Science.gov

Sample records for 3d spatial resolution

  1. Spatial resolution limits for the isotropic-3D PET detector X’tal cube

    NASA Astrophysics Data System (ADS)

    Yoshida, Eiji; Tashima, Hideaki; Hirano, Yoshiyuki; Inadama, Naoko; Nishikido, Fumihiko; Murayama, Hideo; Yamaya, Taiga

    2013-11-01

    Positron emission tomography (PET) has become a popular imaging method in metabolism, neuroscience, and molecular imaging. For dedicated human brain and small animal PET scanners, high spatial resolution is needed to visualize small objects. To improve the spatial resolution, we are developing the X’tal cube, which is our new PET detector to achieve isotropic 3D positioning detectability. We have shown that the X’tal cube can achieve 1 mm3 uniform crystal identification performance with the Anger-type calculation even at the block edges. We plan to develop the X’tal cube with even smaller 3D grids for sub-millimeter crystal identification. In this work, we investigate spatial resolution of a PET scanner based on the X’tal cube using Monte Carlo simulations for predicting resolution performance in smaller 3D grids. For spatial resolution evaluation, a point source emitting 511 keV photons was simulated by GATE for all physical processes involved in emission and interaction of positrons. We simulated two types of animal PET scanners. The first PET scanner had a detector ring 14.6 cm in diameter composed of 18 detectors. The second PET scanner had a detector ring 7.8 cm in diameter composed of 12 detectors. After the GATE simulations, we converted the interacting 3D position information to digitalized positions for realistic segmented crystals. We simulated several X’tal cubes with cubic crystals from (0.5 mm)3 to (2 mm)3 in size. Also, for evaluating the effect of DOI resolution, we simulated several X’tal cubes with crystal thickness from (0.5 mm)3 to (9 mm)3. We showed that sub-millimeter spatial resolution was possible using cubic crystals smaller than (1.0 mm)3 even with the assumed physical processes. Also, the weighted average spatial resolutions of both PET scanners with (0.5 mm)3 cubic crystals were 0.53 mm (14.6 cm ring diameter) and 0.48 mm (7.8 cm ring diameter). For the 7.8 cm ring diameter, spatial resolution with 0.5×0.5×1.0 mm3 crystals

  2. Quantifying the Effect of 3D Spatial Resolution on the Accuracy of Microstructural Distributions (PREPRINT)

    DTIC Science & Technology

    2012-08-01

    Michael D. Uchic and Michael Groeber Metals Branch Structural Materials Division Megna Shah UES, Inc. Gregory Loughnane, Raghavan Srinivasan...AUTHOR(S) Michael D. Uchic and Michael Groeber (AFRL/RXCM) Megna Shah (UES, Inc.) Gregory Loughnane, Raghavan Srinivasan, and Ramana Grandhi (Wright...effect of 3D spatial resolution on the accuracy of microstructural distributions Gregory Loughnane 1 , Michael Groeber 2 , Michael Uchic 2 , Matthew

  3. Optical lens-shift design for increasing spatial resolution of 3D ToF cameras

    NASA Astrophysics Data System (ADS)

    Lietz, Henrik; Hassan, M. Muneeb; Eberhardt, Jörg

    2017-02-01

    Sensor resolution of 3D time-of-flight (ToF) outdoor-capable cameras is strongly limited because of its large pixel dimensions. Computational imaging permits enhancement of the optical system's resolving power without changing physical sensor properties. Super-resolution (SR) algorithms superimpose several sub-pixel-shifted low-resolution (LR) images to overcome the system's limited spatial sampling rate. In this paper, we propose a novel opto-mechanical system to implement sub-pixel shifts by moving an optical lens. This method is more flexible in terms of implementing SR techniques than current sensor-shift approaches. In addition, we describe a SR observation model that has been optimized for the use of LR 3D ToF cameras. A state-of-the-art iteratively reweighted minimization algorithm executes the SR process. It is proven that our method achieves nearly the same resolution increase as if the pixel area would be halved physically. Resolution enhancement is measured objectively for amplitude images of a static object scene.

  4. 3D high spectral and spatial resolution imaging of ex vivo mouse brain

    SciTech Connect

    Foxley, Sean Karczmar, Gregory S.; Domowicz, Miriam; Schwartz, Nancy

    2015-03-15

    Purpose: Widely used MRI methods show brain morphology both in vivo and ex vivo at very high resolution. Many of these methods (e.g., T{sub 2}{sup *}-weighted imaging, phase-sensitive imaging, or susceptibility-weighted imaging) are sensitive to local magnetic susceptibility gradients produced by subtle variations in tissue composition. However, the spectral resolution of commonly used methods is limited to maintain reasonable run-time combined with very high spatial resolution. Here, the authors report on data acquisition at increased spectral resolution, with 3-dimensional high spectral and spatial resolution MRI, in order to analyze subtle variations in water proton resonance frequency and lineshape that reflect local anatomy. The resulting information compliments previous studies based on T{sub 2}{sup *} and resonance frequency. Methods: The proton free induction decay was sampled at high resolution and Fourier transformed to produce a high-resolution water spectrum for each image voxel in a 3D volume. Data were acquired using a multigradient echo pulse sequence (i.e., echo-planar spectroscopic imaging) with a spatial resolution of 50 × 50 × 70 μm{sup 3} and spectral resolution of 3.5 Hz. Data were analyzed in the spectral domain, and images were produced from the various Fourier components of the water resonance. This allowed precise measurement of local variations in water resonance frequency and lineshape, at the expense of significantly increased run time (16–24 h). Results: High contrast T{sub 2}{sup *}-weighted images were produced from the peak of the water resonance (peak height image), revealing a high degree of anatomical detail, specifically in the hippocampus and cerebellum. In images produced from Fourier components of the water resonance at −7.0 Hz from the peak, the contrast between deep white matter tracts and the surrounding tissue is the reverse of the contrast in water peak height images. This indicates the presence of a shoulder in

  5. CCTV Coverage Index Based on Surveillance Resolution and Its Evaluation Using 3D Spatial Analysis

    PubMed Central

    Choi, Kyoungah; Lee, Impyeong

    2015-01-01

    We propose a novel approach to evaluating how effectively a closed circuit television (CCTV) system can monitor a targeted area. With 3D models of the target area and the camera parameters of the CCTV system, the approach produces surveillance coverage index, which is newly defined in this study as a quantitative measure for surveillance performance. This index indicates the proportion of the space being monitored with a sufficient resolution to the entire space of the target area. It is determined by computing surveillance resolution at every position and orientation, which indicates how closely a specific object can be monitored with a CCTV system. We present full mathematical derivation for the resolution, which depends on the location and orientation of the object as well as the geometric model of a camera. With the proposed approach, we quantitatively evaluated the surveillance coverage of a CCTV system in an underground parking area. Our evaluation process provided various quantitative-analysis results, compelling us to examine the design of the CCTV system prior to its installation and understand the surveillance capability of an existing CCTV system. PMID:26389909

  6. CCTV Coverage Index Based on Surveillance Resolution and Its Evaluation Using 3D Spatial Analysis.

    PubMed

    Choi, Kyoungah; Lee, Impyeong

    2015-09-16

    We propose a novel approach to evaluating how effectively a closed circuit television (CCTV) system can monitor a targeted area. With 3D models of the target area and the camera parameters of the CCTV system, the approach produces surveillance coverage index, which is newly defined in this study as a quantitative measure for surveillance performance. This index indicates the proportion of the space being monitored with a sufficient resolution to the entire space of the target area. It is determined by computing surveillance resolution at every position and orientation, which indicates how closely a specific object can be monitored with a CCTV system. We present full mathematical derivation for the resolution, which depends on the location and orientation of the object as well as the geometric model of a camera. With the proposed approach, we quantitatively evaluated the surveillance coverage of a CCTV system in an underground parking area. Our evaluation process provided various quantitative-analysis results, compelling us to examine the design of the CCTV system prior to its installation and understand the surveillance capability of an existing CCTV system.

  7. Regularization Designs for Uniform Spatial Resolution and Noise Properties in Statistical Image Reconstruction for 3D X-ray CT

    PubMed Central

    Cho, Jang Hwan; Fessler, Jeffrey A.

    2014-01-01

    Statistical image reconstruction methods for X-ray computed tomography (CT) provide improved spatial resolution and noise properties over conventional filtered back-projection (FBP) reconstruction, along with other potential advantages such as reduced patient dose and artifacts. Conventional regularized image reconstruction leads to spatially variant spatial resolution and noise characteristics because of interactions between the system models and the regularization. Previous regularization design methods aiming to solve such issues mostly rely on circulant approximations of the Fisher information matrix that are very inaccurate for undersampled geometries like short-scan cone-beam CT. This paper extends the regularization method proposed in [1] to 3D cone-beam CT by introducing a hypothetical scanning geometry that helps address the sampling properties. The proposed regularization designs were compared with the original method in [1] with both phantom simulation and clinical reconstruction in 3D axial X-ray CT. The proposed regularization methods yield improved spatial resolution or noise uniformity in statistical image reconstruction for short-scan axial cone-beam CT. PMID:25361500

  8. Regularization designs for uniform spatial resolution and noise properties in statistical image reconstruction for 3-D X-ray CT.

    PubMed

    Cho, Jang Hwan; Fessler, Jeffrey A

    2015-02-01

    Statistical image reconstruction methods for X-ray computed tomography (CT) provide improved spatial resolution and noise properties over conventional filtered back-projection (FBP) reconstruction, along with other potential advantages such as reduced patient dose and artifacts. Conventional regularized image reconstruction leads to spatially variant spatial resolution and noise characteristics because of interactions between the system models and the regularization. Previous regularization design methods aiming to solve such issues mostly rely on circulant approximations of the Fisher information matrix that are very inaccurate for undersampled geometries like short-scan cone-beam CT. This paper extends the regularization method proposed in to 3-D cone-beam CT by introducing a hypothetical scanning geometry that helps address the sampling properties. The proposed regularization designs were compared with the original method in with both phantom simulation and clinical reconstruction in 3-D axial X-ray CT. The proposed regularization methods yield improved spatial resolution or noise uniformity in statistical image reconstruction for short-scan axial cone-beam CT.

  9. Modeling the crystal distribution of lead-sulfate in lead-acid batteries with 3D spatial resolution

    NASA Astrophysics Data System (ADS)

    Huck, Moritz; Badeda, Julia; Sauer, Dirk Uwe

    2015-04-01

    For the reliability of lead-acid batteries it is important to have an accurate prediction of its response to load profiles. A model for the lead-sulfate growth is presented, which is embedded in a physical-chemical model with 3D spatial resolution is presented which is used for analyzing the different mechanism influencing the cell response. One import factor is the chemical dissolution and precipitation of lead-sulfate, since its dissolution speed limits the charging reaction and the accumulation of indissolvable of lead-sulfate leads to capacity degradation. The cell performance/behavior is not only determined by the amount of the sulfate but also by the radii and distribution of the crystals. The presented model can be used to for an improved understanding of the interaction of the different mechanisms.

  10. In-situ 3D high-spatial resolution aquifer characterization with hydraulic parameter distribution at decameter scale

    NASA Astrophysics Data System (ADS)

    Hu, R.; Brauchler, R.; Hu, L.; Qiu, P.

    2015-12-01

    Currently, a major challenge in aquifer characterization is the determination of hydraulic parameters with high-spatial resolution. Since the mid-90's, various working groups have developed numerical evaluation approaches for hydraulic tomography: the inversion of hydraulic tests that have been recorded using tomographic arrangements. The practical application is often associated with long test times, complex evaluations, and prolonged computation times. In our study, a hydraulic tomographical data set consisted of 450 drawdown curves produced by a series of short term pumping tests conducted over 4 working days. Data was collected by two scientists without a technical staff. The tests were performed at the test site "Stegemühle", Göttingen, Germany in a confined sand and gravel aquifer with a thickness of 2-3 m. For the inversion, an approach has been used, which is based on the transformation of the groundwater flow equation into a form of Eikonal equation (Vasco et al., 2000). Utilizing this approach, the hydraulic data can be inverted using an Eikonal solver e.g. SIRT. This Eikonal solver is considerably computationally efficient and allows hundreds of draw down curves to be inverted on a standard laptop within minutes. Following the methodology described in Brauchler et al. 2013, 3D distribution of diffusivity and specific storage were directly reconstructed, and subsequently their product: the hydraulic conductivity. This study exemplifies that the required data can be recorded and analyzed efficiently in the field, which is a vital precondition for the in-situ field aquifer characterization with hydraulic tomography. Literature Vasco, D.W., Keers, H., Karasaki, K. (2000) Estimation of reservoir properties using transient pressure data: An asymptotic approach. Water Resour. Res. 36(12), 3447-3465 Brauchler, R., Hu, R., Hu, L., Jimenéz, S., Bayer, P., Ptak, T. (2013) Rapid field application of hydraulic tomography for resolving aquifer heterogeneity in

  11. Intrinsic spatial resolution evaluation of the X'tal cube PET detector based on a 3D crystal block segmented by laser processing.

    PubMed

    Yoshida, Eiji; Tashima, Hideaki; Inadama, Naoko; Nishikido, Fumihiko; Moriya, Takahiro; Omura, Tomohide; Watanabe, Mitsuo; Murayama, Hideo; Yamaya, Taiga

    2013-01-01

    The X'tal cube is a depth-of-interaction (DOI)-PET detector which is aimed at obtaining isotropic resolution by effective readout of scintillation photons from the six sides of a crystal block. The X'tal cube is composed of the 3D crystal block with isotropic resolution and arrays of multi-pixel photon counters (MPPCs). In this study, to fabricate the 3D crystal block efficiently and precisely, we applied a sub-surface laser engraving (SSLE) technique to a monolithic crystal block instead of gluing segmented small crystals. The SSLE technique provided micro-crack walls which carve a groove into a monolithic scintillator block. Using the fabricated X'tal cube, we evaluated its intrinsic spatial resolution to show a proof of concept of isotropic resolution. The 3D grids of 2 mm pitch were fabricated into an 18 × 18 × 18 mm(3) monolithic lutetium yttrium orthosilicate (LYSO) crystal by the SSLE technique. 4 × 4 MPPCs were optically coupled to each surface of the crystal block. The X'tal cube was uniformly irradiated by (22)Na gamma rays, and all of the 3D grids on the 3D position histogram were separated clearly by an Anger-type calculation from the 96-channel MPPC signals. Response functions of the X'tal cube were measured by scanning with a (22)Na point source. The gamma-ray beam with a 1.0 mm slit was scanned in 0.25 mm steps by positioning of the X'tal cube at vertical and 45° incident angles. The average FWHM resolution at both incident angles was 2.1 mm. Therefore, we confirmed the isotropic spatial resolution performance of the X'tal cube.

  12. 3-D Spatial Resolution of 350 μm Pitch Pixelated CdZnTe Detectors for Imaging Applications

    PubMed Central

    Yin, Yongzhi; Chen, Ximeng; Wu, Heyu; Komarov, Sergey; Garson, Alfred; Li, Qiang; Guo, Qingzhen; Krawczynski, Henric; Meng, Ling-Jian; Tai, Yuan-Chuan

    2016-01-01

    We are currently investigating the feasibility of using highly pixelated Cadmium Zinc Telluride (CdZnTe) detectors for sub-500 μm resolution PET imaging applications. A 20 mm × 20 mm × 5 mm CdZnTe substrate was fabricated with 350 μm pitch pixels (250 μm anode pixels with 100 μm gap) and coplanar cathode. Charge sharing among the pixels of a 350 μm pitch detector was studied using collimated 122 keV and 511 keV gamma ray sources. For a 350 μm pitch CdZnTe detector, scatter plots of the charge signal of two neighboring pixels clearly show more charge sharing when the collimated beam hits the gap between adjacent pixels. Using collimated Co-57 and Ge-68 sources, we measured the count profiles and estimated the intrinsic spatial resolution of 350 μm pitch detector biased at −1000 V. Depth of interaction was analyzed based on two methods, i.e., cathode/anode ratio and electron drift time, in both 122 keV and 511 keV measurements. For single-pixel photopeak events, a linear correlation between cathode/anode ratio and electron drift time was shown, which would be useful for estimating the DOI information and preserving image resolution in CdZnTe PET imaging applications. PMID:28250476

  13. Linear Response Equilibrium versus echo-planar encoding for fast high-spatial resolution 3D chemical shift imaging

    NASA Astrophysics Data System (ADS)

    Fischer, Rudolf Fritz; Baltes, Christof; Weiss, Kilian; Pazhenkottil, Aju; Rudin, Markus; Boesiger, Peter; Kozerke, Sebastian

    2011-07-01

    In this work Linear Response Equilibrium (LRE) and Echo-planar spectroscopic imaging (EPSI) are compared in terms of sensitivity per unit time and power deposition. In addition an extended dual repetition time scheme to generate broad stopbands for improved inherent water suppression in LRE is presented. The feasibility of LRE and EPSI for assessing cholesterol esters in human carotid plaques with high spatial resolution of 1.95 × 1.15 × 1.15 mm 3 on a clinical 3T MR system is demonstrated. In simulations and phantom experiments it is shown that LRE has comparable but lower sensitivity per unit time relative to EPSI despite stronger signal generated. This relates to the lower sampling efficiency in LRE relative to EPSI as a result of limited gradient performance on clinical MR systems. At the same time, power deposition of LRE is significantly reduced compared to EPSI making it an interesting niche application for in vivo high field spectroscopic imaging of metabolites within a limited bandwidth.

  14. The effect of spatial micro-CT image resolution and surface complexity on the morphological 3D analysis of open porous structures

    SciTech Connect

    Pyka, Grzegorz; Kerckhofs, Greet

    2014-01-15

    In material science microfocus X-ray computed tomography (micro-CT) is one of the most popular non-destructive techniques to visualise and quantify the internal structure of materials in 3D. Despite constant system improvements, state-of-the-art micro-CT images can still hold several artefacts typical for X-ray CT imaging that hinder further image-based processing, structural and quantitative analysis. For example spatial resolution is crucial for an appropriate characterisation as the voxel size essentially influences the partial volume effect. However, defining the adequate image resolution is not a trivial aspect and understanding the correlation between scan parameters like voxel size and the structural properties is crucial for comprehensive material characterisation using micro-CT. Therefore, the objective of this study was to evaluate the influence of the spatial image resolution on the micro-CT based morphological analysis of three-dimensional (3D) open porous structures with a high surface complexity. In particular the correlation between the local surface properties and the accuracy of the micro-CT-based macro-morphology of 3D open porous Ti6Al4V structures produced by selective laser melting (SLM) was targeted and revealed for rough surfaces a strong dependence of the resulting structure characteristics on the scan resolution. Reducing the surface complexity by chemical etching decreased the sensitivity of the overall morphological analysis to the spatial image resolution and increased the detection limit. This study showed that scan settings and image processing parameters need to be customized to the material properties, morphological parameters under investigation and the desired final characteristics (in relation to the intended functional use). Customization of the scan resolution can increase the reliability of the micro-CT based analysis and at the same time reduce its operating costs. - Highlights: • We examine influence of the image resolution

  15. Development status of a CZT spectrometer prototype with 3D spatial resolution for hard x-ray astronomy

    NASA Astrophysics Data System (ADS)

    Auricchio, N.; Caroli, E.; Basili, A.; Benassi, G.; Budtz Jørgensen, C.; Curado da Silva, R. M.; Del Sordo, S.; Kuvvetli, I.; Milano, L.; Moscatelli, F.; Stephen, J. B.; Zanichelli, M.; Zappettini, A.

    2012-07-01

    The development of new focusing optics based on wide band Laue lenses operating from ~60 keV up to several hundred keV is particularly challenging. This type of hard X-ray or gamma ray optics requires a high performance focal plane detector in order to exploit to the best their intrinsic capabilities. We describe a three dimensional (3D) position sensitive detector prototype suitable as the basic module for a high efficiency Laue lens focal plane detector. This detector configuration is currently under study for use in a balloon payload dedicated to performing a high significance measurement of the polarization status of the Crab between 100 and 500 keV. The prototype is made by packing 8 linear modules, each composed of one basic sensitive unit bonded onto a thin supporting ceramic layer. Each unit is a drift strip detector based on a CZT crystal, irradiated transversally to the electric field direction. The anode is segmented into 8 detection cells, each comprising one collecting strip and 8 surrounding drift strips. The drift strips are biased by a voltage divider. The cathode is divided into 4 horizontal strips for the reconstruction of the Z interaction position. The detector readout electronics is based on RENA-3 ASIC and the data handling system uses a custom electronics based on FPGA to provide the ASIC setting, the event handling logic, and the data acquisition. This paper mainly describes the components and the status of the undergoing activities for the construction of the proposed 3D CZT prototype and shows the results of the electronics tests.

  16. Atomic resolution 3D electron diffraction microscopy

    SciTech Connect

    Miao, Jianwei; Ohsuna, Tetsu; Terasaki, Osamu; O'Keefe, Michael A.

    2002-03-01

    Electron lens aberration is the major barrier limiting the resolution of electron microscopy. Here we describe a novel form of electron microscopy to overcome electron lens aberration. By combining coherent electron diffraction with the oversampling phasing method, we show that the 3D structure of a 2 x 2 x 2 unit cell nano-crystal (framework of LTA [Al12Si12O48]8) can be ab initio determined at the resolution of 1 Angstrom from a series of simulated noisy diffraction pattern projections with rotation angles ranging from -70 degrees to +70 degrees in 5 degrees increments along a single rotation axis. This form of microscopy (which we call 3D electron diffraction microscopy) does not require any reference waves, and can image the 3D structure of nanocrystals, as well as non-crystalline biological and materials science samples, with the resolution limited only by the quality of sample diffraction.

  17. [3D-TOF MR-angiography with high spatial resolution for surgical planning in insular lobe gliomas].

    PubMed

    Bykanov, A E; Pitskhelauri, D I; Pronin, I N; Tonoyan, A S; Kornienko, V N; Zakharova, N E; Turkin, A M; Sanikidze, A Z; Shkarubo, M A; Shkatova, A M; Shults, E I

    2015-01-01

    Цель — определение эффективности время-пролетной (3D-TOF) магнитно-резонансной ангиографии (МРА) с высоким разрешением в визуализации медиальных и латеральных лентикулостриарных артерий (ЛСА) и их соотношения с краем опухоли у пациентов с глиомами островковой доли. Материал и методы. Проведен анализ 3D-TOF МРА у 20 пациентов с первично выявленными глиомами головного мозга с вовлечением островковой доли. Всем больным выполнена 3D-TOF МРА без контрастного усиления, а в 6 наблюдениях — до и после него. Результаты. При 3D-TOF МРА до внутривенного контрастирования удавалось определить медиальные ЛСА у 19 (95%) пациентов и латеральные ЛСА — у 18 (90%). 3D-TOF МРА на фоне контрастного усиления позволяет лучше визуализировать как проксимальный, так и дистальный сегмент ЛСА. Выделено три варианта взаимоотношения опухоли и ЛСА: I — опухоль обрастала артерии без их смещения — 2 (10%) случая; II — опухоль смещала артерии медиально без признаков обрастания — 11 (55%); III — опухоль частично обрастала и смещала артерии — 2 (10%). У 5 (25%) пациентов опухоль плохо видна на 3D-TOF МРА из-за отсутствия различий сигнальных хар

  18. The influence of the spatial resolution of topographic input data on the accuracy of 3-D UV actinic flux and irradiance calculations

    NASA Astrophysics Data System (ADS)

    Weihs, P.; Wagner, J. E.; Schreier, S. F.; Rieder, H. E.; Angelini, F.; Blumthaler, M.; Fitzka, M.; Gobbi, G. P.; Kift, R.; Kreuter, A.; Simic, S.; Webb, A. R.

    2011-10-01

    The aim of this study was to investigate the influence of the spatial resolution of a digital elevation map (DEM) on the three-dimensional (3-D) radiative transfer performance for both spectral ultraviolet (UV) irradiance and actinic flux at 305 nm. Model simulations were performed for clear sky conditions for three case studies: the first and second one using three sites in the Innsbruck area and the third one using three sites at the Sonnblick Observatory and surrounding area. It was found that DEM resolution may change the altitude at some locations by up to 500 m, resulting in changes in the sky obscured by the horizon of up to 15%. The geographical distribution of UV irradiance and actinic flux shows that with larger pixel size, uncertainties in UV irradiance and actinic flux determination of up to 100% are possible. These large changes in incident irradiance and actinic flux with changing pixel size are strongly connected to shading effects. The effect of DEM pixel size on irradiance and actinic flux was studied at the six locations, and it was found that significant increases in irradiance and actinic flux with increasing DEM pixel size occurred at one valley location at high solar zenith angles in the Innsbruck area as well as for one steep valley location in the Sonnblick area. This increase in irradiance and actinic flux with increasing DEM resolution is most likely to be connected to shading effects affecting the reflections from the surroundings.

  19. The influence of the spatial resolution of topographic input data on the accuracy of 3-D UV actinic flux and irradiance calculations

    NASA Astrophysics Data System (ADS)

    Weihs, P.; Wagner, J. E.; Schreier, S. F.; Rieder, H. E.; Angelini, F.; Blumthaler, M.; Fitzka, M.; Gobbi, G. P.; Kift, R.; Kreuter, A.; Simic, S.; Webb, A. R.

    2012-03-01

    The aim of this study is to investigate the influence of the spatial resolution of a digital elevation map (DEM) on the three-dimensional (3-D) radiative transfer performance for both spectral ultraviolet (UV) irradiance and actinic flux at 305 nm. Model simulations were performed for clear sky conditions for three case studies: the first and second one using three sites in the Innsbruck area and the third one using three sites at the Sonnblick observatory and surrounding area. It was found that the DEM resolution may change the altitude at some locations by up to 500 m, resulting in changes in the sky obscured by the horizon of up to 15%. The geographical distribution of UV irradiance and actinic flux shows that with larger pixel size, uncertainties in UV irradiance and actinic flux determination of up to 100% are possible. These large changes in incident irradiance and actinic flux with changing pixel size are strongly connected to shading effects. The effect of the DEM pixel size on irradiance and actinic flux was studied at the six locations, and it was found that significant increases in irradiance and actinic flux with increasing DEM pixel size occurred at one valley location at high solar zenith angles in the Innsbruck area as well as for one steep valley location in the Sonnblick area. This increase in irradiance and actinic flux with increasing DEM resolution is most likely to be connected to shading effects affecting the reflections from the surroundings.

  20. Spatial Visualization by Realistic 3D Views

    ERIC Educational Resources Information Center

    Yue, Jianping

    2008-01-01

    In this study, the popular Purdue Spatial Visualization Test-Visualization by Rotations (PSVT-R) in isometric drawings was recreated with CAD software that allows 3D solid modeling and rendering to provide more realistic pictorial views. Both the original and the modified PSVT-R tests were given to students and their scores on the two tests were…

  1. 3D resolution gray-tone lithography

    NASA Astrophysics Data System (ADS)

    Dumbravescu, Niculae

    2000-04-01

    With the conventional micro machining technologies: isotropic and anisotropic, dry and wet etching, a few shapes can be done. To overcome this limitation, both binary multi- tasking technique or direct EB writing were used, but an inexpensive one-step UV-lithographic method, using a so- called 'gray-tone reticle', seems to be the best choice to produce local intensity modulation during exposure process. Although, by using this method and common technologies in standard IC fabrication it is easy to obtain an arbitrarily 3D shaping of positive thick resists, there are some limitations, too. The maximum number of gray-levels, on projection reticle, achieved by e-beam writing, are only 200. Also, for very thick resists, the limited focus depth of the projection objective gives a poor lateral resolution. These are the reasons why the author prose da new approach to enhance the 3D resolution of gray-tone lithography applied for thick resist. By a high resolution, both for vertical direction, as well as for horizontal direction. Particular emphasis was put on the design, manufacturing and use of halftone transmission masks, required for UV- lithographic step in the fabrication process of mechanical, optical or electronics components. The original design and fabrication method for the gray-tone test reticle were supported by experiments showing the main advantage of this new technology: the 3D structuring of thick resist in a single exposure step and also a very promising aspect ratio obtained of over 9:1. Preliminary experimental results are presented for positive thick resists in SEM micrographs. A future optimization of the lithographic process opens interesting perspectives for application of this high 3D resolution structuring method in the fabrication process of different products, with imposed complex smooth profiles, such as: x-ray LiGA-masks, refractive optics and surface- relief DOEs.

  2. Proposed traceable structural resolution protocols for 3D imaging systems

    NASA Astrophysics Data System (ADS)

    MacKinnon, David; Beraldin, J.-Angelo; Cournoyer, Luc; Carrier, Benjamin; Blais, François

    2009-08-01

    A protocol for determining structural resolution using a potentially-traceable reference material is proposed. Where possible, terminology was selected to conform to those published in ISO JCGM 200:2008 (VIM) and ASTM E 2544-08 documents. The concepts of resolvability and edge width are introduced to more completely describe the ability of an optical non-contact 3D imaging system to resolve small features. A distinction is made between 3D range cameras, that obtain spatial data from the total field of view at once, and 3D range scanners, that accumulate spatial data for the total field of view over time. The protocol is presented through the evaluation of a 3D laser line range scanner.

  3. Multi-resolution optical 3D sensor

    NASA Astrophysics Data System (ADS)

    Kühmstedt, Peter; Heinze, Matthias; Schmidt, Ingo; Breitbarth, Martin; Notni, Gunther

    2007-06-01

    A new multi resolution self calibrating optical 3D measurement system using fringe projection technique named "kolibri FLEX multi" will be presented. It can be utilised to acquire the all around shape of small to medium objects, simultaneously. The basic measurement principle is the phasogrammetric approach /1,2,3/ in combination with the method of virtual landmarks for the merging of the 3D single views. The system consists in minimum of two fringe projection sensors. The sensors are mounted on a rotation stage illuminating the object from different directions. The measurement fields of the sensors can be chosen different, here as an example 40mm and 180mm in diameter. In the measurement the object can be scanned at the same time with these two resolutions. Using the method of virtual landmarks both point clouds are calculated within the same world coordinate system resulting in a common 3D-point cloud. The final point cloud includes the overview of the object with low point density (wide field) and a region with high point density (focussed view) at the same time. The advantage of the new method is the possibility to measure with different resolutions at the same object region without any mechanical changes in the system or data post processing. Typical parameters of the system are: the measurement time is 2min for 12 images and the measurement accuracy is below 3μm up to 10 μm. The flexibility makes the measurement system useful for a wide range of applications such as quality control, rapid prototyping, design and CAD/CAM which will be shown in the paper.

  4. 3D-printing spatially varying BRDFs.

    PubMed

    Rouiller, Olivier; Bickel, Bernd; Kautz, Jan; Matusik, Wojciech; Alexa, Marc

    2013-01-01

    A new method fabricates custom surface reflectance and spatially varying bidirectional reflectance distribution functions (svBRDFs). Researchers optimize a microgeometry for a range of normal distribution functions and simulate the resulting surface's effective reflectance. Using the simulation's results, they reproduce an input svBRDF's appearance by distributing the microgeometry on the printed material's surface. This method lets people print svBRDFs on planar samples with current 3D printing technology, even with a limited set of printing materials. It extends naturally to printing svBRDFs on arbitrary shapes.

  5. Ensemble 3D PTV for high resolution turbulent statistics

    NASA Astrophysics Data System (ADS)

    Agüera, Nereida; Cafiero, Gioacchino; Astarita, Tommaso; Discetti, Stefano

    2016-12-01

    A method to extract turbulent statistics from three-dimensional (3D) PIV measurements via ensemble averaging is presented. The proposed technique is a 3D extension of the ensemble particle tracking velocimetry methods, which consist in summing distributions of velocity vectors calculated on low image density samples and then extract the statistical moments from the velocity vectors within sub-volumes, with the size of the sub-volume depending on the desired number of particles and on the available number of snapshots. The extension to 3D measurements poses the additional difficulty of sparse velocity vectors distributions, thus requiring a large number of snapshots to achieve high resolution measurements with a sufficient degree of accuracy. At the current state, this hinders the achievement of single-voxel measurements, unless millions of samples are available. Consequently, one has to give up spatial resolution and live with still relatively large (if compared to the voxel) sub-volumes. This leads to the further problem of the possible occurrence of a residual mean velocity gradient within the sub-volumes, which significantly contaminates the computation of second order moments. In this work, we propose a method to reduce the residual gradient effect, allowing to reach high resolution even with relatively large interrogation spots, therefore still retrieving a large number of particles on which it is possible to calculate turbulent statistics. The method consists in applying a polynomial fit to the velocity distributions within each sub-volume trying to mimic the residual mean velocity gradient.

  6. Towards a 3d Spatial Urban Energy Modelling Approach

    NASA Astrophysics Data System (ADS)

    Bahu, J.-M.; Koch, A.; Kremers, E.; Murshed, S. M.

    2013-09-01

    Today's needs to reduce the environmental impact of energy use impose dramatic changes for energy infrastructure and existing demand patterns (e.g. buildings) corresponding to their specific context. In addition, future energy systems are expected to integrate a considerable share of fluctuating power sources and equally a high share of distributed generation of electricity. Energy system models capable of describing such future systems and allowing the simulation of the impact of these developments thus require a spatial representation in order to reflect the local context and the boundary conditions. This paper describes two recent research approaches developed at EIFER in the fields of (a) geo-localised simulation of heat energy demand in cities based on 3D morphological data and (b) spatially explicit Agent-Based Models (ABM) for the simulation of smart grids. 3D city models were used to assess solar potential and heat energy demand of residential buildings which enable cities to target the building refurbishment potentials. Distributed energy systems require innovative modelling techniques where individual components are represented and can interact. With this approach, several smart grid demonstrators were simulated, where heterogeneous models are spatially represented. Coupling 3D geodata with energy system ABMs holds different advantages for both approaches. On one hand, energy system models can be enhanced with high resolution data from 3D city models and their semantic relations. Furthermore, they allow for spatial analysis and visualisation of the results, with emphasis on spatially and structurally correlations among the different layers (e.g. infrastructure, buildings, administrative zones) to provide an integrated approach. On the other hand, 3D models can benefit from more detailed system description of energy infrastructure, representing dynamic phenomena and high resolution models for energy use at component level. The proposed modelling strategies

  7. 3D scanning Hall probe microscopy with 700 nm resolution

    NASA Astrophysics Data System (ADS)

    Dede, M.; Akram, R.; Oral, A.

    2016-10-01

    In this report, we present a three dimensional (3D) imaging of magnetic field vector B → (x,y,z) emanating from the magnetic material surfaces using a scanning Hall probe microscopy (3D-SHPM) down to a 700 nm spatial resolution. The Hall probe is used to measure Bz(x,y) on the specimen surface at different heights with the step size of Δz = 250 nm, as we move away from the surface in z direction, until the field decays to zero. These set of images are then used to get ∂Bz(x,y)/∂x and ∂Bz(x,y)/∂y at different z by numerical differentiation. Using the Maxwell's equations in the source free region, Bx(x,y) and By(x,y) can be calculated by integrating ∂Bz(x,y)/∂x and ∂Bz(x,y)/∂y in the z direction. Alternatively, the gradients can also be measured in the Hall gradiometer configuration directly. The operation of the 3D-SHPM is demonstrated by imaging Bx(x,y), By(x,y) and Bz(x,y) on a hard disk specimen at a 700 nm resolution, using both of these methods at 77 K. The system is capable of operating from 300 K down to 4 K range.

  8. Urbanisation and 3d Spatial - a Geometric Approach

    NASA Astrophysics Data System (ADS)

    Duncan, E. E.; Rahman, A. Abdul

    2013-09-01

    Urbanisation creates immense competition for space, this may be attributed to an increase in population owing to domestic and external tourism. Most cities are constantly exploring all avenues in maximising its limited space. Hence, urban or city authorities need to plan, expand and use such three dimensional (3D) space above, on and below the city space. Thus, difficulties in property ownership and the geometric representation of the 3D city space is a major challenge. This research, investigates the concept of representing a geometric topological 3D spatial model capable of representing 3D volume parcels for man-made constructions above and below the 3D surface volume parcel. A review of spatial data models suggests that the 3D TIN (TEN) model is significant and can be used as a unified model. The concepts, logical and physical models of 3D TIN for 3D volumes using tetrahedrons as the base geometry is presented and implemented to show man-made constructions above and below the surface parcel within a user friendly graphical interface. Concepts for 3D topology and 3D analysis are discussed. Simulations of this model for 3D cadastre are implemented. This model can be adopted by most countries to enhance and streamline geometric 3D property ownership for urban centres. 3D TIN concept for spatial modelling can be adopted for the LA_Spatial part of the Land Administration Domain Model (LADM) (ISO/TC211, 2012), this satisfies the concept of 3D volumes.

  9. High Resolution Coherent 3d Spectroscopy of Bromine

    NASA Astrophysics Data System (ADS)

    Strangfeld, Benjamin R.; Wells, Thresa A.; House, Zuri R.; Chen, Peter C.

    2013-06-01

    The high resolution gas phase electronic spectrum of bromine is rather congested due to many overlapping vibrational and rotational transitions with similar transition frequencies, and also due to isotopomeric effects. Expansion into the second dimension will remove some of this congestion; however through the implementation of High Resolution Coherent 3D Spectroscopy, the density of peaks is further reduced by at least two orders of magnitude. This allows for the selective examination of a small number of spatially resolved multidimensional bands, separated by vibrational quantum number and by isotopomer, which facilitates the fitting of many rovibrational peaks in bromine. The ability to derive information about the molecular constants for the electronic states involved will be discussed.

  10. High resolution 3D fluorescence tomography using ballistic photons

    NASA Astrophysics Data System (ADS)

    Zheng, Jie; Nouizi, Farouk; Cho, Jaedu; Kwong, Jessica; Gulsen, Gultekin

    2015-03-01

    We are developing a ballistic-photon based approach for improving the spatial resolution of fluorescence tomography using time-domain measurements. This approach uses early photon information contained in measured time-of-fight distributions originating from fluorescence emission. The time point spread functions (TPSF) from both excitation light and emission light are acquired with gated single photon Avalanche detector (SPAD) and time-correlated single photon counting after a short laser pulse. To determine the ballistic photons for reconstruction, the lifetime of the fluorophore and the time gate from the excitation profiles will be used for calibration, and then the time gate of the fluorescence profile can be defined by a simple time convolution. By mimicking first generation CT data acquisition, the sourcedetector pair will translate across and also rotate around the subject. The measurement from each source-detector position will be reshaped into a histogram that can be used by a simple back-projection algorithm in order to reconstruct high resolution fluorescence images. Finally, from these 2D sectioning slides, a 3D inclusion can be reconstructed accurately. To validate the approach, simulation of light transport is performed for biological tissue-like media with embedded fluorescent inclusion by solving the diffusion equation with Finite Element Method using COMSOL Multiphysics simulation. The reconstruction results from simulation studies have confirmed that this approach drastically improves the spatial resolution of fluorescence tomography. Moreover, all the results have shown the feasibility of this technique for high resolution small animal imaging up to several centimeters.

  11. Single-Step 3-D Image Reconstruction in Magnetic Induction Tomography: Theoretical Limits of Spatial Resolution and Contrast to Noise Ratio

    PubMed Central

    Hollaus, Karl; Rosell-Ferrer, Javier; Merwa, Robert

    2006-01-01

    Magnetic induction tomography (MIT) is a low-resolution imaging modality for reconstructing the changes of the complex conductivity in an object. MIT is based on determining the perturbation of an alternating magnetic field, which is coupled from several excitation coils to the object. The conductivity distribution is reconstructed from the corresponding voltage changes induced in several receiver coils. Potential medical applications comprise the continuous, non-invasive monitoring of tissue alterations which are reflected in the change of the conductivity, e.g. edema, ventilation disorders, wound healing and ischemic processes. MIT requires the solution of an ill-posed inverse eddy current problem. A linearized version of this problem was solved for 16 excitation coils and 32 receiver coils with a model of two spherical perturbations within a cylindrical phantom. The method was tested with simulated measurement data. Images were reconstructed with a regularized single-step Gauss–Newton approach. Theoretical limits for spatial resolution and contrast/noise ratio were calculated and compared with the empirical results from a Monte-Carlo study. The conductivity perturbations inside a homogeneous cylinder were localized for a SNR between 44 and 64 dB. The results prove the feasibility of difference imaging with MIT and give some quantitative data on the limitations of the method. PMID:17031597

  12. High Time Resolution Photon Counting 3D Imaging Sensors

    NASA Astrophysics Data System (ADS)

    Siegmund, O.; Ertley, C.; Vallerga, J.

    2016-09-01

    Novel sealed tube microchannel plate (MCP) detectors using next generation cross strip (XS) anode readouts and high performance electronics have been developed to provide photon counting imaging sensors for Astronomy and high time resolution 3D remote sensing. 18 mm aperture sealed tubes with MCPs and high efficiency Super-GenII or GaAs photocathodes have been implemented to access the visible/NIR regimes for ground based research, astronomical and space sensing applications. The cross strip anode readouts in combination with PXS-II high speed event processing electronics can process high single photon counting event rates at >5 MHz ( 80 ns dead-time per event), and time stamp events to better than 25 ps. Furthermore, we are developing a high speed ASIC version of the electronics for low power/low mass spaceflight applications. For a GaAs tube the peak quantum efficiency has degraded from 30% (at 560 - 850 nm) to 25% over 4 years, but for Super-GenII tubes the peak quantum efficiency of 17% (peak at 550 nm) has remained unchanged for over 7 years. The Super-GenII tubes have a uniform spatial resolution of <30 μm FWHM ( 1 x106 gain) and single event timing resolution of 100 ps (FWHM). The relatively low MCP gain photon counting operation also permits longer overall sensor lifetimes and high local counting rates. Using the high timing resolution, we have demonstrated 3D object imaging with laser pulse (630 nm 45 ps jitter Pilas laser) reflections in single photon counting mode with spatial and depth sensitivity of the order of a few millimeters. A 50 mm Planacon sealed tube was also constructed, using atomic layer deposited microchannel plates which potentially offer better overall sealed tube lifetime, quantum efficiency and gain stability. This tube achieves standard bialkali quantum efficiency levels, is stable, and has been coupled to the PXS-II electronics and used to detect and image fast laser pulse signals.

  13. TU-F-17A-04: Respiratory Phase-Resolved 3D MRI with Isotropic High Spatial Resolution: Determination of the Average Breathing Motion Pattern for Abdominal Radiotherapy Planning

    SciTech Connect

    Deng, Z; Pang, J; Yang, W; Yue, Y; Tuli, R; Fraass, B; Li, D; Fan, Z

    2014-06-15

    Purpose: To develop a retrospective 4D-MRI technique (respiratory phase-resolved 3D-MRI) for providing an accurate assessment of tumor motion secondary to respiration. Methods: A 3D projection reconstruction (PR) sequence with self-gating (SG) was developed for 4D-MRI on a 3.0T MRI scanner. The respiration-induced shift of the imaging target was recorded by SG signals acquired in the superior-inferior direction every 15 radial projections (i.e. temporal resolution 98 ms). A total of 73000 radial projections obtained in 8-min were retrospectively sorted into 10 time-domain evenly distributed respiratory phases based on the SG information. Ten 3D image sets were then reconstructed offline. The technique was validated on a motion phantom (gadolinium-doped water-filled box, frequency of 10 and 18 cycles/min) and humans (4 healthy and 2 patients with liver tumors). Imaging protocol included 8-min 4D-MRI followed by 1-min 2D-realtime (498 ms/frame) MRI as a reference. Results: The multiphase 3D image sets with isotropic high spatial resolution (1.56 mm) permits flexible image reformatting and visualization. No intra-phase motion-induced blurring was observed. Comparing to 2D-realtime, 4D-MRI yielded similar motion range (phantom: 10.46 vs. 11.27 mm; healthy subject: 25.20 vs. 17.9 mm; patient: 11.38 vs. 9.30 mm), reasonable displacement difference averaged over the 10 phases (0.74mm; 3.63mm; 1.65mm), and excellent cross-correlation (0.98; 0.96; 0.94) between the two displacement series. Conclusion: Our preliminary study has demonstrated that the 4D-MRI technique can provide high-quality respiratory phase-resolved 3D images that feature: a) isotropic high spatial resolution, b) a fixed scan time of 8 minutes, c) an accurate estimate of average motion pattern, and d) minimal intra-phase motion artifact. This approach has the potential to become a viable alternative solution to assess the impact of breathing on tumor motion and determine appropriate treatment margins

  14. High Resolution 3d Modeling of the Behaim Globe

    NASA Astrophysics Data System (ADS)

    Menna, F.; Rizzi, A.; Nocerino, E.; Remondino, F.; Gruen, A.

    2012-07-01

    The article describes the 3D surveying and modeling of the Behaim globe, the oldest still existing and intact globe of the earth, preserved at the German National Museum of Nuremberg, Germany. The work is primarily performed using high-resolution digital images and automatic photogrammetric techniques. Triangulation-based laser scanning is also employed to fill some gaps in the derived image-based 3D geometry and perform geometric comparisons. Major problems are encountered in texture mapping. The 3D modeling project and the creation of high-resolution map-projections is performed for scientific, conservation, visualization and education purposes.

  15. Optimal arrangements of fiber optic probes to enhance the spatial resolution in depth for 3D reflectance diffuse optical tomography with time-resolved measurements performed with fast-gated single-photon avalanche diodes

    NASA Astrophysics Data System (ADS)

    Puszka, Agathe; Di Sieno, Laura; Dalla Mora, Alberto; Pifferi, Antonio; Contini, Davide; Boso, Gianluca; Tosi, Alberto; Hervé, Lionel; Planat-Chrétien, Anne; Koenig, Anne; Dinten, Jean-Marc

    2014-02-01

    Fiber optic probes with a width limited to a few centimeters can enable diffuse optical tomography (DOT) in intern organs like the prostate or facilitate the measurements on extern organs like the breast or the brain. We have recently shown on 2D tomographic images that time-resolved measurements with a large dynamic range obtained with fast-gated single-photon avalanche diodes (SPADs) could push forward the imaged depth range in a diffusive medium at short source-detector separation compared with conventional non-gated approaches. In this work, we confirm these performances with the first 3D tomographic images reconstructed with such a setup and processed with the Mellin- Laplace transform. More precisely, we investigate the performance of hand-held probes with short interfiber distances in terms of spatial resolution and specifically demonstrate the interest of having a compact probe design featuring small source-detector separations. We compare the spatial resolution obtained with two probes having the same design but different scale factors, the first one featuring only interfiber distances of 15 mm and the second one, 10 mm. We evaluate experimentally the spatial resolution obtained with each probe on the setup with fast-gated SPADs for optical phantoms featuring two absorbing inclusions positioned at different depths and conclude on the potential of short source-detector separations for DOT.

  16. High resolution 3D imaging of synchrotron generated microbeams

    SciTech Connect

    Gagliardi, Frank M.; Cornelius, Iwan; Blencowe, Anton; Franich, Rick D.; Geso, Moshi

    2015-12-15

    Purpose: Microbeam radiation therapy (MRT) techniques are under investigation at synchrotrons worldwide. Favourable outcomes from animal and cell culture studies have proven the efficacy of MRT. The aim of MRT researchers currently is to progress to human clinical trials in the near future. The purpose of this study was to demonstrate the high resolution and 3D imaging of synchrotron generated microbeams in PRESAGE® dosimeters using laser fluorescence confocal microscopy. Methods: Water equivalent PRESAGE® dosimeters were fabricated and irradiated with microbeams on the Imaging and Medical Beamline at the Australian Synchrotron. Microbeam arrays comprised of microbeams 25–50 μm wide with 200 or 400 μm peak-to-peak spacing were delivered as single, cross-fire, multidirectional, and interspersed arrays. Imaging of the dosimeters was performed using a NIKON A1 laser fluorescence confocal microscope. Results: The spatial fractionation of the MRT beams was clearly visible in 2D and up to 9 mm in depth. Individual microbeams were easily resolved with the full width at half maximum of microbeams measured on images with resolutions of as low as 0.09 μm/pixel. Profiles obtained demonstrated the change of the peak-to-valley dose ratio for interspersed MRT microbeam arrays and subtle variations in the sample positioning by the sample stage goniometer were measured. Conclusions: Laser fluorescence confocal microscopy of MRT irradiated PRESAGE® dosimeters has been validated in this study as a high resolution imaging tool for the independent spatial and geometrical verification of MRT beam delivery.

  17. Stereoscopic 3D display technique using spatiotemporal interlacing has improved spatial and temporal properties.

    PubMed

    Johnson, Paul V; Kim, Joohwan; Banks, Martin S

    2015-04-06

    Stereoscopic 3D (S3D) displays use spatial or temporal interlacing to send different images to the two eyes. Temporal interlacing delivers images to the left and right eyes alternately in time; it has high effective spatial resolution but is prone to temporal artifacts. Spatial interlacing delivers even pixel rows to one eye and odd rows to the other eye simultaneously; it is subject to spatial limitations such as reduced spatial resolution. We propose a spatiotemporal-interlacing protocol that interlaces the left- and right-eye views spatially, but with the rows being delivered to each eye alternating with each frame. We performed psychophysical experiments and found that flicker, motion artifacts, and depth distortion are substantially reduced relative to the temporal-interlacing protocol, and spatial resolution is better than in the spatial-interlacing protocol. Thus, the spatiotemporal-interlacing protocol retains the benefits of spatial and temporal interlacing while minimizing or even eliminating the drawbacks.

  18. Stereoscopic 3D display technique using spatiotemporal interlacing has improved spatial and temporal properties

    PubMed Central

    Johnson, Paul V.; Kim, Joohwan; Banks, Martin S.

    2015-01-01

    Stereoscopic 3D (S3D) displays use spatial or temporal interlacing to send different images to the two eyes. Temporal interlacing delivers images to the left and right eyes alternately in time; it has high effective spatial resolution but is prone to temporal artifacts. Spatial interlacing delivers even pixel rows to one eye and odd rows to the other eye simultaneously; it is subject to spatial limitations such as reduced spatial resolution. We propose a spatiotemporal-interlacing protocol that interlaces the left- and right-eye views spatially, but with the rows being delivered to each eye alternating with each frame. We performed psychophysical experiments and found that flicker, motion artifacts, and depth distortion are substantially reduced relative to the temporal-interlacing protocol, and spatial resolution is better than in the spatial-interlacing protocol. Thus, the spatiotemporal-interlacing protocol retains the benefits of spatial and temporal interlacing while minimizing or even eliminating the drawbacks. PMID:25968758

  19. Resolution in 3D in multifocal plane microscopy

    NASA Astrophysics Data System (ADS)

    Chao, Jerry; Ram, Sripad; Abraham, Anish V.; Ward, E. Sally; Ober, Raimund J.

    2008-02-01

    Using single molecule microscopy, biological interactions can be imaged and studied at the level of individual biomolecules. When characterizing an imaged biological interaction, the distance separating the two participating biomolecules can provide valuable information. Therefore, the resolvability of an imaging setup is of practical significance in the analysis of the acquired image data. Importantly, the resolvability of the imaging setup needs evaluation in the 3D context, since in general biomolecules reside in 3D space within the cellular environment. We recently introduced an information-theoretic 2D resolution measure which shows that the resolution limit due to Rayleigh's criterion can be overcome. This new result predicts that the resolution of optical microscopes is not limited, but rather can be improved with increased photon counts detected from the single molecules. The 2D result was subsequently extended to the 3D context, and the proposed information-theoretic 3D resolution measure can readily be used to determine the resolvability of a conventional single focal plane imaging setup. Here, we consider the 3D resolution measure for a multifocal plane microscope setup, an imaging system which allows the concurrent imaging of multiple focal planes within a specimen. The technique is useful in applications such as the tracking of subcellular objects in 3D. By comparing their 3D resolution measures, we find a two-plane setup to outperform a comparable conventional single-plane setup in resolvability over a range of axial locations for the single molecule pair. Moreover, we investigate and compare the impact of noise on the resolvability of the two setups.

  20. Think3d!: Improving mathematics learning through embodied spatial training.

    PubMed

    Burte, Heather; Gardony, Aaron L; Hutton, Allyson; Taylor, Holly A

    2017-01-01

    Spatial thinking skills positively relate to Science, Technology, Engineering, and Math (STEM) outcomes, but spatial training is largely absent in elementary school. Elementary school is a time when children develop foundational cognitive skills that will support STEM learning throughout their education. Spatial thinking should be considered a foundational cognitive skill. The present research examined the impact of an embodied spatial training program on elementary students' spatial and mathematical thinking. Students in rural elementary schools completed spatial and math assessments prior to and after participating in an origami and pop-up paper engineering-based program, called Think3d!. Think3d! uses embodied tasks, such as folding and cutting paper, to train two-dimensional to three-dimensional spatial thinking. Analyses explored spatial thinking gains, mathematics gains - specifically for problem types expected to show gains from spatial training - and factors predicting mathematics gains. Results showed spatial thinking gains in two assessments. Using a math categorization to target problems more and less likely to be impacted by spatial training, we found that all students improved on real-world math problems and older students improved on visual and spatial math problems. Further, the results are suggestive of developmental time points for implementing embodied spatial training related to applying spatial thinking to math. Finally, the spatial thinking assessment that was most highly related to training activities also predicted math performance gains. Future research should explore developmental issues related to how embodied spatial training might support STEM learning and outcomes.

  1. Fluorescence in situ hybridization applications for super-resolution 3D structured illumination microscopy.

    PubMed

    Markaki, Yolanda; Smeets, Daniel; Cremer, Marion; Schermelleh, Lothar

    2013-01-01

    Fluorescence in situ hybridization on three-dimensionally preserved cells (3D-FISH) is an efficient tool to analyze the subcellular localization and spatial arrangement of targeted DNA sequences and RNA transcripts at the single cell level. 3D reconstructions from serial optical sections obtained by confocal laser scanning microscopy (CLSM) have long been considered the gold standard for 3D-FISH analyses. Recent super-resolution techniques circumvent the diffraction-limit of optical resolution and have defined a new state-of-the-art in bioimaging. Three-dimensional structured illumination microscopy (3D-SIM) represents one of these technologies. Notably, 3D-SIM renders an eightfold improved volumetric resolution over conventional imaging, and allows the simultaneous visualization of differently labeled target structures. These features make this approach highly attractive for the analysis of spatial relations and substructures of nuclear targets that escape detection by conventional light microscopy. Here, we focus on the application of 3D-SIM for the visualization of subnuclear 3D-FISH preparations. In comparison with conventional fluorescence microscopy, the quality of 3D-SIM data is dependent to a much greater extent on the optimal sample preparation, labeling and acquisition conditions. We describe typical problems encountered with super-resolution imaging of in situ hybridizations in mammalian tissue culture cells and provide optimized DNA-/(RNA)-FISH protocols including combinations with immunofluorescence staining (Immuno-FISH) and DNA replication labeling using click chemistry.

  2. Improving Nearest Neighbour Search in 3d Spatial Access Method

    NASA Astrophysics Data System (ADS)

    Suhaibaha, A.; Rahman, A. A.; Uznir, U.; Anton, F.; Mioc, D.

    2016-10-01

    Nearest Neighbour (NN) is one of the important queries and analyses for spatial application. In normal practice, spatial access method structure is used during the Nearest Neighbour query execution to retrieve information from the database. However, most of the spatial access method structures are still facing with unresolved issues such as overlapping among nodes and repetitive data entry. This situation will perform an excessive Input/Output (IO) operation which is inefficient for data retrieval. The situation will become more crucial while dealing with 3D data. The size of 3D data is usually large due to its detail geometry and other attached information. In this research, a clustered 3D hierarchical structure is introduced as a 3D spatial access method structure. The structure is expected to improve the retrieval of Nearest Neighbour information for 3D objects. Several tests are performed in answering Single Nearest Neighbour search and k Nearest Neighbour (kNN) search. The tests indicate that clustered hierarchical structure is efficient in handling Nearest Neighbour query compared to its competitor. From the results, clustered hierarchical structure reduced the repetitive data entry and the accessed page. The proposed structure also produced minimal Input/Output operation. The query response time is also outperformed compared to the other competitor. For future outlook of this research several possible applications are discussed and summarized.

  3. 3D super-resolution microscopy of bacterial division machinery

    NASA Astrophysics Data System (ADS)

    Vedyaykin, A. D.; Sabantsev, A. V.; Vishnyakov, I. E.; Morozova, N. E.; Polinovskaya, V. S.; Khodorkovskii, M. A.

    2016-08-01

    Super-resolution microscopy is a promising tool for the field of microbiology, as bacteria sizes are comparable to the resolution limit of light microscopy. Bacterial division machinery and FtsZ protein in particular attract much attention of scientists who use different super-resolution microscopy techniques, but most of the available data on FtsZ structures was obtained using two-dimensional (2D) super-resolution microscopy. Using 3D single-molecule localization microscopy (SMLM, namely dSTORM) to visualize FtsZ, we demonstrate that this approach allows more accurate interpretation of super-resolution images and provides new opportunities for the study of complex structures like bacterial divisome.

  4. Using 3D Geometric Models to Teach Spatial Geometry Concepts.

    ERIC Educational Resources Information Center

    Bertoline, Gary R.

    1991-01-01

    An explanation of 3-D Computer Aided Design (CAD) usage to teach spatial geometry concepts using nontraditional techniques is presented. The software packages CADKEY and AutoCAD are described as well as their usefulness in solving space geometry problems. (KR)

  5. Comprehending 3D Diagrams: Sketching to Support Spatial Reasoning.

    PubMed

    Gagnier, Kristin M; Atit, Kinnari; Ormand, Carol J; Shipley, Thomas F

    2016-11-25

    Science, technology, engineering, and mathematics (STEM) disciplines commonly illustrate 3D relationships in diagrams, yet these are often challenging for students. Failing to understand diagrams can hinder success in STEM because scientific practice requires understanding and creating diagrammatic representations. We explore a new approach to improving student understanding of diagrams that convey 3D relations that is based on students generating their own predictive diagrams. Participants' comprehension of 3D spatial diagrams was measured in a pre- and post-design where students selected the correct 2D slice through 3D geologic block diagrams. Generating sketches that predicated the internal structure of a model led to greater improvement in diagram understanding than visualizing the interior of the model without sketching, or sketching the model without attempting to predict unseen spatial relations. In addition, we found a positive correlation between sketched diagram accuracy and improvement on the diagram comprehension measure. Results suggest that generating a predictive diagram facilitates students' abilities to make inferences about spatial relationships in diagrams. Implications for use of sketching in supporting STEM learning are discussed.

  6. High-Resolution Variable-Density 3D Cones Coronary MRA

    PubMed Central

    Addy, Nii Okai; Ingle, R. Reeve; Wu, Holden H.; Hu, Bob S.; Nishimura, Dwight G.

    2015-01-01

    Purpose To improve the spatial/temporal resolution of whole-heart coronary MR angiography (CMRA) by developing a variable-density (VD) 3D cones acquisition suitable for image reconstruction with parallel imaging and compressed sensing techniques. Methods A VD 3D cones trajectory design incorporates both radial and spiral trajectory undersampling techniques to achieve higher resolution. This design is used to generate a VD cones trajectory with 0.8 mm/66 ms isotropic spatial/temporal resolution, using a similar number of readouts as our previous fully sampled cones trajectory (1.2 mm/100 ms). Scans of volunteers and patients are performed to evaluate the performance of the VD trajectory, using non-Cartesian L1-ESPIRiT for high-resolution image reconstruction. Results With gridding reconstruction, the high-resolution scans experience an expected drop in signal-to-noise and contrast-to-noise ratios, but with L1-ESPIRiT, the apparent noise is substantially reduced. Compared to 1.2 mm images, in each volunteer, the L1-ESPIRiT 0.8 mm images exhibit higher vessel sharpness values in the right and left anterior descending arteries. Conclusion CMRA with isotropic sub-millimeter spatial resolution and high temporal resolution can be performed with VD 3D cones to improve the depiction of coronary arteries. PMID:26172829

  7. Resolution improvement by 3D particle averaging in localization microscopy

    NASA Astrophysics Data System (ADS)

    Broeken, Jordi; Johnson, Hannah; Lidke, Diane S.; Liu, Sheng; Nieuwenhuizen, Robert P. J.; Stallinga, Sjoerd; Lidke, Keith A.; Rieger, Bernd

    2015-03-01

    Inspired by recent developments in localization microscopy that applied averaging of identical particles in 2D for increasing the resolution even further, we discuss considerations for alignment (registration) methods for particles in general and for 3D in particular. We detail that traditional techniques for particle registration from cryo electron microscopy based on cross-correlation are not suitable, as the underlying image formation process is fundamentally different. We argue that only localizations, i.e. a set of coordinates with associated uncertainties, are recorded and not a continuous intensity distribution. We present a method that owes to this fact and that is inspired by the field of statistical pattern recognition. In particular we suggest to use an adapted version of the Bhattacharyya distance as a merit function for registration. We evaluate the method in simulations and demonstrate it on 3D super-resolution data of Alexa 647 labelled to the Nup133 protein in the nuclear pore complex of Hela cells. From the simulations we find suggestions that for successful registration the localization uncertainty must be smaller than the distance between labeling sites on a particle. These suggestions are supported by theoretical considerations concerning the attainable resolution in localization microscopy and its scaling behavior as a function of labeling density and localization precision.

  8. High-resolution 3D digital models of artworks

    NASA Astrophysics Data System (ADS)

    Fontana, Raffaella; Gambino, Maria Chiara; Greco, Marinella; Pampaloni, Enrico; Pezzati, Luca; Scopigno, Roberto

    2003-10-01

    The measurement of the shape of an artwork usually requires a high-resolution instrumentation, in order to catch small details such as chisel marks, sculptural relieves, surface cracks, etc. 3D scanning techniques, together with new modeling software tools, allow a high fidelity reproduction of an artwork: these can be applied either to support and document its repair or for the realization of 3D archives and virtual museums. Starting from a high-resolution digital model of an object, a further step could be its reproduction by means of fast-prototyping techniques like stereo-lithography or electro-erosion. This work is aimed at showing the performance of a high-resolution laser scanner devoted to Cultural Heritage applications. The device is portable and very versatile, in order to allow in situ applications, accurate and reliable, so to capture intricate details. This laser profilometer has been used in a few surveys, the most significant of which are the monitoring the various phases of the restoration process of an ellenistic bronze (the Minerva of Arezzo, Florence), the cataloguing of some archaeological findings (from the Grotta della Poesia, Lecce) and the documenting of wooden panels surface conditions (the "Madonna del Cardellino" by Raffaello and "La Tebaide" by Beato Angelico).

  9. Improved resolution of 3D printed scaffolds by shrinking.

    PubMed

    Chia, Helena N; Wu, Benjamin M

    2015-10-01

    Three-dimensional printing (3DP) uses inkjet printheads to selectively deposit liquid binder to adjoin powder particles in a layer-by-layer fashion to create a computer-modeled 3D object. Two general approaches for 3DP have been described for biomedical applications (direct and indirect 3DP). The two approaches offer competing advantages, and both are limited by print resolution. This study describes a materials processing strategy to enhance 3DP resolution by controlled shrinking net-shape scaffolds. Briefly, porogen preforms are printed and infused with the desired monomer or polymer solution. After solidification or polymerization, the porogen is leached and the polymer is allowed to shrink by controlled drying. Heat treatment is performed to retain the dimensions against swelling forces. The main objective of this study is to determine the effects of polymer content and post-processing on dimension, microstructure, and thermomechanical properties of the scaffold. For polyethylene glycol diacrylate (PEG-DA), reducing polymer content corresponded with greater shrinkage with maximum shrinkage of ∼80 vol% at 20% vol% PEG-DA. The secondary heat treatment retains the microarchitecture and new dimensions of the scaffolds, even when the heat-treated scaffolds are immersed into water. To demonstrate shrinkage predictability, 3D components with interlocking positive and negative features were printed, processed, and fitted. This material processing strategy provides an alternative method to enhance the resolution of 3D scaffolds, for a wide range of polymers, without optimizing the binder-powder interaction physics to print each material combination.

  10. 3D super-resolution imaging by localization microscopy.

    PubMed

    Magenau, Astrid; Gaus, Katharina

    2015-01-01

    Fluorescence microscopy is an important tool in all fields of biology to visualize structures and monitor dynamic processes and distributions. Contrary to conventional microscopy techniques such as confocal microscopy, which are limited by their spatial resolution, super-resolution techniques such as photoactivated localization microscopy (PALM) and stochastic optical reconstruction microscopy (STORM) have made it possible to observe and quantify structure and processes on the single molecule level. Here, we describe a method to image and quantify the molecular distribution of membrane-associated proteins in two and three dimensions with nanometer resolution.

  11. 3D high resolution pure optical photoacoustic microscopy

    NASA Astrophysics Data System (ADS)

    Xie, Zhixing; Chen, Sung-Liang; Ling, Tao; Guo, L. Jay; Carson, Paul L.; Wang, Xueding

    2012-02-01

    The concept of pure optical photoacoustic microscopy(POPAM) was proposed based on optical rastering of a focused excitation beam and optically sensing the photoacoustic signal using a microring resonator fabricated by a nanoimprinting technique. After some refinedment of in the resonator structure and mold fabrication, an ultrahigh Q factor of 3.0×105 was achieved which provided high sensitivity with a noise equivalent detectable pressure(NEDP) value of 29Pa. This NEDP is much lower than the hundreds of Pascals achieved with existing optical resonant structures such as etalons, fiber gratings and dielectric multilayer interference filters available for acoustic measurement. The featured high sensitivity allowed the microring resonator to detect the weak photoacoustic signals from micro- or submicroscale objects. The inherent superbroad bandwidth of the optical microring resonator combined with an optically focused scanning beam provided POPAM of high resolution in the axial as well as both lateral directions while the axial resolution of conventional photoacoustic microscopy (PAM) suffers from the limited bandwidth of PZT detectors. Furthermore, the broadband microring resonator showed similar sensitivity to that of our most sensitive PZT detector. The current POPAM system provides a lateral resolution of 5μm and an axial resolution of 8μm, comparable to that achieved by optical microscopy while presenting the unique contrast of optical absorption and functional information complementing other optical modalities. The 3D structure of microvasculature, including capillary networks, and even individual red blood cells have been discerned successfully in the proof-of-concept experiments on mouse bladders ex vivo and mouse ears in vivo. The potential of approximately GHz bandwidth of the microring resonator also might allow much higher resolution than shown here in microscopy of optical absorption and acoustic propagation properties at depths in unfrozen tissue

  12. High resolution micro ultrasonic machining for trimming 3D microstructures

    NASA Astrophysics Data System (ADS)

    Viswanath, Anupam; Li, Tao; Gianchandani, Yogesh

    2014-06-01

    This paper reports on the evaluation of a high resolution micro ultrasonic machining (HR-µUSM) process suitable for post fabrication trimming of complex 3D microstructures made from fused silica. Unlike conventional USM, the HR-µUSM process aims for low machining rates, providing high resolution and high surface quality. The machining rate is reduced by keeping the micro-tool tip at a fixed distance from the workpiece and vibrating it at a small amplitude. The surface roughness is improved by an appropriate selection of abrasive particles. Fluidic modeling is performed to study interaction among the vibrating micro-tool tip, workpiece, and the slurry. Using 304 stainless steel (SS304) tool tips of 50 µm diameter, the machining performance of the HR-µUSM process is characterized on flat fused silica substrates. The depths and surface finish of machined features are evaluated as functions of slurry concentrations, separation between the micro-tool and workpiece, and machining time. Under the selected conditions, the HR-µUSM process achieves machining rates as low as 10 nm s-1 averaged over the first minute of machining of a flat virgin sample. This corresponds to a mass removal rate of ≈20 ng min-1. The average surface roughness, Sa, achieved is as low as 30 nm. Analytical and numerical modeling are used to explain the typical profile of the machined features as well as machining rates. The process is used to demonstrate trimming of hemispherical 3D shells made of fused silica.

  13. Automated spatial alignment of 3D torso images.

    PubMed

    Bose, Arijit; Shah, Shishir K; Reece, Gregory P; Crosby, Melissa A; Beahm, Elisabeth K; Fingeret, Michelle C; Markey, Mia K; Merchant, Fatima A

    2011-01-01

    This paper describes an algorithm for automated spatial alignment of three-dimensional (3D) surface images in order to achieve a pre-defined orientation. Surface images of the torso are acquired from breast cancer patients undergoing reconstructive surgery to facilitate objective evaluation of breast morphology pre-operatively (for treatment planning) and/or post-operatively (for outcome assessment). Based on the viewing angle of the multiple cameras used for stereophotography, the orientation of the acquired torso in the images may vary from the normal upright position. Consequently, when translating this data into a standard 3D framework for visualization and analysis, the co-ordinate geometry differs from the upright position making robust and standardized comparison of images impractical. Moreover, manual manipulation and navigation of images to the desired upright position is subject to user bias. Automating the process of alignment and orientation removes operator bias and permits robust and repeatable adjustment of surface images to a pre-defined or desired spatial geometry.

  14. High Resolution 3D Radar Imaging of Comet Interiors

    NASA Astrophysics Data System (ADS)

    Asphaug, E. I.; Gim, Y.; Belton, M.; Brophy, J.; Weissman, P. R.; Heggy, E.

    2012-12-01

    Knowing the interiors of comets and other primitive bodies is fundamental to our understanding of how planets formed. We have developed a Discovery-class mission formulation, Comet Radar Explorer (CORE), based on the use of previously flown planetary radar sounding techniques, with the goal of obtaining high resolution 3D images of the interior of a small primitive body. We focus on the Jupiter-Family Comets (JFCs) as these are among the most primitive bodies reachable by spacecraft. Scattered in from far beyond Neptune, they are ultimate targets of a cryogenic sample return mission according to the Decadal Survey. Other suitable targets include primitive NEOs, Main Belt Comets, and Jupiter Trojans. The approach is optimal for small icy bodies ~3-20 km diameter with spin periods faster than about 12 hours, since (a) navigation is relatively easy, (b) radar penetration is global for decameter wavelengths, and (c) repeated overlapping ground tracks are obtained. The science mission can be as short as ~1 month for a fast-rotating JFC. Bodies smaller than ~1 km can be globally imaged, but the navigation solutions are less accurate and the relative resolution is coarse. Larger comets are more interesting, but radar signal is unlikely to be reflected from depths greater than ~10 km. So, JFCs are excellent targets for a variety of reasons. We furthermore focus on the use of Solar Electric Propulsion (SEP) to rendezvous shortly after the comet's perihelion. This approach leaves us with ample power for science operations under dormant conditions beyond ~2-3 AU. This leads to a natural mission approach of distant observation, followed by closer inspection, terminated by a dedicated radar mapping orbit. Radar reflections are obtained from a polar orbit about the icy nucleus, which spins underneath. Echoes are obtained from a sounder operating at dual frequencies 5 and 15 MHz, with 1 and 10 MHz bandwidths respectively. The dense network of echoes is used to obtain global 3D

  15. Ultrafast laser inscription of 3D components for spatial multiplexing

    NASA Astrophysics Data System (ADS)

    Thomson, Robert R.

