Science.gov

Sample records for 3d simulations based

  1. Coniferous Canopy BRF Simulation Based on 3-D Realistic Scene

    NASA Technical Reports Server (NTRS)

    Wang, Xin-yun; Guo, Zhi-feng; Qin, Wen-han; Sun, Guo-qing

    2011-01-01

    It is difficulties for the computer simulation method to study radiation regime at large-scale. Simplified coniferous model was investigate d in the present study. It makes the computer simulation methods such as L-systems and radiosity-graphics combined method (RGM) more powerf ul in remote sensing of heterogeneous coniferous forests over a large -scale region. L-systems is applied to render 3-D coniferous forest scenarios: and RGM model was used to calculate BRF (bidirectional refle ctance factor) in visible and near-infrared regions. Results in this study show that in most cases both agreed well. Meanwhiie at a tree and forest level. the results are also good.

  2. Detailed 3D Simulation of the GEM-based detector

    NASA Astrophysics Data System (ADS)

    Bhattacharya, P.; Biswas, S.; Mohanty, B.; Majumdar, N.; Mukhopadhyay, S.

    2016-10-01

    The operation of Micro Pattern Gaseous Detectors (MPGDs) has often suffered from effects such as distortion of the electric field due to space charge, despite their widespread use in particle-physics and nuclear-physics experiments, astro-particle research, medical imaging, material science etc. To keep distortions due to space-charge at a manageable level, a lower ion feedback is required while maintaining substantial detector gain and good resolution. Thus, a proper optimization of the detector geometry, field configuration and gas mixtures are required to have a higher electron transparency and lower ion backflow. In our work, Garfield simulation framework has been adopted as a tool to evaluate the fundamental features of Gas Electron Multiplier (GEM). Our study begins with the computation of electrostatic field and its variation with different geometrical and electrical parameters using the neBEM toolkit. Different efficient algorithms have been implemented to increase the computational efficiency of the field solver. Finally, ion backflow and electron transparency of single and quadruple GEMs with different geometry and field configurations suitable for the ALICE-TPC, have been studied.

  3. 3D Surgical Simulation

    PubMed Central

    Cevidanes, Lucia; Tucker, Scott; Styner, Martin; Kim, Hyungmin; Chapuis, Jonas; Reyes, Mauricio; Proffit, William; Turvey, Timothy; Jaskolka, Michael

    2009-01-01

    This paper discusses the development of methods for computer-aided jaw surgery. Computer-aided jaw surgery allows us to incorporate the high level of precision necessary for transferring virtual plans into the operating room. We also present a complete computer-aided surgery (CAS) system developed in close collaboration with surgeons. Surgery planning and simulation include construction of 3D surface models from Cone-beam CT (CBCT), dynamic cephalometry, semi-automatic mirroring, interactive cutting of bone and bony segment repositioning. A virtual setup can be used to manufacture positioning splints for intra-operative guidance. The system provides further intra-operative assistance with the help of a computer display showing jaw positions and 3D positioning guides updated in real-time during the surgical procedure. The CAS system aids in dealing with complex cases with benefits for the patient, with surgical practice, and for orthodontic finishing. Advanced software tools for diagnosis and treatment planning allow preparation of detailed operative plans, osteotomy repositioning, bone reconstructions, surgical resident training and assessing the difficulties of the surgical procedures prior to the surgery. CAS has the potential to make the elaboration of the surgical plan a more flexible process, increase the level of detail and accuracy of the plan, yield higher operative precision and control, and enhance documentation of cases. Supported by NIDCR DE017727, and DE018962 PMID:20816308

  4. Effectiveness Evaluation of Force Protection Training Using Computer-Based Instruction and X3d Simulation

    DTIC Science & Technology

    2007-09-01

    to growing operational constraints accelerated by the Global War on Terror, the United States Navy is looking for alternative methods of training to...accomplished efficiently and effectively, saving the U.S. Navy time and resources while maintaining a high state of readiness. The goal of this thesis is...COMPUTER-BASED INSTRUCTION AND X3D SIMULATION Wilfredo Cruzbaez Lieutenant, United States Navy B.A., Norfolk State University, 2001 Submitted in

  5. Efficient physics-based predictive 3D image modeling and simulation of optical atmospheric refraction phenomena

    NASA Astrophysics Data System (ADS)

    Reinhardt, Colin N.; Hammel, Stephen M.; Tsintikidis, Dimitris

    2016-09-01

    We present some preliminary results and discussion of our ongoing effort to develop a prototype volumetric atmospheric optical refraction simulator which uses 3D nonlinear ray-tracing and state-of-art physics-based rendering techniques. The tool will allow simulation of optical curved-ray propagation through nonlinear refractivity gradient profiles in volumetric atmospheric participating media, and the generation of radiometrically accurate images of the resulting atmospheric refraction phenomena, including inferior and superior mirages, over-the-horizon viewing conditions, looming and sinking, towering and stooping of distant objects. The ability to accurately model and predict atmospheric optical refraction conditions and phenomena is important in both defense and commercial applications. Our nonlinear refractive ray-trace method is currently CPU-parallelized and is well-suited for GPU compute implementation.

  6. Augmented reality intravenous injection simulator based 3D medical imaging for veterinary medicine.

    PubMed

    Lee, S; Lee, J; Lee, A; Park, N; Lee, S; Song, S; Seo, A; Lee, H; Kim, J-I; Eom, K

    2013-05-01

    Augmented reality (AR) is a technology which enables users to see the real world, with virtual objects superimposed upon or composited with it. AR simulators have been developed and used in human medicine, but not in veterinary medicine. The aim of this study was to develop an AR intravenous (IV) injection simulator to train veterinary and pre-veterinary students to perform canine venipuncture. Computed tomographic (CT) images of a beagle dog were scanned using a 64-channel multidetector. The CT images were transformed into volumetric data sets using an image segmentation method and were converted into a stereolithography format for creating 3D models. An AR-based interface was developed for an AR simulator for IV injection. Veterinary and pre-veterinary student volunteers were randomly assigned to an AR-trained group or a control group trained using more traditional methods (n = 20/group; n = 8 pre-veterinary students and n = 12 veterinary students in each group) and their proficiency at IV injection technique in live dogs was assessed after training was completed. Students were also asked to complete a questionnaire which was administered after using the simulator. The group that was trained using an AR simulator were more proficient at IV injection technique using real dogs than the control group (P ≤ 0.01). The students agreed that they learned the IV injection technique through the AR simulator. Although the system used in this study needs to be modified before it can be adopted for veterinary educational use, AR simulation has been shown to be a very effective tool for training medical personnel. Using the technology reported here, veterinary AR simulators could be developed for future use in veterinary education.

  7. 3D current source density imaging based on acoustoelectric effect: a simulation study using unipolar pulses

    PubMed Central

    Yang, Renhuan; Li, Xu; Liu, Jun; He, Bin

    2011-01-01

    It is of importance to image electrical activity and properties of biological tissues. Recently hybrid imaging modality combing ultrasound scanning and source imaging through the acousto-electric (AE) effect has generated considerable interest. Such modality has the potential to provide high spatial resolution current density imaging by utilizing the pressure induced AE resistivity change confined at the ultrasound focus. In this study, we investigate a novel 3-dimensional (3D) ultrasound current source density imaging (UCSDI) approach using unipolar ultrasound pulses. Utilizing specially designed unipolar ultrasound pulses and by combining AE signals associated to the local resistivity changes at the focusing point, we are able to reconstruct the 3D current density distribution with the boundary voltage measurements obtained while performing a 3D ultrasound scan. We have shown in computer simulation that using the present method, it is feasible to image with high spatial resolution an arbitrary 3D current density distribution in an inhomogeneous conductive media. PMID:21628774

  8. Simulation of light transport in scintillators based on 3D characterization of crystal surfaces.

    PubMed

    Roncali, Emilie; Cherry, Simon R

    2013-04-07

    In the development of positron emission tomography (PET) detectors, understanding and optimizing scintillator light collection is critical for achieving high performance, particularly when the design incorporates depth-of-interaction (DOI) encoding or time-of-flight information. Monte-Carlo simulations play an important role in guiding research in detector designs and popular software such as GATE now include models of light transport in scintillators. Although current simulation toolkits are able to provide accurate models of perfectly polished surfaces, they do not successfully predict light output for other surface finishes, for example those often used in DOI-encoding detectors. The lack of accuracy of those models mainly originates from a simplified description of rough surfaces as an ensemble of micro-facets determined by the distribution of their normal, typically a gaussian distribution. The user can specify the standard deviation of this distribution, but this parameter does not provide a full description of the surface reflectance properties. We propose a different approach based on 3D measurements of the surface using atomic force microscopy. Polished and rough (unpolished) crystals were scanned to compute the surface reflectance properties. The angular distributions of reflectance and reflected rays were computed and stored in look-up tables (LUTs). The LUTs account for the effect of incidence angle and were integrated in a light transport model. Crystals of different sizes were simulated with and without reflector. The simulated maximum light output and the light output as a function of DOI showed very good agreement with experimental characterization of the crystals, indicating that our approach provides an accurate model of polished and rough surfaces and could be used to predict light collection in scintillators. This model is based on a true 3D representation of the surface, makes no assumption about the surface and provides insight on the optical

  9. Simulation of light transport in scintillators based on 3D characterization of crystal surfaces

    NASA Astrophysics Data System (ADS)

    Roncali, Emilie; Cherry, Simon R.

    2013-04-01

    In the development of positron emission tomography (PET) detectors, understanding and optimizing scintillator light collection is critical for achieving high performance, particularly when the design incorporates depth-of-interaction (DOI) encoding or time-of-flight information. Monte-Carlo simulations play an important role in guiding research in detector designs and popular software such as GATE now include models of light transport in scintillators. Although current simulation toolkits are able to provide accurate models of perfectly polished surfaces, they do not successfully predict light output for other surface finishes, for example those often used in DOI-encoding detectors. The lack of accuracy of those models mainly originates from a simplified description of rough surfaces as an ensemble of micro-facets determined by the distribution of their normal, typically a Gaussian distribution. The user can specify the standard deviation of this distribution, but this parameter does not provide a full description of the surface reflectance properties. We propose a different approach based on 3D measurements of the surface using atomic force microscopy. Polished and rough (unpolished) crystals were scanned to compute the surface reflectance properties. The angular distributions of reflectance and reflected rays were computed and stored in look-up tables (LUTs). The LUTs account for the effect of incidence angle and were integrated in a light transport model. Crystals of different sizes were simulated with and without reflector. The simulated maximum light output and the light output as a function of DOI showed very good agreement with experimental characterization of the crystals, indicating that our approach provides an accurate model of polished and rough surfaces and could be used to predict light collection in scintillators. This model is based on a true 3D representation of the surface, makes no assumption about the surface and provides insight on the optical

  10. High speed and flexible PEB 3D diffusion simulation based on Sylvester equation

    NASA Astrophysics Data System (ADS)

    Lin, Pei-Chun; Chen, Charlie Chung-Ping

    2013-04-01

    Post exposure bake (PEB) Diffusion effect is one of the most difficult issues in modeling chemically amplified resists. These model equations result in a system of nonlinear partial differential equations describing the time rate of change reaction and diffusion. Verifying such models are difficult, so numerical simulations are needed to solve the model equations. In this paper, we propose a high speed 3D resist image simulation algorithm based on a novel method to solve the PEB Diffusion equation. Our major discovery is that the matrix formulation of the diffusion equation under the Crank- Nicolson scheme can be derived into a special form, AX+XB=C, where the X matrix is a 3D resist image after diffusion effect, A and B matrices contain the diffusion coefficients and the space relationship between directions x, y and z. These matrices are sparse, symmetric and diagonal dominant. The C matrix is the last time-step resist image. The Sylvester equation can be reduced to another form as (I⊗A + BT⊗I) X =C, in which the operator ⊗ is the Kronecker product notation. Compared with a traditional convolution method, our method is more useful in a way that boundary conditions can be more flexible. From our experimental results, we see that the error of the convolution method can be as high as 30% at borders of the design pattern. Furthermore, since the PEB temperature may not be uniform at multi-zone PEB, the convolution method might not be directly applicable in this scenario. Our method is about 20 times faster than the convolution method for a single time step (2 seconds) as illustrated in the attached figure. To simulate 50 seconds of the flexible PEB diffusion process, our method only takes 210 seconds with a convolution set up for a 1240×1240 working area. We use the typical 45nm immersion lithography in our work. The exposure wavelength is set to 193nm; the NA is 1.3775; and the diffusion coefficient is 1.455×10-17m2/s at PEB temperature 150°C along with PEB

  11. Canopy polarized BRDF simulation based on non-stationary Monte Carlo 3-D vector RT modeling

    NASA Astrophysics Data System (ADS)

    Kallel, Abdelaziz; Gastellu-Etchegorry, Jean Philippe

    2017-03-01

    Vector radiative transfer (VRT) has been largely used to simulate polarized reflectance of atmosphere and ocean. However it is still not properly used to describe vegetation cover polarized reflectance. In this study, we try to propose a 3-D VRT model based on a modified Monte Carlo (MC) forward ray tracing simulation to analyze vegetation canopy reflectance. Two kinds of leaf scattering are taken into account: (i) Lambertian diffuse reflectance and transmittance and (ii) specular reflection. A new method to estimate the condition on leaf orientation to produce reflection is proposed, and its probability to occur, Pl,max, is computed. It is then shown that Pl,max is low, but when reflection happens, the corresponding radiance Stokes vector, Io, is very high. Such a phenomenon dramatically increases the MC variance and yields to an irregular reflectance distribution function. For better regularization, we propose a non-stationary MC approach that simulates reflection for each sunny leaf assuming that its orientation is randomly chosen according to its angular distribution. It is shown in this case that the average canopy reflection is proportional to Pl,max ·Io which produces a smooth distribution. Two experiments are conducted: (i) assuming leaf light polarization is only due to the Fresnel reflection and (ii) the general polarization case. In the former experiment, our results confirm that in the forward direction, canopy polarizes horizontally light. In addition, they show that in inclined forward direction, diagonal polarization can be observed. In the latter experiment, polarization is produced in all orientations. It is particularly pointed out that specular polarization explains just a part of the forward polarization. Diffuse scattering polarizes light horizontally and vertically in forward and backward directions, respectively. Weak circular polarization signal is also observed near the backscattering direction. Finally, validation of the non

  12. Numerical simulation of pulsation processes in hydraulic turbine based on 3D model of cavitating flow

    NASA Astrophysics Data System (ADS)

    Panov, L. V.; Chirkov, D. V.; Cherny, S. G.; Pylev, I. M.

    2014-01-01

    A new approach was proposed for simulation of unsteady cavitating flow in the flow passage of a hydraulic power plant. 1D hydro-acoustics equations are solved in the penstock domain. 3D equations of turbulent flow of isothermal compressible liquid-vapor mixture are solved in the turbine domain. Cavitation is described by a transfer equation for liquid phase with a source term which is responsible for evaporation and condensation. The developed method was applied for simulation of pulsations in pressure, discharge, and total energy propagating along the flow conduit of the hydraulic power plant. Simulation results are in qualitative and quantitative agreement with experiment. The influence of key physical and numerical parameters like discharge, cavitation number, penstock length, time step, and vapor density on simulation results was studied.

  13. 3D Simulations for a Micron-Scale, Dielectric-Based Acceleration Experiment

    SciTech Connect

    Yoder, R. B.; Travish, G.; Xu Jin; Rosenzweig, J. B.

    2009-01-22

    An experimental program to demonstrate a dielectric, slab-symmetric accelerator structure has been underway for the past two years. These resonant devices are driven by a side-coupled 800-nm laser and can be configured to maintain the field profile necessary for synchronous acceleration and focusing of relativistic or nonrelativistic particles. We present 3D simulations of various versions of the structure geometry, including a metal-walled structure relevant to ongoing cold tests on resonant properties, and an all-dielectric structure to be constructed for a proof-of-principle acceleration experiment.

  14. INCORPORATING DYNAMIC 3D SIMULATION INTO PRA

    SciTech Connect

    Steven R Prescott; Curtis Smith

    2011-07-01

    Through continued advancement in computational resources, development that was previously done by trial and error production is now performed through computer simulation. These virtual physical representations have the potential to provide accurate and valid modeling results and are being used in many different technical fields. Risk assessment now has the opportunity to use 3D simulation to improve analysis results and insights, especially for external event analysis. By using simulations, the modeler only has to determine the likelihood of an event without having to also predict the results of that event. The 3D simulation automatically determines not only the outcome of the event, but when those failures occur. How can we effectively incorporate 3D simulation into traditional PRA? Most PRA plant modeling is made up of components with different failure modes, probabilities, and rates. Typically, these components are grouped into various systems and then are modeled together (in different combinations) as a “system” with logic structures to form fault trees. Applicable fault trees are combined through scenarios, typically represented by event tree models. Though this method gives us failure results for a given model, it has limitations when it comes to time-based dependencies or dependencies that are coupled to physical processes which may themselves be space- or time-dependent. Since, failures from a 3D simulation are naturally time related, they should be used in that manner. In our simulation approach, traditional static models are converted into an equivalent state diagram representation with start states, probabilistic driven movements between states and terminal states. As the state model is run repeatedly, it converges to the same results as the PRA model in cases where time-related factors are not important. In cases where timing considerations are important (e.g., when events are dependent upon each other), then the simulation approach will typically

  15. Evaluation of simulation-based scatter correction for 3-D PET cardiac imaging

    SciTech Connect

    Watson, C.C.; Newport, D.; Casey, M.E.; Kemp, R.A. de; Beanlands, R.S.; Schmand, M. |

    1997-02-01

    Quantitative imaging of the human thorax poses one of the most difficult challenges for three-dimensional (3-D) (septaless) positron emission tomography (PET), due to the strong attenuation of the annihilation radiation and the large contribution of scattered photons to the data. In [{sup 18}F] fluorodeoxyglucose (FDG) studies of the heart with the patient`s arms in the field of view, the contribution of scattered events can exceed 50% of the total detected coincidences. Accurate correction for this scatter component is necessary for meaningful quantitative image analysis and tracer kinetic modeling. For this reason, the authors have implemented a single-scatter simulation technique for scatter correction in positron volume imaging. In this paper they describe this algorithm and present scatter correction results from human and chest phantom studies.

  16. Pelton turbine Needle erosion prediction based on 3D three- phase flow simulation

    NASA Astrophysics Data System (ADS)

    Chongji, Z.; Yexiang, X.; Wei, Z.; Yangyang, Y.; Lei, C.; Zhengwei, W.

    2014-03-01

    Pelton turbine, which applied to the high water head and small flow rate, is widely used in the mountainous area. During the operation period the sediment contained in the water does not only induce the abrasion of the buckets, but also leads to the erosion at the nozzle which may damage the needle structure. The nozzle and needle structure are mainly used to form high quality cylindrical jet and increase the efficiency of energy exchange in the runner to the most. Thus the needle erosion will lead to the deformation of jet, and then may cause the efficiency loss and cavitation. The favourable prediction of abrasion characteristic of needle can effectively guide the optimization design and maintenance of needle structure. This paper simulated the unsteady three-dimensional multi-phase flow in the nozzle and injected jet flow. As the jet containing water and sediment is injected into the free atmosphere air with high velocity, the VOF model was adopted to predict the water and air flow. The sediment is simplified into round solid particle and the discrete particle model (DPM) was employed to predict the needle abrasion characteristic. The sand particle tracks were analyzed to interpret the mechanism of sand erosion on the needle surface. And the numerical result of needle abrasion was obtained and compared with the abrasion field observation. The similarity of abrasion pattern between the numerical results and field observation illustrated the validity of the 3D multi-phase flow simulation method.

  17. Study of strength properties of ceramic composites with soft filler based on 3D computer simulation

    NASA Astrophysics Data System (ADS)

    Smolin, Alexey Yu.; Smolin, Igor Yu.; Smolina, Irina Yu.

    2016-11-01

    The movable cellular automaton method which is a computational method of particle mechanics is applied to simulating uniaxial compression of 3D specimens of a ceramic composite. Soft inclusions were considered explicitly by changing the sort (properties) of automata selected randomly from the original fcc packing. The distribution of inclusions in space, their size, and the total fraction were varied. For each value of inclusion fraction, there were generated several representative specimens with individual pore position in space. The resulting magnitudes of the elastic modulus and strength of the specimens were scattered and well described by the Weibull distribution. We showed that to reveal the dependence of the elastic and strength properties of the composite on the inclusion fraction it is much better to consider the mathematical expectation of the corresponding Weibull distribution, rather than the average of the values for the specimens of the same inclusion fraction. It is shown that the relation between the mechanical properties of material and its inclusion fraction depends significantly on the material structure. Namely, percolation transition from isolated inclusions to interconnected clusters of inclusions strongly manifests itself in the dependence of strength on the fraction of inclusions. Thus, the curve of strength versus inclusion fraction fits different equations for a different kind of structure.

  18. Three-dimensional simulation and auto-stereoscopic 3D display of the battlefield environment based on the particle system algorithm

    NASA Astrophysics Data System (ADS)

    Ning, Jiwei; Sang, Xinzhu; Xing, Shujun; Cui, Huilong; Yan, Binbin; Yu, Chongxiu; Dou, Wenhua; Xiao, Liquan

    2016-10-01

    The army's combat training is very important now, and the simulation of the real battlefield environment is of great significance. Two-dimensional information has been unable to meet the demand at present. With the development of virtual reality technology, three-dimensional (3D) simulation of the battlefield environment is possible. In the simulation of 3D battlefield environment, in addition to the terrain, combat personnel and the combat tool ,the simulation of explosions, fire, smoke and other effects is also very important, since these effects can enhance senses of realism and immersion of the 3D scene. However, these special effects are irregular objects, which make it difficult to simulate with the general geometry. Therefore, the simulation of irregular objects is always a hot and difficult research topic in computer graphics. Here, the particle system algorithm is used for simulating irregular objects. We design the simulation of the explosion, fire, smoke based on the particle system and applied it to the battlefield 3D scene. Besides, the battlefield 3D scene simulation with the glasses-free 3D display is carried out with an algorithm based on GPU 4K super-multiview 3D video real-time transformation method. At the same time, with the human-computer interaction function, we ultimately realized glasses-free 3D display of the simulated more realistic and immersed 3D battlefield environment.

  19. Urban Energy Simulation Based on 3d City Models: a Service-Oriented Approach

    NASA Astrophysics Data System (ADS)

    Wate, P.; Rodrigues, P.; Duminil, E.; Coors, V.

    2016-09-01

    Recent advancements in technology has led to the development of sophisticated software tools revitalizing growth in different domains. Taking advantage of this trend, urban energy domain have developed several compute intensive physical and data driven models. These models are used in various distinct simulation softwares to simulate the whole life-cycle of energy flow in cities from supply, distribution, conversion, storage and consumption. Since some simulation software target a specific energy system, it is necessary to integrate them to predict present and future urban energy needs. However, a key drawback is that, these tools are not compatible with each other as they use custom or propriety formats. Furthermore, they are designed as desktop applications and cannot be easily integrated with third-party tools (open source or commercial). Thereby, missing out on potential model functionalities which are required for sustainable urban energy management. In this paper, we propose a solution based on Service Oriented Architecture (SOA). Our approach relies on open interfaces to offer flexible integration of modelling and computational functionality as loosely coupled distributed services.

  20. Design and Sensitivity Analysis Simulation of a Novel 3D Force Sensor Based on a Parallel Mechanism

    PubMed Central

    Yang, Eileen Chih-Ying

    2016-01-01

    Automated force measurement is one of the most important technologies in realizing intelligent automation systems. However, while many methods are available for micro-force sensing, measuring large three-dimensional (3D) forces and loads remains a significant challenge. Accordingly, the present study proposes a novel 3D force sensor based on a parallel mechanism. The transformation function and sensitivity index of the proposed sensor are analytically derived. The simulation results show that the sensor has a larger effective measuring capability than traditional force sensors. Moreover, the sensor has a greater measurement sensitivity for horizontal forces than for vertical forces over most of the measurable force region. In other words, compared to traditional force sensors, the proposed sensor is more sensitive to shear forces than normal forces. PMID:27999246

  1. 3D Simulation: Microgravity Environments and Applications

    NASA Technical Reports Server (NTRS)

    Hunter, Steve L.; Dischinger, Charles; Estes, Samantha; Parker, Nelson C. (Technical Monitor)

    2001-01-01

    Most, if not all, 3-D and Virtual Reality (VR) software programs are designed for one-G gravity applications. Space environments simulations require gravity effects of one one-thousandth to one one-million of that of the Earth's surface (10(exp -3) - 10(exp -6) G), thus one must be able to generate simulations that replicate those microgravity effects upon simulated astronauts. Unfortunately, the software programs utilized by the National Aeronautical and Space Administration does not have the ability to readily neutralize the one-G gravity effect. This pre-programmed situation causes the engineer or analysis difficulty during micro-gravity simulations. Therefore, microgravity simulations require special techniques or additional code in order to apply the power of 3D graphic simulation to space related applications. This paper discusses the problem and possible solutions to allow microgravity 3-D/VR simulations to be completed successfully without program code modifications.

  2. Numerical validation framework for micromechanical simulations based on synchrotron 3D imaging

    NASA Astrophysics Data System (ADS)

    Buljac, Ante; Shakoor, Modesar; Neggers, Jan; Bernacki, Marc; Bouchard, Pierre-Olivier; Helfen, Lukas; Morgeneyer, Thilo F.; Hild, François

    2017-03-01

    A combined computational-experimental framework is introduced herein to validate numerical simulations at the microscopic scale. It is exemplified for a flat specimen with central hole made of cast iron and imaged via in-situ synchrotron laminography at micrometer resolution during a tensile test. The region of interest in the reconstructed volume, which is close to the central hole, is analyzed by digital volume correlation (DVC) to measure kinematic fields. Finite element (FE) simulations, which account for the studied material microstructure, are driven by Dirichlet boundary conditions extracted from DVC measurements. Gray level residuals for DVC measurements and FE simulations are assessed for validation purposes.

  3. Error Estimation And Accurate Mapping Based ALE Formulation For 3D Simulation Of Friction Stir Welding

    NASA Astrophysics Data System (ADS)

    Guerdoux, Simon; Fourment, Lionel

    2007-05-01

    An Arbitrary Lagrangian Eulerian (ALE) formulation is developed to simulate the different stages of the Friction Stir Welding (FSW) process with the FORGE3® F.E. software. A splitting method is utilized: a) the material velocity/pressure and temperature fields are calculated, b) the mesh velocity is derived from the domain boundary evolution and an adaptive refinement criterion provided by error estimation, c) P1 and P0 variables are remapped. Different velocity computation and remap techniques have been investigated, providing significant improvement with respect to more standard approaches. The proposed ALE formulation is applied to FSW simulation. Steady state welding, but also transient phases are simulated, showing good robustness and accuracy of the developed formulation. Friction parameters are identified for an Eulerian steady state simulation by comparison with experimental results. Void formation can be simulated. Simulations of the transient plunge and welding phases help to better understand the deposition process that occurs at the trailing edge of the probe. Flexibility and robustness of the model finally allows investigating the influence of new tooling designs on the deposition process.

  4. Quasi-3D space charge simulation

    SciTech Connect

    Yang, Xi; /Fermilab

    2007-04-01

    The longitudinal space charge effect is simulated by binning the longitudinal beam profile in order to calculate the force on the bins using the binned particle distribution via FFT, and applying momentum kick based upon this space charge force to macro-particles. Usually, the longitudinal space charge kick is calculated once per turn since the longitudinal profile doesn't change much in a single turn. Besides, the longitudinal profile is used as a weighting factor for the transverse space charge force. The transverse space charge effect is simulated by projecting the 3-D beam to a 2-D Gaussian distribution in order to use the complex error function to compute the transverse space charge force, and applying this space charge force to macro-particles. One transverse space charge calculation per scale length of the beam shape variation requires at least ten transverse space charge force calculations per betatron oscillation.

  5. Graphical interface for the physics-based generation of inputs to 3D MEEC SGEMP and SREMP simulations

    SciTech Connect

    Bland, M; Wondra, J; Nunan, S; Walters, D

    1998-12-01

    A graphical user interface (GUI) is under development for the MEEC family of SGEMP and SREMP simulation codes. These codes are workhorse legacy codes that have been in use for nearly two decades, with modifications and enhanced physics models added throughout the years. The MEEC codes are currently being evaluated for use by the DOE in the Dual Revalidation program and experiments at NIF. The new GUI makes the codes more accessible and less prone to input errors by automatically generating the parameters and grids that previously had to be designed by hand. physics-based algorithms define the simulation volume with expanding meshes. Users are able to specify objects, materials, and emission surfaces through dialogs and input boxes. 3D and orthographic views are available to view objects in the volume. Zone slice views are available for stepping through the overlay of objects on the mesh in planes aligned with the primary axes.

  6. Graphical interface for the physics-based generation of inputs to 3D MEEC SGEMP and SREMP simulations

    SciTech Connect

    Bland, M; Walters, D; Wondra, J

    1999-06-01

    A graphical user interface (GUI) is under development for the MEEC family of SGEMP and SREMP simulation codes [1,2]. These codes are ''workhorse'' legacy codes that have been in use for nearly two decades, with modifications and enhanced physics models added throughout the years. The MEEC codes are currently being evaluated for use by the DOE in the Dual Revalidation Program and experiments at NIF. The new GUI makes the codes more accessible and less prone to input errors by automatically generating the parameters and grids that previously had to be designed ''by hand''. Physics-based algorithms define the simulation volume with expanding meshes. Users are able to specify objects, materials, and emission surfaces through dialogs and input boxes. 3D and orthographic views are available to view objects in the volume. Zone slice views are available for stepping through the overlay of objects on the mesh in planes aligned with the primary axes.

  7. Gypsies in the palace: Experimentalist's view on the use of 3-D physics-based simulation of hillslope hydrological response

    USGS Publications Warehouse

    James, A.L.; McDonnell, Jeffery J.; Tromp-Van Meerveld, I.; Peters, N.E.

    2010-01-01

    As a fundamental unit of the landscape, hillslopes are studied for their retention and release of water and nutrients across a wide range of ecosystems. The understanding of these near-surface processes is relevant to issues of runoff generation, groundwater-surface water interactions, catchment export of nutrients, dissolved organic carbon, contaminants (e.g. mercury) and ultimately surface water health. We develop a 3-D physics-based representation of the Panola Mountain Research Watershed experimental hillslope using the TOUGH2 sub-surface flow and transport simulator. A recent investigation of sub-surface flow within this experimental hillslope has generated important knowledge of threshold rainfall-runoff response and its relation to patterns of transient water table development. This work has identified components of the 3-D sub-surface, such as bedrock topography, that contribute to changing connectivity in saturated zones and the generation of sub-surface stormflow. Here, we test the ability of a 3-D hillslope model (both calibrated and uncalibrated) to simulate forested hillslope rainfall-runoff response and internal transient sub-surface stormflow dynamics. We also provide a transparent illustration of physics-based model development, issues of parameterization, examples of model rejection and usefulness of data types (e.g. runoff, mean soil moisture and transient water table depth) to the model enterprise. Our simulations show the inability of an uncalibrated model based on laboratory and field characterization of soil properties and topography to successfully simulate the integrated hydrological response or the distributed water table within the soil profile. Although not an uncommon result, the failure of the field-based characterized model to represent system behaviour is an important challenge that continues to vex scientists at many scales. We focus our attention particularly on examining the influence of bedrock permeability, soil anisotropy and

  8. A 3-D reconstruction solution to current density imaging based on acoustoelectric effect by deconvolution: a simulation study.

    PubMed

    Yang, Renhuan; Li, Xu; Song, Aiguo; He, Bin; Yan, Ruqiang

    2013-05-01

    Hybrid imaging modality combining ultrasound scanning and electrical current density imaging through the acoustoelectric (AE) effect may potentially provide solutions to imaging electrical activities and properties of biological tissues with high spatial resolution. In this study, a 3-D reconstruction solution to ultrasound current source density imaging (UCSDI) by means of Wiener deconvolution is proposed and evaluated through computer simulations. As compared to previous 2-D UCSDI problem, in a 3-D volume conductor with broadly distributed current density field, the AE signal becomes a 3-D convolution between the electric field and the acoustic field, and effective 3-D reconstruction algorithm has not been developed so far. In the proposed method, a 3-D ultrasound scanning is performed while the corresponding AE signals are collected from multiple electrode pairs attached on the surface of the imaging object. From the collected AE signals, the acoustic field and electric field were first decoupled by Wiener deconvolution. Then, the current density distribution was reconstructed by inverse projection. Our simulations using artificial current fields in homogeneous phantoms suggest that the proposed method is feasible and robust against noise. It is also shown that using the proposed method, it is feasible to reconstruct 3-D current density distribution in an inhomogeneous conductive medium.

  9. Simulation of 3D diamond detectors

    NASA Astrophysics Data System (ADS)

    Forcolin, G. T.; Oh, A.; Murphy, S. A.

    2017-02-01

    3D diamond detectors present an interesting prospect for future Particle Physics experiments. They have been studied in detail at beam tests with 120 GeV protons and 4 MeV protons. To understand the observations that have been made, simulations have been carried out using Synopsys TCAD in order to explain the movement of charge carriers within the sample, as well as the effects of charge sharing. Reasonable agreement has been observed between simulation and experiment.

  10. Design and Task Analysis for a Game-Based Shiphandling Simulator Using an Open Source Game Engine (DELTA3D)

    DTIC Science & Technology

    2011-09-01

    Appendix D, uses Open Dynamics Engine (ODE) and its correspondent Delta3D rigid body wrapper functions to apply forces on the YP at each physical...of the simulation. To simulate the complexity of setting the anchor, dynamic values of mass are calculated for the anchor’s lower body . In real life...models, and artificial intelligence actors are described in this work. For thesis purposes, YPSim was designed using the Brazilian Naval Academy’s YP as

  11. Faster Aerodynamic Simulation With Cart3D

    NASA Technical Reports Server (NTRS)

    2003-01-01

    A NASA-developed aerodynamic simulation tool is ensuring the safety of future space operations while providing designers and engineers with an automated, highly accurate computer simulation suite. Cart3D, co-winner of NASA's 2002 Software of the Year award, is the result of over 10 years of research and software development conducted by Michael Aftosmis and Dr. John Melton of Ames Research Center and Professor Marsha Berger of the Courant Institute at New York University. Cart3D offers a revolutionary approach to computational fluid dynamics (CFD), the computer simulation of how fluids and gases flow around an object of a particular design. By fusing technological advancements in diverse fields such as mineralogy, computer graphics, computational geometry, and fluid dynamics, the software provides a new industrial geometry processing and fluid analysis capability with unsurpassed automation and efficiency.

  12. Crashworthiness simulations with DYNA3D

    SciTech Connect

    Schauer, D.A.; Hoover, C.G.; Kay, G.J.; Lee, A.S.; De Groot, A.J.

    1996-04-01

    Current progress in parallel algorithm research and applications in vehicle crash simulation is described for the explicit, finite element algorithms in DYNA3D. Problem partitioning methods and parallel algorithms for contact at material interfaces are the two challenging algorithm research problems that are addressed. Two prototype parallel contact algorithms have been developed for treating the cases of local and arbitrary contact. Demonstration problems for local contact are crashworthiness simulations with 222 locally defined contact surfaces and a vehicle/barrier collision modeled with arbitrary contact. A simulation of crash tests conducted for a vehicle impacting a U-channel small sign post embedded in soil has been run on both the serial and parallel versions of DYNA3D. A significant reduction in computational time has been observed when running these problems on the parallel version. However, to achieve maximum efficiency, complex problems must be appropriately partitioned, especially when contact dominates the computation.

  13. Surviving sepsis--a 3D integrative educational simulator.

    PubMed

    Ježek, Filip; Tribula, Martin; Kulhánek, Tomáš; Mateják, Marek; Privitzer, Pavol; Šilar, Jan; Kofránek, Jiří; Lhotská, Lenka

    2015-08-01

    Computer technology offers greater educational possibilities, notably simulation and virtual reality. This paper presents a technology which serves to integrate multiple modalities, namely 3D virtual reality, node-based simulator, Physiomodel explorer and explanatory physiological simulators employing Modelica language and Unity3D platform. This emerging tool chain should allow the authors to concentrate more on educational content instead of application development. The technology is demonstrated through Surviving sepsis educational scenario, targeted on Microsoft Windows Store platform.

  14. Crowdsourcing Based 3d Modeling

    NASA Astrophysics Data System (ADS)

    Somogyi, A.; Barsi, A.; Molnar, B.; Lovas, T.

    2016-06-01

    Web-based photo albums that support organizing and viewing the users' images are widely used. These services provide a convenient solution for storing, editing and sharing images. In many cases, the users attach geotags to the images in order to enable using them e.g. in location based applications on social networks. Our paper discusses a procedure that collects open access images from a site frequently visited by tourists. Geotagged pictures showing the image of a sight or tourist attraction are selected and processed in photogrammetric processing software that produces the 3D model of the captured object. For the particular investigation we selected three attractions in Budapest. To assess the geometrical accuracy, we used laser scanner and DSLR as well as smart phone photography to derive reference values to enable verifying the spatial model obtained from the web-album images. The investigation shows how detailed and accurate models could be derived applying photogrammetric processing software, simply by using images of the community, without visiting the site.

  15. 3D liver surgery simulation: computer-assisted surgical planning with 3D simulation software and 3D printing.

    PubMed

    Oshiro, Yukio; Ohkohchi, Nobuhiro

    2017-03-27

    To perform accurate hepatectomy without injury, it is necessary to understand the anatomical relationship among the branches of Glisson's sheath, hepatic veins, and tumor. In Japan, three-dimensional (3D) preoperative simulation for liver surgery is becoming increasingly common, and liver 3D modeling and 3D hepatectomy simulation by 3D analysis software for liver surgery have been covered by universal healthcare insurance since 2012. Herein, we review the history of virtual hepatectomy using computer-aided surgery (CAS) and our research to date, and we discuss the future prospects of CAS. We have used the SYNAPSE VINCENT medical imaging system (Fujifilm Medical, Tokyo, Japan) for 3D visualization and virtual resection of the liver since 2010. We developed a novel fusion imaging technique combining 3D computed tomography (CT) with magnetic resonance imaging (MRI). The fusion image enables us to easily visualize anatomic relationships among the hepatic arteries, portal veins, bile duct, and tumor in the hepatic hilum. In 2013, we developed an original software, called Liversim, that enables real-time deformation of the liver using physical simulation, and a randomized control trial has recently been conducted to evaluate the use of Liversim and SYNAPSE VINCENT for preoperative simulation and planning. Furthermore, we developed a novel hollow 3D-printed liver model whose surface is covered with frames. This model is useful for safe liver resection, has better visibility, and the production cost is reduced to one-third of a previous model. Preoperative simulation and navigation with CAS in liver resection are expected to help planning and conducting a surgery and surgical education. Thus, a novel CAS system will contribute to not only the performance of reliable hepatectomy but also to surgical education.

  16. Model-based 3D SAR reconstruction

    NASA Astrophysics Data System (ADS)

    Knight, Chad; Gunther, Jake; Moon, Todd

    2014-06-01

    Three dimensional scene reconstruction with synthetic aperture radar (SAR) is desirable for target recognition and improved scene interpretability. The vertical aperture, which is critical to reconstruct 3D SAR scenes, is almost always sparsely sampled due to practical limitations, which creates an underdetermined problem. This papers explores 3D scene reconstruction using a convex model-based approach. The approach developed is demonstrated on 3D scenes, but can be extended to SAR reconstruction of sparsely sampled signals in the spatial and, or, frequency domains. The model-based approach enables knowledge-aided image formation (KAIF) by incorporating spatial, aspect, and sparsity magnitude terms into the image reconstruction. The incorporation of these terms, which are based on prior scene knowledge, will demonstrate improved results compared to traditional image formation algorithms. The SAR image formation problem is formulated as a second order cone program (SOCP) and the results are demonstrated on 3D scenes using simulated data and data from the GOTCHA data collect.1 The model-based results are contrasted against traditional backprojected images.

  17. The differential algebra based multiple level fast multipole algorithm for 3D space charge field calculation and photoemission simulation

    SciTech Connect

    None, None

    2015-09-28

    Coulomb interaction between charged particles inside a bunch is one of the most importance collective effects in beam dynamics, becoming even more significant as the energy of the particle beam is lowered to accommodate analytical and low-Z material imaging purposes such as in the time resolved Ultrafast Electron Microscope (UEM) development currently underway at Michigan State University. In addition, space charge effects are the key limiting factor in the development of ultrafast atomic resolution electron imaging and diffraction technologies and are also correlated with an irreversible growth in rms beam emittance due to fluctuating components of the nonlinear electron dynamics. In the short pulse regime used in the UEM, space charge effects also lead to virtual cathode formation in which the negative charge of the electrons emitted at earlier times, combined with the attractive surface field, hinders further emission of particles and causes a degradation of the pulse properties. Space charge and virtual cathode effects and their remediation are core issues for the development of the next generation of high-brightness UEMs. Since the analytical models are only applicable for special cases, numerical simulations, in addition to experiments, are usually necessary to accurately understand the space charge effect. In this paper we will introduce a grid-free differential algebra based multiple level fast multipole algorithm, which calculates the 3D space charge field for n charged particles in arbitrary distribution with an efficiency of O(n), and the implementation of the algorithm to a simulation code for space charge dominated photoemission processes.

  18. 3D VMAT Verification Based on Monte Carlo Log File Simulation with Experimental Feedback from Film Dosimetry

    PubMed Central

    Barbeiro, A. R.; Ureba, A.; Baeza, J. A.; Linares, R.; Perucha, M.; Jiménez-Ortega, E.; Velázquez, S.; Mateos, J. C.

    2016-01-01

    A model based on a specific phantom, called QuAArC, has been designed for the evaluation of planning and verification systems of complex radiotherapy treatments, such as volumetric modulated arc therapy (VMAT). This model uses the high accuracy provided by the Monte Carlo (MC) simulation of log files and allows the experimental feedback from the high spatial resolution of films hosted in QuAArC. This cylindrical phantom was specifically designed to host films rolled at different radial distances able to take into account the entrance fluence and the 3D dose distribution. Ionization chamber measurements are also included in the feedback process for absolute dose considerations. In this way, automated MC simulation of treatment log files is implemented to calculate the actual delivery geometries, while the monitor units are experimentally adjusted to reconstruct the dose-volume histogram (DVH) on the patient CT. Prostate and head and neck clinical cases, previously planned with Monaco and Pinnacle treatment planning systems and verified with two different commercial systems (Delta4 and COMPASS), were selected in order to test operational feasibility of the proposed model. The proper operation of the feedback procedure was proved through the achieved high agreement between reconstructed dose distributions and the film measurements (global gamma passing rates > 90% for the 2%/2 mm criteria). The necessary discretization level of the log file for dose calculation and the potential mismatching between calculated control points and detection grid in the verification process were discussed. Besides the effect of dose calculation accuracy of the analytic algorithm implemented in treatment planning systems for a dynamic technique, it was discussed the importance of the detection density level and its location in VMAT specific phantom to obtain a more reliable DVH in the patient CT. The proposed model also showed enough robustness and efficiency to be considered as a pre

  19. The differential algebra based multiple level fast multipole algorithm for 3D space charge field calculation and photoemission simulation

    DOE PAGES

    None, None

    2015-09-28

    Coulomb interaction between charged particles inside a bunch is one of the most importance collective effects in beam dynamics, becoming even more significant as the energy of the particle beam is lowered to accommodate analytical and low-Z material imaging purposes such as in the time resolved Ultrafast Electron Microscope (UEM) development currently underway at Michigan State University. In addition, space charge effects are the key limiting factor in the development of ultrafast atomic resolution electron imaging and diffraction technologies and are also correlated with an irreversible growth in rms beam emittance due to fluctuating components of the nonlinear electron dynamics.more » In the short pulse regime used in the UEM, space charge effects also lead to virtual cathode formation in which the negative charge of the electrons emitted at earlier times, combined with the attractive surface field, hinders further emission of particles and causes a degradation of the pulse properties. Space charge and virtual cathode effects and their remediation are core issues for the development of the next generation of high-brightness UEMs. Since the analytical models are only applicable for special cases, numerical simulations, in addition to experiments, are usually necessary to accurately understand the space charge effect. In this paper we will introduce a grid-free differential algebra based multiple level fast multipole algorithm, which calculates the 3D space charge field for n charged particles in arbitrary distribution with an efficiency of O(n), and the implementation of the algorithm to a simulation code for space charge dominated photoemission processes.« less

  20. 3D VMAT Verification Based on Monte Carlo Log File Simulation with Experimental Feedback from Film Dosimetry.

    PubMed

    Barbeiro, A R; Ureba, A; Baeza, J A; Linares, R; Perucha, M; Jiménez-Ortega, E; Velázquez, S; Mateos, J C; Leal, A

    2016-01-01

    A model based on a specific phantom, called QuAArC, has been designed for the evaluation of planning and verification systems of complex radiotherapy treatments, such as volumetric modulated arc therapy (VMAT). This model uses the high accuracy provided by the Monte Carlo (MC) simulation of log files and allows the experimental feedback from the high spatial resolution of films hosted in QuAArC. This cylindrical phantom was specifically designed to host films rolled at different radial distances able to take into account the entrance fluence and the 3D dose distribution. Ionization chamber measurements are also included in the feedback process for absolute dose considerations. In this way, automated MC simulation of treatment log files is implemented to calculate the actual delivery geometries, while the monitor units are experimentally adjusted to reconstruct the dose-volume histogram (DVH) on the patient CT. Prostate and head and neck clinical cases, previously planned with Monaco and Pinnacle treatment planning systems and verified with two different commercial systems (Delta4 and COMPASS), were selected in order to test operational feasibility of the proposed model. The proper operation of the feedback procedure was proved through the achieved high agreement between reconstructed dose distributions and the film measurements (global gamma passing rates > 90% for the 2%/2 mm criteria). The necessary discretization level of the log file for dose calculation and the potential mismatching between calculated control points and detection grid in the verification process were discussed. Besides the effect of dose calculation accuracy of the analytic algorithm implemented in treatment planning systems for a dynamic technique, it was discussed the importance of the detection density level and its location in VMAT specific phantom to obtain a more reliable DVH in the patient CT. The proposed model also showed enough robustness and efficiency to be considered as a pre

  1. An Evaluative Review of Simulated Dynamic Smart 3d Objects

    NASA Astrophysics Data System (ADS)

    Romeijn, H.; Sheth, F.; Pettit, C. J.

    2012-07-01

    Three-dimensional (3D) modelling of plants can be an asset for creating agricultural based visualisation products. The continuum of 3D plants models ranges from static to dynamic objects, also known as smart 3D objects. There is an increasing requirement for smarter simulated 3D objects that are attributed mathematically and/or from biological inputs. A systematic approach to plant simulation offers significant advantages to applications in agricultural research, particularly in simulating plant behaviour and the influences of external environmental factors. This approach of 3D plant object visualisation is primarily evident from the visualisation of plants using photographed billboarded images, to more advanced procedural models that come closer to simulating realistic virtual plants. However, few programs model physical reactions of plants to external factors and even fewer are able to grow plants based on mathematical and/or biological parameters. In this paper, we undertake an evaluation of plant-based object simulation programs currently available, with a focus upon the components and techniques involved in producing these objects. Through an analytical review process we consider the strengths and weaknesses of several program packages, the features and use of these programs and the possible opportunities in deploying these for creating smart 3D plant-based objects to support agricultural research and natural resource management. In creating smart 3D objects the model needs to be informed by both plant physiology and phenology. Expert knowledge will frame the parameters and procedures that will attribute the object and allow the simulation of dynamic virtual plants. Ultimately, biologically smart 3D virtual plants that react to changes within an environment could be an effective medium to visually represent landscapes and communicate land management scenarios and practices to planners and decision-makers.

  2. Design of 3D simulation engine for oilfield safety training

    NASA Astrophysics Data System (ADS)

    Li, Hua-Ming; Kang, Bao-Sheng

    2015-03-01

    Aiming at the demand for rapid custom development of 3D simulation system for oilfield safety training, this paper designs and implements a 3D simulation engine based on script-driven method, multi-layer structure, pre-defined entity objects and high-level tools such as scene editor, script editor, program loader. A scripting language been defined to control the system's progress, events and operating results. Training teacher can use this engine to edit 3D virtual scenes, set the properties of entity objects, define the logic script of task, and produce a 3D simulation training system without any skills of programming. Through expanding entity class, this engine can be quickly applied to other virtual training areas.

  3. Laser Based 3D Volumetric Display System

    DTIC Science & Technology

    1993-03-01

    Literature, Costa Mesa, CA July 1983. 3. "A Real Time Autostereoscopic Multiplanar 3D Display System", Rodney Don Williams, Felix Garcia, Jr., Texas...8217 .- NUMBERS LASER BASED 3D VOLUMETRIC DISPLAY SYSTEM PR: CD13 0. AUTHOR(S) PE: N/AWIU: DN303151 P. Soltan, J. Trias, W. Robinson, W. Dahlke 7...laser generated 3D volumetric images on a rotating double helix, (where the 3D displays are computer controlled for group viewing with the naked eye

  4. 3D Numerical simulations of oblique subduction

    NASA Astrophysics Data System (ADS)

    Malatesta, C.; Gerya, T.; Scambelluri, M.; Crispini, L.; Federico, L.; Capponi, G.

    2012-04-01

    In the past 2D numerical studies (e.g. Gerya et al., 2002; Gorczyk et al., 2007; Malatesta et al., 2012) provided evidence that during intraoceanic subduction a serpentinite channel forms above the downgoing plate. This channel forms as a result of hydration of the mantle wedge by uprising slab-fluids. Rocks buried at high depths are finally exhumed within this buoyant low-viscosity medium. Convergence rate in these 2D models was described by a trench-normal component of velocity. Several present and past subduction zones worldwide are however driven by oblique convergence between the plates, where trench-normal motion of the subducting slab is coupled with trench-parallel displacement of the plates. Can the exhumation mechanism and the exhumation rates of high-pressure rocks be affected by the shear component of subduction? And how uprise of these rocks can vary along the plate margin? We tried to address these questions performing 3D numerical models that simulate an intraoceanic oblique subduction. The models are based on thermo-mechanical equations that are solved with finite differences method and marker-in-cell techniques combined with multigrid approach (Gerya, 2010). In most of the models a narrow oceanic basin (500 km-wide) surrounded by continental margins is depicted. The basin is floored by either layered or heterogeneous oceanic lithosphere with gabbro as discrete bodies in serpentinized peridotite and a basaltic layer on the top. A weak zone in the mantle is prescribed to control the location of subduction initiation and therefore the plate margins geometry. Finally, addition of a third dimension in the simulations allowed us to test the role of different plate margin geometries on oblique subduction dynamics. In particular in each model we modified the dip angle of the weak zone and its "lateral" geometry (e.g. continuous, segmented). We consider "continuous" weak zones either parallel or increasingly moving away from the continental margins

  5. (abstract) 3D Electromagnetic Plasma Particle Simulations

    NASA Technical Reports Server (NTRS)

    Wang, J.; Liewer, P. C.; Lyster, P.; Decyk, V. K.

    1993-01-01

    A 3D electromagnetic plasma particle-in-cell code has been developed using the General Concurrent PIC algorithm. The GCPIC algorithm uses a domain decomposition to divide the computation among the processors. Particles must be exchanged between processors as they move. The efficiencies for 1-, 2-, and 3-dimensional partitions of the three dimensional domain are compared, and the algorithm is found to be very efficient even when a large fraction (e.g., 30%) of the particles must be exchanged at every time step. This PIC code has been used to perform simulations of a variety of space plasma physics problems. Results of three applications will be discussed: 1) plasma disturbances induced by moving conducting bodies in a magnetized plasma; 2) plasma plume interactions; and 3) solar wind termination shock.

  6. Physics-based Simulation of Human Posture Using 3D Whole Body Scanning Technology for Astronaut Space Suit Evaluation

    NASA Technical Reports Server (NTRS)

    Kim, Kyu-Jung

    2005-01-01

    Over the past few years high precision three-dimensional (3D) full body laser scanners have been developed to be used as a powerful anthropometry tool for quantification of the morphology of the human body. The full body scanner can quickly extract body characteristics in non-contact fashion. It is required for the Anthropometry and Biomechanics Facility (ABF) to have capabilities for kinematics simulation of a digital human at various postures whereas the laser scanner only allows capturing a single static posture at each time. During this summer fellowship period a theoretical study has been conducted to estimate an arbitrary posture with a series of example postures through finite element (FE) approximation and found that four-point isoparametric FE approximation would result in reasonable maximum position errors less than 5%. Subsequent pilot scan experiments demonstrated that a bead marker with a nominal size of 6 mm could be used as a marker for digitizing 3-D coordinates of anatomical landmarks for further kinematic analysis. Two sessions of human subject testing were conducted for reconstruction of an arbitrary postures from a set of example postures for each joint motion for the forearm/hand complex and the whole upper extremity.

  7. Non-isothermal 3D SDPD Simulations

    NASA Astrophysics Data System (ADS)

    Yang, Jun; Potami, Raffaele; Gatsonis, Nikolaos

    2012-11-01

    The study of fluids at micro and nanoscale requires new modeling and computational approaches. Smooth Particle Dissipative Dynamics (SDPD) is a mesh-free method that provides a bridge between the continuum equations of hydrodynamics embedded in the Smooth Particle Hydrodynamics approach and the molecular nature embedded in the DPD approach. SDPD is thermodynamically consistent, does not rely on arbitrary coefficients for its thermostat, involves realistic transport coefficients, and includes fluctuation terms. SDPD is implemented in our work for arbitrary 3D geometries with a methodology to model solid wall boundary conditions. We present simulations for isothermal flows for verification of our approach. The entropy equation is implemented with a velocity-entropy Verlet integration algorithm Flows with heat transfer are simulated for verification of the SDPD. We present also the self-diffusion coefficient derived from SDPD simulations for gases and liquids. Results show the scale dependence of self-diffusion coefficient on SDPD particle size. Computational Mathematics Program of the Air Force Office of Scientific Research under grant/contract number FA9550-06-1-0236.

  8. 3D electrohydrodynamic simulation of electrowetting displays

    NASA Astrophysics Data System (ADS)

    Hsieh, Wan-Lin; Lin, Chi-Hao; Lo, Kuo-Lung; Lee, Kuo-Chang; Cheng, Wei-Yuan; Chen, Kuo-Ching

    2014-12-01

    The fluid dynamic behavior within a pixel of an electrowetting display (EWD) is thoroughly investigated through a 3D simulation. By coupling the electrohydrodynamic (EHD) force deduced from the Maxwell stress tensor with the laminar phase field of the oil-water dual phase, the complete switch processes of an EWD, including the break-up and the electrowetting stages in the switch-on process (with voltage) and the oil spreading in the switch-off process (without voltage), are successfully simulated. By considering the factor of the change in the apparent contact angle at the contact line, the electro-optic performance obtained from the simulation is found to agree well with its corresponding experiment. The proposed model is used to parametrically predict the effect of interfacial (e.g. contact angle of grid) and geometric (e.g. oil thickness and pixel size) properties on the defects of an EWD, such as oil dewetting patterns, oil overflow, and oil non-recovery. With the help of the defect analysis, a highly stable EWD is both experimentally realized and numerically analyzed.

  9. Development of a Simulation Tool for 3D Braiding Architectures

    NASA Astrophysics Data System (ADS)

    Tolosana, N.; Lomov, S.; Stüve, J.; Miravete, A.

    2007-04-01

    The usage of textile technologies for composites is widely extended in aeronautic applications. They provide an improvement on mechanical properties in the thickness direction, and offer some other advantages in comparison with prepreg technology regarding production. Nowadays 3D-braiding machines do not only enable the production of solid profiles but enable also the production of complex near-net-shape reinforcement structures with changing cross section geometry. In order to attain a full understanding on structure of 3d braids to be able to predict mechanical properties, simulation tools including machine operation are needed. A simulation tool is being developed as a part of the EU project "Integrated Tool for Simulation of Textile Composites", starting from 3d braiding machinery description and operation. This information is required to reproduce yarn paths in the produced unit cell, based on the interlacing pattern of the braid.

  10. Comparison of Actual Surgical Outcomes and 3D Surgical Simulations

    PubMed Central

    Tucker, Scott; Cevidanes, Lucia; Styner, Martin; Kim, Hyungmin; Reyes, Mauricio; Proffit, William; Turvey, Timothy

    2009-01-01

    Purpose The advent of imaging software programs have proved to be useful for diagnosis, treatment planning, and outcome measurement, but precision of 3D surgical simulation still needs to be tested. This study was conducted to determine if the virtual surgery performed on 3D models constructed from Cone-beam CT (CBCT) can correctly simulate the actual surgical outcome and to validate the ability of this emerging technology to recreate the orthognathic surgery hard tissue movements in 3 translational and 3 rotational planes of space. Methods Construction of pre- and post-surgery 3D models from CBCTs of 14 patients who had combined maxillary advancement and mandibular setback surgery and 6 patients who had one-piece maxillary advancement surgery was performed. The post-surgery and virtually simulated surgery 3D models were registered at the cranial base to quantify differences between simulated and actual surgery models. Hotelling T-test were used to assess the differences between simulated and actual surgical outcomes. Results For all anatomic regions of interest, there was no statistically significant difference between the simulated and the actual surgical models. The right lateral ramus was the only region that showed a statistically significant, but small difference when comparing two- and one-jaw surgeries. Conclusions Virtual surgical methods were reliably reproduced, oral surgery residents could benefit from virtual surgical training, and computer simulation has the potential to increase predictability in the operating room. PMID:20591553

  11. Respiratory motion compensation for simultaneous PET/MR based on a 3D-2D registration of strongly undersampled radial MR data: a simulation study

    NASA Astrophysics Data System (ADS)

    Rank, Christopher M.; Heußer, Thorsten; Flach, Barbara; Brehm, Marcus; Kachelrieß, Marc

    2015-03-01

    We propose a new method for PET/MR respiratory motion compensation, which is based on a 3D-2D registration of strongly undersampled MR data and a) runs in parallel with the PET acquisition, b) can be interlaced with clinical MR sequences, and c) requires less than one minute of the total MR acquisition time per bed position. In our simulation study, we applied a 3D encoded radial stack-of-stars sampling scheme with 160 radial spokes per slice and an acquisition time of 38 s. Gated 4D MR images were reconstructed using a 4D iterative reconstruction algorithm. Based on these images, motion vector fields were estimated using our newly-developed 3D-2D registration framework. A 4D PET volume of a patient with eight hot lesions in the lungs and upper abdomen was simulated and MoCo 4D PET images were reconstructed based on the motion vector fields derived from MR. For evaluation, average SUVmean values of the artificial lesions were determined for a 3D, a gated 4D, a MoCo 4D and a reference (with ten-fold measurement time) gated 4D reconstruction. Compared to the reference, 3D reconstructions yielded an underestimation of SUVmean values due to motion blurring. In contrast, gated 4D reconstructions showed the highest variation of SUVmean due to low statistics. MoCo 4D reconstructions were only slightly affected by these two sources of uncertainty resulting in a significant visual and quantitative improvement in terms of SUVmean values. Whereas temporal resolution was comparable to the gated 4D images, signal-to-noise ratio and contrast-to-noise ratio were close to the 3D reconstructions.

  12. 3D Fiber Orientation Simulation for Plastic Injection Molding

    NASA Astrophysics Data System (ADS)

    Lin, Baojiu; Jin, Xiaoshi; Zheng, Rong; Costa, Franco S.; Fan, Zhiliang

    2004-06-01

    Glass fiber reinforced polymer is widely used in the products made using injection molding processing. The distribution of fiber orientation inside plastic parts has direct effects on quality of molded parts. Using computer simulation to predict fiber orientation distribution is one of most efficient ways to assist engineers to do warpage analysis and to find a good design solution to produce high quality plastic parts. Fiber orientation simulation software based on 2-1/2D (midplane /Dual domain mesh) techniques has been used in industry for a decade. However, the 2-1/2D technique is based on the planar Hele-Shaw approximation and it is not suitable when the geometry has complex three-dimensional features which cannot be well approximated by 2D shells. Recently, a full 3D simulation software for fiber orientation has been developed and integrated into Moldflow Plastics Insight 3D simulation software. The theory for this new 3D fiber orientation calculation module is described in this paper. Several examples are also presented to show the benefit in using 3D fiber orientation simulation.

  13. 3D Simulations of the Beehive Proplyd

    NASA Astrophysics Data System (ADS)

    Feitosa, J. A.; Vasconcelos, M. J.; Cerqueira, A. H.

    2014-10-01

    Some star formation regions, like the Orion nebula, have stars of different masses, from massive stars, responsible for strong ionizing winds and HII regions, to low-mass stars, which spend a long time in the protostellar phase, and are frequently associated with protostellar disks and jets. Massive O or B stars emit a great deal of UV radiation, able to dissociate the hydrogen molecule (FUV radiation, energies between 6-13 eV), to ionize the atomic hydrogen (EUV radiation, energies greater than 13.6 eV) and heat the gas. Around these stars, a large and hot (10^{4}K) region is formed, known as HII region. T-Tauri stars inside HII regions produce a type of young stellar object, a proplyd, described with accuracy in O'Dell et al. (1993). Proplyds exhibit a cometary shape from which we can distinguish a central low-mass star with an accretion disk, an ionization front, a photodissociation region and, sometimes, an external bow shock and a protostellar jet. Its morphological characteristics depends on the distance between the low-mass star and the source of the ionizing radiation. The Beehive, a giant proplyd in Orion Nebula, has attracted attention due to its exotic system of rings coaxial to the HH540 jet's axis. Bally et al. (2005) suggested that the rings are perturbations due to the crossing of the ionization front by the jet. In this work, we test this hypothesis making 3D hydrodynamic numerical simulations over an adaptive grid, using the Yguazú-A code (Raga et al., 2000), properly adapted for the Beehive conditions. Our results show that the jet causes a perturbation in the ionization front of the proplyd, but is necessary to adjust carefully some parameters of the jet like its velocity and ejection frequency in order to have the results matching the observations.

  14. 3D visualization of port simulation.

    SciTech Connect

    Horsthemke, W. H.; Macal, C. M.; Nevins, M. R.

    1999-06-14

    Affordable and realistic three dimensional visualization technology can be applied to large scale constructive simulations such as the port simulation model, PORTSIM. These visualization tools enhance the experienced planner's ability to form mental models of how seaport operations will unfold when the simulation model is implemented and executed. They also offer unique opportunities to train new planners not only in the use of the simulation model but on the layout and design of seaports. Simulation visualization capabilities are enhanced by borrowing from work on interface design, camera control, and data presentation. Using selective fidelity, the designers of these visualization systems can reduce their time and efforts by concentrating on those features which yield the most value for their simulation. Offering the user various observational tools allows the freedom to simply watch or engage in the simulation without getting lost. Identifying the underlying infrastructure or cargo items with labels can provide useful information at the risk of some visual clutter. The PortVis visualization expands the PORTSIM user base which can benefit from the results provided by this capability, especially in strategic planning, mission rehearsal, and training. Strategic planners will immediately reap the benefits of seeing the impact of increased throughput visually without keeping track of statistical data. Mission rehearsal and training users will have an effective training tool to supplement their operational training exercises which are limited in number because of their high costs. Having another effective training modality in this visualization system allows more training to take place and more personnel to gain an understanding of seaport operations. This simulation and visualization training can be accomplished at lower cost than would be possible for the operational training exercises alone. The application of PORTSIM and PortVis will lead to more efficient

  15. Nonlaser-based 3D surface imaging

    SciTech Connect

    Lu, Shin-yee; Johnson, R.K.; Sherwood, R.J.

    1994-11-15

    3D surface imaging refers to methods that generate a 3D surface representation of objects of a scene under viewing. Laser-based 3D surface imaging systems are commonly used in manufacturing, robotics and biomedical research. Although laser-based systems provide satisfactory solutions for most applications, there are situations where non laser-based approaches are preferred. The issues that make alternative methods sometimes more attractive are: (1) real-time data capturing, (2) eye-safety, (3) portability, and (4) work distance. The focus of this presentation is on generating a 3D surface from multiple 2D projected images using CCD cameras, without a laser light source. Two methods are presented: stereo vision and depth-from-focus. Their applications are described.

  16. 3D finite element simulations of high velocity projectile impact

    NASA Astrophysics Data System (ADS)

    Ožbolt, Joško; İrhan, Barış; Ruta, Daniela

    2015-09-01

    An explicit three-dimensional (3D) finite element (FE) code is developed for the simulation of high velocity impact and fragmentation events. The rate sensitive microplane material model, which accounts for large deformations and rate effects, is used as a constitutive law. In the code large deformation frictional contact is treated by forward incremental Lagrange multiplier method. To handle highly distorted and damaged elements the approach based on the element deletion is employed. The code is then used in 3D FE simulations of high velocity projectile impact. The results of the numerical simulations are evaluated and compared with experimental results. It is shown that it realistically predicts failure mode and exit velocities for different geometries of plain concrete slab. Moreover, the importance of some relevant parameters, such as contact friction, rate sensitivity, bulk viscosity and deletion criteria are addressed.

  17. A reduced-order model based on the coupled 1D-3D finite element simulations for an efficient analysis of hemodynamics problems

    NASA Astrophysics Data System (ADS)

    Soudah, Eduardo; Rossi, Riccardo; Idelsohn, Sergio; Oñate, Eugenio

    2014-10-01

    A reduced-order model for an efficient analysis of cardiovascular hemodynamics problems using multiscale approach is presented in this work. Starting from a patient-specific computational mesh obtained by medical imaging techniques, an analysis methodology based on a two-step automatic procedure is proposed. First a coupled 1D-3D Finite Element Simulation is performed and the results are used to adjust a reduced-order model of the 3D patient-specific area of interest. Then, this reduced-order model is coupled with the 1D model. In this way, three-dimensional effects are accounted for in the 1D model in a cost effective manner, allowing fast computation under different scenarios. The methodology proposed is validated using a patient-specific aortic coarctation model under rest and non-rest conditions.

  18. Advanced system for 3D dental anatomy reconstruction and 3D tooth movement simulation during orthodontic treatment

    NASA Astrophysics Data System (ADS)

    Monserrat, Carlos; Alcaniz-Raya, Mariano L.; Juan, M. Carmen; Grau Colomer, Vincente; Albalat, Salvador E.

    1997-05-01

    This paper describes a new method for 3D orthodontics treatment simulation developed for an orthodontics planning system (MAGALLANES). We develop an original system for 3D capturing and reconstruction of dental anatomy that avoid use of dental casts in orthodontic treatments. Two original techniques are presented, one direct in which data are acquired directly form patient's mouth by mean of low cost 3D digitizers, and one mixed in which data are obtained by 3D digitizing of hydrocollids molds. FOr this purpose we have designed and manufactured an optimized optical measuring system based on laser structured light. We apply these 3D dental models to simulate 3D movement of teeth, including rotations, during orthodontic treatment. The proposed algorithms enable to quantify the effect of orthodontic appliance on tooth movement. The developed techniques has been integrated in a system named MAGALLANES. This original system present several tools for 3D simulation and planning of orthodontic treatments. The prototype system has been tested in several orthodontic clinic with very good results.

  19. 3D simulation for falling papers

    NASA Astrophysics Data System (ADS)

    Aoki, Takayuki

    2001-12-01

    The combination of IDO (Interpolated Differential Operator) scheme, Cut Cell technique, and overlapping grid method make it possible to simulate the falling process of papers. We have the result of the falling with fluttering trajectory for a certain initial angle of the paper, and the fluttering mechanism becomes clear. It is shown that the simulation is applicable to the phenomena of falling leaves with complex shape.

