performed. The evolution of the 3D structure of Gaussian-shaped dunes was simulated under the influence of gravity modulation, which was the same with the vertical oscillation of the sand bed to adjust the threshold of sand grain liftoff in wind tunnel experiments under the same wind speed. The influence of gravity modulation intensity on the characteristic scale parameter of the dune was discussed. Results indicated that the crescent shape of the dune was reproduced with the action of gravity during regulation of the saturation of wind-sand flow at specific times. The crescent shape was not dynamically maintained as time passed, and the dunes dwindled until they reached final decomposition because of wind erosion. The height of the dunes decreased over time, and the height-time curve converged as the intensity of modulation increased linearly. The results qualitatively agreed with those obtained from wind tunnel experiments.

  14. Research on scene organization of process simulation in port 3D GIS

    NASA Astrophysics Data System (ADS)

    Ding, Jing; Jiang, Wenping

    2009-10-01

    At present, the application of three-dimensional GIS becomes more and more widespread gradually, but due to the defect of representing time, four-dimensional GIS based on spatial-temporal expression is facilitated to emerge and progress. Combined with developing the 3D dynamic demonstration of Tianjin center fishing port, this paper researches the mass data and animated simulation of building process and provides an approach that the data is dealt with in the way just as 2D map does such as classification and partition to get clarified data. At the same time, a scene integration method is proposed by dividing a large-scale 3D scene to several sub-scenes with a number of levels and various covering areas. And through editing and synthesizing the commentary, time axis and flight routes, the dynamic simulation and automatic demonstration are achieved. Based on the study above, a system of simulating and illustrating the port building process is designed and implemented.

  15. 3D Simulations for a Micron-Scale, Dielectric-Based Acceleration Experiment

    SciTech Connect

    Yoder, R. B.; Travish, G.; Xu Jin; Rosenzweig, J. B.

    2009-01-22

    An experimental program to demonstrate a dielectric, slab-symmetric accelerator structure has been underway for the past two years. These resonant devices are driven by a side-coupled 800-nm laser and can be configured to maintain the field profile necessary for synchronous acceleration and focusing of relativistic or nonrelativistic particles. We present 3D simulations of various versions of the structure geometry, including a metal-walled structure relevant to ongoing cold tests on resonant properties, and an all-dielectric structure to be constructed for a proof-of-principle acceleration experiment.

  16. 3D Simulation of an Audible Ultrasonic Electrolarynx Using Difference Waves

    PubMed Central

    Mills, Patrick; Zara, Jason

    2014-01-01

    A total laryngectomy removes the vocal folds which are fundamental in forming voiced sounds that make speech possible. Although implanted prosthetics are commonly used in developed countries, simple handheld vibrating electrolarynxes are still common worldwide. These devices are easy to use but suffer from many drawbacks including dedication of a hand, mechanical sounding voice, and sound leakage. To address some of these drawbacks, we introduce a novel electrolarynx that uses vibro-acoustic interference of dual ultrasonic waves to generate an audible fundamental frequency. A 3D simulation of the principles of the device is presented in this paper. PMID:25401965

  17. Benchmark of 3D halo neutral simulation in TRANSP and FIDASIM and application to projected neutral-beam-heated NSTX-U plasmas

    NASA Astrophysics Data System (ADS)

    Liu, D.; Medley, S. S.; Gorelenkova, M. V.; Heidbrink, W. W.; Stagner, L.

    2014-10-01

    A cloud of halo neutrals is created in the vicinity of beam footprint during the neutral beam injection and the halo neutral density can be comparable with beam neutral density. Proper modeling of halo neutrals is critical to correctly interpret neutral particle analyzers (NPA) and fast ion D-alpha (FIDA) signals since these signals strongly depend on local beam and halo neutral density. A 3D halo neutral model has been recently developed and implemented inside TRANSP code. The 3D halo neutral code uses a ``beam-in-a-box'' model that encompasses both injected beam neutrals and resulting halo neutrals. Upon deposition by charge exchange, a subset of the full, one-half and one-third beam energy components produce thermal halo neutrals that are tracked through successive halo neutral generations until an ionization event occurs or a descendant halo exits the box. A benchmark between 3D halo neural model in TRANSP and in FIDA/NPA synthetic diagnostic code FIDASIM is carried out. Detailed comparison of halo neutral density profiles from two codes will be shown. The NPA and FIDA simulations with and without 3D halos are applied to projections of plasma performance for the National Spherical Tours eXperiment-Upgrade (NSTX-U) and the effects of halo neutral density on NPA and FIDA signal amplitude and profile will be presented. Work supported by US DOE.

  18. ALE3D Simulations of Gap Closure and Surface Ignition for Cookoff Modeling

    SciTech Connect

    Howard, W M; McClelland, M A; Nichols, A L

    2006-06-22

    We are developing ALE3D models to describe the thermal, chemical and mechanical behavior during the heating, ignition and explosive phases of various cookoff phenomena. The candidate models and numerical strategies are being evaluated using benchmark cookoff experiments. ALE3D is a three-dimensional computer code capable of solving the model equations in a coupled fashion through all the phases of the cookoff in a single calculation. For the cookoff experiments, we are interested in representing behavior on widely varying timescales. We have used an implicit hydrodynamics option during the heating phase and an explicit solution method during the explosive phase. To complicate the modeling problem, high heat fluxes cause rapid temperature increases in boundary layers and lead to the formation of gaps between energetic and structural materials and ignition on surfaces. The initially solid energetic and structural materials react to produce gases, which fill the gaps. These materials can also melt and flow. Since an implicit solution method is used, simple no-strength materials models can no longer be used for liquids and gases. In this paper, we discuss and demonstrate choices of materials models for solid/liquid/gas mixtures to be used in conjunction with the implicit solution method. In addition, results are given for mesh movement strategies applied to the opening, closing, and surface ignition within gaps.

  19. 3D hybrid simulations with gyrokinetic particle ions and fluid electrons

    SciTech Connect

    Belova, E.V.; Park, W.; Fu, G.Y.; Strauss, H.R.; Sugiyama, L.E.

    1998-12-31

    The previous hybrid MHD/particle model (MH3D-K code) represented energetic ions as gyrokinetic (or drift-kinetic) particles coupled to MHD equations using the pressure or current coupling scheme. A small energetic to bulk ion density ratio was assumed, n{sub h}/n{sub b} {much_lt} 1, allowing the neglect of the energetic ion perpendicular inertia in the momentum equation and the use of MHD Ohm`s law E = {minus}v{sub b} {times} B. A generalization of this model in which all ions are treated as gyrokinetic/drift-kinetic particles and fluid description is used for the electron dynamics is considered in this paper.

