Science.gov

Sample records for 3d stellar atmospheres

  1. Spatially resolved spectroscopy across stellar surfaces. I. Using exoplanet transits to analyze 3D stellar atmospheres

    NASA Astrophysics Data System (ADS)

    Dravins, Dainis; Ludwig, Hans-Günter; Dahlén, Erik; Pazira, Hiva

    2017-09-01

    Context. High-precision stellar analyses require hydrodynamic modeling to interpret chemical abundances or oscillation modes. Exoplanet atmosphere studies require stellar background spectra to be known along the transit path while detection of Earth analogs require stellar microvariability to be understood. Hydrodynamic 3D models can be computed for widely different stars but have been tested in detail only for the Sun with its resolved surface features. Model predictions include spectral line shapes, asymmetries, and wavelength shifts, and their center-to-limb changes across stellar disks. Aims: We observe high-resolution spectral line profiles across spatially highly resolved stellar surfaces, which are free from the effects of spatial smearing and rotational broadening present in full-disk spectra, enabling comparisons to synthetic profiles from 3D models. Methods: During exoplanet transits, successive stellar surface portions become hidden and differential spectroscopy between various transit phases provides spectra of small surface segments temporarily hidden behind the planet. Planets cover no more than 1% of any main-sequence star, enabling high spatial resolution but demanding very precise observations. Realistically measurable quantities are identified through simulated observations of synthetic spectral lines. Results: In normal stars, line profile ratios between various transit phases may vary by 0.5%, requiring S/N ≳ 5000 for meaningful spectral reconstruction. While not yet realistic for individual spectral lines, this is achievable for cool stars by averaging over numerous lines with similar parameters. Conclusions: For bright host stars of large transiting planets, spatially resolved spectroscopy is currently practical. More observable targets are likely to be found in the near future by ongoing photometric searches.

  2. The Stagger-grid: A grid of 3D stellar atmosphere models. IV. Limb darkening coefficients

    NASA Astrophysics Data System (ADS)

    Magic, Z.; Chiavassa, A.; Collet, R.; Asplund, M.

    2015-01-01

    Aims: We compute the emergent stellar spectra from the UV to far infrared for different viewing angles using realistic 3D model atmospheres for a large range in stellar parameters to predict the stellar limb darkening. Methods: We have computed full 3D LTE synthetic spectra based on 3D radiative hydrodynamic atmosphere models from the Stagger-grid in the ranges: Teff from 4000 to 7000 K, log g from 1.5 to 5.0, and [Fe/H], from -4.0 to +0.5. From the resulting intensities, we derived coefficients for the standard limb darkening laws considering a number of often-used photometric filters. Furthermore, we calculated theoretical transit light curves, in order to quantify the differences between predictions by the widely used 1D model atmosphere and our 3D models. Results: The 3D models are often found to predict steeper darkening towards the limb compared to the 1D models, mainly due to the temperature stratifications and temperature gradients being different in the 3D models compared to those predicted with 1D models based on the mixing length theory description of convective energy transport. The resulting differences in the transit light curves are rather small; however, these can be significant for high-precision observations of extrasolar transits, and are able to lower the residuals from the fits with 1D limb darkening profiles. Conclusions: We advocate the use of the new limb darkening coefficients provided for the standard four-parameter non-linear power law, which can fit the limb darkening more accurately than other choices. Full Table A.1 and the grid of spectra are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/573/A90, as well as at http://www.stagger-stars.net

  3. The Stagger-grid: A grid of 3D stellar atmosphere models. I. Methods and general properties

    NASA Astrophysics Data System (ADS)

    Magic, Z.; Collet, R.; Asplund, M.; Trampedach, R.; Hayek, W.; Chiavassa, A.; Stein, R. F.; Nordlund, Å.

    2013-09-01

    Aims: We present the Stagger-grid, a comprehensive grid of time-dependent, three-dimensional (3D), hydrodynamic model atmospheres for late-type stars with realistic treatment of radiative transfer, covering a wide range in stellar parameters. This grid of 3D models is intended for various applications besides studies of stellar convection and atmospheres per se, including stellar parameter determination, stellar spectroscopy and abundance analysis, asteroseismology, calibration of stellar evolution models, interferometry, and extrasolar planet search. In this introductory paper, we describe the methods we applied for the computation of the grid and discuss the general properties of the 3D models as well as of their temporal and spatial averages (here denoted ⟨3D⟩ models). Methods: All our models were generated with the Stagger-code, using realistic input physics for the equation of state (EOS) and for continuous and line opacities. Our ~ 220 grid models range in effective temperature, Teff, from 4000 to 7000 K in steps of 500 K, in surface gravity, log g, from 1.5 to 5.0 in steps of 0.5 dex, and metallicity, [Fe/H], from - 4.0 to + 0.5 in steps of 0.5 and 1.0 dex. Results: We find a tight scaling relation between the vertical velocity and the surface entropy jump, which itself correlates with the constant entropy value of the adiabatic convection zone. The range in intensity contrast is enhanced at lower metallicity. The granule size correlates closely with the pressure scale height sampled at the depth of maximum velocity. We compare the ⟨3D⟩ models with currently widely applied one-dimensional (1D) atmosphere models, as well as with theoretical 1D hydrostatic models generated with the same EOS and opacity tables as the 3D models, in order to isolate the effects of using self-consistent and hydrodynamic modeling of convection, rather than the classical mixing length theory approach. For the first time, we are able to quantify systematically over a broad

  4. The Stagger-grid: A grid of 3D stellar atmosphere models. III. The relation to mixing length convection theory

    NASA Astrophysics Data System (ADS)

    Magic, Z.; Weiss, A.; Asplund, M.

    2015-01-01

    Aims: We investigate the relation between 1D atmosphere models that rely on the mixing length theory and models based on full 3D radiative hydrodynamic (RHD) calculations to describe convection in the envelopes of late-type stars. Methods: The adiabatic entropy value of the deep convection zone, sbot, and the entropy jump, Δs, determined from the 3D RHD models, were matched with the mixing length parameter, αMLT, from 1D hydrostatic atmosphere models with identical microphysics (opacities and equation-of-state). We also derived the mass mixing length parameter, αm, and the vertical correlation length of the vertical velocity, C[vz,vz], directly from the 3D hydrodynamical simulations of stellar subsurface convection. Results: The calibrated mixing length parameter for the Sun is α๏MLT (Sbot) = 1.98. . For different stellar parameters, αMLT varies systematically in the range of 1.7 - 2.4. In particular, αMLT decreases towards higher effective temperature, lower surface gravity and higher metallicity. We find equivalent results for α๏MLT (ΔS). In addition, we find a tight correlation between the mixing length parameter and the inverse entropy jump. We derive an analytical expression from the hydrodynamic mean-field equations that motivates the relation to the mass mixing length parameter, αm, and find that it qualitatively shows a similar variation with stellar parameter (between 1.6 and 2.4) with the solar value of α๏m = 1.83.. The vertical correlation length scaled with the pressure scale height yields 1.71 for the Sun, but only displays a small systematic variation with stellar parameters, the correlation length slightly increases with Teff. Conclusions: We derive mixing length parameters for various stellar parameters that can be used to replace a constant value. Within any convective envelope, αm and related quantities vary strongly. Our results will help to replace a constant αMLT. Appendices are available in electronic form at http

  5. An Investigation of the Formation and Line Properties of MgH in 3D Hydrodynamical Model Stellar Atmospheres

    NASA Astrophysics Data System (ADS)

    Thygesen, Anders O.; Kirby, Evan N.; Gallagher, Andrew J.; Ludwig, Hans-G.; Caffau, Elisabetta; Bonifacio, Piercarlo; Sbordone, Luca

    2017-07-01

    Studies of the isotopic composition of magnesium in cool stars have so far relied upon the use of 1D model atmospheres. Since the isotopic ratios derived are based on asymmetries of optical MgH lines, it is important to test the impact from other effects affecting line asymmetries, like stellar convection. Here, we present a theoretical investigation of the effects of including self-consistent modeling of convection. Using spectral syntheses based on 3D hydrodynamical CO5BOLD models of dwarfs (4000 K ≲ T eff ≲ 5160 K, 4.0 ≤ {log}g ≤ 4.5, -3.0≤slant [{Fe}/{{H}}]≤slant -1.0) and giants (T eff ˜ 4000 K, {log}g = 1.5, -3.0≤slant [{Fe}/{{H}}]≤slant -1.0), we perform a detailed analysis comparing 3D and 1D syntheses. We describe the impact on the formation and behavior of MgH lines from using 3D models, and perform a qualitative assessment of the systematics introduced by the use of 1D syntheses. Using 3D model atmospheres significantly affect the strength of the MgH lines, especially in dwarfs, with 1D syntheses requiring an abundance correction of up to +0.69 dex, with the largest for our 5000 K models. The corrections are correlated with T eff and are also affected by the metallicity. The shape of the strong 24MgH component in the 3D syntheses is poorly reproduced in 1D. This results in 1D syntheses underestimating 25Mg by up to ˜5 percentage points and overestimating 24Mg by a similar amount for dwarfs. This discrepancy increases with decreasing metallicity. 26Mg is recovered relatively well, with the largest difference being ˜2 percentage points. The use of 3D for giants has less impact, due to smaller differences in the atmospheric structure and a better reproduction of the line shape in 1D.

  6. The asteroseismic surface effect from a grid of 3D convection simulations - I. Frequency shifts from convective expansion of stellar atmospheres

    NASA Astrophysics Data System (ADS)

    Trampedach, Regner; Aarslev, Magnus J.; Houdek, Günter; Collet, Remo; Christensen-Dalsgaard, Jørgen; Stein, Robert F.; Asplund, Martin

    2017-03-01

    We analyse the effect on adiabatic stellar oscillation frequencies of replacing the near-surface layers in 1D stellar structure models with averaged 3D stellar surface convection simulations. The main difference is an expansion of the atmosphere by 3D convection, expected to explain a major part of the asteroseismic surface effect, a systematic overestimation of p-mode frequencies due to inadequate surface physics. We employ pairs of 1D stellar envelope models and 3D simulations from a previous calibration of the mixing-length parameter, α. That calibration constitutes the hitherto most consistent matching of 1D models to 3D simulations, ensuring that their differences are not spurious, but entirely due to the 3D nature of convection. The resulting frequency shift is identified as the structural part of the surface effect. The important, typically non-adiabatic, modal components of the surface effect are not included in this analysis, but relegated to future papers. Evaluating the structural surface effect at the frequency of maximum mode amplitude, νmax , we find shifts from δν = -0.8 μHz for giants at log g = 2.2 to - 35 μHz for a (Teff = 6901 K, log g = 4.29) dwarf. The fractional effect δν(νmax )/νmax , ranges from -0.1 per cent for a cool dwarf (4185 K, 4.74) to -6 per cent for a warm giant (4962 K, 2.20).

  7. Limb darkening laws for two exoplanet host stars derived from 3D stellar model atmospheres. Comparison with 1D models and HST light curve observations

    NASA Astrophysics Data System (ADS)

    Hayek, W.; Sing, D.; Pont, F.; Asplund, M.

    2012-03-01

    We compare limb darkening laws derived from 3D hydrodynamical model atmospheres and 1D hydrostatic MARCS models for the host stars of two well-studied transiting exoplanet systems, the late-type dwarfs HD 209458 and HD 189733. The surface brightness distribution of the stellar disks is calculated for a wide spectral range using 3D LTE spectrum formation and opacity sampling⋆. We test our theoretical predictions using least-squares fits of model light curves to wavelength-integrated primary eclipses that were observed with the Hubble Space Telescope (HST). The limb darkening law derived from the 3D model of HD 209458 in the spectral region between 2900 Å and 5700 Å produces significantly better fits to the HST data, removing systematic residuals that were previously observed for model light curves based on 1D limb darkening predictions. This difference arises mainly from the shallower mean temperature structure of the 3D model, which is a consequence of the explicit simulation of stellar surface granulation where 1D models need to rely on simplified recipes. In the case of HD 189733, the model atmospheres produce practically equivalent limb darkening curves between 2900 Å and 5700 Å, partly due to obstruction by spectral lines, and the data are not sufficient to distinguish between the light curves. We also analyze HST observations between 5350 Å and 10 500 Å for this star; the 3D model leads to a better fit compared to 1D limb darkening predictions. The significant improvement of fit quality for the HD 209458 system demonstrates the higher degree of realism of 3D hydrodynamical models and the importance of surface granulation for the formation of the atmospheric radiation field of late-type stars. This result agrees well with recent investigations of limb darkening in the solar continuum and other observational tests of the 3D models. The case of HD 189733 is no contradiction as the model light curves are less sensitive to the temperature stratification of

  8. 3D acoustic atmospheric tomography

    NASA Astrophysics Data System (ADS)

    Rogers, Kevin; Finn, Anthony

    2014-10-01

    This paper presents a method for tomographically reconstructing spatially varying 3D atmospheric temperature profiles and wind velocity fields based. Measurements of the acoustic signature measured onboard a small Unmanned Aerial Vehicle (UAV) are compared to ground-based observations of the same signals. The frequency-shifted signal variations are then used to estimate the acoustic propagation delay between the UAV and the ground microphones, which are also affected by atmospheric temperature and wind speed vectors along each sound ray path. The wind and temperature profiles are modelled as the weighted sum of Radial Basis Functions (RBFs), which also allow local meteorological measurements made at the UAV and ground receivers to supplement any acoustic observations. Tomography is used to provide a full 3D reconstruction/visualisation of the observed atmosphere. The technique offers observational mobility under direct user control and the capacity to monitor hazardous atmospheric environments, otherwise not justifiable on the basis of cost or risk. This paper summarises the tomographic technique and reports on the results of simulations and initial field trials. The technique has practical applications for atmospheric research, sound propagation studies, boundary layer meteorology, air pollution measurements, analysis of wind shear, and wind farm surveys.

  9. Seeing a Stellar Explosion in 3D

    NASA Astrophysics Data System (ADS)

    2010-08-01

    Astronomers using ESO's Very Large Telescope have for the first time obtained a three-dimensional view of the distribution of the innermost material expelled by a recently exploded star. The original blast was not only powerful, according to the new results. It was also more concentrated in one particular direction. This is a strong indication that the supernova must have been very turbulent, supporting the most recent computer models. Unlike the Sun, which will die rather quietly, massive stars arriving at the end of their brief life explode as supernovae, hurling out a vast quantity of material. In this class, Supernova 1987A (SN 1987A) in the rather nearby Large Magellanic Cloud occupies a very special place. Seen in 1987, it was the first naked-eye supernova to be observed for 383 years (eso8704), and because of its relative closeness, it has made it possible for astronomers to study the explosion of a massive star and its aftermath in more detail than ever before. It is thus no surprise that few events in modern astronomy have been met with such an enthusiastic response by scientists. SN 1987A has been a bonanza for astrophysicists (eso8711 and eso0708). It provided several notable observational 'firsts', like the detection of neutrinos from the collapsing inner stellar core triggering the explosion, the localisation on archival photographic plates of the star before it exploded, the signs of an asymmetric explosion, the direct observation of the radioactive elements produced during the blast, observation of the formation of dust in the supernova, as well as the detection of circumstellar and interstellar material (eso0708). New observations making use of a unique instrument, SINFONI [1], on ESO's Very Large Telescope (VLT) have provided even deeper knowledge of this amazing event, as astronomers have now been able to obtain the first-ever 3D reconstruction of the central parts of the exploding material. This view shows that the explosion was stronger and

  10. Stellar atmospheric structural patterns

    NASA Technical Reports Server (NTRS)

    Thomas, R. N.

    1983-01-01

    The thermodynamics of stellar atmospheres is discussed. Particular attention is given to the relation between theoretical modeling and empirical evidence. The characteristics of distinctive atmospheric regions and their radical structures are discussed.

  11. Oscillations in stellar atmospheres

    NASA Technical Reports Server (NTRS)

    Costa, A.; Ringuelet, A. E.; Fontenla, J. M.

    1989-01-01

    Atmospheric excitation and propagation of oscillations are analyzed for typical pulsating stars. The linear, plane-parallel approach for the pulsating atmosphere gives a local description of the phenomenon. From the local analysis of oscillations, the minimum frequencies are obtained for radially propagating waves. The comparison of the minimum frequencies obtained for a variety of stellar types is in good agreement with the observed periods of the oscillations. The role of the atmosphere in the globar stellar pulsations is thus emphasized.

  12. Oscillations in stellar atmospheres

    NASA Technical Reports Server (NTRS)

    Costa, A.; Ringuelet, A. E.; Fontenla, J. M.

    1989-01-01

    Atmospheric excitation and propagation of oscillations are analyzed for typical pulsating stars. The linear, plane-parallel approach for the pulsating atmosphere gives a local description of the phenomenon. From the local analysis of oscillations, the minimum frequencies are obtained for radially propagating waves. The comparison of the minimum frequencies obtained for a variety of stellar types is in good agreement with the observed periods of the oscillations. The role of the atmosphere in the globar stellar pulsations is thus emphasized.

  13. The Stagger-grid: A grid of 3D stellar atmosphere models. II. Horizontal and temporal averaging and spectral line formation

    NASA Astrophysics Data System (ADS)

    Magic, Z.; Collet, R.; Hayek, W.; Asplund, M.

    2013-12-01

    Aims: We study the implications of averaging methods with different reference depth scales for 3D hydrodynamical model atmospheres computed with the Stagger-code. The temporally and spatially averaged (hereafter denoted as ⟨3D⟩) models are explored in the light of local thermodynamic equilibrium (LTE) spectral line formation by comparing spectrum calculations using full 3D atmosphere structures with those from ⟨3D⟩ averages. Methods: We explored methods for computing mean ⟨3D⟩ stratifications from the Stagger-grid time-dependent 3D radiative hydrodynamical atmosphere models by considering four different reference depth scales (geometrical depth, column-mass density, and two optical depth scales). Furthermore, we investigated the influence of alternative averages (logarithmic, enforced hydrostatic equilibrium, flux-weighted temperatures). For the line formation we computed curves of growth for Fe i and Fe ii lines in LTE. Results: The resulting ⟨3D⟩ stratifications for the four reference depth scales can be very different. We typically find that in the upper atmosphere and in the superadiabatic region just below the optical surface, where the temperature and density fluctuations are highest, the differences become considerable and increase for higher Teff, lower log g, and lower [Fe / H]. The differential comparison of spectral line formation shows distinctive differences depending on which ⟨3D⟩ model is applied. The averages over layers of constant column-mass density yield the best mean ⟨3D⟩ representation of the full 3D models for LTE line formation, while the averages on layers at constant geometrical height are the least appropriate. Unexpectedly, the usually preferred averages over layers of constant optical depth are prone to increasing interference by reversed granulation towards higher effective temperature, in particular at low metallicity. Appendix A is available in electronic form at http://www.aanda.orgMean ⟨3D⟩ models are

  14. 3D Models of Stellar Interactions

    NASA Astrophysics Data System (ADS)

    Mohamed, S.; Podsiadlowski, Ph.; Booth, R.; Maercker, M.; Ramstedt, S.; Vlemmings, W.; Harries, T.; Mackey, J.; Langer, N.; Corradi, R.

    2014-04-01

    Symbiotic binaries consist of a cool, evolved mass-losing giant and an accreting compact companion. As symbiotic nebulae show similar morphologies to those in planetary nebulae (so much so that it is often difficult to distinguish between the two), they are ideal laboratories for understanding the role a binary companion plays in shaping the circumstellar envelopes in these evolved systems. We will present 3D Smoothed Particle Hydrodynamics (SPH) models of interacting binaries, e.g. R Aquarii and Mira, and discuss the formation of spiral outflows, arcs, shells and equatorial density enhancements.We will also discuss the implications of the former for planetary nebulae, e.g. the Egg Nebula and Cat's Eye, and the latter for the formation of bipolar geometries, e.g. M2-9. We also investigate accretion and angular momentum evolution in symbiotic binaries which may be important to understand the formation of jets and more episodic mass-loss features we see in circumstellar envelopes and the orbital characteristics of binary central stars of planetary nebulae.

  15. A multipurpose 3-D grid of stellar models

    NASA Astrophysics Data System (ADS)

    Maíz Apellániz, J.

    2013-05-01

    The last two decades have produced a proliferation of stellar atmosphere grids, evolutionary tracks, and isochrones which are available to the astronomical community from different internet services. However, it is not straightforward (at least for an inexperienced user) to manipulate those models to answer questions of the type: What is the spectral energy distribution of a 9000 K giant? What about its J-band magnitude for different metallicities? What can I tell about the mass of a star if I know that its unreddened B-V color is -0.05 and its luminosity in solar units is 10^5? The answers to those questions are indeed in the models but a series of transformations and combinations involving different variables and models are required to obtain them. To make the available knowledge more user friendly, I have combined a number of state-of-the-art sources to create a 3-D (effective temperature, luminosity, and metallicity) grid of stellar models for which I provide calibrated SEDs and magnitudes as well as auxiliary variables such as mass and age. Furthermore, I have generated a grid of extinguished magnitudes using the recent Maíz Apellániz et al. (2012) extinction laws and incorporated them into the Bayesian code CHORIZOS (Maíz Apellániz 2004).

  16. 3D Equilibrium Reconstruction in Stellarators and Tokamaks with STELLOPT

    NASA Astrophysics Data System (ADS)

    Lazerson, Samuel; Pablant, Novimir; Gates, David; Neilson, Hutch; Nazikian, Raffi; Suzuki, Yasuhiro; Watanabe, Kiyomasa; Ida, Katsumi; Sakakibara, Satoru

    2012-10-01

    The ability to model and predict the behavior of stellarators and tokamaks requires an ability to match simulation parameters with experimental measurements. This process, known as experimental reconstruction, has been used extensively with 2D axisymmetric codes for Tokamaks. These codes, such as EFIT, lack the ability to model the 3D nature of stellarators and the emerging 3D nature of Tokamaks. Phenomena such as, shielding of islands by neoclassical flows and the suppression of edge localized modes through application of 3D fields, highlight the need for such 3D tools. The stellarator optimizer code STELLOPT has been modified to match 3D VMEC equilibria to experimental measurements. This has allowed 3D experimental reconstructions to be preformed on W7-AS, LHD, and DIII-D devices. The free boundary VMEC equilibria are matched to Thomson profiles (ne and Te), charge exchange measurements (Ti), MSE (polarization angle), and magnetic diagnostics (B-probes, flux loops, Rogowski coils). Three dimensional reconstructed equilibria are presented alongside confidence metrics for the reconstruction process.

  17. Radioactive elements in stellar atmospheres

    SciTech Connect

    Gopka, Vira; Yushchenko, Alexander; Goriely, Stephane; Shavrina, Angelina; Kang, Young Woon

    2006-07-12

    The identification of lines of radioactive elements (Tc, Pm and elements with 83stellar atmospheres, contamination of stellar atmosphere by recent SN explosion, and spallation reactions.

  18. Radiative transfer with scattering for domain-decomposed 3D MHD simulations of cool stellar atmospheres. Numerical methods and application to the quiet, non-magnetic, surface of a solar-type star

    NASA Astrophysics Data System (ADS)

    Hayek, W.; Asplund, M.; Carlsson, M.; Trampedach, R.; Collet, R.; Gudiksen, B. V.; Hansteen, V. H.; Leenaarts, J.

    2010-07-01

    Aims: We present the implementation of a radiative transfer solver with coherent scattering in the new BIFROST code for radiative magneto-hydrodynamical (MHD) simulations of stellar surface convection. The code is fully parallelized using MPI domain decomposition, which allows for large grid sizes and improved resolution of hydrodynamical structures. We apply the code to simulate the surface granulation in a solar-type star, ignoring magnetic fields, and investigate the importance of coherent scattering for the atmospheric structure. Methods: A scattering term is added to the radiative transfer equation, requiring an iterative computation of the radiation field. We use a short-characteristics-based Gauss-Seidel acceleration scheme to compute radiative flux divergences for the energy equation. The effects of coherent scattering are tested by comparing the temperature stratification of three 3D time-dependent hydrodynamical atmosphere models of a solar-type star: without scattering, with continuum scattering only, and with both continuum and line scattering. Results: We show that continuum scattering does not have a significant impact on the photospheric temperature structure for a star like the Sun. Including scattering in line-blanketing, however, leads to a decrease of temperatures by about 350 K below log10 τ5000 ⪉ -4. The effect is opposite to that of 1D hydrostatic models in radiative equilibrium, where scattering reduces the cooling effect of strong LTE lines in the higher layers of the photosphere. Coherent line scattering also changes the temperature distribution in the high atmosphere, where we observe stronger fluctuations compared to a treatment of lines as true absorbers.

  19. Optimizing Stellarators for Energetic Particle Confinement using BEAMS3D

    NASA Astrophysics Data System (ADS)

    Bolgert, Peter; Drevlak, Michael; Lazerson, Sam; Gates, David; White, Roscoe

    2015-11-01

    Energetic particle (EP) loss has been called the ``Achilles heel of stellarators,'' (Helander, Rep. Prog. Phys. 77 087001 (2014)) and there is a great need for magnetic configurations with improved EP confinement. In this study we utilize a newly developed capability of the stellarator optimization code STELLOPT: the ability to optimize EP confinement via an interface with guiding center code BEAMS3D (McMillan et al., Plasma Phys. Control. Fusion 56, 095019 (2014)). Using this new tool, optimizations of the W7-X experiment and ARIES-CS reactor are performed where the EP loss fraction is one of many target functions to be minimized. In W7-X, we simulate the experimental NBI system using realistic beam geometry and beam deposition physics. The goal is to find configurations with improved neutral beam deposition and energetic particle confinement. These calculations are compared to previous studies of W7-X NBI deposition. In ARIES-CS, we launch 3.5 MeV alpha particles from a near-axis flux surface using a uniform grid in toroidal and poloidal angle. As these particles are born from D-T reactions, we consider an isotropic distribution in velocity space. This research is supported by DoE Contract Number DE-AC02-09CH11466.

  20. An in-depth spectroscopic examination of molecular bands from 3D hydrodynamical model atmospheres. II. Carbon-enhanced metal-poor 3D model atmospheres

    NASA Astrophysics Data System (ADS)

    Gallagher, A. J.; Caffau, E.; Bonifacio, P.; Ludwig, H.-G.; Steffen, M.; Homeier, D.; Plez, B.

    2017-02-01

    Context. Tighter constraints on metal-poor stars we observe are needed to better understand the chemical processes of the early Universe. Computing a stellar spectrum in 3D allows one to model complex stellar behaviours, which cannot be replicated in 1D. Aims: We examine the effect that the intrinsic CNO abundances have on a 3D model structure and the resulting 3D spectrum synthesis. Methods: Model atmospheres were computed in 3D for three distinct CNO chemical compositions using the CO5BOLD model atmosphere code, and their internal structures were examined. Synthetic spectra were computed from these models using Linfor3D and they were compared. New 3D abundance corrections for the G-band and a selection of UV OH lines were also computed. Results: The varying CNO abundances change the metal content of the 3D models. This had an effect on the model structure and the resulting synthesis. However, it was found that the C/O ratio had a larger effect than the overall metal content of a model. Conclusions: Our results suggest that varying the C/O ratio has a substantial impact on the internal structure of the 3D model, even in the hot turn-off star models explored here. This suggests that bespoke 3D models, for specific CNO abundances should be sought. Such effects are not seen in 1D at these temperature regimes.

  1. The future of stellar model atmospheres: macroscopic nightmares?

    NASA Astrophysics Data System (ADS)

    Asplund, M.

    Stellar atmospheres represent unique windows for understanding stellar, galactic and cosmic evolution by being responsible for the emission of stellar spectra. Much progress has been made over the years in modelling stellar atmospheres but still the modelling efforts are hampered by various, often questionable, assumptions and approximations. This review describes promising avenues for improving the realism of stellar model atmospheres for hot (spectral types O, B, A), cool (F, G, K) and very cool (M and later) stars, respectively, in the coming decade. A common theme will be time-dependent 3D hydrodynamical calculations with a detailed non-LTE treatment of the radiative transfer. It is argued that this is fully within the realm of possibility on this time-scale and indeed will be necessary to complement the expected advances on the observational side.

  2. Stellar Ablation of Planetary Atmospheres

    NASA Technical Reports Server (NTRS)

    Moore, Thomas E.; Horwitz, J. L.

    2007-01-01

    We review observations and theories of the solar ablation of planetary atmospheres, focusing on the terrestrial case where a large magnetosphere holds off the solar wind, so that there is little direct atmospheric impact, but also couples the solar wind electromagnetically to the auroral zones. We consider the photothermal escape flows known as the polar wind or refilling flows, the enhanced mass flux escape flows that result from localized solar wind energy dissipation in the auroral zones, and the resultant enhanced neutral atom escape flows. We term these latter two escape flows the "auroral wind." We review observations and theories of the heating and acceleration of auroral winds, including energy inputs from precipitating particles, electromagnetic energy flux at magnetohydrodynamic and plasma wave frequencies, and acceleration by parallel electric fields and by convection pickup processes also known as "centrifugal acceleration." We consider also the global circulation of ionospheric plasmas within the magnetosphere, their participation in magnetospheric disturbances as absorbers of momentum and energy, and their ultimate loss from the magnetosphere into the downstream solar wind, loading reconnection processes that occur at high altitudes near the magnetospheric boundaries. We consider the role of planetary magnetization and the accumulating evidence of stellar ablation of extrasolar planetary atmospheres. Finally, we suggest and discuss future needs for both the theory and observation of the planetary ionospheres and their role in solar wind interactions, to achieve the generality required for a predictive science of the coupling of stellar and planetary atmospheres over the full range of possible conditions.

  3. Stellar Ablation of Planetary Atmospheres

    NASA Technical Reports Server (NTRS)

    Moore, Thomas E.; Horwitz, J. L.

    2007-01-01

    We review observations and theories of the solar ablation of planetary atmospheres, focusing on the terrestrial case where a large magnetosphere holds off the solar wind, so that there is little direct atmospheric impact, but also couples the solar wind electromagnetically to the auroral zones. We consider the photothermal escape flows known as the polar wind or refilling flows, the enhanced mass flux escape flows that result from localized solar wind energy dissipation in the auroral zones, and the resultant enhanced neutral atom escape flows. We term these latter two escape flows the "auroral wind." We review observations and theories of the heating and acceleration of auroral winds, including energy inputs from precipitating particles, electromagnetic energy flux at magnetohydrodynamic and plasma wave frequencies, and acceleration by parallel electric fields and by convection pickup processes also known as "centrifugal acceleration." We consider also the global circulation of ionospheric plasmas within the magnetosphere, their participation in magnetospheric disturbances as absorbers of momentum and energy, and their ultimate loss from the magnetosphere into the downstream solar wind, loading reconnection processes that occur at high altitudes near the magnetospheric boundaries. We consider the role of planetary magnetization and the accumulating evidence of stellar ablation of extrasolar planetary atmospheres. Finally, we suggest and discuss future needs for both the theory and observation of the planetary ionospheres and their role in solar wind interactions, to achieve the generality required for a predictive science of the coupling of stellar and planetary atmospheres over the full range of possible conditions.

  4. Measuring the Stellar Halo Velocity Anisotropy With 3D Kinematics

    NASA Astrophysics Data System (ADS)

    Cunningham, Emily C.; Deason, Alis J.; Guhathakurta, Puragra; Rockosi, Constance M.; van der Marel, Roeland P.; Sohn, S. Tony

    2016-08-01

    We present the first measurement of the anisotropy parameter β using 3D kinematic information outside of the solar neighborhood. Our sample consists of 13 Milky Way halo stars with measured proper motions and radial velocities in the line of sight of M31. Proper motions were measured using deep, multi-epoch HST imaging, and radial velocities were measured from Keck II/DEIMOS spectra. We measure β = -0.3-0.9 +0.4, which is consistent with isotropy, and inconsistent with measurements in the solar neighborhood. We suggest that this may be the kinematic signature of a relatively early, massive accretion event, or perhaps several such events.

  5. Resolving stellar populations with crowded field 3D spectroscopy

    NASA Astrophysics Data System (ADS)

    Kamann, S.; Wisotzki, L.; Roth, M. M.

    2013-01-01

    We describe a new method of extracting the spectra of stars from observations of crowded stellar fields with integral field spectroscopy (IFS). Our approach extends the well-established concept of crowded field photometry in images into the domain of 3-dimensional spectroscopic datacubes. The main features of our algorithm follow. (1) We assume that a high-fidelity input source catalogue already exists, e.g. from HST data, and that it is not needed to perform sophisticated source detection in the IFS data. (2) Source positions and properties of the point spread function (PSF) vary smoothly between spectral layers of the datacube, and these variations can be described by simple fitting functions. (3) The shape of the PSF can be adequately described by an analytical function. Even without isolated PSF calibrator stars we can therefore estimate the PSF by a model fit to the full ensemble of stars visible within the field of view. (4) By using sparse matrices to describe the sources, the problem of extracting the spectra of many stars simultaneously becomes computationally tractable. We present extensive performance and validation tests of our algorithm using realistic simulated datacubes that closely reproduce actual IFS observations of the central regions of Galactic globular clusters. We investigate the quality of the extracted spectra under the effects of crowding with respect to the resulting signal-to-noise ratios (S/N) and any possible changes in the continuum level, as well as with respect to absorption line spectral parameters, radial velocities, and equivalent widths. The main effect of blending between two nearby stars is a decrease in the S/N in their spectra. The effect increases with the crowding in the field in a way that the maximum number of stars with useful spectra is always ~0.2 per spatial resolution element. This balance breaks down when exceeding a total source density of one significantly detected star per resolution element. We also explore the

  6. VizieR Online Data Catalog: STAGGER-grid of 3D stellar models. III. (Magic+, 2015)

    NASA Astrophysics Data System (ADS)

    Magic, Z.; Weiss, A.; Asplund, M.

    2014-10-01

    We investigate the relation between 1D atmosphere models that rely on the mixing length theory and models based on full 3D radiative hydrodynamic (RHD) calculations to describe convection in the envelopes of late-type stars. The adiabatic entropy value of the deep convection zone, sbot, and the entropy jump, Δs, determined from the 3D RHD models, are matched with the mixing length parameter, αMLT, from 1D hydrostatic atmosphere models with identical microphysics (opacities and equation-of-state). We also derive the mass mixing length, αm, and the vertical correlation length of the vertical velocity, C[Vz,Vz], directly from the 3D hydrodynamical simulations of stellar subsurface convection. (1 data file).

  7. A GRID OF THREE-DIMENSIONAL STELLAR ATMOSPHERE MODELS OF SOLAR METALLICITY. I. GENERAL PROPERTIES, GRANULATION, AND ATMOSPHERIC EXPANSION

    SciTech Connect

    Trampedach, Regner; Asplund, Martin; Collet, Remo; Nordlund, Ake

    2013-05-20

    Present grids of stellar atmosphere models are the workhorses in interpreting stellar observations and determining their fundamental parameters. These models rely on greatly simplified models of convection, however, lending less predictive power to such models of late-type stars. We present a grid of improved and more reliable stellar atmosphere models of late-type stars, based on deep, three-dimensional (3D), convective, stellar atmosphere simulations. This grid is to be used in general for interpreting observations and improving stellar and asteroseismic modeling. We solve the Navier Stokes equations in 3D and concurrent with the radiative transfer equation, for a range of atmospheric parameters, covering most of stellar evolution with convection at the surface. We emphasize the use of the best available atomic physics for quantitative predictions and comparisons with observations. We present granulation size, convective expansion of the acoustic cavity, and asymptotic adiabat as functions of atmospheric parameters.

  8. Construction concepts and validation of the 3D printed UST_2 modular stellarator

    NASA Astrophysics Data System (ADS)

    Queral, V.

    2015-03-01

    High accuracy, geometric complexity and thus high cost of stellarators tend to hinder the advance of stellarator research. Nowadays, new manufacturing methods might be developed for the production of small and middle-size stellarators. The methods should demonstrate advantages with respect common fabrication methods, like casting, cutting, forging and welding, for the construction of advanced highly convoluted modular stellarators. UST2 is a small modular three period quasi-isodynamic stellarator of major radius 0.26 m and plasma volume 10 litres being currently built to validate additive manufacturing (3D printing) for stellarator construction. The modular coils are wound in grooves defined on six 3D printed half period frames designed as light truss structures filled by a strong filler. A geometrically simple assembling configuration has been concocted for UST2 so as to try to lower the cost of the device while keeping the positioning accuracy of the different elements. The paper summarizes the construction and assembling concepts developed, the devised positioning methodology, the design of the coil frames and positioning elements and, an initial validation of the assembling of the components.

  9. Computational Challenges of 3D Radiative Transfer in Atmospheric Models

    NASA Astrophysics Data System (ADS)

    Jakub, Fabian; Bernhard, Mayer

    2017-04-01

    The computation of radiative heating and cooling rates is one of the most expensive components in todays atmospheric models. The high computational cost stems not only from the laborious integration over a wide range of the electromagnetic spectrum but also from the fact that solving the integro-differential radiative transfer equation for monochromatic light is already rather involved. This lead to the advent of numerous approximations and parameterizations to reduce the cost of the solver. One of the most prominent one is the so called independent pixel approximations (IPA) where horizontal energy transfer is neglected whatsoever and radiation may only propagate in the vertical direction (1D). Recent studies implicate that the IPA introduces significant errors in high resolution simulations and affects the evolution and development of convective systems. However, using fully 3D solvers such as for example MonteCarlo methods is not even on state of the art supercomputers feasible. The parallelization of atmospheric models is often realized by a horizontal domain decomposition, and hence, horizontal transfer of energy necessitates communication. E.g. a cloud's shadow at a low zenith angle will cast a long shadow and potentially needs to communication through a multitude of processors. Especially light in the solar spectral range may travel long distances through the atmosphere. Concerning highly parallel simulations, it is vital that 3D radiative transfer solvers put a special emphasis on parallel scalability. We will present an introduction to intricacies computing 3D radiative heating and cooling rates as well as report on the parallel performance of the TenStream solver. The TenStream is a 3D radiative transfer solver using the PETSc framework to iteratively solve a set of partial differential equation. We investigate two matrix preconditioners, (a) geometric algebraic multigrid preconditioning(MG+GAMG) and (b) block Jacobi incomplete LU (ILU) factorization. The

  10. Equilibrium Reconstructions with V3FIT and Current Evolution Modeling for 3-D Stellarator Plasmas

    NASA Astrophysics Data System (ADS)

    Schmitt, J. C.; Cianciosa, M.; Geiger, J.; Lazerson, S.

    2016-10-01

    V3FIT is a powerful equilibrium reconstruction tool for magnetic confinement fusion experiments which are inherently 3-D in nature (i.e. stellarators) or have 3-D components (tokamaks with 3-D shaping, reversed field pinches with helical states, etc). Here, we present details of the diagnostic modeling, constraints and the user interface for reconstructions of W7-X plasmas. For typical discharges during the OP1.1 run campaign of W7-X, the net toroidal current and current density profile do not reach steady-state. When modeling the current evolution in 3-D plasmas, both poloidal and toroidal currents are linked with both poloidal and toroidal fluxes. In contrast, in toroidally axisymmetric plasmas, the poloidal flux is linked only with the toroidal current and the toroidal current is linked only with the poloidal flux. Compared to an equivalently-sized axisymmetric configuration, the current diffusion in 3-D plasmas is enhanced, leading to a faster relaxation of the current profile to its steady-state. Implications for the time-evolution of the current and rotational transform profiles in stellarator plasmas are discussed. This work is supported by DoE Grant DE-SC00014529.

  11. 3D Simulations of methane convective storms on Titan's atmosphere

    NASA Astrophysics Data System (ADS)

    Hueso, R.; Sánchez-Lavega, A.

    2005-08-01

    The arrival of the Cassini/Huygens mission to Titan has opened an unprecedented opportunity to study the atmosphere of this satellite. Under the pressure-temperature conditions on Titan, methane, a large atmospheric component amounting perhaps to a 3-5% of the atmosphere, is close to its triple point, potentially playing a similar role as water on Earth. The Huygens probe has shown a terrain shaped by erosion of probably liquid origin, suggestive of past rain. On the other hand, Voyager IRIS spectroscopic observations of Titan imply a saturated atmosphere of methane (amounting perhaps to 150 covered by methane clouds, if we think on Earth meteorology. However, observations from Earth and Cassini have shown that clouds are localized, transient and fast evolving, in particular in the South Pole (currently in its summer season). This might imply a lack of widespread presence on Titan of nuclei where methane could initiate condensation and particle growth with subsequent precipitation. We investigate different scenarios of moist convective storms on Titan using a complete 3D atmospheric model that incorporates a full microphysics treatment required to study cloud formation processes under a saturated atmosphere with low concentration of condensation nuclei. We study local convective development under a variety of atmospheric conditions: sub-saturation, super-saturation, abundances of condensation nuclei fall, condensation nuclei lifted from the ground or gently falling from the stratosphere. We show that under the appropriate circumstances, precipitation rates comparable to typical tropical storms on Earth can be found. Acknowledgements: This work has been funded by Spanish MCYT PNAYA2003-03216, fondos FEDER and Grupos UPV 15946/2004. R. Hueso acknowledges a post-doc fellowship from Gobierno Vasco.

  12. ZASPE: Zonal Atmospheric Stellar Parameters Estimator

    NASA Astrophysics Data System (ADS)

    Brahm, Rafael; Jordan, Andres; Hartman, Joel; Bakos, Gaspar

    2016-07-01

    ZASPE (Zonal Atmospheric Stellar Parameters Estimator) computes the atmospheric stellar parameters (Teff, log(g), [Fe/H] and vsin(i)) from echelle spectra via least squares minimization with a pre-computed library of synthetic spectra. The minimization is performed only in the most sensitive spectral zones to changes in the atmospheric parameters. The uncertainities and covariances computed by ZASPE assume that the principal source of error is the systematic missmatch between the observed spectrum and the sythetic one that produces the best fit. ZASPE requires a grid of synthetic spectra and can use any pre-computed library minor modifications.

  13. 3D modeling of clouds in GJ1214b's atmosphere

    NASA Astrophysics Data System (ADS)

    Charnay, Benjamin; Meadows, Victoria; leconte, Jérémy; Misra, Amit; Arnay, Giada

    2015-12-01

    GJ1214b is a warm mini-Neptune/waterworld and one of the few low-mass exoplanets whose atmosphere is characterizable by current telescopes. Recent observations indicated a flat transit spectrum in near-infrared which has been interpreted as the presence of high and thick condensate clouds of KCl or ZnS or photochemical hazes [1]. However, the formation of such high clouds/hazes would require a strong vertical mixing linked to the atmospheric circulation [2]. In order to understand the transport, distribution and observational implications of such clouds/haze, we studied the atmospheric circulation and cloud formation on GJ1214b for H-dominated and water-dominated atmospheres using the Generic LMDZ GCM.Firstly, we analyzed cloud-free atmospheres [3]. We showed that the zonal mean meridional circulation corresponds to an anti-Hadley circulation in most of the atmosphere with upwelling at midlatitude and downwelling at the equator. This circulation should strongly impact cloud formation and distribution, leading to a minimum of cloud at the equator. We also derived 1D equivalent eddy diffusion coefficients. The corresponding values should favor an efficient formation of photochemical haze in the upper atmosphere of GJ1214b.Secondly, we simulated cloudy atmospheres including latent heat release and radiative effects for KCl and ZnS clouds [4]. We analyzed their distribution and their impacts on the thermal structure. In particular, a stratospheric thermal inversion should likely be formed by absorption of stellar radiation by ZnS clouds. We showed that flat transit spectra consistent with HST observations are possible for cloud particle radii around 0.5 microns. Using the outputs of our GCM, we also generated emission and reflection spectra and phases curves.Finally, our results suggest that primary and secondary eclipses and phase curves observed by JWST should provide strong constraints on the nature of GJ1214b's atmosphere and clouds.references:[1] Kreidberg et al

  14. Effect of 3D magnetic perturbations on divertor conditions and detachment in tokamak and stellarator

    NASA Astrophysics Data System (ADS)

    Ahn, J.-W.; Briesemester, A. R.; Kobayashi, M.; Lore, J. D.; Schmitz, O.; Diallo, A.; Gray, T. K.; Lasnier, C. J.; LeBlanc, B. P.; Maingi, R.; McLean, A. G.; Sabbagh, S. A.; Soukhanovskii, V. A.

    2017-08-01

    Enhanced perpendicular heat and momentum transport induces parallel pressure loss leading to divertor detachment, which can be produced by the increase of density in 2D tokamaks. However, in the 3D configurations such as tokamaks with 3D fields and stellarators, the fraction of perpendicular transport can be higher even in a lower density regime, which could lead to the early transition to detachment without passing through the high-recycling regime. 3D fields applied to the limiter tokamak plasmas produce edge stochastic layers close to the last closed flux surface (LCFS), which can allow for enhanced perpendicular transport and indeed the absence of high recycling regime and early detachment have been observed in TEXTOR and Tore Supra. However, in the X-point divertor tokamaks with the applied 3D fields, the parallel transport is still dominant and the detachment facilitation has not been observed yet. Rather, 3D fields affected detachment adversely under certain conditions, either by preventing detachment onset as seen in DIII-D or by re-attaching the existing detached plasma as shown in NSTX. The possible way for strong 3D effects to induce access to the early detachment in divertor tokamaks appears to be via significant perpendicular loss of parallel momentum by frictional force for the counter-streaming flows between neighboring flow channels in the divertor. In principle, the adjacent lobes in the 3D divertor tokamak may generate the counter-streaming flow channels. However, an EMC3-EIRENE simulation for ITER H-mode plasmas demonstrated that screened RMP leads to significantly reduced counter-flows near the divertor target, therefore the momentum loss effect leading to detachment facilitation is expected to be small. This is consistent with the observation in LHD, which showed screening (amplification) of RMP fields in the attachment (stable detachment) case. Work for optimal parameter window for best divertor operation scenario is needed particularly for

  15. 3D model atmospheres and the solar photospheric oxygen abundance

    NASA Astrophysics Data System (ADS)

    Caffau, E.; Ludwig, H.-G.

    2008-10-01

    In recent years the photospheric solar oxygen abundance experienced a significant downward revision. However, a low photospheric abundance is incompatible with the value in the solar interior inferred from helioseismology. For contributing to the dispute whether the solar oxygen abundance is “high” or “low”, we re-derived its photospheric abundance independently of previous analyses. We applied 3D (CO5BOLD) as well as 1D model atmospheres. We considered standard disc-centre and disc-integrated spectral atlases, as well as newly acquired solar intensity spectra at different heliocentric angles. We determined the oxygen abundances from equivalent width and/or line profile fitting of a number of atomic lines. As preliminary result, we find an oxygen abundance in the range 8.73 8.79, encompassing the value obtained by Holweger (2001), and somewhat higher than the value obtained by Asplund et al. (2005).

  16. Rayleigh Scattering by Helium in Stellar Atmospheres

    NASA Astrophysics Data System (ADS)

    Fišák, J.; Kubát, J.; Krtička, J.

    2017-02-01

    We study the influence of Rayleigh scattering by helium on synthetic spectra and stellar atmosphere models. Rayleigh scattering by helium is often neglected in hot star atmosphere models. This approximation is justified by the small population of helium in stars with solar composition (about 10% by number) and lower Rayleigh scattering total cross section of helium with respect to neutral hydrogen. However, for stars with large helium abundances Rayleigh scattering by helium can be a significant opacity source.

  17. 3D Atmospheric Circulation of Warm and Hot Jupiters

    NASA Astrophysics Data System (ADS)

    Showman, Adam P.; Lewis, Nikole K.; Fortney, Jonathan J.

    2015-03-01

    Efforts to characterize extrasolar giant planet (EGP) atmospheres have so far emphasized planets within 0.05 AU of their stars. Despite this focus, known EGPs populate a continuum of orbital separations from canonical hot Jupiter values (0.03-0.05 AU) out to 1 AU and beyond. Unlike typical hot Jupiters, these more distant EGPs will not generally be synchronously rotating. In anticipation of observations of this population, we here present three-dimensional atmospheric circulation models exploring the dynamics that emerge over a broad range of rotation rates and incident stellar fluxes appropriate for warm and hot Jupiters. We find that the circulation resides in one of two basic regimes. On typical hot Jupiters, the strong day-night heating contrast leads to a broad, fast superrotating (eastward) equatorial jet and large day-night temperature differences. At faster rotation rates and lower incident fluxes, however, the day-night heating gradient becomes less important, and baroclinic instabilities emerge as a dominant player, leading to eastward jets in the midlatitudes, minimal temperature variations in longitude, and, often, weak winds at the equator. Our most rapidly rotating and least irradiated models exhibit similarities to Jupiter and Saturn, illuminating the dynamical continuum between hot Jupiters and the weakly irradiated giant planets of our own solar system. We present infrared (IR) light curves and spectra of these models, which depend significantly on incident flux and rotation rate. This provides a way to identify the regime transition in future observations. In some cases, IR light curves can provide constraints on the rotation rate of nonsynchronously rotating planets.

  18. Stellar Atmospheres, Atmospheric Extension, and Fundamental Parameters: Weighing Stars Using the Stellar Mass Index

    NASA Astrophysics Data System (ADS)

    Neilson, Hilding R.; Baron, Fabien; Norris, Ryan; Kloppenborg, Brian; Lester, John B.

    2016-10-01

    One of the great challenges of understanding stars is measuring their masses. The best methods for measuring stellar masses include binary interaction, asteroseismology, and stellar evolution models, but these methods are not ideal for red giant and supergiant stars. In this work, we propose a novel method for inferring stellar masses of evolved red giant and supergiant stars using interferometric and spectrophotometric observations combined with spherical model stellar atmospheres to measure what we call the stellar mass index, defined as the ratio between the stellar radius and mass. The method is based on the correlation between different measurements of angular diameter, used as a proxy for atmospheric extension, and fundamental stellar parameters. For a given star, spectrophotometry measures the Rosseland angular diameter while interferometric observations generally probe a larger limb-darkened angular diameter. The ratio of these two angular diameters is proportional to the relative extension of the stellar atmosphere, which is strongly correlated to the star’s effective temperature, radius, and mass. We show that these correlations are strong and can lead to precise measurements of stellar masses.

  19. Spectral synthesis of stellar populations in the 3D era: The CALIFA experience

    NASA Astrophysics Data System (ADS)

    Cid Fernandes, R.; Lacerda, E. A. D.; González Delgado, R. M.; Vale Asari, N.; García-Benito, R.; Pérez, E.; de Amorim, A. L.; Cortijo-Ferrero, C.; López Fernández, R.; Sánchez, S. F.

    2015-02-01

    Methods to recover the fossil record of galaxy evolution encoded in their optical spectra have been instrumental in processing the avalanche of data from mega-surveys along the last decade, effectively transforming observed spectra onto a long and rich list of physical properties: from stellar masses and mean ages to full star formation histories. This promoted progress in our understanding of galaxies as a whole. Yet, the lack of spatial resolution introduces undesirable aperture effects, and hampers advances on the internal physics of galaxies. This is now changing with 3D surveys. The mapping of stellar populations in data-cubes allows us to figure what comes from where, unscrambling information previously available only in integrated form. This contribution uses our starlight-based analysis of 300 CALIFA galaxies to illustrate the power of spectral synthesis applied to data-cubes. The selected results highlighted here include: (a) The evolution of the mass-metallicity and mass-density-metallicity relations, as traced by the mean stellar metallicity. (b) A comparison of star formation rates obtained from Hα to those derived from full spectral fits. (c) The relation between star formation rate and dust optical depth within galaxies, which turns out to mimic the Schmidt-Kennicutt law. (d) PCA tomography experiments.

  20. Using 3-D shaping to manipulate ITG turbulence saturation in stellarators

    NASA Astrophysics Data System (ADS)

    Hegna, C. C.; Terry, P. W.

    2016-10-01

    A frontier research area for stellarator design is to develop methods to alter turbulent transport. In this work, efforts are developed to understand how 3-D shaping can be used to affect turbulent transport saturation physics. To accomplish this goal, we utilize a paradigm for turbulent saturation that relies on zonal flow mediated transfer of energy from linear instability to damped eigenmodes. A simplified 3-field fluid model for ion temperature gradient turbulence is developed that allows for the presence of general 3-D geometry. The crucial nonlinear physics is associated with the triplet interaction of a linear instability, a zonal flow and a damped mode. The most vigorous interaction occurs when the three-wave frequency mismatch of these three modes is minimized, connoting a large nonlinear interaction time with saturated turbulence levels proportional to the three-wave frequency mismatch. Initial studies will be geared toward how 3-D geometry can be used to minimize this frequency mismatch. Research supported by U. S. DoE under Grant Nos. DE-FG02-99ER54546 and DE-FG02-89ER53291.

  1. Thermalisation of electrons in a stellar atmosphere

    NASA Astrophysics Data System (ADS)

    Chevallier, Loic

    2001-05-01

    We are interested in electron cinetic in a stellar atmosphere, in order to validate (or infirm) the widely spread hypothesis of electron thermalisation. In this goal, we determine the velocity distribution of electrons, solving their kinetic equation, together with the transfer and statistical equilibrium equations. We find that the electron velocity distribution may depart significantly from a maxwellian, when important departures from LTE exist. Some results and astrophysical consequences will be examined.

  2. Stellar atmospheres in the Gaia era

    NASA Astrophysics Data System (ADS)

    Lobel, Alex

    2011-12-01

    Highlights of the meeting on Stellar Atmospheres in the Gaia Era: Quantitative Spectroscopy and Comparative Spectrum Modeling (http://great-esf.oma.be and mirrored at http://spectri.freeshell.org/great-esf) held on 23-24 June 2011 in Brussels, Belgium are emphasized. New research results are summarized and a record of the scientific discussions during the meeting is provided, as well as important open questions for future research.

  3. 3D MODELING OF GJ1214b's ATMOSPHERE: FORMATION OF INHOMOGENEOUS HIGH CLOUDS AND OBSERVATIONAL IMPLICATIONS

    SciTech Connect

    Charnay, B.; Meadows, V.; Misra, A.; Arney, G.; Leconte, J.

    2015-11-01

    The warm sub-Neptune GJ1214b has a featureless transit spectrum that may be due to the presence of high and thick clouds or haze. Here, we simulate the atmosphere of GJ1214b with a 3D General Circulation Model for cloudy hydrogen-dominated atmospheres, including cloud radiative effects. We show that the atmospheric circulation is strong enough to transport micrometric cloud particles to the upper atmosphere and generally leads to a minimum of cloud at the equator. By scattering stellar light, clouds increase the planetary albedo to 0.4–0.6 and cool the atmosphere below 1 mbar. However, the heating by ZnS clouds leads to the formation of a stratospheric thermal inversion above 10 mbar, with temperatures potentially high enough on the dayside to evaporate KCl clouds. We show that flat transit spectra consistent with Hubble Space Telescope observations are possible if cloud particle radii are around 0.5 μm, and that such clouds should be optically thin at wavelengths >3 μm. Using simulated cloudy atmospheres that fit the observed spectra we generate transit, emission, and reflection spectra and phase curves for GJ1214b. We show that a stratospheric thermal inversion would be readily accessible in near- and mid-infrared atmospheric spectral windows. We find that the amplitude of the thermal phase curves is strongly dependent on metallicity, but only slightly impacted by clouds. Our results suggest that primary and secondary eclipses and phase curves observed by the James Webb Space Telescope in the near- to mid-infrared should provide strong constraints on the nature of GJ1214b's atmosphere and clouds.

  4. Stellar Occultation Probe of Triton's Atmosphere

    NASA Technical Reports Server (NTRS)

    Elliot, James L.

    1998-01-01

    The goals of this research were (i) to better characterize Triton's atmospheric structure by probing a region not well investigated by Voyager and (ii) to begin acquiring baseline data for an investigation of the time evolution of the atmosphere which will set limits on the thermal conductivity of the surface and the total mass of N2 in the atmosphere. Our approach was to use observations (with the Kuiper Airborne Observatory) of a stellar occultation by Triton that was predicted to occur on 1993 July 10. As described in the attached reprint, we achieved these objectives through observation of this occultation and a subsequent one with the KAO in 1995. We found new results about Triton's atmospheric structure from the analysis of the two occultations observed with the KAO and ground-based data. These stellar occultation observations made both in the visible and infrared, have good spatial coverage of Triton including the first Triton central-flash observations, and are the first data to probe the 20-100 km altitude level on Triton. The small-planet light curve model of Elliot and Young (AJ 103, 991-1015) was generalized to include stellar flux refracted by the far limb, and then fitted to the data. Values of the pressure, derived from separate immersion and emersion chords, show no significant trends with latitude indicating that Triton's atmosphere is spherically symmetric at approximately 50 km altitude to within the error of the measurements. However, asymmetry observed in the central flash indicates the atmosphere is not homogeneous at the lowest levels probed (approximately 20 km altitude). From the average of the 1995 occultation data, the equivalent-isothermal temperature of the atmosphere is 47 +/- 1 K and the atmospheric pressure at 1400 km radius (approximately 50 km altitude) is 1.4 +/- 0.1 microbar. Both of these are not consistent with a model based on Voyager UVS and RSS observations in 1989 (Strobel et al, Icarus 120, 266-289). The atmospheric

  5. Polarized Continuum Radiation from Stellar Atmospheres

    NASA Astrophysics Data System (ADS)

    Harrington, J. Patrick

    2015-10-01

    Continuum scattering by free electrons can be significant in early type stars, while in late type stars Rayleigh scattering by hydrogen atoms or molecules may be important. Computer programs used to construct models of stellar atmospheres generally treat the scattering of the continuum radiation as isotropic and unpolarized, but this scattering has a dipole angular dependence and will produce polarization. We review an accurate method for evaluating the polarization and limb darkening of the radiation from model stellar atmospheres. We use this method to obtain results for: (i) Late type stars, based on the MARCS code models (Gustafsson et al. 2008), and (ii) Early type stars, based on the NLTE code TLUSTY (Lanz and Hubeny 2003). These results are tabulated at http://www.astro.umd.edu/~jph/Stellar_Polarization.html. While the net polarization vanishes for an unresolved spherical star, this symmetry is broken by rapid rotation or by the masking of part of the star by a binary companion or during the transit of an exoplanet. We give some numerical results for these last cases.

  6. Pluto: Modeling of 3-D Atmosphere-Surface Interactions

    NASA Astrophysics Data System (ADS)

    Michaels, Timothy I.

    2015-11-01

    Atmosphere-surface interactions on Pluto are of great importance to creating and maintaining the atmospheric variations and heterogeneous surface that have been observed by New Horizons and two decades' prior work. Publicly released images/data from New Horizons contain numerous fascinating surface features and constrasts. Insights into their origin, maintenance, and/or evolution may be gleaned through multidisciplinary climate modeling. Some results from such modeling will be presented, with an emphasis on shorter-timescale interactions.

  7. Combining Abundance/Temperature Retrieval with 3D Atmospheric Circulation Simulations of Hot Jupiters

    NASA Astrophysics Data System (ADS)

    Heng, Kevin

    2011-09-01

    The atmospheres of hot Jupiters are three-dimensional, non-linear entities and understanding them requires the construction of a hierarchy of models of varying sophistication. Since previous work has either focused on the atmospheric dynamics or implemented multi-band radiative transfer, a reasonable approach is to combine the treatment of 3D dynamics with dual-band radiative transfer, where the assumption is that the stellar irradiation and re-emitted radiation from the exoplanet are at distinct wavelengths. I report on the successful implementation of such a setup and demonstrate how it can be used to compute self-consistent temperature-pressure profiles on both the day and night sides of a hot Jupiter, as well as zonal-wind profiles, circulation cell patterns and the angular/temporal offset of the hotspot from the substellar point. In particular, the hotspot offset should aid us in distinguishing between different types of hot Jupiter atmospheres. Together with N. Madhusudhan, we combine the dual-band simulation technique with the abundance/temperature retrieval method of Madhusudhan & Seager, by empirically constraining a range of values for the broad-band opacities which are consistent with the current observations. The advantage of our novel method is that the range of opacities used improves with time as the observations get better. The ability to thoroughly, efficiently and systematically explore the interplay between atmospheric dynamics, radiation and synthetic spectra is an important step forward, as it prepares us for the theoretical interpretation of exoplanetary spectra which will be obtained by future space-based missions such as JWST and EChO. I acknowledge generous support from the Zwicky Prize Fellowship and the Star and Planet Formation Group (PI: Michael Meyer) at ETH Zurich.

  8. The Influences of Stellar Activity on Planetary Atmospheres

    NASA Astrophysics Data System (ADS)

    Johnstone, Colin P.

    2017-10-01

    On evolutionary timescales, the atmospheres of planets evolve due to interactions with the planet's surface and with the planet's host star. Stellar X-ray and EUV (='XUV') radiation is absorbed high in the atmosphere, driving photochemistry, heating the gas, and causing atmospheric expansion and mass loss. Atmospheres can interact strongly with the stellar winds, leading to additional mass loss. In this review, I summarise some of the ways in which stellar output can influence the atmospheres of planets. I will discuss the importance of simultaneously understanding the evolution of the star's output and the time dependent properties of the planet's atmosphere.

  9. New Era in 3-D Modeling of Convection and Magnetic Dynamos in Stellar Envelopes and Cores

    NASA Astrophysics Data System (ADS)

    Toomre, J.; Augustson, K. C.; Brown, B. P.; Browning, M. K.; Brun, A. S.; Featherstone, N. A.; Miesch, M. S.

    2012-09-01

    consider dynamo action within the cores of rotating A-type stars, finding that striking super-equipartition magnetic fields can be built there. These families of 3-D simulations are showing that a new era of detailed stellar modeling is becoming feasible through rapid advances in supercomputing, and these have the potential to help interpret and possibly even guide some of the observational efforts now under way.

  10. Comparing 3D Solar Model Atmospheres with Observations: Hydrogen Lines and Centre-to-limb Variations

    NASA Astrophysics Data System (ADS)

    Pereira, Tiago M. D.; Asplund, Martin; Trampedach, Regner

    Three dimensional hydrodynamical stellar model atmospheres represent a major step forward in stellar spectroscopy. Making use of radiative-hydrodynamical convection simulations that contain no adjustable free parameters, the model atmospheres provide a robust and realistic treatment of convection. These models have been applied to several lines in the Sun and other stars, yielding an excellent agreement with observations (e.g., Asplund et al. (2000) [1]).

  11. 3D modeling of organic haze in Pluto's atmosphere

    NASA Astrophysics Data System (ADS)

    Bertrand, Tanguy; Forget, François

    2017-05-01

    The New Horizons spacecraft, which flew by Pluto on July 14, 2015, revealed the presence of haze in Pluto's atmosphere that were formed by CH4/N2 photochemistry at high altitudes in Pluto's atmosphere, as on Titan and Triton. In order to help the analysis of the observations and further investigate the formation of organic haze and its evolution at global scales, we have implemented a simple parameterization of the formation of organic haze in our Pluto General Circulation Model. The production of haze in our model is based on the different steps of aerosol formation as understood on Titan and Triton: photolysis of CH4 in the upper atmosphere by Lyman-α UV radiation, production of various gaseous species, and conversion into solid particles through accumulation and aggregation processes. The simulations use properties of aerosols similar to those observed in the detached haze layer on Titan. We compared two reference simulations ran with a particle radius of 50 nm: with, and without South Pole N2 condensation. We discuss the impact of the particle radius and the lifetime of the precursors on the haze distribution. We simulate CH4 photolysis and the haze formation up to 600 km above the surface. Results show that CH4 photolysis in Pluto's atmosphere in 2015 occurred mostly in the sunlit summer hemisphere with a peak at an altitude of 250 km, though the interplanetary source of Lyman-α flux can induce some photolysis even in the Winter hemisphere. We obtained an extensive haze up to altitudes comparable with the observations, and with non-negligible densities up to 500 km altitude. In both reference simulations, the haze density is not strongly impacted by the meridional circulation. With No South Pole N2 condensation, the maximum nadir opacity and haze extent is obtained at the North Pole. With South Pole N2 condensation, the descending parcel of air above the South Pole leads to a latitudinally more homogeneous haze density with a slight density peak at the South

  12. PREFACE: Stellar Atmospheres in the Gaia Era - Preface

    NASA Astrophysics Data System (ADS)

    Lobel, Alex; De Greve, Jean-Pierre; Van Rensbergen, Walter

    2011-12-01

    new research results with spectral synthesis codes developed for cool stars, while the second day focused on codes applied for modeling the spectra of hot stars. The workshop addressed five major topics in stellar atmospheres research: Spectrum synthesis codes Radiation hydrodynamics codes Atmospheric parameters, abundance, metallicity, and chemical tagging studies Large spectroscopic surveys New atomic database The workshop presentations discussed various important scientific issues by comparing detailed model spectra to identify differences that can influence and bias the resulting atmospheric parameters. Theoretical line-blanketed model spectra were compared in detail to high-resolution spectroscopic observations. Stellar spectra computed (i.e., in the Gaia Radial Velocity Spectrometer wavelength range) with 1-D model atmosphere structures were mutually compared, but also to 3-D models from advanced radiation hydrodynamics codes. Atmospheric parameters derived from spectrum synthesis calculations assuming Local Thermodynamic Equilibrium (LTE) were evaluated against more sophisticated non-LTE models of metal-poor stars and the extended atmospheres of giants and supergiants. The workshop presented an overview of high-resolution synthetic spectral libraries of model spectra computed with the synthesis codes. The spectral model grids will be utilized to derive stellar parameters with the Discrete Source Classifier Algorithms currently under development in the Gaia DPAC consortium (http://www.rssd.esa.int/index.php?project=GAIA&page=DPAC_Introduction). They are implemented for training Gaia data analysis algorithms for the classification of a wide variety of hot and cool star types; FGK and M stars, OB stars, white dwarfs, red supergiants, peculiar A and B stars, carbon stars, ultra cool dwarfs, various types of emission line stars, Be stars, Wolf-Rayet stars, etc. A substantial number of oral and poster presentations discussed different techniques for measuring the

  13. Stellar Atmospheric Parameterization Based on Deep Learning

    NASA Astrophysics Data System (ADS)

    Pan, R. Y.; Li, X. R.

    2016-07-01

    Deep learning is a typical learning method widely studied in machine learning, pattern recognition, and artificial intelligence. This work investigates the stellar atmospheric parameterization problem by constructing a deep neural network with five layers. The proposed scheme is evaluated on both real spectra from Sloan Digital Sky Survey (SDSS) and the theoretic spectra computed with Kurucz's New Opacity Distribution Function (NEWODF) model. On the SDSS spectra, the mean absolute errors (MAEs) are 79.95 for the effective temperature (T_{eff}/K), 0.0058 for lg (T_{eff}/K), 0.1706 for surface gravity (lg (g/(cm\\cdot s^{-2}))), and 0.1294 dex for metallicity ([Fe/H]), respectively; On the theoretic spectra, the MAEs are 15.34 for T_{eff}/K, 0.0011 for lg (T_{eff}/K), 0.0214 for lg (g/(cm\\cdot s^{-2})), and 0.0121 dex for [Fe/H], respectively.

  14. 3D-HST WFC3-SELECTED PHOTOMETRIC CATALOGS IN THE FIVE CANDELS/3D-HST FIELDS: PHOTOMETRY, PHOTOMETRIC REDSHIFTS, AND STELLAR MASSES

    SciTech Connect

    Skelton, Rosalind E.; Whitaker, Katherine E.; Momcheva, Ivelina G.; Van Dokkum, Pieter G.; Bezanson, Rachel; Leja, Joel; Nelson, Erica J.; Oesch, Pascal; Brammer, Gabriel B.; Labbé, Ivo; Franx, Marijn; Fumagalli, Mattia; Van der Wel, Arjen; Da Cunha, Elisabete; Maseda, Michael V.; Förster Schreiber, Natascha; Kriek, Mariska; Lundgren, Britt F.; Magee, Daniel; Marchesini, Danilo; and others

    2014-10-01

    The 3D-HST and CANDELS programs have provided WFC3 and ACS spectroscopy and photometry over ≈900 arcmin{sup 2} in five fields: AEGIS, COSMOS, GOODS-North, GOODS-South, and the UKIDSS UDS field. All these fields have a wealth of publicly available imaging data sets in addition to the Hubble Space Telescope (HST) data, which makes it possible to construct the spectral energy distributions (SEDs) of objects over a wide wavelength range. In this paper we describe a photometric analysis of the CANDELS and 3D-HST HST imaging and the ancillary imaging data at wavelengths 0.3-8 μm. Objects were selected in the WFC3 near-IR bands, and their SEDs were determined by carefully taking the effects of the point-spread function in each observation into account. A total of 147 distinct imaging data sets were used in the analysis. The photometry is made available in the form of six catalogs: one for each field, as well as a master catalog containing all objects in the entire survey. We also provide derived data products: photometric redshifts, determined with the EAZY code, and stellar population parameters determined with the FAST code. We make all the imaging data that were used in the analysis available, including our reductions of the WFC3 imaging in all five fields. 3D-HST is a spectroscopic survey with the WFC3 and ACS grisms, and the photometric catalogs presented here constitute a necessary first step in the analysis of these grism data. All the data presented in this paper are available through the 3D-HST Web site (http://3dhst.research.yale.edu)

  15. 3D stellar reddening map from 2MASS photometry: An improved version

    NASA Astrophysics Data System (ADS)

    Gontcharov, G. A.

    2017-07-01

    An improved version of the 3D stellar reddening map in a space with a radius of 1200 pc around the Sun and within 600 pc of the Galactic midplane is presented. As in the previous 2010 and 2012 versions of the map, photometry with an accuracy better than 0.05 m in the J and Ks bands for more than 70 million stars from the 2MASS catalogue is used in the new version. However, the data reduction technique is considerably more complicated. As before, an analysis of the distribution of stars near the main-sequence turnoff on the ( J - Ks)- Ks diagram, where they form a distribution maximum, provides a basis for the method. The shift of this maximum, i.e., the mode ( J - Ks), along ( J - Ks) and Ks, given the spatial variations of the mean dereddened color ( J - Ks)0 of these stars, is interpreted as a growth of the reddening with increasing distance. The main distinction of the new method is that instead of the fixed mean absolute magnitude, dereddened color, distance, and reddening for each cell, the individual values of these quantities are calculated for each star by iterations when solving the system of equations relating them. This has allowed one to increase the random accuracy of the map to 0.01 m and its spatial resolution to 20 pc in coordinates and distance and to 1° in longitude and latitude. Comparison with other reddening estimates for the same spatial cells and Gaia DR1 TGAS stars shows that the constructed map is one of the best maps for the space under consideration. Its systematic errors have been estimated to be σ( E( J - Ks)) = 0.025 m , or σ( E( B - V)) = 0.04 m . The main purpose of the map is to analyze the characteristics of Galactic structures, clouds, and cloud complexes. For this purpose, the reddening map within each spatial cell has also been computed by analyzing the reddening along each line of sight.

  16. Global 3D radiation-hydrodynamics models of AGB stars. Effects of convection and radial pulsations on atmospheric structures

    NASA Astrophysics Data System (ADS)

    Freytag, B.; Liljegren, S.; Höfner, S.

    2017-04-01

    Context. Observations of asymptotic giant branch (AGB) stars with increasing spatial resolution reveal new layers of complexity of atmospheric processes on a variety of scales. Aims: To analyze the physical mechanisms that cause asymmetries and surface structures in observed images, we use detailed 3D dynamical simulations of AGB stars; these simulations self-consistently describe convection and pulsations. Methods: We used the CO5BOLD radiation-hydrodynamics code to produce an exploratory grid of global "star-in-a-box" models of the outer convective envelope and the inner atmosphere of AGB stars to study convection, pulsations, and shock waves and their dependence on stellar and numerical parameters. Results: The model dynamics are governed by the interaction of long-lasting giant convection cells, short-lived surface granules, and strong, radial, fundamental-mode pulsations. Radial pulsations and shorter wavelength, traveling, acoustic waves induce shocks on various scales in the atmosphere. Convection, waves, and shocks all contribute to the dynamical pressure and, thus, to an increase of the stellar radius and to a levitation of material into layers where dust can form. Consequently, the resulting relation of pulsation period and stellar radius is shifted toward larger radii compared to that of non-linear 1D models. The dependence of pulsation period on luminosity agrees well with observed relations. The interaction of the pulsation mode with the non-stationary convective flow causes occasional amplitude changes and phase shifts. The regularity of the pulsations decreases with decreasing gravity as the relative size of convection cells increases. The model stars do not have a well-defined surface. Instead, the light is emitted from a very extended inhomogeneous atmosphere with a complex dynamic pattern of high-contrast features. Conclusions: Our models self-consistently describe convection, convectively generated acoustic noise, fundamental-mode radial

  17. Stellar Atmospheric Parameterization Based on Deep Learning

    NASA Astrophysics Data System (ADS)

    Pan, Ru-yang; Li, Xiang-ru

    2017-07-01

    Deep learning is a typical learning method widely studied in the fields of machine learning, pattern recognition, and artificial intelligence. This work investigates the problem of stellar atmospheric parameterization by constructing a deep neural network with five layers, and the node number in each layer of the network is respectively 3821-500-100-50-1. The proposed scheme is verified on both the real spectra measured by the Sloan Digital Sky Survey (SDSS) and the theoretic spectra computed with the Kurucz's New Opacity Distribution Function (NEWODF) model, to make an automatic estimation for three physical parameters: the effective temperature (Teff), surface gravitational acceleration (lg g), and metallic abundance (Fe/H). The results show that the stacked autoencoder deep neural network has a better accuracy for the estimation. On the SDSS spectra, the mean absolute errors (MAEs) are 79.95 for Teff/K, 0.0058 for (lg Teff/K), 0.1706 for lg (g/(cm·s-2)), and 0.1294 dex for the [Fe/H], respectively; On the theoretic spectra, the MAEs are 15.34 for Teff/K, 0.0011 for lg (Teff/K), 0.0214 for lg(g/(cm · s-2)), and 0.0121 dex for [Fe/H], respectively.