  20. Interactive 3D display simulator for autostereoscopic smart pad

    NASA Astrophysics Data System (ADS)

    Choe, Yeong-Seon; Lee, Ho-Dong; Park, Min-Chul; Son, Jung-Young; Park, Gwi-Tae

    2012-06-01

    There is growing interest of displaying 3D images on a smart pad for entertainments and information services. Designing and realizing various types of 3D displays on the smart pad is not easy for costs and given time. Software simulation can be an alternative method to save and shorten the development. In this paper, we propose a 3D display simulator for autostereoscopic smart pad. It simulates light intensity of each view and crosstalk for smart pad display panels. Designers of 3D display for smart pad can interactively simulate many kinds of autostereoscopic displays interactively by changing parameters required for panel design. Crosstalk to reduce leakage of one eye's image into the image of the other eye, and light intensity for computing visual comfort zone are important factors in designing autostereoscopic display for smart pad. Interaction enables intuitive designs. This paper describes an interactive 3D display simulator for autostereoscopic smart pad.

  1. Simulation of human ischemic stroke in realistic 3D geometry

    NASA Astrophysics Data System (ADS)

    Dumont, Thierry; Duarte, Max; Descombes, Stéphane; Dronne, Marie-Aimée; Massot, Marc; Louvet, Violaine

    2013-06-01

    In silico research in medicine is thought to reduce the need for expensive clinical trials under the condition of reliable mathematical models and accurate and efficient numerical methods. In the present work, we tackle the numerical simulation of reaction-diffusion equations modeling human ischemic stroke. This problem induces peculiar difficulties like potentially large stiffness which stems from the broad spectrum of temporal scales in the nonlinear chemical source term as well as from the presence of steep spatial gradients in the reaction fronts, spatially very localized. Furthermore, simulations on realistic 3D geometries are mandatory in order to describe correctly this type of phenomenon. The main goal of this article is to obtain, for the first time, 3D simulations on realistic geometries and to show that the simulation results are consistent with those obtain in experimental studies or observed on MRI images in stroke patients. For this purpose, we introduce a new resolution strategy based mainly on time operator splitting that takes into account complex geometry coupled with a well-conceived parallelization strategy for shared memory architectures. We consider then a high order implicit time integration for the reaction and an explicit one for the diffusion term in order to build a time operator splitting scheme that exploits efficiently the special features of each problem. Thus, we aim at solving complete and realistic models including all time and space scales with conventional computing resources, that is on a reasonably powerful workstation. Consequently and as expected, 2D and also fully 3D numerical simulations of ischemic strokes for a realistic brain geometry, are conducted for the first time and shown to reproduce the dynamics observed on MRI images in stroke patients. Beyond this major step, in order to improve accuracy and computational efficiency of the simulations, we indicate how the present numerical strategy can be coupled with spatial

  2. 3-D CFD Simulation and Validation of Oxygen-Rich Hydrocarbon Combustion in a Gas-Centered Swirl Coaxial Injector using a Flamelet-Based Approach

    NASA Technical Reports Server (NTRS)

    Richardson, Brian; Kenny, Jeremy

    2015-01-01

    Injector design is a critical part of the development of a rocket Thrust Chamber Assembly (TCA). Proper detailed injector design can maximize propulsion efficiency while minimizing the potential for failures in the combustion chamber. Traditional design and analysis methods for hydrocarbon-fuel injector elements are based heavily on empirical data and models developed from heritage hardware tests. Using this limited set of data produces challenges when trying to design a new propulsion system where the operating conditions may greatly differ from heritage applications. Time-accurate, Three-Dimensional (3-D) Computational Fluid Dynamics (CFD) modeling of combusting flows inside of injectors has long been a goal of the fluid analysis group at Marshall Space Flight Center (MSFC) and the larger CFD modeling community. CFD simulation can provide insight into the design and function of an injector that cannot be obtained easily through testing or empirical comparisons to existing hardware. However, the traditional finite-rate chemistry modeling approach utilized to simulate combusting flows for complex fuels, such as Rocket Propellant-2 (RP-2), is prohibitively expensive and time consuming even with a large amount of computational resources. MSFC has been working, in partnership with Streamline Numerics, Inc., to develop a computationally efficient, flamelet-based approach for modeling complex combusting flow applications. In this work, a flamelet modeling approach is used to simulate time-accurate, 3-D, combusting flow inside a single Gas Centered Swirl Coaxial (GCSC) injector using the flow solver, Loci-STREAM. CFD simulations were performed for several different injector geometries. Results of the CFD analysis helped guide the design of the injector from an initial concept to a tested prototype. The results of the CFD analysis are compared to data gathered from several hot-fire, single element injector tests performed in the Air Force Research Lab EC-1 test facility

  3. 3D multifocus astigmatism and compressed sensing (3D MACS) based superresolution reconstruction

    PubMed Central

    Huang, Jiaqing; Sun, Mingzhai; Gumpper, Kristyn; Chi, Yuejie; Ma, Jianjie

    2015-01-01

    Single molecule based superresolution techniques (STORM/PALM) achieve nanometer spatial resolution by integrating the temporal information of the switching dynamics of fluorophores (emitters). When emitter density is low for each frame, they are located to the nanometer resolution. However, when the emitter density rises, causing significant overlapping, it becomes increasingly difficult to accurately locate individual emitters. This is particularly apparent in three dimensional (3D) localization because of the large effective volume of the 3D point spread function (PSF). The inability to precisely locate the emitters at a high density causes poor temporal resolution of localization-based superresolution technique and significantly limits its application in 3D live cell imaging. To address this problem, we developed a 3D high-density superresolution imaging platform that allows us to precisely locate the positions of emitters, even when they are significantly overlapped in three dimensional space. Our platform involves a multi-focus system in combination with astigmatic optics and an ℓ1-Homotopy optimization procedure. To reduce the intrinsic bias introduced by the discrete formulation of compressed sensing, we introduced a debiasing step followed by a 3D weighted centroid procedure, which not only increases the localization accuracy, but also increases the computation speed of image reconstruction. We implemented our algorithms on a graphic processing unit (GPU), which speeds up processing 10 times compared with central processing unit (CPU) implementation. We tested our method with both simulated data and experimental data of fluorescently labeled microtubules and were able to reconstruct a 3D microtubule image with 1000 frames (512×512) acquired within 20 seconds. PMID:25798314

  4. A combination of pharmacophore modeling, atom-based 3D-QSAR, molecular docking and molecular dynamics simulation studies on PDE4 enzyme inhibitors.

    PubMed

    Tripuraneni, Naga Srinivas; Azam, Mohammed Afzal

    2016-11-01

    Phosphodiesterases 4 enzyme is an attractive target for the design of anti-inflammatory and bronchodilator agents. In the present study, pharmacophore and atom-based 3D-QSAR studies were carried out for pyrazolopyridine and quinoline derivatives using Schrödinger suite 2014-3. A four-point pharmacophore model was developed using 74 molecules having pIC50 ranging from 10.1 to 4.5. The best four feature model consists of one hydrogen bond acceptor, two aromatic rings, and one hydrophobic group. The pharmacophore hypothesis yielded a statistically significant 3D-QSAR model, with a high correlation coefficient (R(2 )= .9949), cross validation coefficient (Q(2 )= .7291), and Pearson-r (.9107) at six component partial least square factor. The external validation indicated that our QSAR model possessed high predictive power with R(2) value of .88. The generated model was further validated by enrichment studies using the decoy test. Molecular docking, free energy calculation, and molecular dynamics (MD) simulation studies have been performed to explore the putative binding modes of these ligands. A 10-ns MD simulation confirmed the docking results of both stability of the 1XMU-ligand complex and the presumed active conformation. Outcomes of the present study provide insight in designing novel molecules with better PDE4 inhibitory activity.

  5. 3-D Imaging and Simulation for Nephron Sparing Surgical Training.

    PubMed

    Ahmadi, Hamed; Liu, Jen-Jane

    2016-08-01

    Minimally invasive partial nephrectomy (MIPN) is now considered the procedure of choice for small renal masses largely based on functional advantages over traditional open surgery. Lack of haptic feedback, the need for spatial understanding of tumor borders, and advanced operative techniques to minimize ischemia time or achieve zero-ischemia PN are among factors that make MIPN a technically demanding operation with a steep learning curve for inexperienced surgeons. Surgical simulation has emerged as a useful training adjunct in residency programs to facilitate the acquisition of these complex operative skills in the setting of restricted work hours and limited operating room time and autonomy. However, the majority of available surgical simulators focus on basic surgical skills, and procedure-specific simulation is needed for optimal surgical training. Advances in 3-dimensional (3-D) imaging have also enhanced the surgeon's ability to localize tumors intraoperatively. This article focuses on recent procedure-specific simulation models for laparoscopic and robotic-assisted PN and advanced 3-D imaging techniques as part of pre- and some cases, intraoperative surgical planning.

  6. 3D simulation for solitons used in optical fibers

    NASA Astrophysics Data System (ADS)

    Vasile, F.; Tebeica, C. M.; Schiopu, P.; Vladescu, M.

    2016-12-01

    In this paper is described 3D simulation for solitions used in optical fibers. In the scientific works is started from nonlinear propagation equation and the solitons represents its solutions. This paper presents the simulation of the fundamental soliton in 3D together with simulation of the second order soliton in 3D. These simulations help in the study of the optical fibers for long distances and in the interactions between the solitons. This study helps the understanding of the nonlinear propagation equation and for nonlinear waves. These 3D simulations are obtained using MATLAB programming language, and we can observe fundamental difference between the soliton and the second order/higher order soliton and in their evolution.

  7. 3-D model-based vehicle tracking.

    PubMed

    Lou, Jianguang; Tan, Tieniu; Hu, Weiming; Yang, Hao; Maybank, Steven J

    2005-10-01

    This paper aims at tracking vehicles from monocular intensity image sequences and presents an efficient and robust approach to three-dimensional (3-D) model-based vehicle tracking. Under the weak perspective assumption and the ground-plane constraint, the movements of model projection in the two-dimensional image plane can be decomposed into two motions: translation and rotation. They are the results of the corresponding movements of 3-D translation on the ground plane (GP) and rotation around the normal of the GP, which can be determined separately. A new metric based on point-to-line segment distance is proposed to evaluate the similarity between an image region and an instantiation of a 3-D vehicle model under a given pose. Based on this, we provide an efficient pose refinement method to refine the vehicle's pose parameters. An improved EKF is also proposed to track and to predict vehicle motion with a precise kinematics model. Experimental results with both indoor and outdoor data show that the algorithm obtains desirable performance even under severe occlusion and clutter.

  8. SU-E-T-644: QuAArC: A 3D VMAT QA System Based On Radiochromic Film and Monte Carlo Simulation of Log Files

    SciTech Connect

    Barbeiro, A.R.; Ureba, A.; Baeza, J.A.; Jimenez-Ortega, E.; Plaza, A. Leal; Linares, R.; Mateos, J.C.; Velazquez, S.

    2015-06-15

    Purpose: VMAT involves two main sources of uncertainty: one related to the dose calculation accuracy, and the other linked to the continuous delivery of a discrete calculation. The purpose of this work is to present QuAArC, an alternative VMAT QA system to control and potentially reduce these uncertainties. Methods: An automated MC simulation of log files, recorded during VMAT treatment plans delivery, was implemented in order to simulate the actual treatment parameters. The linac head models and the phase-space data of each Control Point (CP) were simulated using the EGSnrc/BEAMnrc MC code, and the corresponding dose calculation was carried out by means of BEAMDOSE, a DOSXYZnrc code modification. A cylindrical phantom was specifically designed to host films rolled up at different radial distances from the isocenter, for a 3D and continuous dosimetric verification. It also allows axial and/or coronal films and point measurements with several types of ion chambers at different locations. Specific software was developed in MATLAB in order to process and evaluate the dosimetric measurements, which incorporates the analysis of dose distributions, profiles, dose difference maps, and 2D/3D gamma index. It is also possible to obtain the experimental DVH reconstructed on the patient CT, by an optimization method to find the individual contribution corresponding to each CP on the film, taking into account the total measured dose, and the corresponding CP dose calculated by MC. Results: The QuAArC system showed high reproducibility of measurements, and consistency with the results obtained with the commercial system implemented in the verification of the evaluated treatment plans. Conclusion: A VMAT QA system based on MC simulation and high resolution dosimetry with film has been developed for treatment verification. It shows to be useful for the study of the real VMAT capabilities, and also for linac commissioning and evaluation of other verification devices.

  9. A task-based parallelism and vectorized approach to 3D Method of Characteristics (MOC) reactor simulation for high performance computing architectures

    NASA Astrophysics Data System (ADS)

    Tramm, John R.; Gunow, Geoffrey; He, Tim; Smith, Kord S.; Forget, Benoit; Siegel, Andrew R.

    2016-05-01

    In this study we present and analyze a formulation of the 3D Method of Characteristics (MOC) technique applied to the simulation of full core nuclear reactors. Key features of the algorithm include a task-based parallelism model that allows independent MOC tracks to be assigned to threads dynamically, ensuring load balancing, and a wide vectorizable inner loop that takes advantage of modern SIMD computer architectures. The algorithm is implemented in a set of highly optimized proxy applications in order to investigate its performance characteristics on CPU, GPU, and Intel Xeon Phi architectures. Speed, power, and hardware cost efficiencies are compared. Additionally, performance bottlenecks are identified for each architecture in order to determine the prospects for continued scalability of the algorithm on next generation HPC architectures.

  10. Optimizing prostate needle biopsy through 3D simulation

    NASA Astrophysics Data System (ADS)

    Zeng, Jianchao; Kaplan, Charles; Xuan, Jian Hua; Sesterhenn, Isabell A.; Lynch, John H.; Freedman, Matthew T.; Mun, Seong K.

    1998-06-01

    Prostate needle biopsy is used for the detection of prostate cancer. The protocol of needle biopsy that is currently routinely used in the clinical environment is the systematic sextant technique, which defines six symmetric locations on the prostate surface for needle insertion. However, this protocol has been developed based on the long-term observation and experience of urologists. Little quantitative or scientific evidence supports the use of this biopsy technique. In this research, we aim at developing a statistically optimized new prostate needle biopsy protocol to improve the quality of diagnosis of prostate cancer. This new protocol will be developed by using a three-dimensional (3-D) computer- based probability map of prostate cancer. For this purpose, we have developed a computer-based 3-D visualization and simulation system with prostate models constructed from the digitized prostate specimens, in which the process of prostate needle biopsy can be simulated automatically by the computer. In this paper, we first develop an interactive biopsy simulation mode in the system, and evaluate the performance of the automatic biopsy simulation with the sextant biopsy protocol by comparing the results by the urologist using the interactive simulation mode with respect to 53 prostate models. This is required to confirm that the automatic simulation is accurate and reliable enough for the simulation with respect to a large number of prostate models. Then we compare the performance of the existing protocols using the automatic biopsy simulation system with respect to 107 prostate models, which will statistically identify if one protocol is better than another. Since the estimation of tumor volume is extremely important in determining the significance of a tumor and in deciding appropriate treatment methods, we further investigate correlation between the tumor volume and the positive core volume with 89 prostate models. This is done in order to develop a method to

  11. Preliminary investigations on 3D PIC simulation of DPHC structure using NEPTUNE3D code

    NASA Astrophysics Data System (ADS)

    Zhao, Hailong; Dong, Ye; Zhou, Haijing; Zou, Wenkang; Wang, Qiang

    2016-10-01

    Cubic region (34cm × 34cm × 18cm) including the double post-hole convolute (DPHC) structure was chosen to perform a series of fully 3D PIC simulations using NEPTUNE3D codes, massive data ( 200GB) could be acquired and solved in less than 5 hours. Cold-chamber tests were performed during which only cathode electron emission was considered without temperature rise or ion emission, current loss efficiency was estimated by comparisons between output magnetic field profiles with or without electron emission. PIC simulation results showed three stages of current transforming process with election emission in DPHC structure, the maximum ( 20%) current loss was 437kA at 15ns, while only 0.46% 0.48% was lost when driving current reached its peak. DPHC structure proved valuable functions during energy transform process in PTS facility, and NEPTUNE3D provided tools to explore this sophisticated physics. Project supported by the National Natural Science Foundation of China, Grant No. 11571293, 11505172.

  12. 3D Ultrasonic Wave Simulations for Structural Health Monitoring

    NASA Technical Reports Server (NTRS)

    Campbell, Leckey Cara A/; Miler, Corey A.; Hinders, Mark K.

    2011-01-01

    Structural health monitoring (SHM) for the detection of damage in aerospace materials is an important area of research at NASA. Ultrasonic guided Lamb waves are a promising SHM damage detection technique since the waves can propagate long distances. For complicated flaw geometries experimental signals can be difficult to interpret. High performance computing can now handle full 3-dimensional (3D) simulations of elastic wave propagation in materials. We have developed and implemented parallel 3D elastodynamic finite integration technique (3D EFIT) code to investigate ultrasound scattering from flaws in materials. EFIT results have been compared to experimental data and the simulations provide unique insight into details of the wave behavior. This type of insight is useful for developing optimized experimental SHM techniques. 3D EFIT can also be expanded to model wave propagation and scattering in anisotropic composite materials.

  13. Physics and 3D in Flash Simulations: Open Source Reality

    NASA Astrophysics Data System (ADS)

    Harold, J. B.; Dusenbery, P.

    2009-12-01

    Over the last decade our ability to deliver simulations over the web has steadily advanced. The improvements in speed of the Adobe Flash engine, and the development of open source tools to expand it, allow us to deliver increasingly sophisticated simulation based games through the browser, with no additional downloads required. In this paper we will present activities we are developing as part of two asteroids education projects: Finding NEO (funded through NSF and NASA SMD), and Asteroids! (funded through NSF). The first activity is Rubble!, an asteroids deflection game built on the open source Box2D physics engine. This game challenges players to push asteroids in to safe orbits before they crash in to the Earth. The Box2D engine allows us to go well beyond simple 2-body orbital calculations and incorporate “rubble piles”. These objects, which are representative of many asteroids, are composed of 50 or more individual rocks which gravitationally bind and separate in realistic ways. Even bombs can be modeled with sufficient physical accuracy to convince players of the hazards of trying to “blow up” incoming asteroids. The ability to easily build games based on underlying physical models allows us to address physical misconceptions in a natural way: by having the player operate in a world that directly collides with those misconceptions. Rubble! provides a particularly compelling example of this due to the variety of well documented misconceptions regarding gravity. The second activity is a Light Curve challenge, which uses the open source PaperVision3D tools to analyze 3D asteroid models. The goal of this activity is to introduce the player to the concept of “light curves”, measurements of asteroid brightness over time which are used to calculate the asteroid’s period. These measurements can even be inverted to generate three dimensional models of asteroids that are otherwise too small and distant to directly image. Through the use of the Paper

  14. M3D project for simulation studies of plasmas

    SciTech Connect

    Park, W.; Belova, E.V.; Fu, G.Y.; Strauss, H.R.; Sugiyama, L.E.

    1998-12-31

    The M3D (Multi-level 3D) project carries out simulation studies of plasmas of various regimes using multi-levels of physics, geometry, and mesh schemes in one code package. This paper and papers by Strauss, Sugiyama, and Belova in this workshop describe the project, and present examples of current applications. The currently available physics models of the M3D project are MHD, two-fluids, gyrokinetic hot particle/MHD hybrid, and gyrokinetic particle ion/two-fluid hybrid models. The code can be run with both structured and unstructured meshes.

  15. Fractal and fractional calculus to model hydrological processes with application to particle-based 2D and 3D landslide simulation

    NASA Astrophysics Data System (ADS)

    Martelloni, Gianluca; Bagnoli, Franco; Di Cintio, Pierfrancesco

    2015-04-01

    We integrate existing soil infiltration modeling with particle based methods in order to simulate two and three-dimensional setups of triggered landslides. Commonly, the infiltration models are based on continuum schemes (e.g. Eulerian approach) by means of which it is possible to define the field of the pore pressure within a soil. By contrast, the particle based methods follow a Lagrangian scheme that allows one to identify the particle trajectories and their dynamical properties. In this work, in order to simulate the triggering mechanism, we apply the classical, fractal and fractional Richards equations and the Mohr-Coulomb failure criterion, adapted to the molecular dynamics technique. In our scheme the (local) positive pore pressure is simply implemented as a perturbation of the rest state of each grain. Therefore, the pore pressure function can be interpreted as a time-space dependent scalar field acting on each particle. To initialize the system we generate, using a molecular dynamics based algorithm, a mechanically stable disk (2D) or sphere (3D) packing simulating the consolidated soil. In this way, we can built the micro and macro pore structure related to different infiltration time scales. The inter-particle interactions are modeled with a Lennard-Jones like potential. The particle positions are updated in time, after and during a rainfall, with standard molecular dynamics. We analyze the sensitivity of the model with respect to the variation of some parameters such as hydraulic conductivity, cohesion, slope and friction angle, soil depth and fractional order of the generalized infiltration model. In addition, we consider both regular and random particle configurations. The results of our simulations are found to be in agreement with real landslides. In particular, the mean velocity patterns of the simulated landslides appear extremely similar to the observed ones. Moreover, it is possible to apply the method of the inverse surface displacement

  16. Scalable 3D GIS environment managed by 3D-XML-based modeling

    NASA Astrophysics Data System (ADS)

    Shi, Beiqi; Rui, Jianxun; Chen, Neng

    2008-10-01

    Nowadays, the namely 3D GIS technologies become a key factor in establishing and maintaining large-scale 3D geoinformation services. However, with the rapidly increasing size and complexity of the 3D models being acquired, a pressing needed for suitable data management solutions has become apparent. This paper outlines that storage and exchange of geospatial data between databases and different front ends like 3D models, GIS or internet browsers require a standardized format which is capable to represent instances of 3D GIS models, to minimize loss of information during data transfer and to reduce interface development efforts. After a review of previous methods for spatial 3D data management, a universal lightweight XML-based format for quick and easy sharing of 3D GIS data is presented. 3D data management based on XML is a solution meeting the requirements as stated, which can provide an efficient means for opening a new standard way to create an arbitrary data structure and share it over the Internet. To manage reality-based 3D models, this paper uses 3DXML produced by Dassault Systemes. 3DXML uses opening XML schemas to communicate product geometry, structure and graphical display properties. It can be read, written and enriched by standard tools; and allows users to add extensions based on their own specific requirements. The paper concludes with the presentation of projects from application areas which will benefit from the functionality presented above.

  17. 3D microstructure modeling of compressed fiber-based materials

    NASA Astrophysics Data System (ADS)

    Gaiselmann, Gerd; Tötzke, Christian; Manke, Ingo; Lehnert, Werner; Schmidt, Volker

    2014-07-01

    A novel parametrized model that describes the 3D microstructure of compressed fiber-based materials is introduced. It allows to virtually generate the microstructure of realistically compressed gas-diffusion layers (GDL). Given the input of a 3D microstructure of some fiber-based material, the model compresses the system of fibers in a uniaxial direction for arbitrary compression rates. The basic idea is to translate the fibers in the direction of compression according to a vector field which depends on the rate of compression and on the locations of fibers within the material. In order to apply the model to experimental 3D image data of fiber-based materials given for several compression states, an optimal vector field is estimated by simulated annealing. The model is applied to 3D image data of non-woven GDL in PEMFC gained by synchrotron tomography for different compression rates. The compression model is validated by comparing structural characteristics computed for experimentally compressed and virtually compressed microstructures, where two kinds of compression - using a flat stamp and a stamp with a flow-field profile - are applied. For both stamps types, a good agreement is found. Furthermore, the compression model is combined with a stochastic 3D microstructure model for uncompressed fiber-based materials. This allows to efficiently generate compressed fiber-based microstructures in arbitrary volumes.

  18. 3d visualization of atomistic simulations on every desktop

    NASA Astrophysics Data System (ADS)

    Peled, Dan; Silverman, Amihai; Adler, Joan

    2013-08-01

    Once upon a time, after making simulations, one had to go to a visualization center with fancy SGI machines to run a GL visualization and make a movie. More recently, OpenGL and its mesa clone have let us create 3D on simple desktops (or laptops), whether or not a Z-buffer card is present. Today, 3D a la Avatar is a commodity technique, presented in cinemas and sold for home TV. However, only a few special research centers have systems large enough for entire classes to view 3D, or special immersive facilities like visualization CAVEs or walls, and not everyone finds 3D immersion easy to view. For maximum physics with minimum effort a 3D system must come to each researcher and student. So how do we create 3D visualization cheaply on every desktop for atomistic simulations? After several months of attempts to select commodity equipment for a whole room system, we selected an approach that goes back a long time, even predating GL. The old concept of anaglyphic stereo relies on two images, slightly displaced, and viewed through colored glasses, or two squares of cellophane from a regular screen/projector or poster. We have added this capability to our AViz atomistic visualization code in its new, 6.1 version, which is RedHat, CentOS and Ubuntu compatible. Examples using data from our own research and that of other groups will be given.

  19. 3D Simulation Modeling of the Tooth Wear Process.

    PubMed

    Dai, Ning; Hu, Jian; Liu, Hao

    2015-01-01

    Severe tooth wear is the most common non-caries dental disease, and it can seriously affect oral health. Studying the tooth wear process is time-consuming and difficult, and technological tools are frequently lacking. This paper presents a novel method of digital simulation modeling that represents a new way to study tooth wear. First, a feature extraction algorithm is used to obtain anatomical feature points of the tooth without attrition. Second, after the alignment of non-attrition areas, the initial homogeneous surface is generated by means of the RBF (Radial Basic Function) implicit surface and then deformed to the final homogeneous by the contraction and bounding algorithm. Finally, the method of bilinear interpolation based on Laplacian coordinates between tooth with attrition and without attrition is used to inversely reconstruct the sequence of changes of the 3D tooth morphology during gradual tooth wear process. This method can also be used to generate a process simulation of nonlinear tooth wear by means of fitting an attrition curve to the statistical data of attrition index in a certain region. The effectiveness and efficiency of the attrition simulation algorithm are verified through experimental simulation.

  20. 3D Simulation Modeling of the Tooth Wear Process

    PubMed Central

    Dai, Ning; Hu, Jian; Liu, Hao

    2015-01-01

    Severe tooth wear is the most common non-caries dental disease, and it can seriously affect oral health. Studying the tooth wear process is time-consuming and difficult, and technological tools are frequently lacking. This paper presents a novel method of digital simulation modeling that represents a new way to study tooth wear. First, a feature extraction algorithm is used to obtain anatomical feature points of the tooth without attrition. Second, after the alignment of non-attrition areas, the initial homogeneous surface is generated by means of the RBF (Radial Basic Function) implicit surface and then deformed to the final homogeneous by the contraction and bounding algorithm. Finally, the method of bilinear interpolation based on Laplacian coordinates between tooth with attrition and without attrition is used to inversely reconstruct the sequence of changes of the 3D tooth morphology during gradual tooth wear process. This method can also be used to generate a process simulation of nonlinear tooth wear by means of fitting an attrition curve to the statistical data of attrition index in a certain region. The effectiveness and efficiency of the attrition simulation algorithm are verified through experimental simulation. PMID:26241942

  1. MPSalsa 3D Simulations of Chemically Reacting Flows

    DOE Data Explorer

    Many important scientific and engineering applications require a detailed analysis of complex systems with coupled fluid flow, thermal energy transfer, mass transfer and nonequilibrium chemical reactions. Currently, computer simulations of these complex reacting flow problems are limited to idealized systems in one or two spatial dimensions when coupled with a detailed, fundamental chemistry model. The goal of our research is to develop, analyze and implement advanced MP numerical algorithms that will allow high resolution 3D simulations with an equal emphasis on fluid flow and chemical kinetics modeling. In our research, we focus on the development of new, fully coupled, implicit solution strategies that are based on robust MP iterative solution methods (copied from http://www.cs.sandia.gov/CRF/MPSalsa/). These simulations are needed for scientific and technical areas such as: combustion research for transportation, atmospheric chemistry modeling for pollution studies, chemically reacting flow models for analysis and control of manufacturing processes, surface catalytic reactors for methane to methanol conversion and chemical vapor deposition (CVD) process modeling for production of advanced semiconductor materials (http://www.cs.sandia.gov/CRF/MPSalsa/).

    This project website provides six QuickTime videos of these simulations, along with a small image gallery and slideshow animations. A list of related publications and conference presentations is also made available.

  2. 3D scene reconstruction based on 3D laser point cloud combining UAV images

    NASA Astrophysics Data System (ADS)

    Liu, Huiyun; Yan, Yangyang; Zhang, Xitong; Wu, Zhenzhen

    2016-03-01

    It is a big challenge capturing and modeling 3D information of the built environment. A number of techniques and technologies are now in use. These include GPS, and photogrammetric application and also remote sensing applications. The experiment uses multi-source data fusion technology for 3D scene reconstruction based on the principle of 3D laser scanning technology, which uses the laser point cloud data as the basis and Digital Ortho-photo Map as an auxiliary, uses 3DsMAX software as a basic tool for building three-dimensional scene reconstruction. The article includes data acquisition, data preprocessing, 3D scene construction. The results show that the 3D scene has better truthfulness, and the accuracy of the scene meet the need of 3D scene construction.

  3. Ground Motion and Variability from 3-D Deterministic Broadband Simulations

    NASA Astrophysics Data System (ADS)

    Withers, Kyle Brett

    The accuracy of earthquake source descriptions is a major limitation in high-frequency (> 1 Hz) deterministic ground motion prediction, which is critical for performance-based design by building engineers. With the recent addition of realistic fault topography in 3D simulations of earthquake source models, ground motion can be deterministically calculated more realistically up to higher frequencies. We first introduce a technique to model frequency-dependent attenuation and compare its impact on strong ground motions recorded for the 2008 Chino Hills earthquake. Then, we model dynamic rupture propagation for both a generic strike-slip event and blind thrust scenario earthquakes matching the fault geometry of the 1994 Mw 6.7 Northridge earthquake along rough faults up to 8 Hz. We incorporate frequency-dependent attenuation via a power law above a reference frequency in the form Q0fn, with high accuracy down to Q values of 15, and include nonlinear effects via Drucker-Prager plasticity. We model the region surrounding the fault with and without small-scale medium complexity in both a 1D layered model characteristic of southern California rock and a 3D medium extracted from the SCEC CVMSi.426 including a near-surface geotechnical layer. We find that the spectral acceleration from our models are within 1-2 interevent standard deviations from recent ground motion prediction equations (GMPEs) and compare well with that of recordings from strong ground motion stations at both short and long periods. At periods shorter than 1 second, Q(f) is needed to match the decay of spectral acceleration seen in the GMPEs as a function of distance from the fault. We find that the similarity between the intraevent variability of our simulations and observations increases when small-scale heterogeneity and plasticity are included, extremely important as uncertainty in ground motion estimates dominates the overall uncertainty in seismic risk. In addition to GMPEs, we compare with simple

  4. Molecular modeling studies on series of Btk inhibitors using docking, structure-based 3D-QSAR and molecular dynamics simulation: a combined approach.

    PubMed

    Balasubramanian, Pavithra K; Balupuri, Anand; Cho, Seung Joo

    2016-03-01

    Bruton tyrosine kinase (Btk) is a non-receptor tyrosine kinase. It is a crucial component in BCR pathway and expressed only in hematopoietic cells except T cells and Natural killer cells. BTK is a promising target because of its involvement in signaling pathways and B cell diseases such as autoimmune disorders and lymphoma. In this work, a combined molecular modeling study of molecular docking, 3D-QSAR and molecular dynamic (MD) simulation were performed on a series of 2,5-diaminopyrimidine compounds as inhibitors targeting Btk kinase to understand the interaction and key residues involved in the inhibition. A structure based CoMFA (q (2) = 0.675, NOC = 5, r (2) = 0.961) and COMSIA (q (2) = 0.704, NOC = 6, r (2) = 0.962) models were developed from the conformation obtained by docking. The developed models were subjected to various validation techniques such as leave-five-out, external test set, bootstrapping, progressive sampling and rm (2) metrics and found to have a good predictive ability in both internal and external validation. Our docking results showed the important residues that interacts in the active site residues in inhibition of Btk kinase. Furthermore, molecular dynamics simulation was employed to study the stability of the docked conformation and to investigate the binding interactions in detail. The MD simulation analyses identified several important hydrogen bonds with Btk, including the gatekeeper residue Thr474 and Met477 at the hinge region. Hydrogen bond with active site residues Leu408 and Arg525 were also recognized. A good correlation between the MD results, docking studies and the contour map analysis are observed. This indicates that the developed models are reliable. Our results from this study can provide insights in the designing and development of more potent Btk kinase inhibitors.

  5. Real-time target tracking of soft tissues in 3D ultrasound images based on robust visual information and mechanical simulation.

    PubMed

    Royer, Lucas; Krupa, Alexandre; Dardenne, Guillaume; Le Bras, Anthony; Marchand, Eric; Marchal, Maud

    2017-01-01

    In this paper, we present a real-time approach that allows tracking deformable structures in 3D ultrasound sequences. Our method consists in obtaining the target displacements by combining robust dense motion estimation and mechanical model simulation. We perform evaluation of our method through simulated data, phantom data, and real-data. Results demonstrate that this novel approach has the advantage of providing correct motion estimation regarding different ultrasound shortcomings including speckle noise, large shadows and ultrasound gain variation. Furthermore, we show the good performance of our method with respect to state-of-the-art techniques by testing on the 3D databases provided by MICCAI CLUST'14 and CLUST'15 challenges.

  6. Cooperative 3D Path Optimization (C3PO) Simulation

    DTIC Science & Technology

    2015-11-10

    knowledge, the group would elect a leader, plan a path using Rapidly-Exploring Random Trees (RRTs), and move to the goal using Artificial Potential...Exploring Random Trees (RRTs), and move to the goal using Artificial Potential Field. The simulation was created in the MASON multi-agent simulation...affect the ability to plan paths quickly. 15. SUBJECT TERMS Cooperative 3D Path Optimization Planning dimension swarm RRT artificial potential field

  7. 3-D General Relativistic MHD Simulations of Generating Jets

    NASA Astrophysics Data System (ADS)

    Nishikawa, K.-I.; Koide, S.; Shibata, K.; Kudoh, T.; Frank, J.; Sol, H.

    1999-05-01

    Koide et al have investigated the dynamics of an accretion disk initially threaded by a uniform poloidal magnetic field in a non-rotating corona (either in a steady-state infalling state or in hydrostatic equilibrium) around a non-rotating black hole using a 3-D GRMHD with the ``axisymmetry'' along the z-direction. Magnetic field is tightly twisted by the rotation of the disk, and plasmas in the shocked region of the disk are accelerated by J x B force to form bipolar relativistic jets. In order to investigate variabilities of generated relativistic jets and magnetic field structure inside jets, we have performed calculations using the 3-D GRMHD code on a full 3-dimensional system. We will investigate how the third dimension affects the global disk dynamics. 3-D RMHD simulations wil be also performed to investigate the dynamics of a jet with a helical mangetic field in it.

  8. VISRAD, 3-D Target Design and Radiation Simulation Code

    NASA Astrophysics Data System (ADS)

    Golovkin, Igor; Macfarlane, Joseph; Golovkina, Viktoriya

    2016-10-01

    The 3-D view factor code VISRAD is widely used in designing HEDP experiments at major laser and pulsed-power facilities, including NIF, OMEGA, OMEGA-EP, ORION, LMJ, Z, and PLX. It simulates target designs by generating a 3-D grid of surface elements, utilizing a variety of 3-D primitives and surface removal algorithms, and can be used to compute the radiation flux throughout the surface element grid by computing element-to-element view factors and solving power balance equations. Target set-up and beam pointing are facilitated by allowing users to specify positions and angular orientations using a variety of coordinates systems (e.g., that of any laser beam, target component, or diagnostic port). Analytic modeling for laser beam spatial profiles for OMEGA DPPs and NIF CPPs is used to compute laser intensity profiles throughout the grid of surface elements. We will discuss recent improvements to the software package and plans for future developments.

  9. 3D mapping and simulation of Geneva Lake environmental data

    NASA Astrophysics Data System (ADS)

    Villard, Roch; Maignan, Michel; Kanevski, Mikhail; Rapin, Francois; Klein, Audrey

    2010-05-01

    The Geneva Lake is the biggest alpine and subalpine lake in central Europe. The depth of this lake is 309 meters and its total volume of water is 89 billions m3. It takes, on average, around twelve years so that waters of the lake are completely brewed. Furthermore the Geneva lake waters are rich in dissolved substances as carbonate, sulfate. The quantity of particles in suspension in the lake, which mainly arrived from the Rhône, is nowadays around height million of tones. The International Commission for the Leman Lake (CIPEL) works about the improvement of the quality of this lake since 1962. In the present study three dimensional environmental data (temperature, oxygen and nitrate) which cover the period from 1954 to 2008, for a total of 27'500 cases are investigated. We are interested to study the evolution of the temperature of the lake because there is an impact on the reproduction of fishes and also because the winter brewing of the water makes the re-oxygenation of deep-water. In order that biological balance is maintained in a lake, there must be enough oxygen in the water. Moreover, we work on nitrate distribution and evolution because contributions in fertilizers cause eutrophication of lake. The data are very numerous when we consider the time series, some of them with more than 300 occurrences, but there are between 2 and 15 data available for spatial cartography. The basic methodology used for the analysis, mapping and simulations of 3D patterns of environmental data is based on geostatistical predictions (family of kriging models) and conditional stochastic simulations. Spatial and temporal variability, 3D monitoring networks changing over time, make this study challenging. An important problem is also to make interpolation/simulations over a long period of time, like ten years. One way used to overcome this problem, consists in using a weighted average of ten variograms during this period. 3D mapping was carried out using environment data for

  10. Using Averaging-Based Factorization to Compare Seismic Hazard Models Derived from 3D Earthquake Simulations with NGA Ground Motion Prediction Equations

    NASA Astrophysics Data System (ADS)

    Wang, F.; Jordan, T. H.

    2012-12-01

    Seismic hazard models based on empirical ground motion prediction equations (GMPEs) employ a model-based factorization to account for source, propagation, and path effects. An alternative is to simulate these effects directly using earthquake source models combined with three-dimensional (3D) models of Earth structure. We have developed an averaging-based factorization (ABF) scheme that facilitates the geographically explicit comparison of these two types of seismic hazard models. For any fault source k with epicentral position x, slip spatial and temporal distribution f, and moment magnitude m, we calculate the excitation functions G(s, k, x, m, f) for sites s in a geographical region R, such as 5% damped spectral acceleration at a particular period. Through a sequence of weighted-averaging and normalization operations following a certain hierarchy over f, m, x, k, and s, we uniquely factorize G(s, k, x, m, f) into six components: A, B(s), C(s, k), D(s, k, x), E(s, k, x, m), and F(s, k, x, m, f). Factors for a target model can be divided by those of a reference model to obtain six corresponding factor ratios, or residual factors: a, b(s), c(s, k), d(s, k, x), e(s, k, x, m), and f(s, k, x, m, f). We show that these residual factors characterize differences in basin effects primarily through b(s), distance scaling primarily through c(s, k), and source directivity primarily through d(s, k, x). We illustrate the ABF scheme by comparing CyberShake Hazard Model (CSHM) for the Los Angeles region (Graves et. al. 2010) with the Next Generation Attenuation (NGA) GMPEs modified according to the directivity relations of Spudich and Chiou (2008). Relative to CSHM, all NGA models underestimate the directivity and basin effects. In particular, the NGA models do not account for the coupling between source directivity and basin excitation that substantially enhance the low-frequency seismic hazards in the sedimentary basins of the Los Angeles region. Assuming Cyber

  11. The 3D visualization technology research of submarine pipeline based Horde3D GameEngine

    NASA Astrophysics Data System (ADS)

    Yao, Guanghui; Ma, Xiushui; Chen, Genlang; Ye, Lingjian

    2013-10-01

    With the development of 3D display and virtual reality technology, its application gets more and more widespread. This paper applies 3D display technology to the monitoring of submarine pipeline. We reconstruct the submarine pipeline and its surrounding submarine terrain in computer using Horde3D graphics rendering engine on the foundation database "submarine pipeline and relative landforms landscape synthesis database" so as to display the virtual scene of submarine pipeline based virtual reality and show the relevant data collected from the monitoring of submarine pipeline.

  12. 3D simulation of coaxial carbon nanotube field effect transistor

    NASA Astrophysics Data System (ADS)

    Hien, Dinh Sy; Thi Luong, Nguyen; Tuan, Thi Tran Anh; Viet Nga, Dinh

    2009-09-01

    We provide a model of coaxial CNTFET geometry. Coaxial devices are of special interest because their geometry allows for better electrostatics. We explore the possibilities of using non-equilibrium Green's function method to get I-V characteristics for CNTFETs. This simulator also includes a graphic user interface (GUI) of Matlab. We review the capabilities of the simulator, and give examples of typical CNTFET's 3D simulations (current-voltage characteristics are a function of parameters such as the length of CNTFET, gate thickness and temperature). The obtained I-V characteristics of the CNTFET are also presented by analytical equations.

  13. Computer-based vertebral tumor cryoablation planning and procedure simulation involving two cases using MRI-visible 3D printing and advanced visualization

    PubMed Central

    Guenette, Jeffrey P.; Himes, Nathan; Giannopoulos, Andreas A.; Kelil, Tatiana; Mitsouras, Dimitris; Lee, Thomas C.

    2016-01-01

    We report the development and use of MRI-compatible and MRI-visible 3D printed models in conjunction with advanced visualization software models to plan and simulate safe access routes to achieve a theoretical zone of cryoablation for percutaneous image-guided treatment of a C7 pedicle osteoid osteoma and an L1 lamina osteoblastoma. Both models altered procedural planning and patient care. Patient-specific MRI-visible models can be helpful in planning complex percutaneous image-guided cryoablation procedures. PMID:27505064

  14. Parallel Cartesian grid refinement for 3D complex flow simulations

    NASA Astrophysics Data System (ADS)

    Angelidis, Dionysios; Sotiropoulos, Fotis

    2013-11-01

    A second order accurate method for discretizing the Navier-Stokes equations on 3D unstructured Cartesian grids is presented. Although the grid generator is based on the oct-tree hierarchical method, fully unstructured data-structure is adopted enabling robust calculations for incompressible flows, avoiding both the need of synchronization of the solution between different levels of refinement and usage of prolongation/restriction operators. The current solver implements a hybrid staggered/non-staggered grid layout, employing the implicit fractional step method to satisfy the continuity equation. The pressure-Poisson equation is discretized by using a novel second order fully implicit scheme for unstructured Cartesian grids and solved using an efficient Krylov subspace solver. The momentum equation is also discretized with second order accuracy and the high performance Newton-Krylov method is used for integrating them in time. Neumann and Dirichlet conditions are used to validate the Poisson solver against analytical functions and grid refinement results to a significant reduction of the solution error. The effectiveness of the fractional step method results in the stability of the overall algorithm and enables the performance of accurate multi-resolution real life simulations. This material is based upon work supported by the Department of Energy under Award Number DE-EE0005482.

  15. XFEM-Based CZM for the Simulation of 3D Multiple-Cluster Hydraulic Fracturing in Quasi-Brittle Shale Formations

    NASA Astrophysics Data System (ADS)

    Haddad, Mahdi; Sepehrnoori, Kamy

    2016-12-01

    The cohesive zone model (CZM) honors the softening effects and plastic zone at the fracture tip in a quasi-brittle rock, e.g., shale, which results in a more precise fracture geometry and pumping pressure compared to those from linear elastic fracture mechanics. Nevertheless, this model, namely the planar CZM, assumes a predefined surface on which the fractures propagate and therefore restricts the fracture propagation direction. Notably, this direction depends on the stress interactions between closely spaced fractures and can be acquired by integrating CZM as the segmental contact interaction model with a fully coupled pore pressure-displacement model based on extended finite element method (XFEM). This integrated model, called XFEM-based CZM, simulates the fracture initiation and propagation along an arbitrary, solution-dependent path. In this work, we modeled a single stage of 3D hydraulic fracturing initiating from three perforation clusters in a single-layer, quasi-brittle shale formation using planar CZM and XFEM-based CZM including slit flow and poroelasticity for fracture and matrix spaces, respectively, in Abaqus. We restricted the XFEM enrichment zones to the stimulation regions as enriching the whole domain leads to extremely high computational expenses and unrealistic fracture growths around sharp edges. Moreover, we validated our numerical technique by comparing the solution for a single fracture with KGD solution and demonstrated several precautionary measures in using XFEM in Abaqus for faster solution convergence, for instance the initial fracture length and mesh refinement. We demonstrated the significance of the injection rate and stress contrast in fracture aperture, injection pressure, and the propagation direction. Moreover, we showed the effect of the stress distribution on fracture propagation direction comparing the triple-cluster fracturing results from planar CZM with those from XFEM-based CZM. We found that the stress shadowing effect of

  16. Comparative visual analysis of 3D urban wind simulations

    NASA Astrophysics Data System (ADS)

    Röber, Niklas; Salim, Mohamed; Grawe, David; Leitl, Bernd; Böttinger, Michael; Schlünzen, Heinke

    2016-04-01

    Climate simulations are conducted in large quantity for a variety of different applications. Many of these simulations focus on global developments and study the Earth's climate system using a coupled atmosphere ocean model. Other simulations are performed on much smaller regional scales, to study very small fine grained climatic effects. These microscale climate simulations pose similar, yet also different, challenges for the visualization and the analysis of the simulation data. Modern interactive visualization and data analysis techniques are very powerful tools to assist the researcher in answering and communicating complex research questions. This presentation discusses comparative visualization for several different wind simulations, which were created using the microscale climate model MITRAS. The simulations differ in wind direction and speed, but are all centered on the same simulation domain: An area of Hamburg-Wilhelmsburg that hosted the IGA/IBA exhibition in 2013. The experiments contain a scenario case to analyze the effects of single buildings, as well as examine the impact of the Coriolis force within the simulation. The scenario case is additionally compared with real measurements from a wind tunnel experiment to ascertain the accuracy of the simulation and the model itself. We also compare different approaches for tree modeling and evaluate the stability of the model. In this presentation, we describe not only our workflow to efficiently and effectively visualize microscale climate simulation data using common 3D visualization and data analysis techniques, but also discuss how to compare variations of a simulation and how to highlight the subtle differences in between them. For the visualizations we use a range of different 3D tools that feature techniques for statistical data analysis, data selection, as well as linking and brushing.

  17. Pattern based 3D image Steganography

    NASA Astrophysics Data System (ADS)

    Thiyagarajan, P.; Natarajan, V.; Aghila, G.; Prasanna Venkatesan, V.; Anitha, R.

    2013-03-01

    This paper proposes a new high capacity Steganographic scheme using 3D geometric models. The novel algorithm re-triangulates a part of a triangle mesh and embeds the secret information into newly added position of triangle meshes. Up to nine bits of secret data can be embedded into vertices of a triangle without causing any changes in the visual quality and the geometric properties of the cover image. Experimental results show that the proposed algorithm is secure, with high capacity and low distortion rate. Our algorithm also resists against uniform affine transformations such as cropping, rotation and scaling. Also, the performance of the method is compared with other existing 3D Steganography algorithms. [Figure not available: see fulltext.

  18. Implementation of virtual models from sheet metal forming simulation into physical 3D colour models using 3D printing

    NASA Astrophysics Data System (ADS)

    Junk, S.

    2016-08-01

    Today the methods of numerical simulation of sheet metal forming offer a great diversity of possibilities for optimization in product development and in process design. However, the results from simulation are only available as virtual models. Because there are any forming tools available during the early stages of product development, physical models that could serve to represent the virtual results are therefore lacking. Physical 3D-models can be created using 3D-printing and serve as an illustration and present a better understanding of the simulation results. In this way, the results from the simulation can be made more “comprehensible” within a development team. This paper presents the possibilities of 3D-colour printing with particular consideration of the requirements regarding the implementation of sheet metal forming simulation. Using concrete examples of sheet metal forming, the manufacturing of 3D colour models will be expounded upon on the basis of simulation results.

  19. 3-D Particle Simulation of Current Sheet Instabilities

    NASA Astrophysics Data System (ADS)

    Wang, Zhenyu; Lin, Yu; Wang, Xueyi; Tummel, Kurt; Chen, Liu

    2015-11-01

    The electrostatic (ES) and electromagnetic (EM) instabilities of a Harris current sheet are investigated using a 3-D linearized (δf) gyrokinetic (GK) electron and fully kinetic (FK) ion (GeFi) particle simulation code. The equilibrium magnetic field consists of an asymptotic anti-parallel Bx 0 and a guide field BG. The ES simulations show the excitation of lower-hybrid drift instability (LHDI) at the current sheet edge. The growth rate of the 3-D LHDI is scanned through the (kx ,ky) space. The most unstable modes are found to be at k∥ = 0 for smaller ky. As ky increases, the growth rate shows two peaks at k∥ ≠ 0 , consistent with analytical GK theory. The eigenmode structure and growth rate of LHDI obtained from the GeFi simulation agree well with those obtained from the FK PIC simulation. Decreasing BG, the asymptotic βe 0, or background density can destabilize the LHDI. In the EM simulation, tearing mode instability is dominant in the cases with ky kx , there exist two unstable modes: a kink-like (LHDI) mode at the current sheet edge and a sausage-like mode at the sheet center. The results are compared with the GK eigenmode theory and the FK simulation.

  20. XFEM-Based CZM for the Simulation of 3D Multiple-Stage Hydraulic Fracturing in Quasi-brittle Shale Formations

    NASA Astrophysics Data System (ADS)

    Haddad, M.; Sepehrnoori, K.

    2015-12-01

    The Cohesive Zone Model (CZM) engages the plastic zone and softening effects at the fracture tip in a quasi-brittle rock, e.g. shale, which concludes a more precise fracture geometry and pumping pressure compared to those from Linear Elastic Fracture Mechanics. Nevertheless, this model, namely planar CZM, assumes a predefined surface on which the fractures propagate and therefore, restricts the fracture propagation direction. Notably, this direction depends on the stress interactions between closely spaced fractures and can be acquired integrating CZM as the segmental contact interaction model with a fully coupled pore pressure-displacement, extended finite element model (XFEM). This later model simulates the fracture initiation and propagation along an arbitrary, solution-dependent path. In this work, we modeled double- and triple-cluster 3D hydraulic fracturing in a single-layer, quasi-brittle shale formation using planar CZM and XFEM-based CZM including slit flow and poro-elasticity for fracture and matrix spaces, respectively, in Abaqus. Our fully-coupled pore pressure-stress Geomechanics model includes leak-off as a continuum-based fluid flow component coupled with the other unknowns in the problem. Having compared the triple-cluster fracturing results from planar CZM with those from XFEM-based CZM, we found that the stress shadowing effect of multiple hydraulic fractures on each other can cause these fractures to rationally propagate out of plane; this also demonstrates the advantages of the second method compared to the first one. We investigated the effect of this arbitrary propagation direction on not only the fractures' length, aperture, and the required injection pressure, but also fractures' connection to the wellbore. Depending on the spacing and the number of clusters per stage, this connection can be gradually disrupted with time due to the near-wellbore fracture closure which may embed proppant particles on the fracture wall, or screen out the

  1. An efficient and robust 3D mesh compression based on 3D watermarking and wavelet transform

    NASA Astrophysics Data System (ADS)

    Zagrouba, Ezzeddine; Ben Jabra, Saoussen; Didi, Yosra

    2011-06-01

    The compression and watermarking of 3D meshes are very important in many areas of activity including digital cinematography, virtual reality as well as CAD design. However, most studies on 3D watermarking and 3D compression are done independently. To verify a good trade-off between protection and a fast transfer of 3D meshes, this paper proposes a new approach which combines 3D mesh compression with mesh watermarking. This combination is based on a wavelet transformation. In fact, the used compression method is decomposed to two stages: geometric encoding and topologic encoding. The proposed approach consists to insert a signature between these two stages. First, the wavelet transformation is applied to the original mesh to obtain two components: wavelets coefficients and a coarse mesh. Then, the geometric encoding is done on these two components. The obtained coarse mesh will be marked using a robust mesh watermarking scheme. This insertion into coarse mesh allows obtaining high robustness to several attacks. Finally, the topologic encoding is applied to the marked coarse mesh to obtain the compressed mesh. The combination of compression and watermarking permits to detect the presence of signature after a compression of the marked mesh. In plus, it allows transferring protected 3D meshes with the minimum size. The experiments and evaluations show that the proposed approach presents efficient results in terms of compression gain, invisibility and robustness of the signature against of many attacks.

  2. 3D Numerical Simulations of the Breakout Model

    NASA Astrophysics Data System (ADS)

    Choe, G. S.; Cheng, C. Z.; Lee, J.; Lynch, B. J.; Antiochos, S. K.; DeVore, C. R.; Zurbuchen, T. H.

    2005-05-01

    We present the continuing progress of the numerical simulations of the breakout model for coronal mass ejection initiation. To validate the 3D spherical ARMS code we have run the 2.5D breakout problem and compare the eruption to the published 2D results. The ARMS 2.5D CME also forms a large magnetic island ahead of the erupting plasmoid due to the code's excellent maintenance of equatorial symmetry. Progress on the fully 3D breakout problem is also discussed. To build up enough magnetic free energy for an eruption the active region field must be strong with a steep gradient near the polarity inversion line and the shear must be highly concentrated there. This requires adaptive griding techniques. In the current simulation, the active region to background field ratio is 20-to-1 and the neutral line is long compared to the active region width. We present the evolution of this topology under Br-conserving shearing flow and discuss implications for a 3D eruption. This work is supported by NASA and ONR. BJL is supported by NASA GSRP grant NGT5-50453.

  3. 3D EFT imaging with planar electrode array: Numerical simulation

    NASA Astrophysics Data System (ADS)

    Tuykin, T.; Korjenevsky, A.

    2010-04-01

    Electric field tomography (EFT) is the new modality of the quasistatic electromagnetic sounding of conductive media recently investigated theoretically and realized experimentally. The demonstrated results pertain to 2D imaging with circular or linear arrays of electrodes (and the linear array provides quite poor quality of imaging). In many applications 3D imaging is essential or can increase value of the investigation significantly. In this report we present the first results of numerical simulation of the EFT imaging system with planar array of electrodes which allows 3D visualization of the subsurface conductivity distribution. The geometry of the system is similar to the geometry of our EIT breast imaging system providing 3D conductivity imaging in form of cross-sections set with different depth from the surface. The EFT principle of operation and reconstruction approach differs from the EIT system significantly. So the results of numerical simulation are important to estimate if comparable quality of imaging is possible with the new contactless method. The EFT forward problem is solved using finite difference time domain (FDTD) method for the 8×8 square electrodes array. The calculated results of measurements are used then to reconstruct conductivity distributions by the filtered backprojections along electric field lines. The reconstructed images of the simple test objects are presented.

  4. Computational issues connected with 3D N-body simulations

    NASA Astrophysics Data System (ADS)

    Pfenniger, D.; Friedli, D.

    1993-03-01

    Computational problems related to modeling gravitational systems, and running and analyzing 3D N-body models are discussed. N-body simulations using Particle-Mesh techniques with polar grids are especially well-suited, and physically justified, when studying quiet evolutionary processes in disk galaxies. This technique allows large N, high central resolution, and is still the fastest one. Regardless of the method chosen to compute gravitation, softening is a compromise between HF amplification and resolution. Softened spherical and ellipsoidal kernels with variable resolution are set up. Detailed characteristics of the 3D polar grid, tests, code performances, and vectorization rates are also given. For integrating motion in rotating coordinates, a stable symplectic extension of the leap-frog algorithm is described. The technique used to search for periodic orbits in arbitrary N-body potentials and to determine their stability is explained.

  5. 3-D General Relativistic MHD Simulations of Generating Jets

    NASA Astrophysics Data System (ADS)

    Nishikawa, K.-I.; Koide, S.; Shibata, K.; Kudoh, T.; Sol, H.; Hughes, J. P.

    2001-12-01

    We have investigated the dynamics of an accretion disk around Schwarzschild black holes initially threaded by a uniform poloidal magnetic field in a non-rotating corona (either in a steady-state infalling state) around a non-rotating black hole using a 3-D GRMHD with the ``axisymmetry'' along the z-direction. Magnetic field is tightly twisted by the rotation of the disk, and plasmas in the shocked region of the disk are accelerated by J x B force to form bipolar relativistic jets. In order to investigate variabilities of generated relativistic jets and magnetic field structure inside jets, we have performed calculations using the 3-D GRMHD code with a full 3-dimensional system without the axisymmetry. We have investigated how the third dimension affects the global disk dynamics and jet generation. We will perform simulations with various incoming flows from an accompanying star.

  6. Jet Formation with 3-D General Relativistic MHD Simulations

    NASA Astrophysics Data System (ADS)

    Richardson, G. A.; Nishikawa, K.-I.; Preece, R.; Hardee, P.; Koide, S.; Shibata, K.; Kudoh, T.; Sol, H.; Hughes, J. P.; Fishman, J.

    2002-12-01

    We have investigated the dynamics of an accretion disk around Schwarzschild black holes initially threaded by a uniform poloidal magnetic field in a non-rotating corona (in a steady-state infalling state) around a non-rotating black hole using 3-D GRMHD with the ``axisymmetry'' along the z-direction. The magnetic field is tightly twisted by the rotation of the accretion disk, and plasmas in the shocked region of the disk are accelerated by the J x B force to form bipolar relativistic jets. In order to investigate variabilities of generated relativistic jets and the magnetic field structure inside jets, we have performed calculations using the 3-D GRMHD code with a full 3-dimensional system without the axisymmetry. We have investigated how the third dimension affects the global disk dynamics and jet generation. We will perform simulations with various incoming flows from an accompanying star.

  7. 3-D General Relativistic MHD Simulations of Generating Jets

    NASA Astrophysics Data System (ADS)

    Nishikawa, Ken-Ichi; Koide, Shinji; Shibata, Kazunari; Kudoh, Takashiro; Sol, Helene; Hughes, John

    2002-04-01

    We have investigated the dynamics of an accretion disk around Schwarzschild black holes initially threaded by a uniform poloidal magnetic field in a non-rotating corona (either in a steady-state infalling state) around a non-rotating black hole using a 3-D GRMHD with the ``axisymmetry'' along the z-direction. Magnetic field is tightly twisted by the rotation of the disk, and plasmas in the shocked region of the disk are accelerated by J × B force to form bipolar relativistic jets. In order to investigate variabilities of generated relativistic jets and magnetic field structure inside jets, we have performed calculations using the 3-D GRMHD code with a full 3-dimensional system without the axisymmetry. We have investigated how the third dimension affects the global disk dynamics and jet generation. We will perform simulations with various incoming flows from an accompanying star.

  8. Virtual environment display for a 3D audio room simulation

    NASA Technical Reports Server (NTRS)

    Chapin, William L.; Foster, Scott H.

    1992-01-01

    The development of a virtual environment simulation system integrating a 3D acoustic audio model with an immersive 3D visual scene is discussed. The system complements the acoustic model and is specified to: allow the listener to freely move about the space, a room of manipulable size, shape, and audio character, while interactively relocating the sound sources; reinforce the listener's feeling of telepresence in the acoustical environment with visual and proprioceptive sensations; enhance the audio with the graphic and interactive components, rather than overwhelm or reduce it; and serve as a research testbed and technology transfer demonstration. The hardware/software design of two demonstration systems, one installed and one portable, are discussed through the development of four iterative configurations.

  9. 3-D numerical simulations of volcanic ash transport and deposition

    NASA Astrophysics Data System (ADS)

    Suzuki, Y. J.; Koyaguchi, T.

    2012-12-01

    During an explosive volcanic eruption, volcanic gas and pyroclasts are ejected from the volcanic vent. The pyroclasts are carried up within a convective plume, advected by the surrounding wind field, and sediment on the ground depending on their terminal velocity. The fine ash are expected to have atmospheric residence, whereas the coarser particles form fall deposits. Accurate modeling of particle transport and deposition is of critical importance from the viewpoint of disaster prevention. Previously, some particle-tracking models (e.g., PUFF) and advection-diffusion models (e.g., TEPHRA2 and FALL3D) tried to forecast particle concentration in the atmosphere and particle loading at ground level. However, these models assumed source conditions (the grain-size distribution, plume height, and mass release location) based on the simple 1-D model of convective plume. In this study, we aim to develop a new 3-D model which reproduces both of the dynamics of convective plume and the ash transport. The model is designed to describe the injection of eruption cloud and marker particles from a circular vent above a flat surface into the stratified atmosphere. Because the advection is the predominant mechanism of particle transport near the volcano, the diffusive process is not taken into account in this model. The distribution of wind velocity is given as an initial condition. The model of the eruption cloud dynamics is based on the 3-D time-dependent model of Suzuki et al. (2005). We apply a pseudo-gas model to calculate the eruption cloud dynamics: the effect of particle separation on the cloud dynamics is not considered. In order to reproduce the drastic change of eruption cloud density, we change the effective gas constant and heat capacity of the mixture in the equation of state for ideal gases with the mixing ratio between the ejected material and entrained air. In order to calculate the location and movement of ash particles, the present model employs Lagrangian marker

  10. The Effects of 3D Computer Simulation on Biology Students' Achievement and Memory Retention

    ERIC Educational Resources Information Center

    Elangovan, Tavasuria; Ismail, Zurida

    2014-01-01

    A quasi experimental study was conducted for six weeks to determine the effectiveness of two different 3D computer simulation based teaching methods, that is, realistic simulation and non-realistic simulation on Form Four Biology students' achievement and memory retention in Perak, Malaysia. A sample of 136 Form Four Biology students in Perak,…

  11. 3D-CANVENT: An interactive mine ventilation simulator

    SciTech Connect

    Hardcastle, S.G.

    1995-12-31

    3D-CANVENT is a software package that integrates advanced computer aided design (ACAD) true 3D graphics with a mine ventilation simulator. The package runs as a Windows{trademark} application to access its printer drivers environment and does not need third party CAD software. It is composed of two primary modules: DMVENT and MINEDESIGNER. DMVENT is a traditional Fortran coded Hardy-Cross iterative ventilation network solver written in 1980 with thermodynamic capabilities. This module is relatively unchanged with the traditional data input options for branch type, specified or calculated resistances, fixed flows, and fixed or variable pressure fans. MINEDESIGNER is the graphics engine that optimizes the ventilation design process. It performs the front-end transformation of input data entered in the graphical interface into the correct format for the solver. At the back-end it reconverts the historically standard tabular data output from the solver into an easily viewed graphical format. ACAD features of MINEDESIGNER are used to generate a 3D wire-frame node and branch network of the mine`s ventilation system. The network can be displayed in up to 4 views orientated to XYZ planes or a 3D view. AU the views have zoom, pan, slice and rotate options. The graphical interface efficiently permits data entry and editing via a mouse with pick-and-point item selection. Branches can be found or added with {open_quotes}search{close_quotes} and {open_quotes}join{close_quotes} options. Visual interpretation is enhanced by the 16 colour options for branches and numerous graphical attributes. Network locations are readily identified by alpha-numeric names for branches, junctions and fans, and also the logical numbering of junctions. The program is also readily expandable for pollutant simulation and control/monitoring applications.

  12. 3D simulations of multipacting in the 56 MHz SRF cavity

    SciTech Connect

    Wu Q.; Belomestnykh, S.; Ge, L.; Ko, K.; Li, Z.; Ng, C.; Xiao, L.

    2012-05-20

    The 56 MHz SRF Quarter-Wave Resonator (QWR) is designed for RHIC as a storage cavity to improve the collider performance. 2D multipacting simulation has been done for the cavity alone. Ripples were added to the outer body of the cavity for multipacting suppression based on the simulation findings. During operation, there will be four higher order mode (HOM) couplers. All of these components will be exposed to high RF fields. In this paper we compare 2D and 3D codes simulation results for multipacting in the cavity. We also report 3D simulation results for multipacting simulation at the couplers.

  13. Using Delft3D to Simulate Current Energy Conversion

    NASA Astrophysics Data System (ADS)

    James, S. C.; Chartrand, C.; Roberts, J.

    2015-12-01

    As public concern with renewable energy increases, current energy conversion (CEC) technology is being developed to optimize energy output and minimize environmental impact. CEC turbines generate energy from tidal and current systems and create wakes that interact with turbines located downstream of a device. The placement of devices can greatly influence power generation and structural reliability. CECs can also alter the ecosystem process surrounding the turbines, such as flow regimes, sediment dynamics, and water quality. Software is needed to investigate specific CEC sites to simulate power generation and hydrodynamic responses of a flow through a CEC turbine array. This work validates Delft3D against several flume experiments by simulating the power generation and hydrodynamic response of flow through a turbine or actuator disc(s). Model parameters are then calibrated against these data sets to reproduce momentum removal and wake recovery data with 3-D flow simulations. Simulated wake profiles and turbulence intensities compare favorably to the experimental data and demonstrate the utility and accuracy of a fast-running tool for future siting and analysis of CEC arrays in complex domains.

  14. Reconstruction and 3D visualisation based on objective real 3D based documentation.

    PubMed

    Bolliger, Michael J; Buck, Ursula; Thali, Michael J; Bolliger, Stephan A

    2012-09-01

    Reconstructions based directly upon forensic evidence alone are called primary information. Historically this consists of documentation of findings by verbal protocols, photographs and other visual means. Currently modern imaging techniques such as 3D surface scanning and radiological methods (computer tomography, magnetic resonance imaging) are also applied. Secondary interpretation is based on facts and the examiner's experience. Usually such reconstructive expertises are given in written form, and are often enhanced by sketches. However, narrative interpretations can, especially in complex courses of action, be difficult to present and can be misunderstood. In this report we demonstrate the use of graphic reconstruction of secondary interpretation with supporting pictorial evidence, applying digital visualisation (using 'Poser') or scientific animation (using '3D Studio Max', 'Maya') and present methods of clearly distinguishing between factual documentation and examiners' interpretation based on three cases. The first case involved a pedestrian who was initially struck by a car on a motorway and was then run over by a second car. The second case involved a suicidal gunshot to the head with a rifle, in which the trigger was pushed with a rod. The third case dealt with a collision between two motorcycles. Pictorial reconstruction of the secondary interpretation of these cases has several advantages. The images enable an immediate overview, give rise to enhanced clarity, and compel the examiner to look at all details if he or she is to create a complete image.

  15. A flexible fast 3D profilometry based on modulation measurement

    NASA Astrophysics Data System (ADS)

    Dou, Yunfu; Su, Xianyu; Chen, Yanfei; Wang, Ying

    2011-03-01

    This paper proposes a flexible fast profilometry based on modulation measurement. Two orthogonal gratings through a beam splitter are vertically projected on an object surface, and the measured object is placed between the imaging planes of the two gratings. Then the image of the object surface modulated by the orthogonal gratings can be obtained by a CCD camera in the same direction as the grating projection. This image is processed by the operations consisting of performing the Fourier transform, spatial frequency filtering and inverse Fourier transform. Using the modulation distributions of two grating patterns, we can reconstruct the 3D shape of the object. In the measurement process, we only need to capture one fringe pattern, so it is faster than the MMP and remains the advantages of it. In the article, the principle of this method, the setup of the measurement system, some simulations and primary experiment results are given. The simulative and experimental result proves it can restore the 3D shape of the complex object fast and comparatively accurate. Because only one fringe pattern is needed in the testing, our method has a promising extensive application prospect in real-time acquiring and dynamic measurement of 3D data of complex objects.