  20. 3D MHD Simulations of Radial Wire Array Z-pinches

    NASA Astrophysics Data System (ADS)

    Niasse, N.; Chittenden, J. P.; Bland, S. N.; Suzuki-Vidal, F. A.; Hall, G. N.; Lebedev, S. V.; Calamy, H.; Zucchini, F.; Lassalle, F.; Bedoch, J. P.

    2009-01-01

    Recent experiments carried out on the MAGPIE (1 MA, 250 ns), OEDIPE (730 kA, 1.5 μs) and SPHINX (4 MA, 700 ns)[1] facilities have shown the relatively high level of scalability of the Radial Wire Array Z-pinches. These configurations where the wires stretch radially outwards from a central cathode offer numerous advantages over standard cylindrical arrays. In particular, imploding in a very stable and compact way, they seem suitable for coupling to small scale hohlraums. Making use of the 3D resistive magneto-hydrodynamic code GORGON[2] developed at Imperial College, the dynamic of the radial wire arrays is investigated. Influence of the cathode hotspots and wires angle on the x-ray emissions is also discussed. Comparison with experiments is offered to validate the numerical studies.

  1. Numerical simulation in 3D of atomizing coaxial gas-liquid jets

    NASA Astrophysics Data System (ADS)

    Agbaglah, Gilou; Fuster, Daniel; McBain, Geordie; Popinet, Stephane; Zaleski, Stephane

    2012-11-01

    We investigate three-dimensional multiphase flows using the Volume of Fluid method. We are in particular focusing on the problem of jet atomizaton. We use a Volume of Fluid method with oct-tree adaptive finite volume discretization, mostly using the Gerris free code. Surface tension is computed by a balanced-force method. Coaxial, 3D, round and planar air-water jets similar to those investigated experimentally are studied and compared to the equivalent jets in 2D axisymetric and 2D planar setups. A mechanism for large-scale jet disruption is observed. The distribution of droplet sizes is compared to experimental measurements. The effect of grid resolution and of the presence of an explicitly modelled solid separator plate is discussed.

  2. 3D MHD Simulations of Radial Wire Array Z-pinches

    SciTech Connect

    Niasse, N.; Chittenden, J. P.; Bland, S. N.; Suzuki-Vidal, F. A.; Hall, G. N.; Lebedev, S. V.; Calamy, H.; Zucchini, F.; Lassalle, F.; Bedoch, J. P.

    2009-01-21

    Recent experiments carried out on the MAGPIE (1 MA, 250 ns), OEDIPE (730 kA, 1.5 {mu}s) and SPHINX (4 MA, 700 ns)[1] facilities have shown the relatively high level of scalability of the Radial Wire Array Z-pinches. These configurations where the wires stretch radially outwards from a central cathode offer numerous advantages over standard cylindrical arrays. In particular, imploding in a very stable and compact way, they seem suitable for coupling to small scale hohlraums. Making use of the 3D resistive magneto-hydrodynamic code GORGON[2] developed at Imperial College, the dynamic of the radial wire arrays is investigated. Influence of the cathode hotspots and wires angle on the x-ray emissions is also discussed. Comparison with experiments is offered to validate the numerical studies.

  3. Computer Code for Nanostructure Simulation

    NASA Technical Reports Server (NTRS)

    Filikhin, Igor; Vlahovic, Branislav

    2009-01-01

    Due to their small size, nanostructures can have stress and thermal gradients that are larger than any macroscopic analogue. These gradients can lead to specific regions that are susceptible to failure via processes such as plastic deformation by dislocation emission, chemical debonding, and interfacial alloying. A program has been developed that rigorously simulates and predicts optoelectronic properties of nanostructures of virtually any geometrical complexity and material composition. It can be used in simulations of energy level structure, wave functions, density of states of spatially configured phonon-coupled electrons, excitons in quantum dots, quantum rings, quantum ring complexes, and more. The code can be used to calculate stress distributions and thermal transport properties for a variety of nanostructures and interfaces, transport and scattering at nanoscale interfaces and surfaces under various stress states, and alloy compositional gradients. The code allows users to perform modeling of charge transport processes through quantum-dot (QD) arrays as functions of inter-dot distance, array order versus disorder, QD orientation, shape, size, and chemical composition for applications in photovoltaics and physical properties of QD-based biochemical sensors. The code can be used to study the hot exciton formation/relation dynamics in arrays of QDs of different shapes and sizes at different temperatures. It also can be used to understand the relation among the deposition parameters and inherent stresses, strain deformation, heat flow, and failure of nanostructures.

  4. A 3-D nonisothermal flow simulation and pulling force model for injection pultrusion processes

    NASA Astrophysics Data System (ADS)

    Mustafa, Ibrahim

    1998-12-01

    Injected Pultrusion (IP) is an efficient way of producing high quality, low cost, high volume and constant cross-section polymeric composites. This process has been developed recently, and the efforts to optimize it are still underway. This work is related to the development of a 3-D non-isothermal flow model for the IP processes. The governing equations for transport of mass, momentum and, energy are formulated by using a local volume averaging approach, and the Finite Element/Control Volume method is used to solve the system of equations numerically. The chemical species balance equation is solved in the Lagrangian frame of reference whereas the energy equation is solved using Galerkin, SU (Streamline Upwind), and SUPG (Streamline Upwind Petrov Galerkin) approaches. By varying degrees of freedom and the flow rates of the resin, it is shown that at high Peclet numbers the SUPG formulation performs better than the SU and the Galerkin methods in all cases. The 3-D model predictions for degree of cure and temperature are compared with a one dimensional analytical solution and the results are found satisfactory. Moreover, by varying the Brinkman Number, it is shown that the effect of viscous dissipation is insignificant. The 3-D flow simulations have been carried out for both thin and thick parts and the results are compared with the 2-D model. It is shown that for thick parts 2-D simulations render erroneous results. The effect of changing permeability on the flow fronts is also addressed. The effect of increasing taper angle on the model prediction is also investigated. A parametric study is conducted to isolate optimum conditions for both isothermal and non-isothermal cases using a straight rectangular die and a die with a tapered inlet. Finally, a simple pulling force model is developed and the pulling force required to pull the carbon-epoxy fiber resin system is estimated for dies of varying tapered inlet.