    2016-02-01

    The thirst for bandwidth in telecommunications networks is becoming ever larger due to bandwidth hungry applications such as video-on-demand. To further increase the bandwidth capacity, engineers are now seeking to imprint information on the last remaining degree of freedom of the lightwave carrier - space. This has given rise to the field of Space Division Multiplexing (SDM). In essence, the concept of SDM simple; we aim to use the different spatial modes of an optical fibre as multiplexed data transmission channels. These modes could either be in the form of separate singlemodes in a multicore optical fibre, individual spatial modes of a multimode fibre, or indeed the individual spatial modes of a multimode multicore optical fibre. Regardless of the particular "flavour" of SDM in question, it is clear that significant interfacing issues exist between the optical fibres used in SDM and the conventional single-mode planar lightwave circuits that are essential to process the light (e.g. arrayed waveguide gratings and splitters), and efficient interconnect technologies will be required. One fabrication technology that has emerged as a possible route to solve these interconnection issues is ultrafast laser inscription (ULI), which relies on the use of focused ultrashort laser pulses to directly inscribe three-dimensional waveguide structures inside a bulk dielectric. In this paper, I describe some of the work that has been conducted around the world to apply the unique waveguide fabrication capabilities of ULI to the development of 3D photonic components for applications in SDM.

  16. Scalable Multi-Platform Distribution of Spatial 3d Contents

    NASA Astrophysics Data System (ADS)

    Klimke, J.; Hagedorn, B.; Döllner, J.

    2013-09-01

    Virtual 3D city models provide powerful user interfaces for communication of 2D and 3D geoinformation. Providing high quality visualization of massive 3D geoinformation in a scalable, fast, and cost efficient manner is still a challenging task. Especially for mobile and web-based system environments, software and hardware configurations of target systems differ significantly. This makes it hard to provide fast, visually appealing renderings of 3D data throughout a variety of platforms and devices. Current mobile or web-based solutions for 3D visualization usually require raw 3D scene data such as triangle meshes together with textures delivered from server to client, what makes them strongly limited in terms of size and complexity of the models they can handle. In this paper, we introduce a new approach for provisioning of massive, virtual 3D city models on different platforms namely web browsers, smartphones or tablets, by means of an interactive map assembled from artificial oblique image tiles. The key concept is to synthesize such images of a virtual 3D city model by a 3D rendering service in a preprocessing step. This service encapsulates model handling and 3D rendering techniques for high quality visualization of massive 3D models. By generating image tiles using this service, the 3D rendering process is shifted from the client side, which provides major advantages: (a) The complexity of the 3D city model data is decoupled from data transfer complexity (b) the implementation of client applications is simplified significantly as 3D rendering is encapsulated on server side (c) 3D city models can be easily deployed for and used by a large number of concurrent users, leading to a high degree of scalability of the overall approach. All core 3D rendering techniques are performed on a dedicated 3D rendering server, and thin-client applications can be compactly implemented for various devices and platforms.

  17. High resolution 3D gas-jet characterization.

    PubMed

    Landgraf, Björn; Schnell, Michael; Sävert, Alexander; Kaluza, Malte C; Spielmann, Christian

    2011-08-01

    We present a tomographic characterization of gas jets employed for high-intensity laser-plasma interaction experiments where the shape can be non-symmetrically. With a Mach-Zehnder interferometer we measured the phase shift for different directions through the neutral density distribution of the gas jet. From the recorded interferograms it is possible to retrieve 3-dimensional neutral density distributions by tomographic reconstruction based on the filtered back projections. We report on criteria for the smallest number of recorded interferograms as well as a comparison with the widely used phase retrieval based on an Abel inversion. As an example for the performance of our approach, we present the characterization of nozzles with rectangular openings or gas jets with shock waves. With our setup we obtained a spatial resolution of less than 60 μm for an Argon density as low as 2 × 10(17) cm(-3).

  18. Study of a high-resolution, 3D positioning cadmium zinc telluride detector for PET

    NASA Astrophysics Data System (ADS)

    Gu, Y.; Matteson, J. L.; Skelton, R. T.; Deal, A. C.; Stephan, E. A.; Duttweiler, F.; Gasaway, T. M.; Levin, C. S.

    2011-03-01

    This paper investigates the performance of 1 mm resolution cadmium zinc telluride (CZT) detectors for positron emission tomography (PET) capable of positioning the 3D coordinates of individual 511 keV photon interactions. The detectors comprise 40 mm × 40 mm × 5 mm monolithic CZT crystals that employ a novel cross-strip readout with interspersed steering electrodes to obtain high spatial and energy resolution. The study found a single anode FWHM energy resolution of 3.06 ± 0.39% at 511 keV throughout most of the detector volume. Improved resolution is expected with properly shielded front-end electronics. Measurements made using a collimated beam established the efficacy of the steering electrodes in facilitating enhanced charge collection across anodes, as well as a spatial resolution of 0.44 ± 0.07 mm in the direction orthogonal to the electrode planes. Finally, measurements based on coincidence electronic collimation yielded a point spread function with 0.78 ± 0.10 mm FWHM, demonstrating 1 mm spatial resolution capability transverse to the anodes—as expected from the 1 mm anode pitch. These findings indicate that the CZT-based detector concept has excellent performance and shows great promise for a high-resolution PET system.

  19. Study of a high-resolution, 3D positioning cadmium zinc telluride detector for PET.

    PubMed

    Gu, Y; Matteson, J L; Skelton, R T; Deal, A C; Stephan, E A; Duttweiler, F; Gasaway, T M; Levin, C S

    2011-03-21

    This paper investigates the performance of 1 mm resolution cadmium zinc telluride (CZT) detectors for positron emission tomography (PET) capable of positioning the 3D coordinates of individual 511 keV photon interactions. The detectors comprise 40 mm × 40 mm × 5 mm monolithic CZT crystals that employ a novel cross-strip readout with interspersed steering electrodes to obtain high spatial and energy resolution. The study found a single anode FWHM energy resolution of 3.06 ± 0.39% at 511 keV throughout most of the detector volume. Improved resolution is expected with properly shielded front-end electronics. Measurements made using a collimated beam established the efficacy of the steering electrodes in facilitating enhanced charge collection across anodes, as well as a spatial resolution of 0.44 ± 0.07 mm in the direction orthogonal to the electrode planes. Finally, measurements based on coincidence electronic collimation yielded a point spread function with 0.78 ± 0.10 mm FWHM, demonstrating 1 mm spatial resolution capability transverse to the anodes-as expected from the 1 mm anode pitch. These findings indicate that the CZT-based detector concept has excellent performance and shows great promise for a high-resolution PET system.

  20. On horizontal resolution for seismic acquisition geometries in complex 3D media

    NASA Astrophysics Data System (ADS)

    Wei, Wei; Fu, Li-Yun

    2014-09-01

    Spatial sampling has a crucial influence on the horizontal resolution of seismic imaging, but how to quantify the influence is still controversial especially in complex media. Most of the studies on horizontal resolution focus on the measurement of wavelet widths for seismic migration, but neglect to evaluate the effect of side-lobe perturbations on spatial resolution. The side-lobe effect, as a migration noise, is important for seismic imaging in complex media. In this article, with focal beam analysis, we define two parameters to represent the horizontal resolution of an acquisition geometry: the width of the main lobe (WML) along the inline and crossline directions and the ratio of the main-lobe amplitude to the total amplitude (RMT) in a focal beam. We provide examples of typical acquisition geometries to show how spatial sampling affects the horizontal resolution, measured in terms of WML and RMT values. WML defines the horizontal resolution to image the target, whereas RMT describes the clarity of the imaging. Migration noise reduces with increasing RMT, indirectly improving both the vertical and horizontal resolutions of seismic imaging. Case studies of seismic migration with 3D seismic data from an oil field of China, demonstrate how the acquisition geometries with different WML and RMT values influence the performance of seismic imaging. Prior WML and RMT analyses to predict the quality of acquired datasets can optimize acquisition geometries before the implementation of seismic acquisition.

  1. Study of a high-resolution, 3-D positioning cadmium zinc telluride detector for PET

    PubMed Central

    Gu, Y; Matteson, J L; Skelton, R T; Deal, A C; Stephan, E A; Duttweiler, F; Gasaway, T M; Levin, C S

    2011-01-01

    This paper investigates the performance of 1 mm resolution Cadmium Zinc Telluride (CZT) detectors for positron emission tomography (PET) capable of positioning the 3-D coordinates of individual 511 keV photon interactions. The detectors comprise 40 mm × 40 mm × 5 mm monolithic CZT crystals that employ a novel cross-strip readout with interspersed steering electrodes to obtain high spatial and energy resolution. The study found a single anode FWHM energy resolution of 3.06±0.39% at 511 keV throughout most the detector volume. Improved resolution is expected with properly shielded front-end electronics. Measurements made using a collimated beam established the efficacy of the steering electrodes in facilitating enhanced charge collection across anodes, as well as a spatial resolution of 0.44±0.07 mm in the direction orthogonal to the electrode planes. Finally, measurements based on coincidence electronic collimation yielded a point spread function with 0.78±0.10 mm FWHM, demonstrating 1 mm spatial resolution capability transverse to the anodes – as expected from the 1 mm anode pitch. These findings indicate that the CZT-based detector concept has excellent performance and shows great promise for a high-resolution PET system. PMID:21335649

  2. 3D Rendering of High Resolution PolInSAR Urban Area

    NASA Astrophysics Data System (ADS)

    Trouve, Nicolas; Colin-Koeniguer, Elise; Cantalloube, Hubert

    2011-03-01

    In the field of urban SAR imaging and mapping, the PolInSAR information potential has not been fully exploited. Until recently available resolution of PolInSAR images were not sufficient to render 3D city landscape using the polarimetric and interferometric information. This paper presents the results of urban reconstruction using single pass full polarimetric and interferometric data using ONERA's Airborne system: RAMSES. It focus on the statistical process designed for the PolInSAR matrices estimation in high resolution urban areas. A region growing algorithm is proposed to design statistically homogeneous region while preserving spatial features of the scene through shape constraints. A companion paper [CKT11] will present the interferometry tools developed to exploit the region growth results. Validation on real data using RAMSES images at X band over Toulouse are presented through 3D colored render results.

  3. Imaging the behavior of molecules in biological systems: breaking the 3D speed barrier with 3D multi-resolution microscopy.

    PubMed

    Welsher, Kevin; Yang, Haw

    2015-01-01

    The overwhelming effort in the development of new microscopy methods has been focused on increasing the spatial and temporal resolution in all three dimensions to enable the measurement of the molecular scale phenomena at the heart of biological processes. However, there exists a significant speed barrier to existing 3D imaging methods, which is associated with the overhead required to image large volumes. This overhead can be overcome to provide nearly unlimited temporal precision by simply focusing on a single molecule or particle via real-time 3D single-particle tracking and the newly developed 3D Multi-resolution Microscopy (3D-MM). Here, we investigate the optical and mechanical limits of real-time 3D single-particle tracking in the context of other methods. In particular, we investigate the use of an optical cantilever for position sensitive detection, finding that this method yields system magnifications of over 3000×. We also investigate the ideal PID control parameters and their effect on the power spectrum of simulated trajectories. Taken together, these data suggest that the speed limit in real-time 3D single particle-tracking is a result of slow piezoelectric stage response as opposed to optical sensitivity or PID control.

  4. Visual search is influenced by 3D spatial layout.

    PubMed

    Finlayson, Nonie J; Grove, Philip M

    2015-10-01

    Many activities necessitate the deployment of attention to specific distances and directions in our three-dimensional (3D) environment. However, most research on how attention is deployed is conducted with two dimensional (2D) computer displays, leaving a large gap in our understanding about the deployment of attention in 3D space. We report how each of four parameters of 3D visual space influence visual search: 3D display volume, distance in depth, number of depth planes, and relative target position in depth. Using a search task, we find that visual search performance depends on 3D volume, relative target position in depth, and number of depth planes. Our results demonstrate an asymmetrical preference for targets in the front of a display unique to 3D search and show that arranging items into more depth planes reduces search efficiency. Consistent with research using 2D displays, we found slower response times to find targets in displays with larger 3D volumes compared with smaller 3D volumes. Finally, in contrast to the importance of target depth relative to other distractors, target depth relative to the fixation point did not affect response times or search efficiency.

  5. Practical resolution requirements of measurement instruments for precise characterization of autostereoscopic 3D displays

    NASA Astrophysics Data System (ADS)

    Boher, Pierre; Leroux, Thierry; Collomb-Patton, Véronique; Bignon, Thibault

    2014-03-01

    Different ways to evaluate the optical performances of auto-stereoscopic 3D displays are reviewed. Special attention is paid to the crosstalk measurements that can be performed by measuring, either the precise angular emission at one or few locations on the display surface, or the full display surface emission from very specific locations in front of the display. Using measurements made in the two ways with different instruments on different auto-stereoscopic displays, we show that measurement instruments need to match the resolution of the human eye to obtain reliable results in both cases. Practical requirements in terms of angular resolution for viewing angle measurement instruments and in terms of spatial resolution for imaging instruments are derived and verified on practical examples.

  6. Particle detector spatial resolution

    DOEpatents

    Perez-Mendez, V.

    1992-12-15

    Method and apparatus for producing separated columns of scintillation layer material, for use in detection of X-rays and high energy charged particles with improved spatial resolution is disclosed. A pattern of ridges or projections is formed on one surface of a substrate layer or in a thin polyimide layer, and the scintillation layer is grown at controlled temperature and growth rate on the ridge-containing material. The scintillation material preferentially forms cylinders or columns, separated by gaps conforming to the pattern of ridges, and these columns direct most of the light produced in the scintillation layer along individual columns for subsequent detection in a photodiode layer. The gaps may be filled with a light-absorbing material to further enhance the spatial resolution of the particle detector. 12 figs.

  7. View planetary differentiation process through high-resolution 3D imaging

    NASA Astrophysics Data System (ADS)

    Fei, Y.

    2011-12-01

    Core-mantle separation is one of the most important processes in planetary evolution, defining the structure and chemical distribution in the planets. Iron-dominated core materials could migrate through silicate mantle to the core by efficient liquid-liquid separation and/or by percolation of liquid metal through solid silicate matrix. We can experimentally simulate these processes to examine the efficiency and time of core formation and its geochemical signatures. The quantitative measure of the efficiency of percolation is usually the dihedral angle, related to the interfacial energies of the liquid and solid phases. To determine the true dihedral angle at high pressure and temperatures, it is necessary to measure the relative frequency distributions of apparent dihedral angles between the quenched liquid metal and silicate grains for each experiment. Here I present a new imaging technique to visualize the distribution of liquid metal in silicate matrix in 3D by combination of focus ion beam (FIB) milling and high-resolution SEM image. The 3D volume rendering provides precise determination of the dihedral angle and quantitative measure of volume fraction and connectivity. I have conducted a series of experiments using mixtures of San Carlos olivine and Fe-S (10wt%S) metal with different metal-silicate ratios, up to 25 GPa and at temperatures above 1800C. High-quality 3D volume renderings were reconstructed from FIB serial sectioning and imaging with 10-nm slice thickness and 14-nm image resolution for each quenched sample. The unprecedented spatial resolution at nano scale allows detailed examination of textural features and precise determination of the dihedral angle as a function of pressure, temperature and composition. The 3D reconstruction also allows direct assessment of connectivity in multi-phase matrix, providing a new way to investigate the efficiency of metal percolation in a real silicate mantle.

  8. Test target for characterizing 3D resolution of optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Hu, Zhixiong; Hao, Bingtao; Liu, Wenli; Hong, Baoyu; Li, Jiao

    2014-12-01

    Optical coherence tomography (OCT) is a non-invasive 3D imaging technology which has been applied or investigated in many diagnostic fields including ophthalmology, dermatology, dentistry, cardiovasology, endoscopy, brain imaging and so on. Optical resolution is an important characteristic that can describe the quality and utility of an image acquiring system. We employ 3D printing technology to design and fabricate a test target for characterizing 3D resolution of optical coherence tomography. The test target which mimics USAF 1951 test chart was produced with photopolymer. By measuring the 3D test target, axial resolution as well as lateral resolution of a spectral domain OCT system was evaluated. For comparison, conventional microscope and surface profiler were employed to characterize the 3D test targets. The results demonstrate that the 3D resolution test targets have the potential of qualitatively and quantitatively validating the performance of OCT systems.

  9. Object-oriented urban 3D spatial data model organization method

    NASA Astrophysics Data System (ADS)

    Li, Jing-wen; Li, Wen-qing; Lv, Nan; Su, Tao

    2015-12-01

    This paper combined the 3d data model with object-oriented organization method, put forward the model of 3d data based on object-oriented method, implemented the city 3d model to quickly build logical semantic expression and model, solved the city 3d spatial information representation problem of the same location with multiple property and the same property with multiple locations, designed the space object structure of point, line, polygon, body for city of 3d spatial database, and provided a new thought and method for the city 3d GIS model and organization management.

  10. Sparse Bayesian framework applied to 3D super-resolution reconstruction in fetal brain MRI

    NASA Astrophysics Data System (ADS)

    Becerra, Laura C.; Velasco Toledo, Nelson; Romero Castro, Eduardo

    2015-01-01

    Fetal Magnetic Resonance (FMR) is an imaging technique that is becoming increasingly important as allows assessing brain development and thus make an early diagnostic of congenital abnormalities, spatial resolution is limited by the short acquisition time and the unpredictable fetus movements, in consequence the resulting images are characterized by non-parallel projection planes composed by anisotropic voxels. The sparse Bayesian representation is a flexible strategy which is able to model complex relationships. The Super-resolution is approached as a regression problem, the main advantage is the capability to learn data relations from observations. Quantitative performance evaluation was carried out using synthetic images, the proposed method demonstrates a better reconstruction quality compared with standard interpolation approach. The presented method is a promising approach to improve the information quality related with the 3-D fetal brain structure. It is important because allows assessing brain development and thus make an early diagnostic of congenital abnormalities.

  11. Think3d!: Training Spatial Thinking Fundamental to STEM Education

    ERIC Educational Resources Information Center

    Taylor, Holly A.; Hutton, Allyson

    2013-01-01

    This article describes the initial implementation of an innovative program for elementary-age children involving origami and pop-up paper engineering to promote visuospatial thinking. While spatial ability measures correlate with science, technology, engineering, and math (STEM) success, a focus on spatial thinking is all but missing in elementary…

  12. Subpixel Resolution In Depth Perceived Via 3-D Television

    NASA Technical Reports Server (NTRS)

    Diner, Daniel B.; Von Sydow, Marika; Fender, Derek H.

    1993-01-01

    Report describes experiment in which two black vertical bars on featureless white background placed near intersection of optical axes of two charge-coupled-device video cameras positioned to give stereoscopic views. Trained human observers found to perceive depths at subpixel resolutions in stereoscopic television images. This finding significant for remote stereoscopic monitoring, expecially during precise maneuvers of remotely controlled manipulators. Also significant for research in processing of visual information by human brain.

  13. High-resolution reconstruction for 3D SPECT

    NASA Astrophysics Data System (ADS)

    Li, Tianfang; Wen, Junhai; Lu, Hongbing; Li, Xiang; Liang, Zhengrong

    2003-05-01

    In this work, we have developed a new method for SPECT (single photon emission computed tomography) image reconstruction, which has shown the potential to provide higher resolution results than any other conventional methods using the same projection data. Unlike the conventional FBP- (filtered backprojection) and EM- (expectation maximization) type algorithms, we utilize as much system response information as we can during the reconstruction process. This information can be pre-measured during the calibration process and stored in the computer. By selecting different sampling schemes for the point response measurement, different system kernel matrices are obtained. Reconstruction utilizing these kernels generates a set of reconstructed images of the same source. Based on these reconstructed images and their corresponding sampling schemes, we are able to achieve a high resolution final image that best represents the object. Because a uniform attenuation, resolution variation and some other effects are included during the formation of the system kernel matrices, the reconstruction from the acquired projection data also compensates for all these effects correctly.

  14. High-resolution imaging of crustal melts using 3D full-waveform seismic inversion

    NASA Astrophysics Data System (ADS)

    Warner, M.; Morgan, J. V.

    2013-12-01

    A newly practical seismic imaging technique, 3D full-waveform inversion (FWI), now has the ability to image zones of melt and melt pathways throughout the crust with a better resolution than any other geophysical method. 3D FWI has recently changed practice within the petroleum industry where it is used to obtain high-resolution high-fidelity models of physical properties in the sub-surface that are both interpreted directly and used to improve the migration of deeper reflections. This technology has been spectacularly successful in improving the imaging of reservoirs beneath shallow heterogeneities produced by, for example, gas clouds, buried fluvial channels, carbonate reefs and salt bodies. During FWI, the sub-surface model is recovered principally by using the low-frequency transmitted, refracted portion of the wavefield which is most sensitive to the macro-velocity structure. In the petroleum industry, these inversions are now routinely performed using long-offset surface-streamer and ocean-bottom data to maximum source-receiver offsets of about 15 km, leading to a maximum penetration depth of around 5 km. Using longer offsets, it is possible to extend this technology to image deeper crustal targets. Localised zones of partial melt produce large changes in p-wave and s-wave properties that are restricted in their spatial extent, and that therefore form ideal targets for 3D FWI. We have performed a suite of tests to explore the use of 3D FWI in imaging melt distribution beneath the active volcano of Montserrat. We built a model of the subsurface using a 3D travel-time tomographic model obtained from the SEA CALIPSO experiment. We added two magma chambers in accordance with a model obtained using surface-elevation changes and geochemical data. We used a wide-angle, wide-azimuth acquisition geometry to generate a fully-elastic synthetic seismic dataset, added noise, and inverted the windowed transmitted arrivals only. We used an elastic code for the forward

  15. 3D-CAD Effects on Creative Design Performance of Different Spatial Abilities Students

    ERIC Educational Resources Information Center

    Chang, Y.

    2014-01-01

    Students' creativity is an important focus globally and is interrelated with students' spatial abilities. Additionally, three-dimensional computer-assisted drawing (3D-CAD) overcomes barriers to spatial expression during the creative design process. Does 3D-CAD affect students' creative abilities? The purpose of this study was to explore the…

  16. Experiment for Integrating Dutch 3d Spatial Planning and Bim for Checking Building Permits

    NASA Astrophysics Data System (ADS)

    van Berlo, L.; Dijkmans, T.; Stoter, J.

    2013-09-01

    This paper presents a research project in The Netherlands in which several SMEs collaborated to create a 3D model of the National spatial planning information. This 2D information system described in the IMRO data standard holds implicit 3D information that can be used to generate an explicit 3D model. The project realized a proof of concept to generate a 3D spatial planning model. The team used the model to integrate it with several 3D Building Information Models (BIMs) described in the open data standard Industry Foundation Classes (IFC). Goal of the project was (1) to generate a 3D BIM model from spatial planning information to be used by the architect during the early design phase, and (2) allow 3D checking of building permits. The team used several technologies like CityGML, BIM clash detection and GeoBIM to explore the potential of this innovation. Within the project a showcase was created with a part of the spatial plan from the city of The Hague. Several BIM models were integrated in the 3D spatial plan of this area. A workflow has been described that demonstrates the benefits of collaboration between the spatial domain and the AEC industry in 3D. The research results in a showcase with conclusions and considerations for both national and international practice.

  17. Acquisition of high-resolution 3D data and processing using Artificial Intelligence

    NASA Astrophysics Data System (ADS)

    Meng, Hui; Sheng, J.; Yang, W.; Pu, Y.

    1996-11-01

    Holographic PIV (HPIV) is a promising 3D velocity field measurement technique providing high spatial-temporal resolution needed for understanding complex and turbulent flows. An HPIV system, combining in-line recording and off-axis viewing (IROV) holography and Heuristic Morphology Particle Pairing (HMPP) method, is being developed in this work. Unlike 2D PIV, HPIV instantaneously records a volume of particle images through holographic imaging. Its data processing involves special difficulties such as speckle noise, sparse pairs and large data sets. The HMPP algorithm is an adaptive parallel processing scheme applying artificial intelligence searching theory. Based on similar morphology of a particle group at successive instants separated by a small interval, HMPP matches a group of particle images between double exposures and provides velocity vectors for individual particle pairs, providing much higher spatial resolution than conventional correlation algorithm and lower measurement error caused by large velocity gradients. Taking advantages of IROV and HMPP, the system being developed appears highly promising as a practical HPIV configuration.

  18. Recording High Resolution 3D Lagrangian Motions In Marine Dinoflagellates using Digital Holographic Microscopic Cinematography

    NASA Astrophysics Data System (ADS)

    Sheng, J.; Malkiel, E.; Katz, J.; Place, A. R.; Belas, R.

    2006-11-01

    Detailed data on swimming behavior and locomotion for dense population of dinoflagellates constitutes a key component to understanding cell migration, cell-cell interactions and predator-prey dynamics, all of which affect algae bloom dynamics. Due to the multi-dimensional nature of flagellated cell motions, spatial-temporal Lagrangian measurements of multiple cells in high concentration are very limited. Here we present detailed data on 3D Lagrangian motions for three marine dinoflagellates: Oxyrrhis marina, Karlodinium veneficum, and Pfiesteria piscicida, using digital holographic microscopic cinematography. The measurements are performed in a 5x5x25mm cuvette with cell densities varying from 50,000 ˜ 90,000 cells/ml. Approximately 200-500 cells are tracked simultaneously for 12s at 60fps in a sample volume of 1x1x5 mm at a spatial resolution of 0.4x0.4x2 μm. We fully resolve the longitudinal flagella (˜200nm) along with the Lagrangian trajectory of each organism. Species dependent swimming behavior are identified and categorized quantitatively by velocities, radii of curvature, and rotations of pitch. Statistics on locomotion, temporal & spatial scales, and diffusion rate show substantial differences between species. The scaling between turning radius and cell dimension can be explained by a distributed stokeslet model for a self-propelled body.

  19. A novel time-multiplexed autostereoscopic multiview full resolution 3D display

    NASA Astrophysics Data System (ADS)

    Liou, Jian-Chiun; Chen, Fu-Hao

    2012-03-01

    Many people believe that in the future, autostereoscopic 3D displays will become a mainstream display type. Achievement of higher quality 3D images requires both higher panel resolution and more viewing zones. Consequently, the transmission bandwidth of the 3D display systems involves enormous amounts of data transfer. We propose and experimentally demonstrate a novel time-multiplexed autostereoscopic multi-view full resolution 3D display based on the lenticular lens array in association with the control of the active dynamic LED backlight. The lenticular lenses of the lens array optical system receive the light and deflect the light into each viewing zone in a time sequence. The crosstalk under different observation scanning angles is showed, including the cases of 4-views field scanning. The crosstalk of any view zones is about 5% respectively; the results are better than other 3D type.

  20. User Control and Task Authenticity for Spatial Learning in 3D Environments

    ERIC Educational Resources Information Center

    Dalgarno, Barney; Harper, Barry

    2004-01-01

    This paper describes two empirical studies which investigated the importance for spatial learning of view control and object manipulation within 3D environments. A 3D virtual chemistry laboratory was used as the research instrument. Subjects, who were university undergraduate students (34 in the first study and 80 in the second study), undertook…

  1. Types of Reasoning in 3D Geometry Thinking and Their Relation with Spatial Ability

    ERIC Educational Resources Information Center

    Pittalis, Marios; Christou, Constantinos

    2010-01-01

    The aim of this study is to describe and analyse the structure of 3D geometry thinking by identifying different types of reasoning and to examine their relation with spatial ability. To achieve this goal, two tests were administered to students in grades 5 to 9. The results of the study showed that 3D geometry thinking could be described by four…

  2. Special subpixel arrangement-based 3D display with high horizontal resolution.

    PubMed

    Lv, Guo-Jiao; Wang, Qiong-Hua; Zhao, Wu-Xiang; Wu, Fei

    2014-11-01

    A special subpixel arrangement-based 3D display is proposed. This display consists of a 2D display panel and a parallax barrier. On the 2D display panel, subpixels have a special arrangement, so they can redefine the formation of color pixels. This subpixel arrangement can bring about triple horizontal resolution for a conventional 2D display panel. Therefore, when these pixels are modulated by the parallax barrier, the 3D images formed also have triple horizontal resolution. A prototype of this display is developed. Experimental results show that this display with triple horizontal resolution can produce a better display effect than the conventional one.

  3. High-resolution modelling of 3D hydrodynamics in coastal archipelagos

    NASA Astrophysics Data System (ADS)

    Miettunen, Elina; Tuomi, Laura; Ropponen, Janne; Lignell, Risto

    2016-04-01

    Dynamics of the coastal seas are affected by eutrophication, over-fishing, coastal construction and climate change. To enable the sustainable development of these areas, monitoring and modelling of the state of the sea are needed. The Archipelago Sea, located in the northern part of the semi-enclosed and brackish water Baltic Sea, is one of the most complex coastal areas with over 40 000 small islands and islets. It is also very vulnerable area already heavily stressed with eutrophication. Applicable modelling tools are needed to support the decision making and to provide sufficiently reliable information on the effects of the planned actions on the state of the coastal waters. We used 3D hydrodynamic model COHERENS to model the Archipelago Sea area with high spatial resolution of 0.25 nmi. Boundary conditions for this limited area were provided from coarser resolution, 2 nmi, Baltic Sea grid. In order to evaluate the performance of the high-resolution coastal model implementation a comprehensive measurement dataset was gathered, including hydrographic data from three intensive monitoring stations and several more rarely visited monitoring or research stations. The hydrodynamic model was able to simulate the surface temperature and salinity fields and their seasonal variation with good accuracy in this complex area. The sharp depth gradients typical for this area provided some challenges to the modelling. There was some over mixing and related to too strong vertical currents in the steep slopes of the deeper fault lines. Also the water exchange between the more open sea and coastal areas through narrow channels between the islands is not sufficiently well reproduced with the current resolution, leading to too high bottom temperatures.

  4. Using 3D visualization and seismic attributes to improve structural and stratigraphic resolution of reservoirs

    SciTech Connect

    Kerr, J. ); Jones, G.L. )

    1996-01-01

    Recent advances in hardware and software have given the interpreter and engineer new ways to view 3D seismic data and well bore information. Recent papers have also highlighted the use of various statistics and seismic attributes. By combining new 3D rendering technologies with recent trends in seismic analysis, the interpreter can improve the structural and stratigraphic resolution of hydrocarbon reservoirs. This paper gives several examples using 3D visualization to better define both the structural and stratigraphic aspects of several different structural types from around the world. Statistics, 3D visualization techniques and rapid animation are used to show complex faulting and detailed channel systems. These systems would be difficult to map using either 2D or 3D data with conventional interpretation techniques.

  5. Using 3D visualization and seismic attributes to improve structural and stratigraphic resolution of reservoirs

    SciTech Connect

    Kerr, J.; Jones, G.L.

    1996-12-31

    Recent advances in hardware and software have given the interpreter and engineer new ways to view 3D seismic data and well bore information. Recent papers have also highlighted the use of various statistics and seismic attributes. By combining new 3D rendering technologies with recent trends in seismic analysis, the interpreter can improve the structural and stratigraphic resolution of hydrocarbon reservoirs. This paper gives several examples using 3D visualization to better define both the structural and stratigraphic aspects of several different structural types from around the world. Statistics, 3D visualization techniques and rapid animation are used to show complex faulting and detailed channel systems. These systems would be difficult to map using either 2D or 3D data with conventional interpretation techniques.

  6. Cryogenic optical localization provides 3D protein structure data with Angstrom resolution.

    PubMed

    Weisenburger, Siegfried; Boening, Daniel; Schomburg, Benjamin; Giller, Karin; Becker, Stefan; Griesinger, Christian; Sandoghdar, Vahid

    2017-02-01

    We introduce Cryogenic Optical Localization in 3D (COLD), a method to localize multiple fluorescent sites within a single small protein with Angstrom resolution. We demonstrate COLD by determining the conformational state of the cytosolic Per-ARNT-Sim domain from the histidine kinase CitA of Geobacillus thermodenitrificans and resolving the four biotin sites of streptavidin. COLD provides quantitative 3D information about small- to medium-sized biomolecules on the Angstrom scale and complements other techniques in structural biology.

  7. Single-view volumetric PIV via high-resolution scanning, isotropic voxel restructuring and 3D least-squares matching (3D-LSM)

    NASA Astrophysics Data System (ADS)

    Brücker, C.; Hess, D.; Kitzhofer, J.

    2013-02-01

    Scanning PIV as introduced by Brücker (1995 Exp. Fluids 19 255-63, 1996a Appl. Sci. Res. 56 157-79) has been successfully applied in the last 20 years to different flow problems where the frame rate was sufficient to ensure a ‘frozen’ field condition. The limited number of parallel planes however leads typically to an under-sampling in the scan direction in depth; therefore, the spatial resolution in depth is typically considerably lower than the spatial resolution in the plane of the laser sheet (depth resolution = scan shift Δz ≫ pixel unit in object space). In addition, a partial volume averaging effect due to the thickness of the light sheet must be taken into account. Herein, the method is further developed using a high-resolution scanning in combination with a Gaussian regression technique to achieve an isotropic representation of the tracer particles in a voxel-based volume reconstruction with cuboidal voxels. This eliminates the partial volume averaging effect due to light sheet thickness and leads to comparable spatial resolution of the particle field reconstructions in x-, y- and z-axes. In addition, advantage of voxel-based processing with estimations of translation, rotation and shear/strain is taken by using a 3D least-squares matching method, well suited for reconstruction of grey-level pattern fields. The method is discussed in this paper and used to investigate the ring vortex instability at Re = 2500 within a measurement volume of roughly 75 × 75 × 50 mm3 with a spatial resolution of 100 µm/voxel (750 × 750 × 500 voxel elements). The volume has been scanned with a number of 100 light sheets and scan rates of 10 kHz. The results show the growth of the Tsai-Widnall azimuthal instabilities accompanied with a precession of the axis of the vortex ring. Prior to breakdown, secondary instabilities evolve along the core with streamwise oriented striations. The front stagnation point's streamwise distance to the core starts to decrease while

  8. 3D high-resolution two-photon crosslinked hydrogel structures for biological studies.

    PubMed

    Brigo, Laura; Urciuolo, Anna; Giulitti, Stefano; Giustina, Gioia Della; Tromayer, Maximilian; Liska, Robert; Elvassore, Nicola; Brusatin, Giovanna

    2017-03-25

    Hydrogels are widely used as matrices for cell growth due to the their tuneable chemical and physical properties, which mimic the extracellular matrix of natural tissue. The microfabrication of hydrogels into arbitrarily complex 3D structures is becoming essential for numerous biological applications, and in particular for investigating the correlation between cell shape and cell function in a 3D environment. Micrometric and sub-micrometric resolution hydrogel scaffolds are required to deeply investigate molecular mechanisms behind cell-matrix interaction and downstream cellular processes. We report the design and development of high resolution 3D gelatin hydrogel woodpile structures by two-photon crosslinking. Hydrated structures of lateral linewidth down to 0.5 µm, lateral and axial resolution down to a few µm are demonstrated. According to the processing parameters, different degrees of polymerization are obtained, resulting in hydrated scaffolds of variable swelling and deformation. The 3D hydrogels are biocompatible and promote cell adhesion and migration. Interestingly, according to the polymerization degree, 3D hydrogel woodpile structures show variable extent of cell adhesion and invasion. Human BJ cell lines show capability of deforming 3D micrometric resolved hydrogel structures.

  9. Application of multi-resolution 3D techniques in crime scene documentation with bloodstain pattern analysis.

    PubMed

    Hołowko, Elwira; Januszkiewicz, Kamil; Bolewicki, Paweł; Sitnik, Robert; Michoński, Jakub

    2016-10-01

    In forensic documentation with bloodstain pattern analysis (BPA) it is highly desirable to obtain non-invasively overall documentation of a crime scene, but also register in high resolution single evidence objects, like bloodstains. In this study, we propose a hierarchical 3D scanning platform designed according to the top-down approach known from the traditional forensic photography. The overall 3D model of a scene is obtained via integration of laser scans registered from different positions. Some parts of a scene being particularly interesting are documented using midrange scanner, and the smallest details are added in the highest resolution as close-up scans. The scanning devices are controlled using developed software equipped with advanced algorithms for point cloud processing. To verify the feasibility and effectiveness of multi-resolution 3D scanning in crime scene documentation, our platform was applied to document a murder scene simulated by the BPA experts from the Central Forensic Laboratory of the Police R&D, Warsaw, Poland. Applying the 3D scanning platform proved beneficial in the documentation of a crime scene combined with BPA. The multi-resolution 3D model enables virtual exploration of a scene in a three-dimensional environment, distance measurement, and gives a more realistic preservation of the evidences together with their surroundings. Moreover, high-resolution close-up scans aligned in a 3D model can be used to analyze bloodstains revealed at the crime scene. The result of BPA such as trajectories, and the area of origin are visualized and analyzed in an accurate model of a scene. At this stage, a simplified approach considering the trajectory of blood drop as a straight line is applied. Although the 3D scanning platform offers a new quality of crime scene documentation with BPA, some of the limitations of the technique are also mentioned.

  10. A physical model eye with 3D resolution test targets for optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Hu, Zhixiong; Liu, Wenli; Hong, Baoyu; Hao, Bingtao; Wang, Lele; Li, Jiao

    2014-09-01

    Optical coherence tomography (OCT) has been widely employed as non-invasive 3D imaging diagnostic instrument, particularly in the field of ophthalmology. Although OCT has been approved for use in clinic in USA, Europe and Asia, international standardization of this technology is still in progress. Validation of OCT imaging capabilities is considered extremely important to ensure its effective use in clinical diagnoses. Phantom with appropriate test targets can assist evaluate and calibrate imaging performance of OCT at both installation and throughout lifetime of the instrument. In this paper, we design and fabricate a physical model eye with 3D resolution test targets to characterize OCT imaging performance. The model eye was fabricated with transparent resin to simulate realistic ophthalmic testing environment, and most key optical elements including cornea, lens and vitreous body were realized. The test targets which mimic USAF 1951 test chart were fabricated on the fundus of the model eye by 3D printing technology. Differing from traditional two dimensional USAF 1951 test chart, a group of patterns which have different thickness in depth were fabricated. By measuring the 3D test targets, axial resolution as well as lateral resolution of an OCT system can be evaluated at the same time with this model eye. To investigate this specialized model eye, it was measured by a scientific spectral domain OCT instrument and a clinical OCT system respectively. The results demonstrate that the model eye with 3D resolution test targets have the potential of qualitatively and quantitatively validating the performance of OCT systems.

  11. Zooming in: high resolution 3D reconstruction of differently stained histological whole slide images

    NASA Astrophysics Data System (ADS)

    Lotz, Johannes; Berger, Judith; Müller, Benedikt; Breuhahn, Kai; Grabe, Niels; Heldmann, Stefan; Homeyer, André; Lahrmann, Bernd; Laue, Hendrik; Olesch, Janine; Schwier, Michael; Sedlaczek, Oliver; Warth, Arne

    2014-03-01

    Much insight into metabolic interactions, tissue growth, and tissue organization can be gained by analyzing differently stained histological serial sections. One opportunity unavailable to classic histology is three-dimensional (3D) examination and computer aided analysis of tissue samples. In this case, registration is needed to reestablish spatial correspondence between adjacent slides that is lost during the sectioning process. Furthermore, the sectioning introduces various distortions like cuts, folding, tearing, and local deformations to the tissue, which need to be corrected in order to exploit the additional information arising from the analysis of neighboring slide images. In this paper we present a novel image registration based method for reconstructing a 3D tissue block implementing a zooming strategy around a user-defined point of interest. We efficiently align consecutive slides at increasingly fine resolution up to cell level. We use a two-step approach, where after a macroscopic, coarse alignment of the slides as preprocessing, a nonlinear, elastic registration is performed to correct local, non-uniform deformations. Being driven by the optimization of the normalized gradient field (NGF) distance measure, our method is suitable for differently stained and thus multi-modal slides. We applied our method to ultra thin serial sections (2 μm) of a human lung tumor. In total 170 slides, stained alternately with four different stains, have been registered. Thorough visual inspection of virtual cuts through the reconstructed block perpendicular to the cutting plane shows accurate alignment of vessels and other tissue structures. This observation is confirmed by a quantitative analysis. Using nonlinear image registration, our method is able to correct locally varying deformations in tissue structures and exceeds the limitations of globally linear transformations.

  12. Fine resolution 3D temperature fields off Kerguelen from instrumented penguins

    NASA Astrophysics Data System (ADS)

    Charrassin, Jean-Benoît; Park, Young-Hyang; Le Maho, Yvon; Bost, Charles-André

    2004-12-01

    The use of diving animals as autonomous vectors of oceanographic instruments is rapidly increasing, because this approach yields cost-efficient new information and can be used in previously poorly sampled areas. However, methods for analyzing the collected data are still under development. In particular, difficulties may arise from the heterogeneous data distribution linked to animals' behavior. Here we show how raw temperature data collected by penguin-borne loggers were transformed to a regular gridded dataset that provided new information on the local circulation off Kerguelen. A total of 16 king penguins ( Aptenodytes patagonicus) were equipped with satellite-positioning transmitters and with temperature-time-depth recorders (TTDRs) to record dive depth and sea temperature. The penguins' foraging trips recorded during five summers ranged from 140 to 600 km from the colony and 11,000 dives >100 m were recorded. Temperature measurements recorded during diving were used to produce detailed 3D temperature fields of the area (0-200 m). The data treatment included dive location, determination of the vertical profile for each dive, averaging and gridding of those profiles onto 0.1°×0.1° cells, and optimal interpolation in both the horizontal and vertical using an objective analysis. Horizontal fields of temperature at the surface and 100 m are presented, as well as a vertical section along the main foraging direction of the penguins. Compared to conventional temperature databases (Levitus World Ocean Atlas and historical stations available in the area), the 3D temperature fields collected from penguins are extremely finely resolved, by one order finer. Although TTDRs were less accurate than conventional instruments, such a high spatial resolution of penguin-derived data provided unprecedented detailed information on the upper level circulation pattern east of Kerguelen, as well as the iron-enrichment mechanism leading to a high primary production over the Kerguelen

  13. How Attention Affects Spatial Resolution

    PubMed Central

    Carrasco, Marisa; Barbot, Antoine

    2015-01-01

    We summarize and discuss a series of psychophysical studies on the effects of spatial covert attention on spatial resolution, our ability to discriminate fine patterns. Heightened resolution is beneficial in most, but not all, visual tasks. We show how endogenous attention (voluntary, goal driven) and exogenous attention (involuntary, stimulus driven) affect performance on a variety of tasks mediated by spatial resolution, such as visual search, crowding, acuity, and texture segmentation. Exogenous attention is an automatic mechanism that increases resolution regardless of whether it helps or hinders performance. In contrast, endogenous attention flexibly adjusts resolution to optimize performance according to task demands. We illustrate how psychophysical studies can reveal the underlying mechanisms of these effects and allow us to draw linking hypotheses with known neurophysiological effects of attention. PMID:25948640

  14. First MMS Observations of High Time Resolution 3D Electric and Magnetic fields at the Dayside Magnetopause.

    NASA Astrophysics Data System (ADS)

    Torbert, R. B.; Burch, J. L.; Russell, C. T.; Magnes, W.; Ergun, R. E.; Lindqvist, P. A.; Le Contel, O.; Vaith, H.; Macri, J.; Myers, S.; Rau, D.; Needell, J.; King, B.; Granoff, M.; Chutter, M.; Dors, I.; Argall, M. R.; Shuster, J. R.; Olsson, G.; Marklund, G. T.; Khotyaintsev, Y. V.; Eriksson, A. I.; Kletzing, C.; Bounds, S. R.; Anderson, B. J.; Baumjohann, W.; Steller, M.; Bromund, K. R.; Le, G.; Nakamura, R.; Strangeway, R. J.; Leinweber, H. K.; Tucker, S.; Westfall, J.; Fischer, D.; Plaschke, F.; Pollock, C. J.; Giles, B. L.; Moore, T. E.; Mauk, B.; Fuselier, S. A.

    2015-12-01

    The electrodynamics at the magnetopause is key to our understanding of ion and electron acceleration within reconnection regions. The Magnetospheric Multiscale (MMS) fleet of four spacecraft was launched into its Phase-1 equatorial orbit of 12 Re apogee specifically to investigate these regions at the Earth's magnetopause. In addition to a comprehensive suite of particle measurements, MMS makes very high time resolution 3D electric and magnetic field measurements of high accuracy using flux-gate, search coil, 3-axis double probe, and electron drift sensors. In September 2015, the MMS fleet will begin to encounter the dusk-side magnetopause in its initial configuration of approximately 160 km separation, allowing investigation of the spatial and temporal characteristics of important electrodynamics during reconnection. Using these field and particle measurements, we present first observations of 3D magnetic and electric fields (including their parallel component), and inferred current sheets, during active magnetopause crossings using the highest time resolution data available on MMS.

  15. Analytical 3D views and virtual globes — scientific results in a familiar spatial context

    NASA Astrophysics Data System (ADS)

    Tiede, Dirk; Lang, Stefan

    In this paper we introduce analytical three-dimensional (3D) views as a means for effective and comprehensible information delivery, using virtual globes and the third dimension as an additional information carrier. Four case studies are presented, in which information extraction results from very high spatial resolution (VHSR) satellite images were conditioned and aggregated or disaggregated to regular spatial units. The case studies were embedded in the context of: (1) urban life quality assessment (Salzburg/Austria); (2) post-disaster assessment (Harare/Zimbabwe); (3) emergency response (Lukole/Tanzania); and (4) contingency planning (faked crisis scenario/Germany). The results are made available in different virtual globe environments, using the implemented contextual data (such as satellite imagery, aerial photographs, and auxiliary geodata) as valuable additional context information. Both day-to-day users and high-level decision makers are addressees of this tailored information product. The degree of abstraction required for understanding a complex analytical content is balanced with the ease and appeal by which the context is conveyed.

  16. How spatial abilities and dynamic visualizations interplay when learning functional anatomy with 3D anatomical models.

    PubMed

    Berney, Sandra; Bétrancourt, Mireille; Molinari, Gaëlle; Hoyek, Nady

    2015-01-01

    The emergence of dynamic visualizations of three-dimensional (3D) models in anatomy curricula may be an adequate solution for spatial difficulties encountered with traditional static learning, as they provide direct visualization of change throughout the viewpoints. However, little research has explored the interplay between learning material presentation formats, spatial abilities, and anatomical tasks. First, to understand the cognitive challenges a novice learner would be faced with when first exposed to 3D anatomical content, a six-step cognitive task analysis was developed. Following this, an experimental study was conducted to explore how presentation formats (dynamic vs. static visualizations) support learning of functional anatomy, and affect subsequent anatomical tasks derived from the cognitive task analysis. A second aim was to investigate the interplay between spatial abilities (spatial visualization and spatial relation) and presentation formats when the functional anatomy of a 3D scapula and the associated shoulder flexion movement are learned. Findings showed no main effect of the presentation formats on performances, but revealed the predictive influence of spatial visualization and spatial relation abilities on performance. However, an interesting interaction between presentation formats and spatial relation ability for a specific anatomical task was found. This result highlighted the influence of presentation formats when spatial abilities are involved as well as the differentiated influence of spatial abilities on anatomical tasks.

  17. Generalized recovery algorithm for 3D super-resolution microscopy using rotating point spread functions

    PubMed Central

    Shuang, Bo; Wang, Wenxiao; Shen, Hao; Tauzin, Lawrence J.; Flatebo, Charlotte; Chen, Jianbo; Moringo, Nicholas A.; Bishop, Logan D. C.; Kelly, Kevin F.; Landes, Christy F.

    2016-01-01

    Super-resolution microscopy with phase masks is a promising technique for 3D imaging and tracking. Due to the complexity of the resultant point spread functions, generalized recovery algorithms are still missing. We introduce a 3D super-resolution recovery algorithm that works for a variety of phase masks generating 3D point spread functions. A fast deconvolution process generates initial guesses, which are further refined by least squares fitting. Overfitting is suppressed using a machine learning determined threshold. Preliminary results on experimental data show that our algorithm can be used to super-localize 3D adsorption events within a porous polymer film and is useful for evaluating potential phase masks. Finally, we demonstrate that parallel computation on graphics processing units can reduce the processing time required for 3D recovery. Simulations reveal that, through desktop parallelization, the ultimate limit of real-time processing is possible. Our program is the first open source recovery program for generalized 3D recovery using rotating point spread functions. PMID:27488312

  18. High-resolution real-time 3D shape measurement on a portable device

    NASA Astrophysics Data System (ADS)

    Karpinsky, Nikolaus; Hoke, Morgan; Chen, Vincent; Zhang, Song

    2013-09-01

    Recent advances in technology have enabled the acquisition of high-resolution 3D models in real-time though the use of structured light scanning techniques. While these advances are impressive, they require large amounts of computing power, thus being limited to using large desktop computers with high end CPUs and sometimes GPUs. This is undesirable in making high-resolution real-time 3D scanners ubiquitous in our mobile lives. To address this issue, this work describes and demonstrates a real-time 3D scanning system that is realized on a mobile device, namely a laptop computer, which can achieve speeds of 20fps 3D at a resolution of 640x480 per frame. By utilizing a graphics processing unit (GPU) as a multipurpose parallel processor, along with a parallel phase shifting technique, we are able to realize the entire 3D processing pipeline in parallel. To mitigate high speed camera transfer problems, which typically require a dedicated frame grabber, we make use of USB 3.0 along with direct memory access (DMA) to transfer camera images to the GPU. To demonstrate the effectiveness of the technique, we experiment with the scanner on both static geometry of a statue and dynamic geometry of a deforming material sample in front of the system.

  19. Comparison of 3D-OP-OSEM and 3D-FBP reconstruction algorithms for High-Resolution Research Tomograph studies: effects of randoms estimation methods

    NASA Astrophysics Data System (ADS)

    van Velden, Floris H. P.; Kloet, Reina W.; van Berckel, Bart N. M.; Wolfensberger, Saskia P. A.; Lammertsma, Adriaan A.; Boellaard, Ronald

    2008-06-01

    The High-Resolution Research Tomograph (HRRT) is a dedicated human brain positron emission tomography (PET) scanner. Recently, a 3D filtered backprojection (3D-FBP) reconstruction method has been implemented to reduce bias in short duration frames, currently observed in 3D ordinary Poisson OSEM (3D-OP-OSEM) reconstructions. Further improvements might be expected using a new method of variance reduction on randoms (VRR) based on coincidence histograms instead of using the delayed window technique (DW) to estimate randoms. The goal of this study was to evaluate VRR in combination with 3D-OP-OSEM and 3D-FBP reconstruction techniques. To this end, several phantom studies and a human brain study were performed. For most phantom studies, 3D-OP-OSEM showed higher accuracy of observed activity concentrations with VRR than with DW. However, both positive and negative deviations in reconstructed activity concentrations and large biases of grey to white matter contrast ratio (up to 88%) were still observed as a function of scan statistics. Moreover 3D-OP-OSEM+VRR also showed bias up to 64% in clinical data, i.e. in some pharmacokinetic parameters as compared with those obtained with 3D-FBP+VRR. In the case of 3D-FBP, VRR showed similar results as DW for both phantom and clinical data, except that VRR showed a better standard deviation of 6-10%. Therefore, VRR should be used to correct for randoms in HRRT PET studies.

  20. Label free cell tracking in 3D tissue engineering constructs with high resolution imaging

    NASA Astrophysics Data System (ADS)

    Smith, W. A.; Lam, K.-P.; Dempsey, K. P.; Mazzocchi-Jones, D.; Richardson, J. B.; Yang, Y.

    2014-02-01

    Within the field of tissue engineering there is an emphasis on studying 3-D live tissue structures. Consequently, to investigate and identify cellular activities and phenotypes in a 3-D environment for all in vitro experiments, including shape, migration/proliferation and axon projection, it is necessary to adopt an optical imaging system that enables monitoring 3-D cellular activities and morphology through the thickness of the construct for an extended culture period without cell labeling. This paper describes a new 3-D tracking algorithm developed for Cell-IQ®, an automated cell imaging platform, which has been equipped with an environmental chamber optimized to enable capturing time-lapse sequences of live cell images over a long-term period without cell labeling. As an integral part of the algorithm, a novel auto-focusing procedure was developed for phase contrast microscopy equipped with 20x and 40x objectives, to provide a more accurate estimation of cell growth/trajectories by allowing 3-D voxels to be computed at high spatiotemporal resolution and cell density. A pilot study was carried out in a phantom system consisting of horizontally aligned nanofiber layers (with precise spacing between them), to mimic features well exemplified in cellular activities of neuronal growth in a 3-D environment. This was followed by detailed investigations concerning axonal projections and dendritic circuitry formation in a 3-D tissue engineering construct. Preliminary work on primary animal neuronal cells in response to chemoattractant and topographic cue within the scaffolds has produced encouraging results.

  1. On-line 3D motion estimation using low resolution MRI

    NASA Astrophysics Data System (ADS)

    Glitzner, M.; de Senneville, B. Denis; Lagendijk, J. J. W.; Raaymakers, B. W.; Crijns, S. P. M.

    2015-08-01

    Image processing such as deformable image registration finds its way into radiotherapy as a means to track non-rigid anatomy. With the advent of magnetic resonance imaging (MRI) guided radiotherapy, intrafraction anatomy snapshots become technically feasible. MRI provides the needed tissue signal for high-fidelity image registration. However, acquisitions, especially in 3D, take a considerable amount of time. Pushing towards real-time adaptive radiotherapy, MRI needs to be accelerated without degrading the quality of information. In this paper, we investigate the impact of image resolution on the quality of motion estimations. Potentially, spatially undersampled images yield comparable motion estimations. At the same time, their acquisition times would reduce greatly due to the sparser sampling. In order to substantiate this hypothesis, exemplary 4D datasets of the abdomen were downsampled gradually. Subsequently, spatiotemporal deformations are extracted consistently using the same motion estimation for each downsampled dataset. Errors between the original and the respectively downsampled version of the dataset are then evaluated. Compared to ground-truth, results show high similarity of deformations estimated from downsampled image data. Using a dataset with {{≤ft(2.5 \\text{mm}\\right)}3} voxel size, deformation fields could be recovered well up to a downsampling factor of 2, i.e. {{≤ft(5 \\text{mm}\\right)}3} . In a therapy guidance scenario MRI, imaging speed could accordingly increase approximately fourfold, with acceptable loss of estimated motion quality.

  2. Airborne LIDAR and high resolution satellite data for rapid 3D feature extraction

    NASA Astrophysics Data System (ADS)

    Jawak, S. D.; Panditrao, S. N.; Luis, A. J.

    2014-11-01

    This work uses the canopy height model (CHM) based workflow for individual tree crown delineation and 3D feature extraction approach (Overwatch Geospatial's proprietary algorithm) for building feature delineation from high-density light detection and ranging (LiDAR) point cloud data in an urban environment and evaluates its accuracy by using very high-resolution panchromatic (PAN) (spatial) and 8-band (multispectral) WorldView-2 (WV-2) imagery. LiDAR point cloud data over San Francisco, California, USA, recorded in June 2010, was used to detect tree and building features by classifying point elevation values. The workflow employed includes resampling of LiDAR point cloud to generate a raster surface or digital terrain model (DTM), generation of a hill-shade image and an intensity image, extraction of digital surface model, generation of bare earth digital elevation model (DEM) and extraction of tree and building features. First, the optical WV-2 data and the LiDAR intensity image were co-registered using ground control points (GCPs). The WV-2 rational polynomial coefficients model (RPC) was executed in ERDAS Leica Photogrammetry Suite (LPS) using supplementary *.RPB file. In the second stage, ortho-rectification was carried out using ERDAS LPS by incorporating well-distributed GCPs. The root mean square error (RMSE) for the WV-2 was estimated to be 0.25 m by using more than 10 well-distributed GCPs. In the second stage, we generated the bare earth DEM from LiDAR point cloud data. In most of the cases, bare earth DEM does not represent true ground elevation. Hence, the model was edited to get the most accurate DEM/ DTM possible and normalized the LiDAR point cloud data based on DTM in order to reduce the effect of undulating terrain. We normalized the vegetation point cloud values by subtracting the ground points (DEM) from the LiDAR point cloud. A normalized digital surface model (nDSM) or CHM was calculated from the LiDAR data by subtracting the DEM from the DSM

  3. Ultra-high-resolution 3D digitalized imaging of the cerebral angioarchitecture in rats using synchrotron radiation

    PubMed Central

    Zhang, Meng-Qi; Zhou, Luo; Deng, Qian-Fang; Xie, Yuan-Yuan; Xiao, Ti-Qiao; Cao, Yu-Ze; Zhang, Ji-Wen; Chen, Xu-Meng; Yin, Xian-Zhen; Xiao, Bo

    2015-01-01

    The angioarchitecture is a fundamental aspect of brain development and physiology. However, available imaging tools are unsuited for non-destructive cerebral mapping of the functionally important three-dimensional (3D) vascular microstructures. To address this issue, we developed an ultra-high resolution 3D digitalized angioarchitectural map for rat brain, based on synchrotron radiation phase contrast imaging (SR-PCI) with pixel size of 5.92 μm. This approach provides a systematic and detailed view of the cerebrovascular anatomy at the micrometer level without any need for contrast agents. From qualitative and quantitative perspectives, the present 3D data provide a considerable insight into the spatial vascular network for whole rodent brain, particularly for functionally important regions of interest, such as the hippocampus, pre-frontal cerebral cortex and the corpus striatum. We extended these results to synchrotron-based virtual micro-endoscopy, thus revealing the trajectory of targeted vessels in 3D. The SR-PCI method for systematic visualization of cerebral microvasculature holds considerable promise for wider application in life sciences, including 3D micro-imaging in experimental models of neurodevelopmental and vascular disorders. PMID:26443231

  4. Analyzing 3D xylem networks in Vitis vinifera using High Resolution Computed Tomography (HRCT)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent developments in High Resolution Computed Tomography (HRCT) have made it possible to visualize three dimensional (3D) xylem networks without time consuming, labor intensive physical sectioning. Here we describe a new method to visualize complex vessel networks in plants and produce a quantitat...

  5. 3D Reconstruction of a Shallow Archaeological Site From High Resolution Acoustic Imagery: A Case Study

    NASA Astrophysics Data System (ADS)

    Plets, R. M.; Dix, J. K.; Adams, J. R.; Best, A. I.

    2005-12-01

    High resolution acoustic surveying for buried objects in the shallow waters of the inter-tidal to sub-tidal zone is a major challenge to many sectors of the marine surveying community. This is a consequence of a number of issues such as the relationship between water depth and acoustic acquisition geometry; problems of vessel induced bubble clouds reducing the signal-to-noise (SNR) ratio; and the necessity of high spatial survey accuracy in three-dimensions. These challenges are particularly acute for the marine archaeological community, who are frequently required to non-destructively investigate shallow-water (< 5 m) sites. This paper addresses these challenges and demonstrates the potential of imaging buried objects in extremely shallow environments by describing a seamless marine archaeological and geophysical investigation of a buried shipwreck: Henry V's `great flagship', the Grace Dieu (1418). The site, located in the Hamble River (UK), is typically covered by 2-5 m of water, and is partially buried within muddy inter-tidal sediments. At exceptionally low tides, during the spring equinox, a few of the marginal timbers are exposed. The marine survey utilised three different deployment methods of a Chirp system: two 2D Chirp systems, each emitting different frequencies and accompanied by different navigational systems (DGPS versus RTK), and a 3D Chirp system with RTK positioning capability. In all cases, the source was towed over the site using diver power. Close survey line spacing, accurate navigation and decimetre scale vertical and horizontal resolution acoustic data enabled the construction of a pseudo and full 3D image of this buried wreck site. This has been calibrated against known archaeological site investigation data and an RTK-GPS terrestrial survey. This data has identified the true plan form and dimensions of the remaining segments of the vessel, supporting the assertion that it was the most significant naval design for over two centuries. It has

  6. The Best of Both Worlds: 3D X-ray Microscopy with Ultra-high Resolution and a Large Field of View

    NASA Astrophysics Data System (ADS)

    Li, W.; Gelb, J.; Yang, Y.; Guan, Y.; Wu, W.; Chen, J.; Tian, Y.

    2011-09-01

    3D visualizations of complex structures within various samples have been achieved with high spatial resolution by X-ray computed nanotomography (nano-CT). While high spatial resolution generally comes at the expense of field of view (FOV). Here we proposed an approach that stitched several 3D volumes together into a single large volume to significantly increase the size of the FOV while preserving resolution. Combining this with nano-CT, 18-μm FOV with sub-60-nm resolution has been achieved for non-destructive 3D visualization of clustered yeasts that were too large for a single scan. It shows high promise for imaging other large samples in the future.

  7. Micro-well arrays for 3D shape control and high resolution analysis of single cells.

    PubMed

    Ochsner, Mirjam; Dusseiller, Marc R; Grandin, H Michelle; Luna-Morris, Sheila; Textor, Marcus; Vogel, Viola; Smith, Michael L

    2007-08-01

    In addition to rigidity, matrix composition, and cell shape, dimensionality is now considered an important property of the cell microenvironment which directs cell behavior. However, available tools for cell culture in two-dimensional (2D) versus three-dimensional (3D) environments are difficult to compare, and no tools exist which provide 3D shape control of single cells. We developed polydimethylsiloxane (PDMS) substrates for the culture of single cells in 3D arrays which are compatible with high-resolution microscopy. Cell adhesion was limited to within microwells by passivation of the flat upper surface through 'wet-printing' of a non-fouling polymer and backfilling of the wells with specific adhesive proteins or lipid bilayers. Endothelial cells constrained within microwells were viable, and intracellular features could be imaged with high resolution objectives. Finally, phalloidin staining of actin stress fibers showed that the cytoskeleton of cells in microwells was 3D and not limited to the cell-substrate interface. Thus, microwells can be used to produce microenvironments for large numbers of single cells with 3D shape control and can be added to a repertoire of tools which are ever more sought after for both fundamental biological studies as well as high throughput cell screening assays.

  8. An impedance method for spatial sensing of 3D cell constructs--towards applications in tissue engineering.

    PubMed

    Canali, C; Mazzoni, C; Larsen, L B; Heiskanen, A; Martinsen, Ø G; Wolff, A; Dufva, M; Emnéus, J

    2015-09-07

    We present the characterisation and validation of multiplexed 4-terminal (4T) impedance measurements as a method for sensing the spatial location of cell aggregates within large three-dimensional (3D) gelatin scaffolds. The measurements were performed using an array of four rectangular chambers, each having eight platinum needle electrodes for parallel analysis. The electrode positions for current injection and voltage measurements were optimised by means of finite element simulations to maximise the sensitivity field distribution and spatial resolution. Eight different 4T combinations were experimentally tested in terms of the spatial sensitivity. The simulated sensitivity fields were validated using objects (phantoms) with different conductivity and size placed in different positions inside the chamber. This provided the detection limit (volume sensitivity) of 16.5%, i.e. the smallest detectable volume with respect to the size of the measurement chamber. Furthermore, the possibility for quick single frequency analysis was demonstrated by finding a common frequency of 250 kHz for all the presented electrode combinations. As final proof of concept, a high density of human hepatoblastoma (HepG2) cells were encapsulated in gelatin to form artificial 3D cell constructs and detected when placed in different positions inside large gelatin scaffolds. Taken together, these results open new perspectives for impedance-based sensing technologies for non-invasive monitoring in tissue engineering applications providing spatial information of constructs within biologically relevant 3D environments.

  9. A Microscopic Optically Tracking Navigation System That Uses High-resolution 3D Computer Graphics.

    PubMed

    Yoshino, Masanori; Saito, Toki; Kin, Taichi; Nakagawa, Daichi; Nakatomi, Hirofumi; Oyama, Hiroshi; Saito, Nobuhito

    2015-01-01

    Three-dimensional (3D) computer graphics (CG) are useful for preoperative planning of neurosurgical operations. However, application of 3D CG to intraoperative navigation is not widespread because existing commercial operative navigation systems do not show 3D CG in sufficient detail. We have developed a microscopic optically tracking navigation system that uses high-resolution 3D CG. This article presents the technical details of our microscopic optically tracking navigation system. Our navigation system consists of three components: the operative microscope, registration, and the image display system. An optical tracker was attached to the microscope to monitor the position and attitude of the microscope in real time; point-pair registration was used to register the operation room coordinate system, and the image coordinate system; and the image display system showed the 3D CG image in the field-of-view of the microscope. Ten neurosurgeons (seven males, two females; mean age 32.9 years) participated in an experiment to assess the accuracy of this system using a phantom model. Accuracy of our system was compared with the commercial system. The 3D CG provided by the navigation system coincided well with the operative scene under the microscope. Target registration error for our system was 2.9 ± 1.9 mm. Our navigation system provides a clear image of the operation position and the surrounding structures. Systems like this may reduce intraoperative complications.

  10. Ultra-Wideband Time-Difference-of-Arrival High Resolution 3D Proximity Tracking System

    NASA Technical Reports Server (NTRS)

    Ni, Jianjun; Arndt, Dickey; Ngo, Phong; Phan, Chau; Dekome, Kent; Dusl, John

    2010-01-01

    This paper describes a research and development effort for a prototype ultra-wideband (UWB) tracking system that is currently under development at NASA Johnson Space Center (JSC). The system is being studied for use in tracking of lunar./Mars rovers and astronauts during early exploration missions when satellite navigation systems are not available. U IATB impulse radio (UWB-IR) technology is exploited in the design and implementation of the prototype location and tracking system. A three-dimensional (3D) proximity tracking prototype design using commercially available UWB products is proposed to implement the Time-Difference- Of-Arrival (TDOA) tracking methodology in this research effort. The TDOA tracking algorithm is utilized for location estimation in the prototype system, not only to exploit the precise time resolution possible with UWB signals, but also to eliminate the need for synchronization between the transmitter and the receiver. Simulations show that the TDOA algorithm can achieve the fine tracking resolution with low noise TDOA estimates for close-in tracking. Field tests demonstrated that this prototype UWB TDOA High Resolution 3D Proximity Tracking System is feasible for providing positioning-awareness information in a 3D space to a robotic control system. This 3D tracking system is developed for a robotic control system in a facility called "Moonyard" at Honeywell Defense & System in Arizona under a Space Act Agreement.

  11. A novel 3D integrated platform for the high-resolution study of cell migration plasticity.

    PubMed

    Schneider, Julian; Bachmann, Tobias; Franco, Davide; Richner, Patrizia; Galliker, Patrick; Tiwari, Manish K; Ferrari, Aldo; Poulikakos, Dimos

    2013-08-01

    Understanding the mechanisms of interstitial cancer migration is of great scientific and medical interest. Creating 3D platforms, conducive to optical microscopy and mimicking the physical parameters (in plane and out of plane) involved in interstitial migration, is a major step forward in this direction. Here, a novel approach is used to directly print free-form, 3D micropores on basal scaffolds containing microgratings optimized for contact guidance. The platforms so formed are validated by monitoring cancer cell migration and micropore penetration with high-resolution optical microscopy. The shapes, sizes and deformability of the micropores are controllable, paving the way to decipher their role in interstitial migration.

  12. Who Benefits from Learning with 3D Models?: The Case of Spatial Ability

    ERIC Educational Resources Information Center

    Huk, T.

    2006-01-01

    Empirical studies that focus on the impact of three-dimensional (3D) visualizations on learning are to date rare and inconsistent. According to the ability-as-enhancer hypothesis, high spatial ability learners should benefit particularly as they have enough cognitive capacity left for mental model construction. In contrast, the…

  13. How Spatial Abilities and Dynamic Visualizations Interplay When Learning Functional Anatomy with 3D Anatomical Models

    ERIC Educational Resources Information Center

    Berney, Sandra; Bétrancourt, Mireille; Molinari, Gaëlle; Hoyek, Nady

    2015-01-01

    The emergence of dynamic visualizations of three-dimensional (3D) models in anatomy curricula may be an adequate solution for spatial difficulties encountered with traditional static learning, as they provide direct visualization of change throughout the viewpoints. However, little research has explored the interplay between learning material…

  14. Detection of 3D tree root systems using high resolution ground penetration radar

    NASA Astrophysics Data System (ADS)

    Altdorff, D.; Honds, M.; Botschek, J.; Van Der Kruk, J.

    2014-12-01

    Knowledge of root systems and its distribution are important for biomass estimation as well as for the prevention of subsurface distribution network damages. Ground penetration radar (GPR) is a promising technique that enables a non-invasive imaging of tree roots. Due to the polarisation-dependent reflection coefficients and complicated three-dimensional root structure, accurate measurements with perpendicularly polarized antennas are needed. In this study, we show GPR data from two planes and one chestnut at two locations with different soil conditions. Perpendicular 10 x 10 cm grid measurements were made with a shielded 250 MHz antenna in combination with a high precision self-tracking laser theodolite that provides geo-referenced traces with a spatial resolution of ~ 2 cm. After selecting potential root hyperbolas within the perpendicular GPR profiles, the corresponding three-dimensional coordinates were extracted and visualized in planar view to reveal any linear structure that indicates a possible tree root. The coordinates of the selected linear structures were projected back to the surface by means of the laser-theodolite to indicate the locations for groundtruthing. Additionally, we interpolated the measured data into a 3D cube where time slices confirmed the locations of linear reflection events. We validated the indicated predictions by excavation of the soil with a suction dredge. Subsequent georeferencing of the true root distribution and comparison with the selected linear events showed that the approach was able to identify the precise position of roots with a diameter between 3 and 10 cm and a depth of up to 70 cm. However, not all linear events were roots; also mouse channels were found in these depths, since they also generate GPR hyperbolas aligned in linear structures. Roots at a second location at depths of 1 to 1.20 m did not generate identifiable hyperboles, which was probably due to an increased electrical conductivity below 86 cm depth. The

  15. The Abilities of Understanding Spatial Relations, Spatial Orientation, and Spatial Visualization Affect 3D Product Design Performance: Using Carton Box Design as an Example

    ERIC Educational Resources Information Center

    Liao, Kun-Hsi

    2017-01-01

    Three-dimensional (3D) product design is an essential ability that students of subjects related to product design must acquire. The factors that affect designers' performance in 3D design are numerous, one of which is spatial abilities. Studies have reported that spatial abilities can be used to effectively predict people's performance in…

  16. A Novel Image Compression Algorithm for High Resolution 3D Reconstruction

    NASA Astrophysics Data System (ADS)

    Siddeq, M. M.; Rodrigues, M. A.

    2014-06-01

    This research presents a novel algorithm to compress high-resolution images for accurate structured light 3D reconstruction. Structured light images contain a pattern of light and shadows projected on the surface of the object, which are captured by the sensor at very high resolutions. Our algorithm is concerned with compressing such images to a high degree with minimum loss without adversely affecting 3D reconstruction. The Compression Algorithm starts with a single level discrete wavelet transform (DWT) for decomposing an image into four sub-bands. The sub-band LL is transformed by DCT yielding a DC-matrix and an AC-matrix. The Minimize-Matrix-Size Algorithm is used to compress the AC-matrix while a DWT is applied again to the DC-matrix resulting in LL2, HL2, LH2 and HH2 sub-bands. The LL2 sub-band is transformed by DCT, while the Minimize-Matrix-Size Algorithm is applied to the other sub-bands. The proposed algorithm has been tested with images of different sizes within a 3D reconstruction scenario. The algorithm is demonstrated to be more effective than JPEG2000 and JPEG concerning higher compression rates with equivalent perceived quality and the ability to more accurately reconstruct the 3D models.