  16. Molecular Modeling Studies of 11β-Hydroxysteroid Dehydrogenase Type 1 Inhibitors through Receptor-Based 3D-QSAR and Molecular Dynamics Simulations.

    PubMed

    Qian, Haiyan; Chen, Jiongjiong; Pan, Youlu; Chen, Jianzhong

    2016-09-19

    11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1) is a potential target for the treatment of numerous human disorders, such as diabetes, obesity, and metabolic syndrome. In this work, molecular modeling studies combining molecular docking, 3D-QSAR, MESP, MD simulations and free energy calculations were performed on pyridine amides and 1,2,4-triazolopyridines as 11β-HSD1 inhibitors to explore structure-activity relationships and structural requirement for the inhibitory activity. 3D-QSAR models, including CoMFA and CoMSIA, were developed from the conformations obtained by docking strategy. The derived pharmacophoric features were further supported by MESP and Mulliken charge analyses using density functional theory. In addition, MD simulations and free energy calculations were employed to determine the detailed binding process and to compare the binding modes of inhibitors with different bioactivities. The binding free energies calculated by MM/PBSA showed a good correlation with the experimental biological activities. Free energy analyses and per-residue energy decomposition indicated the van der Waals interaction would be the major driving force for the interactions between an inhibitor and 11β-HSD1. These unified results may provide that hydrogen bond interactions with Ser170 and Tyr183 are favorable for enhancing activity. Thr124, Ser170, Tyr177, Tyr183, Val227, and Val231 are the key amino acid residues in the binding pocket. The obtained results are expected to be valuable for the rational design of novel potent 11β-HSD1 inhibitors.

  17. Dynamic simulation and modeling of the motion modes produced during the 3D controlled manipulation of biological micro/nanoparticles based on the AFM.

    PubMed

    Saraee, Mahdieh B; Korayem, Moharam H

    2015-08-07

    Determining the motion modes and the exact position of a particle displaced during the manipulation process is of special importance. This issue becomes even more important when the studied particles are biological micro/nanoparticles and the goals of manipulation are the transfer of these particles within body cells, repair of cancerous cells and the delivery of medication to damaged cells. However, due to the delicate nature of biological nanoparticles and their higher vulnerability, by obtaining the necessary force of manipulation for the considered motion mode, we can prevent the sample from interlocking with or sticking to the substrate because of applying a weak force or avoid damaging the sample due to the exertion of excessive force. In this paper, the dynamic behaviors and the motion modes of biological micro/nanoparticles such as DNA, yeast, platelet and bacteria due to the 3D manipulation effect have been investigated. Since the above nanoparticles generally have a cylindrical shape, the cylindrical contact models have been employed in an attempt to more precisely model the forces exerted on the nanoparticle during the manipulation process. Also, this investigation has performed a comprehensive modeling and simulation of all the possible motion modes in 3D manipulation by taking into account the eccentricity of the applied load on the biological nanoparticle. The obtained results indicate that unlike the macroscopic scale, the sliding of nanoparticle on substrate in nano-scale takes place sooner than the other motion modes and that the spinning about the vertical and transverse axes and the rolling of nanoparticle occur later than the other motion modes. The simulation results also indicate that the applied force necessary for the onset of nanoparticle movement and the resulting motion mode depend on the size and aspect ratio of the nanoparticle.

  18. Development of a 3D particle treecode for plasma simulations

    NASA Astrophysics Data System (ADS)

    Ong, Benjamin; Christlieb, Andrew; Krasny, Robert

    2008-11-01

    In this work we present a fully 3-D Boundary Integral Treecode (BIT). We apply the method to several classic problems such as sheath formation and 3D simulations of a Penning trap. In addition, we investigate the ability of the solver to naturally capture Coloumb scattering. A key point in the investigation is to understand the effect of different types of regularizations, and how to appropriately incorporate the regularization in the BIT framework. This work builds on substantial efforts in 1- and 2-D. [1] R. Krasny and K. Lindsay, A particle method and adaptive treecode for vortex sheet motion in 3-D flow, JCP, Vol. 172, No. 2, 879-907 [2] K. Matyash, R. Schneider, R. Sydora, and F. Taccogna, Application of a Grid-Free Kinetic Model to the Collisionless Sheath, Contrib. Plasma Phys, Vol. 48, No. 1-3, 116-120 (2008) [3] K. Cartwright and A. Christlieb, Boundary Integral Corrected Particle in Cell, SIAM Journal on Sci. Comput., submitted [4] A. Christlieb, R. Krasny, B. Ong and J. Qiu, A Step Towards Addressing Temporal Multi-scale Problems in Plasma Physics, in prep.

  19. Anatomy-based 3D skeleton extraction from femur model.

    PubMed

    Gharenazifam, Mina; Arbabi, Ehsan

    2014-11-01

    Using 3D models of bones can highly improve accuracy and reliability of orthopaedic evaluation. However, it may impose excessive computational load. This article proposes a fully automatic method for extracting a compact model of the femur from its 3D model. The proposed method works by extracting a 3D skeleton based on the clinical parameters of the femur. Therefore, in addition to summarizing a 3D model of the bone, the extracted skeleton would preserve important clinical and anatomical information. The proposed method has been applied on 3D models of 10 femurs and the results have been evaluated for different resolutions of data.

  20. 3-D Quantum Transport Solver Based on the Perfectly Matched Layer and Spectral Element Methods for the Simulation of Semiconductor Nanodevices

    PubMed Central

    Cheng, Candong; Lee, Joon-Ho; Lim, Kim Hwa; Massoud, Hisham Z.; Liu, Qing Huo

    2007-01-01

    A 3-D quantum transport solver based on the spectral element method (SEM) and perfectly matched layer (PML) is introduced to solve the 3-D Schrödinger equation with a tensor effective mass. In this solver, the influence of the environment is replaced with the artificial PML open boundary extended beyond the contact regions of the device. These contact regions are treated as waveguides with known incident waves from waveguide mode solutions. As the transmitted wave function is treated as a total wave, there is no need to decompose it into waveguide modes, thus significantly simplifying the problem in comparison with conventional open boundary conditions. The spectral element method leads to an exponentially improving accuracy with the increase in the polynomial order and sampling points. The PML region can be designed such that less than −100 dB outgoing waves are reflected by this artificial material. The computational efficiency of the SEM solver is demonstrated by comparing the numerical and analytical results from waveguide and plane-wave examples, and its utility is illustrated by multiple-terminal devices and semiconductor nanotube devices. PMID:18037971

  1. Composite manufacturing: Simulation of 3-D resin transfer molding

    NASA Astrophysics Data System (ADS)

    Tan, Cheng Ping

    1998-10-01

    A technique was developed for simulating the resin transfer molding (RTM) process. The major feature of the technique is a computational steering system that enables the user to make changes during the simulation. Specifically, at any instance, the user can inspect the progress of the resin front. On the basis of the observed resin front position, the user can, as needed, change the port and vent locations, open and close ports and vents, adjust the inlet and exit pressures or flow rates, and reorient the mold with respect to the gravitational field. Additionally, the user can "rewind" the simulator to any previous time in the mold filling process, make any of the above changes and then continue the simulation. The technique is augmented by a computer code which has three main components, the Simulator, the Graphics User Interface (GUI), and the Global Data Storage. The Simulator is a finite element code that calculates the resin flow inside the fiber preform. The GUI serves as the interface between the user and the Simulator; it provides the commands to the Simulator and displays the results. The Global Data Storage is the module that manages the exchange of data between the GUI and the Simulator. The computer code (designated as SUPERTMsb-3D) is suitable for simulating the resin flow inside two-dimensional as well as three-dimensional fiber preforms of arbitrary shapes. The use of this computer code is illustrated through sample problems. These problems demonstrate how (with this code) the designer can establish the port and vent locations, opening and closing sequences of ports and vents such that the fiber preform is filled completely in the shortest time with the fewest number of vents.

  2. 3D FEM Simulation of Flank Wear in Turning

    NASA Astrophysics Data System (ADS)

    Attanasio, Aldo; Ceretti, Elisabetta; Giardini, Claudio

    2011-05-01

    This work deals with tool wear simulation. Studying the influence of tool wear on tool life, tool substitution policy and influence on final part quality, surface integrity, cutting forces and power consumption it is important to reduce the global process costs. Adhesion, abrasion, erosion, diffusion, corrosion and fracture are some of the phenomena responsible of the tool wear depending on the selected cutting parameters: cutting velocity, feed rate, depth of cut, …. In some cases these wear mechanisms are described by analytical models as a function of process variables (temperature, pressure and sliding velocity along the cutting surface). These analytical models are suitable to be implemented in FEM codes and they can be utilized to simulate the tool wear. In the present paper a commercial 3D FEM software has been customized to simulate the tool wear during turning operations when cutting AISI 1045 carbon steel with uncoated tungsten carbide tip. The FEM software was improved by means of a suitable subroutine able to modify the tool geometry on the basis of the estimated tool wear as the simulation goes on. Since for the considered couple of tool-workpiece material the main phenomena generating wear are the abrasive and the diffusive ones, the tool wear model implemented into the subroutine was obtained as combination between the Usui's and the Takeyama and Murata's models. A comparison between experimental and simulated flank tool wear curves is reported demonstrating that it is possible to simulate the tool wear development.

  3. Simulation of 3D Global Wave Propagation Through Geodynamic Models

    NASA Astrophysics Data System (ADS)

    Schuberth, B.; Piazzoni, A.; Bunge, H.; Igel, H.; Steinle-Neumann, G.

    2005-12-01

    This project aims at a better understanding of the forward problem of global 3D wave propagation. We use the spectral element program "SPECFEM3D" (Komatitsch and Tromp, 2002a,b) with varying input models of seismic velocities derived from mantle convection simulations (Bunge et al., 2002). The purpose of this approach is to obtain seismic velocity models independently from seismological studies. In this way one can test the effects of varying parameters of the mantle convection models on the seismic wave field. In order to obtain the seismic velocities from the temperature field of the geodynamical simulations we follow a mineral physics approach. Assuming a certain mantle composition (e.g. pyrolite with CMASF composition) we compute the stable phases for each depth (i.e. pressure) and temperature by system Gibbs free energy minimization. Elastic moduli and density are calculated from the equations of state of the stable mineral phases. For this we use a mineral physics database derived from calorimetric experiments (enthalphy and entropy of formation, heat capacity) and EOS parameters.

  4. Dust emission in simulated dwarf galaxies using GRASIL-3D

    NASA Astrophysics Data System (ADS)

    Santos-Santos, I. M.; Domínguez-Tenreiro, R.; Granato, G. L.; Brook, C. B.; Obreja, A.

    2017-03-01

    Recent Herschel observations of dwarf galaxies have shown a wide diversity in the shapes of their IR-submm spectral energy distributions as compared to more massive galaxies, presenting features that cannot be explained with the current models. In order to understand the physics driving these differences, we have computed the emission of a sample of simulated dwarf galaxies using the radiative transfer code GRASIL-3D. This code separately treats the radiative transfer in dust grains from molecular clouds and cirri. The simulated galaxies have masses ranging from 10^6-10^9 M_⊙ and have evolved within a Local Group environment by using CLUES initial conditions. We show that their IR band luminosities are in agreement with observations, with their SEDs reproducing naturally the particular spectral features observed. We conclude that the GRASIL-3D two-component model gives a physical interpretation to the emission of dwarf galaxies, with molecular clouds (cirri) as the warm (cold) dust components needed to recover observational data.

  5. GBS: Global 3D simulation of tokamak edge region

    NASA Astrophysics Data System (ADS)

    Zhu, Ben; Fisher, Dustin; Rogers, Barrett; Ricci, Paolo

    2012-10-01

    A 3D two-fluid global code, namely Global Braginskii Solver (GBS), is being developed to explore the physics of turbulent transport, confinement, self-consistent profile formation, pedestal scaling and related phenomena in the edge region of tokamaks. Aimed at solving drift-reduced Braginskii equations [1] in complex magnetic geometry, the GBS is used for turbulence simulation in SOL region. In the recent upgrade, the simulation domain is expanded into close flux region with twist-shift boundary conditions. Hence, the new GBS code is able to explore global transport physics in an annular full-torus domain from the top of the pedestal into the far SOL. We are in the process of identifying and analyzing the linear and nonlinear instabilities in the system using the new GBS code. Preliminary results will be presented and compared with other codes if possible.[4pt] [1] A. Zeiler, J. F. Drake and B. Rogers, Phys. Plasmas 4, 2134 (1997)

  6. 3-D MHD Simulation of Oscillating Field Current Drive

    NASA Astrophysics Data System (ADS)

    Ebrahimi, F.; Prager, S. C.; Wright, J. C.

    2000-10-01

    Oscillating Field Current Drive (OFCD) is a proposed low frequency steady-state current drive technique for the Reversed Field Pinch (RFP). In OFCD toroidal and poloidal oscillating electric fields are applied with 90^circ phase difference to inject magnetic helicity. In the present work, the 3-D nonlinear, resistive MHD code DEBS is used to simulate OFCD in relaxed RFP plasmas. The present simulations are at high Lundquist number S=10^5 and low spect ratio R/a=1.5. The physics issues investigated are the response of background magnetic fluctuations to the oscillating fields, the relative contributions of the tearing mode dynamo and the oscillating fields to the current profile, and the sustainment and control of the steady-state current profile. Initial results with low amplitude oscillating fields show the expected increase in magnetic helicity and current. Results with higher amplitude will also be presented.

  7. Method and simulation to study 3D crosstalk perception

    NASA Astrophysics Data System (ADS)

    Khaustova, Dar'ya; Blondé, Laurent; Huynh-Thu, Quan; Vienne, Cyril; Doyen, Didier

    2012-03-01

    To various degrees, all modern 3DTV displays suffer from crosstalk, which can lead to a decrease of both visual quality and visual comfort, and also affect perception of depth. In the absence of a perfect 3D display technology, crosstalk has to be taken into account when studying perception of 3D stereoscopic content. In order to improve 3D presentation systems and understand how to efficiently eliminate crosstalk, it is necessary to understand its impact on human perception. In this paper, we present a practical method to study the perception of crosstalk. The approach consists of four steps: (1) physical measurements of a 3DTV, (2) building of a crosstalk surface based on those measurements and representing specifically the behavior of that 3TV, (3) manipulation of the crosstalk function and application on reference images to produce test images degraded by crosstalk in various ways, and (4) psychophysical tests. Our approach allows both a realistic representation of the behavior of a 3DTV and the easy manipulation of its resulting crosstalk in order to conduct psycho-visual experiments. Our approach can be used in all studies requiring the understanding of how crosstalk affects perception of stereoscopic content and how it can be corrected efficiently.

  8. Frames-Based Denoising in 3D Confocal Microscopy Imaging.

    PubMed

    Konstantinidis, Ioannis; Santamaria-Pang, Alberto; Kakadiaris, Ioannis

    2005-01-01

    In this paper, we propose a novel denoising method for 3D confocal microscopy data based on robust edge detection. Our approach relies on the construction of a non-separable frame system in 3D that incorporates the Sobel operator in dual spatial directions. This multidirectional set of digital filters is capable of robustly detecting edge information by ensemble thresholding of the filtered data. We demonstrate the application of our method to both synthetic and real confocal microscopy data by comparing it to denoising methods based on separable 3D wavelets and 3D median filtering, and report very encouraging results.

  9. Study, simulation and design of a 3D clinostat

    NASA Astrophysics Data System (ADS)

    Pavone, Valentina; Guarnieri, Vincenzo; Lobascio, Cesare; Soma, Aurelio; Bosso, Nicola; Lamantea, Matteo Maria

    High cost and limited number of physically executable experiments in space have introduced the need for ground simulation systems that enable preparing experiments to be carried out on board, identifying phenomena associated with the altered gravity conditions, and taking advantage of these conditions, as in Biotechnology. Among systems developed to simulate microgravity, especially for life sciences experiments, different types of clinostats were realized. This work deals with mechanical design of a three-dimensional clinostat and simulation of the dynamic behavior of the system by varying the operating parameters. The design and simulation phase was preceded by a careful analysis of the state of art and by the review of the most recent results, in particular from the major investigators of Life Sciences in Space. The mechanical design is quite innovative by adoption of a structure entirely in aluminum, which allows robustness while reducing the overall weight. The transmission system of motion has been optimized by means of brushless DC micro motors, light and compact, which helped to reduce weight, dimensions, power consumption and increase the reliability and durability of the system. The study of the dynamic behavior using SIMPACK, a multibody simulation software, led to results in line with those found in the most important and recent scientific publications. This model was also appropriately configured to represent any desired operating condition, and for eventual system scalability. It would be interesting to generate simulated hypogravity - e.g.: 0.38-g (Mars) or 0.17-g (Moon). This would allow to investigate how terrestrial life forms can grow in other planetary habitats, or to determine the gravity threshold response of different organisms. At the moment, such a system can only be achieved by centrifuges in real microgravity. We are confident that simulation and associated tests with our 3D clinostat can help adjusting the parameters allowing variable g

  10. Unsteady 3D flow simulations in cranial arterial tree

    NASA Astrophysics Data System (ADS)

    Grinberg, Leopold; Anor, Tomer; Madsen, Joseph; Karniadakis, George

    2008-11-01

    High resolution unsteady 3D flow simulations in major cranial arteries have been performed. Two cases were considered: 1) a healthy volunteer with a complete Circle of Willis (CoW); and 2) a patient with hydrocephalus and an incomplete CoW. Computation was performed on 3344 processors of the new half petaflop supercomputer in TACC. Two new numerical approaches were developed and implemented: 1) a new two-level domain decomposition method, which couples continuous and discontinuous Galerkin discretization of the computational domain; and 2) a new type of outflow boundary conditions, which imposes, in an accurate and computationally efficient manner, clinically measured flow rates. In the first simulation, a geometric model of 65 cranial arteries was reconstructed. Our simulation reveals a high degree of asymmetry in the flow at the left and right parts of the CoW and the presence of swirling flow in most of the CoW arteries. In the second simulation, one of the main findings was a high pressure drop at the right anterior communicating artery (PCA). Due to the incompleteness of the CoW and the pressure drop at the PCA, the right internal carotid artery supplies blood to most regions of the brain.

  11. Scalable Iterative Solvers Applied to 3D Parallel Simulation of Advanced Semiconductor Devices

    NASA Astrophysics Data System (ADS)

    García-Loureiro, A. J.; Aldegunde, M.; Seoane, N.

    2009-08-01

    We have studied the performance of a preconditioned iterative solver to speed up a 3D semiconductor device simulator. Since 3D simulations necessitate large computing resources, the choice of algorithms and their parameters become of utmost importance. This code uses a density gradient drift-diffusion semiconductor transport model based on the finite element method which is one of the most general and complex discretisation techniques. It has been implemented for a distributed memory multiprocessor environment using the Message Passing Interface (MPI) library. We have applied this simulator to a 67 nm effective gate length Si MOSFET.

  12. Photon Scattering in 3D Radiative MHD Simulations

    NASA Astrophysics Data System (ADS)

    Hayek, Wolfgang

    2009-09-01

    Recent results from 3D time-dependent radiative hydrodynamic simulations of stellar atmospheres are presented, which include the effects of coherent scattering in the radiative transfer treatment. Rayleigh scattering and electron scattering are accounted for in the source function, requiring an iterative solution of the transfer equation. Opacities and scattering coefficients are treated in the multigroup opacity approximation. The impact of scattering on the horizontal mean temperature structure is investigated, which is an important diagnostic for model atmospheres, with implications for line formation and stellar abundance measurements. We find that continuum scattering is not important for the atmosphere of a metal-poor Sun with metailicity [Fe/H] = -3.0, similar to the previously investigated photosphere at solar metallicity.

  13. Colossal Tooling Design: 3D Simulation for Ergonomic Analysis

    NASA Technical Reports Server (NTRS)

    Hunter, Steve L.; Dischinger, Charles; Thomas, Robert E.; Babai, Majid

    2003-01-01

    The application of high-level 3D simulation software to the design phase of colossal mandrel tooling for composite aerospace fuel tanks was accomplished to discover and resolve safety and human engineering problems. The analyses were conducted to determine safety, ergonomic and human engineering aspects of the disassembly process of the fuel tank composite shell mandrel. Three-dimensional graphics high-level software, incorporating various ergonomic analysis algorithms, was utilized to determine if the process was within safety and health boundaries for the workers carrying out these tasks. In addition, the graphical software was extremely helpful in the identification of material handling equipment and devices for the mandrel tooling assembly/disassembly process.

  14. 3D simulations of an electrostatic quadrupole injector

    SciTech Connect

    Grote, D.P. |; Friedman, A.; Yu, S.

    1993-02-01

    Analysis of the dynamics of a space charge dominated beam in a lattice of electrostatic focusing structures requires a full three-dimensional conic that includes self-consistent space charge fields and the fields from the complex conductor shapes. The existing WARP3d code, a particle simulation code which has been developed for heavy-ion fusion (HIF) applications contains machinery for handling particles in three-dimensional fields. A successive overrelaxation field solver with subgrid-scale placement of boundaries for rounded surface and four-fold symmetry has been added to the code. The electrostatic quadrupole (ESQ) injector for the ILSE accelerator facility being planned at Lawrence Berkeley Laboratory is shown as an application. The issue of concern is possible emittance degradation because the focusing voltages are a significant fraction of the particles` energy and because there are significant nonlinear fields arising from the shapes of the quadrupole structures.

  15. Simulation of 3D Chaotic Electroconvection in Shear Flow

    NASA Astrophysics Data System (ADS)

    Davidson, Scott; Mani, Ali

    2016-11-01

    Electroconvection, a microscale electrohydrodynamic phenomenon with chaotic features reminiscent of turbulence, provides the dominant transport mechanism in many electrochemical processes where ions are driven through ion-selective surfaces under large applied voltages. Electrodialysis, for example, desalinates water by flowing it between layers of ion-selective membranes with alternating selectivity while an electric field is applied normal to the membranes. This process leads to alternating channels becoming enriched and depleted of ions. Despite its key importance, much about how electroconvection enhances ion transport, particularly in the presence of crossflow, remains a mystery. We present results of 3D direct numerical simulations of electroconvection in a canonical geometry of an electrolyte between an ion-selective membrane and a reservoir with periodic sides subject to applied shear flow. We analyze the effects of crossflow on both flow statistics and qualitative structures in the fully chaotic regime. Stanford Graduate Fellowship, NSF GRFP.

  16. New insights on pulsating white dwarfs from 3D radiation-hydrodynamical simulations

    NASA Astrophysics Data System (ADS)

    Tremblay, Pier-Emmanuel; Fontaine, Gilles; Ludwig, Hans-Günter; Gianninas, Alexandros; Kilic, Mukremin

    We have recently computed a grid of 3D radiation-hydrodynamical simulations for the atmosphere of pure-hydrogen DA white dwarfs in the range 5.0 < log g < 9.0. Our grid covers the full ZZ Ceti instability strip where pulsating DA white dwarfs are located. We have significantly improved the theoretical framework to study these objects by removing the free parameters of 1D convection, which were previously a major modeling hurdle. We present improved atmospheric parameter determinations based on spectroscopic fits with 3D model spectra, allowing for an updated definition of the empirical edges of the ZZ Ceti instability strip. Our 3D simulations also precisely predict the depth of the convection zones, narrowing down the internal layers where pulsation are being driven. We hope that these 3D effects will be included in asteroseismic models in the future to predict the region of the HR diagram where white dwarfs are expected to pulsate.

  17. Tropospheric ozone in the western Pacific Rim: Analysis of satellite and surface-based observations along with comprehensive 3-D model simulations

    NASA Technical Reports Server (NTRS)

    Young, Sun-Woo; Carmichael, Gregory R.

    1994-01-01

    Tropospheric ozone production and transport in mid-latitude eastern Asia is studied. Data analysis of surface-based ozone measurements in Japan and satellite-based tropospheric column measurements of the entire western Pacific Rim are combined with results from three-dimensional model simulations to investigate the diurnal, seasonal and long-term variations of ozone in this region. Surface ozone measurements from Japan show distinct seasonal variation with a spring peak and summer minimum. Satellite studies of the entire tropospheric column of ozone show high concentrations in both the spring and summer seasons. Finally, preliminary model simulation studies show good agreement with observed values.

  18. Review: Polymeric-Based 3D Printing for Tissue Engineering.

    PubMed

    Wu, Geng-Hsi; Hsu, Shan-Hui

    Three-dimensional (3D) printing, also referred to as additive manufacturing, is a technology that allows for customized fabrication through computer-aided design. 3D printing has many advantages in the fabrication of tissue engineering scaffolds, including fast fabrication, high precision, and customized production. Suitable scaffolds can be designed and custom-made based on medical images such as those obtained from computed tomography. Many 3D printing methods have been employed for tissue engineering. There are advantages and limitations for each method. Future areas of interest and progress are the development of new 3D printing platforms, scaffold design software, and materials for tissue engineering applications.

  19. 3D Simulation of External Flooding Events for the RISMC Pathway

    SciTech Connect

    Prescott, Steven; Mandelli, Diego; Sampath, Ramprasad; Smith, Curtis; Lin, Linyu

    2015-09-01

    Incorporating 3D simulations as part of the Risk-Informed Safety Margins Characterization (RISMIC) Toolkit allows analysts to obtain a more complete picture of complex system behavior for events including external plant hazards. External events such as flooding have become more important recently – however these can be analyzed with existing and validated simulated physics toolkits. In this report, we describe these approaches specific to flooding-based analysis using an approach called Smoothed Particle Hydrodynamics. The theory, validation, and example applications of the 3D flooding simulation are described. Integrating these 3D simulation methods into computational risk analysis provides a spatial/visual aspect to the design, improves the realism of results, and can prove visual understanding to validate the analysis of flooding.

  20. Atom-based 3D-QSAR, molecular docking and molecular dynamics simulation assessment of inhibitors for thyroid hormone receptor α and β.

    PubMed

    Gupta, Manish Kumar; Misra, Krishna

    2014-06-01

    The three-dimensional quantitative structure-activity relationship (3D-QSAR) for inhibitors of thyroid hormone receptors (TR) α and (TR) β was studied. The training set of the TRα model generated a correlation coefficient (R(2)) =  0.9535, with standard deviation (SD) =  0.3016. From the test set of the TRα model, a Q(2) value for the predicted activities (= 0.4303), squared correlation (random selection R(2)-CV  =  0.6929), Pearson-R (= 0.7294) and root mean square error (RMSE  =  0.6342) were calculated. The P-value for TRα (= 1.411e-96) and TRβ (= 2.108e-165) models indicate a high degree of self-reliance. For the TRβ model, the training set yielded R(2) = 0.9424 with SD = 0.3719. From the test set of TRβ, Q(2) value (= 0.5336), the squared correlation (R(2)-CV  =  0.7201), the Pearson-R (= 0.7852) and RMSE for test set predictions (= 0.8630) all strengthen the good predictive competence of the QSAR model derived. Examination of internal as well as external validation supports the rationality and good predictive ability of the best model. Molecular docking explained the conformations of molecules and important amino acid residues at the docking pocket, and a molecular dynamics simulation study further uncovered the binding process and validated the rationality of docking results. The findings not only lead to a better understanding of interactions between these antagonists and thyroid hormone receptors α and β, but also provide valuable information about the impact of structure on activity that will be very beneficial in the design of novel antagonists with preferred activity.

  1. 3D Dynamic Earthquake Fracture Simulation (Test Case)

    NASA Astrophysics Data System (ADS)

    Korkusuz Öztürk, Yasemin; Meral Özel, Nurcan; Ando, Ryosuke

    2016-04-01

    A 3D dynamic earthquake fracture simulation is being developed for the fault structures which are non-planar to understand heterogeneous stress states in the Marmara Sea. Locating in a seismic gap, a large earthquake is expected in the center of the Sea of Marmara. Concerning the fact that more than 14 million inhabitants of İstanbul, located very closely to the Marmara Sea, the importance of the analysis of the Central Marmara Sea is extremely high. A few 3D dynamic earthquake fracture studies have been already done in the Sea of Marmara for pure right lateral strike-slip stress regimes (Oglesby and Mai, 2012; Aochi and Ulrich, 2015). In this study, a 3D dynamic earthquake fracture model with heterogeneous stress patches from the TPV5, a SCEC code validation case, is adapted. In this test model, the fault and the ground surfaces are gridded by a scalene triangulation technique using GMSH program. For a grid size changing between 0.616 km and 1.050 km the number of elements for the fault surface is 1984 and for the ground surface is 1216. When these results are compared with Kaneko's results for TPV5 from SPECFEM3D, reliable findings could be observed for the first 6.5 seconds (stations on the fault) although a stability problem is encountered after this time threshold. To solve this problem grid sizes are made smaller, so the number of elements increase 7986 for the fault surface and 4867 for the ground surface. On the other hand, computational problems arise in that case, since the computation time is directly proportional to the number of total elements and the required memory also increases with the square of that. Therefore, it is expected that this method can be adapted for less coarse grid cases, regarding the main difficulty coming from the necessity of an effective supercomputer and run time limitations. The main objective of this research is to obtain 3D dynamic earthquake rupture scenarios, concerning not only planar and non-planar faults but also

  2. 3D Wavelet-Based Filter and Method

    DOEpatents

    Moss, William C.; Haase, Sebastian; Sedat, John W.

    2008-08-12

    A 3D wavelet-based filter for visualizing and locating structural features of a user-specified linear size in 2D or 3D image data. The only input parameter is a characteristic linear size of the feature of interest, and the filter output contains only those regions that are correlated with the characteristic size, thus denoising the image.

  3. Image based 3D city modeling : Comparative study

    NASA Astrophysics Data System (ADS)

    Singh, S. P.; Jain, K.; Mandla, V. R.

    2014-06-01

    3D city model is a digital representation of the Earth's surface and it's related objects such as building, tree, vegetation, and some manmade feature belonging to urban area. The demand of 3D city modeling is increasing rapidly for various engineering and non-engineering applications. Generally four main image based approaches were used for virtual 3D city models generation. In first approach, researchers were used Sketch based modeling, second method is Procedural grammar based modeling, third approach is Close range photogrammetry based modeling and fourth approach is mainly based on Computer Vision techniques. SketchUp, CityEngine, Photomodeler and Agisoft Photoscan are the main softwares to represent these approaches respectively. These softwares have different approaches & methods suitable for image based 3D city modeling. Literature study shows that till date, there is no complete such type of comparative study available to create complete 3D city model by using images. This paper gives a comparative assessment of these four image based 3D modeling approaches. This comparative study is mainly based on data acquisition methods, data processing techniques and output 3D model products. For this research work, study area is the campus of civil engineering department, Indian Institute of Technology, Roorkee (India). This 3D campus acts as a prototype for city. This study also explains various governing parameters, factors and work experiences. This research work also gives a brief introduction, strengths and weakness of these four image based techniques. Some personal comment is also given as what can do or what can't do from these softwares. At the last, this study shows; it concluded that, each and every software has some advantages and limitations. Choice of software depends on user requirements of 3D project. For normal visualization project, SketchUp software is a good option. For 3D documentation record, Photomodeler gives good result. For Large city

  4. Stem dependence on stiffness in 3D RNA simulation using SimRNA

    NASA Astrophysics Data System (ADS)

    Dawson, Wayne; Boniecki, Michal; Bujnicki, Janusz

    2015-03-01

    SimRNA is a recently developed de novo 3D structure prediction program in our laboratory that uses the Monte Carlo method to search the conformation space of RNA using knowledge based energy functions. In developing the 3D model, we have also be exploring the larger physical questions about what generates differences in Kuhn length (a measure of stiffness) in biopolymers. In previoius work, this was shown to depend on the stem length and to be a function of the length and Young's modulus. A complete theoretical model was of the entropy changes due to the freezing out of degrees of freedom was developed base on this model. In this study, we find that this is further supported in the development of the 3D statitstical potentials for actual 3D simulations of RNA.

  5. NoSQL Based 3D City Model Management System

    NASA Astrophysics Data System (ADS)

    Mao, B.; Harrie, L.; Cao, J.; Wu, Z.; Shen, J.

    2014-04-01

    To manage increasingly complicated 3D city models, a framework based on NoSQL database is proposed in this paper. The framework supports import and export of 3D city model according to international standards such as CityGML, KML/COLLADA and X3D. We also suggest and implement 3D model analysis and visualization in the framework. For city model analysis, 3D geometry data and semantic information (such as name, height, area, price and so on) are stored and processed separately. We use a Map-Reduce method to deal with the 3D geometry data since it is more complex, while the semantic analysis is mainly based on database query operation. For visualization, a multiple 3D city representation structure CityTree is implemented within the framework to support dynamic LODs based on user viewpoint. Also, the proposed framework is easily extensible and supports geoindexes to speed up the querying. Our experimental results show that the proposed 3D city management system can efficiently fulfil the analysis and visualization requirements.

  6. First 3-D simulations of meteor plasma dynamics and turbulence

    NASA Astrophysics Data System (ADS)

    Oppenheim, Meers M.; Dimant, Yakov S.

    2015-02-01

    Millions of small but detectable meteors hit the Earth's atmosphere every second, creating trails of hot plasma that turbulently diffuse into the background atmosphere. For over 60 years, radars have detected meteor plasmas and used these signals to infer characteristics of the meteoroid population and upper atmosphere, but, despite the importance of meteor radar measurements, the complex processes by which these plasmas evolve have never been thoroughly explained or modeled. In this paper, we present the first fully 3-D simulations of meteor evolution, showing meteor plasmas developing instabilities, becoming turbulent, and inhomogeneously diffusing into the background ionosphere. These instabilities explain the characteristics and strength of many radar observations, in particular the high-resolution nonspecular echoes made by large radars. The simulations reveal how meteors create strong electric fields that dig out deep plasma channels along the Earth's magnetic fields. They also allow researchers to explore the impacts of the intense winds and wind shears, commonly found at these altitudes, on meteor plasma evolution. This study will allow the development of more sophisticated models of meteor radar signals, enabling the extraction of detailed information about the properties of meteoroid particles and the atmosphere.

  7. Surgeon-Based 3D Printing for Microvascular Bone Flaps.

    PubMed

    Taylor, Erin M; Iorio, Matthew L

    2017-03-04

    Background Three-dimensional (3D) printing has developed as a revolutionary technology with the capacity to design accurate physical models in preoperative planning. We present our experience in surgeon-based design of 3D models, using home 3D software and printing technology for use as an adjunct in vascularized bone transfer. Methods Home 3D printing techniques were used in the design and execution of vascularized bone flap transfers to the upper extremity. Open source imaging software was used to convert preoperative computed tomography scans and create 3D models. These were printed in the surgeon's office as 3D models for the planned reconstruction. Vascularized bone flaps were designed intraoperatively based on the 3D printed models. Results Three-dimensional models were created for intraoperative use in vascularized bone flaps, including (1) medial femoral trochlea (MFT) flap for scaphoid avascular necrosis and nonunion, (2) MFT flap for lunate avascular necrosis and nonunion, (3) medial femoral condyle (MFC) flap for wrist arthrodesis, and (4) free fibula osteocutaneous flap for distal radius septic nonunion. Templates based on the 3D models allowed for the precise and rapid contouring of well-vascularized bone flaps in situ, prior to ligating the donor pedicle. Conclusions Surgeon-based 3D printing is a feasible, innovative technology that allows for the precise and rapid contouring of models that can be created in various configurations for pre- and intraoperative planning. The technology is easy to use, convenient, and highly economical as compared with traditional send-out manufacturing. Surgeon-based 3D printing is a useful adjunct in vascularized bone transfer. Level of Evidence Level IV.

  8. 3D Printing of Carbon Nanotubes-Based Microsupercapacitors.

    PubMed

    Yu, Wei; Zhou, Han; Li, Ben Q; Ding, Shujiang

    2017-02-08

    A novel 3D printing procedure is presented for fabricating carbon-nanotubes (CNTs)-based microsupercapacitors. The 3D printer uses a CNTs ink slurry with a moderate solid content and prints a stream of continuous droplets. Appropriate control of a heated base is applied to facilitate the solvent removal and adhesion between printed layers and to improve the structure integrity without structure delamination or distortion upon drying. The 3D-printed electrodes for microsupercapacitors are characterized by SEM, laser scanning confocal microscope, and step profiler. Effect of process parameters on 3D printing is also studied. The final solid-state microsupercapacitors are assembled with the printed multilayer CNTs structures and poly(vinyl alcohol)-H3PO4 gel as the interdigitated microelectrodes and electrolyte. The electrochemical performance of 3D printed microsupercapacitors is also tested, showing a significant areal capacitance and excellent cycle stability.

  9. Reconstruction-based 3D/2D image registration.

    PubMed

    Tomazevic, Dejan; Likar, Bostjan; Pernus, Franjo

    2005-01-01

    In this paper we present a novel 3D/2D registration method, where first, a 3D image is reconstructed from a few 2D X-ray images and next, the preoperative 3D image is brought into the best possible spatial correspondence with the reconstructed image by optimizing a similarity measure. Because the quality of the reconstructed image is generally low, we introduce a novel asymmetric mutual information similarity measure, which is able to cope with low image quality as well as with different imaging modalities. The novel 3D/2D registration method has been evaluated using standardized evaluation methodology and publicly available 3D CT, 3DRX, and MR and 2D X-ray images of two spine phantoms, for which gold standard registrations were known. In terms of robustness, reliability and capture range the proposed method outperformed the gradient-based method and the method based on digitally reconstructed radiographs (DRRs).

  10. 3D radiative transfer in colliding wind binaries: Application of the SimpleX algorithm to 3D SPH simulations

    NASA Astrophysics Data System (ADS)

    Madura, Thomas; Clementel, Nicola; Kruip, Chael; Icke, Vincent; Gull, Theodore

    2014-09-01

    We present the first results of full 3D radiative transfer simulations of the colliding stellar winds in a massive binary system. We accomplish this by applying the SIMPLEX algorithm for 3D radiative transfer on an unstructured Delaunay grid to recent 3D smoothed particle hydrodynamics (SPH) simulations of the colliding winds in the binary system η Carinae. We use SIMPLEX to obtain detailed ionization fractions of hydrogen and helium, in 3D, at the resolution of the original SPH simulations. We show how the SIMPLEX simulations can be used to generate synthetic spectral data cubes for comparison to data obtained with the Hubble Space Telescope (HST)/Space Telescope Imaging Spectrograph as part of a multi-cycle program to map changes in η Car's extended interacting wind structures across one binary cycle. Comparison of the HST observations to the SIMPLEX models can help lead to more accurate constraints on the orbital, stellar, and wind parameters of the η Car system, such as the primary's mass-loss rate and the companion's temperature and luminosity. While we initially focus specifically on the η Car binary, the numerical methods employed can be applied to numerous other colliding wind (WR140, WR137, WR19) and dusty 'pinwheel' (WR104, WR98a) binary systems. One of the biggest remaining mysteries is how dust can form and survive in such systems that contain a hot, luminous O star. Coupled with 3D hydrodynamical simulations, SIMPLEX simulations have the potential to help determine the regions where dust can form and survive in these unique objects.

  11. 3D Numerical Simulation on the Rockslide Generated Tsunamis

    NASA Astrophysics Data System (ADS)

    Chuang, M.; Wu, T.; Wang, C.; Chu, C.

    2013-12-01

    The rockslide generated tsunami is one of the most devastating nature hazards. However, the involvement of the moving obstacle and dynamic free-surface movement makes the numerical simulation a difficult task. To describe both the fluid motion and solid movement at the same time, we newly developed a two-way fully-coupled moving solid algorithm with 3D LES turbulent model. The free-surface movement is tracked by volume of fluid (VOF) method. The two-step projection method is adopted to solve the Navier-Stokes type government equations. In the new moving solid algorithm, a fictitious body force is implicitly prescribed in MAC correction step to make the cell-center velocity satisfied with the obstacle velocity. We called this method the implicit velocity method (IVM). Because no extra terms are added to the pressure Poission correction, the pressure field of the fluid part is stable, which is the key of the two-way fluid-solid coupling. Because no real solid material is presented in the IVM, the time marching step is not restricted to the smallest effective grid size. Also, because the fictitious force is implicitly added to the correction step, the resulting velocity is accurate and fully coupled with the resulting pressure field. We validated the IVM by simulating a floating box moving up and down on the free-surface. We presented the time-history obstacle trajectory and compared it with the experimental data. Very accurate result can be seen in terms of the oscillating amplitude and the period (Fig. 1). We also presented the free-surface comparison with the high-speed snapshots. At the end, the IVM was used to study the rock-slide generated tsunamis (Liu et al., 2005). Good validations on the slide trajectory and the free-surface movement will be presented in the full paper. From the simulation results (Fig. 2), we observed that the rockslide generated waves are manly caused by the rebounding waves from two sides of the sliding rock after the water is dragging

  12. 3-D simulation of soot formation in a direct-injection diesel engine based on a comprehensive chemical mechanism and method of moments

    NASA Astrophysics Data System (ADS)

    Zhong, Bei-Jing; Dang, Shuai; Song, Ya-Na; Gong, Jing-Song

    2012-02-01

    Here, we propose both a comprehensive chemical mechanism and a reduced mechanism for a three-dimensional combustion simulation, describing the formation of polycyclic aromatic hydrocarbons (PAHs), in a direct-injection diesel engine. A soot model based on the reduced mechanism and a method of moments is also presented. The turbulent diffusion flame and PAH formation in the diesel engine were modelled using the reduced mechanism based on the detailed mechanism using a fixed wall temperature as a boundary condition. The spatial distribution of PAH concentrations and the characteristic parameters for soot formation in the engine cylinder were obtained by coupling a detailed chemical kinetic model with the three-dimensional computational fluid dynamic (CFD) model. Comparison of the simulated results with limited experimental data shows that the chemical mechanisms and soot model are realistic and correctly describe the basic physics of diesel combustion but require further development to improve their accuracy.

  13. Reconstruction of eruption column model based on the 3D numerical simulation of volcanic plume for 2011 Shinmoe-dake eruption

    NASA Astrophysics Data System (ADS)

    Hashimoto, A.; Suzuki, Y.; Shimbori, T.; Ishii, K.; Takagi, A.

    2014-12-01

    The result of volcanic ash transport simulation strongly depends on an eruption column model, that gives a profile of discharging rate of ash particles, for a predictability of dispersion of ash particles. Simple eruption column models, such as proposed by Suzuki (1983), have been adopted in volcanic ash transport simulations for its simplicity and convenience. However, such a model sometimes brings erroneous results especially when an environmental wind field considerably affects the behavior of eruption column. The distortion of eruption column and enhancement of turbulent mixing due to wind shear should be taken into account in an eruption column model for the improvement of its applicability. The authors have conducted the three-dimensional simulation of volcanic plume for the 2011 Shinmoe-dake eruption, assuming the vertically-sheared wind field actually observed in the event, and have taken statistics of the locations and mobile vectors of the ash particles getting out of the simulated volcanic plume to establish the profile of discharging rate. The resulted profile is distinctly different from that based on a usual eruption column model. The new profile is characterized by the relatively large discharge of micron-sized ash particles from the middle level of the plume, comparing to the usual one. The authors plan to validate the new model in the simulation of long-range transport of volcanic ash, based on satellite observation data. This work will be a basis for a future improvement of the volcanic ash fall forecast by Japan Meteorological Agency, which is established with the Suzuki's model. The characteristics and validity of new model will be discussed in the presentation. Acknowledgement This study was supported by the Earthquake Research Institute cooperative research program. References Suzuki, T., 1983: A theoretical model for dispersion of tephra. Arc Volcanism: Physics and Tectonics. TERRAPUB, 95-113.

  14. 3D-2D ultrasound feature-based registration for navigated prostate biopsy: a feasibility study.

    PubMed

    Selmi, Sonia Y; Promayon, Emmanuel; Troccaz, Jocelyne

    2016-08-01

    The aim of this paper is to describe a 3D-2D ultrasound feature-based registration method for navigated prostate biopsy and its first results obtained on patient data. A system combining a low-cost tracking system and a 3D-2D registration algorithm was designed. The proposed 3D-2D registration method combines geometric and image-based distances. After extracting features from ultrasound images, 3D and 2D features within a defined distance are matched using an intensity-based function. The results are encouraging and show acceptable errors with simulated transforms applied on ultrasound volumes from real patients.

  15. 3D face recognition by projection-based methods

    NASA Astrophysics Data System (ADS)

    Dutagaci, Helin; Sankur, Bülent; Yemez, Yücel

    2006-02-01

    In this paper, we investigate recognition performances of various projection-based features applied on registered 3D scans of faces. Some features are data driven, such as ICA-based features or NNMF-based features. Other features are obtained using DFT or DCT-based schemes. We apply the feature extraction techniques to three different representations of registered faces, namely, 3D point clouds, 2D depth images and 3D voxel. We consider both global and local features. Global features are extracted from the whole face data, whereas local features are computed over the blocks partitioned from 2D depth images. The block-based local features are fused both at feature level and at decision level. The resulting feature vectors are matched using Linear Discriminant Analysis. Experiments using different combinations of representation types and feature vectors are conducted on the 3D-RMA dataset.

  16. 3D Printed Graphene Based Energy Storage Devices.

    PubMed

    Foster, Christopher W; Down, Michael P; Zhang, Yan; Ji, Xiaobo; Rowley-Neale, Samuel J; Smith, Graham C; Kelly, Peter J; Banks, Craig E

    2017-03-03

    3D printing technology provides a unique platform for rapid prototyping of numerous applications due to its ability to produce low cost 3D printed platforms. Herein, a graphene-based polylactic acid filament (graphene/PLA) has been 3D printed to fabricate a range of 3D disc electrode (3DE) configurations using a conventional RepRap fused deposition moulding (FDM) 3D printer, which requires no further modification/ex-situ curing step. To provide proof-of-concept, these 3D printed electrode architectures are characterised both electrochemically and physicochemically and are advantageously applied as freestanding anodes within Li-ion batteries and as solid-state supercapacitors. These freestanding anodes neglect the requirement for a current collector, thus offering a simplistic and cheaper alternative to traditional Li-ion based setups. Additionally, the ability of these devices' to electrochemically produce hydrogen via the hydrogen evolution reaction (HER) as an alternative to currently utilised platinum based electrodes (with in electrolysers) is also performed. The 3DE demonstrates an unexpectedly high catalytic activity towards the HER (-0.46 V vs. SCE) upon the 1000th cycle, such potential is the closest observed to the desired value of platinum at (-0.25 V vs. SCE). We subsequently suggest that 3D printing of graphene-based conductive filaments allows for the simple fabrication of energy storage devices with bespoke and conceptual designs to be realised.

  17. 3D Printed Graphene Based Energy Storage Devices

    PubMed Central

    Foster, Christopher W.; Down, Michael P.; Zhang, Yan; Ji, Xiaobo; Rowley-Neale, Samuel J.; Smith, Graham C.; Kelly, Peter J.; Banks, Craig E.

    2017-01-01

    3D printing technology provides a unique platform for rapid prototyping of numerous applications due to its ability to produce low cost 3D printed platforms. Herein, a graphene-based polylactic acid filament (graphene/PLA) has been 3D printed to fabricate a range of 3D disc electrode (3DE) configurations using a conventional RepRap fused deposition moulding (FDM) 3D printer, which requires no further modification/ex-situ curing step. To provide proof-of-concept, these 3D printed electrode architectures are characterised both electrochemically and physicochemically and are advantageously applied as freestanding anodes within Li-ion batteries and as solid-state supercapacitors. These freestanding anodes neglect the requirement for a current collector, thus offering a simplistic and cheaper alternative to traditional Li-ion based setups. Additionally, the ability of these devices’ to electrochemically produce hydrogen via the hydrogen evolution reaction (HER) as an alternative to currently utilised platinum based electrodes (with in electrolysers) is also performed. The 3DE demonstrates an unexpectedly high catalytic activity towards the HER (−0.46 V vs. SCE) upon the 1000th cycle, such potential is the closest observed to the desired value of platinum at (−0.25 V vs. SCE). We subsequently suggest that 3D printing of graphene-based conductive filaments allows for the simple fabrication of energy storage devices with bespoke and conceptual designs to be realised. PMID:28256602

  18. 3D Printed Graphene Based Energy Storage Devices

    NASA Astrophysics Data System (ADS)

    Foster, Christopher W.; Down, Michael P.; Zhang, Yan; Ji, Xiaobo; Rowley-Neale, Samuel J.; Smith, Graham C.; Kelly, Peter J.; Banks, Craig E.

    2017-03-01

    3D printing technology provides a unique platform for rapid prototyping of numerous applications due to its ability to produce low cost 3D printed platforms. Herein, a graphene-based polylactic acid filament (graphene/PLA) has been 3D printed to fabricate a range of 3D disc electrode (3DE) configurations using a conventional RepRap fused deposition moulding (FDM) 3D printer, which requires no further modification/ex-situ curing step. To provide proof-of-concept, these 3D printed electrode architectures are characterised both electrochemically and physicochemically and are advantageously applied as freestanding anodes within Li-ion batteries and as solid-state supercapacitors. These freestanding anodes neglect the requirement for a current collector, thus offering a simplistic and cheaper alternative to traditional Li-ion based setups. Additionally, the ability of these devices’ to electrochemically produce hydrogen via the hydrogen evolution reaction (HER) as an alternative to currently utilised platinum based electrodes (with in electrolysers) is also performed. The 3DE demonstrates an unexpectedly high catalytic activity towards the HER (‑0.46 V vs. SCE) upon the 1000th cycle, such potential is the closest observed to the desired value of platinum at (‑0.25 V vs. SCE). We subsequently suggest that 3D printing of graphene-based conductive filaments allows for the simple fabrication of energy storage devices with bespoke and conceptual designs to be realised.

  19. 3D simulation of tungsten low-pressure chemical vapor deposition in contact holes

    NASA Astrophysics Data System (ADS)

    Bär, E.; Lorenz, J.

    1995-10-01

    We present a new method for three-dimensional (3D) simulation of low-pressure chemical vapor deposition in arbitrary geometries using a segment-based topography discretization with triangles combined with the calculation of particle fluxes to the wafer surface. The simulation program is applied to tungsten LPCVD using the reduction of tungsten hexafluoride (WF 6) by silane (SiH 4). We found that an approach in which the redistribution of the SiH 4 molecules is simulated and a constant reaction probability after collision of a SiH 4 molecule with the surface is assumed allows the simulation of this process with a reaction probability which is consistent with thermodynamic calculations. A comparison between a simulated 3D profile and experimental data from tungsten LPCVD in a contact hole shows very good agreement between experiment and simulation.

  20. 3D object recognition based on local descriptors

    NASA Astrophysics Data System (ADS)

    Jakab, Marek; Benesova, Wanda; Racev, Marek

    2015-01-01

    In this paper, we propose an enhanced method of 3D object description and recognition based on local descriptors using RGB image and depth information (D) acquired by Kinect sensor. Our main contribution is focused on an extension of the SIFT feature vector by the 3D information derived from the depth map (SIFT-D). We also propose a novel local depth descriptor (DD) that includes a 3D description of the key point neighborhood. Thus defined the 3D descriptor can then enter the decision-making process. Two different approaches have been proposed, tested and evaluated in this paper. First approach deals with the object recognition system using the original SIFT descriptor in combination with our novel proposed 3D descriptor, where the proposed 3D descriptor is responsible for the pre-selection of the objects. Second approach demonstrates the object recognition using an extension of the SIFT feature vector by the local depth description. In this paper, we present the results of two experiments for the evaluation of the proposed depth descriptors. The results show an improvement in accuracy of the recognition system that includes the 3D local description compared with the same system without the 3D local description. Our experimental system of object recognition is working near real-time.

  1. Evaluating the Effectiveness of Waterside Security Alternatives for Force Protection of Navy Ships and Installations Using X3D Graphics and Agent-Based Simulation

    DTIC Science & Technology

    2006-09-01

    MOTIVATION ................................................................................................2 D. OBJECTIVES...16 Figure 9. Flux Studio 2.0 (formerly VizX3D) screen capture showing a close up of a female terrorist...since the USS Cole attack in Aden Harbor, Yemen on October 12, 2000 (CRS 2001). The Cole attack was a primary motivation for Harney’s work. On

  2. Gis-Based Smart Cartography Using 3d Modeling

    NASA Astrophysics Data System (ADS)

    Malinverni, E. S.; Tassetti, A. N.

    2013-08-01

    3D City Models have evolved to be important tools for urban decision processes and information systems, especially in planning, simulation, analysis, documentation and heritage management. On the other hand existing and in use numerical cartography is often not suitable to be used in GIS because not geometrically and topologically correctly structured. The research aim is to 3D structure and organize a numeric cartography for GIS and turn it into CityGML standardized features. The work is framed around a first phase of methodological analysis aimed to underline which existing standard (like ISO and OGC rules) can be used to improve the quality requirement of a cartographic structure. Subsequently, from this technical specifics, it has been investigated the translation in formal contents, using an owner interchange software (SketchUp), to support some guide lines implementations to generate a GIS3D structured in GML3. It has been therefore predisposed a test three-dimensional numerical cartography (scale 1:500, generated from range data captured by 3D laser scanner), tested on its quality according to the previous standard and edited when and where necessary. Cad files and shapefiles are converted into a final 3D model (Google SketchUp model) and then exported into a 3D city model (CityGML LoD1/LoD2). The GIS3D structure has been managed in a GIS environment to run further spatial analysis and energy performance estimate, not achievable in a 2D environment. In particular geometrical building parameters (footprint, volume etc.) are computed and building envelop thermal characteristics are derived from. Lastly, a simulation is carried out to deal with asbestos and home renovating charges and show how the built 3D city model can support municipal managers with risk diagnosis of the present situation and development of strategies for a sustainable redevelop.

  3. Qualitative Assessment of a 3D Simulation Program: Faculty, Students, and Bio-Organic Reaction Animations

    ERIC Educational Resources Information Center

    Günersel, Adalet B.; Fleming, Steven A.

    2013-01-01

    Research shows that computer-based simulations and animations are especially helpful in fields such as chemistry where concepts are abstract and cannot be directly observed. Bio-Organic Reaction Animations (BioORA) is a freely available 3D visualization software program developed to help students understand the chemistry of biomolecular events.…

  4. Powder-based 3D printing for bone tissue engineering.

    PubMed

    Brunello, G; Sivolella, S; Meneghello, R; Ferroni, L; Gardin, C; Piattelli, A; Zavan, B; Bressan, E

    2016-01-01

    Bone tissue engineered 3-D constructs customized to patient-specific needs are emerging as attractive biomimetic scaffolds to enhance bone cell and tissue growth and differentiation. The article outlines the features of the most common additive manufacturing technologies (3D printing, stereolithography, fused deposition modeling, and selective laser sintering) used to fabricate bone tissue engineering scaffolds. It concentrates, in particular, on the current state of knowledge concerning powder-based 3D printing, including a description of the properties of powders and binder solutions, the critical phases of scaffold manufacturing, and its applications in bone tissue engineering. Clinical aspects and future applications are also discussed.

  5. Ground motion simulations in Marmara (Turkey) region from 3D finite difference method

    NASA Astrophysics Data System (ADS)

    Aochi, Hideo; Ulrich, Thomas; Douglas, John

    2016-04-01

    In the framework of the European project MARSite (2012-2016), one of the main contributions from our research team was to provide ground-motion simulations for the Marmara region from various earthquake source scenarios. We adopted a 3D finite difference code, taking into account the 3D structure around the Sea of Marmara (including the bathymetry) and the sea layer. We simulated two moderate earthquakes (about Mw4.5) and found that the 3D structure improves significantly the waveforms compared to the 1D layer model. Simulations were carried out for different earthquakes (moderate point sources and large finite sources) in order to provide shake maps (Aochi and Ulrich, BSSA, 2015), to study the variability of ground-motion parameters (Douglas & Aochi, BSSA, 2016) as well as to provide synthetic seismograms for the blind inversion tests (Diao et al., GJI, 2016). The results are also planned to be integrated in broadband ground-motion simulations, tsunamis generation and simulations of triggered landslides (in progress by different partners). The simulations are freely shared among the partners via the internet and the visualization of the results is diffused on the project's homepage. All these simulations should be seen as a reference for this region, as they are based on the latest knowledge that obtained during the MARSite project, although their refinement and validation of the model parameters and the simulations are a continuing research task relying on continuing observations. The numerical code used, the models and the simulations are available on demand.

  6. Simulation-Guided 3D Nanomanufacturing via Focused Electron Beam Induced Deposition

    SciTech Connect

    Fowlkes, Jason D.; Winkler, Robert; Lewis, Brett B.; Stanford, Michael G.; Plank, Harald; Rack, Philip D.

    2016-06-10

    Focused electron beam induced deposition (FEBID) is one of the few techniques that enables direct-write synthesis of free-standing 3D nanostructures. While the fabrication of simple architectures such as vertical or curving nanowires has been achieved by simple trial and error, processing complex 3D structures is not tractable with this approach. This is due, inpart, to the dynamic interplay between electron–solid interactions and the transient spatial distribution of absorbed precursor molecules on the solid surface. Here, we demonstrate the ability to controllably deposit 3D lattice structures at the micro/nanoscale, which have received recent interest owing to superior mechanical and optical properties. Moreover, a hybrid Monte Carlo–continuum simulation is briefly overviewed, and subsequently FEBID experiments and simulations are directly compared. Finally, a 3D computer-aided design (CAD) program is introduced, which generates the beam parameters necessary for FEBID by both simulation and experiment. In using this approach, we demonstrate the fabrication of various 3D lattice structures using Pt-, Au-, and W-based precursors.

  7. Simulation-Guided 3D Nanomanufacturing via Focused Electron Beam Induced Deposition

    DOE PAGES

    Fowlkes, Jason D.; Winkler, Robert; Lewis, Brett B.; ...

    2016-06-10

    Focused electron beam induced deposition (FEBID) is one of the few techniques that enables direct-write synthesis of free-standing 3D nanostructures. While the fabrication of simple architectures such as vertical or curving nanowires has been achieved by simple trial and error, processing complex 3D structures is not tractable with this approach. This is due, inpart, to the dynamic interplay between electron–solid interactions and the transient spatial distribution of absorbed precursor molecules on the solid surface. Here, we demonstrate the ability to controllably deposit 3D lattice structures at the micro/nanoscale, which have received recent interest owing to superior mechanical and optical properties.more » Moreover, a hybrid Monte Carlo–continuum simulation is briefly overviewed, and subsequently FEBID experiments and simulations are directly compared. Finally, a 3D computer-aided design (CAD) program is introduced, which generates the beam parameters necessary for FEBID by both simulation and experiment. In using this approach, we demonstrate the fabrication of various 3D lattice structures using Pt-, Au-, and W-based precursors.« less

  8. Visual Semantic Based 3D Video Retrieval System Using HDFS

    PubMed Central

    Kumar, C.Ranjith; Suguna, S.

    2016-01-01

    This paper brings out a neoteric frame of reference for visual semantic based 3d video search and retrieval applications. Newfangled 3D retrieval application spotlight on shape analysis like object matching, classification and retrieval not only sticking up entirely with video retrieval. In this ambit, we delve into 3D-CBVR (Content Based Video Retrieval) concept for the first time. For this purpose, we intent to hitch on BOVW and Mapreduce in 3D framework. Instead of conventional shape based local descriptors, we tried to coalesce shape, color and texture for feature extraction. For this purpose, we have used combination of geometric & topological features for shape and 3D co-occurrence matrix for color and texture. After thriving extraction of local descriptors, TB-PCT (Threshold Based- Predictive Clustering Tree) algorithm is used to generate visual codebook and histogram is produced. Further, matching is performed using soft weighting scheme with L2 distance function. As a final step, retrieved results are ranked according to the Index value and acknowledged to the user as a feedback .In order to handle prodigious amount of data and Efficacious retrieval, we have incorporated HDFS in our Intellection. Using 3D video dataset, we future the performance of our proposed system which can pan out that the proposed work gives meticulous result and also reduce the time intricacy. PMID:28003793

  9. Visual Semantic Based 3D Video Retrieval System Using HDFS.

    PubMed

    Kumar, C Ranjith; Suguna, S

    2016-08-01

    This paper brings out a neoteric frame of reference for visual semantic based 3d video search and retrieval applications. Newfangled 3D retrieval application spotlight on shape analysis like object matching, classification and retrieval not only sticking up entirely with video retrieval. In this ambit, we delve into 3D-CBVR (Content Based Video Retrieval) concept for the first time. For this purpose, we intent to hitch on BOVW and Mapreduce in 3D framework. Instead of conventional shape based local descriptors, we tried to coalesce shape, color and texture for feature extraction. For this purpose, we have used combination of geometric & topological features for shape and 3D co-occurrence matrix for color and texture. After thriving extraction of local descriptors, TB-PCT (Threshold Based- Predictive Clustering Tree) algorithm is used to generate visual codebook and histogram is produced. Further, matching is performed using soft weighting scheme with L2 distance function. As a final step, retrieved results are ranked according to the Index value and acknowledged to the user as a feedback .In order to handle prodigious amount of data and Efficacious retrieval, we have incorporated HDFS in our Intellection. Using 3D video dataset, we future the performance of our proposed system which can pan out that the proposed work gives meticulous result and also reduce the time intricacy.

  10. 3-D Numerical Simulation and Analysis of Complex Fiber Geometry RaFC Materials with High Volume Fraction and High Aspect Ratio based on ABAQUS PYTHON

    NASA Astrophysics Data System (ADS)

    Jin, BoCheng

    2011-12-01

    Organic and inorganic fiber reinforced composites with innumerable fiber orientation distributions and fiber geometries are abundantly available in several natural and synthetic structures. Inorganic glass fiber composites have been introduced to numerous applications due to their economical fabrication and tailored structural properties. Numerical characterization of such composite material systems is necessitated due to their intrinsic statistical nature, which renders extensive experimentation prohibitively time consuming and costly. To predict various mechanical behavior and characterizations of Uni-Directional Fiber Composites (UDFC) and Random Fiber Composites (RaFC), we numerically developed Representative Volume Elements (RVE) with high accuracy and efficiency and with complex fiber geometric representations encountered in uni-directional and random fiber networks. In this thesis, the numerical simulations of unidirectional RaFC fiber strand RVE models (VF>70%) are first presented by programming in ABAQUS PYTHON. Secondly, when the cross sectional aspect ratios (AR) of the second phase fiber inclusions are not necessarily one, various types of RVE models with different cross sectional shape fibers are simulated and discussed. A modified random sequential absorption algorithm is applied to enhance the volume fraction number (VF) of the RVE, which the mechanical properties represents the composite material. Thirdly, based on a Spatial Segment Shortest Distance (SSSD) algorithm, a 3-Dimentional RaFC material RVE model is simulated in ABAQUS PYTHON with randomly oriented and distributed straight fibers of high fiber aspect ratio (AR=100:1) and volume fraction (VF=31.8%). Fourthly, the piecewise multi-segments fiber geometry is obtained in MATLAB environment by a modified SSSD algorithm. Finally, numerical methods including the polynomial curve fitting and piecewise quadratic and cubic B-spline interpolation are applied to optimize the RaFC fiber geometries

  11. Peach Bottom 2 Turbine Trip Simulation Using TRAC-BF1/COS3D, a Best-Estimate Coupled 3-D Core and Thermal-Hydraulic Code System

    SciTech Connect

    Ui, Atsushi; Miyaji, Takamasa

    2004-10-15

    The best-estimate coupled three-dimensional (3-D) core and thermal-hydraulic code system TRAC-BF1/COS3D has been developed. COS3D, based on a modified one-group neutronic model, is a 3-D core simulator used for licensing analyses and core management of commercial boiling water reactor (BWR) plants in Japan. TRAC-BF1 is a plant simulator based on a two-fluid model. TRAC-BF1/COS3D is a coupled system of both codes, which are connected using a parallel computing tool. This code system was applied to the OECD/NRC BWR Turbine Trip Benchmark. Since the two-group cross-section tables are provided by the benchmark team, COS3D was modified to apply to this specification. Three best-estimate scenarios and four hypothetical scenarios were calculated using this code system. In the best-estimate scenario, the predicted core power with TRAC-BF1/COS3D is slightly underestimated compared with the measured data. The reason seems to be a slight difference in the core boundary conditions, that is, pressure changes and the core inlet flow distribution, because the peak in this analysis is sensitive to them. However, the results of this benchmark analysis show that TRAC-BF1/COS3D gives good precision for the prediction of the actual BWR transient behavior on the whole. Furthermore, the results with the modified one-group model and the two-group model were compared to verify the application of the modified one-group model to this benchmark. This comparison shows that the results of the modified one-group model are appropriate and sufficiently precise.

  12. 20 and 3D Numerical Simulations of Flux Cancellation

    NASA Technical Reports Server (NTRS)

    Karpen, Judith T.; DeVore, C.; Antiochos, S. K.; Linton, M. G.

    2009-01-01

    Cancellation of magnetic flux in the solar photosphere and chromosphere has been linked observationally and theoretically to a broad range of solar activity, from filament channel formation to CME initiation. Because this phenomenon is typically measured at only a single layer in the atmosphere, in the radial (line of sight) component of the magnetic field, the actual processes behind this observational signature are ambiguous. It is clear that reconnection is involved in some way, but the location of the reconnection sites and associated connectivity changes remain uncertain in most cases. We are using numerical modeling to demystify flux cancellation, beginning with the simplest possible configuration: a subphotospheric Lundquist flux tube surrounded by a potential field, immersed in a gravitationally stratified atmosphere, spanning many orders of magnitude in plasma beta. In this system, cancellation is driven slowly by a 2-cell circulation pattern imposed in the convection zone, such that the tops of the cells are located around the beta= 1 level (Le., the photosphere) and the flows converge and form a downdraft at the polarity inversion line; note however that no flow is imposed along the neutral line. We will present the results of 2D and 3D MHD-AMR simulations of flux cancellation, in which the flux at the photosphere begins in either an unsheared or sheared state. In all cases, a lOW-lying flux rope is formed by reconnection at the polarity inversion line within a few thousand seconds. The flux rope remains stable and does not rise, however, in contrast to models which do not include the presence of significant mass loading.

  13. 2D and 3D Numerical Simulations of Flux Cancellation

    NASA Technical Reports Server (NTRS)

    Karpen, Judith T.; DeVore, C.; Antiochos, S. K.; Linton, M. G.

    2009-01-01

    Cancellation of magnetic flux in the solar photosphere and chromosphere has been linked observationally and theoretically to a broad range of solar activity, from filament channel formation to CME initiation. Because this phenomenon is typically measured at only a single layer in the atmosphere, in the radial (line of sight) component of the magnetic field, the actual processes behind this observational signature are ambiguous. It is clear that reconnection is involved in some way, but the location of the reconnection sites and associated connectivity changes remain uncertain in most cases. We are using numerical modeling to demystify flux cancellation, beginning with the simplest possible configuration: a subphotospheric Lundquist flux tube surrounded by a potential field, immersed in a gravitationally stratified atmosphere, spanning many orders of magnitude in plasma beta. In this system, cancellation is driven slowly by a 2-cell circulation pattern imposed in the convection zone, such that the tops of the cells are located around the beta=1 level (i.e., the photosphere) and the flows converge and form a downdraft at the polarity inversion line; note however that no flow is imposed along the neutral line. We will present the results of 2D and 3D MHD-AMR simulations of flux cancellation, in which the flux at the photosphere begins in either an unsheared or sheared state. In all cases, a low-lying flux rope is formed by reconnection at the polarity inversion line within a few thousand seconds. The flux rope remains stable and does not rise, however, in contrast to models which do not include the presence of significant mass loading.