  5. Simulation of MRI-Guided Transurethral Conformal 3-D Ultrasound Therapy of the Prostate

    NASA Astrophysics Data System (ADS)

    Burtnyk, Mathieu; Chopra, Rajiv; Bronskill, Michael

    2007-05-01

    The capability of MRI to measure spatial heating patterns during therapy delivery with ultrasound makes adaptive thermal therapy possible. Active feedback provided by MR thermometry enables on-line adjustment of the treatment to compensate for tissue/perfusion changes during heating. The feasibility of performing 3-D conformal thermal therapy of the entire prostate gland with a multi-element transurethral ultrasound heating applicator was considered in this study. The major challenge was using MR temperature feedback to adjust simultaneously the device's rate of rotation and the power and frequency of multiple independent ultrasound transducers, to shape the region of thermal damage to the prostate gland in all spatial dimensions while sparing surrounding tissues from damage. The 3-D Bioheat Transfer Equation was used to model the ultrasound therapy using manually segmented MRI prostate geometries from 20 prostate cancer patients. Average prostate dimensions (±SD) were: length: 37.8±7.2 mm, width: 47.1±5.5 mm, height: 28.9±5.7 mm. Typical treatments of the entire prostate volume take less than 30 min. Results from various treatment strategies were compared by calculating the percentage volume of under- and over-treated tissue and the potential thermal damage incurred by important adjacent anatomical structures using "dose-effect" curves. Visualization tools were developed to investigate patient-specific prostate and periprostatic anatomy, as well as the simulated coagulated volumes in 3-D, enabling evaluation of individual patient outcomes. These simulations also enabled the investigation of the number and size of transducer segments required for accurate treatment delivery. In general, the under-treated fraction can be maintained below 1% of the prostate volume, but the over-treated fraction can range up to 15%, emphasizing the importance of accurate location of sensitive adjacent structures.

  6. 3D Computations and Experiments

    SciTech Connect

    Couch, R; Faux, D; Goto, D; Nikkel, D

    2004-04-05

    This project consists of two activities. Task A, Simulations and Measurements, combines all the material model development and associated numerical work with the materials-oriented experimental activities. The goal of this effort is to provide an improved understanding of dynamic material properties and to provide accurate numerical representations of those properties for use in analysis codes. Task B, ALE3D Development, involves general development activities in the ALE3D code with the focus of improving simulation capabilities for problems of mutual interest to DoD and DOE. Emphasis is on problems involving multi-phase flow, blast loading of structures and system safety/vulnerability studies.

  7. 3D Radiative Transfer in Eta Carinae: The SimpleX Radiative Transfer Algorithm Applied to 3D SPH Simulations of Eta Car's Colliding Winds

    NASA Astrophysics Data System (ADS)

    Clementel, N.; Madura, T. I.; Kruip, C. J. H.; Icke, V.; Gull, T. R.

    2014-04-01

    At the heart of the spectacular bipolar Homunculus nebula lies an extremely luminous (5*10^6 L_sun) colliding wind binary with a highly eccentric (e ~ 0.9), 5.54-year orbit and a total mass ~ 110 M_sun. Our closest (D ~ 2.3 kpc) and best example of a pre-hypernova environment, Eta Carinae is an ideal astrophysical laboratory for studying massive binary interactions, stellar wind-wind collisions, and massive star evolution. In order to improve our knowledge of the system, we need to generate synthetic observations and compare them with the already available and future HST/STIS data. We present initial results from full 3D radiative transfer post-processing of 3D SPH hydrodynamical simulations of the interacting winds of Eta Carinae. We use SimpleX algorithm to obtain the ionization fractions of hydrogen and helium, this results in ionization maps of both species that constrain the regions where these lines can form. These results will allow us to put constraints on the number of ionizing photons coming from the companion. This construction of synthetic observations allows us to obtain insight into the highly complex 3D flows in Eta, from the shape of the ionized volume and its resulting optical/spectral appearance.

  8. 3-D simulations of magnetic reconnection in high-energy-density laser-produced plasmas

    NASA Astrophysics Data System (ADS)

    Fox, W.; Bhattacharjee, A.; Germaschewski, K.

    2012-10-01

    Magnetic reconnection has recently been observed and studied in high-energy-density, laser-produced plasmas, in a regime characterized by extremely high magnetic fields, high plasma beta and strong, supersonic plasma inflow. These experiments are interesting both for obtaining fundamental data on reconnection, and may also be relevant for inertial fusion, as this magnetic reconnection geometry, with multiple, colliding, magnetized plasma bubbles occurs naturally inside ICF hohlraums. Previous 2-d particle-in-cell reconnection simulations, with parameters and geometry relevant to the experiments, identified key ingredients for obtaining the very fast reconnection rates, namely two-fluid reconnection mediated by collisionless effects (the Hall current and electron pressure tensor), and strong flux pile-up of the inflowing magnetic field [1]. We present results from extending the previous simulations to 3-d, and discuss 3-d effects in the experiments, including instabilities in the reconnection layer, the topological skeleton of null-null lines, and field-generation from the Biermann battery effect. [4pt] [1] W. Fox, A. Bhattacharjee, and K. Germaschewski, PRL 106, 215003 (2011).

  9. 3D face recognition using simulated annealing and the surface interpenetration measure.

    PubMed

    Queirolo, Chauã C; Silva, Luciano; Bellon, Olga R P; Segundo, Maurício Pamplona

    2010-02-01

    This paper presents a novel automatic framework to perform 3D face recognition. The proposed method uses a Simulated Annealing-based approach (SA) for range image registration with the Surface Interpenetration Measure (SIM), as similarity measure, in order to match two face images. The authentication score is obtained by combining the SIM values corresponding to the matching of four different face regions: circular and elliptical areas around the nose, forehead, and the entire face region. Then, a modified SA approach is proposed taking advantage of invariant face regions to better handle facial expressions. Comprehensive experiments were performed on the FRGC v2 database, the largest available database of 3D face images composed of 4,007 images with different facial expressions. The experiments simulated both verification and identification systems and the results compared to those reported by state-of-the-art works. By using all of the images in the database, a verification rate of 96.5 percent was achieved at a False Acceptance Rate (FAR) of 0.1 percent. In the identification scenario, a rank-one accuracy of 98.4 percent was achieved. To the best of our knowledge, this is the highest rank-one score ever achieved for the FRGC v2 database when compared to results published in the literature. PMID:20075453

  10. Comparing TID simulations using 3-D ray tracing and mirror reflection

    NASA Astrophysics Data System (ADS)

    Huang, X.; Reinisch, B. W.; Sales, G. S.; Paznukhov, V. V.; Galkin, I. A.

    2016-04-01

    Measuring the time variations of Doppler frequencies and angles of arrival (AoA) of ionospherically reflected HF waves has been proposed as a means of detecting the occurrence of traveling ionospheric disturbances (TIDs). Simulations are made using ray tracing through the International Reference Ionosphere (IRI) electron density model in an effort to reproduce measured signatures. The TID is represented by a wavelike perturbation of the 3-D electron density traveling horizontally in the ionosphere with an amplitude that varies sinusoidally with time. By judiciously selecting the TID parameters the ray tracing simulation reproduces the observed Doppler frequencies and AoAs. Ray tracing in a 3-D realistic ionosphere is, however, excessively time consuming considering the involved homing procedures. It is shown that a carefully selected reflecting corrugated mirror can reproduce the time variations of the AoA and Doppler frequency. The results from the ray tracing through the IRI model ionosphere and the mirror model reflections are compared to assess the applicability of the mirror-reflection model.