  18. Time-dependent diffusion in stellar atmospheres

    NASA Astrophysics Data System (ADS)

    Alecian, G.; Stift, M. J.; Dorfi, E. A.

    2011-12-01

    The chemical peculiarities of Ap stars are due to abundance stratifications produced by atomic diffusion in their outer layers. Theoretical models can predict such stratifications, but so far only provide equilibrium solutions which correspond to the maximum depth-dependent abundances for each element that can be supported by the radiation field. However, these stratifications are actually built up through a non-linear, time-dependent process which has never been modelled for realistic stellar atmospheres. Here, we present the first numerical simulations of time-dependent diffusion. We solve the continuity equation after having computed, as accurately as possible, atomic diffusion velocities (with and without a magnetic field) for a simplified fictitious - but still realistic - chemical element: cloudium. The direct comparison with existing observations is not the immediate aim of this work but rather a general understanding of how the stratification build-up proceeds in time and space. Our results raise serious questions as to the relevance of equilibrium solutions and reinforce the suspicion that certain accumulations of chemical elements might prove unstable.

  19. Rapidly convergent algorithms for 3-D tandem and stellarator equilibria in the paraxial approximation

    SciTech Connect

    McNamara, B.

    1984-04-01

    Tandem and stellarator equilibria at high ..beta.. have proved hard to compute and the relaxation methods of Bauer et al., Chodura and Schluter, Hirshman, Strauss, and Pearlstein et al. have been slow to converge. This paper reports an extension of the low-..beta.. analytic method of Pearlstein, Kaiser, and Newcomb to arbitrary ..beta.. for tandem mirrors which converges in 10 to 20 iterations. Extensions of the method to stellarator equilibria are proposed and are very close to the analytic method of Johnson and Greene - the stellarator expansion. Most of the results of all these calculations can be adequately described by low-..beta.. approximations since the MHD stability limits occur at low ..beta... The tandem mirror, having weak curvature and a long central cell, allows finite Larmor radius effects to eliminate most ballooning modes and offers the possibility of really high average ..beta... This is the interest in developing such three-dimensional numerical algorithms.

  20. 3D MODEL ATMOSPHERES FOR EXTREMELY LOW-MASS WHITE DWARFS

    SciTech Connect

    Tremblay, P.-E.; Gianninas, A.; Kilic, M.; Ludwig, H.-G.; Steffen, M.; Freytag, B.; Hermes, J. J.

    2015-08-20

    We present an extended grid of mean three-dimensional (3D) spectra for low-mass, pure-hydrogen atmosphere DA white dwarfs (WDs). We use CO5BOLD radiation-hydrodynamics 3D simulations covering T{sub eff} = 6000–11,500 K and log g = 5–6.5 (g in cm s{sup −2}) to derive analytical functions to convert spectroscopically determined 1D temperatures and surface gravities to 3D atmospheric parameters. Along with the previously published 3D models, the 1D to 3D corrections are now available for essentially all known convective DA WDs (i.e., log g = 5–9). For low-mass WDs, the correction in temperature is relatively small (a few percent at the most), but the surface gravities measured from the 3D models are lower by as much as 0.35 dex. We revisit the spectroscopic analysis of the extremely low-mass (ELM) WDs, and demonstrate that the 3D models largely resolve the discrepancies seen in the radius and mass measurements for relatively cool ELM WDs in eclipsing double WD and WD + millisecond pulsar binary systems. We also use the 3D corrections to revise the boundaries of the ZZ Ceti instability strip, including the recently found ELM pulsators.

  1. [Automatic Measurement of the Stellar Atmospheric Parameters Based Mass Estimation].

    PubMed

    Tu, Liang-ping; Wei, Hui-ming; Luo, A-li; Zhao, Yong-heng

    2015-11-01

    We have collected massive stellar spectral data in recent years, which leads to the research on the automatic measurement of stellar atmospheric physical parameters (effective temperature Teff, surface gravity log g and metallic abundance [Fe/ H]) become an important issue. To study the automatic measurement of these three parameters has important significance for some scientific problems, such as the evolution of the universe and so on. But the research of this problem is not very widely, some of the current methods are not able to estimate the values of the stellar atmospheric physical parameters completely and accurately. So in this paper, an automatic method to predict stellar atmospheric parameters based on mass estimation was presented, which can achieve the prediction of stellar effective temperature Teff, surface gravity log g and metallic abundance [Fe/H]. This method has small amount of computation and fast training speed. The main idea of this method is that firstly it need us to build some mass distributions, secondly the original spectral data was mapped into the mass space and then to predict the stellar parameter with the support vector regression (SVR) in the mass space. we choose the stellar spectral data from the United States SDSS-DR8 for the training and testing. We also compared the predicted results of this method with the SSPP and achieve higher accuracy. The predicted results are more stable and the experimental results show that the method is feasible and can predict the stellar atmospheric physical parameters effectively.

  2. The ATLAS3D Project - XXX. Star formation histories and stellar population scaling relations of early-type galaxies

    NASA Astrophysics Data System (ADS)

    McDermid, Richard M.; Alatalo, Katherine; Blitz, Leo; Bournaud, Frédéric; Bureau, Martin; Cappellari, Michele; Crocker, Alison F.; Davies, Roger L.; Davis, Timothy A.; de Zeeuw, P. T.; Duc, Pierre-Alain; Emsellem, Eric; Khochfar, Sadegh; Krajnović, Davor; Kuntschner, Harald; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Scott, Nicholas; Serra, Paolo; Weijmans, Anne-Marie; Young, Lisa M.

    2015-04-01

    We present the stellar population content of early-type galaxies from the ATLAS3D survey. Using spectra integrated within apertures covering up to one effective radius, we apply two methods: one based on measuring line-strength indices and applying single stellar population (SSP) models to derive SSP-equivalent values of stellar age, metallicity, and alpha enhancement; and one based on spectral fitting to derive non-parametric star formation histories, mass-weighted average values of age, metallicity, and half-mass formation time-scales. Using homogeneously derived effective radii and dynamically determined galaxy masses, we present the distribution of stellar population parameters on the Mass Plane (MJAM, σe, R^maj_e), showing that at fixed mass, compact early-type galaxies are on average older, more metal-rich, and more alpha-enhanced than their larger counterparts. From non-parametric star formation histories, we find that the duration of star formation is systematically more extended in lower mass objects. Assuming that our sample represents most of the stellar content of today's local Universe, approximately 50 per cent of all stars formed within the first 2 Gyr following the big bang. Most of these stars reside today in the most massive galaxies (>1010.5 M⊙), which themselves formed 90 per cent of their stars by z ˜ 2. The lower mass objects, in contrast, have formed barely half their stars in this time interval. Stellar population properties are independent of environment over two orders of magnitude in local density, varying only with galaxy mass. In the highest density regions of our volume (dominated by the Virgo cluster), galaxies are older, alpha-enhanced, and have shorter star formation histories with respect to lower density regions.

  3. Assessing the habitability of planets with Earth-like atmospheres with 1D and 3D climate modeling

    NASA Astrophysics Data System (ADS)

    Godolt, M.; Grenfell, J. L.; Kitzmann, D.; Kunze, M.; Langematz, U.; Patzer, A. B. C.; Rauer, H.; Stracke, B.

    2016-07-01

    Context. The habitable zone (HZ) describes the range of orbital distances around a star where the existence of liquid water on the surface of an Earth-like planet is in principle possible. The applicability of one-dimensional (1D) climate models for the estimation of the HZ boundaries has been questioned by recent three-dimensional (3D) climate studies. While 3D studies can calculate the water vapor, ice albedo, and cloud feedback self-consistently and therefore allow for a deeper understanding and the identification of relevant climate processes, 1D model studies rely on fewer model assumptions and can be more easily applied to the large parameter space possible for extrasolar planets. Aims: We evaluate the applicability of 1D climate models to estimate the potential habitability of Earth-like extrasolar planets by comparing our 1D model results to those of 3D climate studies in the literature. We vary the two important planetary properties, surface albedo and relative humidity, in the 1D model. These depend on climate feedbacks that are not treated self-consistently in most 1D models. Methods: We applied a cloud-free 1D radiative-convective climate model to calculate the climate of Earth-like planets around different types of main-sequence stars with varying surface albedo and relative humidity profile. We compared the results to those of 3D model calculations available in the literature and investigated to what extent the 1D model can approximate the surface temperatures calculated by the 3D models. Results: The 1D parameter study results in a large range of climates possible for an Earth-sized planet with an Earth-like atmosphere and water reservoir at a certain stellar insolation. At some stellar insolations the full spectrum of climate states could be realized, i.e., uninhabitable conditions due to surface temperatures that are too high or too low as well as habitable surface conditions, depending only on the relative humidity and surface albedo assumed. When

  4. GrayStarServer: Stellar atmospheric modeling and spectrum synthesis

    NASA Astrophysics Data System (ADS)

    Short, C. Ian

    2017-01-01

    GrayStarServer is a stellar atmospheric modeling and spectrum synthesis code of pedagogical accuracy that is accessible in any web browser on commonplace computational devices and that runs on a timescale of a few seconds.

  5. Astronomy: A turbulent stellar atmosphere in full view

    NASA Astrophysics Data System (ADS)

    Schaefer, Gail H.

    2017-08-01

    The dynamic motion of gas in the outer atmosphere of a red supergiant star has been mapped, providing clues to the mysterious mechanism that causes massive stars to lose mass through stellar winds. See Letter p.310

  6. 3D effects on transport and plasma control in the TJ-II stellarator

    NASA Astrophysics Data System (ADS)

    Castejón, F.; Alegre, D.; Alonso, A.; Alonso, J.; Ascasíbar, E.; Baciero, A.; de Bustos, A.; Baiao, D.; Barcala, J. M.; Blanco, E.; Borchardt, M.; Botija, J.; Cabrera, S.; de la Cal, E.; Calvo, I.; Cappa, A.; Carrasco, R.; Castro, R.; De Castro, A.; Catalán, G.; Chmyga, A. A.; Chamorro, M.; Dinklage, A.; Eliseev, L.; Estrada, T.; Fernández-Marina, F.; Fontdecaba, J. M.; García, L.; García-Cortés, I.; García-Gómez, R.; García-Regaña, J. M.; Guasp, J.; Hatzky, R.; Hernanz, J.; Hernández, J.; Herranz, J.; Hidalgo, C.; Hollmann, E.; Jiménez-Denche, A.; Kirpitchev, I.; Kleiber, R.; Komarov, A. D.; Kozachoek, A. S.; Krupnik, L.; Lapayese, F.; Liniers, M.; Liu, B.; López-Bruna, D.; López-Fraguas, A.; López-Miranda, B.; López-Razola, J.; Losada, U.; de la Luna, E.; Martín de Aguilera, A.; Martín-Díaz, F.; Martínez, M.; Martín-Gómez, G.; Martín-Hernández, F.; Martín-Rojo, A. B.; Martínez-Fernández, J.; McCarthy, K. J.; Medina, F.; Medrano, M.; Melón, L.; Melnikov, A. V.; Méndez, P.; Merino, R.; Miguel, F. J.; van Milligen, B.; Molinero, A.; Momo, B.; Monreal, P.; Moreno, R.; Navarro, M.; Narushima, Y.; Nedzelskiy, I. S.; Ochando, M. A.; Olivares, J.; Oyarzábal, E.; de Pablos, J. L.; Pacios, L.; Panadero, N.; Pastor, I.; Pedrosa, M. A.; de la Peña, A.; Pereira, A.; Petrov, A.; Petrov, S.; Portas, A. B.; Poveda, E.; Rattá, G. A.; Rincón, E.; Ríos, L.; Rodríguez, C.; Rojo, B.; Ros, A.; Sánchez, J.; Sánchez, M.; Sánchez, E.; Sánchez-Sarabia, E.; Sarksian, K.; Satake, S.; Sebastián, J. A.; Silva, C.; Solano, E. R.; Soleto, A.; Sun, B. J.; Tabarés, F. L.; Tafalla, D.; Tallents, S.; Tolkachev, A.; Vega, J.; Velasco, G.; Velasco, J. L.; Wolfers, G.; Yokoyama, M.; Zurro, B.

    2017-10-01

    The effects of 3D geometry are explored in TJ-II from two relevant points of view: neoclassical transport and modification of stability and dispersion relation of waves. Particle fuelling and impurity transport are studied considering the 3D transport properties, paying attention to both neoclassical transport and other possible mechanisms. The effects of the 3D magnetic topology on stability, confinement and Alfvén Eigenmodes properties are also explored, showing the possibility of controlling Alfvén modes by modifying the configuration; the onset of modes similar to geodesic acoustic modes are driven by fast electrons or fast ions; and the weak effect of magnetic well on confinement. Finally, we show innovative power exhaust scenarios using liquid metals.

  7. 3D mapping of stellar populations in galaxies as a function of environment

    NASA Astrophysics Data System (ADS)

    Thomas, Daniel

    2015-08-01

    MaNGA (Mapping Nearby Galaxies at Apache Point Observatory) is a6-year SDSS-IV survey that will obtain resolved spectroscopy from 3600A to 10300 A for a representative sample of 10,000 nearby galaxies. MaNGA will allow the internal kinematics and spatially-resolved properties of stellar populations and gas inside galaxies to be studied as a function of local environment and halo mass for the very first time. I will present results from our analysis of the first year MaNGA data. The main focus is on the 3-dimensional distribution of stellar population properties in galaxies - formation age, element abundance, IMF slope - studying how these vary spatially in galaxies as a function of galaxy environment and dark matter halo mass.

  8. VizieR Online Data Catalog: STAGGER-grid of 3D stellar models. I. (Magic+, 2013)

    NASA Astrophysics Data System (ADS)

    Magic, Z.; Collet, R.; Asplund, M.; Trampedach, R.; Hayek, W.; Chiavassa, A.; Stein, R. F.; Nordlund, A.

    2013-07-01

    The 3D model atmospheres presented here were constructed with a custom version of the Stagger-code, a state-of-the-art, multipurpose, radiative-magnetohydrodynamics (R-MHD) code originally developed by Nordlund & Galsgaard (1995, http://www.astro.ku.dk/~kg/Papers/MHD_code.ps.gz), and continuously improved over the years by its user community. (1 data file).

  9. A HIGHLY COLLIMATED WATER MASER BIPOLAR OUTFLOW IN THE CEPHEUS A HW3d MASSIVE YOUNG STELLAR OBJECT

    SciTech Connect

    Chibueze, James O.; Imai, Hiroshi; Tafoya, Daniel; Omodaka, Toshihiro; Chong, Sze-Ning; Kameya, Osamu; Hirota, Tomoya; Torrelles, Jose M.

    2012-04-01

    We present the results of multi-epoch very long baseline interferometry (VLBI) water (H{sub 2}O) maser observations carried out with the VLBI Exploration of Radio Astrometry toward the Cepheus A HW3d object. We measured for the first time relative proper motions of the H{sub 2}O maser features, whose spatio-kinematics traces a compact bipolar outflow. This outflow looks highly collimated and expanding through {approx}280 AU (400 mas) at a mean velocity of {approx}21 km s{sup -1} ({approx}6 mas yr{sup -1}) without taking into account the turbulent central maser cluster. The opening angle of the outflow is estimated to be {approx}30 Degree-Sign . The dynamical timescale of the outflow is estimated to be {approx}100 years. Our results provide strong support that HW3d harbors an internal massive young star, and the observed outflow could be tracing a very early phase of star formation. We also have analyzed Very Large Array archive data of 1.3 cm continuum emission obtained in 1995 and 2006 toward Cepheus A. The comparative result of the HW3d continuum emission suggests the possibility of the existence of distinct young stellar objects in HW3d and/or strong variability in one of their radio continuum emission components.

  10. Development of Scientific Simulation 3D Full Wave ICRF Code for Stellarators and Heating/CD Scenarios Development

    SciTech Connect

    Vdovin V.L.

    2005-08-15

    In this report we describe theory and 3D full wave code description for the wave excitation, propagation and absorption in 3-dimensional (3D) stellarator equilibrium high beta plasma in ion cyclotron frequency range (ICRF). This theory forms a basis for a 3D code creation, urgently needed for the ICRF heating scenarios development for the operated LHD, constructed W7-X, NCSX and projected CSX3 stellarators, as well for re evaluation of ICRF scenarios in operated tokamaks and in the ITER . The theory solves the 3D Maxwell-Vlasov antenna-plasma-conducting shell boundary value problem in the non-orthogonal flux coordinates ({Psi}, {theta}, {var_phi}), {Psi} being magnetic flux function, {theta} and {var_phi} being the poloidal and toroidal angles, respectively. All basic physics, like wave refraction, reflection and diffraction are self consistently included, along with the fundamental ion and ion minority cyclotron resonances, two ion hybrid resonance, electron Landau and TTMP absorption. Antenna reactive impedance and loading resistance are also calculated and urgently needed for an antenna -generator matching. This is accomplished in a real confining magnetic field being varying in a plasma major radius direction, in toroidal and poloidal directions, through making use of the hot dense plasma wave induced currents with account to the finite Larmor radius effects. We expand the solution in Fourier series over the toroidal ({var_phi}) and poloidal ({theta}) angles and solve resulting ordinary differential equations in a radial like {Psi}-coordinate by finite difference method. The constructed discretization scheme is divergent-free one, thus retaining the basic properties of original equations. The Fourier expansion over the angle coordinates has given to us the possibility to correctly construct the ''parallel'' wave number k{sub //}, and thereby to correctly describe the ICRF waves absorption by a hot plasma. The toroidal harmonics are tightly coupled with each

  11. Atomic Oscillator Strengths for Stellar Atmosphere Modeling

    NASA Astrophysics Data System (ADS)

    Ruffoni, Matthew; Pickering, Juliet C.

    2015-08-01

    In order to correctly model stellar atmospheres, fundamental atomic data must be available to describe atomic lines observed in their spectra. Accurate, laboratory-measured oscillator strengths (f-values) for Fe peak elements in neutral or low-ionisation states are particularly important for determining chemical abundances.However, advances in astronomical spectroscopy in recent decades have outpaced those in laboratory astrophysics, with the latter frequently being overlooked at the planning stages of new projects. As a result, numerous big-budget astronomy projects have been, and continue to be hindered by a lack of suitable, accurately-measured reference data to permit the analysis of expensive astronomical spectra; a problem only likely to worsen in the coming decades as spectrographs at new facilities increasingly move to infrared wavelengths.At Imperial College London - and in collaboration with NIST, Wisconsin University and Lund University - we have been working with the astronomy community in an effort to provide new accurately-measured f-values for a range of projects. In particular, we have been working closely with the Gaia-ESO (GES) and SDSS-III/APOGEE surveys, both of which have discovered that many lines that would make ideal candidates for inclusion in their analyses have poorly defined f-values, or are simply absent from the database. Using high-resolution Fourier transform spectroscopy (R ~ 2,000,000) to provide atomic branching fractions, and combining these with level lifetimes measured with laser induced fluorescence, we have provided new laboratory-measured f-values for a range of Fe-peak elements, most recently including Fe I, Fe II, and V I. For strong, unblended lines, uncertainties are as low as ±0.02 dex.In this presentation, I will describe how experimental f-values are obtained in the laboratory and present our recent work for GES and APOGEE. In particular, I will also discuss the strengths and limitations of current laboratory

  12. Lithium in Stellar Atmospheres: Observations and Theory

    NASA Astrophysics Data System (ADS)

    Lyubimkov, L. S.

    2016-09-01

    Of all the light elements, lithium is the most sensitive indicator of stellar evolution. This review discusses current data on the abundance of lithium in the atmospheres of A-, F-, G-, and K-stars of different types, as well as the consistency of these data with theoretical predictions. The variety of observed Li abundances is illustrated by the following objects in different stages of evolution: (1) Old stars in the galactic halo, which have a lithium abundance logɛ(Li)=2.2 (the "lithium plateau") that appears to be 0.5 dex lower than the primordial abundance predicted by cosmological models. (2) Young stars in the galactic disk, which have been used to estimate the contemporary initial lithium abundance logɛ(Li)=3.2±0.1 for stars in the Main sequence. Possible sources of lithium enrichment in the interstellar medium during evolution of the galaxy are discussed. (3) Evolving FGK dwarfs in the galactic disk, which have lower logɛ(Li) for lower effective temperature T eff and mass M. The "lithium dip" near T eff ~6600 K in the distribution of logɛ(Li) with respect to T eff in old clusters is discussed. (4) FGK giants and supergiants, of which most have no lithium at all. This phenomenon is consistent with rotating star model calculations. (5) Lithium rich cold giants with logɛ(Li) ≥ 2.0, which form a small, enigmatic group. Theoretical models with rotation can explain the existence of these stars only in the case of low initial rotation velocities V 0 <50 km/s. In all other cases it is necessary to assume recent synthesis of lithium (capture of a giant planet is an alternative). (6) Magnetic Ap-stars, where lithium is concentrated in spots located at the magnetic poles. There the lithium abundance reaches logɛ(Li)=6. Discrepancies between observations and theory are noted for almost all the stars discussed in this review.

  13. Simulating 3D Stellar Winds and Diffuse X-ray Emissions from Gases in Non-equilibrium Ionization State

    NASA Astrophysics Data System (ADS)

    Long, Min; Sun, Wei; Niu, Shu; Zhou, Xin; Ji, Li

    2017-08-01

    We investigate the physical properties of stellar winds launched in super stellar clusters (SSCs). Chandra observations have detected the presence of diffuse X-ray emission caused by hot gas from such winds in SSCs, and provide the best probe for understanding interactions between the stellar winds and the complex nursery regions. However, the details of the origin of cluster winds, the mass and energy ejection, the formation of diffuse X-ray emission, the fraction of winds contribution to the distribution of diffuse X-ray emission still remain unclear. We developed a multiphysics hydrodynamic model including self-gravity, head conduction and performed 3D simulations with an unprecedented grid resolution due to adaptive mesh refinement (AMR) capability in a case study of NGC 3603, as a supplement to the analysis of the archived 500 ks Chandra observations. The synthetic emission will be computed by assuming the gas in a non-equilibrium ionization (NEI) state indicated by Chandra observation, not coronal ionization equilibrium (CIE) that most works assumed, by using a customized NEI calculation module based on AtomDB. The results will be compared to the Chandra observations.

  14. Virgo cluster and field dwarf ellipticals in 3D - III. Spatially and temporally resolved stellar populations

    NASA Astrophysics Data System (ADS)

    Ryś, Agnieszka; Koleva, Mina; Falcón-Barroso, Jesús; Vazdekis, Alexandre; Lisker, Thorsten; Peletier, Reynier; van de Ven, Glenn

    2015-09-01

    We present the stellar population analysis of a sample of 12 dwarf elliptical galaxies, observed with the SAURON integral field unit, using the full-spectrum fitting method. We show that star formation histories (SFHs) resolved into two populations can be recovered even within a limited wavelength range, provided that high signal-to-noise ratio (S/N) data are used. We confirm that dEs have had complex SFHs, with star formation extending to (more) recent epochs: for the majority of our galaxies star formation activity was either still strong a few (≲5) Gyr ago or they experienced a secondary burst of star formation roughly at that time. This latter possibility is in agreement with the proposed dE formation scenario where tidal harassment drives the gas remaining in their progenitors inwards and induces a star formation episode. For one of our field galaxies, ID 0918, we find a correlation between its stellar population and kinematic properties, pointing to a possible merger origin of its kinematically decoupled core. One of our cluster objects, VCC 1431, appears to be composed exclusively of an old population (≳10-12 Gyr). Combining this with our earlier dynamical results, we conclude that the galaxy was either ram-pressure stripped early on in its evolution in a group environment and subsequently tidally heated, or that it evolved in situ in the cluster's central parts, compact enough to avoid tidal disruption. These are only two of the examples illustrating the SFH richness of these objects confirmed with our data.

  15. Velocity Fields in Stellar Atmospheres Probed by Tomography

    NASA Astrophysics Data System (ADS)

    Jorissen, Alain; Van Eck, Sophie; Kravchenko, Kateryna

    A tomographic method to probe velocity fields within stellar atmospheres is described. It relies on the design of spectral masks collecting lines forming at given, pre-specified ranges of optical depths. Different masks thus probe different line-formation depths in the stellar atmosphere. The masks are cross-correlated with the observed spectrum to yield cross-correlation functions (CCFs). The cross-correlation has two advantages: (i) to overcome line crowding, and (ii) to reveal minute line asymmetries by adding together many lines. In pulsating stars (long-period variables or Cepheids), the CCFs are double-peaked around maximum light, when the shock front associated with the stellar pulsation is located in the layer probed by the considered mask. Double-peaked CCFs originate in stellar layers where upward- and downward-moving matter co-exist, on each side of the shock front. The application of the tomographic method to long-period variables and supergiants is illustrated.

  16. A study on radiative transfer effects in 3-D cloudy atmosphere using satellite data

    NASA Astrophysics Data System (ADS)

    Okata, M.; Nakajima, T.; Suzuki, K.; Inoue, T.; Nakajima, T. Y.; Okamoto, H.

    2017-01-01

    This study evaluates 3-D cloud effects on the radiation budget with a combined use of active sensor cloud profiling radar/CloudSat and imager Moderate Resolution Imaging Spectroradiometer/Aqua data on the A-train. An algorithm is devised for constructing 3-D cloud fields based on satellite-observed cloud information. The 3-D cloud fields thus constructed are used to calculate the broadband solar and thermal radiative fluxes with a 3-D radiative transfer code developed by the authors. The aim of this study is to investigate the effects of cloud morphology on solar radiative transfer in cloudy atmosphere. For this purpose, 3-D cloud fields are constructed with the new satellite-based method, to which full 3D-RT (radiative transfer) simulations are applied. The simulated 3-D radiation fields are then used to examine and quantify errors of existing typical plane-parallel approximations, i.e., Plane-Parallel Approximation, Independent Pixel Approximation and Tilted Independent Pixel Approximation. Such 3D-RT simulations also serve to address another objective of this study, i.e., to devise an accurate approximation and to characterize the observed specific 3D-RT effects by the cloud morphology based on knowledge of idealized 3D-RT effects. We introduce a modified approach based on an optimum value of diffusivity factor to better approximate the radiative fluxes for arbitrary solar zenith angle determined from the results of 3-D radiative transfer simulations to redeem the overcorrections of these approximations for large solar zenith angles (SZAs). This new approach, called Slant path Independent Pixel Approximation, is found to be better than other approximations when SZA is large for some cloud cases. Based on the SZA dependence of the errors of these approximations relative to 3-D computations, satellite-observed real cloud cases are found to fall into either of three types of different morphologies, i.e., isolated cloud type, upper cloud-roughened type and lower

  17. 3-D Plasma Equilibrium Reconstruction at the HSX Stellarator - Current Status and Diagnostic Development

    NASA Astrophysics Data System (ADS)

    Chlechowitz, E.; Anderson, D. T.; Schmitt, J. C.

    2012-10-01

    The equilibrium magnetic field configuration of tokamaks and stellarators can be determined by measuring the plasma current and pressure profile. V3FIT, a three dimensional plasma equilibrium reconstruction code [1], and a set of magnetic pick-up coils have been used to reconstruct HSX equilibria in the past. To discriminate between possible equilibrium solutions, the output from a 10 channel Thomson scattering system has been implemented in the reconstruction algorithm. Furthermore, an upgrade of 50 magnetic diagnostics is planned, measuring poloidal and radial magnetic field components. The positions of the diagnostics have been chosen because of their high signal effectiveness and/or a high ranking in a SVD analysis study [2]. The efficiency of both placement methods can be compared by using subsets of the coils. The number of possible solutions from reconstruction has been drastically reduced, depending on the allowed 2̂ range [1], using the complete set of coils. [4pt] [1] J.D. Hanson et al, Nucl. Fusion 49 075031 (2009) [2] N. Pomphrey et al, Phys. Plasmas 14, 056103 (2007)

  18. Dwarf ellipticals in the eye of SAURON: dynamical & stellar population analysis in 3D

    NASA Astrophysics Data System (ADS)

    Ryś, Agnieszka; Falcón-Barroso, Jesús; van de Ven, Glenn; Koleva, Mina

    2015-02-01

    We present the dynamical and stellar population analysis of 12 dwarf elliptical galaxies (dEs) observed using the SAURON IFU (WHT, La Palma). We demonstrate that dEs have lower angular momenta than their presumed late-type progenitors and we show that dE circular velocity curves are steeper than the rotation curves of galaxies with equal and up to an order of magnitude higher luminosity. Transformation due to tidal harassment is able to explain all of the above, unless the dE progenitors were already compact and had lower angular momenta at higher redshifts. We then look at the star formation histories (SFHs) of our galaxies and find that for the majority of them star formation activity was either still strong at a few Gyr of age or they experienced a secondary burst of star formation roughly at that time. This latter possibility would be in agreement with the scenario where tidal harassment drives the remaining gas inwards and induces a secondary star formation episode. Finally, one of our galaxies appears to be composed exclusively of an old population (>~12 Gyr). Combining this with our earlier dynamical results, we conclude that it either was ram-pressure stripped early on in its evolution in a group environment and subsequently tidally heated (which lowered its angular momentum and increased compactness), or that it evolved in situ in the cluster's central parts, compact enough to avoid tidal disruption.

  19. Deviations from LTE in a stellar atmosphere

    NASA Technical Reports Server (NTRS)

    Kalkofen, W.; Klein, R. I.; Stein, R. F.

    1979-01-01

    Deviations for LTE are investigated in an atmosphere of hydrogen atoms with one bound level, satisfying the equations of radiative, hydrostatic, and statistical equilibrium. The departure coefficient and the kinetic temperature as functions of the frequency dependence of the radiative cross section are studied analytically and numerically. Near the outer boundary of the atmosphere, the departure coefficient is smaller than unity when the radiative cross section grows with frequency faster than with the square of frequency; it exceeds unity otherwise. Far from the boundary the departure coefficient tends to exceed unity for any frequency dependence of the radiative cross section. Overpopulation always implies that the kinetic temperature in the statistical-equilibrium atmosphere is higher than the temperature in the corresponding LTE atmosphere. Upper and lower bounds on the kinetic temperature are given for an atmosphere with deviations from LTE only in the optically shallow layers when the emergent intensity can be described by a radiation temperature.

  20. EISCAT 3D: A European three-dimensional imaging radar for atmospheric and geospace research

    NASA Astrophysics Data System (ADS)

    McCrea, Ian; Turunen, Esa

    2010-05-01

    (This talk is given on behalf of the EISCAT Scientific Association and the EISCAT_3D Design Team) EISCAT_3D is a new kind of three-dimensional imaging radar for high-latitude atmosphere and geospace studies, located in northern Scandinavia. The facility will consist of multiple large phased-array antenna transmitters/receivers in three countries, comprising some 100 000 individual antenna elements. The new radars will measure from the upper stratosphere to the magnetosphere and beyond, contributing to the basic, environmental and applied science that underpins the use of space by contemporary society. EISCAT_3D's capabilities go beyond anything currently available to the international research community, and will form a significant enhancement to the European Research area. Located in the auroral zone, at the edge of the northern polar vortex, EISCAT_3D will provide long-term continuous data for scientists studying global change, measuring the effects of man-made and natural variability on the middle and upper atmosphere. Its observations will underpin space weather prediction and monitoring, essential for operation and improved service of European space assets. In addition, EISCAT_3D will facilitate studies of solar system influences, such as solar wind, meteors, dust, energetic particles and cosmic rays. This will be done in collaboration with other research infrastructures, including the upper atmosphere programme of the SIOS proposal, focusing on observations made from Svalbard. The importance of EISCAT_3D has been recognised by its place on the ESFRI roadmap of future European Research facilities. The project has already gone through a four-year design study, funded by the European Union under the 6th Framework, and has recently applied for Preparatory Phase funding under the EU 7th Framework. The Preparatory Phase activities will facilitate the resolution of the remaining legal, financial and technical questions which must be addressed before EISCAT_3D can be

  1. Cold atmospheric plasma (CAP) surface nanomodified 3D printed polylactic acid (PLA) scaffolds for bone regeneration.

    PubMed

    Wang, Mian; Favi, Pelagie; Cheng, Xiaoqian; Golshan, Negar H; Ziemer, Katherine S; Keidar, Michael; Webster, Thomas J

    2016-12-01

    Three-dimensional (3D) printing is a new fabrication method for tissue engineering which can precisely control scaffold architecture at the micron-scale. However, scaffolds not only need 3D biocompatible structures that mimic the micron structure of natural tissues, they also require mimicking of the nano-scale extracellular matrix properties of the tissue they intend to replace. In order to achieve this, the objective of the present in vitro study was to use cold atmospheric plasma (CAP) as a quick and inexpensive way to modify the nano-scale roughness and chemical composition of a 3D printed scaffold surface. Water contact angles of a normal 3D printed poly-lactic-acid (PLA) scaffold dramatically dropped after CAP treatment from 70±2° to 24±2°. In addition, the nano-scale surface roughness (Rq) of the untreated 3D PLA scaffolds drastically increased (up to 250%) after 1, 3, and 5min of CAP treatment from 1.20nm to 10.50nm, 22.90nm, and 27.60nm, respectively. X-ray photoelectron spectroscopy (XPS) analysis showed that the ratio of oxygen to carbon significantly increased after CAP treatment, which indicated that the CAP treatment of PLA not only changed nano-scale roughness but also chemistry. Both changes in hydrophilicity and nano-scale roughness demonstrated a very efficient plasma treatment, which in turn significantly promoted both osteoblast (bone forming cells) and mesenchymal stem cell attachment and proliferation. These promising results suggest that CAP surface modification may have potential applications for enhancing 3D printed PLA bone tissue engineering materials (and all 3D printed materials) in a quick and an inexpensive manner and, thus, should be further studied.

  2. Efficient physics-based predictive 3D image modeling and simulation of optical atmospheric refraction phenomena

    NASA Astrophysics Data System (ADS)

    Reinhardt, Colin N.; Hammel, Stephen M.; Tsintikidis, Dimitris

    2016-09-01

    We present some preliminary results and discussion of our ongoing effort to develop a prototype volumetric atmospheric optical refraction simulator which uses 3D nonlinear ray-tracing and state-of-art physics-based rendering techniques. The tool will allow simulation of optical curved-ray propagation through nonlinear refractivity gradient profiles in volumetric atmospheric participating media, and the generation of radiometrically accurate images of the resulting atmospheric refraction phenomena, including inferior and superior mirages, over-the-horizon viewing conditions, looming and sinking, towering and stooping of distant objects. The ability to accurately model and predict atmospheric optical refraction conditions and phenomena is important in both defense and commercial applications. Our nonlinear refractive ray-trace method is currently CPU-parallelized and is well-suited for GPU compute implementation.

  3. New Theory of Stellar Convection without the mixing-length parameter: new stellar atmosphere models

    NASA Astrophysics Data System (ADS)

    Pasetto, Stefano; Chiosi, Cesare; Cropper, Mark; Grebel, Eva K.

    2015-08-01

    Stellar convection is customarily described by the mixing-length theory, which makes use of the mixing-length scale to express the convective flux, velocity, and temperature gradients of the convective elements and stellar medium. The mixing-length scale is taken to be proportional to the local pressure scale height, and the proportionality factor (the mixing-length parameter) must be determined by comparing the stellar models to some calibrator, usually the Sun.No strong arguments exist to claim that the mixing-length parameter is the same in all stars and all evolutionary phases. Because of this, all stellar models in literature are hampered by this basic uncertainty.In a recent paper (Pasetto et al 2014) we presented a new theory of stellar convection that does not require the mixing length parameter. Our self-consistent analytical formulation of stellar convection determines all the properties of stellar convection as a function of the physical behaviour of the convective elements themselves and the surrounding medium. The new theory of stellar convection is formulated starting from a conventional solution of the Navier-Stokes/Euler equations, i.e. the Bernoulli equation for a perfect fluid, but expressed in a non-inertial reference frame co-moving with the convective elements. In our formalism, the motion of stellar convective cells inside convective-unstable layers is fully determined by a new system of equations for convection in a non-local and time dependent formalism.We obtained an analytical, non-local, time-dependent solution for the convective energy transport that does not depend on any free parameter. The predictions of the new theory are now compared with those from the standard mixing-length paradigm with very satisfactory results for atmosphere models of the Sun and all the stars around the Hertzsprung-Russell diagram.

  4. Pluto's Lower Atmosphere from Stellar Occultations

    NASA Astrophysics Data System (ADS)

    Young, Leslie; Buie, M. W.; Olkin, C. B.; Young, E. F.; French, R. G.; Howell, R. R.

    2008-09-01

    Ever since the Pluto occultation of 1988, the nature of Pluto's lower atmosphere has been a mystery: the lightcurve shows a difference between the upper and lower atmosphere, but it has been unclear whether this is due to hazes, a steep thermal gradient, or a combination of the two (Elliot & Young, 1992 AJ 103, 991; Hubbard et al. 1990, Icarus, 84, 1) Recent high-quality lightcurves allow us to place limits on the haze in Pluto's atmosphere. Especially important is the dual-wavelength (0.5 and 0.8 micron) occultation observed from Mount John Observatory in New Zealand on 2007 July 31. This site was 60 ± 4 km from the central track of the shadow, and the lightcurves clearly show a central flash, or a brightening due to strong lateral refocusing and the convergence of multiple images around the limb of an elliptical atmosphere. These lightcurves constrain the structure of the lower atmosphere in three ways. First, the surface-grazing ray must have a large enough bending angle to reach the center of the shadow. Second, haze of sufficient optical depth to affect the main drop in the lightcurve will also decrease the height of the central flash. The height and location of the central flash can be well modeled with a clear atmosphere. Third, hazes of the size expected at Pluto will have a wavelength-dependent absorption, but the red and blue channels of the Mount John lightcurves show no variation with wavelength. We will discuss limits on the hazes, and place these limits in the context of Triton hazes, heating by dust, and New Horizons detection limits.

  5. Partial redistribution in 3D non-LTE radiative transfer in solar-atmosphere models

    NASA Astrophysics Data System (ADS)

    Sukhorukov, Andrii V.; Leenaarts, Jorrit

    2017-01-01

    Context. Resonance spectral lines such as H I Ly α, Mg II H&K, and Ca II H&K that form in the solar chromosphere, are influenced by the effects of 3D radiative transfer as well as partial redistribution (PRD). So far no one has modeled these lines including both effects simultaneously owing to the high computing demands of existing algorithms. Such modeling is, however, indispensable for accurate diagnostics of the chromosphere. Aims: We present a computationally tractable method to treat PRD scattering in 3D model atmospheres using a 3D non-local thermodynamic equilibrium (non-LTE) radiative transfer code. Methods: To make the method memory-friendly, we use the hybrid approximation for the redistribution integral. To make the method fast, we use linear interpolation on equidistant frequency grids. We verify our algorithm against computations with the RH code and analyze it for stability, convergence, and usefulness of acceleration using model atoms of Mg II with the H&K lines and H I with the Ly α line treated in PRD. Results: A typical 3D PRD solution can be obtained in a model atmosphere with 252 × 252 × 496 coordinate points in 50 000-200 000 CPU hours, which is a factor ten slower than computations assuming complete redistribution. We illustrate the importance of the joint action of PRD and 3D effects for the Mg II H&K lines for disk-center intensities, as well as the center-to-limb variation. Conclusions: The proposed method allows for the simulation of PRD lines in a time series of radiation-magnetohydrodynamic models, in order to interpret observations of chromospheric lines at high spatial resolution.

  6. A Review of 3D Radiative Transfer in Atmospheric Science: History and Outlook

    NASA Astrophysics Data System (ADS)

    Wiscombe, W. J.

    2006-12-01

    3D radiative transfer has, until recently, remained a marginal subject within atmospheric science. While some measurement techniques like lidar and radar are inherently 3D, the simplifying assumptions made in the use of such data have alleviated any need to deal with 3D radiative transfer. Cloud scenes are obviously 3D, but the crude resolution of past atmospheric models (GCMs) required clouds to be treated as 1D. Measured radiative fluxes containing 3D cloud effects were simply time-averaged until all their 3D-ness was apparently beaten out of them. The main subject which has propelled 3D radiative transfer onto center stage is, nevertheless, clouds. This is because conventional GCMs are being challenged by GCMs that have their large-scale parametrizations of cloud-related processes replaced by explicit cloud-system-resolving models. Within these new GCMs, 3D radiative transfer cannot be ignored since cloud fluctuations are resolved explicitly down to scales where 1D and 3D radiative transfer can differ markedly. This talk will attempt to identify the high points in the development of the 3D cloud radiation field. My own career interleaved with much of this history, including the strong move away from just using computers and toward field observations, and also the effort to fit the new knowledge into climate models. The 3D cloud radiation field began in the 1970s, but attracted few adherents because of severe limitations on computer time and memory, and also because of ignorance of cloud structure (beyond the qualitative classifications which had ruled for 170 years). The earliest landmarks were Monte Carlo calcuations for cubic clouds, whose main point was the drastic errors incurred by ignoring cloud 3D-ness. This line of development ramified until the early 1990s, leading finally to randomly placed cubes with sizes drawn from a probability distribution. A parallel line of development began with the landmark paper of Lovejoy in 1982, which showed that cloud

  7. Development of an accurate 3D Monte Carlo broadband atmospheric radiative transfer model

    NASA Astrophysics Data System (ADS)

    Jones, Alexandra L.

    Radiation is the ultimate source of energy that drives our weather and climate. It is also the fundamental quantity detected by satellite sensors from which earth's properties are inferred. Radiative energy from the sun and emitted from the earth and atmosphere is redistributed by clouds in one of their most important roles in the atmosphere. Without accurately representing these interactions we greatly decrease our ability to successfully predict climate change, weather patterns, and to observe our environment from space. The remote sensing algorithms and dynamic models used to study and observe earth's atmosphere all parameterize radiative transfer with approximations that reduce or neglect horizontal variation of the radiation field, even in the presence of clouds. Despite having complete knowledge of the underlying physics at work, these approximations persist due to perceived computational expense. In the current context of high resolution modeling and remote sensing observations of clouds, from shallow cumulus to deep convective clouds, and given our ever advancing technological capabilities, these approximations have been exposed as inappropriate in many situations. This presents a need for accurate 3D spectral and broadband radiative transfer models to provide bounds on the interactions between clouds and radiation to judge the accuracy of similar but less expensive models and to aid in new parameterizations that take into account 3D effects when coupled to dynamic models of the atmosphere. Developing such a state of the art model based on the open source, object-oriented framework of the I3RC Monte Carlo Community Radiative Transfer ("IMC-original") Model is the task at hand. It has involved incorporating (1) thermal emission sources of radiation ("IMC+emission model"), allowing it to address remote sensing problems involving scattering of light emitted at earthly temperatures as well as spectral cooling rates, (2) spectral integration across an arbitrary

  8. High Resolution 3D Simulations of the Impacts of Asteroids into the Venusian Atmosphere

    NASA Astrophysics Data System (ADS)

    Korycansky, D. G.; Zahnle, K. J.; Mac Low, M.-M.

    2000-10-01

    We compare high-resolution 2D and 3D numerical hydrocode simulations of asteroids striking the atmosphere of Venus. Our focus is on aerobraking and its effect on the size of impact craters. We consider impacts both by spheres and by the real asteroid 4769 Castalia, a severely nonspherical body in a Venus-crossing orbit. We compute mass and momentum fluxes as functions of altitude as global measures of the asteroid's progress. We find that, on average, the 2D and 3D simulations are in broad agreement over how quickly an asteroid slows down, but that the scatter about the average is much larger for the 2D models than for the 3D models. The 2D models appear to be strongly susceptible to the ``butterfly effect'', in which tiny changes in initial conditions (e.g., 0.05% change in the impact velocity) produce quite different chaotic evolutions. By contrast the global properties of the 3D models appear more reproducible despite seemingly large differences in initial conditions. We argue that this difference between 2D and 3D models has its root in the greater geometrical constraints present in any 2D model, and in particular in the conservation of enstrophy in 2D that forces energy to pool in large-scale structures. It is the interaction of these artificial large-scale structures that causes slightly different 2D models to diverge so greatly. These constraints do not apply in 3D and large scale structures are not observed to form. A one-parameter modified pancake model reproduces the crater-forming potential of the 3D Castalias quite well. This work was supported by NASA's Exobiology and Planetary Atmospheres Programs. Image rendering was done using the resources of UCSC Vizualizaton Lab. M-MML is partially supported by a CAREER fellowship from the US NSF. This work was partially supported by the National Computational Science Alliance, utilizing the NCSA SGI/CRAY Power Challenge array at the University of Illinois, Urbana-Champaign.

  9. Solar Radiation Transport in the Cloudy Atmosphere: A 3D Perspective on Observations and Climate Impacts

    NASA Technical Reports Server (NTRS)

    Davis, Anthony B.; Marshak, Alexander

    2010-01-01

    The interplay of sunlight with clouds is a ubiquitous and often pleasant visual experience, but it conjures up major challenges for weather, climate, environmental science and beyond. Those engaged in the characterization of clouds (and the clear air nearby) by remote sensing methods are even more confronted. The problem comes, on the one hand, from the spatial complexity of real clouds and, on the other hand, from the dominance of multiple scattering in the radiation transport. The former ingredient contrasts sharply with the still popular representation of clouds as homogeneous plane-parallel slabs for the purposes of radiative transfer computations. In typical cloud scenes the opposite asymptotic transport regimes of diffusion and ballistic propagation coexist. We survey the three-dimensional (3D) atmospheric radiative transfer literature over the past 50 years and identify three concurrent and intertwining thrusts: first, how to assess the damage (bias) caused by 3D effects in the operational 1D radiative transfer models? Second, how to mitigate this damage? Finally, can we exploit 3D radiative transfer phenomena to innovate observation methods and technologies? We quickly realize that the smallest scale resolved computationally or observationally may be artificial but is nonetheless a key quantity that separates the 3D radiative transfer solutions into two broad and complementary classes: stochastic and deterministic. Both approaches draw on classic and contemporary statistical, mathematical and computational physics.

  10. Solar radiation transport in the cloudy atmosphere: a 3D perspective on observations and climate impacts

    NASA Astrophysics Data System (ADS)

    Davis, Anthony B.; Marshak, Alexander

    2010-02-01

    The interplay of sunlight with clouds is a ubiquitous and often pleasant visual experience, but it conjures up major challenges for weather, climate, environmental science and beyond. Those engaged in the characterization of clouds (and the clear air nearby) by remote sensing methods are even more confronted. The problem comes, on the one hand, from the spatial complexity of real clouds and, on the other hand, from the dominance of multiple scattering in the radiation transport. The former ingredient contrasts sharply with the still popular representation of clouds as homogeneous plane-parallel slabs for the purposes of radiative transfer computations. In typical cloud scenes the opposite asymptotic transport regimes of diffusion and ballistic propagation coexist. We survey the three-dimensional (3D) atmospheric radiative transfer literature over the past 50 years and identify three concurrent and intertwining thrusts: first, how to assess the damage (bias) caused by 3D effects in the operational 1D radiative transfer models? Second, how to mitigate this damage? Finally, can we exploit 3D radiative transfer phenomena to innovate observation methods and technologies? We quickly realize that the smallest scale resolved computationally or observationally may be artificial but is nonetheless a key quantity that separates the 3D radiative transfer solutions into two broad and complementary classes: stochastic and deterministic. Both approaches draw on classic and contemporary statistical, mathematical and computational physics.

  11. New Theory of Stellar Convection without the mixing-length parameter: new stellar atmosphere models

    NASA Astrophysics Data System (ADS)

    Pasetto, Stefano; Chiosi, Cesare; Cropper, Mark

    Stellar convection is customarily described by the mixing-length theory, which makes use of the mixing-length scale to express the convective flux, velocity, and temperature gradients of the convective elements and stellar medium. The mixing-length scale is taken to be proportional to the local pressure scale height, and the proportionality factor (the mixing-length parameter) must be determined by comparing the stellar models to some calibrator, usually the Sun. No strong arguments exist to suggest that the mixing-length parameter is the same in all stars and all evolutionary phases. Because of this, all stellar models in the literature are hampered by this basic uncertainty. In a recent paper (Pasetto et al. 2014) we presented a new theory that does not require the mixing length parameter. Our self-consistent analytical formulation of stellar convection determines all the properties of stellar convection as a function of the physical behavior of the convective elements themselves and the surrounding medium. The new theory of stellar convection is formulated starting from a conventional solution of the Navier-Stokes/Euler equations, i.e. the Bernoulli equation for a perfect fluid, but expressed in a non-inertial reference frame co-moving with the convective elements. In our formalism, the motion of stellar convective cells inside convective-unstable layers is fully determined by a new system of equations for convection in a non-local and time-dependent formalism. We obtained an analytical, non-local, time-dependent solution for the convective energy transport that does not depend on any free parameter. The predictions of the new theory are compared with those from the standard mixing-length paradigm with positive results for atmosphere models of the Sun and all the stars in the Hertzsprung-Russell diagram.

  12. The stellar atmosphere simulation code Bifrost. Code description and validation

    NASA Astrophysics Data System (ADS)

    Gudiksen, B. V.; Carlsson, M.; Hansteen, V. H.; Hayek, W.; Leenaarts, J.; Martínez-Sykora, J.

    2011-07-01

    Context. Numerical simulations of stellar convection and photospheres have been developed to the point where detailed shapes of observed spectral lines can be explained. Stellar atmospheres are very complex, and very different physical regimes are present in the convection zone, photosphere, chromosphere, transition region and corona. To understand the details of the atmosphere it is necessary to simulate the whole atmosphere since the different layers interact strongly. These physical regimes are very diverse and it takes a highly efficient massively parallel numerical code to solve the associated equations. Aims: The design, implementation and validation of the massively parallel numerical code Bifrost for simulating stellar atmospheres from the convection zone to the corona. Methods: The code is subjected to a number of validation tests, among them the Sod shock tube test, the Orzag-Tang colliding shock test, boundary condition tests and tests of how the code treats magnetic field advection, chromospheric radiation, radiative transfer in an isothermal scattering atmosphere, hydrogen ionization and thermal conduction. Results.Bifrost completes the tests with good results and shows near linear efficiency scaling to thousands of computing cores.

  13. A study of the 3D radiative transfer effect in cloudy atmospheres

    NASA Astrophysics Data System (ADS)

    Okata, M.; Teruyuki, N.; Suzuki, K.

    2015-12-01

    Evaluation of the effect of clouds in the atmosphere is a significant problem in the Earth's radiation budget study with their large uncertainties of microphysics and the optical properties. In this situation, we still need more investigations of 3D cloud radiative transer problems using not only models but also satellite observational data.For this purpose, we have developed a 3D-Monte-Carlo radiative transfer code that is implemented with various functions compatible with the OpenCLASTR R-Star radiation code for radiance and flux computation, i.e. forward and backward tracing routines, non-linear k-distribution parameterization (Sekiguchi and Nakajima, 2008) for broad band solar flux calculation, and DM-method for flux and TMS-method for upward radiance (Nakajima and Tnaka 1998). We also developed a Minimum cloud Information Deviation Profiling Method (MIDPM) as a method for a construction of 3D cloud field with MODIS/AQUA and CPR/CloudSat data. We then selected a best-matched radar reflectivity factor profile from the library for each of off-nadir pixels of MODIS where CPR profile is not available, by minimizing the deviation between library MODIS parameters and those at the pixel. In this study, we have used three cloud microphysical parameters as key parameters for the MIDPM, i.e. effective particle radius, cloud optical thickness and top of cloud temperature, and estimated 3D cloud radiation budget. We examined the discrepancies between satellite observed and mode-simulated radiances and three cloud microphysical parameter's pattern for studying the effects of cloud optical and microphysical properties on the radiation budget of the cloud-laden atmospheres.

  14. Validation of INSAT-3D atmospheric motion vectors for monsoon 2015

    NASA Astrophysics Data System (ADS)

    Sharma, Priti; Rani, S. Indira; Das Gupta, M.

    2016-05-01

    Atmospheric Motion Vector (AMV) over Indian Ocean and surrounding region is one of the most important sources of tropospheric wind information assimilated in numerical weather prediction (NWP) system. Earlier studies showed that the quality of Indian geo-stationary satellite Kalpana-1 AMVs was not comparable to that of other geostationary satellites over this region and hence not used in NWP system. Indian satellite INSAT-3D was successfully launched on July 26, 2013 with upgraded imaging system as compared to that of previous Indian satellite Kalpana-1. INSAT-3D has middle infrared band (3.80 - 4.00 μm) which is capable of night time pictures of low clouds and fog. Three consecutive images of 30-minutes interval are used to derive the AMVs. New height assignment scheme (using NWP first guess and replacing old empirical GA method) along with modified quality control scheme were implemented for deriving INSAT-3D AMVs. In this paper an attempt has been made to validate these AMVs against in-situ observations as well as against NCMRWF's NWP first guess for monsoon 2015. AMVs are subdivided into three different pressure levels in the vertical viz. low (1000 - 700 hPa), middle (700 - 400 hPa) and high (400 - 100 hPa) for validation purpose. Several statistics viz. normalized root mean square vector difference; biases etc. have been computed over different latitudinal belt. Result shows that the general mean monsoon circulations along with all the transient monsoon systems are well captured by INSAT-3D AMVs, as well as the error statistics viz., RMSE etc of INSAT-3D AMVs is now comparable to other geostationary satellites.

  15. ICARE-HS: atmospheric correction of airborne hyperspectral urban images using 3D information

    NASA Astrophysics Data System (ADS)

    Ceamanos, Xavier; Briottet, Xavier; Roussel, Guillaume; Gilardy, Hugo

    2016-10-01

    The algorithm ICARE-HS (Inversion Code for urban Areas Reflectance Extraction using HyperSpectral imagery) is presented in this paper. ICARE-HS processes airborne hyperspectral images for atmospheric compensation taking into account the strong relief of urban areas. A digital surface model is used to provide the 3D information, which is key to simulating relief-related effects such as shadow casting, multiple reflections between objects and variable illumination depending on local solid angle of view of the sky. Some of these effects are modeled using ray tracing techniques. ICARE-HS is applied to airborne hyperspectral data of the city center of Toulouse, which are also processed by a standard atmospheric correction method for comparison.

  16. Halpha as a Diagnostic of FGKM Stellar Atmospheres

    NASA Astrophysics Data System (ADS)

    Teske, Johanna K.; Carnegie/California Planet Search Team

    2017-01-01

    The detection of exoplanets via radial velocity (RV) has become increasingly dependent on a deep understanding of the behavior of stellar atmospheres. Periodic variations due to stellar activity, rotation, and/or pulsation can be, and have been, confused with signals of orbiting planets, but are also diagnostic of fundamental properties of stars, like age or interior structure. Studying such variation diagnostics across a wide sample of stars is thus important to tease out different dependencies, including planet-induced RV variations, particularly for small planets. I will present, for the first time, measures of the stellar activity as reckoned from the Halpha Balmer line of hydrogen at 6563A in ~43,000 HIRES spectra of ~1500 FGKM stars being monitored for planets, many for over ten years. The motivation to use an additional activity index, besides the S value, comes from the low flux of M dwarf stars in the Ca H&K wavelength region; these stars are the most promising candidates for habitable planets. However, I will show that the variation in Halpha flux is also diagnostic of higher mass star properties, proving its utility across a wide SpT space for both RV planet detection and stellar atmosphere characterization.

  17. A 3 D Kinetic-Electrodynamic Model for Europa's Atmosphere and Ionosphere: First Results

    NASA Astrophysics Data System (ADS)

    Marconi, M. L.

    2012-12-01

    Europa's atmosphere is sufficiently tenuous that a standard hydrodynamical treatment iinadequate. In addition, the bombardment from the rapidly moving torus plasma has important effects on the structure and composition of Europa's atmosphere(Marconi, 2007 and Marconi and Smyth, 2011). Consequently a kinetic treatment is required for the neutrals and also the effects of plasma must be simutaneously considered. A 3 D kinetic model combined with a Wolf-Gladrow (1986) model for the fields has been developed. The model includes the species O2, H2O, OH, H2, O, H, O+, O2+, H2O+, OH+, H2+, and e that interact through elastic collisions and as well as through charge exchange, electron impact dissociation, and ionization collisions. Electronic recombination as well as electron excitation of the rotational, vibrational, and electronic levels of O2 are also included. The computationally intensive calculations, which are being performed on the NASA NAS supercomputer, Pleiades, are currently in progress. The first results will be presented and focus on the 3 D spatial distributions of neutrals and ions at Europa. Marconi, M.L., Icarus, 190, 2007. Marconi, M.L. and W.H. Smyth, AGUFM, P13A, 20011. Wolf-Gladrow, D.A., F.M. Neubauer, and M. Lussem, JGR 92, 1987.

  18. The Generation and Transfer of Polarized Radiation in Stellar Atmospheres

    NASA Astrophysics Data System (ADS)

    Trujillo Bueno, J.

    2003-01-01

    The standard Non-LTE problem consists in calculating the atomic level populations that are consistent with the intensity of the radiation field generated within any given stellar atmospheric model. In contrast, the Non-LTE problem of the second kind is, indeed, like an ``algebraic Annapurna'': it requires to calculate the diagonal and non-diagonal elements of the atomic density matrix (associated to each level i of total angular momentum Ji) that are consistent with the intensity and polarization of the radiation field generated within the (generally magnetized) stellar atmospheric model under consideration. After arguing why this problem is of real astrophysical interest, I will introduce the relevant equations and the basic anisotropic radiation pumping processes. Finally, I will show how to solve efficiently Non-LTE problems of the second kind via the development and application of fast iterative methods and accurate formal solvers of the Stokes vector transfer equation.

  19. Dislocations in magnetohydrodynamic waves in a stellar atmosphere.

    PubMed

    López Ariste, A; Collados, M; Khomenko, E

    2013-08-23

    We describe the presence of wave front dislocations in magnetohydrodynamic waves in stratified stellar atmospheres. Scalar dislocations such as edges and vortices can appear in Alfvén waves, as well as in general magnetoacoustic waves. We detect those dislocations in observations of magnetohydrodynamic waves in sunspots in the solar chromosphere. Through the measured charge of all the dislocations observed, we can give for the first time estimates of the modal contribution in the waves propagating along magnetic fields in solar sunspots.

  20. Model atmospheres of sub-stellar mass objects

    NASA Astrophysics Data System (ADS)

    Hubeny, Ivan

    2017-07-01

    We present an outline of basic assumptions and governing structural equations describing atmospheres of sub-stellar mass objects, in particular the extrasolar giant planets and brown dwarfs. Although most of the presentation of the physical and numerical background is generic, details of the implementation pertain mostly to the code cooltlusty. We also present a review of numerical approaches and computer codes devised to solve the structural equations, and make a critical evaluation of their efficiency and accuracy.

  1. Vegetation Influence on Regional Climate Change: A 3D Integrated Atmospheric-Surface-Subsurface Analysis

    NASA Astrophysics Data System (ADS)

    Davison, J. H.; Hwang, H.; Sudicky, E. A.; Lin, J. C.

    2013-12-01

    Human induced land-use change has been shown to be one of the major contributing factors to anthropogenic regional climate change. The transition from densely vegetated forests with deep root zones to shallow rooted agricultural ecosystems drastically limits the natural buffering capacity of deep groundwater during severe drought conditions. In order to quantify the magnitude of climate change from altered ecosystems, we employed the 3D model HydroGeoSphere, an integrated variably-saturated subsurface/surface flow and heat transport model, coupled with a simplified zero-dimensional atmospheric boundary layer model to simulate an extended seasonal drought period. It is found that during drought conditions, trees with deep root zones are capable of maintaining higher evapotranspiration rates, higher latent heat fluxes, and a damped atmospheric temperature response. In contrast, grasses with shallow root zones have minimal evapotranspiration rates, lower latent heat fluxes, and a rapid and sharp atmospheric temperature response. On the whole, converting a naturally wooded ecosystem to a farmland or pasture effectively decreases the available water in the subsurface for transpiration subsequently amplifying the atmospheric response to severe weather.

  2. Sulfur in the early martian atmosphere revisited: Experiments with a 3-D Global Climate Model

    NASA Astrophysics Data System (ADS)

    Kerber, Laura; Forget, François; Wordsworth, Robin

    2015-11-01

    Volcanic SO2 in the martian atmosphere has been invoked as a way to create a sustained or transient greenhouse during early martian history. Many modeling studies have been performed to test the feasibility of this hypothesis, resulting in a range of conclusions, from highly feasible to highly improbable. In this study we perform a wide range of simulations using the 3-D Laboratoire de Météorologie Dynamique Generic Global Climate Model (GCM) in order to place earlier results into context and to explore the sensitivity of model outcomes to parameters such as SO2 mixing ratio, atmospheric H2O content, background atmospheric pressure, and aerosol size, abundance, and composition. We conclude that SO2 is incapable of creating a sustained greenhouse on early Mars, and that even in the absence of aerosols, local and daily temperatures rise above 273 K for only for limited periods with favorable background CO2 pressures. In the presence of even small amounts of aerosols, the surface is dramatically cooled for realistic aerosol sizes. Brief, mildly warm conditions require the co-occurrence of many improbable factors, while cooling is achieved for a wide range of model parameters. Instead of causing warming, sulfur in the martian atmosphere may have caused substantial cooling, leading to the end of clement climate conditions on early Mars.

  3. H{alpha} EQUIVALENT WIDTHS FROM THE 3D-HST SURVEY: EVOLUTION WITH REDSHIFT AND DEPENDENCE ON STELLAR MASS

    SciTech Connect

    Fumagalli, Mattia; Patel, Shannon G.; Franx, Marijn; Labbe, Ivo; Brammer, Gabriel; Van Dokkum, Pieter; Lundgren, Britt; Momcheva, Ivelina; Skelton, Rosalind E.; Whitaker, Katherine E.; Nelson, Erica; Da Cunha, Elisabete; Rix, Hans-Walter; Schmidt, Kasper B.; Kriek, Mariska

    2012-10-01

    We investigate the evolution of the H{alpha} equivalent width, EW(H{alpha}), with redshift and its dependence on stellar mass, using the first data from the 3D-HST survey, a large spectroscopic Treasury program with the Hubble Space Telescope Wide Field Camera 3. Combining our H{alpha} measurements of 854 galaxies at 0.8 < z < 1.5 with those of ground-based surveys at lower and higher redshift, we can consistently determine the evolution of the EW(H{alpha}) distribution from z = 0 to z = 2.2. We find that at all masses the characteristic EW(H{alpha}) is decreasing toward the present epoch, and that at each redshift the EW(H{alpha}) is lower for high-mass galaxies. We find EW(H{alpha}) {approx}(1 + z){sup 1.8} with little mass dependence. Qualitatively, this measurement is a model-independent confirmation of the evolution of star-forming galaxies with redshift. A quantitative conversion of EW(H{alpha}) to specific star formation rate (sSFR) is model dependent because of differential reddening corrections between the continuum and the Balmer lines. The observed EW(H{alpha}) can be reproduced with the characteristic evolutionary history for galaxies, whose star formation rises with cosmic time to z {approx} 2.5 and then decreases to z = 0. This implies that EW(H{alpha}) rises to 400 A at z = 8. The sSFR evolves faster than EW(H{alpha}), as the mass-to-light ratio also evolves with redshift. We find that the sSFR evolves as (1 + z){sup 3.2}, nearly independent of mass, consistent with previous reddening insensitive estimates. We confirm previous results that the observed slope of the sSFR-z relation is steeper than the one predicted by models, but models and observations agree in finding little mass dependence.

  4. Characterization and evolution of distant planetary atmospheres using stellar occultations

    NASA Astrophysics Data System (ADS)

    Young, L. A.

    2008-09-01

    Ground-based or near-Earth (e.g., HST) stellar occultations of every atmosphere in our solar system has been observed: Venus, Mars, Jupiter, Saturn, Titan, Uranus, Neptune, Triton, and Pluto [1]. These observations probe the atmospheres at roughly 0.1 to 100 microbar. I will talk about three aspects of stellar occultations: one-dimensional vertical profiles of the atmosphere, two- or three-dimensional atmospheric states, and the time evolution of atmosphere. In all three, I will draw on recent observations, with an emphasis on Pluto. Occultations are particularly important for the study of Pluto's atmosphere, which is impossible to study with imaging, and extremely difficult to study with spectroscopy. It was discovered by stellar occultation in 1988 [2]. No subsequent Pluto occultations were observed until two events in 2002 [3]. Pluto is now crossing the galactic plane, and there have been several additional occultations observed since 2006. These include a high signal-to-noise observation from the Anglo Australian Observatory in 2006 [4] (Fig 1), densely spaced visible and infrared observations of Pluto's upper atmosphere from telescopes in the US and Mexico in March, 2007 [5] (Fig. 2), and a dualwavelength central flash observation from Mt. John in July, 2007 [6] (Fig 3). The flux from a star occulted by an atmosphere diminishes primarily due to the increase in refraction with depth in the atmosphere, defocusing the starlight, although absorption and tangential focusing can also contribute. Because the atmospheric density, to first order, follows an exponential, it is feasible to derive a characteristic pressure and temperature from isothermal fits to even low-quality occultation light curves. Higher quality light curves allow fits with more flexible models, or light curve inversions that derive temperatures limited by the resolution of the data. These allow the derivation of one-dimensional profiles of temperature and pressure vs. altitude, which are critical

  5. Physics-based Stabilization of Spectral Elements for the 3D Euler Equations of Moist Atmospheric Convection

    DTIC Science & Technology

    2014-06-01

    3D Euler Equations of Moist Atmospheric Convection 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER...STABILIZATION OF SPECTRAL ELEMENTS FOR THE 3D EULER EQUATIONS OF MOIST ATMOSPHERIC CONVECTION SIMONE MARRAS, ANDREAS MÜLLER, FRANCIS X. GIRALDO Dept. Appl...spectral elements, we introduce a dissipative scheme based on the solution of the compressible Euler equations that are regularized through the addi

  6. 3d Mixing In Hot-jupiter Atmospheres: Application To Tio Clouds On Hd209458b

    NASA Astrophysics Data System (ADS)

    Parmentier, Vivien; Showman, A. P.; Lian, Y.

    2012-10-01

    Like brown dwarfs, hot Jupiters exhibit atmospheric temperatures ranging from hundreds to thousands of Kelvins. But unlike them, they are highly 3D objects with strongly asymmetric heating and a huge day/night temperature contrast. Thus, many chemical species that can exist in gas phase on the dayside can condense and gravitationally settle on the nightside. The abundance of such species in the atmosphere therefore depends whether or not the atmospheric circulation can loft them vertically despite their tendency to gravitationally settle on the nightside. To understand the three-dimensional distribution of such species, we present global circulation models of HD209458b including passive tracers that advect with the three-dimensional flow, including a source/sink on the nightside to represent condensation and gravitational settling. We show that global advection patterns produce very strong vertical mixing that can keep particles lofted as long as the particles sizes are a few microns or less. A key point is that the region being vigorously mixed is stably stratified; the vertical mixing results not from small-scale convection but from the large-scale circulation driven by the day-night heating contrast. Although this vertical mixing is not diffusive in any rigorous sense, a comparison of our results with idealized diffusion models allows a rough estimate of the effective vertical eddy diffusivities in these atmospheres; we will present these diffusivities, which can be used in 1D models of the atmosphere. Moreover, we show that the models produce strong spatial and temporal variability in the tracer concentration that could result in observable variations in the secondary eclipse depth of hot Jupiters. Finally, we focus on TiO in HD209458b and show that the day-night cold trap would deplete TiO if it condenses into particles bigger than a few microns on the planet's night side, making it unable to create the observed stratosphere of the planet.

  7. The Solar Photospheric Oxygen Abundance and the Role of 3D Model Atmospheres

    NASA Astrophysics Data System (ADS)

    Caffau, E.; Steffen, M.; Ludwig, H.-G.

    2008-09-01

    The solar oxygen abundance has undergone a major downward revision in the last decade, reputedly as a result of employing 3D hydrodynamical simulations to model the inhomogeneous structure of the solar photosphere. The very low oxygen abundance advocated by Asplund et al. 2004, A(O)=8.66, together with the downward revision of the abundances of other key elements, has created serious problems for solar models to explain the helioseismic measurements. In an effort to contribute to the dispute of whether the Sun has "solar" or "sub-solar" abundances, we have re-derived its photospheric abundance of oxygen, nitrogen, and other elements, independently of previous analyses. We applied a state-of-the art 3D (CO5BOLD) hydrodynamical simulation of the solar granulation as well as different 1D model atmospheres for the line by line spectroscopic abundance determinations. The analysis is based on both standard disk-center and full-disk spectral atlases; for oxygen we acquired in addition spectra at different heliocentric angles. The derived abundances are the result of equivalent width and/or line profile fitting of the available atomic lines. Our recommended oxygen abundance is A(O)=8.76+- 0.07, 0.1 dex higher than the value of Asplund et al. (2004). Our current estimate of the overall solar metallicity is 0.014< Z<0.016. Questions we discuss include: (i) Is the general downward revision of the solar abundances a 3D effect? (ii) How large are the abundance corrections due to horizontal inhomogeneities? (iii) What is the main reason for the differences between the abundances obtained in our study and those derived by Apslund and coworkers? (iv) How large are the uncertainties in the observed solar spectra? (v) What is the reason why the two forbidden oxygen lines, [OI] lambda 630 nm and [OI] lambda 636.3 nm, give significantly different answers for the solar oxygen abundance?

  8. Stellar atmospheric parameter estimation using Gaussian process regression

    NASA Astrophysics Data System (ADS)

    Bu, Yude; Pan, Jingchang

    2015-02-01

    As is well known, it is necessary to derive stellar parameters from massive amounts of spectral data automatically and efficiently. However, in traditional automatic methods such as artificial neural networks (ANNs) and kernel regression (KR), it is often difficult to optimize the algorithm structure and determine the optimal algorithm parameters. Gaussian process regression (GPR) is a recently developed method that has been proven to be capable of overcoming these difficulties. Here we apply GPR to derive stellar atmospheric parameters from spectra. Through evaluating the performance of GPR on Sloan Digital Sky Survey (SDSS) spectra, Medium resolution Isaac Newton Telescope Library of Empirical Spectra (MILES) spectra, ELODIE spectra and the spectra of member stars of galactic globular clusters, we conclude that GPR can derive stellar parameters accurately and precisely, especially when we use data preprocessed with principal component analysis (PCA). We then compare the performance of GPR with that of several widely used regression methods (ANNs, support-vector regression and KR) and find that with GPR it is easier to optimize structures and parameters and more efficient and accurate to extract atmospheric parameters.

  9. 3-D water vapor field in the atmospheric boundary layer observed with scanning differential absorption lidar

    NASA Astrophysics Data System (ADS)

    Späth, Florian; Behrendt, Andreas; Muppa, Shravan Kumar; Metzendorf, Simon; Riede, Andrea; Wulfmeyer, Volker

    2016-04-01

    High-resolution three-dimensional (3-D) water vapor data of the atmospheric boundary layer (ABL) are required to improve our understanding of land-atmosphere exchange processes. For this purpose, the scanning differential absorption lidar (DIAL) of the University of Hohenheim (UHOH) was developed as well as new analysis tools and visualization methods. The instrument determines 3-D fields of the atmospheric water vapor number density with a temporal resolution of a few seconds and a spatial resolution of up to a few tens of meters. We present three case studies from two field campaigns. In spring 2013, the UHOH DIAL was operated within the scope of the HD(CP)2 Observational Prototype Experiment (HOPE) in western Germany. HD(CP)2 stands for High Definition of Clouds and Precipitation for advancing Climate Prediction and is a German research initiative. Range-height indicator (RHI) scans of the UHOH DIAL show the water vapor heterogeneity within a range of a few kilometers up to an altitude of 2 km and its impact on the formation of clouds at the top of the ABL. The uncertainty of the measured data was assessed for the first time by extending a technique to scanning data, which was formerly applied to vertical time series. Typically, the accuracy of the DIAL measurements is between 0.5 and 0.8 g m-3 (or < 6 %) within the ABL even during daytime. This allows for performing a RHI scan from the surface to an elevation angle of 90° within 10 min. In summer 2014, the UHOH DIAL participated in the Surface Atmosphere Boundary Layer Exchange (SABLE) campaign in southwestern Germany. Conical volume scans were made which reveal multiple water vapor layers in three dimensions. Differences in their heights in different directions can be attributed to different surface elevation. With low-elevation scans in the surface layer, the humidity profiles and gradients can be related to different land cover such as maize, grassland, and forest as well as different surface layer

  10. 3D SIMULATIONS OF REALISTIC POWER HALOS IN MAGNETOHYDROSTATIC SUNSPOT ATMOSPHERES: LINKING THEORY AND OBSERVATION

    SciTech Connect

    Rijs, Carlos; Przybylski, Damien; Moradi, Hamed; Cally, Paul S.; Shelyag, Sergiy; Rajaguru, S. P.