  14. An object-oriented simulator for 3D digital breast tomosynthesis imaging system.

    PubMed

    Seyyedi, Saeed; Cengiz, Kubra; Kamasak, Mustafa; Yildirim, Isa

    2013-01-01

    Digital breast tomosynthesis (DBT) is an innovative imaging modality that provides 3D reconstructed images of breast to detect the breast cancer. Projections obtained with an X-ray source moving in a limited angle interval are used to reconstruct 3D image of breast. Several reconstruction algorithms are available for DBT imaging. Filtered back projection algorithm has traditionally been used to reconstruct images from projections. Iterative reconstruction algorithms such as algebraic reconstruction technique (ART) were later developed. Recently, compressed sensing based methods have been proposed in tomosynthesis imaging problem. We have developed an object-oriented simulator for 3D digital breast tomosynthesis (DBT) imaging system using C++ programming language. The simulator is capable of implementing different iterative and compressed sensing based reconstruction methods on 3D digital tomosynthesis data sets and phantom models. A user friendly graphical user interface (GUI) helps users to select and run the desired methods on the designed phantom models or real data sets. The simulator has been tested on a phantom study that simulates breast tomosynthesis imaging problem. Results obtained with various methods including algebraic reconstruction technique (ART) and total variation regularized reconstruction techniques (ART+TV) are presented. Reconstruction results of the methods are compared both visually and quantitatively by evaluating performances of the methods using mean structural similarity (MSSIM) values.

  15. Predictive Evaluations of Oxygen-Rich Hydrocarbon Combustion Gas-Centered Swirl Coaxial Injectors using a Flamelet-Based 3-D CFD Simulation Approach

    NASA Technical Reports Server (NTRS)

    Richardson, Brian R.; Braman, Kalem; West, Jeff

    2016-01-01

    NASA Marshall Space Flight Center (MSFC) has embarked upon a joint project with the Air Force to improve the state-of-the-art of space application combustion device design and operational understanding. One goal of the project is to design, build and hot-fire test a 40,000 pound-thrust Oxygen/Rocket Propellant-2 (RP-2) Oxygen-Rich staged engine at MSFC. The overall project goals afford the opportunity to test multiple different injector designs and experimentally evaluate the any effect on the engine performance and combustion dynamics. To maximize the available test resources and benefits, pre-test, combusting flow, Computational Fluid Dynamics (CFD) analysis was performed on the individual injectors to guide the design. The results of the CFD analysis were used to design the injectors for specific, targeted fluid dynamic features and the analysis results also provided some predictive input for acoustic and thermal analysis of the main Thrust Chamber Assembly (TCA). MSFC has developed and demonstrated the ability to utilize a computationally efficient, flamelet-based combustion model to guide the pre-test design of single-element Gas Centered Swirl Coaxial (GCSC) injectors. Previous, Oxygen/RP-2 simulation models utilizing the Loci-STREAM flow solver, were validated using single injector test data from the EC-1 Air Force test facility. The simulation effort herein is an extension of the validated, CFD driven, single-injector design approach applied to single injectors which will be part of a larger engine array. Time-accurate, Three-Dimensional, CFD simulations were performed for five different classes of injector geometries. Simulations were performed to guide the design of the injector to achieve a variety of intended performance goals. For example, two GCSC injectors were designed to achieve stable hydrodynamic behavior of the propellant circuits while providing the largest thermal margin possible within the design envelope. While another injector was designed

  16. A Correction Scheme for Thermal Conductivity Measurement Using the Comparative Cut-bar Technique Based on a 3D Numerical Simulation

    SciTech Connect

    Douglas W. Marshall; Changhu Xing; Charles Folsom; Colby Jensen; Heng Ban

    2014-05-01

    As an important factor affecting the accuracy of the thermal conductivity measurement, systematic (bias) error in the guarded comparative axial heat flow (cut-bar) method was mostly neglected by previous researches. This bias is due primarily to the thermal conductivity mismatch between sample and meter bars (reference), which is common for a sample of unknown thermal conductivity. A correction scheme, based on a finite element simulation of the measurement system, was proposed to reduce the magnitude of the overall measurement uncertainty. This scheme was experimentally validated by applying corrections on four types of sample measurements in which the specimen thermal conductivity is much smaller, slightly smaller, equal and much larger than that of the meter bar. As an alternative to the optimum guarding technique proposed before, the correction scheme can be used to minimize uncertainty contribution from the measurement system with non-optimal guarding conditions. It is especially necessary for large thermal conductivity mismatches between sample and meter bars.

  17. 3D model retrieval method based on mesh segmentation

    NASA Astrophysics Data System (ADS)

    Gan, Yuanchao; Tang, Yan; Zhang, Qingchen

    2012-04-01

    In the process of feature description and extraction, current 3D model retrieval algorithms focus on the global features of 3D models but ignore the combination of global and local features of the model. For this reason, they show less effective performance to the models with similar global shape and different local shape. This paper proposes a novel algorithm for 3D model retrieval based on mesh segmentation. The key idea is to exact the structure feature and the local shape feature of 3D models, and then to compares the similarities of the two characteristics and the total similarity between the models. A system that realizes this approach was built and tested on a database of 200 objects and achieves expected results. The results show that the proposed algorithm improves the precision and the recall rate effectively.

  18. Flexible simulation framework to couple processes in complex 3D models for subsurface utilization assessment

    NASA Astrophysics Data System (ADS)

    Kempka, Thomas; Nakaten, Benjamin; De Lucia, Marco; Nakaten, Natalie; Otto, Christopher; Pohl, Maik; Tillner, Elena; Kühn, Michael

    2016-04-01

    Utilization of the geological subsurface for production and storage of hydrocarbons, chemical energy and heat as well as for waste disposal requires the quantification and mitigation of environmental impacts as well as the improvement of georesources utilization in terms of efficiency and sustainability. The development of tools for coupled process simulations is essential to tackle these challenges, since reliable assessments are only feasible by integrative numerical computations. Coupled processes at reservoir to regional scale determine the behaviour of reservoirs, faults and caprocks, generally demanding for complex 3D geological models to be considered besides available monitoring and experimenting data in coupled numerical simulations. We have been developing a flexible numerical simulation framework that provides efficient workflows for integrating the required data and software packages to carry out coupled process simulations considering, e.g., multiphase fluid flow, geomechanics, geochemistry and heat. Simulation results are stored in structured data formats to allow for an integrated 3D visualization and result interpretation as well as data archiving and its provision to collaborators. The main benefits in using the flexible simulation framework are the integration of data geological and grid data from any third party software package as well as data export to generic 3D visualization tools and archiving formats. The coupling of the required process simulators in time and space is feasible, while different spatial dimensions in the coupled simulations can be integrated, e.g., 0D batch with 3D dynamic simulations. User interaction is established via high-level programming languages, while computational efficiency is achieved by using low-level programming languages. We present three case studies on the assessment of geological subsurface utilization based on different process coupling approaches and numerical simulations.

  19. 3D ear identification based on sparse representation.

    PubMed

    Zhang, Lin; Ding, Zhixuan; Li, Hongyu; Shen, Ying

    2014-01-01

    Biometrics based personal authentication is an effective way for automatically recognizing, with a high confidence, a person's identity. Recently, 3D ear shape has attracted tremendous interests in research field due to its richness of feature and ease of acquisition. However, the existing ICP (Iterative Closet Point)-based 3D ear matching methods prevalent in the literature are not quite efficient to cope with the one-to-many identification case. In this paper, we aim to fill this gap by proposing a novel effective fully automatic 3D ear identification system. We at first propose an accurate and efficient template-based ear detection method. By utilizing such a method, the extracted ear regions are represented in a common canonical coordinate system determined by the ear contour template, which facilitates much the following stages of feature extraction and classification. For each extracted 3D ear, a feature vector is generated as its representation by making use of a PCA-based local feature descriptor. At the stage of classification, we resort to the sparse representation based classification approach, which actually solves an l1-minimization problem. To the best of our knowledge, this is the first work introducing the sparse representation framework into the field of 3D ear identification. Extensive experiments conducted on a benchmark dataset corroborate the effectiveness and efficiency of the proposed approach. The associated Matlab source code and the evaluation results have been made publicly online available at http://sse.tongji.edu.cn/linzhang/ear/srcear/srcear.htm.

  20. DCT and DST Based Image Compression for 3D Reconstruction

    NASA Astrophysics Data System (ADS)

    Siddeq, Mohammed M.; Rodrigues, Marcos A.

    2017-03-01

    This paper introduces a new method for 2D image compression whose quality is demonstrated through accurate 3D reconstruction using structured light techniques and 3D reconstruction from multiple viewpoints. The method is based on two discrete transforms: (1) A one-dimensional Discrete Cosine Transform (DCT) is applied to each row of the image. (2) The output from the previous step is transformed again by a one-dimensional Discrete Sine Transform (DST), which is applied to each column of data generating new sets of high-frequency components followed by quantization of the higher frequencies. The output is then divided into two parts where the low-frequency components are compressed by arithmetic coding and the high frequency ones by an efficient minimization encoding algorithm. At decompression stage, a binary search algorithm is used to recover the original high frequency components. The technique is demonstrated by compressing 2D images up to 99% compression ratio. The decompressed images, which include images with structured light patterns for 3D reconstruction and from multiple viewpoints, are of high perceptual quality yielding accurate 3D reconstruction. Perceptual assessment and objective quality of compression are compared with JPEG and JPEG2000 through 2D and 3D RMSE. Results show that the proposed compression method is superior to both JPEG and JPEG2000 concerning 3D reconstruction, and with equivalent perceptual quality to JPEG2000.

  1. 3D display based on parallax barrier with multiview zones.

    PubMed

    Lv, Guo-Jiao; Wang, Qiong-Hua; Zhao, Wu-Xiang; Wang, Jun

    2014-03-01

    A 3D display based on a parallax barrier with multiview zones is proposed. This display consists of a 2D display panel and a parallax barrier. The basic element of the parallax barrier has three narrow slits. They can show three columns of subpixels on the 2D display panel and form 3D pixels. The parallax barrier can provide multiview zones. In these multiview zones, the proposed 3D display can use a small number of views to achieve a high density of views. Therefore, the distance between views is the same as the conventional ones with more views. Considering the proposed display has fewer views, which bring more 3D pixels in the 3D images, the resolution and brightness will be higher than the conventional ones. A 12-view prototype of the proposed 3D display is developed, and it provides the same density of views as a conventional one with 28 views. Experimental results show the proposed display has higher resolution and brightness than the conventional one. The cross talk is also limited at a low level.

  2. 3D GRMHD and GRPIC Simulations of Disk-Jet Coupling and Emission

    SciTech Connect

    Nishikawa, Ken-Ichi; Mizuno, Y.; Watson, M.; Hardee, P.; Fuerst, S.; Wu, K.; Fishman, G.J.; /NASA, Marshall

    2006-12-19

    We investigate jet formation in black-hole systems using 3-D General Relativistic Particle-In-Cell (GRPIC) and 3-D GRMHD simulations. GRPIC simulations, which allow charge separations in a collisionless plasma, do not need to invoke the frozen condition as in GRMHD simulations. 3-D GRPIC simulations show that jets are launched from Kerr black holes as in 3-D GRMHD simulations, but jet formation in the two cases may not be identical. Comparative study of black hole systems with GRPIC and GRMHD simulations with the inclusion of radiate transfer will further clarify the mechanisms that drive the evolution of disk-jet systems.

  3. Rapid processing of data based on high-performance algorithms for solving inverse problems and 3D-simulation of the tsunami and earthquakes

    NASA Astrophysics Data System (ADS)

    Marinin, I. V.; Kabanikhin, S. I.; Krivorotko, O. I.; Karas, A.; Khidasheli, D. G.

    2012-04-01

    We consider new techniques and methods for earthquake and tsunami related problems, particularly - inverse problems for the determination of tsunami source parameters, numerical simulation of long wave propagation in soil and water and tsunami risk estimations. In addition, we will touch upon the issue of database management and destruction scenario visualization. New approaches and strategies, as well as mathematical tools and software are to be shown. The long joint investigations by researchers of the Institute of Mathematical Geophysics and Computational Mathematics SB RAS and specialists from WAPMERR and Informap have produced special theoretical approaches, numerical methods, and software tsunami and earthquake modeling (modeling of propagation and run-up of tsunami waves on coastal areas), visualization, risk estimation of tsunami, and earthquakes. Algorithms are developed for the operational definition of the origin and forms of the tsunami source. The system TSS numerically simulates the source of tsunami and/or earthquakes and includes the possibility to solve the direct and the inverse problem. It becomes possible to involve advanced mathematical results to improve models and to increase the resolution of inverse problems. Via TSS one can construct maps of risks, the online scenario of disasters, estimation of potential damage to buildings and roads. One of the main tools for the numerical modeling is the finite volume method (FVM), which allows us to achieve stability with respect to possible input errors, as well as to achieve optimum computing speed. Our approach to the inverse problem of tsunami and earthquake determination is based on recent theoretical results concerning the Dirichlet problem for the wave equation. This problem is intrinsically ill-posed. We use the optimization approach to solve this problem and SVD-analysis to estimate the degree of ill-posedness and to find the quasi-solution. The software system we developed is intended to

  4. 3D scientific visualization of reservoir simulation post-processing

    SciTech Connect

    Sousa, M.C.; Miranda-Filho, D.N.

    1994-12-31

    This paper describes a 3D visualization software designed at PETROBRAS and TecGraf/PUC-RJ in Brazil for the analysis of reservoir engineering post-processing data. It offers an advanced functional environment on graphical workstations with intuitive and ergonomic interface. Applications to real reservoir models show the enriching features of the software.

  5. 3D measurement system based on computer-generated gratings

    NASA Astrophysics Data System (ADS)

    Zhu, Yongjian; Pan, Weiqing; Luo, Yanliang

    2010-08-01

    A new kind of 3D measurement system has been developed to achieve the 3D profile of complex object. The principle of measurement system is based on the triangular measurement of digital fringe projection, and the fringes are fully generated from computer. Thus the computer-generated four fringes form the data source of phase-shifting 3D profilometry. The hardware of system includes the computer, video camera, projector, image grabber, and VGA board with two ports (one port links to the screen, another to the projector). The software of system consists of grating projection module, image grabbing module, phase reconstructing module and 3D display module. A software-based synchronizing method between grating projection and image capture is proposed. As for the nonlinear error of captured fringes, a compensating method is introduced based on the pixel-to-pixel gray correction. At the same time, a least square phase unwrapping is used to solve the problem of phase reconstruction by using the combination of Log Modulation Amplitude and Phase Derivative Variance (LMAPDV) as weight. The system adopts an algorithm from Matlab Tool Box for camera calibration. The 3D measurement system has an accuracy of 0.05mm. The execution time of system is 3~5s for one-time measurement.

  6. Voice and gesture-based 3D multimedia presentation tool

    NASA Astrophysics Data System (ADS)

    Fukutake, Hiromichi; Akazawa, Yoshiaki; Okada, Yoshihiro

    2007-09-01

    This paper proposes a 3D multimedia presentation tool that allows the user to manipulate intuitively only through the voice input and the gesture input without using a standard keyboard or a mouse device. The authors developed this system as a presentation tool to be used in a presentation room equipped a large screen like an exhibition room in a museum because, in such a presentation environment, it is better to use voice commands and the gesture pointing input rather than using a keyboard or a mouse device. This system was developed using IntelligentBox, which is a component-based 3D graphics software development system. IntelligentBox has already provided various types of 3D visible, reactive functional components called boxes, e.g., a voice input component and various multimedia handling components. IntelligentBox also provides a dynamic data linkage mechanism called slot-connection that allows the user to develop 3D graphics applications by combining already existing boxes through direct manipulations on a computer screen. Using IntelligentBox, the 3D multimedia presentation tool proposed in this paper was also developed as combined components only through direct manipulations on a computer screen. The authors have already proposed a 3D multimedia presentation tool using a stage metaphor and its voice input interface. This time, we extended the system to make it accept the user gesture input besides voice commands. This paper explains details of the proposed 3D multimedia presentation tool and especially describes its component-based voice and gesture input interfaces.

  7. Magnetic Dissipation in Asymmetric Strong Guide 3D Simulations: Examples of Magnetic Diffusion and Reconnection

    NASA Astrophysics Data System (ADS)

    Scudder, J. D.; Karimabadi, H.; Daughton, W. S.

    2013-12-01

    Interpretations of 2D simulations of magnetic reconnection are greatly simplified by using the flux function, usually the out of plane component of the vector potential. This theoretical device is no longer available when simulations are analyzed in 3-D. We illustrate the results of determining the locale rates of flux slippage in simulations by a technique based on Maxwell's equations. The technique recovers the usual results obtained for the flux function in 2D simulations, but remains viable in 3D simulations where there is no flux function. The method has also been successfully tested for full PIC simulations where reconnection is geometrically forbiddden. While such layers possess measurable flux slippages (diffusion) their level is not as strong as recorded in known 2D PIC reconnection sites using the same methodology. This approach will be used to explore the spatial incidence and strength of flux slippages across a 3D, asymmetric, strong guide field run discussed previously in the literature. Regions of diffusive behavior are illustrated where LHDI has been previously identified out on the separatrices, while much stronger flux slippages, typical of the X-regions of 2D simulations, are shown to occur elsewhere throughout the simulation. These results suggest that reconnection requires sufficiently vigorous flux slippage to be self sustaining, while non-zero flux slippage can and does occur without being at the reconnection site. A cross check of this approach is provided by the mixing ratio of tagged simulation particles of known spatial origin discussed by Daughton et al., 2013 (this meeting); they provide an integral measure of flux slippage up to the present point in the simulation. We will discuss the correlations between our Maxwell based flux slippage rates and the inferred rates of change of this mixing ratio (as recorded in the local fluid frame).

  8. 3-D General Relativistic MHD Simulations of Generating Jets

    NASA Astrophysics Data System (ADS)

    Nishikawa, K.-I.; Koide, S.; Shibata, K.; Kudoh, T.; Frank, J.; Sol, H.

    1999-12-01

    We have investigated the dynamics of an accretion disk around Schwarzschild black holes initially threaded by a uniform poloidal magnetic field in a non-rotating corona (either in a steady-state infalling state or in hydrostatic equilibrium) around a non-rotating black hole using a 3-D GRMHD with the ``axisymmetry'' along the z-direction. Magnetic field is tightly twisted by the rotation of the disk, and plasmas in the shocked region of the disk are accelerated by J x B force to form bipolar relativistic jets. In order to investigate variabilities of generated relativistic jets and magnetic field structure inside jets, we have performed calculations using the 3-D GRMHD code with a full 3-dimensional system. We will investigate how the third dimension affects the global disk dynamics and jet generation.

  9. 3-D General Relativistic MHD Simulations of Generating Jets

    NASA Astrophysics Data System (ADS)

    Nishikawa, K.-I.; Koide, S.; Shibata, K.; Kudoh, T.; Sol, H.; Hughes, J. P.

    2000-12-01

    We have investigated the dynamics of an accretion disk around Schwarzschild black holes initially threaded by a uniform poloidal magnetic field in a non-rotating corona (either in a steady-state infalling state) around a non-rotating black hole using a 3-D GRMHD with the ``axisymmetry'' along the z-direction. Magnetic field is tightly twisted by the rotation of the disk, and plasmas in the shocked region of the disk are accelerated by J x B force to form bipolar relativistic jets. In order to investigate variabilities of generated relativistic jets and magnetic field structure inside jets, we have performed calculations using the 3-D GRMHD code with a full 3-dimensional system. We will investigate how the third dimension affects the global disk dynamics and jet generation.

  10. DREAM3D simulations of inner-belt dynamics

    SciTech Connect

    Cunningham, Gregory Scott

    2015-05-26

    A 1973 paper by Lyons and Thorne explains the two-belt structure for electrons in the inner magnetosphere as a balance between inward radial diffusion and loss to the atmosphere, where the loss to the atmosphere is enabled by pitch-angle scattering from Coulomb and wave-particle interactions. In the 1973 paper, equilibrium solutions to a decoupled set of 1D radial diffusion equations, one for each value of the first invariant of motion, μ, were computed to produce the equilibrium two-belt structure. Each 1D radial diffusion equation incorporated an L-and μ-dependent `lifetime' due to the Coulomb and wave-particle interactions. This decoupling of the problem is appropriate under the assumption that radial diffusion is slow in comparison to pitch-angle scattering. However, for some values of μ and L the lifetime associated with pitch-angle scattering is comparable to the timescale associated with radial diffusion, suggesting that the true equilibrium solutions might reflect `coupled modes' involving pitch-angle scattering and radial diffusion and thus requiring a 3D diffusion model. In the work we show here, we have computed the equilibrium solutions using our 3D diffusion model, DREAM3D, that allows for such coupling. We find that the 3D equilibrium solutions are quite similar to the solutions shown in the 1973 paper when we use the same physical models for radial diffusion and pitch-angle scattering from hiss. However, we show that the equilibrium solutions are quite sensitive to various aspects of the physics model employed in the 1973 paper that can be improved, suggesting that additional work needs to be done to understand the two-belt structure.

  11. Using 3-D Numerical Weather Data in Piloted Simulations

    NASA Technical Reports Server (NTRS)

    Daniels, Taumi S.

    2016-01-01

    This report describes the process of acquiring and using 3-D numerical model weather data sets in NASA Langley's Research Flight Deck (RFD). A set of software tools implement the process and can be used for other purposes as well. Given time and location information of a weather phenomenon of interest, the user can download associated numerical weather model data. These data are created by the National Oceanic and Atmospheric Administration (NOAA) High Resolution Rapid Refresh (HRRR) model, and are then processed using a set of Mathworks' Matlab(TradeMark) scripts to create the usable 3-D weather data sets. Each data set includes radar re ectivity, water vapor, component winds, temperature, supercooled liquid water, turbulence, pressure, altitude, land elevation, relative humidity, and water phases. An open-source data processing program, wgrib2, is available from NOAA online, and is used along with Matlab scripts. These scripts are described with sucient detail to make future modi cations. These software tools have been used to generate 3-D weather data for various RFD experiments.

  12. Hough transform-based 3D mesh retrieval

    NASA Astrophysics Data System (ADS)

    Zaharia, Titus; Preteux, Francoise J.

    2001-11-01

    This papre addresses the issue of 3D mesh indexation by using shape descriptors (SDs) under constraints of geometric and topological invariance. A new shape descriptor, the Optimized 3D Hough Transform Descriptor (O3HTD) is here proposed. Intrinsically topologically stable, the O3DHTD is not invariant to geometric transformations. Nevertheless, we show mathematically how the O3DHTD can be optimally associated (in terms of compactness of representation and computational complexity) with a spatial alignment procedure which leads to a geometric invariant behavior. Experimental results have been carried out upon the MPEG-7 3D model database consisting of about 1300 meshes in VRML 2.0 format. Objective retrieval results, based upon the definition of a categorized ground truth subset, are reported in terms of Bull Eye Percentage (BEP) score and compared to those obtained by applying the MPEg-7 3D SD. It is shown that the O3DHTD outperforms the MPEg-7 3D SD of up to 28%.

  13. Optical 3D watermark based digital image watermarking for telemedicine

    NASA Astrophysics Data System (ADS)

    Li, Xiao Wei; Kim, Seok Tae

    2013-12-01

    Region of interest (ROI) of a medical image is an area including important diagnostic information and must be stored without any distortion. This algorithm for application of watermarking technique for non-ROI of the medical image preserving ROI. The paper presents a 3D watermark based medical image watermarking scheme. In this paper, a 3D watermark object is first decomposed into 2D elemental image array (EIA) by a lenslet array, and then the 2D elemental image array data is embedded into the host image. The watermark extraction process is an inverse process of embedding. The extracted EIA through the computational integral imaging reconstruction (CIIR) technique, the 3D watermark can be reconstructed. Because the EIA is composed of a number of elemental images possesses their own perspectives of a 3D watermark object. Even though the embedded watermark data badly damaged, the 3D virtual watermark can be successfully reconstructed. Furthermore, using CAT with various rule number parameters, it is possible to get many channels for embedding. So our method can recover the weak point having only one transform plane in traditional watermarking methods. The effectiveness of the proposed watermarking scheme is demonstrated with the aid of experimental results.

  14. Determination of key parameters of SEU occurrence using 3-D full cell SRAM simulations

    SciTech Connect

    Roche, P.; Palau, J.M.; Bruguier, G.; Tavernier, C.; Ecoffet, R.; Gasiot, J.

    1999-12-01

    A 3-D entire SRAM cell, based on a 0.35-{micro}m current CMOS technology, is simulated in this work with a DEVICE simulator. The transient current, resulting from a heavy ion strike in the most sensitive region of the cell, is studied as a function of the LET value, the cell layout and the ion penetration depth. A definition of the critical charge is proposed and two new methods are presented to compute this basic amount of charge only using SPICE simulations. Numerical applications are performed with two different generations of submicron CMOS technologies, including the determination of the sensitive thicknesses.

  15. Applications of Alginate-Based Bioinks in 3D Bioprinting

    PubMed Central

    Axpe, Eneko; Oyen, Michelle L.

    2016-01-01

    Three-dimensional (3D) bioprinting is on the cusp of permitting the direct fabrication of artificial living tissue. Multicellular building blocks (bioinks) are dispensed layer by layer and scaled for the target construct. However, only a few materials are able to fulfill the considerable requirements for suitable bioink formulation, a critical component of efficient 3D bioprinting. Alginate, a naturally occurring polysaccharide, is clearly the most commonly employed material in current bioinks. Here, we discuss the benefits and disadvantages of the use of alginate in 3D bioprinting by summarizing the most recent studies that used alginate for printing vascular tissue, bone and cartilage. In addition, other breakthroughs in the use of alginate in bioprinting are discussed, including strategies to improve its structural and degradation characteristics. In this review, we organize the available literature in order to inspire and accelerate novel alginate-based bioink formulations with enhanced properties for future applications in basic research, drug screening and regenerative medicine. PMID:27898010

  16. Parallel implementation of 3D FFT with volumetric decomposition schemes for efficient molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Jung, Jaewoon; Kobayashi, Chigusa; Imamura, Toshiyuki; Sugita, Yuji

    2016-03-01

    Three-dimensional Fast Fourier Transform (3D FFT) plays an important role in a wide variety of computer simulations and data analyses, including molecular dynamics (MD) simulations. In this study, we develop hybrid (MPI+OpenMP) parallelization schemes of 3D FFT based on two new volumetric decompositions, mainly for the particle mesh Ewald (PME) calculation in MD simulations. In one scheme, (1d_Alltoall), five all-to-all communications in one dimension are carried out, and in the other, (2d_Alltoall), one two-dimensional all-to-all communication is combined with two all-to-all communications in one dimension. 2d_Alltoall is similar to the conventional volumetric decomposition scheme. We performed benchmark tests of 3D FFT for the systems with different grid sizes using a large number of processors on the K computer in RIKEN AICS. The two schemes show comparable performances, and are better than existing 3D FFTs. The performances of 1d_Alltoall and 2d_Alltoall depend on the supercomputer network system and number of processors in each dimension. There is enough leeway for users to optimize performance for their conditions. In the PME method, short-range real-space interactions as well as long-range reciprocal-space interactions are calculated. Our volumetric decomposition schemes are particularly useful when used in conjunction with the recently developed midpoint cell method for short-range interactions, due to the same decompositions of real and reciprocal spaces. The 1d_Alltoall scheme of 3D FFT takes 4.7 ms to simulate one MD cycle for a virus system containing more than 1 million atoms using 32,768 cores on the K computer.

  17. 3D printing method for freeform fabrication of optical phantoms simulating heterogeneous biological tissue

    NASA Astrophysics Data System (ADS)

    Wang, Minjie; Shen, Shuwei; Yang, Jie; Dong, Erbao; Xu, Ronald

    2014-03-01

    The performance of biomedical optical imaging devices heavily relies on appropriate calibration. However, many of existing calibration phantoms for biomedical optical devices are based on homogenous materials without considering the multi-layer heterogeneous structures observed in biological tissue. Using such a phantom for optical calibration may result in measurement bias. To overcome this problem, we propose a 3D printing method for freeform fabrication of tissue simulating phantoms with multilayer heterogeneous structure. The phantom simulates not only the morphologic characteristics of biological tissue but also absorption and scattering properties. The printing system is based on a 3D motion platform with coordinated control of the DC motors. A special jet nozzle is designed to mix base, scattering, and absorption materials at different ratios. 3D tissue structures are fabricated through layer-by-layer printing with selective deposition of phantom materials of different ingredients. Different mixed ratios of base, scattering and absorption materials have been tested in order to optimize the printing outcome. A spectrometer and a tissue spectrophotometer are used for characterizing phantom absorption and scattering properties. The goal of this project is to fabricate skin tissue simulating phantoms as a traceable standard for the calibration of biomedical optical spectral devices.

  18. Perception-based shape retrieval for 3D building models

    NASA Astrophysics Data System (ADS)

    Zhang, Man; Zhang, Liqiang; Takis Mathiopoulos, P.; Ding, Yusi; Wang, Hao

    2013-01-01

    With the help of 3D search engines, a large number of 3D building models can be retrieved freely online. A serious disadvantage of most rotation-insensitive shape descriptors is their inability to distinguish between two 3D building models which are different at their main axes, but appear similar when one of them is rotated. To resolve this problem, we present a novel upright-based normalization method which not only correctly rotates such building models, but also greatly simplifies and accelerates the abstraction and the matching of building models' shape descriptors. Moreover, the abundance of architectural styles significantly hinders the effective shape retrieval of building models. Our research has shown that buildings with different designs are not well distinguished by the widely recognized shape descriptors for general 3D models. Motivated by this observation and to further improve the shape retrieval quality, a new building matching method is introduced and analyzed based on concepts found in the field of perception theory and the well-known Light Field descriptor. The resulting normalized building models are first classified using the qualitative shape descriptors of Shell and Unevenness which outline integral geometrical and topological information. These models are then put in on orderly fashion with the help of an improved quantitative shape descriptor which we will term as Horizontal Light Field Descriptor, since it assembles detailed shape characteristics. To accurately evaluate the proposed methodology, an enlarged building shape database which extends previous well-known shape benchmarks was implemented as well as a model retrieval system supporting inputs from 2D sketches and 3D models. Various experimental performance evaluation results have shown that, as compared to previous methods, retrievals employing the proposed matching methodology are faster and more consistent with human recognition of spatial objects. In addition these performance

  19. Linking continuum mechanics and 3D discrete dislocation simulations

    SciTech Connect

    El-Azab, A. A.; Fivel, M.

    1998-10-18

    A technique is developed for linking the methods of discrete dislocation dynamics simulation and finite element to treat elasto-plasticity problems. The overall formulation views the plastically deforming crystal as an elastic crystal with continuously changing dislocation microstructure which is tracked by the numerical dynamics simulation. The FEM code needed in this regard is based on linear elasticity only. This formulation presented here is focused on a continuous updating of the outer shape of the crystal, for possible regeneration of the FEM mesh, and adjustment of the surface geometry, in particular the surface normal. The method is expected to be potentially applicable to the nano- indentation experiments, where the zone around the indenter-crystal contact undergoes significant permanent deformation, the rigorous determination of which is very important to the calculation of the indentation print area and in turn, the surface hardness. Furthermore, the technique is expected to account for the plastic history of the surface displacement under the indenter. Other potential applications are mentioned in the text.

  20. 3D Ear Identification Based on Sparse Representation

    PubMed Central

    Zhang, Lin; Ding, Zhixuan; Li, Hongyu; Shen, Ying

    2014-01-01

    Biometrics based personal authentication is an effective way for automatically recognizing, with a high confidence, a person’s identity. Recently, 3D ear shape has attracted tremendous interests in research field due to its richness of feature and ease of acquisition. However, the existing ICP (Iterative Closet Point)-based 3D ear matching methods prevalent in the literature are not quite efficient to cope with the one-to-many identification case. In this paper, we aim to fill this gap by proposing a novel effective fully automatic 3D ear identification system. We at first propose an accurate and efficient template-based ear detection method. By utilizing such a method, the extracted ear regions are represented in a common canonical coordinate system determined by the ear contour template, which facilitates much the following stages of feature extraction and classification. For each extracted 3D ear, a feature vector is generated as its representation by making use of a PCA-based local feature descriptor. At the stage of classification, we resort to the sparse representation based classification approach, which actually solves an l1-minimization problem. To the best of our knowledge, this is the first work introducing the sparse representation framework into the field of 3D ear identification. Extensive experiments conducted on a benchmark dataset corroborate the effectiveness and efficiency of the proposed approach. The associated Matlab source code and the evaluation results have been made publicly online available at http://sse.tongji.edu.cn/linzhang/ear/srcear/srcear.htm. PMID:24740247

  1. Development of discrete gas kinetic scheme for simulation of 3D viscous incompressible and compressible flows

    NASA Astrophysics Data System (ADS)

    Yang, L. M.; Shu, C.; Wang, Y.; Sun, Y.

    2016-08-01

    The sphere function-based gas kinetic scheme (GKS), which was presented by Shu and his coworkers [23] for simulation of inviscid compressible flows, is extended to simulate 3D viscous incompressible and compressible flows in this work. Firstly, we use certain discrete points to represent the spherical surface in the phase velocity space. Then, integrals along the spherical surface for conservation forms of moments, which are needed to recover 3D Navier-Stokes equations, are approximated by integral quadrature. The basic requirement is that these conservation forms of moments can be exactly satisfied by weighted summation of distribution functions at discrete points. It was found that the integral quadrature by eight discrete points on the spherical surface, which forms the D3Q8 discrete velocity model, can exactly match the integral. In this way, the conservative variables and numerical fluxes can be computed by weighted summation of distribution functions at eight discrete points. That is, the application of complicated formulations resultant from integrals can be replaced by a simple solution process. Several numerical examples including laminar flat plate boundary layer, 3D lid-driven cavity flow, steady flow through a 90° bending square duct, transonic flow around DPW-W1 wing and supersonic flow around NACA0012 airfoil are chosen to validate the proposed scheme. Numerical results demonstrate that the present scheme can provide reasonable numerical results for 3D viscous flows.

  2. 3D stress simulation and parameter design during twin-roll casting of 304 stainless steel based on the Anand model

    NASA Astrophysics Data System (ADS)

    Guo, Jing; Liu, Yuan-yuan; Liu, Li-gang; Zhang, Yue; Yang, Qing-xiang

    2014-07-01

    This study first investigated cracks on the surface of an actual steel strip. Formulating the Anand model in ANSYS software, we then simulated the stress field in the molten pool of type 304 stainless steel during the twin-roll casting process. Parameters affecting the stress distribution in the molten pool were analyzed in detail and optimized. After twin-roll casting, a large number of transgranular and intergranular cracks resided on the surface of the thin steel strip, and followed a tortuous path. In the molten pool, stress was enhanced at the exit and at the roller contact positions. The stress at the exit decreased with increasing casting speed and pouring temperature. To ensure high quality of the fabricated strips, the casting speed and pouring temperature should be controlled above 0.7 m/s and 1520°C, respectively.

  3. Real-time 3D radiation risk assessment supporting simulation of work in nuclear environments.

    PubMed

    Szőke, I; Louka, M N; Bryntesen, T R; Bratteli, J; Edvardsen, S T; RøEitrheim, K K; Bodor, K

    2014-06-01

    This paper describes the latest developments at the Institute for Energy Technology (IFE) in Norway, in the field of real-time 3D (three-dimensional) radiation risk assessment for the support of work simulation in nuclear environments. 3D computer simulation can greatly facilitate efficient work planning, briefing, and training of workers. It can also support communication within and between work teams, and with advisors, regulators, the media and public, at all the stages of a nuclear installation's lifecycle. Furthermore, it is also a beneficial tool for reviewing current work practices in order to identify possible gaps in procedures, as well as to support the updating of international recommendations, dissemination of experience, and education of the current and future generation of workers.IFE has been involved in research and development into the application of 3D computer simulation and virtual reality (VR) technology to support work in radiological environments in the nuclear sector since the mid 1990s. During this process, two significant software tools have been developed, the VRdose system and the Halden Planner, and a number of publications have been produced to contribute to improving the safety culture in the nuclear industry.This paper describes the radiation risk assessment techniques applied in earlier versions of the VRdose system and the Halden Planner, for visualising radiation fields and calculating dose, and presents new developments towards implementing a flexible and up-to-date dosimetric package in these 3D software tools, based on new developments in the field of radiation protection. The latest versions of these 3D tools are capable of more accurate risk estimation, permit more flexibility via a range of user choices, and are applicable to a wider range of irradiation situations than their predecessors.

  4. Stability of 3D Textile Composite Reinforcement Simulations: Solutions to Spurious Transverse Modes

    NASA Astrophysics Data System (ADS)

    Mathieu, S.; Hamila, N.; Dupé, F.; Descamps, C.; Boisse, P.

    2016-08-01

    The simulation of thick 3D composite reinforcement forming brings to light new modeling challenges. The specific anisotropic material behavior due to the possible slippage between fibers induces, among other phenomena, the development of spurious transverse modes in bending-dominated 3D simulations. To obtain coherent finite element responses, two solutions are proposed. The first one uses a simple assumed strain formulation usually prescribed to prevent volumetric locking. This solution avoids spurious transverse modes by stiffening of the hourglass modes. Nevertheless the deformation obtained by this approach still suffers from the inability of the standard continuum mechanics of Cauchy to describe fibrous material deformation. The second proposed approach is based on the introduction of a bending stiffness which both avoids the spurious transverse modes and also improves the global behavior of the element formulation by enriching the underlying continuum. To emphasize the differences between different formulations, element stiffnesses are explicitly calculated and compared.

  5. Electrochemical signal amplification for immunosensor based on 3D interdigitated array electrodes.

    PubMed

    Han, Donghoon; Kim, Yang-Rae; Kang, Chung Mu; Chung, Taek Dong

    2014-06-17

    We devised an electrochemical redox cycling based on three-dimensional interdigitated array (3D IDA) electrodes for signal amplification to enhance the sensitivity of chip-based immunosensors. The 3D IDA consists of two closely spaced parallel indium tin oxide (ITO) electrodes that are positioned not only on the bottom but also the ceiling, facing each other along a microfluidic channel. We investigated the signal intensities from various geometric configurations: Open-2D IDA, Closed-2D IDA, and 3D IDA through electrochemical experiments and finite-element simulations. The 3D IDA among the four different systems exhibited the greatest signal amplification resulting from efficient redox cycling of electroactive species confined in the microchannel so that the faradaic current was augmented by a factor of ∼100. We exploited the enhanced sensitivity of the 3D IDA to build up a chronocoulometric immunosensing platform based on the sandwich enzyme-linked immunosorbent assay (ELISA) protocol. The mouse IgGs on the 3D IDA showed much lower detection limits than on the Closed-2D IDA. The detection limit for mouse IgG measured using the 3D IDA was ∼10 fg/mL, while it was ∼100 fg/mL for the Closed-2D IDA. Moreover, the proposed immunosensor system with the 3D IDA successfully worked for clinical analysis as shown by the sensitive detection of cardiac troponin I in human serum down to 100 fg/mL.

  6. 3D stress field simulation for Greater Munich, Germany

    NASA Astrophysics Data System (ADS)

    Ziegler, Moritz; Heidbach, Oliver; Reinecker, John; Przybycin, Anna Maria; Scheck-Wenderoth, Magdalena

    2016-04-01

    Geotechnical applications such as tunneling, storage of waste, wellbore planning, or reservoir engineering requires detailed 3D information on the rock properties and behavior of the continuum. One of the key parameters is the contemporary crustal in-situ stress state. However, generally the availability of stress data on reservoir scale is scarce or no data exists at all. Furthermore, stress data is often limited to the orientation of the maximum horizontal stress. Hence, geomechanical-numerical modelling provides an approximation of a continuous description of the 3D in-situ stress state. We present a model workflow that shows (1) how to calibrate a regional scale model of Greater Munich with stress orientations and magnitudes mainly from borehole data and (2) how to derive from the regional model boundary conditions for a local high-resolution model of a geothermal reservoir site. This approach using two models is an alternative to the required trade-off between resolution, computational cost and a sufficient number of calibration data which is otherwise inevitable for a single model. The incorporated 3D geological models contain the topography from a digital elevation model and 6 stratigraphic units with different elasto-plastic rock properties. The local model mimics the area of a planned reservoir and its resolution is significantly higher than in the regional model and down to 10 m near the planned borehole trajectories using 21×106 tetrahedron finite elements with linear approximation functions. The uncertainties of the calibrated regional model are large since no information on the magnitude of the maximum horizontal stress is available. Even in the entire Greater Munich area only two reliable leak-off tests that deliver the magnitude of the minimum horizontal stress could be used. These uncertainties are transferred also to the local model. Hence we also show how to quantify for the workflow in general the systematic uncertainties and discuss

  7. Building a 3D Virtual Liver: Methods for Simulating Blood Flow and Hepatic Clearance on 3D Structures

    PubMed Central

    Rezania, Vahid; Tuszynski, Jack

    2016-01-01

    In this paper, we develop a spatio-temporal modeling approach to describe blood and drug flow, as well as drug uptake and elimination, on an approximation of the liver. Extending on previously developed computational approaches, we generate an approximation of a liver, which consists of a portal and hepatic vein vasculature structure, embedded in the surrounding liver tissue. The vasculature is generated via constrained constructive optimization, and then converted to a spatial grid of a selected grid size. Estimates for surrounding upscaled lobule tissue properties are then presented appropriate to the same grid size. Simulation of fluid flow and drug metabolism (hepatic clearance) are completed using discretized forms of the relevant convective-diffusive-reactive partial differential equations for these processes. This results in a single stage, uniformly consistent method to simulate equations for blood and drug flow, as well as drug metabolism, on a 3D structure representative of a liver. PMID:27649537

  8. Meso-Scale Damage Simulation of 3D Braided Composites under Quasi-Static Axial Tension

    NASA Astrophysics Data System (ADS)

    Zhang, Chao; Mao, Chunjian; Zhou, Yexin

    2017-01-01

    The microstructure of 3D braided composites is composed of three phases: braiding yarn, matrix and interface. In this paper, a representative unit-cell (RUC) model including these three phases is established. Coupling with the periodical boundary condition, the damage behavior of 3D braided composites under quasi-static axial tension is simulated by using finite element method based on this RUC model. An anisotropic damage model based on Murakami damage theory is proposed to predict the damage evolution of yarns and matrix; a damage-friction combination interface constitutive model is adopted to predict the interface debonding behavior. A user material subroutine (VUMAT) involving these damage models is developed and implemented in the finite element software ABAQUS/Explicit. The whole process of damage evolution of 3D braided composites under quasi-static axial tension with typical braiding angles is simulated, and the damage mechanisms are revealed in detail in the simulation process. The tensile strength properties of the braided composites are predicted from the calculated stress-strain curves. Numerical results agree with the available experiment data and thus validates the proposed damage analysis model. The effects of certain material parameters on the predicted stress-strain responses are also discussed by numerical parameter study.

  9. Structured Light-Based 3D Reconstruction System for Plants.

    PubMed

    Nguyen, Thuy Tuong; Slaughter, David C; Max, Nelson; Maloof, Julin N; Sinha, Neelima

    2015-07-29

    Camera-based 3D reconstruction of physical objects is one of the most popular computer vision trends in recent years. Many systems have been built to model different real-world subjects, but there is lack of a completely robust system for plants. This paper presents a full 3D reconstruction system that incorporates both hardware structures (including the proposed structured light system to enhance textures on object surfaces) and software algorithms (including the proposed 3D point cloud registration and plant feature measurement). This paper demonstrates the ability to produce 3D models of whole plants created from multiple pairs of stereo images taken at different viewing angles, without the need to destructively cut away any parts of a plant. The ability to accurately predict phenotyping features, such as the number of leaves, plant height, leaf size and internode distances, is also demonstrated. Experimental results show that, for plants having a range of leaf sizes and a distance between leaves appropriate for the hardware design, the algorithms successfully predict phenotyping features in the target crops, with a recall of 0.97 and a precision of 0.89 for leaf detection and less than a 13-mm error for plant size, leaf size and internode distance.

  10. Structured Light-Based 3D Reconstruction System for Plants

    PubMed Central

    Nguyen, Thuy Tuong; Slaughter, David C.; Max, Nelson; Maloof, Julin N.; Sinha, Neelima

    2015-01-01

    Camera-based 3D reconstruction of physical objects is one of the most popular computer vision trends in recent years. Many systems have been built to model different real-world subjects, but there is lack of a completely robust system for plants.This paper presents a full 3D reconstruction system that incorporates both hardware structures (including the proposed structured light system to enhance textures on object surfaces) and software algorithms (including the proposed 3D point cloud registration and plant feature measurement). This paper demonstrates the ability to produce 3D models of whole plants created from multiple pairs of stereo images taken at different viewing angles, without the need to destructively cut away any parts of a plant. The ability to accurately predict phenotyping features, such as the number of leaves, plant height, leaf size and internode distances, is also demonstrated. Experimental results show that, for plants having a range of leaf sizes and a distance between leaves appropriate for the hardware design, the algorithms successfully predict phenotyping features in the target crops, with a recall of 0.97 and a precision of 0.89 for leaf detection and less than a 13-mm error for plant size, leaf size and internode distance. PMID:26230701

  11. 3D geometry-based quantification of colocalizations in multichannel 3D microscopy images of human soft tissue tumors.

    PubMed

    Wörz, Stefan; Sander, Petra; Pfannmöller, Martin; Rieker, Ralf J; Joos, Stefan; Mechtersheimer, Gunhild; Boukamp, Petra; Lichter, Peter; Rohr, Karl

    2010-08-01

    We introduce a new model-based approach for automatic quantification of colocalizations in multichannel 3D microscopy images. The approach uses different 3D parametric intensity models in conjunction with a model fitting scheme to localize and quantify subcellular structures with high accuracy. The central idea is to determine colocalizations between different channels based on the estimated geometry of the subcellular structures as well as to differentiate between different types of colocalizations. A statistical analysis was performed to assess the significance of the determined colocalizations. This approach was used to successfully analyze about 500 three-channel 3D microscopy images of human soft tissue tumors and controls.

  12. 3-D Simulations of NSTAR Ion Thruster Plasma Interactions

    NASA Technical Reports Server (NTRS)

    Wang, J.; Brophy, J.; Polk, J.; Brinza, D.

    1996-01-01

    Described is a Particle-in-Cell with Monte Carlo Collision code developed to perform detailed three-dimensional ion thruster simulations. To capture the full kinetic behavior of ion thruster plumes, both the electrons and ions are treated as test particles. Simulation results are given of the NSTAR ion thruster under ground test and in space conditions. Numerical results are compared.

  13. Visual fatigue evaluation based on depth in 3D videos

    NASA Astrophysics Data System (ADS)

    Wang, Feng-jiao; Sang, Xin-zhu; Liu, Yangdong; Shi, Guo-zhong; Xu, Da-xiong

    2013-08-01

    In recent years, 3D technology has become an emerging industry. However, visual fatigue always impedes the development of 3D technology. In this paper we propose some factors affecting human perception of depth as new quality metrics. These factors are from three aspects of 3D video--spatial characteristics, temporal characteristics and scene movement characteristics. They play important roles for the viewer's visual perception. If there are many objects with a certain velocity and the scene changes fast, viewers will feel uncomfortable. In this paper, we propose a new algorithm to calculate the weight values of these factors and analyses their effect on visual fatigue.MSE (Mean Square Error) of different blocks is taken into consideration from the frame and inter-frame for 3D stereoscopic videos. The depth frame is divided into a number of blocks. There are overlapped and sharing pixels (at half of the block) in the horizontal and vertical direction. Ignoring edge information of objects in the image can be avoided. Then the distribution of all these data is indicated by kurtosis with regard of regions which human eye may mainly gaze at. Weight values can be gotten by the normalized kurtosis. When the method is used for individual depth, spatial variation can be achieved. When we use it in different frames between current and previous one, we can get temporal variation and scene movement variation. Three factors above are linearly combined, so we can get objective assessment value of 3D videos directly. The coefficients of three factors can be estimated based on the liner regression. At last, the experimental results show that the proposed method exhibits high correlation with subjective quality assessment results.

  14. Modeling Airport Ground Operations using Discrete Event Simulation (DES) and X3D Visualization

    DTIC Science & Technology

    2008-03-01

    studies, because it offers a number of features as for example: 12 1. Open source 2. Character animation support (CAL3D) 3. Game engine with...Simulation, DES, Simkit, Diskit, Viskit, Savage, XML, Distributed Interactive Simulation, DIS, Blender , X3D Edit 16. PRICE CODE 17. SECURITY...10 5. Blender Authoring Tool

  15. Simple 3-D stimulus for motion parallax and its simulation.

    PubMed

    Ono, Hiroshi; Chornenkyy, Yevgen; D'Amour, Sarah

    2013-01-01

    Simulation of a given stimulus situation should produce the same perception as the original. Rogers et al (2009 Perception 38 907-911) simulated Wheeler's (1982, PhD thesis, Rutgers University, NJ) motion parallax stimulus and obtained quite different perceptions. Wheeler's observers were unable to reliably report the correct direction of depth, whereas Rogers's were. With three experiments we explored the possible reasons for the discrepancy. Our results suggest that Rogers was able to see depth from the simulation partly due to his experience seeing depth with random dot surfaces.

  16. 3-D model-based tracking for UAV indoor localization.

    PubMed

    Teulière, Céline; Marchand, Eric; Eck, Laurent

    2015-05-01

    This paper proposes a novel model-based tracking approach for 3-D localization. One main difficulty of standard model-based approach lies in the presence of low-level ambiguities between different edges. In this paper, given a 3-D model of the edges of the environment, we derive a multiple hypotheses tracker which retrieves the potential poses of the camera from the observations in the image. We also show how these candidate poses can be integrated into a particle filtering framework to guide the particle set toward the peaks of the distribution. Motivated by the UAV indoor localization problem where GPS signal is not available, we validate the algorithm on real image sequences from UAV flights.

  17. 3D numerical simulation for the transient electromagnetic field excited by the central loop based on the vector finite-element method

    NASA Astrophysics Data System (ADS)

    Li, J. H.; Zhu, Z. Q.; Liu, S. C.; Zeng, S. H.

    2011-12-01

    Based on the principle of abnormal field algorithms, Helmholtz equations for electromagnetic field have been deduced. We made the electric field Helmholtz equation the governing equation, and derived the corresponding system of vector finite element method equations using the Galerkin method. For solving the governing equation using the vector finite element method, we divided the computing domain into homogenous brick elements, and used Whitney-type vector basis functions. After obtaining the electric field's anomaly field in the Laplace domain using the vector finite element method, we used the Gaver-Stehfest algorithm to transform the electric field's anomaly field to the time domain, and obtained the impulse response of magnetic field's anomaly field through the Faraday law of electromagnetic induction. By comparing 1D analytic solutions of quasi-H-type geoelectric models, the accuracy of the vector finite element method is tested. For the low resistivity brick geoelectric model, the plot shape of electromotive force computed using the vector finite element method coincides with that of the integral equation method and finite difference in time domain solutions.

  18. Understanding the mixing process in 3D microfluidic nozzle/diffuser systems: simulations and experiments

    NASA Astrophysics Data System (ADS)

    Sayah, Abdeljalil; Gijs, Martin A. M.

    2016-11-01

    We characterise computationally and experimentally a three-dimensional (3D) microfluidic passive mixer for various Reynolds numbers ranging from 1 to 100, corresponding to primary flow rates of 10-870 µl min-1. The 3D mixing channel is composed of multiple curved segments: circular arcs situated in the substrate plane and curved nozzle/diffuser elements normal to the substrate plane. Numerical simulation provides a detailed understanding of the mixing mechanism resulting from the geometrical topology of the mixer. These Comsol software-based simulations reveal the development of two secondary flows perpendicular to the primary flow: a swirling flow resulting from tangential injection of the flow into the nozzle holes and Dean vortices present in the circular arcs. These phenomena are particularly important at a Reynolds number larger than 30, where mixing occurs by chaotic advection. Experimentally, the 3D mixer is fabricated in a monolithic glass substrate by powder blasting machining, exploiting eroding powder beams at various angles of impact with respect to the substrate plane. Experimental mixing was characterised using two coloured dyes, showing nearly perfect mixing for a microfluidic footprint of the order of a few mm2, in good agreement with the simulations.

  19. Tensor3D: A computer graphics program to simulate 3D real-time deformation and visualization of geometric bodies

    NASA Astrophysics Data System (ADS)

    Pallozzi Lavorante, Luca; Dirk Ebert, Hans

    2008-07-01

    Tensor3D is a geometric modeling program with the capacity to simulate and visualize in real-time the deformation, specified through a tensor matrix and applied to triangulated models representing geological bodies. 3D visualization allows the study of deformational processes that are traditionally conducted in 2D, such as simple and pure shears. Besides geometric objects that are immediately available in the program window, the program can read other models from disk, thus being able to import objects created with different open-source or proprietary programs. A strain ellipsoid and a bounding box are simultaneously shown and instantly deformed with the main object. The principal axes of strain are visualized as well to provide graphical information about the orientation of the tensor's normal components. The deformed models can also be saved, retrieved later and deformed again, in order to study different steps of progressive strain, or to make this data available to other programs. The shape of stress ellipsoids and the corresponding Mohr circles defined by any stress tensor can also be represented. The application was written using the Visualization ToolKit, a powerful scientific visualization library in the public domain. This development choice, allied to the use of the Tcl/Tk programming language, which is independent on the host computational platform, makes the program a useful tool for the study of geometric deformations directly in three dimensions in teaching as well as research activities.

  20. 3-D measuring of engine camshaft based on machine vision

    NASA Astrophysics Data System (ADS)

    Qiu, Jianxin; Tan, Liang; Xu, Xiaodong

    2008-12-01

    The non-touch 3D measuring based on machine vision is introduced into camshaft precise measuring. Currently, because CCD 3-dimensional measuring can't meet requirements for camshaft's measuring precision, it's necessary to improve its measuring precision. In this paper, we put forward a method to improve the measuring method. A Multi-Character Match method based on the Polygonal Non-regular model is advanced with the theory of Corner Extraction and Corner Matching .This method has solved the problem of the matching difficulty and a low precision. In the measuring process, the use of the Coded marked Point method and Self-Character Match method can bring on this problem. The 3D measuring experiment on camshaft, which based on the Multi-Character Match method of the Polygonal Non-regular model, proves that the normal average measuring precision is increased to a new level less than 0.04mm in the point-clouds photo merge. This measuring method can effectively increase the 3D measuring precision of the binocular CCD.

  1. OptogenSIM: a 3D Monte Carlo simulation platform for light delivery design in optogenetics

    PubMed Central

    Liu, Yuming; Jacques, Steven L.; Azimipour, Mehdi; Rogers, Jeremy D.; Pashaie, Ramin; Eliceiri, Kevin W.

    2015-01-01

    Optimizing light delivery for optogenetics is critical in order to accurately stimulate the neurons of interest while reducing nonspecific effects such as tissue heating or photodamage. Light distribution is typically predicted using the assumption of tissue homogeneity, which oversimplifies light transport in heterogeneous brain. Here, we present an open-source 3D simulation platform, OptogenSIM, which eliminates this assumption. This platform integrates a voxel-based 3D Monte Carlo model, generic optical property models of brain tissues, and a well-defined 3D mouse brain tissue atlas. The application of this platform in brain data models demonstrates that brain heterogeneity has moderate to significant impact depending on application conditions. Estimated light density contours can show the region of any specified power density in the 3D brain space and thus can help optimize the light delivery settings, such as the optical fiber position, fiber diameter, fiber numerical aperture, light wavelength and power. OptogenSIM is freely available and can be easily adapted to incorporate additional brain atlases. PMID:26713200

  2. Projection-slice theorem based 2D-3D registration

    NASA Astrophysics Data System (ADS)

    van der Bom, M. J.; Pluim, J. P. W.; Homan, R.; Timmer, J.; Bartels, L. W.

    2007-03-01

    In X-ray guided procedures, the surgeon or interventionalist is dependent on his or her knowledge of the patient's specific anatomy and the projection images acquired during the procedure by a rotational X-ray source. Unfortunately, these X-ray projections fail to give information on the patient's anatomy in the dimension along the projection axis. It would be very profitable to provide the surgeon or interventionalist with a 3D insight of the patient's anatomy that is directly linked to the X-ray images acquired during the procedure. In this paper we present a new robust 2D-3D registration method based on the Projection-Slice Theorem. This theorem gives us a relation between the pre-operative 3D data set and the interventional projection images. Registration is performed by minimizing a translation invariant similarity measure that is applied to the Fourier transforms of the images. The method was tested by performing multiple exhaustive searches on phantom data of the Circle of Willis and on a post-mortem human skull. Validation was performed visually by comparing the test projections to the ones that corresponded to the minimal value of the similarity measure. The Projection-Slice Theorem Based method was shown to be very effective and robust, and provides capture ranges up to 62 degrees. Experiments have shown that the method is capable of retrieving similar results when translations are applied to the projection images.

  3. 3-D Spreadsheet Simulation of a Modern Particle Detector

    ERIC Educational Resources Information Center

    Scott, Alan J.

    2004-01-01

    A spreadsheet simulation of a modern particle detector has been developed and can be readily used as an instructional tool in the physics classroom. The spreadsheet creates a three-dimensional model that can be rotated and helical trajectories can be highlighted. An associated student worksheet is also presented.

  4. 3-D MHD disk wind simulations of protostellar jets

    NASA Astrophysics Data System (ADS)

    Staff, Jan E.; Koning, Nico; Ouyed, Rachid; Tanaka, Kei; Tan, Jonathan C.

    2016-01-01

    We present the results of large scale, three-dimensional magnetohydrodynamics simulations of disk winds for different initial magnetic field configurations. The jets are followed from the source to distances, which are resolvable by HST and ALMA observations. Our simulations show that jets are heated along their length by many shocks. The mass of the protostar is a free parameter that can be inserted in the post processing of the data, and we apply the simulations to both low mass and high mass protostars. For the latter we also compute the expected diagnostics when the outflow is photoionized by the protostar. We compute the emission lines that are produced, and find excellent agreement with observations. For a one solar mass protostar, we find the jet width to be between 20 and 30 au while the maximum velocities perpendicular to the jet are found to be 100 km s-1. The initially less open magnetic field configuration simulations result in a wider, two-component jet; a cylindrically shaped outer jet surrounding a narrow and much faster, inner jet. For the initially most open magnetic field configuration the kink mode creates a narrow corkscrew-like jet without a clear Keplerian rotation profile and even regions where we observe rotation opposite to the disk (counter-rotating). This is not seen in the less open field configurations.

  5. 3D shape measurement with phase correlation based fringe projection

    NASA Astrophysics Data System (ADS)

    Kühmstedt, Peter; Munckelt, Christoph; Heinze, Matthias; Bräuer-Burchardt, Christian; Notni, Gunther

    2007-06-01

    Here we propose a method for 3D shape measurement by means of phase correlation based fringe projection in a stereo arrangement. The novelty in the approach is characterized by following features. Correlation between phase values of the images of two cameras is used for the co-ordinate calculation. This work stands in contrast to the sole usage of phase values (phasogrammetry) or classical triangulation (phase values and image co-ordinates - camera raster values) for the determination of the co-ordinates. The method's main advantage is the insensitivity of the 3D-coordinates from the absolute phase values. Thus it prevents errors in the determination of the co-ordinates and improves robustness in areas with interreflections artefacts and inhomogeneous regions of intensity. A technical advantage is the fact that the accuracy of the 3D co-ordinates does not depend on the projection resolution. Thus the achievable quality of the 3D co-ordinates can be selectively improved by the use of high quality camera lenses and can participate in improvements in modern camera technologies. The presented new solution of the stereo based fringe projection with phase correlation makes a flexible, errortolerant realization of measuring systems within different applications like quality control, rapid prototyping, design and CAD/CAM possible. In the paper the phase correlation method will be described in detail. Furthermore, different realizations will be shown, i.e. a mobile system for the measurement of large objects and an endoscopic like system for CAD/CAM in dental industry.

  6. Abdominal aortic aneurysm imaging with 3-D ultrasound: 3-D-based maximum diameter measurement and volume quantification.

    PubMed

    Long, A; Rouet, L; Debreuve, A; Ardon, R; Barbe, C; Becquemin, J P; Allaire, E

    2013-08-01

    The clinical reliability of 3-D ultrasound imaging (3-DUS) in quantification of abdominal aortic aneurysm (AAA) was evaluated. B-mode and 3-DUS images of AAAs were acquired for 42 patients. AAAs were segmented. A 3-D-based maximum diameter (Max3-D) and partial volume (Vol30) were defined and quantified. Comparisons between 2-D (Max2-D) and 3-D diameters and between orthogonal acquisitions were performed. Intra- and inter-observer reproducibility was evaluated. Intra- and inter-observer coefficients of repeatability (CRs) were less than 5.18 mm for Max3-D. Intra-observer and inter-observer CRs were respectively less than 6.16 and 8.71 mL for Vol30. The mean of normalized errors of Vol30 was around 7%. Correlation between Max2-D and Max3-D was 0.988 (p < 0.0001). Max3-D and Vol30 were not influenced by a probe rotation of 90°. Use of 3-DUS to quantify AAA is a new approach in clinical practice. The present study proposed and evaluated dedicated parameters. Their reproducibility makes the technique clinically reliable.

  7. FGG-NUFFT-Based Method for Near-Field 3-D Imaging Using Millimeter Waves

    PubMed Central

    Kan, Yingzhi; Zhu, Yongfeng; Tang, Liang; Fu, Qiang; Pei, Hucheng

    2016-01-01

    In this paper, to deal with the concealed target detection problem, an accurate and efficient algorithm for near-field millimeter wave three-dimensional (3-D) imaging is proposed that uses a two-dimensional (2-D) plane antenna array. First, a two-dimensional fast Fourier transform (FFT) is performed on the scattered data along the antenna array plane. Then, a phase shift is performed to compensate for the spherical wave effect. Finally, fast Gaussian gridding based nonuniform FFT (FGG-NUFFT) combined with 2-D inverse FFT (IFFT) is performed on the nonuniform 3-D spatial spectrum in the frequency wavenumber domain to achieve 3-D imaging. The conventional method for near-field 3-D imaging uses Stolt interpolation to obtain uniform spatial spectrum samples and performs 3-D IFFT to reconstruct a 3-D image. Compared with the conventional method, our FGG-NUFFT based method is comparable in both efficiency and accuracy in the full sampled case and can obtain more accurate images with less clutter and fewer noisy artifacts in the down-sampled case, which are good properties for practical applications. Both simulation and experimental results demonstrate that the FGG-NUFFT-based near-field 3-D imaging algorithm can have better imaging performance than the conventional method for down-sampled measurements. PMID:27657066

  8. FGG-NUFFT-Based Method for Near-Field 3-D Imaging Using Millimeter Waves.

    PubMed

    Kan, Yingzhi; Zhu, Yongfeng; Tang, Liang; Fu, Qiang; Pei, Hucheng

    2016-09-19

    In this paper, to deal with the concealed target detection problem, an accurate and efficient algorithm for near-field millimeter wave three-dimensional (3-D) imaging is proposed that uses a two-dimensional (2-D) plane antenna array. First, a two-dimensional fast Fourier transform (FFT) is performed on the scattered data along the antenna array plane. Then, a phase shift is performed to compensate for the spherical wave effect. Finally, fast Gaussian gridding based nonuniform FFT (FGG-NUFFT) combined with 2-D inverse FFT (IFFT) is performed on the nonuniform 3-D spatial spectrum in the frequency wavenumber domain to achieve 3-D imaging. The conventional method for near-field 3-D imaging uses Stolt interpolation to obtain uniform spatial spectrum samples and performs 3-D IFFT to reconstruct a 3-D image. Compared with the conventional method, our FGG-NUFFT based method is comparable in both efficiency and accuracy in the full sampled case and can obtain more accurate images with less clutter and fewer noisy artifacts in the down-sampled case, which are good properties for practical applications. Both simulation and experimental results demonstrate that the FGG-NUFFT-based near-field 3-D imaging algorithm can have better imaging performance than the conventional method for down-sampled measurements.

  9. Simulation and experimental studies of three-dimensional (3D) image reconstruction from insufficient sampling data based on compressed-sensing theory for potential applications to dental cone-beam CT

    NASA Astrophysics Data System (ADS)

    Je, U. K.; Lee, M. S.; Cho, H. S.; Hong, D. K.; Park, Y. O.; Park, C. K.; Cho, H. M.; Choi, S. I.; Woo, T. H.

    2015-06-01

    In practical applications of three-dimensional (3D) tomographic imaging, there are often challenges for image reconstruction from insufficient sampling data. In computed tomography (CT), for example, image reconstruction from sparse views and/or limited-angle (<360°) views would enable fast scanning with reduced imaging doses to the patient. In this study, we investigated and implemented a reconstruction algorithm based on the compressed-sensing (CS) theory, which exploits the sparseness of the gradient image with substantially high accuracy, for potential applications to low-dose, high-accurate dental cone-beam CT (CBCT). We performed systematic simulation works to investigate the image characteristics and also performed experimental works by applying the algorithm to a commercially-available dental CBCT system to demonstrate its effectiveness for image reconstruction in insufficient sampling problems. We successfully reconstructed CBCT images of superior accuracy from insufficient sampling data and evaluated the reconstruction quality quantitatively. Both simulation and experimental demonstrations of the CS-based reconstruction from insufficient data indicate that the CS-based algorithm can be applied directly to current dental CBCT systems for reducing the imaging doses and further improving the image quality.

  10. 3D Continuum-Particle Simulations for Multiscale Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Wijesinghe, Sanith; Hornung, Richard; Garcia, Alejandro; Hadjiconstantinou, Nicolas

    2001-06-01

    An adaptive mesh and algorithmic refinement (AMAR) scheme to model multi-scale, continuum-particle hydrodynamic flows is presented. AMAR ensures the particle description is applied exclusively in regions with high flow gradients and discontinous material interfaces, i.e. regions where the continuum flow assumptions are typically invalid. Direct Simulation Monte Carlo (DSMC) is used to model the particle regions on the finest grid of the adaptive hierarchy. The continuum flow is modelled using the compressible flow Euler equations and is solved using a second order Godunov scheme. Coupling is achieved by conservation of fluxes across the continuum-particle grid boundaries. The AMAR data structures are supported by a C++ object oriented framework (Structured Adaptive Mesh Refinement Application Infrastructure - SAMRAI) which allows for efficient parallel implementation. The scheme also extends to simulations of gas mixtures. Results for test cases are compared with theory and experiment.

  11. ROAR: A 3-D tethered rocket simulation code

    SciTech Connect

    York, A.R. II; Ludwigsen, J.S.

    1992-04-01

    A high-velocity impact testing technique, utilizing a tethered rocket, is being developed at Sandia National Laboratories. The technique involves tethering a rocket assembly to a pivot location and flying it in a semicircular trajectory to deliver the rocket and payload to an impact target location. Integral to developing this testing technique is the parallel development of accurate simulation models. An operational computer code, called ROAR (Rocket-on-a-Rope), has been developed to simulate the three-dimensional transient dynamic behavior of the tether and motor/payload assembly. This report presents a discussion of the parameters modeled, the governing set of equations, the through-time integration scheme, and the input required to set up a model. Also included is a sample problem and a comparison with experimental results.

  12. Neuromorphic Event-Based 3D Pose Estimation

    PubMed Central

    Reverter Valeiras, David; Orchard, Garrick; Ieng, Sio-Hoi; Benosman, Ryad B.