  11. ALE3D Simulation of Heating and Violence in a Fast Cookoff Experiment with LX-10

    SciTech Connect

    McClelland, M A; Maienschein, J L; Howard, W M; Nichols, A L; deHaven, M R; Strand, O T

    2006-06-26

    We performed a computational and experimental analysis of fast cookoff of LX-10 (94.7% HMX, 5.3% Viton A) confined in a 2 kbar steel tube with reinforced end caps. A Scaled-Thermal-Explosion-eXperiment (STEX) was completed in which three radiant heaters were used to heat the vessel until ignition, resulting in a moderately violent explosion after 20.4 minutes. Thermocouple measurements showed tube temperatures as high as 340 C at ignition and LX-10 surface temperatures as high as 279 C, which is near the melting point of HMX. Three micro-power radar systems were used to measure mean fragment velocities of 840 m/s. Photonics Doppler Velocimeters (PDVs) showed a rapid acceleration of fragments over 80 {micro}s. A one-dimensional ALE3D cookoff model at the vessel midplane was used to simulate the heating, thermal expansion, LX-10 decomposition composition, and closing of the gap between the HE (High Explosive) and vessel wall. Although the ALE3D simulation terminated before ignition, the model provided a good representation of heat transfer through the case and across the dynamic gap to the explosive.

  12. ALE3D Simulation and Measurement of Violence in a Fast Cookoff Experiment with LX-10

    SciTech Connect

    McClelland, M A; Maienschein, J L; Howard, W M; deHaven, M R

    2006-11-22

    We performed a computational and experimental analysis of fast cookoff of LX-10 (94.7% HMX, 5.3% Viton A) confined in a 2 kbar steel tube with reinforced end caps. A Scaled-Thermal-Explosion-eXperiment (STEX) was completed in which three radiant heaters were used to heat the vessel until ignition, resulting in a moderately violent explosion after 20.4 minutes. Thermocouple measurements showed tube temperatures as high as 340 C at ignition and LX-10 surface temperatures as high as 279 C, which is near the melting point of HMX. Three micro-power radar systems were used to measure mean fragment velocities of 840 m/s. Photonics Doppler Velocimeters (PDVs) showed a rapid acceleration of fragments over 80 {micro}s. A one-dimensional ALE3D cookoff model at the vessel midplane was used to simulate the heating, thermal expansion, LX-10 decomposition composition, and closing of the gap between the HE (High Explosive) and vessel wall. Although the ALE3D simulation terminated before ignition, the model provided a good representation of heat transfer through the case and across the dynamic gap to the explosive.

  13. Fast Wave Trains Associated with Solar Eruptions: Insights from 3D Thermodynamic MHD Simulations

    NASA Astrophysics Data System (ADS)

    Downs, C.; Liu, W.; Torok, T.; Linker, J.; Mikic, Z.; Ofman, L.

    2015-12-01

    EUV imaging observations during the SDO/AIA era have provided new insights into a variety of wave phenomena occurring in the low solar corona. One example is the observation of quasi-periodic, fast-propagating wave trains that are associated with solar eruptions, including flares and CMEs. While there has been considerable progress in understanding such waves from both an observational and theoretical perspective, it remains a challenge to pin down their physical origin. In this work, we detail our results from a case-study 3D thermodynamic MHD simulation of a coronal mass ejection where quasi-periodic wave trains are generated during the simulated eruption. We find a direct correlation between the onset of non-steady reconnection in the flare current sheet and the generation of quasi-periodic wave train signatures when patchy, collimated downflows interact with the flare arcade. Via forward modeling of SDO/AIA observables, we explore how the appearance of the wave trains is affected by line-of-sight integration and the multi-thermal nature of the coronal medium. We also examine how the wave trains themselves are channeled by natural waveguides formed in 3D by the non-uniform background magnetic field. While the physical association of the reconnection dynamics to the generation of quasi-periodic wave trains appears to be a compelling result, unanswered questions posed from recent observations as well as future prospects will be discussed.

  14. Highly optimized simulations on single- and multi-GPU systems of the 3D Ising spin glass model

    NASA Astrophysics Data System (ADS)

    Lulli, M.; Bernaschi, M.; Parisi, G.

    2015-11-01

    We present a highly optimized implementation of a Monte Carlo (MC) simulator for the three-dimensional Ising spin-glass model with bimodal disorder, i.e., the 3D Edwards-Anderson model running on CUDA enabled GPUs. Multi-GPU systems exchange data by means of the Message Passing Interface (MPI). The chosen MC dynamics is the classic Metropolis one, which is purely dissipative, since the aim was the study of the critical off-equilibrium relaxation of the system. We focused on the following issues: (i) the implementation of efficient memory access patterns for nearest neighbours in a cubic stencil and for lagged-Fibonacci-like pseudo-Random Numbers Generators (PRNGs); (ii) a novel implementation of the asynchronous multispin-coding Metropolis MC step allowing to store one spin per bit and (iii) a multi-GPU version based on a combination of MPI and CUDA streams. Cubic stencils and PRNGs are two subjects of very general interest because of their widespread use in many simulation codes.

  15. Multiple platform application of 3D CAD PIC simulations in pulsed power

    SciTech Connect

    Peratt, A.L.; Mostrom, M.A.

    1995-12-31

    With the availability of 80--125 MHz microprocessors, the methodology developed for the simulation of problems in pulsed power and plasma physics on modern day supercomputers is now amenable to application on a wide range of platforms including laptops and workstations. While execution speeds with these processors do not match those of large scale computing machines, resources such as computer-aided-design (CAD) and graphical analysis codes are available to automate simulation setup and process data. This paper reports on the adaptation of IVORY, a three-dimensional, fully-electromagnetic, particle-in-cell simulation code, to this platform independent CAD environment. The primary purpose of this talk is to demonstrate how rapidly a pulsed power/plasma problem can be scoped out by an experimenter on a dedicated workstation. Demonstrations include a magnetically insulated transmission line, power flow in a graded insulator stack, a relativistic klystron oscillator, and the dynamics of a coaxial thruster for space applications.