    2016-01-20

    The well-observed acoustic halo is an enhancement in time-averaged Doppler velocity and intensity power with respect to quiet-Sun values that is prominent for the weak and highly inclined field around the penumbra of sunspots and active regions. We perform 3D linear wave modeling with realistic distributed acoustic sources in a magnetohydrostatic sunspot atmosphere and compare the resultant simulation enhancements with multiheight SDO observations of the phenomenon. We find that simulated halos are in good qualitative agreement with observations. We also provide further proof that the underlying process responsible for the halo is the refraction and return of fast magnetic waves that have undergone mode conversion at the critical a = c atmospheric layer. In addition, we also find strong evidence that fast Alfvén mode conversion plays a significant role in the structure of the halo, taking energy away from photospheric and chromospheric heights in the form of field-aligned Alfvén waves. This conversion process may explain the observed “dual-ring” halo structure at higher (>8 mHz) frequencies.

  11. The Rossiter-McLaughlin effect reloaded: Probing the 3D spin-orbit geometry, differential stellar rotation, and the spatially-resolved stellar spectrum of star-planet systems

    NASA Astrophysics Data System (ADS)

    Cegla, H. M.; Lovis, C.; Bourrier, V.; Beeck, B.; Watson, C. A.; Pepe, F.

    2016-04-01

    When a planet transits its host star, it blocks regions of the stellar surface from view; this causes a distortion of the spectral lines and a change in the line-of-sight (LOS) velocities, known as the Rossiter-McLaughlin (RM) effect. Since the LOS velocities depend, in part, on the stellar rotation, the RM waveform is sensitive to the star-planet alignment (which provides information on the system's dynamical history). We present a new RM modelling technique that directly measures the spatially-resolved stellar spectrum behind the planet. This is done by scaling the continuum flux of the (HARPS) spectra by the transit light curve, and then subtracting the in- from the out-of-transit spectra to isolate the starlight behind the planet. This technique does not assume any shape for the intrinsic local profiles. In it, we also allow for differential stellar rotation and centre-to-limb variations in the convective blueshift. We apply this technique to HD 189733 and compare to 3D magnetohydrodynamic (MHD) simulations. We reject rigid body rotation with high confidence (>99% probability), which allows us to determine the occulted stellar latitudes and measure the stellar inclination. In turn, we determine both the sky-projected (λ ≈ -0.4 ± 0.2°) and true 3D obliquity (ψ ≈ 7+12-4°). We also find good agreement with the MHD simulations, with no significant centre-to-limb variations detectable in the local profiles. Hence, this technique provides a new powerful tool that can probe stellar photospheres, differential rotation, determine 3D obliquities, and remove sky-projection biases in planet migration theories. This technique can be implemented with existing instrumentation, but will become even more powerful with the next generation of high-precision radial velocity spectrographs.

  12. Probing Pluto's Atmosphere Using Ground-Based Stellar Occultations

    NASA Astrophysics Data System (ADS)

    Sicardy, Bruno; Rio de Janeiro Occultation Team, Granada Team, International Occultation and Timing Association, Royal Astronomical Society New Zealand Occultation Section, Lucky Star associated Teams

    2016-10-01

    Over the last three decades, some twenty stellar occultations by Pluto have been monitored from Earth. They occur when the dwarf planet blocks the light from a star for a few minutes as it moves on the sky. Such events led to the hint of a Pluto's atmosphere in 1985, that was fully confirmed during another occultation in 1988, but it was only in 2002 that a new occultation could be recorded. From then on, the dwarf planet started to move in front of the galactic center, which amplified by a large factor the number of events observable per year.Pluto occultations are essentially refractive events during which the stellar rays are bent by the tenuous atmosphere, causing a gradual dimming of the star. This provides the density, pressure and temperature profiles of the atmosphere from a few kilometers above the surface up to about 250 km altitude, corresponding respectively to pressure levels of about 10 and 0.1 μbar. Moreover, the extremely fine spatial resolution (a few km) obtained through this technique allows the detection of atmospheric gravity waves, and permits in principle the detection of hazes, if present.Several aspects make Pluto stellar occultations quite special: first, they are the only way to probe Pluto's atmosphere in detail, as the dwarf planet is far too small on the sky and the atmosphere is far too tenuous to be directly imaged from Earth. Second, they are an excellent example of participative science, as many amateurs have been able to record those events worldwide with valuable scientific returns, in collaboration with professional astronomers. Third, they reveal Pluto's climatic changes on decade-scales and constrain the various seasonal models currently explored.Finally, those observations are fully complementary to space exploration, in particular with the New Horizons (NH) mission. I will show how ground-based occultations helped to better calibrate some NH profiles, and conversely, how NH results provide some key boundary conditions

  13. Bioavailable atmospheric phosphorous supply to the global ocean: a 3-D global modeling study

    NASA Astrophysics Data System (ADS)

    Myriokefalitakis, Stelios; Nenes, Athanasios; Baker, Alex R.; Mihalopoulos, Nikolaos; Kanakidou, Maria

    2016-12-01

    The atmospheric cycle of phosphorus (P) is parameterized here in a state-of-the-art global 3-D chemistry transport model, taking into account primary emissions of total P (TP) and soluble P (DP) associated with mineral dust, combustion particles from natural and anthropogenic sources, bioaerosols, sea spray and volcanic aerosols. For the present day, global TP emissions are calculated to be roughly 1.33 Tg-P yr-1, with the mineral sources contributing more than 80 % to these emissions. The P solubilization from mineral dust under acidic atmospheric conditions is also parameterized in the model and is calculated to contribute about one-third (0.14 Tg-P yr-1) of the global DP atmospheric source. To our knowledge, a unique aspect of our global study is the explicit modeling of the evolution of phosphorus speciation in the atmosphere. The simulated present-day global annual DP deposition flux is 0.45 Tg-P yr-1 (about 40 % over oceans), showing a strong spatial and temporal variability. Present-day simulations of atmospheric P aerosol concentrations and deposition fluxes are satisfactory compared with available observations, indicating however an underestimate of about 70 % on current knowledge of the sources that drive the P atmospheric cycle. Sensitivity simulations using preindustrial (year 1850) anthropogenic and biomass burning emission scenarios showed a present-day increase of 75 % in the P solubilization flux from mineral dust, i.e., the rate at which P is converted into soluble forms, compared to preindustrial times, due to increasing atmospheric acidity over the last 150 years. Future reductions in air pollutants due to the implementation of air-quality regulations are expected to decrease the P solubilization flux from mineral dust by about 30 % in the year 2100 compared to the present day. Considering, however, that all the P contained in bioaerosols is readily available for uptake by marine organisms, and also accounting for all other DP sources, a total

  14. Dynamic mineral clouds on HD 189733b. II. Monte Carlo radiative transfer for 3D cloudy exoplanet atmospheres: combining scattering and emission spectra

    NASA Astrophysics Data System (ADS)

    Lee, G. K. H.; Wood, K.; Dobbs-Dixon, I.; Rice, A.; Helling, Ch.

    2017-05-01

    Context. As the 3D spatial properties of exoplanet atmospheres are being observed in increasing detail by current and new generations of telescopes, the modelling of the 3D scattering effects of cloud forming atmospheres with inhomogeneous opacity structures becomes increasingly important to interpret observational data. Aims: We model the scattering and emission properties of a simulated cloud forming, inhomogeneous opacity, hot Jupiter atmosphere of HD 189733b. We compare our results to available Hubble Space Telescope (HST) and Spitzer data and quantify the effects of 3D multiple scattering on observable properties of the atmosphere. We discuss potential observational properties of HD 189733b for the upcoming Transiting Exoplanet Survey Satellite (TESS) and CHaracterising ExOPlanet Satellite (CHEOPS) missions. Methods: We developed a Monte Carlo radiative transfer code and applied it to post-process output of our 3D radiative-hydrodynamic, cloud formation simulation of HD 189733b. We employed three variance reduction techniques, i.e. next event estimation, survival biasing, and composite emission biasing, to improve signal to noise of the output. For cloud particle scattering events, we constructed a log-normal area distribution from the 3D cloud formation radiative-hydrodynamic results, which is stochastically sampled in order to model the Rayleigh and Mie scattering behaviour of a mixture of grain sizes. Results: Stellar photon packets incident on the eastern dayside hemisphere show predominantly Rayleigh, single-scattering behaviour, while multiple scattering occurs on the western hemisphere. Combined scattered and thermal emitted light predictions are consistent with published HST and Spitzer secondary transit observations. Our model predictions are also consistent with geometric albedo constraints from optical wavelength ground-based polarimetry and HST B band measurements. We predict an apparent geometric albedo for HD 189733b of 0.205 and 0.229, in the

  15. Coudé-feed stellar spectral library - atmospheric parameters

    NASA Astrophysics Data System (ADS)

    Wu, Yue; Singh, H. P.; Prugniel, P.; Gupta, R.; Koleva, M.

    2011-01-01

    Context. Empirical libraries of stellar spectra play an important role in different fields. For example, they are used as reference for the automatic determination of atmospheric parameters, or for building synthetic stellar populations to study galaxies. The CFLIB (Coudé-feed library, Indo-US) database is at present one of the most complete libraries, in terms of its coverage of the atmospheric parameters space (T{eff}, log g and [Fe/H]) and wavelength coverage 3460-9464 Å at a resolution of 1 Å FWHM. Although the atmospheric parameters of most of the stars were determined from detailed analyses of high-resolution spectra, for nearly 300 of the 1273 stars of the library at least one of the three parameters is missing. For the others, the measurements, compiled from the literature, are inhomogeneous. Aims: In this paper, we re-determine the atmospheric parameters, directly using the CFLIB spectra, and compare them to the previous studies. Methods: We use the ULySS program to derive the atmospheric parameters, using the ELODIE library as a reference. Results: Based on comparisons with several previous studies we conclude that our determinations are unbiased. For the 958 F, G, and K type stars the precision on T{eff}, log g, and [Fe/H] is respectively 43 K, 0.13 dex and 0.05 dex. For the 53 M stars they are 82 K, 0.22 dex and 0.28 dex. And for the 260 OBA type stars the relative precision on T{eff} is 5.1%, and on log g, and [Fe/H] the precision is respectively 0.19 dex and 0.16 dex. These parameters will be used to re-calibrate the CFLIB fluxes and to produce synthetic spectra of stellar populations. Tables 2 and 3 are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/525/A71

  16. Sulfur in the Early Martian Atmosphere Revisited: Experiments with a 3-D Global Climate Model

    NASA Astrophysics Data System (ADS)

    Kerber, L.; Forget, F.; Wordsworth, R.

    2013-09-01

    [8]. A successful working model for the early Martian atmosphere and hydrosphere must be able not only to produce conditions suitable for liquid water at the surface, but also to explain how the nature of this aqueous activity changed over time and eventually diminished. There are two major end-member hypotheses: first, that early Mars was wet and warm, with a sustained greenhouse that made it possible for liquid water to be stable on the surface for extended periods [e.g., 2, 12-14], and second, that early Mars was generally cold, and that most of the aqueous alteration took place underground [3,5] or during transient warm periods tied to impact cratering [15], or volcanism [16]. In both of these scenarios it is generally agreed that in order to make valley networks and sulfate deposits, a hydrological cycle is needed which is able to recycle water from the lowlands back to the highlands (i.e., the one-time emptying of a regional aquifer would not be sufficient to create the observed features) [4,17]. This would require some precipitation to fall on the southern highlands, either flowing overland or filtering into groundwater aquifers. In both cases, volcanic gases (especially SO2) have been suggested as a possible way of creating either a sustained or transient greenhouse. Several researchers have tested the addition of SO2 to climate models in order to assess whether it would provide an adequate amount of greenhouse warming to allow liquid water to flow across the surface [18-21], with differing results. Postawko and Kuhn [18] found a warming effect of 14 K in a 0.1 bar atmosphere with an SO2 abundance of 1000 ppm. Johnson et al. [20] used a 3-D global circulation model and found a warming of 15-25 K for 245 ppm of SO2 in a dry 0.5 bar atmosphere. Tian et al. [21] used a 1-D model to explore a wide range of SO2 mixing values and CO2 partial pressures, finding a warming of around ~25 K for 100 ppm in a 0.5 bar atmosphere with a fully saturated troposphere (~40 K

  17. Treatment of atomic and molecular line blanketing by opacity sampling. [atmospheric optics - stellar atmospheres

    NASA Technical Reports Server (NTRS)

    Johnson, H. R.; Krupp, B. M.

    1975-01-01

    An opacity sampling (OS) technique for treating the radiative opacity of large numbers of atomic and molecular lines in cool stellar atmospheres is presented. Tests were conducted and results show that the structure of atmospheric models is accurately fixed by the use of 1000 frequency points, and 500 frequency points is often adequate. The effects of atomic and molecular lines are separately studied. A test model computed by using the OS method agrees very well with a model having identical atmospheric parameters computed by the giant line (opacity distribution function) method.

  18. The calculation and publication of a grid of line-blanketed model stellar atmospheres

    NASA Technical Reports Server (NTRS)

    Avrett, E. H.

    1972-01-01

    The luminosity, mass, and elemental abundances, as well as other properties of each star are studied in order to locate them in an evolutionary pattern. A method for determining the flux, gravity, and abundances at the stellar surface is the construction of theoretical stellar atmospheric models that predict the observed energy distribution and detailed stellar spectrum.

  19. Development and Validation of a Polarimetric-MCScene 3D Atmospheric Radiation Model

    SciTech Connect

    Berk, Alexander; Hawes, Frederick; Fox, Marsha

    2016-03-15

    Polarimetric measurements can substantially enhance the ability of both spectrally resolved and single band imagery to detect the proliferation of weapons of mass destruction, providing data for locating and identifying facilities, materials, and processes of undeclared and proliferant nuclear weapons programs worldwide. Unfortunately, models do not exist that efficiently and accurately predict spectral polarized signatures for the materials of interest embedded in complex 3D environments. Having such a model would enable one to test hypotheses and optimize both the enhancement of scene contrast and the signal processing for spectral signature extraction. The Phase I set the groundwork for development of fully validated polarimetric spectral signature and scene simulation models. This has been accomplished 1. by (a) identifying and downloading state-of-the-art surface and atmospheric polarimetric data sources, (b) implementing tools for generating custom polarimetric data, and (c) identifying and requesting US Government funded field measurement data for use in validation; 2. by formulating an approach for upgrading the radiometric spectral signature model MODTRAN to generate polarimetric intensities through (a) ingestion of the polarimetric data, (b) polarimetric vectorization of existing MODTRAN modules, and (c) integration of a newly developed algorithm for computing polarimetric multiple scattering contributions; 3. by generating an initial polarimetric model that demonstrates calculation of polarimetric solar and lunar single scatter intensities arising from the interaction of incoming irradiances with molecules and aerosols; 4. by developing a design and implementation plan to (a) automate polarimetric scene construction and (b) efficiently sample polarimetric scattering and reflection events, for use in a to be developed polarimetric version of the existing first-principles synthetic scene simulation model, MCScene; and 5. by planning a validation field

  20. Gravitational damping of Alfven waves in stellar atmospheres and winds

    NASA Technical Reports Server (NTRS)

    Khabibrakhmanov, I. K.; Mullan, D. J.

    1994-01-01

    We consider how gravity affects the propagation of Alfven waves in a stellar atmosphere. We show that when the ion gyrofrequency exceeds the collision rate, the waves are absorbed at a rate proportional to the gravitational acceleration g. Estimates show that this mechanism can readily account for the observed energy losses in the solar chromosphere. The mechanism predicts that the pressure at the top of the chromosphere P(sub Tc) should scale with g as P(sub Tc) proportional to g(exp delta), where delta approximately equals 2/3; this is close to empirical results which suggest delta approximately equals 0.6. Gravitational damping leads to deposition of energy at a rate proportional to the mass of the particles. Hence, heavier ion are heated more effectively than protons. This is consistent with the observed proportionality between ion temperature and mass in the solar wind. Gravitational damping causes the local g to be effectively decreased by an amount proportional to the wave energy. This feature affects the acceleration of the solar wind. Gravitational damping may also lead to self-regulation of the damping of Alfven waves in stellar winds: this is relevant in the context of slow massive winds in cool giants.

  1. The Interior Analysis and 3-D Reconstruction of Internally-Mixed Light-Absorbing Atmospheric Particles

    NASA Astrophysics Data System (ADS)

    Conny, J. M.; Collins, S. M.; Anderson, I.; Herzing, A.

    2010-12-01

    . Finally, automated serial slicing and imaging in the FIB-SEM generated a stack of secondary electron images of the particles’ interior surfaces that allowed for the 3-D reconstruction of the particles, a process known as FIB tomography. Interior surface of light-absorbing carbonaceous particle from FIB-SEM analysis.

  2. 3D Simulations of the variability of the atmospheric escape at Mars with the EUV solar flux

    NASA Astrophysics Data System (ADS)

    Chaufray, J.-Y.; Leblanc, F.; Modolo, R.; Gonzalez-Galindo, F.; Lopez-Valverde, M.; Forget, F.

    2014-04-01

    The exosphere is the collisionless region surrounding a planetary atmosphere. The exosphere of Mars is an important region to characterize the escape processes. It is mainly formed from processes responsible of the atmospheric escape in the underlying atmosphere/ionosphere. The Martian exosphere is mainly composed of atomic hydrogen, molecular hydrogen and atomic oxygen. Atomic and molecular hydrogen escape is dominated by the thermal escape while the oxygen escape is dominated by the O2+ dissociative recombination in the Martian upper ionosphere. Therefore their escape rates are expected to vary strongly with the EUV solar flux which is the main driver of the heating and ionization of the Martian upper atmosphere. In this presentation, we will present simulations obtained from a 3D Martian exospheric model, coupled to the 3D GCM-LMD model for different solar UV conditions representative of current and past conditions.

  3. Data Needs for Stellar Atmosphere and Spectrum Modeling

    NASA Technical Reports Server (NTRS)

    Short, C. I.

    2006-01-01

    The main data need for stellar atmosphere and spectrum modeling remains atomic and molecular transition data, particularly energy levels and transition cross-sections. We emphasize that data is needed for bound-free (b - f) as well as bound-bound (b - b), and collisional as well as radiative transitions. Data is now needed for polyatomic molecules as well as atoms, ions, and diatomic molecules. In addition, data for the formation of, and extinction due to, liquid and solid phase dust grains is needed. A prioritization of species and data types is presented, and gives emphasis to Fe group elements, and elements important for the investigation of nucleosynthesis and Galactic chemical evolution, such as the -elements and n-capture elements. Special data needs for topical problems in the modeling of cool stars and brown dwarfs are described.

  4. Effects of Scattering on the Temperature Stratification in 3D Model Atmospheres of Late-Type Stars

    NASA Astrophysics Data System (ADS)

    Collet, R.; Hayek, W.; Asplund, M.

    2011-12-01

    Three-dimensional (3D) radiative hydrodynamic model atmospheres of metal-poor late-type stars predict cooler upper photospheric stratifications than their one-dimensional (1D) counterparts. This property of 3D model atmospheres affects the determination of elemental abundances from temperature-sensitive spectral features, with important consequences for galactic chemical evolution studies. In this contribution, we investigate the impact of different approximations of scattering in the solution of the radiative transfer equation on the temperature stratification of 3D model atmospheres of metal-poor red giants. We use the BIFROST code to construct 3D model atmospheres of metal-poor red giants using three different approximations of scattering. First, we self-consistently solve the radiative transfer equation for the general case of a source function with a coherent scattering term; second, we solve the radiative transfer equation assuming a Planckian source function and neglecting altogether the contribution of continuum scattering to extinction in the optically thin layers; third, we assume a Planckian source function and treat continuum scattering as pure absorption everywhere in the simulation's domain. We find that the second approach produces very similar temperature structures with cool upper photospheric layers as when treating scattering correctly, and at a much lower computational cost. In contrast, treating scattering as pure absorption leads to significantly hotter and shallower temperature stratifications.

  5. Fingering convection induced by atomic diffusion in stars: 3D numerical computations and applications to stellar models

    SciTech Connect

    Zemskova, Varvara; Garaud, Pascale; Deal, Morgan; Vauclair, Sylvie

    2014-11-10

    Iron-rich layers are known to form in the stellar subsurface through a combination of gravitational settling and radiative levitation. Their presence, nature, and detailed structure can affect the excitation process of various stellar pulsation modes and must therefore be modeled carefully in order to better interpret Kepler asteroseismic data. In this paper, we study the interplay between atomic diffusion and fingering convection in A-type stars, as well as its role in the establishment and evolution of iron accumulation layers. To do so, we use a combination of three-dimensional idealized numerical simulations of fingering convection (which neglect radiative transfer and complex opacity effects) and one-dimensional realistic stellar models. Using the three-dimensional simulations, we first validate the mixing prescription for fingering convection recently proposed by Brown et al. (within the scope of the aforementioned approximation) and identify what system parameters (total mass of iron, iron diffusivity, thermal diffusivity, etc.) play a role in the overall evolution of the layer. We then implement the Brown et al. prescription in the Toulouse-Geneva Evolution Code to study the evolution of the iron abundance profile beneath the stellar surface. We find, as first discussed by Théado et al., that when the concurrent settling of helium is ignored, this accumulation rapidly causes an inversion in the mean molecular weight profile, which then drives fingering convection. The latter mixes iron with the surrounding material very efficiently, and the resulting iron layer is very weak. However, taking helium settling into account partially stabilizes the iron profile against fingering convection, and a large iron overabundance can accumulate. The opacity also increases significantly as a result, and in some cases it ultimately triggers dynamical convection. The direct effects of radiative acceleration on the dynamics of fingering convection (especially in the

  6. Examining Pluto's atmosphere with SOFIA through stellar occultations

    NASA Astrophysics Data System (ADS)

    Person, Michael

    2012-10-01

    We propose to use SOFIA with HIPO, FLITECAM (subject to availability), and the FDC to observe two pairs of Pluto stellar occultations (four total), attempting in each case to observe from the center of Pluto's shadow path. Only an airborne platform such as SOFIA can allow us to directly place the telescope in the shadow paths of these brief events while mitigating the possibility of missing time-sensitive observations due to unfortunate weather systems. Occultation predictions will be updated throughout the period preceding the observations with the goal of achieving sufficient prediction accuracy at the event time to place SOFIA directly in the path of Pluto's central flash. Successful central flash observations will give us unprecedented information regarding Pluto's lower atmospheric structure and global sphericity. The combination of HIPO, FLITECAM, and the FDC will allow us to make simultaneous visible and IR measurements of the occultation light curves in several wavelengths, which are needed to differentiate between two currently competing explanations for the deficiency in the observed light refracted from Pluto's lower atmosphere (strong thermal gradients versus variable particulate extinction). Finally, we propose for two pairs of events in order to investigate the temporal variability of Pluto's atmosphere on several timescales to measure its ongoing evolution due to Pluto's rotation, changing seasonal obliquity (and resulting ice migration), and recession from the sun. These SOFIA observations will all be combined with our ground-based observing program to provide calibrating geometric information to the SOFIA occultation chords, allowing us to precisely pinpoint the actual passage of SOFIA through the occultation shadow path. Given the upcoming New Horizons encounter with the Pluto system in 2015, now is a critical time to provide context and supporting atmospheric information to this NASA mission.

  7. 3D Atmospheric Radiative Transfer for Cloud System-Resolving Models: Forward Modelling and Observations

    SciTech Connect

    Howard Barker; Jason Cole

    2012-05-17

    Utilization of cloud-resolving models and multi-dimensional radiative transfer models to investigate the importance of 3D radiation effects on the numerical simulation of cloud fields and their properties.

  8. Atmospheric Motion Vectors from INSAT-3D: Initial quality assessment and its impact on track forecast of cyclonic storm NANAUK

    NASA Astrophysics Data System (ADS)

    Deb, S. K.; Kishtawal, C. M.; Kumar, Prashant; Kiran Kumar, A. S.; Pal, P. K.; Kaushik, Nitesh; Sangar, Ghansham

    2016-03-01

    The advanced Indian meteorological geostationary satellite INSAT-3D was launched on 26 July 2013 with an improved imager and an infrared sounder and is placed at 82°E over the Indian Ocean region. With the advancement in retrieval techniques of different atmospheric parameters and with improved imager data have enhanced the scope for better understanding of the different tropical atmospheric processes over this region. The retrieval techniques and accuracy of one such parameter, Atmospheric Motion Vectors (AMV) has improved significantly with the availability of improved spatial resolution data along with more options of spectral channels in the INSAT-3D imager. The present work is mainly focused on providing brief descriptions of INSAT-3D data and AMV derivation processes using these data. It also discussed the initial quality assessment of INSAT-3D AMVs for a period of six months starting from 01 February 2014 to 31 July 2014 with other independent observations: i) Meteosat-7 AMVs available over this region, ii) in-situ radiosonde wind measurements, iii) cloud tracked winds from Multi-angle Imaging Spectro-Radiometer (MISR) and iv) numerical model analysis. It is observed from this study that the qualities of newly derived INSAT-3D AMVs are comparable with existing two versions of Meteosat-7 AMVs over this region. To demonstrate its initial application, INSAT-3D AMVs are assimilated in the Weather Research and Forecasting (WRF) model and it is found that the assimilation of newly derived AMVs has helped in reduction of track forecast errors of the recent cyclonic storm NANAUK over the Arabian Sea. Though, the present study is limited to its application to one case study, however, it will provide some guidance to the operational agencies for implementation of this new AMV dataset for future applications in the Numerical Weather Prediction (NWP) over the south Asia region.

  9. 13CH3D kinetic isotope effects for methane oxidation by OH - predicting the "clumped" isotopic signature of atmospheric methane

    NASA Astrophysics Data System (ADS)

    Whitehill, A. R.; Joelsson, L. M. T.; Wang, D. T.; Johnson, M. S.; Ono, S.

    2015-12-01

    Methane is a significant long-lived greenhouse gas, but the tropospheric methane budget is not entirely constrained. "Clumped" isotopologues of methane, including 13CH3D, can provide additional constraints on the atmospheric methane cycle. Interpretation of these novel isotope tracers requires an understanding of the "clumped" isotopic signature of various methane sources, as well as the kinetic isotope effects of the methane sink reactions. We performed a series of photochemical experiments to measure the isotopic fractionation during the CH4+OH reaction. Experiments were carried out in a 100 L quartz photochemical reactor. Photolysis of ozone (O3) in the presence of water (H2O) was used to produce OH radicals. Experiments were performed in a helium bath gas. Fourier transform infrared spectroscopy (FTIR) was used to monitor reaction progress. At various intervals during the reaction, methane was sampled from the cell and analyzed for isotope ratios by tunable infrared laser direct absorption spectroscopy (TILDAS). By simultaneously measuring four different isotopologues of methane (12CH4,12CH3D, 13CH4, 13CH3D), we were able to constrain the kinetic isotope effects for 12CH3D, 13CH4, and the doubly-substitued isotopologue 13CH3D. These results are combined with published clumped isotope data from different methane sources to model the Δ13CH3D (i.e. deviation from "stochastic" distribution of isotopes) of tropospheric methane and its sensitivity to different sources. The Δ13CH3D value of tropospheric methane does not strongly depend upon isotope fractionation during the OH sink reaction. Rather, the Δ13CH3D value of tropospheric methane reflects a mixing of different source signatures. Due to nonlinearity in mixing of Δ13CH3D, the Δ13CH3D value of tropospheric methane will be larger than the weighted average of the Δ13CH3D value of the sources. A first order interpretation of variations in the Δ13CH3D value of tropospheric methane is that it reflects changes

  10. Regenerating Pt-3d-Pt model electrocatalysts through oxidation-reduction cycles monitored at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Menning, Carl A.; Chen, Jingguang G.

    The interchange between the Pt-Ni-Pt and Ni-Pt-Pt bimetallic configurations in O 2 and H 2 is confirmed experimentally at atmospheric pressure using in situ X-ray absorption spectroscopy (XAS). The subsurface Pt-3d-Pt structure, a desirable configuration as cathode electrocatalysts for PEM fuel cells, is found to be preferred in the reducing environment of H 2 whereas the surface 3d-Pt-Pt configuration is preferred in O 2. This process has been found to be reversible, providing useful insights into the maintenance and regeneration of the desirable subsurface structure.

  11. Atmospheric stellar parameters from cross-correlation functions

    NASA Astrophysics Data System (ADS)

    Malavolta, L.; Lovis, C.; Pepe, F.; Sneden, C.; Udry, S.

    2017-08-01

    The increasing number of spectra gathered by spectroscopic sky surveys and transiting exoplanet follow-up has pushed the community to develop automated tools for atmospheric stellar parameters determination. Here we present a novel approach that allows the measurement of temperature (Teff), metallicity ([Fe/H]) and gravity (log g) within a few seconds and in a completely automated fashion. Rather than performing comparisons with spectral libraries, our technique is based on the determination of several cross-correlation functions (CCFs) obtained by including spectral features with different sensitivity to the photospheric parameters. We use literature stellar parameters of high signal-to-noise (SNR), high-resolution HARPS spectra of FGK main-sequence stars to calibrate Teff, [Fe/H] and log g as a function of CCF parameters. Our technique is validated using low-SNR spectra obtained with the same instrument. For FGK stars we achieve a precision of σ _{{T_eff}} = 50 K, σlog g = 0.09 dex and σ _{{{[Fe/H]}}} =0.035 dex at SNR = 50, while the precision for observation with SNR ≳ 100 and the overall accuracy are constrained by the literature values used to calibrate the CCFs. Our approach can easily be extended to other instruments with similar spectral range and resolution or to other spectral range and stars other than FGK dwarfs if a large sample of reference stars is available for the calibration. Additionally, we provide the mathematical formulation to convert synthetic equivalent widths to CCF parameters as an alternative to direct calibration. We have made our tool publicly available.

  12. Pluto's atmosphere from stellar occultations in 2012 and 2013

    NASA Astrophysics Data System (ADS)

    Dias-Oliveira, Alex; Sicardy, Bruno; Lellouch, Emmanuel; Vieira-Martins, Roberto; Assafin, Marcelo; Ignácio Bueno Camargo, Júlio; Braga-Ribas, Felipe; Gomes-Júnior, Altair; Bendetti-Rossi, Gustavo; Colas, François; Decock, Alice; Doressoundiram, Alain; Dumas, Christophe; Emílio, Marcelo; Fabrega Polleri, Joaquin; Gil-Hutton, Ricardo; Gillon, Michael; Girard, Julien; Hau, George; Ivanov, Valentin; Jehin, Emmanuel; Lecacheux, Jean; Leiva, Rodrigo; Lopez-Sisterna, Cecília; Mancini, Luigi; Manfroid, Jean; Maury, Alain; Meza, Erick; Morales, Nicolas; Nagy, Leslie; Opitom, Cyrielle; Ortiz, José Luiz; Pollock, Joe; Roques, Françoise; Snodgrass, Colin; François Soulier, Jean; Thirouin, Audrey; Vanzi, Leonardo; Widemann, Thomas; Reichart, Daniel; LaCluyze, Aaron; Haislip, Joshua B.; Ivarsen, Kevin; Dominik, Martin; Jørgensen, Uffe; Skottfelt, Jesper

    2015-11-01

    We present results from two Pluto stellar occultations observed on 18 July 2012 and 04 May 2013, and monitored respectively from five and six sites in South America. Both campaigns involved large telescopes (including the 8.2-m VLT at ESO/Paranal). The high SNR ratios and multi-chord coverage provide amoung the best Pluto atmospheric profiles ever obtained from the ground.We show that a spherically symmetric, clear (no-haze) and pure N2 atmosphere with a unique temperature profile satisfactorily fits the twelve lightcurves provided by the two events. We find, however, a small but significant increase of pressure of 6% (6-sigma level) between the two dates, with values of 2.16 ± 0.2 and 2.30 ± 0.01 μbar at the reference radius 1275 km, respectively.We provide atmospheric constrains between 1190 km and 1450 km from Pluto's center, and we determine the temperature profile with accuracy of a few km in vertical scale. Our model shows a stratosphere with strong positive gradient between 1190 km (at 36 K, 11 μbar) and r =1215 km (6.0 μbar), where a temperature maximum of 110 K is reached. Above it is a mesosphere with negative thermal gradient of -0.2 K/km up to 1,390 km (0.25 μbar), at which point, the mesosphere connects itself to a more isothermal upper branch at 81 K. This profile provides (assuming no troposphere) a Pluto surface radius of 1190 ± 5 km, consistent with preliminary values obtained by New Horizons. Currently measured CO abundances are too low to explain the negative mesospheric thermal gradient. We explore the possibility of an HCN (recently detected by ALMA) cooling. This model, however, requires largely supersaturated HCN. Zonal winds and vertical compositional variations of the atmosphere are also unable to explain the observed mesospheric trend.These events are the last useful ground-based occultations recorded before the 29 June 2015 occultation observed from Australia and New Zealand, and before the NASA's New Horizons flyby of July 2015

  13. Developing a 3D constrained variational analysis method to obtain accurate gridded atmospheric vertical velocity and horizontal advections

    NASA Astrophysics Data System (ADS)

    Tang, S.; Zhang, M.

    2013-12-01

    Based on the constrained variational analysis (CVA) algorithm developed by Zhang and Lin (1997), a 3-dimensional (3D) version of CVA is developed. The new algorithm used gridded surface and TOA observations as constraints to adjust atmospheric state variables in each grid point to satisfy column-integrated mass, moisture and static energy conservation. From the process of adjustment a set of high-quality 3D large-scale forcing data (vertical velocity and horizontal advections) can be derived to drive Single-Column models (SCM), Cloud-Resolving Models (CRM) and Large-Eddy Simulations (LES) to evaluate and improve parameterizations. Since the 3D CVA can adjust gridded state variables from any data source with observed precipitation, radiation and surface fluxes, it also gives a potential possibility to use this algorithm in data assimilation system to assimilate precipitation and radiation data.

  14. Constructing an Atmospheric Methane Budget Using 13CH3D and CH2D2 in Sources and Sinks

    NASA Astrophysics Data System (ADS)

    Haghnegahdar, M. A.; Schauble, E. A.; Young, E. D.

    2015-12-01

    We develop a theoretical model using relative abundances and fractionations of 13CH3D and CH2D2, the doubly substituted mass-18 isotopologues of methane, to quantitatively track the sources and the sinks of atmospheric methane. The goal is a better determination of the methane budget in the atmosphere. Different methane sources have different isotope ratios because of variations in substrates, formation reactions, and temperatures. Isotope ratio measurements will provide useful constraints on source components and sink processes. However, bulk isotope ratios alone are unlikely to be diagnostic because of mixing of sources. Using recently published budgets (Whiticar and Schaefer 2007) and estimates of equilibration temperatures of various methane sources (Stolper et al., 2014; Wang et al., 2015), including an assumption that biogenic methane sources are near-stochastic (Wang et al., 2015), we estimated the abundances in air of singly- and doubly-substituted isotopologues in terms of both bulk ratios and deviations from the stochastic distributions of multiply-substituted species. δ13CH3D and δCH2D2 for the total atmospheric sources are predicted to be -493‰ and -330‰, whereas Δ13CH3D, and ΔCH2D2, enrichments relative to stochastic, are predicted to be +4.7‰ and +21.5‰. The composition of atmospheric methane will also be influenced by sink reactions. The main sink reactions with OH• and Cl• have been modeled with first-principles transition state theory, using simplified corrections for tunneling (Wigner 1932). Our model predicts that the main sink reactions in the atmosphere generate distinct signatures of lower Δ13CH3D and ΔCH2D2 relative to the source composition, while at the same time increasing δ13CH3D and δCH2D2. Measurements of both Δ13CH3D and ΔCH2D2 are now possible with the new large-geometry gas-source mass spectrometer at UCLA permitting testing of these predictions.

  15. 3D Mapping of plasma effective areas via detection of cancer cell damage induced by atmospheric pressure plasma jets

    NASA Astrophysics Data System (ADS)

    Han, Xu; Liu, Yueing; Stack, M. Sharon; Ptasinska, Sylwia

    2014-12-01

    In the present study, a nitrogen atmospheric pressure plasma jet (APPJ) was used for irradiation of oral cancer cells. Since cancer cells are very susceptible to plasma treatment, they can be used as a tool for detection of APPJ-effective areas, which extended much further than the visible part of the APPJ. An immunofluorescence assay was used for DNA damage identification, visualization and quantification. Thus, the effective damage area and damage level were determined and plotted as 3D images.

  16. Quiescent Galaxies in the 3D-HST Survey: Spectroscopic Confirmation of a Large Number of Galaxies with Relatively Old Stellar Populations at Z approx. 2

    NASA Technical Reports Server (NTRS)

    Tease, Katherine Whitaker; VanDokkum, Pieter G.; Brammer, Gabriel; Momcheva, Ivelina G.; Skelton, Rosalind; Franx, Marijn; Kriek, Mariska; Labbe, Ivo; Fumagalli, Mattia; Lundgren, Britt F.; Nelson, Erica J.; Patel, Shannon G.; Rix, Hans-Walter

    2013-01-01

    Quiescent galaxies at zeta approximately 2 have been identified in large numbers based on rest-frame colors, but only a small number of these galaxies have been spectroscopically confirmed to show that their rest-frame optical spectra show either strong Balmer or metal absorption lines. Here, we median stack the rest-frame optical spectra for 171 photometrically quiescent galaxies at 1.4 less than z less than 2.2 from the 3D-HST grism survey. In addition to H(Beta) (lambda 4861 Angstroms), we unambiguously identify metal absorption lines in the stacked spectrum, including the G band (lambda 4304 Angstroms), Mg I (lambda 5175 Angstroms), and Na i (lambda 5894 Angstroms). This finding demonstrates that galaxies with relatively old stellar populations already existed when the universe was approximately 3 Gyr old, and that rest-frame color selection techniques can efficiently select them. We find an average age of 1.3(+0.1/-0.3) Gyr when fitting a simple stellar population to the entire stack. We confirm our previous result from medium-band photometry that the stellar age varies with the colors of quiescent galaxies: the reddest 80% of galaxies are dominated by metal lines and have a relatively old mean age of 1.6(+0.5/-0.4) Gyr, whereas the bluest (and brightest) galaxies have strong Balmer lines and a spectroscopic age of 0.9(+0.2/-0.1) Gyr. Although the spectrum is dominated by an evolved stellar population, we also find [O III] and Hß emission. Interestingly, this emission is more centrally concentrated than the continuum with L(sub OIII) = 1.7 +/- 0.3 × 10(exp 40 erg s-1, indicating residual central star formation or nuclear activity.

  17. Quiescent Galaxies in the 3D-HST Survey: Spectroscopic Confirmation of a Large Number of Galaxies With Relatively Old Stellar Populations at z Approx. 2

    NASA Technical Reports Server (NTRS)

    Tease, Katherine Whitaker; vanDokkum, Pieter G.; Brammer, Gabriel; Momcheva, Ivelina; Skelton, Rosalind; Franx, Marijin; Kriek, Mariska; Labbe, Ivo; Fumagalli, Mattia; Lundgren, Britt F.; Nelson, Erica J.; Patel, Shannon G.; Rix, Hans-Walter

    2013-01-01

    Quiescent galaxies at z approx. 2 have been identified in large numbers based on rest-frame colors, but only a small number of these galaxies have been spectroscopically confirmed to show that their rest-frame optical spectra show either strong Balmer or metal absorption lines. Here, we median stack the rest-frame optical spectra for 171 photometrically quiescent galaxies at 1.4 < z < 2.2 from the 3D-HST grism survey. In addition to H (4861 ),we unambiguously identify metal absorption lines in the stacked spectrum, including the G band (4304 ),Mgi (5175 ), and Na i (5894 ). This finding demonstrates that galaxies with relatively old stellar populations already existed when the universe was approx. 3 Gyr old, and that rest-frame color selection techniques can efficiently select them. We find an average age of 1.3+0.10.3 Gyr when fitting a simple stellar population to the entire stack. We confirm our previous result from medium-band photometry that the stellar age varies with the colors of quiescent galaxies: the reddest 80 of galaxies are dominated by metal lines and have a relatively old mean age of 1.6+0.50.4 Gyr, whereas the bluest (and brightest) galaxies have strong Balmer lines and a spectroscopic age of 0.9+0.20.1 Gyr. Although the spectrum is dominated by an evolved stellar population, we also find [O iii] and H emission. Interestingly, this emission is more centrally concentrated than the continuum with LOiii = 1.7+/- 0.3 x 10(exp 40) erg/s, indicating residual central star formation or nuclear activity.

  18. QUIESCENT GALAXIES IN THE 3D-HST SURVEY: SPECTROSCOPIC CONFIRMATION OF A LARGE NUMBER OF GALAXIES WITH RELATIVELY OLD STELLAR POPULATIONS AT z {approx} 2

    SciTech Connect

    Whitaker, Katherine E.; Van Dokkum, Pieter G.; Momcheva, Ivelina G.; Skelton, Rosalind; Nelson, Erica J.; Brammer, Gabriel; Franx, Marijn; Labbe, Ivo; Fumagalli, Mattia; Patel, Shannon G.; Kriek, Mariska; Lundgren, Britt F.; Rix, Hans-Walter

    2013-06-20

    Quiescent galaxies at z {approx} 2 have been identified in large numbers based on rest-frame colors, but only a small number of these galaxies have been spectroscopically confirmed to show that their rest-frame optical spectra show either strong Balmer or metal absorption lines. Here, we median stack the rest-frame optical spectra for 171 photometrically quiescent galaxies at 1.4 < z < 2.2 from the 3D-HST grism survey. In addition to H{beta} ({lambda}4861 A), we unambiguously identify metal absorption lines in the stacked spectrum, including the G band ({lambda}4304 A), Mg I ({lambda}5175 A), and Na I ({lambda}5894 A). This finding demonstrates that galaxies with relatively old stellar populations already existed when the universe was {approx}3 Gyr old, and that rest-frame color selection techniques can efficiently select them. We find an average age of 1.3{sup +0.1}{sub -0.3} Gyr when fitting a simple stellar population to the entire stack. We confirm our previous result from medium-band photometry that the stellar age varies with the colors of quiescent galaxies: the reddest 80% of galaxies are dominated by metal lines and have a relatively old mean age of 1.6{sup +0.5}{sub -0.4} Gyr, whereas the bluest (and brightest) galaxies have strong Balmer lines and a spectroscopic age of 0.9{sup +0.2}{sub -0.1} Gyr. Although the spectrum is dominated by an evolved stellar population, we also find [O III] and H{beta} emission. Interestingly, this emission is more centrally concentrated than the continuum with L{sub OIII}=1.7{+-}0.3 Multiplication-Sign 10{sup 40} erg s{sup -1}, indicating residual central star formation or nuclear activity.

  19. Atmospheric Nitrogen Trifluoride: Optimized emission estimates using 2-D and 3-D Chemical Transport Models from 1973-2008

    NASA Astrophysics Data System (ADS)

    Ivy, D. J.; Rigby, M. L.; Prinn, R. G.; Muhle, J.; Weiss, R. F.

    2009-12-01

    We present optimized annual global emissions from 1973-2008 of nitrogen trifluoride (NF3), a powerful greenhouse gas which is not currently regulated by the Kyoto Protocol. In the past few decades, NF3 production has dramatically increased due to its usage in the semiconductor industry. Emissions were estimated through the 'pulse-method' discrete Kalman filter using both a simple, flexible 2-D 12-box model used in the Advanced Global Atmospheric Gases Experiment (AGAGE) network and the Model for Ozone and Related Tracers (MOZART v4.5), a full 3-D atmospheric chemistry model. No official audited reports of industrial NF3 emissions are available, and with limited information on production, a priori emissions were estimated using both a bottom-up and top-down approach with two different spatial patterns based on semiconductor perfluorocarbon (PFC) emissions from the Emission Database for Global Atmospheric Research (EDGAR v3.2) and Semiconductor Industry Association sales information. Both spatial patterns used in the models gave consistent results, showing the robustness of the estimated global emissions. Differences between estimates using the 2-D and 3-D models can be attributed to transport rates and resolution differences. Additionally, new NF3 industry production and market information is presented. Emission estimates from both the 2-D and 3-D models suggest that either the assumed industry release rate of NF3 or industry production information is still underestimated.

  20. Atmospheric nonequilibrium mini-plasma jet created by a 3D printer

    SciTech Connect

    Takamatsu, Toshihiro; Kawano, Hiroaki; Miyahara, Hidekazu; Okino, Akitoshi; Azuma, Takeshi

    2015-07-15

    In this study, a small-sized plasma jet source with a 3.7 mm head diameter was created via a 3D printer. The jet’s emission properties and OH radical concentrations (generated by argon, helium, and nitrogen plasmas) were investigated using optical emission spectrometry (OES) and electron spin resonance (ESR). As such, for OES, each individual gas plasma propagates emission lines that derive from gases and ambient air inserted into the measurement system. For the case of ESR, a spin adduct of the OH radical is typically observed for all gas plasma treatment scenarios with a 10 s treatment by helium plasma generating the largest amount of OH radicals at 110 μM. Therefore, it was confirmed that a plasma jet source made by a 3D printer can generate stable plasmas using each of the aforementioned three gases.

  1. Improvements in the Global Reference Atmospheric Model and comparisons with a global 3-D numerical model

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; Alyea, F. N.; Chimonas, George; Cunnold, D. M.

    1989-01-01

    The status of the Global Reference Atmospheric Model (GRAM) and the Mars Global Reference Atmospheric Model (MARS-GRAM) is reviewed. The wavelike perturbations observed in the Viking 1 and 2 surface pressure data, in the Mariner 9 IR spectroscopy data, and in the Viking 1 and 2 lander entry profiles were studied and the results interpreted.

  2. Thermal Mapping to Achieve 3-D Structure and Dynamics of Planetary Atmospheres Throughout the Solar System

    NASA Astrophysics Data System (ADS)

    Greathouse, T. K.; Retherford, K. D.; Mandt, K. E.; Wyrick, D. Y.

    2017-02-01

    We have completed our first look at all planets in the solar system. It is now time to move forward with more complete studies of solar system planetary atmospheres to further our understanding of atmospheric dynamics of planets unlike the Earth.

  3. Upper Limits for a Titania's Atmosphere and for a Large KBO's Atmosphere From Stellar Occultations

    NASA Astrophysics Data System (ADS)

    Widemann, Thomas; Sicardy, B.; Lellouch, E.

    2008-09-01

    Near-IR spectroscopy has indicated the presence of water ice and carbon dioxide ice on the surface of Titania. While H2O ice is clearly involatile, CO2 ice stability against sublimation over a seasonal cycle of Titania can be considered (Grundy et al., 2006). Recent analysis of the Sep. 8, 2001 stellar occultation by Titania has allowed to set surface pressure upper limits of 10-20 nbar for a CO2, CH4 or N2 atmosphere (Widemann et al., submitted to Icarus). At maximum temperature given by instantaneous equilibrium with solar input, a CO2 sublimation-induced atmosphere is still a factor of 3-6 lower than the upper limit provided by our analysis. Although the non-detection of an atmosphere of Titania is not surprising, our method demonstrates the power of stellar occultations to put upper limits down to pressure levels of ≈ 10 nbar, much more tenuous than on Pluto or Triton, by typical factors of 103. This is promising in view of the detection of volatile ices on several KBOs. CH4 has been clearly detected on dwarf planets Eris, Makemake and Quaoar, while the presence of N2 on Eris is indirectly suggested. At a current distance of 43 AU, and with its large size which makes its ices marginally stable over the age of the Solar System (Schaller and Brown, 2007), Quaoar appears to be a favorable occultation target for an atmosphere. On a longer term, as pressure levels detected during refractive occultations are inversely proportional to distance, the upper limits obtained on Titania open promising perspectives to constrain atmospheres of large KBOs at a few nbar level. Grundy, W.M., Young, L.A., Spencer, J.R., Johnson, R.E., Young, E.F. & Buie, M.W. 2006, Icarus 184, 543-555 Schaller, E.L. & Brown, M.E. 2007, Astrophys. J. 659, L61-L64

  4. A 3D parameterization of iron atmospheric deposition to the global ocean

    NASA Astrophysics Data System (ADS)

    Myriokefalitakis, Stelios; Krol, Maarten C.; van Noije, Twan P. C.; Le Sager, Philippe

    2017-04-01

    Atmospheric deposition of trace constituents, both of natural and anthropogenic origin, can act as a nutrient source into the open ocean and affect marine ecosystem functioning and subsequently the exchange of CO2 between the atmosphere and the global ocean. Dust is known as a major source of nutrients to the global ocean, but only a fraction of these nutrients is released in soluble form that can be assimilated by the ecosystems. Iron (Fe) is a key micronutrient that significantly modulates gross primary production in High-Nutrient-Low-Chlorophyll (HNLC) oceans, where macronutrients like nitrate are abundant but primary production is limited by Fe scarcity. The global atmospheric Fe cycle is here parameterized in the state-of-the-art global Earth System Model EC-Earth. The model takes into account the primary emissions of both insoluble and soluble Fe, associated with dusts and combustion processes. The impact of atmospheric acidity on mineral solubility is parameterized based on updated experimental and theoretical findings, and model results are evaluated against available observations. The link between the soluble Fe atmospheric deposition and anthropogenic sources is also investigated. Overall, the response of the chemical composition of nutrient containing aerosols to atmospheric composition changes is demonstrated and quantified. This work has been financed by the Marie-Curie H2020-MSCA-IF-2015 grant (ID 705652) ODEON (Online DEposition over OceaNs: Modeling the effect of air pollution on ocean bio-geochemistry in an Earth System Model).

  5. Mg line formation in late-type stellar atmospheres. I. The model atom

    NASA Astrophysics Data System (ADS)

    Osorio, Y.; Barklem, P. S.; Lind, K.; Belyaev, A. K.; Spielfiedel, A.; Guitou, M.; Feautrier, N.

    2015-07-01

    Context. Magnesium is an element of significant astrophysical importance, often traced in late-type stars using lines of neutral magnesium, which is expected to be subject to departures from local thermodynamic equilibrium (LTE). The importance of Mg , together with the unique range of spectral features in late-type stars probing different parts of the atom, as well as its relative simplicity from an atomic physics point of view, makes it a prime target and test bed for detailed ab initio non-LTE modelling in stellar atmospheres. Previous non-LTE modelling of spectral line formation has, however, been subject to uncertainties due to lack of accurate data for inelastic collisions with electrons and hydrogen atoms. Aims: In this paper we build and test a Mg model atom for spectral line formation in late-type stars with new or recent inelastic collision data and no associated free parameters. We aim to reduce these uncertainties and thereby improve the accuracy of Mg non-LTE modelling in late-type stars. Methods: For the low-lying states of Mg i, electron collision data were calculated using the R-matrix method. Hydrogen collision data, including charge transfer processes, were taken from recent calculations by some of us. Calculations for collisional broadening by neutral hydrogen were also performed where data were missing. These calculations, together with data from the literature, were used to build a model atom. This model was then employed in the context of standard non-LTE modelling in 1D (including average 3D) model atmospheres in a small set of stellar atmosphere models. First, the modelling was tested by comparisons with observed spectra of benchmark stars with well-known parameters. Second, the spectral line behaviour and uncertainties were explored by extensive experiments in which sets of collisional data were changed or removed. Results: The modelled spectra agree well with observed spectra from benchmark stars, showing much better agreement with line

  6. Non-local Thermodynamic Equilibrium Stellar Spectroscopy with 1D and <3D> Models. I. Methods and Application to Magnesium Abundances in Standard Stars

    NASA Astrophysics Data System (ADS)

    Bergemann, Maria; Collet, Remo; Amarsi, Anish M.; Kovalev, Mikhail; Ruchti, Greg; Magic, Zazralt

    2017-09-01

    We determine Mg abundances in six Gaia benchmark stars using theoretical one-dimensional (1D) hydrostatic model atmospheres, as well as temporally and spatially averaged three-dimensional (<3D>) model atmospheres. The stars cover a range of Teff from 4700 to 6500 K, log g from 1.6 to 4.4 dex, and [Fe/H] from ‑3.0 dex to solar. Spectrum synthesis calculations are performed in local thermodynamic equilibrium (LTE) and in non-LTE (NLTE) using the oscillator strengths recently published by Pehlivan Rhodin et al. We find that: (a) Mg abundances determined from the infrared spectra are as accurate as the optical diagnostics, (b) the NLTE effects on Mg I line strengths and abundances in this sample of stars are minor (although for a few Mg I lines the NLTE effects on abundance exceed 0.6 dex in <3D> and 0.1 dex in 1D, (c) the solar Mg abundance is 7.56+/- 0.05 dex (total error), in excellent agreement with the Mg abundance measured in CI chondritic meteorites, (d) the 1D NLTE and <3D> NLTE approaches can be used with confidence to analyze optical Mg I lines in spectra of dwarfs and sub-giants, but for red giants the Mg I 5711 Å line should be preferred, (e) low-excitation Mg I lines are sensitive to the atmospheric structure; for these lines, LTE calculations with <3D> models lead to significant systematic abundance errors. The methods developed in this work will be used to study Mg abundances of a large sample of stars in the next paper in the series.

  7. Time-dependent models of grain-forming stellar atmospheres

    SciTech Connect

    Woodrow, J.E.J.; Auman, J.R

    1982-06-01

    Completely time-dependent models of the expanding atmospheres of cool, carbon-rich stars were calculated. The driving force for the expansion was radiation pressure on grains. The grains were assumed to have the structure of graphite with sigma = 1000 ergs cm/sup -2/. The stellar parameters adopted for the models were M = 1.5 M/sub x/O, L = 1.94 x 10/sup 4/ L/sub x/O, C/H = 1.22 x 10/sup -3/, and C/O = 1.76. Two models were generated. Model 1 had T( = 2500 K and model 2, T( = 2400 K. In both models grain nucleation was negligible at supersaturation levels less than 5. At higher supersaturation levels condensation of small (aroughly-equal5.5 x 10/sup -8/ cm) grains was sufficiently great to generate mass flows. The calculated mass loss rate for model 1 was 6.2 x 10/sup -9/ M/sub sun/ yr/sup -1/ and for model 2, 7.4 x 10/sup -8/ M/sub sun/ yr/sup -1/. The mass flow approached a steady state in model 1, but in model 2 a small amplitude pulsation was superposed upon the outward flow. Initially this pulsation was very irregular, but after an elapsed time of 27 x 10/sup 7/ s the model had relaxed into a steady pulsation mode with a period of 6.4 x 10/sup 7/ s. This mode was followed for four periods during which the amplitude of the pulses remained constant. The driving force for this pulsation appears to be an opacity-controlled feedback mechanism which operated between the grain-forming region of the model and the hydrogen dissociation zone. In model 1 the opacity of the grains was too small for this mechanism to produce pulsations.

  8. Capturing atmospheric effects on 3D millimeter wave radar propagation patterns

    NASA Astrophysics Data System (ADS)

    Cook, Richard D.; Fiorino, Steven T.; Keefer, Kevin J.; Stringer, Jeremy

    2016-05-01

    Traditional radar propagation modeling is done using a path transmittance with little to no input for weather and atmospheric conditions. As radar advances into the millimeter wave (MMW) regime, atmospheric effects such as attenuation and refraction become more pronounced than at traditional radar wavelengths. The DoD High Energy Laser Joint Technology Offices High Energy Laser End-to-End Operational Simulation (HELEEOS) in combination with the Laser Environmental Effects Definition and Reference (LEEDR) code have shown great promise simulating atmospheric effects on laser propagation. Indeed, the LEEDR radiative transfer code has been validated in the UV through RF. Our research attempts to apply these models to characterize the far field radar pattern in three dimensions as a signal propagates from an antenna towards a point in space. Furthermore, we do so using realistic three dimensional atmospheric profiles. The results from these simulations are compared to those from traditional radar propagation software packages. In summary, a fast running method has been investigated which can be incorporated into computational models to enhance understanding and prediction of MMW propagation through various atmospheric and weather conditions.

  9. "SMART": A Compact and Handy FORTRAN Code for the Physics of Stellar Atmospheres

    NASA Astrophysics Data System (ADS)

    Sapar, A.; Poolamäe, R.

    2003-01-01

    a special case, using duly chosen pixels on the stellar disk, the spectrum of rotating star can be computed. No instrumental broadening has been incorporated in the code of SMART. To facilitate study of stellar spectra, a GUI (Graphical User Interface) with selection of labels by ions has been compiled to study the spectral lines of different elements and ions in the computed emergent flux. An amazing feature of SMART is that its code is very short: it occupies only 4 two-sided two-column A4 sheets in landscape format. In addition, if well commented, it is quite easily readable and understandable. We have used the tactics of writing the comments on the right-side margin (columns starting from 73). Such short code has been composed widely using the unified input physics (for example the ionisation cross-sections for bound-free transitions and the electron and ion collision rates). As current restriction to the application area of the present version of the SMART is that molecules are since ignored. Thus, it can be used only for luke and hot stellar atmospheres. In the computer code we have tried to avoid bulky often over-optimised methods, primarily meant to spare the time of computations. For instance, we compute the continuous absorption coefficient at every wavelength. Nevertheless, during an hour by the personal computer in our disposal AMD Athlon XP 1700+, 512MB DDRAM) a stellar spectrum with spectral step resolution λ / dλ = 3D100,000 for spectral interval 700 -- 30,000 Å is computed. The model input data and the line data used by us are both the ones computed and compiled by R. Kurucz. In order to follow presence and representability of quantum states and to enumerate them for NLTE studies a C++ code, transforming the needed data to the LATEX version, has been compiled. Thus we have composed a quantum state list for all neutrals and ions in the Kurucz file 'gfhyperall.dat'. The list enables more adequately to compose the concept of super-states, including

  10. CCFpams: Atmospheric stellar parameters from cross-correlation functions

    NASA Astrophysics Data System (ADS)

    Malavolta, Luca; Lovis, Christophe; Pepe, Francesco; Sneden, Christopher; Udry, Stephane

    2017-07-01

    CCFpams allows the measurement of stellar temperature, metallicity and gravity within a few seconds and in a completely automated fashion. Rather than performing comparisons with spectral libraries, the technique is based on the determination of several cross-correlation functions (CCFs) obtained by including spectral features with different sensitivity to the photospheric parameters. Literature stellar parameters of high signal-to-noise (SNR) and high-resolution HARPS spectra of FGK Main Sequence stars are used to calibrate the stellar parameters as a function of CCF areas.

  11. Comparisons of 3D data products of the global atmosphere for the past 120 years

    NASA Astrophysics Data System (ADS)

    Brönnimann, Stefan; Stickler, Alexander; Compo, Gilbert P.

    2010-05-01

    In order to better understand, assess, and eventually predict climate variability and extremes, global 3-dimensional data sets of the atmosphere over a sufficiently long time period are needed. Until recently, there were mainly two reanalyses (NCEP/NCAR and ERA-40), which covered the second half of the 20th century. These are the most widely used data sets in atmospheric and climate science, but the period covered is still too short for many purposes. In cooperation with the Atmospheric Circulation Reconstructions over the Earth initiative (R. Allan, UK Met Office, www.met-acre.org/), different data products have been developed recently that allow a 4-dimensional view of the global atmosphere further back than the mid 20th century. These data sets include the Twentieth Century Reanalysis Project (G. P. Compo, P. Sardeshmukh & J. Whitaker, CU/CIRES/CDC and NOAA/ESRL, http://www.esrl.noaa.gov/psd/data/20thC_Rean/), monthly statistical reconstructions, and a new collection of historical upper-air data (CHUAN, see www.historicalupperair.org). In this presentation we show comparisons of the different data products for several case studies as well as statistically using independent data.

  12. Atmospheric transport of persistent organic pollutants - development of a 3-d dynamical transport model covering the northern hemisphere

    NASA Astrophysics Data System (ADS)

    Hansen, K. M.; Christensen, J. H.; Geels, C.; Frohn, L. M.; Brandt, J.

    2003-04-01

    The Danish Eulerian Hemispheric Model (DEHM) is a 3-D dynamical atmospheric transport model originally developed to describe the atmospheric transport of sulphur, lead, and mercury to the Arctic. The model has been validated carefully for these compounds. A new version of DEHM is currently being developed to describe the atmospheric transport of persistent organic pollutants (POPs) which are toxic, lipophilic and bio-accumulating compounds showing great persistence in the environment. The model has a horizontal resolution of 150 km x 150 km and 18 vertical layers, and it is driven by meteorological data from the numerical weather prediction model MM5V2. During environmental cycling POPs can be deposited and re-emitted several times before reaching a final destination. A description of the exchange processes between the land/ocean surfaces and the atmosphere is included in the model to account for this multi-hop transport. The present model version describes the atmospheric transport of the pesticide alpha-hexachlorocyclohexane (alpha-HCH). Other POPs may be included when proper data on emissions and physical-chemical parameters becomes available. The model-processes and the first model results are presented. The atmospheric transport of alpha-HCH for the 1990s is well described by the model.

  13. 3D Volumetric Analysis of Wind Turbine Wake Properties in the Atmosphere Using High-Resolution Doppler Lidar

    SciTech Connect

    Banta, Robert M.; Pichugina, Yelena L.; Brewer, W. Alan; Lundquist, Julie K.; Kelley, Neil D.; Sandberg, Scott P.; Alvarez II, Raul J.; Hardesty, R. Michael; Weickmann, Ann M.

    2015-05-01

    Wind turbine wakes in the atmosphere are three-dimensional (3D) and time dependent. An important question is how best to measure atmospheric wake properties, both for characterizing these properties observationally and for verification of numerical, conceptual, and physical (e.g., wind tunnel) models of wakes. Here a scanning, pulsed, coherent Doppler lidar is used to sample a turbine wake using 3D volume scan patterns that envelop the wake and simultaneously measure the inflow profile. The volume data are analyzed for quantities of interest, such as peak velocity deficit, downwind variability of the deficit, and downwind extent of the wake, in a manner that preserves the measured data. For the case study presented here, in which the wake was well defined in the lidar data, peak deficits of up to 80% were measured 0.6-2 rotor diameters (D) downwind of the turbine, and the wakes extended more than 11D downwind. Temporal wake variability over periods of minutes and the effects of atmospheric gusts and lulls in the inflow are demonstrated in the analysis. Lidar scanning trade-offs important to ensuring that the wake quantities of interest are adequately sampled by the scan pattern, including scan coverage, number of scans per volume, data resolution, and scan-cycle repeat interval, are discussed.

  14. A 3D point of view on the habitability of hot, moist atmospheres

    NASA Astrophysics Data System (ADS)

    Leconte, J.; Forget, F.; Wordsworth, R.; Charnay, B.

    2012-12-01

    Because current exoplanets detection methods are biased toward shorter period orbits, most planets discovered to date have a higher equilibrium temperature than the Earth and Venus. If a substantial amount of water is available at the surface, water vapor could become a major constituent of the atmosphere of these planets, and lead to the so-called runaway or moist greenhouse that determines the inner edge of the traditional habitable zone. Modeling the climate of such hot, moist atmospheres is thus mandatory to understand the atmospheric properties of hot transiting terrestrial exoplanets for which observation should soon be available. However, so far, emphasis has been put on 1D radiative convective models, which cannot well predict the impact of clouds, or the non-linear effect of spatial inhomogeneities. In particular, while these single column models can provide reasonable answers for planets with a dense atmosphere or a rapid rotation which limit large scale temperature contrasts, only a tridimensional model can treat properly the case of close in exoplanets for which the rotation rate is synchronized (or pseudo synchronized for eccentric orbits) with the orbital motion. Indeed, this very peculiar radiative forcing can create a strong day-night side temperature contrast and a very efficient cold trap on the night side that cannot be modeled in 1D. To study the processes determining the inner edge of the habitable zone in a wide variety of contexts, we used the new "generic" LMD GCM developed for exoplanet studies and which notably include a versatile radiative transfer code to simulate any atmospheric cocktail of gases, aerosols and clouds for which optical data exists. For the present work, we have implemented a new water cycle scheme with a more robust treatment of the cloud microphysics, precipitations and water vapor continuum opacity. This allows us to model hot atmospheres with an arbitrarily large amount of water vapor. Using this tridimensional model

  15. Direct modeling of transiting planet light curves from model stellar atmospheres

    NASA Astrophysics Data System (ADS)

    Mcneil, Joseph; Neilson, H.; Ignace, R.

    2014-01-01

    Recent and new observations of extrasolar planets via the transit method are provided unparalleled measurements that enhance our understanding of both the planets and their host stars. However, analysis techniques assume simple parameters to describe the stellar intensity profile. In this work, we compare new planetary transit light curves computed directly from model stellar atmosphere intensity profiles with light curves computed using limb-darkening coefficients. This comparison highlights the need for better models of stellar intensities and atmospheres to better understand the extrasolar planets themselves, especially in the upcoming eras of TESS and PLATO.

  16. Non-local Thermodynamic Equilibrium Stellar Spectroscopy with 1D and >3D< Models. II. Chemical Properties of the Galactic Metal-poor Disk and the Halo

    NASA Astrophysics Data System (ADS)

    Bergemann, Maria; Collet, Remo; Schönrich, Ralph; Andrae, Rene; Kovalev, Mikhail; Ruchti, Greg; Hansen, Camilla Juul; Magic, Zazralt

    2017-09-01

    From exploratory studies and theoretical expectations it is known that simplifying approximations in spectroscopic analysis (local thermodynamic equilibrium (LTE), 1D) lead to systematic biases of stellar parameters and abundances. These biases depend strongly on surface gravity, temperature and, in particular, for LTE versus non-LTE (NLTE), on metallicity of the stars. Here we analyze the [Mg/Fe] and [Fe/H] plane of a sample of 326 stars, comparing LTE and NLTE results obtained using 1D hydrostatic models and averaged <3D> models. We show that compared to the <3D> NLTE benchmark, the other three methods display increasing biases toward lower metallicities, resulting in false trends of [Mg/Fe] against [Fe/H], which have profound implications for interpretations by chemical evolution models. In our best <3D> NLTE model, the halo and disk stars show a clearer behavior in the [Mg/Fe]–[Fe/H] plane, from the knee in abundance space down to the lowest metallicities. Our sample has a large fraction of thick disk stars and this population extends down to at least [Fe/H] ∼ ‑1.6 dex, further than previously proven. The thick disk stars display a constant [Mg/Fe] ≈ 0.3 dex, with a small intrinsic dispersion in [Mg/Fe] that suggests that a fast SN Ia channel is not relevant for the disk formation. The halo stars reach higher [Mg/Fe] ratios and display a net trend of [Mg/Fe] at low metallicities, paired with a large dispersion in [Mg/Fe]. These indicate the diverse origin of halo stars from accreted low-mass systems to stochastic/inhomogeneous chemical evolution in the Galactic halo.

  17. 3-d modeling of the middle and upper atmosphere response to the 27-day solar variation

    NASA Astrophysics Data System (ADS)

    Gruzdev, A.; Schmidt, H.; Brasseur, G.

    We present results of an analysis of the effect of the 27-day solar variation on composition and temperature of the stratosphere mesosphere and lower thermosphere calculated with the 3-dimensional chemistry climate model HAMMONIA The spectral amplitudes of the 27-day solar cycle within the wavelength range from Lyman-a to the short infrared which are input parameters at the upper boundary of the model were calculated from data of UARS SOLSTICE measurements A combination of high resolution spectral and cross-spectral analyses allows determining 27-day variations in the Earth atmosphere which are related to the 27-day solar forcing These methods give also estimates of the amplitude and hence sensitivity and phase of the response While the calculated thermal and chemical responses are very distinct and permanent in the upper atmosphere the responses in the stratosphere and mesosphere are intermittent in time and affected as well by interannual variability It is due to interference of the inherent atmospheric variability and the variability forced by the 27-day solar cycle which sophisticates the response to the 27-day solar forcing in large parts of the model stratosphere and mesosphere In the extratropical latitudes the responses are seasonally dependent Altitude-latitude distributions of sensitivities and phases of the responses to the 27-day solar forcing are analyzed in detail for temperature and chemical species important for ozone chemistry The sensitivity and phase of the ozone response in the tropical stratosphere and lower mesosphere are in satisfactory

  18. 3D mixing in hot Jupiters atmospheres. I. Application to the day/night cold trap in HD 209458b

    NASA Astrophysics Data System (ADS)

    Parmentier, Vivien; Showman, Adam P.; Lian, Yuan

    2013-10-01

    Context. Hot Jupiters exhibit atmospheric temperatures ranging from hundreds to thousands of Kelvin. Because of their large day-night temperature differences, condensable species that are stable in the gas phase on the dayside - such as TiO and silicates - may condense and gravitationally settle on the nightside. Atmospheric circulation may counterbalance this tendency to gravitationally settle. This three-dimensional (3D) mixing of condensable species has not previously been studied for hot Jupiters, yet it is crucial to assess the existence and distribution of TiO and silicates in the atmospheres of these planets. Aims: We investigate the strength of the nightside cold trap in hot Jupiters atmospheres by investigating the mechanisms and strength of the vertical mixing in these stably stratified atmospheres. We apply our model to the particular case of TiO to address the question of whether TiO can exist at low pressure in sufficient abundances to produce stratospheric thermal inversions despite the nightside cold trap. Methods: We modeled the 3D circulation of HD 209458b including passive (i.e. radiatively inactive) tracers that advect with the 3D flow, with a source and sink term on the nightside to represent their condensation into haze particles and their gravitational settling. Results: We show that global advection patterns produce strong vertical mixing that can keep condensable species aloft as long as they are trapped in particles of sizes of a few microns or less on the nightside. We show that vertical mixing results not from small-scale convection but from the large-scale circulation driven by the day-night heating contrast. Although this vertical mixing is not diffusive in any rigorous sense, a comparison of our results with idealized diffusion models allows a rough estimate of the effective vertical eddy diffusivities in these atmospheres. The parametrization Kzz=5 × 104/ Pbar m2s-1, valid from ~1 bar to a few μbar, can be used in 1D models of HD

  19. Revolutionising incoherent scatter science with EISCAT_3D: A European three-dimensional imaging radar for atmospheric and geospace research

    NASA Astrophysics Data System (ADS)

    Turunen, Esa; McCrea, Ian; Kosch, Mike

    2010-05-01

    EISCAT_3D will be Europe's next-generation radar for the study of the high-latitude atmosphere and geospace, located in northern Fenno-Scandinavia, with capabilities going well beyond anything currently available to the international research community. The facility will consist of several very large active phased-array antenna transmitters/receivers, and multiple passive sites located in three countries. Depending on the available funding, EISCAT_3D will be comprised of tens of thousands, up to more than 100 000, individual antenna elements. EISCAT_3D combines several key attributes which have never before been available together in a single radar, such as volumetric imaging and tracking, aperture synthesis imaging, multistatic configuration, improved sensitivity and transmitter flexibility. The use of advanced beam-forming technology allows the beam direction to be switched in milliseconds, rather than the minutes which it can take to re-position dish-based radars. This allows very wide spatial coverage to be obtained, by interleaving multiple beam directions to carry out quasi-simultaneous volumetric imaging. It also allows objects such as satellites and space debris to be tracked across the sky. At the passive sites, the design allows for at least five simultaneous beams at full bandwidth, rising to over twenty beams if the bandwidth is limited to the ion line, allowing the whole range of the transmitted beam to be imaged from each passive site, using holographic radar techniques. EISCAT_3D has a modular configuration, which allows an active array to be split into smaller elements to be used for aperture synthesis imaging. The result will be an entirely new data product, consisting of range-dependent images of small sub-beamwidth scale structures, with sizes down to 20 m. EISCAT_3D will be the first phased array incoherent scatter radar to use a multistatic configuration. A minimum of five radar sites, consisting of two pairs located around 120 km and 250 km

  20. The ATLAS3D project - XXI. Correlations between gradients of local escape velocity and stellar populations in early-type galaxies

    NASA Astrophysics Data System (ADS)

    Scott, Nicholas; Cappellari, Michele; Davies, Roger L.; Kleijn, Gijs Verdoes; Bois, Maxime; Alatalo, Katherine; Blitz, Leo; Bournaud, Frédéric; Bureau, Martin; Crocker, Alison; Davis, Timothy A.; de Zeeuw, P. T.; Duc, Pierre-Alain; Emsellem, Eric; Khochfar, Sadegh; Krajnović, Davor; Kuntschner, Harald; McDermid, Richard M.; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Serra, Paolo; Weijmans, Anne-Marie; Young, Lisa M.

    2013-07-01

    We explore the connection between the local escape velocity, Vesc, and the stellar population properties in the ATLAS3D survey, a complete, volume-limited sample of nearby early-type galaxies. We make use of ugriz photometry to construct Multi-Gaussian Expansion models of the surface brightnesses of our galaxies. We are able to fit the full range of surface brightness profiles found in our sample, and in addition we reproduce the results of state-of-the-art photometry in the literature with residuals of 0.04 mag. We utilize these photometric models and SAURON integral-field spectroscopy, combined with Jeans dynamical modelling, to determine the local Vesc derived from the surface brightness. We find that the local Vesc is tightly correlated with the Mg b and Fe5015 line strengths and optical colours, and anti-correlated with the Hβ line strength. In the case of the Mg b and colour-Vesc relations we find that the relation within individual galaxies follows the global relation between different galaxies. We intentionally ignored any uncertain contribution due to dark matter since we are seeking an empirical description of stellar population gradients in early-type galaxies that is ideal for quantitative comparison with model predictions. We also make use of single stellar population (SSP) modelling to transform our line strength index measurements into the SSP-equivalent parameters age (t), metallicity ([Z/H]) and α-enhancement [α/Fe]. The residuals from the relation are correlated with age, [α/Fe], molecular gas mass and local environmental density. We identify a population of galaxies that occur only at low Vesc that exhibit negative gradients in the Mg b- and Colour-Vesc relations. These galaxies typically have young central stellar populations and contain significant amounts of molecular gas and dust. Combining these results with N-body simulations of binary mergers we use the Mg b-Vesc relation to constrain the possible number of dry mergers experienced by

  1. Lithium spectral line formation in stellar atmospheres. The impact of convection and NLTE effects

    NASA Astrophysics Data System (ADS)

    Klevas, J.; Kučinskas, A.; Steffen, M.; Caffau, E.; Ludwig, H.-G.