  17. Resolution Influence on 3D Anthropometric Data Clustering for Fitting Design.

    PubMed

    Niu, Jianwei; Li, Zhizhong; Salvendy, Gavriel

    2009-10-01

    Sizing based on 3D anthropometric data may lead to significant improvement in fitting comfort of wearing products. However, the required computational load is a common problem in 3D data processing. In a previous study, wavelet analysis was adopted to establish a multi-resolution description of 3D anthropometric data to reduce computational load and modeling complexity. K-means clustering was subsequently performed on the decomposed 3D samples. This study further examines the influence of decomposition level on clustering results. As a case study, 378 face samples, 447 head samples and 432 upper head samples were analyzed. Cluster membership variation on five different resolution levels was examined by using Cluster Membership Accuracy Rate (CMAR), which denotes the clustering consistency on the decomposed levels compared with the clustering results on the original data sets. For the face data sets, the CMAR values on the five decomposition levels are 100, 99.21, 97.88, 93.92 and 93.39%, respectively; for upper heads, the CMAR values are 99.3, 99.1, 98.4, 92.1 and 84.3%, respectively; while for whole heads, the CMAR values are 99.3, 98.2, 95.1, 85.5 and 77.9%, respectively. These results indicate that clustering on the third decomposition level is proper for face and head scans in reducing computational load while maintaining at least 95% clustering accuracy.

  18. True 3D High Resolution imagery of a Buried Shipwreck: the Invincible (1758)

    NASA Astrophysics Data System (ADS)

    Dix, J. K.; Bull, J. M.; Henstock, T.; Gutowski, M.; Hogarth, P.; Leighton, T. G.; White, P. R.

    2005-12-01

    This paper will present the first true 3D high resolution acoustic imagery of a wreck site buried in the marine environment. Using a 3D Chirp system developed at the University of Southampton, a marine seismic survey of the mid-eighteenth century wreck site has been undertaken. The Invincible was a 74 gun warship built by the French in 1744, captured by the British in 1747 and subsequently lost off Portsmouth, UK in February 1758. The wreck was re-discovered by divers in 1979, partially buried on the margins of a mobile sandbank in approximately 8 metres of water. In 2004 the system was surveyed using a 60 channel, rigid framed 3D Chirp (1.5-13 kHz source sweep) system with integral RTK GPS and attitude systems. An area of 160 m x 160 m, centered over the wreck site, was surveyed with a total of 150 Gb data being acquired. The data was processed, using 3D Promax, to produce 25 cm bins with typical 3-6 fold coverage. The stacked traces have been visualized and interpreted using Kingdom Suite software. The final imagery shows at unprecedented resolution the full three-dimensional buried form of the wreck and it's relationship to the surrounding sedimentary sequences, enabling the full evolution of the site to be discussed. Further, the data is compared to previously acquired swath bathymetry and 2D seismic data in order to illustrate the impact of such a device for underwater cultural heritage management.

  19. Laser 3D printing with sub-microscale resolution of porous elastomeric scaffolds for supporting human bone stem cells.

    PubMed

    Petrochenko, Peter E; Torgersen, Jan; Gruber, Peter; Hicks, Lucas A; Zheng, Jiwen; Kumar, Girish; Narayan, Roger J; Goering, Peter L; Liska, Robert; Stampfl, Jürgen; Ovsianikov, Aleksandr

    2015-04-02

    A reproducible method is needed to fabricate 3D scaffold constructs that results in periodic and uniform structures with precise control at sub-micrometer and micrometer length scales. In this study, fabrication of scaffolds by two-photon polymerization (2PP) of a biodegradable urethane and acrylate-based photoelastomer is demonstrated. This material supports 2PP processing with sub-micrometer spatial resolution. The high photoreactivity of the biophotoelastomer permits 2PP processing at a scanning speed of 1000 mm s(-1), facilitating rapid fabrication of relatively large structures (>5 mm(3)). These structures are custom printed for in vitro assay screening in 96-well plates and are sufficiently flexible to enable facile handling and transplantation. These results indicate that stable scaffolds with porosities of greater than 60% can be produced using 2PP. Human bone marrow stromal cells grown on 3D scaffolds exhibit increased growth and proliferation compared to smooth 2D scaffold controls. 3D scaffolds adsorb larger amounts of protein than smooth 2D scaffolds due to their larger surface area; the scaffolds also allow cells to attach in multiple planes and to completely infiltrate the porous scaffolds. The flexible photoelastomer material is biocompatible in vitro and is associated with facile handling, making it a viable candidate for further study of complex 3D-printed scaffolds.

  20. User-Appropriate Viewer for High Resolution Interactive Engagement with 3d Digital Cultural Artefacts

    NASA Astrophysics Data System (ADS)

    Gillespie, D.; La Pensée, A.; Cooper, M.

    2013-07-01

    Three dimensional (3D) laser scanning is an important documentation technique for cultural heritage. This technology has been adopted from the engineering and aeronautical industry and is an invaluable tool for the documentation of objects within museum collections (La Pensée, 2008). The datasets created via close range laser scanning are extremely accurate and the created 3D dataset allows for a more detailed analysis in comparison to other documentation technologies such as photography. The dataset can be used for a range of different applications including: documentation; archiving; surface monitoring; replication; gallery interactives; educational sessions; conservation and visualization. However, the novel nature of a 3D dataset is presenting a rather unique challenge with respect to its sharing and dissemination. This is in part due to the need for specialised 3D software and a supported graphics card to display high resolution 3D models. This can be detrimental to one of the main goals of cultural institutions, which is to share knowledge and enable activities such as research, education and entertainment. This has limited the presentation of 3D models of cultural heritage objects to mainly either images or videos. Yet with recent developments in computer graphics, increased internet speed and emerging technologies such as Adobe's Stage 3D (Adobe, 2013) and WebGL (Khronos, 2013), it is now possible to share a dataset directly within a webpage. This allows website visitors to interact with the 3D dataset allowing them to explore every angle of the object, gaining an insight into its shape and nature. This can be very important considering that it is difficult to offer the same level of understanding of the object through the use of traditional mediums such as photographs and videos. Yet this presents a range of problems: this is a very novel experience and very few people have engaged with 3D objects outside of 3D software packages or games. This paper

  1. Spatial orientation in 3-D desktop displays: using rooms for organizing information.

    PubMed

    Colle, Herbert A; Reid, Gary B

    2003-01-01

    Understanding how spatial knowledge is acquired is important for spatial navigation and for improving the design of 3-D perspective interfaces. Configural spatial knowledge of object locations inside rooms is learned rapidly and easily (Colle & Reid, 1998), possibly because rooms afford local viewing in which objects are directly viewed or, alternatively, because of their structural features. The local viewing hypothesis predicts that the layout of objects outside of rooms also should be rapidly acquired when walls are removed and rooms are sufficiently close that participants can directly view and identify objects. It was evaluated using pointing and sketch map measures of configural knowledge with and without walls by varying distance, lighting levels, and observation instructions. Although within-room spatial knowledge was uniformly good, local viewing was not sufficient for improving spatial knowledge of objects in different rooms. Implications for navigation and 3-D interface design are discussed. Actual or potential applications of this research include the design of user interfaces, especially interfaces with 3-D displays.

  2. High Resolution 3-D Tomographic Imaging by Wavelength and Polarization Diversity.

    DTIC Science & Technology

    1983-07-05

    case of lensless Fourier transform hologram discussed in [42]). This is so because not all projections of a shallow cap are extended in area and...unprecedented resolutions. The TDR technique results in a recording arrangement that yields what can be regarded as a 3-D lensless Fourier transform hologram...Electron Microscopy by Reduction to Two Dimensional Holographic Implementation", Trans. Amer. Crystal. Assoc., Vol. 12, pp. 27-41, 1976. 17. H.H

  3. Using 3D Super-Resolution Microscopy to Probe Breast Cancer Stem Cells and Their Microenvironment

    DTIC Science & Technology

    2014-05-01

    microenvironments on breast cancer by creating arrays of polydimethlysiloxane (PDMS) microposts of different stiffness and sizes and seeded them with MCF-7 cells...of MCF-7s. Finally, with QPI, we investigated the real-time response of breast- cancer cells to different microenvironmental cues . We thus have...controls this cellular phenotype. To realize this goal, we had proposed to use 3D super-resolution microscopy to visualize how individual breast CaSCs

  4. High resolution 3D dosimetry for microbeam radiation therapy using optical CT

    NASA Astrophysics Data System (ADS)

    McErlean, C.; Bräuer-Krisch, E.; Adamovics, J.; Leach, M. O.; Doran, S. J.

    2015-01-01

    Optical Computed Tomography (CT) is a promising technique for dosimetry of Microbeam Radiation Therapy (MRT), providing high resolution 3D dose maps. Here different MRT irradiation geometries are visualised showing the potential of Optical CT as a tool for future MRT trials. The Peak-to-Valley dose ratio (PVDR) is calculated to be 7 at a depth of 3mm in the radiochromic dosimeter PRESAGE®. This is significantly lower than predicted values and possible reasons for this are discussed.

  5. Research in Image Understanding as Applied to 3-D Microwave Tomographic Imaging with Near Optical Resolution.

    DTIC Science & Technology

    1986-03-10

    Severe Clutter .... ........ 1I-i III . Optical Implementation of the HopfieldModel .I -? .- . ." Model........................ . . BY...can be employed in future broad-band imaging radar networks capable of providing 3-D projective or . - tomographic images of remote aerospace targets...We expect the results of this effort to tell us how to achieve centimeter resolution on remote aerospace objects cost-effectively using microwave

  6. High-resolution DTI of a localized volume using 3D single-shot diffusion-weighted STimulated echo-planar imaging (3D ss-DWSTEPI).

    PubMed

    Jeong, Eun-Kee; Kim, Seong-Eun; Kholmovski, Eugene G; Parker, Dennis L

    2006-12-01

    Diffusion tensor MRI (DTI) using conventional single-shot (SS) 2D diffusion-weighted (DW)-EPI is subject to severe susceptibility artifacts. Multishot DW imaging (DWI) techniques can reduce these distortions, but they generally suffer from artifacts caused by motion-induced phase errors. Parallel imaging can also reduce the distortions if the sensitivity profiles of the receiver coils allow a sufficiently high reduction factor for the desired field of view (FOV). A novel 3D DTI technique, termed 3D single-shot STimulated EPI (3D ss-STEPI), was developed to acquire high-resolution DW images of a localized region. The new technique completes k-space acquisition of a limited 3D volume after a single diffusion preparation. Because the DW magnetization is stored in the longitudinal direction until readout, it undergoes T(1) rather than T(2) decay. Inner volume imaging (IVI) is used to limit the imaging volume. This reduces the time required for EPI readout of each complete k(x)-k(y) plane, and hence reduces T(2)(*) decay during the readout and T(1) decay between the readout of each k(z). 3D ss-STEPI images appear to be free of severe susceptibility and motion artifacts. 3D ss-STEPI allows high-resolution DTI of limited volumes of interest, such as localized brain regions, cervical spinal cord, optic nerve, and other extracranial organs.

  7. A compact high-resolution 3-D imaging spectrometer for discovering Oases on Mars

    USGS Publications Warehouse

    Ge, J.; Ren, D.; Lunine, J.I.; Brown, R.H.; Yelle, R.V.; Soderblom, L.A.; ,

    2002-01-01

    A new design for a very lightweight, very high throughput reflectance sectrometer enabled by two new technologies being developed is presented. These new technologies include integral field unit optics to enable simultaneous imaging and spectroscopy at high spatial resolution with an infrared (IR) array, and silicon grisms to enable compact and high-resolution spectroscopy.

  8. Spatial and temporal analysis of DIII-D 3D magnetic diagnostic data

    NASA Astrophysics Data System (ADS)

    Strait, E. J.; King, J. D.; Hanson, J. M.; Logan, N. C.

    2016-11-01

    An extensive set of magnetic diagnostics in DIII-D is aimed at measuring non-axisymmetric "3D" features of tokamak plasmas, with typical amplitudes ˜10-3 to 10-5 of the total magnetic field. We describe hardware and software techniques used at DIII-D to condition the individual signals and analysis to estimate the spatial structure from an ensemble of discrete measurements. Applications of the analysis include detection of non-rotating MHD instabilities, plasma control, and validation of MHD stability and 3D equilibrium models.

  9. Spatial and temporal analysis of DIII-D 3D magnetic diagnostic data.

    PubMed

    Strait, E J; King, J D; Hanson, J M; Logan, N C

    2016-11-01

    An extensive set of magnetic diagnostics in DIII-D is aimed at measuring non-axisymmetric "3D" features of tokamak plasmas, with typical amplitudes ∼10(-3) to 10(-5) of the total magnetic field. We describe hardware and software techniques used at DIII-D to condition the individual signals and analysis to estimate the spatial structure from an ensemble of discrete measurements. Applications of the analysis include detection of non-rotating MHD instabilities, plasma control, and validation of MHD stability and 3D equilibrium models.

  10. Spatial and temporal analysis of DIII-D 3D magnetic diagnostic data

    DOE PAGES

    Strait, E. J.; King, J. D.; Hanson, J. M.; ...

    2016-08-11

    An extensive set of magnetic diagnostics in DIII-D is aimed at measuring non-axisymmetric "3D" features of tokamak plasmas, with typical amplitudes ~10-3 to 10-5 of the total magnetic field. We describe hardware and software techniques used at DIII-D to condition the individual signals and analysis to estimate the spatial structure from an ensemble of discrete measurements. Lastly, applications of the analysis include detection of non-rotating MHD instabilities, plasma control, and validation of MHD stability and 3D equilibrium models.

  11. 3D surface reconstruction and visualization of the Drosophila wing imaginal disc at cellular resolution

    NASA Astrophysics Data System (ADS)

    Bai, Linge; Widmann, Thomas; Jülicher, Frank; Dahmann, Christian; Breen, David

    2013-01-01

    Quantifying and visualizing the shape of developing biological tissues provide information about the morphogenetic processes in multicellular organisms. The size and shape of biological tissues depend on the number, size, shape, and arrangement of the constituting cells. To better understand the mechanisms that guide tissues into their final shape, it is important to investigate the cellular arrangement within tissues. Here we present a data processing pipeline to generate 3D volumetric surface models of epithelial tissues, as well as geometric descriptions of the tissues' apical cell cross-sections. The data processing pipeline includes image acquisition, editing, processing and analysis, 2D cell mesh generation, 3D contourbased surface reconstruction, cell mesh projection, followed by geometric calculations and color-based visualization of morphological parameters. In their first utilization we have applied these procedures to construct a 3D volumetric surface model at cellular resolution of the wing imaginal disc of Drosophila melanogaster. The ultimate goal of the reported effort is to produce tools for the creation of detailed 3D geometric models of the individual cells in epithelial tissues. To date, 3D volumetric surface models of the whole wing imaginal disc have been created, and the apicolateral cell boundaries have been identified, allowing for the calculation and visualization of cell parameters, e.g. apical cross-sectional area of cells. The calculation and visualization of morphological parameters show position-dependent patterns of cell shape in the wing imaginal disc. Our procedures should offer a general data processing pipeline for the construction of 3D volumetric surface models of a wide variety of epithelial tissues.

  12. Dubai 3d Textuerd Mesh Using High Quality Resolution Vertical/oblique Aerial Imagery

    NASA Astrophysics Data System (ADS)

    Tayeb Madani, Adib; Ziad Ahmad, Abdullateef; Christoph, Lueken; Hammadi, Zamzam; Manal Abdullah Sabeal, Manal Abdullah x.

    2016-06-01

    Providing high quality 3D data with reasonable quality and cost were always essential, affording the core data and foundation for developing an information-based decision-making tool of urban environments with the capability of providing decision makers, stakeholders, professionals, and public users with 3D views and 3D analysis tools of spatial information that enables real-world views. Helps and assist in improving users' orientation and also increase their efficiency in performing their tasks related to city planning, Inspection, infrastructures, roads, and cadastre management. In this paper, the capability of multi-view Vexcel UltraCam Osprey camera images is examined to provide a 3D model of building façades using an efficient image-based modeling workflow adopted by commercial software's. The main steps of this work include: Specification, point cloud generation, and 3D modeling. After improving the initial values of interior and exterior parameters at first step, an efficient image matching technique such as Semi Global Matching (SGM) is applied on the images to generate point cloud. Then, a mesh model of points is calculated using and refined to obtain an accurate model of buildings. Finally, a texture is assigned to mesh in order to create a realistic 3D model. The resulting model has provided enough LoD2 details of the building based on visual assessment. The objective of this paper is neither comparing nor promoting a specific technique over the other and does not mean to promote a sensor-based system over another systems or mechanism presented in existing or previous paper. The idea is to share experience.

  13. Migration of bone marrow stromal cells in 3D: 4 color methodology reveals spatially and temporally coordinated events.

    PubMed

    Thibault, Marc M; Buschmann, Michael D

    2006-12-01

    The cytoskeleton plays a central role in many cell processes including directed cell migration. Since most previous work has investigated cell migration in two dimensions (2D), new methods are required to study movement in three dimensions (3D) while preserving 3D structure of the cytoskeleton. Most previous studies have labeled two cytoskeletal networks simultaneously, impeding an appreciation of their complex and dynamic interconnections. Here we report the development of a 4 color method to simultaneously image vimentin, actin, tubulin and the nucleus for high-resolution confocal microscopy of bone-marrow stromal cells (BMSCs) migrating through a porous membrane. Several methods were tested for structural preservation and labeling intensity resulting in identification of an optimized simultaneous fixation and permeabilization method using glutaraldehyde, paraformaldehyde and Triton X-100 followed by a quadruple fluorescent labeling method. This procedure was then applied at a sequence of time points to migrating cells, allowing temporal progression of migration to be assessed by visualizing all three networks plus the nucleus, providing new insights into 3D directed cell migration including processes such as leading edge structure, cytoskeletal distribution and nucleokinesis. Colocalization of actin and microtubules with distinct spatial arrangements at the cellular leading edge during migration, together with microtubule axial polarization supports recent reports indicating the pivotal role of microtubules in directed cell migration. This study also provides a foundation for 3D migration studies versus 2D studies, providing precise and robust methods to attain new insights into the cellular mechanisms of motility.

  14. Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI).

    PubMed

    Dertinger, T; Colyer, R; Iyer, G; Weiss, S; Enderlein, J

    2009-12-29

    Super-resolution optical microscopy is a rapidly evolving area of fluorescence microscopy with a tremendous potential for impacting many fields of science. Several super-resolution methods have been developed over the last decade, all capable of overcoming the fundamental diffraction limit of light. We present here an approach for obtaining subdiffraction limit optical resolution in all three dimensions. This method relies on higher-order statistical analysis of temporal fluctuations (caused by fluorescence blinking/intermittency) recorded in a sequence of images (movie). We demonstrate a 5-fold improvement in spatial resolution by using a conventional wide-field microscope. This resolution enhancement is achieved in iterative discrete steps, which in turn allows the evaluation of images at different resolution levels. Even at the lowest level of resolution enhancement, our method features significant background reduction and thus contrast enhancement and is demonstrated on quantum dot-labeled microtubules of fibroblast cells.

  15. P-Cable: New High-Resolution 3D Seismic Acquisition Technology

    NASA Astrophysics Data System (ADS)

    Planke, Sverre; Berndt, Christian; Mienert, Jürgen; Bünz, Stefan; Eriksen, Frode N.; Eriksen, Ola K.

    2010-05-01

    We have developed a new cost-efficient technology for acquisition of high-resolution 3D seismic data: the P-Cable system. This technology is very well suited for deep water exploration, site surveys, and studies of shallow gas and fluid migration associated with gas hydrates or leaking reservoirs. It delivers unparalleled 3D seismic images of subsurface sediment architectures. The P-Cable system consists of a seismic cable towed perpendicular to a vessel's steaming direction. This configuration allows us to image an up to 150 m wide swath of the sub-surface for each sail line. Conventional 3D seismic technology relies on several very long streamers (up to 10 km long streamers are common), large sources, and costly operations. In contrast, the P-Cable system is light-weight and fast to deploy from small vessels. Only a small source is required as the system is made for relatively shallow imaging, typically above the first water-bottom multiple. The P-Cable system is particularly useful for acquisition of small 3D cubes, 10-50 km2, in focus areas, rather than extensive mapping of large regions. The rapid deployment and recovery of the system makes it possible to acquire several small cubes (10 to 30 km2) with high-resolution (50-250 Hz) seismic data in during one cruise. The first development of the P-Cable system was a cooperative project achieved by Volcanic Basin Petroleum Research (VBPR), University of Tromsø, National Oceanography Centre, Southampton, and industry partners. Field trials using a 12-streamer system were conducted on sites with active fluid-leakage systems on the Norwegian-Barents-Svalbard margin, the Gulf of Cadiz, and the Mediterranean. The second phase of the development introduced digital streamers. The new P-Cable2 system also includes integrated tow and cross cables for power and data transmission and improved doors to spread the larger cross cable. This digital system has been successfully used during six cruises by the University of Troms

  16. Interactive Theater Experience with 3D Live Captured Actors and Spatial Sound

    NASA Astrophysics Data System (ADS)

    Cheok, Adrian David

    This chapter introduces a new reality interactive theater that combines the 3D Live human capturing system, spatial sound, augmented reality, human-oriented interaction, and ambient intelligence technologies. Actors/Dancers at different places remotely are captured by the 3D Live system and transmitted to the theater place in real time and rendered in 3D form and real size, thus they can play/dance with the local actors/dancers and virtual characters at the same place in real time. Audience interaction is allowed and handled by an Ambient Intelligence (AI) agent to generate new actions for virtual characters and send meaningful interactions to real actors. The spatial sound system provides the real 3D sound and at the same time generates special sound effects such as controlling the sound direction that only allows people in a certain direction to heard it. All these features combined together bring a totally new theater experience to both actors/dancers and audiences, and extend the grammar of the traditional theater.

  17. Multi-resolution Gabor wavelet feature extraction for needle detection in 3D ultrasound

    NASA Astrophysics Data System (ADS)

    Pourtaherian, Arash; Zinger, Svitlana; Mihajlovic, Nenad; de With, Peter H. N.; Huang, Jinfeng; Ng, Gary C.; Korsten, Hendrikus H. M.

    2015-12-01

    Ultrasound imaging is employed for needle guidance in various minimally invasive procedures such as biopsy guidance, regional anesthesia and brachytherapy. Unfortunately, a needle guidance using 2D ultrasound is very challenging, due to a poor needle visibility and a limited field of view. Nowadays, 3D ultrasound systems are available and more widely used. Consequently, with an appropriate 3D image-based needle detection technique, needle guidance and interventions may significantly be improved and simplified. In this paper, we present a multi-resolution Gabor transformation for an automated and reliable extraction of the needle-like structures in a 3D ultrasound volume. We study and identify the best combination of the Gabor wavelet frequencies. High precision in detecting the needle voxels leads to a robust and accurate localization of the needle for the intervention support. Evaluation in several ex-vivo cases shows that the multi-resolution analysis significantly improves the precision of the needle voxel detection from 0.23 to 0.32 at a high recall rate of 0.75 (gain 40%), where a better robustness and confidence were confirmed in the practical experiments.

  18. Biometric assessment of deep-sea vent megabenthic communities using multi-resolution 3D image reconstructions

    NASA Astrophysics Data System (ADS)

    Thornton, Blair; Bodenmann, Adrian; Pizarro, Oscar; Williams, Stefan B.; Friedman, Ariell; Nakajima, Ryota; Takai, Ken; Motoki, Kaori; Watsuji, Tomo-o.; Hirayama, Hisako; Matsui, Yohei; Watanabe, Hiromi; Ura, Tamaki

    2016-10-01

    This paper describes a method to survey the distribution of megabenthos over multi-hectare regions of the seafloor. Quantitative biomass estimates are made by combining high-resolution 3D image reconstructions, used to model spatial relationships between representative taxa, with lower-resolution reconstructions taken over a wider area in which the distribution of larger predatory animals can be observed. The method is applied to a region of the Iheya North field that was the target of scientific drilling during the IODP Expedition 331 in 2010. An area of 2.5 ha was surveyed 3 years and 4 months after the site was drilled. More than 100,000 organisms from 6 taxa were identified. The visible effects of drilling on the distribution of megabenthos were confined to a 20 m radius of the artificially created hydrothermal discharges, with the associated densities of biomass lower than observed in nearby naturally discharging areas.

  19. Multi-sensor super-resolution for hybrid range imaging with application to 3-D endoscopy and open surgery.

    PubMed

    Köhler, Thomas; Haase, Sven; Bauer, Sebastian; Wasza, Jakob; Kilgus, Thomas; Maier-Hein, Lena; Stock, Christian; Hornegger, Joachim; Feußner, Hubertus

    2015-08-01

    In this paper, we propose a multi-sensor super-resolution framework for hybrid imaging to super-resolve data from one modality by taking advantage of additional guidance images of a complementary modality. This concept is applied to hybrid 3-D range imaging in image-guided surgery, where high-quality photometric data is exploited to enhance range images of low spatial resolution. We formulate super-resolution based on the maximum a-posteriori (MAP) principle and reconstruct high-resolution range data from multiple low-resolution frames and complementary photometric information. Robust motion estimation as required for super-resolution is performed on photometric data to derive displacement fields of subpixel accuracy for the associated range images. For improved reconstruction of depth discontinuities, a novel adaptive regularizer exploiting correlations between both modalities is embedded to MAP estimation. We evaluated our method on synthetic data as well as ex-vivo images in open surgery and endoscopy. The proposed multi-sensor framework improves the peak signal-to-noise ratio by 2 dB and structural similarity by 0.03 on average compared to conventional single-sensor approaches. In ex-vivo experiments on porcine organs, our method achieves substantial improvements in terms of depth discontinuity reconstruction.

  20. Fast Volumetric Spatial-Spectral MR Imaging of Hyperpolarized 13C-Labeled Compounds using Multiple Echo 3D bSSFP

    PubMed Central

    Perman, William H.; Bhattacharya, Pratip; Leupold, Jochen; Lin, Alexander P.; Harris, Kent C.; Norton, Valerie A.; Hovener, Jan B.; Ross, Brian D.

    2010-01-01

    PURPOSE The goal of this work was to develop a fast 3D chemical shift imaging technique for the non-invasive measurement of hyperpolarized 13C-labeled substrates and metabolic products at low concentration. MATERIALS AND METHODS Multiple echo 3D balanced steady state MR imaging (ME-3DbSSFP) was performed in vitro on a syringe containing hyperpolarized [1,3,3-2H3; 1-13C]2-hydroxyethylpropionate (HEP) adjacent to a 13C-enriched acetate phantom, and in vivo on a rat before and after IV injection of hyperpolarized HEP at 1.5 T. Chemical shift images of the hyperpolarized HEP were derived from the multiple echo data by Fourier transformation along the echoes on a voxel by voxel basis for each slice of the 3D data set. RESULTS ME-3DbSSFP imaging was able to provide chemical shift images of hyperpolarized HEP in vivo, and in a rat with isotropic 7 mm spatial resolution, 93 Hz spectral resolution and 16 second temporal resolution for a period greater than 45 seconds. CONCLUSION Multiple echo 3D bSSFP imaging can provide chemical shift images of hyperpolarized 13C-labeled compounds in vivo with relatively high spatial resolution and moderate spectral resolution. The increased signal-to-noise ratio (SNR) of this 3D technique will enable the detection of hyperpolarized 13C-labeled metabolites at lower concentrations as compared to a 2D technique. PMID:20171034

  1. High Resolution 3D Simulations of the Impacts of Asteroids into the Venusian Atmosphere

    NASA Astrophysics Data System (ADS)

    Korycansky, D. G.; Zahnle, K. J.; Mac Low, M.-M.

    2000-10-01

    We compare high-resolution 2D and 3D numerical hydrocode simulations of asteroids striking the atmosphere of Venus. Our focus is on aerobraking and its effect on the size of impact craters. We consider impacts both by spheres and by the real asteroid 4769 Castalia, a severely nonspherical body in a Venus-crossing orbit. We compute mass and momentum fluxes as functions of altitude as global measures of the asteroid's progress. We find that, on average, the 2D and 3D simulations are in broad agreement over how quickly an asteroid slows down, but that the scatter about the average is much larger for the 2D models than for the 3D models. The 2D models appear to be strongly susceptible to the ``butterfly effect'', in which tiny changes in initial conditions (e.g., 0.05% change in the impact velocity) produce quite different chaotic evolutions. By contrast the global properties of the 3D models appear more reproducible despite seemingly large differences in initial conditions. We argue that this difference between 2D and 3D models has its root in the greater geometrical constraints present in any 2D model, and in particular in the conservation of enstrophy in 2D that forces energy to pool in large-scale structures. It is the interaction of these artificial large-scale structures that causes slightly different 2D models to diverge so greatly. These constraints do not apply in 3D and large scale structures are not observed to form. A one-parameter modified pancake model reproduces the crater-forming potential of the 3D Castalias quite well. This work was supported by NASA's Exobiology and Planetary Atmospheres Programs. Image rendering was done using the resources of UCSC Vizualizaton Lab. M-MML is partially supported by a CAREER fellowship from the US NSF. This work was partially supported by the National Computational Science Alliance, utilizing the NCSA SGI/CRAY Power Challenge array at the University of Illinois, Urbana-Champaign.

  2. Multi-scale modelling of strongly heterogeneous 3D composite structures using spatial Voronoi tessellation

    NASA Astrophysics Data System (ADS)

    El Said, Bassam; Ivanov, Dmitry; Long, Andrew C.; Hallett, Stephen R.

    2016-03-01

    3D composite materials are characterized by complex internal yarn architectures, leading to complex deformation and failure development mechanisms. Net-shaped preforms, which are originally periodic in nature, lose their periodicity when the fabric is draped, deformed on a tool, and consolidated to create geometrically complex composite components. As a result, the internal yarn architecture, which dominates the mechanical behaviour, becomes dependent on the structural geometry. Hence, predicting the mechanical behaviour of 3D composites requires an accurate representation of the yarn architecture within structural scale models. When applied to 3D composites, conventional finite element modelling techniques are limited to either homogenised properties at the structural scale, or the unit cell scale for a more detailed material property definition. Consequently, these models fail to capture the complex phenomena occurring across multiple length scales and their effects on a 3D composite's mechanical response. Here a multi-scale modelling approach based on a 3D spatial Voronoi tessellation is proposed. The model creates an intermediate length scale suitable for homogenisation to deal with the non-periodic nature of the final material. Information is passed between the different length scales to allow for the effect of the structural geometry to be taken into account on the smaller scales. The stiffness and surface strain predictions from the proposed model have been found to be in good agreement with experimental results. The proposed modelling framework has been used to gain important insight into the behaviour of this category of materials. It has been observed that the strain and stress distributions are strongly dependent on the internal yarn architecture and consequently on the final component geometry. Even for simple coupon tests, the internal architecture and geometric effects dominate the mechanical response. Consequently, the behaviour of 3D woven

  3. Design of a 3D-IC multi-resolution digital pixel sensor

    NASA Astrophysics Data System (ADS)

    Brochard, N.; Nebhen, J.; Dubois, J.; Ginhac, D.

    2016-04-01

    This paper presents a digital pixel sensor (DPS) integrating a sigma-delta analog-to-digital converter (ADC) at pixel level. The digital pixel includes a photodiode, a delta-sigma modulation and a digital decimation filter. It features adaptive dynamic range and multiple resolutions (up to 10-bit) with a high linearity. A specific row decoder and column decoder are also designed to permit to read a specific pixel chosen in the matrix and its neighborhood of 4 x 4. Finally, a complete design with the CMOS 130 nm 3D-IC FaStack Tezzaron technology is also described, revealing a high fill-factor of about 80%.

  4. Ultra-Compact, High-Resolution LADAR System for 3D Imaging

    NASA Technical Reports Server (NTRS)

    Xu, Jing; Gutierrez, Roman

    2009-01-01

    An eye-safe LADAR system weighs under 500 grams and has range resolution of 1 mm at 10 m. This laser uses an adjustable, tiny microelectromechanical system (MEMS) mirror that was made in SiWave to sweep laser frequency. The size of the laser device is small (70x50x13 mm). The LADAR uses all the mature fiber-optic telecommunication technologies in the system, making this innovation an efficient performer. The tiny size and light weight makes the system useful for commercial and industrial applications including surface damage inspections, range measurements, and 3D imaging.

  5. High spatial resolution measurements of ram accelerator gas dynamic phenomena

    NASA Technical Reports Server (NTRS)

    Hinkey, J. B.; Burnham, E. A.; Bruckner, A. P.

    1992-01-01

    High spatial resolution experimental tube wall pressure measurements of ram accelerator gas dynamic phenomena are presented. The projectile resembles the centerbody of a ramjet and travels supersonically through a tube filled with a combustible gaseous mixture, with the tube acting as the outer cowling. Pressure data are recorded as the projectile passes by sensors mounted in the tube wall at various locations along the tube. Data obtained by using a special highly instrumented section of tube has allowed the recording of gas dynamic phenomena with a spatial resolution on the order of one tenth the projectile length. High spatial resolution tube wall pressure data from the three regimes of propulsion studied to date (subdetonative, transdetonative, and superdetonative) are presented and reveal the 3D character of the flowfield induced by projectile fins and the canting of the projectile body relative to the tube wall. Also presented for comparison to the experimental data are calculations made with an inviscid, 3D CFD code.

  6. Super-resolution imaging of the cytokinetic Z ring in live bacteria using fast 3D-structured illumination microscopy (f3D-SIM).

    PubMed

    Turnbull, Lynne; Strauss, Michael P; Liew, Andrew T F; Monahan, Leigh G; Whitchurch, Cynthia B; Harry, Elizabeth J

    2014-09-29

    Imaging of biological samples using fluorescence microscopy has advanced substantially with new technologies to overcome the resolution barrier of the diffraction of light allowing super-resolution of live samples. There are currently three main types of super-resolution techniques - stimulated emission depletion (STED), single-molecule localization microscopy (including techniques such as PALM, STORM, and GDSIM), and structured illumination microscopy (SIM). While STED and single-molecule localization techniques show the largest increases in resolution, they have been slower to offer increased speeds of image acquisition. Three-dimensional SIM (3D-SIM) is a wide-field fluorescence microscopy technique that offers a number of advantages over both single-molecule localization and STED. Resolution is improved, with typical lateral and axial resolutions of 110 and 280 nm, respectively and depth of sampling of up to 30 µm from the coverslip, allowing for imaging of whole cells. Recent advancements (fast 3D-SIM) in the technology increasing the capture rate of raw images allows for fast capture of biological processes occurring in seconds, while significantly reducing photo-toxicity and photobleaching. Here we describe the use of one such method to image bacterial cells harboring the fluorescently-labelled cytokinetic FtsZ protein to show how cells are analyzed and the type of unique information that this technique can provide.

  7. Super-resolution Imaging of the Cytokinetic Z Ring in Live Bacteria Using Fast 3D-Structured Illumination Microscopy (f3D-SIM)

    PubMed Central

    Liew, Andrew T. F.; Monahan, Leigh G.; Whitchurch, Cynthia B.; Harry, Elizabeth J.

    2014-01-01

    Imaging of biological samples using fluorescence microscopy has advanced substantially with new technologies to overcome the resolution barrier of the diffraction of light allowing super-resolution of live samples. There are currently three main types of super-resolution techniques – stimulated emission depletion (STED), single-molecule localization microscopy (including techniques such as PALM, STORM, and GDSIM), and structured illumination microscopy (SIM). While STED and single-molecule localization techniques show the largest increases in resolution, they have been slower to offer increased speeds of image acquisition. Three-dimensional SIM (3D-SIM) is a wide-field fluorescence microscopy technique that offers a number of advantages over both single-molecule localization and STED. Resolution is improved, with typical lateral and axial resolutions of 110 and 280 nm, respectively and depth of sampling of up to 30 µm from the coverslip, allowing for imaging of whole cells. Recent advancements (fast 3D-SIM) in the technology increasing the capture rate of raw images allows for fast capture of biological processes occurring in seconds, while significantly reducing photo-toxicity and photobleaching. Here we describe the use of one such method to image bacterial cells harboring the fluorescently-labelled cytokinetic FtsZ protein to show how cells are analyzed and the type of unique information that this technique can provide. PMID:25286090

  8. High-resolution 3D seismic imaging of a pull-apart basin in the Gulf of Cadiz

    NASA Astrophysics Data System (ADS)

    Crutchley, G.; Berndt, C.; Klaeschen, D.; Gutscher, M.

    2009-12-01

    In 2006, high-resolution 3D seismic data were acquired in the Gulf of Cadiz and the Mediterranean Sea aboard the RRS Charles Darwin as part of the HERMES (Hotspot Ecosystem Research on the Margins of European Seas) project. The P-Cable system, a cost-efficient set-up for fast acquisition of 3D seismic data on 12 single-channel streamers, was utilized to acquire seismic cubes at four different targets. Here, we present results from the second target - a WNW-ESE-oriented pull-apart basin in the southeastern Gulf of Cadiz. Initial processing has included: 1) spatial positioning of each recording channel from GPS data acquired on the outer two channels, 2) improved positioning of shot points and channels from the inversion of first arrival times, 3) application of a swell filter to improve reflection coherency, 4) CDP binning and stacking and 5) migration. The new data confirm that the southeastern Gulf of Cadiz north of the Rharb submarine valley is structurally controlled by numerous strike slip faults that were active until quite recently (within the resolution of the data). Given the location of this basin, between the extensional domain on the upper slope and the compressional toe of the accretionary wedge, we interpret the origin to be gravitational sliding on a detachment layer, possibly containing salt, but at this stage not imaged by our profiles.

  9. Positron Emission Tomography with improved spatial resolution

    SciTech Connect

    Drukier, A.K.

    1990-04-01

    Applied Research Corporation (ARC) proposed the development of a new class of solid state detectors called Superconducting Granular Detectors (SGD). These new detectors permit considerable improvements in medical imaging, e.g. Positron Emission Tomography (PET). The biggest impact of this technique will be in imaging of the brain. It should permit better clinical diagnosis of such important diseases as Altzheimer's or schizophrenia. More specifically, we will develop an improved PET-imager; a spatial resolution 2 mm may be achievable with SGD. A time-of-flight capability(t {approx} 100 psec) will permit better contrast and facilitate 3D imaging. In the following, we describe the results of the first 9 months of the development.

  10. High-resolution laser radar for 3D imaging in artwork cataloging, reproduction, and restoration

    NASA Astrophysics Data System (ADS)

    Ricci, Roberto; Fantoni, Roberta; Ferri de Collibus, Mario; Fornetti, Giorgio G.; Guarneri, Massimiliano; Poggi, Claudio

    2003-10-01

    A high resolution Amplitude Modulated Laser Radar (AM-LR) sensor has recently been developed, aimed at accurately reconstructing 3D digital models of real targets, either single objects or complex scenes. The sensor sounding beam can be swept linearly across the object or circularly around it, by placing the object on a controlled rotating platform, enabling to obtain respectively linear and cylindrical range maps. Both amplitude and phase shift of the modulating wave of back-scattered light are collected and processed, providing respectively a shade-free, high resolution, photographic-like picture and accurate range data in the form of a range image. The resolution of range measurements depends mainly on the laser modulation frequency, provided that the power of the backscattered light reaching the detector is at least a few nW (current best performances are ~100 μm). The complete object surface can be reconstructed from the sampled points by using specifically developed software tools. The system has been successfully applied to scan different types of real surfaces (stone, wood, alloys, bones), with relevant applications in different fields, ranging from industrial machining to medical diagnostics, to vision in hostile environments. Examples of artwork reconstructed models (pottery, marble statues) are presented and the relevance of this technology for reverse engineering applied to cultural heritage conservation and restoration are discussed. Final 3D models can be passed to numeric control machines for rapid-prototyping, exported in standard formats for CAD/CAM purposes and made available on the Internet by adopting a virtual museum paradigm, thus possibly enabling specialists to perform remote inspections on high resolution digital reproductions of hardly accessible masterpieces.

  11. Laminar optical tomography: high-resolution 3D functional imaging of superficial tissues

    NASA Astrophysics Data System (ADS)

    Hillman, Elizabeth M. C.; Devor, Anna; Dunn, Andrew K.; Boas, David A.

    2006-03-01

    Laminar Optical Tomography (LOT) is a new medical imaging modality for high-resolution, depth-resolved, functional imaging of superficial tissue such as rodent cortex, skin and the retina. LOT uses visible laser light to image to depths of >2mm (far deeper than microscopy) and is highly sensitive to absorption and fluorescence contrast, enabling spectroscopic functional information such as hemoglobin oxygenation to be imaged with 100-200 micron resolution. LOT has been used to image the hemodynamic response to stimulus in the somatosensory cortex of rats. The resulting three-dimensional (3D) images through the depth of the cortex can be used to delineate the arterial, capillary and venous responses, revealing new information about the intricacies of the oxygenation and blood flow dynamics related to neuronal activation. Additional applications of LOT are being explored, including the integration of 3D Voltage Sensitive Dye fluorescence imaging. LOT imaging uses a system similar to a confocal microscope, quickly scanning a focused beam of light over the surface of the tissue (~8Hz frame rate). Light is detected from both the focus of the scanning beam, and also at increasing distances from the beam's focus. This scattered light has penetrated more deeply into the tissue, and allows features at different depths to be distinguished. An algorithm that includes photon migration modeling of light scattering converts the raw data into 3D images. The motivation for functional optical imaging will be outlined, the basic principles of LOT imaging will be described, and the latest in-vivo results will be presented.

  12. High resolution 3D confocal microscope imaging of volcanic ash particles.

    PubMed

    Wertheim, David; Gillmore, Gavin; Gill, Ian; Petford, Nick

    2017-07-15

    We present initial results from a novel high resolution confocal microscopy study of the 3D surface structure of volcanic ash particles from two recent explosive basaltic eruptions, Eyjafjallajökull (2010) and Grimsvötn (2011), in Iceland. The majority of particles imaged are less than 100μm in size and include PM10s, known to be harmful to humans if inhaled. Previous studies have mainly used 2D microscopy to examine volcanic particles. The aim of this study was to test the potential of 3D laser scanning confocal microscopy as a reliable analysis tool for these materials and if so to what degree high resolution surface and volume data could be obtained that would further aid in their classification. First results obtained using an Olympus LEXT scanning confocal microscope with a ×50 and ×100 objective lens are highly encouraging. They reveal a range of discrete particle types characterised by sharp or concave edges consistent with explosive formation and sudden rupture of magma. Initial surface area/volume ratios are given that may prove useful in subsequent modelling of damage to aircraft engines and human tissue where inhalation has occurred.

  13. Development of a high-resolution laser radar for 3D imaging in artwork cataloging

    NASA Astrophysics Data System (ADS)

    Bordone, Andrea; Ferri De Collibus, Mario; Fantoni, Roberta; Fornetti, Giorgio G.; Guarneri, Marianna; Poggi, Claudio; Ricci, Roberto

    2003-04-01

    A high resolution Amplitude Modulation Laser Radar (AM-LR) sensor has recently been developed, aimed at accurately reconstructing 3D digital models of real targets -- either single objects or complex scenes. The sensor sounding beam can be swept linearly across the object or circularly around it, by placing the object on a controlled rotation platform. Both intensity and phase shift of the back-scattered light are then collected and processed, providing respectively a shade-free photographic-like picture and accurate range data in the form of a range or depth image, with resolution depending mainly on the laser modulation frequency. Starting from the sample points, with an uncertainty that can be made as small as 100 μm, the complete object surface can be reconstructed by using specifically developed software tools. The system has been successfully applied to scan different types of real surfaces (stone, wood, bones) and is expected to have significant applications in industrial machining, artwork cataloguing and medical diagnostics. Examples of 3D reconstructions are presented and the relevance of this technology for reverse engineering applied to artwork restoration and conservation is briefly discussed.

  14. High Resolution Near Surface 3D Seismic Experiments: A Carbonate Platform vs. a Siliciclastic Sequence

    NASA Astrophysics Data System (ADS)

    Filippidou, N.; Drijkoningen, G.; Braaksma, H.; Verwer, K.; Kenter, J.

    2005-05-01

    Interest in high-resolution 3D seismic experiments for imaging shallow targets has increased over the past years. Many case studies presented, show that producing clear seismic images with this non-evasive method, is still a challenge. We use two test-sites where nearby outcrops are present so that an accurate geological model can be built and the seismic result validated. The first so-called natural field laboratory is located in Boulonnais (N. France). It is an upper Jurassic siliciclastic sequence; age equivalent of the source rock of N. Sea. The second one is located in Cap Blanc,to the southwest of the Mallorca island(Spain); depicting an excellent example of Miocene prograding reef platform (Llucmajor Platform); it is a textbook analog for carbonate reservoirs. In both cases, the multidisciplinary experiment included the use of multicomponent and quasi- or 3D seismic recordings. The target depth does not exceed 120m. Vertical and shear portable vibrators were used as source. In the center of the setups, boreholes were drilled and Vertical Seismic Profiles were shot, along with core and borehole measurements both in situ and in the laboratory. These two geologically different sites, with different seismic stratigraphy have provided us with exceptionally high resolution seismic images. In general seismic data was processed more or less following standard procedures, a few innovative techniques on the Mallorca data, as rotation of horizontal components, 3D F-K filter and addition of parallel profiles, have improved the seismic image. In this paper we discuss the basic differences as seen on the seismic sections. The Boulonnais data present highly continuous reflection patterns of extremenly high resolution. This facilitated a high resolution stratigraphic description. Results from the VSP showed substantial wave energy attenuation. However, the high-fold (330 traces ) Mallorca seismic experiment returned a rather discontinuous pattern of possible reflectors

  15. 3D Kidney Segmentation from Abdominal Images Using Spatial-Appearance Models

    PubMed Central

    Khalifa, Fahmi; Soliman, Ahmed; Gimel'farb, Georgy

    2017-01-01

    Kidney segmentation is an essential step in developing any noninvasive computer-assisted diagnostic system for renal function assessment. This paper introduces an automated framework for 3D kidney segmentation from dynamic computed tomography (CT) images that integrates discriminative features from the current and prior CT appearances into a random forest classification approach. To account for CT images' inhomogeneities, we employ discriminate features that are extracted from a higher-order spatial model and an adaptive shape model in addition to the first-order CT appearance. To model the interactions between CT data voxels, we employed a higher-order spatial model, which adds the triple and quad clique families to the traditional pairwise clique family. The kidney shape prior model is built using a set of training CT data and is updated during segmentation using not only region labels but also voxels' appearances in neighboring spatial voxel locations. Our framework performance has been evaluated on in vivo dynamic CT data collected from 20 subjects and comprises multiple 3D scans acquired before and after contrast medium administration. Quantitative evaluation between manually and automatically segmented kidney contours using Dice similarity, percentage volume differences, and 95th-percentile bidirectional Hausdorff distances confirms the high accuracy of our approach. PMID:28280519

  16. A pathway-centric view of spatial proximity in the 3D nucleome across cell lines

    PubMed Central

    Karathia, Hiren; Kingsford, Carl; Girvan, Michelle; Hannenhalli, Sridhar

    2016-01-01

    In various contexts, spatially proximal genes have been shown to be functionally related. However, the extent to which spatial proximity of genes in a pathway contributes to the pathway’s context-specific activity is not known. Leveraging Hi-C data in six human cell-lines, we show that spatial proximity of genes in a pathway is highly correlated with the pathway’s context-specific expression and function. Furthermore, spatial proximity of pathway genes correlates with interactions of their protein products, and the specific pathway genes that are proximal to one another tend to occupy higher levels in the regulatory hierarchy. In addition to intra-pathway proximity, related pathways are spatially proximal to one another and housekeeping-genes tend to be proximal to several other pathways suggesting their coordinating role. Substantially extending previous works, our study reveals a pathway-centric organization of 3D-nucleome, whereby, functionally related interacting driver genes tend to be in spatial-proximity in a context-specific manner. PMID:27976707

  17. Resolution doubling in 3D-STORM imaging through improved buffers.

    PubMed

    Olivier, Nicolas; Keller, Debora; Gönczy, Pierre; Manley, Suliana

    2013-01-01

    Super-resolution imaging methods have revolutionized fluorescence microscopy by revealing the nanoscale organization of labeled proteins. In particular, single-molecule methods such as Stochastic Optical Reconstruction Microscopy (STORM) provide resolutions down to a few tens of nanometers by exploiting the cycling of dyes between fluorescent and non-fluorescent states to obtain a sparse population of emitters and precisely localizing them individually. This cycling of dyes is commonly induced by adding different chemicals, which are combined to create a STORM buffer. Despite their importance, the composition of these buffers has scarcely evolved since they were first introduced, fundamentally limiting what can be resolved with STORM. By identifying a new chemical suitable for STORM and optimizing the buffer composition for Alexa-647, we significantly increased the number of photons emitted per cycle by each dye, providing a simple means to enhance the resolution of STORM independently of the optical setup used. Using this buffer to perform 3D-STORM on biological samples, we obtained images with better than 10 nanometer lateral and 30 nanometer axial resolution.

  18. Using 3D Glyph Visualization to Explore Real-time Seismic Data on Immersive and High-resolution Display Systems

    NASA Astrophysics Data System (ADS)

    Nayak, A. M.; Lindquist, K.; Kilb, D.; Newman, R.; Vernon, F.; Leigh, J.; Johnson, A.; Renambot, L.

    2003-12-01

    The study of time-dependent, three-dimensional natural phenomena like earthquakes can be enhanced with innovative and pertinent 3D computer graphics. Here we display seismic data as 3D glyphs (graphics primitives or symbols with various geometric and color attributes), allowing us to visualize the measured, time-dependent, 3D wave field from an earthquake recorded by a certain seismic network. In addition to providing a powerful state-of-health diagnostic of the seismic network, the graphical result presents an intuitive understanding of the real-time wave field that is hard to achieve with traditional 2D visualization methods. We have named these 3D icons `seismoglyphs' to suggest visual objects built from three components of ground motion data (north-south, east-west, vertical) recorded by a seismic sensor. A seismoglyph changes color with time, spanning the spectrum, to indicate when the seismic amplitude is largest. The spatial extent of the glyph indicates the polarization of the wave field as it arrives at the recording station. We compose seismoglyphs using the real time ANZA broadband data (http://www.eqinfo.ucsd.edu) to understand the 3D behavior of a seismic wave field in Southern California. Fifteen seismoglyphs are drawn simultaneously with a 3D topography map of Southern California, as real time data is piped into the graphics software using the Antelope system. At each station location, the seismoglyph evolves with time and this graphical display allows a scientist to observe patterns and anomalies in the data. The display also provides visual clues to indicate wave arrivals and ~real-time earthquake detection. Future work will involve adding phase detections, network triggers and near real-time 2D surface shaking estimates. The visuals can be displayed in an immersive environment using the passive stereoscopic Geowall (http://www.geowall.org). The stereographic projection allows for a better understanding of attenuation due to distance and earth

  19. 3D resolution tests of two-plane wave approach using synthetic seismograms

    NASA Astrophysics Data System (ADS)

    Ceylan, S.; Larmat, C. S.; Sandvol, E. A.

    2012-12-01

    Two-plane wave tomography (TPWT) is becoming a standard approach to obtain fundamental mode Rayleigh wave phase velocities for a variety of tectonic settings. A recent study by Ceylan et al. (2012) has applied this method to eastern Tibet, using data from INDEPTH-IV and Namche-Barwa seismic experiments. The TPWT assumes that distortion of wavefronts at each station can be expressed as the sum of two plane waves. However, there is currently no robust or complete resolution test for TPWT, to address its limitations such as wavefront healing. In this study, we test the capabilities of TPWT and resolution of INDEPTH-IV seismic experiment, by performing 3D resolution tests using synthetic seismograms. Utilizing SPECFEM3D software, we compute synthetic data sets resolving periods down to ~30 s. We implement a checkerboard upper mantle (for depths between 50 and 650 km) with variable cell sizes, superimposed to PREM as the background model. We then calculate fundamental mode surface wave phase velocities using TPWT for periods between 33-143 seconds, using synthetic seismograms computed from our three dimensional hypothetical model. Assuming a constant Poisson's ratio, we use partial derivatives from Saito (1988) to invert for shear wave velocities. We show that the combination of TPWT and Saito (1988) methods is capable of retrieving anomalies down to depths of ~200 km for Rayleigh waves. Below these depths, we observe evidence of both lateral and vertical smearing. We also find that the traditional method for estimating the resolution of TPWT consistently overestimates phase velocity resolutions. Love waves exhibit adequate resolution down to depths of ~100 km. At depths greater than 100 km, smearing is more evident in SH wave results than those of SV waves. Increased smearing of SH waves is most probably due to propagation characteristics and shallower sensitivity of Love waves. Our results imply that TPWT can be applied to Love waves, making future investigations of

  20. Application of high resolution 2D/3D spectral induced polarization (SIP) in metalliferous ore exploration

    NASA Astrophysics Data System (ADS)

    Chen, R.; Zhao, X.; Yao, H.; He, X.; Zeng, P.; Chang, F.; Yang, Y.; Zhang, X.; Xi, X.; He, L.

    2015-12-01

    Induced polarization (IP) is a powerful tool in metalliferous ore exploration. However, there are many sources, such as clay and graphite, which can generate IP anomaly. Spectral induced polarization (SIP) measures IP response on a wide frequency range. This method provides a way to discriminate IP response generated by metalliferous ore or other objects. The best way to explore metalliferous ore is 3D SIP exploration. However, if we consider the exploration cost and efficiency, we can use SIP profiling to find an anomaly, and then use 2D/3D SIP sounding to characterize the anomaly. Based on above idea, we used a large-scale distributed SIP measurement system which can realize 800 sounding sites in one direction at the same time. This system can be used for SIP profiling, 2D/3D SIP sounding with high efficiency, high resolution, and large depth of investigation (> 1000 m). Qiushuwan copper - molybdenum deposit is located in Nanyang city, Henan province, China. It is only a middle-size deposit although over 100 holes were drilled and over 40 years of exploration were spent because of very complex geological setting. We made SIP measurement over 100 rock and ore samples to discriminate IP responses of ore and rock containing graphite. Then we carried out 7 lines of 2D SIP exploration with the depth of investigation great than 1000 m. The minimum electode spacing for potential difference is only 20 m. And we increase the spacing of current electodes at linear scale. This acquisition setting ensures high density data acquired and high quality data acquisition. Modeling and inversion result proves that we can get underground information with high resolution by our method. Our result shows that there exists a strong SIP response related to ore body in depth > 300 m. Pseudo-3D inversion of five 2D SIP sounding lines shows the location and size of IP anomaly. The new drillings based our result found a big copper-molybdenum ore body in new position with depth > 300 m and

  1. RELAP5-3D Resolution of Known Restart/Backup Issues

    SciTech Connect

    Mesina, George L.; Anderson, Nolan A.

    2014-12-01

    The state-of-the-art nuclear reactor system safety analysis computer program developed at the Idaho National Laboratory (INL), RELAP5-3D, continues to adapt to changes in computer hardware and software and to develop to meet the ever-expanding needs of the nuclear industry. To continue at the forefront, code testing must evolve with both code and industry developments, and it must work correctly. To best ensure this, the processes of Software Verification and Validation (V&V) are applied. Verification compares coding against its documented algorithms and equations and compares its calculations against analytical solutions and the method of manufactured solutions. A form of this, sequential verification, checks code specifications against coding only when originally written then applies regression testing which compares code calculations between consecutive updates or versions on a set of test cases to check that the performance does not change. A sequential verification testing system was specially constructed for RELAP5-3D to both detect errors with extreme accuracy and cover all nuclear-plant-relevant code features. Detection is provided through a “verification file” that records double precision sums of key variables. Coverage is provided by a test suite of input decks that exercise code features and capabilities necessary to model a nuclear power plant. A matrix of test features and short-running cases that exercise them is presented. This testing system is used to test base cases (called null testing) as well as restart and backup cases. It can test RELAP5-3D performance in both standalone and coupled (through PVM to other codes) runs. Application of verification testing revealed numerous restart and backup issues in both standalone and couple modes. This document reports the resolution of these issues.

  2. 3D-information fusion from very high resolution satellite sensors

    NASA Astrophysics Data System (ADS)

    Krauss, T.; d'Angelo, P.; Kuschk, G.; Tian, J.; Partovi, T.

    2015-04-01

    In this paper we show the pre-processing and potential for environmental applications of very high resolution (VHR) satellite stereo imagery like these from WorldView-2 or Pl'eiades with ground sampling distances (GSD) of half a metre to a metre. To process such data first a dense digital surface model (DSM) has to be generated. Afterwards from this a digital terrain model (DTM) representing the ground and a so called normalized digital elevation model (nDEM) representing off-ground objects are derived. Combining these elevation based data with a spectral classification allows detection and extraction of objects from the satellite scenes. Beside the object extraction also the DSM and DTM can directly be used for simulation and monitoring of environmental issues. Examples are the simulation of floodings, building-volume and people estimation, simulation of noise from roads, wave-propagation for cellphones, wind and light for estimating renewable energy sources, 3D change detection, earthquake preparedness and crisis relief, urban development and sprawl of informal settlements and much more. Also outside of urban areas volume information brings literally a new dimension to earth oberservation tasks like the volume estimations of forests and illegal logging, volume of (illegal) open pit mining activities, estimation of flooding or tsunami risks, dike planning, etc. In this paper we present the preprocessing from the original level-1 satellite data to digital surface models (DSMs), corresponding VHR ortho images and derived digital terrain models (DTMs). From these components we present how a monitoring and decision fusion based 3D change detection can be realized by using different acquisitions. The results are analyzed and assessed to derive quality parameters for the presented method. Finally the usability of 3D information fusion from VHR satellite imagery is discussed and evaluated.

  3. Sensor Spatial Distortion, Visual Latency, and Update Rate Effects on 3D Tracking in Virtual Environments

    NASA Technical Reports Server (NTRS)

    Ellis, S. R.; Adelstein, B. D.; Baumeler, S.; Jense, G. J.; Jacoby, R. H.; Trejo, Leonard (Technical Monitor)

    1998-01-01

    Several common defects that we have sought to minimize in immersing virtual environments are: static sensor spatial distortion, visual latency, and low update rates. Human performance within our environments during large amplitude 3D tracking was assessed by objective and subjective methods in the presence and absence of these defects. Results show that 1) removal of our relatively small spatial sensor distortion had minor effects on the tracking activity, 2) an Adapted Cooper-Harper controllability scale proved the most sensitive subjective indicator of the degradation of dynamic fidelity caused by increasing latency and decreasing frame rates, and 3) performance, as measured by normalized RMS tracking error or subjective impressions, was more markedly influenced by changing visual latency than by update rate.

  4. Modeling spatial distribution of oxygen in 3d culture of islet beta-cells.

    PubMed

    McReynolds, John; Wen, Yu; Li, Xiaofei; Guan, Jianjun; Jin, Sha

    2017-01-01

    Three-dimensional (3D) scaffold culture of pancreatic β-cell has been proven to be able to better mimic physiological conditions in the body. However, one critical issue with culturing pancreatic β-cells is that β-cells consume large amounts of oxygen, and hence insufficient oxygen supply in the culture leads to loss of β-cell mass and functions. This becomes more significant when cells are cultured in a 3D scaffold. In this study, in order to understand the effect of oxygen tension inside a cell-laden collagen culture on β-cell proliferation, a culture model with encapsulation of an oxygen-generator was established. The oxygen-generator was made by embedding hydrogen peroxide into nontoxic polydimethylsiloxane to avoid the toxicity of a chemical reaction in the β-cell culture. To examine the effectiveness of the oxygenation enabled 3D culture, the spatial-temporal distribution of oxygen tension inside a scaffold was evaluated by a mathematical modeling approach. Our simulation results indicated that an oxygenation-aided 3D culture would augment the oxygen supply required for the β-cells. Furthermore, we identified that cell seeding density and the capacity of the oxygenator are two critical parameters in the optimization of the culture. Notably, cell-laden scaffold cultures with an in situ oxygen supply significantly improved the β-cells' biological function. These β-cells possess high insulin secretion capacity. The results obtained in this work would provide valuable information for optimizing and encouraging functional β-cell cultures. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:221-228, 2017.

  5. High-resolution 3D simulations of NIF ignition targets performed on Sequoia with HYDRA

    NASA Astrophysics Data System (ADS)

    Marinak, M. M.; Clark, D. S.; Jones, O. S.; Kerbel, G. D.; Sepke, S.; Patel, M. V.; Koning, J. M.; Schroeder, C. R.

    2015-11-01

    Developments in the multiphysics ICF code HYDRA enable it to perform large-scale simulations on the Sequoia machine at LLNL. With an aggregate computing power of 20 Petaflops, Sequoia offers an unprecedented capability to resolve the physical processes in NIF ignition targets for a more complete, consistent treatment of the sources of asymmetry. We describe modifications to HYDRA that enable it to scale to over one million processes on Sequoia. These include new options for replicating parts of the mesh over a subset of the processes, to avoid strong scaling limits. We consider results from a 3D full ignition capsule-only simulation performed using over one billion zones run on 262,000 processors which resolves surface perturbations through modes l = 200. We also report progress towards a high-resolution 3D integrated hohlraum simulation performed using 262,000 processors which resolves surface perturbations on the ignition capsule through modes l = 70. These aim for the most complete calculations yet of the interactions and overall impact of the various sources of asymmetry for NIF ignition targets. This work was performed under the auspices of the Lawrence Livermore National Security, LLC, (LLNS) under Contract No. DE-AC52-07NA27344.

  6. Early Earth plume-lid tectonics: A high-resolution 3D numerical modelling approach

    NASA Astrophysics Data System (ADS)

    Fischer, R.; Gerya, T.

    2016-10-01

    Geological-geochemical evidence point towards higher mantle potential temperature and a different type of tectonics (global plume-lid tectonics) in the early Earth (>3.2 Ga) compared to the present day (global plate tectonics). In order to investigate tectono-magmatic processes associated with plume-lid tectonics and crustal growth under hotter mantle temperature conditions, we conduct a series of 3D high-resolution magmatic-thermomechanical models with the finite-difference code I3ELVIS. No external plate tectonic forces are applied to isolate 3D effects of various plume-lithosphere and crust-mantle interactions. Results of the numerical experiments show two distinct phases in coupled crust-mantle evolution: (1) a longer (80-100 Myr) and relatively quiet 'growth phase' which is marked by growth of crust and lithosphere, followed by (2) a short (∼20 Myr) and catastrophic 'removal phase', where unstable parts of the crust and mantle lithosphere are removed by eclogitic dripping and later delamination. This modelling suggests that the early Earth plume-lid tectonic regime followed a pattern of episodic growth and removal also called episodic overturn with a periodicity of ∼100 Myr.

  7. Sculpting 3D spatial selectivity with pairs of 2D pulses: A comparison of methods

    NASA Astrophysics Data System (ADS)

    Farkash, Gil; Dumez, Jean-Nicolas; Frydman, Lucio

    2016-12-01

    Enhancing the specificity of the spins' excitation can improve the capabilities of magnetic resonance. Exciting voxels with tailored 3D shapes reduces partial volume effects and enhances contrast, particularly in cases where cubic voxels or other simple geometries do not provide an optimal localization. Spatial excitation profiles of arbitrary shapes can be implemented using so-called multidimensional RF pulses, which are often limited in practice to 2D implementations owing to their sensitivity to field inhomogeneities. Recent work has shown the potential of spatio-temporally encoded (SPEN) pulses towards alleviating these constraints. In particular, 2D pulses operating in a so-called hybrid scheme where the "low-bandwidth" spatial dimension is sculpted by a SPEN strategy while an orthogonal axis is shaped by regular k-space encoding, have been shown resilient to chemical shift and B0 field inhomogeneities. In this work we explore the use of pairs of 2D pulses, with one of these addressing geometries in the x-y plane and the other in the x-z dimension, to sculpt complex 3D volumes in phantoms and in vivo. To overcome limitations caused by the RF discretization demanded by these 2D pulses, a number of "unfolding" techniques yielding images from the centerband RF excitation while deleting sideband contributions - even in cases where center- and side-bands severely overlap - were developed. Thus it was possible to increase the gradient strengths applied along the low bandwidth dimensions, significantly improving the robustness of this kind of 3D sculpting pulses. Comparisons against conventional pulses designed on the basis of pure k-space trajectories, are presented.

  8. Technical solutions for a full-resolution autostereoscopic 2D/3D display technology

    NASA Astrophysics Data System (ADS)

    Stolle, Hagen; Olaya, Jean-Christophe; Buschbeck, Steffen; Sahm, Hagen; Schwerdtner, Armin

    2008-02-01

    Auto-stereoscopic 3D displays capable of high quality, full-resolution images for multiple users can only be created with time-sequential systems incorporating eye tracking and a dedicated optical design. The availability of high speed displays with 120Hz and faster eliminated one of the major hurdles for commercial solutions. Results of alternative display solutions from SeeReal show the impact of optical design on system performance and product features. Depending on the manufacturer's capabilities, system complexity can be shifted from optics to SLM with an impact on viewing angle, number of users and energy efficiency, but also on manufacturing processes. A proprietary solution for eye tracking from SeeReal demonstrates that the required key features can be achieved and implemented in commercial systems in a reasonably short time.

  9. 3D insight into fault geometries, deformation, and fluid-migration within the Hosgri Fault Zone offshore central California: Results from high-resolution 3D seismic data

    NASA Astrophysics Data System (ADS)

    Kluesner, J.; Brothers, D. S.; Johnson, S. Y.; Watt, J. T.

    2015-12-01

    High-resolution 3D seismic P-Cable data and advanced seismic attribute analyses were used to detect and interpret complex strike-slip fault geometries, deformation patterns, and fluid-pathways across a portion of the Hosgri Fault Zone (HFZ) offshore central California. Combination of the fault attribute results with structural analysis provides 3D insight into the geometry and internal structure of restraining and releasing bends, step-over zones, fault convergence zones, and apparent paired fault bends. The 3D seismic volume covers a 13.7 km2 region along the HFZ offshore of Point Sal and was collected in 2012 as part of the PG&E Central California Seismic Imaging Project (PG&E, 2014). Application of the fault attribute workflow isolated and delineated fault strands within the 3D volume. These results revealed that the northern and southern edges of the survey region are characterized by single fault strands that exhibit an approximate 6° change in strike across the 3D volume. Between these single faults strands is a complex network of fault splays, bends, stepovers, and convergence zones. Structural analysis reveals that the southern portion of the HFZ in the region is characterized by transtensional deformation, whereas transpressional-related folding dominates the central and northern portions of the HFZ. In the central region, convergence of the Lions Head Fault from the southeast results in an apparent impinging block, leading to development of a "paired fault bend" to the west. Combination of the fault and "chimney" attribute results indicates a strong connection between faults and fluid-migration pathways. Fluid-pathways are concentrated along discrete faults in the transtensional zones, but appear to be more broadly distributed amongst fault bounded anticlines and structurally controlled traps in the transpressional zones.

  10. Advanced Multivariate Inversion Techniques for High Resolution 3D Geophysical Modeling (Invited)

    NASA Astrophysics Data System (ADS)

    Maceira, M.; Zhang, H.; Rowe, C. A.

    2009-12-01

    We focus on the development and application of advanced multivariate inversion techniques to generate a realistic, comprehensive, and high-resolution 3D model of the seismic structure of the crust and upper mantle that satisfies several independent geophysical datasets. Building on previous efforts of joint invesion using surface wave dispersion measurements, gravity data, and receiver functions, we have added a fourth dataset, seismic body wave P and S travel times, to the simultaneous joint inversion method. We present a 3D seismic velocity model of the crust and upper mantle of northwest China resulting from the simultaneous, joint inversion of these four data types. Surface wave dispersion measurements are primarily sensitive to seismic shear-wave velocities, but at shallow depths it is difficult to obtain high-resolution velocities and to constrain the structure due to the depth-averaging of the more easily-modeled, longer-period surface waves. Gravity inversions have the greatest resolving power at shallow depths, and they provide constraints on rock density variations. Moreover, while surface wave dispersion measurements are primarily sensitive to vertical shear-wave velocity averages, body wave receiver functions are sensitive to shear-wave velocity contrasts and vertical travel-times. Addition of the fourth dataset, consisting of seismic travel-time data, helps to constrain the shear wave velocities both vertically and horizontally in the model cells crossed by the ray paths. Incorporation of both P and S body wave travel times allows us to invert for both P and S velocity structure, capitalizing on empirical relationships between both wave types’ seismic velocities with rock densities, thus eliminating the need for ad hoc assumptions regarding the Poisson ratios. Our new tomography algorithm is a modification of the Maceira and Ammon joint inversion code, in combination with the Zhang and Thurber TomoDD (double-difference tomography) program.

  11. A High-Resolution 3D Weather Radar, MSG, and Lightning Sensor Observation Composite

    NASA Astrophysics Data System (ADS)

    Diederich, Malte; Senf, Fabian; Wapler, Kathrin; Simmer, Clemens

    2013-04-01

    Within the research group 'Object-based Analysis and SEamless prediction' (OASE) of the Hans Ertel Centre for Weather Research programme (HerZ), a data composite containing weather radar, lightning sensor, and Meteosat Second Generation observations is being developed for the use in object-based weather analysis and nowcasting. At present, a 3D merging scheme combines measurements of the Bonn and Jülich dual polarimetric weather radar systems (data provided by the TR32 and TERENO projects) into a 3-dimensional polar-stereographic volume grid, with 500 meters horizontal, and 250 meters vertical resolution. The merging takes into account and compensates for various observational error sources, such as attenuation through hydrometeors, beam blockage through topography and buildings, minimum detectable signal as a function of noise threshold, non-hydrometeor echos like insects, and interference from other radar systems. In addition to this, the effect of convection during the radar 5-minute volume scan pattern is mitigated through calculation of advection vectors from subsequent scans and their use for advection correction when projecting the measurements into space for any desired timestamp. The Meteosat Second Generation rapid scan service provides a scan in 12 spectral visual and infrared wavelengths every 5 minutes over Germany and Europe. These scans, together with the derived microphysical cloud parameters, are projected into the same polar stereographic grid used for the radar data. Lightning counts from the LINET lightning sensor network are also provided for every 2D grid pixel. The combined 3D radar and 2D MSG/LINET data is stored in a fully documented netCDF file for every 5 minute interval, and is made ready for tracking and object based weather analysis. At the moment, the 3D data only covers the Bonn and Jülich area, but the algorithms are planed to be adapted to the newly conceived DWD polarimetric C-Band 5 minute interval volume scan strategy. An

  12. Controlling Shear Stress in 3D Bioprinting is a Key Factor to Balance Printing Resolution and Stem Cell Integrity.

    PubMed

    Blaeser, Andreas; Duarte Campos, Daniela Filipa; Puster, Uta; Richtering, Walter; Stevens, Molly M; Fischer, Horst

    2016-02-04

    A microvalve-based bioprinting system for the manufacturing of high-resolution, multimaterial 3D-structures is reported. Applying a straightforward fluid-dynamics model, the shear stress at the nozzle site can precisely be controlled. Using this system, a broad study on how cell viability and proliferation potential are affected by different levels of shear stress is conducted. Complex, multimaterial 3D structures are printed with high resolution. This work pioneers the investigation of shear stress-induced cell damage in 3D bioprinting and might help to comprehend and improve the outcome of cell-printing studies in the future.