  16. Use of the FLUKA Monte Carlo code for 3D patient-specific dosimetry on PET-CT and SPECT-CT images.

    PubMed

    Botta, F; Mairani, A; Hobbs, R F; Vergara Gil, A; Pacilio, M; Parodi, K; Cremonesi, M; Coca Pérez, M A; Di Dia, A; Ferrari, M; Guerriero, F; Battistoni, G; Pedroli, G; Paganelli, G; Torres Aroche, L A; Sgouros, G

    2013-11-21

    Patient-specific absorbed dose calculation for nuclear medicine therapy is a topic of increasing interest. 3D dosimetry at the voxel level is one of the major improvements for the development of more accurate calculation techniques, as compared to the standard dosimetry at the organ level. This study aims to use the FLUKA Monte Carlo code to perform patient-specific 3D dosimetry through direct Monte Carlo simulation on PET-CT and SPECT-CT images. To this aim, dedicated routines were developed in the FLUKA environment. Two sets of simulations were performed on model and phantom images. Firstly, the correct handling of PET and SPECT images was tested under the assumption of homogeneous water medium by comparing FLUKA results with those obtained with the voxel kernel convolution method and with other Monte Carlo-based tools developed to the same purpose (the EGS-based 3D-RD software and the MCNP5-based MCID). Afterwards, the correct integration of the PET/SPECT and CT information was tested, performing direct simulations on PET/CT images for both homogeneous (water) and non-homogeneous (water with air, lung and bone inserts) phantoms. Comparison was performed with the other Monte Carlo tools performing direct simulation as well. The absorbed dose maps were compared at the voxel level. In the case of homogeneous water, by simulating 10(8) primary particles a 2% average difference with respect to the kernel convolution method was achieved; such difference was lower than the statistical uncertainty affecting the FLUKA results. The agreement with the other tools was within 3–4%, partially ascribable to the differences among the simulation algorithms. Including the CT-based density map, the average difference was always within 4% irrespective of the medium (water, air, bone), except for a maximum 6% value when comparing FLUKA and 3D-RD in air. The results confirmed that the routines were properly developed, opening the way for the use of FLUKA for patient-specific, image

  17. Use of the FLUKA Monte Carlo code for 3D patient-specific dosimetry on PET-CT and SPECT-CT images*

    PubMed Central

    Botta, F; Mairani, A; Hobbs, R F; Vergara Gil, A; Pacilio, M; Parodi, K; Cremonesi, M; Coca Pérez, M A; Di Dia, A; Ferrari, M; Guerriero, F; Battistoni, G; Pedroli, G; Paganelli, G; Torres Aroche, L A; Sgouros, G

    2014-01-01

    Patient-specific absorbed dose calculation for nuclear medicine therapy is a topic of increasing interest. 3D dosimetry at the voxel level is one of the major improvements for the development of more accurate calculation techniques, as compared to the standard dosimetry at the organ level. This study aims to use the FLUKA Monte Carlo code to perform patient-specific 3D dosimetry through direct Monte Carlo simulation on PET-CT and SPECT-CT images. To this aim, dedicated routines were developed in the FLUKA environment. Two sets of simulations were performed on model and phantom images. Firstly, the correct handling of PET and SPECT images was tested under the assumption of homogeneous water medium by comparing FLUKA results with those obtained with the voxel kernel convolution method and with other Monte Carlo-based tools developed to the same purpose (the EGS-based 3D-RD software and the MCNP5-based MCID). Afterwards, the correct integration of the PET/SPECT and CT information was tested, performing direct simulations on PET/CT images for both homogeneous (water) and non-homogeneous (water with air, lung and bone inserts) phantoms. Comparison was performed with the other Monte Carlo tools performing direct simulation as well. The absorbed dose maps were compared at the voxel level. In the case of homogeneous water, by simulating 108 primary particles a 2% average difference with respect to the kernel convolution method was achieved; such difference was lower than the statistical uncertainty affecting the FLUKA results. The agreement with the other tools was within 3–4%, partially ascribable to the differences among the simulation algorithms. Including the CT-based density map, the average difference was always within 4% irrespective of the medium (water, air, bone), except for a maximum 6% value when comparing FLUKA and 3D-RD in air. The results confirmed that the routines were properly developed, opening the way for the use of FLUKA for patient-specific, image

  18. Nonintrusive 3D reconstruction of human bone models to simulate their bio-mechanical response

    NASA Astrophysics Data System (ADS)

    Alexander, Tsouknidas; Antonis, Lontos; Savvas, Savvakis; Nikolaos, Michailidis

    2012-06-01

    3D finite element models representing functional parts of the human skeletal system, have been repeatedly introduced over the last years, to simulate biomechanical response of anatomical characteristics or investigate surgical treatment. The reconstruction of geometrically accurate FEM models, poses a significant challenge for engineers and physicians, as recent advances in tissue engineering dictate highly customized implants, while facilitating the production of alloplast materials that are employed to restore, replace or supplement the function of human tissue. The premises of every accurate reconstruction method, is to encapture the precise geometrical characteristics of the examined tissue and thus the selection of a sufficient imaging technique is of the up-most importance. This paper reviews existing and potential applications related to the current state-of-the-art of medical imaging and simulation techniques. The procedures are examined by introducing their concepts; strengths and limitations, while the authors also present part of their recent activities in these areas. [Figure not available: see fulltext.

  19. Investigating the guiding of streamers in nitrogen/oxygen mixtures with 3D simulations

    NASA Astrophysics Data System (ADS)

    Teunissen, Jannis; Nijdam, Sander; Takahashi, Eiichi; Ebert, Ute

    2014-10-01

    Recent experiments by S. Nijdam and E. Takahashi have demonstrated that streamers can be guided by weak pre-ionization in nitrogen/oxygen mixtures, as long as there is not too much oxygen (less than 1%). The pre-ionization was created by a laser beam, and was orders of magnitude lower than the density in a streamer channel. Here, we will study the guiding of streamers with 3D numerical simulations. First, we present simulations that can be compared with the experiments and confirm that the laser pre-ionization does not introduce space charge effects by itself. Then we investigate topics as: the conditions under which guiding can occur; how photoionization reduces the guiding at higher oxygen concentrations and whether guided streamers keep their propagation direction outside the pre-ionization. JT was supported by STW Project 10755, SN by the FY2012 Researcher Exchange Program between JSPS and NWO, and ET by JSPS KAKENHI Grant Number 24560249.

  20. [A rapid prototype fabrication method of dental splint based on 3D simulation and technology].