    2016-02-01

    Aims: Because of the complexities involved in treating spectral line formation in full 3D and non-local thermodynamic equilibrium (NLTE), different simplified approaches are sometimes used to account for the NLTE effects with 3D hydrodynamical model atmospheres. In certain cases, chemical abundances are derived in 1D NLTE and then corrected for the 3D effects by adding 3D-1D LTE (Local Thermodynamic Equilibrium, LTE) abundance corrections (3D+NLTE approach). Alternatively, average ⟨3D⟩ model atmospheres are sometimes used to substitute for the full 3D hydrodynamical models. Methods: In this work we tested whether the results obtained using these simplified schemes (3D+NLTE, ⟨3D⟩ NLTE) may reproduce those derived using the full 3D NLTE computations. The tests were made using 3D hydrodynamical CO5BOLD model atmospheres of the main sequence (MS), main sequence turn-off (TO), subgiant (SGB), and red giant branch (RGB) stars, all at two metallicities, [ M / H ] = 0.0 and -2.0. Our goal was to investigate the role of 3D and NLTE effects on the formation of the 670.8 nm lithium resonance line. This was done by assessing differences in the strengths of synthetic 670.8 nm line profiles, which were computed using 3D/1D NLTE/LTE approaches. Results: Our results show that Li 670.8 nm line strengths obtained using different methodologies differ only slightly in most of the models at solar metallicity studied here. However, the line strengths predicted with the 3D NLTE and 3D+NLTE approaches become significantly different at subsolar metallicities. At [ M / H ] = -2.0, this may lead to (3D NLTE) - (3D+NLTE) differences in the predicted lithium abundance of ~0.46 and ~0.31 dex in the TO and RGB stars respectively. On the other hand, NLTE line strengths computed with the average ⟨3D⟩ and 1D model atmospheres are similar to those obtained with the full 3D NLTE approach for MS, TO, SGB, and RGB stars, at all metallicities; 3D - ⟨3D⟩ and 3D - 1D differences in the

  2. 3D modeling of doping from the atmosphere in floating zone silicon crystal growth

    NASA Astrophysics Data System (ADS)

    Sabanskis, A.; Surovovs, K.; Virbulis, J.

    2017-01-01

    Three-dimensional numerical simulations of the inert gas flow, melt flow and dopant transport in both phases are carried out for silicon single crystal growth using the floating zone method. The mathematical model allows to predict the cooling heat flux density at silicon surfaces and realistically describes the dopant transport in case of doping from the atmosphere. A very good agreement with experiment is obtained for the radial resistivity variation profiles by taking into account the temperature dependence of chemical reaction processes at the free surface.

  3. COOP 3D ARPA Experiment 109 National Center for Atmospheric Research

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Coupled atmospheric and hydrodynamic forecast models were executed on the supercomputing resources of the National Center for Atmospheric Research (NCAR) in Boulder, Colorado and the Ohio Supercomputing Center (OSC)in Columbus, Ohio. respectively. The interoperation of the forecast models on these geographically diverse, high performance Cray platforms required the transfer of large three dimensional data sets at very high information rates. High capacity, terrestrial fiber optic transmission system technologies were integrated with those of an experimental high speed communications satellite in Geosynchronous Earth Orbit (GEO) to test the integration of the two systems. Operation over a spacecraft in GEO orbit required modification of the standard configuration of legacy data communications protocols to facilitate their ability to perform efficiently in the changing environment characteristic of a hybrid network. The success of this performance tuning enabled the use of such an architecture to facilitate high data rate, fiber optic quality data communications between high performance systems not accessible to standard terrestrial fiber transmission systems. Thus obviating the performance degradation often found in contemporary earth/satellite hybrids.

  4. 3D magnetic field configuration of small-scale reconnection events in the solar plasma atmosphere

    NASA Astrophysics Data System (ADS)

    Shimizu, T.

    2015-10-01

    The outer solar atmosphere, i.e., the corona and the chromosphere, is replete with small energy-release events, which are accompanied by transient brightening and jet-like ejections. These events are considered to be magnetic reconnection events in the solar plasma, and their dynamics have been studied using recent advanced observations from the Hinode spacecraft and other observatories in space and on the ground. These events occur at different locations in the solar atmosphere and vary in their morphology and amount of the released energy. The magnetic field configurations of these reconnection events are inferred based on observations of magnetic fields at the photospheric level. Observations suggest that these magnetic configurations can be classified into two groups. In the first group, two anti-parallel magnetic fields reconnect to each other, yielding a 2D emerging flux configuration. In the second group, helical or twisted magnetic flux tubes are parallel or at a relative angle to each other. Reconnection can occur only between anti-parallel components of the magnetic flux tubes and may be referred to as component reconnection. The latter configuration type may be more important for the larger class of small-scale reconnection events. The two types of magnetic configurations can be compared to counter-helicity and co-helicity configurations, respectively, in laboratory plasma collision experiments.

  5. 3D magnetic field configuration of small-scale reconnection events in the solar plasma atmosphere

    SciTech Connect

    Shimizu, T.

    2015-10-15

    The outer solar atmosphere, i.e., the corona and the chromosphere, is replete with small energy-release events, which are accompanied by transient brightening and jet-like ejections. These events are considered to be magnetic reconnection events in the solar plasma, and their dynamics have been studied using recent advanced observations from the Hinode spacecraft and other observatories in space and on the ground. These events occur at different locations in the solar atmosphere and vary in their morphology and amount of the released energy. The magnetic field configurations of these reconnection events are inferred based on observations of magnetic fields at the photospheric level. Observations suggest that these magnetic configurations can be classified into two groups. In the first group, two anti-parallel magnetic fields reconnect to each other, yielding a 2D emerging flux configuration. In the second group, helical or twisted magnetic flux tubes are parallel or at a relative angle to each other. Reconnection can occur only between anti-parallel components of the magnetic flux tubes and may be referred to as component reconnection. The latter configuration type may be more important for the larger class of small-scale reconnection events. The two types of magnetic configurations can be compared to counter-helicity and co-helicity configurations, respectively, in laboratory plasma collision experiments.

  6. A 3-D RBF-FD elliptic solver for irregular boundaries: modeling the atmospheric global electric circuit with topography

    NASA Astrophysics Data System (ADS)

    Bayona, V.; Flyer, N.; Lucas, G. M.; Baumgaertner, A. J. G.

    2015-04-01

    A numerical model based on Radial Basis Function-generated Finite Differences (RBF-FD) is developed for simulating the Global Electric Circuit (GEC) within the Earth's atmosphere, represented by a 3-D variable coefficient linear elliptic PDE in a spherically-shaped volume with the lower boundary being the Earth's topography and the upper boundary a sphere at 60 km. To our knowledge, this is (1) the first numerical model of the GEC to combine the Earth's topography with directly approximating the differential operators in 3-D space, and related to this (2) the first RBF-FD method to use irregular 3-D stencils for discretization to handle the topography. It benefits from the mesh-free nature of RBF-FD, which is especially suitable for modeling high-dimensional problems with irregular boundaries. The RBF-FD elliptic solver proposed here makes no limiting assumptions on the spatial variability of the coefficients in the PDE (i.e. the conductivity profile), the right hand side forcing term of the PDE (i.e. distribution of current sources) or the geometry of the lower boundary.

  7. Stellarators

    SciTech Connect

    Hartmann, D.A.

    2004-03-15

    Stellarators are toroidal devices where the required rotational transform of the magnetic field lines is generated by external field coils and not via an induced net toroidal plasma current. This confinement scheme has the advantages that, in principle, steady-state plasma operation is possible and that it does not have to brace itself against disruptions of a toroidal plasma current. At the cost of having to give up toroidal symmetry the properties of the stellarator field can be tailored to suit reactor needs. Research focuses on the plasma confinement properties of different stellarator fields and investigates the problems arising when one extrapolates to reactor parameters.

  8. The absorption spectrum of monodeuterated methane /CH3D/ in the 6000-12000 A spectral region. [in atmospheres of outer planets

    NASA Technical Reports Server (NTRS)

    Danehy, R. G.; Lutz, B. L.; Owen, T.; Scattergood, T. W.; Goetz, W.

    1977-01-01

    Preliminary results of a laboratory study of the absorption spectrum of CH3D are presented. Three new parallel-type bands are reported at 8379 A, 9613 A, and 1.065 microns. The application of this work to the search for CH3D in the atmospheres of the outer planets is discussed.

  9. Abundance analysis of the halo giant HD 122563 with three-dimensional model stellar atmospheres

    NASA Astrophysics Data System (ADS)

    Collet, R.; Nordlund, Å.; Asplund, M.; Hayek, W.; Trampedach, R.

    We present a preliminary local thermodynamic equilibrium (LTE) abundance analysis of the template halo red giant HD122563 based on a realistic, three-dimensional (3D), time-dependent, hydrodynamical model atmosphere of the very metal-poor star. We compare the results of the 3D analysis with the abundances derived by means of a standard LTE analysis based on a classical, 1D, hydrostatic model atmosphere of the star. Due to the different upper photospheric temperature stratifications predicted by 1D and 3D models, we find large, negative, 3D-1D LTE abundance differences for low-excitation OH and Fe I lines. We also find trends with lower excitation potential in the derived Fe LTE abundances from Fe I lines, in both the 1D and 3D analyses. Such trends may be attributed to the neglected departures from LTE in the spectral line formation calculations.

  10. 3-D simulation of high-intensity ultra-short laser pulse propagation through atmospheric optical systems

    NASA Astrophysics Data System (ADS)

    Dodd, Evan S.; Schmitt, Mark J.

    2001-10-01

    The manipulation of ultra-short pulses (USPs) in the laboratory is affected by three main factors; (a) the layout of optical elements in the optical train, (b) the non-linear interaction of the pulse with the transmissive optical elements (including the intervening atmosphere) and (c) ionization effects near beam focal regions. These effects have been included in our simulation code in order to examine 3-D aspects of USP propagation through "real" optical systems. Our models for optical elements include the ability to examine the effects of element misalignments and asymmetric finite apertures. In the atmosphere, we have included the effect of the USP electric field intensity on the local index of refraction. A model to include the effects of ionization in the atmosphere has also been added. The collective behavior from these sources results in complex interactions within the laser pulse as it propagates. This is important since it reduces the distance the pulse may travel and the spatial and temporal energy distribution of the pulse after propagation. Simulation examples are presented.

  11. Planet transit and stellar granulation detection with interferometry. Using the three-dimensional stellar atmosphere Stagger-grid simulations

    NASA Astrophysics Data System (ADS)

    Chiavassa, A.; Ligi, R.; Magic, Z.; Collet, R.; Asplund, M.; Mourard, D.

    2014-07-01

    Context. Stellar activity and, in particular, convection-related surface structures, potentially cause bias in planet detection and characterisation. In the latter, interferometry can help disentangle the signal of the transiting planet. Aims: We used realistic three-dimensional (3D) radiative hydrodynamical (RHD) simulations from the Stagger-grid and synthetic images computed with the radiative transfer code Optim3D to provide interferometric observables to extract the signature of stellar granulation and transiting planets. Methods: We computed intensity maps from RHD simulations and produced synthetic stellar disk images as a nearby observer would see, thereby accounting for the centre-to-limb variations. We did this for twelve interferometric instruments covering wavelengths ranging from optical to infrared. We chose an arbitrary date and arbitrary star with coordinates, and this ensures observability throughout the night. This optimisation of observability allows for a broad coverage of spatial frequencies. The stellar surface asymmetries in the brightness distribution mostly affect closure phases, because of either convection-related structures or a faint companion. We then computed closure phases for all images and compared the system star with a transiting planet and the star alone. We considered the impact of magnetic spots with the construction of a hypothetical starspot image and compared the resulting closure phases with the system star that has a transiting planet. Results: We analysed the impact of convection at different wavelengths. All the simulation depart from the axisymmetric case (closure phases not equal to 0 or ± π) at all wavelengths. The levels of asymmetry and inhomogeneity of stellar disk images reach high values with stronger effects from the 3rd visibility lobe on. We present two possible targets (Beta Com and Procyon) either in the visible or in the infrared and find that departures up to 16° can be detected on the 3rd lobe and

  12. Hydrogen Atom Collision Processes in Cool Stellar Atmospheres: Effects on Spectral Line Strengths and Measured Chemical Abundances in Old Stars

    NASA Astrophysics Data System (ADS)

    Barklem, Paul S.

    2012-12-01

    The precise measurement of the chemical composition of stars is a fundamental problem relevant to many areas of astrophysics. State-of-the-art approaches attempt to unite accurate descriptions of microphysics, non-local thermodynamic equilibrium (non-LTE) line formation and 3D hydrodynamical model atmospheres. In this paper I review progress in understanding inelastic collisions of hydrogen atoms with other species and their influence on spectral line formation and derived abundances in stellar atmospheres. These collisions are a major source of uncertainty in non-LTE modelling of spectral lines and abundance determinations, especially for old, metal-poor stars, which are unique tracers of the early evolution of our galaxy. Full quantum scattering calculations of direct excitation processes X(nl) + H leftrightarrow X(n'l') + H and charge transfer processes X(nl) + H leftrightarrow X+ + H- have been done for Li, Na and Mg [1,2,3] based on detailed quantum chemical data, e.g. [4]. Rate coefficients have been calculated and applied to non-LTE modelling of spectral lines in stellar atmospheres [5,6,7,8,9]. In all cases we find that charge transfer processes from the first excited S-state are very important, and the processes affect measured abundances for Li, Na and Mg in some stars by as much as 60%. Effects vary with stellar parameters (e.g. temperature, luminosity, metal content) and so these processes are important not only for accurate absolute abundances, but also for relative abundances among dissimilar stars.

  13. Modeling ionospheric disturbance features in quasi-vertically incident ionograms using 3-D magnetoionic ray tracing and atmospheric gravity waves

    NASA Astrophysics Data System (ADS)

    Cervera, M. A.; Harris, T. J.

    2014-01-01

    The Defence Science and Technology Organisation (DSTO) has initiated an experimental program, Spatial Ionospheric Correlation Experiment, utilizing state-of-the-art DSTO-designed high frequency digital receivers. This program seeks to understand ionospheric disturbances at scales < 150 km and temporal resolutions under 1 min through the simultaneous observation and recording of multiple quasi-vertical ionograms (QVI) with closely spaced ionospheric control points. A detailed description of and results from the first campaign conducted in February 2008 were presented by Harris et al. (2012). In this paper we employ a 3-D magnetoionic Hamiltonian ray tracing engine, developed by DSTO, to (1) model the various disturbance features observed on both the O and X polarization modes in our QVI data and (2) understand how they are produced. The ionospheric disturbances which produce the observed features were modeled by perturbing the ionosphere with atmospheric gravity waves.

  14. Vertical Scan (V-SCAN) for 3-D Grid Adaptive Mesh Refinement for an atmospheric Model Dynamical Core

    NASA Astrophysics Data System (ADS)

    Andronova, N. G.; Vandenberg, D.; Oehmke, R.; Stout, Q. F.; Penner, J. E.

    2009-12-01

    One of the major building blocks of a rigorous representation of cloud evolution in global atmospheric models is a parallel adaptive grid MPI-based communication library (an Adaptive Blocks for Locally Cartesian Topologies library -- ABLCarT), which manages the block-structured data layout, handles ghost cell updates among neighboring blocks and splits a block as refinements occur. The library has several modules that provide a layer of abstraction for adaptive refinement: blocks, which contain individual cells of user data; shells - the global geometry for the problem, including a sphere, reduced sphere, and now a 3D sphere; a load balancer for placement of blocks onto processors; and a communication support layer which encapsulates all data movement. A major performance concern with adaptive mesh refinement is how to represent calculations that have need to be sequenced in a particular order in a direction, such as calculating integrals along a specific path (e.g. atmospheric pressure or geopotential in the vertical dimension). This concern is compounded if the blocks have varying levels of refinement, or are scattered across different processors, as can be the case in parallel computing. In this paper we describe an implementation in ABLCarT of a vertical scan operation, which allows computing along vertical paths in the correct order across blocks transparent to their resolution and processor location. We test this functionality on a 2D and a 3D advection problem, which tests the performance of the model’s dynamics (transport) and physics (sources and sinks) for different model resolutions needed for inclusion of cloud formation.

  15. Long-range atmospheric transport of polycyclic aromatic hydrocarbons: a global 3-D model analysis including evaluation of Arctic sources.

    PubMed

    Friedman, Carey L; Selin, Noelle E

    2012-09-04

    We use the global 3-D chemical transport model GEOS-Chem to simulate long-range atmospheric transport of polycyclic aromatic hydrocarbons (PAHs). To evaluate the model's ability to simulate PAHs with different volatilities, we conduct analyses for phenanthrene (PHE), pyrene (PYR), and benzo[a]pyrene (BaP). GEOS-Chem captures observed seasonal trends with no statistically significant difference between simulated and measured mean annual concentrations. GEOS-Chem also captures variability in observed concentrations at nonurban sites (r = 0.64, 0.72, and 0.74, for PHE, PYR, and BaP). Sensitivity simulations suggest snow/ice scavenging is important for gas-phase PAHs, and on-particle oxidation and temperature-dependency of gas-particle partitioning have greater effects on transport than irreversible partitioning or increased particle concentrations. GEOS-Chem estimates mean atmospheric lifetimes of <1 day for all three PAHs. Though corresponding half-lives are lower than the 2-day screening criterion for international policy action, we simulate concentrations at the high-Arctic station of Spitsbergen within four times observed concentrations with strong correlation (r = 0.70, 0.68, and 0.70 for PHE, PYR, and BaP). European and Russian emissions combined account for ~80% of episodic high-concentration events at Spitsbergen.

  16. Strong turbulence and atmospheric waves in stellar occultations

    NASA Technical Reports Server (NTRS)

    French, R. G.; Lovelace, R. V. E.

    1983-01-01

    General techniques for producing model lightcurves for a variety of realistic atmospheric irregularities, including turbulence and inertia-gravity waves, are presented and applied. The restrictions of weak scintillation theory are relaxed and model lightcurves are constructed using wave optics for atmospheres with strong, anisotropic turbulence. This is accomplished by numerical simulations which model the propagation of a wave through a phase-changing screen while maintaining complete amplitude and phase information from the wave. The results are compared with available weak scintillation theory and with recent occultation data. The effects of large scale atmospheric waves with realistic horizontal structure are examined, and the reliability of the numerical inversion method in retrieving the true atmospheric vertical structure under conditions of strong ray crossing and horizontal inhomogeneities is assessed. The nature of model lightcurve spikes generated using geometric optics and wave optics are compared.

  17. AE3D

    SciTech Connect

    Spong, Donald A

    2016-06-20

    AE3D solves for the shear Alfven eigenmodes and eigenfrequencies in a torodal magnetic fusion confinement device. The configuration can be either 2D (e.g. tokamak, reversed field pinch) or 3D (e.g. stellarator, helical reversed field pinch, tokamak with ripple). The equations solved are based on a reduced MHD model and sound wave coupling effects are not currently included.

  18. Model estimates of inelastic calcium-hydrogen collision data for non-LTE stellar atmospheres modeling

    NASA Astrophysics Data System (ADS)

    Belyaev, A. K.; Yakovleva, S. A.; Guitou, M.; Mitrushchenkov, A. O.; Spielfiedel, A.; Feautrier, N.

    2016-03-01

    Aims: Inelastic processes in low-energy Ca + H and Ca+ + H- collisions are treated for the states from the ground state up to the ionic state with the aim to provide rate coefficients needed for non-LTE modeling of Ca in cool stellar atmospheres. Methods: The electronic molecular structure was determined using a recently proposed model approach that is based on an asymptotic method. Nonadiabatic nuclear dynamics were treated by means of multichannel formulas, based on the Landau-Zener model for nonadiabatic transition probabilities. Results: The cross sections and rate coefficients for inelastic processes in Ca + H and Ca+ + H- collisions were calculated for all transitions between 17 low-lying covalent states plus the ionic state. It is shown that the highest rate coefficient values correspond to the excitation, de-excitation, ion-pair formation, and mutual neutralization processes involving the Ca(4s5s 1,3S) and the ionic Ca+ + H- states. The next group with the second highest rate coefficients includes the processes involving the Ca(4s5p 1,3P), Ca(4s4d 1,3D), and Ca(4s4p 1P) states. The processes from these two groups are likely to be important for non-LTE modeling. Tables 2-11 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/587/A114

  19. A FOURIER OPTICS METHOD FOR CALCULATING STELLAR OCCULTATION LIGHT CURVES BY OBJECTS WITH THIN ATMOSPHERES

    SciTech Connect

    Young, E. F.

    2012-08-15

    A stellar occultation occurs when a solar system object passes in front of a distant star. The light curves resulting from stellar occultations can reveal many aspects of the obscuring object. For airless bodies, the diffraction light curve specifies the object's size, distance and, if several chords are observed, shape. Occultation light curves are especially sensitive to the presence of atmospheres; the refraction light curve is a function of the atmosphere's density, pressure, and temperature profiles. The goal of this paper is to develop a practical algorithm to model the simultaneous effects of diffraction and refraction for objects in which both phenomena are observable. The algorithm we present is flexible: it can be used to calculate light curves by objects with arbitrary shapes and arbitrary atmospheres (including the presence of opacity sources such as hazes), provided that the atmosphere can be represented by a thin screen with a phase delay and an opacity defined at each location in the screen. Because the algorithm is limited at present to thin atmospheres (in which rays from a star are bent but undergo virtually no translation as they pass through an atmosphere), the gas giants, Earth, Mars, and Venus are not treated. Examples of stellar occultations are presented for round or irregularly shaped objects having thin atmospheres of various column densities.

  20. The Intercomparison of 3D Radiation Codes (I3RC): Showcasing Mathematical and Computational Physics in a Critical Atmospheric Application

    NASA Astrophysics Data System (ADS)

    Davis, A. B.; Cahalan, R. F.

    2001-05-01

    The Intercomparison of 3D Radiation Codes (I3RC) is an on-going initiative involving an international group of over 30 researchers engaged in the numerical modeling of three-dimensional radiative transfer as applied to clouds. Because of their strong variability and extreme opacity, clouds are indeed a major source of uncertainty in the Earth's local radiation budget (at GCM grid scales). Also 3D effects (at satellite pixel scales) invalidate the standard plane-parallel assumption made in the routine of cloud-property remote sensing at NASA and NOAA. Accordingly, the test-cases used in I3RC are based on inputs and outputs which relate to cloud effects in atmospheric heating rates and in real-world remote sensing geometries. The main objectives of I3RC are to (1) enable participants to improve their models, (2) publish results as a community, (3) archive source code, and (4) educate. We will survey the status of I3RC and its plans for the near future with a special emphasis on the mathematical models and computational approaches. We will also describe some of the prime applications of I3RC's efforts in climate models, cloud-resolving models, and remote-sensing observations of clouds, or that of the surface in their presence. In all these application areas, computational efficiency is the main concern and not accuracy. One of I3RC's main goals is to document the performance of as wide a variety as possible of three-dimensional radiative transfer models for a small but representative number of ``cases.'' However, it is dominated by modelers working at the level of linear transport theory (i.e., they solve the radiative transfer equation) and an overwhelming majority of these participants use slow-but-robust Monte Carlo techniques. This means that only a small portion of the efficiency vs. accuracy vs. flexibility domain is currently populated by I3RC participants. To balance this natural clustering the present authors have organized a systematic outreach towards

  1. The important role of stellar atmosphere spectra for a consistent spectrophotometric calibration from the optical to the infrared wavelengths

    NASA Astrophysics Data System (ADS)

    Decin, L.

    2008-12-01

    We discuss the role of stellar atmosphere models in the spectrophotometric calibration pedigree. It is shown that stellar atmosphere spectra form an essential ingredient for spectrophotometric calibration. Compared with other (infrared) calibration networks currently available, the marcs grid is shown to provide the calibration community with spectral reference energy distributions of higher accuracy improving the spectrophotometric calibration of infrared spectrometers by more than 3%.

  2. Implementation of a 3D-Var system for atmospheric profiling data assimilation into the RAMS model: initial results

    NASA Astrophysics Data System (ADS)

    Federico, S.

    2013-12-01

    This paper presents the current status of development of a three-dimensional variational data assimilation system (3D-Var). The system can be used with different numerical weather prediction models, but it is mainly designed to be coupled with the Regional Atmospheric Modelling System (RAMS). Analyses are given for the following parameters: zonal and meridional wind components, temperature, relative humidity, and geopotential height. Important features of the data assimilation system are the use of incremental formulation of the cost function, and the representation of the background error by recursive filters and the eigenmodes of the vertical component of the background error covariance matrix. This matrix is estimated by the National Meteorological Center (NMC) method. The data assimilation and forecasting system is applied to the real context of atmospheric profiling data assimilation, and in particular to the short-term wind prediction. The analyses are produced at 20 km horizontal resolution over central Europe and extend over the whole troposphere. Assimilated data are vertical soundings of wind, temperature, and relative humidity from radiosondes, and wind measurements of the European wind profiler network. Results show the validity of the analyses because they are closer to the observations (lower root mean square error (RMSE)) compared to the background (higher RMSE), and the differences of the RMSEs are in agreement with the data assimilation settings. To quantify the impact of improved initial conditions on the short-term forecast, the analyses are used as initial conditions of three-hours forecasts of the RAMS model. In particular two sets of forecasts are produced: (a) the first uses the ECMWF analysis/forecast cycle as initial and boundary conditions; (b) the second uses the analyses produced by the 3D-Var as initial conditions, then it is driven by the ECMWF forecast. The improvement is quantified by considering the horizontal components of the wind

  3. An in-depth spectroscopic examination of molecular bands from 3D hydrodynamical model atmospheres. I. Formation of the G-band in metal-poor dwarf stars

    NASA Astrophysics Data System (ADS)

    Gallagher, A. J.; Caffau, E.; Bonifacio, P.; Ludwig, H.-G.; Steffen, M.; Spite, M.

    2016-09-01

    Context. Recent developments in the three-dimensional (3D) spectral synthesis code Linfor3D have meant that for the first time, large spectral wavelength regions, such as molecular bands, can be synthesised with it in a short amount of time. Aims: A detailed spectral analysis of the synthetic G-band for several dwarf turn-off-type 3D atmospheres (5850 ≲ Teff [ K ] ≲ 6550, 4.0 ≤ log g ≤ 4.5, - 3.0 ≤ [Fe/H] ≤-1.0) was conducted, under the assumption of local thermodynamic equilibrium. We also examine carbon and oxygen molecule formation at various metallicity regimes and discuss the impact it has on the G-band. Methods: Using a qualitative approach, we describe the different behaviours between the 3D atmospheres and the traditional one-dimensional (1D) atmospheres and how the different physics involved inevitably leads to abundance corrections, which differ over varying metallicities. Spectra computed in 1D were fit to every 3D spectrum to determine the 3D abundance correction. Results: Early analysis revealed that the CH molecules that make up the G-band exhibited an oxygen abundance dependency; a higher oxygen abundance leads to weaker CH features. Nitrogen abundances showed zero impact to CH formation. The 3D corrections are also stronger at lower metallicity. Analysis of the 3D corrections to the G-band allows us to assign estimations of the 3D abundance correction to most dwarf stars presented in the literature. Conclusions: The 3D corrections suggest that A(C) in carbon-enhanced metal-poor (CEMP) stars with high A(C) would remain unchanged, but would decrease in CEMP stars with lower A(C). It was found that the C/O ratio is an important parameter to the G-band in 3D. Additional testing confirmed that the C/O ratio is an equally important parameter for OH transitions under 3D. This presents a clear interrelation between the carbon and oxygen abundances in 3D atmospheres through their molecular species, which is not seen in 1D.

  4. WHY ONE-DIMENSIONAL MODELS FAIL IN THE DIAGNOSIS OF AVERAGE SPECTRA FROM INHOMOGENEOUS STELLAR ATMOSPHERES

    SciTech Connect

    Uitenbroek, Han

    2011-07-20

    We investigate the feasibility of representing a structured multi-dimensional stellar atmosphere with a single one-dimensional average stratification for the purpose of spectral diagnosis of the atmosphere's average spectrum. In particular, we construct four different one-dimensional stratifications from a single snapshot of a magnetohydrodynamic simulation of solar convection: one by averaging its properties over surfaces of constant height and three by averaging over surfaces of constant optical depth at 500 nm. Using these models, we calculate continuum and atomic and molecular line intensities and their center-to-limb variations. From an analysis of the emerging spectra, we identify three main reasons why these average representations are inadequate for accurate determination of stellar atmospheric properties through spectroscopic analysis. These reasons are nonlinearity in the Planck function with temperature, which raises the average emergent intensity of an inhomogeneous atmosphere above that of an average-property atmosphere, even if their temperature-optical depth stratification is identical; nonlinearities in molecular formation with temperature and density, which raise the abundance of molecules of an inhomogeneous atmosphere over that in a one-dimensional model with the same average properties; and the anisotropy of convective motions, which strongly affects the center-to-limb variation of line-core intensities. We argue therefore that a one-dimensional atmospheric model that reproduces the mean spectrum of an inhomogeneous atmosphere necessarily does not reflect the average physical properties of that atmosphere and is therefore inherently unreliable.

  5. 3-D laser confocal microscopy study of the oxidation of NdFeB magnets in atmospheric conditions

    NASA Astrophysics Data System (ADS)

    Meakin, J. P.; Speight, J. D.; Sheridan, R. S.; Bradshaw, A.; Harris, I. R.; Williams, A. J.; Walton, A.

    2016-08-01

    Neodymium iron boron (NdFeB) magnets are used in a number of important applications, such as generators in gearless wind turbines, motors in electric vehicles and electronic goods (e.g.- computer hard disk drives, HDD). Hydrogen can be used as a processing gas to separate and recycle scrap sintered Nd-Fe-B magnets from end-of-life products to form a powder suitable for recycling. However, the magnets are likely to have been exposed to atmospheric conditions prior to processing, and any oxidation could lead to activation problems for the hydrogen decrepitation reaction. Many previous studies on the oxidation of NdFeB magnets have been performed at elevated temperatures; however, few studies have been formed under atmospheric conditions. In this paper a combination of 3-D laser confocal microscopy and Raman spectroscopy have been used to assess the composition, morphology and rate of oxidation/corrosion on scrap sintered NdFeB magnets. Confocal microscopy has been employed to measure the growth of surface reaction products at room temperature, immediately after exposure to air. The results showed that there was a significant height increase at the triple junctions of the Nd-rich grain boundaries. Using Raman spectroscopy, the product was shown to consist of Nd2O3 and formed only on the Nd-rich triple junctions. The diffusion coefficient of the triple junction reaction product growth at 20 °C was determined to be approximately 4 × 10-13 cm2/sec. This value is several orders of magnitude larger than values derived from the diffusion controlled oxide growth observations at elevated temperatures in the literature. This indicates that the growth of the room temperature oxidation products are likely defect enhanced processes at the NdFeB triple junctions.

  6. Development of a 3D Soil-Plant-Atmosphere Continuum (SPAC) coupled to a Land Surface Model

    NASA Astrophysics Data System (ADS)

    Bisht, G.; Riley, W. J.; Lorenzetti, D.; Tang, J.

    2015-12-01

    Exchange of water between the atmosphere and biosphere via evapotranspiration (ET) influences global hydrological, energy, and biogeochemical cycles. Isotopic analysis has shown that evapotranspiration over the continents is largely dominated by transpiration. Water is taken up from soil by plant roots, transported through the plant's vascular system, and evaporated from the leaves. Yet current Land Surface Models (LSMs) integrated into Earth System Models (ESMs) treat plant roots as passive components. These models distribute the ET sink vertically over the soil column, neglect the vertical pressure distribution along the plant vascular system, and assume that leaves can directly access water from any soil layer within the root zone. Numerous studies have suggested that increased warming due to climate change will lead drought and heat-induced tree mortality. A more mechanistic treatment of water dynamics in the soil-plant-atmosphere continuum (SPAC) is essential for investigating the fate of ecosystems under a warmer climate. In this work, we describe a 3D SPAC model that can be coupled to a LSM. The SPAC model uses the variably saturated Richards equations to simulate water transport. The model uses individual governing equations and constitutive relationships for the various SPAC components (i.e., soil, root, and xylem). Finite volume spatial discretization and backward Euler temporal discretization is used to solve the SPAC model. The Portable, Extensible Toolkit for Scientific Computation (PETSc) is used to numerically integrate the discretized system of equations. Furthermore, PETSc's multi-physics coupling capability (DMComposite) is used to solve the tightly coupled system of equations of the SPAC model. Numerical results are presented for multiple test problems.

  7. The Cassini UVIS stellar probe of the Titan atmosphere.

    PubMed

    Shemansky, Donald E; Stewart, A Ian F; West, Robert A; Esposito, Larry W; Hallett, Janet T; Liu, Xianming

    2005-05-13

    The Cassini Ultraviolet Imaging Spectrometer (UVIS) observed the extinction of photons from two stars by the atmosphere of Titan during the Titan flyby. Six species were identified and measured: methane, acetylene, ethylene, ethane, diacetylene, and hydrogen cyanide. The observations cover altitudes from 450 to 1600 kilometers above the surface. A mesopause is inferred from extraction of the temperature structure of methane, located at 615 km with a temperature minimum of 114 kelvin. The asymptotic kinetic temperature at the top of the atmosphere determined from this experiment is 151 kelvin. The higher order hydrocarbons and hydrogen cyanide peak sharply in abundance and are undetectable below altitudes ranging from 750 to 600 km, leaving methane as the only identifiable carbonaceous molecule in this experiment below 600 km.

  8. ZASPE: A Code to Measure Stellar Atmospheric Parameters and their Covariance from Spectra

    NASA Astrophysics Data System (ADS)

    Brahm, Rafael; Jordán, Andrés; Hartman, Joel; Bakos, Gáspár

    2017-05-01

    We describe the Zonal Atmospheric Stellar Parameters Estimator (zaspe), a new algorithm, and its associated code, for determining precise stellar atmospheric parameters and their uncertainties from high-resolution echelle spectra of FGK-type stars. zaspe estimates stellar atmospheric parameters by comparing the observed spectrum against a grid of synthetic spectra only in the most sensitive spectral zones to changes in the atmospheric parameters. Realistic uncertainties in the parameters are computed from the data itself, by taking into account the systematic mismatches between the observed spectrum and the best-fitting synthetic one. The covariances between the parameters are also estimated in the process. zaspe can in principle use any pre-calculated grid of synthetic spectra, but unbiased grids are required to obtain accurate parameters. We tested the performance of two existing libraries, and we concluded that neither is suitable for computing precise atmospheric parameters. We describe a process to synthesize a new library of synthetic spectra that was found to generate consistent results when compared with parameters obtained with different methods (interferometry, asteroseismology, equivalent widths).

  9. ZASPE: A Code to Measure Stellar Atmospheric Parameters and their Covariance from Spectra

    NASA Astrophysics Data System (ADS)

    Brahm, Rafael; Jordán, Andrés; Hartman, Joel; Bakos, Gaspar

    2017-01-01

    We describe the Zonal Atmospheric Stellar Parameters Estimator (ZASPE), a new algorithm, and its associated code, for determining precise stellar atmospheric parameters and their uncertainties from high resolution echelle spectra of FGK-type stars. ZASPE estimates stellar atmospheric parameters by comparing the observed spectrum against a grid of synthetic spectra only in the most sensitive spectral zones to changes in the atmospheric parameters. Realistic uncertainties in the parameters are computed from the data itself, by taking into account the systematic mismatches between the observed spectrum and the best-fit synthetic one. The covariances between the parameters are also estimated in the process. ZASPE can in principle use any pre-calculated grid of synthetic spectra but unbiased grids are required to obtain accurate parameters. We tested the performance of two existing libraries (Coelho et al. 2005; Husser et al. 2013) and we concluded that neither is suitable for computing precise atmospheric parameters. We describe a process to synthesise a new library of synthetic spectra that was found to generate consistent results when compared with parameters obtained with different methods (interferometry, asteroseismology, equivalent widths).

  10. Stargazing from New Horizons: Ultraviolet Stellar Occultations by Pluto's Atmosphere

    NASA Astrophysics Data System (ADS)

    Kammer, Joshua A.; Stern, S. Alan; Weaver, Harold A.; Young, Leslie; Ennico, Kimberly; Olkin, Catherine B.; Gladstone, Randy; Summers, Michael; Steffl, Andrew; Greathouse, Thomas K.; Versteeg, Maarten; Retherford, Kurt D.; Parker, Joel Wm.; Schindhelm, Eric; Strobel, Darrell F.; New Horizons ATM Theme Team, New Horizons Science Team

    2016-10-01

    Not long after the New Horizons encounter with Pluto last July, the Alice ultraviolet imaging spectrograph observed signatures of UV absorption by Pluto's atmosphere during two distinct occultation events. During these events, UV bright stars (the Sun, as well as two B-type stars) passed behind Pluto as seen by the spacecraft, and the attenuated starlight revealed the clear presence of nitrogen, methane, and several other hydrocarbons. Their mixing ratios vary with altitude, including localized peaks in the density of minor hydrocarbons such as C2H2 and C2H4. At about 300 km above Pluto's surface, these particular species are found to have mixing ratios relative to CH4 of approximately 10% and 1%, respectively. While this overall composition was expected pre-New Horizons, the vertical profiles of these species were surprising. In this presentation I will discuss the analysis of these occultations, including several profiles of key atmospheric species, and how they might play a role in explaining the presence of high-altitude haze on this cold, small, distant planet.

  11. Computation of Solar Radiative Fluxes by 1D and 3D Methods Using Cloudy Atmospheres Inferred from A-train Satellite Data

    NASA Technical Reports Server (NTRS)

    Barker, Howard W.; Kato, Serji; Wehr, T.

    2012-01-01

    The main point of this study was to use realistic representations of cloudy atmospheres to assess errors in solar flux estimates associated with 1D radiative transfer models. A scene construction algorithm, developed for the EarthCARE satellite mission, was applied to CloudSat, CALIPSO, and MODIS satellite data thus producing 3D cloudy atmospheres measuring 60 km wide by 13,000 km long at 1 km grid-spacing. Broadband solar fluxes and radiances for each (1 km)2 column where then produced by a Monte Carlo photon transfer model run in both full 3D and independent column approximation mode (i.e., a 1D model).

  12. How Much Can We Trust High-Resolution Spectroscopic Stellar Atmospheric Parameters?

    NASA Astrophysics Data System (ADS)

    Blanco-Cuaresma, Sergi; Nordlander, Thomas; Heiter, Ulrike; Jofré, Paula; Masseron, Thomas; Casamiquela, Laia; Tabernero, Hugo M.; Bhat, Shruthi S.; Casey, Andrew R.; Meléndez, Jorge; Ramírez, Ivan

    2016-09-01

    The determination of atmospheric parameters depends on the use of radiative transfer codes (among other elements such as model atmospheres) to compute synthetic spectra and/or derive abundances from equivalent widths. However, it is common to mix results from different surveys/studies where different setups were used to derive the parameters. These inhomogeneities can lead us to inaccurate conclusions. In this work, we studied one aspect of the problem: When deriving atmospheric parameters from high-resolution stellar spectra, what differences originate from the use of different radiative transfer codes?

  13. The Evolution of Stellar Rotation and the Hydrogen Atmospheres of Habitable-zone Terrestrial Planets

    NASA Astrophysics Data System (ADS)

    Johnstone, C. P.; Güdel, M.; Stökl, A.; Lammer, H.; Tu, L.; Kislyakova, K. G.; Lüftinger, T.; Odert, P.; Erkaev, N. V.; Dorfi, E. A.

    2015-12-01

    Terrestrial planets formed within gaseous protoplanetary disks can accumulate significant hydrogen envelopes. The evolution of such an atmosphere due to XUV driven evaporation depends on the activity evolution of the host star, which itself depends sensitively on its rotational evolution, and therefore on its initial rotation rate. In this Letter, we derive an easily applicable method for calculating planetary atmosphere evaporation that combines models for a hydrostatic lower atmosphere and a hydrodynamic upper atmosphere. We show that the initial rotation rate of the central star is of critical importance for the evolution of planetary atmospheres and can determine if a planet keeps or loses its primordial hydrogen envelope. Our results highlight the need for a detailed treatment of stellar activity evolution when studying the evolution of planetary atmospheres.

  14. Small-scale dissipative processes in stellar atmospheres

    NASA Technical Reports Server (NTRS)

    Leibacher, J. W.; Stein, R. F.

    1980-01-01

    The outer atmospheres of stars must be heated by some non-thermal energy flux to produce chromospheres and coronae. Processes are discussed which convert the non-thermal energy flux of organized, macroscopic motions into random, microscopic (thermal) motions. Recent advances in the description of the chromosphere velocity field suggest that the acoustic waves observed there transmit very little energy, and hence are probably incapable of heating the upper chromosphere and corona. The apparent failure of this long held mechanism and the growing appreciation of the importance of strong magnetic fields in the chromosphere and corona have led to hypotheses of heating by the dissipation of currents (both oscillatory and quasi-steady). This follows discoveries in laboratory and ionospheric plasmas and work on solar flares, that instabilities can concentrate currents into thin high current density filaments where they dissipate rapidly.

  15. A Three Dimensional Picture of RS CVN Stellar Atmospheres

    NASA Astrophysics Data System (ADS)

    Linsky, Jeffrey L.

    The ROSAT all-sky survey provides a unique opportunity to study an RS CVn system simultaneously at x-ray, EUV, UV, optical, and radio wavelengths at many phases throughout an orbital period. ROSAT can detect the x-ray flux of each candidate system during each 30 second viewing 16 times per day for at least 2 days. We request a block of 7 IUE shifts to obtain NEAR SIMULTANEOUS emission line fluxes (SWP-LO) and Mg IT line profiles (LWP-HI), and we will obtain contemporaneous optical photometry and spectroscopy and VLA radio fluxes (3.6, 6, and 20 cm). one objective of this PROPOSAL is to obtain the FIRST 3-D MODEL OF THE INHOMOGENEOUS PHOTOSPHERE, CHROMOSPHERE, AND CORONA OF A STAR OTHER THAN THE SUN. We will use optical photometry and spectroscopy to map the spotted photospheres of each star, and the Mg II line profiles to DOPPLERIMAGE their chromospheres, to determine the location, size, and surface flux of the active regions. We will then use the time variation of the UV emission line and x-ray fluxes to determine what fluxes are due to the quiet and active regions separately. These data will provide SURFACE FLUXES for the quiet and active regions separately. We will then will model BOTH REGIONS independently using an emission measure analysis. We will also model any flares observed. The second part of the program will be a simultaneous UV/X-ray SURVEY with the objective of DETERMINING THE RANGE OF PHYSICAL MODELS APPLICABLE TO THE CHROMOSPHERES AND CORONAE OF RS CVN SYSTEMS. We propose to obtain emission line fluxes (SWP-LO) and Mg II line profiles (LWP-HI) of all bright RS CVns observed by ROSAT from mid-July through September 1990 that meet the IUE observing constraints. About 17 systems in the Strassmeier catalog will likely be observed during this period. While many RS CVn systems have been observed separately by IUE and x-ray satellites, SIMULTANEOUS UV and x-ray observations are required to model these spatially inhomogenous and timevariable systems. This

  16. Application of AVHRR vegetation index to study atmosphere-biosphere exchange of CO2: Results from a 3-D tracer transport model

    NASA Technical Reports Server (NTRS)

    Fung, Inez Y.; Tucker, C. J.; Prentice, Katharine C.

    1985-01-01

    The 'normalized difference vegetation indices' (NVI) derived from AVHRR radiances are combined with field data of soil respiration and a global map of net primary productivity to prescribe, for the globe, the seasonal exchange of CO2 between the atmosphere and the terrestrial biosphere. The monthly fluxes of CO2 thus obtained are used as inputs to a 3-D tracer transport model which uses winds generated by a 3-D atmospheric general circulation model to advect CO2 as an inert constituent. Analysis of the 3-D model results shows reasonable agreement between the simulated and observed annual cycles of atmospheric CO2 at the locations of the remote monitoring stations. The application is shown of atmospheric CO2 distributions to calibrate the NVI in terms of carbon fluxes. The approach suggests that the NVI may be used to provide quantitative information about long term and global scale variations of photosynthetic activity and of atmospheric CO2 concentrations provided that variations in the atmospheric circulation and in atmospheric composition are known.

  17. The Effects of Non-Sphericity in Diagnosis of Solar and Stellar Atmospheres

    NASA Astrophysics Data System (ADS)

    Pecker, Jean-Claude

    1996-12-01

    Between the interplanetary medium, filled by winds, magnetic structures, etc., and the interior of stars, opaque, and dominated heavily by the gravitational spherical field, the stellar atmosphere is a place where the true physical equilibrium, on the inside, sufficiently described by the parameters L, M, R, and the chemical composition X, Y, Z, is progressively changing into a situation far for equilibrium, which needs many more parameters to be properly described. The assumption that the equilibrium situation was dominating in the atmosphere has been generally accepted during the first half of this century. Since 1950 or so, we progressively learnt that the thermodynamical equilibrium (TE), and even the ‘local’ thermodynamical equilibrium (LTE), are far from being actually in existence, that the radiative equilibrium (RE) is not actually perfect, convection, diffusion, magnetism, dissipation processes... playing a non-negligible part in the energy transport, that the hydrostatic equilibrium (HE) is only an approximation, as the convection and the magnetism are affecting the atmospheric layers, that neither the sphericity of atmospheric layers (plane-parallel hypothesis: PP) is achieved, nor the homogeneity of stellar iso-τ layers. During the 1950s and following decades, we began to suspect these difficulties and their consequences. In this paper, we turn towards a new consequence of the last-mentioned effect: the influence of non-sphericity and inhomogeneity upon the stellar (and solar perhaps) abundances of elements.

  18. Single Star HII Regions as Diagnostics for the Shapes of Stellar Atmosphere Model SEDs

    NASA Astrophysics Data System (ADS)

    Zastrow, Jordan; Oey, M. S.; Pellegrini, E. W.

    2013-06-01

    To evaluate the predictions of widely used stellar atmosphere models (CoStar, TLUSTY & WM-basic), we compare emission-line strengths from long slit observations of single-star HII regions to the predictions of CLOUDY photoionization simulations that use appropriate stellar atmosphere models for the ionizing stars. Str{o}mgren spheres such as these simplify many of the free parameters that complicate HII region modeling. The simulations generally reproduce the observed emission lines with ionization potentials below 35 eV, provided that we use a clumpy gas distribution. However, the predictions show large scatter from the observations for [Ne III] λ3869, which has the highest ionization potential of all detected lines (41 eV). Even simulations that use WM-basic, which have the best overall agreement with the observations, range from over- to under-predicting [Ne III] by 70% across the sample. We additionally compare the rate of ionizing photons, Q_0 derived from the Hα luminosity to that of the best fitting models. There is a systematic offset between the predicted Q_0 of different atmosphere models that corresponds to systematic variations in hardness of the SEDs. Our work demonstrates that single-star HII regions can provide fundamental diagnostic constraints on the shapes of stellar atmosphere models.

  19. Implementation of a 3-D-Var system for atmospheric profiling data assimilation into the RAMS model: initial results

    NASA Astrophysics Data System (ADS)

    Federico, S.

    2013-04-01

    This paper presents the current status of development of a three-dimensional variational data assimilation system. The system can be used with different numerical weather prediction models, but it is mainly designed to be coupled with the Regional Atmospheric Modelling System (RAMS). Analyses are given for the following parameters: zonal and meridional wind components, temperature, relative humidity, and geopotential height. Important features of the data assimilation system are the use of incremental formulation of the cost-function, and the use of an analysis space represented by recursive filters and eigenmodes of the vertical background error matrix. This matrix and the length-scale of the recursive filters are estimated by the National Meteorological Center (NMC) method. The data assimilation and forecasting system is applied to the real context of atmospheric profiling data assimilation, and in particular to the short-term wind prediction. The analyses are produced at 20 km horizontal resolution over central Europe and extend over the whole troposphere. Assimilated data are vertical soundings of wind, temperature, and relative humidity from radiosondes, and wind measurements of the European wind profiler network. Results show the validity of the analysis solutions because they are closer to the observations (lower RMSE) compared to the background (higher RMSE), and the differences of the RMSEs are consistent with the data assimilation settings. To quantify the impact of improved initial conditions on the short-term forecast, the analyses are used as initial conditions of a three-hours forecast of the RAMS model. In particular two sets of forecasts are produced: (a) the first uses the ECMWF analysis/forecast cycle as initial and boundary conditions; (b) the second uses the analyses produced by the 3-D-Var scheme as initial conditions, then is driven by the ECMWF forecast. The improvement is quantified by considering the horizontal components of the wind, which

  20. Line-blanketed model stellar atmospheres applied to Sirius. Ph.D. Thesis - Maryland Univ.

    NASA Technical Reports Server (NTRS)

    Fowler, J. W.

    1972-01-01

    The primary goal of this analysis is to determine whether the effects of atomic bound-bound transitions on stellar atmospheric structure can be represented well in models. The investigation is based on an approach which is called the method of artificial absorption edges. The method is described, developed, tested, and applied to the problem of fitting a model stellar atmosphere to Sirius. It is shown that the main features of the entire observed spectrum of Sirius can be reproduced to within the observational uncertainty by a blanketed flux-constant model with T sub eff = 9700 K and Log g = 4.26. The profile of H sub gamma is reproduced completely within the standard deviations of the measurements except near line center, where non-LTE effects are expected to be significant. The equivalent width of H sub gamma, the Paschen slope, the Balmer jump, and the absolute flux at 5550 A all agree with the observed values.

  1. Stellar occultations by turbulent planetary atmospheres. I - A heuristic scattering model. II - The Beta Scorpii events

    NASA Technical Reports Server (NTRS)

    Hubbard, W. B.; Jokipii, J. R.

    1977-01-01

    Effects of atmospheric turbulence on stellar-occultation inversion procedures are investigated using a heuristic scattering model that is believed to reproduce the essential features of turbulence. A quantitative estimate is made of the size of the error in deducing the mean refractivity profile of a planetary atmosphere, taking into account constant as well as exponential scattering. It is shown that ordinary turbulence has no important effect on the average intensity profile in a stellar occultation but could have an important instantaneous effect. A critical examination of possible manifestations of turbulent scattering during occultations of Beta Sco by Jupiter indicates that all observed phenomena during these events can be understood in terms of scintillations produced by turbulence.

  2. A Numerical Method for Calculating Stellar Occultation Light Curves from an Arbitrary Atmospheric Model

    NASA Technical Reports Server (NTRS)

    Chamberlain, D. M.; Elliot, J. L.

    1997-01-01

    We present a method for speeding up numerical calculations of a light curve for a stellar occultation by a planetary atmosphere with an arbitrary atmospheric model that has spherical symmetry. This improved speed makes least-squares fitting for model parameters practical. Our method takes as input several sets of values for the first two radial derivatives of the refractivity at different values of model parameters, and interpolates to obtain the light curve at intermediate values of one or more model parameters. It was developed for small occulting bodies such as Pluto and Triton, but is applicable to planets of all sizes. We also present the results of a series of tests showing that our method calculates light curves that are correct to an accuracy of 10(exp -4) of the unocculted stellar flux. The test benchmarks are (i) an atmosphere with a l/r dependence of temperature, which yields an analytic solution for the light curve, (ii) an atmosphere that produces an exponential refraction angle, and (iii) a small-planet isothermal model. With our method, least-squares fits to noiseless data also converge to values of parameters with fractional errors of no more than 10(exp -4), with the largest errors occurring in small planets. These errors are well below the precision of the best stellar occultation data available. Fits to noisy data had formal errors consistent with the level of synthetic noise added to the light curve. We conclude: (i) one should interpolate refractivity derivatives and then form light curves from the interpolated values, rather than interpolating the light curves themselves; (ii) for the most accuracy, one must specify the atmospheric model for radii many scale heights above half light; and (iii) for atmospheres with smoothly varying refractivity with altitude, light curves can be sampled as coarsely as two points per scale height.

  3. Limits on the radius and a possible atmosphere of Charon from its 1980 stellar occultation

    NASA Technical Reports Server (NTRS)

    Elliot, J. L.; Young, L. A.

    1991-01-01

    Walker's (1980) stellar occultation data for Charon are presently fit by a model which encompasses the possibility of differential refraction by an atmosphere, followed by a sudden occultation behind Charon's limb. The 601.5-km Charon radius lower limit thus obtained may serve as a constraint in models of the mutual event data; while the model fits considered support a Charonian atmosphere of indeterminate composition, time resolution is insufficient for certainty and the data may be interpretable as indications of either a slight extinction near Charon or an entirely unidentified and unassociated effect.

  4. Metal Hydride and Alkali Halide Opacities in Extrasolar Giant Planets and Cool Stellar Atmospheres

    NASA Technical Reports Server (NTRS)

    Weck, Philippe F.; Stancil, Phillip C.; Kirby, Kate; Schweitzer, Andreas; Hauschildt, Peter H.

    2006-01-01

    The lack of accurate and complete molecular line and continuum opacity data has been a serious limitation to developing atmospheric models of cool stars and Extrasolar Giant Planets (EGPs). We report our recent calculations of molecular opacities resulting from the presence of metal hydrides and alkali halides. The resulting data have been included in the PHOENIX stellar atmosphere code (Hauschildt & Baron 1999). The new models, calculated using spherical geometry for all gravities considered, also incorporate our latest database of nearly 670 million molecular lines, and updated equations of state.

  5. SDSS/SEGUE spectral feature analysis for stellar atmospheric parameter estimation

    SciTech Connect

    Li, Xiangru; Lu, Yu; Yang, Tan; Wang, Yongjun; Wu, Q. M. Jonathan; Luo, Ali; Zhao, Yongheng; Zuo, Fang

    2014-08-01

    Large-scale and deep sky survey missions are rapidly collecting a large amount of stellar spectra, which necessitate the estimation of atmospheric parameters directly from spectra and make it feasible to statistically investigate latent principles in a large data set. We present a technique for estimating parameters T{sub eff}, log g, and [Fe/H] from stellar spectra. With this technique, we first extract features from stellar spectra using the LASSO algorithm; then, the parameters are estimated from the extracted features using the support vector regression. On a subsample of 20,000 stellar spectra from the Sloan Digital Sky Survey (SDSS) with reference parameters provided by the SDSS/SEGUE Spectroscopic Parameter Pipeline, estimation consistency are 0.007458 dex for log T{sub eff} (101.609921 K for T{sub eff}), 0.189557 dex for log g, and 0.182060 for [Fe/H], where the consistency is evaluated by mean absolute error. Prominent characteristics of the proposed scheme are sparseness, locality, and physical interpretability. In this work, each spectrum consists of 3821 fluxes, and 10, 19, and 14 typical wavelength positions are detected, respectively, for estimating T{sub eff}, log g, and [Fe/H]. It is shown that the positions are related to typical lines of stellar spectra. This characteristic is important in investigating physical indications from analysis results. Then, stellar spectra can be described by the individual fluxes on the detected positions (PD) or local integration of fluxes near them (LI). The aforementioned consistency is the result based on features described by LI. If features are described by PD, consistency is 0.009092 dex for log T{sub eff} (124.545075 K for T{sub eff}), 0.198928 dex for log g, and 0.206814 dex for [Fe/H].

  6. Titania's Radius and an Upper Limit on its Atmosphere from the Sep. 8, 2001 Stellar Occultation

    NASA Astrophysics Data System (ADS)

    Widemann, T.; Sicardy, B.; Lellouch, E.; Arlot, J.-E.; Colas, F.; Hubbard, W.; Hill, R.

    2008-09-01

    On September 8, 2001, the largest of Uranian moons, Titania, occulted V = 7.2, K0 III Hipparcos-catalog star HIP 106829. The star's unusual brightness allowed more than a hundred stations to monitor this unique event over three continents. The main goals of the observations were to (i) determine Titania's radius and possible oblateness ; (ii) determine Titania's offset with respect to the DE405 + URA027 ephemeris ; (iii) search for an atmosphere. Our new analysis provides ground pressure upper limits for a Titania's equilibrium atmosphere at typical levels of ∼10 nbar. This value, a factor of ∼103 less than current atmospheres of Pluto or Triton, is encouraging in the context of search for atmospheric signature in a ground-based stellar occultation by a KBO.

  7. Modelling simulations of NOx and HOx in the middle and upper atmosphere using a 3D Whole Atmosphere Community Climate Model with D region ion-neutral chemistry

    NASA Astrophysics Data System (ADS)

    Feng, W.; Plane, J. M. C.; Kovacs, T.; Chipperfield, M.; Marsh, D. R.; Smith, A. K.; Verronen, P. T.; Newnham, D.; Clilverd, M. A.

    2016-12-01

    In the middle and upper atmosphere, the distributions of odd nitrogen NOx (NO, NO2) and odd hydrogen HOx (OH, HO2) are controlled by transport processes and chemistry. Energetic particle precipitation (of protons and electrons) produces NOx and HOx through ion-molecule chemistry, and this can play an important role in the chemistry of the mesosphere. There is also increasing evidence that the descent of NOx can destroy stratospheric O3 at high latitudes. Therefore, it is crucial to understand the importance of their production/loss rates, horizontal/vertical transport to advance our knowledge in the evolution of NOx and HOx as well as other related chemical species (e.g. HNO3, ClNO3, O and O3). Recently, we have developed a new coupled ion-neutral chemical model for the ionospheric D region (altitudes 50 - 90 km) based on the Sodankylä Ion and neutral Chemistry (SIC) model and 3D Whole Atmosphere Community Climate Model (WACCM), termed WACCM-SIC (Kovacs et al., 2016). An extra 306 ion-neutral and ion-recombination reactions of neutral species, positive and negative ions, and electrons have been added to the standard chemistry in WACCM. WACCM-SIC simulations have been performed to explore the relative contributions to mesospheric NO from auroral and medium energetic electrons, during the period 2013-2015. The modelled simulations are also compared with the available satellite measurements (e.g., temperature, O, H, and O3 from SABER, and NO from AIM) and ground-based microwave radiometer observations of mesospheric NO at Halley station (75oS). The interannual and inter-hemisphere differences will also be discussed.

  8. Computation of Solar Radiative Fluxes by 1D and 3D Methods Using Cloudy Atmospheres Inferred from A-train Satellite Data.

    PubMed

    Barker, H W; Kato, S; Wehr, T

    This study used realistic representations of cloudy atmospheres to assess errors in solar flux estimates associated with 1D radiative transfer models. A scene construction algorithm, developed for the EarthCARE mission, was applied to CloudSat, CALIPSO and MODIS satellite data thus producing 3D cloudy atmospheres measuring 61 km wide by 14,000 km long at 1 km grid-spacing. Broadband solar fluxes and radiances were then computed by a Monte Carlo photon transfer model run in both full 3D and 1D independent column approximation modes. Results were averaged into 1,303 (50 km)(2) domains. For domains with total cloud fractions Ac  < 0.7 top-of-atmosphere (TOA) albedos tend to be largest for 3D transfer with differences increasing with solar zenith angle. Differences are largest for Ac  > 0.7 and characterized by small bias yet large random errors. Regardless of Ac , differences between 3D and 1D transfer rarely exceed ±30 W m(-2) for net TOA and surface fluxes and ±10 W m(-2) for atmospheric absorption. Horizontal fluxes through domain sides depend on Ac with ∼20% of cases exceeding ±30 W m(-2); the largest values occur for Ac  > 0.7. Conversely, heating rate differences rarely exceed ±20%. As a cursory test of TOA radiative closure, fluxes produced by the 3D model were averaged up to (20 km)(2) and compared to values measured by CERES. While relatively little attention was paid to optical properties of ice crystals and surfaces, and aerosols were neglected entirely, ∼30% of the differences between 3D model estimates and measurements fall within ±10 W m(-2); this is the target agreement set for EarthCARE. This, coupled with the aforementioned comparison between 3D and 1D transfer, leads to the recommendation that EarthCARE employ a 3D transport model when attempting TOA radiative closure.

  9. A Model for CH2D2 and 13CH3D as Tracers for the Budget of Atmospheric CH4

    NASA Astrophysics Data System (ADS)

    Haghnegahdar, M. A.; Schauble, E. A.; Young, E. D.

    2016-12-01

    Increasing atmospheric methane concentrations could be caused by increased emission, decreases in the •OH that reacts with CH4 to remove it from the atmosphere, or a combination of both. Identifying atmospheric methane sources and sinks could help understand and control CH4 emission to the atmosphere. We develop a theoretical model using relative abundances and fractionations of 13CH3D and CH2D2 to investigate their potential as tracers of atmospheric methane cycling. We use electronic structure methods to estimate kinetic and equilibrium isotope signatures for 13CH3D and CH2D2, then monitor isotope signatures of singly and doubly substituted CH4 species in atmosphere in different model cases. Using recently published budgets (Whiticar & Schaefer 2007) and estimates of equilibration temperatures of various methane sources (Stolper et al., 2014; Wang et al., 2015), along with Δ13CH3D, and ΔCH2D2 measured in biogenic CH4 sources (Young et al., 2016), we estimate the source flux of singly- and doubly-substituted isotopologues to the air, in terms of both bulk ratios and deviations from the stochastic distributions of multiply-substituted species. We estimate Δ13CH3D ≈ +4‰ and ΔCH2D2 ≈ +12‰ in the total atmospheric source. A steady-state model of 13CH3D and CH2D2, accounting for kinetic isotope effects in the major sink reactions with •OH and Cl• in the troposphere, yields Δ13CH3D ≈ +4.5‰ and ΔCH2D2 ≈ +119‰ in air. Sink reactions appear to generate a distinct signature of higher ΔCH2D2 (by 107‰) relative to the source composition. Non-steady state models with a single atmospheric reservoir are used to estimate potential effects of instantaneous or long-term changes in the main CH4 emission sources (wetlands, rice paddies, biomass burning and fossil fuels); among these, largest effect on mass-18 isotopologues comes from changes in wetland sources. Seasonal cycling of wetland sources has a much smaller effect. Changing OH concentrations

  10. Charon's radius and atmospheric constraints from observations of a stellar occultation.

    PubMed

    Gulbis, A A S; Elliot, J L; Person, M J; Adams, E R; Babcock, B A; Emilio, M; Gangestad, J W; Kern, S D; Kramer, E A; Osip, D J; Pasachoff, J M; Souza, S P; Tuvikene, T

    2006-01-05

    The physical characteristics of Pluto and its moon, Charon, provide insight into the evolution of the outer Solar System. Although previous measurements have constrained the masses of these bodies, their radii and densities have remained uncertain. The observation of a stellar occultation by Charon in 1980 established a lower limit on its radius of 600 km (ref. 3) (later refined to 601.5 km; ref. 4) and suggested a possible atmosphere. Subsequent, mutual event modelling yielded a range of 600-650 km (ref. 5), corresponding to a density of 1.56 +/- 0.22 g cm(-3) (refs 2, 5). Here we report multiple-station observations of a stellar occultation by Charon. From these data, we find a mean radius of 606 +/- 8 km, a bulk density of 1.72 +/- 0.15 g cm(-3), and rock-mass fraction 0.63 +/- 0.05. We do not detect a significant atmosphere and place 3sigma upper limits on atmospheric number densities for candidate gases. These results seem to be consistent with collisional formation for the Pluto-Charon system in which the precursor objects may have been differentiated, and they leave open the possibility of atmospheric retention by the largest objects in the outer Solar System.

  11. Charon's radius and atmospheric constraints from observations of a stellar occultation

    NASA Astrophysics Data System (ADS)

    Gulbis, A. A. S.; Elliot, J. L.; Person, M. J.; Adams, E. R.; Babcock, B. A.; Emilio, M.; Gangestad, J. W.; Kern, S. D.; Kramer, E. A.; Osip, D. J.; Pasachoff, J. M.; Souza, S. P.; Tuvikene, T.

    2006-01-01

    The physical characteristics of Pluto and its moon, Charon, provide insight into the evolution of the outer Solar System. Although previous measurements have constrained the masses of these bodies, their radii and densities have remained uncertain. The observation of a stellar occultation by Charon in 1980 established a lower limit on its radius of 600km (ref. 3) (later refined to 601.5km ref. 4) and suggested a possible atmosphere. Subsequent, mutual event modelling yielded a range of 600-650km (ref. 5), corresponding to a density of 1.56 +/- 0.22gcm-3 (refs 2, 5). Here we report multiple-station observations of a stellar occultation by Charon. From these data, we find a mean radius of 606 +/- 8km, a bulk density of 1.72 +/- 0.15gcm-3, and rock-mass fraction 0.63 +/- 0.05. We do not detect a significant atmosphere and place 3σ upper limits on atmospheric number densities for candidate gases. These results seem to be consistent with collisional formation for the Pluto-Charon system in which the precursor objects may have been differentiated, and they leave open the possibility of atmospheric retention by the largest objects in the outer Solar System.

  12. Accelerated complete-linearization method for calculating NLTE model stellar atmospheres

    NASA Technical Reports Server (NTRS)

    Hubeny, I.; Lanz, T.

    1992-01-01

    Two approaches to accelerating the method of complete linearization for calculating NLTE model stellar atmospheres are suggested. The first one, the so-called Kantorovich variant of the Newton-Raphson method, consists of keeping the Jacobi matrix of the system fixed, which allows us to calculate the costly matrix inversions only a few times and then keep them fixed during the subsequent computations. The second method is an application of the Ng acceleration. Both methods are extremely easy to implement with any model atmosphere code based on complete linearization. It is demonstrated that both methods, and especially their combination, yield a rapidly and globally convergent algorithm, which takes 2 to 5 times less computer time, depending on the model at hand and the required accuracy, than the ordinary complete linearization. Generally, the time gain is more significant for more complicated models. The methods were tested for a broad range of atmospheric parameters, and in all cases they exhibited similar behavior. Ng acceleration applied on the Kantorovich variant thus offers a significant improvement of the standard complete-linearization method, and may now be used for calculating relatively involved NLTE model stellar atmospheres.

  13. The Effect of Scattering on the Temperature Stratification of 3D Model Atmospheres of Metal-Poor Red Giants

    NASA Astrophysics Data System (ADS)

    Collet, Remo; Hayek, Wolfgang; Asplund, Martin

    2011-08-01

    We study the effects of different approximations of scattering in 3D radiation-hydrodynamics simulations on the photospheric temperature stratification of metal-poor red giant stars. We find that assuming a Planckian source function and neglecting the contribution of scattering to extinction in optically thin layers provides a good approximation of the effects of coherent scattering on the photospheric temperature balance.

  14. Monitoring the Stellar Activity of Transit-Hosting Stars II: supporting HST exoplanet atmosphere observations

    NASA Astrophysics Data System (ADS)

    Wilson, Paul Anthony; Evans, Tom; Sing, David K.; Aigrain, Suzanne

    2012-02-01

    We propose to use the CTIO 1.3m telescope with ANDICAM to monitor 5 bright stars that host transiting exoplanets in an effort to characterise their activity. These observations will provide critical ground-based support for our large HST program that has been granted 124 orbits to perform a survey of UV-optical atmospheric transmission spectra for 8 hot Jupiters using the STIS instrument (Cycle 19, Prog 12473, PI D Sing). They are required because active stellar regions inevitably contaminate measured planetary light curves by causing the apparent planet-to-star radius to vary in a wavelength dependent manner. Regular ground-based photometric monitoring performed using the CTIO 1.3m telescope will allow us to determine the spot activity at the time of the HST observations, so that the stellar baseline flux can be accurately normalised for every transit observed, enabling transmission spectra from multiple visits to be combined.

  15. Momentum and energy deposition in late-type stellar atmospheres and winds

    NASA Technical Reports Server (NTRS)

    Hartmann, L.; Macgregor, K. B.

    1980-01-01

    The present study calculates the response of the outer atmospheres of cool low-gravity stars to the passage of the mechanical energy fluxes of solar magnitude in the form of acoustic waves and Alfven waves. It is shown that Alfven waves are efficient in generating outflow, and can account for the order of magnitude of observed mass loss in late-type luminous stars. However, unless these magnetic waves undergo some dissipation within several stellar radii of the surface, the predicted terminal velocities of the resulting stellar winds are far too high. Alfven wave dissipation should give rise to extended warm chromospheres in low-gravity late-type stars, a prediction which can be observationally tested.

  16. A Mega-Grid of CMFGEN Model Atmospheres for Rapid Analysis of Stellar Spectra

    NASA Astrophysics Data System (ADS)

    Zsargo, J.; Arrieta, A.; Fierro, C.; Klapp, J.; Hillier, D. J.; Arias, L.; Mendoza, J.; Georgiev, L. N.

    2017-02-01

    CMFGEN (Hillier & Miller 1998) is a sophisticated and widely-used non-LTE stellar atmosphere code. It models the full spectrum, and has been used to model OB stars, W-R stars, luminous blue variables, and supernovae. However, it requires the user to have substantial knowledge and experience to run it, and even then a complete analysis of a star can be very difficult and time consuming. Computations and modeling with CMFGEN are greatly eased when suitable initial models are available. To expedite modeling, or to run a quick rudimentary analysis of the stellar spectra, we are undertaking a project to create a mega-grid of pre-calculated CMFGEN models which will be available to the general astronomical community via internet. Tools are also being developed to use this database for analysis.

  17. The influence of Stark broadening on Cr II spectral line shapes in stellar atmospheres

    NASA Astrophysics Data System (ADS)

    Dimitrijević, M. S.; Ryabchikova, T.; Simić, Z.; Popović, L. Č.; Dačić, M.

    2007-07-01

    Aims:We consider the effect of Stark broadening on the shapes of Cr ii spectral lines observed in stellar atmospheres of the middle part of the main sequence. Methods: Stark broadening parameters were calculated by the semiclassical perturbation approach. For stellar spectra synthesis, the improved version synth3 of the code synth for synthetic spectrum calculations was used. Results: Stark broadening parameters for Cr ii spectral lines of seven multiplets belonging to 4s-4p transitions were calculated. New calculated Stark parameters were applied to the analysis of Cr ii line profiles observed in the spectrum of Cr-rich star HD 133792. Conclusions: We found that Stark broadening mechanism is very important and should be taken into account, especially in the study of Cr abundance stratification.

  18. The ACCESS Transiting Exoplanets Spectroscopy Survey and the Impact of Heterogeneous Stellar Atmospheres on Transit Spectroscopy

    NASA Astrophysics Data System (ADS)

    Apai, Daniel; Rackham, Benjamin V.; Lopez-Morales, Mercedes; Espinoza, Nestor; Jordan, Andres; Osip, David; Lewis, Nikole K.; Rodler, Florian; Fraine, Jonathan; Morley, Caroline; Fortney, Jonathan J.; Bixel, Alex; ACCESS Team; Earths in Other Solar Systems Team

    2017-01-01

    We present results from the ACCESS survey, a large optical transmission spectroscopy survey of transiting planets. With over 40 transits observed using the IMACS multi-object spectrograph on Magellan, ACCESS is building up the most comprehensive spectral database for transiting exoplanets. The goals of ACCESS are to probe the composition of exoplanet atmospheres as a function planet mass and insolation and stellar properties.We will present a brief overview of the survey and highlight results on multiple targets, including hot jupiters and the sub-nepture GJ1214. I will also report on our study of how stellar heterogeneity impact the transmission spectrum of transiting exoplanets and discuss approaches to correct for this important effect to improve the diagnostic power of transit spectroscopcy.

  19. Neon and Chemical Fractionation Trends in Late-type Stellar Atmospheres

    NASA Astrophysics Data System (ADS)

    García-Alvarez, David; Drake, Jeremy J.; Testa, Paola

    2009-02-01

    A survey of Ne, O and Fe coronal abundances culled from the recent literature for about 60 late-type stars confirms that the Ne/O ratio of stellar outer atmospheres is about two times the value recently recommended by Asplund et al. The mean Ne/O remains flat from the most active stars down to at least intermediate activity levels (-5stellar activity. The observed abundance patterns are reminiscent of the recent finding of a dependence of the solar Ne/O and Fe/O ratios on active region plasma temperature and indicate a universal fractionation process is at work. The firm saturation in stellar Ne/O at higher activity levels combined with variability in the solar coronal Ne/O leads us to suggest that Ne is generally depleted in the solar outer atmosphere and photospheric values are reflected in active stellar coronae. The solution to the recent solar model problem would then appear to lie in a combination of the Asplund et al. (2005) O abundance downward revision being too large, and the Ne abundance being underestimated for the Sun by about a factor of 2.

  20. Time lag effects in the nucleation of particles in stellar atmospheres

    NASA Technical Reports Server (NTRS)

    Walker, G. H.

    1975-01-01

    When a system goes from a saturated state to a supersaturated one, the classical nucleation-rate formula is not instantly valid; rather, the nucleation rate relaxes exponentially (with a characteristic time - the time lag) to the value given by the steady-state formula. Under some circumstances, particularly those found in some cool stellar atmospheres, the time lag can be quite long and a decisve factor in determining the possibility of particle formation. Carbon condensation in the atmospheres of Mira variables is considered and found to be unlikely on the basis of classical nucleation theory because of the long time lags involved, unless the parameters describing the physical conditions in these atmospheres are significantly different from current estimates.

  1. Analysis of stellar occultation data for planetary atmospheres. I - Model fitting, with application to Pluto

    NASA Technical Reports Server (NTRS)

    Elliot, J. L.; Young, L. A.