    2016-01-01

    Pose estimation is a fundamental step in many artificial vision tasks. It consists of estimating the 3D pose of an object with respect to a camera from the object's 2D projection. Current state of the art implementations operate on images. These implementations are computationally expensive, especially for real-time applications. Scenes with fast dynamics exceeding 30–60 Hz can rarely be processed in real-time using conventional hardware. This paper presents a new method for event-based 3D object pose estimation, making full use of the high temporal resolution (1 μs) of asynchronous visual events output from a single neuromorphic camera. Given an initial estimate of the pose, each incoming event is used to update the pose by combining both 3D and 2D criteria. We show that the asynchronous high temporal resolution of the neuromorphic camera allows us to solve the problem in an incremental manner, achieving real-time performance at an update rate of several hundreds kHz on a conventional laptop. We show that the high temporal resolution of neuromorphic cameras is a key feature for performing accurate pose estimation. Experiments are provided showing the performance of the algorithm on real data, including fast moving objects, occlusions, and cases where the neuromorphic camera and the object are both in motion. PMID:26834547

  13. An endoscopic 3D scanner based on structured light.

    PubMed

    Schmalz, Christoph; Forster, Frank; Schick, Anton; Angelopoulou, Elli

    2012-07-01

    We present a new endoscopic 3D scanning system based on Single Shot Structured Light. The proposed design makes it possible to build an extremely small scanner. The sensor head contains a catadioptric camera and a pattern projection unit. The paper describes the working principle and calibration procedure of the sensor. The prototype sensor head has a diameter of only 3.6mm and a length of 14mm. It is mounted on a flexible shaft. The scanner is designed for tubular cavities and has a cylindrical working volume of about 30mm length and 30mm diameter. It acquires 3D video at 30 frames per second and typically generates approximately 5000 3D points per frame. By design, the resolution varies over the working volume, but is generally better than 200μm. A prototype scanner has been built and is evaluated in experiments with phantoms and biological samples. The recorded average error on a known test object was 92μm.

  14. Reconstruction of quadratic curves in 3D using two or more perspective views: simulation studies

    NASA Astrophysics Data System (ADS)

    Kumar, Sanjeev; Sukavanam, N.; Balasubramanian, R.

    2006-01-01

    The shapes of many natural and man-made objects have planar and curvilinear surfaces. The images of such curves usually do not have sufficient distinctive features to apply conventional feature-based reconstruction algorithms. In this paper, we describe a method of reconstruction of a quadratic curve in 3-D space as an intersection of two cones containing the respective projected curve images. The correspondence between this pair of projections of the curve is assumed to be established in this work. Using least-square curve fitting, the parameters of a curve in 2-D space are found. From this we are reconstructing the 3-D quadratic curve. Relevant mathematical formulations and analytical solutions for obtaining the equation of reconstructed curve are given. The result of the described reconstruction methodology are studied by simulation studies. This reconstruction methodology is applicable to LBW decision in cricket, path of the missile, Robotic Vision, path lanning etc.

  15. Facial-paralysis diagnostic system based on 3D reconstruction

    NASA Astrophysics Data System (ADS)

    Khairunnisaa, Aida; Basah, Shafriza Nisha; Yazid, Haniza; Basri, Hassrizal Hassan; Yaacob, Sazali; Chin, Lim Chee

    2015-05-01

    The diagnostic process of facial paralysis requires qualitative assessment for the classification and treatment planning. This result is inconsistent assessment that potential affect treatment planning. We developed a facial-paralysis diagnostic system based on 3D reconstruction of RGB and depth data using a standard structured-light camera - Kinect 360 - and implementation of Active Appearance Models (AAM). We also proposed a quantitative assessment for facial paralysis based on triangular model. In this paper, we report on the design and development process, including preliminary experimental results. Our preliminary experimental results demonstrate the feasibility of our quantitative assessment system to diagnose facial paralysis.

  16. Lightning strike simulation using coaxial line technique and 3D linear injection current analysis

    NASA Astrophysics Data System (ADS)

    Flourens, F.; Gauthier, D.; Serafin, D.

    1989-09-01

    The GORFFD code for determining aircraft responses to either a lightning event or to simulated current injection is based on the finite-difference solution of Maxwell's equation, and allows the simulation of complex, 3D metallic and dielectric composite structures. A transfer method is used to analyze the EM environment associated with in-flight measurements. Attention is given to a linear-analysis numerical model in which the lightning channel is simulated as a thin wire that is driven by a current source. Surface E-fields and current mappings are produced for the Transall transport and Mirage fighter aircraft. An experimental method has been devised for verification of these lightning-strike simulations.

  17. M3D (Media 3D): a new programming language for web-based virtual reality in E-Learning and Edutainment

    NASA Astrophysics Data System (ADS)

    Chakaveh, Sepideh; Skaley, Detlef; Laine, Patricia; Haeger, Ralf; Maad, Soha

    2003-01-01

    Today, interactive multimedia educational systems are well established, as they prove useful instruments to enhance one's learning capabilities. Hitherto, the main difficulty with almost all E-Learning systems was latent in the rich media implementation techniques. This meant that each and every system should be created individually as reapplying the media, be it only a part, or the whole content was not directly possible, as everything must be applied mechanically i.e. by hand. Consequently making E-learning systems exceedingly expensive to generate, both in time and money terms. Media-3D or M3D is a new platform independent programming language, developed at the Fraunhofer Institute Media Communication to enable visualisation and simulation of E-Learning multimedia content. M3D is an XML-based language, which is capable of distinguishing between the3D models from that of the 3D scenes, as well as handling provisions for animations, within the programme. Here we give a technical account of M3D programming language and briefly describe two specific application scenarios where M3D is applied to create virtual reality E-Learning content for training of technical personnel.

  18. Fast and Precise 3D Fluorophore Localization based on Gradient Fitting

    PubMed Central

    Ma, Hongqiang; Xu, Jianquan; Jin, Jingyi; Gao, Ying; Lan, Li; Liu, Yang

    2015-01-01

    Astigmatism imaging approach has been widely used to encode the fluorophore’s 3D position in single-particle tracking and super-resolution localization microscopy. Here, we present a new high-speed localization algorithm based on gradient fitting to precisely decode the 3D subpixel position of the fluorophore. This algebraic algorithm determines the center of the fluorescent emitter by finding the position with the best-fit gradient direction distribution to the measured point spread function (PSF), and can retrieve the 3D subpixel position of the fluorophore in a single iteration. Through numerical simulation and experiments with mammalian cells, we demonstrate that our algorithm yields comparable localization precision to the traditional iterative Gaussian function fitting (GF) based method, while exhibits over two orders-of-magnitude faster execution speed. Our algorithm is a promising high-speed analyzing method for 3D particle tracking and super-resolution localization microscopy. PMID:26390959

  19. Photorealistic 3D omni-directional stereo simulator

    NASA Astrophysics Data System (ADS)

    Reiners, Dirk; Cruz-Neira, Carolina; Neumann, Carsten

    2015-03-01

    While a lot of areas in VR have made significant advances, visual rendering in VR is often not quite keeping up with the state of the art. There are many reasons for this, but one way to alleviate some of the issues is by using ray tracing instead of rasterization for image generation. Contrary to popular belief, ray tracing is a realistic, competitive technology nowadays. This paper looks at the pros and cons of using ray tracing and demonstrates the feasibility of employing it using the example of a helicopter flight simulator image generator.

  20. Numerical grid generation in 3D Euler-flow simulation

    NASA Astrophysics Data System (ADS)

    Boerstoel, J. W.

    1988-04-01

    The technical problems with grid generation are analyzed and an overview of proposed solutions is given. The usefulness of grid-generation techniques, for the numerical simulation of Euler (and Navier-Stokes) flows around complex three-dimensional aerodynamic configurations, is illustrated. It is shown that the core of the grid-generation problem is a topology problem. The following remarks are sketched: grid generation is a subtask in a numerical simulation of a flow in industrial and research environments; the design requirements of a grid generation concern the geometrical imput, the desired grid as output, the technical means to control grid resolution and quality and turnaround time performance; the construction of a blocked grid can be subdivided in a block-decomposition task and a grid-point distribution task. A technique for using connectivity relations to define conventions about local coordinate systems in edges, faces and blocks is presented. Experiences are reported and an example concerning a 96-blocked grid around a complex aerodynamic configuration is given. Concepts for improvements in the presented technique are discussed.

  1. Development of 3D beam-beam simulation for the Tevatron

    SciTech Connect

    Stern, E.; Amundson, J.; Spentzouris, P.; Valishev, A.; Qiang, J.; Ryne, R.; /LBL, Berkeley

    2007-06-01

    We present status of development of a 3D Beam-Beam simulation code for simulating the Fermilab Tevatron collider. The essential features of the code are 3D particle-in-cell Poisson solver for calculating the Beam-Beam electromagnetic interactions with additional modules for linear optics, machine impedance and chromaticity, and multiple bunch tracking. The simulations match synchrobetatron oscillations measured at the VEPP-2M collider. The impedance calculations show beam instability development consistent with analytic expressions.

  2. Surface topography study of prepared 3D printed moulds via 3D printer for silicone elastomer based nasal prosthesis

    NASA Astrophysics Data System (ADS)

    Abdullah, Abdul Manaf; Din, Tengku Noor Daimah Tengku; Mohamad, Dasmawati; Rahim, Tuan Noraihan Azila Tuan; Akil, Hazizan Md; Rajion, Zainul Ahmad

    2016-12-01

    Conventional prosthesis fabrication is highly depends on the hand creativity of laboratory technologist. The development in 3D printing technology offers a great help in fabricating affordable and fast yet esthetically acceptable prostheses. This study was conducted to discover the potential of 3D printed moulds for indirect silicone elastomer based nasal prosthesis fabrication. Moulds were designed using computer aided design (CAD) software (Solidworks, USA) and converted into the standard tessellation language (STL) file. Three moulds with layer thickness of 0.1, 0.2 and 0.3mm were printed utilizing polymer filament based 3D printer (Makerbot Replicator 2X, Makerbot, USA). Another one mould was printed utilizing liquid resin based 3D printer (Objet 30 Scholar, Stratasys, USA) as control. The printed moulds were then used to fabricate maxillofacial silicone specimens (n=10)/mould. Surface profilometer (Surfcom Flex, Accretech, Japan), digital microscope (KH77000, Hirox, USA) and scanning electron microscope (Quanta FEG 450, Fei, USA) were used to measure the surface roughness as well as the topological properties of fabricated silicone. Statistical analysis of One-Way ANOVA was employed to compare the surface roughness of the fabricated silicone elastomer. Result obtained demonstrated significant differences in surface roughness of the fabricated silicone (p<0.01). Further post hoc analysis also revealed significant differences in silicone fabricated using different 3D printed moulds (p<0.01). A 3D printed mould was successfully prepared and characterized. With surface topography that could be enhanced, inexpensive and rapid mould fabrication techniques, polymer filament based 3D printer is potential for indirect silicone elastomer based nasal prosthesis fabrication.

  3. Dynamic 3D simulations of earthquakes on en echelon faults

    USGS Publications Warehouse

    Harris, R.A.; Day, S.M.

    1999-01-01

    One of the mysteries of earthquake mechanics is why earthquakes stop. This process determines the difference between small and devastating ruptures. One possibility is that fault geometry controls earthquake size. We test this hypothesis using a numerical algorithm that simulates spontaneous rupture propagation in a three-dimensional medium and apply our knowledge to two California fault zones. We find that the size difference between the 1934 and 1966 Parkfield, California, earthquakes may be the product of a stepover at the southern end of the 1934 earthquake and show how the 1992 Landers, California, earthquake followed physically reasonable expectations when it jumped across en echelon faults to become a large event. If there are no linking structures, such as transfer faults, then strike-slip earthquakes are unlikely to propagate through stepovers >5 km wide. Copyright 1999 by the American Geophysical Union.

  4. 3D Simulation and Validation of Tube Piercing Process

    NASA Astrophysics Data System (ADS)

    Ceretti, Elisabetta; Giardini, Claudio; Attanasio, Aldo

    2007-05-01

    In many cases the development of analytical or simulative models of actual production processes can help in improving the product quality furnishing defect-free parts. In particular, when tube piercing processes are referring to, the main problem that can arise is the low quality of the internal tube surface. This type of defect cannot be eliminated during the successive production phases so compromising the final part quality. It is possible to overcome this problem by placing in the correct position the internal plug which defines the internal tube diameter. This position greatly depends on where the tube material begins to break due the acting internal stresses. This phenomenon is called Mannesmann effect. The farther the plug from the Mannesmann cone formation, the higher the oxidation of the internal tube surface. On the contrary the closer the plug, the higher the wear of the plug. In actual practice an on-line control of the position of the Mannesmann cone is impossible to be implemented. In the past, the Authors have developed a model to help the production line technicians in determining where to place the plug. This model was a two dimensional representation of the actual phenomenon, and it has already been proved to correctly represent the actual tube behavior since it was validated by comparing its results with experiments. Using the results of a wide simulation campaign, a neural network was trained and now it is used as an on-line plug position definition support. In the present paper the results obtained using a fully three dimensional model of the process are reported. This model will allow to confirm some simplifying assumption made in the 2D model definition and to study the tube behavior when it reaches and moves on the plug, too. Some comparisons with practical evidences are reported.

  5. Modeling approaches for ligand-based 3D similarity.

    PubMed

    Tresadern, Gary; Bemporad, Daniele

    2010-10-01

    3D ligand-based similarity approaches are widely used in the early phases of drug discovery for tasks such as hit finding by virtual screening or compound design with quantitative structure-activity relationships. Here in we review widely used software for performing such tasks. Some techniques are based on relatively mature technology, shape-based similarity for instance. Typically, these methods remained in the realm of the expert user, the experienced modeler. However, advances in implementation and speed have improved usability and allow these methods to be applied to databases comprising millions of compounds. There are now many reports of such methods impacting drug-discovery projects. As such, the medicinal chemistry community has become the intended market for some of these new tools, yet they may consider the wide array and choice of approaches somewhat disconcerting. Each method has subtle differences and is better suited to certain tasks than others. In this article we review some of the widely used computational methods via application, provide straightforward background on the underlying theory and provide examples for the interested reader to pursue in more detail. In the new era of preclinical drug discovery there will be ever more pressure to move faster and more efficiently, and computational approaches based on 3D ligand similarity will play an increasing role in in this process.

  6. Virtual reality 3D headset based on DMD light modulators

    SciTech Connect

    Bernacki, Bruce E.; Evans, Allan; Tang, Edward

    2014-06-13

    We present the design of an immersion-type 3D headset suitable for virtual reality applications based upon digital micro-mirror devices (DMD). Our approach leverages silicon micro mirrors offering 720p resolution displays in a small form-factor. Supporting chip sets allow rapid integration of these devices into wearable displays with high resolution and low power consumption. Applications include night driving, piloting of UAVs, fusion of multiple sensors for pilots, training, vision diagnostics and consumer gaming. Our design is described in which light from the DMD is imaged to infinity and the user’s own eye lens forms a real image on the user’s retina.

  7. The Virtual Radiopharmacy Laboratory: A 3-D Simulation for Distance Learning

    ERIC Educational Resources Information Center

    Alexiou, Antonios; Bouras, Christos; Giannaka, Eri; Kapoulas, Vaggelis; Nani, Maria; Tsiatsos, Thrasivoulos

    2004-01-01

    This article presents Virtual Radiopharmacy Laboratory (VR LAB), a virtual laboratory accessible through the Internet. VR LAB is designed and implemented in the framework of the VirRAD European project. This laboratory represents a 3D simulation of a radio-pharmacy laboratory, where learners, represented by 3D avatars, can experiment on…

  8. Metos3D: the Marine Ecosystem Toolkit for Optimization and Simulation in 3-D - Part 1: Simulation Package v0.3.2

    NASA Astrophysics Data System (ADS)

    Piwonski, Jaroslaw; Slawig, Thomas

    2016-10-01

    We designed and implemented a modular software framework for the offline simulation of steady cycles of 3-D marine ecosystem models based on the transport matrix approach. It is intended for parameter optimization and model assessment experiments. We defined a software interface for the coupling of a general class of water column-based biogeochemical models, with six models being part of the package. The framework offers both spin-up/fixed-point iteration and a Jacobian-free Newton method for the computation of steady states. The simulation package has been tested with all six models. The Newton method converged for four models when using standard settings, and for two more complex models after alteration of a solver parameter or the initial guess. Both methods delivered the same steady states (within a reasonable precision) on convergence for all models employed, with the Newton iteration generally operating 6 times faster. The effects on performance of both the biogeochemical and the Newton solver parameters were investigated for one model. A profiling analysis was performed for all models used in this work, demonstrating that the number of tracers had a dominant impact on overall performance. We also implemented a geometry-adapted load balancing procedure which showed close to optimal scalability up to a high number of parallel processors.

  9. Fast vision-based catheter 3D reconstruction.

    PubMed

    Moradi Dalvand, Mohsen; Nahavandi, Saeid; Howe, Robert D

    2016-07-21

    Continuum robots offer better maneuverability and inherent compliance and are well-suited for surgical applications as catheters, where gentle interaction with the environment is desired. However, sensing their shape and tip position is a challenge as traditional sensors can not be employed in the way they are in rigid robotic manipulators. In this paper, a high speed vision-based shape sensing algorithm for real-time 3D reconstruction of continuum robots based on the views of two arbitrary positioned cameras is presented. The algorithm is based on the closed-form analytical solution of the reconstruction of quadratic curves in 3D space from two arbitrary perspective projections. High-speed image processing algorithms are developed for the segmentation and feature extraction from the images. The proposed algorithms are experimentally validated for accuracy by measuring the tip position, length and bending and orientation angles for known circular and elliptical catheter shaped tubes. Sensitivity analysis is also carried out to evaluate the robustness of the algorithm. Experimental results demonstrate good accuracy (maximum errors of  ±0.6 mm and  ±0.5 deg), performance (200 Hz), and robustness (maximum absolute error of 1.74 mm, 3.64 deg for the added noises) of the proposed high speed algorithms.

  10. Fast vision-based catheter 3D reconstruction

    NASA Astrophysics Data System (ADS)

    Moradi Dalvand, Mohsen; Nahavandi, Saeid; Howe, Robert D.

    2016-07-01

    Continuum robots offer better maneuverability and inherent compliance and are well-suited for surgical applications as catheters, where gentle interaction with the environment is desired. However, sensing their shape and tip position is a challenge as traditional sensors can not be employed in the way they are in rigid robotic manipulators. In this paper, a high speed vision-based shape sensing algorithm for real-time 3D reconstruction of continuum robots based on the views of two arbitrary positioned cameras is presented. The algorithm is based on the closed-form analytical solution of the reconstruction of quadratic curves in 3D space from two arbitrary perspective projections. High-speed image processing algorithms are developed for the segmentation and feature extraction from the images. The proposed algorithms are experimentally validated for accuracy by measuring the tip position, length and bending and orientation angles for known circular and elliptical catheter shaped tubes. Sensitivity analysis is also carried out to evaluate the robustness of the algorithm. Experimental results demonstrate good accuracy (maximum errors of  ±0.6 mm and  ±0.5 deg), performance (200 Hz), and robustness (maximum absolute error of 1.74 mm, 3.64 deg for the added noises) of the proposed high speed algorithms.

  11. 3D IC TSV-Based Technology: Stress Assessment For Chip Performance

    NASA Astrophysics Data System (ADS)

    Sukharev, Valeriy; Kteyan, Armen; Khachatryan, Nikolay; Hovsepyan, Henrik; Torres, Juan Andres; Choy, Jun-Ho; Markosian, Ara

    2010-11-01

    Potential challenges with managing mechanical stress distributions and the consequent effects on device performance for advanced 3D through-silicon-via (TSV) based technologies are outlined. A set of physics-based compact models of a multi-scale simulation flow for assessment of the mechanical stress across the device layers in the silicon chips stacked and packaged with the 3D TSV technology is proposed. A calibration technique based on fitting to measured transistor electrical characteristics of a custom designed test-chip is proposed.

  12. Luminance binocular disparity for 3D surface simulation

    NASA Astrophysics Data System (ADS)

    Paille, Damien; Monot, Annie; Dumont-Becle, Patricia; Kemeny, Andras

    2001-06-01

    Different stereoscopic effects, base don 100 percent binocular luminance contrast have been described previously: the 'sieve' effect, the 'binocular lustre' effect, the 'floating' effect and the rivaldepth' effect. By mean of a dichoptic set-up, we have measured the detection thresholds for these different effects in function of binocular luminance contrast. Psychometric data have ben recorded using a Yes-No paradigm, a spatial 2AFC paradigm and a temporal 2AFC paradigm. Our results show that even for small contrast all these stereoscopic effects are perceived. We have noticed an increase of the detection thresholds in the following order: 'sieve', 'binocular lustre', 'rivaldepth' and 'floating' effect. Two groups have been distinguished.

  13. Recent advances in 3D computed tomography techniques for simulation and navigation in hepatobiliary pancreatic surgery.

    PubMed

    Uchida, Masafumi

    2014-04-01

    A few years ago it could take several hours to complete a 3D image using a 3D workstation. Thanks to advances in computer science, obtaining results of interest now requires only a few minutes. Many recent 3D workstations or multimedia computers are equipped with onboard 3D virtual patient modeling software, which enables patient-specific preoperative assessment and virtual planning, navigation, and tool positioning. Although medical 3D imaging can now be conducted using various modalities, including computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), and ultrasonography (US) among others, the highest quality images are obtained using CT data, and CT images are now the most commonly used source of data for 3D simulation and navigation image. If the 2D source image is bad, no amount of 3D image manipulation in software will provide a quality 3D image. In this exhibition, the recent advances in CT imaging technique and 3D visualization of the hepatobiliary and pancreatic abnormalities are featured, including scan and image reconstruction technique, contrast-enhanced techniques, new application of advanced CT scan techniques, and new virtual reality simulation and navigation imaging.

  14. Numerical simulation of 3-D Benard convection with gravitational modulation

    NASA Technical Reports Server (NTRS)

    Biringen, S.; Peltier, L. J.

    1990-01-01

    In this numerical study, randomly and sinusoidally modulated gravitational fields imposed on three-dimensional Rayleigh-Benard convection are investigated in an effort to understand the effects of vibration (G-Jitter) on fluid systems. The time-dependent, Navier-Stokes equations and the energy equation with Boussinesq approximations are solved by a semi-implicit, pseudospectral procedure. An analysis of energy balances indicates that with increasing modulation amplitude, transition from synchronous to relaxation oscillation goes through the subharmonic response. Random modulations are found to be less stabilizing than sinusoidal and are shown to impose three-dimensionality on the flow for some parameter ranges both at terrestrial and zero base gravity conditions.

  15. High Accuracy Acquisition of 3-D Flight Trajectory of Individual Insect Based on Phase Measurement.

    PubMed

    Hu, Cheng; Deng, Yunkai; Wang, Rui; Liu, Changjiang; Long, Teng

    2016-12-17

    Accurate acquisition of 3-D flight trajectory of individual insect could be of benefit to the research of insect migration behaviors and the development of migratory entomology. This paper proposes a novel method to acquire 3-D flight trajectory of individual insect. First, based on the high range resolution synthesizing and the Doppler coherent processing, insects can be detected effectively, and the range resolution and velocity resolution are combined together to discriminate insects. Then, high accuracy range measurement with the carrier phase is proposed. The range measurement accuracy can reach millimeter level and benefits the acquisition of 3-D trajectory information significantly. Finally, based on the multi-baselines interferometry theory, the azimuth and elevation angles can be obtained with high accuracy. Simulation results prove that the retrieval accuracy of a simulated target's 3-D coordinates can reach centimeter level. Experiments utilizing S-band radar in an anechoic chamber were taken and results showed that the insects' flight behaviors and 3-D coordinates' variation matched the practical cases well. In conclusion, both the simulated and experimental datasets validate the feasibility of the proposed method, which could be a novel measurement way of monitoring flight trajectory of aerial free-fly insects.

  16. High Accuracy Acquisition of 3-D Flight Trajectory of Individual Insect Based on Phase Measurement

    PubMed Central

    Hu, Cheng; Deng, Yunkai; Wang, Rui; Liu, Changjiang; Long, Teng

    2016-01-01

    Accurate acquisition of 3-D flight trajectory of individual insect could be of benefit to the research of insect migration behaviors and the development of migratory entomology. This paper proposes a novel method to acquire 3-D flight trajectory of individual insect. First, based on the high range resolution synthesizing and the Doppler coherent processing, insects can be detected effectively, and the range resolution and velocity resolution are combined together to discriminate insects. Then, high accuracy range measurement with the carrier phase is proposed. The range measurement accuracy can reach millimeter level and benefits the acquisition of 3-D trajectory information significantly. Finally, based on the multi-baselines interferometry theory, the azimuth and elevation angles can be obtained with high accuracy. Simulation results prove that the retrieval accuracy of a simulated target’s 3-D coordinates can reach centimeter level. Experiments utilizing S-band radar in an anechoic chamber were taken and results showed that the insects’ flight behaviors and 3-D coordinates’ variation matched the practical cases well. In conclusion, both the simulated and experimental datasets validate the feasibility of the proposed method, which could be a novel measurement way of monitoring flight trajectory of aerial free-fly insects. PMID:27999317

  17. Integral imaging based 3D display of holographic data.

    PubMed

    Yöntem, Ali Özgür; Onural, Levent

    2012-10-22

    We propose a method and present applications of this method that converts a diffraction pattern into an elemental image set in order to display them on an integral imaging based display setup. We generate elemental images based on diffraction calculations as an alternative to commonly used ray tracing methods. Ray tracing methods do not accommodate the interference and diffraction phenomena. Our proposed method enables us to obtain elemental images from a holographic recording of a 3D object/scene. The diffraction pattern can be either numerically generated data or digitally acquired optical data. The method shows the connection between a hologram (diffraction pattern) and an elemental image set of the same 3D object. We showed three examples, one of which is the digitally captured optical diffraction tomography data of an epithelium cell. We obtained optical reconstructions with our integral imaging display setup where we used a digital lenslet array. We also obtained numerical reconstructions, again by using the diffraction calculations, for comparison. The digital and optical reconstruction results are in good agreement.

  18. EEG-based usability assessment of 3D shutter glasses

    NASA Astrophysics Data System (ADS)

    Wenzel, Markus A.; Schultze-Kraft, Rafael; Meinecke, Frank C.; Cardinaux, Fabien; Kemp, Thomas; Müller, Klaus-Robert; Curio, Gabriel; Blankertz, Benjamin

    2016-02-01

    Objective. Neurotechnology can contribute to the usability assessment of products by providing objective measures of neural workload and can uncover usability impediments that are not consciously perceived by test persons. In this study, the neural processing effort imposed on the viewer of 3D television by shutter glasses was quantified as a function of shutter frequency. In particular, we sought to determine the critical shutter frequency at which the ‘neural flicker’ vanishes, such that visual fatigue due to this additional neural effort can be prevented by increasing the frequency of the system. Approach. Twenty-three participants viewed an image through 3D shutter glasses, while multichannel electroencephalogram (EEG) was recorded. In total ten shutter frequencies were employed, selected individually for each participant to cover the range below, at and above the threshold of flicker perception. The source of the neural flicker correlate was extracted using independent component analysis and the flicker impact on the visual cortex was quantified by decoding the state of the shutter from the EEG. Main Result. Effects of the shutter glasses were traced in the EEG up to around 67 Hz—about 20 Hz over the flicker perception threshold—and vanished at the subsequent frequency level of 77 Hz. Significance. The impact of the shutter glasses on the visual cortex can be detected by neurotechnology even when a flicker is not reported by the participants. Potential impact. Increasing the shutter frequency from the usual 50 Hz or 60 Hz to 77 Hz reduces the risk of visual fatigue and thus improves shutter-glass-based 3D usability.

  19. 3D numerical simulations of vesicle and inextensible capsule dynamics

    NASA Astrophysics Data System (ADS)

    Farutin, Alexander; Biben, Thierry; Misbah, Chaouqi

    2014-10-01

    Vesicles are locally-inextensible fluid membranes, capsules are endowed with in-plane shear elasticity mimicking the cytoskeleton of red blood cells (RBCs), but are extensible, while RBCs are inextensible. We use boundary integral (BI) methods based on the Green function techniques to model and solve numerically their dynamics. We regularize the single layer integral by subtraction of exact identities for the terms involving the normal and the tangential components of the force. The stability and precision of BI calculation is enhanced by taking advantage of additional quadrature nodes located in vertices of an auxiliary mesh, constructed by a standard refinement procedure from the main mesh. We extend the partition of unity technique to boundary integral calculation on triangular meshes. The proposed algorithm offers the same treatment of near-singular integration regardless whether the source and the target points belong to the same surface or not. Bending forces are calculated by using expressions derived from differential geometry. Membrane incompressibility is handled by using two penalization parameters per suspended entity: one for deviation of the global area from prescribed value and another for the sum of squares of local strains defined on each vertex. Extensible or inextensible capsules, a model of RBC, are studied by storing the position in the reference configuration for each vertex. The elastic force is then calculated by direct variation of the elastic energy. Various nonequilibrium physical examples on vesicles and capsules will be presented and the convergence and precision tests highlighted. Overall, a good convergence is observed with numerical error inversely proportional to the number of vertices used for surface discretization, the highest order of convergence allowed by piece-wise linear interpolation of the surface.

  20. SVD-GFD scheme to simulate complex moving body problems in 3D space

    NASA Astrophysics Data System (ADS)

    Wang, X. Y.; Yu, P.; Yeo, K. S.; Khoo, B. C.

    2010-03-01

    The present paper presents a hybrid meshfree-and-Cartesian grid method for simulating moving body incompressible viscous flow problems in 3D space. The method combines the merits of cost-efficient and accurate conventional finite difference approximations on Cartesian grids with the geometric freedom of generalized finite difference (GFD) approximations on meshfree grids. Error minimization in GFD is carried out by singular value decomposition (SVD). The Arbitrary Lagrangian-Eulerian (ALE) form of the Navier-Stokes equations on convecting nodes is integrated by a fractional-step projection method. The present hybrid grid method employs a relatively simple mode of nodal administration. Nevertheless, it has the geometrical flexibility of unstructured mesh-based finite-volume and finite element methods. Boundary conditions are precisely implemented on boundary nodes without interpolation. The present scheme is validated by a moving patch consistency test as well as against published results for 3D moving body problems. Finally, the method is applied on low-Reynolds number flapping wing applications, where large boundary motions are involved. The present study demonstrates the potential of the present hybrid meshfree-and-Cartesian grid scheme for solving complex moving body problems in 3D.

  1. Assessment of inlet efficiency through a 3D simulation: numerical and experimental comparison.

    PubMed

    Gómez, Manuel; Recasens, Joan; Russo, Beniamino; Martínez-Gomariz, Eduardo

    2016-10-01

    Inlet efficiency is a requirement for characterizing the flow transfers between surface and sewer flow during rain events. The dual drainage approach is based on the joint analysis of both upper and lower drainage levels, and the flow transfer is one of the relevant elements to define properly this joint behaviour. This paper presents the results of an experimental and numerical investigation about the inlet efficiency definition. A full scale (1:1) test platform located in the Technical University of Catalonia (UPC) reproduces both the runoff process in streets and the water entering the inlet. Data from tests performed on this platform allow the inlet efficiency to be estimated as a function of significant hydraulic and geometrical parameters. A reproduction of these tests through a numerical three-dimensional code (Flow-3D) has been carried out simulating this type of flow by solving the RANS equations. The aim of the work was to reproduce the hydraulic performance of a previously tested grated inlet under several flow and geometric conditions using Flow-3D as a virtual laboratory. This will allow inlet efficiencies to be obtained without previous experimental tests. Moreover, the 3D model allows a better understanding of the hydraulics of the flow interception and the flow patterns approaching the inlet.

  2. Representativeness of 2D models to simulate 3D unstable variable density flow in porous media

    NASA Astrophysics Data System (ADS)

    Knorr, Bastian; Xie, Yueqing; Stumpp, Christine; Maloszewski, Piotr; Simmons, Craig T.

    2016-11-01

    Variable density flow in porous media has been studied primarily using numerical models because it is a semi-chaotic and transient process. Most of these studies have been 2D, owing to the computational restrictions on 3D simulations, and the ability to observe variable density flow in 2D experimentation. However, it is recognised that variable density flow is a three-dimensional process. A 3D system may cause weaker variable density flow than a 2D system due to stronger dispersion, but may also result in bigger fingers and hence stronger variable density flow because of more space for fingers to coalesce. This study aimed to determine the representativeness of 2D modelling to simulate 3D variable density flow. 3D homogeneous sand column experiments were conducted at three different water flow velocities with three different bromide tracer solutions mixed with methanol resulting in different density ratios. Both 2D axisymmetric and 3D numerical simulations were performed to reproduce experimental data. Experimental results showed that the magnitude of variable density flow increases with decreasing flow rates and decreasing density ratios. The shapes of the observed breakthrough curves differed significantly from those produced by 2D axisymmetric and 3D simulations. Compared to 2D simulations, the onset of instabilities was delayed but the growth was more pronounced in 3D simulations. Despite this difference, both 2D axisymmetric and 3D models successfully simulated mass recovery with high efficiency (between 77% and 99%). This study indicates that 2D simulations are sufficient to understand integrated features of variable density flow in homogeneous sand column experiments.

  3. RF study and 3-D simulations of a side-coupling thermionic RF-gun

    NASA Astrophysics Data System (ADS)

    Rimjaem, S.; Kusoljariyakul, K.; Thongbai, C.

    2014-02-01

    A thermionic RF-gun for generating ultra-short electron bunches was optimized, developed and used as a source at a linac-based THz radiation research laboratory of the Plasma and Beam Physics Research Facility, Chiang Mai University, Thailand. The RF-gun is a π/2-mode standing wave structure, which consists of two S-band accelerating cells and a side-coupling cavity. The 2856 MHz RF wave is supplied from an S-band klystron to the gun through the waveguide input-port at the cylindrical wall of the second cell. A fraction of the RF power is coupled from the second cell to the first one via a side-coupling cavity. Both the waveguide input-port and the side-coupling cavity lead to an asymmetric geometry of the gun. RF properties and electromagnetic field distributions inside the RF-gun were studied and numerically simulated by using computer codes SUPERFISH 7.19 and CST Microwave Studio 2012©. RF characterizations and tunings of the RF-gun were performed to ensure the reliability of the gun operation. The results from 3D simulations and measurements are compared and discussed in this paper. The influence of asymmetric field distributions inside the RF-gun on the electron beam properties was investigated via 3D beam dynamics simulations. A change in the coupling-plane of the side-coupling cavity is suggested to improve the gun performance.

  4. Appearance-based color face recognition with 3D model

    NASA Astrophysics Data System (ADS)

    Wang, Chengzhang; Bai, Xiaoming

    2013-03-01

    Appearance-based face recognition approaches explore color cues of face images, i.e. grey or color information for recognition task. They first encode color face images, and then extract facial features for classification. Similar to conventional singular value decomposition, hypercomplex matrix also exists singular value decomposition on hypercomplex field. In this paper, a novel color face recognition approach based on hypercomplex singular value decomposition is proposed. The approach employs hypercomplex to encode color face information of different channels simultaneously. Hypercomplex singular value decomposition is utilized then to compute the basis vectors of the color face subspace. To improve learning efficiency of the algorithm, 3D active deformable model is exploited to generate virtual face images. Color face samples are projected onto the subspace and projection coefficients are utilized as facial features. Experimental results on CMU PIE face database verify the effectiveness of the proposed approach.

  5. Robot navigation in cluttered 3-D environments using preference-based fuzzy behaviors.

    PubMed

    Shi, Dongqing; Collins, Emmanuel G; Dunlap, Damion

    2007-12-01

    Autonomous navigation systems for mobile robots have been successfully deployed for a wide range of planar ground-based tasks. However, very few counterparts of previous planar navigation systems were developed for 3-D motion, which is needed for both unmanned aerial and underwater vehicles. A novel fuzzy behavioral scheme for navigating an unmanned helicopter in cluttered 3-D spaces is developed. The 3-D navigation problem is decomposed into several identical 2-D navigation subproblems, each of which is solved by using preference-based fuzzy behaviors. Due to the shortcomings of vector summation during the fusion of the 2-D subproblems, instead of directly outputting steering subdirections by their own defuzzification processes, the intermediate preferences of the subproblems are fused to create a 3-D solution region, representing degrees of preference for the robot movement. A new defuzzification algorithm that steers the robot by finding the centroid of a 3-D convex region of maximum volume in the 3-D solution region is developed. A fuzzy speed-control system is also developed to ensure efficient and safe navigation. Substantial simulations have been carried out to demonstrate that the proposed algorithm can smoothly and effectively guide an unmanned helicopter through unknown and cluttered urban and forest environments.

  6. 3D fluoroscopic image estimation using patient-specific 4DCBCT-based motion models

    NASA Astrophysics Data System (ADS)

    Dhou, S.; Hurwitz, M.; Mishra, P.; Cai, W.; Rottmann, J.; Li, R.; Williams, C.; Wagar, M.; Berbeco, R.; Ionascu, D.; Lewis, J. H.

    2015-05-01

    3D fluoroscopic images represent volumetric patient anatomy during treatment with high spatial and temporal resolution. 3D fluoroscopic images estimated using motion models built using 4DCT images, taken days or weeks prior to treatment, do not reliably represent patient anatomy during treatment. In this study we developed and performed initial evaluation of techniques to develop patient-specific motion models from 4D cone-beam CT (4DCBCT) images, taken immediately before treatment, and used these models to estimate 3D fluoroscopic images based on 2D kV projections captured during treatment. We evaluate the accuracy of 3D fluoroscopic images by comparison to ground truth digital and physical phantom images. The performance of 4DCBCT-based and 4DCT-based motion models are compared in simulated clinical situations representing tumor baseline shift or initial patient positioning errors. The results of this study demonstrate the ability for 4DCBCT imaging to generate motion models that can account for changes that cannot be accounted for with 4DCT-based motion models. When simulating tumor baseline shift and patient positioning errors of up to 5 mm, the average tumor localization error and the 95th percentile error in six datasets were 1.20 and 2.2 mm, respectively, for 4DCBCT-based motion models. 4DCT-based motion models applied to the same six datasets resulted in average tumor localization error and the 95th percentile error of 4.18 and 5.4 mm, respectively. Analysis of voxel-wise intensity differences was also conducted for all experiments. In summary, this study demonstrates the feasibility of 4DCBCT-based 3D fluoroscopic image generation in digital and physical phantoms and shows the potential advantage of 4DCBCT-based 3D fluoroscopic image estimation when there are changes in anatomy between the time of 4DCT imaging and the time of treatment delivery.

  7. Improving 3D Wavelet-Based Compression of Hyperspectral Images

    NASA Technical Reports Server (NTRS)

    Klimesh, Matthew; Kiely, Aaron; Xie, Hua; Aranki, Nazeeh

    2009-01-01

    Two methods of increasing the effectiveness of three-dimensional (3D) wavelet-based compression of hyperspectral images have been developed. (As used here, images signifies both images and digital data representing images.) The methods are oriented toward reducing or eliminating detrimental effects of a phenomenon, referred to as spectral ringing, that is described below. In 3D wavelet-based compression, an image is represented by a multiresolution wavelet decomposition consisting of several subbands obtained by applying wavelet transforms in the two spatial dimensions corresponding to the two spatial coordinate axes of the image plane, and by applying wavelet transforms in the spectral dimension. Spectral ringing is named after the more familiar spatial ringing (spurious spatial oscillations) that can be seen parallel to and near edges in ordinary images reconstructed from compressed data. These ringing phenomena are attributable to effects of quantization. In hyperspectral data, the individual spectral bands play the role of edges, causing spurious oscillations to occur in the spectral dimension. In the absence of such corrective measures as the present two methods, spectral ringing can manifest itself as systematic biases in some reconstructed spectral bands and can reduce the effectiveness of compression of spatially-low-pass subbands. One of the two methods is denoted mean subtraction. The basic idea of this method is to subtract mean values from spatial planes of spatially low-pass subbands prior to encoding, because (a) such spatial planes often have mean values that are far from zero and (b) zero-mean data are better suited for compression by methods that are effective for subbands of two-dimensional (2D) images. In this method, after the 3D wavelet decomposition is performed, mean values are computed for and subtracted from each spatial plane of each spatially-low-pass subband. The resulting data are converted to sign-magnitude form and compressed in a

  8. 3D fluoroscopic image estimation using patient-specific 4DCBCT-based motion models

    PubMed Central

    Dhou, Salam; Hurwitz, Martina; Mishra, Pankaj; Cai, Weixing; Rottmann, Joerg; Li, Ruijiang; Williams, Christopher; Wagar, Matthew; Berbeco, Ross; Ionascu, Dan; Lewis, John H.

    2015-01-01

    3D fluoroscopic images represent volumetric patient anatomy during treatment with high spatial and temporal resolution. 3D fluoroscopic images estimated using motion models built using 4DCT images, taken days or weeks prior to treatment, do not reliably represent patient anatomy during treatment. In this study we develop and perform initial evaluation of techniques to develop patient-specific motion models from 4D cone-beam CT (4DCBCT) images, taken immediately before treatment, and use these models to estimate 3D fluoroscopic images based on 2D kV projections captured during treatment. We evaluate the accuracy of 3D fluoroscopic images by comparing to ground truth digital and physical phantom images. The performance of 4DCBCT- and 4DCT- based motion models are compared in simulated clinical situations representing tumor baseline shift or initial patient positioning errors. The results of this study demonstrate the ability for 4DCBCT imaging to generate motion models that can account for changes that cannot be accounted for with 4DCT-based motion models. When simulating tumor baseline shift and patient positioning errors of up to 5 mm, the average tumor localization error and the 95th percentile error in six datasets were 1.20 and 2.2 mm, respectively, for 4DCBCT-based motion models. 4DCT-based motion models applied to the same six datasets resulted in average tumor localization error and the 95th percentile error of 4.18 and 5.4 mm, respectively. Analysis of voxel-wise intensity differences was also conducted for all experiments. In summary, this study demonstrates the feasibility of 4DCBCT-based 3D fluoroscopic image generation in digital and physical phantoms, and shows the potential advantage of 4DCBCT-based 3D fluoroscopic image estimation when there are changes in anatomy between the time of 4DCT imaging and the time of treatment delivery. PMID:25905722

  9. Terascale direct numerical simulations of turbulent combustion using S3D

    NASA Astrophysics Data System (ADS)

    Chen, J. H.; Choudhary, A.; de Supinski, B.; DeVries, M.; Hawkes, E. R.; Klasky, S.; Liao, W. K.; Ma, K. L.; Mellor-Crummey, J.; Podhorszki, N.; Sankaran, R.; Shende, S.; Yoo, C. S.

    2009-01-01

    Computational science is paramount to the understanding of underlying processes in internal combustion engines of the future that will utilize non-petroleum-based alternative fuels, including carbon-neutral biofuels, and burn in new combustion regimes that will attain high efficiency while minimizing emissions of particulates and nitrogen oxides. Next-generation engines will likely operate at higher pressures, with greater amounts of dilution and utilize alternative fuels that exhibit a wide range of chemical and physical properties. Therefore, there is a significant role for high-fidelity simulations, direct numerical simulations (DNS), specifically designed to capture key turbulence-chemistry interactions in these relatively uncharted combustion regimes, and in particular, that can discriminate the effects of differences in fuel properties. In DNS, all of the relevant turbulence and flame scales are resolved numerically using high-order accurate numerical algorithms. As a consequence terascale DNS are computationally intensive, require massive amounts of computing power and generate tens of terabytes of data. Recent results from terascale DNS of turbulent flames are presented here, illustrating its role in elucidating flame stabilization mechanisms in a lifted turbulent hydrogen/air jet flame in a hot air coflow, and the flame structure of a fuel-lean turbulent premixed jet flame. Computing at this scale requires close collaborations between computer and combustion scientists to provide optimized scaleable algorithms and software for terascale simulations, efficient collective parallel I/O, tools for volume visualization of multiscale, multivariate data and automating the combustion workflow. The enabling computer science, applied to combustion science, is also required in many other terascale physics and engineering simulations. In particular, performance monitoring is used to identify the performance of key kernels in the DNS code, S3D and especially memory

  10. Parallel computing simulation of electrical excitation and conduction in the 3D human heart.

    PubMed

    Di Yu; Dongping Du; Hui Yang; Yicheng Tu

    2014-01-01

    A correctly beating heart is important to ensure adequate circulation of blood throughout the body. Normal heart rhythm is produced by the orchestrated conduction of electrical signals throughout the heart. Cardiac electrical activity is the resulted function of a series of complex biochemical-mechanical reactions, which involves transportation and bio-distribution of ionic flows through a variety of biological ion channels. Cardiac arrhythmias are caused by the direct alteration of ion channel activity that results in changes in the AP waveform. In this work, we developed a whole-heart simulation model with the use of massive parallel computing with GPGPU and OpenGL. The simulation algorithm was implemented under several different versions for the purpose of comparisons, including one conventional CPU version and two GPU versions based on Nvidia CUDA platform. OpenGL was utilized for the visualization / interaction platform because it is open source, light weight and universally supported by various operating systems. The experimental results show that the GPU-based simulation outperforms the conventional CPU-based approach and significantly improves the speed of simulation. By adopting modern computer architecture, this present investigation enables real-time simulation and visualization of electrical excitation and conduction in the large and complicated 3D geometry of a real-world human heart.

  11. 3D modeling based on CityEngine

    NASA Astrophysics Data System (ADS)

    Jia, Guangyin; Liao, Kaiju

    2017-03-01

    Currently, there are many 3D modeling softwares, like 3DMAX, AUTOCAD, and more populous BIM softwares represented by REVIT. CityEngine modeling software introduced in this paper can fully utilize the existing GIS data and combine other built models to make 3D modeling on internal and external part of buildings in a rapid and batch manner, so as to improve the 3D modeling efficiency.

  12. 3D Gabor wavelet based vessel filtering of photoacoustic images.

    PubMed

    Haq, Israr Ul; Nagoaka, Ryo; Makino, Takahiro; Tabata, Takuya; Saijo, Yoshifumi

    2016-08-01

    Filtering and segmentation of vasculature is an important issue in medical imaging. The visualization of vasculature is crucial for the early diagnosis and therapy in numerous medical applications. This paper investigates the use of Gabor wavelet to enhance the effect of vasculature while eliminating the noise due to size, sensitivity and aperture of the detector in 3D Optical Resolution Photoacoustic Microscopy (OR-PAM). A detailed multi-scale analysis of wavelet filtering and Hessian based method is analyzed for extracting vessels of different sizes since the blood vessels usually vary with in a range of radii. The proposed algorithm first enhances the vasculature in the image and then tubular structures are classified by eigenvalue decomposition of the local Hessian matrix at each voxel in the image. The algorithm is tested on non-invasive experiments, which shows appreciable results to enhance vasculature in photo-acoustic images.

  13. Nanoelectronic Modeling (NEMO): Moving from commercial grade 1-D simulation to prototype 3-D simulation

    NASA Astrophysics Data System (ADS)

    Klimeck, Gerhard

    2001-03-01

    The quantum mechanical functionality of commercially pursued heterostructure devices such as resonant tunneling diodes (RTDs), quantum well infrared photodetectors, and quantum well lasers are enabled by material variations on an atomic scale. The creation of these heterostructure devices is realized in a vast design space of material compositions, layer thicknesses and doping profiles. The full experimental exploration of this design space is unfeasible and a reliable design tool is needed. The Nanoelectronic Modeling tool (NEMO) is one of the first commercial grade attempts for such a modeling tool. NEMO was developed as a general-purpose quantum mechanics-based 1-D device design and analysis tool from 1993-97 by the Central Research Laboratory of Texas Instruments (later Raytheon Systems). NEMO enables(R. Lake, G. Klimeck, R. C. Bowen, and D. Jovanovic, J. Appl. Phys. 81), 7845 (1997). the fundamentally sound inclusion of the required(G. Klimeck et al.), in the 1997 55th Annual Device Research Conference Digest, (IEEE, NJ, 1997), p. 92^,(R. C. Bowen et al.), J. Appl. Phys 81, 3207 (1997). physics: bandstructure, scattering, and charge self-consistency based on the non-equilibrium Green function approach. A new class of devices which require full 3-D quantum mechanics based models is starting to emerge: quantum dots, or in general semiconductor based deca-nano devices. We are currently building a 3-D modeling tool based on NEMO to include the important physics to understand electronic stated in such superscaled structures. This presentation will overview various facets of the NEMO 1-D tool such electron transport physics in RTDs, numerical technology, software engineering and graphical user interface. The lessons learned from that work are now entering the 3D>NEMO 3-D development and first results using the NEMO 3-D prototype will be shown. More information about

  14. 2-D Versus 3-D Cross-Correlation-Based Radial and Circumferential Strain Estimation Using Multiplane 2-D Ultrafast Ultrasound in a 3-D Atherosclerotic Carotid Artery Model.

    PubMed

    Fekkes, Stein; Swillens, Abigail E S; Hansen, Hendrik H G; Saris, Anne E C M; Nillesen, Maartje M; Iannaccone, Francesco; Segers, Patrick; de Korte, Chris L

    2016-10-01

    Three-dimensional (3-D) strain estimation might improve the detection and localization of high strain regions in the carotid artery (CA) for identification of vulnerable plaques. This paper compares 2-D versus 3-D displacement estimation in terms of radial and circumferential strain using simulated ultrasound (US) images of a patient-specific 3-D atherosclerotic CA model at the bifurcation embedded in surrounding tissue generated with ABAQUS software. Global longitudinal motion was superimposed to the model based on the literature data. A Philips L11-3 linear array transducer was simulated, which transmitted plane waves at three alternating angles at a pulse repetition rate of 10 kHz. Interframe (IF) radio-frequency US data were simulated in Field II for 191 equally spaced longitudinal positions of the internal CA. Accumulated radial and circumferential displacements were estimated using tracking of the IF displacements estimated by a two-step normalized cross-correlation method and displacement compounding. Least-squares strain estimation was performed to determine accumulated radial and circumferential strain. The performance of the 2-D and 3-D methods was compared by calculating the root-mean-squared error of the estimated strains with respect to the reference strains obtained from the model. More accurate strain images were obtained using the 3-D displacement estimation for the entire cardiac cycle. The 3-D technique clearly outperformed the 2-D technique in phases with high IF longitudinal motion. In fact, the large IF longitudinal motion rendered it impossible to accurately track the tissue and cumulate strains over the entire cardiac cycle with the 2-D technique.

  15. Simulation of metal forming processes with a 3D adaptive remeshing procedure

    NASA Astrophysics Data System (ADS)

    Zeramdini, Bessam; Robert, Camille; Germain, Guenael; Pottier, Thomas

    2016-10-01

    In this paper, a fully adaptive 3D numerical methodology based on a tetrahedral element was proposed in order to improve the finite element simulation of any metal forming process. This automatic methodology was implemented in a computational platform which integrates a finite element solver, 3D mesh generation and a field transfer algorithm. The proposed remeshing method was developed in order to solve problems associated with the severe distortion of elements subject to large deformations, to concentrate the elements where the error is large and to coarsen the mesh where the error is small. This leads to a significant reduction in the computation times while maintaining simulation accuracy. In addition, in order to enhance the contact conditions, this method has been coupled with a specific operator to maintain the initial contact between the workpiece nodes and the rigid tool after each remeshing step. In this paper special attention is paid to the data transfer methods and the necessary adaptive remeshing steps are given. Finally, a numerical example is detailed to demonstrate the efficiency of the approach and to compare the results for the different field transfer strategies.

  16. Surface rippling during solidification of binary polycrystalline alloy: Insights from 3-D phase-field simulations

    NASA Astrophysics Data System (ADS)

    Ankit, Kumar; Xing, Hui; Selzer, Michael; Nestler, Britta; Glicksman, Martin E.

    2017-01-01

    The mechanisms by which crystalline imperfections initiate breakdown of a planar front during directional solidification remain a topic of longstanding interest. Previous experimental findings show that the solid-liquid interface adjacent to a grain boundary provides a potential site where morphological instabilities initiate. However, interpretation of experimental data is difficult for complex 3-D diffusion fields that develop around grain multi-junctions and boundary ridges. We apply a phase-field approach to investigate factors that induce interfacial instabilities during directional solidification of a binary polycrystalline alloy. Using 2-D simulations, we establish the influence of solid-liquid interfacial energies on the spatial localization of initial interfacial perturbations. Based on parametric studies, we predict that grain misorientation and supersaturation in the melt provide major crystal growth factors determining solute segregation responsible for surface rippling. Subsequent breakdown of boundary ridges into periodic rows of hills, as simulated in 3-D, conform well with experiments. Finally, the significance of crystal misorientation relationships is elucidated in inducing spatial alignment of surface ripples.

  17. MIMO based 3D imaging system at 360 GHz

    NASA Astrophysics Data System (ADS)

    Herschel, R.; Nowok, S.; Zimmermann, R.; Lang, S. A.; Pohl, N.

    2016-05-01

    A MIMO radar imaging system at 360 GHz is presented as a part of the comprehensive approach of the European FP7 project TeraSCREEN, using multiple frequency bands for active and passive imaging. The MIMO system consists of 16 transmitter and 16 receiver antennas within one single array. Using a bandwidth of 30 GHz, a range resolution up to 5 mm is obtained. With the 16×16 MIMO system 256 different azimuth bins can be distinguished. Mechanical beam steering is used to measure 130 different elevation angles where the angular resolution is obtained by a focusing elliptical mirror. With this system a high resolution 3D image can be generated with 4 frames per second, each containing 16 million points. The principle of the system is presented starting from the functional structure, covering the hardware design and including the digital image generation. This is supported by simulated data and discussed using experimental results from a preliminary 90 GHz system underlining the feasibility of the approach.

  18. Research of Fast 3D Imaging Based on Multiple Mode

    NASA Astrophysics Data System (ADS)

    Chen, Shibing; Yan, Huimin; Ni, Xuxiang; Zhang, Xiuda; Wang, Yu

    2016-02-01

    Three-dimensional (3D) imaging has received increasingly extensive attention and has been widely used currently. Lots of efforts have been put on three-dimensional imaging method and system study, in order to meet fast and high accurate requirement. In this article, we realize a fast and high quality stereo matching algorithm on field programmable gate array (FPGA) using the combination of time-of-flight (TOF) camera and binocular camera. Images captured from the two cameras own a same spatial resolution, letting us use the depth maps taken by the TOF camera to figure initial disparity. Under the constraint of the depth map as the stereo pairs when comes to stereo matching, expected disparity of each pixel is limited within a narrow search range. In the meanwhile, using field programmable gate array (FPGA, altera cyclone IV series) concurrent computing we can configure multi core image matching system, thus doing stereo matching on embedded system. The simulation results demonstrate that it can speed up the process of stereo matching and increase matching reliability and stability, realize embedded calculation, expand application range.

  19. Hydrogel-based reinforcement of 3D bioprinted constructs

    PubMed Central

    Levato, R; Peiffer, Q C; de Ruijter, M; Hennink, W E; Vermonden, T; Malda, J

    2016-01-01

    Progress within the field of biofabrication is hindered by a lack of suitable hydrogel formulations. Here, we present a novel approach based on a hybrid printing technique to create cellularized 3D printed constructs. The hybrid bioprinting strategy combines a reinforcing gel for mechanical support with a bioink to provide a cytocompatible environment. In comparison with thermoplastics such as є-polycaprolactone, the hydrogel-based reinforcing gel platform enables printing at cell-friendly temperatures, targets the bioprinting of softer tissues and allows for improved control over degradation kinetics. We prepared amphiphilic macromonomers based on poloxamer that form hydrolysable, covalently cross-linked polymer networks. Dissolved at a concentration of 28.6%w/w in water, it functions as reinforcing gel, while a 5%w/w gelatin-methacryloyl based gel is utilized as bioink. This strategy allows for the creation of complex structures, where the bioink provides a cytocompatible environment for encapsulated cells. Cell viability of equine chondrocytes encapsulated within printed constructs remained largely unaffected by the printing process. The versatility of the system is further demonstrated by the ability to tune the stiffness of printed constructs between 138 and 263 kPa, as well as to tailor the degradation kinetics of the reinforcing gel from several weeks up to more than a year. PMID:27431861

  20. Efficient triple-grid multiscale finite element method for 3D groundwater flow simulation in heterogeneous porous media

    NASA Astrophysics Data System (ADS)

    Xie, Yifan; Wu, Jichun; Nan, Tongchao; Xue, Yuqun; Xie, Chunhong; Ji, Haifeng

    2017-03-01

    In this paper, an efficient triple-grid multiscale finite element method (ETMSFEM) is proposed for 3D groundwater simulation in heterogeneous porous media. The main idea of this method is to employ new 3D linear base functions and the domain decomposition technique to solve the local reduced elliptical problem, thereby simplifying the base function construction process and improving the efficiency. Furthermore, by using the ETMSFEM base functions, this method can solve Darcy's equation with high efficiency to obtain a continuous velocity field. Therefore, this method can considerably reduce the computational cost of solving for heads and velocities, which is crucial for large-scale 3D groundwater simulations. In the application section, we present numerical examples to compare the ETMSFEM with several classical methods to demonstrate its efficiency and effectiveness.

  1. The dark side of photovoltaic — 3D simulation of glare assessing risk and discomfort

    SciTech Connect

    Rose, Thomas; Wollert, Alexander

    2015-04-15

    Photovoltaic (PV) systems form an important force in the implementation of renewable energies, but as we all know, the force has always its dark side. Besides efficiency considerations and discussions about architectures of power distribution networks, the increasing numbers of installations of PV systems for implementing renewable energies have secondary effects. PV systems can generate glare due to optical reflections and hence might be a serious concern. On the one hand, glare could affect safety, e.g. regarding traffic. On the other hand, glare is a constant source of discomfort in vicinities of PV systems. Hence, assessment of glare is decisive for the success of renewable energies near municipalities and traffic zones for the success of solar power. Several courts decided on the change of PV systems and even on their de-installation because of glare effects. Thus, location-based assessments are required to limit potential reflections and to avoid risks for public infrastructure or discomfort of residents. The question arises on how to calculate reflections accurately according to the environment's topography. Our approach is founded in a 3D-based simulation methodology to calculate and visualize reflections based on the geometry of the environment of PV systems. This computational model is implemented by an interactive tool for simulation and visualization. Hence, project planners receive flexible assistance for adjusting the parameters of solar panels amid the planning process and in particular before the installation of a PV system. - Highlights: • Solar panels cause glare that impacts neighborhoods and traffic infrastructures. • Glare might cause disability and discomfort. • 3D environment for the calculation of glare • Interactive tool to simulate and visualize reflections • Impact assessment of solar power plant farms.

  2. Three-dimensional (3D) printed endovascular simulation models: a feasibility study

    PubMed Central

    Nesbitt, Craig; McCaslin, James; Bagnall, Alan; Davey, Philip; Bose, Pentop; Williams, Rob

    2017-01-01

    Background Three-dimensional (3D) printing is a manufacturing process in which an object is created by specialist printers designed to print in additive layers to create a 3D object. Whilst there are initial promising medical applications of 3D printing, a lack of evidence to support its use remains a barrier for larger scale adoption into clinical practice. Endovascular virtual reality (VR) simulation plays an important role in the safe training of future endovascular practitioners, but existing VR models have disadvantages including cost and accessibility which could be addressed with 3D printing. Methods This study sought to evaluate the feasibility of 3D printing an anatomically accurate human aorta for the purposes of endovascular training. Results A 3D printed model was successfully designed and printed and used for endovascular simulation. The stages of development and practical applications are described. Feedback from 96 physicians who answered a series of questions using a 5 point Likert scale is presented. Conclusions Initial data supports the value of 3D printed endovascular models although further educational validation is required. PMID:28251121

  3. Quasi-3D Modeling and Efficient Simulation of Laminar Flows in Microfluidic Devices.

    PubMed

    Islam, Md Zahurul; Tsui, Ying Yin

    2016-10-03

    A quasi-3D model has been developed to simulate the flow in planar microfluidic systems with low Reynolds numbers. The model was developed by decomposing the flow profile along the height of a microfluidic system into a Fourier series. It was validated against the analytical solution for flow in a straight rectangular channel and the full 3D numerical COMSOL Navier-Stokes solver for flow in a T-channel. Comparable accuracy to the full 3D numerical solution was achieved by using only three Fourier terms with a significant decrease in computation time. The quasi-3D model was used to model flows in a micro-flow cytometer chip on a desktop computer and good agreement between the simulation and the experimental results was found.

  4. Quasi-3D Modeling and Efficient Simulation of Laminar Flows in Microfluidic Devices

    PubMed Central

    Islam, Md. Zahurul; Tsui, Ying Yin

    2016-01-01

    A quasi-3D model has been developed to simulate the flow in planar microfluidic systems with low Reynolds numbers. The model was developed by decomposing the flow profile along the height of a microfluidic system into a Fourier series. It was validated against the analytical solution for flow in a straight rectangular channel and the full 3D numerical COMSOL Navier-Stokes solver for flow in a T-channel. Comparable accuracy to the full 3D numerical solution was achieved by using only three Fourier terms with a significant decrease in computation time. The quasi-3D model was used to model flows in a micro-flow cytometer chip on a desktop computer and good agreement between the simulation and the experimental results was found. PMID:27706104

  5. Energy harvesting “3-D knitted spacer” based piezoelectric textiles

    NASA Astrophysics Data System (ADS)

    Anand, S.; Soin, N.; Shah, T. H.; Siores, E.

    2016-07-01

    The piezoelectric effect in Poly(vinylidene fluoride), PVDF, was discovered over four decades ago and since then, significant work has been carried out aiming at the production of high p-phase fibres and their integration into fabric structures for energy harvesting. However, little work has been done in the area of production of “true piezoelectric fabric structures” based on flexible polymeric materials such as PVDF. In this work, we demonstrate “3-D knitted spacer” technology based all-fibre piezoelectric fabrics as power generators and energy harvesters. The knitted single-structure piezoelectric generator consists of high p-phase (~80%) piezoelectric PVDF monofilaments as the spacer yarn interconnected between silver (Ag) coated polyamide multifilament yarn layers acting as the top and bottom electrodes. The novel and unique textile structure provides an output power density in the range of 1.105.10 gWcm-2 at applied impact pressures in the range of 0.02-0.10 MPa, thus providing significantly higher power outputs and efficiencies over the existing 2-D woven and nonwoven piezoelectric structures. The high energy efficiency, mechanical durability and comfort of the soft, flexible and all-fibre based power generator is highly attractive for a variety of potential applications such as wearable electronic systems and energy harvesters charged from ambient environment or by human movement.

  6. Synthetic 3D modeling of active regions and simulation of their multi-wavelength emission

    NASA Astrophysics Data System (ADS)

    Nita, Gelu M.; Fleishman, Gregory; Kuznetsov, Alexey A.; Loukitcheva, Maria A.; Viall, Nicholeen M.; Klimchuk, James A.; Gary, Dale E.

    2015-04-01

    To facilitate the study of solar active regions, we have created a synthetic modeling framework that combines 3D magnetic structures obtained from magnetic extrapolations with simplified 1D thermal models of the chromosphere, transition region, and corona. To handle, visualize, and use such synthetic data cubes to compute multi-wavelength emission maps and compare them with observations, we have undertaken a major enhancement of our simulation tools, GX_Simulator (ftp://sohoftp.nascom.nasa.gov/solarsoft/packages/gx_simulator/), developed earlier for modeling emission from flaring loops. The greatly enhanced, object-based architecture, which now runs on Windows, Mac, and UNIX platform, offers important new capabilities that include the ability to either import 3D density and temperature distribution models, or to assign to each individual voxel numerically defined coronal or chromospheric temperature and densities, or coronal Differential Emission Measure distributions. Due to these new capabilities, the GX_Simulator can now apply parametric heating models involving average properties of the magnetic field lines crossing a given voxel volume, as well as compute and investigate the spatial and spectral properties of radio (to be compared with VLA or EOVSA data), (sub-)millimeter (ALMA), EUV (AIA/SDO), and X-ray (RHESSI) emission calculated from the model. The application integrates shared-object libraries containing fast free-free, gyrosynchrotron, and gyroresonance emission codes developed in FORTRAN and C++, and soft and hard X-ray and EUV codes developed in IDL. We use this tool to model and analyze an active region and compare the synthetic emission maps obtained in different wavelengths with observations.This work was partially supported by NSF grants AGS-1250374, AGS-1262772, NASA grant NNX14AC87G, the Marie Curie International Research Staff Exchange Scheme "Radiosun" (PEOPLE-2011-IRSES-295272), RFBR grants 14-02-91157, 15-02-01089, 15-02-03717, 15

  7. Simulations of Coulomb systems with slab geometry using an efficient 3D Ewald summation method.

    PubMed

    dos Santos, Alexandre P; Girotto, Matheus; Levin, Yan

    2016-04-14

    We present a new approach to efficiently simulate electrolytes confined between infinite charged walls using a 3d Ewald summation method. The optimal performance is achieved by separating the electrostatic potential produced by the charged walls from the electrostatic potential of electrolyte. The electric field produced by the 3d periodic images of the walls is constant inside the simulation cell, with the field produced by the transverse images of the charged plates canceling out. The non-neutral confined electrolyte in an external potential can be simulated using 3d Ewald summation with a suitable renormalization of the electrostatic energy, to remove a divergence, and a correction that accounts for the conditional convergence of the resulting lattice sum. The new algorithm is at least an order of magnitude more rapid than the usual simulation methods for the slab geometry and can be further sped up by adopting a particle-particle particle-mesh approach.

  8. 3-D GRMHD Simulations of Disk-Jet Coupling and Emission

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Mizuno, Y.; Fuerst, S.; zei. zl/; Watson, M.; Hardee, P.; Koide, S.; Fishman, G. J.

    2006-01-01

    We have performed a fully 3-D GRMHD simulation of jet formation from a thin accretion disk around a Schwarzschild black hole with a free-falling corona. The simulation results show that a bipolar jet is initially created. At later times, the accretion disk becomes thick and the jet fades resulting in a wind that is ejected from the surface of the thickened (torus-like) disk. This evolution of disk-jet coupling suggests that the jet fades with a thickened accretion disk. Recently we have developed two new codes: 3 -D GRMHD: RelAtivIStic magnetoHydrodynamica1 sImulatioN (RAISHIN) code constructed by modern high-resolution shock-capturing (HRSC) techniques and 3-D GRPIC code. We have calculated free-free and synchrotron emission from the disks and jet/outflows obtained from our GRMHD simulations using a fully covariant radiative transfer formulation.

  9. Prototype Development Capabilities of 3D Spatial Interactions and Failures During Scenario Simulation

    SciTech Connect

    Steven Prescott; Ramprasad Sampath; Curtis Smith; Tony Koonce

    2014-09-01

    Computers have been used for 3D modeling and simulation, but only recently have computational resources been able to give realistic results in a reasonable time frame for large complex models. This report addressed the methods, techniques, and resources used to develop a prototype for using 3D modeling and simulation engine to improve risk analysis and evaluate reactor structures and components for a given scenario. The simulations done for this evaluation were focused on external events, specifically tsunami floods, for a hypothetical nuclear power facility on a coastline.

  10. Transient 3D numerical simulations of column collapse and pyroclastic density current scenarios at Vesuvius

    NASA Astrophysics Data System (ADS)

    Esposti Ongaro, T.; Neri, A.; Menconi, G.; de'Michieli Vitturi, M.; Marianelli, P.; Cavazzoni, C.; Erbacci, G.; Baxter, P. J.