    PubMed

    Lin, Yanping; Chen, Xiaojun; Zhang, Shilei; Wang, Chengtao

    2006-04-01

    The conventional design and fabrication of the dental splint (in orthognathic surgery) is based on the preoperative planning and model surgery so this process is of low precision and efficiency. In order to solve the problems and be up to the trend of computer-assisted surgery, we have developed a novel method to design and fabricate the dental splint--computer-generated dental splint, which is based on three-dimensional model simulation and rapid prototype technology. After the surgical planning and simulation of 3D model, we can modify the model to be superior in chewing action (functional) and overall facial appearance (aesthetic). Then, through the Boolean operation of the dental splint blank and the maxillofacial bone model the model of dental splint is formed. At last, the dental splint model is fabricated through rapid prototype machine and applied in clinic. The result indicates that, with the use of this method, the surgical precision and efficiency are improved.

  1. 3D simulation of the image formation in soft x-ray microscopes.

    PubMed

    Selin, Mårten; Fogelqvist, Emelie; Holmberg, Anders; Guttmann, Peter; Vogt, Ulrich; Hertz, Hans M

    2014-12-15

    In water-window soft x-ray microscopy the studied object is typically larger than the depth of focus and the sample illumination is often partially coherent. This blurs out-of-focus features and may introduce considerable fringing. Understanding the influence of these phenomena on the image formation is therefore important when interpreting experimental data. Here we present a wave-propagation model operating in 3D for simulating the image formation of thick objects in partially coherent soft x-ray microscopes. The model is compared with present simulation methods as well as with experiments. The results show that our model predicts the image formation of transmission soft x-ray microscopes more accurately than previous models.

  2. 3D simulations and modeling of new low capacitance silicon pixel detectors

    NASA Astrophysics Data System (ADS)

    Xiong, Bo; Li, Yu Yun; Li, Zheng

    2016-09-01

    With signal to noise ratio (S/N) being a key parameter of a high performance detector, reducing the detector noise has been one of the main tasks in detector development. A new low capacitance silicon pixel detector is proposed, which is based on a new electrode geometry with reduced effective electrode area while keeping the sensitive volume unchanged. Detector electrical characteristics including electrostatic potential, electric field, full depletion voltage, and capacitance have been simulated in detail using a 3D TCAD tool. From these simulations and calculations, we confirm that the new detector structure has a much reduced capacitance (by a factor of 3) as compared to the traditional pixel detectors with the same sensitive volume. This reduction in detector capacitance can certainly improve the detector signal to noise ratio. However, the full depletion voltage for the new structure is larger than that of the traditional one due to the small electrode effect.

  3. Modeling and validation of a 3D velocity structure for the Santa Clara Valley, California, for seismic-wave simulations

    USGS Publications Warehouse

    Hartzell, S.; Harmsen, S.; Williams, R.A.; Carver, D.; Frankel, A.; Choy, G.; Liu, P.-C.; Jachens, R.C.; Brocher, T.M.; Wentworth, C.M.

    2006-01-01

    A 3D seismic velocity and attenuation model is developed for Santa Clara Valley, California, and its surrounding uplands to predict ground motions from scenario earthquakes. The model is developed using a variety of geologic and geophysical data. Our starting point is a 3D geologic model developed primarily from geologic mapping and gravity and magnetic surveys. An initial velocity model is constructed by using seismic velocities from boreholes, reflection/refraction lines, and spatial autocorrelation microtremor surveys. This model is further refined and the seismic attenuation is estimated through waveform modeling of weak motions from small local events and strong-ground motion from the 1989 Loma Prieta earthquake. Waveforms are calculated to an upper frequency of 1 Hz using a parallelized finite-difference code that utilizes two regions with a factor of 3 difference in grid spacing to reduce memory requirements. Cenozoic basins trap and strongly amplify ground motions. This effect is particularly strong in the Evergreen Basin on the northeastern side of the Santa Clara Valley, where the steeply dipping Silver Creek fault forms the southwestern boundary of the basin. In comparison, the Cupertino Basin on the southwestern side of the valley has a more moderate response, which is attributed to a greater age and velocity of the Cenozoic fill. Surface waves play a major role in the ground motion of sedimentary basins, and they are seen to strongly develop along the western margins of the Santa Clara Valley for our simulation of the Loma Prieta earthquake.

  4. Intercomparison of 3D pore-scale flow and solute transport simulation methods

    SciTech Connect

    Mehmani, Yashar; Schoenherr, Martin; Pasquali, Andrea; Perkins, William A.; Kim, Kyungjoo; Perego, Mauro; Parks, Michael L.; Balhoff, Matthew T.; Richmond, Marshall C.; Geier, Martin; Krafczyk, Manfred; Luo, Li -Shi; Tartakovsky, Alexandre M.; Yang, Xiaofan; Scheibe, Timothy D.; Trask, Nathaniel

    2015-09-28

    Multiple numerical approaches have been developed to simulate porous media fluid flow and solute transport at the pore scale. These include 1) methods that explicitly model the three-dimensional geometry of pore spaces and 2) methods that conceptualize the pore space as a topologically consistent set of stylized pore bodies and pore throats. In previous work we validated a model of the first type, using computational fluid dynamics (CFD) codes employing a standard finite volume method (FVM), against magnetic resonance velocimetry (MRV) measurements of pore-scale velocities. Here we expand that validation to include additional models of the first type based on the lattice Boltzmann method (LBM) and smoothed particle hydrodynamics (SPH), as well as a model of the second type, a pore-network model (PNM). The PNM approach used in the current study was recently improved and demonstrated to accurately simulate solute transport in a two-dimensional experiment. While the PNM approach is computationally much less demanding than direct numerical simulation methods, the effect of conceptualizing complex three-dimensional pore geometries on solute transport in the manner of PNMs has not been fully determined. We apply all four approaches (FVM-based CFD, LBM, SPH and PNM) to simulate pore-scale velocity distributions and (for capable codes) nonreactive solute transport, and intercompare the model results. Comparisons are drawn both in terms of macroscopic variables (e.g., permeability, solute breakthrough curves) and microscopic variables (e.g., local velocities and concentrations). Generally good agreement was achieved among the various approaches, but some differences were observed depending on the model context. The intercomparison work was challenging because of variable capabilities of the codes, and inspired some code enhancements to allow consistent comparison of flow and transport simulations across the full suite of methods. This paper provides support for confidence

  5. Intercomparison of 3D pore-scale flow and solute transport simulation methods

    DOE PAGES

    Mehmani, Yashar; Schoenherr, Martin; Pasquali, Andrea; Perkins, William A.; Kim, Kyungjoo; Perego, Mauro; Parks, Michael L.; Balhoff, Matthew T.; Richmond, Marshall C.; Geier, Martin; et al