    1992-01-01

    Consideration is given to an analytic model for a stellar-occultation light curve developed for a small, spherically symmetric planetary atmosphere that includes thermal and molecular weight gradients in a region that overlies an extinction layer. The model incorporates two equivalent sets of parameters. One set specifies the occultation light curve in terms of signal levels, times, and time intervals. The other set specifies physical parameters of the planetary atmosphere. Equations are given for the transforming between the sets of parameters, including their errors and correlation coefficients. Detailed numerical calculations are presented for a benchmark case. The results obtained are consistent with the isothermal prediction of the 'methane-thermostat' model of Pluto's atmosphere.

  2. Virgo cluster and field dwarf ellipticals in 3D - I. On the variety of stellar kinematic and line-strength properties

    NASA Astrophysics Data System (ADS)

    Ryś, Agnieszka; Falcón-Barroso, Jesús; van de Ven, Glenn

    2013-02-01

    We present the first large-scale stellar kinematic and line-strength maps for dwarf elliptical galaxies (nine in the Virgo cluster and three in the field environment) obtained with the SAURON (Spectrographic Areal Unit for Research on Optical Nebulae) integral-field unit. No two galaxies in our sample are alike: we see that the level of rotation is not tied to flattening (we have, e.g., round rotators and flattened non-rotators); we observe kinematic twists in one Virgo and one field object; we discover large-scale kinematically decoupled components in two field galaxies; we see varying gradients in line-strength maps, from nearly flat to strongly peaked in the centre. The great variety of morphological, kinematic and stellar population parameters seen in our data points to a formation scenario in which properties are shaped stochastically. A combined effect of ram-pressure stripping and galaxy harassment is the most probable explanation. We show the need for a comprehensive analysis of kinematic, dynamical and stellar population properties which will enable us to place dwarf ellipticals and processes that govern their evolution in the wider context of galaxy formation.

  3. User’s guide and reference to Ash3d: a three-dimensional model for Eulerian atmospheric tephra transport and deposition

    USGS Publications Warehouse

    Mastin, Larry G.; Randall, Michael J.; Schwaiger, Hans F.; Denlinger, Roger P.

    2013-01-01

    Ash3d is a three-dimensional Eulerian atmospheric model for tephra transport, dispersal, and deposition, written by the authors to study and forecast hazards of volcanic ash clouds and tephra fall. In this report, we explain how to set up simulations using both a web interface and an ASCII input file, and how to view and interpret model output. We also summarize the architecture of the model and some of its properties.

  4. Near-infrared spectro-interferometry of Mira variables and comparisons to 1D dynamic model atmospheres and 3D convection simulations

    NASA Astrophysics Data System (ADS)

    Wittkowski, M.; Chiavassa, A.; Freytag, B.; Scholz, M.; Höfner, S.; Karovicova, I.; Whitelock, P. A.

    2016-03-01

    Aims: We aim at comparing spectro-interferometric observations of Mira variable asymptotic giant branch (AGB) stars with the latest 1D dynamic model atmospheres based on self-excited pulsation models (CODEX models) and with 3D dynamic model atmospheres including pulsation and convection (CO5BOLD models) to better understand the processes that extend the molecular atmosphere to radii where dust can form. Methods: We obtained a total of 20 near-infrared K-band spectro-interferometric snapshot observations of the Mira variables o Cet, R Leo, R Aqr, X Hya, W Vel, and R Cnc with a spectral resolution of about 1500. We compared observed flux and visibility spectra with predictions by CODEX 1D dynamic model atmospheres and with azimuthally averaged intensities based on CO5BOLD 3D dynamic model atmospheres. Results: Our visibility data confirm the presence of spatially extended molecular atmospheres located above the continuum radii with large-scale inhomogeneities or clumps that contribute a few percent of the total flux. The detailed structure of the inhomogeneities or clumps show a variability on time scales of 3 months and above. Both modeling attempts provided satisfactory fits to our data. In particular, they are both consistent with the observed decrease in the visibility function at molecular bands of water vapor and CO, indicating a spatially extended molecular atmosphere. Observational variability phases are mostly consistent with those of the best-fit CODEX models, except for near-maximum phases, where data are better described by near-minimum models. Rosseland angular diameters derived from the model fits are broadly consistent between those based on the 1D and the 3D models and with earlier observations. We derived fundamental parameters including absolute radii, effective temperatures, and luminosities for our sources. Conclusions: Our results provide a first observational support for theoretical results that shocks induced by convection and pulsation in the

  5. Algorithms and physical parameters involved in the calculation of model stellar atmospheres

    NASA Astrophysics Data System (ADS)

    Merlo, D. C.

    This contribution summarizes the Doctoral Thesis presented at Facultad de Matemática, Astronomía y Física, Universidad Nacional de Córdoba for the degree of PhD in Astronomy. We analyze some algorithms and physical parameters involved in the calculation of model stellar atmospheres, such as atomic partition functions, functional relations connecting gaseous and electronic pressure, molecular formation, temperature distribution, chemical compositions, Gaunt factors, atomic cross-sections and scattering sources, as well as computational codes for calculating models. Special attention is paid to the integration of hydrostatic equation. We compare our results with those obtained by other authors, finding reasonable agreement. We make efforts on the implementation of methods that modify the originally adopted temperature distribution in the atmosphere, in order to obtain constant energy flux throughout. We find limitations and we correct numerical instabilities. We integrate the transfer equation solving directly the integral equation involving the source function. As a by-product, we calculate updated atomic partition functions of the light elements. Also, we discuss and enumerate carefully selected formulae for the monochromatic absorption and dispersion of some atomic and molecular species. Finally, we obtain a flexible code to calculate model stellar atmospheres.

  6. Accretion disk modeling of AGN continuum using non-LTE stellar atmospheres. [active galactic nuclei (AGN)

    NASA Technical Reports Server (NTRS)

    Sun, Wei-Hsin; Malkan, Matthew A.

    1988-01-01

    Active galactic nuclei (AGN) accretion disk spectra were calculated using non-LTE stellar atmosphere models for Kerr and Schwarzschild geometries. It is found that the Lyman limit absorption edge, probably the most conclusive observational evidence for the accretion disk, would be drastically distorted and displaced by the relativistic effects from the large gravitational field of the central black hole and strong Doppler motion of emitting material on the disk surface. These effects are especially pronounced in the Kerr geometry. The strength of the Lyman limit absorption is very sensitive to the surface gravity in the stellar atmosphere models used. For models at the same temperature but different surface gravities, the strength of the Lyman edge exhibits an almost exponential decrease as the surface gravity approach the Eddington limit, which should approximate the thin disk atmosphere. The relativistic effects as well as the vanishing of the Lyman edge at the Eddington gravity may be the reasons that not many Lyman edges in the rest frames of AGNs and quasars are found.

  7. 3D Time Dependent Stokes Vector Radiative Transfer in an Atmosphere-Ocean System Including a Stochastic Interface

    DTIC Science & Technology

    2009-01-01

    phase matrix were determined by letting the elements of the reduced phase matrix ( ˜ P ij = Pij /P11) be equal to those of the reduced Rayleigh...for the solution of 3-D Radiative Transfer Problems”, JQSRT. 45. 47-56, (1991) 3. A. Sánchez, T.F. Smith, and W. F. Krajewski “A three-dimensional...F. Krajewski , “A Multi-dimensional Discrete Ordinates Method for Polarized Radiative Transfer, Part I: Validation for Randomly Oriented

  8. Linewidth measurements in the thermal infrared bands of (C-12)H3D at planetary atmospheric temperatures

    NASA Technical Reports Server (NTRS)

    Varanasi, Prasad; Chudamani, S.

    1989-01-01

    Collision-broadened halfwidths of three lines in the nu3 fundamental band and of four lines in the nu6 fundamental band of (C-12)H3D have been measured at temperatures between 123 and 295 K using the Doppler-limited spectral resolution of a tunable diode laser spectrometer. Temperature dependence of the linewidths has been determined in self-broadening and in broadening by H2, He and N2.

  9. 3D Time Dependent Stokes Vector Radiative Transfer in an Atmosphere-Ocean System Including a Stochastic Interface

    DTIC Science & Technology

    2013-09-30

    vector Monte Carlo code to calculate what is known as SOES (Spatial Offset Elastic Scattering ). We have used our method to calculate the SOES signal... scattering properties, such as different single scattering albedo, different phase function and different phase matrix. Our new 3D vector Monte Carlo ...feature about the asymptotic light field is that it depends profoundly on both the single scattering albedo as well as the phase function of the medium

  10. Atmospheric effects of stellar cosmic rays on Earth-like exoplanets orbiting M-dwarfs

    NASA Astrophysics Data System (ADS)

    Tabataba-Vakili, F.; Grenfell, J. L.; Grießmeier, J.-M.; Rauer, H.

    2016-01-01

    M-dwarf stars are generally considered favourable for rocky planet detection. However, such planets may be subject to extreme conditions due to possible high stellar activity. The goal of this work is to determine the potential effect of stellar cosmic rays on key atmospheric species of Earth-like planets orbiting in the habitable zone of M-dwarf stars and show corresponding changes in the planetary spectra. We build upon the cosmic rays model scheme of previous works, who considered cosmic ray induced NOx production, by adding further cosmic ray induced production mechanisms (e.g. for HOx) and introducing primary protons of a wider energy range (16 MeV-0.5 TeV). Previous studies suggested that planets in the habitable zone that are subject to strong flaring conditions have high atmospheric methane concentrations, while their ozone biosignature is completely destroyed. Our current study shows, however, that adding cosmic ray induced HOx production can cause a decrease in atmospheric methane abundance of up to 80%. Furthermore, the cosmic ray induced HOx molecules react with NOx to produce HNO3, which produces strong HNO3 signals in the theoretical spectra and reduces NOx-induced catalytic destruction of ozone so that more than 25% of the ozone column remains. Hence, an ozone signal remains visible in the theoretical spectrum (albeit with a weaker intensity) when incorporating the new cosmic ray induced NOx and HOx schemes, even for a constantly flaring M-star case. We also find that HNO3 levels may be high enough to be potentially detectable. Since ozone concentrations, which act as the key shield against harmful UV radiation, are affected by cosmic rays via NOx-induced catalytic destruction of ozone, the impact of stellar cosmic rays on surface UV fluxes is also studied.

  11. Atmospheric Eclipses Now and Then: Probes of Stellar and Planetary Atmospheres

    NASA Astrophysics Data System (ADS)

    Guinan, Edward F.; Engle, S. G.; Recker, G.; Kullberg, E.

    2013-07-01

    Eclipses have played major roles in the development of Astronomy from antiquity up the present time. Lunar eclipses first showed that the Earth is sphere and solar eclipses revealed the Sun's chromosphere and corona. More recently a wealth of important astrophysical data has been gleamed from eclipsing binary stars and from planetary transits and occultations within our solar system and from transiting exoplanets orbiting other stars. Since the 1930s a small number of long-period eclipsing binary systems consisting of supergiant (or giant) primary stars and smaller hotter (typically B-type) companions - such as zeta Aur, 31 Cyg ,32 Cyg & VV Cep were found to undergo "atmospheric" eclipses. Atmospheric eclipses arise as the light of the small hot stars passes through the extended outer atmospheres of their K - M supergiant companions shortly before and after the primary eclipses. Also included with these systems is the 27-yr eclipsing binary eps Aur which consists of an F-supergiant and large, cool disk object. These stars are important astrophysical laboratories in which the atmospheric eclipses permit the extent and structure of the outer atmospheres of cool supergiants to be probed. In more recent years the powerful technique of atmospheric eclipses has been extended to short period white dwarf/cool star eclipsing binaries (e.g.-V471 Tau) as well as rare eclipsing binary systems with Cepheid components. Also during the last decade, the technique has been extended to transiting exoplanets in which the "transmission spectrum" of the exoplanet is studied as the light of star passes through the planet's atmosphere during the transit eclipse. These studies have revealed water vapor, CH4, CO2 and Na and other elements and molecules in exoplanet's atmospheres. An overview will be given with emphasis on some recent developments. This research is supported by grants from NSF/RUI and HST/NASA.

  12. On the application of iteration factors for temperature correction in stellar atmospheres

    NASA Astrophysics Data System (ADS)

    Simonneau, E.; Crivellari, L.

    1988-07-01

    The authors present an improved iterative method for deriving temperature corrections in stellar atmospheres. At each step of iteration, the procedure computes, from the current values of the radiation field, a set of depth-dependent factors, averaged over angles and frequencies. Even a crude initial estimate of the radiation field leads to a fairly accurate determination of these factors on the first iteration: they are quasi-invariant in subsequent iterations. For a range of effective temperatures the procedure quickly converges to the correct solution of the radiative transfer equation. At each iteration, the temperature distribution is directly derived via the energy conservation constraint.

  13. Model Stellar Atmospheres and Real Stellar Atmospheres and Status of the ATLAS12 Opacity Sampling Program and of New Programs for Rosseland and for Distribution Function Opacity

    NASA Technical Reports Server (NTRS)

    Kurucz, Robert L.

    1996-01-01

    I discuss errors in theory and in interpreting observations that are produced by the failure to consider resolution in space, time, and energy. I discuss convection in stellar model atmospheres and in stars. Large errors in abundances are possible such as the factor of ten error in the Li abundance for extreme Population II stars. Finally I discuss the variation of microturbulent velocity with depth, effective temperature, gravity, and abundance. These variations must be dealt with in computing models and grids and in any type of photometric calibration. I have also developed a new opacity-sampling version of my model atmosphere program called ATLAS12. It recognizes more than 1000 atomic and molecular species, each in up to 10 isotopic forms. It can treat all ions of the elements up through Zn and the first 5 ions of heavier elements up through Es. The elemental and isotopic abundances are treated as variables with depth. The fluxes predicted by ATLAS12 are not accurate in intermediate or narrow bandpass intervals because the sample size is too small. A special stripped version of the spectrum synthesis program SYNTHE is used to generate the surface flux for the converged model using the line data on CD-ROMs 1 and 15. ATLAS12 can be used to produce improved models for Am and Ap stars. It should be very useful for investigating diffusion effects in atmospheres. It can be used to model exciting stars for H II regions with abundances consistent with those of the H II region. These programs and line files will be distributed on CD-ROMs.

  14. On the Use of Blanketed Atmospheres as Boundary Conditions for Stellar Evolutionary Models

    NASA Astrophysics Data System (ADS)

    VandenBerg, Don A.; Edvardsson, Bengt; Eriksson, Kjell; Gustafsson, Bengt

    2008-03-01

    Stellar models have been computed for stars having [ Fe/H ] = 0.0 (assuming both the Grevesse & Sauval and Asplund et al. heavy-element mixtures) and -2.0 to determine the effects on the predicted Teff scale of using boundary conditions derived from the latest MARCS model atmospheres. The latter were fitted in a fully consistent way to the interior models at the photosphere and at τ = 100: the resultant evolutionary sequences on the H-R diagram were found to be nearly independent of the chosen fitting point. Tracks were also computed in which the pressure at T = Teff was obtained by integrating the hydrostatic equation together with either the classical gray T(τ , Teff) relation or that derived by Krishna Swamy from an empirical solar atmosphere. Due to the effects of differences in the solar-calibrated values of the mixing-length parameter, αMLT, very similar tracks were obtained for the different treatments of the atmosphere, except at solar abundances, where the models based on the Krishna Swamy T(τ , Teff) relationship predicted ~150 K hotter giant branches than the others, in good agreement with the inferred temperatures of giants in the open cluster M67 from recent (V - K) -Teff relations. Tracks that used new ``scaled solar, differentially corrected'' MARCS atmospheres were found to agree well with those that employed the Krishna Swamy T(τ , Teff) relationship, independently of the assumed metal abundance. (Gray atmospheres are quite different from MARCS models.) Fits of isochrones for [ Fe/H ] = - 2.0 to the CMD of the globular cluster M68, as well as the possibility that αMLT varies with stellar parameters, are also discussed.

  15. Exoplanet Atmospheres in High Definition: 3D Eclipse Mapping of HD 209458b and HD 189733b

    NASA Astrophysics Data System (ADS)

    Lewis, Nikole; Cowan, Nicolas; Knutson, Heather; de Wit, Julien; Seager, Sara; Demory, Brice-Olivier; Fortney, Jonathan; Showman, Adam

    2013-10-01

    Eclipse mapping is a newly developed technique in the arsenal of observational methods aimed at the characterization of exoplanet atmospheres. This technique was first applied to HD189733b using multiple 8 micron secondary eclipse observations to create a high-resolution snapshot of the dayside of the planet. The eclipse map of HD189733b at 8 microns was able to resolve the dayside brightness distribution of the planet both in latitude and longitude giving key insights into the atmospheric circulation of HD189733b. Here we propose to use this eclipse mapping technique to produce dayside brightness maps of the benchmark exoplanets HD189733b and HD209458b at both 3.6 and 4.5 microns. By combining brightness maps at multiple wavelengths, we will create the first three-dimensional maps of an exoplanet atmosphere (latitude, longitude, and pressure). HD209458 and HD189733 are among the brightest (Ks~6) planet harboring system and represent our best opportunity to achieve a high signal-to-noise eclipse maps. Comparisons between the brightness maps of these two planets will highlight key differences in the atmospheric circulation patterns of planets with (HD209458b) and without (HD189733b) thermal inversions in their dayside atmospheres. The atmospheres of HD189733b and HD209458b have been previously probed at wavelengths from the infrared to the ultraviolet through transit, eclipse, and phase-curve observations. With the addition of the three-dimensional eclipse maps proposed here, we will answer many of the outstanding questions about the basic radiative, chemical, and advective processes at work in these key planetary atmospheres. The observations proposed here will allow us to make the first direct comparisons of the observed thermal structure of an exoplanet with the plethora of three-dimensional atmospheric circulation models developed specifically for HD189733b and HD209458b, thus both informing the models and gaining new insights into the complex circulation

  16. Impact of assimilation of INSAT-3D retrieved atmospheric motion vectors on short-range forecast of summer monsoon 2014 over the South Asian region

    NASA Astrophysics Data System (ADS)

    Kumar, Prashant; Deb, Sanjib K.; Kishtawal, C. M.; Pal, P. K.

    2017-05-01

    The Weather Research and Forecasting (WRF) model and its three-dimensional variational data assimilation system are used in this study to assimilate the INSAT-3D, a recently launched Indian geostationary meteorological satellite derived from atmospheric motion vectors (AMVs) over the South Asian region during peak Indian summer monsoon month (i.e., July 2014). A total of four experiments were performed daily with and without assimilation of INSAT-3D-derived AMVs and the other AMVs available through Global Telecommunication System (GTS) for the entire month of July 2014. Before assimilating these newly derived INSAT-3D AMVs in the numerical model, a preliminary evaluation of these AMVs is performed with National Centers for Environmental Prediction (NCEP) final model analyses. The preliminary validation results show that root-mean-square vector difference (RMSVD) for INSAT-3D AMVs is ˜3.95, 6.66, and 5.65 ms-1 at low, mid, and high levels, respectively, and slightly more RMSVDs are noticed in GTS AMVs (˜4.0, 8.01, and 6.43 ms-1 at low, mid, and high levels, respectively). The assimilation of AMVs has improved the WRF model of produced wind speed, temperature, and moisture analyses as well as subsequent model forecasts over the Indian Ocean, Arabian Sea, Australia, and South Africa. Slightly more improvements are noticed in the experiment where only the INSAT-3D AMVs are assimilated compared to the experiment where only GTS AMVs are assimilated. The results also show improvement in rainfall predictions over the Indian region after AMV assimilation. Overall, the assimilation of INSAT-3D AMVs improved the WRF model short-range predictions over the South Asian region as compared to control experiments.

  17. 3D Time Dependent Stokes Vector Radiative Transfer in an Atmosphere-Ocean System Including a Stochastic Interface

    DTIC Science & Technology

    2007-09-30

    An efficient method for the solution of 3-D Radiative Transfer Problems”, JQSRT. 45. 47-56, (1991) 3. A. Sánchez, T.F. Smith, and W. F. Krajewski ...Haferman, T. F. Smith, and W. F. Krajewski , “A Multi-dimensional Discrete Ordinates Method for Polarized Radiative Transfer, Part I: Validation for...Operator Theory of Radiative Transfer. II. Scattering from Maritime Haze,” Appl. Opt. l2, 1071-1084 (1973). PUBLICATIONS 1. P . Zhai, G. W. Kattawar

  18. Pluto’s Atmosphere from the 23 June 2011 Stellar Occultation: Airborne and Ground Observations

    NASA Astrophysics Data System (ADS)

    Person, Michael J.; Bosh, A. S.; Levine, S. E.; Gulbis, A. A. S.; Zangari, A. M.; Zuluaga, C. A.; Dunham, E. W.; Pasachoff, J. M.; Babcock, B. A.; Pandey, S.; Armhein, D.; Sallum, S.; Tholen, D. J.; Collins, P.; Bida, T.; Taylor, B.; Wolf, J.; Meyer, A.; Pfueller, E.; Wiedermann, M.; Roesser, H.; Lucas, R.; Kakkala, M.; Ciotti, J.; Plunkett, S.; Hiraoka, N.; Best, W.; Pilger, E. L.; Miceli, M.; Springmann, A.; Hicks, M.; Thackeray, B.; Emery, J.; Rapoport, S.; Ritchie, I.

    2012-10-01

    The double stellar occultation by Pluto and Charon of 2011 June 23 was observed from numerous ground stations as well as the Stratospheric Observatory for Infrared Astronomy (SOFIA). This first airborne occultation observation since 1995 resulted in the best occultation chords recorded for the event, in three optical wavelength bands. The data obtained from SOFIA were combined with chords obtained from the ground at the IRTF (including a full spectral light curve), the USNO--Flagstaff Station, and Leeward Community College to give a detailed profile of Pluto’s atmosphere. The data show a return to the distinct upper and lower atmospheric regions with a knee, or kink in the light curves separating them as was observed in 1988 (Millis et al. 1993), rather than the smoothly transitioning bowl-shaped light curves of recent years (Elliot et al. 2007). We analyze the upper atmosphere by fitting a model to all of the light curves obtained, resulting in a half-light radius of 1288 ± 1 km. We analyze the lower atmosphere with two different methods to provide results under the separate assumptions of particulate haze and a strong thermal gradient. Results indicate that the lower atmosphere evolves on short seasonal timescales, changing between 1988 and 2006, and then returning to approximately the 1988 state in 2011, though at significantly higher pressures. Throughout these changes, the upper atmosphere remains remarkably stable in structure, again excepting the overall pressure changes. No evidence of the onset of atmospheric collapse predicted by frost migration models is yet seen, and the atmosphere appears to be remaining at a stable pressure level. This work was supported in part by NASA Planetary Astronomy grants to MIT (NNX10AB27G) and Williams College (NNX08AO50G, NNH11ZDA001N), as well as grants from USRA (#8500-98-003) and Ames Research (#NAS2-97-01) to Lowell Observatory.

  19. Variability of solar/stellar activity and magnetic field and its influence on planetary atmosphere evolution

    NASA Astrophysics Data System (ADS)

    Lammer, Helmut; Güdel, Manuel; Kulikov, Yuri; Ribas, Ignasi; Zaqarashvili, Teimuraz V.; Khodachenko, Maxim L.; Kislyakova, Kristina G.; Gröller, Hannes; Odert, Petra; Leitzinger, Martin; Fichtinger, Bibiana; Krauss, Sandro; Hausleitner, Walter; Holmström, Mats; Sanz-Forcada, Jorge; Lichtenegger, Herbert I. M.; Hanslmeier, Arnold; Shematovich, Valery I.; Bisikalo, Dmitry; Rauer, Heike; Fridlund, Malcolm

    2012-02-01

    It is shown that the evolution of planetary atmospheres can only be understood if one recognizes the fact that the radiation and particle environment of the Sun or a planet's host star were not always on the same level as at present. New insights and the latest observations and research regarding the evolution of the solar radiation, plasma environment and solar/stellar magnetic field derived from the observations of solar proxies with different ages will be given. We show that the extreme radiation and plasma environments of the young Sun/stars have important implications for the evolution of planetary atmospheres and may be responsible for the fact that planets with low gravity like early Mars most likely never build up a dense atmosphere during the first few 100 Myr after their origin. Finally we present an innovative new idea on how hydrogen clouds and energetic neutral atom (ENA) observations around transiting Earth-like exoplanets by space observatories such as the WSO-UV, can be used for validating the addressed atmospheric evolution studies. Such observations would enhance our understanding on the impact on the activity of the young Sun on the early atmospheres of Venus, Earth, Mars and other Solar System bodies as well as exoplanets.

  20. Mechanism for flow generation/acceleration in dense degenerate stellar atmospheres

    NASA Astrophysics Data System (ADS)

    Barnaveli, A. A.; Shatashvili, N. L.

    2017-09-01

    The mechanism for flow generation in dense degenerate stellar atmospheres is suggested when the electron gas is degenerate and ions are assumed to be classical. It is shown, that there is a catastrophe in such system—fast flows are generated due to magneto-fluid coupling near the surface. Distance over which acceleration appears is determined by the strength of gravity and degeneracy parameter. Application of this mechanism for White Dwarfs' atmospheres is examined and appropriate physical parameter range for flow generation/acceleration is found; possibility of the super-Alfvénic flow generation is shown; the simultaneous possibility of flow acceleration and magnetic field amplification for specific boundary conditions is explored; in some cases initial background flow can be accelerated 100 and more times leading to transient jet formation while the Magnetic field amplification is less strong.

  1. Parametric 3D Atmospheric Reconstruction in Highly Variable Terrain with Recycled Monte Carlo Paths and an Adapted Bayesian Inference Engine

    NASA Technical Reports Server (NTRS)

    Langmore, Ian; Davis, Anthony B.; Bal, Guillaume; Marzouk, Youssef M.

    2012-01-01

    We describe a method for accelerating a 3D Monte Carlo forward radiative transfer model to the point where it can be used in a new kind of Bayesian retrieval framework. The remote sensing challenge is to detect and quantify a chemical effluent of a known absorbing gas produced by an industrial facility in a deep valley. The available data is a single low resolution noisy image of the scene in the near IR at an absorbing wavelength for the gas of interest. The detected sunlight has been multiply reflected by the variable terrain and/or scattered by an aerosol that is assumed partially known and partially unknown. We thus introduce a new class of remote sensing algorithms best described as "multi-pixel" techniques that call necessarily for a 3D radaitive transfer model (but demonstrated here in 2D); they can be added to conventional ones that exploit typically multi- or hyper-spectral data, sometimes with multi-angle capability, with or without information about polarization. The novel Bayesian inference methodology uses adaptively, with efficiency in mind, the fact that a Monte Carlo forward model has a known and controllable uncertainty depending on the number of sun-to-detector paths used.

  2. Parametric 3D Atmospheric Reconstruction in Highly Variable Terrain with Recycled Monte Carlo Paths and an Adapted Bayesian Inference Engine

    NASA Technical Reports Server (NTRS)

    Langmore, Ian; Davis, Anthony B.; Bal, Guillaume; Marzouk, Youssef M.

    2012-01-01

    We describe a method for accelerating a 3D Monte Carlo forward radiative transfer model to the point where it can be used in a new kind of Bayesian retrieval framework. The remote sensing challenge is to detect and quantify a chemical effluent of a known absorbing gas produced by an industrial facility in a deep valley. The available data is a single low resolution noisy image of the scene in the near IR at an absorbing wavelength for the gas of interest. The detected sunlight has been multiply reflected by the variable terrain and/or scattered by an aerosol that is assumed partially known and partially unknown. We thus introduce a new class of remote sensing algorithms best described as "multi-pixel" techniques that call necessarily for a 3D radaitive transfer model (but demonstrated here in 2D); they can be added to conventional ones that exploit typically multi- or hyper-spectral data, sometimes with multi-angle capability, with or without information about polarization. The novel Bayesian inference methodology uses adaptively, with efficiency in mind, the fact that a Monte Carlo forward model has a known and controllable uncertainty depending on the number of sun-to-detector paths used.

  3. Charon's size and an upper limit on its atmosphere from a stellar occultation.

    PubMed

    Sicardy, B; Bellucci, A; Gendron, E; Lacombe, F; Lacour, S; Lecacheux, J; Lellouch, E; Renner, S; Pau, S; Roques, F; Widemann, T; Colas, F; Vachier, F; Martins, R Vieira; Ageorges, N; Hainaut, O; Marco, O; Beisker, W; Hummel, E; Feinstein, C; Levato, H; Maury, A; Frappa, E; Gaillard, B; Lavayssière, M; Di Sora, M; Mallia, F; Masi, G; Behrend, R; Carrier, F; Mousis, O; Rousselot, P; Alvarez-Candal, A; Lazzaro, D; Veiga, C; Andrei, A H; Assafin, M; da Silva Neto, D N; Jacques, C; Pimentel, E; Weaver, D; Lecampion, J-F; Doncel, F; Momiyama, T; Tancredi, G

    2006-01-05

    Pluto and its satellite, Charon (discovered in 1978; ref. 1), appear to form a double planet, rather than a hierarchical planet/satellite couple. Charon is about half Pluto's size and about one-eighth its mass. The precise radii of Pluto and Charon have remained uncertain, leading to large uncertainties on their densities. Although stellar occultations by Charon are in principle a powerful way of measuring its size, they are rare, as the satellite subtends less than 0.3 microradians (0.06 arcsec) on the sky. One occultation (in 1980) yielded a lower limit of 600 km for the satellite's radius, which was later refined to 601.5 km (ref. 4). Here we report observations from a multi-station stellar occultation by Charon, which we use to derive a radius, R(C) = 603.6 +/- 1.4 km (1sigma), and a density of rho = 1.71 +/- 0.08 g cm(-3). This occultation also provides upper limits of 110 and 15 (3sigma) nanobar for an atmosphere around Charon, assuming respectively a pure nitrogen or pure methane atmosphere.

  4. A possible deuterium anomaly: Implications of the CH3D/CH4 mixing ratios in the atmospheres of Jupiter, Saturn, and Uranus

    NASA Technical Reports Server (NTRS)

    Lutz, Barry L.; Debergh, Catherine; Owen, Tobias

    1986-01-01

    Observations of CH3D in the atmospheres of the outer planets provide a test of the theory of deuterium fractionation equilibrium in the formation and evolution of these planets. Recent measurements of the CH3D/CH4 mixing ratios made for Saturn and Uranus are presented and intercompared with current values of Jupiter, illustrating large differences between the planets. Their implied D/H ratios are compared to D/H ratios derived from measurements of HD/H2; and, in the cases of Jupiter and Saturn, they may be incompatible. Implications of these comparisons are discussed in terms of the deuterium fractionation chemistry and possible enrichments of deuterium in the core ices of the planets.

  5. An Investigation of the Seasonal Changes of Neptune's Atmosphere via a July 2008 Stellar Occultation Event

    NASA Astrophysics Data System (ADS)

    Uckert, Kyle; Chanover, N.; Miller, C.; Olkin, C.; Young, L.; Hammel, H.; Bauer, J.

    2012-10-01

    We extract physical atmospheric parameters from a July 23, 2008 single-chord stellar occultation of the star USNO-B1.0 0759-0739128 by Neptune using both light curve model fitting and numerical inversion techniques. We observed the occultation event using the Agile CCD camera mounted on the Astrophysical Research Consortium 3.5m telescope at Apache Point Observatory. We acquired a series of 13,340 0.5 second images from approximately 07:14 to 09:05 UT. Neptune was observed through an airmass ranging from 1.57 to 1.46, with atmospheric seeing of approximately 0.6" throughout the event. We used the Johnson I-band filter, which was chosen to reduce the contribution of scattered light from Neptune. Methane absorption at 0.89 μm in Neptune’s upper stratosphere causes Neptune to appear darker at this bandpass, reducing the amount of scattered light in the image. A 0.5 second integration time with negligible frame-transfer provides an atmospheric sampling at the microbar pressure level of approximately 4 samples per scale height. Stellar occultations of Neptune were observed extensively in the 1980's to search for evidence of a ring system around the planet prior to the arrival of Voyager 2. No new occultations of Neptune have been published since 1990, due in part to the diffuse star field the planet has been traveling though. We compare the stratospheric temperature derived from the 2008 occultation to published temperatures of Neptune at similar atmospheric pressures derived from previous stellar occultations and from mid-IR spectral data collected within the last decade. The two leading hypotheses for explaining the observed temperature variations of Neptune are seasonal variability and variations in the Lyman-alpha flux received at Neptune due to the 11-year solar cycle. We investigate the effect each of these mechanisms may have on the gradual changes of Neptune’s average stratospheric temperature. This work is supported by funds from NASA grant NAG5-1247.

  6. Albedo and atmospheric constraints of dwarf planet Makemake from a stellar occultation.

    PubMed

    Ortiz, J L; Sicardy, B; Braga-Ribas, F; Alvarez-Candal, A; Lellouch, E; Duffard, R; Pinilla-Alonso, N; Ivanov, V D; Littlefair, S P; Camargo, J I B; Assafin, M; Unda-Sanzana, E; Jehin, E; Morales, N; Tancredi, G; Gil-Hutton, R; de la Cueva, I; Colque, J P; Da Silva Neto, D N; Manfroid, J; Thirouin, A; Gutiérrez, P J; Lecacheux, J; Gillon, M; Maury, A; Colas, F; Licandro, J; Mueller, T; Jacques, C; Weaver, D; Milone, A; Salvo, R; Bruzzone, S; Organero, F; Behrend, R; Roland, S; Vieira-Martins, R; Widemann, T; Roques, F; Santos-Sanz, P; Hestroffer, D; Dhillon, V S; Marsh, T R; Harlingten, C; Bagatin, A Campo; Alonso, M L; Ortiz, M; Colazo, C; Lima, H J F; Oliveira, A S; Kerber, L O; Smiljanic, R; Pimentel, E; Giacchini, B; Cacella, P; Emilio, M

    2012-11-22

    Pluto and Eris are icy dwarf planets with nearly identical sizes, comparable densities and similar surface compositions as revealed by spectroscopic studies. Pluto possesses an atmosphere whereas Eris does not; the difference probably arises from their differing distances from the Sun, and explains their different albedos. Makemake is another icy dwarf planet with a spectrum similar to Eris and Pluto, and is currently at a distance to the Sun intermediate between the two. Although Makemake's size (1,420 ± 60 km) and albedo are roughly known, there has been no constraint on its density and there were expectations that it could have a Pluto-like atmosphere. Here we report the results from a stellar occultation by Makemake on 2011 April 23. Our preferred solution that fits the occultation chords corresponds to a body with projected axes of 1,430 ± 9 km (1σ) and 1,502 ± 45 km, implying a V-band geometric albedo p(V) = 0.77 ± 0.03. This albedo is larger than that of Pluto, but smaller than that of Eris. The disappearances and reappearances of the star were abrupt, showing that Makemake has no global Pluto-like atmosphere at an upper limit of 4-12 nanobar (1σ) for the surface pressure, although a localized atmosphere is possible. A density of 1.7 ± 0.3 g cm(-3) is inferred from the data.

  7. Albedo and atmospheric constraints of dwarf planet Makemake from a stellar occultation

    NASA Astrophysics Data System (ADS)

    Ortiz, J. L.; Sicardy, B.; Braga-Ribas, F.; Alvarez-Candal, A.; Lellouch, E.; Duffard, R.; Pinilla-Alonso, N.; Ivanov, V. D.; Littlefair, S. P.; Camargo, J. I. B.; Assafin, M.; Unda-Sanzana, E.; Jehin, E.; Morales, N.; Tancredi, G.; Gil-Hutton, R.; de La Cueva, I.; Colque, J. P.; da Silva Neto, D. N.; Manfroid, J.; Thirouin, A.; Gutiérrez, P. J.; Lecacheux, J.; Gillon, M.; Maury, A.; Colas, F.; Licandro, J.; Mueller, T.; Jacques, C.; Weaver, D.; Milone, A.; Salvo, R.; Bruzzone, S.; Organero, F.; Behrend, R.; Roland, S.; Vieira-Martins, R.; Widemann, T.; Roques, F.; Santos-Sanz, P.; Hestroffer, D.; Dhillon, V. S.; Marsh, T. R.; Harlingten, C.; Campo Bagatin, A.; Alonso, M. L.; Ortiz, M.; Colazo, C.; Lima, H. J. F.; Oliveira, A. S.; Kerber, L. O.; Smiljanic, R.; Pimentel, E.; Giacchini, B.; Cacella, P.; Emilio, M.

    2012-11-01

    Pluto and Eris are icy dwarf planets with nearly identical sizes, comparable densities and similar surface compositions as revealed by spectroscopic studies. Pluto possesses an atmosphere whereas Eris does not; the difference probably arises from their differing distances from the Sun, and explains their different albedos. Makemake is another icy dwarf planet with a spectrum similar to Eris and Pluto, and is currently at a distance to the Sun intermediate between the two. Although Makemake's size (1,420 +/- 60 km) and albedo are roughly known, there has been no constraint on its density and there were expectations that it could have a Pluto-like atmosphere. Here we report the results from a stellar occultation by Makemake on 2011 April 23. Our preferred solution that fits the occultation chords corresponds to a body with projected axes of 1,430 +/- 9 km (1σ) and 1,502 +/- 45 km, implying a V-band geometric albedo pV = 0.77 +/- 0.03. This albedo is larger than that of Pluto, but smaller than that of Eris. The disappearances and reappearances of the star were abrupt, showing that Makemake has no global Pluto-like atmosphere at an upper limit of 4-12 nanobar (1σ) for the surface pressure, although a localized atmosphere is possible. A density of 1.7 +/- 0.3 g cm-3 is inferred from the data.

  8. Single stars in the Hyades open cluster. Fiducial sequence for testing stellar and atmospheric models

    NASA Astrophysics Data System (ADS)

    Kopytova, Taisiya G.; Brandner, Wolfgang; Tognelli, Emanuele; Prada Moroni, Pier Giorgio; Da Rio, Nicola; Röser, Siegfried; Schilbach, Elena

    2016-01-01

    Context. Age and mass determinations for isolated stellar objects remain model-dependent. While stellar interior and atmospheric theoretical models are rapidly evolving, we need a powerful tool to test them. Open clusters are good candidates for this role. Aims: We aim to create a fiducial sequence of stellar objects for testing stellar and atmospheric models. Methods: We complement previous studies on the Hyades multiplicity by Lucky Imaging observations with the AstraLux Norte camera. This allows us to exclude possible binary and multiple systems with companions outside a 2-7 AU separation and to create a single-star sequence for the Hyades. The sequence encompasses 250 main-sequence stars ranging from A5V to M6V. Using the Tool for Astrophysical Data Analysis (TA-DA), we create various theoretical isochrones applying different combinations of interior and atmospheric models. We compare the isochrones with the observed Hyades single-star sequence on J vs. J-Ks, J vs. J-H, and Ks vs. H-Ks color-magnitude diagrams. As a reference we also compute absolute fluxes and magnitudes for all stars from X-ray to mid-infrared based on photometric measurements available in the literature(ROSAT X-ray, GALEX UV, APASS gri, 2MASS JHKs, and WISE W1 to W4). Results: We find that combinations of both PISA and DARTMOUTH stellar interior models with BT-Settl 2010 atmospheric models describe the observed sequence well. We use PISA in combination with BT-Settl 2010 models to derive theoretical predictions for physical parameters (Teff, mass, log g) of 250 single stars in the Hyades. The full sequence covers the mass range of 0.13-2.30 M⊙, and effective temperatures between 3060 K and 8200 K. Conclusions: Within the measurement uncertainties, the current generation of models agree well with the single-star sequence. The primary limitations are the uncertainties in the measurement of the distances to individual Hyades members, and uncertainties in the photometry. Gaia parallaxes

  9. 3D Time Dependent Stokes Vector Radiative Transfer in an Atmosphere-Ocean System Including a Stochastic Interface

    DTIC Science & Technology

    2010-01-01

    RaDyO platforms, the R/ P FLoating Instrument Platform (FLIP) and the R/V Kilo Moana (KM), are usually different. Among other important results, it is... Krajewski “A three-dimensional atmospheric radiative transfer model based on the discrete ordinates method”, Atmos. Res. 33, 283-308, (1994), 4. J. L...Haferman, T. F. Smith, and W. F. Krajewski , “A Multi-dimensional Discrete Ordinates Method for Polarized Radiative Transfer, Part I: Validation for

  10. Alkali Halide Opacity in Brown Dwarf and Cool Stellar Atmospheres: A Study of Lithium Chloride

    NASA Astrophysics Data System (ADS)

    Kirby, K.; Weck, P. F.; Schweitzer, A.; Stancil, P. C.; Hauschildt, P. H.

    2003-12-01

    Recent thermochemical equilibrium calculations have revealed the important role played by lithium chloride in the lithium chemistry of cool dwarf atmospheres (K. Lodders 1999, ApJ 519, 793). Indeed, LiCl appears to be the dominant Li-bearing gas over an extended domain of the (P,T) diagram, typically for temperatures below 1500 K. LiCl has a large dipole moment in its ground electronic state which can give rise to intense rovibrational line spectra. In addition, LiCl can make dipole transitions to several low-lying unbound excited states, causing dissociation of the molecule. For these reasons, LiCl may be a significant source of line and continuum opacity in brown dwarf and cool stellar atmospheres. In this work, we report calculations of complete lists of line oscillator strengths and photodissociation cross sections for the low-lying electronic states of LiCl. We have performed single- and double-excitation configuration interaction calculations using the ALCHEMY ab initio package (Mc Lean et al. 1991, MOTECC 91, Elsevier, Leiden) and obtained the potential curves and the corresponding dipole transition moment functions between the X 1Σ ^+ ground state and the B 1Σ ^+ and A 1Π excited states. The resulting line oscillator strengths and molecular photodissociation cross sections have been included in the PHOENIX stellar atmosphere code (Hauschildt & Baron 1999, J. Comput. App. Math. 102, 41). The new models, calculated using spherical geometry for all gravities considered, also incorporate our latest database of nearly 670 million molecular lines, and updated equations of state (EOS). This work was supported in part by NSF grants AST-9720704 and AST-0086246, NASA grants NAG5-8425, NAG5-9222, and NAG5-10551 as well as NASA/JPL grant 961582.

  11. Disequilibrium chemistry in the atmospheres of extrasolar giant planets as a function of stellar distance

    NASA Astrophysics Data System (ADS)

    Moses, J. I.; Sharp, A. G.; Fegley, B., Jr.; Marley, M. S.; Friedson, A. J.; Lodders, K.; Rages, K. A.

    2003-05-01

    The atmospheric composition and spectral properties of extrasolar giant planets will depend in large part on disequilibrium processes like photochemistry, chemical kinetics, diffusive transport, and haze formation. We have developed a photochemical kinetics, radiative transfer, and 1-D vertical transport model for extrasolar giant planets (EGPs) and brown dwarfs. The chemical reaction list contains H-, C-, O-, N-, P-, and S-bearing species and is designed to be valid for atmospheric temperatures ranging from 100-3000 K at pressures from 0-50 bar. Here we examine the effect of stellar distance (e.g., ultraviolet flux, atmospheric temperature) on the composition and other physical/chemical properties of EGPs. Our focus will be on comparing photochemical models for Jupiter with those for very close-in EGPs (e.g., the recently discovered transitting planet HD209458b at 0.045 AU) and for intermediate-temperature EGPs (e.g., generic Class II and III EGPs at <= 1-3 AU, as described by Sudarsky et al. 2003, ApJ 588, 1121-1148). The closer the giant planet is to its central star, the fewer elements that are tied up in condensed phases deep in the troposphere. First ammonia, then hydrogen sulfide, then water become available in the gas phase as the stellar distance decreases. The photochemistry of ``warm'' and ``hot'' EGPs will be more complex than the simple methane-based photochemistry that dominates on the cold giant planets in our own solar system. We will identify the possible observational consequences of disequilibrium chemistry and diffusive transport in EGPs.

  12. S4EI (Spectral Sampling with Slicer for Stellar and Extragalactical Instrumentation), a new-generation of 3D spectro-imager dedicated to night astronomy

    NASA Astrophysics Data System (ADS)

    Sayède, Frédéric; Puech, Mathieu; Mein, Pierre; Bonifacio, Piercarlo; Malherbe, Jean-Marie; Galicher, Raphaël.; Amans, Jean-Philippe; Fasola, Gilles

    2014-07-01

    Multichannel Subtractive Double Pass (MSDP) spectrographs have been widely used in solar spectroscopy because of their ability to provide an excellent compromise between field of view and spatial and spectral resolutions. Compared with other types of spectrographs, MSDP can deliver simultaneous monochromatic images at higher spatial and spectral resolutions without any time-scanning requirement (as with Fabry-Perot spectrographs), and with limited loss of flux. These performances are obtained thanks to a double pass through the dispersive element. Recent advances with VPH (Volume phase holographic) Grisms as well as with image slicers now make MSDP potentially sensitive to much smaller fluxes. We present S4EI (Spectral Sampling with Slicer for Stellar and Extragalactical Instrumentation), which is a new concept for extending MSDP to night-time astronomy. It is based on new generation reflecting plane image slicers working with large apertures specific to night-time telescopes. The resulting design could be potentially very attractive and innovative for different domains of astronomy, e.g., the simultaneous spatial mapping of accurately flux-calibrated emission lines between OH sky lines in extragalactic astronomy or the simultaneous imaging of stars, exoplanets and interstellar medium. We present different possible MSDP/S4EI configurations for these science cases and expected performances on telescopes such as the VLT.

  13. Implementation of the Blade Element Momentum Method into a High-Resolution 3-D Atmospheric Model: Evaluating a Parameterization for Wind Turbines

    NASA Astrophysics Data System (ADS)

    Sta. Maria, M.; Ketefian, G. S.; Jacobson, M. Z.

    2010-12-01

    In order to simulate better the effects of wind turbines on meteorology and climate, a parameterization based on the Blade Element Momentum (BEM) theory was developed and integrated into a high-resolution 3-D non-hydrostatic atmospheric model that conserves several domain-integrated quantities. The BEM model calculates the forces the blade exerts on the atmosphere and feeds it back as body forces in the momentum equations of the atmospheric model. Since the BEM method calculates these forces along a turbine blade, the parameterization allows for model spatial resolutions on the order of a few to tens of meters. This study examines the advantages and limitations of such a parameterization. The BEM calculates the rotational force that the blades exert on the air, and this study investigates whether this parameterization is able to capture rotation in the wake. The dependency on model resolution is also studied to determine the optimum model resolution for simulating wind turbine-atmosphere interactions. The atmospheric model is also used to estimate the distance downwind of a turbine at which wind speeds recover. This is an important parameter for determining optimal wind farm spacing. Model results will be compared with previous parameterizations and wake data gathered in the field and from wind tunnel studies.

  14. Novel 3D Tissue Engineered Bone Model, Biomimetic Nanomaterials, and Cold Atmospheric Plasma Technique for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Wang, Mian

    This thesis research is consist of four chapters, including biomimetic three-dimensional tissue engineered nanostructured bone model for breast cancer bone metastasis study (Chapter one), cold atmospheric plasma for selectively ablating metastatic breast cancer (Chapter two), design of biomimetic and bioactive cold plasma modified nanostructured scaffolds for enhanced osteogenic differentiation of bone marrow derived mesenchymal stem cells (Chapter three), and enhanced osteoblast and mesenchymal stem cell functions on titanium with hydrothermally treated nanocrystalline hydroxyapatite/magnetically treated carbon nanotubes for orthopedic applications (Chapter four). All the thesis research is focused on nanomaterials and the use of cold plasma technique for various biomedical applications.

  15. 3D balanced winds and dynamics in Jupiter’s atmosphere from combined imaging and infrared observations

    NASA Astrophysics Data System (ADS)

    Read, P. L.; Gierasch, P. J.; Conrath, B. J.; Yamazaki, Y. H.

    A series of analyses combining feature-tracking from visible images and infrared sounding observations obtained by Voyager 1 and 2 are presented for the region surrounding Jupiter's Great Red Spot. By making use of various dynamical balance constraints, fully three-dimensional maps of a number of meteorological variables (such as horizontal wind, isobaric geopotential height and vertical velocity) can be recovered. Such maps are of immense potential value in a variety of studies of atmospheres such as those of the outer planets, and some possible extensions of this approach to ongoing and future spacecraft missions are discussed.

  16. A 3-D RBF-FD solver for modeling the atmospheric global electric circuit with topography (GEC-RBFFD v1.0)

    NASA Astrophysics Data System (ADS)

    Bayona, V.; Flyer, N.; Lucas, G. M.; Baumgaertner, A. J. G.

    2015-10-01

    A numerical model based on radial basis function-generated finite differences (RBF-FD) is developed for simulating the global electric circuit (GEC) within the Earth's atmosphere, represented by a 3-D variable coefficient linear elliptic partial differential equation (PDE) in a spherically shaped volume with the lower boundary being the Earth's topography and the upper boundary a sphere at 60 km. To our knowledge, this is (1) the first numerical model of the GEC to combine the Earth's topography with directly approximating the differential operators in 3-D space and, related to this, (2) the first RBF-FD method to use irregular 3-D stencils for discretization to handle the topography. It benefits from the mesh-free nature of RBF-FD, which is especially suitable for modeling high-dimensional problems with irregular boundaries. The RBF-FD elliptic solver proposed here makes no limiting assumptions on the spatial variability of the coefficients in the PDE (i.e., the conductivity profile), the right hand side forcing term of the PDE (i.e., distribution of current sources) or the geometry of the lower boundary.

  17. Characterization of small-scale heating events in the solar atmosphere from 3D-MHD simulations and their potential role in coronal heating

    NASA Astrophysics Data System (ADS)

    Guerreiro, Nuno; Haberreiter, Margit; Hansteen, Viggo; Schmutz, Werner

    2016-04-01

    Aiming at better understanding the mechanism(s) responsible for the coronal heating and the ubiquitous redshifts observed in the lower transition region we focus on analyzing the properties of small-scale heating events (SSHEs) in the solar atmosphere. We present a comprehensive method to follow SSHEs over time in 3D-MHD simulations of the solar atmosphere. Applying the method we are able to better understand the properties of the SSHEs and how the plasma in their vicinity respond to them. We present results for the lifetime, energy and spectral signatures of the SSHEs. Ultimately, these results will be important for the coordinated scientific exploration of SPICE and EUI along with other interments on board solar orbiter. ​

  18. Detection and characterization of small-scale heating events in the solar atmosphere from 3D-MHD simulations and their potential role in coronal heating

    NASA Astrophysics Data System (ADS)

    Guerreiro, Nuno; Haberreiter, Margit; Schmutz, Werner; Hansteen, Viggo

    2016-07-01

    Aiming at better understanding the mechanism(s) responsible for the coronal heating we focus on analyzing the properties of the magnetically generated small-scale heating events (SSHEs) in the solar atmosphere. We present a comprehensive method to detect and follow SSHEs over time in 3D-MHD simulations of the solar atmosphere. Applying the method we are able to better understand the properties of the SSHEs and how the plasma in their vicinity respond to them. We study the lifetime, energy and spectral signatures and show that the energy flux dissipated by them is enough to heat the corona. Ultimately, these results will be important for the coordinated scientific exploration of SPICE and EUI along with other instruments on board solar orbiter.

  19. Dynamics of local isolated magnetic flux tubes in a fast-rotating stellar atmosphere

    SciTech Connect

    Chou, W.; Tajima, C.T.; Matsumoto, R. |; Shibata, K.

    1998-01-01

    Dynamics of magnetic flux tubes in the fast rotating stellar atmosphere is studied. We focus on the effects and signatures of the instability of the flux tube emergence influenced by the Coriolis force. We present the result from a linear stability analysis and discuss its possible signatures in the course of the evolution of G-type and M-type stars. We present a three dimensional magnetohydrodynamical simulation of local isolated magnetic flux tubes under a magnetic buoyancy instability in co-rotating Cartesian coordinates. We find that the combination of the buoyancy instability and the Coriolis effect gives rise to a mechanism, to twist the emerging magnetic flux tube into a helical structure. The tilt angle, east-west asymmetry and magnetic helicity of the Twisted flux tubes in the simulations are studied in detail. The linear and nonlinear analyses provide hints as to what kind of pattern of large spots in young M-type main-sequence stars might be observed. We find that young and old G-type stars may have different distributions of spots while M-type stars may always have low latitudes spots. The size of stellar spots may decrease when a star becomes older, due to the decreasing of magnetic field. A qualitative comparison with solar observations is also presented.

  20. The integration of 3D electrical resistivity tomography and ET flux measurements to characterize water mass balance in the soil-plant-atmosphere continuum

    NASA Astrophysics Data System (ADS)

    Vanella, Daniela; Boaga, Jacopo; Perri, Maria Teresa; Consoli, Simona; Cassiani, Giorgio

    2014-05-01

    The system of soil, vegetation, and the adjacent atmosphere is characterized by complex patterns, structures, and processes that act on a wide range of time and space scales. While the exchange of energy and water is continuous between compartments, the pertinent fluxes are strongly heterogeneous and variable in space and time. Therefore, quantitatively predicting the systems' behaviour constitutes a major challenge. Traditionally, soil moisture beneath irrigated crops has been determined using point measurement methods such as neutron probes or capacitance systems. These approaches cannot measure soil moisture at depths beyond the root-zone of plants and have limited lateral coverage. Literature results show that electrical resistivity tomography (ERT) can be used to reliable map the spatial heterogeneity in soil moisture. Here we present the application of the time-lapse non-invasive 3D micro - electrical tomography (ERT) to monitor soil-plant interactions in the root zone of an orange tree located in the Mediterranean semi-arid Sicilian (South Italy) context. The subsoil dynamics, particularly influenced by irrigation and root uptake, has been characterized a 3D ERT apparatus consisting of 48 buried electrodes on 4 instrumented micro boreholes plus 24 mini-electrodes on the surface spaced 0.1 m on a square grid. During the monitoring, repeated ERT soil moisture measurements were collected, as well as laboratory characterization of the soil electrical properties as a function of moisture content and pore water electrical conductivity. Plant transpiration was continuously monitored during the ERT experiment by the sap flow heat pulse (HP) method for a quantitative analysis of the mass balance in the soil-plant-atmosphere system under observation. In addition, evapo-transpiration has been continuously monitored at the same site using an eddy-correlation tower. The integration of measurements regarding soil,plant and atmosphere allows a better understanding of

  1. An Iterative Phase-Space Explicit Discontinuous Galerkin Method for Stellar Radiative Transfer in Extended Atmospheres

    SciTech Connect

    de Almeida, V.F.

    2004-01-28

    A phase-space discontinuous Galerkin (PSDG) method is presented for the solution of stellar radiative transfer problems. It allows for greater adaptivity than competing methods without sacrificing generality. The method is extensively tested on a spherically symmetric, static, inverse-power-law scattering atmosphere. Results for different sizes of atmospheres and intensities of scattering agreed with asymptotic values. The exponentially decaying behavior of the radiative field in the diffusive-transparent transition region and the forward peaking behavior at the surface of extended atmospheres were accurately captured. The integrodifferential equation of radiation transfer is solved iteratively by alternating between the radiative pressure equation and the original equation with the integral term treated as an energy density source term. In each iteration, the equations are solved via an explicit, flux-conserving, discontinuous Galerkin method. Finite elements are ordered in wave fronts perpendicularly to the characteristic curves so that elemental linear algebraic systems are solved quickly by sweeping the phase space element by element. Two implementations of a diffusive boundary condition at the origin are demonstrated wherein the finite discontinuity in the radiative intensity is accurately captured by the proposed method. This allows for a consistent mechanism to preserve photon luminosity. The method was proved to be robust and fast, and a case is made for the adequacy of parallel processing. In addition to classical two-dimensional plots, results of normalized radiative intensity were mapped onto a log-polar surface exhibiting all distinguishing features of the problem studied.

  2. An iterative phase-space explicit discontinuous Galerkin method for stellar radiative transfer in extended atmospheres

    NASA Astrophysics Data System (ADS)

    de Almeida, Valmor F.

    2017-07-01

    A phase-space discontinuous Galerkin (PSDG) method is presented for the solution of stellar radiative transfer problems. It allows for greater adaptivity than competing methods without sacrificing generality. The method is extensively tested on a spherically symmetric, static, inverse-power-law scattering atmosphere. Results for different sizes of atmospheres and intensities of scattering agreed with asymptotic values. The exponentially decaying behavior of the radiative field in the diffusive-transparent transition region, and the forward peaking behavior at the surface of extended atmospheres were accurately captured. The integrodifferential equation of radiation transfer is solved iteratively by alternating between the radiative pressure equation and the original equation with the integral term treated as an energy density source term. In each iteration, the equations are solved via an explicit, flux-conserving, discontinuous Galerkin method. Finite elements are ordered in wave fronts perpendicular to the characteristic curves so that elemental linear algebraic systems are solved quickly by sweeping the phase space element by element. Two implementations of a diffusive boundary condition at the origin are demonstrated wherein the finite discontinuity in the radiation intensity is accurately captured by the proposed method. This allows for a consistent mechanism to preserve photon luminosity. The method was proved to be robust and fast, and a case is made for the adequacy of parallel processing. In addition to classical two-dimensional plots, results of normalized radiation intensity were mapped onto a log-polar surface exhibiting all distinguishing features of the problem studied.

  3. Pluto's Atmospheric Figure from the P131.1 Stellar Occultation

    NASA Astrophysics Data System (ADS)

    Person, M. J.; Elliot, J. L.; Clancy, K. B.; Kern, S. D.; Salyk, C. V.; Tholen, D. J.; Pasachoff, J. M.; Babcock, B. A.; Souza, S. P.; Ticehurst, D. R.; Hall, D.; Roberts, L. C., Jr.; Bosh, A. S.; Buie, M. W.; Dunham, E. W.; Olkin, C. B.; Taylor, B.; Levine, S. E.; Eikenberry, S. S.; Moon, D.-S.; Osip, D. J.

    2003-05-01

    The stellar occultation by Pluto of the 15th magnitude star designated P131.1 (McDonald and Elliot, AJ, 119, 1999) on 2002 August 21 (UT) provided the first significant chance to compare Pluto's atmospheric structure to that determined from the 1988 occultation of P8 (Millis, et al., Icarus, 105, 282). The P131.1 occultation was observed from several stations in Hawaii and the western United States (Elliot et al., Nature, in press, 2003). Numerous occultation chords were obtained enabling us to examine Pluto's atmospheric figure. The light curves from the observations were analyzed together in the occultation coordinate system of Elliot et al., (AJ, 106, 2544). The Mauna Kea and Lick datasets straddle the center of Pluto's figure, providing strong constraints on model fits to cross sections of the atmospheric shape. In 1988, Millis (et al., Icarus, 105, 282) did not report any deviation from sphericity in Pluto's atmospheric figure. From the 2002 data, Pluto;s isobars at the radii probed by the occultation ( 1250 km) appear to be distorted from a circular cross-section. Least-squares fits to this cross-section by elliptical models reveal ellipticities in the range 0.05-0.08 although the shape may be more complex than ellipsoidal. The orientation of the distortion appears uncorrelated with Pluto;s rotational axis. Taken at face value, this ellipticity could imply wind speeds of up to twice the sonic speed ( 200 m/s), which would be difficult to explain. Similar distortions have been reported for Triton's atmosphere (Elliot, J. L., et al., Icarus 148, 347). This work has been supported in part by Research Corporation, the Air Force Research Laboratory, NSF, and NASA.

  4. Solar/Stellar Irradiance Comparison Experiment (SOLSTICE) on the Upper Atmosphere Research Satellite (UARS)

    NASA Technical Reports Server (NTRS)

    Rottman, Gary J.; Woods, Thomas N.; London, Julius; Ayres, Thomas R.

    2003-01-01

    A final report on the operational activities related to the UARS Solar Stellar irradiance Comparison Experiment (SOLSTICE) is presented. Scientific activities of SOLSTICE has also been supported. The UARS SOLSTICE originated at the University of Colorado in 1981. One year after the UARS launch in 1991, the operations and research support activities for SOLSTICE were moved to the High Altitude Observatory (HAO) of the National Center for Atmospheric Research (NCAR). The SOLSTICE program continued at HAO with the National Science Foundation, and after four years, it was moved once again back to the University of Colorado. At the University after 1997 this subject grant was issued to further extend the operations activities from July 2001 through September 2002. Although this is a final report for one particular activity, in fact the SOLSTICE operations activity -first at the University, then at HAO, and now again at the University -has continued in a seamless fashion.

  5. 3D Time Dependent Stokes Vector Radiative Transfer in an Atmosphere-Ocean System Including a Stochastic Interface

    DTIC Science & Technology

    2011-09-30

    1 m 440 nm (b) 488 nm (c) 0.0 0.2 0.4 0.6 0.8 1.0 510 nm D oL P (d) 532 nm (e) 555 nm (f) -90 -45 0 45 90 135 0.0 0.2 0.4 0.6 0.8 1.0 650 nm (g) -90...1 m 440 nm (b) 488 nm (c) -90 -45 0 45 90 510 nm A oL P (d) 532 nm (e) 555 nm (f) -90 -45 0 45 90 135 -90 -45 0 45 90 650 nm (g) -90 -45 0 45 90 135...47-56, (1991) 3. A. Sánchez, T.F. Smith, and W. F. Krajewski “A three-dimensional atmospheric radiative transfer model based on the discrete

  6. Semi-classical H2-broadening coefficients of 12CH3D rovibrational lines and their temperature dependence for planetary atmosphere modeling

    NASA Astrophysics Data System (ADS)

    Sinyakova, T.; Buldyreva, J.

    2017-01-01

    Theoretical hydrogen-broadening coefficients and associated temperature exponents for 12CH3D (J, K) lines in parallel (ΔK = 0) bands are calculated by a semi-classical approach based on a rigorous consideration of the active molecule as a symmetric top, a model intermolecular potential comprising both short- and long-range interactions, and exact classical trajectories. The leading potential terms are shown to provide a realistic description of line broadening in comparison with scarce measurements available in the literature. The calculations performed for 296, 240 and 190 K are used to extract the line-width temperature-dependence exponents for the typical temperature range of atmospheric interest ∼200-300 K. Detailed P-Q-R-line lists are provided for large intervals of quantum numbers (0 ≤ J ≤ 20, 0 ≤ K ≤ J) requested for remote sensing of planetary atmospheres, in particular those of outer planets and their moons. With negligible vibrational dependence of CH3D line-widths and estimated as negligible their sub-branch dependence, these data can be also employed for perpendicular bands.

  7. Atmospheric circulation of warm and hot Jupiters: effect of nonsynchronous rotation and stellar irradiation

    NASA Astrophysics Data System (ADS)

    Showman, Adam P.; Lewis, Nikole K.; Fortney, Jonathan J.

    2015-12-01

    Efforts to characterize and model extrasolar giant planet (EGP) atmospheres have so far emphasized planets within ~0.05 AU of their stars. Despite this focus, known EGPs now populate nearly a continuum of orbital separations from canonical hot Jupiter values (~0.03-0.05 AU) out to 1 AU and beyond. Unlike typical hot Jupiters, these more distant EGPs will not in general be synchronously rotating and may exhibit a range of rotation rates. In anticipation of observations of this wider population, we here present state-of-the-art atmospheric circulation models including realistic non-grey radiative transfer to explore the dynamical regime that emerges over a broad range of rotation rates and incident stellar fluxes appropriate for warm and hot Jupiters. We find that the circulation resides in one of two basic regimes. The circulation for canonical hot Jupiters exhibits a broad, fast superrotating (eastward) equatorial jet driven by the strong day-night heating contrast, with westward mean flow at high latitudes and large day-night temperature differences. Non-synchronous rotation exerts a significant influence on the jet structure and temperature patterns. Under the less-strongly irradiated conditions appropriate to warm Jupiters, however, the circulation transitions to a vastly different dynamical regime: the day-night heating gradient becomes less important, and baroclinic instabilities emerge as a dominant player, leading to eastward zonal jets in the midlatitudes, with significant equator-to-pole temperature differences, minimal temperature variations in longitude, and, in many cases, weak windflow at the equator. We present infrared (IR) light curves and spectra of these models, which depend significantly on incident stellar flux and rotation rate. This provides a way to identify the regime transition in future observations. In some cases, IR light curves can provide constraints on the rotation rate of nonsynchronously rotating planets.

  8. CROSS DRIVE: A New Interactive and Immersive Approach for Exploring 3D Time-Dependent Mars Atmospheric Data in Distributed Teams

    NASA Astrophysics Data System (ADS)

    Gerndt, Andreas M.; Engelke, Wito; Giuranna, Marco; Vandaele, Ann C.; Neary, Lori; Aoki, Shohei; Kasaba, Yasumasa; Garcia, Arturo; Fernando, Terrence; Roberts, David; CROSS DRIVE Team

    2016-10-01

    Atmospheric phenomena of Mars can be highly dynamic and have daily and seasonal variations. Planetary-scale wavelike disturbances, for example, are frequently observed in Mars' polar winter atmosphere. Possible sources of the wave activity were suggested to be dynamical instabilities and quasi-stationary planetary waves, i.e. waves that arise predominantly via zonally asymmetric surface properties. For a comprehensive understanding of these phenomena, single layers of altitude have to be analyzed carefully and relations between different atmospheric quantities and interaction with the surface of Mars have to be considered. The CROSS DRIVE project tries to address the presentation of those data with a global view by means of virtual reality techniques. Complex orbiter data from spectrometer and observation data from Earth are combined with global circulation models and high-resolution terrain data and images available from Mars Express or MRO instruments. Scientists can interactively extract features from those dataset and can change visualization parameters in real-time in order to emphasize findings. Stereoscopic views allow for perception of the actual 3D behavior of Mars's atmosphere. A very important feature of the visualization system is the possibility to connect distributed workspaces together. This enables discussions between distributed working groups. The workspace can scale from virtual reality systems to expert desktop applications to web-based project portals. If multiple virtual environments are connected, the 3D position of each individual user is captured and used to depict the scientist as an avatar in the virtual world. The appearance of the avatar can also scale from simple annotations to complex avatars using tele-presence technology to reconstruct the users in 3D. Any change of the feature set (annotations, cutplanes, volume rendering, etc.) within the VR is immediately exchanged between all connected users. This allows that everybody is always

  9. A 3D Global Climate Model of the Pluto atmosphere coupled to a volatile transport model to interpret New Horizons observations, including the N2, CH4 and CO cycles and the formation of organic hazes

    NASA Astrophysics Data System (ADS)

    Bertrand, Tanguy; Forget, Francois

    2016-04-01

    To interpret New Horizons observations and simulate the Pluto climate system, we have developed a Global Climate Model (GCM) of Pluto's atmosphere. In addition to a 3D "dynamical core" which solves the equation of meteorology, the model takes into account the N2 condensation and sublimation and its thermal and dynamical effects, the vertical turbulent mixing, the radiative transfer through methane and carbon monoxide, molecular thermal conduction, and a detailed surface thermal model with different thermal inertia for various timescales (diurnal, seasonal). The GCM also includes a detailed model of the CH4 and CO cycles, taking into account their transport by the atmospheric circulation and turbulence, as well as their condensation and sublimation on the surface and in the atmosphere, possibly forming methane ice clouds. The GCM consistently predicts the 3D methane abundance in the atmosphere, which is used as an input for our radiative transfer calculation. In a second phase, we also developed a volatile transport model, derived from the GCM, which can be run over thousands of years in order to reach consistent initial states for the GCM runs and better explore the seasonal processes on Pluto. Results obtained with the volatile transport model show that the distribution of N2, CH4 and CO ices primarily depends on the seasonal thermal inertia used for the different ices, and is affected by the assumed topography as well. As observed, it is possible to form a large and permanent nitrogen glacier with CO and CH4 ice deposits in an equatorial basin corresponding to Sputnik Planum, while having a surface pressure evolution consistent with stellar occultations and New Horizons data. In addition, most of the methane ice is sequestered with N2 ice in the basin but seasonal polar caps of CH4 frosts also form explaining the bright polar caps observed with Hubble in the 1980s and in line with New Horizons observations. Using such balanced combination of surface and

  10. SCATTERING POLARIZATION AND HANLE EFFECT IN STELLAR ATMOSPHERES WITH HORIZONTAL INHOMOGENEITIES

    SciTech Connect

    Manso Sainz, Rafael; Trujillo Bueno, Javier E-mail: jtb@iac.es

    2011-12-10

    Scattering of light from an anisotropic source produces linear polarization in spectral lines and in the continuum. In the outer layers of a stellar atmosphere the anisotropy of the radiation field is typically dominated by the radiation escaping away, but local horizontal fluctuations of the physical conditions may also contribute, distorting the illumination and, hence, the polarization pattern. Additionally, a magnetic field may perturb and modify the line scattering polarization signals through the Hanle effect. Here, we study such symmetry-breaking effects. We develop a method to solve the transfer of polarized radiation in a scattering atmosphere with weak horizontal fluctuations of the opacity and source functions. It comprises linearization (small opacity and Planck function fluctuations are assumed), reduction to a quasi-plane-parallel problem through harmonic analysis, and the problem's numerical solution by generalized standard techniques. We apply this method to study scattering polarization in atmospheres with horizontal fluctuations in the Planck function and opacity. We derive several very general results and constraints from considerations on the symmetries and dimensionality of the problem, and we give explicit solutions of a few illustrative problems of special interest. For example, we show (1) how the amplitudes of the fractional linear polarization signals change when considering increasingly smaller horizontal atmospheric inhomogeneities, (2) that in the presence of such inhomogeneities even a vertical magnetic field may modify the scattering line polarization, and (3) that forward scattering polarization may be produced without the need for an inclined magnetic field. These results are important for understanding the physics of the problem and as benchmarks for multidimensional radiative transfer codes.

  11. Linearly Supporting Feature Extraction for Automated Estimation of Stellar Atmospheric Parameters

    NASA Astrophysics Data System (ADS)

    Li, Xiangru; Lu, Yu; Comte, Georges; Luo, Ali; Zhao, Yongheng; Wang, Yongjun

    2015-05-01

    We describe a scheme to extract linearly supporting (LSU) features from stellar spectra to automatically estimate the atmospheric parameters {{T}{\\tt{eff} }}, log g, and [Fe/H]. “Linearly supporting” means that the atmospheric parameters can be accurately estimated from the extracted features through a linear model. The successive steps of the process are as follow: first, decompose the spectrum using a wavelet packet (WP) and represent it by the derived decomposition coefficients; second, detect representative spectral features from the decomposition coefficients using the proposed method Least Absolute Shrinkage and Selection Operator (LARS)bs; third, estimate the atmospheric parameters {{T}{\\tt{eff} }}, log g, and [Fe/H] from the detected features using a linear regression method. One prominent characteristic of this scheme is its ability to evaluate quantitatively the contribution of each detected feature to the atmospheric parameter estimate and also to trace back the physical significance of that feature. This work also shows that the usefulness of a component depends on both the wavelength and frequency. The proposed scheme has been evaluated on both real spectra from the Sloan Digital Sky Survey (SDSS)/SEGUE and synthetic spectra calculated from Kurucz's NEWODF models. On real spectra, we extracted 23 features to estimate {{T}{\\tt{eff} }}, 62 features for log g, and 68 features for [Fe/H]. Test consistencies between our estimates and those provided by the Spectroscopic Parameter Pipeline of SDSS show that the mean absolute errors (MAEs) are 0.0062 dex for log {{T}{\\tt{eff} }} (83 K for {{T}{\\tt{eff} }}), 0.2345 dex for log g, and 0.1564 dex for [Fe/H]. For the synthetic spectra, the MAE test accuracies are 0.0022 dex for log {{T}{\\tt{eff} }} (32 K for {{T}{\\tt{eff} }}), 0.0337 dex for log g, and 0.0268 dex for [Fe/H].

  12. Application of Multi-task Sparse Lasso Feature Extraction and Support Vector Machine Regression in the Stellar Atmospheric Parameterization

    NASA Astrophysics Data System (ADS)

    Gao, Wei; Li, Xiang-ru

    2017-07-01

    The multi-task learning takes the multiple tasks together to make analysis and calculation, so as to dig out the correlations among them, and therefore to improve the accuracy of the analyzed results. This kind of methods have been widely applied to the machine learning, pattern recognition, computer vision, and other related fields. This paper investigates the application of multi-task learning in estimating the stellar atmospheric parameters, including the surface temperature (Teff), surface gravitational acceleration (lg g), and chemical abundance ([Fe/H]). Firstly, the spectral features of the three stellar atmospheric parameters are extracted by using the multi-task sparse group Lasso algorithm, then the support vector machine is used to estimate the atmospheric physical parameters. The proposed scheme is evaluated on both the Sloan stellar spectra and the theoretical spectra computed from the Kurucz's New Opacity Distribution Function (NEWODF) model. The mean absolute errors (MAEs) on the Sloan spectra are: 0.0064 for lg (Teff /K), 0.1622 for lg (g/(cm · s-2)), and 0.1221 dex for [Fe/H]; the MAEs on the synthetic spectra are 0.0006 for lg (Teff /K), 0.0098 for lg (g/(cm · s-2)), and 0.0082 dex for [Fe/H]. Experimental results show that the proposed scheme has a rather high accuracy for the estimation of stellar atmospheric parameters.

  13. Photon Scattering in 3D Radiative MHD Simulations

    NASA Astrophysics Data System (ADS)

    Hayek, Wolfgang

    2009-09-01

    Recent results from 3D time-dependent radiative hydrodynamic simulations of stellar atmospheres are presented, which include the effects of coherent scattering in the radiative transfer treatment. Rayleigh scattering and electron scattering are accounted for in the source function, requiring an iterative solution of the transfer equation. Opacities and scattering coefficients are treated in the multigroup opacity approximation. The impact of scattering on the horizontal mean temperature structure is investigated, which is an important diagnostic for model atmospheres, with implications for line formation and stellar abundance measurements. We find that continuum scattering is not important for the atmosphere of a metal-poor Sun with metailicity [Fe/H] = -3.0, similar to the previously investigated photosphere at solar metallicity.