    2008-12-01

    Numerical simulations of column collapse and pyroclastic density current (PDC) scenarios at Vesuvius were carried out using a transient 3D flow model based on multiphase transport laws. The model describes the dynamics of the collapse as well as the effects of the 3D topography of the volcano on PDC propagation. Source conditions refer to a medium-scale sub-Plinian event and consider a pressure-balanced jet. Simulation results provide new insights into the complex dynamics of these phenomena. In particular: 1) column collapse can be characterized by different regimes, from incipient collapse to partial or nearly total collapse, thus confirming the possibility of a transitional field of behaviour of the column characterized by the contemporaneous and/or intermittent occurrence of ash fallout and PDCs; 2) the collapse regime can be characterized by its fraction of eruptive mass reaching the ground and generating PDCs; 3) within the range of the investigated source conditions, the propagation and hazard potential of PDCs appear to be directly correlated with the flow-rate of the mass collapsing to the ground, rather than to the collapse height of the column (this finding is in contrast with predictions based on the energy-line concept, which simply correlates the PDC runout and kinetic energy with the collapse height of the column); 4) first-order values of hazard variables associated with PDCs (i.e., dynamic pressure, temperature, airborne ash concentration) can be derived from simulation results, thereby providing initial estimates for the quantification of damage scenarios; 5) for scenarios assuming a location of the central vent coinciding with that of the present Gran Cono, Mount Somma significantly influences the propagation of PDCs, largely reducing their propagation in the northern sector, and diverting mass toward the west and southeast, accentuating runouts and hazard variables for these sectors; 6) the 2D modelling approximation can force an artificial

  11. 3D Multistage Simulation of Each Component of the GE90 Turbofan Engine

    NASA Technical Reports Server (NTRS)

    Turner, Mark; Topp, Dave; Veres, Joe

    1999-01-01

    A 3D multistage simulation of each component of the GE90 Turbofan engine has been made. This includes 49 blade rows. A coupled simulation of all blade rows will be made very soon. The simulation is running using two levels of parallelism. The first level is on a blade row basis with information shared using files. The second level is using a grid domain decomposition with information shared using MPI. Timings will be shown for running on the SP2, an SGI Origin and a distributed system of HP workstations. On the HP workstations, the CHIMP version of MPI is used, with queuing supplied by LSF (Load Sharing Facility). A script-based control system is used to ensure reliability. An MPEG movie illustrating the flow simulation of the engine has been created using PV3, a parallel visualization library created by Bob Haimes of MIT. PVM is used to create a virtual machine from 10 HP workstations and display on an SGI workstation. A representative component simulation will be compared to rig data to demonstrate its usefulness in turbomachinery design and analysis.

  12. Simulation of a 3D unsteady flow in an axial turbine stage

    NASA Astrophysics Data System (ADS)

    Straka, Petr

    2012-04-01

    The contribution deals with a numerical simulation of an unsteady flow in an axial turbine stage. The solution is performed using an in-house numerical code developed in the Aeronautical and Test Institute, Plc. in Prague. The numerical code is based on a finite volume discretization of governing equations (Favre averaged Navier-Stokes equations) and a two-equations turbulence model. The temporal integration is based on the implicit second-order backward Euler formula, which is realized through the iteration process in dual time. The proposed numerical method is used for solution of the 3D, unsteady, viscous turbulent flow of a perfect gas in the axial turbine stage. The flow path consists of an input nozzle, stator blade-wheel, rotor blade-wheel, a shroud-seal gap and a diffuser. Attention is paid to the influence of a secondary flow structures, such as generated vortices and flow in shroud-seal gap.

  13. Cognitive/emotional models for human behavior representation in 3D avatar simulations

    NASA Astrophysics Data System (ADS)

    Peterson, James K.

    2004-08-01

    Simplified models of human cognition and emotional response are presented which are based on models of auditory/ visual polymodal fusion. At the core of these models is a computational model of Area 37 of the temporal cortex which is based on new isocortex models presented recently by Grossberg. These models are trained using carefully chosen auditory (musical sequences), visual (paintings) and higher level abstract (meta level) data obtained from studies of how optimization strategies are chosen in response to outside managerial inputs. The software modules developed are then used as inputs to character generation codes in standard 3D virtual world simulations. The auditory and visual training data also enable the development of simple music and painting composition generators which significantly enhance one's ability to validate the cognitive model. The cognitive models are handled as interacting software agents implemented as CORBA objects to allow the use of multiple language coding choices (C++, Java, Python etc) and efficient use of legacy code.

  14. Cloud Based Web 3d GIS Taiwan Platform

    NASA Astrophysics Data System (ADS)

    Tsai, W.-F.; Chang, J.-Y.; Yan, S. Y.; Chen, B.

    2011-09-01

    This article presents the status of the web 3D GIS platform, which has been developed in the National Applied Research Laboratories. The purpose is to develop a global earth observation 3D GIS platform for applications to disaster monitoring and assessment in Taiwan. For quick response to preliminary and detailed assessment after a natural disaster occurs, the web 3D GIS platform is useful to access, transfer, integrate, display and analyze the multi-scale huge data following the international OGC standard. The framework of cloud service for data warehousing management and efficiency enhancement using VMWare is illustrated in this article.

  15. The benefits of enhanced integration capabilities in 3-D reservoir modelling and simulation

    SciTech Connect

    O`Rourke, S.T.; Ikwumonu, A.

    1996-12-31

    The use of proprietary, closely linked 3-D geological and reservoir simulation software has greatly enhanced the reservoir modelling process by enabling complete integration of geological and engineering data in a 3-D manner. The software were used to model and simulate a deltaic sandstone reservoir in the Nigerian Forcados Yokri field in order to describe the reservoir sweep pattern. A simple simulation of the reservoir was first carried out to identify the main controls on the reservoir performance, which in this case were the intra-reservoir shales. As they are the only baffles or barriers to flow, proper modelling of them was critical to achieving a history match. Well logs, 3-D seismic, limited core data and sequence stratigraphic concepts were used to define a three dimensional depositional model which was then used to guide the 3-D reservoir architecture modelling. The reservoir model was evaluated in the 3-D simulator and, when the initial model did not yield a proper match with the historical production data, alternative models were easily generated and simulated until an acceptable match was achieved. The result was a 10% increase in predicted ultimate recovery, a better understanding of the reservoir and an optimized reservoir depletion plan.

  16. A graphical user interface for calculation of 3D dose distribution using Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Chow, J. C. L.; Leung, M. K. K.

    2008-02-01

    A software graphical user interface (GUI) for calculation of 3D dose distribution using Monte Carlo (MC) simulation is developed using MATLAB. This GUI (DOSCTP) provides a user-friendly platform for DICOM CT-based dose calculation using EGSnrcMP-based DOSXYZnrc code. It offers numerous features not found in DOSXYZnrc, such as the ability to use multiple beams from different phase-space files, and has built-in dose analysis and visualization tools. DOSCTP is written completely in MATLAB, with integrated access to DOSXYZnrc and CTCREATE. The program function may be divided into four subgroups, namely, beam placement, MC simulation with DOSXYZnrc, dose visualization, and export. Each is controlled by separate routines. The verification of DOSCTP was carried out by comparing plans with different beam arrangements (multi-beam/photon arc) on an inhomogeneous phantom as well as patient CT between the GUI and Pinnacle3. DOSCTP was developed and verified with the following features: (1) a built-in voxel editor to modify CT-based DOSXYZnrc phantoms for research purposes; (2) multi-beam placement is possible, which cannot be achieved using the current DOSXYZnrc code; (3) the treatment plan, including the dose distributions, contours and image set can be exported to a commercial treatment planning system such as Pinnacle3 or to CERR using RTOG format for plan evaluation and comparison; (4) a built-in RTOG-compatible dose reviewer for dose visualization and analysis such as finding the volume of hot/cold spots in the 3D dose distributions based on a user threshold. DOSCTP greatly simplifies the use of DOSXYZnrc and CTCREATE, and offers numerous features that not found in the original user-code. Moreover, since phase-space beams can be defined and generated by the user, it is a particularly useful tool to carry out plans using specifically designed irradiators/accelerators that cannot be found in the Linac library of commercial treatment planning systems.

  17. The optimizations of CGH generation algorithms based on multiple GPUs for 3D dynamic holographic display

    NASA Astrophysics Data System (ADS)

    Yang, Dan; Liu, Juan; Zhang, Yingxi; Li, Xin; Wang, Yongtian

    2016-10-01

    Holographic display has been considered as a promising display technology. Currently, low-speed generation of holograms with big holographic data is one of crucial bottlenecks for three dimensional (3D) dynamic holographic display. To solve this problem, the acceleration method computation platform is presented based on look-up table point source method. The computer generated holograms (CGHs) acquisition is sped up by offline file loading and inline calculation optimization, where a pure phase CGH with gigabyte data is encoded to record an object with 10 MB sampling data. Both numerical simulation and optical experiment demonstrate that the CGHs with 1920×1080 resolution by the proposed method can be applied to the 3D objects reconstruction with high quality successfully. It is believed that the CGHs with huge data can be generated by the proposed method with high speed for 3D dynamic holographic display in near future.

  18. The simulation of 3D mass models in 2D digital mammography and breast tomosynthesis

    SciTech Connect

    Shaheen, Eman De Keyzer, Frederik; Bosmans, Hilde; Ongeval, Chantal Van; Dance, David R.; Young, Kenneth C.

    2014-08-15

    suggestive for malignancy (BIRADS 5) indicating the required variety of shapes and margins of these models. The assessment of the BIRADS scores for all observers indicated good agreement based on Kendall's coefficient for both the 2D and the tomosynthesis evaluations. The paired analysis of the BIRADS scores between 2D and tomosynthesis for each observer revealed consistent behavior for the real and simulated masses. Conclusions: A database of 3D mass models, with variety of shapes and margins, was validated for the realism of their appearance for 2D digital mammography and for breast tomosynthesis. This database is suitable for use in future observer performance studies whether in virtual clinical trials or in patient images with simulated lesions.

  19. 3D animation of facial plastic surgery based on computer graphics

    NASA Astrophysics Data System (ADS)

    Zhang, Zonghua; Zhao, Yan

    2013-12-01

    More and more people, especial women, are getting desired to be more beautiful than ever. To some extent, it becomes true because the plastic surgery of face was capable in the early 20th and even earlier as doctors just dealing with war injures of face. However, the effect of post-operation is not always satisfying since no animation could be seen by the patients beforehand. In this paper, by combining plastic surgery of face and computer graphics, a novel method of simulated appearance of post-operation will be given to demonstrate the modified face from different viewpoints. The 3D human face data are obtained by using 3D fringe pattern imaging systems and CT imaging systems and then converted into STL (STereo Lithography) file format. STL file is made up of small 3D triangular primitives. The triangular mesh can be reconstructed by using hash function. Top triangular meshes in depth out of numbers of triangles must be picked up by ray-casting technique. Mesh deformation is based on the front triangular mesh in the process of simulation, which deforms interest area instead of control points. Experiments on face model show that the proposed 3D animation facial plastic surgery can effectively demonstrate the simulated appearance of post-operation.

  20. A faster method for 3D/2D medical image registration—a simulation study

    NASA Astrophysics Data System (ADS)

    Birkfellner, Wolfgang; Wirth, Joachim; Burgstaller, Wolfgang; Baumann, Bernard; Staedele, Harald; Hammer, Beat; Claudius Gellrich, Niels; Jacob, Augustinus Ludwig; Regazzoni, Pietro; Messmer, Peter

    2003-08-01

    3D/2D patient-to-computed-tomography (CT) registration is a method to determine a transformation that maps two coordinate systems by comparing a projection image rendered from CT to a real projection image. Iterative variation of the CT's position between rendering steps finally leads to exact registration. Applications include exact patient positioning in radiation therapy, calibration of surgical robots, and pose estimation in computer-aided surgery. One of the problems associated with 3D/2D registration is the fact that finding a registration includes solving a minimization problem in six degrees of freedom (dof) in motion. This results in considerable time requirements since for each iteration step at least one volume rendering has to be computed. We show that by choosing an appropriate world coordinate system and by applying a 2D/2D registration method in each iteration step, the number of iterations can be grossly reduced from n6 to n5. Here, n is the number of discrete variations around a given coordinate. Depending on the configuration of the optimization algorithm, this reduces the total number of iterations necessary to at least 1/3 of it's original value. The method was implemented and extensively tested on simulated x-ray images of a tibia, a pelvis and a skull base. When using one projective image and a discrete full parameter space search for solving the optimization problem, average accuracy was found to be 1.0 +/- 0.6(°) and 4.1 +/- 1.9 (mm) for a registration in six parameters, and 1.0 +/- 0.7(°) and 4.2 +/- 1.6 (mm) when using the 5 + 1 dof method described in this paper. Time requirements were reduced by a factor 3.1. We conclude that this hardware-independent optimization of 3D/2D registration is a step towards increasing the acceptance of this promising method for a wide number of clinical applications.

  1. A faster method for 3D/2D medical image registration--a simulation study.

    PubMed

    Birkfellner, Wolfgang; Wirth, Joachim; Burgstaller, Wolfgang; Baumann, Bernard; Staedele, Harald; Hammer, Beat; Gellrich, Niels Claudius; Jacob, Augustinus Ludwig; Regazzoni, Pietro; Messmer, Peter

    2003-08-21

    3D/2D patient-to-computed-tomography (CT) registration is a method to determine a transformation that maps two coordinate systems by comparing a projection image rendered from CT to a real projection image. Iterative variation of the CT's position between rendering steps finally leads to exact registration. Applications include exact patient positioning in radiation therapy, calibration of surgical robots, and pose estimation in computer-aided surgery. One of the problems associated with 3D/2D registration is the fact that finding a registration includes solving a minimization problem in six degrees of freedom (dof) in motion. This results in considerable time requirements since for each iteration step at least one volume rendering has to be computed. We show that by choosing an appropriate world coordinate system and by applying a 2D/2D registration method in each iteration step, the number of iterations can be grossly reduced from n6 to n5. Here, n is the number of discrete variations around a given coordinate. Depending on the configuration of the optimization algorithm, this reduces the total number of iterations necessary to at least 1/3 of it's original value. The method was implemented and extensively tested on simulated x-ray images of a tibia, a pelvis and a skull base. When using one projective image and a discrete full parameter space search for solving the optimization problem, average accuracy was found to be 1.0 +/- 0.6(degrees) and 4.1 +/- 1.9 (mm) for a registration in six parameters, and 1.0 +/- 0.7(degrees) and 4.2 +/- 1.6 (mm) when using the 5 + 1 dof method described in this paper. Time requirements were reduced by a factor 3.1. We conclude that this hardware-independent optimization of 3D/2D registration is a step towards increasing the acceptance of this promising method for a wide number of clinical applications.

  2. Tropospheric vertical column densities of NO2 over managed dryland ecosystems (Xinjiang, China): MAX-DOAS measurements vs. 3-D dispersion model simulations based on laboratory-derived NO emission from soil samples

    NASA Astrophysics Data System (ADS)

    Mamtimin, B.; Behrendt, T.; Badawy, M. M.; Wagner, T.; Qi, Y.; Wu, Z.; Meixner, F. X.

    2015-01-01

    We report on MAX-DOAS observations of NO2 over an oasis-ecotone-desert ecosystem in NW China. There, local ambient NO2 concentrations originate from enhanced biogenic NO emission of intensively managed soils. Our target oasis "Milan" is located at the southern edge of the Taklimakan desert, very remote and well isolated from other potential anthropogenic and biogenic NOx sources. Four observation sites for MAX-DOAS measurements were selected, at the oasis centre, downwind and upwind of the oasis, and in the desert. Biogenic NO emissions in terms of (i) soil moisture and (ii) soil temperature of Milan oasis (iii) different land-cover type sub-units (cotton, Jujube trees, cotton/Jujube mixture, desert) were quantified by laboratory incubation of corresponding soil samples. Net potential NO fluxes were up-scaled to oasis scale by areal distribution and classification of land-cover types derived from satellite images using GIS techniques. A Lagrangian dispersion model (LASAT, Lagrangian Simulation of Aerosol Transport) was used to calculate the dispersion of soil emitted NO into the atmospheric boundary layer over Milan oasis. Three-dimensional (3-D) NO concentrations (30 m horizontal resolution) have been converted to 3-D NO2 concentrations, assuming photostationary state conditions. NO2 column densities were simulated by suitable vertical integration of modelled 3-D NO2 concentrations at those downwind and upwind locations, where the MAX-DOAS measurements were performed. Downwind-upwind differences (a direct measure of Milan oasis' contribution to the areal increase of ambient NO2 concentration) of measured and simulated slant (as well as vertical) NO2 column densities show excellent agreement. This agreement is considered as the first successful attempt to prove the validity of the chosen approach to up-scale laboratory-derived biogenic NO fluxes to ecosystem field conditions, i.e. from the spatial scale of a soil sample (cm2) to the size of an entire agricultural

  3. Open-GL-based stereo system for 3D measurements

    NASA Astrophysics Data System (ADS)

    Boochs, Frank; Gehrhoff, Anja; Neifer, Markus

    2000-05-01

    A stereo system designed and used for the measurement of 3D- coordinates within metric stereo image pairs will be presented. First, the motivation for the development is shown, allowing to evaluate stereo images. As the use and availability of metric images of digital type rapidly increases corresponding equipment for the measuring process is needed. Systems which have been developed up to now are either very special ones, founded on high end graphics workstations with an according pricing or simple ones with restricted measuring functionality. A new conception will be shown, avoiding special high end graphics hardware but providing the measuring functionality required. The presented stereo system is based on PC-hardware equipped with a graphic board and uses an object oriented programming technique. The specific needs of a measuring system are shown and the corresponding requirements which have to be met by the system. The key role of OpenGL is described, which supplies some elementary graphic functions, being directly supported by graphic boards and thus provides the performance needed. Further important aspects as modularity and hardware independence and their value for the solution are shown. Finally some sample functions concerned with image display and handling are presented in more detail.

  4. Large-eddy simulation of 3D turbulent flow past a complete marine hydrokinetic turbine

    NASA Astrophysics Data System (ADS)

    Kang, S.; Sotiropoulos, F.

    2011-12-01

    A high-resolution computational framework was recently developed by Kang et al (Adv. Water Resour., submitted) for simulating three-dimensional (3D), turbulent flow past real-life, complete marine hydrokinetic (MHK) turbine configurations. In this model the complex turbine geometry is resolved by employing the curvilinear immersed boundary (CURVIB) method, which solves the 3D unsteady incompressible Navier-Stokes equations in generalized curvilinear domains with embedded arbitrarily complex, moving and/or stationary immersed boundaries (Ge and Sotiropoulos, 2007). Turbulence is simulated using the large-eddy simulation (LES) approach adapted in the context of the CURVIB method, with a wall model based on solving the simplified boundary layer equations used to reconstruct boundary conditions near all solid surfaces (Kang et al., 2011). The model can resolve the flow patterns generated by the rotor and all stationary components of the turbine as well as the interactions of the flow structures with the channel bed. We apply this model to carry out LES of the flow past the model-size hydrokinetic turbine deployed in the St. Anthony Falls Laboratory main channel. The mean velocities and second-order turbulence statistics measured in the downstream wake using acoustic Doppler velocimetry (ADV) are compared with the LES results. The comparisons show that the computed mean velocities and turbulent stresses are in good agreement with the measurements. The high-resolution LES data are used to explore physically important downstream flow characteristics such as the time-averaged wake structure, recovery of cross-sectionally averaged power potential, near-bed scour potential, etc. This work is supported by Verdant Power.

  5. A Completely 3D Model for the Simulation of Mechanized Tunnel Excavation

    NASA Astrophysics Data System (ADS)

    Zhao, Kai; Janutolo, Michele; Barla, Giovanni

    2012-07-01

    For long deep tunnels as currently under construction through the Alps, mechanized excavation using tunnel boring machines (TBMs) contributes significantly to savings in construction time and costs. Questions are, however, posed due to the severe ground conditions which are in cases anticipated or encountered along the main tunnel alignment. A major geological hazard is the squeezing of weak rocks, but also brittle failure can represent a significant problem. For the design of mechanized tunnelling in such conditions, the complex interaction between the rock mass, the tunnel machine, its system components, and the tunnel support need to be analysed in detail and this can be carried out by three-dimensional (3D) models including all these components. However, the state-of-the-art shows that very few fully 3D models for mechanical deep tunnel excavation in rock have been developed so far. A completely three-dimensional simulator of mechanised tunnel excavation is presented in this paper. The TBM of reference is a technologically advanced double shield TBM designed to cope with both conditions. Design analyses with reference to spalling hazard along the Brenner and squeezing along the Lyon-Turin Base Tunnel are discussed.

  6. Application Of Moldex3D For Thin-wall Injection Moulding Simulation

    NASA Astrophysics Data System (ADS)

    Šercer, Mladen; Godec, Damir; Bujanić, Božo

    2007-05-01

    The benefits associated with decreasing wall thicknesses below their current values are still measurable and desired even if the final wall thickness is nowhere near those of the aggressive portable electronics industry. It is important to note that gains in wall section reduction do not always occur without investment, in this case, in tooling and machinery upgrades. Equally important is the fact that productivity and performance benefits of reduced material usage, fast cycle times, and lighter weight can often outweigh most of the added costs. In order to eliminate unnecessary mould trials, minimize product development cycle, reduce overall costs and improve product quality, polymeric engineers use new CAE technology (Computer Aided Engineering). This technology is a simulation tool, which combines proven theories, material properties and process conditions to generate realistic simulations and produce valuable recommendations. Based on these recommendations, an optional combination of product design, material and process conditions can be identified. In this work, Moldex3D software was used for simulation of injection moulding in order to avoid potential moulding problems. The results gained from the simulation were used for the optimization of an existing product design, for mould development and for optimization of processing parameters, e.g. injection pressure, mould cavity temperature, etc.

  7. 2D versus 3D cross-correlation-based radial and circumferential strain estimation using multiplane 2D ultrafast ultrasound in a 3D atherosclerotic carotid artery model.

    PubMed

    Fekkes, Stein; Swillens, Abigail E S; Hansen, Hendrik H G; Saris, Anne E C M; Nillesen, Maartje M; Iannaccone, Francesco; Segers, Patrick; de Korte, Chris L

    2016-08-25

    Three-dimensional strain estimation might improve the detection and localization of high strain regions in the carotid artery for identification of vulnerable plaques. This study compares 2D vs. 3D displacement estimation in terms of radial and circumferential strain using simulated ultrasound images of a patient specific 3D atherosclerotic carotid artery model at the bifurcation embedded in surrounding tissue generated with ABAQUS software. Global longitudinal motion was superimposed to the model based on literature data. A Philips L11-3 linear array transducer was simulated which transmitted plane waves at 3 alternating angles at a pulse repetition rate of 10 kHz. Inter-frame radiofrequency ultrasound data were simulated in Field II for 191 equally spaced longitudinal positions of the internal carotid artery. Accumulated radial and circumferential displacements were estimated using tracking of the inter-frame displacements estimated by a two-step normalized cross-correlation method and displacement compounding. Least squares strain estimation was performed to determine accumulated radial and circumferential strain. The performance of the 2D and 3D method was compared by calculating the root-mean-squared error of the estimated strains with respect to the reference strains obtained from the model. More accurate strain images were obtained using the 3D displacement estimation for the entire cardiac cycle. The 3D technique clearly outperformed the 2D technique in phases with high inter-frame longitudinal motion. In fact the large inter-frame longitudinal motion rendered it impossible to accurately track the tissue and cumulate strains over the entire cardiac cycle with the 2D technique.

  8. Probabilistic Neighborhood-Based Data Collection Algorithms for 3D Underwater Acoustic Sensor Networks

    PubMed Central

    Han, Guangjie; Li, Shanshan; Zhu, Chunsheng; Jiang, Jinfang; Zhang, Wenbo

    2017-01-01

    Marine environmental monitoring provides crucial information and support for the exploitation, utilization, and protection of marine resources. With the rapid development of information technology, the development of three-dimensional underwater acoustic sensor networks (3D UASNs) provides a novel strategy to acquire marine environment information conveniently, efficiently and accurately. However, the specific propagation effects of acoustic communication channel lead to decreased successful information delivery probability with increased distance. Therefore, we investigate two probabilistic neighborhood-based data collection algorithms for 3D UASNs which are based on a probabilistic acoustic communication model instead of the traditional deterministic acoustic communication model. An autonomous underwater vehicle (AUV) is employed to traverse along the designed path to collect data from neighborhoods. For 3D UASNs without prior deployment knowledge, partitioning the network into grids can allow the AUV to visit the central location of each grid for data collection. For 3D UASNs in which the deployment knowledge is known in advance, the AUV only needs to visit several selected locations by constructing a minimum probabilistic neighborhood covering set to reduce data latency. Otherwise, by increasing the transmission rounds, our proposed algorithms can provide a tradeoff between data collection latency and information gain. These algorithms are compared with basic Nearest-neighbor Heuristic algorithm via simulations. Simulation analyses show that our proposed algorithms can efficiently reduce the average data collection completion time, corresponding to a decrease of data latency. PMID:28208735

  9. Probabilistic Neighborhood-Based Data Collection Algorithms for 3D Underwater Acoustic Sensor Networks.

    PubMed

    Han, Guangjie; Li, Shanshan; Zhu, Chunsheng; Jiang, Jinfang; Zhang, Wenbo

    2017-02-08

    Marine environmental monitoring provides crucial information and support for the exploitation, utilization, and protection of marine resources. With the rapid development of information technology, the development of three-dimensional underwater acoustic sensor networks (3D UASNs) provides a novel strategy to acquire marine environment information conveniently, efficiently and accurately. However, the specific propagation effects of acoustic communication channel lead to decreased successful information delivery probability with increased distance. Therefore, we investigate two probabilistic neighborhood-based data collection algorithms for 3D UASNs which are based on a probabilistic acoustic communication model instead of the traditional deterministic acoustic communication model. An autonomous underwater vehicle (AUV) is employed to traverse along the designed path to collect data from neighborhoods. For 3D UASNs without prior deployment knowledge, partitioning the network into grids can allow the AUV to visit the central location of each grid for data collection. For 3D UASNs in which the deployment knowledge is known in advance, the AUV only needs to visit several selected locations by constructing a minimum probabilistic neighborhood covering set to reduce data latency. Otherwise, by increasing the transmission rounds, our proposed algorithms can provide a tradeoff between data collection latency and information gain. These algorithms are compared with basic Nearest-neighbor Heuristic algorithm via simulations. Simulation analyses show that our proposed algorithms can efficiently reduce the average data collection completion time, corresponding to a decrease of data latency.

  10. Mixed reality orthognathic surgical simulation by entity model manipulation and 3D-image display

    NASA Astrophysics Data System (ADS)

    Shimonagayoshi, Tatsunari; Aoki, Yoshimitsu; Fushima, Kenji; Kobayashi, Masaru

    2005-12-01

    In orthognathic surgery, the framing of 3D-surgical planning that considers the balance between the front and back positions and the symmetry of the jawbone, as well as the dental occlusion of teeth, is essential. In this study, a support system for orthodontic surgery to visualize the changes in the mandible and the occlusal condition and to determine the optimum position in mandibular osteotomy has been developed. By integrating the operating portion of a tooth model that is to determine the optimum occlusal position by manipulating the entity tooth model and the 3D-CT skeletal images (3D image display portion) that are simultaneously displayed in real-time, the determination of the mandibular position and posture in which the improvement of skeletal morphology and occlusal condition is considered, is possible. The realistic operation of the entity model and the virtual 3D image display enabled the construction of a surgical simulation system that involves augmented reality.

  11. 3D Printing Meets Computational Astrophysics: Deciphering the Structure of Eta Carinae’s Colliding Winds Using 3D Prints of Smoothed Particle Hydrodynamics Simulations

    NASA Astrophysics Data System (ADS)

    Madura, Thomas; Gull, Theodore R.; Clementel, Nicola; Paardekooper, Jan-Pieter; Kruip, Chael; Corcoran, Michael F.; Hamaguchi, Kenji; Teodoro, Mairan

    2015-01-01

    We present the first 3D prints of output from a supercomputer simulation of a complex astrophysical system, the colliding stellar winds in the massive (>120 MSun), highly eccentric (e ~ 0.9) binary Eta Carinae. Using a consumer-grade 3D printer (Makerbot Replicator 2X), we successfully printed 3D smoothed particle hydrodynamics simulations of Eta Carinae's inner (r ~110 AU) wind-wind collision interface at multiple orbital phases. These 3D prints reveal important, previously unknown 'finger-like' structures at orbital phases shortly after periastron (φ ~1.045) that protrude radially outward from the spiral wind-wind collision region. We speculate that these fingers are related to instabilities (e.g. Rayleigh-Taylor) that arise at the interface between the radiatively-cooled layer of dense post-shock primary-star wind and the hot, adiabatic post-shock companion-star wind. The success of our work and easy identification of previously unknown physical features highlight the important role 3D printing can play in the visualization and understanding of complex 3D time-dependent numerical simulations of astrophysical phenomena.

  12. A Simple Quality Assessment Index for Stereoscopic Images Based on 3D Gradient Magnitude

    PubMed Central

    Wang, Shanshan; Shao, Feng; Li, Fucui; Yu, Mei; Jiang, Gangyi

    2014-01-01

    We present a simple quality assessment index for stereoscopic images based on 3D gradient magnitude. To be more specific, we construct 3D volume from the stereoscopic images across different disparity spaces and calculate pointwise 3D gradient magnitude similarity (3D-GMS) along three horizontal, vertical, and viewpoint directions. Then, the quality score is obtained by averaging the 3D-GMS scores of all points in the 3D volume. Experimental results on four publicly available 3D image quality assessment databases demonstrate that, in comparison with the most related existing methods, the devised algorithm achieves high consistency alignment with subjective assessment. PMID:25133265

  13. 3D watershed-based segmentation of internal structures within MR brain images

    NASA Astrophysics Data System (ADS)

    Bueno, Gloria; Musse, Olivier; Heitz, Fabrice; Armspach, Jean-Paul

    2000-06-01

    In this paper an image-based method founded on mathematical morphology is presented in order to facilitate the segmentation of cerebral structures on 3D magnetic resonance images (MRIs). The segmentation is described as an immersion simulation, applied to the modified gradient image, modeled by a generated 3D region adjacency graph (RAG). The segmentation relies on two main processes: homotopy modification and contour decision. The first one is achieved by a marker extraction stage where homogeneous 3D regions are identified in order to attribute an influence zone only to relevant minima of the image. This stage uses contrasted regions from morphological reconstruction and labeled flat regions constrained by the RAG. The goal of the decision stage is to precisely locate the contours of regions detected by the marker extraction. This decision is performed by a 3D extension of the watershed transform. Upon completion of the segmentation, the outcome of the preceding process is presented to the user for manual selection of the structures of interest (SOI). Results of this approach are described and illustrated with examples of segmented 3D MRIs of the human head.

  14. 3-D world modeling based on combinatorial geometry for autonomous robot navigation

    SciTech Connect

    Goldstein, M.; Pin, F.G.; de Saussure, G.; Weisbin, C.R.

    1987-01-01

    In applications of robotics to surveillance and mapping at nuclear facilities, the scene to be described is fundamentally three-dimensional. Usually, only partial information concerning the 3-D environment is known a-priori. Using an autonomous robot, this information may be updated using range data to provide an accurate model of the environment. Range data quantify the distances from the sensor focal plane to the object surface. In other words, the 3-D coordinates of discrete points on the object surface are known. The approach proposed herein for 3-D world modeling is based on the Combinatorial Geometry (C.G.) Method which is widely used in Monte Carlo particle transport calculations. First, each measured point on the object surface is surrounded by a small solid sphere with a radius determined by the range to that point. Then, the 3-D shapes of the visible surfaces are obtained by taking the (Boolean) union of all the spheres. The result is a concise and unambiguous representation of the object's boundary surfaces. The distances from discrete points on the robot's boundary surface to various objects are calculated effectively using the C.G. type of representation. This feature is particularly useful for navigation purposes. The efficiency of the proposed approach is illustrated by a simulation of a spherical robot navigating in a 3-D room with several static obstacles.

  15. Simulation approach of atomic layer deposition in large 3D structures

    NASA Astrophysics Data System (ADS)

    Schwille, Matthias C.; Barth, Jonas; Schössler, Timo; Schön, Florian; Bartha, Johann W.; Oettel, Martin

    2017-04-01

    We present a new simulation method predicting thicknesses of thin films obtained by atomic layer deposition in high aspect ratio 3D geometries as they appear in MEMS manufacturing. The method features a Monte-Carlo computation of film deposition in free molecular flow, as well as in the Knudsen and diffusive gas regime, applicable for large structures. We compare our approach to analytic and simulation results from the literature. The capability of the method is demonstrated by a comparison to experimental film thicknesses in a large 3D structure. Finally, the feasability to extract process parameters, i.e. sticking coefficients is shown.

  16. Automated 3D renal segmentation based on image partitioning

    NASA Astrophysics Data System (ADS)

    Yeghiazaryan, Varduhi; Voiculescu, Irina D.

    2016-03-01

    Despite several decades of research into segmentation techniques, automated medical image segmentation is barely usable in a clinical context, and still at vast user time expense. This paper illustrates unsupervised organ segmentation through the use of a novel automated labelling approximation algorithm followed by a hypersurface front propagation method. The approximation stage relies on a pre-computed image partition forest obtained directly from CT scan data. We have implemented all procedures to operate directly on 3D volumes, rather than slice-by-slice, because our algorithms are dimensionality-independent. The results picture segmentations which identify kidneys, but can easily be extrapolated to other body parts. Quantitative analysis of our automated segmentation compared against hand-segmented gold standards indicates an average Dice similarity coefficient of 90%. Results were obtained over volumes of CT data with 9 kidneys, computing both volume-based similarity measures (such as the Dice and Jaccard coefficients, true positive volume fraction) and size-based measures (such as the relative volume difference). The analysis considered both healthy and diseased kidneys, although extreme pathological cases were excluded from the overall count. Such cases are difficult to segment both manually and automatically due to the large amplitude of Hounsfield unit distribution in the scan, and the wide spread of the tumorous tissue inside the abdomen. In the case of kidneys that have maintained their shape, the similarity range lies around the values obtained for inter-operator variability. Whilst the procedure is fully automated, our tools also provide a light level of manual editing.

  17. Realistic 3D Terrain Roaming and Real-Time Flight Simulation

    NASA Astrophysics Data System (ADS)

    Que, Xiang; Liu, Gang; He, Zhenwen; Qi, Guang

    2014-12-01

    This paper presents an integrate method, which can provide access to current status and the dynamic visible scanning topography, to enhance the interactive during the terrain roaming and real-time flight simulation. A digital elevation model and digital ortho-photo map data integrated algorithm is proposed as the base algorithm for our approach to build a realistic 3D terrain scene. A new technique with help of render to texture and head of display for generating the navigation pane is used. In the flight simulating, in order to eliminate flying "jump", we employs the multidimensional linear interpolation method to adjust the camera parameters dynamically and steadily. Meanwhile, based on the principle of scanning laser imaging, we draw pseudo color figures by scanning topography in different directions according to the real-time flying status. Simulation results demonstrate that the proposed algorithm is prospective for applications and the method can improve the effect and enhance dynamic interaction during the real-time flight.

  18. 3-D simulation of gases transport under condition of inert gas injection into goaf

    NASA Astrophysics Data System (ADS)

    Liu, Mao-Xi; Shi, Guo-Qing; Guo, Zhixiong; Wang, Yan-Ming; Ma, Li-Yang

    2016-12-01

    To prevent coal spontaneous combustion in mines, it is paramount to understand O2 gas distribution under condition of inert gas injection into goaf. In this study, the goaf was modeled as a 3-D porous medium based on stress distribution. The variation of O2 distribution influenced by CO2 or N2 injection was simulated based on the multi-component gases transport and the Navier-Stokes equations using Fluent. The numerical results without inert gas injection were compared with field measurements to validate the simulation model. Simulations with inert gas injection show that CO2 gas mainly accumulates at the goaf floor level; however, a notable portion of N2 gas moves upward. The evolution of the spontaneous combustion risky zone with continuous inert gas injection can be classified into three phases: slow inerting phase, rapid accelerating inerting phase, and stable inerting phase. The asphyxia zone with CO2 injection is about 1.25-2.4 times larger than that with N2 injection. The efficacy of preventing and putting out mine fires is strongly related with the inert gas injecting position. Ideal injections are located in the oxidation zone or the transitional zone between oxidation zone and heat dissipation zone.

  19. 3D optical simulation formalism OPTOS for textured silicon solar cells.

    PubMed

    Tucher, Nico; Eisenlohr, Johannes; Kiefel, Peter; Höhn, Oliver; Hauser, Hubert; Peters, Marius; Müller, Claas; Goldschmidt, Jan Christoph; Bläsi, Benedikt

    2015-11-30

    In this paper we introduce the three-dimensional formulation of the OPTOS formalism, a matrix-based method that allows for the efficient simulation of non-coherent light propagation and absorption in thick textured sheets. As application examples, we calculate the absorptance of solar cells featuring textures on front and rear side with different feature sizes operating in different optical regimes. A discretization of polar and azimuth angle enables a three-dimensional description of systems with arbitrary surface textures. We present redistribution matrices for 3D surface textures, including pyramidal textures, binary crossed gratings and a Lambertian scatterer. The results of the OPTOS simulations for silicon sheets with different combinations of these surfaces are in accordance with both optical measurements and results based on established simulation methods like ray tracing. Using OPTOS, we show that the integration of a diffractive grating at the rear side of a silicon solar cell featuring a pyramidal front side results in absorption close to the Yablonovitch Limit enhancing the photocurrent density by 0.6 mA/cm2 for a 200 µm thick cell.

  20. A model and simulation to predict the performance of angle-angle-range 3D flash ladar imaging sensor systems

    NASA Astrophysics Data System (ADS)

    Grasso, Robert J.; Odhner, Jefferson E.; Russo, Leonard E.; McDaniel, Robert V.

    2004-11-01

    BAE SYSTEMS reports on a program to develop a high-fidelity model and simulation to predict the performance of angle-angle-range 3D flash LADAR Imaging Sensor systems. 3D Flash LADAR is the latest evolution of laser radar systems and provides unique capability in its ability to provide high-resolution LADAR imagery upon a single laser pulse; rather than constructing an image from multiple pulses as with conventional scanning LADAR systems. However, accurate methods to model and simulate performance from these 3D LADAR systems have been lacking, relying upon either single pixel LADAR performance or extrapolating from passive detection FPA performance. The model and simulation developed and reported here is expressly for 3D angle-angle-range imaging LADAR systems. To represent an accurate "real world" type environment, this model and simulation accounts for: 1) laser pulse shape; 2) detector array size; 3) atmospheric transmission; 4) atmospheric backscatter; 5) atmospheric turbulence; 6) obscurants, and; 7) obscurant path length. The angle-angle-range 3D flash LADAR model and simulation accounts for all pixels in the detector array by modeling and accounting for the non-uniformity of each individual pixel in the array. Here, noise sources are modeled based upon their pixel-to-pixel statistical variation. A cumulative probability function is determined by integrating the normal distribution with respect to detector gain, and, for each pixel, a random number is compared with the cumulative probability function resulting in a different gain for each pixel within the array. In this manner very accurate performance is determined pixel-by-pixel. Model outputs are in the form of 3D images of the far-field distribution across the array as intercepted by the target, gain distribution, power distribution, average signal-to-noise, and probability of detection across the array. Other outputs include power distribution from a target, signal-to-noise vs. range, probability of

  1. A model and simulation to predict the performance of angle-angle-range 3D flash LADAR imaging sensor systems

    NASA Astrophysics Data System (ADS)

    Grasso, Robert J.; Odhner, Jefferson E.; Russo, Leonard E.; McDaniel, Robert V.

    2005-10-01

    BAE SYSTEMS reports on a program to develop a high-fidelity model and simulation to predict the performance of angle-angle-range 3D flash LADAR Imaging Sensor systems. 3D Flash LADAR is the latest evolution of laser radar systems and provides unique capability in its ability to provide high-resolution LADAR imagery upon a single laser pulse; rather than constructing an image from multiple pulses as with conventional scanning LADAR systems. However, accurate methods to model and simulate performance from these 3D LADAR systems have been lacking, relying upon either single pixel LADAR performance or extrapolating from passive detection FPA performance. The model and simulation developed and reported here is expressly for 3D angle-angle-range imaging LADAR systems. To represent an accurate "real world" type environment, this model and simulation accounts for: 1) laser pulse shape; 2) detector array size; 3) atmospheric transmission; 4) atmospheric backscatter; 5) atmospheric turbulence; 6) obscurants, and; 7) obscurant path length. The angle-angle-range 3D flash LADAR model and simulation accounts for all pixels in the detector array by modeling and accounting for the non-uniformity of each individual pixel in the array. Here, noise sources are modeled based upon their pixel-to-pixel statistical variation. A cumulative probability function is determined by integrating the normal distribution with respect to detector gain, and, for each pixel, a random number is compared with the cumulative probability function resulting in a different gain for each pixel within the array. In this manner very accurate performance is determined pixel-by-pixel. Model outputs are in the form of 3D images of the far-field distribution across the array as intercepted by the target, gain distribution, power distribution, average signal-to-noise, and probability of detection across the array. Other outputs include power distribution from a target, signal-to-noise vs. range, probability of

  2. Collaboration on Scene Graph Based 3D Data

    NASA Astrophysics Data System (ADS)

    Ammon, Lorenz; Bieri, Hanspeter

    Professional 3D digital content creation tools, like Alias Maya or discreet 3ds max, offer only limited support for a team of artists to work on a 3D model collaboratively. We present a scene graph repository system that enables fine-grained collaboration on scenes built using standard 3D DCC tools by applying the concept of collaborative versions to a general attributed scene graph. Artists can work on the same scene in parallel without locking out each other. The artists' changes to a scene are regularly merged to ensure that all artists can see each others progress and collaborate on current data. We introduce the concept of indirect changes and indirect conflicts to systematically inspect the effects that collaborative changes have on a scene. Inspecting indirect conflicts helps maintaining scene consistency by systematically looking for inconsistencies at the right places.

  3. 3-dimensional (3D) fabricated polymer based drug delivery systems.

    PubMed

    Moulton, Simon E; Wallace, Gordon G

    2014-11-10

    Drug delivery from 3-dimensional (3D) structures is a rapidly growing area of research. It is essential to achieve structures wherein drug stability is ensured, the drug loading capacity is appropriate and the desired controlled release profile can be attained. Attention must also be paid to the development of appropriate fabrication machinery that allows 3D drug delivery systems (DDS) to be produced in a simple, reliable and reproducible manner. The range of fabrication methods currently being used to form 3D DDSs include electrospinning (solution and melt), wet-spinning and printing (3-dimensional). The use of these techniques enables production of DDSs from the macro-scale down to the nano-scale. This article reviews progress in these fabrication techniques to form DDSs that possess desirable drug delivery kinetics for a wide range of applications.

  4. 2D-3D hybrid stabilized finite element method for tsunami runup simulations

    NASA Astrophysics Data System (ADS)

    Takase, S.; Moriguchi, S.; Terada, K.; Kato, J.; Kyoya, T.; Kashiyama, K.; Kotani, T.

    2016-09-01

    This paper presents a two-dimensional (2D)-three-dimensional (3D) hybrid stabilized finite element method that enables us to predict a propagation process of tsunami generated in a hypocentral region, which ranges from offshore propagation to runup to urban areas, with high accuracy and relatively low computational costs. To be more specific, the 2D shallow water equation is employed to simulate the propagation of offshore waves, while the 3D Navier-Stokes equation is employed for the runup in urban areas. The stabilized finite element method is utilized for numerical simulations for both of the 2D and 3D domains that are independently discretized with unstructured meshes. The multi-point constraint and transmission methods are applied to satisfy the continuity of flow velocities and pressures at the interface between the resulting 2D and 3D meshes, since neither their spatial dimensions nor node arrangements are consistent. Numerical examples are presented to demonstrate the performance of the proposed hybrid method to simulate tsunami behavior, including offshore propagation and runup to urban areas, with substantially lower computation costs in comparison with full 3D computations.

  5. Accurate load prediction by BEM with airfoil data from 3D RANS simulations

    NASA Astrophysics Data System (ADS)

    Schneider, Marc S.; Nitzsche, Jens; Hennings, Holger

    2016-09-01

    In this paper, two methods for the extraction of airfoil coefficients from 3D CFD simulations of a wind turbine rotor are investigated, and these coefficients are used to improve the load prediction of a BEM code. The coefficients are extracted from a number of steady RANS simulations, using either averaging of velocities in annular sections, or an inverse BEM approach for determination of the induction factors in the rotor plane. It is shown that these 3D rotor polars are able to capture the rotational augmentation at the inner part of the blade as well as the load reduction by 3D effects close to the blade tip. They are used as input to a simple BEM code and the results of this BEM with 3D rotor polars are compared to the predictions of BEM with 2D airfoil coefficients plus common empirical corrections for stall delay and tip loss. While BEM with 2D airfoil coefficients produces a very different radial distribution of loads than the RANS simulation, the BEM with 3D rotor polars manages to reproduce the loads from RANS very accurately for a variety of load cases, as long as the blade pitch angle is not too different from the cases from which the polars were extracted.

  6. Validation of 3-D Ice Accretion Measurement Methodology for Experimental Aerodynamic Simulation

    NASA Technical Reports Server (NTRS)

    Broeren, Andy P.; Addy, Harold E., Jr.; Lee, Sam; Monastero, Marianne C.

    2015-01-01

    Determining the adverse aerodynamic effects due to ice accretion often relies on dry-air wind-tunnel testing of artificial, or simulated, ice shapes. Recent developments in ice-accretion documentation methods have yielded a laser-scanning capability that can measure highly three-dimensional (3-D) features of ice accreted in icing wind tunnels. The objective of this paper was to evaluate the aerodynamic accuracy of ice-accretion simulations generated from laser-scan data. Ice-accretion tests were conducted in the NASA Icing Research Tunnel using an 18-in. chord, two-dimensional (2-D) straight wing with NACA 23012 airfoil section. For six ice-accretion cases, a 3-D laser scan was performed to document the ice geometry prior to the molding process. Aerodynamic performance testing was conducted at the University of Illinois low-speed wind tunnel at a Reynolds number of 1.8 × 10(exp 6) and a Mach number of 0.18 with an 18-in. chord NACA 23012 airfoil model that was designed to accommodate the artificial ice shapes. The ice-accretion molds were used to fabricate one set of artificial ice shapes from polyurethane castings. The laser-scan data were used to fabricate another set of artificial ice shapes using rapid prototype manufacturing such as stereolithography. The iced-airfoil results with both sets of artificial ice shapes were compared to evaluate the aerodynamic simulation accuracy of the laser-scan data. For five of the six ice-accretion cases, there was excellent agreement in the iced-airfoil aerodynamic performance between the casting and laser-scan based simulations. For example, typical differences in iced-airfoil maximum lift coefficient were less than 3 percent with corresponding differences in stall angle of approximately 1 deg or less. The aerodynamic simulation accuracy reported in this paper has demonstrated the combined accuracy of the laser-scan and rapid-prototype manufacturing approach to simulating ice accretion for a NACA 23012 airfoil. For several

  7. Axisymmetric Implementation for 3D-Based DSMC Codes

    NASA Technical Reports Server (NTRS)

    Stewart, Benedicte; Lumpkin, F. E.; LeBeau, G. J.

    2011-01-01

    The primary objective in developing NASA s DSMC Analysis Code (DAC) was to provide a high fidelity modeling tool for 3D rarefied flows such as vacuum plume impingement and hypersonic re-entry flows [1]. The initial implementation has been expanded over time to offer other capabilities including a novel axisymmetric implementation. Because of the inherently 3D nature of DAC, this axisymmetric implementation uses a 3D Cartesian domain and 3D surfaces. Molecules are moved in all three dimensions but their movements are limited by physical walls to a small wedge centered on the plane of symmetry (Figure 1). Unfortunately, far from the axis of symmetry, the cell size in the direction perpendicular to the plane of symmetry (the Z-direction) may become large compared to the flow mean free path. This frequently results in inaccuracies in these regions of the domain. A new axisymmetric implementation is presented which aims to solve this issue by using Bird s approach for the molecular movement while preserving the 3D nature of the DAC software [2]. First, the computational domain is similar to that previously used such that a wedge must still be used to define the inflow surface and solid walls within the domain. As before molecules are created inside the inflow wedge triangles but they are now rotated back to the symmetry plane. During the move step, molecules are moved in 3D but instead of interacting with the wedge walls, the molecules are rotated back to the plane of symmetry at the end of the move step. This new implementation was tested for multiple flows over axisymmetric shapes, including a sphere, a cone, a double cone and a hollow cylinder. Comparisons to previous DSMC solutions and experiments, when available, are made.

  8. 3D Clumped Cell Segmentation Using Curvature Based Seeded Watershed

    PubMed Central

    Atta-Fosu, Thomas; Guo, Weihong; Jeter, Dana; Mizutani, Claudia M.; Stopczynski, Nathan; Sousa-Neves, Rui

    2017-01-01

    Image segmentation is an important process that separates objects from the background and also from each other. Applied to cells, the results can be used for cell counting which is very important in medical diagnosis and treatment, and biological research that is often used by scientists and medical practitioners. Segmenting 3D confocal microscopy images containing cells of different shapes and sizes is still challenging as the nuclei are closely packed. The watershed transform provides an efficient tool in segmenting such nuclei provided a reasonable set of markers can be found in the image. In the presence of low-contrast variation or excessive noise in the given image, the watershed transform leads to over-segmentation (a single object is overly split into multiple objects). The traditional watershed uses the local minima of the input image and will characteristically find multiple minima in one object unless they are specified (marker-controlled watershed). An alternative to using the local minima is by a supervised technique called seeded watershed, which supplies single seeds to replace the minima for the objects. Consequently, the accuracy of a seeded watershed algorithm relies on the accuracy of the predefined seeds. In this paper, we present a segmentation approach based on the geometric morphological properties of the ‘landscape’ using curvatures. The curvatures are computed as the eigenvalues of the Shape matrix, producing accurate seeds that also inherit the original shape of their respective cells. We compare with some popular approaches and show the advantage of the proposed method. PMID:28280723

  9. Microseismic network design assessment based on 3D ray tracing

    NASA Astrophysics Data System (ADS)

    Näsholm, Sven Peter; Wuestefeld, Andreas; Lubrano-Lavadera, Paul; Lang, Dominik; Kaschwich, Tina; Oye, Volker

    2016-04-01

    There is increasing demand on the versatility of microseismic monitoring networks. In early projects, being able to locate any triggers was considered a success. These early successes led to a better understanding of how to extract value from microseismic results. Today operators, regulators, and service providers work closely together in order to find the optimum network design to meet various requirements. In the current study we demonstrate an integrated and streamlined network capability assessment approach. It is intended for use during the microseismic network design process prior to installation. The assessments are derived from 3D ray tracing between a grid of event points and the sensors. Three aspects are discussed: 1) Magnitude of completeness or detection limit; 2) Event location accuracy; and 3) Ground-motion hazard. The network capability parameters 1) and 2) are estimated at all hypothetic event locations and are presented in the form of maps given a seismic sensor coordinate scenario. In addition, the ray tracing traveltimes permit to estimate the point-spread-functions (PSFs) at the event grid points. PSFs are useful in assessing the resolution and focusing capability of the network for stacking-based event location and imaging methods. We estimate the performance for a hypothetical network case with 11 sensors. We consider the well-documented region around the San Andreas Fault Observatory at Depth (SAFOD) located north of Parkfield, California. The ray tracing is done through a detailed velocity model which covers a 26.2 by 21.2 km wide area around the SAFOD drill site with a resolution of 200 m both for the P-and S-wave velocities. Systematic network capability assessment for different sensor site scenarios prior to installation facilitates finding a final design which meets the survey objectives.

  10. Full 3-D OCT-based pseudophakic custom computer eye model

    PubMed Central

    Sun, M.; Pérez-Merino, P.; Martinez-Enriquez, E.; Velasco-Ocana, M.; Marcos, S.

    2016-01-01

    We compared measured wave aberrations in pseudophakic eyes implanted with aspheric intraocular lenses (IOLs) with simulated aberrations from numerical ray tracing on customized computer eye models, built using quantitative 3-D OCT-based patient-specific ocular geometry. Experimental and simulated aberrations show high correlation (R = 0.93; p<0.0001) and similarity (RMS for high order aberrations discrepancies within 23.58%). This study shows that full OCT-based pseudophakic custom computer eye models allow understanding the relative contribution of optical geometrical and surgically-related factors to image quality, and are an excellent tool for characterizing and improving cataract surgery. PMID:27231608

  11. 3D simulations of fluctuation spectra in the hall-MHD plasma.

    PubMed

    Shaikh, Dastgeer; Shukla, P K

    2009-01-30

    Turbulent spectral cascades are investigated by means of fully three-dimensional (3D) simulations of a compressible Hall-magnetohydrodynamic (H-MHD) plasma in order to understand the observed spectral break in the solar wind turbulence spectra in the regime where the characteristic length scales associated with electromagnetic fluctuations are smaller than the ion gyroradius. In this regime, the results of our 3D simulations exhibit that turbulent spectral cascades in the presence of a mean magnetic field follow an omnidirectional anisotropic inertial-range spectrum close to k(-7/3). The latter is associated with the Hall current arising from nonequal electron and ion fluid velocities in our 3D H-MHD plasma model.

  12. 3-D FDTD simulation of shear waves for evaluation of complex modulus imaging.

    PubMed

    Orescanin, Marko; Wang, Yue; Insana, Michael

    2011-02-01

    The Navier equation describing shear wave propagation in 3-D viscoelastic media is solved numerically with a finite differences time domain (FDTD) method. Solutions are formed in terms of transverse scatterer velocity waves and then verified via comparison to measured wave fields in heterogeneous hydrogel phantoms. The numerical algorithm is used as a tool to study the effects on complex shear modulus estimation from wave propagation in heterogeneous viscoelastic media. We used an algebraic Helmholtz inversion (AHI) technique to solve for the complex shear modulus from simulated and experimental velocity data acquired in 2-D and 3-D. Although 3-D velocity estimates are required in general, there are object geometries for which 2-D inversions provide accurate estimations of the material properties. Through simulations and experiments, we explored artifacts generated in elastic and dynamic-viscous shear modulus images related to the shear wavelength and average viscosity.

  13. Stochastic microstructure modeling and electrochemical simulation of lithium-ion cell anodes in 3D

    NASA Astrophysics Data System (ADS)

    Hein, Simon; Feinauer, Julian; Westhoff, Daniel; Manke, Ingo; Schmidt, Volker; Latz, Arnulf

    2016-12-01

    Thermodynamically consistent transport theory is used to compare 3D images of real anode microstructures from lithium-ion batteries to virtual ones created by a parametric stochastic 3D microstructure model. Half-cell simulations in 3D with spatially resolved microstructures at different applied currents show that for low currents the deviations between various electrochemical quantities like current density or overpotential are negligibly small. For larger currents small differences become more pronounced. Qualitative and quantitative differences of these features are discussed with respect to the microstructure and it is shown that the real and virtual structures behave similar during electrochemical simulations. Extensions of the stochastic microstructure model, which overcome small differences in electrochemical behavior, are proposed.

  14. 3D numerical simulation analysis of passive drag near free surface in swimming

    NASA Astrophysics Data System (ADS)

    Zhan, Jie-min; Li, Tian-zeng; Chen, Xue-bin; Li, Yok-sheung; Wai, Wing-hong Onyx

    2015-04-01

    The aim of this work is to build a 3D numerical model to study the characteristics of passive drag on competitive swimmers taking into account the impact of the free surface. This model solves the 3D incompressible Navier-Stokes equations using RNG k- ɛ turbulence closure. The volume of fluid (VOF) method is used to locate the free surface. The 3D virtual model is created by Computer Aided Industrial Design (CAID) software, Rhinoceros. Firstly, a specific posture of swimming is studied. The simulation results are in good agreement with the data from mannequin towing experiments. The effects of a swimmer's arms and legs positions on swimming performance are then studied. Finally, it is demonstrated that the present method is capable of simulating gliding near the free surface.

  15. 3D visualization of ultra-fine ICON climate simulation data

    NASA Astrophysics Data System (ADS)

    Röber, Niklas; Spickermann, Dela; Böttinger, Michael

    2016-04-01

    Advances in high performance computing and model development allow the simulation of finer and more detailed climate experiments. The new ICON model is based on an unstructured triangular grid and can be used for a wide range of applications, ranging from global coupled climate simulations down to very detailed and high resolution regional experiments. It consists of an atmospheric and an oceanic component and scales very well for high numbers of cores. This allows us to conduct very detailed climate experiments with ultra-fine resolutions. ICON is jointly developed in partnership with DKRZ by the Max Planck Institute for Meteorology and the German Weather Service. This presentation discusses our current workflow for analyzing and visualizing this high resolution data. The ICON model has been used for eddy resolving (<10km) ocean simulations, as well as for ultra-fine cloud resolving (120m) atmospheric simulations. This results in very large 3D time dependent multi-variate data that need to be displayed and analyzed. We have developed specific plugins for the free available visualization software ParaView and Vapor, which allows us to read and handle that much data. Within ParaView, we can additionally compare prognostic variables with performance data side by side to investigate the performance and scalability of the model. With the simulation running in parallel on several hundred nodes, an equal load balance is imperative. In our presentation we show visualizations of high-resolution ICON oceanographic and HDCP2 atmospheric simulations that were created using ParaView and Vapor. Furthermore we discuss our current efforts to improve our visualization capabilities, thereby exploring the potential of regular in-situ visualization, as well as of in-situ compression / post visualization.

  16. Numerical simulations and vorticity dynamics of self-propelled swimming of 3D bionic fish

    NASA Astrophysics Data System (ADS)

    Xin, ZhiQiang; Wu, ChuiJie

    2012-02-01

    Numerical simulations and the control of self-propelled swimming of three-dimensional bionic fish in a viscous flow and the mechanism of fish swimming are carried out in this study, with a 3D computational fluid dynamics package, which includes the immersed boundary method and the volume of fluid method, the adaptive multi-grid finite volume method, and the control strategy of fish swimming. Firstly, the mechanism of 3D fish swimming was studied and the vorticity dynamics root was traced to the moving body surface by using the boundary vorticity-flux theory. With the change of swimming speed, the contributions of the fish body and caudal fin to thrust are analyzed quantitatively. The relationship between vortex structures of fish swimming and the forces exerted on the fish body are also given in this paper. Finally, the 3D wake structure of self-propelled swimming of 3D bionic fish is presented. The in-depth analysis of the 3D vortex structure in the role of 3D biomimetic fish swimming is also performed.

  17. Simulation of water temperature in two reservoirs with Delft3d

    NASA Astrophysics Data System (ADS)

    Yang, J. Y.; Zhou, L. Y.

    2016-08-01

    The proposeled Guanjingkou and Fengdou reservoir will be constructed at Chongqing city and Muling city in China respectively. The water temperature in the reservoir, in the downstream, and the aquatic ecosystem would be altered by the construction of the reservoirs. This paper simulates the water temperature in the two reservoirs by using the Delft3d z-layer model, which uses the fixed elevation for layers. According to the simulation results, the temperature profile in the reservoirs can be divided into three layers: the upmost epilimnion layer, the beneathed thermocline layer, and the constant tepmerature layer at bottom. The temperature effects can be reduced by measurements of stoplogs gates and mutiple gates, respectively. Based on the simulation results in the wet, nomal, and dry year, the temperature of water released from the stoplogs gates at Guanjingkou reservior can be respectively increased by 5.7°C, 6.8°C, 9.6°C, and 5.5°C in the irrigation season from May to August. The temperature of water released from the mutiple gates at Fengdou reservior can be respectively increased by 7.7 °C, 1.9 °C, 9.5 °C, and 10.1 °C from May to August. The negative impacts from the water with lower temperature on the related ecosystem can be significently alleviated.

  18. Low-cost structured-light based 3D capture system design

    NASA Astrophysics Data System (ADS)

    Dong, Jing; Bengtson, Kurt R.; Robinson, Barrett F.; Allebach, Jan P.

    2014-03-01

    Most of the 3D capture products currently in the market are high-end and pricey. They are not targeted for consumers, but rather for research, medical, or industrial usage. Very few aim to provide a solution for home and small business applications. Our goal is to fill in this gap by only using low-cost components to build a 3D capture system that can satisfy the needs of this market segment. In this paper, we present a low-cost 3D capture system based on the structured-light method. The system is built around the HP TopShot LaserJet Pro M275. For our capture device, we use the 8.0 Mpixel camera that is part of the M275. We augment this hardware with two 3M MPro 150 VGA (640 × 480) pocket projectors. We also describe an analytical approach to predicting the achievable resolution of the reconstructed 3D object based on differentials and small signal theory, and an experimental procedure for validating that the system under test meets the specifications for reconstructed object resolution that are predicted by our analytical model. By comparing our experimental measurements from the camera-projector system with the simulation results based on the model for this system, we conclude that our prototype system has been correctly configured and calibrated. We also conclude that with the analytical models, we have an effective means for specifying system parameters to achieve a given target resolution for the reconstructed object.

  19. [Pre-surgical simulation of microvascular decompression for hemifacial spasm using 3D-models].

    PubMed

    Mashiko, Toshihiro; Yang, Qiang; Kaneko, Naoki; Konno, Takehiko; Yamaguchi, Takashi; Watanabe, Eiju

    2015-01-01

    We have been performing pre-surgical simulations using custom-built patient-specific 3D-models. Here we report the advantageous use of 3D-models for simulating microvascular decompression(MVD)for hemifacial spasms. Seven cases of MVD surgery were performed. Two types of 3D-printers were used to fabricate the 3D-models:one using plaster as the modeling material(Z Printer®450, 3D systems, Rock Hill, SC, USA)and the other using acrylonitrile butadiene styrene(ABS)(UP! Plus 3D printer®, Beijing Tiertime Technology, Beijing). We tested three types of models. Type 1 was a plaster model of the brainstem, cerebellum, facial nerve, and the artery compressing the root exit zone of the facial nerve. Part of the cerebellum was digitally trimmed off to observe "the compressing point" from the same angle as that used during actual surgery. Type 2 was a modified Type 1 in which part of the skull was opened digitally to mimic a craniectomy. Type 3 was a combined model in which the cerebellum and the artery of the Type 2 model were replaced by a soft retractable cerebellum and an elastic artery. The cerebellum was made from polyurethane and cast from a plaster prototype. To fabricate elastic arteries, liquid silicone was painted onto the surface of an ABS artery and the inner ABS model was dissolved away using solvent. In all cases, the 3D-models were very useful. Although each type has advantages, the Type-3 model was judged extremely useful for training junior surgeons in microsurgical approaches.

  20. Real-Time Climate Simulations in the Interactive 3D Game Universe Sandbox ²

    NASA Astrophysics Data System (ADS)

    Goldenson, N. L.

    2014-12-01

    Exploration in an open-ended computer game is an engaging way to explore climate and climate change. Everyone can explore physical models with real-time visualization in the educational simulator Universe Sandbox ² (universesandbox.com/2), which includes basic climate simulations on planets. I have implemented a time-dependent, one-dimensional meridional heat transport energy balance model to run and be adjustable in real time in the midst of a larger simulated system. Universe Sandbox ² is based on the original game - at its core a gravity simulator - with other new physically-based content for stellar evolution, and handling collisions between bodies. Existing users are mostly science enthusiasts in informal settings. We believe that this is the first climate simulation to be implemented in a professionally developed computer game with modern 3D graphical output in real time. The type of simple climate model we've adopted helps us depict the seasonal cycle and the more drastic changes that come from changing the orbit or other external forcings. Users can alter the climate as the simulation is running by altering the star(s) in the simulation, dragging to change orbits and obliquity, adjusting the climate simulation parameters directly or changing other properties like CO2 concentration that affect the model parameters in representative ways. Ongoing visuals of the expansion and contraction of sea ice and snow-cover respond to the temperature calculations, and make it accessible to explore a variety of scenarios and intuitive to understand the output. Variables like temperature can also be graphed in real time. We balance computational constraints with the ability to capture the physical phenomena we wish to visualize, giving everyone access to a simple open-ended meridional energy balance climate simulation to explore and experiment with. The software lends itself to labs at a variety of levels about climate concepts including seasons, the Greenhouse effect

  1. Learning Patterns as Criterion for Forming Work Groups in 3D Simulation Learning Environments

    ERIC Educational Resources Information Center

    Maria Cela-Ranilla, Jose; Molías, Luis Marqués; Cervera, Mercè Gisbert

    2016-01-01

    This study analyzes the relationship between the use of learning patterns as a grouping criterion to develop learning activities in the 3D simulation environment at University. Participants included 72 Spanish students from the Education and Marketing disciplines. Descriptive statistics and non-parametric tests were conducted. The process was…

  2. Online Stereo 3D Simulation in Studying the Spherical Pendulum in Conservative Force Field

    ERIC Educational Resources Information Center

    Zabunov, Svetoslav S.

    2013-01-01

    The current paper aims at presenting a modern e-learning method and tool that is utilized in teaching physics in the universities. An online stereo 3D simulation is used for e-learning mechanics and specifically the teaching of spherical pendulum as part of the General Physics course for students in the universities. This approach was realized on…

  3. Structured light imaging system for structural and optical characterization of 3D tissue-simulating phantoms

    NASA Astrophysics Data System (ADS)

    Liu, Songde; Smith, Zach; Xu, Ronald X.

    2016-10-01

    There is a pressing need for a phantom standard to calibrate medical optical devices. However, 3D printing of tissue-simulating phantom standard is challenged by lacking of appropriate methods to characterize and reproduce surface topography and optical properties accurately. We have developed a structured light imaging system to characterize surface topography and optical properties (absorption coefficient and reduced scattering coefficient) of 3D tissue-simulating phantoms. The system consisted of a hyperspectral light source, a digital light projector (DLP), a CMOS camera, two polarizers, a rotational stage, a translation stage, a motion controller, and a personal computer. Tissue-simulating phantoms with different structural and optical properties were characterized by the proposed imaging system and validated by a standard integrating sphere system. The experimental results showed that the proposed system was able to achieve pixel-level optical properties with a percentage error of less than 11% for absorption coefficient and less than 7% for reduced scattering coefficient for phantoms without surface curvature. In the meanwhile, 3D topographic profile of the phantom can be effectively reconstructed with an accuracy of less than 1% deviation error. Our study demonstrated that the proposed structured light imaging system has the potential to characterize structural profile and optical properties of 3D tissue-simulating phantoms.

  4. PEGASUS. 3D Direct Simulation Monte Carlo Code Which Solves for Geometrics

    SciTech Connect

    Bartel, T.J.

    1998-12-01

    Pegasus is a 3D Direct Simulation Monte Carlo Code which solves for geometries which can be represented by bodies of revolution. Included are all the surface chemistry enhancements in the 2D code Icarus as well as a real vacuum pump model. The code includes multiple species transport.

  5. 3D Direct Simulation Monte Carlo Code Which Solves for Geometrics

    SciTech Connect

    Bartel, Timothy J.

    1998-01-13

    Pegasus is a 3D Direct Simulation Monte Carlo Code which solves for geometries which can be represented by bodies of revolution. Included are all the surface chemistry enhancements in the 2D code Icarus as well as a real vacuum pump model. The code includes multiple species transport.

  6. Results of a 3-D full particle simulation of quasi-perpendicular shock

    NASA Astrophysics Data System (ADS)

    Shinohara, I.; Fujimoto, M.