  13. A Spatially Periodic Solute Boundary for MT3DMS and PHT3D.

    PubMed

    Laattoe, Tariq; Post, Vincent E A; Werner, Adrian D

    2016-12-14

    The assumption of spatial repetition is commonly made when producing bedform scale models of the hyporheic zone. Two popular solute transport codes, MT3DMS and PHT3D, do not currently provide the necessary boundary condition required to simulate spatial periodicity in hyporheic zone transport problems. In this study, we develop a spatially periodic boundary (SPB) for solutes that is compatible with a SPB that was previously developed for MODFLOW to simulate the flow component of spatially periodic problems. The approach is ideal for simulating groundwater flow and transport patterns under repeating surface features, such as ripples or dunes on the bottom of a lake or stream. The appropriate block-centered finite-difference approach to implement the boundary is presented and the necessary source code modifications are discussed. The performance of the solute SPB, operating in conjunction with the groundwater flow SPB, is explored through comparison of a multi-bedform hyporheic-zone model with a single bedform variant. The new boundary conditions perform well in situations where both dispersive effects and lateral seepage flux in the underflow regime beneath the hyporheic zone are minimal.

  14. On the feasibility of comprehensive high-resolution 3D remote dosimetry

    PubMed Central

    Juang, Titania; Grant, Ryan; Adamovics, John; Ibbott, Geoffrey; Oldham, Mark

    2014-01-01

    Purpose: This study investigates the feasibility of remote high-resolution 3D dosimetry with the PRESAGE®/Optical-CT system. In remote dosimetry, dosimeters are shipped out from a central base institution to a remote institution for irradiation, then shipped back to the base institution for subsequent readout and analysis. Methods: Two nominally identical optical-CT scanners for 3D dosimetry were constructed and placed at the base (Duke University) and remote (Radiological Physics Center) institutions. Two formulations of PRESAGE® (SS1, SS2) radiochromic dosimeters were investigated. Higher sensitivity was expected in SS1, which had higher initiator content (0.25% bromotrichloromethane), while greater temporal stability was expected in SS2. Four unirradiated PRESAGE® dosimeters (two per formulation, cylindrical dimensions 11 cm diameter, 8.5–9.5 cm length) were imaged at the base institution, then shipped to the remote institution for planning and irradiation. Each dosimeter was irradiated with the same simple treatment plan: an isocentric 3-field “cross” arrangement of 4 × 4 cm open 6 MV beams configured as parallel opposed laterals with an anterior beam. This simple plan was amenable to accurate and repeatable setup, as well as accurate dose modeling by a commissioned treatment planning system (Pinnacle). After irradiation and subsequent (within 1 h) optical-CT readout at the remote institution, the dosimeters were shipped back to the base institution for remote dosimetry readout 3 days postirradiation. Measured on-site and remote relative 3D dose distributions were registered to the Pinnacle dose calculation, which served as the reference distribution for 3D gamma calculations with passing criteria of 5%/2 mm, 3%/3 mm, and 3%/2 mm with a 10% dose threshold. Gamma passing rates, dose profiles, and color-maps were all used to assess and compare the performance of both PRESAGE® formulations for remote dosimetry. Results: The best agreements between the

  15. On the feasibility of comprehensive high-resolution 3D remote dosimetry

    SciTech Connect

    Juang, Titania; Grant, Ryan; Adamovics, John; Ibbott, Geoffrey; Oldham, Mark

    2014-07-15

    Purpose: This study investigates the feasibility of remote high-resolution 3D dosimetry with the PRESAGE®/Optical-CT system. In remote dosimetry, dosimeters are shipped out from a central base institution to a remote institution for irradiation, then shipped back to the base institution for subsequent readout and analysis. Methods: Two nominally identical optical-CT scanners for 3D dosimetry were constructed and placed at the base (Duke University) and remote (Radiological Physics Center) institutions. Two formulations of PRESAGE® (SS1, SS2) radiochromic dosimeters were investigated. Higher sensitivity was expected in SS1, which had higher initiator content (0.25% bromotrichloromethane), while greater temporal stability was expected in SS2. Four unirradiated PRESAGE® dosimeters (two per formulation, cylindrical dimensions 11 cm diameter, 8.5–9.5 cm length) were imaged at the base institution, then shipped to the remote institution for planning and irradiation. Each dosimeter was irradiated with the same simple treatment plan: an isocentric 3-field “cross” arrangement of 4 × 4 cm open 6 MV beams configured as parallel opposed laterals with an anterior beam. This simple plan was amenable to accurate and repeatable setup, as well as accurate dose modeling by a commissioned treatment planning system (Pinnacle). After irradiation and subsequent (within 1 h) optical-CT readout at the remote institution, the dosimeters were shipped back to the base institution for remote dosimetry readout 3 days postirradiation. Measured on-site and remote relative 3D dose distributions were registered to the Pinnacle dose calculation, which served as the reference distribution for 3D gamma calculations with passing criteria of 5%/2 mm, 3%/3 mm, and 3%/2 mm with a 10% dose threshold. Gamma passing rates, dose profiles, and color-maps were all used to assess and compare the performance of both PRESAGE® formulations for remote dosimetry. Results: The best agreements between the

  16. 3-D inversion of synthetic marine magnetotelluric data: resolution and sensitivity

    NASA Astrophysics Data System (ADS)

    Tada, N.; Baba, K.; Siripunvaraporn, W.; Uyeshima, M.; Utada, H.

    2010-12-01

    In recent years, seafloor magnetotelluric (MT) observation is carried out by using an increasing number of ocean bottom electromagnetometers (OBEMs) not only along a line but also in 2-D array. Thus, imaging electrical conductivity structures under the seafloor in 3-D is now feasible. A 3-D approach is indispensable especially for marine MT data, because the electric and magnetic fields observed at the seafloor are heavily distorted by the rugged seafloor topography and the distribution of land and sea which are generally 3-D. It is very important to incorporate the topography in a 3-D model for an accurate estimation of the conductivity structure beneath seafloor that is generally more resistive than seawater by several orders of magnitude. WSINV3DMT (Siripunvaraporn et al., 2005) is one of 3-D inversion codes that are now of practical use, but the original WSINV3DMT is not applicable to marine MT data because of two reasons. 1) MT responses are calculated only at the boundary corresponding to the Earth surface. 2) We have to use fine mesh design because an observation site must locate exactly at the center of the top surface of a block, which needs large memory that even a highest performance computer can not handle. We propose an extended version of the WSINV3DMT by solving the two problems shown above so that it can be applied to the marine MT data. The extended version of the WSINV3DMT is tested using synthetic models including a 3-D anomaly, seawater and topographic variation. Here shown is an example of a checkerboard test by using a model in which 10 ohm-m and 100 ohm-m blocks are put alternately in both horizontal and vertical directions. The model is composed of 5 blocks in horizontal directions and of 4 blocks in vertical direction with a background of a 31.6 ohm-m half-space below actual topography. The calculation area in the inversion is 7440 × 7440 × 1008 km, and is discretized at 35 blocks in the x and y directions, and 69 blocks in the z

  17. Reconstruction of high resolution MLC leaf positions using a low resolution detector for accurate 3D dose reconstruction in IMRT

    NASA Astrophysics Data System (ADS)

    Visser, R.; Godart, J.; Wauben, D. J. L.; Langendijk, J. A.; van't Veld, A. A.; Korevaar, E. W.

    2016-12-01

    In pre-treatment dose verification, low resolution detector systems are unable to identify shifts of individual leafs of high resolution multi leaf collimator (MLC) systems from detected changes in the dose deposition. The goal of this study was to introduce an alternative approach (the shutter technique) combined with a previous described iterative reconstruction method to accurately reconstruct high resolution MLC leaf positions based on low resolution measurements. For the shutter technique, two additional radiotherapy treatment plans (RT-plans) were generated in addition to the original RT-plan; one with even MLC leafs closed for reconstructing uneven leaf positions and one with uneven MLC leafs closed for reconstructing even leaf positions. Reconstructed leaf positions were then implemented in the original RT-plan for 3D dose reconstruction. The shutter technique was evaluated for a 6 MV Elekta SLi linac with 5 mm MLC leafs (Agility™) in combination with the MatriXX Evolution detector with detector spacing of 7.62 mm. Dose reconstruction was performed with the COMPASS system (v2.0). The measurement setup allowed one row of ionization chambers to be affected by two adjacent leaf pairs. Measurements were obtained for various field sizes with MLC leaf position errors ranging from 1.0 mm to 10.0 mm. Furthermore, one clinical head and neck IMRT treatment beam with MLC introduced leaf position errors of 5.0 mm was evaluated to illustrate the impact of the shutter technique on 3D dose reconstruction. Without the shutter technique, MLC leaf position reconstruction showed reconstruction errors up to 6.0 mm. Introduction of the shutter technique allowed MLC leaf position reconstruction for the majority of leafs with sub-millimeter accuracy resulting in a reduction of dose reconstruction errors. The shutter technique in combination with the iterative reconstruction method allows high resolution MLC leaf position reconstruction using low resolution

  18. a Web-Based Interactive Tool for Multi-Resolution 3d Models of a Maya Archaeological Site

    NASA Astrophysics Data System (ADS)

    Agugiaro, G.; Remondino, F.; Girardi, G.; von Schwerin, J.; Richards-Rissetto, H.; De Amicis, R.

    2011-09-01

    Continuous technological advances in surveying, computing and digital-content delivery are strongly contributing to a change in the way Cultural Heritage is "perceived": new tools and methodologies for documentation, reconstruction and research are being created to assist not only scholars, but also to reach more potential users (e.g. students and tourists) willing to access more detailed information about art history and archaeology. 3D computer-simulated models, sometimes set in virtual landscapes, offer for example the chance to explore possible hypothetical reconstructions, while on-line GIS resources can help interactive analyses of relationships and change over space and time. While for some research purposes a traditional 2D approach may suffice, this is not the case for more complex analyses concerning spatial and temporal features of architecture, like for example the relationship of architecture and landscape, visibility studies etc. The project aims therefore at creating a tool, called "QueryArch3D" tool, which enables the web-based visualisation and queries of an interactive, multi-resolution 3D model in the framework of Cultural Heritage. More specifically, a complete Maya archaeological site, located in Copan (Honduras), has been chosen as case study to test and demonstrate the platform's capabilities. Much of the site has been surveyed and modelled at different levels of detail (LoD) and the geometric model has been semantically segmented and integrated with attribute data gathered from several external data sources. The paper describes the characteristics of the research work, along with its implementation issues and the initial results of the developed prototype.

  19. The Effect of 3D-Modeling Training on Students' Spatial Reasoning Relative to Gender and Grade

    ERIC Educational Resources Information Center

    Šafhalter, Andrej; Vukman, Karin Bakracevic; Glodež, Srecko

    2016-01-01

    The aim of this research was to establish whether gender and age have an impact on spatial reasoning and its development through the use of 3D modeling. The study was conducted on a sample of 196 children from sixth to ninth grade, of whom 95 represented the experimental group and 101 the control group. The experimental group received 3D modeling…

  20. Low-resolution characterization of the 3D structure of the Euglena gracilis photoreceptor.

    PubMed

    Barsanti, Laura; Coltelli, Primo; Evangelista, Valtere; Passarelli, Vincenzo; Frassanito, Anna Maria; Vesentini, Nicoletta; Gualtieri, Paolo

    2008-10-24

    This paper deals with the first characterization of the structure of the photoreceptive organelle of the unicellular alga Euglena gracilis (Euglenophyta). This organelle has a three-dimensional organization consisting of up to 50 closely stacked membrane lamellae. Ionically induced unstacking of the photoreceptor lamellae revealed ordered arrays well suited to structural analysis by electron microscopy and image analysis, which ultimately yielded a low-resolution picture of the structure. Each lamella is formed by the photoreceptive membrane protein of the cell assembled within the membrane layer in a hexagonal lattice. The first order diffraction spots in the calculated Fourier transform reveals the presence of 6-fold symmetrized topography (better resolution about 90A). The 2D and 3D structural data are very similar with those recently published on proteorodopsin, a membrane protein used by marine bacterio-plankton as light-driven proton pump. In our opinion these similarity indicate that a photoreceptive protein belonging to the same superfamily of proteorodopsin could form the Euglena photoreceptor.

  1. Low-resolution characterization of the 3D structure of the Euglena gracilis photoreceptor

    SciTech Connect

    Barsanti, Laura; Coltelli, Primo; Evangelista, Valtere; Passarelli, Vincenzo; Frassanito, Anna Maria; Vesentini, Nicoletta; Gualtieri, Paolo

    2008-10-24

    This paper deals with the first characterization of the structure of the photoreceptive organelle of the unicellular alga Euglena gracilis (Euglenophyta). This organelle has a three-dimensional organization consisting of up to 50 closely stacked membrane lamellae. Ionically induced unstacking of the photoreceptor lamellae revealed ordered arrays well suited to structural analysis by electron microscopy and image analysis, which ultimately yielded a low-resolution picture of the structure. Each lamella is formed by the photoreceptive membrane protein of the cell assembled within the membrane layer in a hexagonal lattice. The first order diffraction spots in the calculated Fourier transform reveals the presence of 6-fold symmetrized topography (better resolution about 90 A). The 2D and 3D structural data are very similar with those recently published on proteorodopsin, a membrane protein used by marine bacterio-plankton as light-driven proton pump. In our opinion these similarity indicate that a photoreceptive protein belonging to the same superfamily of proteorodopsin could form the Euglena photoreceptor.

  2. Using Computer-Aided Design Software and 3D Printers to Improve Spatial Visualization

    ERIC Educational Resources Information Center

    Katsio-Loudis, Petros; Jones, Millie

    2015-01-01

    Many articles have been published on the use of 3D printing technology. From prefabricated homes and outdoor structures to human organs, 3D printing technology has found a niche in many fields, but especially education. With the introduction of AutoCAD technical drawing programs and now 3D printing, learners can use 3D printed models to develop…

  3. The potential of 3D gully monitoring with GIS using high-resolution aerial photography and a digital photogrammetry system

    NASA Astrophysics Data System (ADS)

    Marzolff, I.; Poesen, J.

    2009-10-01

    Although gully erosion is generally considered a major process of land degradation, its contribution to total soil loss by erosion has recently been a subject of much discussion. The lack of adequate methods for the documentation and monitoring of gullies resulted in the shortage of quantitative data. Therefore, a high-resolution remote sensing system for aerial surveys by blimp or kite has been developed which meets spatial and temporal image resolutions required for short-term gully monitoring. The objective of this paper is to examine the potential of a method using non-metric digital photogrammetry and GIS for gully surface modelling and monitoring. Two bank gullies representing different morphological types of gullies (V-shaped and U-shaped) were chosen from a dataset of gully systems in semi-arid Spain. The considerable relief energy and complex topography of the gullies in a natural, vegetated landscape were found to be a challenge to digital photogrammetric techniques, introducing errors which inhibit fully automated DEM generation. Using a hybrid method combining stereomatching for mass-point extraction with manual 3D editing and digitizing, high-resolution DEMs (5 and 7.5 cm pixel size) were created for the study sites. GIS analysis of the DEMs for different monitoring periods (2 to 4 years) allowed the computation of gully area and volume, as well as their changes with an accuracy and detail sufficient to represent the geomorphological forms and processes involved. Furthermore, the spatially continuous survey of the entire form offered the possibility of distinguishing different zones of activity both at the gully rim and within the gully interior, identifying patterns of erosion and deposition which indicate the limited use of headcut retreat rates for the assessment of sediment production on a short-term basis.

  4. Robust and Blind 3D Mesh Watermarking in Spatial Domain Based on Faces Categorization and Sorting

    NASA Astrophysics Data System (ADS)

    Molaei, Amir Masoud; Ebrahimnezhad, Hossein; Sedaaghi, Mohammad Hossein

    2016-06-01

    In this paper, a 3D watermarking algorithm in spatial domain is presented with blind detection. In the proposed method, a negligible visual distortion is observed in host model. Initially, a preprocessing is applied on the 3D model to make it robust against geometric transformation attacks. Then, a number of triangle faces are determined as mark triangles using a novel systematic approach in which faces are categorized and sorted robustly. In order to enhance the capability of information retrieval by attacks, block watermarks are encoded using Reed-Solomon block error-correcting code before embedding into the mark triangles. Next, the encoded watermarks are embedded in spherical coordinates. The proposed method is robust against additive noise, mesh smoothing and quantization attacks. Also, it is stout next to geometric transformation, vertices and faces reordering attacks. Moreover, the proposed algorithm is designed so that it is robust against the cropping attack. Simulation results confirm that the watermarked models confront very low distortion if the control parameters are selected properly. Comparison with other methods demonstrates that the proposed method has good performance against the mesh smoothing attacks.

  5. A ‘fitness-wheel-shaped’ MEMS vector hydrophone for 3D spatial acoustic orientation

    NASA Astrophysics Data System (ADS)

    Wang, Renxin; Liu, Yuan; Xu, Wei; Bai, Bing; Zhang, Guojun; Liu, Jun; Xiong, Jijun; Zhang, Wendong; Xue, Chenyang; Zhang, Binzhen

    2017-04-01

    For the purpose of acquiring precise underwater 3D spatial orientation, a ‘fitness-wheel-shaped’ MEMS vector hydrophone (FWVH) is developed, which achieves monitoring of a tri-axial acoustic pressure differential via appropriate constructional design and strain readout. Compared to the previously reported T-structure-combined vector hydrophone (TSVH) which has a nonlinear relationship between output and external force, using the FWVH it is feasible in principle to achieve a tri-axial match, which make it promising in accurate acoustic orientation. A theoretic model for sensitivity is developed, where torque moment is taken into consideration to match the simulation and practical results. Superior to 3D force sensors, bandwidth is taken as the key index for the FWVH and is designed in detail with a compromise of sensitivity. In view of the bandwidth, the parameters are determined for detecting the signal in the range 20–300 Hz. A vibration test demonstrates tri-axial resonance frequencies. Finally, the frequency response curve of the FWVH shows that tri-axial sensitivities are consistent, agreeing with the analysis and simulation results, which reach  ‑174 dB (0 dB referring to 1 V µPa‑1) at 300 Hz.

  6. Computation of a high-resolution MRI 3D stereotaxic atlas of the sheep brain.

    PubMed

    Ella, Arsène; Delgadillo, José A; Chemineau, Philippe; Keller, Matthieu

    2017-02-15

    The sheep model was first used in the fields of animal reproduction and veterinary sciences and then was utilized in fundamental and preclinical studies. For more than a decade, magnetic resonance (MR) studies performed on this model have been increasingly reported, especially in the field of neuroscience. To contribute to MR translational neuroscience research, a brain template and an atlas are necessary. We have recently generated the first complete T1-weighted (T1W) and T2W MR population average images (or templates) of in vivo sheep brains. In this study, we 1) defined a 3D stereotaxic coordinate system for previously established in vivo population average templates; 2) used deformation fields obtained during optimized nonlinear registrations to compute nonlinear tissues or prior probability maps (nlTPMs) of cerebrospinal fluid (CSF), gray matter (GM), and white matter (WM) tissues; 3) delineated 25 external and 28 internal sheep brain structures by segmenting both templates and nlTPMs; and 4) annotated and labeled these structures using an existing histological atlas. We built a quality high-resolution 3D atlas of average in vivo sheep brains linked to a reference stereotaxic space. The atlas and nlTPMs, associated with previously computed T1W and T2W in vivo sheep brain templates and nlTPMs, provide a complete set of imaging space that are able to be imported into other imaging software programs and could be used as standardized tools for neuroimaging studies or other neuroscience methods, such as image registration, image segmentation, identification of brain structures, implementation of recording devices, or neuronavigation. J. Comp. Neurol. 525:676-692, 2017. © 2016 Wiley Periodicals, Inc.

  7. Spatial Distribution of Yarns and Mechanical Properties in 3D Braided Tubular Composites

    NASA Astrophysics Data System (ADS)

    Wang, Y. Q.; Wang, A. S. D.

    1997-03-01

    This paper outlines a method which links the following analytically simulated events in sequence: (1) braiding of a 3D preform of tubular cross-section characterized by a set of braiding parameters defining the braiding setup and braiding steps; (2) geometric description of the yarn topology in the braided preform in explicit terms of a set of topological parameters defined by the preform shape and the braiding parameters; (3) description of the exact yarn distribution after preform consolidation with a binding matrix the values of the topological parameters are related to the exterior dimensions and surface features of the consolidated preform; and (4) forecasting the mechanical properties in the final composite via a suitable micromechanics model that takes into account the spatial yarn distribution in the composite and properties of the constituents.

  8. Layout consistent segmentation of 3-D meshes via conditional random fields and spatial ordering constraints.

    PubMed

    Zouhar, Alexander; Baloch, Sajjad; Tsin, Yanghai; Fang, Tong; Fuchs, Siegfried

    2010-01-01

    We address the problem of 3-D Mesh segmentation for categories of objects with known part structure. Part labels are derived from a semantic interpretation of non-overlapping subsurfaces. Our approach models the label distribution using a Conditional Random Field (CRF) that imposes constraints on the relative spatial arrangement of neighboring labels, thereby ensuring semantic consistency. To this end, each label variable is associated with a rich shape descriptor that is intrinsic to the surface. Randomized decision trees and cross validation are employed for learning the model, which is eventually applied using graph cuts. The method is flexible enough for segmenting even geometrically less structured regions and is robust to local and global shape variations.

  9. Spatial Sense and Perspective: A 3-D Model of the Orion Constellation

    NASA Astrophysics Data System (ADS)

    Heyer, I.; Slater, T. F.; Slater, S. J.

    2012-08-01

    Building a scale model of the Orion constellation provides spatial perspective for students studying astronomy. For this activity, students read a passage from literature that refers to stars being strange when seen from a different point of view. From a data set of the seven major stars of Orion they construct a 3-D distance scale model. This involves the subject areas of astronomy, mathematics, literature and art, as well as the skill areas of perspective, relative distances, line-of-sight, and basic algebra. This model will appear from one side exactly the way we see it from Earth. But when looking at it from any other angle the familiar constellation will look very alien. Students are encouraged to come up with their own names and stories to go with these new constellations. This activity has been used for K-12 teacher professional development classes, and would be most suitable for grades 6-12.

  10. Amoeboid migration mode adaption in quasi-3D spatial density gradients of varying lattice geometry

    NASA Astrophysics Data System (ADS)

    Gorelashvili, Mari; Emmert, Martin; Hodeck, Kai F.; Heinrich, Doris

    2014-07-01

    Cell migration processes are controlled by sensitive interaction with external cues such as topographic structures of the cell’s environment. Here, we present systematically controlled assays to investigate the specific effects of spatial density and local geometry of topographic structure on amoeboid migration of Dictyostelium discoideum cells. This is realized by well-controlled fabrication of quasi-3D pillar fields exhibiting a systematic variation of inter-pillar distance and pillar lattice geometry. By time-resolved local mean-squared displacement analysis of amoeboid migration, we can extract motility parameters in order to elucidate the details of amoeboid migration mechanisms and consolidate them in a two-state contact-controlled motility model, distinguishing directed and random phases. Specifically, we find that directed pillar-to-pillar runs are found preferably in high pillar density regions, and cells in directed motion states sense pillars as attractive topographic stimuli. In contrast, cell motion in random probing states is inhibited by high pillar density, where pillars act as obstacles for cell motion. In a gradient spatial density, these mechanisms lead to topographic guidance of cells, with a general trend towards a regime of inter-pillar spacing close to the cell diameter. In locally anisotropic pillar environments, cell migration is often found to be damped due to competing attraction by different pillars in close proximity and due to lack of other potential stimuli in the vicinity of the cell. Further, we demonstrate topographic cell guidance reflecting the lattice geometry of the quasi-3D environment by distinct preferences in migration direction. Our findings allow to specifically control amoeboid cell migration by purely topographic effects and thus, to induce active cell guidance. These tools hold prospects for medical applications like improved wound treatment, or invasion assays for immune cells.

  11. High Spatial Resolution Spectroscopy of Semiconductor Nanostructures

    NASA Astrophysics Data System (ADS)

    Harris, Timothy D.; Gershoni, David; Pfeiffer, Loren N.

    1996-03-01

    Several recent reports employing high spatial resolution have revealed the dominance of exciton localization in the low temperature luminescence of semiconductor quantum structures.^[1-3] Understanding this localization is of critical importance for the reliable studies of low dimensional structures such as quantum wells, quantum wires and quantum dots. We report on low temperature and high spatial resolution photoluminescence and photoluminescence excitation studies of cleaved edge overgrown (CEO) single quantum wires. These samples permit the direct and unambiguous comparison between the optical properties of a (100) oriented quantum well, a (110) oriented quantum well, and the quantum wire which is formed at their intersection. Using low temperature near field optical spectroscopy, and a novel diffraction limited far field apparatus, we determine the carrier diffusion length dependence on pump wavelength and sample temperature in both the 2d systems and the genuinely 1D wire system. We also measure the absorption strength of the 1D system and find it to be a factor of 3 stronger than the absorption of the associated 2D systems.^[2] Using low temperature near field optical spectroscopy, and a novel diffraction limited far field apparatus, we also determine the carrier diffusion length dependence on pump wavelength and sample temperature. ^[1] H. F. Hess, E. Betzig, T. D. Harris, L. N. Pfeiffer, and K. W. West, Science 264, 1740 (1994). ^[2] T. D. Harris, D. Gershoni, R. D. Grober, L. Pfeiffer, K. West, and N. Chand, Appl. Phys. Lett, in press (1996) ^[3] D. Gammon, E. S. Snow, and D. S. Katzer, Appl. Phys. Lett. 67, 2391 (1995)

  12. 3D ToF-SIMS Analysis of Peptide Incorporation into MALDI Matrix Crystals with Sub-micrometer Resolution.

    PubMed

    Körsgen, Martin; Pelster, Andreas; Dreisewerd, Klaus; Arlinghaus, Heinrich F

    2016-02-01

    The analytical sensitivity in matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is largely affected by the specific analyte-matrix interaction, in particular by the possible incorporation of the analytes into crystalline MALDI matrices. Here we used time-of-flight secondary ion mass spectrometry (ToF-SIMS) to visualize the incorporation of three peptides with different hydrophobicities, bradykinin, Substance P, and vasopressin, into two classic MALDI matrices, 2,5-dihydroxybenzoic acid (DHB) and α-cyano-4-hydroxycinnamic acid (HCCA). For depth profiling, an Ar cluster ion beam was used to gradually sputter through the matrix crystals without causing significant degradation of matrix or biomolecules. A pulsed Bi3 ion cluster beam was used to image the lateral analyte distribution in the center of the sputter crater. Using this dual beam technique, the 3D distribution of the analytes and spatial segregation effects within the matrix crystals were imaged with sub-μm resolution. The technique could in the future enable matrix-enhanced (ME)-ToF-SIMS imaging of peptides in tissue slices at ultra-high resolution. Graphical Abstract ᅟ.

  13. 3D ToF-SIMS Analysis of Peptide Incorporation into MALDI Matrix Crystals with Sub-micrometer Resolution

    NASA Astrophysics Data System (ADS)

    Körsgen, Martin; Pelster, Andreas; Dreisewerd, Klaus; Arlinghaus, Heinrich F.

    2016-02-01

    The analytical sensitivity in matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is largely affected by the specific analyte-matrix interaction, in particular by the possible incorporation of the analytes into crystalline MALDI matrices. Here we used time-of-flight secondary ion mass spectrometry (ToF-SIMS) to visualize the incorporation of three peptides with different hydrophobicities, bradykinin, Substance P, and vasopressin, into two classic MALDI matrices, 2,5-dihydroxybenzoic acid (DHB) and α-cyano-4-hydroxycinnamic acid (HCCA). For depth profiling, an Ar cluster ion beam was used to gradually sputter through the matrix crystals without causing significant degradation of matrix or biomolecules. A pulsed Bi3 ion cluster beam was used to image the lateral analyte distribution in the center of the sputter crater. Using this dual beam technique, the 3D distribution of the analytes and spatial segregation effects within the matrix crystals were imaged with sub-μm resolution. The technique could in the future enable matrix-enhanced (ME)-ToF-SIMS imaging of peptides in tissue slices at ultra-high resolution.

  14. High-resolution 3D seismic model of the crustal and uppermost mantle structure in Poland

    NASA Astrophysics Data System (ADS)

    Grad, Marek; Polkowski, Marcin; Ostaficzuk, Stanisław R.

    2016-01-01

    In the area of Poland a contact between the Precambrian and Phanerozoic Europe and the Carpathians has a complicated structure and a complex P-wave velocity of the sedimentary cover, crystalline crust, Moho depth and the uppermost mantle. The geometry of the uppermost several kilometers of sediments is relatively well recognized from over 100,000 boreholes. The vertical seismic profiling (VSP) from 1188 boreholes provided detailed velocity data for regional tectonic units and for stratigraphic successions from Permian to the Tertiary and Quaternary deposits. These data, however, do not provide information about the velocity and basement depth in the central part of the Trans-European suture zone (TESZ) and in the Carpathians. So, the data set is supplemented by 2D velocity models from 32 deep seismic sounding refraction profiles which also provide information about the crust and uppermost mantle. Together with the results of other methods: vertical seismic profiling, magnetotelluric, allow for the creation of a detailed, high-resolution 3D model for the entire Earth's crust and the uppermost mantle down to a depth of 60 km. The thinnest sedimentary cover in the Mazury-Belarus anteclise is only 0.3 to 1 km thick, which increases to 7 to 8 km along the East European Craton (EEC) margin, and 9 to 12 km in the TESZ. The Variscan domain is characterized by a 1-4 km thick sedimentary cover, while the Carpathians are characterized by very thick sedimentary layers, up to about 20 km. The crystalline crust is differentiated and has a layered structure. The crust beneath the West European Platform (WEP; Variscan domain) is characterized by P-wave velocities of 5.8-6.6 km/s. The upper and middle crusts beneath the EEC are characterized by velocities of 6.1-6.6 km/s, and are underlain by a high velocity lower crust with a velocity of about 7 km/s. A general decrease in velocity is observed from the older to the younger tectonic domains. The TESZ is associated with a steep dip

  15. In vivo high-resolution 3D photoacoustic imaging of superficial vascular anatomy

    NASA Astrophysics Data System (ADS)

    Zhang, E. Z.; Laufer, J. G.; Pedley, R. B.; Beard, P. C.

    2009-02-01

    The application of a photoacoustic imaging instrument based upon a Fabry-Perot polymer film ultrasound sensor to imaging the superficial vasculature is described. This approach provides a backward mode-sensing configuration that has the potential to overcome the limitations of current piezoelectric based detection systems used in superficial photoacoustic imaging. The system has been evaluated by obtaining non-invasive images of the vasculature in human and mouse skin as well as mouse models of human colorectal tumours. These studies showed that the system can provide high-resolution 3D images of vascular structures to depths of up to 5 mm. It is considered that this type of instrument may find a role in the clinical assessment of conditions characterized by changes in the vasculature such as skin tumours and superficial soft tissue damage due to burns, wounds or ulceration. It may also find application in the characterization of small animal cancer models where it is important to follow the tumour vasculature over time in order to study its development and/or response to therapy.

  16. Crustal deformation dynamics and stress evolution during seamount subduction: High-resolution 3-D numerical modeling

    NASA Astrophysics Data System (ADS)

    Ruh, Jonas B.; Sallarès, Valentí; Ranero, César R.; Gerya, Taras

    2016-09-01

    Seamounts or submarine volcanoes frequently collide with the overriding crust along presently active subduction zones locally modifying stress and permanent deformation patterns. Dynamics of this process is not fully understood, and several end-member scenarios of seamount-crust interaction are proposed. Here we use high-resolution 3-D numerical models to investigate evolution of crustal deformation and stress distribution within the upper plate induced by the underthrusting of subducting seamounts. The dynamical effects of the upper plate strength, subduction interface strength, and strain weakening of the crust are investigated. Experiment results demonstrate that characteristic crustal fracturing patterns formed in response to different seamount-crust interaction scenarios. Indenting seamounts strongly deform the overriding plate along a corridor as wide as the underthrusting seamount by constantly shifting subvertical shear zones rooted at the seamount extensions. A reentrant develops during initial seamount collision. A topographic bulge atop the seamount and lateral ridges emerge from further seamount subduction. Obtained stress pattern shows areas of large overpressure above the rearward and large underpressure above the trenchward flank of the seamount. Results of numerical experiments are consistent with seismic reflection images and seismic velocity models of the upper plate in areas of seamount subduction along the Middle America Trench and give important insights into the long-lasting question, whether subducting seamounts and rough seafloor act as barriers or asperities for megathrust earthquakes.

  17. Clean localization super-resolution microscopy for 3D biological imaging

    NASA Astrophysics Data System (ADS)

    Mondal, Partha P.; Curthoys, Nikki M.; Hess, Samuel T.

    2016-01-01

    We propose clean localization microscopy (a variant of fPALM) using a molecule filtering technique. Localization imaging involves acquiring a large number of images containing single molecule signatures followed by one-to-one mapping to render a super-resolution image. In principle, this process can be repeated for other z-planes to construct a 3D image. But, single molecules observed from off-focal planes result in false representation of their presence in the focal plane, resulting in incorrect quantification and analysis. We overcome this with a single molecule filtering technique that imposes constraints on the diffraction limited spot size of single molecules in the image plane. Calibration with sub-diffraction size beads puts a natural cutoff on the actual diffraction-limited size of single molecules in the focal plane. This helps in distinguishing beads present in the focal plane from those in the off-focal planes thereby providing an estimate of the single molecules in the focal plane. We study the distribution of actin (labeled with a photoactivatable CAGE 552 dye) in NIH 3T3 mouse fibroblast cells.

  18. Clean localization super-resolution microscopy for 3D biological imaging

    SciTech Connect

    Mondal, Partha P.; Curthoys, Nikki M.; Hess, Samuel T.

    2016-01-15

    We propose clean localization microscopy (a variant of fPALM) using a molecule filtering technique. Localization imaging involves acquiring a large number of images containing single molecule signatures followed by one-to-one mapping to render a super-resolution image. In principle, this process can be repeated for other z-planes to construct a 3D image. But, single molecules observed from off-focal planes result in false representation of their presence in the focal plane, resulting in incorrect quantification and analysis. We overcome this with a single molecule filtering technique that imposes constraints on the diffraction limited spot size of single molecules in the image plane. Calibration with sub-diffraction size beads puts a natural cutoff on the actual diffraction-limited size of single molecules in the focal plane. This helps in distinguishing beads present in the focal plane from those in the off-focal planes thereby providing an estimate of the single molecules in the focal plane. We study the distribution of actin (labeled with a photoactivatable CAGE 552 dye) in NIH 3T3 mouse fibroblast cells.

  19. High-resolution 3D dust radiative transfer in galaxies with DART-Ray

    NASA Astrophysics Data System (ADS)

    Natale, Giovanni; Popescu, Cristina C.; Tuffs, Richard. J.; Debattista, Victor P.; Grootes, Meiert W.

    2015-02-01

    DART-Ray is a 3D ray-tracing dust radiative transfer (RT) code that can be used to derive stellar and dust emission maps of galaxy models and simulations with arbitrary geometries. In addition to the previously published RT algorithm, we have now included in DART-Ray the possibility of calculating the stocastically heated dust emission from each volume element within a galaxy. To show the capabilities of the code, we performed a high-resolution (26 pc) RT calculation for a galaxy N-body+SPH simulation. The simulated galaxy we considered is characterized by a nuclear disc and a flocculent spiral structure. We analysed the derived galaxy maps for the global and local effects of dust on the galaxy attenuation as well as the contribution of scattered radiation to the predicted observed emission. In addition, by performing an additional RT calculation including only the stellar volume emissivity due to young stellar populations (SPs), we derived the contribution to the total dust emission powered by young and old SPs. Full details of this work will be presented in a forthcoming publication.

  20. High Resolution Ultrasonic Method for 3D Fingerprint Representation in Biometrics

    NASA Astrophysics Data System (ADS)

    Maev, R. Gr.; Bakulin, E. Y.; Maeva, E. Y.; Severin, F. M.

    Biometrics is an important field which studies different possible ways of personal identification. Among a number of existing biometric techniques fingerprint recognition stands alone - because very large database of fingerprints has already been acquired. Also, fingerprints are an important evidence that can be collected at a crime scene. Therefore, of all automated biometric techniques, especially in the field of law enforcement, fingerprint identification seems to be the most promising. Ultrasonic method of fingerprint imaging was originally introduced over a decade as the mapping of the reflection coefficient at the interface between the finger and a covering plate and has shown very good reliability and free from imperfections of previous two methods. This work introduces a newer development of the ultrasonic fingerprint imaging, focusing on the imaging of the internal structures of fingerprints (including sweat pores) with raw acoustic resolution of about 500 dpi (0.05 mm) using a scanning acoustic microscope to obtain images and acoustic data in the form of 3D data array. C-scans from different depths inside the fingerprint area of fingers of several volunteers were obtained and showed good contrast of ridges-and-valleys patterns and practically exact correspondence to the standard ink-and-paper prints of the same areas. Important feature reveled on the acoustic images was the clear appearance of the sweat pores, which could provide additional means of identification.

  1. A multi-resolution fractal additive scheme for blind watermarking of 3D point data

    NASA Astrophysics Data System (ADS)

    Rahmes, Mark; Wilder, Kathy; Fox, Kevin

    2013-05-01

    We present a fractal feature space for 3D point watermarking to make geospatial systems more secure. By exploiting the self similar nature of fractals, hidden information can be spatially embedded in point cloud data in an acceptable manner as described within this paper. Our method utilizes a blind scheme which provides automatic retrieval of the watermark payload without the need of the original cover data. Our method for locating similar patterns and encoding information in LiDAR point cloud data is accomplished through a look-up table or code book. The watermark is then merged into the point cloud data itself resulting in low distortion effects. With current advancements in computing technologies, such as GPGPUs, fractal processing is now applicable for processing of big data which is present in geospatial as well as other systems. This watermarking technique described within this paper can be important for systems where point data is handled by numerous aerial collectors including analysts use for systems such as a National LiDAR Data Layer.

  2. Spatially monitoring oxygen level in 3D microfabricated cell culture systems using optical oxygen sensing beads.

    PubMed

    Wang, Lin; Acosta, Miguel A; Leach, Jennie B; Carrier, Rebecca L

    2013-04-21

    Capability of measuring and monitoring local oxygen concentration at the single cell level (tens of microns scale) is often desirable but difficult to achieve in cell culture. In this study, biocompatible oxygen sensing beads were prepared and tested for their potential for real-time monitoring and mapping of local oxygen concentration in 3D micro-patterned cell culture systems. Each oxygen sensing bead is composed of a silica core loaded with both an oxygen sensitive Ru(Ph2phen3)Cl2 dye and oxygen insensitive Nile blue reference dye, and a poly-dimethylsiloxane (PDMS) shell rendering biocompatibility. Human intestinal epithelial Caco-2 cells were cultivated on a series of PDMS and type I collagen based substrates patterned with micro-well arrays for 3 or 7 days, and then brought into contact with oxygen sensing beads. Using an image analysis algorithm to convert florescence intensity of beads to partial oxygen pressure in the culture system, tens of microns-size oxygen sensing beads enabled the spatial measurement of local oxygen concentration in the microfabricated system. Results generally indicated lower oxygen level inside wells than on top of wells, and local oxygen level dependence on structural features of cell culture surfaces. Interestingly, chemical composition of cell culture substrates also appeared to affect oxygen level, with type-I collagen based cell culture systems having lower oxygen concentration compared to PDMS based cell culture systems. In general, results suggest that oxygen sensing beads can be utilized to achieve real-time and local monitoring of micro-environment oxygen level in 3D microfabricated cell culture systems.

  3. 3D micro profile measurement with the method of spatial frequency domain analysis

    NASA Astrophysics Data System (ADS)

    Xu, Yongxiang

    2015-10-01

    3D micro profiles are often needed for measurement in many fields, e.g., binary optics, electronic industry, mechanical manufacturing, aeronautic and space industry, etc. In the case where height difference between two neighboring points of a test profile is equal to or greater than λ / 4, microscopic interferometry based on laser source will no longer be applicable because of the uncertainty in phase unwrapping. As white light possesses the characteristic of interference length approximate to zero, applying it for micro profilometry can avoid the trouble and can yield accurate results. Using self-developed Mirau-type scanning interference microscope, a step-like sample was tested twice, with 128 scanning interferograms recorded for each test. To process each set of the interferograms, the method of spatial frequency domain analysis was adopted. That is, for each point, by use of Furrier transform, white-light interference intensities were decomposed in spatial frequency domain, thus obtaining phase values corresponding to different wavenumbers; by using least square fitting on phases and wave numbers, a group-velocity OPD was gained for the very point; and finally in terms of the relation between relative height and the group-velocity OPD, the profile of the test sample was obtained. Two tests yielded same profile result for the sample, and step heights obtained were 50.88 nm and 50.94 nm, respectively. Meantime, the sample was also measured with a Zygo Newview 7200 topography instrument, with same profile result obtained and step height differing by 0.9 nm. In addition, data processing results indicate that chromatic dispersion equal to and higher than 2nd order is negligible when applying spatial frequency domain analysis method.

  4. High-resolution 3D seismic investigation of giant seafloor craters in the Barents Sea

    NASA Astrophysics Data System (ADS)

    Waage, Malin; Bünz, Stefan; Andreassen, Karin

    2016-04-01

    Multiple giant craters exist on the seafloor in an area of ~ 100 km2 east of Bear Island Trough in the west-central Barents Sea. It has been hypothesized that these craters might have been caused by gas eruptions following the last deglaciation. Gas seepage from the seafloor occurs abundantly in this area. The crater area is still likely to represent one of the largest hot-spots for shallow marine methane release in the arctic. In summer 2015, we acquired high-resolution P-Cable 3D seismic data in this area covering several of the craters and their associated pingo structures. Due to the shallow and hard Triassic bedrock, penetration of the seismic signals is limited to approximately 450 ms bsf. The crater structures are up to 1 km wide and 40 m deep. Pingo structures occur on the rim of some of the craters and are up to 700 m wide and up to 15 m high above the surrounding seafloor. The 3D seismic data reveals faults, fracture networks and weakness zone that resemble pipes or similar vertical, focused fluid-flow structures in the Triassic sedimentary rocks below the craters. The principal orientation of the faults is in a ~ NW-SE direction that coincides with regional faulting from Permo-Triassic extension. The seismic data also show high-amplitude anomalies beneath some of representing shallow gas accumulations that might be the intermediate source of the gas seepage. This might suggest that craters are caused by high pressured gas that migrated from deeper petroleum systems and accumulated in the shallow Triassic rocks during the last glaciation. Previous work indicate that craters of similar size are likely a cause of enormous blow-outs of gas. Our study discusses the formation mechanisms and timing of these potential blow-out craters and whether they formed during the last deglaciation, when this area was likely quite unstable as severe glacial erosion caused localized high isostatic rebound rates here. We also investigate the role of gas hydrates that might

  5. High spatial resolution probes for neurobiology applications

    NASA Astrophysics Data System (ADS)

    Gunning, D. E.; Kenney, C. J.; Litke, A. M.; Mathieson, K.

    2009-06-01

    Position-sensitive biological neural networks, such as the brain and the retina, require position-sensitive detection methods to identify, map and study their behavior. Traditionally, planar microelectrodes have been employed to record the cell's electrical activity with device limitations arising from the electrode's 2-D nature. Described here is the development and characterization of an array of electrically conductive micro-needles aimed at addressing the limitations of planar electrodes. The capability of this array to penetrate neural tissue improves the electrode-cell electrical interface and allows more complicated 3-D networks of neurons, such as those found in brain slices, to be studied. State-of-the-art semiconductor fabrication techniques were used to etch and passivate conformally the metal coat and fill high aspect ratio holes in silicon. These are subsequently transformed into needles with conductive tips. This process has enabled the fabrication of arrays of unprecedented dimensions: 61 hexagonally close-packed electrodes, ˜200 μm tall with 60 μm spacing. Electroplating the tungsten tips with platinum ensure suitable impedance values (˜600 kΩ at 1 kHz) for the recording of neuronal signals. Without compromising spatial resolution of the neuronal recordings, this array adds a new and exciting dimension to the study of biological neural networks.

  6. Characterization of a sub-assembly of 3D position sensitive cadmium zinc telluride detectors and electronics from a sub-millimeter resolution PET system

    NASA Astrophysics Data System (ADS)

    Abbaszadeh, Shiva; Gu, Yi; Reynolds, Paul D.; Levin, Craig S.

    2016-09-01

    Cadmium zinc telluride (CZT) offers key advantages for small animal positron emission tomography (PET), including high spatial and energy resolution and simple metal deposition for fabrication of very small pixel arrays. Previous studies have investigated the intrinsic spatial, energy, and timing resolution of an individual sub-millimeter resolution CZT detector. In this work we present the first characterization results of a system of these detectors. The 3D position sensitive dual-CZT detector module and readout electronics developed in our lab was scaled up to complete a significant portion of the final PET system. This sub-system was configured as two opposing detection panels containing a total of twelve 40~\\text{mm}× 40~\\text{mm}× 5 mm monolithic CZT crystals for proof of concept. System-level characterization studies, including optimizing the trigger threshold of each channel’s comparators, were performed. 68Ge and 137Cs radioactive isotopes were used to characterize the energy resolution of all 468 anode channels in the sub-system. The mean measured global 511 keV photopeak energy resolution over all anodes was found to be 7.35+/- 1.75 % FWHM after correction for photon interaction depth-dependent signal variation. The measured global time resolution was 37 ns FWHM, a parameter to be further optimized, and the intrinsic spatial resolution was 0.76 mm FWHM.

  7. High Resolution 3-D Waveform Tomography of the Lithospheric Structure of the Hellenic Subduction Zone

    NASA Astrophysics Data System (ADS)

    Lamara, Samir; Friederich, Wolfgang; Schumacher, Florian; Meier, Thomas; Egelados Working Group

    2015-04-01

    We present a high-resolution lithospheric shear-wave velocity model of the Hellenic subduction zone obtained by full waveform tomography of the EGELADOS project data. This high quality data was collected with the broadband amphibian seismic network EGELADOS that was deployed all over the southern Aegean from October 2005 to April 2007 providing a sampling of the south Aegean lithosphere with a resolution never reached before. Because of the strong deformations in the Hellenic subduction zone and the linear approximation in solving the full waveform inverse problem, a special care was taken to guarantee the best possible accuracy of earthquakes parameters and initial reference models. The accurate locations of the selected earthquakes were hence re-estimated and the best moment tensors were selected by computing the misfits between the observed seismograms for one event and a set of synthetics calculated for every value of the fault angles (strike, dip and rake) and hypocenter depths. On the other hand, instead of using an average 1D reference model for the complete region, a 1D path-specific approach permitted to obtain the 1D initial model for each source-receiver pair by waveform fitting using a grid search varying the Moho depth and the average S-wave velocity in the crust. These models were then refined by a 1D inversion and used to calculate the sensitivity kernels for each source-receiver pair. For the inversion, we adopted a special formulation including a correction term which permits to use the path-specific sensitivity kernels in an inversion for 3D velocity perturbations relative to a single 1D reference model constructed from all these 1D initial models. The inversion was done in frequency domain with a frequency window ranging from 0.03 Hz to 0.1 Hz. For the selected 2695 paths the total number of data values reached 140140. The model was discretized in volume cells with a varying vertical width and a fixed lateral one of approximately 15 km, resulting

  8. “Taller and Shorter”: Human 3-D Spatial Memory Distorts Familiar Multilevel Buildings

    PubMed Central

    Brandt, Thomas; Huber, Markus; Schramm, Hannah; Kugler, Günter; Dieterich, Marianne; Glasauer, Stefan

    2015-01-01

    Animal experiments report contradictory findings on the presence of a behavioural and neuronal anisotropy exhibited in vertical and horizontal capabilities of spatial orientation and navigation. We performed a pointing experiment in humans on the imagined 3-D direction of the location of various invisible goals that were distributed horizontally and vertically in a familiar multilevel hospital building. The 21 participants were employees who had worked for years in this building. The hypothesis was that comparison of the experimentally determined directions and the true directions would reveal systematic inaccuracy or dimensional anisotropy of the localizations. The study provides first evidence that the internal representation of a familiar multilevel building was distorted compared to the dimensions of the true building: vertically 215% taller and horizontally 51% shorter. This was not only demonstrated in the mathematical reconstruction of the mental model based on the analysis of the pointing experiments but also by the participants’ drawings of the front view and the ground plan of the building. Thus, in the mental model both planes were altered in different directions: compressed for the horizontal floor plane and stretched for the vertical column plane. This could be related to human anisotropic behavioural performance of horizontal and vertical navigation in such buildings. PMID:26509927

  9. Fast Bayesian whole-brain fMRI analysis with spatial 3D priors.

    PubMed

    Sidén, Per; Eklund, Anders; Bolin, David; Villani, Mattias

    2017-02-01

    Spatial whole-brain Bayesian modeling of task-related functional magnetic resonance imaging (fMRI) is a great computational challenge. Most of the currently proposed methods therefore do inference in subregions of the brain separately or do approximate inference without comparison to the true posterior distribution. A popular such method, which is now the standard method for Bayesian single subject analysis in the SPM software, is introduced in Penny et al. (2005b). The method processes the data slice-by-slice and uses an approximate variational Bayes (VB) estimation algorithm that enforces posterior independence between activity coefficients in different voxels. We introduce a fast and practical Markov chain Monte Carlo (MCMC) scheme for exact inference in the same model, both slice-wise and for the whole brain using a 3D prior on activity coefficients. The algorithm exploits sparsity and uses modern techniques for efficient sampling from high-dimensional Gaussian distributions, leading to speed-ups without which MCMC would not be a practical option. Using MCMC, we are for the first time able to evaluate the approximate VB posterior against the exact MCMC posterior, and show that VB can lead to spurious activation. In addition, we develop an improved VB method that drops the assumption of independent voxels a posteriori. This algorithm is shown to be much faster than both MCMC and the original VB for large datasets, with negligible error compared to the MCMC posterior.

  10. Population-based 3D genome structure analysis reveals driving forces in spatial genome organization

    PubMed Central

    Li, Wenyuan; Kalhor, Reza; Dai, Chao; Hao, Shengli; Gong, Ke; Zhou, Yonggang; Li, Haochen; Zhou, Xianghong Jasmine; Le Gros, Mark A.; Larabell, Carolyn A.; Chen, Lin; Alber, Frank

    2016-01-01

    Conformation capture technologies (e.g., Hi-C) chart physical interactions between chromatin regions on a genome-wide scale. However, the structural variability of the genome between cells poses a great challenge to interpreting ensemble-averaged Hi-C data, particularly for long-range and interchromosomal interactions. Here, we present a probabilistic approach for deconvoluting Hi-C data into a model population of distinct diploid 3D genome structures, which facilitates the detection of chromatin interactions likely to co-occur in individual cells. Our approach incorporates the stochastic nature of chromosome conformations and allows a detailed analysis of alternative chromatin structure states. For example, we predict and experimentally confirm the presence of large centromere clusters with distinct chromosome compositions varying between individual cells. The stability of these clusters varies greatly with their chromosome identities. We show that these chromosome-specific clusters can play a key role in the overall chromosome positioning in the nucleus and stabilizing specific chromatin interactions. By explicitly considering genome structural variability, our population-based method provides an important tool for revealing novel insights into the key factors shaping the spatial genome organization. PMID:26951677

  11. The impact of stereo 3D sports TV broadcasts on user's depth perception and spatial presence experience

    NASA Astrophysics Data System (ADS)

    Weigelt, K.; Wiemeyer, J.

    2014-03-01

    This work examines the impact of content and presentation parameters in 2D versus 3D on depth perception and spatial presence, and provides guidelines for stereoscopic content development for 3D sports TV broadcasts and cognate subjects. Under consideration of depth perception and spatial presence experience, a preliminary study with 8 participants (sports: soccer and boxing) and a main study with 31 participants (sports: soccer and BMX-Miniramp) were performed. The dimension (2D vs. 3D) and camera position (near vs. far) were manipulated for soccer and boxing. In addition for soccer, the field of view (small vs. large) was examined. Moreover, the direction of motion (horizontal vs. depth) was considered for BMX-Miniramp. Subjective assessments, behavioural tests and qualitative interviews were implemented. The results confirm a strong effect of 3D on both depth perception and spatial presence experience as well as selective influences of camera distance and field of view. The results can improve understanding of the perception and experience of 3D TV as a medium. Finally, recommendations are derived on how to use various 3D sports ideally as content for TV broadcasts.

  12. High-resolution 3-D imaging of surface damage sites in fused silica with Optical Coherence Tomography

    SciTech Connect

    Guss, G; Bass, I; Hackel, R; Mailhiot, C; Demos, S G

    2007-10-30

    In this work, we present the first successful demonstration of a non-contact technique to precisely measure the 3D spatial characteristics of laser induced surface damage sites in fused silica for large aperture laser systems by employing Optical Coherence Tomography (OCT). What makes OCT particularly interesting in the characterization of optical materials for large aperture laser systems is that its axial resolution can be maintained with working distances greater than 5 cm, whether viewing through air or through the bulk of thick optics. Specifically, when mitigating surface damage sites against further growth by CO{sub 2} laser evaporation of the damage, it is important to know the depth of subsurface cracks below the damage site. These cracks are typically obscured by the damage rubble when imaged from above the surface. The results to date clearly demonstrate that OCT is a unique and valuable tool for characterizing damage sites before and after the mitigation process. We also demonstrated its utility as an in-situ diagnostic to guide and optimize our process when mitigating surface damage sites on large, high-value optics.

  13. Spatial 3D infrastructure: display-independent software framework, high-speed rendering electronics, and several new displays

    NASA Astrophysics Data System (ADS)

    Chun, Won-Suk; Napoli, Joshua; Cossairt, Oliver S.; Dorval, Rick K.; Hall, Deirdre M.; Purtell, Thomas J., II; Schooler, James F.; Banker, Yigal; Favalora, Gregg E.

    2005-03-01

    We present a software and hardware foundation to enable the rapid adoption of 3-D displays. Different 3-D displays - such as multiplanar, multiview, and electroholographic displays - naturally require different rendering methods. The adoption of these displays in the marketplace will be accelerated by a common software framework. The authors designed the SpatialGL API, a new rendering framework that unifies these display methods under one interface. SpatialGL enables complementary visualization assets to coexist through a uniform infrastructure. Also, SpatialGL supports legacy interfaces such as the OpenGL API. The authors" first implementation of SpatialGL uses multiview and multislice rendering algorithms to exploit the performance of modern graphics processing units (GPUs) to enable real-time visualization of 3-D graphics from medical imaging, oil & gas exploration, and homeland security. At the time of writing, SpatialGL runs on COTS workstations (both Windows and Linux) and on Actuality"s high-performance embedded computational engine that couples an NVIDIA GeForce 6800 Ultra GPU, an AMD Athlon 64 processor, and a proprietary, high-speed, programmable volumetric frame buffer that interfaces to a 1024 x 768 x 3 digital projector. Progress is illustrated using an off-the-shelf multiview display, Actuality"s multiplanar Perspecta Spatial 3D System, and an experimental multiview display. The experimental display is a quasi-holographic view-sequential system that generates aerial imagery measuring 30 mm x 25 mm x 25 mm, providing 198 horizontal views.

  14. Full Spatial Resolution Infrared Sounding Application in the Preconvection Environment

    NASA Astrophysics Data System (ADS)

    Liu, C.; Liu, G.; Lin, T.

    2013-12-01

    Advanced infrared (IR) sounders such as the Atmospheric Infrared Sounder (AIRS) and Infrared Atmospheric Sounding Interferometer (IASI) provide atmospheric temperature and moisture profiles with high vertical resolution and high accuracy in preconvection environments. The derived atmospheric stability indices such as convective available potential energy (CAPE) and lifted index (LI) from advanced IR soundings can provide critical information 1 ; 6 h before the development of severe convective storms. Three convective storms are selected for the evaluation of applying AIRS full spatial resolution soundings and the derived products on providing warning information in the preconvection environments. In the first case, the AIRS full spatial resolution soundings revealed local extremely high atmospheric instability 3 h ahead of the convection on the leading edge of a frontal system, while the second case demonstrates that the extremely high atmospheric instability is associated with the local development of severe thunderstorm in the following hours. The third case is a local severe storm that occurred on 7-8 August 2010 in Zhou Qu, China, which caused more than 1400 deaths and left another 300 or more people missing. The AIRS full spatial resolution LI product shows the atmospheric instability 3.5 h before the storm genesis. The CAPE and LI from AIRS full spatial resolution and operational AIRS/AMSU soundings along with Geostationary Operational Environmental Satellite (GOES) Sounder derived product image (DPI) products were analyzed and compared. Case studies show that full spatial resolution AIRS retrievals provide more useful warning information in the preconvection environments for determining favorable locations for convective initiation (CI) than do the coarser spatial resolution operational soundings and lower spectral resolution GOES Sounder retrievals. The retrieved soundings are also tested in a regional data assimilation WRF 3D-var system to evaluate the

  15. Assessment of averaging spatially correlated noise for 3-D radial imaging.

    PubMed

    Stobbe, Robert W; Beaulieu, Christian

    2011-07-01

    Any measurement of signal intensity obtained from an image will be corrupted by noise. If the measurement is from one voxel, an error bound associated with noise can be assigned if the standard deviation of noise in the image is known. If voxels are averaged together within a region of interest (ROI) and the image noise is uncorrelated, the error bound associated with noise will be reduced in proportion to the square root of the number of voxels in the ROI. However, when 3-D-radial images are created the image noise will be spatially correlated. In this paper, an equation is derived and verified with simulated noise for the computation of noise averaging when image noise is correlated, facilitating the assessment of noise characteristics for different 3-D-radial imaging methodologies. It is already known that if the radial evolution of projections are altered such that constant sampling density is produced in k-space, the signal-to-noise ratio (SNR) inefficiency of standard radial imaging (SR) can effectively be eliminated (assuming a uniform transfer function is desired). However, it is shown in this paper that the low-frequency noise power reduction of SR will produce beneficial (anti-) correlation of noise and enhanced noise averaging characteristics. If an ROI contains only one voxel a radial evolution altered uniform k-space sampling technique such as twisted projection imaging (TPI) will produce an error bound ~35% less with respect to noise than SR, however, for an ROI containing 16 voxels the SR methodology will facilitate an error bound ~20% less than TPI. If a filtering transfer function is desired, it is shown that designing sampling density to create the filter shape has both SNR and noise correlation advantages over sampling k-space uniformly. In this context SR is also beneficial. Two sets of 48 images produced from a saline phantom with sodium MRI at 4.7T are used to experimentally measure noise averaging characteristics of radial imaging and good

  16. A 3D analysis of spatial relationship between geological structure and groundwater profile around Kobe City, Japan: based on ARCGIS 3D Analyst.

    NASA Astrophysics Data System (ADS)

    Shibahara, A.; Tsukamoto, H.; Kazahaya, K.; Morikawa, N.; Takahashi, M.; Takahashi, H.; Yasuhara, M.; Ohwada, M.; Oyama, Y.; Inamura, A.; Handa, H.; Nakama, J.

    2008-12-01

    Kobe city is located on the northern side of Osaka sedimentary basin, Japan, containing 1,000-2,000 m thick Quaternary sediments. After the Hanshin-Awaji Earthquake (January 17, 1995), a number of geological and geophysical surveys were conducted in this region. Then high-temperature anomaly of groundwater accompanied with high Cl concentration was detected along fault systems in this area. In addition, dissolved He in groundwater showed nearly upper mantle-like 3He/4He ratio, although there were no Quaternary volcanic activities in this region. Some recent studies have assumed that these groundwater profiles are related with geological structure because some faults and joints can function as pathways for groundwater flow, and mantle-derived water can upwell through the fault system to the ground surface. To verify these hypotheses, we established 3D geological and hydrological model around Osaka sedimentary basin. Our primary goal is to analyze spatial relationship between geological structure and groundwater profile. In the study region, a number of geological and hydrological datasets, such as boring log data, seismic profiling data, groundwater chemical profile, were reported. We converted these datasets to meshed data on the GIS, and plotted in the three dimensional space to visualize spatial distribution. Furthermore, we projected seismic profiling data into three dimensional space and calculated distance between faults and sampling points, using Visual Basic for Applications (VBA) scripts. All 3D models are converted into VRML format, and can be used as a versatile dataset on personal computer. This research project has been conducted under the research contract with the Japan Nuclear Energy Safety Organization (JNES).

  17. Usefulness of high-resolution 3D multifusion medical imaging for preoperative planning in patients with posterior fossa hemangioblastoma: technical note.

    PubMed

    Yoshino, Masanori; Nakatomi, Hirofumi; Kin, Taichi; Saito, Toki; Shono, Naoyuki; Nomura, Seiji; Nakagawa, Daichi; Takayanagi, Shunsaku; Imai, Hideaki; Oyama, Hiroshi; Saito, Nobuhito

    2016-08-26

    Successful resection of hemangioblastoma depends on preoperative assessment of the precise locations of feeding arteries and draining veins. Simultaneous 3D visualization of feeding arteries, draining veins, and surrounding structures is needed. The present study evaluated the usefulness of high-resolution 3D multifusion medical imaging (hr-3DMMI) for preoperative planning of hemangioblastoma. The hr-3DMMI combined MRI, MR angiography, thin-slice CT, and 3D rotated angiography. Surface rendering was mainly used for the creation of hr-3DMMI using multiple thresholds to create 3D models, and processing took approximately 3-5 hours. This hr-3DMMI technique was used in 5 patients for preoperative planning and the imaging findings were compared with the operative findings. Hr-3DMMI could simulate the whole 3D tumor as a unique sphere and show the precise penetration points of both feeding arteries and draining veins with the same spatial relationships as the original tumor. All feeding arteries and draining veins were found intraoperatively at the same position as estimated preoperatively, and were occluded as planned preoperatively. This hr-3DMMI technique could demonstrate the precise locations of feeding arteries and draining veins preoperatively and estimate the appropriate route for resection of the tumor. Hr-3DMMI is expected to be a very useful support tool for surgery of hemangioblastoma.

  18. 3D printing of high-resolution PLA-based structures by hybrid electrohydrodynamic and fused deposition modeling techniques

    NASA Astrophysics Data System (ADS)

    Zhang, Bin; Seong, Baekhoon; Nguyen, VuDat; Byun, Doyoung

    2016-02-01

    Recently, the three-dimensional (3D) printing technique has received much attention for shape forming and manufacturing. The fused deposition modeling (FDM) printer is one of the various 3D printers available and has become widely used due to its simplicity, low-cost, and easy operation. However, the FDM technique has a limitation whereby its patterning resolution is too low at around 200 μm. In this paper, we first present a hybrid mechanism of electrohydrodynamic jet printing with the FDM technique, which we name E-FDM. We then develop a novel high-resolution 3D printer based on the E-FDM process. To determine the optimal condition for structuring, we also investigated the effect of several printing parameters, such as temperature, applied voltage, working height, printing speed, flow-rate, and acceleration on the patterning results. This method was capable of fabricating both high resolution 2D and 3D structures with the use of polylactic acid (PLA). PLA has been used to fabricate scaffold structures for tissue engineering, which has different hierarchical structure sizes. The fabrication speed was up to 40 mm/s and the pattern resolution could be improved to 10 μm.

  19. SPATIAL AND SPECTRAL RESOLUTION IN GEOBOTANY.

    USGS Publications Warehouse

    Milton, Nancy M.; Mouat, D.A.

    1984-01-01

    Remotely sensed data are now available from a wide variety of instruments, each data set having a particular spectral and spatial resolution. The changes in vegetation associated with changes in lithology or the presence of mineral deposits can also occur at different scales. The task of geobotanical remote sensing is to choose or adapt the remotely sensed data to the appropriate geobotanical technique to solve the geological problem of interest. Examples are given of a number of applications of data sets of different spectral and spatial resolution. The relative importance of spectral and spatial resolution is discussed.

  20. Fundamental Limits of Spatial Resolution in PET

    PubMed Central

    Moses, William W.

    2010-01-01

    The fundamental limits of spatial resolution in positron emission tomography (PET) have been understood for many years. The physical size of the detector element usually plays the dominant role in determining resolution, but the combined contributions from acollinearity, positron range, penetration into the detector ring, and decoding errors in the detector modules often combine to be of similar size. In addition, the sampling geometry and statistical noise further degrade the effective resolution. This paper describes quantitatively describes these effects, discusses potential methods for reducing the magnitude of these effects, and computes the ultimately achievable spatial resolution for clinical and pre-clinical PET cameras. PMID:21804677

  1. Adaptive multi-resolution 3D Hartree-Fock-Bogoliubov solver for nuclear structure

    NASA Astrophysics Data System (ADS)

    Pei, J. C.; Fann, G. I.; Harrison, R. J.; Nazarewicz, W.; Shi, Yue; Thornton, S.

    2014-08-01

    Background: Complex many-body systems, such as triaxial and reflection-asymmetric nuclei, weakly bound halo states, cluster configurations, nuclear fragments produced in heavy-ion fusion reactions, cold Fermi gases, and pasta phases in neutron star crust, are all characterized by large sizes and complex topologies in which many geometrical symmetries characteristic of ground-state configurations are broken. A tool of choice to study such complex forms of matter is an adaptive multi-resolution wavelet analysis. This method has generated much excitement since it provides a common framework linking many diversified methodologies across different fields, including signal processing, data compression, harmonic analysis and operator theory, fractals, and quantum field theory. Purpose: To describe complex superfluid many-fermion systems, we introduce an adaptive pseudospectral method for solving self-consistent equations of nuclear density functional theory in three dimensions, without symmetry restrictions. Methods: The numerical method is based on the multi-resolution and computational harmonic analysis techniques with a multi-wavelet basis. The application of state-of-the-art parallel programming techniques include sophisticated object-oriented templates which parse the high-level code into distributed parallel tasks with a multi-thread task queue scheduler for each multi-core node. The internode communications are asynchronous. The algorithm is variational and is capable of solving coupled complex-geometric systems of equations adaptively, with functional and boundary constraints, in a finite spatial domain of very large size, limited by existing parallel computer memory. For smooth functions, user-defined finite precision is guaranteed. Results: The new adaptive multi-resolution Hartree-Fock-Bogoliubov (HFB) solver madness-hfb is benchmarked against a two-dimensional coordinate-space solver hfb-ax that is based on the B-spline technique and a three-dimensional solver

  2. MTF characterization in 2D and 3D for a high resolution, large field of view flat panel imager for cone beam CT

    NASA Astrophysics Data System (ADS)

    Shah, Jainil; Mann, Steve D.; Tornai, Martin P.; Richmond, Michelle; Zentai, George

    2014-03-01

    The 2D and 3D modulation transfer functions (MTFs) of a custom made, large 40x30cm2 area, 600- micron CsI-TFT based flat panel imager having 127-micron pixellation, along with the micro-fiber scintillator structure, were characterized in detail using various techniques. The larger area detector yields a reconstructed FOV of 25cm diameter with an 80cm SID in CT mode. The MTFs were determined with 1x1 (intrinsic) binning. The 2D MTFs were determined using a 50.8 micron tungsten wire and a solid lead edge, and the 3D MTF was measured using a custom made phantom consisting of three nearly orthogonal 50.8 micron tungsten wires suspended in an acrylic cubic frame. The 2D projection data was reconstructed using an iterative OSC algorithm using 16 subsets and 5 iterations. As additional verification of the resolution, along with scatter, the Catphan® phantom was also imaged and reconstructed with identical parameters. The measured 2D MTF was ~4% using the wire technique and ~1% using the edge technique at the 3.94 lp/mm Nyquist cut-off frequency. The average 3D MTF measured along the wires was ~8% at the Nyquist. At 50% MTF, the resolutions were 1.2 and 2.1 lp/mm in 2D and 3D, respectively. In the Catphan® phantom, the 1.7 lp/mm bars were easily observed. Lastly, the 3D MTF measured on the three wires has an observed 5.9% RMSD, indicating that the resolution of the imaging system is uniform and spatially independent. This high performance detector is integrated into a dedicated breast SPECT-CT imaging system.

  3. Automated detection, 3D segmentation and analysis of high resolution spine MR images using statistical shape models

    NASA Astrophysics Data System (ADS)

    Neubert, A.; Fripp, J.; Engstrom, C.; Schwarz, R.; Lauer, L.; Salvado, O.; Crozier, S.

    2012-12-01

    Recent advances in high resolution magnetic resonance (MR) imaging of the spine provide a basis for the automated assessment of intervertebral disc (IVD) and vertebral body (VB) anatomy. High resolution three-dimensional (3D) morphological information contained in these images may be useful for early detection and monitoring of common spine disorders, such as disc degeneration. This work proposes an automated approach to extract the 3D segmentations of lumbar and thoracic IVDs and VBs from MR images using statistical shape analysis and registration of grey level intensity profiles. The algorithm was validated on a dataset of volumetric scans of the thoracolumbar spine of asymptomatic volunteers obtained on a 3T scanner using the relatively new 3D T2-weighted SPACE pulse sequence. Manual segmentations and expert radiological findings of early signs of disc degeneration were used in the validation. There was good agreement between manual and automated segmentation of the IVD and VB volumes with the mean Dice scores of 0.89 ± 0.04 and 0.91 ± 0.02 and mean absolute surface distances of 0.55 ± 0.18 mm and 0.67 ± 0.17 mm respectively. The method compares favourably to existing 3D MR segmentation techniques for VBs. This is the first time IVDs have been automatically segmented from 3D volumetric scans and shape parameters obtained were used in preliminary analyses to accurately classify (100% sensitivity, 98.3% specificity) disc abnormalities associated with early degenerative changes.

  4. Improving the Resolution of 3D-Printed Molds for Microfluidics by Iterative Casting-Shrinkage Cycles.

    PubMed

    Sun, Miao; Xie, Yanbo; Zhu, Jihong; Li, Jun; Eijkel, Jan C T

    2017-02-21

    Breaking through technical barriers and cost reduction are critical issues for the development of microfluidic devices, and both rely greatly on the innovation of fabrication techniques and use of new materials. The application of 3D printing definitely accelerated the prototyping of microfluidic chips by its versatility and functionality. However, the resolution of existing 3D printing techniques is still far below that of lithography, which makes it difficult to work on the scale of single cells and near impossible for single molecule work. In this paper, we present a facile way to increase the resolution of 3D printed microstructures to minimally 4 μm by casting-shrinkage cycles of a polyurethane (PU) polymer. A water-PU liquid mixture poured on a 3D printed template quickly solidifies replicating the structures, which then isometrically shrink to half its size after solvent evaporation, downscaling the replicated structures. By repeating the casting-shrinkage cycles, we could downscale the (sub)millimeter structures of 3D printed structures on demand, until the working limit posed by the polymer properties, which we demonstrate by fabricating a micromixer. Moreover, we can even fabricate microfluidic chips from millimeter-scale manually assembled templates, fully independent of any micromachining facilities, significantly reducing the technical barriers and costs, thus opening up the microfluidics field to low-resource areas.

  5. Laser jetting of femto-liter metal droplets for high resolution 3D printed structures

    PubMed Central

    Zenou, M.; Sa’ar, A.; Kotler, Z.