  14. Pluto Atmospheric Activity, Ephemeris Offset and Charon Orbital Radius Constrained by Stellar Occultations

    NASA Astrophysics Data System (ADS)

    Sicardy, Bruno; Boissel, Y.; Colas, F.; Roques, F.; Widemann, T.; Assafin, M.; Camargo, J. I. B.; da Silva Neto, D. N.; Ribas, F. B.; Vieira Martins, R.; Andrei, A. H.; Behrend, R.; Beisker, W.; Herald, D.; Bolt, G.; Broughton, J.; Dobosz, T.; Gault, D.; Groom, R.; Kerr, S.; Anderson, P.; Batista, V.; Blair, L.; Greenhill, J.; Frappa, E.; Benard, F.; Teng, J. P.; Gruhn, C.; Blanchard, G.; Castets, M.

    2008-09-01

    We have pursued in 2008 our observing program of stellar occultations by Pluto and its satellites. This program started in 2002, and revealed a two-fold increase of Pluto atmospheric pressure between 1988 and 2002. Various occultations observed in 2006 and 2007 did not reveal any further increase in pressure. Also, a measure of Charon's radius was made using an occultation observed on 11 July 2005. At the moment of writing this abstract, two Pluto occultations have been successfully observed, one on 22 June 2008 (with five positive detections from Australia) and one on 24 June 2008 (with one positive detection from CFHT/Mauna Kea, Hawaii). Furthermore, one positive observation of a Charon occultation has been achieved on 22 June 2008 from La Reunion Island. Data are still being analyzed, and three different results will be presented: (1) The evolution of Pluto's atmospheric pressure since 2002, (2) the evolution of Pluto's positional offset with respect to the DE413 barycentric ephemeris since 2005, showing in particular a linear trend and an offset in declination of more than +0.1 arcsec in 2008, and (3) a new, independent measure of the distance Pluto-Charon using the 22 June 2008 occultation, taking advantage that Pluto and Charon occulted the same target star. Note that since only one occultation chord is available for that event, it is not possible to update Charon's radius using this data.

  15. The effect of stellar radiation on exoplanet atmospheric heating and mass loss

    NASA Astrophysics Data System (ADS)

    Ojanen, Winonah; Miller, Brendan P.; Gallo, Elena; Wright, Jason; Poppenhaeger, Katja

    2017-01-01

    Our project aims to investigate the influence of stellar activity and high-energy radiation on short-period transiting exoplanet atmospheric heating and mass loss. Mass loss in closely orbiting gaseous exoplanets could be significant enough to evaporate a significant portion of the atmosphere over the total system lifetime. A current question of interest is how Neptune-class gas giants might change over time from being exposed to intense X-ray and UV flux radiated from the star. Our research aims to estimate current and total mass loss for four Neptune-class exoplanets that have both measured radii and masses. We use computer software to reduce and analyze Chandra X-ray observations of Neptune-class exoplanets, including HAT-P-11b and archival data of GJ 436b, to calculate the high-energy incident flux for each planet. We then estimate the current-epoch mass-loss rate and construct integrated mass-loss histories. We test whether planets receiving the greatest dose of high-energy radiation also tend to be the lowest mass and the most dense, suggestive of evaporation. These observations provide essential empirical input for understanding and modeling the potential evolutionary transformation of hot gas giants into less massive and more dense remnants.

  16. Evaluating a 3-D transport model of atmospheric CO2 using ground-based, aircraft, and space-borne data

    NASA Astrophysics Data System (ADS)

    Feng, L.; Palmer, P. I.; Yang, Y.; Yantosca, R. M.; Kawa, S. R.; Paris, J.-D.; Matsueda, H.; Machida, T.

    2011-03-01

    We evaluate the GEOS-Chem atmospheric transport model (v8-02-01) of CO2 over 2003-2006, driven by GEOS-4 and GEOS-5 meteorology from the NASA Goddard Global Modeling and Assimilation Office, using surface, aircraft and space-borne concentration measurements of CO2. We use an established ensemble Kalman Filter to estimate a posteriori biospheric+biomass burning (BS + BB) and oceanic (OC) CO2 fluxes from 22 geographical regions, following the TransCom-3 protocol, using boundary layer CO2 data from a subset of GLOBALVIEW surface sites. Global annual net BS + BB + OC CO2 fluxes over 2004-2006 for GEOS-4 (GEOS-5) meteorology are -4.4 ± 0.9 (-4.2 ± 0.9), -3.9 ± 0.9 (-4.5 ± 0.9), and -5.2 ± 0.9 (-4.9 ± 0.9) PgC yr-1, respectively. After taking into account anthropogenic fossil fuel and bio-fuel emissions, the global annual net CO2 emissions for 2004-2006 are estimated to be 4.0 ± 0.9 (4.2 ± 0.9), 4.8 ± 0.9 (4.2 ± 0.9), and 3.8 ± 0.9 (4.1 ± 0.9) PgC yr-1, respectively. The estimated 3-yr total net emission for GEOS-4 (GEOS-5) meteorology is equal to 12.5 (12.4) PgC, agreeing with other recent top-down estimates (12-13 PgC). The regional a posteriori fluxes are broadly consistent in the sign and magnitude of the TransCom-3 study for 1992-1996, but we find larger net sinks over northern and southern continents. We find large departures from our a priori over Europe during summer 2003, over temperate Eurasia during 2004, and over North America during 2005, reflecting an incomplete description of terrestrial carbon dynamics. We find GEOS-4 (GEOS-5) a posteriori CO2 concentrations reproduce the observed surface trend of 1.91-2.43 ppm yr-1 (parts per million per year), depending on latitude, within 0.15 ppm yr-1 (0.2 ppm yr-1) and the seasonal cycle within 0.2 ppm (0.2 ppm) at all latitudes. We find the a posteriori model reproduces the aircraft vertical profile measurements of CO2 over North America and Siberia generally within 1.5 ppm in the free and upper

  17. Structure and evolution of Pluto's Atmosphere from ground-based stellar occultations between 2002 and 2015

    NASA Astrophysics Data System (ADS)

    Meza, Erick; Sicardy, Bruno; Rio de Janeiro occultation Team, Granada occultation Team, International Occultation and Timing Association

    2016-10-01

    Ground-Based stellar occultations probe Pluto's atmosphere from about 3 km altitude (~ 10 μbar pressure level) up to 260 km altitude (~0.1 μbar). Our main goal is to derive Pluto's atmosphere evolution using thirteen ground-based occultations observed between 2002 and 2015 (plus 2016, if available). We consistently analyze the light curves using the Dias et al. (ApJ 811, 53, 2015) model, and confirm the general pressure increase by a factor of about 1.5 between 2002 and 2015 and a factor of almost three between 1988 and 2015. Implications for Pluto's seasonal evolution will be briefly discussed in the context of the New Horizons (NH) findings.Ground-based-derived temperature profiles will be compared with NH's results, where we use new temperature boundary conditions in our inversion procedures, as given by NH near 260 km altitude. Although the profiles reasonably agree, significant discrepancies are observed both in the deeper stratospheric zone (altitude < 30 km), and the mesospheric zone (altitudes between 30 and 260 km). Possible biases will be discussed.Additionally, we use a central flash event observed in New Zealand on June 29, 2015 (close to the NH flyby) to provide an upper limit of Pluto's atmospheric oblateness near 4 km altitude. We will also explore the possibility that small deviations in the observed flash (compared to the model) are caused by the local topographic features revealed by NH.Finally, possible correlations between spike activity in the occultation light-curves and local underlying presence of free nitrogen ice terrains will be investigated.Part of the research leading to these results has received funding from the European Research Council under the European Community's H2020 (2014-2020/ ERC Grant Agreement n 669416 "LUCKY STAR").

  18. An iterative phase-space explicit discontinuous Galerkin method for stellar radiative transfer in extended atmospheres

    DOE PAGES

    de Almeida, Valmor F

    2017-04-19

    In this work, a phase-space discontinuous Galerkin (PSDG) method is presented for the solution of stellar radiative transfer problems. It allows for greater adaptivity than competing methods without sacrificing generality. The method is extensively tested on a spherically symmetric, static, inverse-power-law scattering atmosphere. Results for different sizes of atmospheres and intensities of scattering agreed with asymptotic values. The exponentially decaying behavior of the radiative field in the diffusive-transparent transition region, and the forward peaking behavior at the surface of extended atmospheres were accurately captured. The integrodifferential equation of radiation transfer is solved iteratively by alternating between the radiative pressure equationmore » and the original equation with the integral term treated as an energy density source term. In each iteration, the equations are solved via an explicit, flux-conserving, discontinuous Galerkin method. Finite elements are ordered in wave fronts perpendicular to the characteristic curves so that elemental linear algebraic systems are solved quickly by sweeping the phase space element by element. Two implementations of a diffusive boundary condition at the origin are demonstrated wherein the finite discontinuity in the radiation intensity is accurately captured by the proposed method. This allows for a consistent mechanism to preserve photon luminosity. The method was proved to be robust and fast, and a case is made for the adequacy of parallel processing. In addition to classical two-dimensional plots, results of normalized radiation intensity were mapped onto a log-polar surface exhibiting all distinguishing features of the problem studied.« less

  19. Implementation of a 3D Coupled Hydrodynamic and Contaminant Fate Model for PCDD/Fs in Thau Lagoon (France): The Importance of Atmospheric Sources of Contamination

    PubMed Central

    Dueri, Sibylle; Marinov, Dimitar; Fiandrino, Annie; Tronczyński, Jacek; Zaldívar, José-Manuel

    2010-01-01

    A 3D hydrodynamic and contaminant fate model was implemented for polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in Thau lagoon. The hydrodynamic model was tested against temperature and salinity measurements, while the contaminant fate model was assessed against available data collected at different stations inside the lagoon. The model results allow an assessment of the spatial and temporal variability of the distribution of contaminants in the lagoon, the seasonality of loads and the role of atmospheric deposition for the input of PCDD/Fs. The outcome suggests that air is an important source of PCDD/Fs for this ecosystem, therefore the monitoring of air pollution is very appropriate for assessing the inputs of these contaminants. These results call for the development of integrated environmental protection policies. PMID:20617040

  20. Characterisation of small-scale heating events in the solar atmosphere from 3D MHD simulations and their potential role in coronal heating

    NASA Astrophysics Data System (ADS)

    Haberreiter, M.; Guerreiro, N.; Hansteen, V. H.; Schmutz, W. K.

    2015-12-01

    The physical mechanism that heats the solar corona is one of the still open science questions in solar physics. One of the proposed mechanism for coronal heating are nanoflares. To investigate their role in coronal heating we study the properties of the small-scale heating events in the solar atmosphere using 3D MHD simulations. We present a method to identify and track these heating events in time which allows us to study their life time, energy, and spectral signatures. These spectal signatures will be compared with available spectrosopic observations obtained with IRIS and SUMER. Ultimately, these results will be important for the coordinated scientific exploitation of SPICE and EUI along with other instruments onboard Solar Orbiter to address the coronal heating problem.

  1. New weather depiction technology for night vision goggle (NVG) training: 3D virtual/augmented reality scene-weather-atmosphere-target simulation

    NASA Astrophysics Data System (ADS)

    Folaron, Michelle; Deacutis, Martin; Hegarty, Jennifer; Vollmerhausen, Richard; Schroeder, John; Colby, Frank P.

    2007-04-01

    US Navy and Marine Corps pilots receive Night Vision Goggle (NVG) training as part of their overall training to maintain the superiority of our forces. This training must incorporate realistic targets; backgrounds; and representative atmospheric and weather effects they may encounter under operational conditions. An approach for pilot NVG training is to use the Night Imaging and Threat Evaluation Laboratory (NITE Lab) concept. The NITE Labs utilize a 10' by 10' static terrain model equipped with both natural and cultural lighting that are used to demonstrate various illumination conditions, and visual phenomena which might be experienced when utilizing night vision goggles. With this technology, the military can safely, systematically, and reliably expose pilots to the large number of potentially dangerous environmental conditions that will be experienced in their NVG training flights. A previous SPIE presentation described our work for NAVAIR to add realistic atmospheric and weather effects to the NVG NITE Lab training facility using the NVG - WDT(Weather Depiction Technology) system (Colby, et al.). NVG -WDT consist of a high end multiprocessor server with weather simulation software, and several fixed and goggle mounted Heads Up Displays (HUDs). Atmospheric and weather effects are simulated using state-of-the-art computer codes such as the WRF (Weather Research μ Forecasting) model; and the US Air Force Research Laboratory MODTRAN radiative transport model. Imagery for a variety of natural and man-made obscurations (e.g. rain, clouds, snow, dust, smoke, chemical releases) are being calculated and injected into the scene observed through the NVG via the fixed and goggle mounted HUDs. This paper expands on the work described in the previous presentation and will describe the 3D Virtual/Augmented Reality Scene - Weather - Atmosphere - Target Simulation part of the NVG - WDT. The 3D virtual reality software is a complete simulation system to generate realistic

  2. ASI/MET - 3-D

    NASA Image and Video Library

    1997-07-13

    The Atmospheric Structure Instrument/Meteorology Package ASI/MET is the mast and windsocks at the center of this stereo image from NASA Mars Pathfinder. 3D glasses are necessary to identify surface detail.

  3. X-shooter spectroscopy of young stellar objects in Lupus. Atmospheric parameters, membership, and activity diagnostics

    NASA Astrophysics Data System (ADS)

    Frasca, A.; Biazzo, K.; Alcalá, J. M.; Manara, C. F.; Stelzer, B.; Covino, E.; Antoniucci, S.

    2017-06-01

    Aims: A homogeneous determination of basic stellar parameters of young stellar object (YSO) candidates is needed to confirm their pre-main sequence evolutionary stage and membership to star forming regions (SFRs), and to get reliable values of the quantities related to chromospheric activity and accretion. Methods: We used the code ROTFIT and synthetic BT-Settl spectra for the determination of the atmospheric parameters (Teff and log g), veiling (r), radial (RV), and projected rotational velocity (vsini) from X-shooter spectra of 102 YSO candidates (95 of infrared Class II and seven Class III) in the Lupus SFR. The spectral subtraction of inactive templates, rotationally broadened to match the vsini of the targets, enabled us to measure the line fluxes for several diagnostics of both chromospheric activity and accretion, such as Hα, Hβ, Ca ii, and Na i lines. Results: We have shown that 13 candidates can be rejected as Lupus members based on their discrepant RV with respect to Lupus and/or the very low log g values. At least 11 of them are background giants, two of which turned out to be lithium-rich giants. Regarding the members, we found that all Class III sources have Hα fluxes that are compatible with a pure chromospheric activity, while objects with disks lie mostly above the boundary between chromospheres and accretion. Young stellar objects with transitional disks display both high and low Hα fluxes. We found that the line fluxes per unit surface are tightly correlated with the accretion luminosity (Lacc) derived from the Balmer continuum excess. This rules out that the relationships between Lacc and line luminosities found in previous works are simply due to calibration effects. We also found that the Ca ii-IRT flux ratio, FCaII8542/FCaII8498, is always small, indicating an optically thick emission source. The latter can be identified with the accretion shock near the stellar photosphere. The Balmer decrement reaches instead, for several accretors, high

  4. Pluto’s atmospheric structure from the July 2007 stellar occultation

    NASA Astrophysics Data System (ADS)

    Olkin, Catherine B.; Young, Leslie A.; French, Richard G.; Young, Eliot F.; Buie, Marc W.; Howell, Robert R.; Regester, Jeffrey; Ruhland, Catherine R.; Natusch, Tim; Ramm, David J.

    2014-09-01

    In July 2007, we observed a stellar occultation by Pluto from three sites in New Zealand and Australia. From these occultation observations, we find that Pluto’s atmospheric pressure is still at the increased level measured in 2002 and 2006 with a pressure at a radius of 1275 km of 2.09 ± 0.09 μbar. One of the sites, Mt. John Observatory, was ∼70 km from the shadow center and we recorded the first central-flash occultation by Pluto. We carried out a dual-wavelength observation from this site with two different cameras using filtered high-time resolution observations in the visible from the one-meter telescope at Mt. John Observatory. From our central-flash observations, we find the elliptical shape that best matches the data corresponds to a nearly prolate atmosphere with an ellipticity of 0.09. The flux observed in the central-flash data can be fit equally well with either a haze layer or a thermal gradient in the altitudes probed by the occultation. However, the star light contributing to the central-flash occultation for the haze layer model would pass through a radius of 1130 km from Pluto’s center. Given our current best estimate of Pluto’s surface radius is greater than 1151 km (Tholen, D.J., Buie, M.W. [1997]. Bulk properties of Pluto and Charon. In: Stern, S.A., Tholen, D.J. (Eds.), Pluto and Charon. The University of Arizona Press), we prefer the thermal gradient solution or a combination of haze and thermal gradient to explain the occultation light curves.

  5. Limitations of Precise Radial-Velocity Measurements in Pulsating Stellar Atmospheres

    NASA Astrophysics Data System (ADS)

    Vinkó, J.; Kaszás, G.; Kiss, L. L.

    We have studied the velocities of specific stellar absorption lines emerging from the atmospheres of Cepheid-type variable stars using newly obtained high-resolution echelle spectra. The spectra covered the interval 5860 - 6660 Angstroms with a resolution of 40,000. Both the cross-correlation method and the line bisector method using individual lines with specific excitation potential were applied to derive radial velocities. Our tests showed that these methods have internal accuracy of better than 100 m/s. Typical velocity differences of 3 - 5 km/s were found between photospheric lines having low- and high-excitation potentials in the case of long-period (P > 10 days) Cepheids. These differences are smaller, about 1 km/s or less, for the shorter period Cepheids. Furthermore, we have compared two very accurate techniques (Coravel and iodine-cell method) using recently published radial velocities. Systematic differences have been found between the shapes of these velocity curves, especially around the phase of velocity reversal. We conclude that these velocity differences could cause a few km/s ambiguity even in the best-quality Cepheid radial velocity curves that were obtained averaging the velocities of many lines. This may result in an uncertainty of Cepheid radii derived from Baade-Wesselink methods.

  6. The Detailed Vertical Structure of Pluto's Atmosphere from the 12 Jun 2006 Stellar Occultation.

    NASA Astrophysics Data System (ADS)

    Young, Eliot F.; Buie, M. W.; French, R. G.; Olkin, C. S.; Regester, J. R.; Ruhland, C. T.; Shoemaker, K.; Young, L. A.

    2006-09-01

    On 12 JUN 2006 Pluto passed in front of a 15th magnitude star, casting a shadow across southern latitudes that included southern Australia and New Zealand, where we deployed 4 teams of observers. Pluto stellar occultations provide an opportunity to derive the bulk column abundance and the pressure, density and temperature profiles. Previous occultations were observed in 1988 and 2002 (2). We obtained a high-quality lightcurve from the 4-m AAT at a frame rate of 5 Hz, corresponding to 15 samples per scale height with a S/N of at least 25 per sample. The lightcurve contains numerous spikes that are the result of local perturbations in the vertical index of refraction profile; we resolve most of these spikes into five or more points. We expect to present changes to Pluto's bulk column abundance in the context of 1988 and 2002 events (i.e., is Pluto's atmosphere continuing to increase?) as well as high-resolution structure that derives from the detailed shape, spikes and wiggles from the separate ingress and egress portions of the occultation lightcurve. This work is supported by grants from the NSF's Major Research Instrumentation program and NASA's Planetary Astronomy program.

  7. A Reduced-order NLTE Kinetic Model for Radiating Plasmas of Outer Envelopes of Stellar Atmospheres

    NASA Astrophysics Data System (ADS)

    Munafò, Alessandro; Mansour, Nagi N.; Panesi, Marco

    2017-04-01

    The present work proposes a self-consistent reduced-order NLTE kinetic model for radiating plasmas found in the outer layers of stellar atmospheres. A detailed collisional-radiative kinetic mechanism is constructed by leveraging the most up-to-date set of ab initio and experimental data available in the literature. This constitutes the starting point for the derivation of a reduced-order model, obtained by lumping the bound energy states into groups. In order to determine the needed thermo-physical group properties, uniform and Maxwell–Boltzmann energy distributions are used to reconstruct the energy population of each group. Finally, the reduced set of governing equations for the material gas and the radiation field is obtained based on the moment method. Applications consider the steady flow across a shock wave in partially ionized hydrogen. The results clearly demonstrate that adopting a Maxwell–Boltzmann grouping allows, on the one hand, for a substantial reduction of the number of unknowns and, on the other, to maintain accuracy for both gas and radiation quantities. Also, it is observed that, when neglecting line radiation, the use of two groups already leads to a very accurate resolution of the photo-ionization precursor, internal relaxation, and radiative cooling regions. The inclusion of line radiation requires adopting just one additional group to account for optically thin losses in the α, β, and γ lines of the Balmer and Paschen series. This trend has been observed for a wide range of shock wave velocities.

  8. Titania's radius and an upper limit on its atmosphere from the September 8, 2001 stellar occultation

    NASA Astrophysics Data System (ADS)

    Widemann, T.; Sicardy, B.; Dusser, R.; Martinez, C.; Beisker, W.; Bredner, E.; Dunham, D.; Maley, P.; Lellouch, E.; Arlot, J.-E.; Berthier, J.; Colas, F.; Hubbard, W. B.; Hill, R.; Lecacheux, J.; Lecampion, J.-F.; Pau, S.; Rapaport, M.; Roques, F.; Thuillot, W.; Hills, C. R.; Elliott, A. J.; Miles, R.; Platt, T.; Cremaschini, C.; Dubreuil, P.; Cavadore, C.; Demeautis, C.; Henriquet, P.; Labrevoir, O.; Rau, G.; Coliac, J.-F.; Piraux, J.; Marlot, Ch.; Marlot, C.; Gorry, F.; Sire, C.; Bayle, B.; Simian, E.; Blommers, A. M.; Fulgence, J.; Leyrat, C.; Sauzeaud, C.; Stephanus, B.; Rafaelli, T.; Buil, C.; Delmas, R.; Desnoux, V.; Jasinski, C.; Klotz, A.; Marchais, D.; Rieugnié, M.; Bouderand, G.; Cazard, J.-P.; Lambin, C.; Pujat, P.-O.; Schwartz, F.; Burlot, P.; Langlais, P.; Rivaud, S.; Brochard, E.; Dupouy, Ph.; Lavayssière, M.; Chaptal, O.; Daiffallah, K.; Clarasso-Llauger, C.; Aloy Doménech, J.; Gabaldá-Sánchez, M.; Otazu-Porter, X.; Fernández, D.; Masana, E.; Ardanuy, A.; Casas, R.; Ros, J. A.; Casarramona, F.; Schnabel, C.; Roca, A.; Labordena, C.; Canales-Moreno, O.; Ferrer, V.; Rivas, L.; Ortiz, J. L.; Fernández-Arozena, J.; Martín-Rodríguez, L. L.; Cidadão, A.; Coelho, P.; Figuereido, P.; Gonçalves, R.; Marciano, C.; Nunes, R.; Ré, P.; Saraiva, C.; Tonel, F.; Clérigo, J.; Oliveira, C.; Reis, C.; Ewen-Smith, B. M.; Ward, S.; Ford, D.; Gonçalves, J.; Porto, J.; Laurindo Sobrinho, J.; Teodoro de Gois, F.; Joaquim, M.; Afonso da Silva Mendes, J.; van Ballegoij, E.; Jones, R.; Callender, H.; Sutherland, W.; Bumgarner, S.; Imbert, M.; Mitchell, B.; Lockhart, J.; Barrow, W.; Cornwall, D.; Arnal, A.; Eleizalde, G.; Valencia, A.; Ladino, V.; Lizardo, T.; Guillén, C.; Sánchez, G.; Peña, A.; Radaelli, S.; Santiago, J.; Vieira, K.; Mendt, H.; Rosenzweig, P.; Naranjo, O.; Contreras, O.; Díaz, F.; Guzmán, E.; Moreno, F.; Omar Porras, L.; Recalde, E.; Mascaró, M.; Birnbaum, C.; Cósias, R.; López, E.; Pallo, E.; Percz, R.; Pulupa, D.; Simbaña, X.; Yajamín, A.; Rodas, P.; Denzau, H.; Kretlow, M.; Valdés Sada, P.; Hernández, R.; Hernández, A.; Wilson, B.; Castro, E.; Winkel, J. M.

    2009-02-01

    On September 8, 2001 around 2 h UT, the largest uranian moon, Titania, occulted Hipparcos star 106829 (alias SAO 164538, a V=7.2, K0 III star). This was the first-ever observed occultation by this satellite, a rare event as Titania subtends only 0.11 arcsec on the sky. The star's unusual brightness allowed many observers, both amateurs or professionals, to monitor this unique event, providing fifty-seven occultations chords over three continents, all reported here. Selecting the best 27 occultation chords, and assuming a circular limb, we derive Titania's radius: R=788.4±0.6km ( 1-σ error bar). This implies a density of ρ=1.711±0.005gcm using the value GM=(2.343±0.006)×10ms derived by Taylor [Taylor, D.B., 1998. Astron. Astrophys. 330, 362-374]. We do not detect any significant difference between equatorial and polar radii, in the limit r-r=-1.3±2.1km, in agreement with Voyager limb image retrieval during the 1986 flyby. Titania's offset with respect to the DE405 + URA027 (based on GUST86 theory) ephemeris is derived: Δαcos(δ)=-108±13 mas and Δδ=-62±7 mas (ICRF J2000.0 system). Most of this offset is attributable to a Uranus' barycentric offset with respect to DE405, that we estimate to be: Δαcos(δ)=-100±25mas and Δδ=-85±25 mas at the moment of occultation. This offset is confirmed by another Titania stellar occultation observed on August 1st, 2003, which provides an offset of Δαcos(δ)=-127±20 mas and Δδ=-97±13 mas for the satellite. The combined ingress and egress data do not show any significant hint for atmospheric refraction, allowing us to set surface pressure limits at the level of 10-20 nbar. More specifically, we find an upper limit of 13 nbar ( 1-σ level) at 70 K and 17 nbar at 80 K, for a putative isothermal CO 2 atmosphere. We also provide an upper limit of 8 nbar for a possible CH 4 atmosphere, and 22 nbar for pure N 2, again at the 1-σ level. We finally constrain the stellar size using the time-resolved star disappearance

  9. 3D mapping of water in oolithic limestone at atmospheric and vacuum saturation using X-ray micro-CT differential imaging

    SciTech Connect

    Boone, M.A.; De Kock, T.; Bultreys, T.; De Schutter, G.; Vontobel, P.; Van Hoorebeke, L.; Cnudde, V.

    2014-11-15

    Determining the distribution of fluids in porous sedimentary rocks is of great importance in many geological fields. However, this is not straightforward, especially in the case of complex sedimentary rocks like limestone, where a multidisciplinary approach is often needed to capture its broad, multimodal pore size distribution and complex pore geometries. This paper focuses on the porosity and fluid distribution in two varieties of Massangis limestone, a widely used natural building stone from the southeast part of the Paris basin (France). The Massangis limestone shows locally varying post-depositional alterations, resulting in different types of pore networks and very different water distributions within the limestone. Traditional techniques for characterizing the porosity and pore size distribution are compared with state-of-the-art neutron radiography and X-ray computed microtomography to visualize the distribution of water inside the limestone at different imbibition conditions. X-ray computed microtomography images have the great advantage to non-destructively visualize and analyze the pore space inside of a rock, but are often limited to the larger macropores in the rock due to resolution limitations. In this paper, differential imaging is successfully applied to the X-ray computed microtomography images to obtain sub-resolution information about fluid occupancy and to map the fluid distribution in three dimensions inside the scanned limestone samples. The detailed study of the pore space with differential imaging allows understanding the difference in the water uptake behavior of the limestone, a primary factor that affects the weathering of the rock. - Highlights: • The water distribution in a limestone was visualized in 3D with micro-CT. • Differential imaging allowed to map both macro and microporous zones in the rock. • The 3D study of the pore space clarified the difference in water uptake behavior. • Trapped air is visualized in the moldic

  10. Pluto’s Atmosphere from Stellar Occultations in 2012 and 2013

    NASA Astrophysics Data System (ADS)

    Dias-Oliveira, A.; Sicardy, B.; Lellouch, E.; Vieira-Martins, R.; Assafin, M.; Camargo, J. I. B.; Braga-Ribas, F.; Gomes-Júnior, A. R.; Benedetti-Rossi, G.; Colas, F.; Decock, A.; Doressoundiram, A.; Dumas, C.; Emilio, M.; Fabrega Polleri, J.; Gil-Hutton, R.; Gillon, M.; Girard, J. H.; Hau, G. K. T.; Ivanov, V. D.; Jehin, E.; Lecacheux, J.; Leiva, R.; Lopez-Sisterna, C.; Mancini, L.; Manfroid, J.; Maury, A.; Meza, E.; Morales, N.; Nagy, L.; Opitom, C.; Ortiz, J. L.; Pollock, J.; Roques, F.; Snodgrass, C.; Soulier, J. F.; Thirouin, A.; Vanzi, L.; Widemann, T.; Reichart, D. E.; LaCluyze, A. P.; Haislip, J. B.; Ivarsen, K. M.; Dominik, M.; Jørgensen, U.; Skottfelt, J.

    2015-09-01

    We analyze two multi-chord stellar occultations by Pluto that were observed on 2012 July 18th and 2013 May 4th, and respectively monitored from five and six sites. They provide a total of fifteen light curves, 12 of which were used for a simultaneous fit that uses a unique temperature profile, assuming a clear (no haze) and pure N2 atmosphere, but allowing for a possible pressure variation between the two dates. We find a solution that satisfactorily fits (i.e., within the noise level) all of the 12 light curves, providing atmospheric constraints between ˜1190 km (pressure ˜11 μbar) and ˜1450 km (pressure ˜0.1 μbar) from Pluto’s center. Our main results are: (1) the best-fitting temperature profile shows a stratosphere with a strong positive gradient between 1190 km (at 36 K, 11 μbar) and r = 1215 km (6.0 μbar), where a temperature maximum of 110 K is reached; above it is a mesosphere with a negative thermal gradient of -0.2 K km-1 up to ˜1390 km (0.25 μbar), where the mesosphere connects itself to a more isothermal upper branch around 81 K; (2) the pressure shows a small (6%) but significant increase (6σ level) between the two dates; (3) without a troposphere, Pluto’s radius is found to be {R}{{P}}=1190\\+/- 5 km. Allowing for a troposphere, RP is constrained to lie between 1168 and 1195 km; and (4) the currently measured CO abundance is too small to explain the mesospheric negative thermal gradient. Cooling by HCN is possible, but only if this species is largely saturated. Alternative explanations like zonal winds or vertical compositional variations of the atmosphere are unable to explain the observed mesospheric negative thermal gradient. Partly based on observations made with the ESO camera NACO at the Very Large Telescope (Paranal), under program IDs 089.C-0314(C) and 291.C-5016. The prediction uses observations made with the WFI camera at the 2.2 m Telescope, under program ID 079.A-9202(A).

  11. Changes in the chemical composition of the atmosphere in the polar regions of the Earth after solar proton flares (3d modeling)

    NASA Astrophysics Data System (ADS)

    Krivolutsky, A. A.; Vyushkova, T. Yu.; Mironova, I. A.

    2017-03-01

    The paper presents the results of numerical photochemical simulations of the impact of the most powerful solar proton flares during the 23rd solar cycle on the ozonosphere in the polar regions of the Earth. A global 3D photochemical model, CHARM, developed at Central Aerological Observatory (CAO) was used in the simulations. The model introduces an additional source of nitrogen atoms and OH radicals. These components are formed due to the ionization effect of solar protons in the Earth's atmosphere. The ionization rate was determined from data on proton fluxes measured by GOES satellites. The production rate of additional NO x and HO x molecules per ion pair was based on published theoretical studies. It is shown that the most intense flares in the 23rd solar cycle (2000, 2001, and 2003) destroyed ozone in the mesosphere to a great extent (sometimes completely, for example, during the July 14, 2000, event). It is found that the response of ozone to solar proton events follows a seasonal pattern. For the first time, the long-term effect of solar proton events is identified; it is approximately one year.

  12. The ATLAS3D project - XX. Mass-size and mass-σ distributions of early-type galaxies: bulge fraction drives kinematics, mass-to-light ratio, molecular gas fraction and stellar initial mass function

    NASA Astrophysics Data System (ADS)

    Cappellari, Michele; McDermid, Richard M.; Alatalo, Katherine; Blitz, Leo; Bois, Maxime; Bournaud, Frédéric; Bureau, M.; Crocker, Alison F.; Davies, Roger L.; Davis, Timothy A.; de Zeeuw, P. T.; Duc, Pierre-Alain; Emsellem, Eric; Khochfar, Sadegh; Krajnović, Davor; Kuntschner, Harald; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Scott, Nicholas; Serra, Paolo; Weijmans, Anne-Marie; Young, Lisa M.

    2013-07-01

    In the companion Paper XV of this series, we derive accurate total mass-to-light ratios (M/L)_JAM≈ (M/L)({r}= {R_e}) within a sphere of radius r= {R_e} centred on the galaxy, as well as stellar (M/L)stars (with the dark matter removed) for the volume-limited and nearly mass-selected (stellar mass M_star ≳ 6× 10^9 { M_{⊙}}) ATLAS3D sample of 260 early-type galaxies (ETGs, ellipticals Es and lenticulars S0s). Here, we use those parameters to study the two orthogonal projections ({M_JAM}, {σ _e}) and ({M_JAM}, {R_e^maj}) of the thin Mass Plane (MP) ({M_JAM}, {σ _e}, {R_e^maj}) which describes the distribution of the galaxy population, where {M_JAM}≡ L× (M/L)_JAM≈ M_star. The distribution of galaxy properties on both projections of the MP is characterized by: (i) the same zone of exclusion (ZOE), which can be transformed from one projection to the other using the scalar virial equation. The ZOE is roughly described by two power laws, joined by a break at a characteristic mass {M_JAM}≈ 3× 10^{10} { M_{⊙}}, which corresponds to the minimum Re and maximum stellar density. This results in a break in the mean {M_JAM}-{σ _e} relation with trends {M_JAM}∝ σ _e^{2.3} and {M_JAM}∝ σ _e^{4.7} at small and large σe, respectively; (ii) a characteristic mass {M_JAM}≈ 2× 10^{11} { M_{⊙}} which separates a population dominated by flat fast rotator with discs and spiral galaxies at lower masses, from one dominated by quite round slow rotators at larger masses; (iii) below that mass the distribution of ETGs' properties on the two projections of the MP tends to be constant along lines of roughly constant σe, or equivalently along lines with {R_e^maj}∝ {M_JAM}, respectively (or even better parallel to the ZOE: {R_e^maj}∝ M_JAM^{0.75}); (iv) it forms a continuous and parallel sequence with the distribution of spiral galaxies; (v) at even lower masses, the distribution of fast-rotator ETGs and late spirals naturally extends to that of dwarf ETGs (Sph

  13. Limb Darkening and Planetary Transits: Testing Center-to-limb Intensity Variations and Limb-darkening Directly from Model Stellar Atmospheres

    NASA Astrophysics Data System (ADS)

    Neilson, Hilding R.; McNeil, Joseph T.; Ignace, Richard; Lester, John B.

    2017-08-01

    The transit method, employed by Microvariability and Oscillation of Stars (MOST), Kepler, and various ground-based surveys has enabled the characterization of extrasolar planets to unprecedented precision. These results are precise enough to begin to measure planet atmosphere composition, planetary oblateness, starspots, and other phenomena at the level of a few hundred parts per million. However, these results depend on our understanding of stellar limb darkening, that is, the intensity distribution across the stellar disk that is sequentially blocked as the planet transits. Typically, stellar limb darkening is assumed to be a simple parameterization with two coefficients that are derived from stellar atmosphere models or fit directly. In this work, we revisit this assumption and compute synthetic planetary-transit light curves directly from model stellar atmosphere center-to-limb intensity variations (CLIVs) using the plane-parallel Atlas and spherically symmetric SAtlas codes. We compare these light curves to those constructed using best-fit limb-darkening parameterizations. We find that adopting parametric stellar limb-darkening laws leads to systematic differences from the more geometrically realistic model stellar atmosphere CLIV of about 50-100 ppm at the transit center and up to 300 ppm at ingress/egress. While these errors are small, they are systematic, and they appear to limit the precision necessary to measure secondary effects. Our results may also have a significant impact on transit spectra.

  14. Charon's Radius and Atmospheric Constraints from the 2005 July 11 Stellar Occultation

    NASA Astrophysics Data System (ADS)

    Gulbis, A. A. S.; Elliot, J. L.; Person, M. J.; Adams, E. R.; Kern, S. D.; Kramer, E. A.; Babcock, B. A.; Gangestad, J. W.; Pasachoff, J. M.; Souza, S. P.; Osip, D. J.; Emililo, M.; Tuvikene, T.

    2005-12-01

    On 2005 July 11 (UT), Charon occulted the star ``C313.2" (originally identified as a Pluto occultation star [McDonald & Elliot, Astron. J. 120, 1599, 2000]; UCAC2 26257135; R = 14.8). We arranged to observe this event using five telescopes at four sites: the 0.6-m at Pico dos Dias Obs. (Brazil), the 0.84-m at Obs. Cerro Armazones, the 2.5-m du Pont and 6.5-m Clay at Las Campanas Obs., and the 8-m Gemini South at Cerro Pacha (Chile). The observations were successful at all stations excluding Pico dos Dias, which was clouded out. The Acquisition Camera was employed at Gemini South, while the remaining sites used POETS (Portable Occultation, Eclipse, and Transit Systems). Each system utilized a high-speed camera, a control computer, and a GPS to establish accurate timing. The cameras contain back-illuminated CCDs, with > 90% quantum efficiency, ˜ 6 electrons read noise, and 1.74 ms deadtime during frame transfer. For this event, data rates were 2 - 10 Hz and signal-to-noise ratios were 28 - 273 (normalized to 1 s). The Clay telescope light curve had high enough time resolution and signal-to-noise to detect the first diffraction fringe. This dataset marks significant improvement over the only previously viewed stellar occultation by Charon (Walker, MNRAS 192, 47, 1980; Elliot & Young, Icarus 89, 244, 1991). By fitting the light curves with models derived from French and Gierasch (Astron. J. 81, 445, 1976), we have calculated Charon's radius and placed strong constraints on an atmosphere. These results seem consistent with a collisional origin of the Pluto-Charon system in which either of the precursor bodies may have been differentiated (McKinnon, Astrophys. J. Lett. 344, L41, 1989). Support provided, in part, by NASA Planetary Astronomy grants NNG04GE48G, NNG04GF25G, and NNH04ZSS001N, IAP P5/36 of the Belgian Federal Office, and BIL 01/3 of the Flemish Ministry.

  15. Estimating stellar atmospheric parameters, absolute magnitudes and elemental abundances from the LAMOST spectra with Kernel-based principal component analysis

    NASA Astrophysics Data System (ADS)

    Xiang, M.-S.; Liu, X.-W.; Shi, J.-R.; Yuan, H.-B.; Huang, Y.; Luo, A.-L.; Zhang, H.-W.; Zhao, Y.-H.; Zhang, J.-N.; Ren, J.-J.; Chen, B.-Q.; Wang, C.; Li, J.; Huo, Z.-Y.; Zhang, W.; Wang, J.-L.; Zhang, Y.; Hou, Y.-H.; Wang, Y.-F.

    2017-01-01

    Accurate determination of stellar atmospheric parameters and elemental abundances is crucial for Galactic archaeology via large-scale spectroscopic surveys. In this paper, we estimate stellar atmospheric parameters - effective temperature Teff, surface gravity log g and metallicity [Fe/H], absolute magnitudes MV and MKs, α-element to metal (and iron) abundance ratio [α/M] (and [α/Fe]), as well as carbon and nitrogen abundances [C/H] and [N/H] from the Large Sky Area Multi-Object Fibre Spectroscopic Telescope (LAMOST) spectra with a multivariate regression method based on kernel-based principal component analysis, using stars in common with other surveys (Hipparcos, Kepler, Apache Point Observatory Galactic Evolution Experiment) as training data sets. Both internal and external examinations indicate that given a spectral signal-to-noise ratio (SNR) better than 50, our method is capable of delivering stellar parameters with a precision of ˜100 K for Teff, ˜0.1 dex for log g, 0.3-0.4 mag for MV and MKs, 0.1 dex for [Fe/H], [C/H] and [N/H], and better than 0.05 dex for [α/M] ([α/Fe]). The results are satisfactory even for a spectral SNR of 20. The work presents first determinations of [C/H] and [N/H] abundances from a vast data set of LAMOST, and, to our knowledge, the first reported implementation of absolute magnitude estimation directly based on a vast data set of observed spectra. The derived stellar parameters for millions of stars from the LAMOST surveys will be publicly available in the form of value-added catalogues.

  16. Three carbon-enhanced metal-poor dwarf stars from the SDSS. Chemical abundances from CO5BOLD 3D hydrodynamical model atmospheres

    NASA Astrophysics Data System (ADS)

    Behara, N. T.; Bonifacio, P.; Ludwig, H.-G.; Sbordone, L.; González Hernández, J. I.; Caffau, E.

    2010-04-01

    Context. The origin of carbon-enhanced metal-poor stars enriched with both s and r elements is highly debated. Detailed abundances of these types of stars are crucial to understand the nature of their progenitors. Aims: The aim of this investigation is to study in detail the abundances of SDSS J1349-0229, SDSS J0912+0216 and SDSS J1036+1212, three dwarf CEMP stars, selected from the Sloan Digital Sky Survey. Methods: Using high resolution VLT/UVES spectra (R ~ 30 000) we determine abundances for Li, C, N, O, Na, Mg, Al, Ca, Sc, Ti, Cr, Mn, Fe, Co, Ni and 21 neutron-capture elements. We made use of CO5BOLD 3D hydrodynamical model atmospheres in the analysis of the carbon, nitrogen and oxygen abundances. NLTE corrections for Ci and Oi lines were computed using the Kiel code. Results: We classify SDSS J1349-0229 and SDSS J0912+0216 as CEMP-r+s stars. SDSS J1036+1212 belongs to the class CEMP-no/s, with enhanced Ba, but deficient Sr, of which it is the third member discovered to date. Radial-velocity variations have been observed in SDSS J1349-0229, providing evidence that it is a member of a binary system. Conclusions: The chemical composition of the three stars is generally compatible with mass transfer from an AGB companion. However, many details remain difficult to explain. Most notably of those are the abundance of Li at the level of the Spite plateau in SDSS J1036+1212 and the large over-abundance of the pure r-process element Eu in all three stars. Based on observations obtained with the ESO Very Large Telescope at Paranal Observatory, Chile (programmes 078.D-0217 and 383.D-0927).

  17. Tropospheric Airborne Meteorological Data Reporting (TAMDAR) Sensor Validation and Verification on National Oceanographic and Atmospheric Administration (NOAA) Lockheed WP-3D Aircraft

    NASA Technical Reports Server (NTRS)

    Tsoucalas, George; Daniels, Taumi S.; Zysko, Jan; Anderson, Mark V.; Mulally, Daniel J.

    2010-01-01

    As part of the National Aeronautics and Space Administration's Aviation Safety and Security Program, the Tropospheric Airborne Meteorological Data Reporting project (TAMDAR) developed a low-cost sensor for aircraft flying in the lower troposphere. This activity was a joint effort with support from Federal Aviation Administration, National Oceanic and Atmospheric Administration, and industry. This paper reports the TAMDAR sensor performance validation and verification, as flown on board NOAA Lockheed WP-3D aircraft. These flight tests were conducted to assess the performance of the TAMDAR sensor for measurements of temperature, relative humidity, and wind parameters. The ultimate goal was to develop a small low-cost sensor, collect useful meteorological data, downlink the data in near real time, and use the data to improve weather forecasts. The envisioned system will initially be used on regional and package carrier aircraft. The ultimate users of the data are National Centers for Environmental Prediction forecast modelers. Other users include air traffic controllers, flight service stations, and airline weather centers. NASA worked with an industry partner to develop the sensor. Prototype sensors were subjected to numerous tests in ground and flight facilities. As a result of these earlier tests, many design improvements were made to the sensor. The results of tests on a final version of the sensor are the subject of this report. The sensor is capable of measuring temperature, relative humidity, pressure, and icing. It can compute pressure altitude, indicated air speed, true air speed, ice presence, wind speed and direction, and eddy dissipation rate. Summary results from the flight test are presented along with corroborative data from aircraft instruments.

  18. Ultra-metal-poor Stars: Spectroscopic Determination of Stellar Atmospheric Parameters Using Iron Non-LTE Line Abundances

    NASA Astrophysics Data System (ADS)

    Ezzeddine, Rana; Frebel, Anna; Plez, Bertrand

    2017-10-01

    We present new ultra-metal-poor stars parameters with [Fe/H] < ‑4.0 based on line-by-line non-local thermodynamic equilibrium (NLTE) abundances using an up-to-date iron model atom with a new recipe for non-elastic hydrogen collision rates. We study the departures from LTE in their atmospheric parameters and show that they can grow up to ∼1.00 dex in [Fe/H], ∼150 K in {T}{eff} and ∼0.5 dex in log g toward the lowest metallicities. Accurate NLTE atmospheric stellar parameters, in particular [Fe/H] being significantly higher, are the first step to eventually providing full NLTE abundance patterns that can be compared with Population III supernova nucleosynthesis yields to derive properties of the first stars. Overall, this maximizes the potential of these likely second-generation stars to investigate the early universe and how the chemical elements were formed.

  19. Europeana and 3D

    NASA Astrophysics Data System (ADS)

    Pletinckx, D.

    2011-09-01

    The current 3D hype creates a lot of interest in 3D. People go to 3D movies, but are we ready to use 3D in our homes, in our offices, in our communication? Are we ready to deliver real 3D to a general public and use interactive 3D in a meaningful way to enjoy, learn, communicate? The CARARE project is realising this for the moment in the domain of monuments and archaeology, so that real 3D of archaeological sites and European monuments will be available to the general public by 2012. There are several aspects to this endeavour. First of all is the technical aspect of flawlessly delivering 3D content over all platforms and operating systems, without installing software. We have currently a working solution in PDF, but HTML5 will probably be the future. Secondly, there is still little knowledge on how to create 3D learning objects, 3D tourist information or 3D scholarly communication. We are still in a prototype phase when it comes to integrate 3D objects in physical or virtual museums. Nevertheless, Europeana has a tremendous potential as a multi-facetted virtual museum. Finally, 3D has a large potential to act as a hub of information, linking to related 2D imagery, texts, video, sound. We describe how to create such rich, explorable 3D objects that can be used intuitively by the generic Europeana user and what metadata is needed to support the semantic linking.

  20. A 3d-3d appetizer

    NASA Astrophysics Data System (ADS)

    Pei, Du; Ye, Ke

    2016-11-01

    We test the 3d-3d correspondence for theories that are labeled by Lens spaces. We find a full agreement between the index of the 3d N=2 "Lens space theory" T [ L( p, 1)] and the partition function of complex Chern-Simons theory on L( p, 1). In particular, for p = 1, we show how the familiar S 3 partition function of Chern-Simons theory arises from the index of a free theory. For large p, we find that the index of T[ L( p, 1)] becomes a constant independent of p. In addition, we study T[ L( p, 1)] on the squashed three-sphere S b 3 . This enables us to see clearly, at the level of partition function, to what extent G ℂ complex Chern-Simons theory can be thought of as two copies of Chern-Simons theory with compact gauge group G.

  1. Pluto's Atmosphere from the 2015 June 29 Ground-based Stellar Occultation at the Time of the New Horizons Flyby

    NASA Astrophysics Data System (ADS)

    Sicardy, B.; Talbot, J.; Meza, E.; Camargo, J. I. B.; Desmars, J.; Gault, D.; Herald, D.; Kerr, S.; Pavlov, H.; Braga-Ribas, F.; Assafin, M.; Benedetti-Rossi, G.; Dias-Oliveira, A.; Gomes-Júnior, A. R.; Vieira-Martins, R.; Bérard, D.; Kervella, P.; Lecacheux, J.; Lellouch, E.; Beisker, W.; Dunham, D.; Jelínek, M.; Duffard, R.; Ortiz, J. L.; Castro-Tirado, A. J.; Cunniffe, R.; Querel, R.; Yock, P. C.; Cole, A. A.; Giles, A. B.; Hill, K. M.; Beaulieu, J. P.; Harnisch, M.; Jansen, R.; Pennell, A.; Todd, S.; Allen, W. H.; Graham, P. B.; Loader, B.; McKay, G.; Milner, J.; Parker, S.; Barry, M. A.; Bradshaw, J.; Broughton, J.; Davis, L.; Devillepoix, H.; Drummond, J.; Field, L.; Forbes, M.; Giles, D.; Glassey, R.; Groom, R.; Hooper, D.; Horvat, R.; Hudson, G.; Idaczyk, R.; Jenke, D.; Lade, B.; Newman, J.; Nosworthy, P.; Purcell, P.; Skilton, P. F.; Streamer, M.; Unwin, M.; Watanabe, H.; White, G. L.; Watson, D.

    2016-03-01

    We present results from a multi-chord Pluto stellar occultation observed on 2015 June 29 from New Zealand and Australia. This occurred only two weeks before the NASA New Horizons flyby of the Pluto system and serves as a useful comparison between ground-based and space results. We find that Pluto's atmosphere is still expanding, with a significant pressure increase of 5 ± 2% since 2013 and a factor of almost three since 1988. This trend rules out, as of today, an atmospheric collapse associated with Pluto's recession from the Sun. A central flash, a rare occurrence, was observed from several sites in New Zealand. The flash shape and amplitude are compatible with a spherical and transparent atmospheric layer of roughly 3 km in thickness whose base lies at about 4 km above Pluto's surface, and where an average thermal gradient of about 5 K km-1 prevails. We discuss the possibility that small departures between the observed and modeled flash are caused by local topographic features (mountains) along Pluto's limb that block the stellar light. Finally, using two possible temperature profiles, and extrapolating our pressure profile from our deepest accessible level down to the surface, we obtain a possible range of 11.9-13.7 μbar for the surface pressure. Partly based on observations made with the ESO WFI camera at the 2.2 m Telescope (La Silla), under program ID 079.A-9202(A) within the agreement between the ON/MCTI and the Max Planck Society, with the ESO camera NACO at the Very Large Telescope (Paranal), under program ID 089.C-0314(C), and at the Pico dos Dias Observatory/LNA, Brazil.

  2. 3d-3d correspondence revisited

    DOE PAGES

    Chung, Hee -Joong; Dimofte, Tudor; Gukov, Sergei; ...

    2016-04-21

    In fivebrane compactifications on 3-manifolds, we point out the importance of all flat connections in the proper definition of the effective 3d N = 2 theory. The Lagrangians of some theories with the desired properties can be constructed with the help of homological knot invariants that categorify colored Jones polynomials. Higgsing the full 3d theories constructed this way recovers theories found previously by Dimofte-Gaiotto-Gukov. As a result, we also consider the cutting and gluing of 3-manifolds along smooth boundaries and the role played by all flat connections in this operation.

  3. 3d-3d correspondence revisited

    SciTech Connect

    Chung, Hee -Joong; Dimofte, Tudor; Gukov, Sergei; Sułkowski, Piotr

    2016-04-21

    In fivebrane compactifications on 3-manifolds, we point out the importance of all flat connections in the proper definition of the effective 3d N = 2 theory. The Lagrangians of some theories with the desired properties can be constructed with the help of homological knot invariants that categorify colored Jones polynomials. Higgsing the full 3d theories constructed this way recovers theories found previously by Dimofte-Gaiotto-Gukov. As a result, we also consider the cutting and gluing of 3-manifolds along smooth boundaries and the role played by all flat connections in this operation.

  4. FIT3D: Fitting optical spectra

    NASA Astrophysics Data System (ADS)

    Sánchez, S. F.; Pérez, E.; Sánchez-Blázquez, P.; González, J. J.; Rosales-Ortega, F. F.; Cano-Díaz, M.; López-Cobá, C.; Marino, R. A.; Gil de Paz, A.; Mollá, M.; López-Sánchez, A. R.; Ascasibar, Y.; Barrera-Ballesteros, J.

    2016-09-01

    FIT3D fits optical spectra to deblend the underlying stellar population and the ionized gas, and extract physical information from each component. FIT3D is focused on the analysis of Integral Field Spectroscopy data, but is not restricted to it, and is the basis of Pipe3D, a pipeline used in the analysis of datasets like CALIFA, MaNGA, and SAMI. It can run iteratively or in an automatic way to derive the parameters of a large set of spectra.

  5. 3D Immersive Visualization with Astrophysical Data

    NASA Astrophysics Data System (ADS)

    Kent, Brian R.

    2017-01-01

    We present the refinement of a new 3D immersion technique for astrophysical data visualization.Methodology to create 360 degree spherical panoramas is reviewed. The 3D software package Blender coupled with Python and the Google Spatial Media module are used together to create the final data products. Data can be viewed interactively with a mobile phone or tablet or in a web browser. The technique can apply to different kinds of astronomical data including 3D stellar and galaxy catalogs, images, and planetary maps.

  6. Stellar parameters for Pop II A-type stars from IUE spectra and new-ODF ATLAS9 model atmospheres

    NASA Astrophysics Data System (ADS)

    Castelli, F.; Cacciari, C.

    2001-12-01

    Stellar parameters for twenty-seven field horizontal branch A-type stars, a post-AGB star (BD +32 2188), and a possible cool sdB star (BD +00 0145) were obtained by fitting the whole IUE energy distributions taken from the IUE-INES archive to the ultraviolet energy distributions predicted by new-ODF ATLAS9 model atmospheres, which include the Lyman-alpha H-H+ and H-H quasi-molecular absorptions near 1400 Å and 1600 Å. The sample of stars was extensively studied by Kinman et al. (2000), who derived stellar parameters for them by using visual observations and also an ultraviolet color index. The effective temperatures obtained by fitting the IUE spectra to the new-ODF models agree with T_eff derived by Kinman et al. (2000) for most of the stars in the sample. The gravities from UV agree with those from Kinman et al. (2000) for stars hotter than about 8700 K, while they are lower, on average, by 0.3 dex for the cooler stars. The same discrepancy is present when log g from the ultraviolet energy distribution is compared with log g from the visible energy distribution. The difference is insensitive to reddening, microturbulent velocity, metallicity, or mixing-length parameter for the treatment of the convection. Figures A.1 to A.15 are only available in electronic form at http://www.edpsciences.org

  7. 3D and Education

    NASA Astrophysics Data System (ADS)

    Meulien Ohlmann, Odile

    2013-02-01

    Today the industry offers a chain of 3D products. Learning to "read" and to "create in 3D" becomes an issue of education of primary importance. 25 years professional experience in France, the United States and Germany, Odile Meulien set up a personal method of initiation to 3D creation that entails the spatial/temporal experience of the holographic visual. She will present some different tools and techniques used for this learning, their advantages and disadvantages, programs and issues of educational policies, constraints and expectations related to the development of new techniques for 3D imaging. Although the creation of display holograms is very much reduced compared to the creation of the 90ies, the holographic concept is spreading in all scientific, social, and artistic activities of our present time. She will also raise many questions: What means 3D? Is it communication? Is it perception? How the seeing and none seeing is interferes? What else has to be taken in consideration to communicate in 3D? How to handle the non visible relations of moving objects with subjects? Does this transform our model of exchange with others? What kind of interaction this has with our everyday life? Then come more practical questions: How to learn creating 3D visualization, to learn 3D grammar, 3D language, 3D thinking? What for? At what level? In which matter? for whom?

  8. Atmosphere expansion and mass loss of close-orbit giant exoplanets heated by stellar XUV. I. Modeling of hydrodynamic escape of upper atmospheric material

    SciTech Connect

    Shaikhislamov, I. F.; Khodachenko, M. L.; Sasunov, Yu. L.; Lammer, H.; Kislyakova, K. G.; Erkaev, N. V.

    2014-11-10

    In the present series of papers we propose a consistent description of the mass loss process. To study in a comprehensive way the effects of the intrinsic magnetic field of a close-orbit giant exoplanet (a so-called hot Jupiter) on atmospheric material escape and the formation of a planetary inner magnetosphere, we start with a hydrodynamic model of an upper atmosphere expansion in this paper. While considering a simple hydrogen atmosphere model, we focus on the self-consistent inclusion of the effects of radiative heating and ionization of the atmospheric gas with its consequent expansion in the outer space. Primary attention is paid to an investigation of the role of the specific conditions at the inner and outer boundaries of the simulation domain, under which different regimes of material escape (free and restricted flow) are formed. A comparative study is performed of different processes, such as X-ray and ultraviolet (XUV) heating, material ionization and recombination, H{sub 3}{sup +} cooling, adiabatic and Lyα cooling, and Lyα reabsorption. We confirm the basic consistency of the outcomes of our modeling with the results of other hydrodynamic models of expanding planetary atmospheres. In particular, we determine that, under the typical conditions of an orbital distance of 0.05 AU around a Sun-type star, a hot Jupiter plasma envelope may reach maximum temperatures up to ∼9000 K with a hydrodynamic escape speed of ∼9 km s{sup –1}, resulting in mass loss rates of ∼(4-7) · 10{sup 10} g s{sup –1}. In the range of the considered stellar-planetary parameters and XUV fluxes, that is close to the mass loss in the energy-limited case. The inclusion of planetary intrinsic magnetic fields in the model is a subject of the follow-up paper (Paper II).

  9. A temperature dependence of the width of the atom spectral lines in stellar atmospheres (in Ukrainian)

    NASA Astrophysics Data System (ADS)

    Vakarchuk, I. O.; Rykalyuk, R. E.; Yankiv-Vitkovska, L. M.

    Explicit expressions for the damping constant γ and the frequency shift Δ of Lorentz's profile of absorption coefficient in spectral lines with the consideration of inelastic collisions and post Van der Waals interpretations of the radiating atom with exciting particles have been found. The inelastic collisions are characterized by a constant parameter which equals the relation of an imaginary part of the scattering phase to the real one. For the γ/γ_0 value where γ_0 is a Van der Waals damping constant in approximation of Weisskopt--Lindholm, there were received two types of expansions over the powers of temperature. Considering these effects leads to an increase of the damping constant and is enough for obtaining quantitative results for Fraunhofer's lines profiles without any illegitimate increase of the value of γ (the so called empirical damping constant) ``by the hand" which is used in the analysis of stellar spectra.

  10. Refined 3d-3d correspondence

    NASA Astrophysics Data System (ADS)

    Alday, Luis F.; Genolini, Pietro Benetti; Bullimore, Mathew; van Loon, Mark

    2017-04-01

    We explore aspects of the correspondence between Seifert 3-manifolds and 3d N = 2 supersymmetric theories with a distinguished abelian flavour symmetry. We give a prescription for computing the squashed three-sphere partition functions of such 3d N = 2 theories constructed from boundary conditions and interfaces in a 4d N = 2∗ theory, mirroring the construction of Seifert manifold invariants via Dehn surgery. This is extended to include links in the Seifert manifold by the insertion of supersymmetric Wilson-'t Hooft loops in the 4d N = 2∗ theory. In the presence of a mass parameter cfor the distinguished flavour symmetry, we recover aspects of refined Chern-Simons theory with complex gauge group, and in particular construct an analytic continuation of the S-matrix of refined Chern-Simons theory.

  11. BEAMS3D Neutral Beam Injection Model

    SciTech Connect

    Lazerson, Samuel

    2014-04-14

    With the advent of applied 3D fi elds in Tokamaks and modern high performance stellarators, a need has arisen to address non-axisymmetric effects on neutral beam heating and fueling. We report on the development of a fully 3D neutral beam injection (NBI) model, BEAMS3D, which addresses this need by coupling 3D equilibria to a guiding center code capable of modeling neutral and charged particle trajectories across the separatrix and into the plasma core. Ionization, neutralization, charge-exchange, viscous velocity reduction, and pitch angle scattering are modeled with the ADAS atomic physics database [1]. Benchmark calculations are presented to validate the collisionless particle orbits, neutral beam injection model, frictional drag, and pitch angle scattering effects. A calculation of neutral beam heating in the NCSX device is performed, highlighting the capability of the code to handle 3D magnetic fields.

  12. A 3d-3d appetizer

    DOE PAGES

    Pei, Du; Ye, Ke

    2016-11-02

    Here, we test the 3d-3d correspondence for theories that are labeled by Lens spaces. We find a full agreement between the index of the 3d N=2 “Lens space theory” T [L(p, 1)] and the partition function of complex Chern-Simons theory on L(p, 1). In particular, for p = 1, we show how the familiar S3 partition function of Chern-Simons theory arises from the index of a free theory. For large p, we find that the index of T[L(p, 1)] becomes a constant independent of p. In addition, we study T[L(p, 1)] on the squashed three-sphere Sb3. This enables us tomore » see clearly, at the level of partition function, to what extent GC complex Chern-Simons theory can be thought of as two copies of Chern-Simons theory with compact gauge group G.« less

  13. A 3d-3d appetizer

    SciTech Connect

    Pei, Du; Ye, Ke

    2016-11-02

    Here, we test the 3d-3d correspondence for theories that are labeled by Lens spaces. We find a full agreement between the index of the 3d N=2 “Lens space theory” T [L(p, 1)] and the partition function of complex Chern-Simons theory on L(p, 1). In particular, for p = 1, we show how the familiar S3 partition function of Chern-Simons theory arises from the index of a free theory. For large p, we find that the index of T[L(p, 1)] becomes a constant independent of p. In addition, we study T[L(p, 1)] on the squashed three-sphere Sb3. This enables us to see clearly, at the level of partition function, to what extent GC complex Chern-Simons theory can be thought of as two copies of Chern-Simons theory with compact gauge group G.

  14. Improving the Ni I atomic model for solar and stellar atmospheric models

    SciTech Connect

    Vieytes, M. C.; Fontenla, J. M. E-mail: johnf@digidyna.com

    2013-06-01

    Neutral nickel (Ni I) is abundant in the solar atmosphere and is one of the important elements that contribute to the emission and absorption of radiation in the spectral range between 1900 and 3900 Å. Previously, the Solar Radiation Physical Modeling (SRPM) models of the solar atmosphere only considered a few levels of this species. Here, we improve the Ni I atomic model by taking into account 61 levels and 490 spectral lines. We compute the populations of these levels in full NLTE using the SRPM code and compare the resulting emerging spectrum with observations. The present atomic model significantly improves the calculation of the solar spectral irradiance at near-UV wavelengths, which is important for Earth atmospheric studies, and particularly for ozone chemistry.

  15. The structure of Neptune's upper atmosphere - The stellar occultation of 24 May 1981

    NASA Technical Reports Server (NTRS)

    French, R. G.; Elias, J. H.; Mink, D. J.; Elliot, J. L.

    1983-01-01

    Observations of the 24 May 1981 occulation of an uncatalogued star by Neptune made at the Cerro Tololo Inter-American Observatory have been analyzed to yield temperature profiles of Neptune's upper atmosphere for number densities near 5 x 10 to the 13th per cu cm. The mean temperatures at immersion (latitude - 56 deg) and emersion (latitude - 16 deg) obtained by numerical inversion were 140 + or - 10 K and 154 + or - 10 K, respectively. The immersion and emersion profiles are remarkably similar in overall shape, suggestive of global atmospheric layering. From the astrometry of the event, precise relative positions of Neptune and the occulted star were obtained.

  16. Solar wind interaction with Mars' upper atmosphere: Results from 3-D studies using one-way coupling between the Multi-fluid MHD, the M-GITM and the AMPS models

    NASA Astrophysics Data System (ADS)

    Dong, C.; Bougher, S. W.; Ma, Y.; Toth, G.; Lee, Y.; Nagy, A. F.; Tenishev, V.; Pawlowski, D. J.; Meng, X.; Combi, M. R.

    2013-12-01

    The study of the solar wind interaction with Mars upper atmosphere/ionosphere has triggered a great of interest in recent years. Among the large number of topics in this research area, the investigation of ion escape fluxes has become increasingly important due to its potential impact on the long-term evolution of Mars atmosphere (e.g., loss of water) over its history. In the present work, we adopt the 3-D Mars cold neutral atmosphere profiles (0~300 km) from the newly developed and validated Mars Global Ionosphere Thermosphere Model (M-GITM) and the 3-D hot oxygen profiles (100km~5RM) from the exosphere Monte Carlo model Adaptive Mesh Particle Simulator (AMPS). We apply these 3-D model outputs fields into the 3-D BATS-R-US Mars multi-fluid MHD model (100km~20RM) that can better simulate the interplay between Mars upper atmosphere and solar wind by considering the dynamics of individual ion species. The multi-fluid model solves separate continuity, momentum and energy equations for each ion species (H+, O+, O2+, CO2+). The M-GITM model together with the AMPS exosphere model take into account the effects of solar cycle and seasonal variations on both cold and hot neutral atmospheres, allowing us to investigate the corresponding effects on the Mars upper atmosphere ion escape by using a one-way coupling approach, i.e., both the M-GITM and AMPS model outputs are used as the inputs for the multi-fluid model and M-GITM is used as input into the AMPS exosphere model. The calculations are carried out for selected cases with different nominal solar wind, solar cycle and crustal field orientation conditions. This work has the potential to provide predictions of ion escape rates for comparison to future data to be returned by the MAVEN primary mission (2014-2016) and thereby improve our understanding of present day escape processes. Acknowledgments: The work presented here was supported by NASA grants NNH10CC04C, NNX09AL26G, NSF grant ATM-0535811.

  17. Manifestation of the light-induced drift effect in chemically peculiar stellar atmospheres

    NASA Astrophysics Data System (ADS)

    Parkhomenko, A. I.; Shalagin, A. M.

    2013-02-01

    We have calculated the factor ( ν g - ν e )/ ν g in the temperature range T = 300-20 000 K for the ions Be+, Mg+, Ca+, C+ in atomic hydrogen and for the ions Mg+ in atomic argon using the known interaction potentials. Here ν e and ν g are the transport collision frequencies for excited- and ground-state particles respectively. Calculations have shown that at T = 10 000-20 000 K, typical temperatures of the atmospheres of chemically peculiar (CP) stars, the values | ν g - ν e |/ ν g ≈ 0.1-0.2 can be reached for ions. This causes the light-induced drift (LID) velocity of ions up to ˜0.1 cm/s in the atmospheres of CP stars with temperatures T < 10 000 K. Therefore the separation of chemical elements due to the LID of ions under the conditions of the atmospheres of such CP stars can be an order of magnitude more efficient in comparison with the separation caused by the radiation pressure. In the atmosphere of more hot stars (20 000 K > T > 10 000 K) it is possible to expect approximately identical magnitude of the LID effect and that of radiation pressure. In the very hot stars ( T >20 000 K) the LID effect is manifested very weakly.

  18. 3D Imaging.

    ERIC Educational Resources Information Center

    Hastings, S. K.

    2002-01-01

    Discusses 3 D imaging as it relates to digital representations in virtual library collections. Highlights include X-ray computed tomography (X-ray CT); the National Science Foundation (NSF) Digital Library Initiatives; output peripherals; image retrieval systems, including metadata; and applications of 3 D imaging for libraries and museums. (LRW)

  19. 3D Imaging.

    ERIC Educational Resources Information Center

    Hastings, S. K.

    2002-01-01

    Discusses 3 D imaging as it relates to digital representations in virtual library collections. Highlights include X-ray computed tomography (X-ray CT); the National Science Foundation (NSF) Digital Library Initiatives; output peripherals; image retrieval systems, including metadata; and applications of 3 D imaging for libraries and museums. (LRW)

  20. Diamond in 3-D

    NASA Image and Video Library

    2004-08-20

    This 3-D, microscopic imager mosaic of a target area on a rock called Diamond Jenness was taken after NASA Mars Exploration Rover Opportunity ground into the surface with its rock abrasion tool for a second time. 3D glasses are necessary.

  1. The composition of Saturn's atmosphere at northern temperate latitudes from Voyager IRIS spectra - NH3, PH3, C2H2, C2H6, CH3D, CH4, and the Saturnian D/H isotopic ratio

    NASA Technical Reports Server (NTRS)

    Courtin, R.; Gautier, D.; Marten, A.; Bezard, B.; Hanel, R.

    1984-01-01

    The vertical distributions and mixing ratios of minor constituents in the northern hemisphere of Saturn are investigated. Results are obtained for NH3, PH3, C2H2, C2H6, CH3D, and CH4; the D/H ratio is obtained from the CH4 and CH3D abundances. The NH3 mixing ratio in the upper atmosphere is found to be compatible with the saturated partial pressure. The inferred PH3/H2 ratio of 1.4 + or - 0.8 x 10 to the -6th is higher than the value derived from the solar P/H ratio. The stratospheric C2H2/H2 and C2H6/H2 ratios are, respectively, 2.1 + or - 1.4 x 10 to the -7th and 3.0 + or - 1.1 x 10 to the -6th; the latter decreases sharply below the 20-50 mbar level. The results for CH3D/H2 and CH4/H2 imply an enrichment of Saturn's upper atmosphere in carbon by a factor of at least three over the solar abundance. The interpretation of two NH3 lines in the five-micron window suggests a NH3/H2 ratio at the two bar level below the solar value.

  2. Limb darkening and exoplanets: testing stellar model atmospheres and identifying biases in transit parameters

    NASA Astrophysics Data System (ADS)

    Espinoza, Néstor; Jordán, Andrés

    2015-06-01

    Limb darkening is fundamental in determining transit light-curve shapes, and is typically modelled by a variety of laws that parametrize the intensity profile of the star that is being transited. Confronted with a transit light curve, some authors fix the parameters of these laws, the so-called limb darkening coefficients (LDCs), while others prefer to let them float in the light-curve fitting procedure. Which of these is the best strategy, however, is still unclear, as well as how and by how much each of these can bias the retrieved transit parameters. In this work we attempt to clarify those points by first recalculating these LDCs, comparing them to measured values from Kepler transit light curves using an algorithm that takes into account uncertainties in both the geometry of the transit and the parameters of the stellar host. We show there are significant departures from predicted model values, suggesting that our understanding of limb darkening still needs to improve. Then, we show through simulations that if one uses the quadratic limb darkening law to parametrize limb darkening, fixing and fitting the LDCs can lead to significant biases - up to ˜3 and ˜1 per cent in Rp/R*, respectively - which are important for several confirmed and candidate exoplanets. We conclude that, in this case, the best approach is to let the LDCs be free in the fitting procedure. Strategies to avoid biases in data from present and future missions involving high precision measurements of transit parameters are described.

  3. THE SIZE, SHAPE, ALBEDO, DENSITY, AND ATMOSPHERIC LIMIT OF TRANSNEPTUNIAN OBJECT (50000) QUAOAR FROM MULTI-CHORD STELLAR OCCULTATIONS

    SciTech Connect

    Braga-Ribas, F.; Vieira-Martins, R.; Camargo, J. I. B.; Sicardy, B.; Lellouch, E.; Lecacheux, J.; Ortiz, J. L.; Morales, N.; Tancredi, G.; Roland, S.; Bruzzone, S.; Assafin, M.; Vachier, F.; Colas, F.; Maury, A.; Emilio, M.; Amorim, A.; Unda-Sanzana, E.; Almeida, L. A.; and others

    2013-08-10

    We present results derived from the first multi-chord stellar occultations by the transneptunian object (50000) Quaoar, observed on 2011 May 4 and 2012 February 17, and from a single-chord occultation observed on 2012 October 15. If the timing of the five chords obtained in 2011 were correct, then Quaoar would possess topographic features (crater or mountain) that would be too large for a body of this mass. An alternative model consists in applying time shifts to some chords to account for possible timing errors. Satisfactory elliptical fits to the chords are then possible, yielding an equivalent radius R{sub equiv} = 555 {+-} 2.5 km and geometric visual albedo p{sub V} = 0.109 {+-} 0.007. Assuming that Quaoar is a Maclaurin spheroid with an indeterminate polar aspect angle, we derive a true oblateness of {epsilon}= 0.087{sup +0.0268}{sub -0.0175}, an equatorial radius of 569{sup +24}{sub -17} km, and a density of 1.99 {+-} 0.46 g cm{sup -3}. The orientation of our preferred solution in the plane of the sky implies that Quaoar's satellite Weywot cannot have an equatorial orbit. Finally, we detect no global atmosphere around Quaoar, considering a pressure upper limit of about 20 nbar for a pure methane atmosphere.

  4. An investigation of Pluto's troposphere using stellar occultation light curves and an atmospheric radiative-conductive-convective model

    NASA Astrophysics Data System (ADS)

    Zalucha, Angela M.; Zhu, Xun; Gulbis, Amanda A. S.; Strobel, Darrell F.; Elliot, J. L.

    2011-08-01

    We use a radiative-conductive-convective model to assess the height of Pluto's troposphere, as well as surface pressure and surface radius, from stellar occultation data from the years 1988, 2002, and 2006. The height of the troposphere, if it exists, is less than 1 km for all years analyzed. Pluto has at most a planetary boundary layer and not a troposphere. As in previous analyses of Pluto occultation light curves, we find that the surface pressure is increasing with time, assuming that latitude and longitude variations in Pluto's atmosphere are negligible. The surface pressure is found to be slightly higher ( 12.5-2.4+1.9 μbar in 1988, 18.0-1.7+11 μbar in 2002, and 18.5 ± 4.7 μbar in 2006) than in our previous analyses with the troposphere excluded. The surface radius is determined to be 1173-10+20km. Comparison of the minimum reduced chi-squared values between the best-fit radiative-conductive-convective (i.e., troposphere-included) model and best-fit radiative-conductive (i.e., troposphere-excluded) shows that the troposphere-included model is only a slightly better fit to the data for all 3 years. Uncertainties in the small-scale physical processes of Pluto's lower atmosphere and consequently the functional form of the model troposphere lend more confidence to the troposphere-excluded results.