    2015-09-28

    Multiple numerical approaches have been developed to simulate porous media fluid flow and solute transport at the pore scale. These include 1) methods that explicitly model the three-dimensional geometry of pore spaces and 2) methods that conceptualize the pore space as a topologically consistent set of stylized pore bodies and pore throats. In previous work we validated a model of the first type, using computational fluid dynamics (CFD) codes employing a standard finite volume method (FVM), against magnetic resonance velocimetry (MRV) measurements of pore-scale velocities. Here we expand that validation to include additional models of the first type based onmore » the lattice Boltzmann method (LBM) and smoothed particle hydrodynamics (SPH), as well as a model of the second type, a pore-network model (PNM). The PNM approach used in the current study was recently improved and demonstrated to accurately simulate solute transport in a two-dimensional experiment. While the PNM approach is computationally much less demanding than direct numerical simulation methods, the effect of conceptualizing complex three-dimensional pore geometries on solute transport in the manner of PNMs has not been fully determined. We apply all four approaches (FVM-based CFD, LBM, SPH and PNM) to simulate pore-scale velocity distributions and (for capable codes) nonreactive solute transport, and intercompare the model results. Comparisons are drawn both in terms of macroscopic variables (e.g., permeability, solute breakthrough curves) and microscopic variables (e.g., local velocities and concentrations). Generally good agreement was achieved among the various approaches, but some differences were observed depending on the model context. The intercomparison work was challenging because of variable capabilities of the codes, and inspired some code enhancements to allow consistent comparison of flow and transport simulations across the full suite of methods. This paper provides support for

  6. Intercomparison of 3D pore-scale flow and solute transport simulation methods

    NASA Astrophysics Data System (ADS)

    Yang, Xiaofan; Mehmani, Yashar; Perkins, William A.; Pasquali, Andrea; Schönherr, Martin; Kim, Kyungjoo; Perego, Mauro; Parks, Michael L.; Trask, Nathaniel; Balhoff, Matthew T.; Richmond, Marshall C.; Geier, Martin; Krafczyk, Manfred; Luo, Li-Shi; Tartakovsky, Alexandre M.; Scheibe, Timothy D.

    2016-09-01

    Multiple numerical approaches have been developed to simulate porous media fluid flow and solute transport at the pore scale. These include 1) methods that explicitly model the three-dimensional geometry of pore spaces and 2) methods that conceptualize the pore space as a topologically consistent set of stylized pore bodies and pore throats. In previous work we validated a model of the first type, using computational fluid dynamics (CFD) codes employing a standard finite volume method (FVM), against magnetic resonance velocimetry (MRV) measurements of pore-scale velocities. Here we expand that validation to include additional models of the first type based on the lattice Boltzmann method (LBM) and smoothed particle hydrodynamics (SPH), as well as a model of the second type, a pore-network model (PNM). The PNM approach used in the current study was recently improved and demonstrated to accurately simulate solute transport in a two-dimensional experiment. While the PNM approach is computationally much less demanding than direct numerical simulation methods, the effect of conceptualizing complex three-dimensional pore geometries on solute transport in the manner of PNMs has not been fully determined. We apply all four approaches (FVM-based CFD, LBM, SPH and PNM) to simulate pore-scale velocity distributions and (for capable codes) nonreactive solute transport, and intercompare the model results. Comparisons are drawn both in terms of macroscopic variables (e.g., permeability, solute breakthrough curves) and microscopic variables (e.g., local velocities and concentrations). Generally good agreement was achieved among the various approaches, but some differences were observed depending on the model context. The intercomparison work was challenging because of variable capabilities of the codes, and inspired some code enhancements to allow consistent comparison of flow and transport simulations across the full suite of methods. This study provides support for confidence

  7. 3D PIC-MCC simulations of discharge inception around a sharp anode in nitrogen/oxygen mixtures

    NASA Astrophysics Data System (ADS)

    Teunissen, Jannis; Ebert, Ute

    2016-08-01

    We investigate how photoionization, electron avalanches and space charge affect the inception of nanosecond pulsed discharges. Simulations are performed with a 3D PIC-MCC (particle-in-cell, Monte Carlo collision) model with adaptive mesh refinement for the field solver. This model, whose source code is available online, is described in the first part of the paper. Then we present simulation results in a needle-to-plane geometry, using different nitrogen/oxygen mixtures at atmospheric pressure. In these mixtures non-local photoionization is important for the discharge growth. The typical length scale for this process depends on the oxygen concentration. With 0.2% oxygen the discharges grow quite irregularly, due to the limited supply of free electrons around them. With 2% or more oxygen the development is much smoother. An almost spherical ionized region can form around the electrode tip, which increases in size with the electrode voltage. Eventually this inception cloud destabilizes into streamer channels. In our simulations, discharge velocities are almost independent of the oxygen concentration. We discuss the physical mechanisms behind these phenomena and compare our simulations with experimental observations.

  8. A simulation technique for 3D MR-guided acoustic radiation force imaging

    SciTech Connect

    Payne, Allison; Bever, Josh de; Farrer, Alexis; Coats, Brittany; Parker, Dennis L.; Christensen, Douglas A.

    2015-02-15

    Purpose: In magnetic resonance-guided focused ultrasound (MRgFUS) therapies, the in situ characterization of the focal spot location and quality is critical. MR acoustic radiation force imaging (MR-ARFI) is a technique that measures the tissue displacement caused by the radiation force exerted by the ultrasound beam. This work presents a new technique to model the displacements caused by the radiation force of an ultrasound beam in a homogeneous tissue model. Methods: When a steady-state point-source force acts internally in an infinite homogeneous medium, the displacement of the material in all directions is given by the Somigliana elastostatic tensor. The radiation force field, which is caused by absorption and reflection of the incident ultrasound intensity pattern, will be spatially distributed, and the tensor formulation takes the form of a convolution of a 3D Green’s function with the force field. The dynamic accumulation of MR phase during the ultrasound pulse can be theoretically accounted for through a time-of-arrival weighting of the Green’s function. This theoretical model was evaluated experimentally in gelatin phantoms of varied stiffness (125-, 175-, and 250-bloom). The acoustic and mechanical properties of the phantoms used as parameters of the model were measured using independent techniques. Displacements at focal depths of 30- and 45-mm in the phantoms were measured by a 3D spin echo MR-ARFI segmented-EPI sequence. Results: The simulated displacements agreed with the MR-ARFI measured displacements for all bloom values and focal depths with a normalized RMS difference of 0.055 (range 0.028–0.12). The displacement magnitude decreased and the displacement pattern broadened with increased bloom value for both focal depths, as predicted by the theory. Conclusions: A new technique that models the displacements caused by the radiation force of an ultrasound beam in a homogeneous tissue model theory has been rigorously validated through comparison

  9. The simulation of 3D mass models in 2D digital mammography and breast tomosynthesis

    SciTech Connect

    Shaheen, Eman De Keyzer, Frederik; Bosmans, Hilde; Ongeval, Chantal Van; Dance, David R.; Young, Kenneth C.