    2015-01-01

    Laser induced forward transfer (LIFT) is employed in a special, high accuracy jetting regime, by adequately matching the sub-nanosecond pulse duration to the metal donor layer thickness. Under such conditions, an effective solid nozzle is formed, providing stability and directionality to the femto-liter droplets which are printed from a large gap in excess of 400 μm. We illustrate the wide applicability of this method by printing several 3D metal objects. First, very high aspect ratio (A/R > 20), micron scale, copper pillars in various configuration, upright and arbitrarily bent, then a micron scale 3D object composed of gold and copper. Such a digital printing method could serve the generation of complex, multi-material, micron-scale, 3D materials and novel structures. PMID:26602432

  6. Designing Spatial Visualisation Tasks for Middle School Students with a 3D Modelling Software: An Instrumental Approach

    ERIC Educational Resources Information Center

    Turgut, Melih; Uygan, Candas

    2015-01-01

    In this work, certain task designs to enhance middle school students' spatial visualisation ability, in the context of an instrumental approach, have been developed. 3D modelling software, SketchUp®, was used. In the design process, software tools were focused on and, thereafter, the aim was to interpret the instrumental genesis and spatial…

  7. 3D Simulation Technology as an Effective Instructional Tool for Enhancing Spatial Visualization Skills in Apparel Design

    ERIC Educational Resources Information Center

    Park, Juyeon; Kim, Dong-Eun; Sohn, MyungHee

    2011-01-01

    The purpose of this study is to explore the effectiveness of 3D simulation technology for enhancing spatial visualization skills in apparel design education and further to suggest an innovative teaching approach using the technology. Apparel design majors in an introductory patternmaking course, at a large Midwestern University in the United…

  8. Final report: high resolution lensless 3D imaging of nanostructures with coherent x-rays

    SciTech Connect

    Jacobsen, Chris

    2011-04-14

    This project helped pioneer the core capabilities of coherent diffraction imaging (CDI) using X rays at synchrotron light source facilities. We developed an apparatus that was used for CDI at the Advanced Light Source, and applied it to 2D and 3D imaging of nanostructures. We also explored a number of conceptual and computational issues on the reconstruction of CDI data.

  9. Fast high-resolution 3D total internal reflection fluorescence microscopy by incidence angle scanning and azimuthal averaging

    PubMed Central

    Boulanger, Jérôme; Gueudry, Charles; Münch, Daniel; Cinquin, Bertrand; Paul-Gilloteaux, Perrine; Bardin, Sabine; Guérin, Christophe; Senger, Fabrice; Blanchoin, Laurent; Salamero, Jean

    2014-01-01

    Total internal reflection fluorescence microscopy (TIRFM) is the method of choice to visualize a variety of cellular processes in particular events localized near the plasma membrane of live adherent cells. This imaging technique not relying on particular fluorescent probes provides a high sectioning capability. It is, however, restricted to a single plane. We present here a method based on a versatile design enabling fast multiwavelength azimuthal averaging and incidence angles scanning to computationally reconstruct 3D images sequences. We achieve unprecedented 50-nm axial resolution over a range of 800 nm above the coverslip. We apply this imaging modality to obtain structural and dynamical information about 3D actin architectures. We also temporally decipher distinct Rab11a-dependent exocytosis events in 3D at a rate of seven stacks per second. PMID:25404337

  10. Fast high-resolution 3D total internal reflection fluorescence microscopy by incidence angle scanning and azimuthal averaging.

    PubMed

    Boulanger, Jérôme; Gueudry, Charles; Münch, Daniel; Cinquin, Bertrand; Paul-Gilloteaux, Perrine; Bardin, Sabine; Guérin, Christophe; Senger, Fabrice; Blanchoin, Laurent; Salamero, Jean

    2014-12-02

    Total internal reflection fluorescence microscopy (TIRFM) is the method of choice to visualize a variety of cellular processes in particular events localized near the plasma membrane of live adherent cells. This imaging technique not relying on particular fluorescent probes provides a high sectioning capability. It is, however, restricted to a single plane. We present here a method based on a versatile design enabling fast multiwavelength azimuthal averaging and incidence angles scanning to computationally reconstruct 3D images sequences. We achieve unprecedented 50-nm axial resolution over a range of 800 nm above the coverslip. We apply this imaging modality to obtain structural and dynamical information about 3D actin architectures. We also temporally decipher distinct Rab11a-dependent exocytosis events in 3D at a rate of seven stacks per second.

  11. A hybrid 3D spatial access method based on quadtrees and R-trees for globe data

    NASA Astrophysics Data System (ADS)

    Gong, Jun; Ke, Shengnan; Li, Xiaomin; Qi, Shuhua

    2009-10-01

    3D spatial access method for globe data is very crucial technique for virtual earth. This paper presents a brand-new maintenance method to index 3d objects distributed on the whole surface of the earth, which integrates the 1:1,000,000- scale topographic map tiles, Quad-tree and R-tree. Furthermore, when traditional methods are extended into 3d space, the performance of spatial index deteriorates badly, for example 3D R-tree. In order to effectively solve this difficult problem, a new algorithm of dynamic R-tree is put forward, which includes two sub-procedures, namely node-choosing and node-split. In the node-choosing algorithm, a new strategy is adopted, not like the traditional mode which is from top to bottom, but firstly from bottom to top then from top to bottom. This strategy can effectively solve the negative influence of node overlap. In the node-split algorithm, 2-to-3 split mode substitutes the traditional 1-to-2 mode, which can better concern the shape and size of nodes. Because of the rational tree shape, this R-tree method can easily integrate the concept of LOD. Therefore, it will be later implemented in commercial DBMS and adopted in time-crucial 3d GIS system.

  12. Optical coherence tomography for ultrahigh-resolution 3D imaging of cell development and real-time guiding for photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Wang, Tianshi; Zhen, Jinggao; Wang, Bo; Xue, Ping

    2009-11-01

    Optical coherence tomography is a new emerging technique for cross-sectional imaging with high spatial resolution of micrometer scale. It enables in vivo and non-invasive imaging with no need to contact the sample and is widely used in biological and clinic application. In this paper optical coherence tomography is demonstrated for both biological and clinic applications. For biological application, a white-light interference microscope is developed for ultrahigh-resolution full-field optical coherence tomography (full-field OCT) to implement 3D imaging of biological tissue. Spatial resolution of 0.9μm×1.1μm (transverse×axial) is achieved A system sensitivity of 85 dB is obtained at an acquisition time of 5s per image. The development of a mouse embryo is studied layer by layer with our ultrahigh-resolution full-filed OCT. For clinic application, a handheld optical coherence tomography system is designed for real-time and in situ imaging of the port wine stains (PWS) patient and supplying surgery guidance for photodynamic therapy (PDT) treatment. The light source with center wavelength of 1310nm, -3 dB wavelength range of 90 nm and optical power of 9mw is utilized. Lateral resolution of 8 μm and axial resolution of 7μm at a rate of 2 frames per second and with 102dB sensitivity are achieved in biological tissue. It is shown that OCT images distinguish very well the normal and PWS tissues in clinic and are good to serve as a valuable diagnosis tool for PDT treatment.

  13. Parameter Estimation of Fossil Oysters from High Resolution 3D Point Cloud and Image Data

    NASA Astrophysics Data System (ADS)

    Djuricic, Ana; Harzhauser, Mathias; Dorninger, Peter; Nothegger, Clemens; Mandic, Oleg; Székely, Balázs; Molnár, Gábor; Pfeifer, Norbert

    2014-05-01

    A unique fossil oyster reef was excavated at Stetten in Lower Austria, which is also the highlight of the geo-edutainment park 'Fossilienwelt Weinviertel'. It provides the rare opportunity to study the Early Miocene flora and fauna of the Central Paratethys Sea. The site presents the world's largest fossil oyster biostrome formed about 16.5 million years ago in a tropical estuary of the Korneuburg Basin. About 15,000 up to 80-cm-long shells of Crassostrea gryphoides cover a 400 m2 large area. Our project 'Smart-Geology for the World's largest fossil oyster reef' combines methods of photogrammetry, geology and paleontology to document, evaluate and quantify the shell bed. This interdisciplinary approach will be applied to test hypotheses on the genesis of the taphocenosis (e.g.: tsunami versus major storm) and to reconstruct pre- and post-event processes. Hence, we are focusing on using visualization technologies from photogrammetry in geology and paleontology in order to develop new methods for automatic and objective evaluation of 3D point clouds. These will be studied on the basis of a very dense surface reconstruction of the oyster reef. 'Smart Geology', as extension of the classic discipline, exploits massive data, automatic interpretation, and visualization. Photogrammetry provides the tools for surface acquisition and objective, automated interpretation. We also want to stress the economic aspect of using automatic shape detection in paleontology, which saves manpower and increases efficiency during the monitoring and evaluation process. Currently, there are many well known algorithms for 3D shape detection of certain objects. We are using dense 3D laser scanning data from an instrument utilizing the phase shift measuring principle, which provides accurate geometrical basis < 3 mm. However, the situation is difficult in this multiple object scenario where more than 15,000 complete or fragmentary parts of an object with random orientation are found. The goal

  14. High-resolution acoustic imaging at low frequencies using 3D-printed metamaterials

    NASA Astrophysics Data System (ADS)

    Laureti, S.; Hutchins, D. A.; Davis, L. A. J.; Leigh, S. J.; Ricci, M.

    2016-12-01

    An acoustic metamaterial has been constructed using 3D printing. It contained an array of air-filled channels, whose size and shape could be varied within the design and manufacture process. In this paper we analyze both numerically and experimentally the properties of this polymer metamaterial structure, and demonstrate its use for the imaging of a sample with sub-wavelength dimensions in the audible frequency range.

  15. First steps toward 3D high resolution imaging using adaptive optics and full-field optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Blanco, Leonardo; Blavier, Marie; Glanc, Marie; Pouplard, Florence; Tick, Sarah; Maksimovic, Ivan; Chenegros, Guillaume; Mugnier, Laurent; Lacombe, Francois; Rousset, Gérard; Paques, Michel; Le Gargasson, Jean-François; Sahel, Jose-Alain

    2008-09-01

    We describe here two parts of our future 3D fundus camera coupling Adaptive Optics and full-field Optical Coherence Tomography. The first part is an Adaptive Optics flood imager installed at the Quinze-Vingts Hospital, regularly used on healthy and pathological eyes. A posteriori image reconstruction is performed, increasing the final image quality and field of view. The instrument lateral resolution is better than 2 microns. The second part is a full-field Optical Coherence Tomograph, which has demonstrated capability of performing a simple kind of "4 phases" image reconstruction of non biological samples and ex situ retinas. Final aim is to couple both parts in order to achieve 3D high resolution mapping of in vivo retinas.

  16. Annual to sub-annual 3D surface evolution of an Antarctic blue-ice moraine using multi-platform, multi-temporal high resolution topography

    NASA Astrophysics Data System (ADS)

    Westoby, Matthew; Dunning, Stuart; Woodward, John; Hein, Andrew; Marrero, Shasta; Winter, Kate; Sugden, David

    2016-04-01

    High-resolution topographic data products are now routinely used for the geomorphological characterisation of Earth surface landforms and landscapes, whilst the acquisition and differencing of such datasets are swiftly becoming the preferred method for quantifying the transfer of mass through landscapes at the spatial scales of observation at which many processes operate. In this research, we employ 3-D differencing of repeat high-resolution topography to quantify the surface evolution of a 0.3 km2 blue-ice moraine complex in front of Patriot Hills, Antarctica. We used terrestrial laser scanning (TLS) to acquire multiple overlapping 3D datasets of the moraine surface at the beginning and end of the austral summer season in 2012/2013 and during a resurvey campaign in 2014. An additional topographic dataset was acquired at the end of season 1 through the application of a Structure-from-Motion with Multi-View Stereo (SfM-MVS) workflow to a set of aerial photographs acquired during a single unmanned aerial vehicle (UAV) sortie. 3D cloud-to-cloud differencing was undertaken using the M3C2 algorithm. The results of 3D differencing revealed net uplift (median ~0.05 m) and lateral (xy) movement (median 0.02 m) of the moraine crests within season 1. Analysis of results from the longest differencing epoch (start of season 1 to season 2) suggests gradual but persistent surface uplift (median ~0.11 m) and sustained lateral movement (median ~0.05 m). Locally, lowering of a similar magnitude to uplift was observed in inter-moraine troughs and close to the current ice margin. This research demonstrates that it is possible to detect dynamic surface topographic change across glacial moraines over short timescales through the acquisition and differencing of high-resolution topographic datasets. Such data and methods of analysis offer new opportunities to understand glaciological and geomorphological process linkages in remote glacial environments.

  17. Does spatial variation in environmental conditions affect recruitment? A study using a 3-D model of Peruvian anchovy

    NASA Astrophysics Data System (ADS)

    Xu, Yi; Rose, Kenneth A.; Chai, Fei; Chavez, Francisco P.; Ayón, Patricia

    2015-11-01

    We used a 3-dimensional individual-based model (3-D IBM) of Peruvian anchovy to examine how spatial variation in environmental conditions affects larval and juvenile growth and survival, and recruitment. Temperature, velocity, and phytoplankton and zooplankton concentrations generated from a coupled hydrodynamic Nutrients-Phytoplankton-Zooplankton-Detritus (NPZD) model, mapped to a three dimensional rectangular grid, were used to simulate anchovy populations. The IBM simulated individuals as they progressed from eggs to recruitment at 10 cm. Eggs and yolk-sac larvae were followed hourly through the processes of development, mortality, and movement (advection), and larvae and juveniles were followed daily through the processes of growth, mortality, and movement (advection plus behavior). A bioenergetics model was used to grow larvae and juveniles. The NPZD model provided prey fields which influence both food consumption rate as well as behavior mediated movement with individuals going to grids cells having optimal growth conditions. We compared predicted recruitment for monthly cohorts for 1990 through 2004 between the full 3-D IBM and a point (0-D) model that used spatially-averaged environmental conditions. The 3-D and 0-D versions generated similar interannual patterns in monthly recruitment for 1991-2004, with the 3-D results yielding consistently higher survivorship. Both versions successfully captured the very poor recruitment during the 1997-1998 El Niño event. Higher recruitment in the 3-D simulations was due to higher survival during the larval stage resulting from individuals searching for more favorable temperatures that lead to faster growth rates. The strong effect of temperature was because both model versions provided saturating food conditions for larval and juvenile anchovies. We conclude with a discussion of how explicit treatment of spatial variation affected simulated recruitment, other examples of fisheries modeling analyses that have used a

  18. Prototype Development Capabilities of 3D Spatial Interactions and Failures During Scenario Simulation

    SciTech Connect

    Steven Prescott; Ramprasad Sampath; Curtis Smith; Tony Koonce

    2014-09-01

    Computers have been used for 3D modeling and simulation, but only recently have computational resources been able to give realistic results in a reasonable time frame for large complex models. This report addressed the methods, techniques, and resources used to develop a prototype for using 3D modeling and simulation engine to improve risk analysis and evaluate reactor structures and components for a given scenario. The simulations done for this evaluation were focused on external events, specifically tsunami floods, for a hypothetical nuclear power facility on a coastline.

  19. 3-D Visualisation: Using Internet-based Activities to Enhance Student Understanding of 3-dimensional Spatial Relationships

    NASA Astrophysics Data System (ADS)

    Boyle, A. P.; Williams, M.; Williams, P.

    2011-12-01

    Spatial ability forms its own category separate from verbal ability. Various spatial abilities have been identified over the last three decades and classified into three types: mental rotation, spatial rotation and spatial visualization, which have been linked to high performance in STEM subjects. Geoscience demands spatial thinking from learners and practitioners, and spatial literacy has been seen as a fundamental skill in Geography, Earth & Environmental Sciences (GEES disciplines) essential for progression. First year GEES students not only have to cope with new learning and teaching environments (Maguire et al., 2008), but, arriving with different science backgrounds, are faced with the challenge of developing essential skills that may be novel for them. These essential skills are subject-specific, as well as transferable, and require an understanding of 3-dimensional spatial relationships. However, spatial skills can be troublesome for some students to master. Not only do many students find difficulty in acquiring spatial skills, facing a succession of hurdles that need to be overcome in developing their understanding, but also educators, often strong spatial thinkers themselves and unaware of the degree to which some students are spatially-challenged, may find it difficult to help. Recent studies have suggested that performance on abstract and applied spatial tasks may be enhanced through instruction and practice and spatially-intensive geoscience courses may strengthen performance on spatial tasks. At Liverpool, many first year geoscience modules require understanding of 3-D spatial relationships, often from initial 2-D observations (e.g. mineralogy, petrography, vulcanology, sedimentology, palaeontology, geological map work, structural geology and fieldwork). In this paper we outline work, supported by the UK Subject Centre for Geography, Earth and Environmental Sciences (GEES), involving first year geosciences students at Liverpool, in which we explored

  20. Articular cartilage grading of the knee: diagnostic performance of fat-suppressed 3D volume isotropic turbo spin-echo acquisition (VISTA) compared with 3D T1 high-resolution isovolumetric examination (THRIVE).

    PubMed

    Lee, Young Han; Hahn, Seok; Lim, Daekeon; Suh, Jin-Suck

    2017-02-01

    Background Conventionally, two-dimensional (2D) fast spin-echo (FSE) sequences have been widely used for clinical cartilage imaging as well as gradient (GRE) sequences. Recently, three-dimensional (3D) volumetric magnetic resonance imaging (MRI) has been introduced with one 3D volumetric scan, and this is replacing slice-by-slice 2D MR scans. Purpose To evaluate the image quality and diagnostic performance of two 3D sequences for abnormalities of knee cartilage: fat-suppressed (FS) FSE-based 3D volume isotropic turbo spin-echo acquisition (VISTA) and GRE-based 3D T1 high-resolution isovolumetric examination (THRIVE). Material and Methods The institutional review board approved the protocol of this retrospective review. This study enrolled 40 patients (41 knees) with arthroscopically confirmed abnormalities of cartilage. All patients underwent isovoxel 3D-VISTA and 3D-THRIVE MR sequences on 3T MRI. We assessed the cartilage grade on the two 3D sequences using arthroscopy as a gold standard. Inter-observer agreement for each technique was evaluated with the intraclass correlation coefficient (ICC). Differences in the area under the curve (AUC) were compared between the 3D-THRIVE and 3D-VISTA. Results Although inter-observer agreement for both sequences was excellent, the inter-observer agreement for 3D-VISTA was higher than for 3D-THRIVE for cartilage grading in all regions of the knee. There was no significant difference in the diagnostic performance ( P > 0.05) between the two sequences for detecting cartilage grade. Conclusion FSE-based 3D-VISTA images had good diagnostic performance that was comparable to GRE-based 3D-THRIVE images in the evaluation of knee cartilage, and can be used in routine knee MR protocols for the evaluation of cartilage.

  1. Exploring 3-D Virtual Reality Technology for Spatial Ability and Chemistry Achievement

    ERIC Educational Resources Information Center

    Merchant, Z.; Goetz, E. T.; Keeney-Kennicutt, W.; Cifuentes, L.; Kwok, O.; Davis, T. J.

    2013-01-01

    We investigated the potential of Second Life® (SL), a three-dimensional (3-D) virtual world, to enhance undergraduate students' learning of a vital chemistry concept. A quasi-experimental pre-posttest control group design was used to conduct the study. A total of 387 participants completed three assignment activities either in SL or using…

  2. Does spatial arrangement of 3D plants affect light transmission and extinction coefficient within maize crops?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Row spacing effects on light interception and extinction coefficient have been inconsistent for maize (Zea mays L.) when calculated with field measurements. To avoid inconsistencies due to variable light conditions and variable leaf canopies, we used a model to describe three-dimensional (3D) shoot ...

  3. High-Resolution Multibeam Sonar Survey and Interactive 3-D Exploration of the D-Day Wrecks off Normandy

    NASA Astrophysics Data System (ADS)

    Mayer, L. A.; Calder, B.; Schmidt, J. S.

    2003-12-01

    Historically, archaeological investigations use sidescan sonar and marine magnetometers as initial search tools. Targets are then examined through direct observation by divers, video, or photographs. Magnetometers can demonstrate the presence, absence, and relative susceptibility of ferrous objects but provide little indication of the nature of the target. Sidescan sonar can present a clear image of the overall nature of a target and its surrounding environment, but the sidescan image is often distorted and contains little information about the true 3-D shape of the object. Optical techniques allow precise identification of objects but suffer from very limited range, even in the best of situations. Modern high-resolution multibeam sonar offers an opportunity to cover a relatively large area from a safe distance above the target, while resolving the true three-dimensional (3-D) shape of the object with centimeter-level resolution. The combination of 3-D mapping and interactive 3-D visualization techniques provides a powerful new means to explore underwater artifacts. A clear demonstration of the applicability of high-resolution multibeam sonar to wreck and artifact investigations occurred when the Naval Historical Center (NHC), the Center for Coastal and Ocean Mapping (CCOM) at the University of New Hampshire, and Reson Inc., collaborated to explore the state of preservation and impact on the surrounding environment of a series of wrecks located off the coast of Normandy, France, adjacent to the American landing sectors The survey augmented previously collected magnetometer and high-resolution sidescan sonar data using a Reson 8125 high-resolution focused multibeam sonar with 240, 0.5° (at nadir) beams distributed over a 120° swath. The team investigated 21 areas in water depths ranging from about three -to 30 meters (m); some areas contained individual targets such as landing craft, barges, a destroyer, troop carrier, etc., while others contained multiple smaller

  4. High Spatial Resolution Thermal Satellite Technologies

    NASA Technical Reports Server (NTRS)

    Ryan, Robert

    2003-01-01

    This document in the form of viewslides, reviews various low-cost alternatives to high spatial resolution thermal satellite technologies. There exists no follow-on to Landsat 7 or ASTER high spatial resolution thermal systems. This document reviews the results of the investigation in to the use of new technologies to create a low-cost useful alternative. Three suggested technologies are examined. 1. Conventional microbolometer pushbroom modes offers potential for low cost Landsat Data Continuity Mission (LDCM) thermal or ASTER capability with at least 60-120 ground sampling distance (GSD). 2. Backscanning could produce MultiSpectral Thermal Imager performance without cooled detectors. 3. Cooled detector could produce hyperspectral thermal class system or extremely high spatial resolution class instrument.

  5. Design, modeling and testing of integrated ring extractor for high resolution electrohydrodynamic (EHD) 3D printing

    NASA Astrophysics Data System (ADS)

    Han, Yiwei; Dong, Jingyan

    2017-03-01

    This paper presents an integrated ring extractor design in electrohydrodynamic (EHD) printing, which can overcome the standoff height limitation in the EHD printing process, and improve printing capability for 3D structures. Standoff height in the EHD printing will affect printing processes and limit the height of the printed structure when the ground electrode is placed under the substrate. In this work, we designed and integrated a ring electrode with the printing nozzle to achieve a self-working printer head, which can start and maintain the printing process without the involvement of the substrate. We applied a FEA method to model the electric field potential distribution and strength to direct the ring extractor design, which provides a similar printing capability with the system using substrate as the ground electrode. We verified the ring electrode design by experiments, and those results from the experiments demonstrated a good match with results from the FEA simulation. We have characterized the printing processes using the integrated ring extractor, and successfully applied this newly designed ring extractor to print polycaprolactone (PCL) 3D structures.

  6. Mapping cardiac fiber orientations from high-resolution DTI to high-frequency 3D ultrasound

    NASA Astrophysics Data System (ADS)

    Qin, Xulei; Wang, Silun; Shen, Ming; Zhang, Xiaodong; Wagner, Mary B.; Fei, Baowei

    2014-03-01

    The orientation of cardiac fibers affects the anatomical, mechanical, and electrophysiological properties of the heart. Although echocardiography is the most common imaging modality in clinical cardiac examination, it can only provide the cardiac geometry or motion information without cardiac fiber orientations. If the patient's cardiac fiber orientations can be mapped to his/her echocardiography images in clinical examinations, it may provide quantitative measures for diagnosis, personalized modeling, and image-guided cardiac therapies. Therefore, this project addresses the feasibility of mapping personalized cardiac fiber orientations to three-dimensional (3D) ultrasound image volumes. First, the geometry of the heart extracted from the MRI is translated to 3D ultrasound by rigid and deformable registration. Deformation fields between both geometries from MRI and ultrasound are obtained after registration. Three different deformable registration methods were utilized for the MRI-ultrasound registration. Finally, the cardiac fiber orientations imaged by DTI are mapped to ultrasound volumes based on the extracted deformation fields. Moreover, this study also demonstrated the ability to simulate electricity activations during the cardiac resynchronization therapy (CRT) process. The proposed method has been validated in two rat hearts and three canine hearts. After MRI/ultrasound image registration, the Dice similarity scores were more than 90% and the corresponding target errors were less than 0.25 mm. This proposed approach can provide cardiac fiber orientations to ultrasound images and can have a variety of potential applications in cardiac imaging.

  7. Use of High Resolution 3D Diffusion Tensor Imaging to Study Brain White Matter Development in Live Neonatal Rats

    PubMed Central

    Cai, Yu; McMurray, Matthew S.; Oguz, Ipek; Yuan, Hong; Styner, Martin A.; Lin, Weili; Johns, Josephine M.; An, Hongyu

    2011-01-01

    High resolution diffusion tensor imaging (DTI) can provide important information on brain development, yet it is challenging in live neonatal rats due to the small size of neonatal brain and motion-sensitive nature of DTI. Imaging in live neonatal rats has clear advantages over fixed brain scans, as longitudinal and functional studies would be feasible to understand neuro-developmental abnormalities. In this study, we developed imaging strategies that can be used to obtain high resolution 3D DTI images in live neonatal rats at postnatal day 5 (PND5) and PND14, using only 3 h of imaging acquisition time. An optimized 3D DTI pulse sequence and appropriate animal setup to minimize physiological motion artifacts are the keys to successful high resolution 3D DTI imaging. Thus, a 3D rapid acquisition relaxation enhancement DTI sequence with twin navigator echoes was implemented to accelerate imaging acquisition time and minimize motion artifacts. It has been suggested that neonatal mammals possess a unique ability to tolerate mild-to-moderate hypothermia and hypoxia without long term impact. Thus, we additionally utilized this ability to minimize motion artifacts in magnetic resonance images by carefully suppressing the respiratory rate to around 15/min for PND5 and 30/min for PND14 using mild-to-moderate hypothermia. These imaging strategies have been successfully implemented to study how the effect of cocaine exposure in dams might affect brain development in their rat pups. Image quality resulting from this in vivo DTI study was comparable to ex vivo scans. fractional anisotropy values were also similar between the live and fixed brain scans. The capability of acquiring high quality in vivo DTI imaging offers a valuable opportunity to study many neurological disorders in brain development in an authentic living environment. PMID:22013426

  8. Multicolor 3D super-resolution imaging by quantum dot stochastic optical reconstruction microscopy.

    PubMed

    Xu, Jianquan; Tehrani, Kayvan F; Kner, Peter

    2015-03-24

    We demonstrate multicolor three-dimensional super-resolution imaging with quantum dots (QSTORM). By combining quantum dot asynchronous spectral blueing with stochastic optical reconstruction microscopy and adaptive optics, we achieve three-dimensional imaging with 24 nm lateral and 37 nm axial resolution. By pairing two short-pass filters with two appropriate quantum dots, we are able to image single blueing quantum dots on two channels simultaneously, enabling multicolor imaging with high photon counts.

  9. Development of a lab-scale, high-resolution, tube-generated X-ray computed-tomography system for three-dimensional (3D) materials characterization

    SciTech Connect

    Mertens, J.C.E. Williams, J.J. Chawla, Nikhilesh

    2014-06-01

    The design and construction of a modular high resolution X-ray computed tomography (XCT) system is highlighted in this paper. The design approach is detailed for meeting a specified set of instrument performance goals tailored towards experimental versatility and high resolution imaging. The XCT tool is unique in the detector and X-ray source design configuration, enabling control in the balance between detection efficiency and spatial resolution. The system package is also unique: The sample manipulation approach implemented enables a wide gamut of in situ experimentation to analyze structure evolution under applied stimulus, by optimizing scan conditions through a high degree of controllability. The component selection and design process is detailed: Incorporated components are specified, custom designs are shared, and the approach for their integration into a fully functional XCT scanner is provided. Custom designs discussed include the dual-target X-ray source cradle which maintains position and trajectory of the beam between the two X-ray target configurations with respect to a scintillator mounting and positioning assembly and the imaging sensor, as well as a novel large-format X-ray detector with enhanced adaptability. The instrument is discussed from an operational point of view, including the details of data acquisition and processing implemented for 3D imaging via micro-CT. The performance of the instrument is demonstrated on a silica-glass particle/hydroxyl-terminated-polybutadiene (HTPB) matrix binder PBX simulant. Post-scan data processing, specifically segmentation of the sample's relevant microstructure from the 3D reconstruction, is provided to demonstrate the utility of the instrument. - Highlights: • Custom built X-ray tomography system for microstructural characterization • Detector design for maximizing polychromatic X-ray detection efficiency • X-ray design offered for maximizing X-ray flux with respect to imaging resolution • Novel lab

  10. 3D reconstruction and spatial auralization of the "Painted Dolmen" of Antelas

    NASA Astrophysics Data System (ADS)

    Dias, Paulo; Campos, Guilherme; Santos, Vítor; Casaleiro, Ricardo; Seco, Ricardo; Sousa Santos, Beatriz

    2008-02-01

    This paper presents preliminary results on the development of a 3D audiovisual model of the Anta Pintada (painted dolmen) of Antelas, a Neolithic chamber tomb located in Oliveira de Frades and listed as Portuguese national monument. The final aim of the project is to create a highly accurate Virtual Reality (VR) model of this unique archaeological site, capable of providing not only visual but also acoustic immersion based on its actual geometry and physical properties. The project started in May 2006 with in situ data acquisition. The 3D geometry of the chamber was captured using a Laser Range Finder. In order to combine the different scans into a complete 3D visual model, reconstruction software based on the Iterative Closest Point (ICP) algorithm was developed using the Visualization Toolkit (VTK). This software computes the boundaries of the room on a 3D uniform grid and populates its interior with "free-space nodes", through an iterative algorithm operating like a torchlight illuminating a dark room. The envelope of the resulting set of "free-space nodes" is used to generate a 3D iso-surface approximating the interior shape of the chamber. Each polygon of this surface is then assigned the acoustic absorption coefficient of the corresponding boundary material. A 3D audiovisual model operating in real-time was developed for a VR Environment comprising head-mounted display (HMD) I-glasses SVGAPro, an orientation sensor (tracker) InterTrax 2 with 3 Degrees Of Freedom (3DOF) and stereo headphones. The auralisation software is based on a geometric model. This constitutes a first approach, since geometric acoustics have well-known limitations in rooms with irregular surfaces. The immediate advantage lies in their inherent computational efficiency, which allows real-time operation. The program computes the early reflections forming the initial part of the chamber's impulse response (IR), which carry the most significant cues for source localisation. These early

  11. High-spatial-resolution nanoparticle x-ray fluorescence tomography

    NASA Astrophysics Data System (ADS)

    Larsson, Jakob C.; Vâgberg, William; Vogt, Carmen; Lundström, Ulf; Larsson, Daniel H.; Hertz, Hans M.

    2016-03-01

    X-ray fluorescence tomography (XFCT) has potential for high-resolution 3D molecular x-ray bio-imaging. In this technique the fluorescence signal from targeted nanoparticles (NPs) is measured, providing information about the spatial distribution and concentration of the NPs inside the object. However, present laboratory XFCT systems typically have limited spatial resolution (>1 mm) and suffer from long scan times and high radiation dose even at high NP concentrations, mainly due to low efficiency and poor signal-to-noise ratio. We have developed a laboratory XFCT system with high spatial resolution (sub-100 μm), low NP concentration and vastly decreased scan times and dose, opening up the possibilities for in-vivo small-animal imaging research. The system consists of a high-brightness liquid-metal-jet microfocus x-ray source, x-ray focusing optics and an energy-resolving photon-counting detector. By using the source's characteristic 24 keV line-emission together with carefully matched molybdenum nanoparticles the Compton background is greatly reduced, increasing the SNR. Each measurement provides information about the spatial distribution and concentration of the Mo nanoparticles. A filtered back-projection method is used to produce the final XFCT image.

  12. 2D and 3D imaging resolution trade-offs in quantifying pore throats for prediction of permeability

    SciTech Connect

    Beckingham, Lauren E.; Peters, Catherine A.; Um, Wooyong; Jones, Keith W.; Lindquist, W.Brent

    2013-09-03

    Although the impact of subsurface geochemical reactions on porosity is relatively well understood, changes in permeability remain difficult to estimate. In this work, pore-network modeling was used to predict permeability based on pore- and pore-throat size distributions determined from analysis of 2D scanning electron microscopy (SEM) images of thin sections and 3D X-ray computed microtomography (CMT) data. The analyzed specimens were a Viking sandstone sample from the Alberta sedimentary basin and an experimental column of reacted Hanford sediments. For the column, a decrease in permeability due to mineral precipitation was estimated, but the permeability estimates were dependent on imaging technique and resolution. X-ray CT imaging has the advantage of reconstructing a 3D pore network while 2D SEM imaging can easily analyze sub-grain and intragranular variations in mineralogy. Pore network models informed by analyses of 2D and 3D images at comparable resolutions produced permeability esti- mates with relatively good agreement. Large discrepancies in predicted permeabilities resulted from small variations in image resolution. Images with resolutions 0.4 to 4 lm predicted permeabilities differ- ing by orders of magnitude. While lower-resolution scans can analyze larger specimens, small pore throats may be missed due to resolution limitations, which in turn overestimates permeability in a pore-network model in which pore-to-pore conductances are statistically assigned. Conversely, high-res- olution scans are capable of capturing small pore throats, but if they are not actually flow-conducting predicted permeabilities will be below expected values. In addition, permeability is underestimated due to misinterpreting surface-roughness features as small pore throats. Comparison of permeability pre- dictions with expected and measured permeability values showed that the largest discrepancies resulted from the highest resolution images and the best predictions of

  13. Automatic Building Damage Detection Method Using High-Resolution Remote Sensing Images and 3d GIS Model

    NASA Astrophysics Data System (ADS)

    Tu, Jihui; Sui, Haigang; Feng, Wenqing; Song, Zhina

    2016-06-01

    In this paper, a novel approach of building damaged detection is proposed using high resolution remote sensing images and 3D GIS-Model data. Traditional building damage detection method considers to detect damaged building due to earthquake, but little attention has been paid to analyze various building damaged types(e.g., trivial damaged, severely damaged and totally collapsed.) Therefore, we want to detect the different building damaged type using 2D and 3D feature of scenes because the real world we live in is a 3D space. The proposed method generalizes that the image geometric correction method firstly corrects the post-disasters remote sensing image using the 3D GIS model or RPC parameters, then detects the different building damaged types using the change of the height and area between the pre- and post-disasters and the texture feature of post-disasters. The results, evaluated on a selected study site of the Beichuan earthquake ruins, Sichuan, show that this method is feasible and effective in building damage detection. It has also shown that the proposed method is easily applicable and well suited for rapid damage assessment after natural disasters.

  14. Pseudo-3D PIC modeling of drift-induced spatial inhomogeneities in planar magnetron plasmas

    NASA Astrophysics Data System (ADS)

    Revel, A.; Minea, T.; Tsikata, S.

    2016-10-01

    A pseudo-3D modeling approach, based on a particle-in-cell (PIC)-Monte Carlo collisions algorithm, has been developed for the study of large- and short-scale organization of the plasma in a planar magnetron. This extension of conventional PIC modeling permits the observation of spontaneous organization of the magnetron plasma, under the influence of crossed electric and magnetic fields, into the well-known, large-scale regions of enhanced ionization and density known as spokes. The nature of complex three-dimensional electron trajectories around such structures, and non-uniform ionization within them, is revealed. This modeling provides direct numerical evidence for the existence of high-amplitude internal spoke electric fields, proposed in earlier works. A 3D phenomenological model, consistent with numerical results, is proposed. Electron density fluctuations in the megahertz range, with characteristics similar to the electron cyclotron drift instability experimentally identified in a recent Letter, are also found.

  15. Spatial 3D distribution of soil organic carbon under different land use types.

    PubMed

    Amirian Chakan, A; Taghizadeh-Mehrjardi, R; Kerry, R; Kumar, S; Khordehbin, S; Yusefi Khanghah, S

    2017-03-01

    Soil organic carbon (SOC) has been assessed in three dimension (3D) in several studies, but little is known about the combined effects of land use and soil depth on SOC stocks in semi-arid areas. This paper investigates the 3D distribution of SOC to a depth of 1 m in a 4600-ha area in southeastern Iran with different land uses under the irrigated farming (IF), dry farming (DF), orchards (Or), range plants on the Gachsaran formation (RaG), and range plants on a quaternary formation (RaQ). Predictions were made using the artificial neural networks (ANNs), regression trees (RTs), and spline functions with auxiliary covariates derived from a digital elevation model (DEM), the Landsat 8 imagery, and land use types. Correlation analysis showed that the main predictors for SOC in the topsoil were covariates derived from the imagery; however, for the lower depths, covariates derived from both the DEM and imagery were important. ANNs showed more efficiency than did RTs in predicting SOC. The results showed that 3D distribution of SOC was significantly affected by land use types. SOC stocks of soils under Or and IF were significantly higher than those under DF, RaG, and RaQ. The SOC below 30 cm accounted for about 59% of the total soil stock. Results showed that depth functions combined with digital soil mapping techniques provide a promising approach to evaluate 3D SOC distribution under different land uses in semi-arid regions and could be used to assess changes in time to determine appropriate management strategies.

  16. Assessment of engineered surfaces roughness by high-resolution 3D SEM photogrammetry.

    PubMed

    Gontard, L C; López-Castro, J D; González-Rovira, L; Vázquez-Martínez, J M; Varela-Feria, F M; Marcos, M; Calvino, J J

    2017-03-07

    We describe a methodology to obtain three-dimensional models of engineered surfaces using scanning electron microscopy and multi-view photogrammetry (3DSEM). For the reconstruction of the 3D models of the surfaces we used freeware available in the cloud. The method was applied to study the surface roughness of metallic samples patterned with parallel grooves by means of laser. The results are compared with measurements obtained using stylus profilometry (PR) and SEM stereo-photogrammetry (SP). The application of 3DSEM is more time demanding than PR or SP, but it provides a more accurate representation of the surfaces. The results obtained with the three techniques are compared by investigating the influence of sampling step on roughness parameters.

  17. Spatial resolution considerations for urban hydrological modelling

    NASA Astrophysics Data System (ADS)

    Krebs, G.; Kokkonen, T.; Valtanen, M.; Setälä, H.; Koivusalo, H.

    2014-05-01

    Hydrological model simulations can be applied to evaluate the performance of low impact development (LID) tools in urban areas. However, the assessment for large-scale urban areas remains a challenge due to the required high spatial resolution and limited availability of field measurements for model calibration. This study proposes a methodology to parameterize a hydrological model (SWMM) with sufficiently high spatial resolution and direct accessibility of model parameters for LID performance simulation applicable to a large-scale ungauged urban area. Based on calibrated high-resolution models for three small-scale study catchments (6-12 ha), we evaluated how constraints implied by large-scale urban modelling, such as data limitations, affect the model results. The high-resolution surface representation, resulting in subcatchments of uniform surface types, reduced the number of calibration parameters. Calibration conducted independently for all catchments yielded similar parameter values for same surface types in each study catchment. These results suggest the applicability of the parameter values calibrated for high resolution models to be regionalized to larger, ungauged urban areas. The accessibility of surface specific model parameters for LID simulation is then also retained. Conducted perturbations in spatial resolution through sewer network truncation showed that while the runoff volume was mostly unaffected by resolution perturbations, lower resolutions resulted in over-simulation of peak flows due to excessively rapid catchment response to storm events. Our results suggest that a hydrological model where parameter values are adopted from high-resolution models and that is developed based on a minimum conduit diameter of 300 mm provides good simulation performance and is applicable to large-scale urban areas with reasonable effort.

  18. Quantitative 3D petrography using X-ray tomography 2: Combining information at various resolutions

    SciTech Connect

    Pamukcu, Ayla S.; Gualda, Guilherme A.R.

    2010-12-02

    X-ray tomography is a nondestructive technique that can be used to study rocks and other materials in three dimensions over a wide range of sizes. Samples that range from decimeters to micrometers in size can be analyzed, and micrometer- to centimeter-sized crystals, vesicles, and other particles can be identified and quantified. In many applications, quantification of a large spectrum of sizes is important, but this cannot be easily accomplished using a single tomogram due to a common trade-off between sample size and image resolution. This problem can be circumvented by combining tomograms acquired for a single sample at a variety of resolutions. We have successfully applied this method to obtain crystal size distributions (CSDs) for magnetite, pyroxene + biotite, and quartz + feldspar in Bishop Tuff pumice. Five cylinders of systematically varying size (1-10 mm diameter and height) were analyzed from each of five pumice clasts. Cylinder size is inversely proportional to image resolution, such that resolution ranges from 2.5 to 17 {micro}m/voxel with increasing sample size. This allows quantification of crystals 10-1000 {micro}m in size. We obtained CSDs for each phase in each sample by combining information from all resolutions, each size bin containing data from the resolution that best characterizes crystals of that size. CSDs for magnetite and pyroxene + biotite in late-erupted Bishop pumice obtained using this method are fractal, but do not seem to result from crystal fragmentation. CSDs for quartz + feldspar reveal a population of abundant crystals <35 {micro}m in size, and a population of crystals >50 {micro}m in size, which will be the focus of a separate publication.

  19. Atomic-resolution 3D structure of amyloid β fibrils: The Osaka mutation

    DOE PAGES

    Schutz, Anne K.; Wall, Joseph; Vagt, Toni; ...

    2014-11-13

    Despite its central importance for understanding the molecular basis of Alzheimer's disease (AD), high-resolution structural information on amyloid β-peptide (Aβ) fibrils, which are intimately linked with AD, is scarce. We report an atomic-resolution fibril structure of the Aβ 1-40 peptide with the Osaka mutation (E22Δ), associated with early-onset AD. The structure, which differs substantially from all previously proposed models, is based on a large number of unambiguous intra- and intermolecular solid-state NMR distance restraints

  20. The variants of an LOD of a 3D building model and their influence on spatial analyses

    NASA Astrophysics Data System (ADS)

    Biljecki, Filip; Ledoux, Hugo; Stoter, Jantien; Vosselman, George

    2016-06-01

    The level of detail (LOD) of a 3D city model indicates the model's grade and usability. However, there exist multiple valid variants of each LOD. As a consequence, the LOD concept is inconclusive as an instruction for the acquisition of 3D city models. For instance, the top surface of an LOD1 block model may be modelled at the eaves of a building or at its ridge height. Such variants, which we term geometric references, are often overlooked and are usually not documented in the metadata. Furthermore, the influence of a particular geometric reference on the performance of a spatial analysis is not known. In response to this research gap, we investigate a variety of LOD1 and LOD2 geometric references that are commonly employed, and perform numerical experiments to investigate their relative difference when used as input for different spatial analyses. We consider three use cases (estimation of the area of the building envelope, building volume, and shadows cast by buildings), and compute the deviations in a Monte Carlo simulation. The experiments, carried out with procedurally generated models, indicate that two 3D models representing the same building at the same LOD, but modelled according to different geometric references, may yield substantially different results when used in a spatial analysis. The outcome of our experiments also suggests that the geometric reference may have a bigger influence than the LOD, since an LOD1 with a specific geometric reference may yield a more accurate result than when using LOD2 models.

  1. Analysis of multiple recording methods for full resolution multi-view autostereoscopic 3D display system incorporating VHOE

    NASA Astrophysics Data System (ADS)

    Hwang, Yong Seok; Cho, Kyu Ha; Kim, Eun Soo

    2014-03-01

    In this paper, we propose multiple recording process of photopolymer for a full-color multi-view including multiple-view auto-stereoscopic 3D display system based on VHOE (Volume Holographic Optical Element). To overcome the problems such as low resolution, and limited viewing zone of conventional 3D-display without glasses, we designed multiple recording condition of VHOE for multi-view display. It is verified that VHOE may be optically made by angle-multiplexed recording of pre-designed multiple-viewing zone that uniformly is recorded through optimized exposuretime scheduling scheme. Here, VHOE-based backlight system for 4-view stereoscopic display is implemented, in which the output beams that playing a role reference beam from LGP(Light guide plate)t may be sequentially synchronized with the respective stereo images displayed on the LCD panel.

  2. Advanced Multivariate Inversion Techniques for High Resolution 3D Geophysical Modeling

    DTIC Science & Technology

    2011-09-01

    Explosion Monitoring Technologies 101 low-velocity anomalies in Fig. 1 merge continuously above 175 km. This possibly explains why igneous rocks from...and nuclear monitoring. Gravity measurements can provide constraints on spatial variations in (mass) density of rock in the subsurface, but like any

  3. Possible use of small UAV to create high resolution 3D model of vertical rock faces

    NASA Astrophysics Data System (ADS)

    Mészáros, János; Kerkovits, Krisztian

    2014-05-01

    One of the newest and mostly emerging acquisition technologies is the use of small unmanned aerial vehicles (UAVs) to photogrammetry and remote sensing. Several successful research project or industrial use can be found worldwide (mine investigation, precision agriculture, mapping etc.) but those surveys are focusing mainly on the survey of horizontal areas. In our research a mixed acquisition method was developed and tested to create a dense, 3D model about a columnar outcrop close to Kő-hegy (Pest County). Our primary goal was to create a model whereat the pattern of different layers is clearly visible and measurable, as well as to test the robustness of our idea. Our method uses a consumer grade camera to take digital photographs about the outcrop. A small, custom made tricopter was built to carry the camera above middle and top parts of the rock, the bottom part can be photographed only from several ground positions. During the field survey ground control points were installed and measured using a kinematic correction GPS. These latter data were used during the georeferencing of generated point cloud. Free online services built on Structure from Motion (SfM) algorithms and desktop software also were tested to generate the relative point cloud and for further processing and analysis.

  4. A computational framework for 3D mechanical modeling of plant morphogenesis with cellular resolution.

    PubMed

    Boudon, Frédéric; Chopard, Jérôme; Ali, Olivier; Gilles, Benjamin; Hamant, Olivier; Boudaoud, Arezki; Traas, Jan; Godin, Christophe

    2015-01-01

    The link between genetic regulation and the definition of form and size during morphogenesis remains largely an open question in both plant and animal biology. This is partially due to the complexity of the process, involving extensive molecular networks, multiple feedbacks between different scales of organization and physical forces operating at multiple levels. Here we present a conceptual and modeling framework aimed at generating an integrated understanding of morphogenesis in plants. This framework is based on the biophysical properties of plant cells, which are under high internal turgor pressure, and are prevented from bursting because of the presence of a rigid cell wall. To control cell growth, the underlying molecular networks must interfere locally with the elastic and/or plastic extensibility of this cell wall. We present a model in the form of a three dimensional (3D) virtual tissue, where growth depends on the local modulation of wall mechanical properties and turgor pressure. The model shows how forces generated by turgor-pressure can act both cell autonomously and non-cell autonomously to drive growth in different directions. We use simulations to explore lateral organ formation at the shoot apical meristem. Although different scenarios lead to similar shape changes, they are not equivalent and lead to different, testable predictions regarding the mechanical and geometrical properties of the growing lateral organs. Using flower development as an example, we further show how a limited number of gene activities can explain the complex shape changes that accompany organ outgrowth.

  5. High sensitivity and high resolution element 3D analysis by a combined SIMS–SPM instrument

    PubMed Central

    Wirtz, Tom

    2015-01-01

    Summary Using the recently developed SIMS–SPM prototype, secondary ion mass spectrometry (SIMS) data was combined with topographical data from the scanning probe microscopy (SPM) module for five test structures in order to obtain accurate chemical 3D maps: a polystyrene/polyvinylpyrrolidone (PS/PVP) polymer blend, a nickel-based super-alloy, a titanium carbonitride-based cermet, a reticle test structure and Mg(OH)2 nanoclusters incorporated inside a polymer matrix. The examples illustrate the potential of this combined approach to track and eliminate artefacts related to inhomogeneities of the sputter rates (caused by samples containing various materials, different phases or having a non-flat surface) and inhomogeneities of the secondary ion extraction efficiencies due to local field distortions (caused by topography with high aspect ratios). In this respect, this paper presents the measured relative sputter rates between PVP and PS as well as in between the different phases of the TiCN cermet. PMID:26171285

  6. A Computational Framework for 3D Mechanical Modeling of Plant Morphogenesis with Cellular Resolution

    PubMed Central

    Gilles, Benjamin; Hamant, Olivier; Boudaoud, Arezki; Traas, Jan; Godin, Christophe

    2015-01-01

    The link between genetic regulation and the definition of form and size during morphogenesis remains largely an open question in both plant and animal biology. This is partially due to the complexity of the process, involving extensive molecular networks, multiple feedbacks between different scales of organization and physical forces operating at multiple levels. Here we present a conceptual and modeling framework aimed at generating an integrated understanding of morphogenesis in plants. This framework is based on the biophysical properties of plant cells, which are under high internal turgor pressure, and are prevented from bursting because of the presence of a rigid cell wall. To control cell growth, the underlying molecular networks must interfere locally with the elastic and/or plastic extensibility of this cell wall. We present a model in the form of a three dimensional (3D) virtual tissue, where growth depends on the local modulation of wall mechanical properties and turgor pressure. The model shows how forces generated by turgor-pressure can act both cell autonomously and non-cell autonomously to drive growth in different directions. We use simulations to explore lateral organ formation at the shoot apical meristem. Although different scenarios lead to similar shape changes, they are not equivalent and lead to different, testable predictions regarding the mechanical and geometrical properties of the growing lateral organs. Using flower development as an example, we further show how a limited number of gene activities can explain the complex shape changes that accompany organ outgrowth. PMID:25569615

  7. Euro-Maps 3D- A Transnational, High-Resolution Digital Surface Model For Europe

    NASA Astrophysics Data System (ADS)

    Uttenthaler, A.; Barner, F.; Hass, T.; Makiola, J.; d'Angelo, P.; Reinartz, P.; Carl, S.; Steiner, K.

    2013-12-01

    Euro-Maps 3D is a homogeneous 5 m spaced digital surface model (DSM) semi-automatically derived by Euromap from 2.5 m in-flight stereo data provided by the Indian IRS-P5 Cartosat-1 satellite. This new and innovative product has been developed in close co- operation with the Remote Sensing Technology Institute (IMF) of the German Aerospace Center (DLR) and is being jointly exploited. The very detailed and accurate representation of the surface is achieved by using a sophisticated and well adapted algorithm implemented on the basis of the Semi-Global Matching approach. In addition, the final product includes detailed flanking information consisting of several pixel-based quality and traceability layers also including an ortho layer. The product is believed to provide maximum accuracy and transparency. The DSM product meets and exceeds HRE80 qualification standards. The DSM product will be made available transnational in a homogeneous quality for most parts of Europe, North Africa and Turkey by Euromap step-by-step. Other areas around the world are processed on demand.

  8. Research in Image Understanding as Applied to 3-D Tomographic Imaging with Near Optical Resolution.

    DTIC Science & Technology

    1984-11-30

    manner as for the B-52 test object . Comparison of the detail in the image in Fig. 22(b) with the pictorial views of the space shuttle model given in...improvement in image quality over that reported earlier has been achieved. (i) Theory of Three - Dimensional Conductive and Dielectric Projective Imaging ... dimensional Fourier transform to evaluate the object function slice (66) is also shown in Fig. 2 (right-side). This high resolution image of the dielectric

  9. High-resolution direct 3D printed PLGA scaffolds: print and shrink.

    PubMed

    Chia, Helena N; Wu, Benjamin M

    2014-12-17

    Direct three-dimensional printing (3DP) produces the final part composed of the powder and binder used in fabrication. An advantage of direct 3DP is control over both the microarchitecture and macroarchitecture. Prints which use porogen incorporated in the powder result in high pore interconnectivity, uniform porosity, and defined pore size after leaching. The main limitations of direct 3DP for synthetic polymers are the use of organic solvents which can dissolve polymers used in most printheads and limited resolution due to unavoidable spreading of the binder droplet after contact with the powder. This study describes a materials processing strategy to eliminate the use of organic solvent during the printing process and to improve 3DP resolution by shrinking with a non-solvent plasticizer. Briefly, poly(lactic-co-glycolic acid) (PLGA) powder was prepared by emulsion solvent evaporation to form polymer microparticles. The printing powder was composed of polymer microparticles dry mixed with sucrose particles. After printing with a water-based liquid binder, the polymer microparticles were fused together to form a network by solvent vapor in an enclosed vessel. The sucrose is removed by leaching and the resulting scaffold is placed in a solution of methanol. The methanol acts as a non-solvent plasticizer and allows for polymer chain rearrangement and efficient packing of polymer chains. The resulting volumetric shrinkage is ∼80% at 90% methanol. A complex shape (honey-comb) was designed, printed, and shrunken to demonstrate isotropic shrinking with the ability to reach a final resolution of ∼400 μm. The effect of type of alcohol (i.e. methanol or ethanol), concentration of alcohol, and temperature on volumetric shrinking was studied. This study presents a novel materials processing strategy to overcome the main limitations of direct 3DP to produce high resolution PLGA scaffolds.

  10. High-Resolution 3D Bathymetric Mapping for Small Streams Using Low-Altitude Aerial Photography

    NASA Astrophysics Data System (ADS)

    Dietrich, J. T.; Duffin, J.

    2015-12-01

    Geomorphic monitoring of river restoration projects is a critical component of measuring their success. In smaller streams, with depths less than 2 meters, one of the more difficult variables to map at high-resolution is bathymetry. In larger rivers, bathymetry can be measured with instruments like multi-beam sonar, bathymetric airborne LiDAR, or acoustic doppler current profilers (ADCP). However, these systems are often limited by their minimum operating depths, which makes them ineffective in shallow water. Remote sensing offers several potential solutions for collecting bathymetry, spectral depth mapping and photogrammetric measurement (e.g. Structure-from-Motion (SfM) multi-view photogrammetry). In this case study, we use SfM to produce both high-resolution above water topography and below water bathymetry for two reaches of a stream restoration project on the Middle Fork of the John Day River in eastern Oregon and one reach on the White River in Vermont. We collected low-allitude multispectral (RGB+NIR) aerial photography at all of the sites at altitudes of 30 to 50 meters. The SfM survey was georeferenced with RTK-GPS ground control points and the bathymetry was refraction-corrected using additional RTK-GPS sample points. The resulting raster data products have horizontal resolutions of ~4-8 centimeters for the topography and ~8-15 cm for the bathymetry. This methodology, like many fluvial remote sensing methods, will only work under ideal conditions (e.g. clear water), but it provides an additional tool for collecting high-resolution bathymetric datasets for geomorphic monitoring efforts.

  11. Application of the Minkowski functionals in 3D to high-resolution MR images of trabecular bone: prediction of the biomechanical strength by nonlinear topological measures

    NASA Astrophysics Data System (ADS)

    Boehm, Holger F.; Link, Thomas M.; Monetti, Roberto A.; Mueller, Dirk; Rummeny, Ernst J.; Newitt, David; Majumdar, Sharmila; Raeth, Christoph W.

    2004-05-01

    Multi-dimensional convex objects can be characterized with respect to shape, structure, and the connectivity of their components using a set of morphological descriptors known as the Minkowski functionals. In a 3D Euclidian space, these correspond to volume, surface area, mean integral curvature, and the Euler-Poincaré characteristic. We introduce the Minkowski functionals to medical image processing for the morphological analysis of trabecular bone tissue. In the context of osteoporosis-a metabolic disorder leading to a weakening of bone due to deterioration of micro-architecture-the structure of bone increasingly gains attention in the quantification of bone quality. The trabecular architecture of healthy cancellous bone consists of a complex 3D system of inter-connected mineralised elements whereas in osteoporosis the micro-structure is dominated by gaps and disconnections. At present, the standard parameter for diagnosis and assessment of fracture risk in osteoporosis is the bone mineral density (BMD) - a bulk measure of mineralisation irrespective of structural texture characteristics. With the development of modern imaging modalities (high resolution MRI, micro-CT) with spatial resolutions allowing to depict individual trabeculae bone micro-architecture has successfully been analysed using linear, 2- dimensional structural measures adopted from standard histo-morphometry. The preliminary results of our study demonstrate that due to the complex - i.e. the non-linear - network of trabecular bone structures non-linear measures in 3D are superior to linear ones in predicting mechanical properties of trabecular bone from structural information extracted from high resolution MR image data.

  12. High resolution 3D imaging of living cells with sub-optical wavelength phonons

    NASA Astrophysics Data System (ADS)

    Pérez-Cota, Fernando; Smith, Richard J.; Moradi, Emilia; Marques, Leonel; Webb, Kevin F.; Clark, Matt

    2016-12-01

    Label-free imaging of living cells below the optical diffraction limit poses great challenges for optical microscopy. Biologically relevant structural information remains below the Rayleigh limit and beyond the reach of conventional microscopes. Super-resolution techniques are typically based on the non-linear and stochastic response of fluorescent labels which can be toxic and interfere with cell function. In this paper we present, for the first time, imaging of live cells using sub-optical wavelength phonons. The axial imaging resolution of our system is determined by the acoustic wavelength (λa = λprobe/2n) and not on the NA of the optics allowing sub-optical wavelength acoustic sectioning of samples using the time of flight. The transverse resolution is currently limited to the optical spot size. The contrast mechanism is significantly determined by the mechanical properties of the cells and requires no additional contrast agent, stain or label to image the cell structure. The ability to breach the optical diffraction limit to image living cells acoustically promises to bring a new suite of imaging technologies to bear in answering exigent questions in cell biology and biomedicine.

  13. High resolution 3D imaging of living cells with sub-optical wavelength phonons

    PubMed Central

    Pérez-Cota, Fernando; Smith, Richard J.; Moradi, Emilia; Marques, Leonel; Webb, Kevin F.; Clark, Matt

    2016-01-01

    Label-free imaging of living cells below the optical diffraction limit poses great challenges for optical microscopy. Biologically relevant structural information remains below the Rayleigh limit and beyond the reach of conventional microscopes. Super-resolution techniques are typically based on the non-linear and stochastic response of fluorescent labels which can be toxic and interfere with cell function. In this paper we present, for the first time, imaging of live cells using sub-optical wavelength phonons. The axial imaging resolution of our system is determined by the acoustic wavelength (λa = λprobe/2n) and not on the NA of the optics allowing sub-optical wavelength acoustic sectioning of samples using the time of flight. The transverse resolution is currently limited to the optical spot size. The contrast mechanism is significantly determined by the mechanical properties of the cells and requires no additional contrast agent, stain or label to image the cell structure. The ability to breach the optical diffraction limit to image living cells acoustically promises to bring a new suite of imaging technologies to bear in answering exigent questions in cell biology and biomedicine. PMID:27996028

  14. Sub-millimeter resolution 3D optical imaging of living tissue using laminar optical tomography

    PubMed Central

    Hillman, Elizabeth M. C.; Burgess, Sean A.

    2009-01-01

    In-vivo imaging of optical contrast in living tissues can allow measurement of functional parameters such as blood oxygenation and detection of targeted and active fluorescent contrast agents. However, optical imaging must overcome the effects of light scattering, which limit the penetration depth and can affect quantitation and sensitivity. This article focuses on a technique for high-resolution, high-speed depth-resolved optical imaging of superficial living tissues called laminar optical tomography (LOT), which is capable of imaging absorbing and fluorescent contrast in living tissues to depths of 2–3 mm with 100–200 micron resolution. An overview of the advantages and challenges of in-vivo optical imaging is followed by a review of currently available techniques for high-resolution optical imaging of tissues. LOT is then described, including a description of the imaging system design and discussion of data analysis and image reconstruction approaches. Examples of recent applications of LOT are then provided and compared to other existing technologies. By measuring multiply-scattered light, Laminar Optical Tomography can probe beneath the surface of living tissues such as the skin and brain. PMID:19844595

  15. High Resolution 3d Imaging during the Construction of National Radioactive Waste Repository from BÁTAAPÁTI, Hungary

    NASA Astrophysics Data System (ADS)

    Gaich, A.; Deák, F.; Pötsch, M.

    2012-12-01

    The Hungarian National Radioactive Waste Repository is being built in the neighborhood of the village called Bátaapáti. The program of the new disposal facility for the low- and intermediate-level wastes (L/ILW) is conducted by PURAM (Public Limited Company for Radioactive Waste Management). The Bátaapáti underground research program began in February 2005, with the excavation of the two inclined exploratory tunnels. These tunnels have 30 m distance between their axes, 10% inclination and 1.7 km length, and have reached the 0 m Baltic sea-level in the Mórágy Granite Formation. The safety of nuclear repository mainly is influenced by the ground behaviour and its fracturing hence mapping of the geological features has a great importance. Because of the less stable ground, the cavern walls were shotcreted after every tunnelling advance. The site geologists were required to make the tunnel mapping after every drill and blast cycle. The time interval was short and the documenting work was unrepeatable due to the shotcrete supported walls, so it was very important to use a modern, precise system to create 3D photorealistic models of the rock surfaces on the excavated tunnel walls. We have chosen the photogrammetric method, because it has adequate resolution and quality for the photo combined 3D models. At the beginning, we had used the JointMetriX3D (JMX) system and subsequently ShapeMetriX3D (SMX) in the repository chamber excavation phase. From the acquired 3D images through geological mapping is performed as the system allows directly measuring geometric information on visible discontinuities such as dip and dip direction. Descriptive rock mass parameters such as spacing, area, roughness are instantly available. In this article we would like to continue that research having made by JMX model of a tunnel face of "TSZV" access tunnel and using SMX model of a tunnel face from "DEK" Chamber. Our studies were carried out by field engineering geologists on further

  16. Stability and 3-D spatial dynamics analysis of a three cable crane

    NASA Technical Reports Server (NTRS)

    Yang, Li-Farn; Mikulas, Martin M., Jr.; Chiou, Jin-Chern

    1992-01-01

    A 3-cable crane mechanism has been designed for incorporation into a highly loaded Lunar crane for planetary construction. This 3-cable crane must maintain a positive stability margin in all phases of the loading/unloading, assembly, or installation operations. A 2D kinematic curvature theory is applied to: (1) derive a general stability criterion to prevent the 3-cable crane from instability; and (2) determine a simple equation of natural frequency for two planar models of 3-cable crane. Investigation of the 2D vibrational characteristics of the planar models provides valuable insight toward understanding of 3D dynamic behavior of the 3-cable crane. Also, precision in natural frequency from this simple kinematic equation due to the exclusion of the radius-of-gyration of a suspended article is discussed. Multibody dynamics of the 3D 3-cable crane is presented and simulated to study the resulting vibrational characteristics under external disturbances and to verify the feasibility of the stability criterion for the 3-cable crane.

  17. 3-D spatial chaos in the elastica and the spinning top: Kirchhoff analogy.

    PubMed

    Davies, M. A.; Moon, F. C.

    1993-01-01

    The existence of spatially chaotic deformations in an elastica and the analogous motions of a free spinning rigid body, an extension of the problem originally examined by Kirchhoff are investigated. It is shown that a spatially periodic variation in cross sectional area of the elastica results in spatially complex deformation patterns. The governing equations for the elastica were numerically integrated and Poincare maps were created for a number of different initial conditions. In addition, three dimensional computer images of the twisted elastica were generated to illustrate periodic, quasiperiodic, and stochastic deformation patterns in space. These pictures clearly show the existence of spatially chaotic deformations with stunning complexity. This finding is relevant to a wide variety of fields in which coiled structures are important, from the modeling of DNA chains to video and audio tape dynamics to the design of deployable space structures.

  18. Effective incorporation of spatial information in a mutual information based 3D-2D registration of a CT volume to X-ray images.

    PubMed

    Zheng, Guoyan

    2008-01-01

    This paper addresses the problem of estimating the 3D rigid pose of a CT volume of an object from its 2D X-ray projections. We use maximization of mutual information, an accurate similarity measure for multi-modal and mono-modal image registration tasks. However, it is known that the standard mutual information measure only takes intensity values into account without considering spatial information and its robustness is questionable. In this paper, instead of directly maximizing mutual information, we propose to use a variational approximation derived from the Kullback-Leibler bound. Spatial information is then incorporated into this variational approximation using a Markov random field model. The newly derived similarity measure has a least-squares form and can be effectively minimized by a multi-resolution Levenberg-Marquardt optimizer. Experimental results are presented on X-ray and CT datasets of a plastic phantom and a cadaveric spine segment.

  19. Early Earth tectonics: A high-resolution 3D numerical modelling approach

    NASA Astrophysics Data System (ADS)

    Fischer, R.; Gerya, T.

    2014-12-01

    Early Earth had a higher amount of remaining radiogenic elements as well as a higher amount of leftover primordial heat. Both contributed to the increased temperature in the Earth's interior and it is mainly this increased mantle potential temperature ΔTp that controls the dynamics of the crust and upper mantle and the style of Early Earth tectonics. For a minor increase in temperature ΔTp < 175 K a subduction-collision style ensues which is largely similar to present day plate tectonics. For a moderate increase in ΔTp = 175-250 K subduction can still occur, however plates are strongly weakened and buckling, delamination and Rayleigh-Taylor style dripping of the plate is observed in addition. For higher temperatures ΔTp > 250 K no subduction can be observed anymore and tectonics is dominated by delamination and Rayleigh-Taylor instabilities. We conduct 3D petrological-thermomechanical numerical modelling experiments of the crust and upper mantle under Early Earth conditions and a plume tectonics model setup. For varying crustal structures and an increased mantle potential temperature ΔTp, a thermal anomaly in the bottom temperature boundary introduces a plume. The model is able to self-sufficiently form depleted mantle lithosphere after repeated melt removal. New crust can be produced in the form of volcanics or plutonics. To simulate differentiation the newly formed crust can have a range in composition from basaltic over dacitic to granitic depending on its source rock. Models show large amounts of subcrustal decompression melting and consequently large amounts of new formed crust which in turn influences the dynamics. Mantle and crust are convecting separately. Dome-shaped plutons of mafic or felsic composition can be observed in the crust. Between these domes elongated belts of upper crust, volcanics and sediments are formed. These structures look similar to, for example, the Kaapvaal craton in South Africa where the elongated shape of the Barberton

  20. High resolution spin- and angle-resolved photoelectron spectroscopy for 3D spin vectorial analysis

    NASA Astrophysics Data System (ADS)

    Okuda, Taichi; Miyamoto, Koji; Kimura, Akio; Namatame, Hirofumi; Taniguchi, Masaki

    2013-03-01

    Spin- and angle-resolved photoelectron spectroscopy (SARPES) is the excellent tool which can directly observe the band structure of crystals with separating spin-up and -down states. Recent findings of new class of materials possessing strong spin orbit interaction such as Rashba spin splitting systems or topological insulators stimulate to develop new SARPES apparatuses and many sophisticated techniques have been reported recently. Here we report our newly developed a SARPES apparatus for spin vectorial analysis with high precision at Hiroshima Synchrotron Radiation Center. Highly efficient spin polarimeter utilizing very low energy electron diffraction (VLEED) makes high resolution (ΔE < 10 meV, Δθ ~ +/- 0.2 °) compatible with the SARPES measurement. By placing two VLEED spin detectors orthogonally we have realized the polarization measurement of all spin components (x, y and z) with the high resolution. Some examples of the three-dimensional spin observation will be presented. This work is supported by KAKENHI (23244066), Grant-in-Aid for Scientific Research (A) of Japan Society for the Promotion of Science.

  1. High-Resolution Solid Modeling of Biological Samples Imaged with 3D Fluorescence Microscopy

    PubMed Central

    Ferko, Michael C.; Patterson, Brian W.; Butler, Peter J.

    2011-01-01

    Optical-sectioning, digital fluorescence microscopy provides images representing temporally- and spatially-resolved molecular-scale details of the substructures of living cells. To render such images into solid models for further computational analyses, we have developed an integrated system of image acquisition, processing, and rendering, which includes a new empirical technique to correct for axial distortions inherent in fluorescence microscopy due to refractive index mismatches between microscope objective immersion medium, coverslip glass, and water. This system takes advantage of the capabilities of ultra-high numerical aperture objectives (e.g. total internal reflection fluorescence microscopy) and enables faithful three-dimensional rendering of living cells into solid models amenable to further computational analysis. An example of solid modeling of bovine aortic endothelial cells and their nuclei is presented. Since many cellular level events are temporally and spatially confined, such integrated image acquisition, processing, rendering, and computational analysis, will enable, in silico, the generation of new computational models for cell mechanics and signaling. PMID:16758474

  2. High resolution finite volume parallel simulations of mould filling and binary alloy solidification on unstructured 3-D meshes

    SciTech Connect

    Reddy, A.V.; Kothe, D.B.; Lam, K.L.

    1997-06-01

    The Los Alamos National Laboratory (LANL) is currently developing a new casting simulation tool (known as Telluride) that employs robust, high-resolution finite volume algorithms for incompressible fluid flow, volume tracking of interfaces, and solidification physics on three-dimensional (3-D) unstructured meshes. Their finite volume algorithms are based on colocated cell-centered schemes that are formally second order in time and space. The flow algorithm is a 3-D extension of recent work on projection method solutions of the Navier-Stokes (NS) equations. Their volume tracking algorithm can accurately track topologically complex interfaces by approximating the interface geometry as piecewise planar. Coupled to their fluid flow algorithm is a comprehensive binary alloy solidification model that incorporates macroscopic descriptions of heat transfer, solute redistribution, and melt convection as well as a microscopic description of segregation. The finite volume algorithms, which are efficient, parallel, and robust, can yield high-fidelity solutions on a variety of meshes, ranging from those that are structured orthogonal to fully unstructured (finite element). The authors discuss key computer science issues that have enabled them to efficiently parallelize their unstructured mesh algorithms on both distributed and shared memory computing platforms. These include their functionally object-oriented use of Fortran 90 and new parallel libraries for gather/scatter functions (PGSLib) and solutions of linear systems of equations (JTpack90). Examples of their current capabilities are illustrated with simulations of mold filling and solidification of complex 3-D components currently being poured in LANL foundries.

  3. The importance of 3D local averaging in turbulence theory: some examples from high-resolution DNS

    NASA Astrophysics Data System (ADS)

    Yeung, Pui-Kuen; Zhai, X. M.; Iyer, K. P.; Sreenivasan, K. R.

    2016-11-01

    Dissipation fluctuations in turbulence become increasingly intermittent as the Reynolds number increases. Both theoretical and practical reasons then force us to consider the fluctuations averaged locally over three-dimensional (3D) volumes of various sizes. Often, the practice has been to supplant 3D averages by 1D averages, and to replace proper 3D quantities by convenient 1D surrogates. We examine the consequence of these practices using DNS data on a large grid of 81923 at a Taylor-microscale Reynolds number 1300. We show that these common practices can often lead to erroneous results and significant ambiguities. For instance, both the dissipation and enstrophy turn out to possess the same inertial-range intermittency exponent; moments of locally-averaged dissipation and enstrophy become closer to each other with increasing order (because extreme events in both are spatially co-located); the longitudinal and transverse velocity increments scale similarly-all in contrast to results obtained using the simplifying practices mentioned above. Supported by NSF Grants ACI-1036170 and ACI-1640771.

  4. Quantification of spatial structure of human proximal tibial bone biopsies using 3D measures of complexity

    NASA Astrophysics Data System (ADS)

    Saparin, Peter I.; Skovhus Thomsen, Jesper; Prohaska, Steffen; Zaikin, Alexei; Kurths, Jürgen; Hege, Hans-Christian; Gowin, Wolfgang

    2005-05-01

    Changes in trabecular bone composition during development of osteoporosis are used as a model for bone loss in microgravity conditions during a space flight. Symbolic dynamics and measures of complexity are proposed and applied to assess quantitatively the structural composition of bone tissue from 3D data sets of human tibia bone biopsies acquired by a micro-CT scanner. In order to justify the newly proposed approach, the measures of complexity of the bone architecture were compared with the results of traditional 2D bone histomorphometry. The proposed technique is able to quantify the structural loss of the bone tissue and may help to diagnose and to monitor changes in bone structure of patients on Earth as well as of the space-flying personnel.