  5. High-precision atmospheric parameter and abundance determination of massive stars, and consequences for stellar and Galactic evolution

    NASA Astrophysics Data System (ADS)

    Nieva, Maria-Fernanda; Przybilla, Norbert; Irrgang, Andreas

    2011-12-01

    The derivation of high precision/accuracy parameters and chemical abundances of massive stars is of utmost importance to the fields of stellar evolution and Galactic chemical evolution. We concentrate on the study of OB-type stars near the main sequence and their evolved progeny, the BA-type supergiants, covering masses of ~6 to 25 solar masses and a range in effective temperature from ~8000 to 35 000 K. The minimization of the main sources of systematic errors in the atmospheric model computation, the observed spectra and the quantitative spectral analysis play a critical role in the final results. Our self-consistent spectrum analysis technique employing a robust non-LTE line formation allows precise atmospheric parameters of massive stars to be derived, achieving 1σ-uncertainties as low as 1% in effective temperature and ~0.05-0.10 dex in surface gravity. Consequences on the behaviour of the chemical elements carbon, nitrogen and oxygen are discussed here in the context of massive star evolution and Galactic chemical evolution, showing tight relations covered in previous work by too large statistical and systematic uncertainties. The spectral analysis of larger star samples, like from the upcoming Gaia-ESO survey, may benefit from these findings.

  6. Exoplanet Meteorology: Characterizing The Atmospheres Of Directly Imaged Sub-Stellar Objects

    NASA Astrophysics Data System (ADS)

    Rajan, Abhijith

    2017-05-01

    The field of exoplanet science has matured over the past two decades with over 3500 confirmed exoplanets. However, many fundamental questions regarding the composition, and formation mechanism remain unanswered. Atmospheres are a window into the properties of a planet, and spectroscopic studies can help resolve many of these questions. For the first part of my dissertation, I participated in two studies of the atmospheres of brown dwarfs to search for weather variations. To understand the evolution of weather on brown dwarfs we conducted a multi- epoch study monitoring four cool brown dwarfs to search for photometric variability. These cool brown dwarfs are predicted to have salt and sulfide clouds condensing in their upper atmosphere and we detected one high amplitude variable. Combining observations for all T5 and later brown dwarfs we note a possible correlation between variability and cloud opacity.For the second half of my thesis, I focused on characterizing the atmospheres of directly imaged exoplanets. In the first study Hubble Space Telescope data on HR8799, in wavelengths unobservable from the ground, provide constraints on the presence of clouds in the outer planets. Next, I present research done in collaboration with the Gemini Planet Imager Exoplanet Survey (GPIES) team including an exploration of the instrument contrast against environmental parameters, and an examination of the environment of the planet in the HD 106906 system. By analyzing archival HST data and examining the near-infrared colors of HD 106906b, we conclude that the companion shows weak evidence of a circumplanetary dust disk or cloud. Finally, I measure the properties of the low mass directly imaged planet 51 Eridani b. We combined published J, H spectra with updated LP photometry, new K1, K2 spectra, and MS photometry. The new data confirms that the planet has redder than similar pectral type objects, which might be due to the planet still transitioning from to L-to-T. Model

  7. HATS (High Altitude Thermal Sounder): a passive sensor solution to 3D high-resolution mapping of upper atmosphere dynamics (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Gordley, Larry; Marshall, Benjamin T.; Lachance, Richard L.

    2016-10-01

    This presentation introduces a High Altitude Thermal Sensor (HATS) that has the potential to resolve the thermal structure of the upper atmosphere (cloud top to 100km) with both horizontal and vertical resolution of 5-7 km or better. This would allow the complete characterization of the wave structures that carry weather signature from the underlying atmosphere. Using a novel gas correlation technique, an extremely high-resolution spectral scan is accomplished by measuring a Doppler modulated signal as the atmospheric thermal scene passes through the HATS 2D FOV. This high spectral resolution, difficult to impossible to achieve with any other passive technique, enables the separation of radiation emanating at high altitudes from that emanating at low altitudes. A principal component analysis of these modulation signals then exposes the complete thermal structure of the upper atmosphere. We show that nadir sounding from low earth orbit, using various branches of CO2 emission in the 17 to 15 micron region, with sufficient spectral resolution and spectral measurement range, can distinguish thermal energy that peaks at various altitudes. By observing the up-welling atmospheric emission through a low pressure (Doppler broadened) gas cell, as the scene passes through our FOV, a modulation signal is created as the atmospheric emission lines are shifted through the spectral position of the gas cell absorption lines. The modulation signal is shown to be highly correlated to the emission coming from the spectral location of the gas cell lines relative to the atmospheric emission lines. This effectively produces a scan of the atmospheric emission with a Doppler line resolution. Similar to thermal sounding of the troposphere, a principal component analysis of the modulation signal can be used to produce an altitude resolved profile, given a reasonable a priori temperature profile. It is then shown that with the addition of a limb observation with one CO2 broadband channel

  8. Response of Atmospheric Biomarkers to NOx-Induced Photochemistry Generated by Stellar Cosmic Rays for Earth-like Planets in the Habitable Zone of M Dwarf Stars

    PubMed Central

    Grießmeier, Jean-Mathias; von Paris, Philip; Patzer, A. Beate C.; Lammer, Helmut; Stracke, Barbara; Gebauer, Stefanie; Schreier, Franz; Rauer, Heike

    2012-01-01

    Abstract Understanding whether M dwarf stars may host habitable planets with Earth-like atmospheres and biospheres is a major goal in exoplanet research. If such planets exist, the question remains as to whether they could be identified via spectral signatures of biomarkers. Such planets may be exposed to extreme intensities of cosmic rays that could perturb their atmospheric photochemistry. Here, we consider stellar activity of M dwarfs ranging from quiet up to strong flaring conditions and investigate one particular effect upon biomarkers, namely, the ability of secondary electrons caused by stellar cosmic rays to break up atmospheric molecular nitrogen (N2), which leads to production of nitrogen oxides (NOx) in the planetary atmosphere, hence affecting biomarkers such as ozone (O3). We apply a stationary model, that is, without a time dependence; hence we are calculating the limiting case where the atmospheric chemistry response time of the biomarkers is assumed to be slow and remains constant compared with rapid forcing by the impinging stellar flares. This point should be further explored in future work with time-dependent models. We estimate the NOx production using an air shower approach and evaluate the implications using a climate-chemical model of the planetary atmosphere. O3 formation proceeds via the reaction O+O2+M→O3+M. At high NOx abundances, the O atoms arise mainly from NO2 photolysis, whereas on Earth this occurs via the photolysis of molecular oxygen (O2). For the flaring case, O3 is mainly destroyed via direct titration, NO+O3→NO2+O2, and not via the familiar catalytic cycle photochemistry, which occurs on Earth. For scenarios with low O3, Rayleigh scattering by the main atmospheric gases (O2, N2, and CO2) became more important for shielding the planetary surface from UV radiation. A major result of this work is that the biomarker O3 survived all the stellar-activity scenarios considered except for the strong case, whereas the biomarker

  9. Probing Atlas model atmospheres at high spectral resolution. Stellar synthesis and reference template validation

    NASA Astrophysics Data System (ADS)

    Bertone, E.; Buzzoni, A.; Chávez, M.; Rodríguez-Merino, L. H.

    2008-07-01

    Aims: The fast improvement of spectroscopic observations makes mandatory a strong effort on the theoretical side to better reproduce the spectral energy distribution (SED) of stars at high spectral resolution. In this regard, relying on the Kurucz Atlas/Synthe original codes we computed the Bluered library, consisting of 832 synthetic SED of stars, that cover a large parameter space at very high spectral resolution (R = 500 000) along the 3500-7000 Å wavelength range. Methods: Bluered synthetic spectra have been used to assess in finer detail the intrinsic reliability and the performance limits of the Atlas theoretical framework. The continuum-normalized spectra of the Sun, Arcturus, and Vega, plus a selected list of 45 bright stars with high-quality SEDs from the Prugniel & Soubiran Elodie catalog, form our sample designed to probe the global properties of synthetic spectra across the entire range of H-R parameters. Results: Atlas models display a better fitting performance with increasing stellar temperature. High-resolution spectra of Vega, the Sun, and Arcturus have been reproduced at R=100 000, respectively, within a 0.7%, 4.5%, and 8.8% relative scatter in residual flux. In all the three cases, the residual flux distribution shows a significant asymmetry (skewness parameter γ = -2.21, -0.98, -0.67, respectively), which neatly confirms an overall “excess” of theoretical line blanketing. For the Sun, this apparent discrepancy is alleviated, but not recovered, by a systematic decrease (-40%) of the line oscillator strengths, log (gf), especially referring to iron transitions. Definitely, a straight “astrophysical” determination of log (gf) for each individual atomic transition has to be devised to overcome the problem. By neglecting overblanketing effects in theoretical models when fitting high-resolution continuum-normalized spectra of real stars, we lead to a systematically warmer effective temperature (between +80 and +300 K for the solar fit) and a

  10. Targeted Optimization of Quasi-Symmetric Stellarators

    SciTech Connect

    Hegna, Chris C.; Anderson, D. T.; Talmadge, J. N.

    2016-10-06

    The proposed research focuses on targeted areas of plasma physics dedicated to improving the stellarator concept. Research was pursued in the technical areas of edge/divertor physics in 3D configurations, magnetic island physics in stellarators, the role of 3D shaping on microinstabilities and turbulent transport and energetic ion confinement in stellarators.

  11. PORTA: A Massively Parallel Code for 3D Non-LTE Polarized Radiative Transfer

    NASA Astrophysics Data System (ADS)

    Štěpán, J.

    2014-10-01

    The interpretation of the Stokes profiles of the solar (stellar) spectral line radiation requires solving a non-LTE radiative transfer problem that can be very complex, especially when the main interest lies in modeling the linear polarization signals produced by scattering processes and their modification by the Hanle effect. One of the main difficulties is due to the fact that the plasma of a stellar atmosphere can be highly inhomogeneous and dynamic, which implies the need to solve the non-equilibrium problem of generation and transfer of polarized radiation in realistic three-dimensional stellar atmospheric models. Here we present PORTA, a computer program we have developed for solving, in three-dimensional (3D) models of stellar atmospheres, the problem of the generation and transfer of spectral line polarization taking into account anisotropic radiation pumping and the Hanle and Zeeman effects in multilevel atoms. The numerical method of solution is based on a highly convergent iterative algorithm, whose convergence rate is insensitive to the grid size, and on an accurate short-characteristics formal solver of the Stokes-vector transfer equation which uses monotonic Bezier interpolation. In addition to the iterative method and the 3D formal solver, another important feature of PORTA is a novel parallelization strategy suitable for taking advantage of massively parallel computers. Linear scaling of the solution with the number of processors allows to reduce the solution time by several orders of magnitude. We present useful benchmarks and a few illustrations of applications using a 3D model of the solar chromosphere resulting from MHD simulations. Finally, we present our conclusions with a view to future research. For more details see Štěpán & Trujillo Bueno (2013).

  12. Molecular Line and Continuum Opacities for Modeling of Extrasolar Giant Planet and Cool Stellar Atmospheres

    NASA Technical Reports Server (NTRS)

    Weck, P. F.; Schweitzer, A.; Stancil, P. C.; Hauschildt, P. H.; Kirby, K.; Yamaguchi, Y.; Allen, W. D.

    2002-01-01

    The molecular line and continuum opacities are investigated in the atmospheres of cool stars and Extrasolar Giant Planets (EGPs). Using a combination of ab inito and experimentally derived potential curves and dipole transition moments, accurate data have been calculated for rovibrationally-resolved oscillator strengths and photodissociation cross sections in the B' (sup 2)Sigma+ (left arrow) X (sup 2)Sigma+ and A (sup 2)Pi (left arrow) X (sup 2)Sigma+ band systems in MgH. We also report our progress on the study of the electronic structure of LiCl and FeH.

  13. Atmospheric state of Pluto from the 31 July 2014 stellar occultation

    NASA Astrophysics Data System (ADS)

    Person, Michael J.; Bosh, Amanda S.; Zuluaga, Carlos A.; Kosiarek, Molly; Osip, David J.; Levine, Stephen E.; Pasachoff, Jay M.; Schiff, Adam R.; Seegar, Christina H.; Babcock, Bryce A.; Gulbis, Amanda A.; Rojo, Patricio

    2014-11-01

    On 31 July 2014 (UT), while observing a potential Pluto occultation (m=12, unfortunately obscured by clouds), we imaged a fortuitous occultation by Pluto of a small companion star (m=15) several minutes before the main event (and before the clouds came in) with the 6.5-m Clay telescope at Magellan. The main star’s resulting light curve (essentially flat until the weather intervened) was one of the highest signal-to-noise light curves yet obtained from a Pluto occultation observation. It will be analyzed for possible signatures of dust in the Pluto system (see Levine et al., this meeting). Given the lower signal to noise ratio provided by the secondary star, careful calibration is needed to analyze the atmospheric occultation itself. Several other attempts at observing Pluto occultations in July 2014 were unfortunately clouded out (see Levine et al., Pasachoff et al., this meeting).Using precise astrometry obtained with the 2.5-m DuPont telescope and the 4.3-m Discovery Channel telescope before and after the event, while Pluto and the stars were well-separated, we are able to constrain the closest approach distance of the secondary star occultation event. Using the photometry from these same images, we are also able to characterize the relative brightness of both stars in relation to Pluto (taking care to account for the light from Charon as well). With these two constraints we can analyze the atmospheric signature of the occultation, and provide a current (July 2014) estimate of Pluto’s changing atmospheric diameter. Initial results indicate no large changes in the atmospheric scale height; complete results from the final analysis will be presented with this work.This work was supported in part by NASA Planetary Astronomy grants to MIT (NNX10AB27G) and Williams College (NNX12AJ29G), as well as grants from USRA (#8500-98-003) and Ames Research (#NAS2-97-01) to Lowell Observatory. P.R. acknowledges support from FONDECYT through grant 1120299.

  14. Si 6142 and 6155 Å lines in stellar atmospheres: Stark broadening effect

    NASA Astrophysics Data System (ADS)

    Dimitrijević, M. S.; Popović, L. Č.; Ryabchikova, T.

    2002-07-01

    We study the influence of Stark broadening effect on Si I lines in the roAp 10 Aql star, where the lines are asymmetrical and shifted. First we have calculated Stark broadening parameters using by the semi-classical method for two Si I lines: 6142.48 Å and 6155.13 Å. We have adopted SYNTH code to include into account both Stark width and shift for these lines. From comparison of our calculation data with observations we found that Stark broadening plus stratification effect can explain the width and the asymmetry of the Si I lines in the atmosphere of roAp 10 Aql star.

  15. A joint data assimilation system (Tan-Tracker) to simultaneously estimate surface CO2 fluxes and 3-D atmospheric CO2 concentrations from observations

    NASA Astrophysics Data System (ADS)

    Tian, X.; Xie, Z.; Liu, Y.; Cai, Z.; Fu, Y.; Zhang, H.; Feng, L.

    2013-09-01

    To quantitatively estimate CO2 surface fluxes (CFs) from atmospheric observations, a joint data assimilation system ("Tan-Tracker") is developed by incorporating a joint data assimilation framework into the GEOS-Chem atmospheric transport model. In Tan-Tracker, we choose an identity operator as the CF dynamical model to describe the CFs' evolution, which constitutes an augmented dynamical model together with the GEOS-Chem atmospheric transport model. In this case, the large-scale vector made up of CFs and CO2 concentrations is taken as the prognostic variable for the augmented dynamical model. And thus both CO2 concentrations and CFs are jointly assimilated by using the atmospheric observations (e.g., the in-situ observations or satellite measurements). In contrast, in the traditional joint data assimilation frameworks, CFs are usually treated as the model parameters and form a state-parameter augmented vector jointly with CO2 concentrations. The absence of a CF dynamical model will certainly result in a large waste of observed information since any useful information for CFs' improvement achieved by the current data assimilation procedure could not be used in the next assimilation cycle. Observing system simulation experiments (OSSEs) are carefully designed to evaluate the Tan-Tracker system in comparison to its simplified version (referred to as TT-S) with only CFs taken as the prognostic variables. It is found that our Tan-Tracker system is capable of outperforming TT-S with higher assimilation precision for both CO2 concentrations and CO2 fluxes, mainly due to the simultaneous assimilation of CO2 concentrations and CFs in our Tan-Tracker data assimilation system.

  16. A spherical, non-LTE, blanketed model stellar atmosphere for Phi CAS (FOIa)

    NASA Astrophysics Data System (ADS)

    Rosenzweig, Patricia

    By constructing a model atmosphere, the theoretical energy distribution of the emergent radiation that best matches the observed energy distribution of the star Phi Cassiopeiae is calculated; its effective temperature and surface gravity are thus derived. In order to use the pair method to derive the extinction curve for NGC 457 of which Phi Cas is a member, a new method is developed for choosing a lightly reddened comparison star, which consists of matching the equivalent widths of spectral features that are particularly strong and sensitive to temperature and luminosity. The intrinsic energy distribution of Phi Cas was determined from 1500 to 5800 A. A detailed new spherical model atmosphere was constructed. The equation of transfer was solved with the constraints of hydrostatic and pure radiative equilibrium. The statistical equilibrium of 10 to the 6th transitions was treated. Several tests have demonstrated this model to be reliable. Results imply a mass of 6.3 + or - 3.6 solar masses, which agrees with the mass of the main-sequence turnoff of NGC 457.

  17. 3D Plasmon Ruler

    SciTech Connect

    2011-01-01

    In this animation of a 3D plasmon ruler, the plasmonic assembly acts as a transducer to deliver optical information about the structural dynamics of an attached protein. (courtesy of Paul Alivisatos group)

  18. Prominent Rocks - 3-D

    NASA Image and Video Library

    1997-07-13

    Many prominent rocks near the Sagan Memorial Station are featured in this image from NASA Mars Pathfinder. Shark, Half-Dome, and Pumpkin are at center 3D glasses are necessary to identify surface detail.

  19. 3D Laser System

    NASA Image and Video Library

    2015-09-16

    NASA Glenn's Icing Research Tunnel 3D Laser System used for digitizing ice shapes created in the wind tunnel. The ice shapes are later utilized for characterization, analysis, and software development.

  20. A 3D Global climate model of the Pluto atmosphere to interpret New Horizons observations, including the N2, CH4 and CO cycles and the formation of organic hazes

    NASA Astrophysics Data System (ADS)

    Forget, Francois; Bertrand, Tanguy; Vangvichith, Melanie; Leconte, Jeremy

    2015-11-01

    To interpret New Horizons observations and simulate the Pluto climate system, we have developed a Global Climate Model (GCM) of Pluto's atmosphere. In addition to a 3D "dynamical core" which solves the equations of meteorology, the model takes into account the N2 condensation and sublimation and its thermal and dynamical effects, the vertical turbulent mixing, the radiative transfer through methane and carbon monoxide, molecular thermal conduction, and a detailed surface thermal model with different thermal inertia for various timescales (diurnal, seasonal).The GCM also includes a detailed model of the CH4 and CO cycles, taking into account their transport by the atmospheric circulation and turbulence, as well as their condensation and sublimation on the surface and in the atmosphere, possibly forming methane ice clouds. The GCM consistently predicts the 3D methane abundance in the atmosphere, which is used as an input for our radiative transfer calculation.Because of the radiative timescales, the surface thermal inertia and the slow evolution of the methane cycle, the model takes more than 20 years to become insensitive to the assumed atmospheric initial states. We typically start our simulations in 1975 to simulate 2015, but remain sensitive to the assumed initial ices distribution and seasonal thermal inertia map. The simulated thermal structure and waves can be compared to the New Horizons occultations measurements. As observed, the longitudinal variability is very limited, for fundamental reasons.In addition, we have developed a 3D model of the formation of organic hazes within the GCM. It includes the different steps of aerosols formation as understood on Titan: photolysis of CH4 in the upper atmosphere by the Lyman-alpha radiation, production of various gaseous precursor species, conversion into solid particles through chemistry and aggregation processes, and gravitational sedimentation. Significant amount of haze particles are found to be present at all

  1. Atmospheric Limitations in Stellar Seismology: Should One Measure Radial Velocity or Brightness Fluctuations?

    NASA Technical Reports Server (NTRS)

    Fossat, E.

    1984-01-01

    Low degree p-modes of the Sun have been measured in spatially integrated sunlight (the Sun as a star) both in Doppler shift and in intensity fluctuations. These observations are a good starting point for the discussion of the best way to collect equivalent data on other stars. It is assumed that the Sun is removed far enough in space to become an ordinary star of magnitude zero to one. Evidently another star will oscillate with different frequencies and different amplitudes, but some reference must be made to start with. Using this scheme, a detailed investigation of the limitations of observational accuracy in the search for global p-modes is made. The sources of noise stand in the Sun itself, in the instrumentation, in the observing time duration, in the corpuscular nature of the light and mostly in the Earth atmosphere in the case of ground based observations.

  2. Statistical equilibrium calculations for silicon in early-type model stellar atmospheres

    NASA Technical Reports Server (NTRS)

    Kamp, L. W.

    1976-01-01

    Line profiles of 36 multiplets of silicon (Si) II, III, and IV were computed for a grid of model atmospheres covering the range from 15,000 to 35,000 K in effective temperature and 2.5 to 4.5 in log (gravity). The computations involved simultaneous solution of the steady-state statistical equilibrium equations for the populations and of the equation of radiative transfer in the lines. The variables were linearized, and successive corrections were computed until a minimal accuracy of 1/1000 in the line intensities was reached. The common assumption of local thermodynamic equilibrium (LTE) was dropped. The model atmospheres used also were computed by non-LTE methods. Some effects that were incorporated into the calculations were the depression of the continuum by free electrons, hydrogen and ionized helium line blocking, and auto-ionization and dielectronic recombination, which later were found to be insignificant. Use of radiation damping and detailed electron (quadratic Stark) damping constants had small but significant effects on the strong resonance lines of Si III and IV. For weak and intermediate-strength lines, large differences with respect to LTE computations, the results of which are also presented, were found in line shapes and strengths. For the strong lines the differences are generally small, except for the models at the hot, low-gravity extreme of our range. These computations should be useful in the interpretation of the spectra of stars in the spectral range B0-B5, luminosity classes III, IV, and V.

  3. Saturn's upper atmosphere from the Voyager 2 EUV solar and stellar occultations

    NASA Technical Reports Server (NTRS)

    Smith, G. R.; Shemansky, D. E.; Holberg, J. B.; Broadfoot, A. L.; Sandel, B. R.; Mcconnell, J. C.

    1983-01-01

    The temperature and composition of the upper atmosphere of Saturn have been inferred from Voyager 2 ultraviolet-spectrometer-occultation measurements made by observing the sun and the star Delta Scorpii while they were being occulted by Saturn. The observations analyzed here provide atmospheric parameters from 2900 km down to 960 km above the 1-bar level referred to the equator. The temperature in the model simulation of the data is 420 + or - 30 K down to about 1600 km. Below 1600 km the temperature decreases with a variable lapse rate down to 120 + or - 30 K near the methane homopause located at 1010 + or - 40 km. A constant temperature at 120 K is applied in the model for the region of the methane homopause down to 960 km where the present analysis terminates. Column amounts of H2 and H were measured from 2900 km down to about 1100 km, giving respective densities of about 1.0 x 10 to the 8th/cu cm and about 5.5 x 10 to the 6th/cu cm near the exobase at 2500 km. Near the methane homopause the H2 density is = 1.2 x 10 to the 12th/cu cm with a CH4 number-density mixing ratio of 0.00006. The eddy-diffusion coefficient in the vicinity of the methane homopause is estimated to be 5.0 x 10 to the 6th sq cm/sec. The atomic hydrogen density profile suggests a downward H flux of 1.8 x 10 to the 9th sq cm/sec from near the exobase down to a terminal boundary of about 1200 km.

  4. NLTE model stellar atmospheres with line blanketing near the series limits

    NASA Technical Reports Server (NTRS)

    Hubeny, I.; Hummer, D. G.; Lanz, T.

    1994-01-01

    In this paper we study the influence of line-merging regions at the intermediate long-wavelength side of a continuum threshold on the computed model atmosphere structure and predicted spectrum. In order to model these regions sufficiently accurately, we have developed two concepts. First, we have extended the occupation probability formalism of Hummer and Mihalas to non-local thermodynamic equilibrium (non-LTE) plasmas. Second, in order to treat the very complicated opacity in the line merging region, we have generalized the concept of opacity distribution functions to treat non-LTE situations. All Rydberg states are consistently included within this framework, so that no arbitrary cutoff of high (LTE) levels is made. We have calculated several pure hydrogen models atmospheres for two effective temperatures, T(sub eff) = 20000 and 35000 K, and discussed the differences between models calculated with various treatments of the line merging. In particular, we have shown that the error in the predicted profiles of Balmer lines resulting from the neglect of line merging is typically of the order of 3-4%, while the errors in the far-UV portion of the Balmer continuum reaches 15-35%. The errors generally decrease with increasing effective temperature. At the same time, the internal accuracy of the models is shown to be about or below 0.5% for all predicted spectral features. We conclude that for interpreting current high-accuracy spectrophotometric observations models including the line merging are necessary, and that the formalism developed in this paper is capable of providing a sufficiently accurate and robust modeling technique.

  5. MISTiC Winds, a Micro-Satellite Constellation Approach to High Resolution Observations of the Atmosphere using Infrared Sounding and 3D Winds Measurements

    NASA Astrophysics Data System (ADS)

    Maschhoff, K. R.; Polizotti, J. J.; Susskind, J.; Aumann, H. H.

    2015-12-01

    MISTiCTM Winds is an approach to improve short-term weather forecasting based on a miniature high resolution, wide field, thermal emission spectrometry instrument that will provide global tropospheric vertical profiles of atmospheric temperature and humidity at high (3-4 km) horizontal and vertical ( 1 km) spatial resolution. MISTiC's extraordinarily small size, payload mass of less than 15 kg, and minimal cooling requirements can be accommodated aboard a 27U-class CubeSat or an ESPA-Class micro-satellite. Low fabrication and launch costs enable a LEO sun-synchronous sounding constellation that would collectively provide frequent IR vertical profiles and vertically resolved atmospheric motion vector wind observations in the troposphere. These observations are highly complementary to present and emerging environmental observing systems, and would provide a combination of high vertical and horizontal resolution not provided by any other environmental observing system currently in operation. The spectral measurements that would be provided by MISTiC Winds are similar to those of NASA's Atmospheric Infrared Sounder that was built by BAE Systems and operates aboard the AQUA satellite. These new observations, when assimilated into high resolution numerical weather models, would revolutionize short-term and severe weather forecasting, save lives, and support key economic decisions in the energy, air transport, and agriculture arenas-at much lower cost than providing these observations from geostationary orbit. In addition, this observation capability would be a critical tool for the study of transport processes for water vapor, clouds, pollution, and aerosols. Key technical risks are being reduced through laboratory and airborne testing under NASA's Instrument Incubator Program.

  6. Ground-based measurements and dual-Doppler analysis of 3-D wind fields and atmospheric circulations induced by a meso-γ-scale inland lake

    NASA Astrophysics Data System (ADS)

    Asefi-Najafabady, Salvi; Knupp, Kevin; Mecikalski, John R.; Welch, Ronald M.; Phillips, Dustin

    2010-12-01

    This paper presents a high-resolution dual-Doppler analysis of lake breeze mesoscale circulation induced by an elongated reservoir with a mean width of ˜2 km and an area of 125 km2. Compared to previous meso-γ-scale lake breeze studies based on point measurements or aircraft observations, the present study provides both a unique quantification and a high-resolution spatial and temporal 3-D visualization (several hundred meters and 5 min, respectively) of the kinematic structure of the lake breeze initiation and evolution. Visible satellite images show a cloud-free zone over the lake and adjacent land areas that was promoted by subsidence associated with the lake breeze circulation. The background synoptic-scale wind flow was almost parallel to the major axis of the lake, and distinct lake breeze frontal zones formed along both shorelines spanning the length of the lake. Dual-Doppler analyses showed updrafts in the frontal zones, perturbation horizontal velocities of 1.5 m s-1 on both sides of the lake, and maximum downdrafts of 2 m s-1 centered over the lake. Vertical vorticity in the boundary layer was produced by differential friction between the smooth lake and adjacent land. The circulations are robust and are maintained during the day against a minor change in background wind direction. The study shows that the circulations produced by a small lake can generate significant mesoscale circulations that influence local climatology and identifies the importance of including such small mesoscale processes in global forecast models.

  7. Response of atmospheric biomarkers to NO(x)-induced photochemistry generated by stellar cosmic rays for earth-like planets in the habitable zone of M dwarf stars.

    PubMed

    Grenfell, John Lee; Grießmeier, Jean-Mathias; von Paris, Philip; Patzer, A Beate C; Lammer, Helmut; Stracke, Barbara; Gebauer, Stefanie; Schreier, Franz; Rauer, Heike

    2012-12-01

    Understanding whether M dwarf stars may host habitable planets with Earth-like atmospheres and biospheres is a major goal in exoplanet research. If such planets exist, the question remains as to whether they could be identified via spectral signatures of biomarkers. Such planets may be exposed to extreme intensities of cosmic rays that could perturb their atmospheric photochemistry. Here, we consider stellar activity of M dwarfs ranging from quiet up to strong flaring conditions and investigate one particular effect upon biomarkers, namely, the ability of secondary electrons caused by stellar cosmic rays to break up atmospheric molecular nitrogen (N(2)), which leads to production of nitrogen oxides (NO(x)) in the planetary atmosphere, hence affecting biomarkers such as ozone (O(3)). We apply a stationary model, that is, without a time dependence; hence we are calculating the limiting case where the atmospheric chemistry response time of the biomarkers is assumed to be slow and remains constant compared with rapid forcing by the impinging stellar flares. This point should be further explored in future work with time-dependent models. We estimate the NO(x) production using an air shower approach and evaluate the implications using a climate-chemical model of the planetary atmosphere. O(3) formation proceeds via the reaction O+O(2)+M→O(3)+M. At high NO(x) abundances, the O atoms arise mainly from NO(2) photolysis, whereas on Earth this occurs via the photolysis of molecular oxygen (O(2)). For the flaring case, O(3) is mainly destroyed via direct titration, NO+O(3)→NO(2)+O(2), and not via the familiar catalytic cycle photochemistry, which occurs on Earth. For scenarios with low O(3), Rayleigh scattering by the main atmospheric gases (O(2), N(2), and CO(2)) became more important for shielding the planetary surface from UV radiation. A major result of this work is that the biomarker O(3) survived all the stellar-activity scenarios considered except for the strong

  8. A Decade of Hα Transits for HD 189733 b: Stellar Activity versus Absorption in the Extended Atmosphere

    NASA Astrophysics Data System (ADS)

    Cauley, P. Wilson; Redfield, Seth; Jensen, Adam G.

    2017-05-01

    HD 189733 b is one of the most well studied exoplanets due to its large transit depth and host star brightness. The focus on this object has produced a number of high-cadence transit observations using high-resolution optical spectrographs. Here we present an analysis of seven full Hα transits of HD 189733 b using HARPS on the 3.6 meter La Silla telescope and HIRES on Keck I, taken over the course of nine years from 2006 to 2015. Hα transmission signals are analyzed as a function of the stellar activity level, as measured using the normalized core flux of the Ca ii H and K lines. We find strong variations in the strength of the Hα transmission spectrum from epoch to epoch. However, there is no clear trend between the Ca ii core emission and the strength of the in-transit Hα signal, although the transit showing the largest absorption value also occurs when the star is the most active. We present simulations of the in-transit contrast effect and find that the planet must consistently transit active latitudes with very strong facular and plage emission regions in order to reproduce the observed line strengths. We also investigate the measured velocity centroids with models of planetary rotation and show that the small line profile velocities could be due to large velocities in the upper atmosphere of the planet. Overall, we find it more likely that the measured Hα signals arise in the extended planetary atmosphere, although a better understanding of active region emission for active stars such as HD 189733 is needed.

  9. Evaluation of data compression techniques for the inference of stellar atmospheric parameters from high-resolution spectra

    NASA Astrophysics Data System (ADS)

    González-Marcos, A.; Sarro, L. M.; Ordieres-Meré, J.; Bello-García, A.

    2017-03-01

    The determination of stellar atmospheric parameters from spectra suffers the so-called curse-of-dimensionality problem, which is related to the higher number of input variables (flux values) compared to the number of spectra available to fit a regression model (this collection of examples is known as the training set). This work evaluates the utility of several techniques for alleviating this problem in regression tasks where the objective is to estimate the effective temperature (Teff), the surface gravity (log g), the metallicity ([M/H]) and/or the alpha-to-iron ratio ([α/Fe]). The goal of the techniques analysed here is to achieve data compression by representing the spectra with a number of variables much lower than the initially available set of fluxes. The experiments were performed with high-resolution spectra of stars in the 4000-8000 K range for different signal-to-noise ratio (SNR) regimes. We conclude that independent component analysis (ICA) performs better than the rest of techniques evaluated for all SNR regimes. We also assess the necessity to adapt the SNR of the spectra used to fit a regression model (training set) to the SNR of the spectra for which the atmospheric parameters are needed (evaluation set). Within the conditions of our experiments, we conclude that at most only two such regression models are needed (in the case of regression models for effective temperatures, those corresponding to SNR = 50 and 10) to cover the entire SNR range. Finally, we also compare the prediction accuracy of effective temperature regression models for increasing values of the training grid density and the same compression techniques.

  10. A New Stellar Atmosphere Grid and Comparisons with HST/STIS CALSPEC Flux Distributions

    NASA Astrophysics Data System (ADS)

    Bohlin, Ralph C.; Mészáros, Szabolcs; Fleming, Scott W.; Gordon, Karl D.; Koekemoer, Anton M.; Kovács, József

    2017-05-01

    The Space Telescope Imaging Spectrograph has measured the spectral energy distributions for several stars of types O, B, A, F, and G. These absolute fluxes from the CALSPEC database are fit with a new spectral grid computed from the ATLAS-APOGEE ATLAS9 model atmosphere database using a chi-square minimization technique in four parameters. The quality of the fits are compared for complete LTE grids by Castelli & Kurucz (CK04) and our new comprehensive LTE grid (BOSZ). For the cooler stars, the fits with the MARCS LTE grid are also evaluated, while the hottest stars are also fit with the NLTE Lanz & Hubeny OB star grids. Unfortunately, these NLTE models do not transition smoothly in the infrared to agree with our new BOSZ LTE grid at the NLTE lower limit of T eff = 15,000 K. The new BOSZ grid is available via the Space Telescope Institute MAST archive and has a much finer sampled IR wavelength scale than CK04, which will facilitate the modeling of stars observed by the James Webb Space Telescope. Our result for the angular diameter of Sirius agrees with the ground-based interferometric value.

  11. Collision-induced Absorption in the Infrared: A Data Base for Modelling Planetary and Stellar Atmospheres

    NASA Astrophysics Data System (ADS)

    Borysow, Aleksandra

    1998-12-01

    Accurate knowledge of certain collision-induced absorption continua of molecular pairs such as H2-H2, H2-He, H2-CH4, CO2-CO2, etc., is a prerequisite for most spectral analyses and modelling attempts of atmospheres of planets and cold stars. We collect and regularly update simple, state of the art computer programs for the calculation of the absorption coefficient of such molecular pairs over a broad range of temperatures and frequencies, for the various rotovibrational bands. The computational results are in agreement with the existing laboratory measurements of such absorption continua, recorded with a spectral resolution of a few wavenumbers, but reliable computational results may be expected even in the far wings, and at temperatures for which laboratory measurements do not exist. Detailed information is given concerning the systems thus studied, the temperature and frequency ranges considered, the rotovibrational bands thus modelled, and how one may obtain copies of the FORTRAN77 computer programs by e-mail.

  12. Collision-induced Absorption in the Infrared: A Data Base for Modelling Planetary and Stellar Atmospheres

    NASA Technical Reports Server (NTRS)

    Borysow, Aleksandra

    1998-01-01

    Accurate knowledge of certain collision-induced absorption continua of molecular pairs such as H2-H2, H2-He, H2-CH4, CO2-CO2, etc., is a prerequisite for most spectral analyses and modelling attempts of atmospheres of planets and cold stars. We collect and regularly update simple, state of the art computer programs for the calculation of the absorption coefficient of such molecular pairs over a broad range of temperatures and frequencies, for the various rotovibrational bands. The computational results are in agreement with the existing laboratory measurements of such absorption continua, recorded with a spectral resolution of a few wavenumbers, but reliable computational results may be expected even in the far wings, and at temperatures for which laboratory measurements do not exist. Detailed information is given concerning the systems thus studied, the temperature and frequency ranges considered, the rotovibrational bands thus modelled, and how one may obtain copies of the FORTRAN77 computer programs by e-mail.

  13. Global 3-D modeling of atmospheric ozone in the free troposphere and the stratosphere with emphasis on midlatitude regions. Final report

    SciTech Connect

    Brasseur, G.; Tie, X.; Walters, S.

    1999-03-01

    The authors have used several global chemical/transport models (1) to study the contribution of various physical, chemical, and dynamical processes to the budget of mid-latitude ozone in the stratosphere and troposphere; (2) to analyze the potential mechanisms which are responsible for the observed ozone perturbations at mid-latitudes of the lower stratosphere and in the upper troposphere; (3) to calculate potential changes in atmospheric ozone response to anthropogenic changes (e.g., emission of industrially manufactured CFCs, CO, and NO{sub x}) and to natural perturbations (e.g., volcanic eruptions and biomass burning); and (4) to estimate the impact of these changes on the radiative forcing to the climate system and on the level of UV-B radiation at the surface.

  14. Evaluation of 3-d hydrodynamic computer models for prediction of LNG vapor dispersion in the atmosphere. Annual report March 1983-February 1984

    SciTech Connect

    Havens, J.A.; Schreurs, P.J.

    1984-03-01

    The FEM3, MARIAH II, SIGMET-N, and ZEPHYR Heavy Gas Dispersion Models have been transferred to the University of Arkansas and installed on a project-dedicated computer system for evaluation. A series of test LNG release scenarios has been simulated to determine the models predicted effects due to variation in dispersion scenario parameters such as gas release rate, wind speed, and atmospheric stability. A series of isothermal, fixed volume, instantaneous releases of Freon-air mixtures has been performed, providing an extensive data base of concentration measurements as a function of radial and vertical position in the developing heavy gas cloud for evaluation of model predictions. A prototype gas sensor, which uses an aspirated flame ionization detector, suitable for concentration measurements in cold gas spills has been developed.

  15. Mistic winds, a microsatellite constellation approach to high-resolution observations of the atmosphere using infrared sounding and 3d winds measurements

    NASA Astrophysics Data System (ADS)

    Maschhoff, K. R.; Polizotti, J. J.; Aumann, H. H.; Susskind, J.

    2016-10-01

    MISTiC Winds is an approach to improve short-term weather forecasting based on a miniature high resolution, wide field, thermal emission spectrometry instrument that will provide global tropospheric vertical profiles of atmospheric temperature and humidity at high (3-4 km) horizontal and vertical ( 1 km) spatial resolution. MISTiC's extraordinarily small size, payload mass of less than 15 kg, and minimal cooling requirements can be accommodated aboard a 27U-class CubeSat or an ESPA-Class micro-satellite. Low fabrication and launch costs enable a LEO sunsynchronous sounding constellation that would collectively provide frequent IR vertical profiles and vertically resolved atmospheric motion vector wind observations in the troposphere. These observations are highly complementary to present and emerging environmental observing systems, and would provide a combination of high vertical and horizontal resolution not provided by any other environmental observing system currently in operation. The spectral measurements that would be provided by MISTiC Winds are similar to those of NASA's AIRS that was built by BAE Systems and operates aboard the AQUA satellite. These new observations, when assimilated into high resolution numerical weather models, would revolutionize short-term and severe weather forecasting, save lives, and support key economic decisions in the energy, air transport, and agriculture arenas-at much lower cost than providing these observations from geostationary orbit. In addition, this observation capability would be a critical tool for the study of transport processes for water vapor, clouds, pollution, and aerosols. Key remaining technical risks are being reduced through laboratory and airborne testing under NASA's Instrument Incubator Program.

  16. MISTiC Winds: A micro-satellite constellation approach to high resolution observations of the atmosphere using infrared sounding and 3D winds measurements

    NASA Astrophysics Data System (ADS)

    Maschhoff, K. R.; Polizotti, J. J.; Aumann, H. H.; Susskind, J.

    2016-09-01

    MISTiCTM Winds is an approach to improve short-term weather forecasting based on a miniature high resolution, wide field, thermal emission spectrometry instrument that will provide global tropospheric vertical profiles of atmospheric temperature and humidity at high (3-4 km) horizontal and vertical ( 1 km) spatial resolution. MISTiC's extraordinarily small size, payload mass of less than 15 kg, and minimal cooling requirements can be accommodated aboard a 27U-class CubeSat or an ESPA-Class micro-satellite. Low fabrication and launch costs enable a LEO sunsynchronous sounding constellation that would collectively provide frequent IR vertical profiles and vertically resolved atmospheric motion vector wind observations in the troposphere. These observations are highly complementary to present and emerging environmental observing systems, and would provide a combination of high vertical and horizontal resolution not provided by any other environmental observing system currently in operation. The spectral measurements that would be provided by MISTiC Winds are similar to those of NASA's AIRS that was built by BAE Systems and operates aboard the AQUA satellite. These new observations, when assimilated into high resolution numerical weather models, would revolutionize short-term and severe weather forecasting, save lives, and support key economic decisions in the energy, air transport, and agriculture arenas-at much lower cost than providing these observations from geostationary orbit. In addition, this observation capability would be a critical tool for the study of transport processes for water vapor, clouds, pollution, and aerosols. Key remaining technical risks are being reduced through laboratory and airborne testing under NASA's Instrument Incubator Program.

  17. MISTiC Winds, a Micro-Satellite Constellation Approach to High Resolution Observations of the Atmosphere Using Infrared Sounding and 3D Winds Measurements

    NASA Technical Reports Server (NTRS)

    Maschhoff, K. R.; Polizotti, J. J.; Aumann, H. H.; Susskind, J.

    2016-01-01

    MISTiC(TM) Winds is an approach to improve short-term weather forecasting based on a miniature high resolution, wide field, thermal emission spectrometry instrument that will provide global tropospheric vertical profiles of atmospheric temperature and humidity at high (3-4 km) horizontal and vertical ( 1 km) spatial resolution. MISTiCs extraordinarily small size, payload mass of less than 15 kg, and minimal cooling requirements can be accommodated aboard a 27U-class CubeSat or an ESPA-Class micro-satellite. Low fabrication and launch costs enable a LEO sunsynchronous sounding constellation that would collectively provide frequent IR vertical profiles and vertically resolved atmospheric motion vector wind observations in the troposphere. These observations are highly complementary to present and emerging environmental observing systems, and would provide a combination of high vertical and horizontal resolution not provided by any other environmental observing system currently in operation. The spectral measurements that would be provided by MISTiC Winds are similar to those of NASA's AIRS that was built by BAE Systems and operates aboard the AQUA satellite. These new observations, when assimilated into high resolution numerical weather models, would revolutionize short-term and severe weather forecasting, save lives, and support key economic decisions in the energy, air transport, and agriculture arenasat much lower cost than providing these observations from geostationary orbit. In addition, this observation capability would be a critical tool for the study of transport processes for water vapor, clouds, pollution, and aerosols. Key remaining technical risks are being reduced through laboratory and airborne testing under NASA's Instrument Incubator Program.

  18. Pulsation tomography of rapidly oscillating Ap stars. Resolving the third dimension in peculiar pulsating stellar atmospheres

    NASA Astrophysics Data System (ADS)

    Ryabchikova, T.; Sachkov, M.; Kochukhov, O.; Lyashko, D.

    2007-10-01

    , pulsations waves are represented by a superposition of the running and standing wave components. In the atmospheres of roAp stars with the pulsation frequency below the acoustic cut-off frequency, pulsations have a standing-wave character in the deeper layers and behave like a running wave in the outer layers. Cooler roAp stars develop a running wave higher in the atmosphere. In stars with pulsation frequency close to the acoustic cut-off one, pulsation waves have a running character starting from deep layers. The transition from standing to running wave is accompanied by an increase in the turbulent broadening of spectral lines. Based on observations made with the SAO 6-m telescope, with the Canada-France-Hawaii Telescope, and the ESO VLT (DDT programme 274.D-5011 and programme 072.D-0138, retrieved through the ESO archive). Table 3 and Figs. 5, 6, 8-10, 12, 13 and 15-18 are only available in electronic form at http://www.aanda.org

  19. Radiochromic 3D Detectors

    NASA Astrophysics Data System (ADS)

    Oldham, Mark

    2015-01-01

    Radiochromic materials exhibit a colour change when exposed to ionising radiation. Radiochromic film has been used for clinical dosimetry for many years and increasingly so recently, as films of higher sensitivities have become available. The two principle advantages of radiochromic dosimetry include greater tissue equivalence (radiologically) and the lack of requirement for development of the colour change. In a radiochromic material, the colour change arises direct from ionising interactions affecting dye molecules, without requiring any latent chemical, optical or thermal development, with important implications for increased accuracy and convenience. It is only relatively recently however, that 3D radiochromic dosimetry has become possible. In this article we review recent developments and the current state-of-the-art of 3D radiochromic dosimetry, and the potential for a more comprehensive solution for the verification of complex radiation therapy treatments, and 3D dose measurement in general.

  20. 3-D Seismic Interpretation

    NASA Astrophysics Data System (ADS)

    Moore, Gregory F.

    2009-05-01

    This volume is a brief introduction aimed at those who wish to gain a basic and relatively quick understanding of the interpretation of three-dimensional (3-D) seismic reflection data. The book is well written, clearly illustrated, and easy to follow. Enough elementary mathematics are presented for a basic understanding of seismic methods, but more complex mathematical derivations are avoided. References are listed for readers interested in more advanced explanations. After a brief introduction, the book logically begins with a succinct chapter on modern 3-D seismic data acquisition and processing. Standard 3-D acquisition methods are presented, and an appendix expands on more recent acquisition techniques, such as multiple-azimuth and wide-azimuth acquisition. Although this chapter covers the basics of standard time processing quite well, there is only a single sentence about prestack depth imaging, and anisotropic processing is not mentioned at all, even though both techniques are now becoming standard.

  1. Bootstrapping 3D fermions

    DOE PAGES

    Iliesiu, Luca; Kos, Filip; Poland, David; ...

    2016-03-17

    We study the conformal bootstrap for a 4-point function of fermions <ψψψψ> in 3D. We first introduce an embedding formalism for 3D spinors and compute the conformal blocks appearing in fermion 4-point functions. Using these results, we find general bounds on the dimensions of operators appearing in the ψ × ψ OPE, and also on the central charge CT. We observe features in our bounds that coincide with scaling dimensions in the GrossNeveu models at large N. Finally, we also speculate that other features could coincide with a fermionic CFT containing no relevant scalar operators.

  2. Bootstrapping 3D fermions

    SciTech Connect

    Iliesiu, Luca; Kos, Filip; Poland, David; Pufu, Silviu S.; Simmons-Duffin, David; Yacoby, Ran

    2016-03-17

    We study the conformal bootstrap for a 4-point function of fermions <ψψψψ> in 3D. We first introduce an embedding formalism for 3D spinors and compute the conformal blocks appearing in fermion 4-point functions. Using these results, we find general bounds on the dimensions of operators appearing in the ψ × ψ OPE, and also on the central charge CT. We observe features in our bounds that coincide with scaling dimensions in the GrossNeveu models at large N. Finally, we also speculate that other features could coincide with a fermionic CFT containing no relevant scalar operators.

  3. Medical 3-D Printing.

    PubMed

    Furlow, Bryant

    2017-05-01

    Three-dimensional printing is used in the manufacturing industry, medical and pharmaceutical research, drug production, clinical medicine, and dentistry, with implications for precision and personalized medicine. This technology is advancing the development of patient-specific prosthetics, stents, splints, and fixation devices and is changing medical education, treatment decision making, and surgical planning. Diagnostic imaging modalities play a fundamental role in the creation of 3-D printed models. Although most 3-D printed objects are rigid, flexible soft-tissue-like prosthetics also can be produced. ©2017 American Society of Radiologic Technologists.

  4. Mg line formation in late-type stellar atmospheres. II. Calculations in a grid of 1D models

    NASA Astrophysics Data System (ADS)

    Osorio, Y.; Barklem, P. S.

    2016-02-01

    Context. Mg is the α element of choice for Galactic population and chemical evolution studies because it is easily detectable in all late-type stars. Such studies require precise elemental abundances, and thus departures from local thermodynamic equilibrium (LTE) need to be accounted for. Aims: Our goal is to provide reliable departure coefficients and equivalent widths in non-LTE, and for reference in LTE, for diagnostic lines of Mg studied in late-type stars. These can be used, for example, to correct LTE spectra and abundances. Methods: Using the model atom built and tested in the preceding paper in this series, we performed non-LTE radiative transfer calculations in a grid of 3945 stellar 1D atmospheric models. We used a sub-grid of 86 models to explore the propagation of errors in the recent atomic collision calculations to the radiative transfer results. Results: We obtained departure coefficients for all the levels and equivalent widths (in LTE and non-LTE) for all the radiative transitions included in the "final" model atom presented in Paper I. Here we present and describe our results and show some examples of applications of the data. The errors that result from uncertainties in the collisional data are investigated and tabulated. The results for equivalent widths and departure coefficients are made freely available. Conclusions: Giants tend to have negative abundance corrections while dwarfs have positive, though small, corrections. Error analysis results show that uncertainties related to the atomic collision data are typically on the order of 0.01 dex or less, although for few stellar models in specific lines uncertainties can be as large as 0.03 dex. As these errors are less than or on the same order as typical corrections, we expect that we can use these results to extract Mg abundances from high-quality spectra more reliably than from classical LTE analysis. Full Table 1 is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130

  5. A Spherical Non-LTE Line-blanketed Stellar Atmosphere Model of the Early B Giant {epsilon} Canis Majoris

    SciTech Connect

    Aufdenberg, J.P.; Hauschildt, P.H.; Shore, S.N.; Baron, E.

    1998-05-01

    We use a spherical non-LTE fully line-blanketed model atmosphere to fit the full multiwavelength spectrum, including the extreme-ultraviolet (EUV) continuum observed by the {ital Extreme} {ital Ultraviolet} {ital Explorer}, of the B2 II star {epsilon} Canis Majoris (CMa). The available spectrophotometry of {epsilon} CMa from 350 {Angstrom} to 25 {mu}m is best fitted with model parameters {ital T}{sub eff} = 21,750 K, log {ital g} = 3.5, and an angular diameter of 0.77 mas. Our best-fit model predicts a hydrogen ionizing flux, {ital q}{sub 0}, of 1.59 {times} 10{sup 21} photons cm{sup {minus}2} s{sup {minus}1} at the star`s surface and 2290 photons cm{sup {minus}2} s{sup {minus}1} at the surface of the Local Cloud. The close agreement between the model and the measured EUV flux from {epsilon} CMa is a result of the higher temperatures at the formation depths of the H i and He i Lyman continua compared with other models. The realistic model treatment of early B giants with spherical geometry and non-LTE metal line{endash}blanketing results in the prediction of significantly larger EUV fluxes compared with plane-parallel models. We find that our metal line{endash}blanketed spherical models show significantly warmer temperature structures, 1{endash}3 kK at the formation depth of the Lyman continua, and predict stronger EUV fluxes, up to a factor of 5 in the H i Lyman continuum, compared with plane-parallel atmospheres that have identical model parameters. In contrast, we find that spherical and plane-parallel models that do not include metal line blanketing are nearly identical. Our {ital T}{sub eff} = 21,000 K, log {ital g} = 3.2, spherical non-LTE model predicts more than twice as many hydrogen ionizing photons and over 200 times more neutral helium ionizing photons than a standard hydrostatic plane-parallel LTE model with the same stellar parameters. Our synthetic spectra are in reasonably good agreement with observed continuum and line fluxes from echelle spectra

  6. Venus in 3D

    NASA Technical Reports Server (NTRS)

    Plaut, Jeffrey J.

    1993-01-01

    Stereographic images of the surface of Venus which enable geologists to reconstruct the details of the planet's evolution are discussed. The 120-meter resolution of these 3D images make it possible to construct digital topographic maps from which precise measurements can be made of the heights, depths, slopes, and volumes of geologic structures.

  7. 3D photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Carson, Jeffrey J. L.; Roumeliotis, Michael; Chaudhary, Govind; Stodilka, Robert Z.; Anastasio, Mark A.

    2010-06-01

    Our group has concentrated on development of a 3D photoacoustic imaging system for biomedical imaging research. The technology employs a sparse parallel detection scheme and specialized reconstruction software to obtain 3D optical images using a single laser pulse. With the technology we have been able to capture 3D movies of translating point targets and rotating line targets. The current limitation of our 3D photoacoustic imaging approach is its inability ability to reconstruct complex objects in the field of view. This is primarily due to the relatively small number of projections used to reconstruct objects. However, in many photoacoustic imaging situations, only a few objects may be present in the field of view and these objects may have very high contrast compared to background. That is, the objects have sparse properties. Therefore, our work had two objectives: (i) to utilize mathematical tools to evaluate 3D photoacoustic imaging performance, and (ii) to test image reconstruction algorithms that prefer sparseness in the reconstructed images. Our approach was to utilize singular value decomposition techniques to study the imaging operator of the system and evaluate the complexity of objects that could potentially be reconstructed. We also compared the performance of two image reconstruction algorithms (algebraic reconstruction and l1-norm techniques) at reconstructing objects of increasing sparseness. We observed that for a 15-element detection scheme, the number of measureable singular vectors representative of the imaging operator was consistent with the demonstrated ability to reconstruct point and line targets in the field of view. We also observed that the l1-norm reconstruction technique, which is known to prefer sparseness in reconstructed images, was superior to the algebraic reconstruction technique. Based on these findings, we concluded (i) that singular value decomposition of the imaging operator provides valuable insight into the capabilities of

  8. Stellarator hybrids

    SciTech Connect

    Furth, H.P.; Ludescher, C.

    1984-08-01

    The present paper briefly reviews the subject of tokamak-stellarator and pinch-stellarator hybrids, and points to two interesting new possibilities: compact-torus-stellarators and mirror-stellarators.

  9. 3-D Grab!

    NASA Astrophysics Data System (ADS)

    Connors, M. G.; Schofield, I. S.

    2012-12-01

    Modern technologies in imaging greatly extend the potential to present visual information. With recently developed software tools, the perception of the third dimension can not only dramatically enhance presentation, but also allow spatial data to be better encoded. 3-D images can be taken for many subjects with only one camera, carefully moved to generate a stereo pair. Color anaglyph viewing now can be very effective using computer screens, and active filter technologies can enhance visual effects with ever-decreasing cost. We will present various novel results of 3-D imaging, including those from the auroral observations of the new twinned Athabasca University Geophysical Observatories.; Single camera stereo image for viewing with red/cyan glasses.

  10. The diameter of the CoRoT target HD 49933. Combining the 3D limb darkening, asteroseismology, and interferometry

    NASA Astrophysics Data System (ADS)

    Bigot, L.; Mourard, D.; Berio, P.; Thévenin, F.; Ligi, R.; Tallon-Bosc, I.; Chesneau, O.; Delaa, O.; Nardetto, N.; Perraut, K.; Stee, Ph.; Boyajian, T.; Morel, P.; Pichon, B.; Kervella, P.; Schmider, F. X.; McAlister, H.; ten Brummelaar, T.; Ridgway, S. T.; Sturmann, J.; Sturmann, L.; Turner, N.; Farrington, C.; Goldfinger, P. J.

    2011-10-01

    Context. The interpretation of stellar pulsations in terms of internal structure depends on the knowledge of the fundamental stellar parameters. Long-base interferometers permit us to determine very accurate stellar radii, which are independent constraints for stellar models that help us to locate the star in the HR diagram. Aims: Using a direct interferometric determination of the angular diameter and advanced three-dimensional (3D) modeling, we derive the radius of the CoRoT target HD 49933 and reduce the global stellar parameter space compatible with seismic data. Methods: The VEGA/CHARA spectro-interferometer is used to measure the angular diameter of the star. A 3D radiative hydrodynamical simulation of the surface is performed to compute the limb darkening and derive a reliable diameter from visibility curves. The other fundamental stellar parameters (mass, age, and Teff) are found by fitting the large and small p-mode frequency separations using a stellar evolution model that includes microscopic diffusion. Results: We obtain a limb-darkened angular diameter of θLD = 0.445 ± 0.012 mas. With the Hipparcos parallax, we obtain a radius of R = 1.42 ± 0.04 R⊙. The corresponding stellar evolution model that fits both large and small frequency separations has a mass of 1.20 ± 0.08 M⊙ and an age of 2.7 Gy. The atmospheric parameters are Teff = 6640 ± 100 K, log g = 4.21 ± 0.14, and [Fe/H] = -0.38.

  11. Unoriented 3d TFTs

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Lakshya

    2017-05-01

    This paper generalizes two facts about oriented 3d TFTs to the unoriented case. On one hand, it is known that oriented 3d TFTs having a topological boundary condition admit a state-sum construction known as the Turaev-Viro construction. This is related to the string-net construction of fermionic phases of matter. We show how Turaev-Viro construction can be generalized to unoriented 3d TFTs. On the other hand, it is known that the "fermionic" versions of oriented TFTs, known as Spin-TFTs, can be constructed in terms of "shadow" TFTs which are ordinary oriented TFTs with an anomalous ℤ 2 1-form symmetry. We generalize this correspondence to Pin+-TFTs by showing that they can be constructed in terms of ordinary unoriented TFTs with anomalous ℤ 2 1-form symmetry having a mixed anomaly with time-reversal symmetry. The corresponding Pin+-TFT does not have any anomaly for time-reversal symmetry however and hence it can be unambiguously defined on a non-orientable manifold. In case a Pin+-TFT admits a topological boundary condition, one can combine the above two statements to obtain a Turaev-Viro-like construction of Pin+-TFTs. As an application of these ideas, we construct a large class of Pin+-SPT phases.

  12. A NEW SYNTHETIC LIBRARY OF THE NEAR-INFRARED Ca II TRIPLET INDICES. I. INDEX DEFINITION, CALIBRATION, AND RELATIONS WITH STELLAR ATMOSPHERIC PARAMETERS

    SciTech Connect

    Du, W.; Luo, A. L.; Zhao, Y. H. E-mail: lal@nao.cas.cn

    2012-02-15

    Adopting the SPECTRUM package, which is a stellar spectral synthesis program, we have synthesized a comprehensive set of 2890 near-infrared (NIR) synthetic spectra with a resolution and wavelength sampling similar to the Sloan Digital Sky Survey (SDSS) and the forthcoming Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) spectra. During the synthesis, we applied the 'New grids of ATLAS9 Model Atmosphere' to develop a grid of local thermodynamic equilibrium model atmospheres for effective temperatures (T{sub eff}) ranging from 3500 to 7500 K, for surface gravities (log g) from 0.5 to 5.0 dex, for metallicities ([Fe/H]) from -4.0 to 0.5 dex, and for solar ([{alpha}/Fe] = 0.0 dex) and non-solar ([{alpha}/Fe] = +0.4 dex) abundances. This synthetic stellar library is composed of 1350 solar scaled abundance (SSA) and 1530 non-solar scaled abundance (NSSA) spectra, grounding on which we have defined a new set of NIR Ca II triplet indices and an index CaT as the sum of the three. These defined indices were automatically measured on every spectrum of the synthetic stellar library and calibrated with the indices computed on the observational spectra from the INDO-U.S. stellar library. In order to check the effect of {alpha}-element enhancement on the so-defined Ca II indices, we compared indices measured on the SSA spectra with those on the NSSA ones at the same trine of stellar parameters (T{sub eff}, log g, [Fe/H]); luckily, little influences of {alpha}-element enhancement were found. Furthermore, comparisons of our synthetic indices with the observational ones from measurements on the INDO-U.S. stellar library, the SDSS-DR7 and SDSS-DR8 spectroscopic survey are presented, respectively, for dwarfs and giants in specific. For dwarfs, our synthetic indices could well reproduce the behaviors of the observational indices versus stellar parameters, which verifies the validity of our index definitions for dwarfs. For giants, the consistency between our synthetic

  13. High-precision direct measurements of (13)CH(4)/(12)CH(4) and (12)CH(3)D/(12)CH(4) ratios in atmospheric methane sources by means of a long-path tunable diode laser absorption spectrometer.

    PubMed

    Bergamaschi, P; Schupp, M; Harris, G W

    1994-11-20

    Measurements of (13)CH(4)/(12)CH(4) and (12)CH(3)D/(12)CH(4) ratios in atmospheric methane (CH(4)) sources provide important information about the global CH(4) budget as well as about CH(4) production and consumption processes occurring within the various sources. As an alternative to the conventional mass spectrometer (MS) technique, which requires conversion of CH(4) to CO(2) and H(2), we have developed a tunable diode laser absorption spectrometer (TDLAS), which permits rapid direct measurements of the (13)CH(4)/(12)CH(4) and (12)CH(3)D/(12)CH(4) ratios. An intercomparison between TDLAS and MS techniques for samples from natural wetlands, landfills, and natural gas sources resulted in a mean deviation of Δδ(13)C = 0.44‰ and ΔδD = 5.1‰. In the present system the minimum mixing ratios required are 50 parts in 10(6) by volume (ppmv) CH(4) (sample size 2 µmol CH(4)) for direct δ(13)C measurements and 2000 ppmv (sample size 80 µmol CH(4)) for direct δD measurements. These mixing-ratio limits are adequate for most CH(4) source characterization studies without requiring sample preconcentration.

  14. The Use of Iteration Factors Method in the Solution of Multilevel Radiative Transfer Problems in Stellar Atmospheres

    NASA Astrophysics Data System (ADS)

    Kuzmanovska-Barandovska, O.

    2012-12-01

    The NLTE problem of formation of spectral lines is one of the most difficult ones to deal with; due to the important role of scattering processes it is nonlocal and for the multilevel case it is additionally nonlinear. Therefore, the problem requires simultaneous solution of radiative transfer (RT) and statistical equilibrium (SE) equations which can be achieved through iterative procedure. There is still a great need of efficient numerical methods for a solution of NLTE radiative transfer problems as they are a necessary step of stellar atmospheres modelling and other important astrophysical problems. In the thesis we develop fast and accurate numerical method that uses iteration factors. The method is based on the use of quasi-invariant functions - iteration factors, in a simple iterative procedure. Defined as ratios of the moments (integrals of angles and frequencies) of radiation field intensities, the factors are calculated on the beginning of each iterative step from the current solution and then used to obtain its correction. In the thesis we extend iteration factors method developed for a solution of linear problems - monochromatic problem and two-level atom line transfer problems to the solution of a more generalized multilevel problem of spectral line formation with complete redistribution and no background continuum. The additional difficulty arises from the non linear coupling of atomic level populations and the radiation filed intensities in the corresponding spectral lines. In the thesis we suggest and describe in details four iterative procedures that use two families of iteration factors defined for a constant property medium and two different approaches for a simultaneous solution of nonlinear RT and SE equations: (1) linearization of the equations with respect to all relevant variables and (2) modification of the SE equations in order to make them linear. In both approaches the substitution of the linearized SE equations in the moments of RT

  15. 3D Audio System

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Ames Research Center research into virtual reality led to the development of the Convolvotron, a high speed digital audio processing system that delivers three-dimensional sound over headphones. It consists of a two-card set designed for use with a personal computer. The Convolvotron's primary application is presentation of 3D audio signals over headphones. Four independent sound sources are filtered with large time-varying filters that compensate for motion. The perceived location of the sound remains constant. Possible applications are in air traffic control towers or airplane cockpits, hearing and perception research and virtual reality development.

  16. Twin Peaks - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The two hills in the distance, approximately one to two kilometers away, have been dubbed the 'Twin Peaks' and are of great interest to Pathfinder scientists as objects of future study. 3D glasses are necessary to identify surface detail. The white areas on the left hill, called the 'Ski Run' by scientists, may have been formed by hydrologic processes.

    The IMP is a stereo imaging system with color capability provided by 24 selectable filters -- twelve filters per 'eye.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  17. 3D and beyond

    NASA Astrophysics Data System (ADS)

    Fung, Y. C.

    1995-05-01

    This conference on physiology and function covers a wide range of subjects, including the vasculature and blood flow, the flow of gas, water, and blood in the lung, the neurological structure and function, the modeling, and the motion and mechanics of organs. Many technologies are discussed. I believe that the list would include a robotic photographer, to hold the optical equipment in a precisely controlled way to obtain the images for the user. Why are 3D images needed? They are to achieve certain objectives through measurements of some objects. For example, in order to improve performance in sports or beauty of a person, we measure the form, dimensions, appearance, and movements.

  18. Two Regimes of Interaction of a Hot Jupiter’s Escaping Atmosphere with the Stellar Wind and Generation of Energized Atomic Hydrogen Corona

    NASA Astrophysics Data System (ADS)

    Shaikhislamov, I. F.; Khodachenko, M. L.; Lammer, H.; Kislyakova, K. G.; Fossati, L.; Johnstone, C. P.; Prokopov, P. A.; Berezutsky, A. G.; Zakharov, Yu. P.; Posukh, V. G.

    2016-12-01

    The interaction of escaping the upper atmosphere of a hydrogen-rich non-magnetized analog of HD 209458b with a stellar wind (SW) of its host G-type star at different orbital distances is simulated with a 2D axisymmetric multi-fluid hydrodynamic (HD) model. A realistic Sun-like spectrum of X-ray and ultraviolet radiation, which ionizes and heats the planetary atmosphere, together with hydrogen photochemistry, as well as stellar-planetary tidal interaction are taken into account to generate self-consistently an atmospheric HD outflow. Two different regimes of the planetary and SW interaction have been modeled. These are: (1) the “captured by the star” regime, when the tidal force and pressure gradient drive the planetary material beyond the Roche lobe toward the star, and (2) the “blown by the wind” regime, when sufficiently strong SW confines the escaping planetary atmosphere and channels it into the tail. The model simulates in detail the HD interaction between the planetary atoms, protons and the SW, as well as the production of energetic neutral atoms (ENAs) around the planet due to charge exchange between planetary atoms and stellar protons. The revealed location and shape of the ENA cloud, either as a paraboloid shell between the ionopause and bowshock (for the “blown by the wind” regime), or a turbulent layer at the contact boundary between the planetary stream and SW (for the “captured by the star” regime) are of importance for the interpretation of Lyα absorption features in exoplanetary transit spectra and characterization of the plasma environments.

  19. 3D Surgical Simulation

    PubMed Central

    Cevidanes, Lucia; Tucker, Scott; Styner, Martin; Kim, Hyungmin; Chapuis, Jonas; Reyes, Mauricio; Proffit, William; Turvey, Timothy; Jaskolka, Michael

    2009-01-01

    This paper discusses the development of methods for computer-aided jaw surgery. Computer-aided jaw surgery allows us to incorporate the high level of precision necessary for transferring virtual plans into the operating room. We also present a complete computer-aided surgery (CAS) system developed in close collaboration with surgeons. Surgery planning and simulation include construction of 3D surface models from Cone-beam CT (CBCT), dynamic cephalometry, semi-automatic mirroring, interactive cutting of bone and bony segment repositioning. A virtual setup can be used to manufacture positioning splints for intra-operative guidance. The system provides further intra-operative assistance with the help of a computer display showing jaw positions and 3D positioning guides updated in real-time during the surgical procedure. The CAS system aids in dealing with complex cases with benefits for the patient, with surgical practice, and for orthodontic finishing. Advanced software tools for diagnosis and treatment planning allow preparation of detailed operative plans, osteotomy repositioning, bone reconstructions, surgical resident training and assessing the difficulties of the surgical procedures prior to the surgery. CAS has the potential to make the elaboration of the surgical plan a more flexible process, increase the level of detail and accuracy of the plan, yield higher operative precision and control, and enhance documentation of cases. Supported by NIDCR DE017727, and DE018962 PMID:20816308

  20. Martian terrain - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    An area of rocky terrain near the landing site of the Sagan Memorial Station can be seen in this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. This image is part of a 3D 'monster' panorama of the area surrounding the landing site.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  1. Martian terrain - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    An area of rocky terrain near the landing site of the Sagan Memorial Station can be seen in this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. This image is part of a 3D 'monster' panorama of the area surrounding the landing site.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  2. BEAMS3D Neutral Beam Injection Model

    NASA Astrophysics Data System (ADS)

    McMillan, Matthew; Lazerson, Samuel A.

    2014-09-01

    With the advent of applied 3D fields in Tokamaks and modern high performance stellarators, a need has arisen to address non-axisymmetric effects on neutral beam heating and fueling. We report on the development of a fully 3D neutral beam injection (NBI) model, BEAMS3D, which addresses this need by coupling 3D equilibria to a guiding center code capable of modeling neutral and charged particle trajectories across the separatrix and into the plasma core. Ionization, neutralization, charge-exchange, viscous slowing down, and pitch angle scattering are modeled with the ADAS atomic physics database. Elementary benchmark calculations are presented to verify the collisionless particle orbits, NBI model, frictional drag, and pitch angle scattering effects. A calculation of neutral beam heating in the NCSX device is performed, highlighting the capability of the code to handle 3D magnetic fields. Notice: this manuscript has been authored by Princeton University under Contract Number DE-AC02-09CH11466 with the US Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

  3. 3D field harmonics

    SciTech Connect

    Caspi, S.; Helm, M.; Laslett, L.J.

    1991-03-30

    We have developed an harmonic representation for the three dimensional field components within the windings of accelerator magnets. The form by which the field is presented is suitable for interfacing with other codes that make use of the 3D field components (particle tracking and stability). The field components can be calculated with high precision and reduced cup time at any location (r,{theta},z) inside the magnet bore. The same conductor geometry which is used to simulate line currents is also used in CAD with modifications more readily available. It is our hope that the format used here for magnetic fields can be used not only as a means of delivering fields but also as a way by which beam dynamics can suggest correction to the conductor geometry. 5 refs., 70 figs.

  4. Stellar Spectral Synthesis with OpenGL

    NASA Astrophysics Data System (ADS)

    Hill, Nicholas R.; Townsend, R.

    2011-01-01

    Given an appropriate model atmosphere, synthesizing the spectrum of a star is a relatively straightforward task -- *if* the star is spherical and homogeneous across its surface. Many astronomically interesting objects do not, however, fall into this category. Examples include single stars that are spotted, rapidly rotating or pulsating, and binary stars in eclipsing or ellipsoidal-variable configurations. To synthesize a spectrum in such cases, it is necessary to construct a 3-D model of the stellar surface; determine which regions of the surface are visible to an external observer; and then calculate the observer-directed radiation from these regions. The Open Graphics Library (OpenGL), a cross-platform application programming interface for creation of 2-D and 3-D graphics, already includes much of the functionality required to implement these steps. We describe a new approach to stellar spectral synthesis that leverages this functionality. A 3-D mesh is constructed to represent the (possibly non-spherical) geometry of the stellar surface (or surfaces, in the case of binary or multiple systems). Textures are laid over this mesh to represent the run of physical attributes such as temperature, gravity, velocity, etc. The textured mesh is then rendered by OpenGL into a framebuffer, a step which naturally takes care of projection and occultation effects. The attributes of each framebuffer pixel are used to look up an appropriate spectrum in pre-calculated tables of specific intensities; and finally, summing the spectra from all pixels gives the disk-integrated synthetic flux spectrum of the star. The advantage of this approach lies in its efficiency (many OpenGL features are hardware-implemented), flexibility and manifest simplicity. Possible applications include binary light-curve modeling, mode identification in pulsating stars, and stellar population synthesis.