    2014-08-15

    Purpose: This work proposes a new method of building 3D breast mass models with different morphological shapes and describes the validation of the realism of their appearance after simulation into 2D digital mammograms and breast tomosynthesis images. Methods: Twenty-five contrast enhanced MRI breast lesions were collected and each mass was manually segmented in the three orthogonal views: sagittal, coronal, and transversal. The segmented models were combined, resampled to have isotropic voxel sizes, triangularly meshed, and scaled to different sizes. These masses were referred to as nonspiculated masses and were then used as nuclei onto which spicules were grown with an iterative branching algorithm forming a total of 30 spiculated masses. These 55 mass models were projected into 2D projection images to obtain mammograms after image processing and into tomographic sequences of projection images, which were then reconstructed to form 3D tomosynthesis datasets. The realism of the appearance of these mass models was assessed by five radiologists via receiver operating characteristic (ROC) analysis when compared to 54 real masses. All lesions were also given a breast imaging reporting and data system (BIRADS) score. The data sets of 2D mammography and tomosynthesis were read separately. The Kendall's coefficient of concordance was used for the interrater observer agreement assessment for the BIRADS scores per modality. Further paired analysis, using the Wilcoxon signed rank test, of the BIRADS assessment between 2D and tomosynthesis was separately performed for the real masses and for the simulated masses. Results: The area under the ROC curves, averaged over all observers, was 0.54 (95% confidence interval [0.50, 0.66]) for the 2D study, and 0.67 (95% confidence interval [0.55, 0.79]) for the tomosynthesis study. According to the BIRADS scores, the nonspiculated and the spiculated masses varied in their degrees of malignancy from normal (BIRADS 1) to highly

  10. 3D Multistage Simulation of Each Component of the GE90 Turbofan Engine

    NASA Technical Reports Server (NTRS)

    Turner, Mark; Topp, Dave; Veres, Joe

    1999-01-01

    A 3D multistage simulation of each component of the GE90 Turbofan engine has been made. This includes 49 blade rows. A coupled simulation of all blade rows will be made very soon. The simulation is running using two levels of parallelism. The first level is on a blade row basis with information shared using files. The second level is using a grid domain decomposition with information shared using MPI. Timings will be shown for running on the SP2, an SGI Origin and a distributed system of HP workstations. On the HP workstations, the CHIMP version of MPI is used, with queuing supplied by LSF (Load Sharing Facility). A script-based control system is used to ensure reliability. An MPEG movie illustrating the flow simulation of the engine has been created using PV3, a parallel visualization library created by Bob Haimes of MIT. PVM is used to create a virtual machine from 10 HP workstations and display on an SGI workstation. A representative component simulation will be compared to rig data to demonstrate its usefulness in turbomachinery design and analysis.

  11. Parallel computing simulation of electrical excitation and conduction in the 3D human heart.

    PubMed

    Di Yu; Dongping Du; Hui Yang; Yicheng Tu

    2014-01-01

    A correctly beating heart is important to ensure adequate circulation of blood throughout the body. Normal heart rhythm is produced by the orchestrated conduction of electrical signals throughout the heart. Cardiac electrical activity is the resulted function of a series of complex biochemical-mechanical reactions, which involves transportation and bio-distribution of ionic flows through a variety of biological ion channels. Cardiac arrhythmias are caused by the direct alteration of ion channel activity that results in changes in the AP waveform. In this work, we developed a whole-heart simulation model with the use of massive parallel computing with GPGPU and OpenGL. The simulation algorithm was implemented under several different versions for the purpose of comparisons, including one conventional CPU version and two GPU versions based on Nvidia CUDA platform. OpenGL was utilized for the visualization / interaction platform because it is open source, light weight and universally supported by various operating systems. The experimental results show that the GPU-based simulation outperforms the conventional CPU-based approach and significantly improves the speed of simulation. By adopting modern computer architecture, this present investigation enables real-time simulation and visualization of electrical excitation and conduction in the large and complicated 3D geometry of a real-world human heart.

  12. Simulation of excimer laser micromachined 3D surface using a CAD solid modeling package

    NASA Astrophysics Data System (ADS)

    Hume, Richard G.; Iovenitti, Pio G.; Hayes, Jason P.; Harvey, Erol C.

    2002-11-01

    This paper describes the research on the development of a visualisation tool to generate 3D solid models of structures produced by micromachining using an excimer laser system. Currently, the development of part programs to achieve a desired microstructure is by a trial and error approach. This simulation tool assists designers and excimer machine programmers to produce microstructures using the excimer laser. Users can develop their microstructures and part programs with the assistance of digital prototypes rather than designing products using expensive laser micromachining equipment. The methods to simulate micromachining using the solid modelling package, SolidWorks, are described, and simulation and actual machined examples are reported. A basic knowledge of the solid modelling package is required to develop the simulations, and complex models take time to prepare, however, the development time can be minimised by working from previous simulations. The models developed can be parameterised so that families of designs can be investigated for little additional effort to optimise the design before committing to laser micromachining.

  13. 3D Relativistic Magnetohydrodynamic Simulations of Magnetized Spine-Sheath Relativistic Jets

    NASA Technical Reports Server (NTRS)

    Mizuno, Yosuke; Hardee, Philip; Nishikawa, Ken-Ichi

    2006-01-01

    Numerical simulations of weakly magnetized and strongly magnetized relativistic jets embedded in a weakly magnetized and strongly magnetized stationary or weakly relativistic (v = c/2) sheath have been performed. A magnetic field parallel to the flow is used in these simulations performed by the new GRMHD numerical code RAISHIN used in its RMHD configuration. In the numerical simulations the Lorentz factor gamma = 2.5 jet is precessed to break the initial equilibrium configuration. In the simulations sound speeds are less than or equal to c/the square root of 3 in the weakly magnetized simulations and less than or equal to 0.56 c in the strongly magnetized simulations. The Alfven wave speed is less than or equal to 0.07 c in the weakly magnetized simulations and less than or equal to 0.56 c in the strongly magnetized simulations. The results of the numerical simulations are compared to theoretical predictions from a normal mode analysis of the linearized relativistic magnetohydrodynamic (RMHD) equations capable of describing a uniform axially magnetized cylindrical relativistic jet embedded in a uniform axially magnetized relativistically moving sheath. The theoretical dispersion relation allows investigation of effects associated with maximum possible sound speeds, Alfven wave speeds near light speed and relativistic sheath speeds. The prediction of increased stability of the weakly magnetized system resulting from c/2 sheath speeds and the stabilization of the strongly magnetized system resulting from c/2 sheath speeds is verified by the numerical simulation results.

  14. Some Progress in Large-Eddy Simulation using the 3-