  5. Fast, high-resolution 3D dosimetry utilizing a novel optical-CT scanner incorporating tertiary telecentric collimation

    PubMed Central

    Sakhalkar, H. S.; Oldham, M.

    2008-01-01

    This study introduces a charge coupled device (CCD) area detector based optical-computed tomography (optical-CT) scanner for comprehensive verification of radiation dose distributions recorded in nonscattering radiochromic dosimeters. Defining characteristics include: (i) a very fast scanning time of ~5 min to acquire a complete three-dimensional (3D) dataset, (ii) improved image formation through the use of custom telecentric optics, which ensures accurate projection images and minimizes artifacts from scattered and stray-light sources, and (iii) high resolution (potentially 50 μm) isotropic 3D dose readout. The performance of the CCD scanner for 3D dose readout was evaluated by comparison with independent 3D readout from the single laser beam OCTOPUS™-scanner for the same PRESAGE™ dosimeters. The OCTOPUS™ scanner was considered the “gold standard” technique in light of prior studies demonstrating its accuracy. Additional comparisons were made against calculated dose distributions from the ECLIPSE treatment-planning system. Dose readout for the following treatments were investigated: (i) a single rectangular beam irradiation to investigate small field and very steep dose gradient dosimetry away from edge effects, (ii) a 2-field open beam parallel-opposed irradiation to investigate dosimetry along steep dose gradients, and (iii) a 7-field intensity modulated radiation therapy (IMRT) irradiation to investigate dosimetry for complex treatment delivery involving modulation of fluence and for dosimetry along moderate dose gradients. Dose profiles, dose-difference plots, and gamma maps were employed to evaluate quantitative estimates of agreement between independently measured and calculated dose distributions. Results indicated that dose readout from the CCD scanner was in agreement with independent gold-standard readout from the OCTOPUS™-scanner as well as the calculated ECLIPSE dose distribution for all treatments, except in regions within a few

  6. Fast, high-resolution 3D dosimetry utilizing a novel optical-CT scanner incorporating tertiary telecentric collimation

    SciTech Connect

    Sakhalkar, H. S.; Oldham, M.

    2008-01-15

    This study introduces a charge coupled device (CCD) area detector based optical-computed tomography (optical-CT) scanner for comprehensive verification of radiation dose distributions recorded in nonscattering radiochromic dosimeters. Defining characteristics include: (i) a very fast scanning time of {approx}5 min to acquire a complete three-dimensional (3D) dataset, (ii) improved image formation through the use of custom telecentric optics, which ensures accurate projection images and minimizes artifacts from scattered and stray-light sources, and (iii) high resolution (potentially 50 {mu}m) isotropic 3D dose readout. The performance of the CCD scanner for 3D dose readout was evaluated by comparison with independent 3D readout from the single laser beam OCTOPUS-scanner for the same PRESAGE dosimeters. The OCTOPUS scanner was considered the 'gold standard' technique in light of prior studies demonstrating its accuracy. Additional comparisons were made against calculated dose distributions from the ECLIPSE treatment-planning system. Dose readout for the following treatments were investigated: (i) a single rectangular beam irradiation to investigate small field and very steep dose gradient dosimetry away from edge effects, (ii) a 2-field open beam parallel-opposed irradiation to investigate dosimetry along steep dose gradients, and (iii) a 7-field intensity modulated radiation therapy (IMRT) irradiation to investigate dosimetry for complex treatment delivery involving modulation of fluence and for dosimetry along moderate dose gradients. Dose profiles, dose-difference plots, and gamma maps were employed to evaluate quantitative estimates of agreement between independently measured and calculated dose distributions. Results indicated that dose readout from the CCD scanner was in agreement with independent gold-standard readout from the OCTOPUS-scanner as well as the calculated ECLIPSE dose distribution for all treatments, except in regions within a few millimeters of

  7. Fast, high-resolution 3D dosimetry utilizing a novel optical-CT scanner incorporating tertiary telecentric collimation.

    PubMed

    Sakhalkar, H S; Oldham, M

    2008-01-01

    This study introduces a charge coupled device (CCD) area detector based optical-computed tomography (optical-CT) scanner for comprehensive verification of radiation dose distributions recorded in nonscattering radiochromic dosimeters. Defining characteristics include: (i) a very fast scanning time of approximately 5 min to acquire a complete three-dimensional (3D) dataset, (ii) improved image formation through the use of custom telecentric optics, which ensures accurate projection images and minimizes artifacts from scattered and stray-light sources, and (iii) high resolution (potentially 50 microm) isotropic 3D dose readout. The performance of the CCD scanner for 3D dose readout was evaluated by comparison with independent 3D readout from the single laser beam OCTOPUS-scanner for the same PRESAGE dosimeters. The OCTOPUS scanner was considered the "gold standard" technique in light of prior studies demonstrating its accuracy. Additional comparisons were made against calculated dose distributions from the ECLIPSE treatment-planning system. Dose readout for the following treatments were investigated: (i) a single rectangular beam irradiation to investigate small field and very steep dose gradient dosimetry away from edge effects, (ii) a 2-field open beam parallel-opposed irradiation to investigate dosimetry along steep dose gradients, and (iii) a 7-field intensity modulated radiation therapy (IMRT) irradiation to investigate dosimetry for complex treatment delivery involving modulation of fluence and for dosimetry along moderate dose gradients. Dose profiles, dose-difference plots, and gamma maps were employed to evaluate quantitative estimates of agreement between independently measured and calculated dose distributions. Results indicated that dose readout from the CCD scanner was in agreement with independent gold-standard readout from the OCTOPUS-scanner as well as the calculated ECLIPSE dose distribution for all treatments, except in regions within a few

  8. High-resolution imaging and inversion of 3D GPR data for layered media

    NASA Astrophysics Data System (ADS)

    Slob, Evert

    2013-04-01

    Ground penetrating radar is increasingly being used to provide quantitative information of layered structures. For application in civil engineering these can be roads, highway pavements, airport runways, bridges, tunnels, or buildings. Monitoring is important for the management and safety of these structures. Standard imaging uses a modeled wavefield extrapolator to image the data and the quality of the image depends heavily on the quality of the modeled extrapolator. Usually, data inversion is implemented by minimizing a cost function involving the measured data and the modeled data. The model is modified such that data computed from the model fits to the measured data. The data itself is not used, except as a measure of the model data fit. A recently developed alternative method is to use results from inverse scattering theory to first construct an image while all multiple reflections are simultaneously eliminated from the data. This image can be constructed from surface reflection data if the data allows separating the subsurface reflection response from the down going emitted field. For 3D waves in a layered medium this requires knowledge of all horizontal electric and magnetic field components. If the data is properly sampled the solution is unique. In layered media the plane wave decomposition allows computing the image for each angle of incidence separately as a function of image time that is equal to the one-way intercept time. Once the image is constructed for all available angles of incidence a simple matrix inversion leads to the desired electric permittivity and magnetic permeability values in each layer. Finally these values provide interval velocities that can be used to convert image time to depth and the inverse problem is solved. The theory requires infinite bandwidth frequency domain data, which is equivalent to measuring the true impulse response. This is not possible in practice and numerical results show that data with finite bandwidths can be

  9. Single objective light-sheet microscopy for high-speed whole-cell 3D super-resolution

    PubMed Central

    Meddens, Marjolein B. M.; Liu, Sheng; Finnegan, Patrick S.; Edwards, Thayne L.; James, Conrad D.; Lidke, Keith A.

    2016-01-01

    We have developed a method for performing light-sheet microscopy with a single high numerical aperture lens by integrating reflective side walls into a microfluidic chip. These 45° side walls generate light-sheet illumination by reflecting a vertical light-sheet into the focal plane of the objective. Light-sheet illumination of cells loaded in the channels increases image quality in diffraction limited imaging via reduction of out-of-focus background light. Single molecule super-resolution is also improved by the decreased background resulting in better localization precision and decreased photo-bleaching, leading to more accepted localizations overall and higher quality images. Moreover, 2D and 3D single molecule super-resolution data can be acquired faster by taking advantage of the increased illumination intensities as compared to wide field, in the focused light-sheet. PMID:27375939

  10. Single objective light-sheet microscopy for high-speed whole-cell 3D super-resolution.

    PubMed

    Meddens, Marjolein B M; Liu, Sheng; Finnegan, Patrick S; Edwards, Thayne L; James, Conrad D; Lidke, Keith A

    2016-06-01

    We have developed a method for performing light-sheet microscopy with a single high numerical aperture lens by integrating reflective side walls into a microfluidic chip. These 45° side walls generate light-sheet illumination by reflecting a vertical light-sheet into the focal plane of the objective. Light-sheet illumination of cells loaded in the channels increases image quality in diffraction limited imaging via reduction of out-of-focus background light. Single molecule super-resolution is also improved by the decreased background resulting in better localization precision and decreased photo-bleaching, leading to more accepted localizations overall and higher quality images. Moreover, 2D and 3D single molecule super-resolution data can be acquired faster by taking advantage of the increased illumination intensities as compared to wide field, in the focused light-sheet.

  11. Cardiac C-arm computed tomography using a 3D + time ROI reconstruction method with spatial and temporal regularization

    SciTech Connect

    Mory, Cyril; Auvray, Vincent; Zhang, Bo; Grass, Michael; Schäfer, Dirk; Chen, S. James; Carroll, John D.; Rit, Simon; Peyrin, Françoise; Douek, Philippe; Boussel, Loïc

    2014-02-15

    Purpose: Reconstruction of the beating heart in 3D + time in the catheter laboratory using only the available C-arm system would improve diagnosis, guidance, device sizing, and outcome control for intracardiac interventions, e.g., electrophysiology, valvular disease treatment, structural or congenital heart disease. To obtain such a reconstruction, the patient's electrocardiogram (ECG) must be recorded during the acquisition and used in the reconstruction. In this paper, the authors present a 4D reconstruction method aiming to reconstruct the heart from a single sweep 10 s acquisition. Methods: The authors introduce the 4D RecOnstructiOn using Spatial and TEmporal Regularization (short 4D ROOSTER) method, which reconstructs all cardiac phases at once, as a 3D + time volume. The algorithm alternates between a reconstruction step based on conjugate gradient and four regularization steps: enforcing positivity, averaging along time outside a motion mask that contains the heart and vessels, 3D spatial total variation minimization, and 1D temporal total variation minimization. Results: 4D ROOSTER recovers the different temporal representations of a moving Shepp and Logan phantom, and outperforms both ECG-gated simultaneous algebraic reconstruction technique and prior image constrained compressed sensing on a clinical case. It generates 3D + time reconstructions with sharp edges which can be used, for example, to estimate the patient's left ventricular ejection fraction. Conclusions: 4D ROOSTER can be applied for human cardiac C-arm CT, and potentially in other dynamic tomography areas. It can easily be adapted to other problems as regularization is decoupled from projection and back projection.

  12. MExLab Planetary Geoportal: 3D-access to planetary images and results of spatial data analysis

    NASA Astrophysics Data System (ADS)

    Karachevtseva, I.; Garov, A.

    2015-10-01

    MExLab Planetary Geoportal was developed as Geodesy and Cartography Node which provide access to results of study of celestial bodies such as DEM and orthoimages, as well as basemaps, crater catalogues and derivative products: slope, roughness, crater density (http://cartsrv.mexlab.ru/geoportal). The main feature of designed Geoportal is the ability of spatial queries and access to the contents selecting from the list of available data set (Phobos, Mercury, Moon, including Lunokhod's archive data). Prior version of Geoportal has been developed using Flash technology. Now we are developing new version which will use 3D-API (OpenGL, WebGL) based on shaders not only for standard 3D-functionality, but for 2D-mapping as well. Users can obtain quantitative and qualitative characteristics of the objects in graphical, tabular and 3D-forms. It will bring the advantages of unification of code and speed of processing and provide a number of functional advantages based on GIS-tools such as: - possibility of dynamic raster transform for needed map projection; - effective implementation of the co-registration of planetary images by combining spatial data geometries; - presentation in 3D-form different types of data, including planetary atmospheric measurements, subsurface radar data, ect. The system will be created with a new software architecture, which has a potential for development and flexibility in reconfiguration based on cross platform solution: - an application for the three types of platforms: desktop (Windows, Linux, OSX), web platform (any HTML5 browser), and mobile application (Android, iOS); - a single codebase shared between platforms (using cross compilation for Web); - a new telecommunication solution to connect between modules and external system like PROVIDE WebGIS (http://www.provide-space.eu/progis/). The research leading to these result was partly supported by the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement n

  13. Improving 8th Grades Spatial Thinking Abilities through a 3D Modeling Program

    ERIC Educational Resources Information Center

    Toptas, Veli; Celik, Serkan; Karaca, E. Tugce

    2012-01-01

    Implementation of emerging technology in sub disciplines of mathematics education provides a potential for educators to elaborate the capacity of digitized learning for human being. Spatial thinking is considered as a factor of scientific deduction from a multi disciplinary point of view. This paper reports a study aimed at exploring the effect of…

  14. Inferring Cross Sections of 3D Objects: A New Spatial Thinking Test

    ERIC Educational Resources Information Center

    Cohen, Cheryl A.; Hegarty, Mary

    2012-01-01

    A new spatial ability test was administered online to 223 undergraduate students enrolled in introductory science courses. The 30-item multiple choice test measures individual differences in ability to identify the two-dimensional cross section of a three-dimensional geometric solid, a skill that has been identified as important in science,…

  15. Effects of Spatial Resolution on Image Registration

    PubMed Central

    Zhao, Can; Carass, Aaron; Jog, Amod; Prince, Jerry L.

    2016-01-01

    This paper presents a theoretical analysis of the effect of spatial resolution on image registration. Based on the assumption of additive Gaussian noise on the images, the mean and variance of the distribution of the sum of squared differences (SSD) were estimated. Using these estimates, we evaluate a distance between the SSD distributions of aligned images and non-aligned images. The experimental results show that by matching the resolutions of the moving and fixed images one can get a better image registration result. The results agree with our theoretical analysis of SSD, but also suggest that it may be valid for mutual information as well. PMID:27773960

  16. A Multi-Resolution Approach for an Automated Fusion of Different Low-Cost 3D Sensors

    PubMed Central

    Dupuis, Jan; Paulus, Stefan; Behmann, Jan; Plümer, Lutz; Kuhlmann, Heiner

    2014-01-01

    The 3D acquisition of object structures has become a common technique in many fields of work, e.g., industrial quality management, cultural heritage or crime scene documentation. The requirements on the measuring devices are versatile, because spacious scenes have to be imaged with a high level of detail for selected objects. Thus, the used measuring systems are expensive and require an experienced operator. With the rise of low-cost 3D imaging systems, their integration into the digital documentation process is possible. However, common low-cost sensors have the limitation of a trade-off between range and accuracy, providing either a low resolution of single objects or a limited imaging field. Therefore, the use of multiple sensors is desirable. We show the combined use of two low-cost sensors, the Microsoft Kinect and the David laserscanning system, to achieve low-resolved scans of the whole scene and a high level of detail for selected objects, respectively. Afterwards, the high-resolved David objects are automatically assigned to their corresponding Kinect object by the use of surface feature histograms and SVM-classification. The corresponding objects are fitted using an ICP-implementation to produce a multi-resolution map. The applicability is shown for a fictional crime scene and the reconstruction of a ballistic trajectory. PMID:24763255

  17. A multi-resolution approach for an automated fusion of different low-cost 3D sensors.

    PubMed

    Dupuis, Jan; Paulus, Stefan; Behmann, Jan; Plümer, Lutz; Kuhlmann, Heiner

    2014-04-24

    The 3D acquisition of object structures has become a common technique in many fields of work, e.g., industrial quality management, cultural heritage or crime scene documentation. The requirements on the measuring devices are versatile, because spacious scenes have to be imaged with a high level of detail for selected objects. Thus, the used measuring systems are expensive and require an experienced operator. With the rise of low-cost 3D imaging systems, their integration into the digital documentation process is possible. However, common low-cost sensors have the limitation of a trade-off between range and accuracy, providing either a low resolution of single objects or a limited imaging field. Therefore, the use of multiple sensors is desirable. We show the combined use of two low-cost sensors, the Microsoft Kinect and the David laserscanning system, to achieve low-resolved scans of the whole scene and a high level of detail for selected objects, respectively. Afterwards, the high-resolved David objects are automatically assigned to their corresponding Kinect object by the use of surface feature histograms and SVM-classification. The corresponding objects are fitted using an ICP-implementation to produce a multi-resolution map. The applicability is shown for a fictional crime scene and the reconstruction of a ballistic trajectory.

  18. True 3D kinematic analysis for slope instability assessment in the Siq of Petra (Jordan), from high resolution TLS

    NASA Astrophysics Data System (ADS)

    Gigli, Giovanni; Margottini, Claudio; Spizzichino, Daniele; Ruther, Heinz; Casagli, Nicola

    2016-04-01

    released, stratigraphic setting and tectonic activity can be recognized. As a consequence, rock-falls have been occurring, even recently, with unstable rock mass volumes ranging from 0.1 m3 up to over some hundreds m3. Slope instability, acceleration of crack deformation and consequent increasing of rock-fall hazard conditions, could threaten the safety of tourist as well as the integrity of the heritage. 3D surface model coming from Terrestrial Laser Scanner acquisitions was developed almost all over the site of Petra, including the Siq. Comprehensively, a point cloud of five billion points was generated making the site of Petra likely the largest scanned archaeological site in the word. As far as the Siq, the scanner was positioned on the path floor at intervals of not more than 10 meters from each station. The total number of scans in the Siq was 220 with an average point cloud interval of approximately 3 cm. Subsequently, for the definition of the main rockfall source areas, a spatial kinematic analysis for the whole Siq has been performed, by using discontinuity orientation data extracted from the point cloud by means of the software Diana. Orientation, number of sets, spacing/frequency, persistence, block size and scale dependent roughness was obtained combining fieldwork and automatic analysis. This kind of analysis is able to establish where a particular instability mechanism is kinematically feasible, given the geometry of the slope, the orientation of discontinuities and shear strength of the rock. The final outcome of this project was a detail landslide kinematic index map, reporting main potential instability mechanisms for a given area. The kinematic index was finally calibrated for each instability mechanism (plane failure; wedge failure; block toppling; flexural toppling) surveyed in the site. The latter is including the collapse occurred in May 2015, likely not producing any victim, in a sector clearly identified by the susceptibility maps produced by the

  19. Effects of multiple-interaction photon events in a high-resolution PET system that uses 3-D positioning detectors

    PubMed Central

    Gu, Yi; Pratx, Guillem; Lau, Frances W. Y.; Levin, Craig S.

    2010-01-01

    Purpose: The authors’ laboratory is developing a dual-panel, breast-dedicated PET system. The detector panels are built from dual-LSO-position-sensitive avalanche photodiode (PSAPD) modules—units holding two 8×8 arrays of 1 mm3 LSO crystals, where each array is coupled to a PSAPD. When stacked to form an imaging volume, these modules are capable of recording the 3-D coordinates of individual interactions of a multiple-interaction photon event (MIPE). The small size of the scintillation crystal elements used increases the likelihood of photon scattering between crystal arrays. In this article, the authors investigate how MIPEs impact the system photon sensitivity, the data acquisition scheme, and the quality and quantitative accuracy of reconstructed PET images. Methods: A Monte Carlo simulated PET scan using the dual-panel system was performed on a uniformly radioactive phantom for the photon sensitivity study. To establish the impact of MIPEs on a proposed PSAPD multiplexing scheme, experimental data were collected from a dual-LSO-PSAPD module edge-irradiated with a 22Na point source, the data were compared against simulation data based on an identical setup. To assess the impact of MIPEs on the dual-panel PET images, a simulated PET of a phantom comprising a matrix of hot spherical radiation sources of varying diameters immersed in a warm background was performed. The list-mode output data were used for image reconstruction, where various methods were used for estimating the location of the first photon interaction in MIPEs for more accurate line of response positioning. The contrast recovery coefficient (CRC), contrast to noise ratio (CNR), and the full width at half maximum spatial resolution of the spheres in the reconstructed images were used as figures of merit to facilitate comparison. Results: Compared to image reconstruction employing only events with interactions confined to one LSO array, a potential single photon sensitivity gain of >46.9% (>115

  20. 3D Rheological Modeling of NW Intraplate Europe, Deciphering Spatial Integrated strength patterns, Mechanical Strong Layering and EET

    NASA Astrophysics Data System (ADS)

    Beekman, F.; Hardebol, N.; Cloetingh, S.; Tesauro, M.

    2006-12-01

    Better understanding of 3D rheological heterogeneity of the European Lithosphere provide the key to tie the recorded intraplate deformation pattern to stress fields transmitted into plate interior from plate boundary forces. The first order strain patterns result from stresses transmitted through the European lithosphere that is marked by a patchwork of high strength variability from inherited structural and compositional heterogeneities and upper mantle thermal perturbations. As the lithospheric rheology depends primarily on its spatial structure, composition and thermal estate, the 3D strength model for the European lithosphere relies on a 3D compositional model that yields the compositional heterogeneities and an iteratively calculated thermal cube using Fouriers law for heat conduction. The accurate appraisal of spatial strength variability results from proper mapping and integration of the geophysical compositional and thermal input parameters. Therefore, much attention has been paid to a proper description of first order structural and tectonic features that facilitate compilation of the compositional and thermal input models. As such, the 3D strength model reflects the thermo-mechanical structure inherited from the Europeans polyphase deformation history. Major 3D spatial mechanical strength variability has been revealed. The East-European and Fennoscandian Craton to the NE exhibit high strength (30-50 1012 N/m) from low mantle temperatures and surface heatflow of 35-60 mW/m2 while central and western Europe reflect a polyphase Phanerozoic thermo- tectonic history. Here, regions with high rigidity are formed primarily by patches of thermally stabilized Variscan Massifs (e.g. Rhenish, Armorican, Bohemian, and Iberian Massif) with low heatflow and lithospheric thickness values (50-65 mW/m2; 110-150 km) yielding strengths of ~15-25 1012 N/m. In contrast, major axis of weakened lithosphere coincides with Cenozoic Rift System (e.g. Upper and Lower Rhine Grabens

  1. High-resolution 3-D T1*-mapping and quantitative image analysis of GRAY ZONE in chronic fibrosis.

    PubMed

    Pop, Mihaela; Ramanan, Venkat; Yang, Franklin; Zhang, Li; Newbigging, Susan; Ghugre, Nilesh R; Wright, Graham A

    2014-12-01

    The substrate of potentially lethal cardiac arrhythmias often resides in the gray zone (GZ), a mixture of viable myocytes and collagen strands found between healthy myocardium and infarct core (IC). The specific aims of this paper are to demonstrate correspondence between regions delineated in T1* (apparent T1) maps and tissue characteristics seen in histopathology and to determine the MR imaging resolution needed to adequately identify GZ-associated substrate in chronic infarct. For this, a novel 3-D multicontrast late enhancement (MCLE) MR method was used to image ex vivo swine hearts with chronic infarction, at high resolution ( 0.6×0.6×1.25 mm). Pixel-wise classified tissue maps were calculated using steady-state and T1* images as input to a fuzzy-clustering algorithm. Quantitative histology based on collagen stains was performed in n = 10 selected slabs and showed very good correlations between histologically-determined areas of heterogeneous and dense fibrosis, and the corresponding GZ ( R2 = 0.96) and IC ( R2 = 0.97 ) in tissue classified maps. Furthermore, in n = 24 slabs, we performed volumetric measurements of GZ and IC, at the original and decreased image resolutions. Our results demonstrated that the IC volume remained relatively unchanged across all resolutions, whereas the GZ volume progressively increased with diminished image resolution, with changes reaching significance at 1×1×5 mm resolution (p < 0.05 ) but not at 1×1×2.5 mm, suggesting that this resolution may be sufficient to adequately identify the GZ from MCLE images, enabling an effective MR probing of remodeled myocardium in late infarct. Future work will focus on translating these findings to optimizing the current in vivo MCLE imaging of the GZ.

  2. A Compact 3D Omnidirectional Range Sensor of High Resolution for Robust Reconstruction of Environments

    PubMed Central

    Marani, Roberto; Renò, Vito; Nitti, Massimiliano; D'Orazio, Tiziana; Stella, Ettore

    2015-01-01

    In this paper, an accurate range sensor for the three-dimensional reconstruction of environments is designed and developed. Following the principles of laser profilometry, the device exploits a set of optical transmitters able to project a laser line on the environment. A high-resolution and high-frame-rate camera assisted by a telecentric lens collects the laser light reflected by a parabolic mirror, whose shape is designed ad hoc to achieve a maximum measurement error of 10 mm when the target is placed 3 m away from the laser source. Measurements are derived by means of an analytical model, whose parameters are estimated during a preliminary calibration phase. Geometrical parameters, analytical modeling and image processing steps are validated through several experiments, which indicate the capability of the proposed device to recover the shape of a target with high accuracy. Experimental measurements show Gaussian statistics, having standard deviation of 1.74 mm within the measurable range. Results prove that the presented range sensor is a good candidate for environmental inspections and measurements. PMID:25621605

  3. First results from 3D-arcsec resolution cm-images of RCW 49/Westerlund 2

    NASA Astrophysics Data System (ADS)

    Benaglia, P.; Koribalski, B.; Peri, S. C.; Marti, J.; Sanchez-Sutil, R. J.; Dougherty, M. S.

    2013-06-01

    The HII region RCW 49 and its ionizing cluster conform a large and complex system, widely studied at infrared and optical wavelengths. Very recently, the system was proposed as the counterpart of an unidentified gamma-ray source; two Fermi (GeV-energies) sources were detected in spatial superposition. Available 843 MHz and interferometric data at 1.4 and 2.4 GHz showed two shells. Yet the relation of the radio source with the high energy sources has not been firmly established. We search for evidence of non-thermal radio emission to shed light on the nature of the high energy sources. We implemented cm-observations using the new receivers of the Australia Telescope Compact Array, at 5.5 and 9.0 GHz, with extensive uv-coverage. Archival lower frequency radio data have been re-reduced, and analysed together with data at other energy ranges (optical, infrared, X-rays, gamma-rays). We present here the deepest radio continuum images of RCW 49 ever obtained. They show star forming pillars and filaments. The radio emission mimics the NIR emission. Analysis of spectral index maps indicates the presence of non-thermal emission. The radio results favor distance of ~6 kpc for the complex, and make likely the association with the gamma-ray emission.

  4. Effect of positron range on spatial resolution.

    PubMed

    Phelps, M E; Hoffman, E J; Huang, S C; Ter-Pogossian, M M

    1975-07-01

    The effect of beta+ range on spatial resolution of imaging systems employing the detection of 511-keV annihilation radiation was determined by measuring the variation in the line-spread functions (LSFs) of positron-emitting radionuclides of 64Cu, 11C, and 15O as compared with the 514-keV gamma-ray emitter 85Sr. These radionuclides have maximum beta+ energies of 0.656, 0.960, and 1.72 MeV, respectively. The LSFs were measured in a tissue-equivalent phantom with high-resolution (approximately 2.4 mm FWHM) and low-resolution (approximately 8.8 mm FWHM) straightbore collimators coupled to a NaI(Tl) detector. Theoretical LSFs for the beta+ ranges were also calculated and convolved with the 85Sr LSF to yield the predicted LSFs for 11C and 15O. The high-resolution study showed a 0% and 2.3% increase in the full-width half-maximum (FWHM) and full-width tenth-maximum (FWO.1M) for the low-energy beta+ of 64Cu and a 37% (FWHM) and 52% (FWO.1M) increase for the high energy beta+ of 15O as compared with 85Sr. However, when the system resolution was decreased to 8.8 mm FWHM, the 64Cu showed no change at FWHM or FWO.1M and the 15O showed a 2.3% (FWHM) and 7.8% (FWO.1M) relative to 85Sr. The predicted LSFs were in good agreement with the experimental. These data indicate that the effect of beta+ range on spatial resolution is minimal unless the beta+ energy is larger than or equal to 1.5 MeV and the system resolution is on the order of a few millimeters.

  5. The effects of age and workload on 3D spatial attention in dual-task driving

    PubMed Central

    Pierce, Russell S.; Andersen, George J.

    2014-01-01

    In the present study we assessed whether the limits in visual-spatial attention associated with aging affect the spatial extent of attention in depth during driving performance. Drivers in the present study performed a car-following and light-detection task. To assess the extent of visual-spatial attention, we compared reaction times and accuracy to light change targets that varied in horizontal position and depth location. In addition, because workload has been identified as a factor that can change the horizontal and vertical extent of attention, we tested whether variability of the lead car speed influenced the extent of spatial attention for younger or older drivers. For younger drivers, reaction time (RT) to light-change targets varied as a function of distance and horizontal position. For older drivers RT varied only as a function of distance. There was a distance by horizontal position interaction for younger drivers but not for older drivers. Specifically, there was no effect of horizontal position at any given level of depth for older drivers. However, for younger drivers there was an effect of horizontal position for targets further in depth but not for targets nearer in depth. With regards to workload, we found no statistically reliable evidence that variability of the lead car speed had an effect on the spatial extent of attention for younger or older drivers. In a control experiment, we examined the effects of depth on light detection when the projected size and position of the targets was constant. Consistent with our previous results, we found that drivers’ reaction time to light-change targets varied as a function of distance even when 2D position and size were controlled. Given that depth is an important dimension in driving performance, an important issue for assessing driving safety is to consider the limits of attention in the depth dimension. Therefore, we suggest that future research should consider the importance of depth as a dimension of

  6. A 3D engineered tumour for spatial snap-shot analysis of cell metabolism and phenotype in hypoxic gradients

    PubMed Central

    Rodenhizer, Darren; Gaude, Edoardo; Cojocari, Dan; Mahadevan, Radhakrishnan; Frezza, Christian; Wouters, Bradly G.; McGuigan, Alison P.

    2016-01-01

    The profound metabolic reprogramming that occurs in cancer cells has been investigated primarily in two-dimensional cell cultures, which fail to recapitulate spatial aspects of cell-to-cell interactions as well as tissue gradients present in three-dimensional (3D) tumours. Here, we describe an engineered model to assemble 3D tumours by rolling a scaffold-tumour composite strip. By unrolling the strip, the model can be rapidly disassembled for snap-shot analysis, allowing spatial mapping of cell metabolism in concert with cell phenotype. We also show that the establishment of oxygen gradients within samples are shaped by oxygen-dependent signalling pathways, as well as the consequential variations in cell growth, response to hypoxic gradients extending from normoxia to severe hypoxia, and therapy responsiveness, are consistent with tumours in vivo. Moreover, by using liquid chromatography tandem mass spectrometry, we mapped cellular metabolism and identified spatially defined metabolic signatures of cancer cells to reveal both known and novel metabolic responses to hypoxia. PMID:26595121

  7. 3D face recognition system using cylindrical hidden-layer neural network: spatial domain and its eigenspace domain

    NASA Astrophysics Data System (ADS)

    Kusumoputro, Benyamin; Pangabean, Martha Y.; Rachman, Leila F.

    2001-09-01

    In this paper, a 3-D face recognition system is developed using a modified neural network. This modified neural network is constructed by substituting each of neuron in its hidden layer of conventional multilayer perceptron with a circular-structure of neurons. This neural system is then called as cylindrical-structure of hidden layer neural network (CHL-NN). The neural system is then applied on a real 3-D face image database that consists of 5 Indonesian persons. The images are taken under four different expressions such as neutral, smile, laugh and free expression. The 2-D images is taken from the human face images by gradually changing visual points, which is done by successively varies the camera position from - 90 to +90 with an interval of 15 degree. The experimental result has shown that the average recognition rate of 60% could be achieved when we used the image in its spatial domain. Improvement of the system is then developed, by transforming the image in its spatial domain into its eigenspace domain. Karhunen Loeve transformation technique is used, and each image in the spatial domain is represented as a point in the eigenspace domain. Fisherface method is then utilized as a feature extraction on the eigenspace domain, and using the same database and experimental procedure, the recognition rate of the system could be increased into 84% in average.

  8. What's the Point of a Raster ? Advantages of 3D Point Cloud Processing over Raster Based Methods for Accurate Geomorphic Analysis of High Resolution Topography.

    NASA Astrophysics Data System (ADS)

    Lague, D.

    2014-12-01

    High Resolution Topographic (HRT) datasets are predominantly stored and analyzed as 2D raster grids of elevations (i.e., Digital Elevation Models). Raster grid processing is common in GIS software and benefits from a large library of fast algorithms dedicated to geometrical analysis, drainage network computation and topographic change measurement. Yet, all instruments or methods currently generating HRT datasets (e.g., ALS, TLS, SFM, stereo satellite imagery) output natively 3D unstructured point clouds that are (i) non-regularly sampled, (ii) incomplete (e.g., submerged parts of river channels are rarely measured), and (iii) include 3D elements (e.g., vegetation, vertical features such as river banks or cliffs) that cannot be accurately described in a DEM. Interpolating the raw point cloud onto a 2D grid generally results in a loss of position accuracy, spatial resolution and in more or less controlled interpolation. Here I demonstrate how studying earth surface topography and processes directly on native 3D point cloud datasets offers several advantages over raster based methods: point cloud methods preserve the accuracy of the original data, can better handle the evaluation of uncertainty associated to topographic change measurements and are more suitable to study vegetation characteristics and steep features of the landscape. In this presentation, I will illustrate and compare Point Cloud based and Raster based workflows with various examples involving ALS, TLS and SFM for the analysis of bank erosion processes in bedrock and alluvial rivers, rockfall statistics (including rockfall volume estimate directly from point clouds) and the interaction of vegetation/hydraulics and sedimentation in salt marshes. These workflows use 2 recently published algorithms for point cloud classification (CANUPO) and point cloud comparison (M3C2) now implemented in the open source software CloudCompare.

  9. Integration of GIS, Geostatistics, and 3-D Technology to Assess the Spatial Distribution of Soil Moisture

    NASA Technical Reports Server (NTRS)

    Betts, M.; Tsegaye, T.; Tadesse, W.; Coleman, T. L.; Fahsi, A.

    1998-01-01

    The spatial and temporal distribution of near surface soil moisture is of fundamental importance to many physical, biological, biogeochemical, and hydrological processes. However, knowledge of these space-time dynamics and the processes which control them remains unclear. The integration of geographic information systems (GIS) and geostatistics together promise a simple mechanism to evaluate and display the spatial and temporal distribution of this vital hydrologic and physical variable. Therefore, this research demonstrates the use of geostatistics and GIS to predict and display soil moisture distribution under vegetated and non-vegetated plots. The research was conducted at the Winfred Thomas Agricultural Experiment Station (WTAES), Hazel Green, Alabama. Soil moisture measurement were done on a 10 by 10 m grid from tall fescue grass (GR), alfalfa (AA), bare rough (BR), and bare smooth (BS) plots. Results indicated that variance associated with soil moisture was higher for vegetated plots than non-vegetated plots. The presence of vegetation in general contributed to the spatial variability of soil moisture. Integration of geostatistics and GIS can improve the productivity of farm lands and the precision of farming.

  10. Efficient fully 3D list-mode TOF PET image reconstruction using a factorized system matrix with an image domain resolution model

    PubMed Central

    Zhou, Jian; Qi, Jinyi

    2014-01-01

    A factorized system matrix utilizing an image domain resolution model is attractive in fully 3D TOF PET image reconstruction using list-mode data. In this paper, we study a factored model based on sparse matrix factorization that is comprised primarily of a simplified geometrical projection matrix and an image blurring matrix. Beside the commonly-used Siddon's raytracer, we propose another more simplified geometrical projector based on the Bresenham's raytracer which further reduces the computational cost. We discuss in general how to obtain an image blurring matrix associated with a geometrical projector, and provide theoretical analysis that can be used to inspect the efficiency in model factorization. In simulation studies, we investigate the performance of the proposed sparse factorization model in terms of spatial resolution, noise properties and computational cost. The quantitative results reveal that the factorization model can be as efficient as a nonfactored model such as the analytical model while its computational cost can be much lower. In addition we conduct Monte Carlo simulations to identify the conditions under which the image resolution model can become more efficient in terms of image contrast recovery. We verify our observations using the provided theoretical analysis. The result offers a general guide to achieve optimal reconstruction performance based on a sparse factorization model with an only image domain resolution model. PMID:24434568

  11. Efficient fully 3D list-mode TOF PET image reconstruction using a factorized system matrix with an image domain resolution model.

    PubMed

    Zhou, Jian; Qi, Jinyi

    2014-02-07

    A factorized system matrix utilizing an image domain resolution model is attractive in fully 3D time-of-flight PET image reconstruction using list-mode data. In this paper, we study a factored model based on sparse matrix factorization that is comprised primarily of a simplified geometrical projection matrix and an image blurring matrix. Beside the commonly-used Siddon's ray-tracer, we propose another more simplified geometrical projector based on the Bresenham's ray-tracer which further reduces the computational cost. We discuss in general how to obtain an image blurring matrix associated with a geometrical projector, and provide theoretical analysis that can be used to inspect the efficiency in model factorization. In simulation studies, we investigate the performance of the proposed sparse factorization model in terms of spatial resolution, noise properties and computational cost. The quantitative results reveal that the factorization model can be as efficient as a non-factored model, while its computational cost can be much lower. In addition we conduct Monte Carlo simulations to identify the conditions under which the image resolution model can become more efficient in terms of image contrast recovery. We verify our observations using the provided theoretical analysis. The result offers a general guide to achieve the optimal reconstruction performance based on a sparse factorization model with an image domain resolution model.

  12. Quantification of gully volume using very high resolution DSM generated through 3D reconstruction from airborne and field digital imagery

    NASA Astrophysics Data System (ADS)

    Castillo, Carlos; Zarco-Tejada, Pablo; Laredo, Mario; Gómez, Jose Alfonso

    2013-04-01

    Major advances have been made recently in automatic 3D photo-reconstruction techniques using uncalibrated and non-metric cameras (James and Robson, 2012). However, its application on soil conservation studies and landscape feature identification is currently at the outset. The aim of this work is to compare the performance of a remote sensing technique using a digital camera mounted on an airborne platform, with 3D photo-reconstruction, a method already validated for gully erosion assessment purposes (Castillo et al., 2012). A field survey was conducted in November 2012 in a 250 m-long gully located in field crops on a Vertisol in Cordoba (Spain). The airborne campaign was conducted with a 4000x3000 digital camera installed onboard an aircraft flying at 300 m above ground level to acquire 6 cm resolution imagery. A total of 990 images were acquired over the area ensuring a large overlap in the across- and along-track direction of the aircraft. An ortho-mosaic and the digital surface model (DSM) were obtained through automatic aerial triangulation and camera calibration methods. For the field-level photo-reconstruction technique, the gully was divided in several reaches to allow appropriate reconstruction (about 150 pictures taken per reach) and, finally, the resulting point clouds were merged into a unique mesh. A centimetric-accuracy GPS provided a benchmark dataset for gully perimeter and distinguishable reference points in order to allow the assessment of measurement errors of the airborne technique and the georeferenciation of the photo-reconstruction 3D model. The uncertainty on the gully limits definition was explicitly addressed by comparison of several criteria obtained by 3D models (slope and second derivative) with the outer perimeter obtained by the GPS operator identifying visually the change in slope at the top of the gully walls. In this study we discussed the magnitude of planimetric and altimetric errors and the differences observed between the

  13. High-Resolution 3D Proton MRI of Hyperpolarized Gas Enabled by Parahydrogen and Rh/TiO2 Heterogeneous Catalyst

    PubMed Central

    Barskiy, Danila A.; Coffey, Aaron M.; Truong, Milton L.; Salnikov, Oleg G.; Khudorozhkov, Alexander K.; Inozemtseva, Elizaveta A.; Prosvirin, Igor P.; Bukhtiyarov, Valery I.; Waddell, Kevin W.; Koptyug, Igor V.

    2015-01-01

    Several supported metal catalysts were synthesized, characterized, and tested in heterogeneous hydrogenation of propene with parahydrogen to maximize nuclear spin hyperpolarization of propane gas using parahydrogen induced polarization (PHIP). The Rh/TiO2 catalyst with a metal particle size of 1.6 nm was found to be the most active and effective in the pairwise hydrogen addition and robust, demonstrating reproducible results with multiple hydrogenation experiments and stability for ≥1.5 years. 3D 1H magnetic resonance imaging (MRI) of 1 % hyperpolarized flowing gas with microscale spatial resolution (625 × 625 × 625 μm3) and large imaging matrix (128 × 128 × 32) was demonstrated by using a preclinical 4.7 T scanner and 17.4 s imaging scan time. PMID:24961814

  14. Realtime infiltration process monitoring in macroporous soil - a plot-scale experiment accompanied by high-resolution time-lapse 3D GPR

    NASA Astrophysics Data System (ADS)

    Jackisch, Conrad; Allroggen, Niklas

    2016-04-01

    Infiltration and quick vertical redistribution of event water through rapid subsurface flow in soil structures is one of the key issues in hydrology. Although the importance of preferential flow is broadly recognised, our theories, observation techniques and modelling approaches lose grounds when the assumption of well-mixed states in REVs collapses. To characterise the combination of advective and diffusive flow is especially challenging. We have shown in earlier studies that a combination of TDR monitoring, dye- and salt-tracer recovery and time-lapse 3D GPR in irrigation experiments provides means to characterise infiltration dynamics at the plot- and hillslope-scale also in highly structured soils. We pinpointed that the spatial and temporal resolution requires special attention and improvement - particularly owing to the facts of high velocity (10-3 ms-1) of advective flow and small scale (10-2 m) of the respective flow structures. We present insights from a novel technique of continuous high-resolution time-lapse 3D GPR measurements during and after a plot-scale (1 m x 1 m) irrigation experiment. Continuous TDR soil moisture measurements, dye tracer excavation and salt-tracer samples are used as qualitative and quantitative references. While classical infiltration experiments either look at spatial patterns or temporal dynamics at singular gauges, we highlight the advantage of combining both to achieve a more complete image of the infiltration process. Although operating at the limits of the techniques this setup enables non-invasive observation of preferential flow processes in the field and allows to explore and characterise macropore matrix exchange.

  15. High order spatial expansion for the method of characteristics applied to 3-D geometries

    SciTech Connect

    Naymeh, L.; Masiello, E.; Sanchez, R.

    2013-07-01

    The method of characteristics is an efficient and flexible technique to solve the neutron transport equation and has been extensively used in two-dimensional calculations because it permits to deal with complex geometries. However, because of a very fast increase in storage requirements and number of floating operations, its direct application to three-dimensional routine transport calculations it is not still possible. In this work we introduce and analyze several modifications aimed to reduce memory requirements and to diminish the computing burden. We explore high-order spatial approximation, the use of intermediary trajectory-dependent flux expansions and the possibility of dynamic trajectory reconstruction from local tracking for typed subdomains. (authors)

  16. Zooplankton mortality in 3D ecosystem modelling considering variable spatial-temporal fish consumptions in the North Sea

    NASA Astrophysics Data System (ADS)

    Maar, Marie; Rindorf, Anna; Møller, Eva Friis; Christensen, Asbjørn; Madsen, Kristine S.; van Deurs, Mikael

    2014-05-01

    We tested the feasibility of imposing mesozooplankton mortality into a 3D model based on estimated consumption rates of the dominant planktivorous fish in the North Sea-Kattegat area. The spatial biomass distribution of Atlantic herring (Clupea harengus), horse mackerel (Trachurus trachurus), Atlantic mackerel (Scomber scombrus), sandeel (Ammodytidae) and European sprat (Sprattus sprattus) was derived from quarterly scientific trawl surveys and Danish commercial catches. Spatio-temporal indices of mortality were created based on the estimated biomasses and ingestion rates from the literature. The fish larvae grazing pressure was obtained from a spatial, size-based larval community model. In this model, larvae, herring and sandeel were the most important fish predators on mesozooplankton, but these groups had different spatial and temporal (seasonal) distributions. Fish larvae were particularly dominant in the eastern and southern areas in early summer. Herring and sandeel had the highest consumption in the central and north-western areas and were more important in late summer. The fish index changed the perceived annual, seasonal and spatial patterns in modelled mesozooplankton biomass, production and mortality. In the present study, the index was kept relatively simple and can be further developed with respect to the description of fish as well carnivorous zooplankton ingestion rates. The data input required to create the fish index is (i) planktivorous fish stock biomasses and (ii) relative fish spawning distribution information and (iii) physics (ocean currents and temperatures) for the region and situation of interest. The fish index seems promising as a realistic mortality term for lower trophic levels in 3D ecosystem models in areas with available data on fish stocks to improve management of marine resources.

  17. Digitized crime scene forensics: automated trace separation of toolmarks on high-resolution 2D/3D CLSM surface data

    NASA Astrophysics Data System (ADS)

    Clausing, Eric; Vielhauer, Claus

    2015-03-01

    Locksmith forensics is an important and very challenging part of classic crime scene forensics. In prior work, we propose a partial transfer to the digital domain, to effectively support forensic experts and present approaches for a full process chain consisting of five steps: Trace positioning, 2D/3D acquisition with a confocal 3D laser scanning microscope, detection by segmentation, trace type determination, and determination of the opening method. In particular the step of trace segmentation on high-resolution 3D surfaces thereby turned out to be the part most difficult to implement. The reason for that is the highly structured and complex surfaces to be analyzed. These surfaces are cluttered with a high number of toolmarks, which overlap and distort each other. In Clausing et al., we present an improved approach for a reliable segmentation of relevant trace regions but without the possibility of separating single traces out of segmented trace regions. However, in our past research, especially features based on shape and dimension turned out to be highly relevant for a fully automated analysis and interpretation. In this paper, we consequently propose an approach for this separation. To achieve this goal, we use our segmentation approach and expand it with a combination of the watershed algorithm with a graph-based analysis. Found sub-regions are compared based on their surface character and are connected or divided depending on their similarity. We evaluate our approach with a test set of about 1,300 single traces on the exemplary locking cylinder component 'key pin' and thereby are able of showing the high suitability of our approach.

  18. 3D registration of intravascular optical coherence tomography and cryo-image volumes for microscopic-resolution validation

    NASA Astrophysics Data System (ADS)

    Prabhu, David; Mehanna, Emile; Gargesha, Madhusudhana; Wen, Di; Brandt, Eric; van Ditzhuijzen, Nienke S.; Chamie, Daniel; Yamamoto, Hirosada; Fujino, Yusuke; Farmazilian, Ali; Patel, Jaymin; Costa, Marco; Bezerra, Hiram G.; Wilson, David L.

    2016-03-01

    High resolution, 100 frames/sec intravascular optical coherence tomography (IVOCT) can distinguish plaque types, but further validation is needed, especially for automated plaque characterization. We developed experimental and 3D registration methods, to provide validation of IVOCT pullback volumes using microscopic, brightfield and fluorescent cryoimage volumes, with optional, exactly registered cryo-histology. The innovation was a method to match an IVOCT pullback images, acquired in the catheter reference frame, to a true 3D cryo-image volume. Briefly, an 11-parameter, polynomial virtual catheter was initialized within the cryo-image volume, and perpendicular images were extracted, mimicking IVOCT image acquisition. Virtual catheter parameters were optimized to maximize cryo and IVOCT lumen overlap. Local minima were possible, but when we started within reasonable ranges, every one of 24 digital phantom cases converged to a good solution with a registration error of only +1.34+/-2.65μm (signed distance). Registration was applied to 10 ex-vivo cadaver coronary arteries (LADs), resulting in 10 registered cryo and IVOCT volumes yielding a total of 421 registered 2D-image pairs. Image overlays demonstrated high continuity between vascular and plaque features. Bland- Altman analysis comparing cryo and IVOCT lumen area, showed mean and standard deviation of differences as 0.01+/-0.43 mm2. DICE coefficients were 0.91+/-0.04. Finally, visual assessment on 20 representative cases with easily identifiable features suggested registration accuracy within one frame of IVOCT (+/-200μm), eliminating significant misinterpretations introduced by 1mm errors in the literature. The method will provide 3D data for training of IVOCT plaque algorithms and can be used for validation of other intravascular imaging modalities.

  19. 3D registration of intravascular optical coherence tomography and cryo-image volumes for microscopic-resolution validation

    PubMed Central

    Prabhu, David; Mehanna, Emile; Gargesha, Madhusudhana; Wen, Di; Brandt, Eric; van Ditzhuijzen, Nienke S.; Chamie, Daniel; Yamamoto, Hirosada; Fujino, Yusuke; Farmazilian, Ali; Patel, Jaymin; Costa, Marco; Bezerra, Hiram G.; Wilson, David L.

    2016-01-01

    High resolution, 100 frames/sec intravascular optical coherence tomography (IVOCT) can distinguish plaque types, but further validation is needed, especially for automated plaque characterization. We developed experimental and 3D registration methods, to provide validation of IVOCT pullback volumes using microscopic, brightfield and fluorescent cryo-image volumes, with optional, exactly registered cryo-histology. The innovation was a method to match an IVOCT pull-back images, acquired in the catheter reference frame, to a true 3D cryo-image volume. Briefly, an 11-parameter, polynomial virtual catheter was initialized within the cryo-image volume, and perpendicular images were extracted, mimicking IVOCT image acquisition. Virtual catheter parameters were optimized to maximize cryo and IVOCT lumen overlap. Local minima were possible, but when we started within reasonable ranges, every one of 24 digital phantom cases converged to a good solution with a registration error of only +1.34±2.65μm (signed distance). Registration was applied to 10 ex-vivo cadaver coronary arteries (LADs), resulting in 10 registered cryo and IVOCT volumes yielding a total of 421 registered 2D-image pairs. Image overlays demonstrated high continuity between vascular and plaque features. Bland-Altman analysis comparing cryo and IVOCT lumen area, showed mean and standard deviation of differences as 0.01±0.43 mm2. DICE coefficients were 0.91±0.04. Finally, visual assessment on 20 representative cases with easily identifiable features suggested registration accuracy within one frame of IVOCT (±200μm), eliminating significant misinterpretations introduced by 1mm errors in the literature. The method will provide 3D data for training of IVOCT plaque algorithms and can be used for validation of other intravascular imaging modalities. PMID:27162417

  20. High-resolution 3-D P wave attenuation structure of the New Madrid Seismic Zone using local earthquake tomography

    NASA Astrophysics Data System (ADS)

    Bisrat, Shishay T.; DeShon, Heather R.; Pesicek, Jeremy; Thurber, Clifford

    2014-01-01

    A three-dimensional (3-D), high-resolution P wave seismic attenuation model for the New Madrid Seismic Zone (NMSZ) is determined using P wave path attenuation (t*) values of small-magnitude earthquakes (MD < 3.9). Events were recorded at 89 broadband and short-period seismometers of the Cooperative New Madrid Seismic Zone Network and 40 short-period seismometers of the Portable Array for Numerical Data Acquisition experiment. The amplitude spectra of all the earthquakes are simultaneously inverted for source, path (t*), and site parameters. The t* values are inverted for QP using local earthquake tomography methods and a known 3-D P wave velocity model for the region. The four major seismicity arms of the NMSZ exhibit reduced QP (higher attenuation) than the surrounding crust. The highest attenuation anomalies coincide with areas of previously reported high swarm activity attributed to fluid-rich fractures along the southeast extension of the Reelfoot fault. The QP results are consistent with previous attenuation studies in the region, which showed that active fault zones and fractured crust in the NMSZ are highly attenuating.

  1. High-resolution 3D imaging of whole organ after clearing: taking a new look at the zebrafish testis

    PubMed Central

    Frétaud, Maxence; Rivière, Laurie; Job, Élodie De; Gay, Stéphanie; Lareyre, Jean-Jacques; Joly, Jean-Stéphane; Affaticati, Pierre; Thermes, Violette

    2017-01-01

    Zebrafish testis has become a powerful model for reproductive biology of teleostean fishes and other vertebrates and encompasses multiple applications in applied and basic research. Many studies have focused on 2D images, which is time consuming and implies extrapolation of results. Three-dimensional imaging of whole organs recently became an important challenge to better understand their architecture and allow cell enumeration. Several protocols have thus been developed to enhance sample transparency, a limiting step for imaging large biological samples. However, none of these methods has been applied to the zebrafish testis. We tested five clearing protocols to determine if some of them could be applied with only small modifications to the testis. We compared clearing efficiency at both macroscopic and microscopic levels. CUBIC and PACT were suitable for an efficient transparency, an optimal optical penetration, the GFP fluorescence preservation and avoiding meaningful tissue deformation. Finally, we succeeded in whole testis 3D capture at a cellular resolution with both CUBIC and PACT, which will be valuable in a standard workflow to investigate the 3D architecture of the testis and its cellular content. This paves the way for further development of high content phenotyping studies in several fields including development, genetic or toxicology. PMID:28211501

  2. Joint Stochastic Inversion of Pre-Stack 3D Seismic Data and Well Logs for High Resolution Hydrocarbon Reservoir Characterization

    NASA Astrophysics Data System (ADS)

    Torres-Verdin, C.

    2007-05-01

    This paper describes the successful implementation of a new 3D AVA stochastic inversion algorithm to quantitatively integrate pre-stack seismic amplitude data and well logs. The stochastic inversion algorithm is used to characterize flow units of a deepwater reservoir located in the central Gulf of Mexico. Conventional fluid/lithology sensitivity analysis indicates that the shale/sand interface represented by the top of the hydrocarbon-bearing turbidite deposits generates typical Class III AVA responses. On the other hand, layer- dependent Biot-Gassmann analysis shows significant sensitivity of the P-wave velocity and density to fluid substitution. Accordingly, AVA stochastic inversion, which combines the advantages of AVA analysis with those of geostatistical inversion, provided quantitative information about the lateral continuity of the turbidite reservoirs based on the interpretation of inverted acoustic properties (P-velocity, S-velocity, density), and lithotype (sand- shale) distributions. The quantitative use of rock/fluid information through AVA seismic amplitude data, coupled with the implementation of co-simulation via lithotype-dependent multidimensional joint probability distributions of acoustic/petrophysical properties, yields accurate 3D models of petrophysical properties such as porosity and permeability. Finally, by fully integrating pre-stack seismic amplitude data and well logs, the vertical resolution of inverted products is higher than that of deterministic inversions methods.

  3. Resolution properties and 3-D reconstruction from multi-azimuth wide-angle data in the Baltic region

    NASA Astrophysics Data System (ADS)

    Sanina, I. A.; Riznichenko, O. Yu.; Markin, V. G.; Ushakov, A. L.; Snyder, D. B.

    2000-12-01

    Recent development of geotomography methods and wider use of seismic array observations have improved conditions for studying the 3-D velocity structure of the earth. The solution to this problem has a number of specific features, which ranges from the typical irregular geometry of the observation sites and seismic sources to the possibilities for seismic tomography at different scales (global, regional and local). The international BABEL survey provided one such spatial array with irregular geometry, many sources and a relatively small number of observation points. The seismic ray coverage is not uniformly dense and sufficient enough for reconstructing the media within the framework of tomography approach. This article presents results of a 3-D velocity reconstruction using data from shots along BABEL lines 1, 6 and 7, recorded by all available land stations. Estimation of the accuracy of reconstruction is made on the basis of mathematical modeling, model parametrization and starting model selection. Modeled velocities of 7.45-7.55 km/s between 46 and 57 km are transitional between those traditionally assigned to lower crust and mantle and are interpreted to represent high grade metamorphic crustal rocks or intermixing of crust and mantle at a seismically small scale (100 m).

  4. Improved 2D/3D registration robustness using local spatial information

    NASA Astrophysics Data System (ADS)

    De Momi, Elena; Eckman, Kort; Jaramaz, Branislav; DiGioia, Anthony, III

    2006-03-01

    Xalign is a tool designed to measure implant orientation after joint arthroplasty by co-registering a projection of an implant model and a digitally reconstructed radiograph of the patient's anatomy with a post operative x-ray. A mutual information based registration method is used to automate alignment. When using basic mutual information, the presence of local maxima can result in misregistration. To increase robustness of registration, our research is aimed at improving the similarity function by modifying the information measure and incorporating local spatial information. A test dataset with known groundtruth parameters was created to evaluate the performance of this measure. A synthetic radiograph was generated first from a preoperative pelvic CT scan to act as the gold standard. The voxel weights used to generate the image were then modified and new images were generated with the CT rigidly transformed. The roll, pitch and yaw angles span a range of -10/+10 degrees, while x, y and z translations range from -10mm to +10mm. These images were compared with the reference image. The proposed cost function correctly identified the correct pose in all tests and did not exhibit any local maxima which would slow or prevent locating the global maximum.

  5. 3D Spatial Distribution of the Intergalactic Medium: The ESO Blues?

    NASA Astrophysics Data System (ADS)

    Rollinde, Emmanuel; Petitjean, Patrick; Pichon, Christophe; Colombi, Stéphane; Aracil, Bastien

    The numerous absorption lines seen in the spectra of distant quasars (the so-called Lyman-α forest) reveal the intergalactic medium (IGM) up to redshifts larger than 5. It is believed that the space distribution of the gas traces the potential wells of the dark matter. Indeed, recent numerical N-body simulations have been successful at reproducing the observed characteristics of the Lyman-α forest (e.g. [1][12][5]). The IGM is therefore seen as a smooth pervasive medium which can be used to study the spatial distribution of the mass on scales larger than the Jeans' length. This idea is reinforced by observations of multiple lines of sight. It is observed that the Lyman-α forest is fairly homogeneous on scale smaller than 100 kpc (e.g. [11]) and highly correlated on scale up to one megaparsec (e.g. [13][3]). The number of suitable multiple lines of sight is small however and the sample need to be significantly enlarged before any firm conclusion can be drawn (see Section 3.3).

  6. Spatial light modulator phase mask implementation of wavefront encoded 3D computational-optical microscopy.

    PubMed

    King, Sharon V; Doblas, Ana; Patwary, Nurmohammed; Saavedra, Genaro; Martínez-Corral, Manuel; Preza, Chrysanthe

    2015-10-10

    Spatial light modulator (SLM) implementation of wavefront encoding enables various types of engineered point-spread functions (PSFs), including the generalized-cubic and squared-cubic phase mask wavefront encoded (WFE) PSFs, shown to reduce the impact of sample-induced spherical aberration in fluorescence microscopy. This investigation validates dynamic experimental parameter variation of these WFE-PSFs. We find that particular design parameter bounds exist, within which the divergence of computed and experimental WFE-PSFs is of the same order of magnitude as that of computed and experimental conventional PSFs, such that model-based approaches for solving the inverse imaging problem can be applied to a wide range of SLM-WFE systems. Interferometric measurements were obtained to evaluate the SLM implementation of the numeric mask. Agreement between experiment and theory in terms of a wrapped phase, 0-2π, validates the phase mask implementation and allows characterization of the SLM response. These measurements substantiate experimental practice of computational-optical microscope imaging with an SLM-engineered PSF.

  7. On the spatial distribution of seismicity and the 3D tectonic stress field in western Greece

    NASA Astrophysics Data System (ADS)

    Kassaras, Ioannis; Kapetanidis, Vasilis; Karakonstantis, Andreas

    2016-10-01

    We analyzed a large number of focal mechanisms and relocated earthquake hypocenters to investigate the geodynamics of western Greece, the most seismically active part of the Aegean plate-boundary zone. This region was seismically activated multiple times during the last decade, providing a large amount of enhanced quality new information that was obtained by the Hellenic Unified Seismological Network (HUSN). Relocated seismicity using a double-difference method appears to be concentrated above ∼35 km depth, exhibiting spatial continuity along the convergence boundary and being clustered elsewhere. Earthquakes are confined within the accreted sediments escarpment of the down-going African plate against the un-deformed Eurasian hinterland. The data arrangement shows that Pindos constitutes a seismic boundary along which large stress heterogeneities occur. In Cephalonia no seismicity is found to be related with the offshore Cephalonia Transform Fault (CTF). Onshore, Nsbnd S crustal extension dominates, while in central and south Peloponnesus the stress field appears rotated by 90°. Shearing-stress obliquity by 30° is indicated along the major strike-slip faults, consistent with clockwise crustal rotation. Within the lower crust, the stress field appears affected by plate kinematics and distributed deformation of the lower crust and upper mantle, which guide the regional geodynamics.

  8. High resolution 3D MRI of mouse mammary glands with intra-ductal injection of contrast media.

    PubMed

    Markiewicz, Erica; Fan, Xiaobing; Mustafi, Devkumar; Zamora, Marta; Roman, Brian B; Jansen, Sanaz A; Macleod, Kay; Conzen, Suzanne D; Karczmar, Gregory S

    2015-01-01

    The purpose of this study was to use high resolution three-dimensional (3D) magnetic resonance imaging (MRI) to study mouse mammary gland ductal architecture based on intra-ductal injection of contrast agents. Female FVB/N mice age 12-20 weeks (n=12), were used in this study. A 34G, 45° tip Hamilton needle with a 25μL Hamilton syringe was inserted into the tip of the nipple. Approximately 20-25μL of a Gadodiamide/Trypan blue/saline solution was injected slowly over one minute into the nipple and duct. To prevent washout of contrast media from ducts due to perfusion, and maximize the conspicuity of ducts on MRI, mice were sacrificed one minute after injection. High resolution 3D T1-weighted images were acquired on a 9.4T Bruker scanner after sacrifice to eliminate motion artifacts and reduce contrast media leakage from ducts. Trypan blue staining was well distributed throughout the ductal tree. MRI showed the mammary gland ductal structure clearly. In spoiled gradient echo T1-weighted images, the signal-to-noise ratio of regions identified as enhancing mammary ducts following contrast injection was significantly higher than that of muscle (p<0.02) and significantly higher than that of contralateral mammary ducts that were not injected with contrast media (p<0.0001). The methods described here could be adapted for injection of specialized contrast agents to measure metabolism or target receptors in normal ducts and ducts with in situ cancers.

  9. A High-resolution 3D Geodynamical Model of the Present-day India-Asia Collision System

    NASA Astrophysics Data System (ADS)

    Kaus, B.; Baumann, T.

    2015-12-01

    We present a high-resolution, 3D geodynamic model of the present-day India-Asia collision system. The model is separated into multiple tectonic blocks, for which we estimate the first order rheological properties and the impact on the dynamics of the collision system. This is done by performing systematic simulations with different rheologies to minimize the misfit to observational constraints such as the GPS-velocity field. The simulations are performed with the parallel staggered grid FD code LaMEM using a numerical resolution of at least 512x512x256 cells to resolve dynamically important shear zones reasonably well. A fundamental part of this study is the reconstruction of the 3D present-day geometry of Tibet and the adjacent regions. Our interpretations of crust and mantle lithosphere geometry are jointly based on a globally available shear wave tomography (Schaeffer and Lebedev, 2013) and the Crust 1.0 model (Laske et al. http://igppweb.ucsd.edu/~gabi/crust1.html). We regionally refined and modified our interpretations based on seismicity distributions and focal mechanisms and incorporated regional receiver function studies to improve the accuracy of the Moho in particular. Results suggest that we can identify at least one "best-fit" solution in terms of rheological model properties that reproduces the observed velocity field reasonably well, including the strong rotation of the GPS velocity around the eastern syntax of the Himalaya. We also present model co-variances to illustrate the trade-offs between the rheological model parameters, their respective uncertainties, and the model fit. Schaeffer, A.J., Lebedev, S., 2013. Global shear speed structure of the upper mantle and transition zone. Geophysical Journal International 194, 417-449. doi:10.1093/gji/ggt095

  10. High-resolution 3-D S-wave Tomography of upper crust structures in Yilan Plain from Ambient Seismic Noise

    NASA Astrophysics Data System (ADS)

    Chen, Kai-Xun; Chen, Po-Fei; Liang, Wen-Tzong; Chen, Li-Wei; Gung, YuanCheng

    2015-04-01

    The Yilan Plain (YP) in NE Taiwan locates on the western YP of the Okinawa Trough and displays high geothermal gradients with abundant hot springs, likely resulting from magmatism associated with the back-arc spreading as attested by the offshore volcanic island (Kueishantao). YP features NS distinctive characteristics that the South YP exhibits thin top sedimentary layer, high on-land seismicity and significant SE movements, relative those of the northern counterpart. A dense network (~2.5 km station interval) of 89 Texan instruments was deployed in Aug. 2014, covering most of the YP and its vicinity. The ray path coverage density of each 0.015 degree cells are greater than 150 km that could provide the robustness assessment of tomographic results. We analyze ambient noise signals to invert a high-resolution 3D S-wave model for shallow velocity structures in and around YP. The aim is to investigate the velocity anomalies corresponding to geothermal resources and the NS geological distinctions aforementioned. We apply the Welch's method to generate empirical Rayleigh wave Green's functions between two stations records of continuous vertical components. The group velocities of thus derived functions are then obtained by the multiple-filter analysis technique measured at the frequency range between 0.25 and 1 Hz. Finally, we implement a wavelet-based multi-scale parameterization technique to construct 3D model of S-wave velocity. Our first month results exhibit low velocity in the plain, corresponding existing sediments, those of whole YP show low velocity offshore YP and those of high-resolution south YP reveal stark velocity contrast across the Sanshin fault. Key words: ambient seismic noises, Welch's method, S-wave, Yilan Plain

  11. Investigating Cardiac Motion Patterns Using Synthetic High-Resolution 3D Cardiovascular Magnetic Resonance Images and Statistical Shape Analysis

    PubMed Central

    Biffi, Benedetta; Bruse, Jan L.; Zuluaga, Maria A.; Ntsinjana, Hopewell N.; Taylor, Andrew M.; Schievano, Silvia

    2017-01-01

    Diagnosis of ventricular dysfunction in congenital heart disease is more and more based on medical imaging, which allows investigation of abnormal cardiac morphology and correlated abnormal function. Although analysis of 2D images represents the clinical standard, novel tools performing automatic processing of 3D images are becoming available, providing more detailed and comprehensive information than simple 2D morphometry. Among these, statistical shape analysis (SSA) allows a consistent and quantitative description of a population of complex shapes, as a way to detect novel biomarkers, ultimately improving diagnosis and pathology understanding. The aim of this study is to describe the implementation of a SSA method for the investigation of 3D left ventricular shape and motion patterns and to test it on a small sample of 4 congenital repaired aortic stenosis patients and 4 age-matched healthy volunteers to demonstrate its potential. The advantage of this method is the capability of analyzing subject-specific motion patterns separately from the individual morphology, visually and quantitatively, as a way to identify functional abnormalities related to both dynamics and shape. Specifically, we combined 3D, high-resolution whole heart data with 2D, temporal information provided by cine cardiovascular magnetic resonance images, and we used an SSA approach to analyze 3D motion per se. Preliminary results of this pilot study showed that using this method, some differences in end-diastolic and end-systolic ventricular shapes could be captured, but it was not possible to clearly separate the two cohorts based on shape information alone. However, further analyses on ventricular motion allowed to qualitatively identify differences between the two populations. Moreover, by describing shape and motion with a small number of principal components, this method offers a fully automated process to obtain visually intuitive and numerical information on cardiac shape and motion

  12. Recording, Visualization and Documentation of 3D Spatial Data for Monitoring Topography in Areas of Cultural Heritage

    NASA Astrophysics Data System (ADS)

    Maravelakis, Emmanouel; Konstantaras, Antonios; Axaridou, Anastasia; Chrysakis, Ioannis; Xinogalos, Michalis

    2014-05-01

    . allowing them to interchange their knowledge, findings and observations at different time frames. Results outline the successful application of the above systems in certain Greek areas of important cultural heritage [3,11] were significant efforts are being made for their preservation through time. Acknowledgement The authors wish to thank the General Secretariat for Research and Technology of Ministry of Education and Religious Affairs, Culture and Sports in Greece for their financial support via program Cooperation: Partnership of Production and Research Institutions in Small and Medium Scale Projects, Project Title: "3D-SYSTEK - Development of a novel system for 3D Documentation, Promotion and Exploitation of Cultural Heritage Monuments via 3D data acquisition, 3D modeling and metadata recording". Keywords spatial data, land degradation monitoring, 3D modeling and visualization, terrestrial laser scanning, documentation and metadata repository, protection of cultural heritage References [1] Shalaby, A., and Tateishi, R.: Remote sensing and GIS for mapping and monitoring land cover and land-use changes in the northwestern coastal zone of egypt. Applied Geography, 27(1), 28-41, (2007) [2] Poesen, J. W. A., and Hooke, J. M.: Erosion, flooding and channel management in mediterranean environments of southern europe. Progress in Physical Geography, 21(2), 157-199, (1997) [3] Maravelakis, E., Bilalis, N., Mantzorou, I., Konstantaras, A., Antoniadis, A.: 3D modeling of the oldest olive tree of the world. IJCER 2(2), 340-347 (2012) [4] Manferdini, A.M., Remondino, F.: Reality-Based 3D Modeling, Segmentation and Web- Based Visualization. In: Ioannides, M., Fellner, D., Georgopoulos, A., Hadjimitsis, D.G. (eds.) EuroMed 2010. LNCS, vol. 6436, pp. 110-124. Springer, Heidelberg (2010) [5] Tapete, D., Casagli, N., Luzi, G., Fanti, R., Gigli, G., Leva, D.: Integrating radar and laserbased remote sensing techniques for monitoring structural deformation of archaeological monuments

  13. 1D-3D hybrid modeling-from multi-compartment models to full resolution models in space and time.

    PubMed

    Grein, Stephan; Stepniewski, Martin; Reiter, Sebastian; Knodel, Markus M; Queisser, Gillian

    2014-01-01

    Investigation of cellular and network dynamics in the brain by means of modeling and simulation has evolved into a highly interdisciplinary field, that uses sophisticated modeling and simulation approaches to understand distinct areas of brain function. Depending on the underlying complexity, these models vary in their level of detail, in order to cope with the attached computational cost. Hence for large network simulations, single neurons are typically reduced to time-dependent signal processors, dismissing the spatial aspect of each cell. For single cell or networks with relatively small numbers of neurons, general purpose simulators allow for space and time-dependent simulations of electrical signal processing, based on the cable equation theory. An emerging field in Computational Neuroscience encompasses a new level of detail by incorporating the full three-dimensional morphology of cells and organelles into three-dimensional, space and time-dependent, simulations. While every approach has its advantages and limitations, such as computational cost, integrated and methods-spanning simulation approaches, depending on the network size could establish new ways to investigate the brain. In this paper we present a hybrid simulation approach, that makes use of reduced 1D-models using e.g., the NEURON simulator-which couples to fully resolved models for simulating cellular and sub-cellular dynamics, including the detailed three-dimensional morphology of neurons and organelles. In order to couple 1D- and 3D-simulations, we present a geometry-, membrane potential- and intracellular concentration mapping framework, with which graph- based morphologies, e.g., in the swc- or hoc-format, are mapped to full surface and volume representations of the neuron and computational data from 1D-simulations can be used as boundary conditions for full 3D simulations and vice versa. Thus, established models and data, based on general purpose 1D-simulators, can be directly coupled to the

  14. 1D-3D hybrid modeling—from multi-compartment models to full resolution models in space and time

    PubMed Central

    Grein, Stephan; Stepniewski, Martin; Reiter, Sebastian; Knodel, Markus M.; Queisser, Gillian

    2014-01-01

    Investigation of cellular and network dynamics in the brain by means of modeling and simulation has evolved into a highly interdisciplinary field, that uses sophisticated modeling and simulation approaches to understand distinct areas of brain function. Depending on the underlying complexity, these models vary in their level of detail, in order to cope with the attached computational cost. Hence for large network simulations, single neurons are typically reduced to time-dependent signal processors, dismissing the spatial aspect of each cell. For single cell or networks with relatively small numbers of neurons, general purpose simulators allow for space and time-dependent simulations of electrical signal processing, based on the cable equation theory. An emerging field in Computational Neuroscience encompasses a new level of detail by incorporating the full three-dimensional morphology of cells and organelles into three-dimensional, space and time-dependent, simulations. While every approach has its advantages and limitations, such as computational cost, integrated and methods-spanning simulation approaches, depending on the network size could establish new ways to investigate the brain. In this paper we present a hybrid simulation approach, that makes use of reduced 1D-models using e.g., the NEURON simulator—which couples to fully resolved models for simulating cellular and sub-cellular dynamics, including the detailed three-dimensional morphology of neurons and organelles. In order to couple 1D- and 3D-simulations, we present a geometry-, membrane potential- and intracellular concentration mapping framework, with which graph- based morphologies, e.g., in the swc- or hoc-format, are mapped to full surface and volume representations of the neuron and computational data from 1D-simulations can be used as boundary conditions for full 3D simulations and vice versa. Thus, established models and data, based on general purpose 1D-simulators, can be directly coupled to

  15. Classification of High Spatial Resolution, Hyperspectral ...

    EPA Pesticide Factsheets

    EPA announced the availability of the final report,Spatial Resolution, Hyperspectral Remote Sensing Imagery of the Little Miami River Watershed in Southwest Ohio, USA . This report and associated land use/land cover (LULC) coverage is the result of a collaborative effort among an interdisciplinary team of scientists with the U.S. Environmental Protection Agency's (U.S. EPA's) Office of Research and Development in Cincinnati, Ohio. A primary goal of this project is to enhance the use of geography and spatial analytic tools in risk assessment, and to improve the scientific basis for risk management decisions affecting drinking water and water quality. The land use/land cover classification is derived from 82 flight lines of Compact Airborne Spectrographic Imager (CASI) hyperspectral imagery acquired from July 24 through August 9, 2002 via fixed-wing aircraft.