    2010-12-01

    Recent progress of computational power enables us to perform really macro-scale three-dimensional situations with full particle codes. In this presentation, we will report results of a three-dimensional simulation of a quasi-perpendicular shock. The simulation parameters were selected to simulate a Cluster-II observational result reported by Seki et al. (2009), M_A=7.4 and beta=0.16. The realistic mass ratio mi/me=1840 was taken, and almost one ion inertia length square could be allocated to the plane perpendicular to the upstream flow axis. The result shows that both the self-reformation process and whistler emission are observed. However, the 3-D result is not a simple superposition of 2-D results. The most impressive feature is that quite complicated wave activity is found in the shock foot region. With the help of this wave activity, electron heating observed in the 3-D run is more efficient than those in the 1-D and 2-D runs with the same shock parameters. Moreover, non-thermal electrons are also produced only in the 3D run. In this paper, comparing the 3-D result with previous 1-D and 2-D simulation results, three dimensional nature of the shock transition region of quasi-perpendicular shock is discussed.

  7. 3D simulation of silicon micro-ring resonator with Comsol

    NASA Astrophysics Data System (ADS)

    Degtyarev, S. A.; Podlipnov, V. V.; Verma, Payal; Khonina, S. N.

    2016-12-01

    In this paper we provide 3d full-vector static electromagnetic simulation of silicon micro-ring resonator operating. We show that geometrical and scalar approaches are not sufficiently accurate for calculating resonator parameters. Quite strong dependence of ring resonator radius on waveguide width is revealed.

  8. Multi-scale simulations of space problems with iPIC3D

    NASA Astrophysics Data System (ADS)

    Lapenta, Giovanni; Bettarini, Lapo; Markidis, Stefano

    The implicit Particle-in-Cell method for the computer simulation of space plasma, and its im-plementation in a three-dimensional parallel code, called iPIC3D, are presented. The implicit integration in time of the Vlasov-Maxwell system removes the numerical stability constraints and enables kinetic plasma simulations at magnetohydrodynamics scales. Simulations of mag-netic reconnection in plasma are presented to show the effectiveness of the algorithm. In particular we will show a number of simulations done for large scale 3D systems using the physical mass ratio for Hydrogen. Most notably one simulation treats kinetically a box of tens of Earth radii in each direction and was conducted using about 16000 processors of the Pleiades NASA computer. The work is conducted in collaboration with the MMS-IDS theory team from University of Colorado (M. Goldman, D. Newman and L. Andersson). Reference: Stefano Markidis, Giovanni Lapenta, Rizwan-uddin Multi-scale simulations of plasma with iPIC3D Mathematics and Computers in Simulation, Available online 17 October 2009, http://dx.doi.org/10.1016/j.matcom.2009.08.038

  9. 3D Radiative Transfer in Eta Carinae: Application of the SimpleX Algorithm to 3D SPH Simulations of Binary Colliding Winds

    NASA Technical Reports Server (NTRS)

    Clementel, N.; Madura, T. I.; Kruip, C.J.H.; Icke, V.; Gull, T. R.

    2014-01-01

    Eta Carinae is an ideal astrophysical laboratory for studying massive binary interactions and evolution, and stellar wind-wind collisions. Recent three-dimensional (3D) simulations set the stage for understanding the highly complex 3D flows in eta Car. Observations of different broad high- and low-ionization forbidden emission lines provide an excellent tool to constrain the orientation of the system, the primary's mass-loss rate, and the ionizing flux of the hot secondary. In this work we present the first steps towards generating synthetic observations to compare with available and future HST/STIS data. We present initial results from full 3D radiative transfer simulations of the interacting winds in eta Car.We use the SimpleX algorithm to post-process the output from 3D SPH simulations and obtain the ionization fractions of hydrogen and helium assuming three different mass-loss rates for the primary star. The resultant ionization maps of both species constrain the regions where the observed forbidden emission lines can form. Including collisional ionization is necessary to achieve a better description of the ionization states, especially in the areas shielded from the secondary's radiation. We find that reducing the primary's mass-loss rate increases the volume of ionized gas, creating larger areas where the forbidden emission lines can form.We conclude that post processing 3D SPH data with SimpleX is a viable tool to create ionization maps for eta Car.

  10. 3D Radiative Transfer in Eta Carinae: Application of the SimpleX Algorithm to 3D SPH Simulations of Binary Colliding Winds

    NASA Technical Reports Server (NTRS)

    Clementel, N.; Madura, T. I.; Kruip, C. J. H.; Icke, V.; Gull, T. R.

    2014-01-01

    Eta Carinae is an ideal astrophysical laboratory for studying massive binary interactions and evolution, and stellar wind-wind collisions. Recent three-dimensional (3D) simulations set the stage for understanding the highly complex 3D flows in Eta Car. Observations of different broad high- and low-ionization forbidden emission lines provide an excellent tool to constrain the orientation of the system, the primary's mass-loss rate, and the ionizing flux of the hot secondary. In this work we present the first steps towards generating synthetic observations to compare with available and future HST/STIS data. We present initial results from full 3D radiative transfer simulations of the interacting winds in Eta Car. We use the SimpleX algorithm to post-process the output from 3D SPH simulations and obtain the ionization fractions of hydrogen and helium assuming three different mass-loss rates for the primary star. The resultant ionization maps of both species constrain the regions where the observed forbidden emission lines can form. Including collisional ionization is necessary to achieve a better description of the ionization states, especially in the areas shielded from the secondary's radiation. We find that reducing the primary's mass-loss rate increases the volume of ionized gas, creating larger areas where the forbidden emission lines can form. We conclude that post processing 3D SPH data with SimpleX is a viable tool to create ionization maps for Eta Car.

  11. The Vajont disaster: a 3D numerical simulation for the slide and the waves

    NASA Astrophysics Data System (ADS)

    Rubino, Angelo; Androsov, Alexey; Vacondio, Renato; Zanchettin, Davide; Voltzinger, Naum

    2016-04-01

    A very high resolution O(5 m), 3D hydrostatic nonlinear numerical model was used to simulate the dynamics of both the slide and the surface waves produced during the Vajont disaster (north Italy, 1963), one of the major landslide-induced tsunamis ever documented. Different simulated wave phenomena like, e.g., maximum run-up on the opposite shore, maximum height, and water velocity were analyzed and compared with data available in literature, including the results of a fully 3D simulation obtained with a Smoothed Particle Hydrodynamic code. The difference between measured and simulated after-slide bathymetries was calculated and used in an attempt to quantify the relative magnitude and extension of rigid and fluid motion components during the event.

  12. The computer simulation of 3d gas dynamics in a gas centrifuge

    NASA Astrophysics Data System (ADS)

    Borman, V. D.; Bogovalov, S. V.; Borisevich, V. D.; Tronin, I. V.; Tronin, V. N.

    2016-09-01

    We argue on the basis of the results of 2D analysis of the gas flow in gas centrifuges that a reliable calculation of the circulation of the gas and gas content in the gas centrifuge is possible only in frameworks of 3D numerical simulation of gas dynamics in the gas centrifuge (hereafter GC). The group from National research nuclear university, MEPhI, has created a computer code for 3D simulation of the gas flow in GC. The results of the computer simulations of the gas flows in GC are presented. A model Iguassu centrifuge is explored for the simulations. A nonaxisymmetric gas flow is produced due to interaction of the hypersonic rotating flow with the scoops for extraction of the product and waste flows from the GC. The scoops produce shock waves penetrating into a working camera of the GC and form spiral waves there.

  13. Tropospheric vertical column densities of NO2 over managed dryland ecosystems (Xinjiang, China): MAX-DOAS measurements vs. 3-D dispersion model simulations based on laboratory derived NO emission from soil samples

    NASA Astrophysics Data System (ADS)

    Mamtimin, B.; Behrendt, T.; Badawy, M. M.; Wagner, T.; Qi, Y.; Wu, Z.; Meixner, F. X.

    2014-07-01

    We report on MAX-DOAS observations of NO2 over an oasis-ecotone-desert ecosystem in NW-China. There, local ambient NO2 concentrations originate from enhanced biogenic NO emission of intensively managed soils. Our target oasis "Milan" is located at the southern edge of the Taklimakan desert, very remote and well isolated from other potential anthropogenic and biogenic NOx sources. Four observation sites for MAX-DOAS measurements were selected, at the oasis center, downwind and upwind of the oasis, and in the desert. Biogenic NO emissions in terms of (i) soil moisture and (ii) soil temperature of Milan oasis' (iii) different land-cover type sub-units (cotton, Jujube trees, cotton/Jujube mixture, desert) were quantified by laboratory incubation of corresponding soil samples. Net potential NO fluxes were up-scaled to oasis scale by areal distribution and classification of land-cover types derived from satellite images using GIS techniques. A Lagrangian dispersion model (LASAT, Lagrangian Simulation of Aerosol-Transport) was used to calculate the dispersion of soil emitted NO into the atmospheric boundary layer over Milan oasis. Three dimensional NO concentrations (30 m horizontal resolution) have been converted to 3-D NO2 concentrations, assuming photostationary state conditions. NO2 column densities were simulated by suitable vertical integration of modeled 3-D NO2 concentrations at those downwind and upwind locations, where the MAX-DOAS measurements were performed. Downwind-upwind differences (a direct measure of Milan oasis' contribution to the areal increase of ambient NO2 concentration) of measured and simulated slant (as well as vertical) NO2 column densities show excellent agreement. This agreement is considered as the first successful attempt to prove the validity of the chosen approach to up-scale laboratory derived biogenic NO fluxes to ecosystem field conditions, i.e. from the spatial scale of a soil sample (cm2) to the size of an entire agricultural

  14. Comparison of two different surfaces for 3d model abstraction in support of remote sensing simulations

    SciTech Connect

    Pope, Paul A; Ranken, Doug M

    2010-01-01

    A method for abstracting a 3D model by shrinking a triangular mesh, defined upon a best fitting ellipsoid surrounding the model, onto the model's surface has been previously described. This ''shrinkwrap'' process enables a semi-regular mesh to be defined upon an object's surface. This creates a useful data structure for conducting remote sensing simulations and image processing. However, using a best fitting ellipsoid having a graticule-based tessellation to seed the shrinkwrap process suffers from a mesh which is too dense at the poles. To achieve a more regular mesh, the use of a best fitting, subdivided icosahedron was tested. By subdividing each of the twenty facets of the icosahedron into regular triangles of a predetermined size, arbitrarily dense, highly-regular starting meshes can be created. Comparisons of the meshes resulting from these two seed surfaces are described. Use of a best fitting icosahedron-based mesh as the seed surface in the shrinkwrap process is preferable to using a best fitting ellipsoid. The impacts to remote sensing simulations, specifically generation of synthetic imagery, is illustrated.

  15. Assessing soil water storage distribution under sprinkler irrigation by coupling 3D simulations and field observations

    NASA Astrophysics Data System (ADS)

    Taha, Uday; Shabeeb, Ahmed; dragonetti, giovanna; Lamaddalena, Nicola; Coppola, Antonio

    2016-04-01

    This work analyzed the variability of sprinkler irrigation application over a bare soil, both in terms of water application efficiency and uniformity, by integrating and comparing the information on the irrigation depth data (ID), as measured by catch cans, soil water storage in the upper root zone, as measured by TDR probes, and a 3D simulations of water flow in soils. Three irrigation tests were performed at three different pressures (2, 3 and 4 bar). A lateral water redistribution was observed and simulated after each irrigation event by comparing spatial distributions of site-specific water application efficiency (AEs), as well as ratios of site-specific actual water storage increase (SWEs) and irrigation depth (IDs) to the water content before irrigation. Because of soil water redistribution processes, distribution uniformity based on soil storages was systematically higher than the catch can uniformity. The obvious consequence of lateral water redistribution processes was that the soil smoothing action on non-uniformity observed at the surface increased both with depth and over time. At a given depth the uniformity of soil water storages always attained the same value, whatever the pressure considered and the catch can-based uniformity coefficient. It was concluded that, for the case of random distribution of ID, the uniformity of water storages is driven by the soil behavior rather than by the irrigation system.

  16. GPU accelerated simulations of 3D deterministic particle transport using discrete ordinates method

    SciTech Connect

    Gong Chunye; Liu Jie; Chi Lihua; Huang Haowei; Fang Jingyue; Gong Zhenghu

    2011-07-01

    Graphics Processing Unit (GPU), originally developed for real-time, high-definition 3D graphics in computer games, now provides great faculty in solving scientific applications. The basis of particle transport simulation is the time-dependent, multi-group, inhomogeneous Boltzmann transport equation. The numerical solution to the Boltzmann equation involves the discrete ordinates (S{sub n}) method and the procedure of source iteration. In this paper, we present a GPU accelerated simulation of one energy group time-independent deterministic discrete ordinates particle transport in 3D Cartesian geometry (Sweep3D). The performance of the GPU simulations are reported with the simulations of vacuum boundary condition. The discussion of the relative advantages and disadvantages of the GPU implementation, the simulation on multi GPUs, the programming effort and code portability are also reported. The results show that the overall performance speedup of one NVIDIA Tesla M2050 GPU ranges from 2.56 compared with one Intel Xeon X5670 chip to 8.14 compared with one Intel Core Q6600 chip for no flux fixup. The simulation with flux fixup on one M2050 is 1.23 times faster than on one X5670.

  17. Intensity-based 2D 3D registration for lead localization in robot guided deep brain stimulation.

    PubMed

    Hunsche, Stefan; Sauner, Dieter; Majdoub, Faycal El; Neudorfer, Clemens; Poggenborg, Jörg; Goßmann, Axel; Maarouf, Mohammad

    2017-03-21

    Intraoperative assessment of lead localization has become a standard procedure during deep brain stimulation surgery in many centers, allowing immediate verification of targeting accuracy and, if necessary, adjustment of the trajectory. The most suitable imaging modality to determine lead positioning, however, remains controversially discussed. Current approaches entail the implementation of computed tomography and magnetic resonance imaging. In the present study, we adopted the technique of intensity-based 2D 3D registration that is commonly employed in stereotactic radiotherapy and spinal surgery. For this purpose, intraoperatively acquired 2D x-ray images were fused with preoperative 3D computed tomography (CT) data to verify lead placement during stereotactic robot assisted surgery. Accuracy of lead localization determined from 2D 3D registration was compared to conventional 3D 3D registration in a subsequent patient study. The mean Euclidian distance of lead coordinates estimated from intensity-based 2D 3D registration versus flat-panel detector CT 3D 3D registration was 0.7 mm  ±  0.2 mm. Maximum values of these distances amounted to 1.2 mm. To further investigate 2D 3D registration a simulation study was conducted, challenging two observers to visually assess artificially generated 2D 3D registration errors. 95% of deviation simulations, which were visually assessed as sufficient, had a registration error below 0.7 mm. In conclusion, 2D 3D intensity-based registration revealed high accuracy and reliability during robot guided stereotactic neurosurgery and holds great potential as a low dose, cost effective means for intraoperative lead localization.

  18. Intensity-based 2D 3D registration for lead localization in robot guided deep brain stimulation

    NASA Astrophysics Data System (ADS)

    Hunsche, Stefan; Sauner, Dieter; El Majdoub, Faycal; Neudorfer, Clemens; Poggenborg, Jörg; Goßmann, Axel; Maarouf, Mohammad

    2017-03-01

    Intraoperative assessment of lead localization has become a standard procedure during deep brain stimulation surgery in many centers, allowing immediate verification of targeting accuracy and, if necessary, adjustment of the trajectory. The most suitable imaging modality to determine lead positioning, however, remains controversially discussed. Current approaches entail the implementation of computed tomography and magnetic resonance imaging. In the present study, we adopted the technique of intensity-based 2D 3D registration that is commonly employed in stereotactic radiotherapy and spinal surgery. For this purpose, intraoperatively acquired 2D x-ray images were fused with preoperative 3D computed tomography (CT) data to verify lead placement during stereotactic robot assisted surgery. Accuracy of lead localization determined from 2D 3D registration was compared to conventional 3D 3D registration in a subsequent patient study. The mean Euclidian distance of lead coordinates estimated from intensity-based 2D 3D registration versus flat-panel detector CT 3D 3D registration was 0.7 mm  ±  0.2 mm. Maximum values of these distances amounted to 1.2 mm. To further investigate 2D 3D registration a simulation study was conducted, challenging two observers to visually assess artificially generated 2D 3D registration errors. 95% of deviation simulations, which were visually assessed as sufficient, had a registration error below 0.7 mm. In conclusion, 2D 3D intensity-based registration revealed high accuracy and reliability during robot guided stereotactic neurosurgery and holds great potential as a low dose, cost effective means for intraoperative lead localization.

  19. Development and Implementation of a Web-Enabled 3D Consultation Tool for Breast Augmentation Surgery Based on 3D-Image Reconstruction of 2D Pictures

    PubMed Central

    Garcia, Jaime; Olariu, Radu; Dindoyal, Irving; Le Huu, Serge

    2012-01-01

    Background Producing a rich, personalized Web-based consultation tool for plastic surgeons and patients is challenging. Objective (1) To develop a computer tool that allows individual reconstruction and simulation of 3-dimensional (3D) soft tissue from ordinary digital photos of breasts, (2) to implement a Web-based, worldwide-accessible preoperative surgical planning platform for plastic surgeons, and (3) to validate this tool through a quality control analysis by comparing 3D laser scans of the patients with the 3D reconstructions with this tool from original 2-dimensional (2D) pictures of the same patients. Methods The proposed system uses well-established 2D digital photos for reconstruction into a 3D torso, which is then available to the user for interactive planning. The simulation is performed on dedicated servers, accessible via Internet. It allows the surgeon, together with the patient, to previsualize the impact of the proposed breast augmentation directly during the consultation before a surgery is decided upon. We retrospectively conduced a quality control assessment of available anonymized pre- and postoperative 2D digital photographs of patients undergoing breast augmentation procedures. The method presented above was used to reconstruct 3D pictures from 2D digital pictures. We used a laser scanner capable of generating a highly accurate surface model of the patient’s anatomy to acquire ground truth data. The quality of the computed 3D reconstructions was compared with the ground truth data used to perform both qualitative and quantitative evaluations. Results We evaluated the system on 11 clinical cases for surface reconstructions and 4 clinical cases of postoperative simulations, using laser surface scan technologies showing a mean reconstruction error between 2 and 4 mm and a maximum outlier error of 16 mm. Qualitative and quantitative analyses from plastic surgeons demonstrate the potential of these new emerging technologies. Conclusions We

  20. Face recognition based on matching of local features on 3D dynamic range sequences

    NASA Astrophysics Data System (ADS)

    Echeagaray-Patrón, B. A.; Kober, Vitaly

    2016-09-01

    3D face recognition has attracted attention in the last decade due to improvement of technology of 3D image acquisition and its wide range of applications such as access control, surveillance, human-computer interaction and biometric identification systems. Most research on 3D face recognition has focused on analysis of 3D still data. In this work, a new method for face recognition using dynamic 3D range sequences is proposed. Experimental results are presented and discussed using 3D sequences in the presence of pose variation. The performance of the proposed method is compared with that of conventional face recognition algorithms based on descriptors.

  1. Pilot Study on the Detection of Simulated Lesions Using a 2D and 3D Digital Full-Field Mammography System with a Newly Developed High Resolution Detector Based on Two Shifts of a-Se.

    PubMed

    Schulz-Wendtland, R; Bani, M; Lux, M P; Schwab, S; Loehberg, C R; Jud, S M; Rauh, C; Bayer, C M; Beckmann, M W; Uder, M; Fasching, P A; Adamietz, B; Meier-Meitinger, M

    2012-05-01

    Purpose: Experimental study of a new system for digital 2D and 3D full-field mammography (FFDM) using a high resolution detector based on two shifts of a-Se. Material and Methods: Images were acquired using the new FFDM system Amulet® (FujiFilm, Tokio, Japan), an a-Se detector (receptor 24 × 30 cm(2), pixel size 50 µm, memory depth 12 bit, spatial resolution 10 lp/mm, DQE > 0.50). Integrated in the detector is a new method for data transfer, based on optical switch technology. The object of investigation was the Wisconsin Mammographic Random Phantom, Model 152A (Radiation Measurement Inc., Middleton, WI, USA) and the same parameters and exposure data (Tungsten, 100 mAs, 30 kV) were consistently used. We acquired 3 different pairs of images in the c-c and ml planes (2D) and in the c-c and c-c planes with an angle of 4 degrees (3D). Five radiologists experienced in mammography (experience ranging from 3 months to more than 5 years) analyzed the images (monitoring) which had been randomly encoded (random generator) with regard to the recognition of details such as specks of aluminum oxide (200-740 µm), nylon fibers (0.4-1.6 mm) and round lesions/masses (diameters 5-14 mm), using special linear glasses for 3D visualization, and compared the results. Results: A total of 225 correct positive decisions could be detected: we found 222 (98.7 %) correct positive results for 2D and 3D visualization in each case. Conclusion: The results of this phantom study showed the same detection rates for both 2D and 3D imaging using full field digital mammography. Our results must be confirmed in further clinical trials.

  2. MRI-based aortic blood flow model in 3D ballistocardiography.

    PubMed

    Lejeune, L; Prisk, G K; Nonclercq, A; Migeotte, P-F

    2015-01-01

    Ballistocardiography (BCG) is a non-invasive technique which measures the acceleration of a body induced by cardiovascular activity, namely the force exerted by the beating heart. A one dimensional aortic flow model based on the transmission lines theory is developped and applied to the simulation of three dimensional BCG. A four-element Windkessel model is used to generate the pressure-wave. Using transverse MRI slices of a human subject, a reconstruction of the aorta allows the extraction of parameters used to relate the local change in mass of the 1D flow model to 3D acceleration BCG. Simulated BCG curves are then compared qualitatively with the ensemble average curves of the same subject recorded in sustained microgravity. Confirming previous studies, the main features of the y-axis are well simulated. The simulated z-axis, never attempted before, shows important similarities. The simulated x-axis is less faithful and suggests the presence of reflections.

  3. IM3D: A parallel Monte Carlo code for efficient simulations of primary radiation displacements and damage in 3D geometry

    PubMed Central

    Li, Yong Gang; Yang, Yang; Short, Michael P.; Ding, Ze Jun; Zeng, Zhi; Li, Ju

    2015-01-01

    SRIM-like codes have limitations in describing general 3D geometries, for modeling radiation displacements and damage in nanostructured materials. A universal, computationally efficient and massively parallel 3D Monte Carlo code, IM3D, has been developed with excellent parallel scaling performance. IM3D is based on fast indexing of scattering integrals and the SRIM stopping power database, and allows the user a choice of Constructive Solid Geometry (CSG) or Finite Element Triangle Mesh (FETM) method for constructing 3D shapes and microstructures. For 2D films and multilayers, IM3D perfectly reproduces SRIM results, and can be ∼102 times faster in serial execution and > 104 times faster using parallel computation. For 3D problems, it provides a fast approach for analyzing the spatial distributions of primary displacements and defect generation under ion irradiation. Herein we also provide a detailed discussion of our open-source collision cascade physics engine, revealing the true meaning and limitations of the “Quick Kinchin-Pease” and “Full Cascades” options. The issues of femtosecond to picosecond timescales in defining displacement versus damage, the limitation of the displacements per atom (DPA) unit in quantifying radiation damage (such as inadequacy in quantifying degree of chemical mixing), are discussed. PMID:26658477

  4. The program FANS-3D (finite analytic numerical simulation 3-dimensional) and its applications

    NASA Technical Reports Server (NTRS)

    Bravo, Ramiro H.; Chen, Ching-Jen

    1992-01-01

    In this study, the program named FANS-3D (Finite Analytic Numerical Simulation-3 Dimensional) is presented. FANS-3D was designed to solve problems of incompressible fluid flow and combined modes of heat transfer. It solves problems with conduction and convection modes of heat transfer in laminar flow, with provisions for radiation and turbulent flows. It can solve singular or conjugate modes of heat transfer. It also solves problems in natural convection, using the Boussinesq approximation. FANS-3D was designed to solve heat transfer problems inside one, two and three dimensional geometries that can be represented by orthogonal planes in a Cartesian coordinate system. It can solve internal and external flows using appropriate boundary conditions such as symmetric, periodic and user specified.

  5. 3D dynamic simulation of crack propagation in extracorporeal shock wave lithotripsy

    NASA Astrophysics Data System (ADS)

    Wijerathne, M. L. L.; Hori, Muneo; Sakaguchi, Hide; Oguni, Kenji

    2010-06-01

    Some experimental observations of Shock Wave Lithotripsy(SWL), which include 3D dynamic crack propagation, are simulated with the aim of reproducing fragmentation of kidney stones with SWL. Extracorporeal shock wave lithotripsy (ESWL) is the fragmentation of kidney stones by focusing an ultrasonic pressure pulse onto the stones. 3D models with fine discretization are used to accurately capture the high amplitude shear shock waves. For solving the resulting large scale dynamic crack propagation problem, PDS-FEM is used; it provides numerically efficient failure treatments. With a distributed memory parallel code of PDS-FEM, experimentally observed 3D photoelastic images of transient stress waves and crack patterns in cylindrical samples are successfully reproduced. The numerical crack patterns are in good agreement with the experimental ones, quantitatively. The results shows that the high amplitude shear waves induced in solid, by the lithotriptor generated shock wave, play a dominant role in stone fragmentation.

  6. Simulations of 3D-Si sensors for the innermost layer of the ATLAS pixel upgrade

    NASA Astrophysics Data System (ADS)

    Baselga, M.; Pellegrini, G.; Quirion, D.

    2017-03-01

    The LHC is expected to reach luminosities up to 3000 fb-1 and the innermost layer of the ATLAS upgrade plans to cope with higher occupancy and to decrease the pixel size. 3D-Si sensors are a good candidate for the innermost layer of the ATLAS pixel upgrade since they exhibit good performance under high fluences and the new designs will have smaller pixel size to fulfill the electronics expectations. This paper reports TCAD simulations of the 3D-Si sensors designed at IMB-CNM with non-passing-through columns that are being fabricated for the next innermost layer of the ATLAS pixel upgrade. It shows the charge collection response before and after irradiation, and the response of 3D-Si sensors located at large η angles.

  7. Simulated KWAJEX Convective Systems Using a 2D and 3D Cloud Resolving Model and Their Comparisons with Radar Observations

    NASA Technical Reports Server (NTRS)

    Shie, Chung-Lin; Tao, Wei-Kuo; Simpson, Joanne

    2003-01-01

    The 1999 Kwajalein Atoll field experiment (KWAJEX), one of several major TRMM (Tropical Rainfall Measuring Mission) field experiments, has successfully obtained a wealth of information and observation data on tropical convective systems over the western Central Pacific region. In this paper, clouds and convective systems that developed during three active periods (Aug 7-12, Aug 17-21, and Aug 29-Sep 13) around Kwajalein Atoll site are simulated using both 2D and 3D Goddard Cumulus Ensemble (GCE) models. Based on numerical results, the clouds and cloud systems are generally unorganized and short lived. These features are validated by radar observations that support the model results. Both the 2D and 3D simulated rainfall amounts and their stratiform contribution as well as the heat, water vapor, and moist static energy budgets are examined for the three convective episodes. Rainfall amounts are quantitatively similar between the two simulations, but the stratiform contribution is considerably larger in the 2D simulation. Regardless of dimension, fo all three cases, the large-scale forcing and net condensation are the two major physical processes that account for the evolution of the budgets with surface latent heat flux and net radiation solar and long-wave radiation)being secondary processes. Quantitative budget differences between 2D and 3D as well as between various episodes will be detailed.Morover, simulated radar signatures and Q1/Q2 fields from the three simulations are compared to each other and with radar and sounding observations.

  8. A model and simulation to predict 3D imaging LADAR sensor systems performance in real-world type environments

    NASA Astrophysics Data System (ADS)

    Grasso, Robert J.; Dippel, George F.; Russo, Leonard E.

    2006-08-01

    BAE SYSTEMS reports on a program to develop a high-fidelity model and simulation to predict the performance of angle-angle-range 3D flash LADAR Imaging Sensor systems. Accurate methods to model and simulate performance from 3D LADAR systems have been lacking, relying upon either single pixel LADAR performance or extrapolating from passive detection FPA performance. The model and simulation here is developed expressly for 3D angle-angle-range imaging LADAR systems. To represent an accurate "real world" type environment this model and simulation accounts for: 1) laser pulse shape; 2) detector array size; 3) detector noise figure; 4) detector gain; 5) target attributes; 6) atmospheric transmission; 7) atmospheric backscatter; 8) atmospheric turbulence; 9) obscurants; 10) obscurant path length, and; 11) platform motion. The angle-angle-range 3D flash LADAR model and simulation accounts for all pixels in the detector array by modeling and accounting for the non-uniformity of each individual pixel. Here, noise sources and gain are modeled based upon their pixel-to-pixel statistical variation. A cumulative probability function is determined by integrating the normal distribution with respect to detector gain, and, for each pixel, a random number is compared with the cumulative probability function resulting in a different gain for each pixel within the array. In this manner very accurate performance is determined pixel-by-pixel for the entire array. Model outputs are 3D images of the far-field distribution across the array as intercepted by the target, gain distribution, power distribution, average signal-to-noise, and probability of detection across the array.

  9. Multigrid direct numerical simulation of the whole process of flow transition in 3-D boundary layers

    NASA Technical Reports Server (NTRS)

    Liu, Chaoqun; Liu, Zhining

    1993-01-01

    A new technology was developed in this study which provides a successful numerical simulation of the whole process of flow transition in 3-D boundary layers, including linear growth, secondary instability, breakdown, and transition at relatively low CPU cost. Most other spatial numerical simulations require high CPU cost and blow up at the stage of flow breakdown. A fourth-order finite difference scheme on stretched and staggered grids, a fully implicit time marching technique, a semi-coarsening multigrid based on the so-called approximate line-box relaxation, and a buffer domain for the outflow boundary conditions were all used for high-order accuracy, good stability, and fast convergence. A new fine-coarse-fine grid mapping technique was developed to keep the code running after the laminar flow breaks down. The computational results are in good agreement with linear stability theory, secondary instability theory, and some experiments. The cost for a typical case with 162 x 34 x 34 grid is around 2 CRAY-YMP CPU hours for 10 T-S periods.

  10. 3D-Simulation Of Concentration Distributions Inside Large-Scale Circulating Fluidized Bed Combustors

    NASA Astrophysics Data System (ADS)

    Wischnewski, R.; Ratschow, L.; Hartge, E. U.; Werthe, J.

    With increasing size of modern CFB combustors the lateral mixing of fuels and secondary air gains more and more importance. Strong concentration gradients, which result from improper lateral mixing, can lead to operational problems, high flue gas emissions and lower boiler efficiencies. A 3D-model for the simulation of local gas and solids concentrations inside industrial-sized CFB boilers has been developed. The model is based on a macroscopic approach and considers all major mechanisms during fuel spreading and subsequent combustion of char and volatiles. Typical characteristics of modern boilers like staged combustion, a smaller cross-sectional area in the lower section of the combustion chamber and the co-combustion of additional fuels with coal can be considered. The 252 MWth combustor of Stadtwerke Duisburg AG is used for the validation of the model. A comprehensive picture of the local conditions inside the combustion chamber is achieved by the combination of local gas measurements and the three-dimensional simulation of concentration distributions.

  11. Characterization of an SRF gun: a 3D full wave simulation

    SciTech Connect

    Wang, E.; Ben-Zvi, I.; Wang, J.

    2011-03-28

    We characterized a BNL 1.3GHz half-cell SRF gun is tested for GaAs photocathode. The gun already was simulated several years ago via two-dimensional (2D) numerical codes (i.e., Superfish and Parmela) with and without the beam. In this paper, we discuss our investigation of its characteristics using a three dimensional (3D) full-wave code (CST STUDIO SUITE{trademark}).The input/pickup couplers are sited symmetrically on the same side of the gun at an angle of 180{sup o}. In particular, the inner conductor of the pickup coupler is considerably shorter than that of the input coupler. We evaluated the cross-talk between the beam (trajectory) and the signal on the input coupler compared our findings with published results based on analytical models. The CST STUDIO SUITE{trademark} also was used to predict the field within the cavity; particularly, a combination of transient/eigenmode solvers was employed to accurately construct the RF field for the particles, which also includes the effects of the couplers. Finally, we explored the beam's dynamics with a particle in cell (PIC) simulation, validated the results and compare them with 2D code result.

  12. Fully Kinetic 3D Simulations of the Interaction of the Solar Wind with Mercury

    NASA Astrophysics Data System (ADS)

    Amaya, J.; Deca, J.; Lembege, B.; Lapenta, G.

    2015-12-01

    The planet Mercury has been studied by the space mission Mariner 10, in the 1970's, and by the MESSENGER mission launched in 2004. Interest in the first planet of the Solar System has now been renewed by the launch in 2017 of the BepiColombo mission. MESSENGER and BepiColombo give access to information about the local conditions of the magnetosphere of Mercury. This data must be evaluated in the context of the global interaction between the solar wind and the planet's magnetosphere. Global scale simulations of the planet's environment are necessary to fully understand the data gathered from in-situ measurements. We use three-dimensional simulations to support the scientific goals of the two missions. In contrast with the results based on MHD (Kabin et al., 2000) and hybrid codes (Kallio et Janhumen, 2003; Travnicek et al., 2007, 2010; Richer et al., 2012), the present work is based on the implicit moment Particle-in-Cell (PiC) method, which allows to use large time and space steps, while granting access to the dynamics of the smaller electron scales in the plasma. The purpose of these preliminary PIC simulations is to retrieve the top-level features of Mercury's magnetosphere and its frontiers. We compare the results obtained with the implicit moment PiC method against 3D hybrid simulations. We perform simulations of the global plasma environment of Mercury using the solar wind conditions measured by MESSENGER. We show that complex flows form around the planet, including the development of Kelvin-Helmoltz instabilities at the flanks. We evaluate the dynamics of the shock, magnetosheath, magnetopause, the reconnection areas, the formation of plasma sheet and magnetotail, and the variation of ion/electron plasma flows when crossing these frontiers. The simulations also give access to detailed information about the particle dynamics and their velocity distribution at locations that can be used for comparison with data from MESSENGER and later on with the forthcoming

  13. Waveform prediction with travel time model LLNL-G3D assessed by Spectral-Element simulation

    NASA Astrophysics Data System (ADS)

    Morency, C.; Simmons, N. A.; Myers, S. C.; Johannesson, G.; Matzel, E.

    2013-12-01

    Seismic monitoring requires accurate prediction of travel times, amplitudes, and whole waveforms. As a first step towards developing a model that is suited to seismic monitoring, LLNL developed the LLNL-G3D P-wave travel time model (Simmons et al., 2012, JGR) to improve seismic event location accuracy. LLNL-G3D fulfills the need to predict travel times from events occurring anywhere in the globe to stations ranging from local to teleseismic distances. Prediction over this distance range requires explicit inclusion of detailed 3-dimensional structure from Earths surface to the core. An open question is how well a model optimized to fit P-wave travel time data can predict waveforms? We begin to address this question by using the P-wave velocities in LLNL-G3D as a proxy for S-wave velocity and density, then performing waveform simulations via the SPECFEM3D_GLOBE spectral-element code. We assess the ability of LLNL-G3D to predict waveforms and draw comparisons to other 3D models available in SPECFEM3D_GLOBE package and widely used in the scientific community. Although we do not expect the P-wave model to perform as well as waveform based models, we view our effort as a first step towards accurate prediction of time times, amplitudes and full waveforms based on a single model. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  14. Simulation of bootstrap current in 2D and 3D ideal magnetic fields in tokamaks

    NASA Astrophysics Data System (ADS)

    Raghunathan, M.; Graves, J. P.; Cooper, W. A.; Pedro, M.; Sauter, O.

    2016-09-01

    We aim to simulate the bootstrap current for a MAST-like spherical tokamak using two approaches for magnetic equilibria including externally caused 3D effects such as resonant magnetic perturbations (RMPs), the effect of toroidal ripple, and intrinsic 3D effects such as non-resonant internal kink modes. The first approach relies on known neoclassical coefficients in ideal MHD equilibria, using the Sauter (Sauter et al 1999 Phys. Plasmas 6 2834) expression valid for all collisionalities in axisymmetry, and the second approach being the quasi-analytic Shaing-Callen (Shaing and Callen 1983 Phys. Fluids 26 3315) model in the collisionless regime for 3D. Using the ideal free-boundary magnetohydrodynamic code VMEC, we compute the flux-surface averaged bootstrap current density, with the Sauter and Shaing-Callen expressions for 2D and 3D ideal MHD equilibria including an edge pressure barrier with the application of resonant magnetic perturbations, and equilibria possessing a saturated non-resonant 1/1 internal kink mode with a weak internal pressure barrier. We compare the applicability of the self-consistent iterative model on the 3D applications and discuss the limitations and advantages of each bootstrap current model for each type of equilibrium.

  15. Quantification of Ground Motion Reductions by Fault Zone Plasticity with 3D Spontaneous Rupture Simulations

    NASA Astrophysics Data System (ADS)

    Roten, D.; Olsen, K. B.; Cui, Y.; Day, S. M.

    2015-12-01

    We explore the effects of fault zone nonlinearity on peak ground velocities (PGVs) by simulating a suite of surface rupturing earthquakes in a visco-plastic medium. Our simulations, performed with the AWP-ODC 3D finite difference code, cover magnitudes from 6.5 to 8.0, with several realizations of the stochastic stress drop for a given magnitude. We test three different models of rock strength, with friction angles and cohesions based on criteria which are frequently applied to fractured rock masses in civil engineering and mining. We use a minimum shear-wave velocity of 500 m/s and a maximum frequency of 1 Hz. In rupture scenarios with average stress drop (~3.5 MPa), plastic yielding reduces near-fault PGVs by 15 to 30% in pre-fractured, low-strength rock, but less than 1% in massive, high quality rock. These reductions are almost insensitive to the scenario earthquake magnitude. In the case of high stress drop (~7 MPa), however, plasticity reduces near-fault PGVs by 38 to 45% in rocks of low strength and by 5 to 15% in rocks of high strength. Because plasticity reduces slip rates and static slip near the surface, these effects can partially be captured by defining a shallow velocity-strengthening layer. We also perform a dynamic nonlinear simulation of a high stress drop M 7.8 earthquake rupturing the southern San Andreas fault along 250 km from Indio to Lake Hughes. With respect to the viscoelastic solution (a), nonlinearity in the fault damage zone and in near-surface deposits would reduce long-period (> 1 s) peak ground velocities in the Los Angeles basin by 15-50% (b), depending on the strength of crustal rocks and shallow sediments. These simulation results suggest that nonlinear effects may be relevant even at long periods, especially for earthquakes with high stress drop.

  16. Characteristic wavefield in an experimental rock sample inferred from a 3D FDM simulation

    NASA Astrophysics Data System (ADS)

    Yoshimitsu, N.; Furumura, T.; Maeda, T.

    2014-12-01

    We investigate the origin of wave packets in elastic waves propagate through a rock sample based on a 3D finite difference method (FDM) simulation. Though direct waves of the transmitted waves have been applied to estimate the internal structure of a rock sample, later part of the waveforms did not utilized because their origin were unclear. Understanding the reflection and conversion effect in a rock sample would help to retrieve more information from whole waveform as with the analysis in natural fields. We numerically simulated the elastic wave propagation in a medium model which covers a cylindrical shape of a rock sample. The model was discretized into 1024 x 1024 x 2048 grid points with an interval of 54 micrometer in horizontal direction and 60 micrometer in vertical direction. The density, P wave velocity, and S wave velocity of the each grid point are assumed to be proportional to the X-ray absorption coefficient derived from the micro focus X-ray CT images of a Westery granite sample. We applied a single point force on the boundary of the model sample which mimics realistic transducer movement. The wave propagation movie obtained from the numerical simulation shows very complicated wavefield in a rock sample. Because a rock sample is small and closed, once waves are radiated, they were trapped in the sample by repeating reflection and conversion. Many reflected waves which followed by the converted waves were generated at the sample side surface as well as the upper and lower end. The phase with the largest amplitude propagate along the curved boundary was detected as Rayleigh wave from the particle motions on the sample side surface. Additionally, the surface waves were observed not only in the horizontal section but also in the vertical section. Our simulation indicated that the later phases of the transmitted waves are highly affected by the sample boundary. In order to extract accurate interior information from the transmitted waves, elimination

  17. 3-D land subsidence simulation using the NDIS package for MODFLOW

    NASA Astrophysics Data System (ADS)

    Kang, D. H.; Li, J.

    2015-11-01

    The standard subsidence package for MODFLOW, MODFLOW-SUB simulates aquifer-system compaction and subsidence assuming that only 1-D-vertical displacement of the aquifer system occurs in response to applied stresses such as drawdowns accompanying groundwater extraction. In the present paper, 3-D movement of an aquifer system in responses to one or more pumping wells is considered using the new aquifer-system deformation package for MODFLOW, NDIS. The simulation of aquifer- system 3-D movement using NDIS was conducted with a stress or hydraulic head dependent specific storage coefficient to simulate nonlinear deformation behavior of aquifer-system sedimentary materials. NDIS's numerical simulation for aquifer horizontal movement is consistent with an analytic solution for horizontal motion in response to pumping from a leaky confined aquifer (Li, 2007). For purposes of comparison, vertical subsidence of the aquifer system in response to groundwater pumping is simulated by the both the NDIS and MODFLOW-SUB models. The results of the simulations show that land subsidence simulated by MODFLOW-SUB is significantly larger and less sensitive to pumping rate and time than that simulated by NDIS. The NDIS simulations also suggest that if the total pumpage is the same, pumping from a single well may induce more land subsidence than pumping from multiple wells.

  18. Probability distribution functions for cover used in 3-D model simulating concrete deterioration in port assets.

    NASA Astrophysics Data System (ADS)

    Homer, Rachel M.; Law, David W.; Molyneaux, Thomas C. K.

    2015-07-01

    In previous studies, a 1-D numerical predictive tool to simulate the salt induced corrosion of port assets in Australia has been developed into a 2-D and 3-D model based on current predictive probabilistic models. These studies use a probability distribution function based on the mean and standard deviation of the parameters for a structure incorporating surface chloride concentration, diffusion coefficient and cover. In this paper, this previous work is extended through an investigation of the distribution of actual cover by specified cover, element type and method of construction. Significant differences are found for the measured cover within structures, by method of construction, element type and specified cover. The data are not normally distributed and extreme values, usually low, are found in a number of locations. Elements cast insitu are less likely to meet the specified cover and the measured cover is more dispersed than those in elements which are precast. Individual probability distribution functions are available and are tested against the original function. Methods of combining results so that one distribution is available for a structure are formulated and evaluated. The ability to utilise the model for structures where no measurement have been taken is achieved by transposing results based on the specified cover.

  19. OB3D, a new set of 3D objects available for research: a web-based study

    PubMed Central

    Buffat, Stéphane; Chastres, Véronique; Bichot, Alain; Rider, Delphine; Benmussa, Frédéric; Lorenceau, Jean

    2014-01-01

    Studying object recognition is central to fundamental and clinical research on cognitive functions but suffers from the limitations of the available sets that cannot always be modified and adapted to meet the specific goals of each study. We here present a new set of 3D scans of real objects available on-line as ASCII files, OB3D. These files are lists of dots, each defined by a triplet of spatial coordinates and their normal that allow simple and highly versatile transformations and adaptations. We performed a web-based experiment to evaluate the minimal number of dots required for the denomination and categorization of these objects, thus providing a reference threshold. We further analyze several other variables derived from this data set, such as the correlations with object complexity. This new stimulus set, which was found to activate the Lower Occipital Complex (LOC) in another study, may be of interest for studies of cognitive functions in healthy participants and patients with cognitive impairments, including visual perception, language, memory, etc. PMID:25339920

  20. Silk-based anisotropical 3D biotextiles for bone regeneration.

    PubMed

    Ribeiro, Viviana P; Silva-Correia, Joana; Nascimento, Ana I; da Silva Morais, Alain; Marques, Alexandra P; Ribeiro, Ana S; Silva, Carla J; Bonifácio, Graça; Sousa, Rui A; Oliveira, Joaquim M; Oliveira, Ana L; Reis, Rui L

    2017-04-01

    Bone loss in the craniofacial complex can been treated using several conventional therapeutic strategies that face many obstacles and limitations. In this work, novel three-dimensional (3D) biotextile architectures were developed as a possible strategy for flat bone regeneration applications. As a fully automated processing route, this strategy as potential to be easily industrialized. Silk fibroin (SF) yarns were processed into weft-knitted fabrics spaced by a monofilament of polyethylene terephthalate (PET). A comparative study with a similar 3D structure made entirely of PET was established. Highly porous scaffolds with homogeneous pore distribution were observed using micro-computed tomography analysis. The wet state dynamic mechanical analysis revealed a storage modulus In the frequency range tested, the storage modulus values obtained for SF-PET scaffolds were higher than for the PET scaffolds. Human adipose-derived stem cells (hASCs) cultured on the SF-PET spacer structures showed the typical pattern for ALP activity under osteogenic culture conditions. Osteogenic differentiation of hASCs on SF-PET and PET constructs was also observed by extracellular matrix mineralization and expression of osteogenic-related markers (osteocalcin, osteopontin and collagen type I) after 28 days of osteogenic culture, in comparison to the control basal medium. The quantification of convergent macroscopic blood vessels toward the scaffolds by a chick chorioallantoic membrane assay, showed higher angiogenic response induced by the SF-PET textile scaffolds than PET structures and gelatin sponge controls. Subcutaneous implantation in CD-1 mice revealed tissue ingrowth's accompanied by blood vessels infiltration in both spacer constructs. The structural adaptability of textile structures combined to the structural similarities of the 3D knitted spacer fabrics to craniofacial bone tissue and achieved biological performance, make these scaffolds a possible solution for tissue

  1. Secondary reconnection, energisation and turbulence in dipolarisation fronts: results of a 3D kinetic simulation campaign

    NASA Astrophysics Data System (ADS)

    Lapenta, Giovanni; Goldman, Martin; Newman, David; olshevskyi, Vyacheslav; Markidis, Stefano

    2016-04-01

    Dipolarization fronts (DF) are formed by reconnection outflows interacting with the pre-existing environment. These regions are host of important energy exchanges [1], particle acceleration [2] and a complex structure and evolution [3]. Our recent work has investigated these regions via fully kinetic 3D simulations [4]. As reported recently on Nature Physics [3], based on 3D fully kinetic simulations started with a well defined x-line, we observe that in the DF reconnection transitions towards a more chaotic regime. In the fronts an instability devel- ops caused by the local gradients of the density and by the unfavourable acceleration and field line curvature. The consequence is the break up of the fronts in a fashion similar to the classical fluid Rayleigh-Taylor instability with the formation of "fingers" of plasma and embedded magnetic fields. These fingers interact and produce secondary reconnection sites. We present several different diagnostics that prove the existence of these secondary reconnection sites. Each site is surrounded by its own electron diffusion region. At the fronts the ions are generally not magnetized and considerable ion slippage is present. The discovery we present is that electrons are also slipping, forming localized diffusion regions near secondary reconnection sites [1]. The consequence of this discovery is twofold. First, the instability in the fronts has strong energetic implications. We observe that the energy transfer locally is very strong, an order of magnitude stronger than in the "X" line. However, this energy transfer is of both signs as it is natural for a wavy rippling with regions of magnetic to kinetic and regions of kinetic to magnetic energy conversion. Second, and most important for this session, is that MMS should not limit the search for electron diffusion regions to the location marked with X in all reconnection cartoons. Our simulations predict more numerous and perhaps more easily measurable electron diffusion

  2. The simulation of 3D microcalcification clusters in 2D digital mammography and breast tomosynthesis

    SciTech Connect

    Shaheen, Eman; Van Ongeval, Chantal; Zanca, Federica; Cockmartin, Lesley; Marshall, Nicholas; Jacobs, Jurgen; Young, Kenneth C.; Dance, David R.; Bosmans, Hilde

    2011-12-15

    Purpose: This work proposes a new method of building 3D models of microcalcification clusters and describes the validation of their realistic appearance when simulated into 2D digital mammograms and into breast tomosynthesis images. Methods: A micro-CT unit was used to scan 23 breast biopsy specimens of microcalcification clusters with malignant and benign characteristics and their 3D reconstructed datasets were segmented to obtain 3D models of microcalcification clusters. These models were then adjusted for the x-ray spectrum used and for the system resolution and simulated into 2D projection images to obtain mammograms after image processing and into tomographic sequences of projection images, which were then reconstructed to form 3D tomosynthesis datasets. Six radiologists were asked to distinguish between 40 real and 40 simulated clusters of microcalcifications in two separate studies on 2D mammography and tomosynthesis datasets. Receiver operating characteristic (ROC) analysis was used to test the ability of each observer to distinguish between simulated and real microcalcification clusters. The kappa statistic was applied to assess how often the individual simulated and real microcalcification clusters had received similar scores (''agreement'') on their realistic appearance in both modalities. This analysis was performed for all readers and for the real and the simulated group of microcalcification clusters separately. ''Poor'' agreement would reflect radiologists' confusion between simulated and real clusters, i.e., lesions not systematically evaluated in both modalities as either simulated or real, and would therefore be interpreted as a success of the present models. Results: The area under the ROC curve, averaged over the observers, was 0.55 (95% confidence interval [0.44, 0.66]) for the 2D study, and 0.46 (95% confidence interval [0.29, 0.64]) for the tomosynthesis study, indicating no statistically significant difference between real and simulated

  3. Numerical simulation of 3D boundary-driven acoustic streaming in microfluidic devices.

    PubMed

    Lei, Junjun; Hill, Martyn; Glynne-Jones, Peter

    2014-02-07

    This article discusses three-dimensional (3D) boundary-driven streaming in acoustofluidic devices. Firstly, the 3D Rayleigh streaming pattern in a microchannel is simulated and its effect on the movement of microparticles of various sizes is demonstrated. The results obtained from this model show good comparisons with 3D experimental visualisations and demonstrate the fully 3D nature of the acoustic streaming field and the associated acoustophoretic motion of microparticles in acoustofluidic devices. This method is then applied to another acoustofluidic device in order to gain insights into an unusual in-plane streaming pattern. The origin of this streaming has not been fully described and its characteristics cannot be explained from the classical theory of Rayleigh streaming. The simulated in-plane streaming pattern was in good agreement with the experimental visualisation. The mechanism behind it is shown to be related to the active sound intensity field, which supports our previous findings on the mechanism of the in-plane acoustic streaming pattern visualised and modelled in a thin-layered capillary device.

  4. 4DCBCT-based motion modeling and 3D fluoroscopic image generation for lung cancer radiotherapy

    NASA Astrophysics Data System (ADS)

    Dhou, Salam; Hurwitz, Martina; Mishra, Pankaj; Berbeco, Ross; Lewis, John

    2015-03-01

    A method is developed to build patient-specific motion models based on 4DCBCT images taken at treatment time and use them to generate 3D time-varying images (referred to as 3D fluoroscopic images). Motion models are built by applying Principal Component Analysis (PCA) on the displacement vector fields (DVFs) estimated by performing deformable image registration on each phase of 4DCBCT relative to a reference phase. The resulting PCA coefficients are optimized iteratively by comparing 2D projections captured at treatment time with projections estimated using the motion model. The optimized coefficients are used to generate 3D fluoroscopic images. The method is evaluated using anthropomorphic physical and digital phantoms reproducing real patient trajectories. For physical phantom datasets, the average tumor localization error (TLE) and (95th percentile) in two datasets were 0.95 (2.2) mm. For digital phantoms assuming superior image quality of 4DCT and no anatomic or positioning disparities between 4DCT and treatment time, the average TLE and the image intensity error (IIE) in six datasets were smaller using 4DCT-based motion models. When simulating positioning disparities and tumor baseline shifts at treatment time compared to planning 4DCT, the average TLE (95th percentile) and IIE were 4.2 (5.4) mm and 0.15 using 4DCT-based models, while they were 1.2 (2.2) mm and 0.10 using 4DCBCT-based ones, respectively. 4DCBCT-based models were shown to perform better when there are positioning and tumor baseline shift uncertainties at treatment time. Thus, generating 3D fluoroscopic images based on 4DCBCT-based motion models can capture both inter- and intra- fraction anatomical changes during treatment.

  5. 3D thermal modeling of TRISO fuel coupled with neutronic simulation

    SciTech Connect

    Hu, Jianwei; Uddin, Rizwan

    2010-01-01

    The Very High Temperature Gas Reactor (VHTR) is widely considered as one of the top candidates identified in the Next Generation Nuclear Power-plant (NGNP) Technology Roadmap under the U.S . Depanment of Energy's Generation IV program. TRlSO particle is a common element among different VHTR designs and its performance is critical to the safety and reliability of the whole reactor. A TRISO particle experiences complex thermo-mechanical changes during reactor operation in high temperature and high burnup conditions. TRISO fuel performance analysis requires evaluation of these changes on micro scale. Since most of these changes are temperature dependent, 3D thermal modeling of TRISO fuel is a crucial step of the whole analysis package. In this paper, a 3D numerical thermal model was developed to calculate temperature distribution inside TRISO and pebble under different scenarios. 3D simulation is required because pebbles or TRISOs are always subjected to asymmetric thermal conditions since they are randomly packed together. The numerical model was developed using finite difference method and it was benchmarked against ID analytical results and also results reported from literature. Monte-Carlo models were set up to calculate radial power density profile. Complex convective boundary condition was applied on the pebble outer surface. Three reactors were simulated using this model to calculate temperature distribution under different power levels. Two asymmetric boundary conditions were applied to the pebble to test the 3D capabilities. A gas bubble was hypothesized inside the TRISO kernel and 3D simulation was also carried out under this scenario. Intuition-coherent results were obtained and reported in this paper.

  6. Handheld underwater 3D sensor based on fringe projection technique

    NASA Astrophysics Data System (ADS)

    Bräuer-Burchardt, Christian; Heinze, Matthias; Schmidt, Ingo; Meng, Lichun; Ramm, Roland; Kühmstedt, Peter; Notni, Gunther

    2015-05-01

    A new, handheld 3D surface scanner was developed especially for underwater use until a diving depth of about 40 meters. Additionally, the sensor is suitable for the outdoor use under bad weather circumstance like splashing water, wind, and bad illumination conditions. The optical components of the sensor are two cameras and one projector. The measurement field is about 250 mm x 200 mm. The depth resolution is about 50 μm and the lateral resolution is approximately 150 μm. The weight of the scanner is about 10 kg. The housing was produced of synthetic powder using a 3D printing technique. The measurement time for one scan is between a third and a half second. The computer for measurement control and data analysis is already integrated into the housing of the scanner. A display on the backside presents the results of each measurement graphically for a real-time evaluation of the user during the recording of the measurement data.

  7. A cut cell method for the 3D simulation of Crookes radiometer

    SciTech Connect

    Dechriste, Guillaume; Mieussens, Luc

    2014-12-09

    Devices involved in engineering applications, such as vacuum pumps or MEMS, may be made of several moving parts. This raise the issue of the simulation of rarefied gas flow around moving boundaries. We propose a simple process, known as cut cell method, to treat the motion of a solid body in the framework of the deterministic solving of a kinetic equation. Up to our knowledge, this is the first time that this approach has been used for this kind of simulations. The method is illustrated by the 2D and 3D simulations of a Crookes radiometer.

  8. A cut cell method for the 3D simulation of Crookes radiometer

    NASA Astrophysics Data System (ADS)

    Dechriste, Guillaume; Mieussens, Luc

    2014-12-01

    Devices involved in engineering applications, such as vacuum pumps or MEMS, may be made of several moving parts. This raise the issue of the simulation of rarefied gas flow around moving boundaries. We propose a simple process, known as cut cell method, to treat the motion of a solid body in the framework of the deterministic solving of a kinetic equation. Up to our knowledge, this is the first time that this approach has been used for this kind of simulations. The method is illustrated by the 2D and 3D simulations of a Crookes radiometer.

  9. Reactive Flow Modeling of Liquid Explosives via ALE3D/Cheetah Simulations

    SciTech Connect

    Kuo, I W; Bastea, S; Fried, L E

    2010-03-10

    We carried out reactive flow simulations of liquid explosives such as nitromethane using the hydrodynamic code ALE3D coupled with equations of state and reaction kinetics modeled by the thermochemical code Cheetah. The simulation set-up was chosen to mimic cylinder experiments. For pure unconfined nitromethane we find that the failure diameter and detonation velocity dependence on charge diameter are in agreement with available experimental results. Such simulations are likely to be useful for determining detonability and failure behavior for a wide range of experimental conditions and explosive compounds.

  10. Characteristics of tumor and host cells in 3-D simulated microgravity environment

    NASA Astrophysics Data System (ADS)

    Chopra, V.; Dinh, T.; Wood, T.; Pellis, N.; Hannigan, E.

    Co-cultures of three-dimensional (3-D) constructs of one cell type with dispersed cells of a second cell type in low-shear rotating suspension cultures in simulated microgravity environment have been used to investigate invasive properties of normal and malignant cell types. We have shown that the epithelial and endothelial cells undergo a switch in characteristics when grown in an in vitro 3-D environment, that mimics the in vivo host environment as compared with conventional two-dimensional (2-D) monolayer cultures. Histological preparations and immunohistochemical staining procedures of cocultured harvests demonstrated various markers of interest: like collagen vimentin, mucin, elastin, fibrin, fibrinogen, cytokeratin, adhesion molecules and various angiogenic factors by tumor cells from gynecological cancer patients along with fibroblasts, endothelial cells and patient-derived mononuclear cells (n=8). The growth rate was enhanced 10-15 folds by 3-D cocultures of patient-derived cells as compared with 2-D monolayer cultures and 3-D monocultures. The production of interleukin-2, interleukin-6, interleukin -8, vascular endothelial cell growth factor, basic fibroblast growth factor, and angiogenin was studied by using ELISA and RT- PCR. Human umbilical vein-derived endothelial cell (HUVEC) were used to study the mitogenic response of the conditioned medium collected from 3-D monocultures and cocultures during proliferation and migration assays. The conditioned medium collected from 3-D cocultures of cancer cells also 1) increased the expression of message levels of vascular endothelial growth factor and its receptor flt-1 and KDR was observed by HUVEC, and 2) increased the expression of intracellular and vascular cell adhesion molecules on the surface of HUVEC, when measured by using Live cell ELISA assays and immunofluorescent staining as compared with 3-D monocultures of normal epithelial cells. There was an increase in production of 1) enzymatic activity that

  11. The Martian Water Cycle Based on 3-D Modeling

    NASA Technical Reports Server (NTRS)

    Houben, H.; Haberle, R. M.; Joshi, M. M.

    1999-01-01

    Understanding the distribution of Martian water is a major goal of the Mars Surveyor program. However, until the bulk of the data from the nominal missions of TES, PMIRR, GRS, MVACS, and the DS2 probes are available, we are bound to be in a state where much of our knowledge of the seasonal behavior of water is based on theoretical modeling. We therefore summarize the results of this modeling at the present time. The most complete calculations come from a somewhat simplified treatment of the Martian climate system which is capable of simulating many decades of weather. More elaborate meteorological models are now being applied to study of the problem. The results show a high degree of consistency with observations of aspects of the Martian water cycle made by Viking MAWD, a large number of ground-based measurements of atmospheric column water vapor, studies of Martian frosts, and the widespread occurrence of water ice clouds. Additional information is contained in the original extended abstract.

  12. Meshing Preprocessor for the Mesoscopic 3D Finite Element Simulation of 2D and Interlock Fabric Deformation

    NASA Astrophysics Data System (ADS)

    Wendling, A.; Daniel, J. L.; Hivet, G.; Vidal-Sallé, E.; Boisse, P.

    2015-12-01

    Numerical simulation is a powerful tool to predict the mechanical behavior and the feasibility of composite parts. Among the available numerical approaches, as far as woven reinforced composites are concerned, 3D finite element simulation at the mesoscopic scale leads to a good compromise between realism and complexity. At this scale, the fibrous reinforcement is modeled by an interlacement of yarns assumed to be homogeneous that have to be accurately represented. Among the numerous issues induced by these simulations, the first one consists in providing a representative meshed geometrical model of the unit cell at the mesoscopic scale. The second one consists in enabling a fast data input in the finite element software (contacts definition, boundary conditions, elements reorientation, etc.) so as to obtain results within reasonable time. Based on parameterized 3D CAD modeling tool of unit-cells of dry fabrics already developed, this paper presents an efficient strategy which permits an automated meshing of the models with 3D hexahedral elements and to accelerate of several orders of magnitude the simulation data input. Finally, the overall modeling strategy is illustrated by examples of finite element simulation of the mechanical behavior of fabrics.

  13. Depth-based coding of MVD data for 3D video extension of H.264/AVC

    NASA Astrophysics Data System (ADS)

    Rusanovskyy, Dmytro; Hannuksela, Miska M.; Su, Wenyi

    2013-06-01

    This paper describes a novel approach of using depth information for advanced coding of associated video data in Multiview Video plus Depth (MVD)-based 3D video systems. As a possible implementation of this conception, we describe two coding tools that have been developed for H.264/AVC based 3D Video Codec as response to Moving Picture Experts Group (MPEG) Call for Proposals (CfP). These tools are Depth-based Motion Vector Prediction (DMVP) and Backward View Synthesis Prediction (BVSP). Simulation results conducted under JCT-3V/MPEG 3DV Common Test Conditions show, that proposed in this paper tools reduce bit rate of coded video data by 15% of average delta bit rate reduction, which results in 13% of bit rate savings on total for the MVD data over the state-of-the-art MVC+D coding. Moreover, presented in this paper conception of depth-based coding of video has been further developed by MPEG 3DV and JCT-3V and this work resulted in even higher compression efficiency, bringing about 20% of delta bit rate reduction on total for coded MVD data over the reference MVC+D coding. Considering significant gains, proposed in this paper coding approach can be beneficial for development of new 3D video coding standards. [Figure not available: see fulltext.

  14. 3-D Simulation of a prototype pump-turbine during starting period in turbine model

    NASA Astrophysics Data System (ADS)

    Chen, T. J.; Luo, X. Q.; Guo, P. C.; Wu, Y. L.

    2013-12-01

    Three dimensional (3-D), unsteady flows in a prototype pump-turbine during a transient process of start-up at no load condition were studied using the computational fluid dynamics method. The fluid coupling and DM method were used to calculate the rotational speed for each time step. The dynamic mesh (DM) method and remeshing method were applied to simulate the rotation of guide vanes. Calculations were performed based on the bar v2-f turbulence model, and the calculation results were compared and verified by experimental data. Transient explicit characteristics such as the flow-rate, head, torque of the runner etc., as well as the internal flow during the start-up were analyzed. The amplitude of pressure fluctuation was larger as the rotational speed of runner increased. The pump-turbine was more unstable with the decrease of the moment of inertia. The impact jet flow in the runner has a direct relationship with the increase of the torque of runner. No stall phenomenon in the runner when the pump-turbine runs close to no load opening condition. This calculation was based on a prototype of a pumped storage power station and the computational method could be used in the fault diagnosis of transient operation.

  15. Momentum Transport: 2D and 3D Cloud Resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2001-01-01

    The major objective of this study is to investigate the momentum budgets associated with several convective systems that developed during the TOGA COARE IOP (west Pacific warm pool region) and GATE (east Atlantic region). The tool for this study is the improved Goddard Cumulas Ensemble (GCE) model which includes a 3-class ice-phase microphysical scheme, explicit cloud radiative interactive processes and air-sea interactive surface processes. The model domain contains 256 x 256 grid points (with 2 km resolution) in the horizontal and 38 grid points (to a depth of 22 km) in the vertical. The 2D domain has 1024 grid points. The simulations were performed over a 7-day time period (December 19-26, 1992, for TOGA COARE and September 1-7, 1994 for GATE). Cyclic literal boundary conditions are required for this type of long-term integration. Two well organized squall systems (TOGA, COARE February 22, 1993, and GATE September 12, 1994) were also simulated using the 3D GCE model. Only 9 h simulations were required to cover the life time of the squall systems. the lateral boundary conditions were open for these two squall systems simulations. the following will be examined: (1) the momentum budgets in the convective and stratiform regions, (2) the relationship between momentum transport and cloud organization (i.e., well organized squall lines versus less organized convective), (3) the differences and similarities in momentum transport between 2D and 3D simulated convective systems, and (4) the differences and similarities in momentum budgets between cloud systems simulated with open and cyclic lateral boundary conditions. Preliminary results indicate that there are only small differences between 2D and 3D simulated momentum budgets. Major differences occur, however, between momentum budgets associated with squall systems simulated using different lateral boundary conditions.

  16. Quasimodes instability analysis of uncertain asymmetric rotor system based on 3D solid element model

    NASA Astrophysics Data System (ADS)

    Zuo, Yanfei; Wang, Jianjun; Ma, Weimeng

    2017-03-01

    Uncertainties are considered in the equation of motion of an asymmetric rotor system. Based on Hill's determinant method, quasimodes stability analysis with uncertain parameters is used to get stochastic boundaries of unstable regions. Firstly, A 3D finite element rotor model was built in rotating frame with four parameterized coefficients, which is assumed as random parameters representing the uncertainties existing in the rotor system. Then the influences of uncertain coefficients on the distribution of the unstable region boundaries are analyzed. The results show that uncertain parameters have various influences on the size, boundary and number of unstable regions. At last, the statistic results of the minimum and maximum spin speeds of unstable regions were got by Monte Carlo simulation. The used method is suitable for real engineering rotor system, because arbitrary configuration of rotors can be modeled by 3D finite element.

  17. Characterization of double modified internal gate pixel by 3D simulation study

    NASA Astrophysics Data System (ADS)

    Aurola, A.; Marochkin, V.; Tuuva, T.

    2015-01-01

    We have developed a novel detector concept based on Modified Internal Gate Field Effect Transistor (MIGFET) wherein a buried Modified Internal Gate (MIG) is implanted underneath a channel of a FET. In between the MIG and the channel of the FET there is a depleted semiconductor material forming a potential barrier between charges in the channel and similar type signal charges located in the MIG. The signal charges in the MIG have a measurable effect on the conductance of the channel. In this paper a double MIGFET pixel is investigated comprising two MIGFETs. By transferring the signal charges between the two MIGs Non-Destructive Correlated Double Sampling Readout (NDCDSR) is enabled. The proposed MIG radiation detector suits particularly well for low-light-level imaging, X-ray spectroscopy, as well as synchrotron and X-ray Free Electron Laser (XFEL) facilities. The reason for the excellent X-ray detection performance stems from the fact that interface related issues can be considerably mitigated since interface generated dark noise can be completely avoided and interface generated 1/f and Random Telegraph Signal (RTS) noise can be considerably reduced due to a deep buried channel readout configuration. Electrical parameters of the double MIGFET pixel have been evaluated by 3D TCAD simulation study. Simulation results show the absence of interface generated dark noise, significantly reduced interface generated 1/f and RTS noise, well performing NDCDSR operation, and blooming protection due to an inherent vertical anti-blooming structure. In addition, the backside illuminated thick fully depleted pixel design provides a homogeneous radiation entry window, low crosstalk due to lack of diffusion, and good quantum efficiency for low energy X-rays and NIR light. These facts result in excellent Signal-to-Noise Ratio (SNR) and very low crosstalk enabling thus excellent X-ray energy and spatial resolution. The simulation demonstrates the charge to current conversion gain for

  18. Selectivity of seismic electric signal (SES) of the 2000 Izu earthquake swarm: a 3D FEM numerical simulation model.

    PubMed

    Huang, Qinghua; Lin, Yufeng

    2010-01-01

    Although seismic electric signal (SES) has been used for short-term prediction of earthquakes, selectivity of SES still remains as one of the mysterious features. As a case study, we made a numerical simulation based on a 3D finite element method (FEM) on the selectivity of SES observed in the case of the 2000 Izu earthquake swarm. Our numerical results indicated that the existence of conductive channel under Niijima island could explain the reported SES selectivity.