  5. Prominent rocks - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Many prominent rocks near the Sagan Memorial Station are featured in this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. Wedge is at lower left; Shark, Half-Dome, and Pumpkin are at center. Flat Top, about four inches high, is at lower right. The horizon in the distance is one to two kilometers away.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  6. Pluto in 3-D

    NASA Image and Video Library

    2015-10-23

    Global stereo mapping of Pluto surface is now possible, as images taken from multiple directions are downlinked from NASA New Horizons spacecraft. Stereo images will eventually provide an accurate topographic map of most of the hemisphere of Pluto seen by New Horizons during the July 14 flyby, which will be key to understanding Pluto's geological history. This example, which requires red/blue stereo glasses for viewing, shows a region 180 miles (300 kilometers) across, centered near longitude 130 E, latitude 20 N (the red square in the global context image). North is to the upper left. The image shows an ancient, heavily cratered region of Pluto, dotted with low hills and cut by deep fractures, which indicate extension of Pluto's crust. Analysis of these stereo images shows that the steep fracture in the upper left of the image is about 1 mile (1.6 kilometers) deep, and the craters in the lower right part of the image are up to 1.3 miles (2.1 km) deep. Smallest visible details are about 0.4 miles (0.6 kilometers) across. You will need 3D glasses to view this image showing an ancient, heavily cratered region of Pluto. http://photojournal.jpl.nasa.gov/catalog/PIA20032

  7. Intraoral 3D scanner

    NASA Astrophysics Data System (ADS)

    Kühmstedt, Peter; Bräuer-Burchardt, Christian; Munkelt, Christoph; Heinze, Matthias; Palme, Martin; Schmidt, Ingo; Hintersehr, Josef; Notni, Gunther

    2007-09-01

    Here a new set-up of a 3D-scanning system for CAD/CAM in dental industry is proposed. The system is designed for direct scanning of the dental preparations within the mouth. The measuring process is based on phase correlation technique in combination with fast fringe projection in a stereo arrangement. The novelty in the approach is characterized by the following features: A phase correlation between the phase values of the images of two cameras is used for the co-ordinate calculation. This works contrary to the usage of only phase values (phasogrammetry) or classical triangulation (phase values and camera image co-ordinate values) for the determination of the co-ordinates. The main advantage of the method is that the absolute value of the phase at each point does not directly determine the coordinate. Thus errors in the determination of the co-ordinates are prevented. Furthermore, using the epipolar geometry of the stereo-like arrangement the phase unwrapping problem of fringe analysis can be solved. The endoscope like measurement system contains one projection and two camera channels for illumination and observation of the object, respectively. The new system has a measurement field of nearly 25mm × 15mm. The user can measure two or three teeth at one time. So the system can by used for scanning of single tooth up to bridges preparations. In the paper the first realization of the intraoral scanner is described.

  8. 'Diamond' in 3-D

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This 3-D, microscopic imager mosaic of a target area on a rock called 'Diamond Jenness' was taken after NASA's Mars Exploration Rover Opportunity ground into the surface with its rock abrasion tool for a second time.

    Opportunity has bored nearly a dozen holes into the inner walls of 'Endurance Crater.' On sols 177 and 178 (July 23 and July 24, 2004), the rover worked double-duty on Diamond Jenness. Surface debris and the bumpy shape of the rock resulted in a shallow and irregular hole, only about 2 millimeters (0.08 inch) deep. The final depth was not enough to remove all the bumps and leave a neat hole with a smooth floor. This extremely shallow depression was then examined by the rover's alpha particle X-ray spectrometer.

    On Sol 178, Opportunity's 'robotic rodent' dined on Diamond Jenness once again, grinding almost an additional 5 millimeters (about 0.2 inch). The rover then applied its Moessbauer spectrometer to the deepened hole. This double dose of Diamond Jenness enabled the science team to examine the rock at varying layers. Results from those grindings are currently being analyzed.

    The image mosaic is about 6 centimeters (2.4 inches) across.

  9. 'Diamond' in 3-D

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This 3-D, microscopic imager mosaic of a target area on a rock called 'Diamond Jenness' was taken after NASA's Mars Exploration Rover Opportunity ground into the surface with its rock abrasion tool for a second time.

    Opportunity has bored nearly a dozen holes into the inner walls of 'Endurance Crater.' On sols 177 and 178 (July 23 and July 24, 2004), the rover worked double-duty on Diamond Jenness. Surface debris and the bumpy shape of the rock resulted in a shallow and irregular hole, only about 2 millimeters (0.08 inch) deep. The final depth was not enough to remove all the bumps and leave a neat hole with a smooth floor. This extremely shallow depression was then examined by the rover's alpha particle X-ray spectrometer.

    On Sol 178, Opportunity's 'robotic rodent' dined on Diamond Jenness once again, grinding almost an additional 5 millimeters (about 0.2 inch). The rover then applied its Moessbauer spectrometer to the deepened hole. This double dose of Diamond Jenness enabled the science team to examine the rock at varying layers. Results from those grindings are currently being analyzed.

    The image mosaic is about 6 centimeters (2.4 inches) across.

  10. 3D Printing and 3D Bioprinting in Pediatrics

    PubMed Central

    Vijayavenkataraman, Sanjairaj; Fuh, Jerry Y H; Lu, Wen Feng

    2017-01-01

    Additive manufacturing, commonly referred to as 3D printing, is a technology that builds three-dimensional structures and components layer by layer. Bioprinting is the use of 3D printing technology to fabricate tissue constructs for regenerative medicine from cell-laden bio-inks. 3D printing and bioprinting have huge potential in revolutionizing the field of tissue engineering and regenerative medicine. This paper reviews the application of 3D printing and bioprinting in the field of pediatrics. PMID:28952542

  11. 3D Printing and 3D Bioprinting in Pediatrics.

    PubMed

    Vijayavenkataraman, Sanjairaj; Fuh, Jerry Y H; Lu, Wen Feng

    2017-07-13

    Additive manufacturing, commonly referred to as 3D printing, is a technology that builds three-dimensional structures and components layer by layer. Bioprinting is the use of 3D printing technology to fabricate tissue constructs for regenerative medicine from cell-laden bio-inks. 3D printing and bioprinting have huge potential in revolutionizing the field of tissue engineering and regenerative medicine. This paper reviews the application of 3D printing and bioprinting in the field of pediatrics.

  12. The EISCAT_3D Science Case

    NASA Astrophysics Data System (ADS)

    Tjulin, A.; Mann, I.; McCrea, I.; Aikio, A. T.

    2013-05-01

    EISCAT_3D will be a world-leading international research infrastructure using the incoherent scatter technique to study the atmosphere in the Fenno-Scandinavian Arctic and to investigate how the Earth's atmosphere is coupled to space. The EISCAT_3D phased-array multistatic radar system will be operated by EISCAT Scientific Association and thus be an integral part of an organisation that has successfully been running incoherent scatter radars for more than thirty years. The baseline design of the radar system contains a core site with transmitting and receiving capabilities located close to the intersection of the Swedish, Norwegian and Finnish borders and five receiving sites located within 50 to 250 km from the core. The EISCAT_3D project is currently in its Preparatory Phase and can smoothly transit into implementation in 2014, provided sufficient funding. Construction can start 2016 and first operations in 2018. The EISCAT_3D Science Case is prepared as part of the Preparatory Phase. It is regularly updated with annual new releases, and it aims at being a common document for the whole future EISCAT_3D user community. The areas covered by the Science Case are atmospheric physics and global change; space and plasma physics; solar system research; space weather and service applications; and radar techniques, new methods for coding and analysis. Two of the aims for EISCAT_3D are to understand the ways natural variability in the upper atmosphere, imposed by the Sun-Earth system, can influence the middle and lower atmosphere, and to improve the predictivity of atmospheric models by providing higher resolution observations to replace the current parametrised input. Observations by EISCAT_3D will also be used to monitor the direct effects from the Sun on the ionosphere-atmosphere system and those caused by solar wind magnetosphere-ionosphere interaction. In addition, EISCAT_3D will be used for remote sensing the large-scale behaviour of the magnetosphere from its

  13. Supernova Remnant in 3-D

    NASA Technical Reports Server (NTRS)

    2009-01-01

    wavelengths. Since the amount of the wavelength shift is related to the speed of motion, one can determine how fast the debris are moving in either direction. Because Cas A is the result of an explosion, the stellar debris is expanding radially outwards from the explosion center. Using simple geometry, the scientists were able to construct a 3-D model using all of this information. A program called 3-D Slicer modified for astronomical use by the Astronomical Medicine Project at Harvard University in Cambridge, Mass. was used to display and manipulate the 3-D model. Commercial software was then used to create the 3-D fly-through.

    The blue filaments defining the blast wave were not mapped using the Doppler effect because they emit a different kind of light synchrotron radiation that does not emit light at discrete wavelengths, but rather in a broad continuum. The blue filaments are only a representation of the actual filaments observed at the blast wave.

    This visualization shows that there are two main components to this supernova remnant: a spherical component in the outer parts of the remnant and a flattened (disk-like) component in the inner region. The spherical component consists of the outer layer of the star that exploded, probably made of helium and carbon. These layers drove a spherical blast wave into the diffuse gas surrounding the star. The flattened component that astronomers were unable to map into 3-D prior to these Spitzer observations consists of the inner layers of the star. It is made from various heavier elements, not all shown in the visualization, such as oxygen, neon, silicon, sulphur, argon and iron.

    High-velocity plumes, or jets, of this material are shooting out from the explosion in the plane of the disk-like component mentioned above. Plumes of silicon appear in the northeast and southwest, while those of iron are seen in the southeast and north. These jets were already known and Doppler velocity measurements have been made for these

  14. Supernova Remnant in 3-D

    NASA Technical Reports Server (NTRS)

    2009-01-01

    wavelengths. Since the amount of the wavelength shift is related to the speed of motion, one can determine how fast the debris are moving in either direction. Because Cas A is the result of an explosion, the stellar debris is expanding radially outwards from the explosion center. Using simple geometry, the scientists were able to construct a 3-D model using all of this information. A program called 3-D Slicer modified for astronomical use by the Astronomical Medicine Project at Harvard University in Cambridge, Mass. was used to display and manipulate the 3-D model. Commercial software was then used to create the 3-D fly-through.

    The blue filaments defining the blast wave were not mapped using the Doppler effect because they emit a different kind of light synchrotron radiation that does not emit light at discrete wavelengths, but rather in a broad continuum. The blue filaments are only a representation of the actual filaments observed at the blast wave.

    This visualization shows that there are two main components to this supernova remnant: a spherical component in the outer parts of the remnant and a flattened (disk-like) component in the inner region. The spherical component consists of the outer layer of the star that exploded, probably made of helium and carbon. These layers drove a spherical blast wave into the diffuse gas surrounding the star. The flattened component that astronomers were unable to map into 3-D prior to these Spitzer observations consists of the inner layers of the star. It is made from various heavier elements, not all shown in the visualization, such as oxygen, neon, silicon, sulphur, argon and iron.

    High-velocity plumes, or jets, of this material are shooting out from the explosion in the plane of the disk-like component mentioned above. Plumes of silicon appear in the northeast and southwest, while those of iron are seen in the southeast and north. These jets were already known and Doppler velocity measurements have been made for these

  15. Pipe3D, a pipeline to analyze Integral Field Spectroscopy Data: I. New fitting philosophy of FIT3D

    NASA Astrophysics Data System (ADS)

    Sánchez, S. F.; Pérez, E.; Sánchez-Blázquez, P.; González, J. J.; Rosález-Ortega, F. F.; Cano-Dí az, M.; López-Cobá, C.; Marino, R. A.; Gil de Paz, A.; Mollá, M.; López-Sánchez, A. R.; Ascasibar, Y.; Barrera-Ballesteros, J.

    2016-04-01

    We present an improved version of FIT3D, a fitting tool for the analysis of the spectroscopic properties of the stellar populations and the ionized gas derived from moderate resolution spectra of galaxies. This tool was developed to analyze integral field spectroscopy data and it is the basis of Pipe3D, a pipeline used in the analysis of CALIFA, MaNGA, and SAMI data. We describe the philosophy and each step of the fitting procedure. We present an extensive set of simulations in order to estimate the precision and accuracy of the derived parameters for the stellar populations and the ionized gas. We report on the results of those simulations. Finally, we compare the results of the analysis using FIT3D with those provided by other widely used packages, and we find that the parameters derived by FIT3D are fully compatible with those derived using these other tools.

  16. SB3D User Manual, Santa Barbara 3D Radiative Transfer Model

    SciTech Connect

    O'Hirok, William

    1999-01-01

    SB3D is a three-dimensional atmospheric and oceanic radiative transfer model for the Solar spectrum. The microphysics employed in the model are the same as used in the model SBDART. It is assumed that the user of SB3D is familiar with SBDART and IDL. SB3D differs from SBDART in that computations are conducted on media in three-dimensions rather than a single column (i.e. plane-parallel), and a stochastic method (Monte Carlo) is employed instead of a numerical approach (Discrete Ordinates) for estimating a solution to the radiative transfer equation. Because of these two differences between SB3D and SBDART, the input and running of SB3D is more unwieldy and requires compromises between model performance and computational expense. Hence, there is no one correct method for running the model and the user must develop a sense to the proper input and configuration of the model.

  17. 'Endurance' Untouched (3-D)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site] Figure 1 [figure removed for brevity, see original site] Figure 2

    This navigation camera mosaic, created from images taken by NASA's Mars Exploration Rover Opportunity on sols 115 and 116 (May 21 and 22, 2004) provides a dramatic view of 'Endurance Crater.' The rover engineering team carefully plotted the safest path into the football field-sized crater, eventually easing the rover down the slopes around sol 130 (June 12, 2004). To the upper left of the crater sits the rover's protective heatshield, which sheltered Opportunity as it passed through the martian atmosphere. The 360-degree, stereo view is presented in a cylindrical-perspective projection, with geometric and radiometric seam correction.

    Figure 1 is the left-eye view of a stereo pair and Figure 2 is the right-eye view of a stereo pair.

  18. Lévy/Anomalous Diffusion as a Mean-Field Theory for 3D Cloud Effects in SW-RT: Empirical Support, New Analytical Formulation, and Impact on Atmospheric Absorption

    NASA Astrophysics Data System (ADS)

    Pfeilsticker, K.; Davis, A.; Marshak, A.; Suszcynsky, D. M.; Buldryrev, S.; Barker, H.

    2001-12-01

    2-stream RT models, as used in all current GCMs, are mathematically equivalent to standard diffusion theory where the physical picture is a slow propagation of the diffuse radiation by Gaussian random walks. In other words, after the conventional van de Hulst rescaling by 1/(1-g) in R3 and also by (1-g) in t, solar photons follow convoluted fractal trajectories in the atmosphere. For instance, we know that transmitted light is typically scattered about (1-g)τ 2 times while reflected light is scattered on average about τ times, where τ is the optical depth of the column. The space/time spread of this diffusion process is described exactly by a Gaussian distribution; from the statistical physics viewpoint, this follows from the convergence of the sum of many (rescaled) steps between scattering events with a finite variance. This Gaussian picture follows from directly from first principles (the RT equation) under the assumptions of horizontal uniformity and large optical depth, i.e., there is a homogeneous plane-parallel cloud somewhere in the column. The first-order effect of 3D variability of cloudiness, the main source of scattering, is to perturb the distribution of single steps between scatterings which, modulo the '1-g' rescaling, can be assumed effectively isotropic. The most natural generalization of the Gaussian distribution is the 1-parameter family of symmetric Lévy-stable distributions because the sum of many zero-mean random variables with infinite variance, but finite moments of order q < α (0 < α < 2), converge to them. It has been shown on heuristic grounds that for these Lévy-based random walks the typical number of scatterings is now (1-g)τ α for transmitted light. The appearance of a non-rational exponent is why this is referred to as anomalous diffusion. Note that standard/Gaussian diffusion is retrieved in the limit α = 2-. Lévy transport theory has been successfully used in the statistical physics to investigate a wide variety of

  19. Astronomical Scale of Stellar Distances Using 3-D Models

    ERIC Educational Resources Information Center

    Fidler, Chuck; Dotger, Sharon

    2010-01-01

    One of the largest challenges of teaching astronomy is bringing the infinite scale of the universe into the four walls of a classroom. However, concepts of astronomy are often the most interesting to students. This article focuses on an alternative method for learning about stars by exploring visible characteristics of the constellation Orion and…

  20. 3D modelling of stellar auroral radio emission

    NASA Astrophysics Data System (ADS)

    Leto, P.; Trigilio, C.; Buemi, C. S.; Umana, G.; Ingallinera, A.; Cerrigone, L.

    2016-06-01

    The electron cyclotron maser is the coherent emission process that gives rise to the radio lighthouse effect observed in the hot magnetic chemically peculiar star CU Virginis. It has also been proposed to explain the highly circularly polarized radio pulses observed in some ultracool dwarfs with spectral type earlier than M7. Coherent events of this kind resemble auroral radio emission from the magnetized planets of the Solar system. In this article, we present a three-dimensional model able to simulate the timing and profile of the pulses emitted by those stars characterized by a dipolar magnetic field by following the hypothesis of the laminar source model, used to explain the beaming of terrestrial auroral kilometric radiation. This model proves to be a powerful tool with which to understand the auroral radio emission phenomenon, allowing us to derive some general conclusions about the effects of the model's free parameters on the features of coherent pulses and to learn more about the detectability of such pulsed radio emission.

  1. Astronomical Scale of Stellar Distances Using 3-D Models

    ERIC Educational Resources Information Center

    Fidler, Chuck; Dotger, Sharon

    2010-01-01

    One of the largest challenges of teaching astronomy is bringing the infinite scale of the universe into the four walls of a classroom. However, concepts of astronomy are often the most interesting to students. This article focuses on an alternative method for learning about stars by exploring visible characteristics of the constellation Orion and…

  2. Lévy/Anomalous Diffusion as a Mean-Field Theory for 3D Cloud Effects in Shortwave Radiative Transfer: Empirical Support, New Analytical Formulation, and Impact on Atmospheric Absorption

    NASA Astrophysics Data System (ADS)

    Buldyrev, S.; Davis, A.; Marshak, A.; Stanley, H. E.

    2001-12-01

    -of-the-art observations that offer compelling empirical support for the Lévy/anomalous diffusion model in atmospheric radiation: (1) high-resolution spectroscopy of differential absorption in the O2 A-band from ground; (2) temporal transient records of lightning strokes transmitted through clouds to a sensitive detector in space; and (3) the Gamma-distributions of optical depths derived from Landsat cloud scenes at 30-m resolution. We will then introduce a rigorous analytical formulation of Lévy/anomalous transport through finite media based on fractional derivatives and Sonin calculus. A remarkable result from this new theoretical development is an extremal property of the α = 1+ case (divergent mean-free-path), as is observed in the cloudy atmosphere. Finally, we will discuss the implications of anomalous transport theory for bulk 3D effects on the current enhanced absorption problem as well as its role as the basis of a next-generation GCM radiation parameterization.

  3. 3D toroidal physics: Testing the boundaries of symmetry breakinga)

    NASA Astrophysics Data System (ADS)

    Spong, Donald A.

    2015-05-01

    Toroidal symmetry is an important concept for plasma confinement; it allows the existence of nested flux surface MHD equilibria and conserved invariants for particle motion. However, perfect symmetry is unachievable in realistic toroidal plasma devices. For example, tokamaks have toroidal ripple due to discrete field coils, optimized stellarators do not achieve exact quasi-symmetry, the plasma itself continually seeks lower energy states through helical 3D deformations, and reactors will likely have non-uniform distributions of ferritic steel near the plasma. Also, some level of designed-in 3D magnetic field structure is now anticipated for most concepts in order to provide the plasma control needed for a stable, steady-state fusion reactor. Such planned 3D field structures can take many forms, ranging from tokamaks with weak 3D edge localized mode suppression fields to stellarators with more dominant 3D field structures. This motivates the development of physics models that are applicable across the full range of 3D devices. Ultimately, the questions of how much symmetry breaking can be tolerated and how to optimize its design must be addressed for all fusion concepts. A closely coupled program of simulation, experimental validation, and design optimization is required to determine what forms and amplitudes of 3D shaping and symmetry breaking will be compatible with the requirements of future fusion reactors.

  4. 3D toroidal physics: Testing the boundaries of symmetry breaking

    SciTech Connect

    Spong, Donald A.

    2015-05-15

    Toroidal symmetry is an important concept for plasma confinement; it allows the existence of nested flux surface MHD equilibria and conserved invariants for particle motion. However, perfect symmetry is unachievable in realistic toroidal plasma devices. For example, tokamaks have toroidal ripple due to discrete field coils, optimized stellarators do not achieve exact quasi-symmetry, the plasma itself continually seeks lower energy states through helical 3D deformations, and reactors will likely have non-uniform distributions of ferritic steel near the plasma. Also, some level of designed-in 3D magnetic field structure is now anticipated for most concepts in order to provide the plasma control needed for a stable, steady-state fusion reactor. Such planned 3D field structures can take many forms, ranging from tokamaks with weak 3D edge localized mode suppression fields to stellarators with more dominant 3D field structures. This motivates the development of physics models that are applicable across the full range of 3D devices. Ultimately, the questions of how much symmetry breaking can be tolerated and how to optimize its design must be addressed for all fusion concepts. A closely coupled program of simulation, experimental validation, and design optimization is required to determine what forms and amplitudes of 3D shaping and symmetry breaking will be compatible with the requirements of future fusion reactors.

  5. Synthetic photometry for M and K giants and stellar evolution: hydrostatic dust-free model atmospheres and chemical abundances

    NASA Astrophysics Data System (ADS)

    Aringer, B.; Girardi, L.; Nowotny, W.; Marigo, P.; Bressan, A.

    2016-04-01

    Based on a grid of hydrostatic spherical COMARCS models for cool stars, we have calculated observable properties of these objects, which will be mainly used in combination with stellar evolution tracks and population synthesis tools. The high-resolution opacity sampling and low-resolution convolved spectra as well as bolometric corrections for a large number of filter systems are made electronically available. We exploit those data to study the effect of mass, C/O ratio and nitrogen abundance on the photometry of K and M giants. Depending on effective temperature, surface gravity and the chosen wavelength ranges, variations of the investigated parameters cause very weak to moderate and, in the case of C/O values close to 1, even strong shifts of the colours. For the usage with stellar evolution calculations, they will be treated as correction factors applied to the results of an interpolation in the main quantities. When we compare the synthetic photometry to observed relations and to data from the Galactic bulge, we find in general a good agreement. Deviations appear for the coolest giants showing pulsations, mass-loss and dust shells, which cannot be described by hydrostatic models.

  6. 3D Spectroscopy in Astronomy

    NASA Astrophysics Data System (ADS)

    Mediavilla, Evencio; Arribas, Santiago; Roth, Martin; Cepa-Nogué, Jordi; Sánchez, Francisco

    2011-09-01

    Preface; Acknowledgements; 1. Introductory review and technical approaches Martin M. Roth; 2. Observational procedures and data reduction James E. H. Turner; 3. 3D Spectroscopy instrumentation M. A. Bershady; 4. Analysis of 3D data Pierre Ferruit; 5. Science motivation for IFS and galactic studies F. Eisenhauer; 6. Extragalactic studies and future IFS science Luis Colina; 7. Tutorials: how to handle 3D spectroscopy data Sebastian F. Sánchez, Begona García-Lorenzo and Arlette Pécontal-Rousset.

  7. Spherical 3D isotropic wavelets

    NASA Astrophysics Data System (ADS)

    Lanusse, F.; Rassat, A.; Starck, J.-L.

    2012-04-01

    Context. Future cosmological surveys will provide 3D large scale structure maps with large sky coverage, for which a 3D spherical Fourier-Bessel (SFB) analysis in spherical coordinates is natural. Wavelets are particularly well-suited to the analysis and denoising of cosmological data, but a spherical 3D isotropic wavelet transform does not currently exist to analyse spherical 3D data. Aims: The aim of this paper is to present a new formalism for a spherical 3D isotropic wavelet, i.e. one based on the SFB decomposition of a 3D field and accompany the formalism with a public code to perform wavelet transforms. Methods: We describe a new 3D isotropic spherical wavelet decomposition based on the undecimated wavelet transform (UWT) described in Starck et al. (2006). We also present a new fast discrete spherical Fourier-Bessel transform (DSFBT) based on both a discrete Bessel transform and the HEALPIX angular pixelisation scheme. We test the 3D wavelet transform and as a toy-application, apply a denoising algorithm in wavelet space to the Virgo large box cosmological simulations and find we can successfully remove noise without much loss to the large scale structure. Results: We have described a new spherical 3D isotropic wavelet transform, ideally suited to analyse and denoise future 3D spherical cosmological surveys, which uses a novel DSFBT. We illustrate its potential use for denoising using a toy model. All the algorithms presented in this paper are available for download as a public code called MRS3D at http://jstarck.free.fr/mrs3d.html

  8. The RAVE-on Catalog of Stellar Atmospheric Parameters and Chemical Abundances for Chemo-dynamic Studies in the Gaia Era

    NASA Astrophysics Data System (ADS)

    Casey, Andrew R.; Hawkins, Keith; Hogg, David W.; Ness, Melissa; Rix, Hans-Walter; Kordopatis, Georges; Kunder, Andrea; Steinmetz, Matthias; Koposov, Sergey; Enke, Harry; Sanders, Jason; Gilmore, Gerry; Zwitter, Tomaž; Freeman, Kenneth C.; Casagrande, Luca; Matijevič, Gal; Seabroke, George; Bienaymé, Olivier; Bland-Hawthorn, Joss; Gibson, Brad K.; Grebel, Eva K.; Helmi, Amina; Munari, Ulisse; Navarro, Julio F.; Reid, Warren; Siebert, Arnaud; Wyse, Rosemary

    2017-05-01

    The orbits, atmospheric parameters, chemical abundances, and ages of individual stars in the Milky Way provide the most comprehensive illustration of galaxy formation available. The Tycho-Gaia Astrometric Solution (TGAS) will deliver astrometric parameters for the largest ever sample of Milky Way stars, though its full potential cannot be realized without the addition of complementary spectroscopy. Among existing spectroscopic surveys, the RAdial Velocity Experiment (RAVE) has the largest overlap with TGAS (≳200,000 stars). We present a data-driven re-analysis of 520,781 RAVE spectra using The Cannon. For red giants, we build our model using high-fidelity APOGEE stellar parameters and abundances for stars that overlap with RAVE. For main sequence and sub-giant stars, our model uses stellar parameters from the K2/EPIC. We derive and validate effective temperature T eff, surface gravity log g, and chemical abundances of up to seven elements (O, Mg, Al, Si, Ca, Fe, and Ni). We report a total of 1,685,851 elemental abundances with a typical precision of 0.07 dex, a substantial improvement over previous RAVE data releases. The synthesis of RAVE-on and TGAS is the most powerful data set for chemo-dynamic analyses of the Milky Way ever produced.

  9. 3D Elevation Program—Virtual USA in 3D

    USGS Publications Warehouse

    Lukas, Vicki; Stoker, J.M.

    2016-04-14

    The U.S. Geological Survey (USGS) 3D Elevation Program (3DEP) uses a laser system called ‘lidar’ (light detection and ranging) to create a virtual reality map of the Nation that is very accurate. 3D maps have many uses with new uses being discovered all the time.  

  10. Coloring 3D Printed Surfaces by Thermoforming.

    PubMed

    Zhang, Yizhong; Tong, Yiying; Zhou, Kun

    2017-08-01

    Decorating the surfaces of 3D printed objects with color textures is still not readily available in most consumer-level or even high-end 3D printers. Existing techniques such as hydrographics color transfer suffer from the issues of air pockets in concave regions and discoloration in overly stretched regions. We propose a novel thermoforming-based coloring technique to alleviate these problems as well as to simplify the overall procedure. Thermoforming is a widely used technique in industry for plastic thin shell product manufacturing by pressing heated plastic sheets onto molds using atmospheric pressure. We attach on the transparent plastic sheet a precomputed color pattern decal prior to heating, and adhere it to 3D printed models treated as the molds in thermoforming. The 3D models are thus decorated with the desired color texture, as well as a thin, polished protective cover. The precomputation involves a physical simulation of the thermoforming process to compute the correct color pattern on the plastic sheet, and the vent hole layout on the 3D model for air pocket elimination. We demonstrate the effectiveness and accuracy of our computational model and our prototype thermoforming surface coloring system through physical experiments.

  11. Stellar evolution.

    NASA Technical Reports Server (NTRS)

    Chiu, H.-Y. (Editor); Muriel, A.

    1972-01-01

    Aspects of normal stellar evolution are discussed together with evolution near the main sequence, stellar evolution from main sequence to white dwarf or carbon ignition, the structure of massive main-sequence stars, and problems of stellar stability and stellar pulsation. Other subjects considered include variable stars, white dwarfs, close binaries, novae, early supernova luminosity, neutron stars, the photometry of field horizontal-branch stars, and stellar opacity. Transport mechanisms in stars are examined together with thermonuclear reactions and nucleosynthesis, the instability problem in nuclear burning shells, stellar coalescence, and intense magnetic fields in astrophysics. Individual items are announced in this issue.

  12. Effect of stellar wind induced magnetic fields on planetary obstacles of non-magnetized hot Jupiters

    NASA Astrophysics Data System (ADS)

    Erkaev, N. V.; Odert, P.; Lammer, H.; Kislyakova, K. G.; Fossati, L.; Mezentsev, A. V.; Johnstone, C. P.; Kubyshkina, D. I.; Shaikhislamov, I. F.; Khodachenko, M. L.

    2017-10-01

    We investigate the interaction between the magnetized stellar wind plasma and the partially ionized hydrodynamic hydrogen outflow from the escaping upper atmosphere of non-magnetized or weakly magnetized hot Jupiters. We use the well-studied hot Jupiter HD 209458b as an example for similar exoplanets, assuming a negligible intrinsic magnetic moment. For this planet, the stellar wind plasma interaction forms an obstacle in the planet's upper atmosphere, in which the position of the magnetopause is determined by the condition of pressure balance between the stellar wind and the expanded atmosphere, heated by the stellar extreme ultraviolet radiation. We show that the neutral atmospheric atoms penetrate into the region dominated by the stellar wind, where they are ionized by photoionization and charge exchange, and then mixed with the stellar wind flow. Using a 3D magnetohydrodynamic (MHD) model, we show that an induced magnetic field forms in front of the planetary obstacle, which appears to be much stronger compared to those produced by the solar wind interaction with Venus and Mars. Depending on the stellar wind parameters, because of the induced magnetic field, the planetary obstacle can move up to ≈0.5-1 planetary radii closer to the planet. Finally, we discuss how estimations of the intrinsic magnetic moment of hot Jupiters can be inferred by coupling hydrodynamic upper planetary atmosphere and MHD stellar wind interaction models together with UV observations. In particular, we find that HD 209458b should likely have an intrinsic magnetic moment of 10-20 per cent that of Jupiter.

  13. Interannual Comparison of Temporal and Spatial Structure in the Martian Thermosphere from Atmospheric Accelerometer Measurements of Mars Reconnaissance Orbiter (MRO) during Aerobraking and Stellar Occultation Measurements from the SPICAM Ultraviolet Infrared Atmospheric Spectrometer of Mars Express (MEX)

    NASA Astrophysics Data System (ADS)

    Theriot, Michael; Keating, G.; Blanchard, R.; Bougher, S.; Zurek, R.; Tolson, R.; Murphy, J.; Forget, F.; Bertaux, J.

    2006-09-01

    Before MRO's arrival at Mars, during Mars Express orbits 17 to 2888, SPICAM obtained 617 stellar occultation measurements of density and temperature structure from 40km to 140km. SPICAM measurements give global atmospheric structure over an entire Martian year. Where SPICAM derived atmospheric profiles overlap MRO aerobraking altitudes from 100km to 140km, we have made interannual comparisons with in situ MRO accelerometer derived atmospheric profiles for matching season, local solar time, latitude, longitude and altitude. Designed for aerobraking, MRO launched August 12, 2005, and achieved Mars Orbital Insertion (MOI) March 10, 2006. Atmospheric density decreases exponentially with increasing height. Using small propulsive changes to apoapsis orbital velocity, periapsis altitude was adjusted to the necessary density surfaces for safe aerobraking. MRO periapsis precessed from the South Pole at 6pm LST to near the equator at 3am LST. Meanwhile, apoapsis dramatically shrank from 40,000km at MOI to 460 km at aerobraking completion (ABX) mid-September 2006. Then, a few small propulsive maneuvers established the Primary Science Orbit (PSO), which without aerobraking would have required an additional 400 kg of fuel. Honeywell's substantially improved electronics package for its IMU (QA-2000 accelerometer, gyro, electronics) maximized accelerometer sensitivities as requested by The George Washington University, JPL, and Lockheed Martin, enabling good signal-to-noise-ratios up to at least 170km, critical for upper atmospheric science. Each of the 500+ MRO aerobraking orbits provides a distribution of density, scale-height, and temperature along the orbital path, providing key in situ insight into various upper atmosphere (> 100 km) processes. Characterization of key temporal and spatial cycles including: polar vortices, winter polar warming, dust storms, planetary scale waves, gravity waves, and gravitational tides associated with topography, validates and constrains both

  14. Perception of 3D spatial relations for 3D displays

    NASA Astrophysics Data System (ADS)

    Rosen, Paul; Pizlo, Zygmunt; Hoffmann, Christoph; Popescu, Voicu S.

    2004-05-01

    We test perception of 3D spatial relations in 3D images rendered by a 3D display (Perspecta from Actuality Systems) and compare it to that of a high-resolution flat panel display. 3D images provide the observer with such depth cues as motion parallax and binocular disparity. Our 3D display is a device that renders a 3D image by displaying, in rapid succession, radial slices through the scene on a rotating screen. The image is contained in a glass globe and can be viewed from virtually any direction. In the psychophysical experiment several families of 3D objects are used as stimuli: primitive shapes (cylinders and cuboids), and complex objects (multi-story buildings, cars, and pieces of furniture). Each object has at least one plane of symmetry. On each trial an object or its "distorted" version is shown at an arbitrary orientation. The distortion is produced by stretching an object in a random direction by 40%. This distortion must eliminate the symmetry of an object. The subject's task is to decide whether or not the presented object is distorted under several viewing conditions (monocular/binocular, with/without motion parallax, and near/far). The subject's performance is measured by the discriminability d', which is a conventional dependent variable in signal detection experiments.

  15. LLNL-Earth3D

    SciTech Connect

    2013-10-01

    Earth3D is a computer code designed to allow fast calculation of seismic rays and travel times through a 3D model of the Earth. LLNL is using this for earthquake location and global tomography efforts and such codes are of great interest to the Earth Science community.

  16. 3D World Building System

    ScienceCinema

    None

    2016-07-12

    This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.

  17. Market study: 3-D eyetracker

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A market study of a proposed version of a 3-D eyetracker for initial use at NASA's Ames Research Center was made. The commercialization potential of a simplified, less expensive 3-D eyetracker was ascertained. Primary focus on present and potential users of eyetrackers, as well as present and potential manufacturers has provided an effective means of analyzing the prospects for commercialization.

  18. 3D Buckligami: Digital Matter

    NASA Astrophysics Data System (ADS)

    van Hecke, Martin; de Reus, Koen; Florijn, Bastiaan; Coulais, Corentin

    2014-03-01

    We present a class of elastic structures which exhibit collective buckling in 3D, and create these by a 3D printing/moulding technique. Our structures consist of cubic lattice of anisotropic unit cells, and we show that their mechanical properties are programmable via the orientation of these unit cells.

  19. 3D World Building System

    SciTech Connect

    2013-10-30

    This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.

  20. Euro3D Science Conference

    NASA Astrophysics Data System (ADS)

    Walsh, J. R.

    2004-02-01

    The Euro3D RTN is an EU funded Research Training Network to foster the exploitation of 3D spectroscopy in Europe. 3D spectroscopy is a general term for spectroscopy of an area of the sky and derives its name from its two spatial + one spectral dimensions. There are an increasing number of instruments which use integral field devices to achieve spectroscopy of an area of the sky, either using lens arrays, optical fibres or image slicers, to pack spectra of multiple pixels on the sky (``spaxels'') onto a 2D detector. On account of the large volume of data and the special methods required to reduce and analyse 3D data, there are only a few centres of expertise and these are mostly involved with instrument developments. There is a perceived lack of expertise in 3D spectroscopy spread though the astronomical community and its use in the armoury of the observational astronomer is viewed as being highly specialised. For precisely this reason the Euro3D RTN was proposed to train young researchers in this area and develop user tools to widen the experience with this particular type of data in Europe. The Euro3D RTN is coordinated by Martin M. Roth (Astrophysikalisches Institut Potsdam) and has been running since July 2002. The first Euro3D science conference was held in Cambridge, UK from 22 to 23 May 2003. The main emphasis of the conference was, in keeping with the RTN, to expose the work of the young post-docs who are funded by the RTN. In addition the team members from the eleven European institutes involved in Euro3D also presented instrumental and observational developments. The conference was organized by Andy Bunker and held at the Institute of Astronomy. There were over thirty participants and 26 talks covered the whole range of application of 3D techniques. The science ranged from Galactic planetary nebulae and globular clusters to kinematics of nearby galaxies out to objects at high redshift. Several talks were devoted to reporting recent observations with newly

  1. 3D printing in dentistry.

    PubMed

    Dawood, A; Marti Marti, B; Sauret-Jackson, V; Darwood, A

    2015-12-01

    3D printing has been hailed as a disruptive technology which will change manufacturing. Used in aerospace, defence, art and design, 3D printing is becoming a subject of great interest in surgery. The technology has a particular resonance with dentistry, and with advances in 3D imaging and modelling technologies such as cone beam computed tomography and intraoral scanning, and with the relatively long history of the use of CAD CAM technologies in dentistry, it will become of increasing importance. Uses of 3D printing include the production of drill guides for dental implants, the production of physical models for prosthodontics, orthodontics and surgery, the manufacture of dental, craniomaxillofacial and orthopaedic implants, and the fabrication of copings and frameworks for implant and dental restorations. This paper reviews the types of 3D printing technologies available and their various applications in dentistry and in maxillofacial surgery.

  2. 3D vision system assessment

    NASA Astrophysics Data System (ADS)

    Pezzaniti, J. Larry; Edmondson, Richard; Vaden, Justin; Hyatt, Bryan; Chenault, David B.; Kingston, David; Geulen, Vanilynmae; Newell, Scott; Pettijohn, Brad

    2009-02-01

    In this paper, we report on the development of a 3D vision system consisting of a flat panel stereoscopic display and auto-converging stereo camera and an assessment of the system's use for robotic driving, manipulation, and surveillance operations. The 3D vision system was integrated onto a Talon Robot and Operator Control Unit (OCU) such that direct comparisons of the performance of a number of test subjects using 2D and 3D vision systems were possible. A number of representative scenarios were developed to determine which tasks benefited most from the added depth perception and to understand when the 3D vision system hindered understanding of the scene. Two tests were conducted at Fort Leonard Wood, MO with noncommissioned officers ranked Staff Sergeant and Sergeant First Class. The scenarios; the test planning, approach and protocols; the data analysis; and the resulting performance assessment of the 3D vision system are reported.

  3. PLOT3D user's manual

    NASA Technical Reports Server (NTRS)

    Walatka, Pamela P.; Buning, Pieter G.; Pierce, Larry; Elson, Patricia A.

    1990-01-01

    PLOT3D is a computer graphics program designed to visualize the grids and solutions of computational fluid dynamics. Seventy-four functions are available. Versions are available for many systems. PLOT3D can handle multiple grids with a million or more grid points, and can produce varieties of model renderings, such as wireframe or flat shaded. Output from PLOT3D can be used in animation programs. The first part of this manual is a tutorial that takes the reader, keystroke by keystroke, through a PLOT3D session. The second part of the manual contains reference chapters, including the helpfile, data file formats, advice on changing PLOT3D, and sample command files.

  4. PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITH TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into

  5. PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITHOUT TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into

  6. PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITHOUT TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into

  7. PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITH TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into

  8. Unassisted 3D camera calibration

    NASA Astrophysics Data System (ADS)

    Atanassov, Kalin; Ramachandra, Vikas; Nash, James; Goma, Sergio R.

    2012-03-01

    With the rapid growth of 3D technology, 3D image capture has become a critical part of the 3D feature set on mobile phones. 3D image quality is affected by the scene geometry as well as on-the-device processing. An automatic 3D system usually assumes known camera poses accomplished by factory calibration using a special chart. In real life settings, pose parameters estimated by factory calibration can be negatively impacted by movements of the lens barrel due to shaking, focusing, or camera drop. If any of these factors displaces the optical axes of either or both cameras, vertical disparity might exceed the maximum tolerable margin and the 3D user may experience eye strain or headaches. To make 3D capture more practical, one needs to consider unassisted (on arbitrary scenes) calibration. In this paper, we propose an algorithm that relies on detection and matching of keypoints between left and right images. Frames containing erroneous matches, along with frames with insufficiently rich keypoint constellations, are detected and discarded. Roll, pitch yaw , and scale differences between left and right frames are then estimated. The algorithm performance is evaluated in terms of the remaining vertical disparity as compared to the maximum tolerable vertical disparity.

  9. Bioprinting of 3D hydrogels.

    PubMed

    Stanton, M M; Samitier, J; Sánchez, S

    2015-08-07

    Three-dimensional (3D) bioprinting has recently emerged as an extension of 3D material printing, by using biocompatible or cellular components to build structures in an additive, layer-by-layer methodology for encapsulation and culture of cells. These 3D systems allow for cell culture in a suspension for formation of highly organized tissue or controlled spatial orientation of cell environments. The in vitro 3D cellular environments simulate the complexity of an in vivo environment and natural extracellular matrices (ECM). This paper will focus on bioprinting utilizing hydrogels as 3D scaffolds. Hydrogels are advantageous for cell culture as they are highly permeable to cell culture media, nutrients, and waste products generated during metabolic cell processes. They have the ability to be fabricated in customized shapes with various material properties with dimensions at the micron scale. 3D hydrogels are a reliable method for biocompatible 3D printing and have applications in tissue engineering, drug screening, and organ on a chip models.

  10. 3D Scan Systems Integration

    DTIC Science & Technology

    2007-11-02

    AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 5 Feb 98 4. TITLE AND SUBTITLE 3D Scan Systems Integration REPORT TYPE AND DATES COVERED...2-89) Prescribed by ANSI Std. Z39-1 298-102 [ EDO QUALITY W3PECTEDI DLA-ARN Final Report for US Defense Logistics Agency on DDFG-T2/P3: 3D...SCAN SYSTEMS INTEGRATION Contract Number SPO100-95-D-1014 Contractor Ohio University Delivery Order # 0001 Delivery Order Title 3D Scan Systems

  11. Composition and thermal profiles of the Jovian upper atmosphere determined by the Voyager ultraviolet stellar occultation experiment

    NASA Technical Reports Server (NTRS)

    Festou, M. C.; Atreya, S. K.; Donahue, T. M.; Sandel, B. R.; Shemansky, D. E.; Broadfoot, A. L.

    1981-01-01

    During the occultation of the star Regulus (B7 type) by Jupiter as seen from the Voyager 2 spacecraft on July 9, 1979, two absorbing regions were detected. Between 911 and 1200 A, H2 was absorbing over a 600 km altitude range. Above 1300 A, the rapid increase of the absorption by the hydrocarbons was observed over an altitude interval of approximately 100 km with a height resolution of 3 km. The analysis of these absorption features has provided the height profiles of molecular hydrogen, methane, ethane, and acetylene, as well as the thermal profile in the upper atmosphere of Jupiter. Combining the Voyager ultraviolet spectrometer results with other data, such as those obtained by the Voyager infrared and radioscience instruments, has yielded a comprehensive model of the composition and structure of the atmosphere of Jupiter.

  12. Resonance-line transfer with partial redistribution. VIII - Solution in the comoving frame for moving atmospheres. [stellar chromosphere model

    NASA Technical Reports Server (NTRS)

    Mihalas, D.; Shine, R. A.; Kunasz, P. B.; Hummer, D. G.

    1976-01-01

    The effects of partial frequency redistribution in the scattering process for lines formed in moving atmospheres are analyzed using a general method that allows the transfer equation to be solved in the comoving frame of the gas. The same chromospheric and atomic model studied by Cannon and Vardavas (1974) is employed in the calculations, but a depth scale with logarithmically spaced points is adopted. It is found that in both static and moving atmospheres, the profiles obtained with complete and partial frequency redistribution are virtually identical. The large differences in profiles obtained by Cannon and Vardavas when they used complete and partial redistribution are shown to be spurious (and physically unreal) effects resulting from angle averaging in the observer's frame instead of the comoving frame.

  13. Resonance-line transfer with partial redistribution. VIII - Solution in the comoving frame for moving atmospheres. [stellar chromosphere model

    NASA Technical Reports Server (NTRS)

    Mihalas, D.; Shine, R. A.; Kunasz, P. B.; Hummer, D. G.

    1976-01-01

    The effects of partial frequency redistribution in the scattering process for lines formed in moving atmospheres are analyzed using a general method that allows the transfer equation to be solved in the comoving frame of the gas. The same chromospheric and atomic model studied by Cannon and Vardavas (1974) is employed in the calculations, but a depth scale with logarithmically spaced points is adopted. It is found that in both static and moving atmospheres, the profiles obtained with complete and partial frequency redistribution are virtually identical. The large differences in profiles obtained by Cannon and Vardavas when they used complete and partial redistribution are shown to be spurious (and physically unreal) effects resulting from angle averaging in the observer's frame instead of the comoving frame.

  14. Chemical Abundances from Inversions of Stellar Spectra: Analysis of Solar-Type Stars with Homogeneous and Static Model Atmospheres

    NASA Astrophysics Data System (ADS)

    Allende Prieto, Carlos; Barklem, Paul S.; Asplund, Martin; Ruiz Cobo, Basilio

    2001-09-01

    Spectra of late-type stars are usually analyzed with static model atmospheres in local thermodynamic equilibrium (LTE) and a homogeneous plane-parallel or spherically symmetric geometry. The energy balance requires particular attention, as two elements that are particularly difficult to model play an important role: line blanketing and convection. Inversion techniques are able to bypass the difficulties of a detailed description of the energy balance. Assuming that the atmosphere is in hydrostatic equilibrium and LTE, it is possible to constrain its structure from spectroscopic observations. Among the most serious approximations still implicit in the method is a static and homogeneous geometry. In this paper, we take advantage of a realistic three-dimensional radiative hydrodynamical simulation of the solar surface to check the systematic errors incurred by an inversion assuming a plane-parallel horizontally-homogeneous atmosphere. The thermal structure recovered resembles the spatial and time average of the three-dimensional atmosphere. Furthermore, the abundances retrieved are typically within 10% (0.04 dex) of the abundances used to construct the simulation. The application to a fairly complete data set from the solar spectrum provides further confidence in previous analyses of the solar composition. There is only a narrow range of one-dimensional thermal structures able to fit the absorption lines in the spectrum of the Sun. With our carefully selected data set, random errors are about a factor of 2 smaller than systematic errors. A small number of strong metal lines can provide very reliable results. We foresee no major difficulties in applying the technique to other similar stars, and obtaining similar accuracies, using spectra with λ/δλ~5×104 and a signal-to-noise ratio as low as 30.

  15. Stellar Ro

    NASA Astrophysics Data System (ADS)

    Featherstone, Nicholas

    2017-05-01

    Our understanding of the interior dynamics that give rise to a stellar dynamo draws heavily from investigations of similar dynamics in the solar context. Unfortunately, an outstanding gap persists in solar dynamo theory. Convection, an indispensable component of the dynamo, occurs in the midst of rotation, and yet we know little about how the influence of that rotation manifests across the broad range of convective scales present in the Sun. We are nevertheless well aware that the interaction of rotation and convection profoundly impacts many aspects of the dynamo, including the meridional circulation, the differential rotation, and the helicity of turbulent EMF. The rotational constraint felt by solar convection ultimately hinges on the characteristic amplitude of deep convective flow speeds, and such flows are difficult to measure helioseismically. Those measurements of deep convective power which do exist disagree by orders of magnitude, and until this disagreement is resolved, we are left with the results of models and those less ambiguous measurements derived from surface observations of solar convection. I will present numerical results from a series of nonrotating and rotating convection simulations conducted in full 3-D spherical geometry. This presentation will focus on how convective spectra differ between the rotating and non-rotating models and how that behavior changes as simulations are pushed toward more turbulent and/or more rotationally-constrained regimes. I will discuss how the surface signature of rotationally-constrained interior convection might naturally lead to observable signatures in the surface convective pattern, such as supergranulation and a dearth of giant cells.

  16. 3D Models of Immunotherapy

    Cancer.gov

    This collaborative grant is developing 3D models of both mouse and human biology to investigate aspects of therapeutic vaccination in order to answer key questions relevant to human cancer immunotherapy.

  17. 3D polymer scaffold arrays.

    PubMed

    Simon, Carl G; Yang, Yanyin; Dorsey, Shauna M; Ramalingam, Murugan; Chatterjee, Kaushik

    2011-01-01

    We have developed a combinatorial platform for fabricating tissue scaffold arrays that can be used for screening cell-material interactions. Traditional research involves preparing samples one at a time for characterization and testing. Combinatorial and high-throughput (CHT) methods lower the cost of research by reducing the amount of time and material required for experiments by combining many samples into miniaturized specimens. In order to help accelerate biomaterials research, many new CHT methods have been developed for screening cell-material interactions where materials are presented to cells as a 2D film or surface. However, biomaterials are frequently used to fabricate 3D scaffolds, cells exist in vivo in a 3D environment and cells cultured in a 3D environment in vitro typically behave more physiologically than those cultured on a 2D surface. Thus, we have developed a platform for fabricating tissue scaffold libraries where biomaterials can be presented to cells in a 3D format.

  18. Accepting the T3D

    SciTech Connect

    Rich, D.O.; Pope, S.C.; DeLapp, J.G.

    1994-10-01

    In April, a 128 PE Cray T3D was installed at Los Alamos National Laboratory`s Advanced Computing Laboratory as part of the DOE`s High-Performance Parallel Processor Program (H4P). In conjunction with CRI, the authors implemented a 30 day acceptance test. The test was constructed in part to help them understand the strengths and weaknesses of the T3D. In this paper, they briefly describe the H4P and its goals. They discuss the design and implementation of the T3D acceptance test and detail issues that arose during the test. They conclude with a set of system requirements that must be addressed as the T3D system evolves.

  19. [Tridimensional (3D) endoscopic ultrasonography].

    PubMed

    Varas Lorenzo, M J; Muñoz Agel, F; Abad Belando, R

    2007-01-01

    A review and update on 3D endoscopic ultrasonography is included regarding all of this technique s aspects, technical details, and current indications. Images from our own clinical experience are presented.

  20. Heterodyne 3D ghost imaging

    NASA Astrophysics Data System (ADS)

    Yang, Xu; Zhang, Yong; Yang, Chenghua; Xu, Lu; Wang, Qiang; Zhao, Yuan

    2016-06-01

    Conventional three dimensional (3D) ghost imaging measures range of target based on pulse fight time measurement method. Due to the limit of data acquisition system sampling rate, range resolution of the conventional 3D ghost imaging is usually low. In order to take off the effect of sampling rate to range resolution of 3D ghost imaging, a heterodyne 3D ghost imaging (HGI) system is presented in this study. The source of HGI is a continuous wave laser instead of pulse laser. Temporal correlation and spatial correlation of light are both utilized to obtain the range image of target. Through theory analysis and numerical simulations, it is demonstrated that HGI can obtain high range resolution image with low sampling rate.

  1. Combinatorial 3D Mechanical Metamaterials

    NASA Astrophysics Data System (ADS)

    Coulais, Corentin; Teomy, Eial; de Reus, Koen; Shokef, Yair; van Hecke, Martin

    2015-03-01

    We present a class of elastic structures which exhibit 3D-folding motion. Our structures consist of cubic lattices of anisotropic unit cells that can be tiled in a complex combinatorial fashion. We design and 3d-print this complex ordered mechanism, in which we combine elastic hinges and defects to tailor the mechanics of the material. Finally, we use this large design space to encode smart functionalities such as surface patterning and multistability.

  2. 3D LTE spectral line formation with scattering in red giant stars

    NASA Astrophysics Data System (ADS)

    Hayek, W.; Asplund, M.; Collet, R.; Nordlund, Å.

    2011-05-01

    Aims: We investigate the effects of coherent isotropic continuum scattering on the formation of spectral lines in local thermodynamic equilibrium (LTE) using 3D hydrodynamical and 1D hydrostatic model atmospheres of red giant stars. Methods: Detailed radiative transfer with coherent and isotropic continuum scattering is computed for 3D hydrodynamical and 1D hydrostatic models of late-type stellar atmospheres using the SCATE code. Opacities are computed in LTE, while a coherent and isotropic scattering term is added to the continuum source function. We investigate the effects of scattering by comparing continuum flux levels, spectral line profiles and curves of growth for different species with calculations that treat scattering as absorption. Results: Rayleigh scattering is the dominant source of scattering opacity in the continuum of red giant stars. Photons may escape from deeper, hotter layers through scattering, resulting in significantly higher continuum flux levels beneath a wavelength of λ ≲ 5000 Å. The magnitude of the effect is determined by the importance of scattering opacity with respect to absorption opacity; we observe the largest changes in continuum flux at the shortest wavelengths and lowest metallicities; intergranular lanes of 3D models are more strongly affected than granules. Continuum scattering acts to increase the profile depth of LTE lines: continua gain more brightness than line cores due to their larger thermalization depth in hotter layers. We thus observe the strongest changes in line depth for high-excitation species and ionized species, which contribute significantly to photon thermalization through their absorption opacity near the continuum optical surface. Scattering desaturates the line profiles, leading to larger abundance corrections for stronger lines, which reach -0.5 dex at 3000 Å for Fe ii lines in 3D with excitation potential χ = 2 eV at [Fe/H] = -3.0. The corrections are less severe for low-excitation lines, longer

  3. On magnetohydrodynamic thermal instabilities in magnetic flux tubes. [in plane parallel stellar atmosphere in LTE and hydrostatic equilibrium

    NASA Technical Reports Server (NTRS)

    Massaglia, S.; Ferrari, A.; Bodo, G.; Kalkofen, W.; Rosner, R.

    1985-01-01

    The stability of current-driven filamentary modes in magnetic flux tubes embedded in a plane-parallel atmosphere in LTE and in hydrostatic equilibrium is discussed. Within the tube, energy transport by radiation only is considered. The dominant contribution to the opacity is due to H- ions and H atoms (in the Paschen continuum). A region in the parameter space of the equilibrium configuration in which the instability is effective is delimited, and the relevance of this process for the formation of structured coronae in late-type stars and accretion disks is discussed.

  4. LASTRAC.3d: Transition Prediction in 3D Boundary Layers

    NASA Technical Reports Server (NTRS)

    Chang, Chau-Lyan

    2004-01-01

    Langley Stability and Transition Analysis Code (LASTRAC) is a general-purpose, physics-based transition prediction code released by NASA for laminar flow control studies and transition research. This paper describes the LASTRAC extension to general three-dimensional (3D) boundary layers such as finite swept wings, cones, or bodies at an angle of attack. The stability problem is formulated by using a body-fitted nonorthogonal curvilinear coordinate system constructed on the body surface. The nonorthogonal coordinate system offers a variety of marching paths and spanwise waveforms. In the extreme case of an infinite swept wing boundary layer, marching with a nonorthogonal coordinate produces identical solutions to those obtained with an orthogonal coordinate system using the earlier release of LASTRAC. Several methods to formulate the 3D parabolized stability equations (PSE) are discussed. A surface-marching procedure akin to that for 3D boundary layer equations may be used to solve the 3D parabolized disturbance equations. On the other hand, the local line-marching PSE method, formulated as an easy extension from its 2D counterpart and capable of handling the spanwise mean flow and disturbance variation, offers an alternative. A linear stability theory or parabolized stability equations based N-factor analysis carried out along the streamline direction with a fixed wavelength and downstream-varying spanwise direction constitutes an efficient engineering approach to study instability wave evolution in a 3D boundary layer. The surface-marching PSE method enables a consistent treatment of the disturbance evolution along both streamwise and spanwise directions but requires more stringent initial conditions. Both PSE methods and the traditional LST approach are implemented in the LASTRAC.3d code. Several test cases for tapered or finite swept wings and cones at an angle of attack are discussed.

  5. Using the Unconventional Stellar Aspect (USA) and the Rossi X-ray Timing Explorer (RXTE) Experimental Data to Determine Atmospheric Composition, Density, and Temperature

    NASA Astrophysics Data System (ADS)

    Determan, J. R.; Budzein, S. A.; Titarchuk, L.

    2002-05-01

    The X-ray Astronomy Branch of the Naval Research Laboratory launched the Unconventional Stellar Aspect (USA) experiment aboard the Advanced Research and Global Observation Satellite (ARGOS) in 1999. USA is an X-ray timing experiment with a large collecting area and microsecond time resolution capable of conducting a broad program of studies of galactic X-ray binaries. USA consists of a collimated proportional counter X-ray telescope and two detectors with ~1000 cm2 effective area each, sensitive to photons in the 1-15 keV energy range. The Rossi X-ray Timing Explorer (RXTE) was launched on December 30, 1995 from NASA's Kennedy Space Center. The mission is managed and controlled by NASA's Goddard Space Flight Center (GSFC) in Greenbelt, Maryland. RXTE features unprecedented time resolution in combination with moderate spectral resolution to explore the variability of X-ray sources. Time scales from microseconds to months are covered in an instantaneous spectral range from 2 to 250 keV. We have developed a new technique to measure the composition and structure of the upper atmosphere using atmospheric occultation of celestial x-ray sources. Both USA and RXTE provide energy-resolved photon extinction curves, and the combined energy ranges of USA and RXTE permit direct probing of the mesosphere and lower thermosphere (80-160 km). Roughly speaking, differential absorption among energy bands can provide composition information, and the shape of the light curves total density versus altitude. Two complementary algorithms have been employed in the data analysis. The first method employs basis functions derived from NRLMSIS-00 (Picone et al 2000) in a Discrete Inverse Theory maximum likelihood retrieval of densities and temperature by fitting the light curve. The second method is a direct inversion of the light curve to determine optical depths and optical depth scale height, from which temperature and density may be iteratively derived in a self-consistent manner from

  6. 3-D threat image projection

    NASA Astrophysics Data System (ADS)

    Yildiz, Yesna O.; Abraham, Douglas Q.; Agaian, Sos; Panetta, Karen

    2008-02-01

    Automated Explosive Detection Systems utilizing Computed Tomography perform a series X-ray scans of passenger bags being checked in at the airport, and produce various 2-D projection images and 3-D volumetric images of the bag. The determination as to whether the passenger bag contains an explosive and needs to be searched manually is performed through trained Transportation Security Administration screeners following an approved protocol. In order to keep the screeners vigilant with regards to screening quality, the Transportation Security Administration has mandated the use of Threat Image Projection on 2-D projection X-ray screening equipment used at all US airports. These algorithms insert visual artificial threats into images of the normal passenger bags in order to test the screeners with regards to their screening efficiency and their screening quality at determining threats. This technology for 2-D X-ray system is proven and is widespread amongst multiple manufacturers of X-ray projection systems. Until now, Threat Image Projection has been unsuccessful at being introduced into 3-D Automated Explosive Detection Systems for numerous reasons. The failure of these prior attempts are mainly due to imaging queues that the screeners pickup on, and therefore make it easy for the screeners to discern the presence of the threat image and thus defeating the intended purpose. This paper presents a novel approach for 3-D Threat Image Projection for 3-D Automated Explosive Detection Systems. The method presented here is a projection based approach where both the threat object and the bag remain in projection sinogram space. Novel approaches have been developed for projection based object segmentation, projection based streak reduction used for threat object isolation along with scan orientation independence and projection based streak generation for an overall realistic 3-D image. The algorithms are prototyped in MatLab and C++ and demonstrate non discernible 3-D threat

  7. From 3D view to 3D print

    NASA Astrophysics Data System (ADS)

    Dima, M.; Farisato, G.; Bergomi, M.; Viotto, V.; Magrin, D.; Greggio, D.; Farinato, J.; Marafatto, L.; Ragazzoni, R.; Piazza, D.

    2014-08-01

    In the last few years 3D printing is getting more and more popular and used in many fields going from manufacturing to industrial design, architecture, medical support and aerospace. 3D printing is an evolution of bi-dimensional printing, which allows to obtain a solid object from a 3D model, realized with a 3D modelling software. The final product is obtained using an additive process, in which successive layers of material are laid down one over the other. A 3D printer allows to realize, in a simple way, very complex shapes, which would be quite difficult to be produced with dedicated conventional facilities. Thanks to the fact that the 3D printing is obtained superposing one layer to the others, it doesn't need any particular work flow and it is sufficient to simply draw the model and send it to print. Many different kinds of 3D printers exist based on the technology and material used for layer deposition. A common material used by the toner is ABS plastics, which is a light and rigid thermoplastic polymer, whose peculiar mechanical properties make it diffusely used in several fields, like pipes production and cars interiors manufacturing. I used this technology to create a 1:1 scale model of the telescope which is the hardware core of the space small mission CHEOPS (CHaracterising ExOPlanets Satellite) by ESA, which aims to characterize EXOplanets via transits observations. The telescope has a Ritchey-Chrétien configuration with a 30cm aperture and the launch is foreseen in 2017. In this paper, I present the different phases for the realization of such a model, focusing onto pros and cons of this kind of technology. For example, because of the finite printable volume (10×10×12 inches in the x, y and z directions respectively), it has been necessary to split the largest parts of the instrument in smaller components to be then reassembled and post-processed. A further issue is the resolution of the printed material, which is expressed in terms of layers

  8. YouDash3D: exploring stereoscopic 3D gaming for 3D movie theaters

    NASA Astrophysics Data System (ADS)

    Schild, Jonas; Seele, Sven; Masuch, Maic

    2012-03-01

    Along with the success of the digitally revived stereoscopic cinema, events beyond 3D movies become attractive for movie theater operators, i.e. interactive 3D games. In this paper, we present a case that explores possible challenges and solutions for interactive 3D games to be played by a movie theater audience. We analyze the setting and showcase current issues related to lighting and interaction. Our second focus is to provide gameplay mechanics that make special use of stereoscopy, especially depth-based game design. Based on these results, we present YouDash3D, a game prototype that explores public stereoscopic gameplay in a reduced kiosk setup. It features live 3D HD video stream of a professional stereo camera rig rendered in a real-time game scene. We use the effect to place the stereoscopic effigies of players into the digital game. The game showcases how stereoscopic vision can provide for a novel depth-based game mechanic. Projected trigger zones and distributed clusters of the audience video allow for easy adaptation to larger audiences and 3D movie theater gaming.

  9. Speaking Volumes About 3-D

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In 1999, Genex submitted a proposal to Stennis Space Center for a volumetric 3-D display technique that would provide multiple users with a 360-degree perspective to simultaneously view and analyze 3-D data. The futuristic capabilities of the VolumeViewer(R) have offered tremendous benefits to commercial users in the fields of medicine and surgery, air traffic control, pilot training and education, computer-aided design/computer-aided manufacturing, and military/battlefield management. The technology has also helped NASA to better analyze and assess the various data collected by its satellite and spacecraft sensors. Genex capitalized on its success with Stennis by introducing two separate products to the commercial market that incorporate key elements of the 3-D display technology designed under an SBIR contract. The company Rainbow 3D(R) imaging camera is a novel, three-dimensional surface profile measurement system that can obtain a full-frame 3-D image in less than 1 second. The third product is the 360-degree OmniEye(R) video system. Ideal for intrusion detection, surveillance, and situation management, this unique camera system offers a continuous, panoramic view of a scene in real time.

  10. Met.3D - a new open-source tool for interactive 3D visualization of ensemble weather forecasts

    NASA Astrophysics Data System (ADS)

    Rautenhaus, Marc; Kern, Michael; Schäfler, Andreas; Westermann, Rüdiger

    2015-04-01

    We introduce Met.3D, a new open-source tool for the interactive 3D visualization of numerical ensemble weather predictions. The tool has been developed to support weather forecasting during aircraft-based atmospheric field campaigns, however, is applicable to further forecasting, research and teaching activities. Our work approaches challenging topics related to the visual analysis of numerical atmospheric model output -- 3D visualisation, ensemble visualization, and how both can be used in a meaningful way suited to weather forecasting. Met.3D builds a bridge from proven 2D visualization methods commonly used in meteorology to 3D visualization by combining both visualization types in a 3D context. It implements methods that address the issue of spatial perception in the 3D view as well as approaches to using the ensemble in order to assess forecast uncertainty. Interactivity is key to the Met.3D approach. The tool uses modern graphics hardware technology to achieve interactive visualization of present-day numerical weather prediction datasets on standard consumer hardware. Met.3D supports forecast data from the European Centre for Medium Range Weather Forecasts and operates directly on ECMWF hybrid sigma-pressure level grids. In this presentation, we provide an overview of the software --illustrated with short video examples--, and give information on its availability.

  11. A Case Study in Astronomical 3D Printing: The Mysterious η Carinae

    NASA Astrophysics Data System (ADS)

    Madura, Thomas I.

    2017-05-01

    Three-dimensional (3D) printing moves beyond interactive 3D graphics and provides an excellent tool for both visual and tactile learners, since 3D printing can now easily communicate complex geometries and full color information. Some limitations of interactive 3D graphics are also alleviated by 3D printable models, including issues of limited software support, portability, accessibility, and sustainability. We describe the motivations, methods, and results of our work on using 3D printing (1) to visualize and understand the η Car Homunculus nebula and central binary system and (2) for astronomy outreach and education, specifically, with visually impaired students. One new result we present is the ability to 3D print full-color models of η Car’s colliding stellar winds. We also demonstrate how 3D printing has helped us communicate our improved understanding of the detailed structure of η Car’s Homunculus nebula and central binary colliding stellar winds, and their links to each other. Attached to this article are full-color 3D printable files of both a red-blue Homunculus model and the η Car colliding stellar winds at orbital phase 1.045. 3D printing could prove to be vital to how astronomer’s reach out and share their work with each other, the public, and new audiences.

  12. On the thermal stability of slabs, cylinders, and spheres. [Applied to interstellar medium, solar atmosphere and stellar nuclei

    SciTech Connect

    Ibanez, M.H.; Plachco, F.P. )

    1991-04-01

    The range of values of the parameters characterizing the energy transport mechanisms and boundary conditions, for which slablike, cylindrical, or spherical configurations are thermally stable, are determined. The configurations are assumed to be heated (or cooled) by a net heat (or heat loss) function of about the exp alpha times T exp beta and cooled (or heated) by thermal diffusion with a conductivity coefficient of about rho exp alpha times T exp b. The extreme cases (isochoric and isobaric configurations) are analyzed. In particular, the results are applied to (1) an optically thin plasma with solar abundances (different regions of the interstellar medium and the solar atmosphere); and (2) the nucleus of the stars where the p-p or C-N thermonuclear cycle proceeds. 22 refs.

  13. Discovery of a Three-Layered Atmospheric Structure in Accretion Disks around Stellar-Mass Black Holes

    NASA Technical Reports Server (NTRS)

    Zhang, S. N.; Zhang, Xiaoling; Sun, Xuejun; Yao, Yangsen; Cui, Wei; Chen, Wan; Wu, Xuebing; Xu, Haiguang

    1999-01-01

    We have carried out systematic modeling of the X-ray spectra of the Galactic superluminal jet sources GRS 1915+105 and GRO J1655-40, using our newly developed spectral fitting methods. Our results reveal, for the first time, a three-layered structure of the atmosphere in the inner region of the accretion disks. Above the conanonly known, cold and optically thick disk of a blackbody temperature 0.2-0.5 keV, there is a layer of warm gas with a temperature of 1.0-1.5 keV and an optical depth of around 10. Compton scattering of the underlying disk blackbody photons produces the soft X-ray component we comonly observe. Under certain conditions, there is also a much hotter, optically thin corona above the warm layer, characterized by a temperature of 100 keV or higher and an optical depth of unity or less. The corona produces the hard X-ray component typically seen in these sources. We emphasize that the existence of the warm layer seem to be independent of the presence of the hot corona and, therefore, it is not due to irradiation of the disk by hard X-rays from the corona. Our results suggest a striking structural similarity between the accretion disks and the solar atmosphere, which may provide a new stimulus to study the common underlying physical processes operating in these vastly different systems. We also report the first unambiguous detection of an emission line around 6.4 keV in GRO J1655-40, which may allow further constraining of the accretion disk structure. We acknowledge NASA GSFC and MFC for partial financial support. (copyright) 1999: American Astronomical Society. All rights reverved.

  14. Discovery of a Three-Layered Atmospheric Structure in Accretion Disks around Stellar-Mass Black Holes

    NASA Technical Reports Server (NTRS)

    Zhang, S. N.; Zhang, Xiaoling; Sun, Xuejun; Yao, Yangsen; Cui, Wei; Chen, Wan; Wu, Xuebing; Xu, Haiguang

    1999-01-01

    We have carried out systematic modeling of the X-ray spectra of the Galactic superluminal jet sources GRS 1915+105 and GRO J1655-40, using our newly developed spectral fitting methods. Our results reveal, for the first time, a three-layered structure of the atmosphere in the inner region of the accretion disks. Above the conanonly known, cold and optically thick disk of a blackbody temperature 0.2-0.5 keV, there is a layer of warm gas with a temperature of 1.0-1.5 keV and an optical depth of around 10. Compton scattering of the underlying disk blackbody photons produces the soft X-ray component we comonly observe. Under certain conditions, there is also a much hotter, optically thin corona above the warm layer, characterized by a temperature of 100 keV or higher and an optical depth of unity or less. The corona produces the hard X-ray component typically seen in these sources. We emphasize that the existence of the warm layer seem to be independent of the presence of the hot corona and, therefore, it is not due to irradiation of the disk by hard X-rays from the corona. Our results suggest a striking structural similarity between the accretion disks and the solar atmosphere, which may provide a new stimulus to study the common underlying physical processes operating in these vastly different systems. We also report the first unambiguous detection of an emission line around 6.4 keV in GRO J1655-40, which may allow further constraining of the accretion disk structure. We acknowledge NASA GSFC and MFC for partial financial support. (copyright) 1999: American Astronomical Society. All rights reverved.

  15. NASA's Hubble Universe in 3-D

    NASA Image and Video Library

    2017-09-27

    gaseous layers on the isolated Carina pillar. Frattare then replaced the stars into both foreground and background layers to complete the 3-D model. For added effect, the same separation was done for both visible and infrared Hubble images, allowing the film to cross-fade between wavelength views in 3-D. In another sequence viewers fly into a field of 170,000 stars in the giant star cluster Omega Centauri. STScI astronomer Jay Anderson used his stellar database to create a synthetic star field in 3-D that matches recent razor-sharp Hubble photos. The film's final four-minute sequence takes viewers on a voyage from our Milky Way Galaxy past many of Hubble's best galaxy shots and deep into space. Some 15,000 galaxies from Hubble's deepest surveys stretch billions of light-years across the universe in a 3-D sequence created by STScI astronomers and visualizers. The view dissolves into a cobweb that traces the universe's large-scale structure, the backbone from which galaxies were born. In addition to creating visualizations, STScI's education group also provided guidance on the "Hubble 3D" Educator Guide, which includes standards-based lesson plans and activities about Hubble and its mission. Students will use the guide before or after seeing the movie. "The guide will enhance the movie experience for students and extend the movie into classrooms," says Bonnie Eisenhamer, STScI's Hubble Formal Education manager. The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency (ESA) and is managed by NASA’s Goddard Space Flight Center (GSFC) in Greenbelt, Md. The Space Telescope Science Institute (STScI) conducts Hubble science operations. The institute is operated for NASA by the Association of Universities for Research in Astronomy, Inc., Washington, D.C.

  16. 3D Printed Bionic Nanodevices.

    PubMed

    Kong, Yong Lin; Gupta, Maneesh K; Johnson, Blake N; McAlpine, Michael C

    2016-06-01

    The ability to three-dimensionally interweave biological and functional materials could enable the creation of bionic devices possessing unique and compelling geometries, properties, and functionalities. Indeed, interfacing high performance active devices with biology could impact a variety of fields, including regenerative bioelectronic medicines, smart prosthetics, medical robotics, and human-machine interfaces. Biology, from the molecular scale of DNA and proteins, to the macroscopic scale of tissues and organs, is three-dimensional, often soft and stretchable, and temperature sensitive. This renders most biological platforms incompatible with the fabrication and materials processing methods that have been developed and optimized for functional electronics, which are typically planar, rigid and brittle. A number of strategies have been developed to overcome these dichotomies. One particularly novel approach is the use of extrusion-based multi-material 3D printing, which is an additive manufacturing technology that offers a freeform fabrication strategy. This approach addresses the dichotomies presented above by (1) using 3D printing and imaging for customized, hierarchical, and interwoven device architectures; (2) employing nanotechnology as an enabling route for introducing high performance materials, with the potential for exhibiting properties not found in the bulk; and (3) 3D printing a range of soft and nanoscale materials to enable the integration of a diverse palette of high quality functional nanomaterials with biology. Further, 3D printing is a multi-scale platform, allowing for the incorporation of functional nanoscale inks, the printing of microscale features, and ultimately the creation of macroscale devices. This blending of 3D printing, novel nanomaterial properties, and 'living' platforms may enable next-generation bionic systems. In this review, we highlight this synergistic integration of the unique properties of nanomaterials with the

  17. 3D Printed Bionic Nanodevices

    PubMed Central

    Kong, Yong Lin; Gupta, Maneesh K.; Johnson, Blake N.; McAlpine, Michael C.

    2016-01-01

    Summary The ability to three-dimensionally interweave biological and functional materials could enable the creation of bionic devices possessing unique and compelling geometries, properties, and functionalities. Indeed, interfacing high performance active devices with biology could impact a variety of fields, including regenerative bioelectronic medicines, smart prosthetics, medical robotics, and human-machine interfaces. Biology, from the molecular scale of DNA and proteins, to the macroscopic scale of tissues and organs, is three-dimensional, often soft and stretchable, and temperature sensitive. This renders most biological platforms incompatible with the fabrication and materials processing methods that have been developed and optimized for functional electronics, which are typically planar, rigid and brittle. A number of strategies have been developed to overcome these dichotomies. One particularly novel approach is the use of extrusion-based multi-material 3D printing, which is an additive manufacturing technology that offers a freeform fabrication strategy. This approach addresses the dichotomies presented above by (1) using 3D printing and imaging for customized, hierarchical, and interwoven device architectures; (2) employing nanotechnology as an enabling route for introducing high performance materials, with the potential for exhibiting properties not found in the bulk; and (3) 3D printing a range of