  16. The Spatial Extent and Distribution of Star Formation in 3D-HST Mergers at z is approximately 1.5

    NASA Technical Reports Server (NTRS)

    Schmidt, Kasper B.; Rix, Hans-Walter; da Cunha, Elisabete; Brammer, Gabriel B.; Cox, Thomas J.; Van Dokkum, Pieter; Foerster Schreiber, Natascha M.; Franx, Marijn; Fumagalli, Mattia; Jonsson, Patrik; Lundgren, Britt; Maseda, Michael V.; Momcheva, Ivelina; Nelson, Erica J.; Skelton, Rosalind E.; van der Wel, Arjen; Whitaker, Katherine E.

    2013-01-01

    We present an analysis of the spatial distribution of star formation in a sample of 60 visually identified galaxy merger candidates at z greater than 1. Our sample, drawn from the 3D-HST survey, is flux-limited and was selected to have high star formation rates based on fits of their broad-band, low spatial resolution spectral energy distributions. It includes plausible pre-merger (close pairs) and post-merger (single objects with tidal features) systems,with total stellar masses and star formation rates derived from multi-wavelength photometry. Here we use near-infrared slitless spectra from 3D-HST which produce H or [OIII] emission line maps as proxies for star-formation maps. This provides a first comprehensive high-resolution, empirical picture of where star formation occurred in galaxy mergers at the epoch of peak cosmic star formation rate. We find that detectable star formation can occur in one or both galaxy centres, or in tidal tails. The most common case (58%) is that star formation is largely concentrated in a single, compact region, coincident with the centre of (one of) the merger components. No correlations between star formation morphology and redshift, total stellar mass, or star formation rate are found. A restricted set of hydrodynamical merger simulationsbetween similarly massive and gas-rich objects implies that star formation should be detectable in both merger components, when the gas fractions of the individual components are the same. This suggests that z is approximately 1.5 mergers typically occur between galaxies whose gas fractions, masses, andor star formation rates are distinctly different from one another.

  17. Trade-off between angular and spatial resolutions in in vivo fiber tractography.

    PubMed

    Vos, Sjoerd B; Aksoy, Murat; Han, Zhaoying; Holdsworth, Samantha J; Maclaren, Julian; Viergever, Max A; Leemans, Alexander; Bammer, Roland

    2016-04-01

    Tractography is becoming an increasingly popular method to reconstruct white matter connections in vivo. The diffusion MRI data that tractography is based on requires a high angular resolution to resolve crossing fibers whereas high spatial resolution is required to distinguish kissing from crossing fibers. However, scan time increases with increasing spatial and angular resolutions, which can become infeasible in clinical settings. Here we investigated the trade-off between spatial and angular resolutions to determine which of these factors is most worth investing scan time in. We created a unique diffusion MRI dataset with 1.0 mm isotropic resolution and a high angular resolution (100 directions) using an advanced 3D diffusion-weighted multi-slab EPI acquisition. This dataset was reconstructed to create subsets of lower angular (75, 50, and 25 directions) and lower spatial (1.5, 2.0, and 2.5 mm) resolution. Using all subsets, we investigated the effects of angular and spatial resolutions in three fiber bundles-the corticospinal tract, arcuate fasciculus and corpus callosum-by analyzing the volumetric bundle overlap and anatomical correspondence between tracts. Our results indicate that the subsets of 25 and 50 directions provided inferior tract reconstructions compared with the datasets with 75 and 100 directions. Datasets with spatial resolutions of 1.0, 1.5, and 2.0 mm were comparable, while the lowest resolution (2.5 mm) datasets had discernible inferior quality. In conclusion, we found that angular resolution appeared to be more influential than spatial resolution in improving tractography results. Spatial resolutions higher than 2.0 mm only appear to benefit multi-fiber tractography methods if this is not at the cost of decreased angular resolution.

  18. High Spatial Resolution Commercial Satellite Imaging Product Characterization

    NASA Technical Reports Server (NTRS)

    Ryan, Robert E.; Pagnutti, Mary; Blonski, Slawomir; Ross, Kenton W.; Stnaley, Thomas

    2005-01-01

    NASA Stennis Space Center's Remote Sensing group has been characterizing privately owned high spatial resolution multispectral imaging systems, such as IKONOS, QuickBird, and OrbView-3. Natural and man made targets were used for spatial resolution, radiometric, and geopositional characterizations. Higher spatial resolution also presents significant adjacency effects for accurate reliable radiometry.

  19. WE-AB-BRB-00: Session in Memory of Robert J. Shalek: High Resolution Dosimetry from 2D to 3D to Real-Time 3D.

    PubMed

    Li, Harold

    2016-06-01

    Despite widespread IMRT treatments at modern radiation therapy clinics, precise dosimetric commissioning of an IMRT system remains a challenge. In the most recent report from the Radiological Physics Center (RPC), nearly 20% of institutions failed an end-to-end test with an anthropomorphic head and neck phantom, a test that has rather lenient dose difference and distance-to-agreement criteria of 7% and 4 mm. The RPC report provides strong evidence that IMRT implementation is prone to error and that improved quality assurance tools are required. At the heart of radiation therapy dosimetry is the multidimensional dosimeter. However, due to the limited availability of water-equivalent dosimetry materials, research and development in this important field is challenging. In this session, we will review a few dosimeter developments that are either in the laboratory phase or in the pre-commercialization phase. 1) Radiochromic plastic. Novel formulations exhibit light absorbing optical contrast with very little scatter, enabling faster, broad beam optical CT design. 2) Storage phosphor. After irradiation, the dosimetry panels will be read out using a dedicated 2D scanning apparatus in a non-invasive, electro-optic manner and immediately restored for further use. 3) Liquid scintillator. Scintillators convert the energy from x-rays and proton beams into visible light, which can be recorded with a scientific camera (CCD or CMOS) from multiple angles. The 3D shape of the dose distribution can then be reconstructed. 4) Cherenkov emission imaging. Gated intensified imaging allows video-rate passive detection of Cherenkov emission during radiation therapy with the room lights on.

  20. 3D localization of a labeled target by means of a stereo vision configuration with subvoxel resolution.

    PubMed

    Arias H, Néstor A; Sandoz, Patrick; Meneses, Jaime E; Suarez, Miguel A; Gharbi, Tijani

    2010-11-08

    We present a method for the visual measurement of the 3D position and orientation of a moving target. Three dimensional sensing is based on stereo vision while high resolution results from a pseudo-periodic pattern (PPP) fixed onto the target. The PPP is suited for optimizing image processing that is based on phase computations. We describe experimental setup, image processing and system calibration. Resolutions reported are in the micrometer range for target position (x,y,z) and of 5:3x10(-4) rad: for target orientation (θx,θy,θz). These performances have to be appreciated with respect to the vision system used. The latter makes that every image pixel corresponds to an actual distance of 0:3x0:3 mm2 on the target while the PPP is made of elementary dots of 1 mm with a period of 2 mm. Target tilts as large as π=4 are allowed with respect to the Z axis of the system.

  1. Correction of Depth-Dependent Aberrations in 3D Single Molecule Localization and Super-resolution Microscopy

    PubMed Central

    McGorty, Ryan; Schnitzbauer, Joerg; Zhang, Wei; Huang, Bo

    2014-01-01

    Single molecule switching based super-resolution microscopy techniques have been extended into three dimensions through various 3D single molecule localization methods. However, the localization accuracy in z can be severely degraded by the presence of aberrations, particularly the spherical aberration introduced by the refractive-index-mismatch when imaging into an aqueous sample with an oil immersion objective. This aberration confines the imaging depth in most experiments to regions close to the coverslip. Here, we show a method to obtain accurate, depth dependent z calibrations by measuring the point spread function (PSF) at the coverslip surface, calculating the microscope pupil function through phase retrieval, and then computing the depth dependent PSF with the addition of spherical aberrations. We demonstrate experimentally that this method can maintain z localization accuracy over a large range of imaging depths. Our super-resolution images of a mammalian cell nucleus acquired between 0 and 2.5 μm past the coverslip show that this method produces accurate z localizations even in the deepest focal plane. PMID:24562125

  2. High-resolution non-invasive 3D imaging of paint microstructure by synchrotron-based X-ray laminography

    NASA Astrophysics Data System (ADS)

    Reischig, Péter; Helfen, Lukas; Wallert, Arie; Baumbach, Tilo; Dik, Joris

    2013-06-01

    The characterisation of the microstructure and micromechanical behaviour of paint is key to a range of problems related to the conservation or technical art history of paintings. Synchrotron-based X-ray laminography is demonstrated in this paper to image the local sub-surface microstructure in paintings in a non-invasive and non-destructive way. Based on absorption and phase contrast, the method can provide high-resolution 3D maps of the paint stratigraphy, including the substrate, and visualise small features, such as pigment particles, voids, cracks, wood cells, canvas fibres etc. Reconstructions may be indicative of local density or chemical composition due to increased attenuation of X-rays by elements of higher atomic number. The paint layers and their interfaces can be distinguished via variations in morphology or composition. Results of feasibility tests on a painting mockup (oak panel, chalk ground, vermilion and lead white paint) are shown, where lateral and depth resolution of up to a few micrometres is demonstrated. The method is well adapted to study the temporal evolution of the stratigraphy in test specimens and offers an alternative to destructive sampling of original works of art.

  3. Applying very high resolution microfocus X-ray CT and 3-D reconstruction to the human auditory apparatus.

    PubMed

    Shibata, T; Nagano, T

    1996-08-01

    Conventional high-resolution X-ray computed tomography (XCT) is an important medical technique because it provides sectional images (tomograms) of internal structures without destroying the specimen. However, it is difficult to observe and to analyze fine structures less than a few cubic millimeters in size because of its low spatial resolution of 0.4 mm. Overcoming this problem would not only enable visualization of human anatomical structures in living subjects by means of computer images but would make it possible to obtain the equivalent of microscopic images by XCT without making microscopic sections of biopsy material, which would allow the examination of the entire body and detection of focal lesions at an early stage. Bonse et al. and Kinney et al. studied absorption contrast microtomography by using synchrotron radiation and achieved 8-microns spatial resolution in human cancellous bone. Recently, Momose et al. reported examining the soft tissue of cancerous rabbit liver by a modification of the phase-contrast technique using synchrotron radiation with a spatial resolution of 30 microns (ref. 4). However, the equipment for synchrotron radiation requires a great deal of space and is very expensive. Aoki et al., on a different tack, reported microtomography of frog embryos by using a conventional laboratory microfocus X-ray source with a spot size of about 2 microns (ref. 5). As no human tomographic studies by superresolution microfocus XCT (MFXCT) using a normal open-type X-ray source have been reported, we tried using MFXCT with a maximum experimental spatial resolution of 2.5 microns, especially designed for industrial use, on the auditory ossicles of a human fetus, the smallest and lightest bones in the skeletal system. No XCT studies of fetal auditory ossicles have been reported to date. The fine tomograms with three-dimensional reconstructions obtained showed the existence of an apparently previously undescribed joint between the tympanic ring and the

  4. Spatial resolution in plantar pressure measurement revisited.

    PubMed

    Pataky, Todd C

    2012-08-09

    Plantar pressures are typically measured using sensors of finite area, so the accuracy with which one can measure true maximum pressure is dependent on sensor size. Measurement accuracy has been modeled previously for one patient's metatarsals (Lord, 1997), but has not been modeled either for general subjects or for other parts of the foot. The purposes of this study were (i) to determine whether Lord's (1997) model is also valid for heel and hallux pressures, and (ii) to examine how sensor size relates to measurement accuracy in the context of four factors common to many measurement settings: pressure pulse size, foot positioning, pressure change quantification, and gross pressure redistribution. Lord's (1997) model was first generalized and was then validated using 10 healthy walking subjects, with relatively low RMSE values on the order of 20 kPa. Next, postural data were used to show that gross pressure redistributions can be accurately quantified (p<0.002), even with rather gross sensor sizes of 30 mm. Finally, numerical analyses revealed that the relation between sensor size and measurement accuracy is highly complex, with deep dependency on the measurement context. In particular, the critical sensor widths required to achieve 90% accuracy ranged from 1.7 mm to 17.4 mm amongst the presently investigated scenarios. Since measurement accuracy varies so extensively with so many factors, the current results cannot yield specific recommendations regarding spatial resolution. It is concluded simply that no particular spatial resolution can yield a constant measurement accuracy across common plantar pressure measurement tasks.

  5. Strength and Performance Enhancement of Bonded Joints by Spatial Tailoring of Adhesive Compliance via 3D Printing.

    PubMed

    Kumar, S; Wardle, Brian L; Arif, Muhamad F

    2017-01-11

    Adhesive bonding continues to emerge as a preferred route for joining materials with broad applications including advanced structures, microelectronics, biomedical systems, and consumer goods. Here, we study the mechanics of deformation and failure of tensile-loaded single-lap joints with a compliance-tailored adhesive. Tailoring of the adhesive compliance redistributes stresses and strains to reduce both shear and peel concentrations at the ends of the adhesive that determine failure of the joint. Utilizing 3D printing, the modulus of the adhesive is spatially varied along the bondlength. Experimental strength testing, including optical strain mapping, reveals that the strain redistribution results in a greater than 100% increase in strength and toughness concomitant with a 50% increase in strain-to-break while maintaining joint stiffness. The tailoring demonstrated here is immediately realizable in a broad array of 3D printing applications, and the level of performance enhancement suggests that compliance tailoring of the adhesive is a generalizable route for achieving superior performance of joints in other applications, such as advanced structural composites.

  6. High-resolution 3D analyses of the shape and internal constituents of small volcanic ash particles: The contribution of SEM micro-computed tomography (SEM micro-CT)

    NASA Astrophysics Data System (ADS)

    Vonlanthen, Pierre; Rausch, Juanita; Ketcham, Richard A.; Putlitz, Benita; Baumgartner, Lukas P.; Grobéty, Bernard

    2015-02-01

    The morphology of small volcanic ash particles is fundamental to our understanding of magma fragmentation, and in transport modeling of volcanic plumes and clouds. Until recently, the analysis of 3D features in small objects (< 250 μm) was either restricted to extrapolations from 2D approaches, partial stereo-imaging, or CT methods having limited spatial resolution and/or accessibility. In this study, an X-ray computed-tomography technique known as SEM micro-CT, also called 3D X-ray ultramicroscopy (3D XuM), was used to investigate the 3D morphology of small volcanic ash particles (125-250 μm sieve fraction), as well as their vesicle and microcrystal distribution. The samples were selected from four stratigraphically well-established tephra layers of the Meerfelder Maar (West Eifel Volcanic Field, Germany). Resolution tests performed on a Beametr v1 pattern sample along with Monte Carlo simulations of X-ray emission volumes indicated that a spatial resolution of 0.65 μm was obtained for X-ray shadow projections using a standard thermionic SEM and a bulk brass target as X-ray source. Analysis of a smaller volcanic ash particle (64-125 μm sieve fraction) showed that features with volumes > 20 μm3 (~ 3.5 μm in diameter) can be successfully reconstructed and quantified. In addition, new functionalities of the Blob3D software were developed to allow the particle shape factors frequently used as input parameters in ash transport and dispersion models to be calculated. This study indicates that SEM micro-CT is very well suited to quantify the various aspects of shape in fine volcanic ash, and potentially also to investigate the 3D morphology and internal structure of any object < 0.1 mm3.

  7. Crust Uppermost Mantle Structure beneath Eastern Asia: Progress towards a Uniform, Tightly Constrained, High Resolution 3-D Model

    NASA Astrophysics Data System (ADS)

    Shen, W.; Ritzwoller, M. H.; Zheng, Y.; Lin, F. C.; Kim, Y.; Ning, J.; Kang, D.; Feng, L.; Wiens, D. A.

    2015-12-01

    In the past decade, large and dense seismic arrays have been deployed across much of eastern Asia (e.g., the "CEArray" and the "China Array" deployed by the China Earthquake Administration (CEA), the NECESS Array deployed collaboratively by China, Japan and the US, Korean Seismic Network, KNET and other networks in Japan, and historical PASSCAL installations), which have been used to produce increasingly well resolved models of the crust and uppermost mantle at different length scales. These models, however, do not cover eastern Asia uniformly. In this presentation, we report on an effort to generate a uniform high resolution 3-D model of the crust and uppermost mantle beneath eastern Asia using state-of-art surface wave and body wave inversion techniques. Highlights of this effort include: 1) We collect ambient noise cross-correlations using more than 1,800 seismic stations from multiple seismic arrays in this area and perform uniform surface wave tomography for the study area. 2) We collect P-wave receiver functions for over 1,000 stations and Rayleigh wave H/V ratio measurements for over 200 stations in this area. 3) We adopt a Bayesian Monte Carlo inversion to the Rayleigh wave dispersion maps and produce a uniform 3-D model with uncertainties of the crust and uppermost mantle. 4) In the areas where receiver functions and/or Rayleigh wave H/V ratios are collected, we replace the surface wave inversion by a joint inversion of surface waves and these seismic observables. The resulting model displays a great variety and considerable richness of geological and tectonic features in the crust and in the uppermost mantle which we summarize and discuss with focus on the relationship between the observed crustal variations and tectonic/geological boundaries and lithospheric modifications associated with volcanism in Northeast China.

  8. 3-D reconstruction of tissue components for atherosclerotic human arteries using ex vivo high-resolution MRI.

    PubMed

    Auer, Martin; Stollberger, Rudolf; Regitnig, Peter; Ebner, Franz; Holzapfel, Gerhard A

    2006-03-01

    Automatic computer-based methods are well suited for the image analysis of the different components in atherosclerotic plaques. Although several groups work on such analysis some of the methods used are oversimplified and require improvements when used within a computational framework for predicting meaningful stress and strain distributions in the heterogeneous arterial wall under various loading conditions. Based on high-resolution magnetic resonance imaging of excised atherosclerotic human arteries and a series of two-dimensional (2-D) contours we present a segmentation tool that permits a three-dimensional (3-D) reconstruction of the most important tissue components of atherosclerotic arteries. The underlying principle of the proposed approach is a model-based snake algorithm for identifying 2-D contours, which uses information about the plaque composition and geometric data of the tissue layers. Validation of the computer-generated tissue boundaries is performed with 100 MR images, which are compared with the results of a manual segmentation performed by four experts. Based on the Hausdorff distance and the average distance for computer-to-expert differences and the interexpert differences for the outer boundary of the adventitia, the adventitia-media, media-intima, intima-lumen and calcification boundaries are less than 1 pixel (0.234 mm). The percentage statistic shows similar results to the modified Williams index in terms of accuracy. Except for the identification of lipid-rich regions the proposed algorithm is automatic. The nonuniform rational B-spline-based computer-generated 3-D models of the individual tissue components provide a basis for clinical and computational analysis.

  9. Spatial variability and reproducibility of GABA-edited MEGA-LASER 3D-MRSI in the brain at 3 T.

    PubMed

    Hnilicová, Petra; Považan, Michal; Strasser, Bernhard; Andronesi, Ovidiu C; Gajdošík, Martin; Dydak, Ulrike; Ukropec, Jozef; Dobrota, Dušan; Trattnig, Siegfried; Bogner, Wolfgang

    2016-11-01

    The reproducibility of gamma-aminobutyric acid (GABA) quantification results, obtained with MRSI, was determined on a 3 T MR scanner in healthy adults. In this study, a spiral-encoded, GABA-edited, MEGA-LASER MRSI sequence with real-time motion-scanner-instability corrections was applied for robust 3D mapping of neurotransmitters in the brain. In particular, the GABA(+) (i.e. GABA plus macromolecule contamination) and Glx (i.e. glutamate plus glutamine contamination) signal was measured. This sequence enables 3D-MRSI with about 3 cm(3) nominal resolution in about 20 min. Since reliable quantification of GABA is challenging, the spatial distribution of the inter-subject and intra-subject variability of GABA(+) and Glx levels was studied via test-retest assessment in 14 healthy volunteers (seven men-seven women). For both inter-subject and intra-subject repeated measurement sessions a low coefficient of variation (CV) and a high intraclass correlation coefficient (ICC) were found for GABA(+) and Glx ratios across all evaluated voxels (intra-/inter-subject: GABA(+) ratios, CV ~ 8%-ICC > 0.75; Glx ratios, CV ~ 6%-ICC > 0.70). The same was found in selected brain regions for Glx ratios versus GABA(+) ratios (CV varied from about 5% versus about 8% in occipital and parietal regions, to about 8% versus about 10% in the frontal area, thalamus, and basal ganglia). These results provide evidence that 3D mapping of GABA(+) and Glx using the described methodology provides high reproducibility for application in clinical and neuroscientific studies.

  10. GRID3D-v2: An updated version of the GRID2D/3D computer program for generating grid systems in complex-shaped three-dimensional spatial domains

    NASA Technical Reports Server (NTRS)

    Steinthorsson, E.; Shih, T. I-P.; Roelke, R. J.

    1991-01-01

    In order to generate good quality systems for complicated three-dimensional spatial domains, the grid-generation method used must be able to exert rather precise controls over grid-point distributions. Several techniques are presented that enhance control of grid-point distribution for a class of algebraic grid-generation methods known as the two-, four-, and six-boundary methods. These techniques include variable stretching functions from bilinear interpolation, interpolating functions based on tension splines, and normalized K-factors. The techniques developed in this study were incorporated into a new version of GRID3D called GRID3D-v2. The usefulness of GRID3D-v2 was demonstrated by using it to generate a three-dimensional grid system in the coolent passage of a radial turbine blade with serpentine channels and pin fins.

  11. Nitric oxide spatial distribution in single cultured hippocampus neurons: investigation by projection of reconstructed 3-D image and visualization technique.

    PubMed

    Yang, Yong; Ning, Gang-Min; Kutor, John; Hong, Di-Hui; Zhang, Mu; Zheng, Xiao-Xiang

    2004-01-01

    Recent studies have revealed a non-homogeneous distribution of nitric oxide synthase (NOS) in neurons. However, it is not yet clear whether the intracellular distribution of NOS represents the intracellular nitric oxide (NO) distribution. In the present study, software developed in our laboratory was applied to the reconstructed image obtained from confocal slice images in order to project the 3-D reconstructed images in any direction and to cut the neuron in different sections. This enabled the spatial distribution of NO to be visualized in any direction and section. In single neurons, NO distribution was seen to be heterogeneous. After stimulation with glutamate, the spatial changes in different areas of the neuron were different. These findings are consistent with immunocytochemical data on the intracellular localization of nNOS in hippocampus neurons, and will help to elucidate the specificity of nitric oxide signaling. Finally, the administration of SNAP and L-NAME was used to examine DAF-2 distribution in the neurons. The results showed this distribution to be homogenous; therefore, it did not account for the NO distribution results.

  12. High-resolution, 3D radiative transfer modeling. I. The grand-design spiral galaxy M 51

    NASA Astrophysics Data System (ADS)

    De Looze, Ilse; Fritz, Jacopo; Baes, Maarten; Bendo, George J.; Cortese, Luca; Boquien, Médéric; Boselli, Alessandro; Camps, Peter; Cooray, Asantha; Cormier, Diane; Davies, Jon I.; De Geyter, Gert; Hughes, Thomas M.; Jones, Anthony P.; Karczewski, Oskar Ł.; Lebouteiller, Vianney; Lu, Nanyao; Madden, Suzanne C.; Rémy-Ruyer, Aurélie; Spinoglio, Luigi; Smith, Matthew W. L.; Viaene, Sebastien; Wilson, Christine D.

    2014-11-01

    Context. Dust reprocesses about half of the stellar radiation in galaxies. The thermal re-emission by dust of absorbed energy is considered to be driven merely by young stars so is often applied to tracing the star formation rate in galaxies. Recent studies have argued that the old stellar population might be responsible for a non-negligible fraction of the radiative dust heating. Aims: In this work, we aim to analyze the contribution of young (≲100 Myr) and old (~10 Gyr) stellar populations to radiative dust heating processes in the nearby grand-design spiral galaxy M 51 using radiative transfer modeling. High-resolution 3D radiative transfer (RT) models are required to describe the complex morphologies of asymmetric spiral arms and clumpy star-forming regions and to model the propagation of light through a dusty medium. Methods: In this paper, we present a new technique developed to model the radiative transfer effects in nearby face-on galaxies. We construct a high-resolution 3D radiative transfer model with the Monte-Carlo code SKIRT to account for the absorption, scattering, and non-local thermal equilibrium (NLTE) emission of dust in M 51. The 3D distribution of stars is derived from the 2D morphology observed in the IRAC 3.6 μm, GALEX FUV, Hα, and MIPS 24 μm wavebands, assuming an exponential vertical distribution with an appropriate scale height. The dust geometry is constrained through the far-ultraviolet (FUV) attenuation, which is derived from the observed total-infrared-to-far-ultraviolet luminosity ratio. The stellar luminosity, star formation rate, and dust mass have been scaled to reproduce the observed stellar spectral energy distribution (SED), FUV attenuation, and infrared SED. Results: The dust emission derived from RT calculations is consistent with far-infrared and submillimeter observations of M 51, implying that the absorbed stellar energy is balanced by the thermal re-emission of dust. The young stars provide 63% of the energy for

  13. Detection of latent fingerprints using high-resolution 3D confocal microscopy in non-planar acquisition scenarios

    NASA Astrophysics Data System (ADS)

    Kirst, Stefan; Vielhauer, Claus

    2015-03-01

    In digitized forensics the support of investigators in any manner is one of the main goals. Using conservative lifting methods, the detection of traces is done manually. For non-destructive contactless methods, the necessity for detecting traces is obvious for further biometric analysis. High resolutional 3D confocal laser scanning microscopy (CLSM) grants the possibility for a detection by segmentation approach with improved detection results. Optimal scan results with CLSM are achieved on surfaces orthogonal to the sensor, which is not always possible due to environmental circumstances or the surface's shape. This introduces additional noise, outliers and a lack of contrast, making a detection of traces even harder. Prior work showed the possibility of determining angle-independent classification models for the detection of latent fingerprints (LFP). Enhancing this approach, we introduce a larger feature space containing a variety of statistical-, roughness-, color-, edge-directivity-, histogram-, Gabor-, gradient- and Tamura features based on raw data and gray-level co-occurrence matrices (GLCM) using high resolutional data. Our test set consists of eight different surfaces for the detection of LFP in four different acquisition angles with a total of 1920 single scans. For each surface and angles in steps of 10, we capture samples from five donors to introduce variance by a variety of sweat compositions and application influences such as pressure or differences in ridge thickness. By analyzing the present test set with our approach, we intend to determine angle- and substrate-dependent classification models to determine optimal surface specific acquisition setups and also classification models for a general detection purpose for both, angles and substrates. The results on overall models with classification rates up to 75.15% (kappa 0.50) already show a positive tendency regarding the usability of the proposed methods for LFP detection on varying surfaces in non

  14. Plant Tissues in 3D via X-Ray Tomography: Simple Contrasting Methods Allow High Resolution Imaging

    PubMed Central

    Staedler, Yannick M.; Masson, David; Schönenberger, Jürg

    2013-01-01

    Computed tomography remains strongly underused in plant sciences despite its high potential in delivering detailed 3D phenotypical information because of the low X-ray absorption of most plant tissues. Existing protocols to study soft tissues display poor performance, especially when compared to those used on animals. More efficient protocols to study plant material are therefore needed. Flowers of Arabidopsis thaliana and Marcgravia caudata were immersed in a selection of contrasting agents used to treat samples for transmission electron microscopy. Grayscale values for floral tissues and background were measured as a function of time. Contrast was quantified via a contrast index. The thick buds of Marcgravia were scanned to determine which contrasting agents best penetrate thick tissues. The highest contrast increase with cytoplasm-rich tissues was obtained with phosphotungstate, whereas osmium tetroxide and bismuth tatrate displayed the highest contrast increase with vacuolated tissues. Phosphotungstate also displayed the best sample penetration. Furthermore, infiltration with phosphotungstate allowed imaging of all plants parts at a high resolution of 3 µm, which approaches the maximum resolution of our equipment: 1.5 µm. The high affinity of phosphotungstate for vasculature, cytoplasm-rich tissue, and pollen causes these tissues to absorb more X-rays than the surrounding tissues, which, in turn, makes these tissues appear brighter on the scan data. Tissues with different brightness can then be virtually dissected from each other by selecting the bracket of grayscale to be visualized. Promising directions for the future include in silico phenotyping and developmental studies of plant inner parts (e.g., ovules, vasculature, pollen, and cell nuclei) via virtual dissection as well as correlations of quantitative phenotypes with omics datasets. Therefore, this work represents a crucial improvement of previous methods, allowing new directions of research to be

  15. Plant tissues in 3D via X-ray tomography: simple contrasting methods allow high resolution imaging.

    PubMed

    Staedler, Yannick M; Masson, David; Schönenberger, Jürg

    2013-01-01

    Computed tomography remains strongly underused in plant sciences despite its high potential in delivering detailed 3D phenotypical information because of the low X-ray absorption of most plant tissues. Existing protocols to study soft tissues display poor performance, especially when compared to those used on animals. More efficient protocols to study plant material are therefore needed. Flowers of Arabidopsis thaliana and Marcgravia caudata were immersed in a selection of contrasting agents used to treat samples for transmission electron microscopy. Grayscale values for floral tissues and background were measured as a function of time. Contrast was quantified via a contrast index. The thick buds of Marcgravia were scanned to determine which contrasting agents best penetrate thick tissues. The highest contrast increase with cytoplasm-rich tissues was obtained with phosphotungstate, whereas osmium tetroxide and bismuth tatrate displayed the highest contrast increase with vacuolated tissues. Phosphotungstate also displayed the best sample penetration. Furthermore, infiltration with phosphotungstate allowed imaging of all plants parts at a high resolution of 3 µm, which approaches the maximum resolution of our equipment: 1.5 µm. The high affinity of phosphotungstate for vasculature, cytoplasm-rich tissue, and pollen causes these tissues to absorb more X-rays than the surrounding tissues, which, in turn, makes these tissues appear brighter on the scan data. Tissues with different brightness can then be virtually dissected from each other by selecting the bracket of grayscale to be visualized. Promising directions for the future include in silico phenotyping and developmental studies of plant inner parts (e.g., ovules, vasculature, pollen, and cell nuclei) via virtual dissection as well as correlations of quantitative phenotypes with omics datasets. Therefore, this work represents a crucial improvement of previous methods, allowing new directions of research to be

  16. High-resolution 3D volumetry versus conventional measuring techniques for the assessment of experimental lymphedema in the mouse hindlimb

    PubMed Central

    Frueh, Florian S.; Körbel, Christina; Gassert, Laura; Müller, Andreas; Gousopoulos, Epameinondas; Lindenblatt, Nicole; Giovanoli, Pietro; Laschke, Matthias W.; Menger, Michael D.

    2016-01-01

    Secondary lymphedema is a common complication of cancer treatment characterized by chronic limb swelling with interstitial inflammation. The rodent hindlimb is a widely used model for the evaluation of novel lymphedema treatments. However, the assessment of limb volume in small animals is challenging. Recently, high-resolution three-dimensional (3D) imaging modalities have been introduced for rodent limb volumetry. In the present study we evaluated the validity of microcomputed tomography (μCT), magnetic resonance imaging (MRI) and ultrasound in comparison to conventional measuring techniques. For this purpose, acute lymphedema was induced in the mouse hindlimb by a modified popliteal lymphadenectomy. The 4-week course of this type of lymphedema was first assessed in 6 animals. In additional 12 animals, limb volumes were analyzed by μCT, 9.4 T MRI and 30 MHz ultrasound as well as by planimetry, circumferential length and paw thickness measurements. Interobserver correlation was high for all modalities, in particular for μCT analysis (r = 0.975, p < 0.001). Importantly, caliper-measured paw thickness correlated well with μCT (r = 0.861), MRI (r = 0.821) and ultrasound (r = 0.800). Because the assessment of paw thickness represents a time- and cost-effective approach, it may be ideally suited for the quantification of rodent hindlimb lymphedema. PMID:27698469

  17. Preliminary study of statistical pattern recognition-based coin counterfeit detection by means of high resolution 3D scanners

    NASA Astrophysics Data System (ADS)

    Leich, Marcus; Kiltz, Stefan; Krätzer, Christian; Dittmann, Jana; Vielhauer, Claus

    2011-03-01

    According to the European Commission around 200,000 counterfeit Euro coins are removed from circulation every year. While approaches exist to automatically detect these coins, satisfying error rates are usually only reached for low quality forgeries, so-called "local classes". High-quality minted forgeries ("common classes") pose a problem for these methods as well as for trained humans. This paper presents a first approach for statistical analysis of coins based on high resolution 3D data acquired with a chromatic white light sensor. The goal of this analysis is to determine whether two coins are of common origin. The test set for these first and new investigations consists of 62 coins from not more than five different sources. The analysis is based on the assumption that, apart from markings caused by wear such as scratches and residue consisting of grease and dust, coins from equal origin have a more similar height field than coins from different mints. First results suggest that the selected approach is heavily affected by influences of wear like dents and scratches and the further research is required the eliminate this influence. A course for future work is outlined.

  18. Use of Very High-Resolution Airborne Images to Analyse 3d Canopy Architecture of a Vineyard

    NASA Astrophysics Data System (ADS)

    Burgos, S.; Mota, M.; Noll, D.; Cannelle, B.

    2015-08-01

    Differencing between green cover and grape canopy is a challenge for vigour status evaluation in viticulture. This paper presents the acquisition methodology of very high-resolution images (4 cm), using a Sensefly Swinglet CAM unmanned aerial vehicle (UAV) and their processing to construct a 3D digital surface model (DSM) for the creation of precise digital terrain models (DTM). The DTM was obtained using python processing libraries. The DTM was then subtracted to the DSM in order to obtain a differential digital model (DDM) of a vineyard. In the DDM, the vine pixels were then obtained by selecting all pixels with an elevation higher than 50 [cm] above the ground level. The results show that it was possible to separate pixels from the green cover and the vine rows. The DDM showed values between -0.1 and + 1.5 [m]. A manually delineation of polygons based on the RGB image belonging to the green cover and to the vine rows gave a highly significant differences with an average value of 1.23 [m] and 0.08 [m] for the vine and the ground respectively. The vine rows elevation is in good accordance with the topping height of the vines 1.35 [m] measured on the field. This mask could be used to analyse images of the same plot taken at different times. The extraction of only vine pixels will facilitate subsequent analyses, for example, a supervised classification of these pixels.

  19. Comparison of 3D Maximum A Posteriori and Filtered Backprojection algorithms for high resolution animal imaging in microPET

    SciTech Connect

    Chatziioannou, A.; Qi, J.; Moore, A.; Annala, A.; Nguyen, K.; Leahy, R.M.; Cherry, S.R.

    2000-01-01

    We have evaluated the performance of two three dimensional reconstruction algorithms with data acquired from microPET, a high resolution tomograph dedicated to small animal imaging. The first was a linear filtered-backprojection algorithm (FBP) with reprojection of the missing data and the second was a statistical maximum-aposteriori probability algorithm (MAP). The two algorithms were evaluated in terms of their resolution performance, both in phantoms and in vivo. Sixty independent realizations of a phantom simulating the brain of a baby monkey were acquired, each containing 3 million counts. Each of these realizations was reconstructed independently with both algorithms. The ensemble of the sixty reconstructed realizations was used to estimate the standard deviation as a measure of the noise for each reconstruction algorithm. More detail was recovered in the MAP reconstruction without an increase in noise relative to FBP. Studies in a simple cylindrical compartment phantom demonstrated improved recovery of known activity ratios with MAP. Finally in vivo studies also demonstrated a clear improvement in spatial resolution using the MAP algorithm. The quantitative accuracy of the MAP reconstruction was also evaluated by comparison with autoradiography and direct well counting of tissue samples and was shown to be superior.

  20. Soil process-oriented modelling of within-field variability based on high-resolution 3D soil type distribution maps.

    NASA Astrophysics Data System (ADS)

    Bönecke, Eric; Lück, Erika; Gründling, Ralf; Rühlmann, Jörg; Franko, Uwe

    2016-04-01

    Today, the knowledge of within-field variability is essential for numerous purposes, including practical issues, such as precision and sustainable soil management. Therefore, process-oriented soil models have been applied for a considerable time to answer question of spatial soil nutrient and water dynamics, although, they can only be as consistent as their variation and resolution of soil input data. Traditional approaches, describe distribution of soil types, soil texture or other soil properties for greater soil units through generalised point information, e.g. from classical soil survey maps. Those simplifications are known to be afflicted with large uncertainties. Varying soil, crop or yield conditions are detected even within such homogenised soil units. However, recent advances of non-invasive soil survey and on-the-go monitoring techniques, made it possible to obtain vertical and horizontal dense information (3D) about various soil properties, particularly soil texture distribution which serves as an essential soil key variable affecting various other soil properties. Thus, in this study we based our simulations on detailed 3D soil type distribution (STD) maps (4x4 m) to adjacently built-up sufficient informative soil profiles including various soil physical and chemical properties. Our estimates of spatial STD are based on high-resolution lateral and vertical changes of electrical resistivity (ER), detected by a relatively new multi-sensor on-the-go ER monitoring device. We performed an algorithm including fuzzy-c-mean (FCM) logic and traditional soil classification to estimate STD from those inverted and layer-wise available ER data. STD is then used as key input parameter for our carbon, nitrogen and water transport model. We identified Pedological horizon depths and inferred hydrological soil variables (field capacity, permanent wilting point) from pedotransferfunctions (PTF) for each horizon. Furthermore, the spatial distribution of soil organic carbon

  1. Linking microscopic spatial patterns of tissue destruction in emphysema to macroscopic decline in stiffness using a 3D computational model.

    PubMed

    Parameswaran, Harikrishnan; Majumdar, Arnab; Suki, Béla

    2011-04-01

    Pulmonary emphysema is a connective tissue disease characterized by the progressive destruction of alveolar walls leading to airspace enlargement and decreased elastic recoil of the lung. However, the relationship between microscopic tissue structure and decline in stiffness of the lung is not well understood. In this study, we developed a 3D computational model of lung tissue in which a pre-strained cuboidal block of tissue was represented by a tessellation of space filling polyhedra, with each polyhedral unit-cell representing an alveolus. Destruction of alveolar walls was mimicked by eliminating faces that separate two polyhedral either randomly or in a spatially correlated manner, in which the highest force bearing walls were removed at each step. Simulations were carried out to establish a link between the geometries that emerged and the rate of decline in bulk modulus of the tissue block. The spatially correlated process set up by the force-based destruction lead to a significantly faster rate of decline in bulk modulus accompanied by highly heterogeneous structures than the random destruction pattern. Using the Karhunen-Loève transformation, an estimator of the change in bulk modulus from the first four moments of airspace cell volumes was setup. Simulations were then obtained for tissue destruction with different idealized alveolar geometry, levels of pre-strain, linear and nonlinear elasticity assumptions for alveolar walls and also mixed destruction patterns where both random and force-based destruction occurs simultaneously. In all these cases, the change in bulk modulus from cell volumes was accurately estimated. We conclude that microscopic structural changes in emphysema and the associated decline in tissue stiffness are linked by the spatial pattern of the destruction process.

  2. Methods to improve the resolution of prestack migrated images, with application to a 3D dataset from a fractured reservoir

    NASA Astrophysics Data System (ADS)

    Perez, Gabriel

    I present three different methods to achieve increased definition in images from conventional seismic data, as illustrated with 3D data from the Fort Worth Basin's Barnett Shale fractured reservoir play, currently one of the hottest exploration and production trends in continental U.S. First, I present a method to correct for wavelet stretch in common-angle prestack migrated data. Wavelet stretch adversely influences contributions to the image from large angle or long offset data. Increasing the fidelity of large angles improves the vertical and lateral resolution in images from seismic data and from derived attributes, and positively impact AVA/AVO analysis. Achieving the greatest potential of this technique demands that I address the increased sensitivity to velocity errors and anisotropy. The other two methods presented here benefit from the balance in spectral content of the imaged data across angles and the increased resolution that are achieved from correcting for wavelet stretch. Then I introduce a new way to define azimuth binning in Kirchhoff prestack migration. This approach avoids mixing the typically weaker side-scattered energy with the stronger reflections from the sagittal plane. With the modified binning, signal and noise events are preferentially imaged in azimuth orientations normal to their apparent strike orientation, in surface- or map-views. This modified azimuthal binning also results in improved detection of out-of-the-plane steeply dipping reflectors, fractures and faults and their orientation, especially when combined with attributes such as curvature and coherence. Finally, I present an approach to measure lateral misalignment in prestack migrated seismic images and then correct for it by applying a warping procedure to these images. Though velocity errors are the most likely source for misalignment between images, it can also result from other imperfections in the imaging procedure. Lateral misalignment is most easily recognized and

  3. GRID2D/3D: A computer program for generating grid systems in complex-shaped two- and three-dimensional spatial domains. Part 1: Theory and method

    NASA Technical Reports Server (NTRS)

    Shih, T. I.-P.; Bailey, R. T.; Nguyen, H. L.; Roelke, R. J.

    1990-01-01

    An efficient computer program, called GRID2D/3D was developed to generate single and composite grid systems within geometrically complex two- and three-dimensional (2- and 3-D) spatial domains that can deform with time. GRID2D/3D generates single grid systems by using algebraic grid generation methods based on transfinite interpolation in which the distribution of grid points within the spatial domain is controlled by stretching functions. All single grid systems generated by GRID2D/3D can have grid lines that are continuous and differentiable everywhere up to the second-order. Also, grid lines can intersect boundaries of the spatial domain orthogonally. GRID2D/3D generates composite grid systems by patching together two or more single grid systems. The patching can be discontinuous or continuous. For continuous composite grid systems, the grid lines are continuous and differentiable everywhere up to the second-order except at interfaces where different single grid systems meet. At interfaces where different single grid systems meet, the grid lines are only differentiable up to the first-order. For 2-D spatial domains, the boundary curves are described by using either cubic or tension spline interpolation. For 3-D spatial domains, the boundary surfaces are described by using either linear Coon's interpolation, bi-hyperbolic spline interpolation, or a new technique referred to as 3-D bi-directional Hermite interpolation. Since grid systems generated by algebraic methods can have grid lines that overlap one another, GRID2D/3D contains a graphics package for evaluating the grid systems generated. With the graphics package, the user can generate grid systems in an interactive manner with the grid generation part of GRID2D/3D. GRID2D/3D is written in FORTRAN 77 and can be run on any IBM PC, XT, or AT compatible computer. In order to use GRID2D/3D on workstations or mainframe computers, some minor modifications must be made in the graphics part of the program; no

  4. Correlation between spatial (3D) structure of pea and bean thylakoid membranes and arrangement of chlorophyll-protein complexes

    PubMed Central

    2012-01-01

    Background The thylakoid system in plant chloroplasts is organized into two distinct domains: grana arranged in stacks of appressed membranes and non-appressed membranes consisting of stroma thylakoids and margins of granal stacks. It is argued that the reason for the development of appressed membranes in plants is that their photosynthetic apparatus need to cope with and survive ever-changing environmental conditions. It is not known however, why different plant species have different arrangements of grana within their chloroplasts. It is important to elucidate whether a different arrangement and distribution of appressed and non-appressed thylakoids in chloroplasts are linked with different qualitative and/or quantitative organization of chlorophyll-protein (CP) complexes in the thylakoid membranes and whether this arrangement influences the photosynthetic efficiency. Results Our results from TEM and in situ CLSM strongly indicate the existence of different arrangements of pea and bean thylakoid membranes. In pea, larger appressed thylakoids are regularly arranged within chloroplasts as uniformly distributed red fluorescent bodies, while irregular appressed thylakoid membranes within bean chloroplasts correspond to smaller and less distinguished fluorescent areas in CLSM images. 3D models of pea chloroplasts show a distinct spatial separation of stacked thylakoids from stromal spaces whereas spatial division of stroma and thylakoid areas in bean chloroplasts are more complex. Structural differences influenced the PSII photochemistry, however without significant changes in photosynthetic efficiency. Qualitative and quantitative analysis of chlorophyll-protein complexes as well as spectroscopic investigations indicated a similar proportion between PSI and PSII core complexes in pea and bean thylakoids, but higher abundance of LHCII antenna in pea ones. Furthermore, distinct differences in size and arrangements of LHCII-PSII and LHCI-PSI supercomplexes between

  5. Sea Level History in 3D: Early results of an ultra-high resolution MCS survey across IODP Expedition 313 drillsites

    NASA Astrophysics Data System (ADS)

    Mountain, G. S.; Kucuk, H. M.; Nedimovic, M. R.; Austin, J. A., Jr.; Fulthorpe, C.; Newton, A.; Baldwin, K.; Johnson, C.; Stanley, J. N.; Bhatnagar, T.

    2015-12-01

    Although globally averaged sea level is rising at roughly 3 mm/yr (and is accelerating), rates of local sea-level change measured at coastlines may differ from this number by a factor of two or more; at some locations, sea level may even be falling. This is due to local processes that can match or even reverse the global trend, making it clear that reliable predictions of future impacts of sea-level rise require a firm understanding of processes at the local level. The history of local sea-level change and shoreline response is contained in the geologic record of shallow-water sediments. We report on a continuing study of sea-level history in sediments at the New Jersey continental margin, where compaction and glacial isostatic adjustment are currently adding 2 mm/yr to the globally averaged rise. We collected 570 sq km of ultra-high resolution 3D MCS data aboard the R/V Langseth in June-July 2015; innovative recording and preliminary results are described by Nedimovic et al. in this same session. The goal was to provide regional context to coring and logging at IODP Exp 313 sites 27-29 that were drilled 750 m into the New Jersey shelf in 2009. These sites recovered a nearly continuous record of post-Eocene sediments from non-marine soils, estuaries, shoreface, delta front, pro-delta and open marine settings. Existing seismic data are good but are 2D high-resolution profiles at line spacings too wide to enable mapping of key nearshore features. The Langseth 3D survey used shallow towing of a tuned air gun array to preserve high frequencies, and twenty-four 50-m PCables each 12.5 apart provided 6.25 x 3.125 m common-midpoint bins along seventy-seven 50-km sail lines. With this especially dense spatial resolution of a pre-stack time migrated volume we expect to map rivers, incised valleys, barrier islands, inlets and bays, pro-delta clinoforms, tidal deltas, sequence boundaries, debris flow aprons, and more. Seismic attributes linked to sedimentary facies and

  6. Volumetric limiting spatial resolution analysis of four dimensional digital subtraction angiography (4D-DSA)

    NASA Astrophysics Data System (ADS)

    Davis, Brian; Oberstar, Erick; Royalty, Kevin; Schafer, Sebastian; Strother, Charles; Mistretta, Charles

    2015-03-01

    Static C-Arm CT 3D FDK baseline reconstructions (3D-DSA) are unable to provide temporal information to radiologists. 4D-DSA provides a time series of 3D volumes implementing a constrained image, thresholded 3D-DSA, reconstruction utilizing temporal dynamics in the 2D projections. Volumetric limiting spatial resolution (VLSR) of 4DDSA is quantified and compared to a 3D-DSA reconstruction using the same 3D-DSA parameters. Investigated were the effects of varying over significant ranges the 4D-DSA parameters of 2D blurring kernel size applied to the projection and threshold applied to the 3D-DSA when generating the constraining image of a scanned phantom (SPH) and an electronic phantom (EPH). The SPH consisted of a 76 micron tungsten wire encased in a 47 mm O.D. plastic radially concentric thin walled support structure. An 8-second/248-frame/198° scan protocol acquired the raw projection data. VLSR was determined from averaged MTF curves generated from each 2D transverse slice of every (248) 4D temporal frame (3D). 4D results for SPH and EPH were compared to the 3D-DSA. Analysis of the 3D-DSA resulted in a VLSR of 2.28 and 1.69 lp/mm for the EPH and SPH respectively. Kernel (2D) sizes of either 10x10 or 20x20 pixels with a threshold of 10% of the 3D-DSA as a constraining image provided 4D-DSA VLSR nearest to the 3D-DSA. 4D-DSA algorithms yielded 2.21 and 1.67 lp/mm with a percent error of 3.1% and 1.2% for the EPH and SPH respectively as compared to the 3D-DSA. This research indicates 4D-DSA is capable of retaining the resolution of the 3D-DSA.

  7. Effects of spatial resolution ratio in image fusion

    USGS Publications Warehouse

    Ling, Y.; Ehlers, M.; Usery, E.L.; Madden, M.

    2008-01-01

    In image fusion, the spatial resolution ratio can be defined as the ratio between the spatial resolution of the high-resolution panchromatic image and that of the low-resolution multispectral image. This paper attempts to assess the effects of the spatial resolution ratio of the input images on the quality of the fused image. Experimental results indicate that a spatial resolution ratio of 1:10 or higher is desired for optimal multisensor image fusion provided the input panchromatic image is not downsampled to a coarser resolution. Due to the synthetic pixels generated from resampling, the quality of the fused image decreases as the spatial resolution ratio decreases (e.g. from 1:10 to 1:30). However, even with a spatial resolution ratio as small as 1:30, the quality of the fused image is still better than the original multispectral image alone for feature interpretation. In cases where the spatial resolution ratio is too small (e.g. 1:30), to obtain better spectral integrity of the fused image, one may downsample the input high-resolution panchromatic image to a slightly lower resolution before fusing it with the multispectral image.

  8. 3D imaging of soil apparent electrical conductivity from VERIS data using a 1D spatially constrained inversion algorithm

    NASA Astrophysics Data System (ADS)

    Jesús Moral García, Francisco; Rebollo Castillo, Francisco Javier; Monteiro Santos, Fernando

    2016-04-01

    Maps of apparent electrical conductivity of the soil are commonly used in precision agriculture to indirectly characterize some important properties like salinity, water, and clay content. Traditionally, these studies are made through an empirical relationship between apparent electrical conductivity and properties measured in soil samples collected at a few locations in the experimental area and at a few selected depths. Recently, some authors have used not the apparent conductivity values but the soil bulk conductivity (in 2D or 3D) calculated from measured apparent electrical conductivity through the application of an inversion method. All the published works used data collected with electromagnetic (EM) instruments. We present a new software to invert the apparent electrical conductivity data collected with VERIS 3100 and 3150 (or the more recent version with three pairs of electrodes) using the 1D spatially constrained inversion method (1D SCI). The software allows the calculation of the distribution of the bulk electrical conductivity in the survey area till a depth of 1 m. The algorithm is applied to experimental data and correlations with clay and water content have been established using soil samples collected at some boreholes. Keywords: Digital soil mapping; inversion modelling; VERIS; soil apparent electrical conductivity.

  9. SOLWEIG 1.0--modelling spatial variations of 3D radiant fluxes and mean radiant temperature in complex urban settings.

    PubMed

    Lindberg, Fredrik; Holmer, Björn; Thorsson, Sofia

    2008-09-01

    The mean radiant temperature, T(mrt), which sums up all shortwave and longwave radiation fluxes (both direct and reflected) to which the human body is exposed is one of the key meteorological parameters governing human energy balance and the thermal comfort of man. In this paper, a new radiation model (SOLWEIG 1.0), which simulates spatial variations of 3D radiation fluxes and T(mrt) in complex urban settings, is presented. The T(mrt) is derived by modelling shortwave and longwave radiation fluxes in six directions (upward, downward and from the four cardinal points) and angular factors. The model requires a limited number of inputs, such as direct, diffuse and global shortwave radiation, air temperature, relative humidity, urban geometry and geographical information (latitude, longitude and elevation). The model was evaluated using 7 days of integral radiation measurements at two sites with different building geometries--a large square and a small courtyard in Göteborg, Sweden (57 degrees N)--across different seasons and in various weather conditions. The evaluation reveals good agreement between modelled and measured values of T(mrt), with an overall good correspondence of R (2) = 0.94, (p < 0.01, RMSE = 4.8 K). SOLWEIG 1.0 is still under development. Future work will incorporate a vegetation scheme, as well as an improvement of the estimation of fluxes from the four cardinal points.

  10. 3D measurement for rapid prototyping

    NASA Astrophysics Data System (ADS)

    Albrecht, Peter; Lilienblum, Tilo; Sommerkorn, Gerd; Michaelis, Bernd

    1996-08-01

    Optical 3-D measurement is an interesting approach for rapid prototyping. On one hand it's necessary to get the 3-D data of an object and on the other hand it's necessary to check the manufactured object (quality checking). Optical 3-D measurement can realize both. Classical 3-D measurement procedures based on photogrammetry cause systematic errors at strongly curved surfaces or steps in surfaces. One possibility to reduce these errors is to calculate the 3-D coordinates from several successively taken images. Thus it's possible to get higher spatial resolution and to reduce the systematic errors at 'problem surfaces.' Another possibility is to process the measurement values by neural networks. A modified associative memory smoothes and corrects the calculated 3-D coordinates using a-priori knowledge about the measurement object.

  11. In vivo application of 3D-line skeleton graph analysis (LSGA) technique with high-resolution magnetic resonance imaging of trabecular bone structure.

    PubMed

    Pothuaud, Laurent; Newitt, David C; Lu, Ying; MacDonald, Brian; Majumdar, Sharmila

    2004-05-01

    Over the last several years magnetic resonance (MR) imaging has emerged as a means of measuring in vivo 3D trabecular bone structure. In particular, MR based diagnosis could be used to complement standard bone mineral density (BMD) methods for assessing osteoporosis and evaluating longitudinal changes. The aim of this study was to demonstrate the feasibility of using the 3D-LSGA technique for the evaluation of trabecular bone structure of high-resolution MR images, particularly for assessing longitudinal changes, in vivo. First, the reproducibility of topological 3D-LSGA based measurements was evaluated in a set of seven volunteers, and coefficients of variations ranged from 3.5% to 6%. Second, high-resolution MR images of the radius in 30 postmenopausal women from a placebo controlled drug study (Idoxifene), divided into placebo ( n=9) and treated ( n=21) groups, were obtained at baseline (BL) and after 1 year of treatment (follow-up, FU). In addition, dual X-ray absorptiometry (DXA) measures of BMD were obtained in the distal radius. Standard morphological measurements based on the mean intercept length (MIL) technique as well as 3D-LSGA based measurements were applied to the 3D MR images. Significant changes from BL to FU were detected, in the treated group, using the topological 3D-LSGA based measurements, morphological measures of volume of connected trabeculae and App Tb.N from MIL analysis. The duration of the study was short, and the number of patients remaining in the study was small, hence these results cannot be interpreted with regard to a true therapeutic response. Furthermore, the site (wrist) and the drug (idoxifene) are not optimal for follow-up study. However, this paper demonstrated the feasibility of using 3D-LSGA based evaluation coupled with in vivo high-resolution MR imaging as a complementary approach for the monitoring of trabecular bone changes in individual subjects.

  12. Augmented 3D super-resolution of fluorescence-free nanoparticles using enhanced dark-field illumination based on wavelength-modulation and a least-cubic algorithm

    PubMed Central

    Zhang, Peng; Kim, Kyungsoo; Lee, Seungah; Chakkarapani, Suresh Kumar; Fang, Ning; Kang, Seong Ho

    2016-01-01

    Augmented three-dimensional (3D) subdiffraction-limited resolution of fluorescence-free single-nanoparticles was achieved with wavelength-dependent enhanced dark-field (EDF) illumination and a least-cubic algorithm. Various plasmonic nanoparticles on a glass slide (i.e., gold nanoparticles, GNPs; silver nanoparticles, SNPs; and gold nanorods, GNRs) were imaged and sliced in the z-direction to a thickness of 10 nm. Single-particle images were then compared with simulation data. The 3D coordinates of individual GNP, SNP, and GNR nanoparticles (x, y, z) were resolved by fitting the data with 3D point spread functions using a least-cubic algorithm and collation. Final, 3D super-resolution microscopy (SRM) images were obtained by resolving 3D coordinates and their Cramér-Rao lower bound-based localization precisions in an image space (530 nm × 530 nm × 300 nm) with a specific voxel size (2.5 nm × 2.5 nm × 5 nm). Compared with the commonly used least-square method, the least-cubic method was more useful for finding the center in asymmetric cases (i.e., nanorods) with high precision and accuracy. This novel 3D fluorescence-free SRM technique was successfully applied to resolve the positions of various nanoparticles on glass and gold nanospots (in vitro) as well as in a living single cell (in vivo) with subdiffraction limited resolution in 3D. PMID:27619347

  13. Augmented 3D super-resolution of fluorescence-free nanoparticles using enhanced dark-field illumination based on wavelength-modulation and a least-cubic algorithm

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Kim, Kyungsoo; Lee, Seungah; Chakkarapani, Suresh Kumar; Fang, Ning; Kang, Seong Ho

    2016-09-01

    Augmented three-dimensional (3D) subdiffraction-limited resolution of fluorescence-free single-nanoparticles was achieved with wavelength-dependent enhanced dark-field (EDF) illumination and a least-cubic algorithm. Various plasmonic nanoparticles on a glass slide (i.e., gold nanoparticles, GNPs; silver nanoparticles, SNPs; and gold nanorods, GNRs) were imaged and sliced in the z-direction to a thickness of 10 nm. Single-particle images were then compared with simulation data. The 3D coordinates of individual GNP, SNP, and GNR nanoparticles (x, y, z) were resolved by fitting the data with 3D point spread functions using a least-cubic algorithm and collation. Final, 3D super-resolution microscopy (SRM) images were obtained by resolving 3D coordinates and their Cramér-Rao lower bound-based localization precisions in an image space (530 nm × 530 nm × 300 nm) with a specific voxel size (2.5 nm × 2.5 nm × 5 nm). Compared with the commonly used least-square method, the least-cubic method was more useful for finding the center in asymmetric cases (i.e., nanorods) with high precision and accuracy. This novel 3D fluorescence-free SRM technique was successfully applied to resolve the positions of various nanoparticles on glass and gold nanospots (in vitro) as well as in a living single cell (in vivo) with subdiffraction limited resolution in 3D.

  14. Assessment of the 3-d reconstruction and high-resolution geometrical modeling of the human skeletal trunk from 2-D radiographic images.

    PubMed

    Delorme, S; Petit, Y; de Guise, J A; Labelle, H; Aubin, C E; Dansereau, J

    2003-08-01

    This paper presents an in vivo validation of a method for the three-dimensional (3-D) high-resolution modeling of the human spine, rib cage, and pelvis for the study of spinal deformities. The method uses an adaptation of a standard close-range photogrammetry method called direct linear transformation to reconstruct the 3-D coordinates of anatomical landmarks from three radiographic images of the subject's trunk. It then deforms in 3-D 1-mm-resolution anatomical primitives (reference bones) obtained by serial computed tomography-scan reconstruction of a dry specimen. The free-form deformation is calculated using dual kriging equations. In vivo validation of this method on 40 scoliotic vertebrae gives an overall accuracy of 3.3 +/- 3.8 mm, making it an adequate tool for clinical studies and mechanical analysis purposes.

  15. Automated Verification of Spatial Resolution in Remotely Sensed Imagery

    NASA Technical Reports Server (NTRS)

    Davis, Bruce; Ryan, Robert; Holekamp, Kara; Vaughn, Ronald

    2011-01-01

    Image spatial resolution characteristics can vary widely among sources. In the case of aerial-based imaging systems, the image spatial resolution characteristics can even vary between acquisitions. In these systems, aircraft altitude, speed, and sensor look angle all affect image spatial resolution. Image spatial resolution needs to be verified with estimators that include the ground sample distance (GSD), the modulation transfer function (MTF), and the relative edge response (RER), all of which are key components of image quality, along with signal-to-noise ratio (SNR) and dynamic range. Knowledge of spatial resolution parameters is important to determine if features of interest are distinguishable in imagery or associated products, and to develop image restoration algorithms. An automated Spatial Resolution Verification Tool (SRVT) was developed to rapidly determine the spatial resolution characteristics of remotely sensed aerial and satellite imagery. Most current methods for assessing spatial resolution characteristics of imagery rely on pre-deployed engineered targets and are performed only at selected times within preselected scenes. The SRVT addresses these insufficiencies by finding uniform, high-contrast edges from urban scenes and then using these edges to determine standard estimators of spatial resolution, such as the MTF and the RER. The SRVT was developed using the MATLAB programming language and environment. This automated software algorithm assesses every image in an acquired data set, using edges found within each image, and in many cases eliminating the need for dedicated edge targets. The SRVT automatically identifies high-contrast, uniform edges and calculates the MTF and RER of each image, and when possible, within sections of an image, so that the variation of spatial resolution characteristics across the image can be analyzed. The automated algorithm is capable of quickly verifying the spatial resolution quality of all images within a data

  16. High-resolution 3-D P-wave tomographic imaging of the shallow magmatic system of Erebus volcano, Antarctica

    NASA Astrophysics Data System (ADS)

    Zandomeneghi, D.; Aster, R. C.; Barclay, A. H.; Chaput, J. A.; Kyle, P. R.

    2011-12-01

    Erebus volcano (Ross Island), the most active volcano in Antarctica, is characterized by a persistent phonolitic lava lake at its summit and a wide range of seismic signals associated with its underlying long-lived magmatic system. The magmatic structure in a 3 by 3 km area around the summit has been imaged using high-quality data from a seismic tomographic experiment carried out during the 2008-2009 austral field season (Zandomeneghi et al., 2010). An array of 78 short period, 14 broadband, and 4 permanent Mount Erebus Volcano Observatory seismic stations and a program of 12 shots were used to model the velocity structure in the uppermost kilometer over the volcano conduit. P-wave travel times were inverted for the 3-D velocity structure using the shortest-time ray tracing (50-m grid spacing) and LSQR inversion (100-m node spacing) of a tomography code (Toomey et al., 1994) that allows for the inclusion of topography. Regularization is controlled by damping and smoothing weights and smoothing lengths, and addresses complications that are inherent in a strongly heterogeneous medium featuring rough topography and a dense parameterization and distribution of receivers/sources. The tomography reveals a composite distribution of very high and low P-wave velocity anomalies (i.e., exceeding 20% in some regions), indicating a complex sub-lava-lake magmatic geometry immediately beneath the summit region and in surrounding areas, as well as the presence of significant high velocity shallow regions. The strongest and broadest low velocity zone is located W-NW of the crater rim, indicating the presence of an off-axis shallow magma body. This feature spatially corresponds to the inferred centroid source of VLP signals associated with Strombolian eruptions and lava lake refill (Aster et al., 2008). Other resolved structures correlate with the Side Crater and with lineaments of ice cave thermal anomalies extending NE and SW of the rim. High velocities in the summit area possibly

  17. 3D Transient Hydraulic Tomography (3DTHT): An Efficient Field and Modeling Method for High-Resolution Estimation of Aquifer Heterogeneity

    NASA Astrophysics Data System (ADS)

    Barrash, W.; Cardiff, M. A.; Kitanidis, P. K.

    2012-12-01

    The distribution of hydraulic conductivity (K) is a major control on groundwater flow and contaminant transport. Our limited ability to determine 3D heterogeneous distributions of K is a major reason for increased costs and uncertainties associated with virtually all aspects of groundwater contamination management (e.g., site investigations, risk assessments, remediation method selection/design/operation, monitoring system design/operation). Hydraulic tomography (HT) is an emerging method for directly estimating the spatially variable distribution of K - in a similar fashion to medical or geophysical imaging. Here we present results from 3D transient field-scale experiments (3DTHT) which capture the heterogeneous K distribution in a permeable, moderately heterogeneous, coarse fluvial unconfined aquifer at the Boise Hydrogeophysical Research Site (BHRS). The results are verified against high-resolution K profiles from multi-level slug tests at BHRS wells. The 3DTHT field system for well instrumentation and data acquisition/feedback is fully modular and portable, and the in-well packer-and-port system is easily assembled and disassembled without expensive support equipment or need for gas pressurization. Tests are run for 15-20 min and the aquifer is allowed to recover while the pumping equipment is repositioned between tests. The tomographic modeling software developed uses as input observations of temporal drawdown behavior from each of numerous zones isolated in numerous observation wells during a series of pumping tests conducted from numerous isolated intervals in one or more pumping wells. The software solves for distributed K (as well as storage parameters Ss and Sy, if desired) and estimates parameter uncertainties using: a transient 3D unconfined forward model in MODFLOW, the adjoint state method for calculating sensitivities (Clemo 2007), and the quasi-linear geostatistical inverse method (Kitanidis 1995) for the inversion. We solve for K at >100,000 sub-m3

  18. Performance and characterization of the prototype nm-scale spatial resolution scanning multilayer Laue lenses microscope

    NASA Astrophysics Data System (ADS)

    Nazaretski, E.; Kim, Jungdae; Yan, H.; Lauer, K.; Eom, D.; Shu, D.; Maser, J.; Pešić, Z.; Wagner, U.; Rau, C.; Chu, Y. S.

    2013-03-01

    Synchrotron based x-ray microscopy established itself as a prominent tool for noninvasive investigations in many areas of science and technology. Many facilities around the world routinely achieve sub-micrometer resolution with a few instruments capable of imaging with the spatial resolution better than 100 nm. With an ongoing effort to push the 2D/3D resolution down to 10 nm in the hard x-ray regime both fabrication of the nano-focusing optics and stability of a microscope become extremely challenging. In this work we present our approach to overcome technical challenges on the path towards high spatial resolution hard x-ray microscopy and demonstrate the performance of a scanning fluorescence microscope equipped with the multilayer Laue lenses focusing optics.

  19. Improved border sharpness of post-infarct scar by a novel self-navigated free-breathing high-resolution 3D whole-heart inversion recovery magnetic resonance approach.

    PubMed

    Rutz, Tobias; Piccini, Davide; Coppo, Simone; Chaptinel, Jerome; Ginami, Giulia; Vincenti, Gabriella; Stuber, Matthias; Schwitter, Juerg

    2016-12-01

    The border zone of post-infarction myocardial scar as identified by late gadolinium enhancement (LGE) has been identified as a substrate for arrhythmias and consequently, high-resolution 3D scar information is potentially useful for planning of electrophysiological interventions. This study evaluates the performance of a novel high-resolution 3D self-navigated free-breathing inversion recovery magnetic resonance pulse sequence (3D-SN-LGE) vs. conventional 2D breath-hold LGE (2D-LGE) with regard to sharpness of borders (SBorder) of post-infarction scar. Patients with post-infarction scar underwent two magnetic resonance examinations for conventional 2D-LGE and high-resolution 3D-SN-LGE acquisitions (both 15 min after 0.2 mmol/kg Gadobutrol IV) at 1.5T. In the prototype 3D-SN-LGE sequence, each ECG-triggered radial steady-state-free-precession read-out segment is preceded by a non-slice-selective inversion pulse. Scar volume and SBorder were assessed on 2D-LGE and matching reconstructed high-resolution 3D-SN-LGE short-axis slices. In 16 patients (four females, 58 ± 10y) all scars visualized by 2D-LGE could be identified on 3D-SN-LGE (time between 2D-LGE and 3D-SN-LGE 48 ± 53 days). A good agreement of scar volume by 3D-SN-LGE vs. 2D-LGE was found (Bland-Altman: -3.7 ± 3.4 ml, correlation: r = 0.987, p < 0.001) with a small difference in scar volume (20.5 (15.8, 35.2) ml vs. 24.5 (20.0, 41.9)) ml, respectively, p = 0.002] and a good intra- and interobserver variability (1.1 ± 4.1 and -1.1 ± 11.9 ml, respectively). SBorder of border "scar to non-infarcted myocardium" was superior on 3D-SN-LGE vs. 2D-LGE: 0.180 ± 0.044 vs. 0.083 ± 0.038, p < 0.001. Detection and quantification of myocardial scar by 3D-SN-LGE is feasible and accurate in comparison to 2D-LGE. The high spatial resolution of the 3D sequence improves delineation of scar borders.

  20. Effects of Spatial Ability, Gender Differences, and Pictorial Training on Children Using 2-D and 3-D Environments to Recall Landmark Locations from Memory

    ERIC Educational Resources Information Center

    Kopcha, Theodore J.; Otumfuor, Beryl A.; Wang, Lu

    2015-01-01

    This study examines the effects of spatial ability, gender differences, and pictorial training on fourth grade students' ability to recall landmark locations from memory. Ninety-six students used Google Earth over a 3-week period to locate landmarks (3-D) and mark their location on a 2-D topographical map. Analysis of covariance on posttest scores…

  1. Study of the spatial resolution for binary readout detectors

    NASA Astrophysics Data System (ADS)

    Yonamine, R.; Maerschalk, T.; Lentdecker, G. De

    2016-07-01

    Often the binary readout is proposed for high granularity detectors to reduce the generated data volume to be readout at the price of a somewhat reduced spatial resolution compared to an analogue readout. We have been studying single hit resolutions obtained with a binary readout using simulations as well as analytical approaches. In this note we show that the detector geometry could be optimized to offer an equivalent spatial resolution than with an analogue readout.

  2. Effective incorporating spatial information in a mutual information based 3D-2D registration of a CT volume to X-ray images.