  19. Blob Dynamics in 3D BOUT Simulations of Tokamak Edge Turbulence

    SciTech Connect

    Russell, D; D'Ippolito, D; Myra, J; Nevins, W; Xu, X

    2004-08-23

    Propagating filaments of enhanced plasma density, or blobs, observed in 3D numerical simulations of a diverted, neutral-fueled tokamak are studied. Fluctuations of vorticity, electrical potential {phi}, temperature T{sub e} and current density J{sub {parallel}} associated with the blobs have a dipole structure perpendicular to the magnetic field and propagate radially with large E {center_dot} B drift velocities (> 1 km/s). The simulation results are consistent with a 3D blob dynamics model that incorporates increased parallel plasma resistivity (from neutral cooling of the X-point region), blob disconnection from the divertor sheath, X-point closure of the current loops, and collisional physics to sustain the {phi}, T{sub e}, J{sub {parallel}} dipoles.

  20. 3D Kinetic Simulation of Plasma Jet Penetration in Magnetic Field

    NASA Astrophysics Data System (ADS)

    Galkin, Sergei A.; Bogatu, I. N.; Kim, J. S.

    2009-11-01

    A high velocity plasmoid penetration through a magnetic barrier is a problem of a great experimental and theoretical interest. Our LSP PIC code 3D fully kinetic numerical simulations of high density (10^16 cm-3) high velocity (30-140 km/sec) plasma jet/bullet, penetrating through the transversal magnetic field, demonstrate three different regimes: reflection by field, penetration by magnetic field expulsion and penetration by magnetic self-polarization. The behavior depends on plasma jet parameters and its composition: hydrogen, carbon (A=12) and C60-fullerene (A=720) plasmas were investigated. The 3D simulation of two plasmoid head-on injections along uniform magnetic field lines is analyzed. Mini rail plasma gun (accelerator) modeling is also presented and discussed.

  1. Validation of 3-D Ice Accretion Measurement Methodology for Experimental Aerodynamic Simulation

    NASA Technical Reports Server (NTRS)

    Broeren, Andy P.; Addy, Harold E., Jr.; Lee, Sam; Monastero, Marianne C.

    2014-01-01

    Determining the adverse aerodynamic effects due to ice accretion often relies on dry-air wind-tunnel testing of artificial, or simulated, ice shapes. Recent developments in ice accretion documentation methods have yielded a laser-scanning capability that can measure highly three-dimensional features of ice accreted in icing wind tunnels. The objective of this paper was to evaluate the aerodynamic accuracy of ice-accretion simulations generated from laser-scan data. Ice-accretion tests were conducted in the NASA Icing Research Tunnel using an 18-inch chord, 2-D straight wing with NACA 23012 airfoil section. For six ice accretion cases, a 3-D laser scan was performed to document the ice geometry prior to the molding process. Aerodynamic performance testing was conducted at the University of Illinois low-speed wind tunnel at a Reynolds number of 1.8 x 10(exp 6) and a Mach number of 0.18 with an 18-inch chord NACA 23012 airfoil model that was designed to accommodate the artificial ice shapes. The ice-accretion molds were used to fabricate one set of artificial ice shapes from polyurethane castings. The laser-scan data were used to fabricate another set of artificial ice shapes using rapid prototype manufacturing such as stereolithography. The iced-airfoil results with both sets of artificial ice shapes were compared to evaluate the aerodynamic simulation accuracy of the laser-scan data. For four of the six ice-accretion cases, there was excellent agreement in the iced-airfoil aerodynamic performance between the casting and laser-scan based simulations. For example, typical differences in iced-airfoil maximum lift coefficient were less than 3% with corresponding differences in stall angle of approximately one degree or less. The aerodynamic simulation accuracy reported in this paper has demonstrated the combined accuracy of the laser-scan and rapid-prototype manufacturing approach to simulating ice accretion for a NACA 23012 airfoil. For several of the ice

  2. 3D fingerprint imaging system based on full-field fringe projection profilometry

    NASA Astrophysics Data System (ADS)

    Huang, Shujun; Zhang, Zonghua; Zhao, Yan; Dai, Jie; Chen, Chao; Xu, Yongjia; Zhang, E.; Xie, Lili

    2014-01-01

    As an unique, unchangeable and easily acquired biometrics, fingerprint has been widely studied in academics and applied in many fields over the years. The traditional fingerprint recognition methods are based on the obtained 2D feature of fingerprint. However, fingerprint is a 3D biological characteristic. The mapping from 3D to 2D loses 1D information and causes nonlinear distortion of the captured fingerprint. Therefore, it is becoming more and more important to obtain 3D fingerprint information for recognition. In this paper, a novel 3D fingerprint imaging system is presented based on fringe projection technique to obtain 3D features and the corresponding color texture information. A series of color sinusoidal fringe patterns with optimum three-fringe numbers are projected onto a finger surface. From another viewpoint, the fringe patterns are deformed by the finger surface and captured by a CCD camera. 3D shape data of the finger can be obtained from the captured fringe pattern images. This paper studies the prototype of the 3D fingerprint imaging system, including principle of 3D fingerprint acquisition, hardware design of the 3D imaging system, 3D calibration of the system, and software development. Some experiments are carried out by acquiring several 3D fingerprint data. The experimental results demonstrate the feasibility of the proposed 3D fingerprint imaging system.

  3. 3-D Direct Simulation Monte Carlo modeling of comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Liao, Y.; Su, C.; Finklenburg, S.; Rubin, M.; Ip, W.; Keller, H.; Knollenberg, J.; Kührt, E.; Lai, I.; Skorov, Y.; Thomas, N.; Wu, J.; Chen, Y.

    2014-07-01

    After deep-space hibernation, ESA's Rosetta spacecraft has been successfully woken up and obtained the first images of comet 67P /Churyumov-Gerasimenko (C-G) in March 2014. It is expected that Rosetta will rendezvous with comet 67P and start to observe the nucleus and coma of the comet in the middle of 2014. As the comet approaches the Sun, a significant increase in activity is expected. Our aim is to understand the physical processes in the coma with the help of modeling in order to interpret the resulting measurements and establish observational and data analysis strategies. DSMC (Direct Simulation Monte Carlo) [1] is a very powerful numerical method to study rarefied gas flows such as cometary comae and has been used by several authors over the past decade to study cometary outflow [2,3]. Comparisons between DSMC and fluid techniques have also been performed to establish the limits of these techniques [2,4]. The drawback with 3D DSMC is that it is computationally highly intensive and thus time consuming. However, the performance can be dramatically increased with parallel computing on Graphic Processor Units (GPUs) [5]. We have already studied a case with comet 9P/Tempel 1 where the Deep Impact observations were used to define the shape of the nucleus and the outflow was simulated with the DSMC approach [6,7]. For comet 67P, we intend to determine the gas flow field in the innermost coma and the surface outgassing properties from analyses of the flow field, to investigate dust acceleration by gas drag, and to compare with observations (including time variability). The boundary conditions are implemented with a nucleus shape model [8] and thermal models which are based on the surface heat-balance equation. Several different parameter sets have been investigated. The calculations have been performed using the PDSC^{++} (Parallel Direct Simulation Monte Carlo) code [9] developed by Wu and his coworkers [10-12]. Simulation tasks can be accomplished within 24

  4. Modeling and 3-D Simulation of Biofilm Dynamics in Aqueous Environment

    NASA Astrophysics Data System (ADS)

    Wang, Qi

    2011-11-01

    We present a complex fluid model for biofilms growing in an aqueous environment. The modeling approach represents a new paradigm to develop models for biofilm-environment interaction that can be used to systematically incorporate refined chemical and physiological mechanisms. Special solutions of the model are presented and analyzed. 3-D numerical simulations in aqueous environment with emphasis on biofilm- ambient fluid interaction will be discussed in detail.

  5. 3-D Adaptive Sparsity Based Image Compression with Applications to Optical Coherence Tomography

    PubMed Central

    Fang, Leyuan; Li, Shutao; Kang, Xudong; Izatt, Joseph A.; Farsiu, Sina

    2015-01-01

    We present a novel general-purpose compression method for tomographic images, termed 3D adaptive sparse representation based compression (3D-ASRC). In this paper, we focus on applications of 3D-ASRC for the compression of ophthalmic 3D optical coherence tomography (OCT) images. The 3D-ASRC algorithm exploits correlations among adjacent OCT images to improve compression performance, yet is sensitive to preserving their differences. Due to the inherent denoising mechanism of the sparsity based 3D-ASRC, the quality of the compressed images are often better than the raw images they are based on. Experiments on clinical-grade retinal OCT images demonstrate the superiority of the proposed 3D-ASRC over other well-known compression methods. PMID:25561591

  6. From micro-scale 3D simulations to macro-scale model of periodic porous media

    NASA Astrophysics Data System (ADS)

    Crevacore, Eleonora; Tosco, Tiziana; Marchisio, Daniele; Sethi, Rajandrea; Messina, Francesca

    2015-04-01

    In environmental engineering, the transport of colloidal suspensions in porous media is studied to understand the fate of potentially harmful nano-particles and to design new remediation technologies. In this perspective, averaging techniques applied to micro-scale numerical simulations are a powerful tool to extrapolate accurate macro-scale models. Choosing two simplified packing configurations of soil grains and starting from a single elementary cell (module), it is possible to take advantage of the periodicity of the structures to reduce the computation costs of full 3D simulations. Steady-state flow simulations for incompressible fluid in laminar regime are implemented. Transport simulations are based on the pore-scale advection-diffusion equation, that can be enriched introducing also the Stokes velocity (to consider the gravity effect) and the interception mechanism. Simulations are carried on a domain composed of several elementary modules, that serve as control volumes in a finite volume method for the macro-scale method. The periodicity of the medium involves the periodicity of the flow field and this will be of great importance during the up-scaling procedure, allowing relevant simplifications. Micro-scale numerical data are treated in order to compute the mean concentration (volume and area averages) and fluxes on each module. The simulation results are used to compare the micro-scale averaged equation to the integral form of the macroscopic one, making a distinction between those terms that could be computed exactly and those for which a closure in needed. Of particular interest it is the investigation of the origin of macro-scale terms such as the dispersion and tortuosity, trying to describe them with micro-scale known quantities. Traditionally, to study the colloidal transport many simplifications are introduced, such those concerning ultra-simplified geometry that usually account for a single collector. Gradual removal of such hypothesis leads to a

  7. Simulation of a true-triaxial deformation test on anisotropic gneiss using FLAC3D

    NASA Astrophysics Data System (ADS)

    Ye, Shenghua; Sehizadeh, Mehdi; Nasseri, Mohammad; Young, Paul

    2016-04-01

    A series of true-triaxial experiments have been carried out at the University of Toronto's Rock Fracture Dynamics Laboratory. Isotropic pegmatite and gneiss have been used to systematically study the effect of anisotropy on the strength, behaviour and seismic response. Samples were loaded under true-triaxial stress conditions and subjected to complex loading and unloading histories associated with rock deformation around underground openings. The results show expected patterns of weakness from preferentially oriented samples and highlight the importance of unloading history under true-triaxial conditions on the deformation and seismic response of the samples. These tests have been used to validate a synthetic simulation using the Itasca FLAC3D numerical code. The paper describes the FLAC3D simulations of the complex true-triaxial loading and unloading history of the different anisotropic samples. Various parameters were created to describe the physico-mechanical properties of the synthetic rock samples. Foliation planes of preferential orientations with respect to the primary loading direction were added to the synthetic rock samples to reflect the anisotropy of the gneiss. These synthetic rock samples were subjected to the same loading and unloading paths as the real rock samples, and failed in the same mechanism as what was observed from the experiments, and thus it proved the validity of this numerical simulation with FLAC3D.

  8. Simulation and testing of a multichannel system for 3D sound localization

    NASA Astrophysics Data System (ADS)

    Matthews, Edward Albert

    Three-dimensional (3D) audio involves the ability to localize sound anywhere in a three-dimensional space. 3D audio can be used to provide the listener with the perception of moving sounds and can provide a realistic listening experience for applications such as gaming, video conferencing, movies, and concerts. The purpose of this research is to simulate and test 3D audio by incorporating auditory localization techniques in a multi-channel speaker system. The objective is to develop an algorithm that can place an audio event in a desired location by calculating and controlling the gain factors of each speaker. A MATLAB simulation displays the location of the speakers and perceived sound, which is verified through experimentation. The scenario in which the listener is not equidistant from each of the speakers is also investigated and simulated. This research is envisioned to lead to a better understanding of human localization of sound, and will contribute to a more realistic listening experience.

  9. Filtered sub-grid constitutive models for fluidized gas-particle flows constructed from 3-D simulations

    SciTech Connect

    Sarkar, Avik; Milioli, Fernando E.; Ozarkar, Shailesh; Li, Tingwen; Sun, Xin; Sundaresan, Sankaran

    2016-10-01

    The accuracy of fluidized-bed CFD predictions using the two-fluid model can be improved significantly, even when using coarse grids, by replacing the microscopic kinetic-theory-based closures with coarse-grained constitutive models. These coarse-grained constitutive relationships, called filtered models, account for the unresolved gas-particle structures (clusters and bubbles) via sub-grid corrections. Following the previous 2-D approaches of Igci et al. [AIChE J., 54(6), 1431-1448, 2008] and Milioli et al. [AIChE J., 59(9), 3265-3275, 2013], new filtered models are constructed from highly-resolved 3-D simulations of gas-particle flows. Although qualitatively similar to the older 2-D models, the new 3-D relationships exhibit noticeable quantitative and functional differences. In particular, the filtered stresses are strongly dependent on the gas-particle slip velocity. Closures for the filtered inter-phase drag, gas- and solids-phase pressures and viscosities are reported. A new model for solids stress anisotropy is also presented. These new filtered 3-D constitutive relationships are better suited to practical coarse-grid 3-D simulations of large, commercial-scale devices.

  10. 3D Numerical Simulation on the Sloshing Waves Excited by the Seismic Shacking

    NASA Astrophysics Data System (ADS)

    Zhang, Lin; Wu, Tso-Ren

    2016-04-01

    In the event of 2015 Nepal earthquake, a video clip broadcasted worldwide showed a violent water spilling in a hotel swimming pool. This sloshing phenomenon indicates a potential water loss in the sensitive facilities, e.g. the spent fuel pools in nuclear power plant, has to be taken into account carefully under the consideration of seismic-induced ground acceleration. In the previous studies, the simulation of sloshing mainly focused on the pressure force on the structure by using a simplified Spring-Mass Method developed in the field of solid mechanics. However, restricted by the assumptions of plane water surface and limited wave height, significant error will be made in evaluating the amount of water loss in the tank. In this paper, the computational fluid dynamical model, Splash3D, was adopted for studying the sloshing problem accurately. Splash3D solved 3D Navier-Stokes Equation directly with Large-Eddy Simulation (LES) turbulent closure. The Volume-of-fluid (VOF) method with piecewise linear interface calculation (PLIC) was used to track the complex breaking water surface. The time series acceleration of a design seismic was loaded to excite the water. With few restrictions from the assumptions, the accuracy of the simulation results were improved dramatically. A series model validations were conducted by compared to a 2D theoretical solution, and a 3D experimental data. Good comparisons can be seen. After the validation, we performed the simulation for considering a sloshing case in a rectangular water tank with a dimension of 12 m long, 8 m wide, 8 m deep, which contained water with 7 m in depth. The seismic movement was imported by considering time-series acceleration in three dimensions, which were about 0.5 g to 1.2 g in the horizontal directions, and 0.3 g to 1 g in the vertical direction. We focused the discussions on the kinematics of the water surface, wave breaking, velocity field, pressure field, water force on the side walls, and, most

  11. High Resolution 3D Simulations of the Impacts of Asteroids into the Venusian Atmosphere

    NASA Astrophysics Data System (ADS)

    Korycansky, D. G.; Zahnle, K. J.; Mac Low, M.-M.

    2000-10-01

    We compare high-resolution 2D and 3D numerical hydrocode simulations of asteroids striking the atmosphere of Venus. Our focus is on aerobraking and its effect on the size of impact craters. We consider impacts both by spheres and by the real asteroid 4769 Castalia, a severely nonspherical body in a Venus-crossing orbit. We compute mass and momentum fluxes as functions of altitude as global measures of the asteroid's progress. We find that, on average, the 2D and 3D simulations are in broad agreement over how quickly an asteroid slows down, but that the scatter about the average is much larger for the 2D models than for the 3D models. The 2D models appear to be strongly susceptible to the ``butterfly effect'', in which tiny changes in initial conditions (e.g., 0.05% change in the impact velocity) produce quite different chaotic evolutions. By contrast the global properties of the 3D models appear more reproducible despite seemingly large differences in initial conditions. We argue that this difference between 2D and 3D models has its root in the greater geometrical constraints present in any 2D model, and in particular in the conservation of enstrophy in 2D that forces energy to pool in large-scale structures. It is the interaction of these artificial large-scale structures that causes slightly different 2D models to diverge so greatly. These constraints do not apply in 3D and large scale structures are not observed to form. A one-parameter modified pancake model reproduces the crater-forming potential of the 3D Castalias quite well. This work was supported by NASA's Exobiology and Planetary Atmospheres Programs. Image rendering was done using the resources of UCSC Vizualizaton Lab. M-MML is partially supported by a CAREER fellowship from the US NSF. This work was partially supported by the National Computational Science Alliance, utilizing the NCSA SGI/CRAY Power Challenge array at the University of Illinois, Urbana-Champaign.

  12. Simulation study of a novel 3D SPAD pixel in an advanced FD-SOI technology

    NASA Astrophysics Data System (ADS)

    Vignetti, M. M.; Calmon, F.; Lesieur, P.; Savoy-Navarro, A.

    2017-02-01

    In this paper, a novel SPAD architecture implemented in a Fully-Depleted Silicon-On-Insulator (SOI) CMOS technology is presented. Thanks to its intrinsic vertical 3D structure, the proposed solution is expected to allow further scaling of the pixel size while ensuring high fill factors. Moreover the pixel and the detector electronics can benefit of the well-known advantages brought by SOI technology with respect to bulk CMOS, such as higher speed and lower power consumption. TCAD simulations based on realistic process parameters and dedicated post-processing analysis are carried out in order to optimize and validate the avalanche diode architecture for an optimal electric field distribution in the device but also to extract the main parameters of the SPAD, such as the breakdown voltage, the avalanche triggering probability, the dark count rate and the photon detection probability. A comparison between the efficiency in back-side and front-side approaches is carried out with a particular focus on time-of-flight applications.

  13. GMC Collisions as Triggers of Star Formation. II. 3D Turbulent, Magnetized Simulations

    NASA Astrophysics Data System (ADS)

    Wu, Benjamin; Tan, Jonathan C.; Nakamura, Fumitaka; Van Loo, Sven; Christie, Duncan; Collins, David

    2017-02-01

    We investigate giant molecular cloud collisions and their ability to induce gravitational instability and thus star formation. This mechanism may be a major driver of star formation activity in galactic disks. We carry out a series of 3D, magnetohydrodynamics (MHD), adaptive mesh refinement simulations to study how cloud collisions trigger formation of dense filaments and clumps. Heating and cooling functions are implemented based on photo-dissociation region models that span the atomic-to-molecular transition and can return detailed diagnostic information. The clouds are initialized with supersonic turbulence and a range of magnetic field strengths and orientations. Collisions at various velocities and impact parameters are investigated. Comparing and contrasting colliding and non-colliding cases, we characterize morphologies of dense gas, magnetic field structure, cloud kinematic signatures, and cloud dynamics. We present key observational diagnostics of cloud collisions, especially: relative orientations between magnetic fields and density structures, like filaments; 13CO(J = 2-1), 13CO(J = 3-2), and 12CO(J = 8-7) integrated intensity maps and spectra; and cloud virial parameters. We compare these results to observed Galactic clouds.

  14. Models and simulation of 3D neuronal dendritic trees using Bayesian networks.

    PubMed

    López-Cruz, Pedro L; Bielza, Concha; Larrañaga, Pedro; Benavides-Piccione, Ruth; DeFelipe, Javier

    2011-12-01

    Neuron morphology is crucial for neuronal connectivity and brain information processing. Computational models are important tools for studying dendritic morphology and its role in brain function. We applied a class of probabilistic graphical models called Bayesian networks to generate virtual dendrites from layer III pyramidal neurons from three different regions of the neocortex of the mouse. A set of 41 morphological variables were measured from the 3D reconstructions of real dendrites and their probability distributions used in a machine learning algorithm to induce the model from the data. A simulation algorithm is also proposed to obtain new dendrites by sampling values from Bayesian networks. The main advantage of this approach is that it takes into account and automatically locates the relationships between variables in the data instead of using predefined dependencies. Therefore, the methodology can be applied to any neuronal class while at the same time exploiting class-specific properties. Also, a Bayesian network was defined for each part of the dendrite, allowing the relationships to change in the different sections and to model heterogeneous developmental factors or spatial influences. Several univariate statistical tests and a novel multivariate test based on Kullback-Leibler divergence estimation confirmed that virtual dendrites were similar to real ones. The analyses of the models showed relationships that conform to current neuroanatomical knowledge and support model correctness. At the same time, studying the relationships in the models can help to identify new interactions between variables related to dendritic morphology.

  15. Evaluation of 3D modality-independent elastography for breast imaging: a simulation study

    NASA Astrophysics Data System (ADS)

    Ou, J. J.; Ong, R. E.; Yankeelov, T. E.; Miga, M. I.

    2008-01-01

    This paper reports on the development and preliminary testing of a three-dimensional implementation of an inverse problem technique for extracting soft-tissue elasticity information via non-rigid model-based image registration. The modality-independent elastography (MIE) algorithm adjusts the elastic properties of a biomechanical model to achieve maximal similarity between images acquired under different states of static loading. A series of simulation experiments with clinical image sets of human breasts were performed to test the ability of the method to identify and characterize a radiographically occult stiff lesion. Because boundary conditions are a critical input to the algorithm, a comparison of three methods for semi-automated surface point correspondence was conducted in the context of systematic and randomized noise processes. The results illustrate that 3D MIE was able to successfully reconstruct elasticity images using data obtained from both magnetic resonance and x-ray computed tomography systems. The lesion was localized correctly in all cases and its relative elasticity found to be reasonably close to the true values (3.5% with the use of spatial priors and 11.6% without). In addition, the inaccuracies of surface registration performed with thin-plate spline interpolation did not exceed empiric thresholds of unacceptable boundary condition error.

  16. 3D finite element simulation of effects of deflection rate on energy absorption for TRIP steel

    NASA Astrophysics Data System (ADS)

    Hayashi, Asuka; Pham, Hang; Iwamoto, Takeshi

    2015-09-01

    Recently, with the requirement of lighter weight and more safety for a design of automobile, energy absorption capability of structural materials has become important. TRIP (Transformation-induced Plasticity) steel is expected to apply to safety members because of excellent energy absorption capability and ductility. Past studies proved that such excellent characteristics in TRIP steel are dominated by strain-induced martensitic transformation (SIMT) during plastic deformation. Because SIMT strongly depends on deformation rate and temperature, an investigation of the effects of deformation rate and temperature on energy absorption in TRIP is essential. Although energy absorption capability of material can be estimated by J-integral experimentally by using pre-cracked specimen, it is difficult to determine volume fraction of martensite and temperature rise during the crack extension. In addition, their effects on J-integral, especially at high deformation rate in experiment might be quite hard. Thus, a computational prediction needs to be performed. In this study, bending deformation behavior of pre-cracked specimen until the onset point of crack extension are predicted by 3D finite element simulation based on the transformation kinetics model proposed by Iwamoto et al. (1998). It is challenged to take effects of temperature, volume fraction of martensite and deformation rate into account. Then, the mechanism for higher energy absorption characteristic will be discussed.

  17. The Impact of 3D Data Quality on Improving GNSS Performance Using City Models Initial Simulations

    NASA Astrophysics Data System (ADS)

    Ellul, C.; Adjrad, M.; Groves, P.

    2016-10-01

    There is an increasing demand for highly accurate positioning information in urban areas, to support applications such as people and vehicle tracking, real-time air quality detection and navigation. However systems such as GPS typically perform poorly in dense urban areas. A number of authors have made use of 3D city models to enhance accuracy, obtaining good results, but to date the influence of the quality of the 3D city model on these results has not been tested. This paper addresses the following question: how does the quality, and in particular the variation in height, level of generalization and completeness and currency of a 3D dataset, impact the results obtained for the preliminary calculations in a process known as Shadow Matching, which takes into account not only where satellite signals are visible on the street but also where they are predicted to be absent. We describe initial simulations to address this issue, examining the variation in elevation angle - i.e. the angle above which the satellite is visible, for three 3D city models in a test area in London, and note that even within one dataset using different available height values could cause a difference in elevation angle of up to 29°. Missing or extra buildings result in an elevation variation of around 85°. Variations such as these can significantly influence the predicted satellite visibility which will then not correspond to that experienced on the ground, reducing the accuracy of the resulting Shadow Matching process.

  18. Validation of a 3D computational fluid-structure interaction model simulating flow through an elastic aperture

    PubMed Central

    Quaini, A.; Canic, S.; Glowinski, R.; Igo, S.; Hartley, C.J.; Zoghbi, W.; Little, S.

    2011-01-01

    This work presents a validation of a fluid-structure interaction computational model simulating the flow conditions in an in vitro mock heart chamber modeling mitral valve regurgitation during the ejection phase during which the trans-valvular pressure drop and valve displacement are not as large. The mock heart chamber was developed to study the use of 2D and 3D color Doppler techniques in imaging the clinically relevant complex intra-cardiac flow events associated with mitral regurgitation. Computational models are expected to play an important role in supporting, refining, and reinforcing the emerging 3D echocardiographic applications. We have developed a 3D computational fluid-structure interaction algorithm based on a semi-implicit, monolithic method, combined with an arbitrary Lagrangian-Eulerian approach to capture the fluid domain motion. The mock regurgitant mitral valve corresponding to an elastic plate with a geometric orifice, was modeled using 3D elasticity, while the blood flow was modeled using the 3D Navier-Stokes equations for an incompressible, viscous fluid. The two are coupled via the kinematic and dynamic conditions describing the two-way coupling. The pressure, the flow rate, and orifice plate displacement were measured and compared with numerical simulation results. In-line flow meter was used to measure the flow, pressure transducers were used to measure the pressure, and a Doppler method developed by one of the authors was used to measure the axial displacement of the orifice plate. The maximum recorded difference between experiment and numerical simulation for the flow rate was 4%, the pressure 3.6%, and for the orifice displacement 15%, showing excellent agreement between the two. PMID:22138194

  19. Use of 3-D magnetic resonance electrical impedance tomography in detecting human cerebral stroke: a simulation study*

    PubMed Central

    Gao, Nuo; Zhu, Shan-an; He, Bin

    2005-01-01

    We have developed a new three dimensional (3-D) conductivity imaging approach and have used it to detect human brain conductivity changes corresponding to acute cerebral stroke. The proposed Magnetic Resonance Electrical Impedance Tomography (MREIT) approach is based on the J-Substitution algorithm and is expanded to imaging 3-D subject conductivity distribution changes. Computer simulation studies have been conducted to evaluate the present MREIT imaging approach. Simulations of both types of cerebral stroke, hemorrhagic stroke and ischemic stroke, were performed on a four-sphere head model. Simulation results showed that the correlation coefficient (CC) and relative error (RE) between target and estimated conductivity distributions were 0.9245±0.0068 and 8.9997%±0.0084%, for hemorrhagic stroke, and 0.6748±0.0197 and 8.8986%±0.0089%, for ischemic stroke, when the SNR (signal-to-noise radio) of added GWN (Gaussian White Noise) was 40. The convergence characteristic was also evaluated according to the changes of CC and RE with different iteration numbers. The CC increases and RE decreases monotonously with the increasing number of iterations. The present simulation results show the feasibility of the proposed 3-D MREIT approach in hemorrhagic and ischemic stroke detection and suggest that the method may become a useful alternative in clinical diagnosis of acute cerebral stroke in humans. PMID:15822161

  20. Sedimentary basin effects in Seattle, Washington: Ground-motion observations and 3D simulations

    USGS Publications Warehouse

    Frankel, Arthur; Stephenson, William; Carver, David

    2009-01-01

    Seismograms of local earthquakes recorded in Seattle exhibit surface waves in the Seattle basin and basin-edge focusing of S waves. Spectral ratios of Swaves and later arrivals at 1 Hz for stiff-soil sites in the Seattle basin show a dependence on the direction to the earthquake, with earthquakes to the south and southwest producing higher average amplification. Earthquakes to the southwest typically produce larger basin surface waves relative to S waves than earthquakes to the north and northwest, probably because of the velocity contrast across the Seattle fault along the southern margin of the Seattle basin. S to P conversions are observed for some events and are likely converted at the bottom of the Seattle basin. We model five earthquakes, including the M 6.8 Nisqually earthquake, using 3D finite-difference simulations accurate up to 1 Hz. The simulations reproduce the observed dependence of amplification on the direction to the earthquake. The simulations generally match the timing and character of basin surface waves observed for many events. The 3D simulation for the Nisqually earth-quake produces focusing of S waves along the southern margin of the Seattle basin near the area in west Seattle that experienced increased chimney damage from the earthquake, similar to the results of the higher-frequency 2D simulation reported by Stephenson et al. (2006). Waveforms from the 3D simulations show reasonable agreement with the data at low frequencies (0.2-0.4 Hz) for the Nisqually earthquake and an M 4.8 deep earthquake west of Seattle.

  1. Defragmented image based autostereoscopic 3D displays with dynamic eye tracking

    NASA Astrophysics Data System (ADS)

    Kim, Sung-Kyu; Yoon, Ki-Hyuk; Yoon, Seon Kyu; Ju, Heongkyu

    2015-12-01

    We studied defragmented image based autostereoscopic 3D displays with dynamic eye tracking. Specifically, we examined the impact of parallax barrier (PB) angular orientation on their image quality. The 3D display system required fine adjustment of PB angular orientation with respect to a display panel. This was critical for both image color balancing and minimizing image resolution mismatch between horizontal and vertical directions. For evaluating uniformity of image brightness, we applied optical ray tracing simulations. The simulations took effects of PB orientation misalignment into account. The simulation results were then compared with recorded experimental data. Our optimal simulated system produced significantly enhanced image uniformity at around sweet spots in viewing zones. However this was contradicted by real experimental results. We offer quantitative treatment of illuminance uniformity of view images to estimate misalignment of PB orientation, which could account for brightness non-uniformity observed experimentally. Our study also shows that slight imperfection in the adjustment of PB orientation due to practical restrictions of adjustment accuracy can induce substantial non-uniformity of view images' brightness. We find that image brightness non-uniformity critically depends on misalignment of PB angular orientation, for example, as slight as ≤ 0.01 ° in our system. This reveals that reducing misalignment of PB angular orientation from the order of 10-2 to 10-3 degrees can greatly improve the brightness uniformity.

  2. Software Development: 3D Animations and Creating User Interfaces for Realistic Simulations

    NASA Technical Reports Server (NTRS)

    Gordillo, Orlando Enrique

    2015-01-01

    My fall 2015 semester was spent at the Lyndon B. Johnson Space Center working in the Integrated Graphics, Operations, and Analysis Laboratory (IGOAL). My first project was to create a video animation that could tell the story of OMICS. OMICS is a term being used in the field of biomedical science to describe the collective technologies that study biological systems, such as what makes up a cell and how it functions with other systems. In the IGOAL I used a large 23 inch Wacom monitor to draw storyboards, graphics, and line art animations. I used Blender as the 3D environment to sculpt, shape, cut or modify the several scenes and models for the video. A challenge creating this video was to take a term used in biomedical science and describe it in such a way that an 8th grade student can understand. I used a line art style because it would visually set the tone for what we thought was an educational style. In order to get a handle on the perspective and overall feel for the animation without overloading my workspace, I split up the 2 minute animation into several scenes. I used Blender's python scripting capabilities which allowed for the addition of plugins to add or modify tools. The scripts can also directly interact with the objects to create naturalistic patterns or movements. After collecting the rendered scenes, I used Blender's built-in video editing workspace to output the animation. My second project was to write software that emulates a physical system's interface. The interface was to simulate a boat, ROV, and winch system. Simulations are a time and cost effective way to test complicated data and provide training for operators without having to use expensive hardware. We created the virtual controls with 3-D Blender models and 2-D graphics, and then add functionality in C# using the Unity game engine. The Unity engine provides several essential behaviors of a simulator, such as the start and update functions. A framework for Unity, which was developed in

  3. Implementation of Headtracking and 3D Stereo with Unity and VRPN for Computer Simulations

    NASA Technical Reports Server (NTRS)

    Noyes, Matthew A.

    2013-01-01

    This paper explores low-cost hardware and software methods to provide depth cues traditionally absent in monocular displays. The use of a VRPN server in conjunction with a Microsoft Kinect and/or Nintendo Wiimote to provide head tracking information to a Unity application, and NVIDIA 3D Vision for retinal disparity support, is discussed. Methods are suggested to implement this technology with NASA's EDGE simulation graphics package, along with potential caveats. Finally, future applications of this technology to astronaut crew training, particularly when combined with an omnidirectional treadmill for virtual locomotion and NASA's ARGOS system for reduced gravity simulation, are discussed.

  4. Improving light propagation Monte Carlo simulations with accurate 3D modeling of skin tissue

    SciTech Connect

    Paquit, Vincent C; Price, Jeffery R; Meriaudeau, Fabrice; Tobin Jr, Kenneth William

    2008-01-01

    In this paper, we present a 3D light propagation model to simulate multispectral reflectance images of large skin surface areas. In particular, we aim to simulate more accurately the effects of various physiological properties of the skin in the case of subcutaneous vein imaging compared to existing models. Our method combines a Monte Carlo light propagation model, a realistic three-dimensional model of the skin using parametric surfaces and a vision system for data acquisition. We describe our model in detail, present results from the Monte Carlo modeling and compare our results with those obtained with a well established Monte Carlo model and with real skin reflectance images.

  5. 2-D and 3-D PIC simulations of a SLAC Klystrino

    NASA Astrophysics Data System (ADS)

    Spencer, Thomas; Luginsland, John; Hackett, Kirk; Haworth, Michael; Song, Liqun; Scheitrum, Glenn

    2000-10-01

    The Air Force Research Laboratory is collaborating with the Stanford Linear Accelerator Center in performing 3-D PIC simulations using ARGUS and ICEPIC on a klystrino with the following parameters: voltage of 110 kV, current of 2.4 A, frequency of 94 GHz, peak magnetic field of 4 kG. Results wll be presented and will be compared to 2-D MAGIC simulations, as well as to experimental test data. This work is supported in part by the Air Force Office of Scientific Research.

  6. Numerical simulation of the 3D unsteady turbulent flow in a combustion chamber

    NASA Astrophysics Data System (ADS)

    Stuparu, Adrian; Holotescu, Sorin

    2011-06-01

    The influence of turbulence models on the 3D unsteady flow in a combustion chamber with a central bluff body is analyzed. Three different turbulence models are used (realizable k-ɛ, Reynolds Stress Model and Large Eddy Simulation) and a comparison is made on the evolution of the velocity field over time. The numerical simulation of the gas flow in the combustion chamber was performed using FLUENT 6.3 software and the computational geometry, consisting of a structured mesh with 810,000 cells, was built using the pre-processor GAMBIT 2.4. The extent of the recirculation region behind the bluff body was determined for each turbulence model.

  7. Numerical simulation of the 3D unsteady turbulent flow in a combustion chamber

    NASA Astrophysics Data System (ADS)

    Stuparu, Adrian; Holotescu, Sorin

    2011-06-01

    The influence of turbulence models on the 3D unsteady flow in a combustion chamber with a central bluff body is analyzed. Three different turbulence models are used ( realizable k-ɛ, Reynolds Stress Model and Large Eddy Simulation) and a comparison is made on the evolution of the velocity field over time. The numerical simulation of the gas flow in the combustion chamber was performed using FLUENT 6.3 software and the computational geometry, consisting of a structured mesh with 810,000 cells, was built using the pre-processor GAMBIT 2.4. The extent of the recirculation region behind the bluff body was determined for each turbulence model.

  8. Hybrid atlas-based and image-based approach for segmenting 3D brain MRIs

    NASA Astrophysics Data System (ADS)

    Bueno, Gloria; Musse, Olivier; Heitz, Fabrice; Armspach, Jean-Paul

    2001-07-01

    This work is a contribution to the problem of localizing key cerebral structures in 3D MRIs and its quantitative evaluation. In pursuing it, the cooperation between an image-based segmentation method and a hierarchical deformable registration approach has been considered. The segmentation relies on two main processes: homotopy modification and contour decision. The first one is achieved by a marker extraction stage where homogeneous 3D regions of an image, I(s), from the data set are identified. These regions, M(I), are obtained combining information from deformable atlas, achieved by the warping of eight previous labeled maps on I(s). Then, the goal of the decision stage is to precisely locate the contours of the 3D regions set by the markers. This contour decision is performed by a 3D extension of the watershed transform. The anatomical structures taken into consideration and embedded into the atlas are brain, ventricles, corpus callosum, cerebellum, right and left hippocampus, medulla and midbrain. The hybrid method operates fully automatically and in 3D, successfully providing segmented brain structures. The quality of the segmentation has been studied in terms of the detected volume ratio by using kappa statistic and ROC analysis. Results of the method are shown and validated on a 3D MRI phantom. This study forms part of an on-going long term research aiming at the creation of a 3D probabilistic multi-purpose anatomical brain atlas.

  9. New 3-D microarray platform based on macroporous polymer monoliths.

    PubMed

    Rober, M; Walter, J; Vlakh, E; Stahl, F; Kasper, C; Tennikova, T

    2009-06-30

    Polymer macroporous monoliths are widely used as efficient sorbents in different, mostly dynamic, interphase processes. In this paper, monolithic materials strongly bound to the inert glass surface are suggested as operative matrices at the development of three-dimensional (3-D) microarrays. For this purpose, several rigid macroporous copolymers differed by reactivity and hydrophobic-hydrophilic properties were synthesized and tested: (1) glycidyl methacrylate-co-ethylene dimethacrylate (poly(GMA-co-EDMA)), (2) glycidyl methacrylate-co-glycerol dimethacrylate (poly(GMA-co-GDMA)), (3) N-hydroxyphthalimide ester of acrylic acid-co-glycidyl methacrylate-co-ethylene dimethacrylate (poly(HPIEAA-co-GMA-co-EDMA)), (4) 2-cyanoethyl methacrylate-co-ethylene dimethacrylate (poly(CEMA-co-EDMA)), and (5) 2-cyanoethyl methacrylate-co-2-hydroxyethyl methacrylate-co-ethylene dimethacrylate (poly(CEMA-co-HEMA-co-EDMA)). The constructed devices were used as platforms for protein microarrays construction and model mouse IgG-goat anti-mouse IgG affinity pair was used to demonstrate the potential of developed test-systems, as well as to optimize microanalytical conditions. The offered microarray platforms were applied to detect the bone tissue marker osteopontin directly in cell culture medium.

  10. Contactless operating table control based on 3D image processing.

    PubMed

    Schröder, Stephan; Loftfield, Nina; Langmann, Benjamin; Frank, Klaus; Reithmeier, Eduard

    2014-01-01

    Interaction with mobile consumer devices leads to a higher acceptance and affinity of persons to natural user interfaces and perceptional interaction possibilities. New interaction modalities become accessible and are capable to improve human machine interaction even in complex and high risk environments, like the operation room. Here, manifold medical disciplines cause a great variety of procedures and thus staff and equipment. One universal challenge is to meet the sterility requirements, for which common contact-afflicted remote interfaces always pose a potential risk causing a hazard for the process. The proposed operating table control system overcomes this process risk and thus improves the system usability significantly. The 3D sensor system, the Microsoft Kinect, captures the motion of the user, allowing a touchless manipulation of an operating table. Three gestures enable the user to select, activate and manipulate all segments of the motorised system in a safe and intuitive way. The gesture dynamics are synchronised with the table movement. In a usability study, 15 participants evaluated the system with a system usability score by Broke of 79. This states a high potential for implementation and acceptance in interventional environments. In the near future, even processes with higher risks could be controlled with the proposed interface, while interfaces become safer and more direct.

  11. Simulation of the impact of 3-D porosity distribution in metallic U-10Zr fuels

    NASA Astrophysics Data System (ADS)

    Yun, Di; Yacout, Abdellatif M.; Stan, Marius; Bauer, Theodore H.; Wright, Arthur E.

    2014-05-01

    Evolution of porosity generated in metallic U-Zr fuel irradiated in fast spectrum reactors leads to changes in fuel properties and impacts important phenomena such as heat transport and constituent redistribution. The porosity is generated as a result of the accumulation of fission gases and is affected by the possible bond sodium infiltration into the fuel. Typically, the impact of porosity development on properties, such as thermal conductivity, is accounted for through empirical correlations that are dependent on porosity and infiltrated sodium fractions. Currently available simulation tools make it possible to take into account fuel 3-D porosity distributions, potentially eliminating the need for such correlations. This development allows for a more realistic representation of the porosity evolution in metallic fuel and creates a framework for truly mechanistic fuel development models. In this work, COMSOL multi-physics simulation platform is used to model 3-D porosity distributions and simulate heat transport in metallic U-10Zr fuel. Available experimental data regarding microstructural evolution of fuel that was irradiated in EBR-II and associated phase stability information are used to guide the simulation. The impact of changes in porosity characteristics on material properties is estimated and the results are compared with calculated temperature distributions. The simulations demonstrate the developed capability and importance of accounting for detailed porosity distribution features for accurate fuel performance evaluation.

  12. Performance of dental students versus prosthodontics residents on a 3D immersive haptic simulator.

    PubMed

    Eve, Elizabeth J; Koo, Samuel; Alshihri, Abdulmonem A; Cormier, Jeremy; Kozhenikov, Maria; Donoff, R Bruce; Karimbux, Nadeem Y

    2014-04-01

    This study evaluated the performance of dental students versus prosthodontics residents on a simulated caries removal exercise using a newly designed, 3D immersive haptic simulator. The intent of this study was to provide an initial assessment of the simulator's construct validity, which in the context of this experiment was defined as its ability to detect a statistically significant performance difference between novice dental students (n=12) and experienced prosthodontics residents (n=14). Both groups received equivalent calibration training on the simulator and repeated the same caries removal exercise three times. Novice and experienced subjects' average performance differed significantly on the caries removal exercise with respect to the percentage of carious lesion removed and volume of surrounding sound tooth structure removed (p<0.05). Experienced subjects removed a greater portion of the carious lesion, but also a greater volume of the surrounding tooth structure. Efficiency, defined as percentage of carious lesion removed over drilling time, improved significantly over the course of the experiment for both novice and experienced subjects (p<0.001). Within the limitations of this study, experienced subjects removed a greater portion of carious lesion on a 3D immersive haptic simulator. These results are a first step in establishing the validity of this device.

  13. Full Core 3-D Simulation of a Partial MOX LWR Core

    SciTech Connect

    S. Bays; W. Skerjanc; M. Pope

    2009-05-01

    A comparative analysis and comparison of results obtained between 2-D lattice calculations and 3-D full core nodal calculations, in the frame of MOX fuel design, was conducted. This study revealed a set of advantages and disadvantages, with respect to each method, which can be used to guide the level of accuracy desired for future fuel and fuel cycle calculations. For the purpose of isotopic generation for fuel cycle analyses, the approach of using a 2-D lattice code (i.e., fuel assembly in infinite lattice) gave reasonable predictions of uranium and plutonium isotope concentrations at the predicted 3-D core simulation batch average discharge burnup. However, it was found that the 2-D lattice calculation can under-predict the power of pins located along a shared edge between MOX and UO2 by as much as 20%. In this analysis, this error did not occur in the peak pin. However, this was a coincidence and does not rule out the possibility that the peak pin could occur in a lattice position with high calculation uncertainty in future un-optimized studies. Another important consideration in realistic fuel design is the prediction of the peak axial burnup and neutron fluence. The use of 3-D core simulation gave peak burnup conditions, at the pellet level, to be approximately 1.4 times greater than what can be predicted using back-of-the-envelope assumptions of average specific power and irradiation time.

  14. Anomalous Surface Deformation of Sapphire Clarified by 3D-FEM Simulation of the Nanoindentation

    NASA Astrophysics Data System (ADS)

    Nowak, Roman; Manninen, Timo; Li, Chunliang; Heiskanen, Kari; Hannula, Simo-Pekka; Lindroos, Veikko; Soga, Tetsuo; Yoshida, Fusahito

    This work clarifies the origin of anomalous surface deformation reflected by peculiar surface patterns around indentation impressions on various crystallographic planes of sapphire. The three-dimensional finite element simulation (3D-FEM) of nanoindentation in Al2O3 crystal allowed the authors to localize the regions in which various kinds of twinning and slip are most prone to be activated. The work provides a novel approach to the “hardness anisotropy”, which was modeled so far using a modified uniaxial-stress approximation of this essentially 3D, non-isotropic contact problem. The calculated results enabled the authors to unravel the asymmetric surface deformation detected on prismatic planes by the high-resolution microscopy, which cannot be explained using simple crystallographic considerations.

  15. Application of FUN3D Solver for Aeroacoustics Simulation of a Nose Landing Gear Configuration

    NASA Technical Reports Server (NTRS)

    Vatsa, Veer N.; Lockard, David P.; Khorrami, Mehdi R.

    2011-01-01

    Numerical simulations have been performed for a nose landing gear configuration corresponding to the experimental tests conducted in the Basic Aerodynamic Research Tunnel at NASA Langley Research Center. A widely used unstructured grid code, FUN3D, is examined for solving the unsteady flow field associated with this configuration. A series of successively finer unstructured grids has been generated to assess the effect of grid refinement. Solutions have been obtained on purely tetrahedral grids as well as mixed element grids using hybrid RANS/LES turbulence models. The agreement of FUN3D solutions with experimental data on the same size mesh is better on mixed element grids compared to pure tetrahedral grids, and in general improves with grid refinement.

  16. Ozone formation during an episode over Europe: A 3-D chemical/transport model simulation

    NASA Technical Reports Server (NTRS)

    Berntsen, Terje; Isaksen, Ivar S. A.

    1994-01-01

    A 3-D regional photochemical tracer/transport model for Europe and the Eastern Atlantic has been developed based on the NASA/GISS CTM. The model resolution is 4x5 degrees latitude and longitude with 9 layers in the vertical (7 in the troposphere). Advective winds, convection statistics and other meteorological data from the NASA/GISS GCM are used. An extensive gas-phase chemical scheme based on the scheme used in our global 2D model has been incorporated in the 3D model. In this work ozone formation in the troposphere is studied with the 3D model during a 5 day period starting June 30. Extensive local ozone production is found and the relationship between the source regions and the downwind areas are discussed. Variations in local ozone formation as a function of total emission rate, as well as the composition of the emissions (HC/NO(x)) ratio and isoprene emissions) are elucidated. An important vertical transport process in the troposphere is by convective clouds. The 3D model includes an explicit parameterization of this process. It is shown that this process has significant influence on the calculated surface ozone concentrations.

  17. Toward high-speed 3D nonlinear soft tissue deformation simulations using Abaqus software.

    PubMed

    Idkaidek, Ashraf; Jasiuk, Iwona

    2015-12-01

    We aim to achieve a fast and accurate three-dimensional (3D) simulation of a porcine liver deformation under a surgical tool pressure using the commercial finite element software Abaqus. The liver geometry is obtained using magnetic resonance imaging, and a nonlinear constitutive law is employed to capture large deformations of the tissue. Effects of implicit versus explicit analysis schemes, element type, and mesh density on computation time are studied. We find that Abaqus explicit and implicit solvers are capable of simulating nonlinear soft tissue deformations accurately using first-order tetrahedral elements in a relatively short time by optimizing the element size. This study provides new insights and guidance on accurate and relatively fast nonlinear soft tissue simulations. Such simulations can provide force feedback during robotic surgery and allow visualization of tissue deformations for surgery planning and training of surgical residents.

  18. Development of a numerical simulator of human swallowing using a particle method (Part 2. Evaluation of the accuracy of a swallowing simulation using the 3D MPS method).

    PubMed

    Kamiya, Tetsu; Toyama, Yoshio; Michiwaki, Yukihiro; Kikuchi, Takahiro

    2013-01-01

    The aim of this study was to develop and evaluate the accuracy of a three-dimensional (3D) numerical simulator of the swallowing action using the 3D moving particle simulation (MPS) method, which can simulate splashes and rapid changes in the free surfaces of food materials. The 3D numerical simulator of the swallowing action using the MPS method was developed based on accurate organ models, which contains forced transformation by elapsed time. The validity of the simulation results were evaluated qualitatively based on comparisons with videofluorography (VF) images. To evaluate the validity of the simulation results quantitatively, the normalized brightness around the vallecula was used as the evaluation parameter. The positions and configurations of the food bolus during each time step were compared in the simulated and VF images. The simulation results corresponded to the VF images during each time step in the visual evaluations, which suggested that the simulation was qualitatively correct. The normalized brightness of the simulated and VF images corresponded exactly at all time steps. This showed that the simulation results, which contained information on changes in the organs and the food bolus, were numerically correct. Based on these results, the accuracy of this simulator was high and it could be used to study the mechanism of disorders that cause dysphasia. This simulator also calculated the shear rate at a specific point and the timing with Newtonian and non-Newtonian fluids. We think that the information provided by this simulator could be useful for development of food products, medicines, and in rehabilitation facilities.

  19. Image-driven, model-based 3D abdominal motion estimation for MR-guided radiotherapy

    NASA Astrophysics Data System (ADS)

    Stemkens, Bjorn; Tijssen, Rob H. N.; de Senneville, Baudouin Denis; Lagendijk, Jan J. W.; van den Berg, Cornelis A. T.

    2016-07-01

    Respiratory motion introduces substantial uncertainties in abdominal radiotherapy for which traditionally large margins are used. The MR-Linac will open up the opportunity to acquire high resolution MR images just prior to radiation and during treatment. However, volumetric MRI time series are not able to characterize 3D tumor and organ-at-risk motion with sufficient temporal resolution. In this study we propose a method to estimate 3D deformation vector fields (DVFs) with high spatial and temporal resolution based on fast 2D imaging and a subject-specific motion model based on respiratory correlated MRI. In a pre-beam phase, a retrospectively sorted 4D-MRI is acquired, from which the motion is parameterized using a principal component analysis. This motion model is used in combination with fast 2D cine-MR images, which are acquired during radiation, to generate full field-of-view 3D DVFs with a temporal resolution of 476 ms. The geometrical accuracies of the input data (4D-MRI and 2D multi-slice acquisitions) and the fitting procedure were determined using an MR-compatible motion phantom and found to be 1.0-1.5 mm on average. The framework was tested on seven healthy volunteers for both the pancreas and the kidney. The calculated motion was independently validated using one of the 2D slices, with an average error of 1.45 mm. The calculated 3D DVFs can be used retrospectively for treatment simulations, plan evaluations, or to determine the accumulated dose for both the tumor and organs-at-risk on a subject-specific basis in MR-guided radiotherapy.

  20. Vision-Based 3D Motion Estimation for On-Orbit Proximity Satellite Tracking and Navigation

    DTIC Science & Technology

    2015-06-01

    printed using the Fortus 400mc 3D rapid- prototyping printer of the NPS Space Systems Academic Group, while the internal structure is made of aluminum...NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release; distribution is unlimited VISION-BASED 3D ...REPORT TYPE AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE VISION-BASED 3D MOTION ESTIMATION FOR ON-ORBIT PROXIMITY SATELLITE TRACKING

  1. Multi-AUV Target Search Based on Bioinspired Neurodynamics Model in 3-D Underwater Environments.

    PubMed

    Cao, Xiang; Zhu, Daqi; Yang, Simon X

    2016-11-01

    Target search in 3-D underwater environments is a challenge in multiple autonomous underwater vehicles (multi-AUVs) exploration. This paper focuses on an effective strategy for multi-AUV target search in the 3-D underwater environments with obstacles. First, the Dempster-Shafer theory of evidence is applied to extract information of environment from the sonar data to build a grid map of the underwater environments. Second, a topologically organized bioinspired neurodynamics model based on the grid map is constructed to represent the dynamic environment. The target globally attracts the AUVs through the dynamic neural activity landscape of the model, while the obstacles locally push the AUVs away to avoid collision. Finally, the AUVs plan their search path to the targets autonomously by a steepest gradient descent rule. The proposed algorithm deals with various situations, such as static targets search, dynamic targets search, and one or several AUVs break down in the 3-D underwater environments with obstacles. The simulation results show that the proposed algorithm is capable of guiding multi-AUV to achieve search task of multiple targets with higher efficiency and adaptability compared with other algorithms.

  2. 3D through silicon via profile metrology based on spectroscopic reflectometry for SOI applications

    NASA Astrophysics Data System (ADS)

    Fursenko, O.; Bauer, J.; Marschmeyer, S.

    2016-04-01

    Through-silicon via (TSV) technology is a key feature for 3D circuit integration. TSVs are formed by etching a vertical via and filling them with a conductive material for creation of interconnections which go through the silicon or silicon-on-insulator (SOI) wafer. The Bosch etch process on Deep Reactive Ion Etching (DRIE) is commonly used for this purpose. The etch profile defined by the critical dimensions (CDs) at the top and at the bottom, by the depth and by the scallop size on the sidewall needs to be monitored and well controlled. In this work a nondestructive 3D metrology of deeply-etched structures with an aspect ratio of more than 10 and patterns with lateral dimensions from 2 to 7 μm in SOI wafer is proposed. Spectroscopic reflectometry in the spectral range of 250-800 nm using a production metrology tool was applied. The depth determinations based on different algorithms are compared. The Pearson correlation coefficient between measured and calculated reflection is suggested as the most appropriate method. A simple method for top CD evaluation is proposed by the measurement of reflection and using the polynomial approximation of reflection versus TSV filling coefficient which is determined as ratio of CD to pitch. The 3D RCWA simulations confirm this dependence.

  3. PACS-based interface for 3D anatomical structure visualization and surgical planning

    NASA Astrophysics Data System (ADS)

    Koehl, Christophe; Soler, Luc; Marescaux, Jacques

    2002-05-01

    The interpretation of radiological image is routine but it remains a rather difficult task for physicians. It requires complex mental processes, that permit translation from 2D slices into 3D localization and volume determination of visible diseases. An easier and more extensive visualization and exploitation of medical images can be reached through the use of computer-based systems that provide real help from patient admission to post-operative followup. In this way, we have developed a 3D visualization interface linked to a PACS database that allows manipulation and interaction on virtual organs delineated from CT-scan or MRI. This software provides the 3D real-time surface rendering of anatomical structures, an accurate evaluation of volumes and distances and the improvement of radiological image analysis and exam annotation through a negatoscope tool. It also provides a tool for surgical planning allowing the positioning of an interactive laparoscopic instrument and the organ resection. The software system could revolutionize the field of computerized imaging technology. Indeed, it provides a handy and portable tool for pre-operative and intra-operative analysis of anatomy and pathology in various medical fields. This constitutes the first step of the future development of augmented reality and surgical simulation systems.

  4. A variable flip angle-based method for reducing blurring in 3D GRASE ASL

    NASA Astrophysics Data System (ADS)

    Liang, Xiaoyun; Connelly, Alan; Tournier, Jacques-Donald; Calamante, Fernando

    2014-09-01

    Arterial Spin Labeling (ASL) is an MRI technique to measure cerebral blood flow directly and noninvasively, and thus provides a more direct quantitative correlate of neural activity than blood-oxygen-level-dependent fMRI. A 3D gradient and spin-echo (GRASE) sequence is capable of enhancing signal-to-noise ratio, and has been shown to be a very useful readout module for ASL sequences. Nonetheless, the introduction of significant blurring in its single-shot version, due to T2 decay along the partition dimension, compromises the achievable spatial resolution, limiting the potential of this technique for whole-brain coverage. To address this issue, a method for reducing blurring based on a variable flip angle (VFA) scheme is proposed in this study for 3D GRASE ASL perfusion. Numerical simulations show that the proposed method is capable of reducing the blurring significantly compared to the standard constant flip angle approach; this result was further confirmed using in vivo data. The proposed VFA method should therefore be of significance to 3D GRASE ASL fMRI studies, since it is able to reduce blurring without sacrificing temporal resolution.

  5. A global model simulation for 3-D radiative transfer impact on surface hydrology over the Sierra Nevada and Rocky Mountains

    DOE PAGES

    Lee, W.-L.; Gu, Y.; Liou, K. N.; ...

    2015-05-19

    We investigate 3-D mountain effects on solar flux distributions and their impact on surface hydrology over the western United States, specifically the Rocky Mountains and the Sierra Nevada, using the global CCSM4 (Community Climate System Model version 4; Community Atmosphere Model/Community Land Model – CAM4/CLM4) with a 0.23° × 0.31° resolution for simulations over 6 years. In a 3-D radiative transfer parameterization, we have updated surface topography data from a resolution of 1 km to 90 m to improve parameterization accuracy. In addition, we have also modified the upward-flux deviation (3-D–PP (plane-parallel)) adjustment to ensure that the energy balance atmore » the surface is conserved in global climate simulations based on 3-D radiation parameterization. We show that deviations in the net surface fluxes are not only affected by 3-D mountains but also influenced by feedbacks of cloud and snow in association with the long-term simulations. Deviations in sensible heat and surface temperature generally follow the patterns of net surface solar flux. The monthly snow water equivalent (SWE) deviations show an increase in lower elevations due to reduced snowmelt, leading to a reduction in cumulative runoff. Over higher-elevation areas, negative SWE deviations are found because of increased solar radiation available at the surface. Simulated precipitation increases for lower elevations, while it decreases for higher elevations, with a minimum in April. Liquid runoff significantly decreases at higher elevations after April due to reduced SWE and precipitation.« less

  6. A global model simulation for 3-D radiative transfer impact on surface hydrology over the Sierra Nevada and Rocky Mountains

    SciTech Connect

    Lee, W. -L.; Gu, Y.; Liou, K. N.; Leung, L. R.; Hsu, H. -H.

    2015-05-19

    We investigate 3-D mountain effects on solar flux distributions and their impact on surface hydrology over the western United States, specifically the Rocky Mountains and the Sierra Nevada, using the global CCSM4 (Community Climate System Model version 4; Community Atmosphere Model/Community Land Model – CAM4/CLM4) with a 0.23° × 0.31° resolution for simulations over 6 years. In a 3-D radiative transfer parameterization, we have updated surface topography data from a resolution of 1 km to 90 m to improve parameterization accuracy. In addition, we have also modified the upward-flux deviation (3-D–PP (plane-parallel)) adjustment to ensure that the energy balance at the surface is conserved in global climate simulations based on 3-D radiation parameterization. We show that deviations in the net surface fluxes are not only affected by 3-D mountains but also influenced by feedbacks of cloud and snow in association with the long-term simulations. Deviations in sensible heat and surface temperature generally follow the patterns of net surface solar flux. The monthly snow water equivalent (SWE) deviations show an increase in lower elevations due to reduced snowmelt, leading to a reduction in cumulative runoff. Over higher-elevation areas, negative SWE deviations are found because of increased solar radiation available at the surface. Simulated precipitation increases for lower elevations, while it decreases for higher elevations, with a minimum in April. Liquid runoff significantly decreases at higher elevations after April due to reduced SWE and precipitation.

  7. 3D simulations of young core-collapse supernova remnants undergoing efficient particle acceleration

    NASA Astrophysics Data System (ADS)

    Ferrand, Gilles; Safi-Harb, Samar

    2016-06-01

    Within our Galaxy, supernova remnants are believed to be the major sources of cosmic rays up to the 'knee'. However important questions remain regarding the share of the hadronic and leptonic components, and the fraction of the supernova energy channelled into these components. We address such question by the means of numerical simulations that combine a hydrodynamic treatment of the shock wave with a kinetic treatment of particle acceleration. Performing 3D simulations allows us to produce synthetic projected maps and spectra of the thermal and non-thermal emission, that can be compared with multi-wavelength observations (in radio, X-rays, and γ-rays). Supernovae come in different types, and although their energy budget is of the same order, their remnants have different properties, and so may contribute in different ways to the pool of Galactic cosmic-rays. Our first simulations were focused on thermonuclear supernovae, like Tycho's SNR, that usually occur in a mostly undisturbed medium. Here we present our 3D simulations of core-collapse supernovae, like the Cas A SNR, that occur in a more complex medium bearing the imprint of the wind of the progenitor star.

  8. Novel 3D/VR interactive environment for MD simulations, visualization and analysis.

    PubMed

    Doblack, Benjamin N; Allis, Tim; Dávila, Lilian P

    2014-12-18

    The increasing development of computing (hardware and software) in the last decades has impacted scientific research in many fields including materials science, biology, chemistry and physics among many others. A new computational system for the accurate and fast simulation and 3D/VR visualization of nanostructures is presented here, using the open-source molecular dynamics (MD) computer program LAMMPS. This alternative computational method uses modern graphics processors, NVIDIA CUDA technology and specialized scientific codes to overcome processing speed barriers common to traditional computing methods. In conjunction with a virtual reality system used to model materials, this enhancement allows the addition of accelerated MD simulation capability. The motivation is to provide a novel research environment which simultaneously allows visualization, simulation, modeling and analysis. The research goal is to investigate the structure and properties of inorganic nanostructures (e.g., silica glass nanosprings) under different conditions using this innovative computational system. The work presented outlines a description of the 3D/VR Visualization System and basic components, an overview of important considerations such as the physical environment, details on the setup and use of the novel system, a general procedure for the accelerated MD enhancement, technical information, and relevant remarks. The impact of this work is the creation of a unique computational system combining nanoscale materials simulation, visualization and interactivity in a virtual environment, which is both a research and teaching instrument at UC Merced.

  9. Magnetospheric Magnetic Reconnection with Southward IMF by a 3D EMPM Simulation

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Yan, X. Y.; Cai, D. S.; Lembege, B.

    2004-01-01

    We report our new simulation results on magnetospheric magnetic reconnection with southward IMF using a 3D EMPM model, with greater resolution and more particles using the parallelized 3D HPF TRISTAN code on VPP5000 supercomputer. Main parameters used in the new simulation are: domain size is 215 x 145 x 145, grid size = 0.5 Earth radius, initial particle number is 16 per cell, the IMF is southward. Arrival of southward IMF will cause reconnection in the magnetopause, thus allowing particles to enter into the inner magnetosphere. Sunward and tailward high particle flow are observed by satellites, and these phenomena are also observed in the simulation near the neutral line (X line) of the near-Earth magnetotail. This high particle flow goes along with the reconnected island. The magnetic reconnection process contributes to direct plasma entry between the magnetosheath to the inner magnetosphere and plasma sheet, in which the entry process eats the magnetosheath plasma to plasma sheet temperatures. We investigate magnetic, electric fields, density, and current during this magnetic reconnection with southward IMF. Further investigation with this simulation will provide insight into unsolved problems, such as the triggering of storms and substorms, and the storm-substorm relationship. New results will be presented at the meeting.

  10. Novel 3D/VR Interactive Environment for MD Simulations, Visualization and Analysis

    PubMed Central

    Doblack, Benjamin N.; Allis, Tim; Dávila, Lilian P.

    2014-01-01

    The increasing development of computing (hardware and software) in the last decades has impacted scientific research in many fields including materials science, biology, chemistry and physics among many others. A new computational system for the accurate and fast simulation and 3D/VR visualization of nanostructures is presented here, using the open-source molecular dynamics (MD) computer program LAMMPS. This alternative computational method uses modern graphics processors, NVIDIA CUDA technology and specialized scientific codes to overcome processing speed barriers common to traditional computing methods. In conjunction with a virtual reality system used to model materials, this enhancement allows the addition of accelerated MD simulation capability. The motivation is to provide a novel research environment which simultaneously allows visualization, simulation, modeling and analysis. The research goal is to investigate the structure and properties of inorganic nanostructures (e.g., silica glass nanosprings) under different conditions using this innovative computational system. The work presented outlines a description of the 3D/VR Visualization System and basic components, an overview of important considerations such as the physical environment, details on the setup and use of the novel system, a general procedure for the accelerated MD enhancement, technical information, and relevant remarks. The impact of this work is the creation of a unique computational system combining nanoscale materials simulation, visualization and interactivity in a virtual environment, which is both a research and teaching instrument at UC Merced. PMID:25549300

  11. 3D Computer graphics simulation to obtain optimal surgical exposure during microvascular decompression of the glossopharyngeal nerve.

    PubMed

    Hiraishi, Tetsuya; Matsushima, Toshio; Kawashima, Masatou; Nakahara, Yukiko; Takahashi, Yuichi; Ito, Hiroshi; Oishi, Makoto; Fujii, Yukihiko

    2013-10-01

    The affected artery in glossopharyngeal neuralgia (GPN) is most often the posterior inferior cerebellar artery (PICA) from the caudal side or the anterior inferior cerebellar artery (AICA) from the rostral side. This technical report describes two representative cases of GPN, one with PICA as the affected artery and the other with AICA, and demonstrates the optimal approach for each affected artery. We used 3D computer graphics (3D CG) simulation to consider the ideal transposition of the affected artery in any position and approach. Subsequently, we performed microvascular decompression (MVD) surgery based on this simulation. For PICA, we used the transcondylar fossa approach in the lateral recumbent position, very close to the prone position, with the patient's head tilted anteriorly for caudal transposition of PICA. In contrast, for AICA, we adopted a lateral suboccipital approach with opening of the lateral cerebellomedullary fissure, to visualize better the root entry zone of the glossopharyngeal nerve and to obtain a wide working space in the cerebellomedullary cistern, for rostral transposition of AICA. Both procedures were performed successfully. The best surgical approach for MVD in patients with GPN is contingent on the affected artery--PICA or AICA. 3D CG simulation provides tailored approach for MVD of the glossopharyngeal nerve, thereby ensuring optimal surgical exposure.

  12. Disparity pattern-based autostereoscopic 3D metrology system for in situ measurement of microstructured surfaces.

    PubMed

    Li, Da; Cheung, Chi Fai; Ren, MingJun; Whitehouse, David; Zhao, Xing

    2015-11-15

    This paper presents a disparity pattern-based autostereoscopic (DPA) 3D metrology system that makes use of a microlens array to capture raw 3D information of the measured surface in a single snapshot through a CCD camera. Hence, a 3D digital model of the target surface with the measuring data is generated through a system-associated direct extraction of disparity information (DEDI) method. The DEDI method is highly efficient for performing the direct 3D mapping of the target surface based on tomography-like operation upon every depth plane with the defocused information excluded. Precise measurement results are provided through an error-elimination process based on statistical analysis. Experimental results show that the proposed DPA 3D metrology system is capable of measuring 3D microstructured surfaces with submicrometer measuring repeatability for high precision and in situ measurement of microstructured surfaces.

  13. Advanced 3D textile composites reinforcements meso F.E analyses based on X-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Naouar, Naim; Vidal-Salle, Emmanuelle; Boisse, Philippe

    2016-10-01

    Meso-FE modelling of 3D textile composites is a powerful tool, which can help determine mechanical properties and permeability of the reinforcements or composites. The quality of the meso FE analyses depends on the quality of the initial model. A direct method based on X-ray tomography imaging is introduced to determine finite element models based on the real geometry of 3D composite