    PubMed

    Zheng, Guoyan

    2010-10-01

    This paper addresses the problem of estimating the 3D rigid poses of a CT volume of an object from its 2D X-ray projection(s). We use maximization of mutual information, an accurate similarity measure for multi-modal and mono-modal image registration tasks. However, it is known that the standard mutual information measures only take intensity values into account without considering spatial information and their robustness is questionable. In this paper, instead of directly maximizing mutual information, we propose to use a variational approximation derived from the Kullback-Leibler bound. Spatial information is then incorporated into this variational approximation using a Markov random field model. The newly derived similarity measure has a least-squares form and can be effectively minimized by a multi-resolution Levenberg-Marquardt optimizer. Experiments were conducted on datasets from two applications: (a) intra-operative patient pose estimation from a limited number (e.g. 2) of calibrated fluoroscopic images, and (b) post-operative cup orientation estimation from a single standard X-ray radiograph with/without gonadal shielding. The experiment on intra-operative patient pose estimation showed a mean target registration accuracy of 0.8mm and a capture range of 11.5mm, while the experiment on estimating the post-operative cup orientation from a single X-ray radiograph showed a mean accuracy below 2 degrees for both anteversion and inclination. More importantly, results from both experiments demonstrated that the newly derived similarity measures were robust to occlusions in the X-ray image(s).

  3. Method and phantom to study combined effects of in-plane (x,y) and z-axis resolution for 3D CT imaging.

    PubMed

    Goodenough, David; Levy, Josh; Kristinsson, Smari; Fredriksson, Jesper; Olafsdottir, Hildur; Healy, Austin

    2016-09-01

    Increasingly, the advent of multislice CT scanners, volume CT scanners, and total body spiral acquisition modes has led to the use of Multi Planar Reconstruction and 3D datasets. In considering 3D resolution properties of a CT system it is important to note that both the in-plane (x,y) and z-axis (slice thickness) influence the visualization and detection of objects within the scanned volume. This study investigates ways to consider both the in-plane resolution and the z-axis resolution in a single phantom wherein analytic or visualized analysis can yield information on these combined effects. A new phantom called the "Wave Phantom" is developed that can be used to sample the 3D resolution properties of a CT image, including in-plane (x,y) and z-axis information. The key development in this Wave Phantom is the incorporation of a z-axis aspect of a more traditional step (bar) resolution gauge phantom. The phantom can be examined visually wherein a cutoff level may be seen; and/or the analytic analysis of the various characteristics of the waveform profile by including amplitude, frequency, and slope (rate of climb) of the peaks, can be extracted from the Wave Pattern using mathematical analysis such as the Fourier transform. The combined effect of changes in in-plane resolution and z-axis (thickness), are shown, as well as the effect of changes in either in-plane resolution, or z-axis thickness. Examples of visual images of the Wave pattern as well as the analytic characteristics of the various harmonics of a periodic Wave pattern resulting from changes in resolution filter and/or slice thickness, and position in the field of view are shown. The Wave Phantom offers a promising way to investigate 3D resolution results from combined effect of in-plane (x-y) and z-axis resolution as contrasted to the use of simple 2D resolution gauges that need to be used with separate measures of z-axis dependency, such as angled ramps. It offers both a visual pattern as well as a

  4. Method and phantom to study combined effects of in-plane (x,y) and z-axis resolution for 3D CT imaging.

    PubMed

    Goodenough, David; Levy, Josh; Kristinsson, Smari; Fredriksson, Jesper; Olafsdottir, Hildur; Healy, Austin

    2016-09-08

    Increasingly, the advent of multislice CT scanners, volume CT scanners, and total body spiral acquisition modes has led to the use of Multi Planar Reconstruction and 3D datasets. In considering 3D resolution properties of a CT system it is important to note that both the in-plane (x,y) and z-axis (slice thickness) influence the visual-ization and detection of objects within the scanned volume. This study investigates ways to consider both the in-plane resolution and the z-axis resolution in a single phantom wherein analytic or visualized analysis can yield information on these combined effects. A new phantom called the "Wave Phantom" is developed that can be used to sample the 3D resolution properties of a CT image, including in-plane (x,y) and z-axis information. The key development in this Wave Phantom is the incorporation of a z-axis aspect of a more traditional step (bar) resolution gauge phantom. The phantom can be examined visually wherein a cutoff level may be seen; and/or the analytic analysis of the various characteristics of the waveform profile by including amplitude, frequency, and slope (rate of climb) of the peaks, can be extracted from the Wave Pattern using mathematical analysis such as the Fourier transform. The combined effect of changes in in-plane resolution and z-axis (thickness), are shown, as well as the effect of changes in either in-plane resolu-tion, or z-axis thickness. Examples of visual images of the Wave pattern as well as the analytic characteristics of the various harmonics of a periodic Wave pattern resulting from changes in resolution filter and/or slice thickness, and position in the field of view are shown. The Wave Phantom offers a promising way to investigate 3D resolution results from combined effect of in-plane (x-y) and z-axis resolution as contrasted to the use of simple 2D resolution gauges that need to be used with separate measures of z-axis dependency, such as angled ramps. It offers both a visual pattern as well as a

  5. 3D and Education

    NASA Astrophysics Data System (ADS)

    Meulien Ohlmann, Odile

    2013-02-01

    Today the industry offers a chain of 3D products. Learning to "read" and to "create in 3D" becomes an issue of education of primary importance. 25 years professional experience in France, the United States and Germany, Odile Meulien set up a personal method of initiation to 3D creation that entails the spatial/temporal experience of the holographic visual. She will present some different tools and techniques used for this learning, their advantages and disadvantages, programs and issues of educational policies, constraints and expectations related to the development of new techniques for 3D imaging. Although the creation of display holograms is very much reduced compared to the creation of the 90ies, the holographic concept is spreading in all scientific, social, and artistic activities of our present time. She will also raise many questions: What means 3D? Is it communication? Is it perception? How the seeing and none seeing is interferes? What else has to be taken in consideration to communicate in 3D? How to handle the non visible relations of moving objects with subjects? Does this transform our model of exchange with others? What kind of interaction this has with our everyday life? Then come more practical questions: How to learn creating 3D visualization, to learn 3D grammar, 3D language, 3D thinking? What for? At what level? In which matter? for whom?

  6. 3D printing PLGA: a quantitative examination of the effects of polymer composition and printing parameters on print resolution.

    PubMed

    Guo, Ting; Holzberg, Timothy R; Lim, Casey G; Gao, Feng; Gargava, Ankit; Trachtenberg, Jordan E; Mikos, Antonios G; Fisher, John P

    2017-04-12

    In the past few decades, 3D printing has played a significant role in fabricating scaffolds with consistent, complex structure that meet patient-specific needs in future clinical applications. Although many studies have contributed to this emerging field of additive manufacturing, which includes material development and computer-aided scaffold design, current quantitative analyses do not correlate material properties, printing parameters, and printing outcomes to a great extent. A model that correlates these properties has tremendous potential to standardize 3D printing for tissue engineering and biomaterial science. In this study, we printed poly(lactic-co-glycolic acid) (PLGA) utilizing a direct melt extrusion technique without additional ingredients. We investigated PLGA with various lactic acid:glycolic acid (LA:GA) molecular weight ratios and end caps to demonstrate the dependence of the extrusion process on the polymer composition. Micro-computed tomography was then used to evaluate printed scaffolds containing different LA:GA ratios, composed of different fiber patterns, and processed under different printing conditions. We built a statistical model to reveal the correlation and predominant factors that determine printing precision. Our model showed a strong linear relationship between the actual and predicted precision under different combinations of printing conditions and material compositions. This quantitative examination establishes a significant foreground to 3D print biomaterials following a systematic fabrication procedure. Additionally, our proposed statistical models can be applied to couple specific biomaterials and 3D printing applications for patient implants with particular requirements.

  7. Spatial resolution is dependent on image content for SPECT with iterative reconstruction incorporating distance dependent resolution (DDR) correction.

    PubMed

    Badger, Daniel; Barnden, Leighton

    2014-09-01

    The aim of this study is to determine the dependence of single photon emission computed tomography (SPECT) spatial resolution on the content of images for iterative reconstruction with distance dependent resolution (DDR) correction. An experiment was performed using a perturbation technique to measure change in resolution of line sources in simple and complex images with iterative reconstruction with increasing iteration. Projections of the line sources were reconstructed alone and again after the addition of projections of a uniform flood or a complex phantom. An alternative experiment used images of a realistic brain phantom and evaluated an effective spatial resolution by matching the images to the digital version of the phantom convolved with 3D Gaussian kernels. The experiments were performed using ordered subset expectation maximisation iterative reconstruction with and without the use of DDR correction. The results show a significant difference in reconstructed resolution between images of line sources depending on the content of the added image. The full width at half maximum of images of a line source reconstructed using DDR correction increased by 20-30 % when the added image was complex. Without DDR this difference was much smaller and disappeared with increasing iteration. Reported SPECT resolution should be taken as indicative only with regard to clinical imaging if the measurement is made using a point or line source alone and an iterative reconstruction algorithm is used.

  8. Breaking the Crowther limit: combining depth-sectioning and tilt tomography for high-resolution, wide-field 3D reconstructions.

    PubMed

    Hovden, Robert; Ercius, Peter; Jiang, Yi; Wang, Deli; Yu, Yingchao; Abruña, Héctor D; Elser, Veit; Muller, David A

    2014-05-01

    To date, high-resolution (<1 nm) imaging of extended objects in three-dimensions (3D) has not been possible. A restriction known as the Crowther criterion forces a tradeoff between object size and resolution for 3D reconstructions by tomography. Further, the sub-Angstrom resolution of aberration-corrected electron microscopes is accompanied by a greatly diminished depth of field, causing regions of larger specimens (>6 nm) to appear blurred or missing. Here we demonstrate a three-dimensional imaging method that overcomes both these limits by combining through-focal depth sectioning and traditional tilt-series tomography to reconstruct extended objects, with high-resolution, in all three dimensions. The large convergence angle in aberration corrected instruments now becomes a benefit and not a hindrance to higher quality reconstructions. A through-focal reconstruction over a 390 nm 3D carbon support containing over 100 dealloyed and nanoporous PtCu catalyst particles revealed with sub-nanometer detail the extensive and connected interior pore structure that is created by the dealloying instability.

  9. Scanning SQUID susceptometers with sub-micron spatial resolution

    NASA Astrophysics Data System (ADS)

    Kirtley, John R.; Paulius, Lisa; Rosenberg, Aaron J.; Palmstrom, Johanna C.; Holland, Connor M.; Spanton, Eric M.; Schiessl, Daniel; Jermain, Colin L.; Gibbons, Jonathan; Fung, Y.-K.-K.; Huber, Martin E.; Ralph, Daniel C.; Ketchen, Mark B.; Gibson, Gerald W.; Moler, Kathryn A.

    2016-09-01

    Superconducting QUantum Interference Device (SQUID) microscopy has excellent magnetic field sensitivity, but suffers from modest spatial resolution when compared with other scanning probes. This spatial resolution is determined by both the size of the field sensitive area and the spacing between this area and the sample surface. In this paper we describe scanning SQUID susceptometers that achieve sub-micron spatial resolution while retaining a white noise floor flux sensitivity of ≈2μΦ0/Hz1/2. This high spatial resolution is accomplished by deep sub-micron feature sizes, well shielded pickup loops fabricated using a planarized process, and a deep etch step that minimizes the spacing between the sample surface and the SQUID pickup loop. We describe the design, modeling, fabrication, and testing of these sensors. Although sub-micron spatial resolution has been achieved previously in scanning SQUID sensors, our sensors not only achieve high spatial resolution but also have integrated modulation coils for flux feedback, integrated field coils for susceptibility measurements, and batch processing. They are therefore a generally applicable tool for imaging sample magnetization, currents, and susceptibilities with higher spatial resolution than previous susceptometers.

  10. Simultaneous full-field 3-D vibrometry of the human eardrum using spatial-bandwidth multiplexed holography

    PubMed Central

    Khaleghi, Morteza; Guignard, Jérémie; Furlong, Cosme; Rosowski, John J.

    2015-01-01

    Abstract. Holographic interferometric methods typically require the use of three sensitivity vectors in order to obtain three-dimensional (3-D) information. Methods based on multiple directions of illumination have limited applications when studying biological tissues that have temporally varying responses such as the tympanic membrane (TM). Therefore, to measure 3-D displacements in such applications, the measurements along all the sensitivity vectors have to be done simultaneously. We propose a multiple-illumination directions approach to measure 3-D displacements from a single-shot hologram that contains displacement information from three sensitivity vectors. The hologram of an object of interest is simultaneously recorded with three incoherently superimposed pairs of reference and object beams. The incident off-axis angles of the reference beams are adjusted such that the frequency components of the multiplexed hologram are completely separate. Because of the differences in the directions and wavelengths of the reference beams, the positions of each reconstructed image corresponding to each sensitivity vector are different. We implemented a registration algorithm to accurately translate individual components of the hologram into a single global coordinate system to calculate 3-D displacements. The results include magnitudes and phases of 3-D sound-induced motions of a human cadaveric TM at several excitation frequencies showing modal and traveling wave motions on its surface. PMID:25984986

  11. ROLE OF SPATIAL RESOLUTION AND SPECTRAL CONTENT IN CHANGE DETECTION.

    USGS Publications Warehouse

    Milazzo, Valerie A.

    1984-01-01

    Summary form only given, as follows. Advancements in remote sensing technology have brought improvements and sophistication to modern remote sensor systems, especially those aboard earth resources satellites. These improvements have considerbly expanded the capabilities of the newer sensor systems, particularly the capability to achieve greatly increased spatial and spectral resolution levels. The debate still lingers, however, over whether future systems should maximize spatial resolution or spectral information, or both. As yet, the high costs and large volumes of data associated with even modest incremental improvements in spatial and spectral content have precluded the design of a single system that attempts to fully optimize both. Thus, the user is faced with having to choose between those systems providing high spatial resolutions but limited spectral information and those which offer a broad range of spectral data but hold spatial resolution to a less than optimum level. In this study, the contribution of both spatial resolution and spectral content to land cover change detection is examined. Ten-meter SPOT simulation imagery is compared with multispectral images acquired by the Thematic Mapper sensor system for use in the visual interpretation and mapping of changes. Several image processing and enhancement techniques are utilized to maximize the spatial and spectral data content offered by each system. Results indicate that when using visual image interpretation techniques to detect change, higher spatial resolutions are generally preferred over increased spectral content.

  12. R2OBBIE-3D, a Fast Robotic High-Resolution System for Quantitative Phenotyping of Surface Geometry and Colour-Texture

    PubMed Central

    Manukyan, Liana; Milinkovitch, Michel C.

    2015-01-01

    While recent imaging techniques provide insights into biological processes from the molecular to the cellular scale, phenotypes at larger scales remain poorly amenable to quantitative analyses. For example, investigations of the biophysical mechanisms generating skin morphological complexity and diversity would greatly benefit from 3D geometry and colour-texture reconstructions. Here, we report on R2OBBIE-3D, an integrated system that combines a robotic arm, a high-resolution digital colour camera, an illumination basket of high-intensity light-emitting diodes and state-of-the-art 3D-reconstruction approaches. We demonstrate that R2OBBIE generates accurate 3D models of biological objects between 1 and 100 cm, makes multiview photometric stereo scanning possible in practical processing times, and enables the capture of colour-texture and geometric resolutions better than 15 μm without the use of magnifying lenses. R2OBBIE has the potential to greatly improve quantitative analyses of phenotypes in addition to providing multiple new applications in, e.g., biomedical science. PMID:26039509

  13. High-resolution electrohydrodynamic jet printing for the direct fabrication of 3D multilayer terahertz metamaterial of high refractive index

    NASA Astrophysics Data System (ADS)

    Teguh Yudistira, Hadi; Pradhipta Tenggara, Ayodya; Oh, Sang Soon; Nguyen, VuDat; Choi, Muhan; Choi, Choon-gi; Byun, Doyoung

    2015-04-01

    The fabrication of 3D metamaterials, such as multilayer structures, is of great interest in practical applications of the metamaterial. Here we present an electrohydrodynamic jet printing technique as a direct fabrication method of 3D multilayer metamaterial. By alignment of the nozzle movement, we could fabricate multiple layers of the metamaterial. Controlling an electrical pulse to make droplets on-demand, we fabricated a high refractive index metamaterial and compared the optical performances of a single layer and multiple layers, with 10 µm width and 5 µm gap of I-shaped meta-atoms on the polyimide substrate. The peak refractive index was 25.7 at 0.46 THz for a four-layer metamaterial.

  14. Solar system events at high spatial resolution

    SciTech Connect

    Baines, K H; Gavel, D T; Getz, A M; Gibbartd, S G; MacIntosh, B; Max, C E; McKay, C P; Young, E F; de Pater, I

    1999-02-19

    Until relatively recent advances in technology, astronomical observations from the ground were limited in image resolution by the blurring effects of earth's atmosphere. The blur extent, ranging typically from 0.5 to 2 seconds of arc at the best astronomical sights, precluded ground-based observations of the details of the solar system's moons, asteroids, and outermost planets. With the maturing of a high resolution image processing technique called speckle imaging the resolution limitation of the atmosphere can now be largely overcome. Over the past three years they have used speckle imaging to observe Titan, a moon of Saturn with an atmospheric density comparable to Earth's, Io, the volcanically active innermost moon of Jupiter, and Neptune, a gas giant outer planet which has continually changing planet-encircling storms. These observations were made at the world's largest telescope, the Keck telescope in Hawaii and represent the highest resolution infrared images of these objects ever taken.

  15. Use of a High-Resolution 3D Laser Scanner for Minefield Surface Modeling and Terrain Characterization: Temperature Region

    DTIC Science & Technology

    2005-08-01

    al. 2005). Background The highly accurate and dense point data (or point clouds ) captured by terrestrial 3D laser scanners, such as the Leica...intensity value. The sophisticated design of the scanner enables point clouds to be captured that 1...additional analyses. A ScanWorld can be defined as a collection of scanned point clouds that are derived from consecutive scans at the same scanner

  16. High density resolution synchrotron radiation based x-ray microtomography (SR μCT) for quantitative 3D-morphometrics in zoological sciences

    NASA Astrophysics Data System (ADS)

    Nickel, Michael; Hammel, Jörg U.; Herzen, Julia; Bullinger, Eric; Beckmann, Felix

    2008-08-01

    Zoological sciences widely rely on morphological data to reconstruct and understand body structures of animals. The best suitable methods like tomography allow for a direct representation of 3D-structures. In recent years, synchrotron radiation based x-ray microtomography (SR μCT) placed high resolutions to the disposal of morphologists. With the development of highly brilliant and collimated third generation synchrotron sources, phase contrast SR μCT became widely available. A number of scientific contributions stressed the superiority of phase contrast over absorption contrast. However, here we demonstrate the power of high density resolution methods based on absorption-contrast SRμCT for quantitative 3D-measurements of tissues and other delicate bio-structures in zoological sciences. We used beamline BW2 at DORIS III (DESY, Hamburg, Germany) to perform microtomography on tissue and mineral skeletons of marine sponges (Porifera) which were shock frozen and/or fixed in a glutamate osmium tetroxide solution, followed by critical point drying. High density resolution tomographic reconstructions allowed running quantitative 3D-image analyses in Matlab and ImageJ. By applying contrast and shape rule based algorithms we semi-automatically extracted and measured sponge body structures like mineral spicules, elements of the canal system or tissue structures. This lead to a better understanding of sponge biology: from skeleton functional morphology and internal water flow regimes to body contractility. Our high density resolution based quantitative approach can be applied to a wide variety of biological structures. However, two prerequisites apply: (1) maximum density resolution is necessary; (2) edge effects as seen for example in phase outline contrast SR μCT must not be present. As a consequence, to allow biological sciences to fully exploit the power of SR μCT further increase of density resolution in absorption contrast methods is desirable.

  17. Anticipatory Spatial Representation of 3D Regions Explored by Sighted Observers and a Deaf-and-Blind-Observer

    ERIC Educational Resources Information Center

    Intraub, Helene

    2004-01-01

    Viewers who study photographs of scenes tend to remember having seen beyond the boundaries of the view ["boundary extension"; J. Exp. Psychol. Learn. Mem. Cogn. 15 (1989) 179]. Is this a fundamental aspect of scene representation? Forty undergraduates explored bounded regions of six common (3D) scenes, visually or haptically (while blindfolded)…

  18. Evaluation of potential human health effects associated with the agricultural uses of 1,3-D: Spatial and temporal stochastic risk analysis.

    PubMed

    Driver, Jeffrey H; Price, Paul S; Van Wesenbeeck, Ian; Ross, John H; Gehen, Sean; Holden, Larry R; Landenberger, Bryce; Hastings, Kerry; Yan, Zhongyu June; Rasoulpour, Reza

    2016-11-15

    Dow AgroSciences (DAS) markets and sells 1,3-Dichloropropene (1,3-D), the active ingredient in Telone®, which is used as a pre-plant soil fumigant nematicide in economically important crops in California. 1,3-D has been regulated as a "probable human carcinogen" and the California Department of Pesticide Regulation limits use of 1,3-D based on human health risk assessments for bystanders. This paper presents a risk characterization for bystanders based on advances in the assessment of both exposure and hazard. The revised bystander risk assessment incorporates significant advances: 1) new data on residency duration and mobility in communities where 1,3-D is in high demand; 2) new information on spatial and temporal concentrations of 1,3-D in air based on multi-year modeling using a validated model; and 3) a new stochastic spatial and temporal model of long-term exposures. Predicted distributions of long-term, chronic exposures indicate that current, and anticipated uses of 1,3-D would result in lifetime average daily doses lower than 0.002mg/kg/d, a dose associated with theoretical lifetime excess cancer risk of <10(-5) to >95% of the local population based on a non-threshold risk assessment approach. Additionally, examination of 1,3-D toxicity studies including new chronic toxicity data and mechanism of action supports the use of a non-linear, threshold based risk assessment approach. The estimated maximum annual average daily dose of <0.0016mg/kg/d derived from the updated exposure assessment was then compared with a threshold point of departure. The calculated margin of exposure is >1000-fold, a clear indication of acceptable risk for human health. In summary, the best available science supports 1,3-D's threshold nature of hazard and the revised exposure assessment supports that current agricultural uses of 1,3-D are associated with reasonable certainty of no harm, i.e., estimated long-term exposures pose insignificant health risks to bystanders even when the

  19. Geological interpretation and analysis of surface based, spatially referenced planetary imagery data using PRoGIS 2.0 and Pro3D.

    NASA Astrophysics Data System (ADS)

    Barnes, R.; Gupta, S.; Giordano, M.; Morley, J. G.; Muller, J. P.; Tao, Y.; Sprinks, J.; Traxler, C.; Hesina, G.; Ortner, T.; Sander, K.; Nauschnegg, B.; Paar, G.; Willner, K.; Pajdla, T.

    2015-10-01

    We apply the capabilities of the geospatial environment PRoGIS 2.0 and the real time rendering viewer PRo3D to geological analysis of NASA's Mars Exploration Rover-B (MER-B Opportunity rover) and Mars Science Laboratory (MSL Curiosity rover) datasets. Short baseline and serendipitous long baseline stereo Pancam rover imagery are used to create 3D point clouds which can be combined with super-resolution images derived from Mars Reconnaissance Orbiter HiRISE orbital data, andsuper-resolution outcrop images derived from MER Pancam, as well as hand-lens scale images for geology and outcrop characterization at all scales. Data within the PRoViDE database are presented and accessed through the PRoGIS interface. Simple geological measurement tools are implemented within the PRoGIS and PRo3D web software to accurately measure the dip and strike of bedding in outcrops, create detailed stratigraphic logs for correlation between the areas investigated, and to develop realistic 3D models for the characterization of planetary surface processes. Annotation tools are being developed to aid discussion and dissemination of the observations within the planetary science community.

  20. Analysis of DOA estimation spatial resolution using MUSIC algorithm

    NASA Astrophysics Data System (ADS)

    Guo, Yue; Wang, Hongyuan; Luo, Bin

    2005-11-01

    This paper presents a performance analysis of the spatial resolution of the direction of arrival (DOA) estimates attained by the multiple signal classification (MUSIC) algorithm for uncorrelated sources. The confidence interval of estimation angle which is much more intuitionistic will be considered as the new evaluation standard for the spatial resolution. Then, based on the statistic method, the qualitative analysis reveals the factors influencing the performance of the MUSIC algorithm. At last, quantitative simulations prove the theoretical analysis result exactly.

  1. High spatial resolution passive microwave sounding systems

    NASA Technical Reports Server (NTRS)

    Staelin, D. H.; Rosenkranz, P. W.; Bonanni, P. G.; Gasiewski, A. W.

    1986-01-01

    Two extensive series of flights aboard the ER-2 aircraft were conducted with the MIT 118 GHz imaging spectrometer together with a 53.6 GHz nadir channel and a TV camera record of the mission. Other microwave sensors, including a 183 GHz imaging spectrometer were flown simultaneously by other research groups. Work also continued on evaluating the impact of high-resolution passive microwave soundings upon numerical weather prediction models.

  2. SU-E-T-419: Fabricating Cerrobend Grids with 3D Printing for Spatially Modulated Radiation Therapy: A Feasibility Study

    SciTech Connect

    Zhu, X; Driewer, J; Lei, Y; Zheng, D; Li, S; Zhang, Q; Zhang, M; Zhou, S; Cullip, T; Chang, S

    2015-06-15

    Purpose: Grid therapy has promising applications in the radiation treatment of bulky and large tumors. However, research and applications of grid therapy is limited by the accessibility of the specialized blocks that produce the grid of pencil-like radiation beams. In this study, a Cerrobend grid block was fabricated using a 3D printing technique. Methods: A grid block mold was designed with divergent tubes following beam central rays. The mold was printed using a resin with the working temperature below 230 °C. The melted Cerrobend liquid at 120°oC was cast into the resin mold to yield a block with a thickness of 7.4 cm. The grid had a hexagonal pattern, with each pencil beam diameter of 1.4 cm at the iso-center plane; the distance between the beam centers was 2 cm. The dosimetric properties of the grid block were studied using radiographic film and small field dosimeters. Results: the grid block was fabricated to be mounted at the third accessory mount of a Siemens Oncor linear accelerator. Fabricating a grid block using 3D printing is similar to making cutouts for traditional radiotherapy photon blocks, with the difference being that the mold was created by a 3D printer rather than foam. In this study, the valley-to-peak ratio for a 6MV photon grid beam was 20% at dmax, and 30% at 10 cm depth, respectively. Conclusion: We have demonstrated a novel process for implementing grid radiotherapy using 3D printing techniques. Compared to existing approaches, our technique combines reduced cost, accessibility, and flexibility in customization with efficient delivery. This lays the groundwork for future studies to improve our understanding of the efficacy of grid therapy and apply it to improve cancer treatment.

  3. 3D BrainCV: simultaneous visualization and analysis of cells and capillaries in a whole mouse brain with one-micron voxel resolution.

    PubMed

    Wu, Jingpeng; He, Yong; Yang, Zhongqin; Guo, Congdi; Luo, Qingming; Zhou, Wei; Chen, Shangbin; Li, Anan; Xiong, Benyi; Jiang, Tao; Gong, Hui

    2014-02-15

    Systematic cellular and vascular configurations are essential for understanding fundamental brain anatomy and metabolism. We demonstrated a 3D brainwide cellular and vascular (called 3D BrainCV) visualization and quantitative protocol for a whole mouse brain. We developed a modified Nissl staining method that quickly labeled the cells and blood vessels simultaneously in an entire mouse brain. Terabytes 3D datasets of the whole mouse brains, with unprecedented details of both individual cells and blood vessels, including capillaries, were simultaneously imaged at 1-μm voxel resolution using micro-optical sectioning tomography (MOST). For quantitative analysis, we proposed an automatic image-processing pipeline to perform brainwide vectorization and analysis of cells and blood vessels. Six representative brain regions from the cortex to the deep, including FrA, M1, PMBSF, V1, striatum, and amygdala, and six parameters, including cell number density, vascular length density, fractional vascular volume, distance from the cells to the nearest microvessel, microvascular length density, and fractional microvascular volume, had been quantitatively analyzed. The results showed that the proximity of cells to blood vessels was linearly correlated with vascular length density, rather than the cell number density. The 3D BrainCV made overall snapshots of the detailed picture of the whole brain architecture, which could be beneficial for the state comparison of the developing and diseased brain.

  4. Experimental study of the maximum resolution and packing density achievable in sintered and non-sintered binder-jet 3D printed steel microchannels

    SciTech Connect

    Elliott, Amy M; Mehdizadeh Momen, Ayyoub; Benedict, Michael; Kiggans Jr, James O

    2015-01-01

    Developing high resolution 3D printed metallic microchannels is a challenge especially when there is an essential need for high packing density of the primary material. While high packing density could be achieved by heating the structure to the sintering temperature, some heat sensitive applications require other strategies to improve the packing density of primary materials. In this study the goal is to develop high green or pack densities microchannels on the scale of 2-300 microns which have a robust mechanical structure. Binder-jet 3D printing is an additive manufacturing process in which droplets of binder are deposited via inkjet into a bed of powder. By repeatedly spreading thin layers of powder and depositing binder into the appropriate 2D profiles, complex 3D objects can be created one layer at time. Microchannels with features on the order of 500 microns were fabricated via binder jetting of steel powder and then sintered and/or infiltrated with a secondary material. The average particle size of the steel powder was varied along with the droplet volume of the inkjet-deposited binder. The resolution of the process, packing density of the primary material, the subsequent features sizes of the microchannels, and the overall microchannel quality were characterized as a function of particle size distribution, droplet sizes and heat treatment temperatures.

  5. High throughput 3D super-resolution microscopy reveals Caulobacter crescentus in vivo Z-ring organization

    PubMed Central

    Holden, Seamus J.; Pengo, Thomas; Meibom, Karin L.; Fernandez Fernandez, Carmen; Collier, Justine; Manley, Suliana

    2014-01-01

    We created a high-throughput modality of photoactivated localization microscopy (PALM) that enables automated 3D PALM imaging of hundreds of synchronized bacteria during all stages of the cell cycle. We used high-throughput PALM to investigate the nanoscale organization of the bacterial cell division protein FtsZ in live Caulobacter crescentus. We observed that FtsZ predominantly localizes as a patchy midcell band, and only rarely as a continuous ring, supporting a model of “Z-ring” organization whereby FtsZ protofilaments are randomly distributed within the band and interact only weakly. We found evidence for a previously unidentified period of rapid ring contraction in the final stages of the cell cycle. We also found that DNA damage resulted in production of high-density continuous Z-rings, which may obstruct cytokinesis. Our results provide a detailed quantitative picture of in vivo Z-ring organization. PMID:24616530

  6. The Relationship between Spatial Visualization Ability and Students' Ability to Model 3D Objects from Engineering Assembly Drawings

    ERIC Educational Resources Information Center

    Branoff, T. J.; Dobelis, M.

    2012-01-01

    Spatial abilities have been used as a predictor of success in several engineering and technology disciplines (Strong & Smith, 2001). In engineering graphics courses, scores on spatial tests have also been used to predict success (Adanez & Velasco, 2002; Leopold, Gorska, & Sorby, 2001). Other studies have shown that some type of…

  7. High-resolution laser radar: a powerful tool for 3D imaging with potential applications in artwork restoration and medical prosthesis

    NASA Astrophysics Data System (ADS)

    Fantoni, Roberta; Bordone, Andrea; Ferri De Collibus, Mario; Fornetti, Giorgio G.; Guarneri, Marianna; Poggi, Claudio; Ricci, Roberto

    2003-11-01

    A high-resolution laser radar has been developed for laboratory applications at an accurate 3D reconstruction of real objects. The laser scanner can be used to produce single cylindrical range image when the object is placed on a controlled rotating platform or, alternatively, 3 or more linear range images, in order to fully characterize the surface of the object as seen from different points of view. From the sample points, characterized by an uncertainty as small as 100 μm, the complete object surface can be reconstructed by using specifically developed software tools. The system has been successfully applied to scan different types of real surfaces (stone, wood, bones) with relevant applications in industrial machining, artwork classification and medical diagnostics. Significant examples of 3D reconstructions are shown and discussed in view of a specific utilization for reverse engineering applied to artwork restoration and medical prosthesis.

  8. High-Resolution 3D Imaging and Quantification of Gold Nanoparticles in a Whole Cell Using Scanning Transmission Ion Microscopy

    PubMed Central

    Chen, Xiao; Chen, Ce-Belle; Udalagama, Chammika N.B.; Ren, Minqin; Fong, Kah Ee; Yung, Lin Yue Lanry; Giorgia, Pastorin; Bettiol, Andrew Anthony; Watt, Frank

    2013-01-01

    Increasing interest in the use of nanoparticles (NPs) to elucidate the function of nanometer-sized assemblies of macromolecules and organelles within cells, and to develop biomedical applications such as drug delivery, labeling, diagnostic sensing, and heat treatment of cancer cells has prompted investigations into novel techniques that can image NPs within whole cells and tissue at high resolution. Using fast ions focused to nanodimensions, we show that gold NPs (AuNPs) inside whole cells can be imaged at high resolution, and the precise location of the particles and the number of particles can be quantified. High-resolution density information of the cell can be generated using scanning transmission ion microscopy, enhanced contrast for AuNPs can be achieved using forward scattering transmission ion microscopy, and depth information can be generated from elastically backscattered ions (Rutherford backscattering spectrometry). These techniques and associated instrumentation are at an early stage of technical development, but we believe there are no physical constraints that will prevent whole-cell three-dimensional imaging at <10 nm resolution. PMID:23561518

  9. Optical characterization of auto-stereoscopic 3D displays: interest of the resolution and comparison to human eye properties

    NASA Astrophysics Data System (ADS)

    Boher, Pierre; Leroux, Thierry; Bignon, Thibault; Collomb-Patton, Véronique

    2014-02-01

    Optical characterization of multi-view auto-stereoscopic displays is realized using high angular resolution viewing angle measurements and imaging measurements. View to view and global qualified binocular viewing space are computed from viewing angle measurements and verified using imaging measurements. Crosstalk uniformity is also deduced and related to display imperfections.

  10. Improving Nano-MRI Spatial Resolution with Phase Multiplexing

    NASA Astrophysics Data System (ADS)

    Moores, Brad; Eichler, Alex; Degen, Christian

    2015-03-01

    Magnetic resonance force microscopy (MRFM) is a scanning probe technique that allows measuring nuclear spin densities with resolution better than 10nm. Detecting such small volumes of spins (less than (10nm)3 corresponds to approximately 20,000 spins) requires long averaging of signals from statistically polarized nuclei. For instance, previous work demonstrated that imaging a single isotope (1H) of a Tobacco Mosaic Virus required averaging for 2 weeks, and therefore the chemical contrast abilities of MRFM had to be forfeited to enable higher spatial resolution. In order to reconcile the chemical selectivity of MRFM along with the proven high spatial resolution, we have developed a phase multiplexing technique capable of simultaneously acquiring spin signals from multiple isotopes and from up to six spatial locations. We have demonstrated this method using a nanowire test sample, and have achieved one-dimensional imaging resolution of less than 5 nm and subnanometer positional accuracy.

  11. Geomorphology of Late Quaternary Mass Movement Deposits using a Decimetre-Resolution 3D Seismic Volume: Case Studies from Windermere, UK, and Trondheimsfjorden, Norway

    NASA Astrophysics Data System (ADS)

    Vardy, M. E.; Dix, J. K.; Henstock, T.; Bull, J. M.; Pinson, L.; L'Heureux, J.; Longva, O.; Hansen, L.; Chand, S.; Gutowski, M.

    2009-12-01

    We present results from decimetre resolution 3D seismic volumes acquired over Late Quaternary mass movement deposits in both Lake Windermere, UK, and the Trondheim Harbour area, central Norway. Both deposits were imaged using the 3D Chirp sub-bottom profiler, which combines the known, highly repeatable source waveform of Chirp profilers with the coherent processing and interpretation afforded by true 3D seismic volumes. Reflector morphology from these two volumes are used to identify and map structure on scales of 10s cm to 100s metres. This shows the applicability of the method for the interpretation of failure mechanism, flow morphology and depositional style in these two environments. In Windermere, Younger Dryas deposits have been substantially reworked by the episodic redistribution of sediment from the steep lakesides into the basin. Within the 100 x 400 m 3D seismic volume we identify two small debris flow deposits (1500 m3 and 60,000 m3) and one large (500,000 m3) erosive mass flow deposit. These two depositional mechanisms are distinct. The debris flows have high amplitude, chaotic internal reflections, with a high amplitude reflector representing a lower erosional boundary, discontinuous low amplitude top reflector, and thin out rapidly with distance from the lake margin. The thicker mass flow unit lacks internal structure, and has high amplitude top and base reflectors,. In the Trondheim Harbour we image the down-slope extent of three large slide blocks (which have a net volume > 1 x 106 m3), mobilised by a landslide in 1990, in the 100 x 450 m 3D seismic volume. The morphology of these mass movement deposits is distinct again; demonstrating translational failure along a clear slip plane, leaving well defined slide scars, and forming prominent compressional/extensional structures.

  12. A Very High Spatial Resolution Detector for Small Animal PET

    SciTech Connect

    Kanai Shah, M.S.

    2007-03-06

    Positron Emission Tomography (PET) is an in vivo analog of autoradiography and has the potential to become a powerful new tool in imaging biological processes in small laboratory animals. PET imaging of small animals can provide unique information that can help in advancement of human disease models as well as drug development. Clinical PET scanners used for human imaging are bulky, expensive and do not have adequate spatial resolution for small animal studies. Hence, dedicated, low cost instruments are required for conducting small animal studies with higher spatial resolution than what is currently achieved with clinical as well as dedicated small animal PET scanners. The goal of the proposed project is to investigate a new all solid-state detector design for small animal PET imaging. Exceptionally high spatial resolution, good timing resolution, and excellent energy resolution are expected from the proposed detector design. The Phase I project was aimed at demonstrating the feasibility of producing high performance solid-state detectors that provide high sensitivity, spatial resolution, and timing characteristics. Energy resolution characteristics of the new detector were also investigated. The goal of the Phase II project is to advance the promising solid-state detector technology for small animal PET and determine its full potential. Detectors modules will be built and characterized and finally, a bench-top small animal PET system will be assembled and evaluated.

  13. A sediment structure model for describing the 3D spatial distribution of soil hydraulic properties of an artificial catchment using pedotransfer functions

    NASA Astrophysics Data System (ADS)

    Maurer, T.; Bartsch, R.; Schneider, A.; Gerke, H. H.

    2012-04-01

    Modelling the spatial heterogeneity of catchments is a prerequisite for the understanding of flow processes and the application of hydrological models. The initial structure represents also the starting point for catchment and ecosystem development. The quality of hydrologic modeling is often limited due to a lack of data or an oversimplification of aquifer properties. Predictions can be significantly improved by using spatial models that reproduce specific structural characteristics. Current geostatistical methods are unable the capture spatially complex conditions, e.g. abrupt changes in structures. More deterministic structure generator approaches are currently been discussed in hydrogeology for exploration. Process-based structure generators deduce structural characteristics e.g. from the known formation processes of the aquifer. The objective was to describe the spatial distribution of soil hydraulic properties in a catchment based on generated 3D sediments distributions. The approach was tested for the artificially constructed "Hühnerwasser" ("Chicken Creek") catchment. The catchment is located in the post-lignite mining area of Welzow-Süd in Lower Lusatia, Brandenburg, Germany. Here, the initial sediment distribution was governed primarily by dumping processes of the large-scale mining technology and the geological conditions at the excavation site. For the initially organic matter-free sandy sediments, the structure model generated the distributions of soil texture and soil bulk density within dumping spoil cones. These were represented by 2D cross sections with compacted central parts and particle-segregated flanks. The 3D geometry of the catchment was generated by sequencing of these basic structural elements along identified stacker trajectories, finally yielding a discretized 3D volume model using the GOCAD software. Based on these data, spatial distributions of hydraulic properties were calculated using well-established pedotransfer functions

  14. WE-F-16A-04: Micro-Irradiator Treatment Verification with High-Resolution 3D-Printed Rodent-Morphic Dosimeters

    SciTech Connect

    Bache, S; Belley, M; Benning, R; Adamovics, J; Stanton, I; Therien, M; Yoshizumi, T; Oldham, M

    2014-06-15

    Purpose: Pre-clinical micro-radiation therapy studies often utilize very small beams (∼0.5-5mm), and require accurate dose delivery in order to effectively investigate treatment efficacy. Here we present a novel high-resolution absolute 3D dosimetry procedure, capable of ∼100-micron isotopic dosimetry in anatomically accurate rodent-morphic phantoms Methods: Anatomically accurate rat-shaped 3D dosimeters were made using 3D printing techniques from outer body contours and spinal contours outlined on CT. The dosimeters were made from a radiochromic plastic material PRESAGE, and incorporated high-Z PRESASGE inserts mimicking the spine. A simulated 180-degree spinal arc treatment was delivered through a 2 step process: (i) cone-beam-CT image-guided positioning was performed to precisely position the rat-dosimeter for treatment on the XRad225 small animal irradiator, then (ii) treatment was delivered with a simulated spine-treatment with a 180-degree arc with 20mm x 10mm cone at 225 kVp. Dose distribution was determined from the optical density change using a high-resolution in-house optical-CT system. Absolute dosimetry was enabled through calibration against a novel nano-particle scintillation detector positioned in a channel in the center of the distribution. Results: Sufficient contrast between regular PRESAGE (tissue equivalent) and high-Z PRESAGE (spinal insert) was observed to enable highly accurate image-guided alignment and targeting. The PRESAGE was found to have linear optical density (OD) change sensitivity with respect to dose (R{sup 2} = 0.9993). Absolute dose for 360-second irradiation at isocenter was found to be 9.21Gy when measured with OD change, and 9.4Gy with nano-particle detector- an agreement within 2%. The 3D dose distribution was measured at 500-micron resolution Conclusion: This work demonstrates for the first time, the feasibility of accurate absolute 3D dose measurement in anatomically accurate rat phantoms containing variable density

  15. SU-E-CAMPUS-T-05: Validation of High-Resolution 3D Patient QA for Proton Pencil Beam Scanning and IMPT by Polymer Gel Dosimetry

    SciTech Connect

    Cardin, A; Avery, S; Ding, X; Kassaee, A; Lin, L; Maryanski, M

    2014-06-15

    Purpose: Validation of high-resolution 3D patient QA for proton pencil beam scanning and IMPT by polymer gel dosimetry. Methods: Four BANG3Pro polymer gel dosimeters (manufactured by MGS Research Inc, Madison, CT) were used for patient QA at the Robert's Proton Therapy Center (RPTC, Philadelphia, PA). All dosimeters were sealed in identical thin-wall Pyrex glass spheres. Each dosimeter contained a set of markers for 3D registration purposes. The dosimeters were mounted in a consistent and reproducible manner using a custom build holder. Two proton pencil beam scanning plans were designed using Varian Eclipse™ treatment planning system: 1) A two-field intensity modulated proton therapy (IMPT) plan and 2) one single field uniform dose (SFUD) plan. The IMPT fields were evaluated as a composite plan and individual fields, the SFUD plan was delivered as a single field plan.Laser CT scanning was performed using the manufacturer's OCTOPUS-IQ axial transmission laser CT scanner using a 1 mm slice thickness. 3D registration, analysis, and OD/cm to absorbed dose calibrations were perfomed using DICOM RT-Dose and CT files, and software developed by the manufacturer. 3D delta index, a metric equivalent to the gamma tool, was used for dose comparison. Results: Very good agreement with single IMPT fields and with SFUD was obtained. Composite IMPT fields had a less satisfactory agreement. The single fields had 3D delta index passing rates (3% dose difference, 3 mm DTA) of 98.98% and 94.91%. The composite 3D delta index passing rate was 80.80%. The SFUD passing rate was 93.77%. Required shifts of the dose distributions were less than 4 mm. Conclusion: A formulation of the BANG3Pro polymer gel dosimeter, suitable for 3D QA of proton patient plans is established and validated. Likewise, the mailed QA analysis service provided by the manufacturer is a practical option when required resources are unavailable. We fully disclose that the subject of this research regards a production

  16. 3D imaging of cement-based materials at submicron resolution by combining laser scanning confocal microscopy with serial sectioning.

    PubMed

    Yio, M H N; Mac, M J; Wong, H S; Buenfeld, N R

    2015-05-01

    In this paper, we present a new method to reconstruct large volumes of nontransparent porous materials at submicron resolution. The proposed method combines fluorescence laser scanning confocal microscopy with serial sectioning to produce a series of overlapping confocal z-stacks, which are then aligned and stitched based on phase correlation. The method can be extended in the XY plane to further increase the overall image volume. Resolution of the reconstructed image volume does not degrade with increase in sample size. We have used the method to image cementitious materials, hardened cement paste and concrete and the results obtained show that the method is reliable. Possible applications of the method such as three-dimensional characterization of the pores and microcracks in hardened concrete, three-dimensional particle shape characterization of cementitious materials and three-dimensional characterization of other porous materials such as rocks and bioceramics are discussed.

  17. 3D noninvasive, high-resolution imaging using a photoacoustic tomography (PAT) system and rapid wavelength-cycling lasers

    NASA Astrophysics Data System (ADS)

    Sampathkumar, Ashwin; Gross, Daniel; Klosner, Marc; Chan, Gary; Wu, Chunbai; Heller, Donald F.

    2015-05-01

    Globally, cancer is a major health issue as advances in modern medicine continue to extend the human life span. Breast cancer ranks second as a cause of cancer death in women in the United States. Photoacoustic (PA) imaging (PAI) provides high molecular contrast at greater depths in tissue without the use of ionizing radiation. In this work, we describe the development of a PA tomography (PAT) system and a rapid wavelength-cycling Alexandrite laser designed for clinical PAI applications. The laser produces 450 mJ/pulse at 25 Hz to illuminate the entire breast, which eliminates the need to scan the laser source. Wavelength cycling provides a pulse sequence in which the output wavelength repeatedly alternates between 755 nm and 797 nm rapidly within milliseconds. We present imaging results of breast phantoms with inclusions of different sizes at varying depths, obtained with this laser source, a 5-MHz 128-element transducer and a 128-channel Verasonics system. Results include PA images and 3D reconstruction of the breast phantom at 755 and 797 nm, delineating the inclusions that mimic tumors in the breast.

  18. Spatial synchronization of an insole pressure distribution system with a 3D motion analysis system for center of pressure measurements.

    PubMed

    Fradet, Laetitia; Siegel, Johannes; Dahl, Marieke; Alimusaj, Merkur; Wolf, Sebastian I

    2009-01-01

    Insole pressure systems are often more appropriate than force platforms for analysing center of pressure (CoP) as they are more flexible in use and indicate the position of the CoP that characterizes the contact foot/shoe during gait with shoes. However, these systems are typically not synchronized with 3D motion analysis systems. The present paper proposes a direct method that does not require a force platform for synchronizing an insole pressure system with a 3D motion analysis system. The distance separating 24 different CoPs measured optically and their equivalents measured by the insoles and transformed in the global coordinate system did not exceed 2 mm, confirming the suitability of the method proposed. Additionally, during static single limb stance, distances smaller than 7 mm and correlations higher than 0.94 were found between CoP trajectories measured with insoles and force platforms. Similar measurements were performed during gait to illustrate the characteristics of the CoP measured with each system. The distance separating the two CoPs was below 19 mm and the coefficient of correlation above 0.86. The proposed method offers the possibility to conduct new experiments, such as the investigation of proprioception in climbing stairs or in the presence of obstacles.

  19. Fluid Lensing, Applications to High-Resolution 3D Subaqueous Imaging & Automated Remote Biosphere Assessment from Airborne and Space-borne Platforms

    NASA Astrophysics Data System (ADS)

    Chirayath, V.

    2014-12-01

    Fluid Lensing is a theoretical model and algorithm I present for fluid-optical interactions in turbulent flows as well as two-fluid surface boundaries that, when coupled with an unique computer vision and image-processing pipeline, may be used to significantly enhance the angular resolution of a remote sensing optical system with applicability to high-resolution 3D imaging of subaqueous regions and through turbulent fluid flows. This novel remote sensing technology has recently been implemented on a quadcopter-based UAS for imaging shallow benthic systems to create the first dataset of a biosphere with unprecedented sub-cm-level imagery in 3D over areas as large as 15 square kilometers. Perturbed two-fluid boundaries with different refractive indices, such as the surface between the ocean and air, may be exploited for use as lensing elements for imaging targets on either side of the interface with enhanced angular resolution. I present theoretical developments behind Fluid Lensing and experimental results from its recent implementation for the Reactive Reefs project to image shallow reef ecosystems at cm scales. Preliminary results from petabyte-scale aerial survey efforts using Fluid Lensing to image at-risk coral reefs in American Samoa (August, 2013) show broad applicability to large-scale automated species identification, morphology studies and reef ecosystem characterization for shallow marine environments and terrestrial biospheres, of crucial importance to understanding climate change's impact on coastal zones, global oxygen production and carbon sequestration.

  20. Protocol for volumetric segmentation of medial temporal structures using high-resolution 3-D magnetic resonance imaging.

    PubMed

    Bonilha, Leonardo; Kobayashi, Eliane; Cendes, Fernando; Min Li, Li

    2004-06-01

    Quantitative analysis of brain structures in normal subjects and in different neurological conditions can be carried out in vivo through magnetic resonance imaging (MRI) volumetric studies. The use of high-resolution MRI combined with image post-processing that allows simultaneous multiplanar view may facilitate volumetric segmentation of temporal lobe structures. We define a protocol for volumetric studies of medial temporal lobe structures using high-resolution MR images and we studied 30 healthy subjects (19 women; mean age, 33 years; age range, 21-55 years). Images underwent field non-homogeneity correction and linear stereotaxic transformation into a standard space. Structures of interest comprised temporopolar, entorhinal, perirhinal, parahippocampal cortices, hippocampus, and the amygdala. Segmentation was carried out with multiplanar assessment. There was no statistically significant left/right-sided asymmetry concerning any structure analyzed. Neither gender nor age influenced the volumes obtained. The coefficient of repeatability showed no significant difference of intra- and interobserver measurements. Imaging post-processing and simultaneous multiplanar view of high-resolution MRI facilitates volumetric assessment of the medial portion of the temporal lobe with strict adherence to anatomic landmarks. This protocol shows no significant inter- and intraobserver variations and thus is reliable for longitudinal studies.

  1. 3D structured illumination microscopy

    NASA Astrophysics Data System (ADS)

    Dougherty, William M.; Goodwin, Paul C.

    2011-03-01

    Three-dimensional structured illumination microscopy achieves double the lateral and axial resolution of wide-field microscopy, using conventional fluorescent dyes, proteins and sample preparation techniques. A three-dimensional interference-fringe pattern excites the fluorescence, filling in the "missing cone" of the wide field optical transfer function, thereby enabling axial (z) discrimination. The pattern acts as a spatial carrier frequency that mixes with the higher spatial frequency components of the image, which usually succumb to the diffraction limit. The fluorescence image encodes the high frequency content as a down-mixed, moiré-like pattern. A series of images is required, wherein the 3D pattern is shifted and rotated, providing down-mixed data for a system of linear equations. Super-resolution is obtained by solving these equations. The speed with which the image series can be obtained can be a problem for the microscopy of living cells. Challenges include pattern-switching speeds, optical efficiency, wavefront quality and fringe contrast, fringe pitch optimization, and polarization issues. We will review some recent developments in 3D-SIM hardware with the goal of super-resolved z-stacks of motile cells.

  2. The beauty of resolution: The SN Ib factory NGC 2770 spatially resolved

    NASA Astrophysics Data System (ADS)

    Thöne, C. C.; Christensen, L.; Gorosabel, J.; de Ugarte Postigo, A.

    2015-02-01

    The late-type spiral NGC 2770 hosted 3 Type Ib supernovae (SNe) in or next to star-forming regions in its outer spiral arms. We study the properties of the SN sites and the galaxy at different spatial resolutions to infer propeties of the SN progenitors and the SF history of the galaxy. Several 3D techniques are used and, for the first time, we present images of metallicity, shocks and stellar population ages from OSIRIS/GTC imaging with tunable narrowband filters.

  3. Reconstruction of 4D-CT from a Single Free-Breathing 3D-CT by Spatial-Temporal Image Registration

    PubMed Central

    Wu, Guorong; Wang, Qian; Lian, Jun; Shen, Dinggang

    2011-01-01

    In the radiation therapy of lung cancer, a free-breathing 3D-CT image is usually acquired in the treatment day for image-guided patient setup, by registering with the free-breathing 3D-CT image acquired in the planning day. In this way, the optimal dose plan computed in the planning day can be transferred onto the treatment day for cancer radiotherapy. However, patient setup based on the simple registration of the free-breathing 3D-CT images of the planning and the treatment days may mislead the radiotherapy, since the free-breathing 3D-CT is actually the mixed-phase image, with different slices often acquired from different respiratory phases. Moreover, a 4D-CT that is generally acquired in the planning day for improvement of dose planning is often ignored for guiding patient setup in the treatment day. To overcome these limitations, we present a novel two-step method to reconstruct the 4D-CT from a single free-breathing 3D-CT of the treatment day, by utilizing the 4D-CT model built in the planning day. Specifically, in the first step, we proposed a new spatial-temporal registration algorithm to align all phase images of the 4D-CT acquired in the planning day, for building a 4D-CT model with temporal correspondences established among all respiratory phases. In the second step, we first determine the optimal phase for each slice of the free-breathing (mixed-phase) 3D-CT of the treatment day by comparing with the 4D-CT of the planning day and thus obtain a sequence of partial 3D-CT images for the treatment day, each with only the incomplete image information in certain slices; and then we reconstruct a complete 4D-CT for the treatment day by warping the 4D-CT of the planning day (with complete information) to the sequence of partial 3D-CT images of the treatment day, under the guidance of the 4D-CT model built in the planning day. We have comprehensively evaluated our 4D-CT model building algorithm on a public lung image database, achieving the best registration

  4. Improved spatial resolution in PET scanners using sampling techniques

    PubMed Central

    Surti, Suleman; Scheuermann, Ryan; Werner, Matthew E.; Karp, Joel S.

    2009-01-01

    Increased focus towards improved detector spatial resolution in PET has led to the use of smaller crystals in some form of light sharing detector design. In this work we evaluate two sampling techniques that can be applied during calibrations for pixelated detector designs in order to improve the reconstructed spatial resolution. The inter-crystal positioning technique utilizes sub-sampling in the crystal flood map to better sample the Compton scatter events in the detector. The Compton scatter rejection technique, on the other hand, rejects those events that are located further from individual crystal centers in the flood map. We performed Monte Carlo simulations followed by measurements on two whole-body scanners for point source data. The simulations and measurements were performed for scanners using scintillators with Zeff ranging from 46.9 to 63 for LaBr3 and LYSO, respectively. Our results show that near the center of the scanner, inter-crystal positioning technique leads to a gain of about 0.5-mm in reconstructed spatial resolution (FWHM) for both scanner designs. In a small animal LYSO scanner the resolution improves from 1.9-mm to 1.6-mm with the inter-crystal technique. The Compton scatter rejection technique shows higher gains in spatial resolution but at the cost of reduction in scanner sensitivity. The inter-crystal positioning technique represents a modest acquisition software modification for an improvement in spatial resolution, but at a cost of potentially longer data correction and reconstruction times. The Compton scatter rejection technique, while also requiring a modest acquisition software change with no increased data correction and reconstruction times, will be useful in applications where the scanner sensitivity is very high and larger improvements in spatial resolution are desirable. PMID:19779586

  5. 3D differential phase contrast microscopy

    NASA Astrophysics Data System (ADS)

    Chen, Michael; Tian, Lei; Waller, Laura

    2016-03-01

    We demonstrate three-dimensional (3D) optical phase and amplitude reconstruction based on coded source illumination using a programmable LED array. Multiple stacks of images along the optical axis are computed from recorded intensities captured by multiple images under off-axis illumination. Based on the first Born approximation, a linear differential phase contrast (DPC) model is built between 3D complex index of refraction and the intensity stacks. Therefore, 3D volume reconstruction can be achieved via a fast inversion method, without the intermediate 2D phase retrieval step. Our system employs spatially partially coherent illumination, so the transverse resolution achieves twice the NA of coherent systems, while axial resolution is also improved 2× as compared to holographic imaging.

  6. Characterization of a high resolution and high sensitivity pre-clinical PET scanner with 3D event reconstruction

    NASA Astrophysics Data System (ADS)

    Rissi, M.; Bolle, E.; Völgyes, D.; Bjaalie, J. G.; Dorholt, O.; Hines, K. E.; Røhne, O.; Skretting, A.; Stapnes, S.

    2012-12-01

    COMPET is a preclinical PET scanner aiming towards a high sensitivity, a high resolution and MRI compatibility by implementing a novel detector geometry. In this approach, long scintillating LYSO crystals are used to absorb the γ-rays. To determine the point of interaction (POI) between γ-ray and crystal, the light exiting the crystals on one of the long sides is collected with wavelength shifters (WLS) perpendicularly arranged to the crystals. This concept has two main advantages: (1) The parallax error is reduced to a minimum and is equal for the whole field of view (FOV). (2) The POI and its energy deposit is known in all three dimension with a high resolution, allowing for the reconstruction of Compton scattered γ-rays. Point (1) leads to a uniform point source resolution (PSR) distribution over the whole FOV, and also allows to place the detector close to the object being imaged. Both points (1) and (2) lead to an increased sensitivity and allow for both high resolution and sensitivity at the same time, while keeping a low number of readout channels. In total, COMPET incorporates 1080 readout channels (600 crystals, 480 WLS). It has an axial FOV of 80 mm and adjustable bore opening between 30 mm and 80 mm. It consists of four modules with five layers each. Simulations show a PSR of below 1 mm in the transaxial plane and a sensitivity of up to 16% in the center of the FOV. The readout is based on time over threshold signals, sampled with an FPGA, which allows for the measurement of high event rates at the order of mega-counts per seconds. Its compact design and compatibility to high magnetic fields will allow to use it as an insert for an already existing MRI scanner. A first semi-layer with 12 WLS and 10 LYSO crystal was built and connected to the COMPET readout system. Coincidence data between this module and a tagger crystal using a small Ge-68 and a 60 MBq F-18 source was taken.

  7. Venus in 3D

    NASA Technical Reports Server (NTRS)

    Plaut, Jeffrey J.

    1993-01-01

    Stereographic images of the surface of Venus which enable geologists to reconstruct the details of the planet's evolution are discussed. The 120-meter resolution of these 3D images make it possible to construct digital topographic maps from which precise measurements can be made of the heights, depths, slopes, and volumes of geologic structures.

  8. Duality between noise and spatial resolution in linear systems.

    PubMed

    Gureyev, Timur E; Nesterets, Yakov I; de Hoog, Frank; Schmalz, Gerd; Mayo, Sheridan C; Mohammadi, Sara; Tromba, Giuliana

    2014-04-21

    It is shown that in a broad class of linear systems, including general linear shift-invariant systems, the spatial resolution and the noise satisfy a duality relationship, resembling the uncertainty principle in quantum mechanics. The product of the spatial resolution and the standard deviation of output noise in such systems represents a type of phase-space volume that is invariant with respect to linear scaling of the point-spread function, and it cannot be made smaller than a certain positive absolute lower limit. A corresponding intrinsic "quality" characteristic is introduced and then evaluated for the cases of some popular imaging systems, including computed tomography, generic image convolution and phase-contrast imaging. It is shown that in the latter case the spatial resolution and the noise can sometimes be decoupled, potentially leading to a substantial increase in the imaging quality.

  9. Temporal and spatial resolution of HF ocean radars

    NASA Astrophysics Data System (ADS)

    Heron, Malcom L.; Atwater, Daniel P.

    2013-03-01

    The spatial and temporal resolutions of the two main types of HF radar are compared, with reference to the phasedarray and the crossed-loop direction-finding systems which make up the Australian Coastal Ocean radar Network. Both genres use a swept frequency "chirp" modulation to define the range of a pixel being observed but the method for determining the azimuth direction of the pixel is a strong point of differentiation. The phased-array systems produce independent maps of surface currents in about 1/7 of the time for the crossed-loop systems because of contrasting noise performance of the antennas. The use of beam-forming analysis in the phased-arrays is shown to give spatial resolutions, for vector currents, of about 10 km close to the shore, and 25 km at ranges of 150 km. The corresponding vector current spatial resolutions for the crossed-loop systems are 40 km and 60 km respectively.

  10. Multi-resolution 3D visualization of the early stages of cellular uptake of peptide-coated nanoparticles

    SciTech Connect

    Welsher, Kevin; Yang, Haw

    2014-02-23

    A detailed understanding of the cellular uptake process is essential to the development of cellular delivery strategies and to the study of viral trafficking. However, visualization of the entire process, encompassing the fast dynamics (local to the freely diffusing nanoparticle) as well the state of the larger-scale cellular environment, remains challenging. Here, we introduce a three-dimensional multi-resolution method to capture, in real time, the transient events leading to cellular binding and uptake of peptide (HIV1-Tat)-modified nanoparticles. Applying this new method to observe the landing of nanoparticles on the cellular contour in three dimensions revealed long-range deceleration of the delivery particle, possibly due to interactions with cellular receptors. Furthermore, by using the nanoparticle as a nanoscale ‘dynamics pen’, we discovered an unexpected correlation between small membrane terrain structures and local nanoparticle dynamics. This approach could help to reveal the hidden mechanistic steps in a variety of multiscale processes.

  11. Accurate high-resolution measurements of 3-D tissue dynamics with registration-enhanced displacement encoded MRI.

    PubMed

    Gomez, Arnold D; Merchant, Samer S; Hsu, Edward W

    2014-06-01

    Displacement fields are important to analyze deformation, which is associated with functional and material tissue properties often used as indicators of health. Magnetic resonance imaging (MRI) techniques like DENSE and image registration methods like Hyperelastic Warping have been used to produce pixel-level deformation fields that are desirable in high-resolution analysis. However, DENSE can be complicated by challenges associated with image phase unwrapping, in particular offset determination. On the other hand, Hyperelastic Warping can be hampered by low local image contrast. The current work proposes a novel approach for measuring tissue displacement with both DENSE and Hyperelastic Warping, incorporating physically accurate displacements obtained by the latter to improve phase characterization in DENSE. The validity of the proposed technique is demonstrated using numerical and physical phantoms, and in vivo small animal cardiac MRI.

  12. SU-E-T-296: Dosimetric Analysis of Small Animal Image-Guided Irradiator Using High Resolution Optical CT Imaging of 3D Dosimeters

    SciTech Connect

    Na, Y; Qian, X; Wuu, C; Adamovics, J

    2015-06-15

    Purpose: To verify the dosimetric characteristics of a small animal image-guided irradiator using a high-resolution of optical CT imaging of 3D dosimeters. Methods: PRESAEGE 3D dosimeters were used to determine dosimetric characteristics of a small animal image-guided irradiator and compared with EBT2 films. Cylindrical PRESAGE dosimeters with 7cm height and 6cm diameter were placed along the central axis of the beam. The films were positioned between 6×6cm{sup 2} cubed plastic water phantoms perpendicular to the beam direction with multiple depths. PRESAGE dosimeters and EBT2 films were then irradiated with the irradiator beams at 220kVp and 13mA. Each of irradiated PRESAGE dosimeters named PA1, PA2, PB1, and PB2, was independently scanned using a high-resolution single laser beam optical CT scanner. The transverse images were reconstructed with a 0.1mm high-resolution pixel. A commercial Epson Expression 10000XL flatbed scanner was used for readout of irradiated EBT2 films at a 0.4mm pixel resolution. PDD curves and beam profiles were measured for the irradiated PRESAGE dosimeters and EBT2 films. Results: The PDD agreements between the irradiated PRESAGE dosimeter PA1, PA2, PB1, PB2 and the EB2 films were 1.7, 2.3, 1.9, and 1.9% for the multiple depths at 1, 5, 10, 15, 20, 30, 40 and 50mm, respectively. The FWHM measurements for each PRESAEGE dosimeter and film agreed with 0.5, 1.1, 0.4, and 1.7%, respectively, at 30mm depth. Both PDD and FWHM measurements for the PRESAGE dosimeters and the films agreed overall within 2%. The 20%–80% penumbral widths of each PRESAGE dosimeter and the film at a given depth were respectively found to be 0.97, 0.91, 0.79, 0.88, and 0.37mm. Conclusion: Dosimetric characteristics of a small animal image-guided irradiator have been demonstrated with the measurements of PRESAGE dosimeter and EB2 film. With the high resolution and accuracy obtained from this 3D dosimetry system, precise targeting small animal irradiation can be

  13. SU-C-BRE-04: Microbeam-Radiation-Therapy (MRT): Characterizing a Novel MRT Device Using High Resolution 3D Dosimetry

    SciTech Connect

    Li, Q; Juang, T; Bache, S; Chang, S; Oldham, M

    2014-06-15

    Purpose: The feasibility of MRT has recently been demonstrated utilizing a new technology of Carbon-Nano-Tube(CNT) field emission x-ray sources.This approach can deliver very high dose(10's of Gy) in narrow stripes(sub-mm) of radiation which enables the study of novel radiation treatment approaches. Here we investigate the application of highresolution (50um isotropic) PRESAGE/Optical-CT 3D dosimetry techniques to characterize the radiation delivered in this extremely dosimetrically challenging scenario. Methods: The CNT field emission x-ray source irradiator comprises of a linear cathode array and a novel collimator alignment system. This allows a precise delivery of high-energy small beams up to 160 kVp. A cylindrical dosimeter (∼2.2cm in height ∼2.5cm in diameter) was irradiated by CNT MRT delivering 3 strips of radiation with a nominal entrance dose of 32 Gy.A second dosimeter was irradiated with similar entrance dose, with a regular x-ray irradiator collimated to microscopical strip-beams. 50um (isotropic) 3D dosimetry was performed using an in-house optical-CT system designed and optimized for high resolution imaging (including a stray light deconvolution correction).The percentage depth dose (PDD), peak-to-valley ratio (PVR) and beam width (FWHM) data were obtained and analyzed in both cases. Results: High resolution 3D images were successfully achieved with the prototype system, enabling extraction of PDD and dose profiles. The PDDs for the CNT irradiation showed pronounced attenuation, but less build-up effect than that from the multibeam irradiation. The beam spacing between the three strips has an average value of 0.9mm while that for the 13 strips is 1.5 mm at a depth of 16.5 mm. The stray light corrected image shows line profiles with reduced noise and consistent PVR values. Conclusion: MRT dosimetry is extremely challenging due to the ultra small fields involved.This preliminary application of a novel, ultra-high resolution, optical-CT 3D

  14. Low-Cost Ultra-High Spatial and Temporal Resolution Mapping of Intertidal Rock Platforms

    NASA Astrophysics Data System (ADS)

    Bryson, M.; Johnson-Roberson, M.; Murphy, R.

    2012-07-01

    Intertidal ecosystems have primarily been studied using field-based sampling; remote sensing offers the ability to collect data over large areas in a snapshot of time which could compliment field-based sampling methods by extrapolating them into the wider spatial and temporal context. Conventional remote sensing tools (such as satellite and aircraft imaging) provide data at relatively course, sub-meter resolutions or with limited temporal resolutions and relatively high costs for small-scale environmental science and ecology studies. In this paper, we describe a low-cost, kite-based imaging system and photogrammetric pipeline that was developed for constructing highresolution, 3D, photo-realistic terrain models of intertidal rocky shores. The processing pipeline uses automatic image feature detection and matching, structure-from-motion and photo-textured terrain surface reconstruction algorithms that require minimal human input and only a small number of ground control points and allow the use of cheap, consumer-grade digital cameras. The resulting maps combine colour and topographic information at sub-centimeter resolutions over an area of approximately 100m, thus enabling spatial properties of the intertidal environment to be determined across a hierarchy of spatial scales. Results of the system are presented for an intertidal rock platform at Cape Banks, Sydney, Australia. Potential uses of this technique include mapping of plant (micro- and macro-algae) and animal (e.g. gastropods) assemblages at multiple spatial and temporal scales.

  15. Super Resolution from Hyperview Image Stack by Spatial Multiplexing

    NASA Astrophysics Data System (ADS)

    Grasnick, Armin

    2016-09-01

    An image stack for a hyperview representation could contain millions of different perspective views with extreme image similarity. The recording of all views from a computational 3d model implicates a lateral displacement of the virtual camera. Because of the huge number of views, the offset in between two adjoining camera positions can be very minor. If such a virtual setup reproduces a real hyperview screen setup, the offset can be below the wavelength of the visible light. But even with such small changes, there is an intrinsic probability for a measurable difference in between two neighbour images. Such image dissimilarity can be proofed successfully also in very basic 3d scenes. By using a quantity of juxtapositional images from the hyperview image stack, the resolution of the rendered images can be considerably improved, which is commonly known as super resolution. The utilisation of super resolution images in hyperview could cut the necessity of full frame computing and will reduce the effective render time.

  16. Modeling Spatial Dependencies in High-Resolution Overhead Imagery

    SciTech Connect

    Cheriyadat, Anil M; Bright, Eddie A; Vatsavai, Raju

    2011-01-01

    Human settlement regions with different physical and socio-economic attributes exhibit unique spatial characteristics that are often illustrated in high-resolution overhead imageries. For example- size, shape and spatial arrangements of man-made structures are key attributes that vary with respect to the socioeconomic profile of the neighborhood. Successfully modeling these attributes is crucial in developing advanced image understanding systems for interpreting complex aerial scenes. In this paper we present three different approaches to model the spatial context in the overhead imagery. First, we show that the frequency domain of the image can be used to model the spatial context [1]. The shape of the spectral energy contours characterize the scene context and can be exploited as global features. Secondly, we explore a discriminative framework based on the Conditional Random Fields (CRF) [2] to model the spatial context in the overhead imagery. The features derived from the edge orientation distribution calculated for a neighborhood and the associated class labels are used as input features to model the spatial context. Our third approach is based on grouping spatially connected pixels based on the low-level edge primitives to form support-regions [3]. The statistical parameters generated from the support-region feature distributions characterize different geospatial neighborhoods. We apply our approaches on high-resolution overhead imageries. We show that proposed approaches characterize the spatial context in overhead imageries.

  17. Real-Time High Resolution 3D Imaging of the Lyme Disease Spirochete Adhering to and Escaping from the Vasculature of a Living Host

    PubMed Central

    Colarusso, Pina; Bankhead, Troy; Kubes, Paul; Chaconas, George

    2008-01-01

    Pathogenic spirochetes are bacteria that cause a number of emerging and re-emerging diseases worldwide, including syphilis, leptospirosis, relapsing fever, and Lyme borreliosis. They navigate efficiently through dense extracellular matrix and cross the blood–brain barrier by unknown mechanisms. Due to their slender morphology, spirochetes are difficult to visualize by standard light microscopy, impeding studies of their behavior in situ. We engineered a fluorescent infectious strain of Borrelia burgdorferi, the Lyme disease pathogen, which expressed green fluorescent protein (GFP). Real-time 3D and 4D quantitative analysis of fluorescent spirochete dissemination from the microvasculature of living mice at high resolution revealed that dissemination was a multi-stage process that included transient tethering-type associations, short-term dragging interactions, and stationary adhesion. Stationary adhesions and extravasating spirochetes were most commonly observed at endothelial junctions, and translational motility of spirochetes appeared to play an integral role in transendothelial migration. To our knowledge, this is the first report of high resolution 3D and 4D visualization of dissemination of a bacterial pathogen in a living mammalian host, and provides the first direct insight into spirochete dissemination in vivo. PMID:18566656

  18. Real-time high resolution 3D imaging of the lyme disease spirochete adhering to and escaping from the vasculature of a living host.

    PubMed

    Moriarty, Tara J; Norman, M Ursula; Colarusso, Pina; Bankhead, Troy; Kubes, Paul; Chaconas, George

    2008-06-20

    Pathogenic spirochetes are bacteria